
Worst-Case Execution Time Analysis
for Real-Time Java

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Benedikt Huber
Matrikelnummer 0060387

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: o.Univ.-Prof. Dipl.-Ing. Dr.techn. Herbert Grünbacher
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Martin Schöberl

Wien, 01.03.2009 _______________________ ______________________
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0 ▪ http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Benedikt Huber
Vitusgasse 8/10

A-1130 Wien

“Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe,
dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben
habe und dass ich die Stellen der Arbeit einschließlich Tabellen, Karten
und Abbildungen , die anderen Werken oder dem Internet im Wortlaut
oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der
Quelle als Entlehnung kenntlich gemacht habe.”

Benedikt Huber Wien, 23. März 2009

Abstract

Real-time systems are applications which have to meet time constraints, ensuring
that periodic tasks are scheduled in time, and events are handled within a per-
mitted delay. In order to show that the system behaves correctly, it is necessary
to verify that tasks complete within a given time span. Worst Case Execution
Time (WCET) analysis, the static prediction of the time needed to execute a task,
therefore plays a central role for safety-critical real-time systems.

In this thesis, we discuss the WCET analysis of real-time Java applications, and
present a tool analyzing tasks executed on the Java Optimized Processor (JOP).
JOP is an implementation of the Java Virtual Machine in hardware, and uses a
cache fetching all instructions of a method at once, which needs to be taken into
account.

Two techniques for calculating a WCET bound have been implemented, the Im-
plicit Path Enumeration Technique (IPET), translating the calculation to a maxi-
mum cost circulation problem, and a dynamic approach using the timed automata
model checker uppaal. The model checking based approach is computationally
more expensive, but capable of modeling timings which depend on the execution
history, and therefore has the potential to yield more accurate WCET bounds than
the static IPET method. JOP’s variable block method cache was included in both
timing models, reducing the gap between the actual and the calculated WCET.

Both approaches have been integrated in the analysis tool, and we are thus able to
directly compare analysis times and the quality of the calculated WCET bound.
Experimental results indicate that timed automata model checking using uppaal
is at least suitable for the analysis of single methods and smaller tasks, although
large loop bounds lead to a significant increase of the time needed for the analysis.
IPET on the other hand scales very well, but delivered slightly worse results for
the cache approximation. As the model checking approach is not established yet,
there seem to be plenty of opportunities for optimizations and new applications,
leaving room for future research.

i

Kurzfassung

Die Korrektheit eines Echtzeitsystems ist nicht nur von der Programmlogik, son-
dern auch von zeitlichen Faktoren abhänging. So muss beispielsweise ein periodisch
aufgerufener Programmteil rechtzeitig ausgeführt und auf Ereignisse innerhalb ei-
ner festgelegten Frist reagiert werden. Um die Einhaltung dieser Anforderungen
zu garantieren, ist eine Worst Case Execution-Time (WCET) Analyse notwendig,
um festzustellen, wieviel Zeit die Ausführung eines Programmfragments benötigt.
Für sicherheitskritische Systeme ist man im Besonderen an der Berechnung einer
sicheren oberen Schranke der maximalen Laufzeit interessiert.

Diese Diplomarbeit behandelt die Laufzeitanalyse der sequentiellen Programmtei-
le sicherheitskritischer Java Echtzeitanwendungen. In diesem Rahmen wurde eine
Applikation zur Laufzeitanalyse für den Java Prozessor JOP entwickelt und zwei
unterschiedliche Techniken zur Berechnung der maximalen Laufzeit implementiert.
Zum einen die häufig angewandte Technik der impliziten Pfadenumeration (Im-
plicit Path Enumeration Technique (IPET)), welche die Laufzeitberechnung in
ein Netzwerkfluss-Problem überführt. Der zweite Ansatz modelliert Programme
als ein Netzwerk von timed automata, eine Erweiterung endlicher Automaten um
zeitabhängige Systeme zu modellieren. Dabei wird der model checker uppaal ver-
wendet, um im durch die Automaten implizit gegebenen Zustandsraum nach dem
Ausführungspfad mit der maximalen Laufzeit zu suchen.

Die Berechnung mit Hilfe von uppaal ist zwar teurer, ermöglicht aber im Ge-
genzug, Abhängigkeiten des Zeitverhaltens vom bisher aufgeführten Pfad zu mo-
dellieren, und damit eine genauere Approximation der maximalen Laufzeit zu
erhalten. In beiden der oben skizzierten Ansätze wurde JOP’s Methoden Cache
berücksichtigt, um die Schranke zu verbessern.

Da beide Techniken in dem Analysewerkzeug integriert wurden, konnten sie di-
rekt miteinander verglichen werden. In den durchgeführten Experimenten stellte
sich der Timed Automata Ansatz als für kleinere Programme geeignet heraus,
wobei allerdings eine hohe Zahl an Schleifeniterationen die Analysezeit signifi-
kant verlängerte. Die IPET Methode wiederum skalierte sehr gut, lieferte aber
im Gegenzug etwas schlechtere Ergebnisse mit der von uns verwendeten Cache-
Approximation. Für die Berechnung via model checking scheinen noch zahlrei-
che Optimierungen möglich, um die Analysezeit zu verringern. Außerdem ergeben
sich hiermit weitere, neue Anwendungsgebiete, wie etwa modell-basierte Schedu-
ling Analyse, so dass es lohnenswert erscheint, diesen Ansatz auch in Zukunft
weiterzuverfolgen.

ii

Contents

1 Introduction 1

2 Real-Time Java 3
2.1 Introduction to Real Time Systems 3
2.2 The Java Programming Language 5
2.3 The Real Time Specification for Java 9
2.4 High-Integrity Real-Time Java . 13

3 WCET Analysis of Java Tasks 19
3.1 Control Flow Analysis . 20
3.2 High-level Program Analysis . 23
3.3 The Java Optimized Processor . 27
3.4 Low-Level Timing and Cache Analysis for JOP 29
3.5 Calculating the WCET using IPET 33

4 Calculating the WCET using Timed Automata 38
4.1 Introduction to Timed Automata 38
4.2 The Model Checker uppaal . 45
4.3 Calculating the WCET of Java Tasks 47

5 A WCET Analysis Tool for JOP 54
5.1 WCET Tool Architecture . 54
5.2 Evaluation . 59

6 Conclusion 66

A Obtaining and Using the WCET Tool 68

References 71

List of Figures 76

List of Tables 77

iii

Chapter 1

Introduction

For safety-critical real-time systems, one not only wants to minimize the risk for
errors due to faulty program logic, but also prove that no time constraints will be
violated at runtime. This is only possible if there are means to compute an upper
bound for the time needed to execute one task. As the execution time is influenced
by a multitude of factors, such as external input and internal processor state, it is
often intractable to obtain a safe bound using measurements only. Static analysis
techniques for predicting the Worst-Case Execution Time (WCET) on the other
hand provide an estimate which is known to be safe. Because resources are limited,
a wasteful over-approximation of the WCET is unlikely to be tolerated. So not
only the safety is important, but also minimizing the difference between the actual
worst-case execution time, and the one calculated statically.

The timing analysis is usually divided into two phases: obtaining a timing model of
the processor and the application, and calculating the WCET from those models.
A simple processor timing model simplifies the calculation, as it is often impossible
to precisely simulate features of modern processors, such as out-of-order execution
and branch prediction. Nevertheless, instruction and data caches for example are
quite common, and need to be taken into account. A suitable representation of
the necessarily finite set of execution paths has to be extracted from the program
code, which is only manageable if the language is restricted to an analyzable subset,
possibly extended with annotations providing additional flow information.

It is usually intractable to explicitly enumerate all execution paths, so more effi-
cient techniques for calculating the WCET are needed. The simplest possibility is
to operate on the syntax tree of the program, and calculate the execution time re-
cursively. This method has several shortcomings, not supporting arbitrary control
flow or most forms of timing and execution dependencies. A more general solution
is to label the control flow graphs with execution costs and execution frequency
constraints, and view the WCET calculation as a network flow problem. Another,

1

quite different approach is to model the execution path set using finite automata,
and explore their state space searching for the worst-case path. The latter two
approaches will be discussed, and have been implemented for the WCET analysis
of real-time Java.

The focus of this thesis is on the calculation of the WCET given models for the
processor and Java methods, while the extraction of models from the hardware
and program code will not be considered in great detail. Consequently, the evalu-
ation of the developed tool focuses on analysis times and the quality of the cache
approximation, and to a lesser extend on differences due to a conservative over-
approximation of the execution path set. While issues related to concurrent sys-
tems, such as scheduling analysis, preemption and synchronization will not be
discussed, work in these areas depends on an effective WCET analysis.

Outline Chapter 2 starts with an introduction to real-time systems, providing
an overview and introducing important concepts. After a brief introduction to the
Java programming language, the The Real Time Specification for Java is presented,
which adopts Java to address the challenges posed by real time systems. We then
discuss the requirements of high-integrity real-time applications, and review two
high-integrity profiles, restricted subsets of Java, which should facilitate the use of
Java for safety-critical applications.

Chapter 3 deals with worst-case execution time analysis in general, and issues
specific to Real-Time Java. First, we introduce concepts of control flow analysis,
a necessary prerequisite to determine possible execution paths. Then high-level
WCET analysis, the extraction and modeling of feasible execution paths, is dis-
cussed. Next, the Java Optimized Processor (JOP), a Java processor for real-time
applications, is introduced. We investigate low-level WCET analysis in the context
of JOP, including analysis techniques for JOP’s instruction cache. At the end of
the chapter, the IPET technique for calculating WCET bounds is presented.

Chapter 4 discusses the calculation of WCET bounds using model checkers for
timed automata. The theory of timed automata, and the uppaal model checker
are explained first. It is shown how to use uppaal for WCET calculation, present-
ing a detailed translation algorithm. Finally, we discuss how to model different
variants of JOP’s method cache.

The tool developed in course of this thesis is presented in Chapter 5. After a
description of the tool’s architecture, some experimental results obtained with the
tool are presented.

Finally this thesis concludes with a summary and future prospectives.

2

Chapter 2

Real-Time Java

The outstanding characteristic of real-time systems is that the correctness of an
application depends on whether it meets given time constraints [SR94]. Usually,
the interaction with an external environment plays an important role, and, as
many real-time applications are safety critical, reliability is crucial as well.

In hard real-time systems, failing to satisfy time constraints may result in critical
failures, possibly endangering precious resources. A control system which has to
shut down a nuclear power plant in case of an accident is a classical example for
a system with hard real-time constraints. Missing a deadline in soft real-time
systems on the other hand results in degraded performance, but is acceptable to
some degree. For example, failing to display a frame of streamed video in time
will result in a lower quality, but is usually tolerable.

In this chapter we will discuss adoptions of the Java programming language for
safety-critical, hard real-time systems. After a short introduction to real-time
systems, and to the Java platform in general, the Real-Time Specification for
Java (RTSJ) is reviewed. Finally, two high-integrity profiles for real-time Java,
subsets of the RTSJ adopted to the needs of predictable hard real-time systems,
are discussed.

2.1 Introduction to Real Time Systems

A real-time system executes possibly cooperating and dependent tasks, which can
be classified as either periodic or aperiodic. Periodic tasks are run at regular time
intervals, while aperiodic tasks are invoked to react to sporadic events. Time
critical tasks have to meet deadlines, i. e., they need to complete within a certain
time interval.

Deadlines are classified as hard, firm or soft. Hard deadlines have to be met under

3

2.1. INTRODUCTION TO REAL TIME SYSTEMS

all circumstances, and failing to do so results in a critical system failure. If a task
misses a firm deadline, this does not result in a critical failure, but there is no
use in completing the task either and it can be abandoned. Finally, missing a
soft deadline lowers the quality of the system’s service, but completing the task is
still useful. Depending on the application, one or more kinds of deadlines may be
present. Additionally, there may be non time-critical tasks as well.

It is crucial that the application designer is able to predict a priori whether dead-
lines will be met. There are different kinds of predictability: for hard deadlines, it
has to be shown that they will certainly be met. As the environment interacting
with the system will usually be non deterministic, certain assumptions regarding
the frequency of events or faults have to be made. For firm and soft deadlines,
weaker guarantees, for example in terms of the probability of missing a deadline,
can be sufficient. Finally, deadline violations can be monitored, taking appropriate
actions in case a deadline is missed.

Scheduling Scheduling is the problem of deciding which tasks should be exe-
cuted when, and, in the case of multiprocessor systems, on which processor. While
schedulers of, e. g., desktop operating system try to achieve a good overall resource
utilization, a real-time system’s scheduler’s highest priority is to assign processing
time in such a way, that time constraints are not violated.

When the scheduling is preemptive, running tasks may be suspended and resumed
again, whereas in a non-preemptive system, a task, once started, can not be inter-
rupted but only give away control voluntarily.

The task schedule can either be determined statically or decided at runtime. The
former only works for a fixed set of periodic tasks, while for the latter a scheduling
algorithm dynamically decides which tasks should be run. Scheduling algorithms
can be further classified by distinguishing the kind of deadlines (hard, firm or soft)
they are dealing with, and whether they are designed for periodic or aperiodic
tasks.

One of the simplest scheduling techniques is the cyclic executive model [BS88]. A
controller (the cyclic executive) explicitly starts tasks and delays execution accord-
ing to a fixed pattern. Tasks are manually divided into smaller subtasks, providing
a limited form of preemption. This approach has been a popular choice for hard
real-time systems in the past, because it is reliable and easy to predict. The major
drawback of the cyclic-executive approach is its inflexibility and the complicated
programming model. The application designer needs to define appropriate sub-
tasks, taking timing constraints and synchronization into account. Furthermore,
events need to be handled by periodic tasks, which is rather counterintuitive.

Fixed priority scheduling requires each task to have a fixed (initial) priority. When-
ever two tasks are ready for execution, the one with the higher priority is scheduled.

4

2.2. THE JAVA PROGRAMMING LANGUAGE

When the scheduling is preemptive, and the currently running task has a lower
priority than another one ready for execution, the running task is suspended and
the higher priority task is executed (context switch). Fixed priority schedulers
allow to predict precisely whether tasks will meet their deadlines.

Tasks need means to synchronize access to shared resources, leading to additional
complications [BDV03]. Priority Inversion denotes a situation where a low prior-
ity tasks holds a resource required by a high priority task. The high priority task
is blocked waiting for the low priority tasks, whereas the latter may not get sched-
uled due to its low priority. A related problem is Deadlock, where tasks block each
other by holding some resources the other tasks needs to proceed. When a fixed
priority scheduler is used, those problems can be avoided using a priority ceiling
protocol, raising the priority of a task when it acquires a lock on a shared re-
source. Finally, as synchronization delays execution, unpredicted synchronization
may cause deadlines to be missed.

High-integrity real-time systems are real-time systems which interact with a safety
critical environment. Failure of such a system may endanger human lives or cause
environmental or economical disasters. In [KWK02], the authors summarize the
software requirements for such a system: Predictable performance under specified
conditions (reliability), ability to cope with abnormal situations (robustness), a
transparent mapping from source to object code (traceability) and decreased like-
lihood that updates to the software introduce errors (maintainability). Reliable
software allows to predict various aspects of runtime behavior, e.g execution and
response times, memory consumption and possible control or data flow.

2.2 The Java Programming Language

Java [GJSB05] is an object-oriented programming language, designed for being
portable (write once, run everywhere), and dynamic (loading of classes at run-
time), while reducing the risk for runtime errors (static type safety, runtime checks,
garbage collector). Its built-in support for concurrency (multithreading, synchro-
nization) makes it attractive for concurrent systems.

Though originally developed for an embedded device, it became popular as a lan-
guage for both desktop and server applications, and famous for remote execution
of code in a safe runtime environment (Applets).

The Java platform not only consists of the language itself, but also defines the
standard library and the execution environment. The Standard Edition of the
Java platform, intended for desktop and server use, has been extended for multi-
tiered server applications, resulting in the Server Edition, and restricted in order
to execute Java on mobile devices (Micro Edition).

5

2.2. THE JAVA PROGRAMMING LANGUAGE

The Java Virtual Machine In Java, portability is achieved by compiling Java
programs to a stack-based intermediate language, Java bytecode. The bytecode is
in turn executed on a particular target architecture by an implementation of the
Java Virtual Machine (JVM), an abstract stack machine. Before execution, the
bytecode is verified to prevent malicious code from compromising the integrity of
the execution environment.

The Java Virtual Machine Specification [LY99] defines the file format for compiled
Java code (class files), the bytecode instruction set and the abstract machine for
executing bytecode.

Classes form the compilation units of Java applications, and are compiled sepa-
rately, resulting in corresponding class files. Each class has an associated constant
pool, which defines symbolic names for numeric constants, string literals, fields,
methods, interfaces and classes. References to entities defined in other compilation
units are resolved by the class loader at runtime (dynamic class loading).

Each thread is associated with its own frame stack, a stack of execution contexts.
The current frame holds the execution context for the currently active method of
a thread, and is the only one used in the scope of that method.

The local data of a frame comprises an operand stack and an array of local variables.
Instructions load data from local variables or memory onto the operand stack, and
store it back into memory or the local variable array. Arithmetic instructions and
conditional branches, however, operate on the stack only. 1

Objects and arrays are allocated on the heap, which is shared among all threads.
The runtime system’s garbage collector repeatedly scans the heap for objects which
are no longer used, and frees the space allocated for those objects.

The JVM distinguishes primitive types, including signed integers, unicode char-
acters, floating point values and references to arrays and objects (Table 2.1). In-
structions which inspect data values are typed, i. e., there a different instructions
for different operand and result types.

Every bytecode instruction is encoded using 8 bits, though some instructions need
to be followed by operand bytes, which provide constants or indices into the con-
stant pool.

Stack management instructions rearrange values on the operand stack. The most
common ones are pop, removing the stack’s topmost value and dup, duplicating
the topmost value.

Type conversion instructions are used to convert one numeric type into another
one. The conversions from byte, short and char to int are implicit, and therefore
not represented by a type conversion instruction. This implicit coercion suggests

1With the exception of iinc, used for incrementing local variables.

6

2.2. THE JAVA PROGRAMMING LANGUAGE

Figure 2.1: JVM types
JVM Type Mnemonic Description

byte b 8-bit signed integer
short s 16-bit signed integer
int i 32-bit signed integer
long l 64-bit signed integer
char c 16-bit unsigned unicode character
float f single precision floating point
double d double precision floating point

reference a reference to object or array

that implementations of the JVM use 32-bit signed integers to represent all integral
values with less than 32 bit precision.

Arithmetic instructions take one or two values from the stack, perform an arith-
metic operation and push to result back onto the stack. Because at most 256
instructions can be encoded using a single byte, arithmetic instructions operate
on int, long, float and double only. To support arithmetic operations on other
integral types, the compiler has to insert appropriate type conversion instructions
narrowing the result of an arithmetic operation.

Control transfer instructions unconditionally or conditionally change the next in-
struction to be executed, within the current method. They include support for
conditional branches, unconditional jumps, switch statements and local subrou-
tines.

Load and store instructions load local variables and constants onto the stack, or
move values from the operand stack into local variables.

Array instructions are used to create and access arrays. The JVM supports typed
arrays of booleans, primitive types and objects, and provides an instruction to
query the length of an array. Except for those specific instructions, arrays behave
as objects, and are passed by reference.

Object creation and manipulation instructions are used to build new class instances
and access class and instance fields. Additionally, the instruction set supports
subtype checks and dynamic type casts.

Instructions for method invocations cause the JVM to change control to a different
method. Invoke instructions create a new stack frame and transfer control to the
beginning of the invoked method, while return instructions transfer control back
to the invoking method. For non-private instance methods, the actual method
implementation executed depends on the type of the receiver and is resolved at
runtime (dynamic binding).

7

2.2. THE JAVA PROGRAMMING LANGUAGE

Exceptions are used for non-local transfer of control, from the point the exception
was thrown to the beginning of some code handling the exception. Exception han-
dlers define the beginning of the code block to handle an exception, the code region
for which they are active, and the Throwable subclass they handle. Exceptions
are either generated by the runtime system, or by the athrow instruction. When
an exception is thrown, the runtime system looks up the closest handler capable
of handling the exception type. All stack frames above the method defining the
exception handler are removed, and control is transfered to the beginning of the
handler code. If no such handler is found, the program terminates.

Synchronization is supported by a built-in monitor mechanism. The
monitorenter instruction acquires a lock on the given object, and monitorexit

releases the lock. Additionally, methods can be declared as synchronized, implying
that a lock on the receiving object has to be acquired before executing the method.

For a comprehensive description of the JVM’s instruction set, the reader is referred
to [LY99].

Java and Real-Time Systems Java, as defined in the The Java Language
Specification and The Java Virtual Machine Specification isn’t particularly well
suited for real-time programming. In addition to leaving some aspects implemen-
tation defined, there are some features of Java that make it hard to predict its
timing behavior [Sch04a]:

• The behavior of the runtime system’s scheduler is not specified rig-
orously enough. It need not respect priorities or deal with priority
inversion.

• The Java platform does not define high-resolution clocks, but for real-
time systems, millisecond resolution is not sufficient.

• Java has an inflexible memory management model. All objects have to
be allocated on the garbage collected heap. It is sometimes desirable
or necessary to have threads not depend on the garbage collector, espe-
cially as real-time garbage collectors are still an active area of research.

• Dynamic class loading is hard to predict, both because it is difficult
to estimate timing characteristics of the class loader and verifier, and
because dynamically loaded code need not be known at compile time.

• It is very hard to give accurate timing characteristics for modern JVMs
using Just-In-Time compilation. On the other hand, simple interpreters
often deliver a poor performance. Solutions include dedicated Java
processors (section 3.3) or Ahead-Of-Time compilation.

8

2.3. THE REAL TIME SPECIFICATION FOR JAVA

To make it feasible to use Java for real-time computing, several attempts have
been made to address this limitations, which will be discussed in the remaining of
this chapter.

The Real-Time Specification for Java (RTSJ) [BGB+] tries to conserve as many of
Java’s features as possible, creating an expressive and flexible execution environ-
ment for real-time computing (section 2.3). On the downside, it is rather complex,
and not well suited for embedded devices. It also is not ideal for high-integrity
applications, because it leaves some important aspects open and requires some
hard to predict features to be present.

Attempts to provide a Java specification for use in high-integrity applications
resulted in several specifications, so-called profiles (section 2.4). Ravenscar-Java
targets hard real-time systems, by defining a compatible subset of the RTSJ. The
JOP real-time Java Profile, later refined to the Profile for Safety-Critical Java
[SSTR07], is a minimal specification for safety critical applications, which requires
fewer resources to be implemented. Though this profile is not a subset of the
RTSJ, Ravenscar-Java can be implemented on top of it.

2.3 The Real Time Specification for Java

The RTSJ addresses several areas in order to make Java a better platform for real-
time applications. The most important of them deal with scheduling, memory
management and synchronization issues.

Because of its complexity, the RTSJ is probably targeted at similar environments
as the Java Platform Standard Edition, and not suitable for small embedded de-
vices. Nevertheless, many concepts of RTSJ are used in the high-integrity profiles
presented later, and therefore the specification will be reviewed in greater detail.

Time, Clocks and Timers Real-time systems need high-resolution real-time
clocks and timers, and the notion of absolute and relative points in time. For
this purpose, the RTSJ defines the concept of clocks (Clock), timers (Timer) and
points in time (HighResolutionTime).

There is at least one clock in the system, the system’s real-time clock. It provides
monotonic, non-decreasing time values, but need not be synchronized with the
external world. It is argued that having more than one local clock is useful when
different time resolutions are needed, e. g., when some events have a period of
hours and others fire every few microseconds.

A timer is associated with a specific clock and fires an event when a certain amount
of time has passed on that clock. A OneShotTimer fires once after being activated,
while a PeriodicTimer fires repeatedly, given a start time and a time interval.

9

2.3. THE REAL TIME SPECIFICATION FOR JAVA

Finally, the subclasses of HighResolutionTime allow to represent time with
nanosecond precision. AbsoluteTime represents an absolute time value with re-
spect to a Clock, while instances of RelativeTime represent time intervals. Ab-
solute points in time and time intervals are conceptually quite similar, and differ
mainly in their relation to clocks. In both cases time values are relative to some
clock and are represented as normalized pairs of 32-bit nanosecond and 64-bit
millisecond integers.

Threads and Scheduling The RTSJ requires a fixed priority, preemptive sched-
uler with at least 28 priority levels. Schedulable objects include real time threads
(RealTimeThread) and handlers for asynchronous events (AsyncEventHandler).
The state of a schedulable object is either Executing, Blocked or Eligible-For-
Execution. If a schedulable object is blocked, it cannot be executed and is waiting
for some event to make it eligible for execution (written as Blocked-for-Event).
The scheduler has to ensure that the schedulable object with the highest active
priority is running, if it isn’t blocked. Objects which have the same active priority
are maintained in a first-in first-out (FIFO) queue, i. e., within one priority level,
the object which becomes eligible for execution first, is scheduled first.

A release event for an schedulable object marks it as eligible for execution if it is
Blocked-For-Release. The time of the next release event is called release time. If
a task completes, it switches from Executing to Blocked-For-Release state.

Periodic threads are released at fixed intervals. In addition to ordinary
real-time threads (RealTimeThread), the thread model includes the class
NoHeapRealtimeThread, suitable for high priority threads which do not need
garbage collection and therefore may preempt the garbage collector at any time.
A periodic thread completes by calling waitForNextPeriod(), which transfers
control to the scheduler.

Periodic parameters control the execution of periodic objects. The start time and
the period fix the intended release times of the object. The deadline specifies the
time interval that is allowed to pass between the release time and the completion
of a periodic object, and needs to be less than or equal to the period.

Additionally, the scheduler monitors deadlines and execution costs. A cost overrun
occurs if a thread consumes more processing time than it was expected to consume.
On a deadline miss or cost overrun, handlers can be invoked, taking appropriate
actions.

Finally there is also the concept of process groups, groups of schedulable objects
whose combined execution has further timing constraints. Conceptually, a server is
monitoring the execution of schedulable objects in one process group, and monitors
deadline misses and cost overruns of the combined execution.

10

2.3. THE REAL TIME SPECIFICATION FOR JAVA

Asynchrony The RTSJ provides mechanisms to handle asynchronous events
(AsyncEvent), which might be triggered by client side code, the run-time sys-
tem (for example on a deadline miss) or by external events (called happenings).
Events are handled by asynchronous event handlers (AsyncEventHandler), which
are schedulable objects similar to real-time threads, but released when certain
events fire, rather than on a regular basis. They can be bound to a dedicated
real-time thread (BoundAsyncEventHandler), but this isn’t mandatory and not
advised in applications with a very large number of asynchronous event handlers.

The scheduler maintains an event queue for each event handler, with a fixed initial
size. When the event queue is full, depending on the policy the event is either
ignored, an exception is raised, it replaces some yet unprocessed event, or the size
of the event queue is increased.

For event handlers, the arrival time of the corresponding event corresponds to the
release time of the handler, in case the event is accepted. If the event is rejected,
the corresponding handler is not released. The minimum inter-arrival time (MIT)
specifies the shortest permissible time interval between two consecutive events of
the same kind. If another event occurs before that time passed, either Arrival-time
Regulation or Execution-time Regulation is performed. The former either ignores
the event, raises an exception, or, under certain circumstances, replaces a pending
event. The latter on the other hand delays the processing of the event, making
sure that only one event per MIT is processed, but does not drop it.

The RTSJ further provides mechanisms for Asynchronous Transfer of Control,
which allows to interrupt and terminate running threads in an asynchronous
way. Asynchronous exceptions are generated by calling Thread.interrupt()

or invoking fire on a AsynchronouslyInterruptedException object bound to
some interruptible thread or event handler. Only methods which explicitly list
AsynchronouslyInterruptedException in their throws clause can be interrupted
asynchronously. Furthermore, asynchronous exceptions are deferred while a thread
executes a synchronized statement block.

Memory Management While garbage collection is an important feature of
Java, it also infers with the needs of real-time computing, as it is hard to estimate
the timing behavior of conventional garbage collectors. The RTSJ specifies several
mechanisms for memory management, in addition to traditional garbage collected
heap memory. Memory is allocated in the currently active MemoryArea, either in
garbage collected heap memory, in immortal memory, or in a scoped memory area.
Objects allocated in ImmortalMemory are never reclaimed during the applications
life time. This ensures that code only dealing with immortal memory may preempt
the garbage collector at any time. Objects in ScopedMemory are alive during a
certain region of the program (the associated scope), and are discarded afterwards.

11

2.3. THE REAL TIME SPECIFICATION FOR JAVA

Only one scope can be active at a certain point, but it is possible to nest scopes.
The outer scope is called the parent scope.

One problem which arises with the use of scoped memory is that no object must
be deallocated as long it is referenced by an object still in use (referential in-
tegrity). Put in other words, as soon as a scope is left, it must not be possible
to access objects allocated in that scope. First, due the the exposed application
interface, it is impossible that a local variable accessible from outside the scope
holds a reference to an object in an inner scope. But the system has to ensure
that no object allocated in an outer scope memory area, in immortal memory or
heap memory references objects in an inner scope. The RTSJ specifies that im-
plementation must check whether assignments to non-local variables violate this
constraint, either statically or at runtime.

Another aspect which complicates memory management in Java are Finalizers. If
an object defines a finalizer method, the runtime system has to execute it before
the corresponding memory is freed. While finalizers for objects created in immor-
tal memory need not be executed, finalizers have to be taken into account when
predicting the time needed by the garbage collector, and when leaving scoped
memory.

Finally, the RawMemoryAccess class provides means to access physical memory
modeled as a consecutive array of bytes directly, in order to facilitate the develop-
ment of device drivers, for example.

Synchronization In Java, synchronized access to shared resources is supported
by the synchronized keyword, which allows a thread to obtain a lock on some
object. If some thread holds the lock for an object, another thread trying to obtain
a lock on that object blocks until the lock is released. The RTSJ specifies means
to deal with the problem of priority inversion (see section 2.1), either using the
PriorityInheritance or the PriorityCeilingEmulation policy.

The priority initially or manually assigned to some thread is called its base priority.
The PriorityInheritance protocol requires that the priority of a thread holding
a lock on an object is at least as large as that of any thread which attempts to
acquire the lock. The priority of the object holding the lock is adjusted when
another thread tries to obtain the lock. For example, if thread T1 has priority 4
and holds a lock on o, and then thread T2 with priority 5 tries to obtain a lock on
o, the priority of T1 is raised to 5.

For the optional PriorityCeilingEmulation policy, objects acting as locks are
assigned a ceiling priority. When a thread obtains a lock for an object with a
ceiling priority, its active priority is raised to the ceiling priority. Any thread
who attempts to synchronize on such an object has to have a base priority which
doesn’t exceed the ceiling priority.

12

2.4. HIGH-INTEGRITY REAL-TIME JAVA

2.4 High-Integrity Real-Time Java

High-integrity real-time systems have quite different requirements for a program-
ming language, compared to, e. g., ordinary desktop applications. One approach,
which allows to reuse existing tools and programmer knowledge, is to define a re-
stricted subset of an existing language, along with guidelines for the programmer
(a profile). High-integrity profiles usually remove features which are not formalized
properly or complicate the prediction of the program’s timing behavior.

In general, the reliability of a system can be increased by using static analysis
techniques. Without actually running the application, one proves the absence of
certain classes of errors, and checks whether the implementation agrees with spec-
ified requirements. [BDV04] lists recommendations for the use of static analysis
in sequential high-integrity systems build with the Ada programming language.

• Control flow analysis identifies loops and recursive invocations and
ensures that the code is well structured and no unreachable code is
present.

• Data flow analysis can be used to find variables which are unused, read
without being defined, or written but never read.

• Information flow analysis detects dependencies between input and out-
put variables, which can be checked against a specification.

• Range Checking is used to show that the values a variable might take
are within a permitted range. Important use cases include checking
that array indices are with defined bounds or showing that the second
argument to integer division is non-zero.

• Timing analysis is concerned with finding upper bounds for the execu-
tion time of program fragments.

• Memory usage analysis determines memory consumption related safety
properties, such as allocation rate bounds. Stack usage analysis is a
special important case, determining the amount of stack memory that
is needed to execute a program fragment.

• Formal Verification is the most ambitious static analysis technique.
One attempts to prove that the code is correct with respect to a formal
specification. First, proof obligations (so called verification conditions)
are generated using the specification and the code, which are then
verified using a theorem prover.

13

2.4. HIGH-INTEGRITY REAL-TIME JAVA

Additionally, static analysis is complemented by testing, to increase confidence
that the implementation matches the specification.

Subsequently, the Ada Ravenscar profile [BDV03] has been defined to allow devel-
opers to use the Ada programming language in concurrent hard real-time systems
with preemptive scheduling. There are many concurrency related problems, some
of which are usually checked at runtime. In a high-integrity system it is desirable
to exclude the possibility of such errors using static analysis.

• Detect violations of the priority ceiling protocol.

• Make sure the program is free of race conditions, e. g., deadlocks.

• Ensure that (periodic) tasks do not terminate.

• Detect unsynchronized access to shared variables.

• Perform WCET analysis and subsequently Scheduling Analysis to en-
sure that no task will miss its deadline at runtime.

Ravenscar Java In [PW01], the authors define a high-integrity profile for Java,
based on the work on Ada Ravenscar. The work was later refined in [KWK02] and
given the name Ravenscar Java. It is a restricted subset of the RTSJ, avoiding
features which make it difficult to build predictable real-time systems. Though
Ravenscar Java applications are in principal valid RTSJ applications, the profile
introduces a few new classes, which need to be available as a library.

Common restrictions of high-integrity profiles concern the use of hard to analyze
constructs. In both high-integrity profiles, sleep, wait, notify and notifyAll

must not be used and dynamic class loading is prohibited.

In the Ravenscar Java profile, the system is divided into a initialization and mission
phase. In the initialization phase, which is assumed not to be time critical, threads
are created and configured, event handlers are set up and memory is allocated. The
code for the initialization phase resides in the main() method of the Java program.

In the time critical mission phase, it is prohibited to create garbage collected
objects on the heap. As a consequence, all periodic threads have to be instances of
NoHeapRealTimeThread. Ravenscar Java restricts periodic threads further, only
permitting instances of PeriodicThread, which take the actual thread logic as
an argument, and call waitForNextPeriod() as soon as the supplied Runnable

completes its work.

Event handlers have to be bound to dedicated real-time threads. All event han-
dlers have to be instances of SporadicEventHandler, which itself is a subclass of
AsyncBoundEventHandler. Similar to PeriodicThread, the actual handler logic

14

2.4. HIGH-INTEGRITY REAL-TIME JAVA

can either be implemented by subclassing AsyncBoundEventHandler, or by sup-
plying an object of type Runnable.

During the mission phase, objects can only be allocated in scoped memory. It is
also possible to directly access physical memory.

In Ravenscar Java, no deadline or cost overrun handlers are present, as one has
to show statically that no deadline misses will occur. The mechanisms for asyn-
chronous transfer of control as defined in the RTSJ have been excluded, as they
make timing analysis difficult. Furthermore it is mandatory to use priority ceiling
emulation. Listing 2.1 shows an example of a Ravenscar Java program.

The JOP Real-Time Java Profile JOP also defines a real-time Java profile
[Sch04a], tailored for resource-constrained embedded systems. It is not fully com-
patible with the RTSJ, but shares similar concepts. It is possible to implement
Ravenscar Java on top of the JOP profile, demonstrating that the JOP profile is
sufficiently expressive, while having a smaller runtime and memory overhead than
the Ravenscar Java profile.

Real-time threads are derived from RtThread, are started by the scheduler when
missionStart() is invoked and complete whenever waitForNextPeriod() is
called, as in the RTSJ. A real-time thread is configured by specifying a prior-
ity, a period and a start offset, while the deadline is implicitly assumed to be equal
to the period.

There are two kind of event handlers, HwEvent for hardware generated inter-
rupts, and SwEvent for software generated events. The latter are released when
SwEvent.fire() is invoked. For event handlers, the minimum inter-arrival time
is specified.

The scheduler is a preemptive, priority-based scheduler, but uses unique priority
levels, i. e., each schedulable object has to have its own priority level. Scoped
memory is supported, but garbage collection is not. Consequently, unless a scoped
memory area is associated with the current execution context, objects are allocated
in immortal memory, which has no representation on its own.

Another outstanding feature of the JOP profile is the fact that the scheduling
algorithm can be implemented at the application level. Listing 2.2 illustrates how
to implement the example given in Listing 2.1 using JOP’s real-time Java profile.

Tool Support A high-integrity profile needs strong tool support to ensure that
the rules defined are obeyed. [PW01] provides a list of requirements for analysis
tools.

• The tool has to check that no features prohibited by the profile, such

15

2.4. HIGH-INTEGRITY REAL-TIME JAVA

public class ExampleApp extends Initializer {

class RtWorker implements Runnable {

SporadicEvent event;

public Worker(SporadicEvent ev) { this.event = ev; }

public void run() { /∗ r ea l−time work ∗/
...

event.fire (); /∗ f i r e event ∗/
...

}

}

class RtEventHandler implements Runnable {

public void run() {

... /∗ r ea l−time work ∗/
}

}

public void run() { /∗ Non time−c r i t i c a l i n i t i a l i z e r ∗/
SporadicEventHandler eventHandler =

new SporadicEventHandler(

new PriorityParameters (13), /∗ Pr i o r i t y 13 ∗/
new SporadicParameters(

new RelativeTime (1,0), /∗ 1 ms MIT ∗/
5), /∗ event queue s i z e ∗/

new RtEventHandler ());

final SporadicEvent event = new SporadicEvent(eventHandler);

PeriodicThread worker1 =

new PeriodicThread(

new PriorityParameters (12),

new PeriodicParameters(

new AbsoluteTime (0,0), /∗ s t a r t time ∗/
new RelativeTime (5,0)), /∗ 5 ms per iod ∗/

new RtWorker(event));

PeriodicThread worker2 =

new PeriodicThread(

new PriorityParameters (11),

new PeriodicParameters(

new AbsoluteTime (10,0), /∗ s t a r t a f t e r 10 ms ∗/
new RelativeTime (20,0)), /∗ 20 ms per iod ∗/
new Runnable () { public void run() { ... } });

worker1.start ();

worker2.start ();

}

public static void main(String [] args) {

new ExampleApp (). start ();

}

}

Listing 2.1: Ravenscar Java example

as dynamic class loading or invocations of sleep are used during the
application, or during the mission phase. Threads and event handlers
must not be created during the mission phase.

• It needs to check the correct use of scoped memory (referential in-
tegrity) and make sure that real time threads do not create garbage
collected objects.

• Other sequential static analysis techniques, as described before,

16

2.4. HIGH-INTEGRITY REAL-TIME JAVA

public class ExampleApp {

/∗ Real time thread ∗/
class WorkerThread extends RtThread {

public WorkerThread (int period ,

int deadline ,

SwEvent eventCallback) {

super(period ,deadline);

init (); /∗ non time c r i t i c a l i n i t i a l i z a t i o n ∗/
}

public void run() {

for (;;) {

work ();

/∗ complet ion ∗/
waitForNextPeriod ();

}

}

private work() {

...

eventCallback.fire ();

...

}

}

class SwEventHandler extends SwEvent {

public SwEventHandler(int priority , int mit) {

super(priority ,mit);

}

public handle () {

work ();

}

}

public static void main() {

/∗ i n i t i a l i z a t i o n phase ∗/
/∗ h ighe s t p r i o r i t y thread , 1 ms MIT ∗/
SwEventHandler eventHandler =

new HwEventHandler (13 ,1000);

/∗ h igher p r i o r i t y thread , 5 ms per iod ∗/
new WorkerThread (12 ,5000, eventHandler);

/∗ lower p r i o r i t y thread , 20 ms per iod ∗/
new RtThread (11 ,20000 , eventHandler) {

public void run() {

for (;;) {

... /∗ work ∗/
waitForNextPeriod ();

}

}

}

/∗ s t a r t miss ion phase ∗/
RtThread.startMission ();

/∗ non time−c r i t i c a l work , below RT p r i o r i t i e s ∗/
for (;;) {

System.print(” Al ive \n”);
Thread.sleep (500);

}

}

}

Listing 2.2: JOP real-time application

17

2.4. HIGH-INTEGRITY REAL-TIME JAVA

should be employed. For example, one should check that no
NullPointerExceptions are thrown at runtime.

• The tool has to perform scheduling analysis and timing analysis (see
chapter 3).

• Worst-case memory consumption and worst case stack memory usage
need to be computed.

• The tool should perform integrity checks, to make sure that neither
source nor object code are manipulated after the analysis has been
performed.

Discussion The high-integrity profiles for Java try to facilitate the use of Java for
safety-critical real-time systems. Inspired by the high-integrity profiles for the Ada
programming language, they exclude problematic features and list requirements
for static analysis.

Both high-integrity profiles require a preemptive scheduler. While preemptive
scheduling relieves the programmer from the burden of splitting tasks into smaller
subtasks manually, timing analysis for preemptive systems is much harder. Espe-
cially in the presence of instruction and data caches, the time penalty of a context
switch is hard to estimate. As a workaround, one can use synchronized blocks,
locking the task to an object with highest-priority ceiling, to avoid preemption at
time critical points. Still, this question is not discussed in detail in the presented
profiles.

Another aspect which is not handled is fault-tolerance. While we want to ensure
the absence of most errors at design time, it is important for high-integrity systems
to deal with “the impossible”, for example caused by hardware failures, erroneous
specifications or a bug in the verifier. To some extend the Ravenscar specification
is inconsistent here, stating that handlers for missed deadlines are unnecessary as
scheduling is proven statically, but having waitForNextPeriod return false if the
deadline is missed.

The static analysis of scoped memory also deserves more attention. I think that
a runtime violation of scoping rules is not acceptable in high-integrity systems, so
it should be mandatory to prove that no such violation will occur at runtime.

18

Chapter 3

WCET Analysis of Java Tasks

As explained in the last chapter, when dealing with hard real-time systems, we
need to predict statically whether timing constraints will be met at runtime. For
this purpose, we need to estimate how long it takes to execute a piece of code,
e. g., a task or some part of it.

One possibility to obtain timings is to measure the execution time. The execution
time of a task, however, depends both on its input and the execution environment.
Influencing factors comprise shared resources, task parameters, and input from
the external environment. Additionally, the internal state of the processor or
virtual machine, especially its cache state, will influence the execution time as
well. All these factors have to be taken into account when using a measurement-
based approach. As a consequence, for most real world use cases it is intractable
to obtain a provably safe WCET bound using measurements only.

The approach which will be pursued here, called static WCET analysis, is to
calculate a safe upper bound for the execution time of program fragments at
design time. This bound need not be equal to the actual worst case execution
time, but should be as close as possible.

In general, calculating a WCET bound is an undecidable problem. Therefore,
certain assumptions have to be made regarding the structure of the program to be
analyzed [PW01]. For each loop and recursive call in the program logic, an upper
bound on the number of executions has to be known. In Java, dynamic loading of
classes is prohibited, and in this discussion, exceptions are excluded as well.

WCET analysis comprises low-level analysis, high-level analysis and the actual
WCET calculation.

• Low-level analysis is about modeling the timing behavior of the execu-
tion environment, including effects of caches and pipelines.

• High-level analysis is concerned with extracting and modeling the set

19

3.1. CONTROL FLOW ANALYSIS

of possible execution paths the program might take.

• Given appropriate models, we need some algorithm to calculate the
actual WCET bound. In this thesis, we will consider formulating the
calculation as an integer linear program (ILP), discussed in Section 3.5,
and computing the WCET using a model checker for timed automata
(Chapter 4). Finally, a tool implementing both approaches will be
presented in Chapter 5.

As noted in [PB01], by using Java, one is able to separate high-level and low-level
analysis effectively. The high-level analysis can be performed on Java source code
and Java bytecode only, while the low-level analysis contributes timing information
for the specific execution environment.

WCET analysis is a necessary prerequisite for scheduling analysis, but it is im-
portant to note that it is not independent of scheduling. In concurrent real-time
systems, preemption and synchronization have to be taken into account, compli-
cating the task considerably, especially if global low-level effects such as cache
misses have to be taken into account. Here we will only be concerned about cal-
culating an upper bound for the execution time of sequential program fragments,
not considering interaction between tasks.

3.1 Control Flow Analysis

Control flow is concerned with the order in which instructions of a program,
method or piece of code are executed. We distinguish local control flow within
one method, and global control flow across method boundaries.

A Basic Block is a sequence of instructions, where the first instruction is the only
entry, and the last one the only exit point. This implies that the last instruction
in a basic block is the only one allowed to alter the control flow, and other jumps
or branches may only target the first instruction of a basic block.

A control flow graph (CFG) is a representation of a method’s control flow in terms
of a directed graph. The CFG’s nodes are basic blocks, and its edges represent a
potential transfer of control. A CFG has an unique entry node, without incoming
edges, and an unique exit node, without outgoing ones.

If the execution of the last statement of basic block A is possible followed by
execution of the first statement of basic block B, there is a directed edge from
A to B in the CFG. A path from the entry to the exit node corresponds to one
execution sequence. Control flow graphs are conservative approximations to the
actual control flow: If a property is true for all paths of the CFG, it also holds for all

20

3.1. CONTROL FLOW ANALYSIS

/∗ Bytecode corresponds to :
∗ int val = 123 ;
∗ for (int i=0; i<100; ++i) { val += i ; }
∗ return ;
∗/
0 : bipush 123
2 : istore_0

3 : iconst_0

4 : istore_1

5 : iload_1

6 : bipush 100
8 : if_icmpge 21
11 : iload_0

12 : iload_1

13 : iadd

14 : istore_0

15 : iinc 1 , 1
18 : goto 5
21 : return

ENTRY

(1) local_0 <- bipush(123)
local_1 <- iconst_0

start

EXIT

(2) iload_1 bipush(100) if_icmpge

(3) local_0 <- iload_0 iload_1 iadd
local_1++
goto

false

(4) return

true

finished

Figure 3.1: A Control Flow Graph for a simple Java method

possible execution sequences. Figure 3.1 shows an example of a CFG representing
the given bytecode sequence.

A loop is a piece of code, whose execution may repeat without executing surround-
ing code in between. Loops are strongly connected components of a control flow
graph, i. e., there is a path between every pair of basic blocks in the loop. We will
only consider reducible loops with a single entry node, the loop header. The loop
header dominates all other nodes in the loop, i.e. every path from the methods’
entry to some node in the loop passes through the loop header. In Figure 3.1, the
basic blocks (2) and (3) form a loop. (2) is the loop header, the edge (1) → (2)
enters the loop, the back edge (3)→ (2) continues the loop, and the edge (2)→ (4)
exits the loop. For a rigorous definition of loops, and algorithms to compute them,
the reader is referred to [Hav97].

While control flow graphs capture the local flow of control, call graphs are static
descriptions of the possible sequences of method invocations during execution.
A call graph is a directed graph, whose nodes and edges represent methods and
method invocations, respectively. In order to distinguish different invocations from
and to the same two methods, the edges are labelled with call sites, the locations
of the corresponding invoke instructions. If at call site L in method m, method n
is possibly invoked, then there is an edge from m to n labelled with L in the call
graph. Cycles in the call graph correspond to recursive method invocations.

Supergraphs [Mye81] are generalizations of control flow graphs, combining the call
graph with the set of corresponding control flow graphs. In supergraphs, invoke

21

3.1. CONTROL FLOW ANALYSIS

main() {

if() a();

else b();

}

a() {

if() b();

else b();

}

b() {

print;

}

main

a

b

L1

L2

L3

L4

callgraph

entry

entry

return

invoke
b

invoke
b

exit

return

print

exit

entry

return

invoke
b

invoke
a

exit

return

global
entry

global
exit

a

b

main

L 1

L2 L3 L4

L3

L4

L2

L1

Figure 3.2: A supergraph of three methods main, a and b, and the corresponding
call graph

instructions are considered as control flow statements and have to be the only
statement in a basic block.

Given the control flow graphs of all methods present in the call graph, the su-
pergraph is constructed as follows. For each invoke instruction, replace the cor-
responding node n with two nodes ncall and nreturn. Incoming edges (x, n) are
replaced by (x, ncall), and outgoing edges (n, y) by (nreturn, y). Next, the individ-
ual control flow graphs are connected by adding call edges, from ncall to the entry
node of the invoked method’s CFG, and by adding return edges from the CFG’s
exit node to nreturn. Finally, if the supergraph is intended to model the execution
of some dedicated method main, we add global entry and exit nodes, one edge
from the global entry to the entry of main and one edge from the exit of main to
the global exit node. Figure 3.2 shows an example of a small supergraph, and its
corresponding call graph.

The set of potential execution sequences represented by a supergraph do not cor-
respond to the set of all paths from the entry to the exit node, but to the set of
valid paths only. A path in the supergraph is valid, if the corresponding execution

22

3.2. HIGH-LEVEL PROGRAM ANALYSIS

path always returns to the site of the most recent call.

3.2 High-level Program Analysis

The goal of high-level WCET analysis is to describe the set of possible execution
paths of a program. In order to calculate the worst-case execution time, the set
of execution paths has to be finite. This implies that there is an upper bound on
the number of times an instruction is executed.

High-level analysis can either be performed on the source code or object code level,
or both. If the analysis is performed on the source code, it is necessary to map
the path information on the machine code later, and take it into account during
optimization. In addition to static analysis techniques, path information can be
provided by humans using annotations, additional information for WCET analysis
embedded in the source code.

Flow Facts Without additional information, cycles in the control flow graph
(loops) or call graph (recursion) lead to infinite execution sequences, prohibiting
the calculation of an WCET bound. Therefore, we need to limit the number of
times cycles are executed. Secondly, the control flow graph might include so-called
infeasible paths, execution paths which are never taken at runtime. To obtain tight
WCET bounds, we also want to exclude as many infeasible paths as possible.

The first question to be addressed is how to describe restrictions to the set of
executions paths, so called flow facts [KKP+05] . A formalism for describing flow
facts is needed regardless wether they are obtained automatically, or are provided
by the user. The most important requirement for computing WCET estimates is
that the number of times a loop is executed must be bounded by some constant
(loop bound). Additionally, either the call graph has to be acyclic, or bounds on
the recursion depth have to be given.

The most common technique for expressing flow facts is to formulate them as
execution frequency constraints. They limit the absolute or relative number of
times a statement is executed along some execution path. Execution frequency
constraints are valid in some scope, which means they apply to every execution of
the statements belonging to the scope. Here are some examples:

• ”During the execution of the method f(), the print statement is exe-
cuted at most K times.”
The is an absolute bound on the execution frequency of the print

statement, whose scope is the method f(). From a global perspective,
this implies that the print statement is executed at most K times as
often as f() is invoked.

23

3.2. HIGH-LEVEL PROGRAM ANALYSIS

• ”The body of loop L is executed at most K times.”
Here the scope is the surrounding context of the loop. A more precise
formulation would be ”Every time L is entered, it’s loop header is
executed at most K + 1 times”

• ”When executing the loop body, either branch A and D or branch B
and C are taken.”

• ”For one execution of the method f(), the inner loop’s body is executed
as most K2 times.”

Relative capacity constraints can be arbitrary expressions involving execution fre-
quencies, though linear arithmetic expressions are sufficient in many cases.

To increase the expressive power of frequency constraints, constraint may depend
on a context. A call-context sensitive constraint only applies to those executions
of a method invoked from certain other methods, while loop-context sensitive con-
straints only apply to some of the loop iterations. The following examples illustrate
this concept:

• ”If method g has been invoked from method f , the loop bound is K,
otherwise it is J .”

• ”If method g has been invoked from method f , and f in turn has been
invoked from h or i, the A branch isn’t executed.”

• ”In the first 5 iterations of the loop, either branch B or branch C is
executed, but not both of them.”

Modeling possible execution paths using relative execution frequency constraints
is the dominating approach for high-level analysis, but it is not the only possible
one.

One potential drawback of relative execution frequencies is that the order of ex-
ecution paths is lost and cannot be taken into account when estimating global
low-level effects. As a consequence, it is not possible to accurately simulate the
behavior of the cache during WCET calculation, for example. Furthermore, rel-
ative flow constraints sometimes fail to express loop flow concisely. Consider the
program given in Listing 3.1: The execution frequencies of L3 and L4 are related,
but it is hard to find a closed form in terms of relative execution frequencies.

In [Par93], valid execution paths are specified using regular expressions. As the set
of execution paths needs to be finite, this method is complete. Furthermore, the

24

3.2. HIGH-LEVEL PROGRAM ANALYSIS

L1 :
for (int i = 0 ; i < K ; i++) {

L2 :
if (rand () < 0 . 5) {

for (j=K ; j > i ; j /2) { L3 : /∗ workload ∗/ }
} else {

for (j=K /2 ; j > i ; j−−) { L4 : /∗ workload ∗/ }
}

}

Listing 3.1: Example of complex execution path set

order of execution paths is specified explicitly. On the downside, regular expres-
sions describing execution paths can become rather complicated, and calculating
the WCET is quite costly as well. As regular expressions correspond to finite state
machines, this implies that a finite set of execution paths in general, and flow facts
in particular, are representable by finite automata. This insight is a necessary
prerequisite for using model checkers to calculate WCET estimates, and could be
exploited to relate the above author’s work with ours.

Until now, we’ve only discussed how to describe restrictions to the set of execution
paths, but not how to obtain them. There are two complementing possibilities:
Using static analysis to extract loop bounds from the program automatically, and
extracting annotations explicitly specified by the application designer.

Flow annotations In the context of Java, there have been several proposals for
WCET annotations.

In [BBW00], invocations of static methods defined in the class WCETAn are used
to annotate the control flow. The only purpose of those method invocations is
to provide informations about feasible paths, so they can be eliminated before
deploying the application. It is important, however, that the compiler does not
move, inline or eliminate these instructions.

Markers are objects representing locations in the source code, which are
used to identify branches and to formulate frequency constraints. They are
represented by Label objects in the proposal, and are defined by calling
WCETAn.Identify Code(label).

Call contexts are identified using Mode objects. If a call site preceded by a call to
WCETAn.Define Mode(mode), annotations referencing this mode only apply if the
call stack includes the corresponding call site.

The bound of some loop is set by calling WCETAn.Loopcount(iteration-count)

or directly before the loop. For call context sensitive loop bounds, a Mode is passed
as additional parameter (WCETAn.Loopcount(iteration-count,mode)). Finally,
infeasible paths are first identified using WCETAn.Identify Code(label) at the

25

3.2. HIGH-LEVEL PROGRAM ANALYSIS

appropriate locations, and then calling WCETAn.Dead Path(mode,label).

Note that only the static identity of Label and Marker objects is of interest, which
have to be inferred using program analysis.

These ideas could be extended to express arbitrary, context-sensitive relative fre-
quency constraints, but to the best of my knowledge, this approach hasn’t been
pursued further.

The advantage of [BBW00]’s approach is that the flow facts are still present in
the compiled bytecode, and are therefore portable. On the other hand, the code
becomes cluttered with WCET aspects, which do not contribute anything to the
actual behavior of the program.

Unfortunately, the authors do not pay a lot of attention to extracting path in-
formation and eliminating annotation-related code. In fact, creating new Label

objects within mission-critical code is not possible in general, and a postprocessing
step to eliminate all annotation-related code seems to be absolutely necessary. Us-
ing the static identity of local variables for labels is problematic too, as it requires
a precise knowledge of the compilation strategy.

Because of this drawbacks, [HBW02] propose to annotate flow facts as comments
in the source code, and then map them to bytecode, creating annotation files
complementing the bytecode. The authors propose to use the same vocabulary
(Loopcount etc.), but instead of actually calling a static method, a comment is
placed at the right position in the source code. Either by modifying the compiler,
or by relying on the compilation strategy of a standard compiler and using an ex-
traction heuristic, the source code annotations are then related with the bytecode.

A third possibility, sketched by [HK07], is to extend and use Java’s annotation
mechanism. As of the time of writing, statement annotations are not yet part
of the Java language, this approach requires to build a modified Java compiler.
The second problem is that it is not obvious how statement annotations should be
handled in general, as the compiler is free to duplicate statements, for example.

What all approaches have in common is that using an off-the-shelf compiler requires
some knowledge about its inner workings and means to control optimization. Sun’s
java compiler makes it easy to map annotations to the bytecode level, as it only
performs some rudimentary optimizations. Furthermore, bytecodes can be mapped
to the line number of the source code file they have been generated from. Still,
relying on a particular, but not formally specified compilation strategy might not
meet the high standards one would expect from safety-critical systems.

Finally, one should note that flow annotations are not always necessary. Many
loop bounds, and to some extend infeasible paths, found in hard real-time systems
can be derived automatically using static analysis. For example, in an case study
on the use of abstract execution for deriving loop bounds and infeasible paths, the

26

3.3. THE JAVA OPTIMIZED PROCESSOR

authors report that for the most part, the analysis generated flow facts of at least
the same quality as the bounds provided earlier [BEG+08]. In our tool, we also try
to detect as many loop bounds as possible, using the dataflow analysis framework
presented in [Puf09].

3.3 The Java Optimized Processor

One problem which remains to be addressed for high-integrity Java applications
is to find an appropriate execution environment.

The Java Optimized Processor (JOP) [Sch05] is an implementation of the JVM
in hardware, i. e., a processor executing Java bytecode. It has been designed with
WCET analysis in mind, simplifying low-level analysis considerably.

The processor can be configured for different FPGA devices, and, in a typical
configuration, consists of the processor’s core, a memory interface, IO devices and
an extension component supplying a multiplier and connecting the subsystems.

The complexity of Java bytecodes varies, some are very simple, while others are too
complicated to realize them in hardware. For this reason, bytecode instructions
are translated to a different, JOP-specific instruction set, the so-called microcode.
The microcode is designed to fit the execution model of the JVM, also being a
stack-oriented language with additional local variables. In contrast to bytecode,
each microcode instruction is encoded using exactly 10 bits, carefully designed to
make decoding easy. With the exception of wait, every microcode instruction
takes exactly one cycle to execute.

The most important, simple bytecode instructions correspond to a single microcode
instruction, while some more complicated ones are translated to microcode se-
quences. Those sequences are short assembler-like programs, and may also include
(microcode) branches.

All microcode sequences reside in a dedicated ROM area of the processor, and
each bytecode is mapped to an address within this area. Two bits of a microcode
instruction are used for the nxt and opd flags. The former ends a microcode
sequence and tells the processor to fetch the next bytecode, while the opd flag tells
the processor that the next byte should be saved in an register, for later use as an
operand. Interrupts are handled by inserting a special bytecode in the bytecode
stream. Therefore, interrupts may preempt execution at bytecode boundaries only.

Even when using microcode, it might be to expensive to hardwire microcode se-
quences for all bytecodes. To adopt the processor to the resources available on a
target platform, more complicated bytecodes can be implemented in Java itself,
as static Java methods. Of course, there is a considerable overhead invoking a
method for executing a bytecode, but for rarely used or expensive bytecodes it can

27

3.3. THE JAVA OPTIMIZED PROCESSOR

/∗ 1−to−1 correspondence ∗/
iadd: add nxt

/∗ bytecode to microcode sequence ∗/
ineg:

ldi -1 //
xor // b i t f l i p
ldi 1 //
add nxt // add 1

/∗ Bytecode implemented in Java ∗/
static int f_newarray(int count , int type) {

return GC.newArray(count , type);

}

/∗ JOP−s p e c i f i c Bytecode ∗/
public class Native {

...

/∗ t r an s l a t ed to bytecode ’ j op sy s rd ’ ∗/
public static native int rd(int adr);

...

}

jopsys_rd:

stmra // s t o r e memory read address (top o f s tack)
wait //
wait // wait f o r memory i n s t r u c t i o n to complete
ldmrd nxt // load data read from memory

Listing 3.2: Bytecode and microcode

be worth the savings in hardware resources.

Finally, some bytecodes are specific to JOP, and used for e. g., accessing
the IO subsystem. The JOP linker rewrites invocations of methods in
com.jopdesign.sys.Native to those bytecodes. Listing 3.2 shows the four dif-
ferent kind of instructions used in a typical JOP configuration.

Processor architecture The actual processor core consists of 4 pipeline stages,
bytecode fetch, microcode fetch, decode and execute.

The first stage fetches bytecodes from Bytecode RAM, and maps the bytecode to an
address in the microcode ROM. The Bytecode RAM itself is a method cache, filled
on invoke and return. When the nxt flag is set for some microcode instruction,
the next bytecode is fetched and translated to microcode. Otherwise, if the opd

flag is set, the bytecode is loaded into the operand register.

The microcode fetch stage fetches microcode instructions from the microcode ROM
and executes microcode branches. Relative microcode branch offsets are stored in
a table, generated during the assembly of the microcode ROM.

The decode stage decodes the microcode instructions and generates addresses for
the Stack RAM. The following trick is used to safe a pipeline stage: Microcodes

28

3.4. LOW-LEVEL TIMING AND CACHE ANALYSIS FOR JOP

are classified as either push (increase stack size) or pop (decrease stack size) during
decoding, allowing to perform the necessary stack fills or spills independently in
the next stage.

Finally, the execute stage operates on two dedicated registers, A and B. For ALU
operations, those two register hold the operands, the result is stored in register A.
One a store instruction, the value of register A is written into memory. In both
cases, the third value on the stack is moved from stack RAM into register B (fill).
On a load instruction, the value is copied from memory into register A. Here, the
old value of register A is written into register B, and the value in register B is
moved into stack RAM (spill). In [Sch05], it is shown that this kind of stack cache
can be implemented in such a way, that all reads and writes are executed during
the execution stage, eliminating possible data dependencies.

Finally, there are several recent extensions to JOP, e.g. for symmetric chip mul-
tiprocessing [Pit08] and for adding hardware support for real-time garbage collec-
tion [PS08]. They will not be discussed here, but provide starting points for future
work.

3.4 Low-Level Timing and Cache Analysis for

JOP

Low-level timing analysis builds a timing model for the execution of single instruc-
tions or basic blocks, which depends on the particular execution platform used.
In the simplest case, the number of cycles needed for executing a statement is
independent of the history of the computation. Unfortunately, modern processor
features, such as out-of-order execution, branch prediction, and instruction and
data caches complicate the timing analysis considerably. Global low-level analy-
sis tries to improve the WCET by incorporating timing dependencies beyond the
basic block level.

A predictable timing behavior was a dedicated design goal of JOP. The time needed
for executing bytecodes is independent of the execution context, and can be deter-
mined cycle-accurately. There is no out-of-order execution or branch prediction,
there are no pipeline stalls, and the data cache does not influence the timing
behavior.

JOP’s only low-level feature with non-local effects is the instruction cache, which is
discussed below. JOP’s instruction cache is filled on invoke and return instructions
only, limiting cache effects to those instructions.

To determine the time JOP needs to execute a bytecode, we have to analyze its
translation to microcode. Bytecodes which are implemented in Java need not

29

3.4. LOW-LEVEL TIMING AND CACHE ANALYSIS FOR JOP

/* 12 + 2w cycles , where w is the write delay */

getstatic:

ldm cp opd ; nop opd ; ld_opd16u /* 3 cycles */

add ; stmra ; wait /* 6 */

wait /* 7+w */

ldmrd ; stmra ; wait /* 10+w */

wait /* 11+2w */

ldmrd nxt /* 12+2w */

Listing 3.3: Analyzing microcode

be considered, as they are treated in a similar way to ordinary static method
invocations.

All microcodes except wait take one cycle to execute. When a memory access has
been started, two consecutive wait instructions stall the processor until the data
is available. Ordinary memory access has a fixed delay for read and write. The
only data dependent operation is the cache load initialized by stdbcrd, where the
number of cycles the second wait instruction delays depends on the size of the
loaded method and whether it is cached or not.

To compute the number of cycles a microcode sequence needs to execute, we ex-
plicitly enumerate all execution paths and compute the cycles the instruction takes
for each paths.This is feasible, as the number of branches in microcode sequences
is typically very small. The WCET of the microcode sequence, given memory and
cache characteristics, is then computed by taking the maximum number of cycles
one execution path might take. A small examples is given in Listing 3.3.

JOP’s Instruction Cache Instead of caching individual instructions, JOP
loads the code of single methods at once. This decision was based on the de-
sire to simplify WCET analysis, and the fact that typical Java methods are small.

Due to JOP’s architecture, a certain number of cycles needed for loading a method
are hidden, depending on the instruction causing the cache access. Therefore it is
important to distinguish the kind of instruction which causes a cache miss.

The simplest kind of method cache is a one-block cache, which is filled on each
invoke and return instruction. In this case, the time needed by invoke and return
instructions can be statically determined, by computing the size of the largest
method possibly loaded.

A N-block LRU cache holds up to N methods and uses a least recently used re-
placement strategy. In a two-block LRU cache, returns from leaf methods, i. e.,
methods which do not invoke other methods, are guaranteed to be cache hits. Ad-
ditionally, if a leaf method is invoked several times in a row, all accesses but the
first one will be cache hits. For more than two blocks, static control flow analysis

30

3.4. LOW-LEVEL TIMING AND CACHE ANALYSIS FOR JOP

void a() {

b();

for(i = 0; i < N; i++) {

c(true);

c(false);

b();

}

}

void c(boolean invokeB) {

if(invokeB) {

b();

}

}

void b() { }

Listing 3.4: FIFO cache timing anomaly

is used to classify cache accesses as either always hit, always miss, first hit or first
miss [Mue00]. When using a N-block LRU cache, the size of the cache has to be
at least N -times as large as the size of the largest method possibly invoked.

Variable Block Cache In its default configuration, JOP uses a so-called vari-
able block cache, introduced in [Sch04b]. A variable block cache comprises N
blocks, each with a fixed size B. However, methods may, depending on their
size, occupy more than one block in the cache. The big advantage of variable
block caches is that they can be kept relatively small (size of the largest invoked
method), hopefully still providing a good caching behavior.

JOP implements a variable block cache using so called next-block replacement,
effectively a first in, first out (FIFO) replacement strategy, with each method
occupying a variable number of blocks.

Unfortunately, FIFO caches exhibit unbounded memory effects [RGBW07], so sim-
ulating the cache with an initially empty cache state is not a safe approximation.
We identified that this negative result also applies when the cache sequence corre-
sponds to a path in a non-recursive call tree (see following example). Furthermore,
a LRU cache can possibly outperform a FIFO cache, even if it only consists of two
blocks.

Example 3.4.1 (Timing Anomaly)
To illustrate timing anomalies that arise when using a FIFO cache, we consider
the execution of method a of the program given in Listing 3.4, using a two-block
FIFO method cache. We compare two cache behaviors, that of the initially empty
cache E, and that of a filled cache F , initially containing b, followed by a. Before

31

3.4. LOW-LEVEL TIMING AND CACHE ANALYSIS FOR JOP

reaching the loop in method a, E needs to load both a and b, while F does not
change its state.

Instruction Empty Cache E Loads(E) Filled Cache F Loads(F)
|?|?| 0 |a|b| 0

invoke a |a|?| 1 |a|b| 0
invoke b |b|a| 2 |a|b| 0

return to a |b|a| 2 |a|b| 0

Now, we analyze the loop, and show that the E needs 3 loads per iteration, while
the initially filled cache F needs to load 6 methods per iteration. At the end of
the loop, the cache states are the same as at the beginning. For N iterations, E
needs to load 2+3 ∗N methods in total, while F loads 6 ∗N methods. Therefore,
for all N ≥ 1, the initially empty cache needs to load fewer methods than the
cache initially filled with a and b. We also conclude that the difference between
the number of loads is not bounded by a constant.

Instruction Empty Cache E Loads(E) Filled Cache F Loads(F)
|b|a| 0 |a|b| 0

invoke c |c|b| 1 |c|a| 1
invoke b |c|b| 1 |b|c| 2

return to c |c|b| 1 |b|c| 2
return to a |a|c| 2 |a|b| 3
invoke c |a|c| 2 |c|a| 4

return to a |a|c| 2 |c|a| 4
invoke b |b|a| 3 |b|c| 5

return to a |b|a| 3 |a|b| 6

The FIFO replacement strategy does not perform as well as the LRU replacement,
but the constraint that a method has to span several contiguous blocks makes the
hardware implementation of a LRU strategy difficult for variable block caches.

This is bad news for WCET analysis: abstract interpretation usually needs to
assume that the cache is initially empty, but in the case of a FIFO cache we really
need to flush the cache in order to get a safe approximation.

Even when inserting cache flushes, we cannot simply adopt existing dataflow anal-
ysis techniques. This is because in a FIFO cache, the effect a cache access has on
the cache depends on whether the access is classified as hit or miss.

32

3.5. CALCULATING THE WCET USING IPET

One technique to approximate the cache miss cost is based on the following fact:
If we can prove that the set of methods accessed within a program fragment fits
into the cache, each of them will be missed at most once when executing that
fragment. The total cost for cache accesses when executing such an all-fit code
region, can therefore be estimated by stating that if some method within the
region is executed, it is loaded exactly once. Except for leaf methods, we do not
know, however, whether the method will be loaded on invoke or return.

3.5 Calculating the WCET using IPET

The idea of the implicit path enumeration (IPET) technique is to represent the
set of execution paths in terms of a directed graph, together with a set of linear
capacity constraints [PS97]. The edges of the directed graph correspond to the
execution of some piece of code, and are associated with the time needed to execute
that code on the given platform. Alternatively, one can associate pieces of code
with nodes, and sum the frequencies of incoming or outgoing edges to that node.
The former approach has the advantage that timing may depend on the edge taken.
For example, one some platforms taking the branch edge is more expensive than
taking the next edge. The solution to an IPET problem consists of the calculated
WCET and of an implicit representation of the worst case path. This implicit
representation maps edges to the number of times they are executed on the worst
case path.

Integer Linear Programming An Integer Linear Program (ILP) is an opti-
mization problem of the form

max
∑

i∈{1,...,n}

cixi subject to C

The goal is to find integral values for a set of variables {x1, . . . , xn}, s.t. the given
objective function

∑
i∈{1,...,n} cixi is maximized, where ci ∈ R. The solution is

subject to the restriction, that all of the given linear constraints in C are fulfilled.

A linear constraint over a set of integer variables {x1, . . . , xn} is an inequality or
equation of the form

∑
i∈{1...n}

aixi ≤ d

The ai ∈ R are called coefficients, and d ∈ R is called the inhomogenous term. In
vector notation, constraints are written more succinctly as ax ≤ d. Note that an

33

3.5. CALCULATING THE WCET USING IPET

inequality ax ≥ d corresponds to −ax ≤ −d, and an equality ax = c corresponds
to the conjunction of two inequalities ax ≤ d and ax ≥ d.

A variable assignment fulfilling all of the given linear constraints is called feasible
solution or simply solution, and the value of the objective function w. r. t. to a
solution is called objective value. An ILP either has an optimal solution, is infeasi-
ble (there is no solution), or unbounded (there are solutions with arbitrarily large
objective values).

Solving ILPs is in general a hard problem (it is NP-complete). Some instances,
such as network flow problems, can be solved in polynomial time though. For a
nice introduction to linear programming, see [BM07].

Mapping WCET calculation to Integer Linear Programming For each
edge e ∈ E in the supergraph, there is one integer variable f(e) ≥ 0 in the ILP,
corresponding to number of times e is executed. Let γ(e) be the fixed cost of
executing edge e. Then calculating the WCET bound corresponds to solving

max
∑
e∈E

γ(e)f(e) subject to C

where C is a set of linear constraints, to be described below.

The first set of constraints is called flow conservation constraints. For all nodes
n but the global entry and exit node, the sum of the execution frequencies of the
incoming edges has to be equal to that of the outgoing edges. The sum of the flow
through outgoing edges of the global entry node, and that through the incoming
edges of the global exit node should be exactly one. This is a necessary (but not
sufficient) condition for the solution to represent a set of valid paths.∑

ei∈incoming(n)

f(ei) =
∑

eo∈outgoing(n)

f(eo)∑
eo∈outgoing(entry)

f(eo) = 1

∑
ei∈incoming(exit)

f(ei) = 1

If loops are present in the control flow graph, without additional constraints the
solution will be unbounded using flow conservation constraints only. We could try
to limit the flow through cycles by adding absolute frequency constraints, bounding
the number of times the loop is executed globally. But as [PS97] have shown, this
is not sufficient, and may lead to a solution with unconnected components.

To ensure that the solution represents a valid execution path set, we add connectiv-
ity constraints for loops. We need to assert that the loop header h is only executed

34

3.5. CALCULATING THE WCET USING IPET

if at least one of the edges (n, h) ∈ Eimpl, which imply that the loop will surely be
executed, but which are themselves not part of the loop, is executed as well. We
also need to limit the frequency of the loop’s header’s execution. Assuming that
K is maximum number of times the loop header is executed, we add the constraint

∑
eh∈outgoing(h)

f(eh) ≤
∑

ei∈Eimpl

Kf(ei)

for each loop. Note that loops may consist of more than one cycle, but for reducible
loops it is sufficient to add one such constraint for every loop header.

If we deal with supergraphs, we also have to consider interprocedural cycles (re-
cursion) and ensure that only valid execution paths are considered. Recursion is
handled in the same way as loops are, while for the latter is is sufficient to add a
constraint for each pair of invoke and return edges einvoke and ereturn:

f(einvoke) = f(ereturn)

Finally, one may want to add additional constraints to exclude infeasible paths or
describe more complicated loop bounds. For loop bounds of the form

For every execution of one of the edges em ∈ Emarker the loop identified
by eheader is executed as most K times

we add the constraint

f(eheader) ≤
∑

em∈Emarker

Kf(em)

This constraint is similar to a connectivity constraint, but doesn’t replace it -
connectivity is only guaranteed when all marker imply that the loop header is
executed.

For infeasible path constraints of the form

During the execution of the scope entered when executing one edge
es ∈ Escope, each of edges {ei | i ∈ {1 . . . n}} is executed at most once,
but it is impossible that all of them are executed.

we add the constraint

∑
i∈{1...n}

f(ei) ≤ (n− 1)
∑

es∈Escope

es

35

3.5. CALCULATING THE WCET USING IPET

Many other flow facts can be modeled using linear constraints, sometimes by in-
troducing new decision variables as demonstrated in Example 3.5.1. It has been
shown that it is possible to model the exact implicit execution frequencies using
the IPET approach. The proof of this fact given in [PS97] requires as many con-
straints as their are execution paths, however, and therefore cannot be used in
practice.

On the other hand, flow constraints commonly used, such as ordinary loop bounds,
show a high degree of locality, i.e. they only affect small, connected portions of
the program, and are easy to handle for modern ILP solvers.

Example 3.5.1
Suppose we’re given the following specification

It is impossible that all of the edges {ei | i ∈ {1 . . . n}} are executed,
though some of them might be executed more than once.

For this example, we need to introduce additional binary decision variables, integer
variables which may only take the values 0 or 1. Additionally, we need a “big
constant” M , which is known to be larger than any expected execution frequency.
While it can be tricky to choose M right, it is straightforward to check a posteriori
if M was chosen large enough. Now, for each edge ei we introduce a decision
variable yi, which should be 1 if and only if ei is executed at least once.

f(ei) ≤Myi ≤Mf(ei)

Finally, the flow fact can now be formulated in terms of the binary decision vari-
ables ∑

i∈{1...n}

yi ≤ n− 1

Context-Sensitive Flow Constraints Context sensitive frequency constraints
only apply to the execution count of those edges representing executions in some
specific call or loop context. For context sensitive constraints, edges are qualified
by the set of call stacks and set of loop iterations they apply to. For loops, we
usually distinguish the first and subsequent iterations.

36

3.5. CALCULATING THE WCET USING IPET

To encode this kind of constraints, parts of the supergraph are duplicated, indexing
edges of the duplicated subgraphs by their context. The call graph needs to be
analyzed to determine which control flow graphs should be distinguished, and call
and return edges have to be adopted accordingly.

The usual flow conservation and connectivity constraints are duplicated as well.
For other flow constraints, a careful analysis of the supergraph is needed to relate
the frequency of edges in different copies of a subgraph. We will give an example
of context sensitive constraints below, but the exact formalisms needed for context
sensitive constraints are beyond the scope of this thesis. The interested reader is
referred to [The02].

Modeling method cache access In order to incorporate JOP’s method cache
into the IPET model, we insert cache access nodes into the supergraph. Before
control flow changes to an invoke or return instruction, it either executes a cache
load or cache hit, delaying the execution accordingly.

In principle, the same range of relative execution frequencies described for ordinary
basic blocks can be used to restrict the execution frequency of cache load edges.
In practice, cache access are classified as hit or miss, depending on the call and
loop context. For example, if exactly one leaf method is executed during some
inner loop’s body, and a two-block LRU cache is used, the cache access can be
classified as first-miss. The corresponding execution frequency constraint states
that the cache load is executed only in the first iteration of the loop.

The approximation for the variable block cache described in section 3.3 can be
implemented as follows. First, assume that all methods possibly invoked fit into
the cache, and therefore each method is missed at most once. For every method
m, add a decision variable bm, which is true if and only if m is actually on the
worst case path.

bm ≤
∑

eca∈cache access(m)

f(eca) ≤Mbm

If bm is true, one of the edges leading to a cache miss node for m has to be executed,
otherwise, none of them. ∑

ecm∈cache miss(m)

f(ecm) = bm

Now, given the supergraph, find call sites where the invoked method and all meth-
ods possibly invoked during its execution fit into the cache, but the invoking
method does not. If some method is reachable from one or more of those call
sites, the corresponding supergraphs are duplicated. Finally, the constraints given
above are added for each supergraph duplicate.

37

Chapter 4

Calculating the WCET using
Timed Automata

Timed Automata [HNSY94] are finite-state automata extended with real-valued
clock variables, developed to model and verify real-time systems. A model checker
for timed automata decides whether safety and liveness properties, formulated as
temporal logic formulas, hold for a given timed automaton, by exploring a symbolic
representation of the automata’s state space.

For execution time analysis, the model checker is used to explore an abstract model
of the actual program, keeping track of the time passed. The abstract model should
keep as much information relevant to the WCET analysis as possible, but still stay
simple enough to avoid a state space explosion. States of the model may include
information about the execution history, which in turn can be used to improve
the approximation of global low-level effects, such as cache accesses. Moreover,
timed automata have an expressive notion of time, and can be used to model more
complex timing aspects, such as synchronization and scheduling of concurrent
processes.

In this chapter, we model the behavior of Java tasks as networks of timed au-
tomata, and calculate a WCET bound using the model checker uppaal. In order
to demonstrate the increased expressive power, we show how to simulate JOP’s
method cache, and discuss other possible applications of timed automata model
checking.

4.1 Introduction to Timed Automata

In this section, we formally define timed automata, following the presentation of
[BY04].

38

4.1. INTRODUCTION TO TIMED AUTOMATA

A timed automaton, or more precisely timed safety automaton, is a finite automa-
ton consisting of a finite set of locations and of directed edges connecting locations.
Edges are associated with actions, represented by symbols from a finite alphabet
Σ.

C is a finite set of clock variables, ranging over the non-negative reals. A clock
assignment u is a function C → R+ assigning a non-negative value to each clock.
The clock assignment u + d assigns the value u(c) + d to each clock c ∈ C, while
u[r 7→ 0] assign 0 to the clocks cr ∈ r, and the same value as u to those not in r.

A clock constraint is a conjunction of atomic constraints of the form x ./ c or
x−y ./ c, with x, y ∈ C, c ∈ N and ./ ∈ {<,≤,=,≥, >}. We write B(C) to denote
the set of all clock constraints over C.

Example 4.1.1
Assume x, y, z ∈ C are clock variables. Then x < 3 and z = 5 as well as x− y ≤ 5
and z − x > 3 are atomic clock constraints. The conjunctions 0 < x ≤ 3 and
1 ≤ y ∧ z − x = 4 are clock constraints as well. In the clock assignment {x 7→
1, y 7→ 1, z 7→ 5} all of these clock constraints evaluate to true.

A timed automaton A is a tuple 〈N, l0, I, E〉. N is the set of locations, with l0
being the unique start location. I is a function L → B(C), mapping locations to
invariants.

The transition relation E is a set of labeled edges l
a,g,r−−→ l′, where l, l′ ∈ N are

locations, a ∈ Σ is an action, g ∈ B(C) the transition’s guard and r ⊆ C is a set
of clocks, which are reset when the transition is taken.

off

x < 3

on

y ≤ 3

on!,x ≥ 1,y "→ 0

off!,y ≥ 1, x "→ 0

1

Figure 4.1: Simple timed automaton referencing two clocks x, y ∈ C

39

4.1. INTRODUCTION TO TIMED AUTOMATA

Example 4.1.2
Figure 4.1 illustrates a simple timed automaton

〈{on, off}, on, {off 7→ x < 3, on 7→ y ≤ 3}, E〉

with E = {off on!,x≥1,y 7→0−−−−−−−→ on, on
off!,y≥1,x 7→0−−−−−−−→ off}

which will be used as a running example. The automaton references two clocks
x, y ∈ C. It has two locations, the initial location off and another one named on.
Intuitively, the system delays at least one and at most three time units at off or
on, respectively. Then it switches to the other state, resetting y or x to 0.

The operational semantics of a timed automaton 〈N, l0, I, E〉 is defined in terms
of a timed transition system. The timed transition system’s state 〈l, u〉 consists of
a location l ∈ N and a clock assignment u. The initial state is 〈l0, u0〉, with u0

assigning 0 to each clock variable. In each step the transition system takes, either

time passes (delay transition
d−→) or the location changes and some clocks are reset

(action transition
a−→).

• Two states are related by a delay transition

〈l, u〉 d−→ 〈l, u+ d〉

if the invariant I(l) evaluates to true in u+ d.

• Two states are related by an action transition

〈l, u〉 a−→ 〈l′, u[r 7→ 0]〉

if all of the following conditions hold:

– There is a transition l
a,g,r−−→ l′ ∈ E

– The guard g evaluates to true in u

– The invariant I(l′) is true in u[r 7→ 0]

40

4.1. INTRODUCTION TO TIMED AUTOMATA

The behavior of an automaton is characterized by the set of possible runs of the
corresponding timed transition system. A run is a sequence of consecutive delay
and action transitions

〈l0, u0〉
d1−→ a1−→ 〈l1, u1〉

d2−→ a2−→ 〈l2, u2〉 . . .

The corresponding timed-trace is a sequence of time-action pairs

〈(d1, a1), (d1 + d2, a2), (d1 + d2 + d3, a3), . . .〉

Finally, the timed language L(A) accepted by the timed automaton A is the set
of all timed-traces for which there exists a run.

Example 4.1.3
The initial state of the transition system for the automaton in Figure 4.1 is
(off, {x 7→ 0, y 7→ 0}). In the initial location, the system has to delay for at
least 1 time unit before the transition to on is enabled, but must take the transi-
tion before 3, because of the invariant x < 3. The action transition to on resets the
clock y to 0. In some state 〈on, u〉 with u(y) = 0 the system first delays between
1 and 3 time units and then takes the transition to off. One possible run for this
transition system starts with

〈off, 0〉 2−→ on?−−→ 〈on, {x 7→ 2, y 7→ 0}〉
3−→ off?−−→ 〈off, {x 7→ 0, y 7→ 3}〉

2.99−−→ on?−−→ 〈on, {x 7→ 2.99, y 7→ 0}〉
1−→ off?−−→ 〈off, {x 7→ 0, y 7→ 1}〉
. . .

The corresponding timed trace is

〈(2, on?), (5, off?), (7.99, on?), (8.99, off?), . . .〉

Given two automata A and B, the question whether L(A) ⊆ L(B) (language
inclusion) is undecidable in general. The question wether there is a run reaching
some state 〈l, u〉 (reachability), however, is decidable. Reachability is central for
verifying safety properties. By checking that a state 〈lf , uf〉 is unreachable, we can
verify that a some kind of failure, represented by 〈lf , uf〉, will never occur.

41

4.1. INTRODUCTION TO TIMED AUTOMATA

Zone graphs The state space of a timed automaton has a finite representation
in terms of normalized zone graphs. A zone graph consists of symbolic states, pairs
of locations and zones, related by a symbolic transition relation.

A zone is a representation of the solutions to a clock constraint, i. e., it represents
the set of all clock assignments which satisfy the constraint. The following opera-
tions on zones are needed to formalize zone graphs, and are used in the reachability
algorithm presented later in this chapter. It is crucial for model checkers to provide
efficient implementations of these operations. Given zones D and D′:

• D ⊆ D′ is true if every clock assignment which is in D is also in D′.

• D ∧D′ denotes the intersection of two zones, i. e., , the zone obtained
by taking the conjunction of the corresponding clock constraints.

• D↑ = {u + d | u ∈ D, d ∈ R+} is the zone consisting of all clock
assignments which can be reached from D by an arbitrary delay.

• reset(D, r ← 0) = {u[r 7→ 0] | u ∈ D} is the zone D with all clocks
c ∈ r reset to 0.

Symbolic states are pairs 〈l, D〉 of a location l and zone D, related by the symbolic
transition relation .

For every transition l
a,g,r−−→ l′ in the timed automaton there is a symbolic transition

〈l, D〉 〈l′, reset(D ∧ g, r ← 0) ∧ I(l′)〉

corresponding to the action transition in timed transition systems. The zone
reset(D ∧ g, r ← 0) ∧ I(l′) is computed by first removing those clock assignments
which do not satisfy the guard, then resetting the clocks in r to 0 and finally
excluding those assignments, which do not satisfy the invariant I(l′).

In addition to the symbolic action transitions, there is a symbolic delay transition
for every location l ∈ N :

〈l, D〉 〈l′, D↑ ∧ I(l)〉

To compute D↑ ∧ I(l), all clock assignments reachable via some delay from D
are included first, then restricting the set to those, which satisfy the location’s
invariant.

Zone graphs closely correspond to timed transition systems.

• Soundness : Whenever there is a sequence of symbolic transitions lead-
ing from 〈l, {u0}〉 to 〈l′, D〉, and D includes the the clock assignment
u, then there is also a run of the timed transition system from 〈l, u0〉
to 〈l′, u〉.

42

4.1. INTRODUCTION TO TIMED AUTOMATA

• Completeness : Conversely, if there is run from 〈l, u0〉 to 〈l′, u〉, then
there is also a sequence of symbolic transitions from 〈l, {u0}〉 to 〈l, D〉,
with u ∈ D.

Example 4.1.4
For the automaton in Figure 4.1, the initial symbolic state is 〈off, x = 0∧ y = 0〉.
Figure 4.2 illustrates the corresponding zone graph, comprising 6 states. States
with empty zones and transitions to those states have been left out.

off

x1 = 0
x2 = 0

x1 − x2 = 0

off

0 ≤ x1 < 3
0 ≤ x2 < 3
x1 − x2 = 0

on

1 ≤ x1 < 3

x2 = 0
1 ≤ x1 − x2 < 3

 on

1 ≤ x1 < 6
0 ≤ x2 ≤ 3

1 ≤ x1 − x2 < 3

off

x1 = 0

1 ≤ x2 ≤ 3
−3 ≤ x1 − x2 < −1

off

0 ≤ x1 < 3
1 ≤ x2 < 6

−3 ≤ x1 − x2 < −1

delay

delay

on,x ≥ 1, y "→ 0

delay

delay

off,y ≥ 1, x "→ 0

delay

delay

on,x ≥ 1, y "→ 0

1

Figure 4.2: Zone Graph for the timed automaton of Figure 4.1

Unfortunately, the zone graph of an automaton may be infinite, possibly leading to
non-termination when checking reachability. For this reason, a zone normalization
operator relaxing zone constraints is applied, following the intuition that as soon
as a clock is assigned a value larger than some constant, it doesn’t matter how
large exactly that value is.

For every clock x, k(x) denotes the clock ceiling of x, the largest constant used in
a clock constraint referencing x. If all clock constraints are of the form x ./ c, it

43

4.1. INTRODUCTION TO TIMED AUTOMATA

is sufficient to remove constraints x < c and x ≤ c when c > k(x), and replace
constraints x > c and x ≥ c by x > k(x) if c > k(x). In the presence of differ-
ence constraints of the form x− y ./ c, a different, more expensive normalization
algorithm is needed [BY03].

In summary, reachability is decidable for timed automata, because for every timed
transition system there is a finite zone graph, which is a sound and complete w.r.t.
the timed transition system as defined above.

Reachability analysis Symbolic reachability analysis for timed automata com-
putes whether a state satisfying some predicate φ is reachable. The algorithm
presented in [LY97] stores the set of symbolic states that have already been con-
sidered in the set PASSED. Additionally, a worklist WAIT keeps the set of generated
states, which have not been processed yet. The search proceeds as follows:

1. At the beginning of the search, add the initial symbolic state 〈l0, D0〉
to the worklist WAIT.

2. Get and remove one symbolic state 〈l, D〉 from WAIT

3. If 〈l, D〉 satisfies φ, return REACHABLE.

4. Otherwise, check if 〈l, D〉 has already been considered. This is the case
if there is some state 〈l, D′〉 ∈ PASSED, s.t. D ⊆ D′.

5. If the state hasn’t been considered yet, add 〈l, D〉 to PASSED, generate
all successor states 〈l′, D′〉 with 〈l, D〉 〈l′, D′〉 and add them to WAIT.

6. If WAIT is not empty, goto 2. Otherwise, return NOT REACHABLE.

Note that in order to verify that some state cannot be reached, all states generated
have to be kept in memory, limiting the size of search space that can be explored.
Therefore, optimization techniques to minimize the amount of memory needed to
store a zone are crucial for an efficient model checking implementation.

Networks of timed automata A network of timed automata is a parallel com-
position of a fixed number of n timed automatons, called processes, which share
the same clocks and actions. Edges are now labeled with input actions a?, output
actions a! and one special symbol for internal actions, τ . Pairs of input and output
actions (a?, a!) form so-called channels, used for synchronized communication.

The transition system for the network of automata keeps track of all locations, i. e.,
the combined system’s state consists of a vector (l1, . . . , ln) and a clock assignment
u. Delay transitions are performed on all automata in parallel, and are suspect to

44

4.2. THE MODEL CHECKER UPPAAL

all of the invariants in the automata. Transitions labeled with the action symbol
τ have the same semantic as transitions in an ordinary timed automaton, and
are carried out separately. A synchronizing transition affects two processes with

transition relations l1
a?,g1,r1−−−−→ l′1 and l2

a!,g2,r2−−−−→ l′2. If both transitions are enabled,
they can be executed in parallel, reseting all clocks in r1 ∪ r2 to 0.

4.2 The Model Checker uppaal

uppaal is a model checking tool for networks of timed automata [BDL04]. It
features an expressive modeling language and useful extensions to the theory of
timed automata, along with an efficient implementation of the verifier.

uppaal extends the theory of timed automata with bounded integer variables.
Bounded integer variables can take a value in some predefined range, and are
initialized to some fixed value. Boolean expressions referencing integer variables
can be used as guards for transitions, and when taking a transition, variables can
be updated using a C-like programming language.

An uppaal model comprises global declarations of clocks, channels and variables,
and a set of processes. Each process is instantiated from a parametrized template,
and has its own set of local clocks and variables.

uppaal introduces a couple of other extensions to the theory of timed automata,
which simplify modeling of real-time systems:

• If some process is at an urgent location, delay transitions are not per-
mitted.

• If there is process, which is at a committed location, the next transition
taken has to be a transition from some committed location.

• Urgent synchronization channels are channels which have to be used
as soon as possible, i. e., if the corresponding synchronizing transitions
are enabled, they have to be used without delay.

• Broadcast channels are similar to synchronization channels, but instead
of exactly one, zero or more processes synchronize with input actions.
As soon as a transition synchronizing on a broadcast channel is enabled,
it must be taken.

Verification using uppaal The purpose of a model checker, such as uppaal,
is to verify certain properties of a model. Those properties are specified using

45

4.2. THE MODEL CHECKER UPPAAL

a temporal real-time logic, which asserts predicates on states and paths of the
transition system.

Atomic state formulas are predicates on states of the transition system. uppaal
has a rich expression language for state formulas, which may reference locations,
clocks and integer variables. Additionally, the expression deadlock is true at some
state if it has no outgoing transitions.

A maximal path of a transition system is either infinite, or ends in a state without
outgoing transitions. Using state formulas as their basic building blocks, paths
formulas are predicates on the set of all maximal paths starting from the initial
state.

• A [] φ, where φ is a state formula, is true if φ is true in all reachable
states.

• E <> φ is true if there is a state such that φ is true.

• A <> φ is true if on all paths, φ becomes true eventually.

• E [] φ is true if φ holds on all states of some path.

• ψ --> φ, “ψ leads to φ”, is true if, whenever ψ is true in some state,
φ will eventually become true.

Path formulas are used to verify reachability, safety and liveness properties.

A reachability property E <> φ states that a certain state is reachable. Verifying
that a state is reachable is often used for basic consistency checks.

Safety properties A [] φ assert that some invariant holds in every state of the
system. To assert that some state formula φ holds at a specific location, we write
A [] (Process.Location && φ).

Liveness properties are of the form ψ --> φ, stating that whenever some event
takes place, it is followed by another event eventually.

Example 4.2.1
Assume we are modeling a real-time system for WCET analysis. Reachability
formulas of the form E <> Task.Location are used to check that every location
in some task is indeed reachable. The property that a task completes in time is
written as A[] (Task.Exit imply time ≤ c). To express that whenever a task
is started, it eventually completes, we write Task.Entry --> Task.Exit.

46

4.3. CALCULATING THE WCET OF JAVA TASKS

Convex Hull Approximation While reachability is decidable using normal-
ized zones, the number of states generated during the search may still be to large
for practical purposes. One possibility to reduce the number of states is to per-
form approximate reachability analysis [Bal96]. Instead of enumerating the exact
zones reachable for a location in the automaton, the convex hull, a convex over-
approximation of the zones’ union, is stored. If a state is not reachable using
approximate reachability analysis, it is not reachable using an exact search either.
Therefore, this approach is sound, but not complete for safety properties.

4.3 Calculating the WCET of Java Tasks

As explained in Chapter 3, WCET analysis is restricted to tasks with a finite
set of execution paths. This set can be represented by a finite automaton, with
nodes representing statements and edges possible flow of control. The key insight
for WCET analysis is that by adding the elapsed time to the state space, it is
possible to verify that a given execution time is indeed a safe WCET bound. The
translation given here is based on the ideas from [OL], and has been subsequently
refined based on [BKHO+08].

Overview We start by declaring a global clock t, which represents the total time
passed so far, and build timed automata simulating the behavior of the program,
one for each method. Additionally, we add a clock representing the local time
passed at some instruction, tlocal. We will not consider the analysis of multi-
threaded applications here, but conceptually we need one local clock for each
concurrent process.

There is one location I, which is the entry point of the program, and one commited
location E, which corresponds to the program’s exit. When execution has finished,
the system takes the transition from E to the final state EE (Figure 4.3).

I EEE

Start of Task End of Task Execution
Finished

Model of Task

Safe bound if (E implies t ≤ tguess)

commited
location

Figure 4.3: Calculating the WCET bound using uppaal

If we want to check whether tguess is a safe WCET bound, we ask the model checker
to verify

47

4.3. CALCULATING THE WCET OF JAVA TASKS

A[] (E =⇒ t ≤ tguess)

If this property is satisfied, tguess is a safe WCET bound, otherwise we have to
assume it is not. Given a known lower bound and a safe upper bound, we perform
a binary search to determine the precise WCET bound. If there are no known
lower and upper bounds, we set t0 = 1 and ti = 2ti−1 and search for the first n s.t.
tn is a safe bound.

Basic
Block

tlocal ← 0

tlocal ← 0

Invariant
tlocal ≤ cmax

tlocal == c1

tlocal == c2

Figure 4.4: Modeling Basic blocks

From Control Flow Graphs to Timed Automata Given the CFG of a Java
method mi, we build an automaton simulating the behavior of that method by
adding locations representing the CFG’s nodes and transitions representing the
flow of control. The initial location Mi.I corresponds to the entry node of the
CFG, and the location Mi.E to its exit node.

To model the timing of basic blocks, we add updates, guards and invariants at the
respective locations in the automaton. If the execution of a basic block takes at
most ce cycles depending on the outgoing edge e chosen, and at most cmax cycles
independent of the chosen edge, we proceed as follows (Figure 4.4):

• On each ingoing transition to the location representing the basic block,
we reset tlocal.

• We add the invariant tlocal ≤ cmax to the location.

• On each outgoing transition corresponding to the edge e, we add the
guard tlocal == ce.

In the case of JOP, the cost is independent of the edge chosen.

In [BKHO+08], the authors use uppaal to perform scheduling analysis using stop-
watch expressions, a recent addition to uppaal[CL00]. A stopwatch expression

48

4.3. CALCULATING THE WCET OF JAVA TASKS

ensures that a local clock is only running if some condition is true. Adding ap-
propriate stopwatch expressions to the locations of basic blocks, local time only
passes if the scheduler assigns a time-slot to the corresponding thread.

Modeling loops and infeasible paths It would be possible to eliminate
bounded loops by unrolling them in a preprocessing step, but it is more efficient
to rely on bounded integer variables.

Assume it is known that the body of loop n is executed at least Ln and at most
Kn times. We declare a local bounded integer variable in representing the loop
counter, ranging from 0 to Kn. The loop counter is initialized to 0 when the loop
is entered, and is used in guards and for updates within the loop (Figure 4.5):

• If an edge implies that the loop header is executed on more time, add
the guard in < Kn and the update in ← in + 1 to the corresponding
transition.

• If an edge implies that the loop is left, add the guard in ≥ Ln and the
update in ← 0 to the corresponding transition.

Resetting the loop counter to 0 when leaving the loop is not necessary, but helps to
reduce the number of states. Furthermore, it might be beneficial to set Ln = Kn,
but this is only correct in the absence of timing anomalies, and therefore in general
unsound in the presence of FIFO caches.

Loop
Header

Loop
Body

if(?)
break continue

in ← 0 in ≥ Ln

in++ < Kn

in ← 0

in ≥ Ln

in ← 0

Figure 4.5: Modeling loops using bounded integer variables

In principle, every control flow representable using bounded integer variables can
be modeled using uppaal, though we only implemented simple loop bounds in the
current version of our tool. There is, however, an associated performance penalty
– every integer variable contributes to the state space, which might quickly lead
to a state space explosion.

49

4.3. CALCULATING THE WCET OF JAVA TASKS

For infeasible paths, if the execution of some basic block implies that another one
is not executed, a boolean variable can be set when executing the first block and
used as a guard before executing the second. When the corresponding scope is
entered, the variable is reset. Other flow facts can be represented in a similar way.

Example 4.3.1
The program given in Listing 3.1, which is difficult to represent using flow graphs
and relative execution frequencies, has a relatively simple representation using
timed automata, shown in Figure 4.6. The number of states in the transition
system depends on the size of the loop bound k though, and may grow fast with
an increasing loop bound.

L 1

L 3 L 4

i ← 0

i == K i ← 0

i < k i < k

j ← k j ← k/2

j ← j / 2 j ← j - 1

j > i j > i

j ≤ i j ≤ i

j ← 0 j ← 0

Figure 4.6: Timed automaton for the nested loop from Listing 3.1

Method invocations If there is more than one method, we build one automaton
Mi for each reachable method mi. For all methods mi but the root method m0,
which is never invoked by another method, we add a transition from Mi.E to Mi.I,
to allow the method to be invoked several times (Figure 4.7).

50

4.3. CALCULATING THE WCET OF JAVA TASKS

To model method invocations we synchronize the method’s automata using chan-
nels. Our initial design used two dedicated synchronization channels and additional
bounded integer variables to select the invoked method and the correct caller when
returning. It turned out, however, that a better performance is achieved when us-
ing one channel per method.

When a method mi is invoked, the invoke transition synchronizes with the out-
going transition of Mi.I on the invoked method’s channel. When returning from
method mi, the transition from Mi.E to Mi.I synchronizes with the corresponding
return transition in the calling method. This translation assumes that there are
no recursive calls.

invoke
M WAIT

M! M?

invoking method N

Entry M Exit M

Model of Method M
M?

M!

invoked method M

I E

Figure 4.7: Modeling method invocations using processes and synchronization
channels

Method Cache Simulation Using timed automata, it is possible to directly
include the cache state into the timing model. It is most important, however, to
keep the number of different cache states low, to limit space and time needed for
the WCET calculation. JOP’s method cache is especially well suited for model
checking, as the number of blocks and consequently the number of different cache
states are small.

To include the method cache in the uppaal model, we introduce an array of global,
bounded integer variables, representing the blocks of the cache. It is assumed that
the cache initially only contains the main method and is otherwise empty. We
insert two additional locations right before and after the invoke location, modeling
the time spent for loading the invoked and the invoking method, respectively
(Figure 4.8).

51

4.3. CALCULATING THE WCET OF JAVA TASKS

Before invoking a method mi or returning to a method mi, the global state is
modified by access cache(i). This uppaal procedure updates the global cache
state and sets the variable lastHit to true if the access was a hit, and to false

otherwise. Finally, the transition to the locations modeling the cache miss are
guarded by !lastHit.

load
N

invoke
M

load
M

wait

access_cache(M)

! lastHit

M!
lastHit

M!
M?

access_cache(N)
! lastHit

lastHit

Figure 4.8: Modeling cache access when invoking method M from method N

For a N -block LRU cache using one block per method, the cache state is an array
of N bounded integer variables, ranging from 0 to the number of methods. When
the cache is accessed, we first test whether the first variable represents the method
invoked. In this case, the method is in the cache and the cache state does not
change. Otherwise, the invoked method is moved to the beginning of the cache,
and all methods up to the invoked one are moved to the next position. If the
invoked method is not in the cache, the method at the last position is removed
from the cache and lastHit is set to false (Listing 4.1).

For variable block FIFO caches, we need to assume that the cache is initially
empty. As this is not a safe approximation in general, we have to ensure that the
first access to some method is actually a cache miss, for example by inserting a
cache flush at the beginning of the main method (see section 3.3). The choice of
the best position for inserting cache flushes has not been investigated during this
thesis, but is certainly an important ingredient for using this technique.

The cache state is again represented by an array of bounded integer variables.
For FIFO caches, the cache state does not change if the method is in the cache.
Otherwise, the blocks of the invoked method are written into the beginning of the
array, and all other blocks are moved back accordingly (Listing 4.2). The actual
update procedure could be implemented using a pointer instead of moving all the
cache blocks, but this pointer should not be part of the cache state, as this would
increase the number of different cache states and therefore states which need to
be explored.

52

4.3. CALCULATING THE WCET OF JAVA TASKS

const int EMPTY_TAG = NUM_METHODS;

int[0, NUM_METHODS] cache[NUM_BLOCKS] = { ROOT_METHOD , EMPTY_TAG , ... };

bool lastHit;

void access_cache(int mid) {

lastHit = false;

if(cache [0] == mid) {

lastHit = true;

} else {

int i = 0;

int last = cache [0];

for(i = 0;

i < NUM_BLOCKS - 1 && !lastHit;

i++) {

int next = cache[i+1];

if(next == mid) {

lastHit = true;

}

cache[i+1] = last;

last = next;

}

cache [0] = mid;

}

}

Listing 4.1: LRU cache simulation

const int NUM_BLOCKS [NUM_METHODS] = { /∗ number of blocks per method ∗/ } ;
const int EMPTY_TAG = NUM_METHODS ;
int [0 , NUM_METHODS] cache [NUM_BLOCKS] =

{ EMPTY_TAG , . . . , ROOT_METHOD , EMPTY_TAG , . . . } ;
bool lastHit ;
void access_cache (int mId) {

int i = 0 ;
int sz = NUM_BLOCKS [mId] ;
lastHit = false ;
for (i = 0 ; i < NUM_BLOCKS ; i++) {

if (cache [i] == mId) {
lastHit = true ;
return ;

}
}
for (i = NUM_BLOCKS − 1 ; i >= sz ; i−−) {

cache [i] = cache [i−sz] ;
}
for (i = 0 ; i < sz−1; i++) {

cache [i] = EMPTY_TAG ;
}
cache [i] = mId ;

}

Listing 4.2: FIFO variable block cache simulation

53

Chapter 5

A WCET Analysis Tool for JOP

In the course of this thesis, a tool for the WCET analysis of high-integrity Java
applications has been developed. It is integrated into the JOP tool chain, and
supports both IPET and timed automata based WCET calculation. Currently,
JOP’s low-level timing model is the only one supported, though we plan to include
other processors in the future. The tool is not only useful directly before deploying
the application, but also aids the developer early during the implementation phase,
by generating reports about the expected timing behavior.

By combining IPET and timed automata model checking into one tool, different
degrees of precision can be used to calculate the WCET, trading verification time
for the tightness of the WCET bound. Assuming that flow facts usually have a
local scope, it is feasible to calculate the WCET of subtasks separately and simplify
the problem by pre-calculating the WCET for local subgraphs of the CFG. This
allows us to restrict more expensive analysis methods to relevant parts of the
program, and to reduce the time needed for WCET analysis.

JOP’s method cache is taken into account in both calculation methods. In the
case of IPET, we use a simple static classification of the variable block method
cache, as explained in Section 3.5. For the model checking approach, we use the
cache simulation described in the previous chapter. For FIFO caches, the model
checking approximation is only safe if we flush the cache at the beginning of the
analyzed task.

5.1 WCET Tool Architecture

The goal of the WCET tool is to analyze Java methods used in the mission phase
of high-integrity Java applications. Concurrency aspects such as synchronization
or preemption, as well as calculating the worst-case memory consumption are

54

5.1. WCET TOOL ARCHITECTURE

considered to be future work.

The Java language subset supported corresponds roughly to the one specified by
the JOP high-integrity Java profile. JOP’s Java implemented bytecodes are sup-
ported, as well as virtual method invocations. For the latter, we either analyze
the subtype relations of all known classes, or use a dataflow analysis to determine
the set of receiver types [Puf09]. To support dynamic dispatch, the application’s
main entry point has to be known, and all classes possibly used in the application
need to be loaded.

The dataflow analysis also provides an automated loop bound analysis. Addition-
ally, we extract flow fact annotations from the source code, similar to the ones
used in [SP06]. Either way, it is necessary that for every loop the number of times
the body is executed is bounded by a constant.

We do not support recursive method invocations, as their use is discouraged on
Java processors due to the high runtime overhead, and they complicate the analysis
considerably. Therefore, the static call graph, generated by analyzing the class
hierarchy or using the results from the dataflow analysis, has to be acyclic. Using
the results of the receiver type dataflow analysis, it is nevertheless possible to
support certain uses of the popular delegator pattern (Listing 5.1).

In Java, there are exceptions which subclass java.lang.Exception and need to
be declared explicitly, and runtime errors, which do not need to be declared.
Declared exceptions are in principal not an issue from an analysis point of view,
though tool support is still missing. However, the use of exception handlers which
catch runtime errors is not supported, and neither are applications throwing these
exceptions explicitly. It seems to contradict the idea of a predictable system to
catch runtime errors during a task, as they are usually caused by programming
errors, such as division by zero. Moreover, runtime errors are problematic from an
analysis point of view, because arbitrary bytecodes can cause them to be thrown,
complicating both microcode and program analysis.

Tool architecture The WCET tool is integrated into the JOP tool chain, and
uses several facilities it provides. This also increases the confidence that the ap-
plication analyzed is the one actually executed on the processor.

First, the Java application is compiled using an off-the-shelf Java compiler, produc-
ing the class files. In the WCET tool, we also load the corresponding source files,
perform a basic check that they haven’t been modified, and extract the WCET
annotations.

All packages in the tool chain use the BCEL library [Dah01] to analyze, transform
and attach analysis results to Java bytecode. The JOP class loader loads all
classes possibly used by the application, and performs some basic transformations,

55

5.1. WCET TOOL ARCHITECTURE

interface Reader {

char getChar ();

}

static class DelegatingReader implements Reader {

private Reader reader;

public DelegationReader(Reader impl) {

reader = impl;

}

/* DFA analysis can prove that there is no recursion here ,

as the reader field ’s type is always ConstReader */

public char getChar () {

return reader.getChar ();

}

}

static class ConstReader implements Reader {

public char getChar () {

return ’x’;

}

}

main() {

Reader r = new DelegationReader(new ConstReader ());

action(r);

}

void action(Reader r) {

/* DFA analysis determines loop bound N=100 */

for(int i = 0; i < 100; i++) {

r.getChar ();

}

}

Listing 5.1: Delegator patterns and Dataflow Analysis

inserting JOP specific bytecodes. The JOP linker (JOPizer) collects all classes,
and generates a binary file, suitable for execution on hardware or the simulator.

After loading all necessary classes and source code files, we optionally perform a
dataflow analysis to find tight receiver type sets and additional loop bounds.

The WCET tool, whose high-level architecture is depicted in Figure 5.1, gets the
classes, source files and dataflow analysis results as input.

The frontend package extracts the type hierarchy, the callgraph, the control flow
graphs and the supergraph. For every control flow graph, we detect loop headers
and map the result of the loop bound analysis to the bytecode. Additionally, flow
annotations are extracted from the source files and mapped to the bytecode using
a heuristic based on the line numbers associated with bytecodes.

The jop package provides timing information for JOP, and is used for calculat-
ing the execution time of single instructions and basic blocks, depending on the
hardware configuration.

The actual WCET calculation is controlled by the analysis package, and is carried
out by the ipet and uppaal modules. As motivated above, depending on the time
we are willing to spend on the analysis, different methods for computing the WCET

56

5.1. WCET TOOL ARCHITECTURE

Figure 5.1: WCET tool architecure

bound are appropriate. For each method we want to analyze, we offer the following
possibilities:

Local Analysis To calculate the WCET bound of a method, we first
compute the bound of each method directly invoked during the execu-
tion. This kind of analysis is the fastest, but only supports intrapro-
cedural flow facts. It is useful during development, for obtaining an
upper bound for the uppaal search and could be used in interactive
settings or for WCET-directed optimization.

Interprocedural Analysis using IPET To calculate the WCET
bound of some method, we build the ILP from the corresponding super-
graph. This method supports interprocedural flow facts, and therefore
provides tighter WCET bounds. In the current implementation, in-
terprocedural IPET is used to improve the cache analysis for variable
block caches.

Model Checking To calculate the WCET bound of some method,
we build the uppaal model from the corresponding supergraph. The

57

5.1. WCET TOOL ARCHITECTURE

WCET bound is then calculated using binary search, starting with the
conservative approximations found by local analysis as upper bound.

The analysis module can be configured to use different calculation strategies. Local
IPET is used to calculate bounds without considering the method cache, global
IPET for static cache approximations and uppaal for dynamic cache simulations.

For the static cache approximation, it is possible to calculate points where inserting
cache flushes benefits the analysis, and then assume that all cache loads will occur
at invoke instructions only.

Optionally, the tool tries to speed up the uppaal analysis. Most important, the
analysis time can be reduced considerably by first simplifying the supergraph.
Currently, we pre-compute the WCET of loops without method invocations and
of leaf methods. It is also possible to turn on uppaal’s convex hull approximation,
though in this case, no trace for the worst case path will be available.

Figure 5.2: WCET report for the Kippfahrleitung application

The report module finally generates HTML reports (see Figure 5.2 for an exam-
ple). The IPET backend records execution frequencies, which are later mapped
backed to the source code for reporting. Back-annotation for uppaal is not yet
implemented, but possible in principle. The source code is annotated with timing
informations, displaying the time spend in each statement. Additionally, the con-
trol flow graphs labeled with the worst case execution frequencies are visualized.

58

5.2. EVALUATION

5.2 Evaluation

In this section, we will present some experimental results obtained with our new
tool. The first problem set consists of small benchmarks to evaluate the model
checker’s performance for intraprocedural analysis. The second set comprises em-
bedded applications with more than one method, used for evaluating analysis times
and the quality of the cache approximations.

First, we list the benchmarks along with some metrics, followed by a performance
evaluation of the uppaal model checker. Finally, we conduct several experiments
with JOP’s method cache, using the model checker for exact simulation. For all
experiments, the timing model for the dspio board 1 was used.

Problem Set The first problem set consists of a couple of small single-method
benchmarks, with the exception of ShortCrc provided by the Mälardalen Real-
Time Research center 2. We vary the input data’s size for those algorithms to
investigate the relation between the number of loop iterations, and the time needed
for model checking the method.

The second set consists of larger benchmarks, mainly taken from real world ap-
plications. The Kfl benchmark has a comparatively high complexity, so we also
consider the two subtasks, Kfl.Triac and Kfl.Msg.

Table 5.1 lists the size of the tasks under consideration (source and compiled), and
the number of methods. Additionally, we list the size of the largest method in
bytes, which determines a lower bound for the size of the method cache. Typically
WCET analysis targets single tasks, so the size of the real world applications seems
to be reasonable. On the other hand, we would definitely benefit from a larger
and varying set of benchmarks.

Table 5.2 compares the measured execution times and the computed WCET esti-
mates. For this experiment we used the default JOP configuration for the dspio
board, using a variable block method cache with 16 cache blocks, each spanning
64 words. The WCET was computed using the IPET method, once assuming a
single block method cache (WCET SB), and once using the static method cache
approximation (WCET VAR). Pessimistic estimations partly result from conser-
vative flow facts (BubbleSort) or data dependent flow (CRC), but are also due to
the fact that the measurements do not cover all possible execution paths (Kfl).

Performance Analysis We have evaluated the time needed to estimate the
WCET using the uppaal model checker for the benchmarks listed above. We

1http://ti.tuwien.ac.at/rts/teaching/soc/dspio
2http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

59

http://ti.tuwien.ac.at/rts/teaching/soc/dspio

5.2. EVALUATION

Problem Description LOC Bytecode Number of Methods
Size (size of largest)

ShortCrc Compact CRC (4 bytes) 8 54 1
DiscreteCosineTransform FDCT (8x8 array) 223 953 1
Fibonacci(N) Fibonacci number (O(N)) 37 39 1
BubbleSort(N) Bubble sort (O(N2)) 63 78 1
CRC Multi-method CRC (40 bytes) 154 394 5 (252)
LineFollower A simple line-following robot 89 226 9 (74)
Lift Lift controller 635 1206 13 (215)
Kfl Kippfahrleitung application 1366 2533 46 (252)
Kfl.Triac Kfl sensor and control task 977 14 (191)
Kfl.Msg Kfl communication task 573 8 (250)

Table 5.1: Problem sets for evaluation

Problem Measured WCET VAR WCET SB Pessimism Ratio
ShortCrc 1449 1513 1.04
DiscreteCosineTransform 19124 19131 1.00
Fibonacci(30) 1127 1138 1.01
BubbleSort(100) 1262717 1852573 1.47
CRC 191825 383026 469726 2.00
LineFollower 2348 2369 2610 1.01
Lift 5446 8344 8897 1.53
Kfl 10411 39555 49744 3.80
Kfl.Triac 2209 5252 6139 2.38
Kfl.Msg 4099 8216 11976 2.00

Table 5.2: Measured Execution Time and WCET calculated using IPET

measure the total time spent in the binary search, and the maximum time spent
in one run of the uppaal verifier. All experiments were carried out using an Intel
Core Duo 1.83Ghz with 2GB RAM on darwin-9.5. For model checking, we used
uppaal 4.0, the linear programs were solved by lp solve 5.5.

For the first problem set, the analysis times for the ILP approach are too small to
be measured reliably, so we only present the times for model checking, and also
evaluate uppaal’s convex hull approximation.

Summarized in Table 5.3, we observe that uppaal handles the analysis of sin-
gle methods well, as long as the loop bounds don’t get too large. The model
checker was able to analyze 300000 inner loop iterations within 5-10 seconds, for
both the Fibonacci and BubbleSort benchmark. For the Fibonacci and BubbleSort
benchmark, convex hull approximation (denoted by CH in the table) speeds up
analysis by 14 respectively 21 percent on average, which is a small, albeit useful
improvement.

For the second problem set, we measure the time needed for local IPET, inter-

60

5.2. EVALUATION

Problem N WCET Verify Verify CH Search Search CH
ShortCrc 1, 513 0.05 0.05 0.58 0.57
FDCT 19, 143 0.06 0.06 0.76 0.73
Fibonacci 3000 102, 177 0.11 0.11 1.79 1.66
Fibonacci 30000 1, 020, 143 0.60 0.47 11.94 9.79
Fibonacci 300000 11, 700, 143 5.88 4.98 135.28 114.13
BubbleSort 100 1, 852, 573 0.35 0.26 7.22 5.66
BubbleSort 200 7, 445, 371 1.20 0.94 27.90 21.96
BubbleSort 400 29, 770, 571 4.87 3.85 122.00 96.75
BubbleSort 600 66, 975, 771 11.12 8.62 288.96 227.43

Table 5.3: Analysis times (uppaal) for problem set 1

Problem IPET solvertime uppaal Verifier Time uppaal Search Time
Local Global N CH SIMP N CH SIMP

CRC 0.00 0.00 0.87 1.30 0.19 16.46 14.26 3.49
LineFollower 0.00 0.00 0.07 0.07 0.07 0.86 0.89 0.83
Lift 0.01 0.03 0.18 0.17 0.09 2.43 2.30 1.11
Kfl.Msg 0.01 0.01 0.28 0.25 0.14 3.95 3.41 1.98
Kfl.Triac 0.01 0.04 0.46 0.39 0.33 5.62 5.03 4.32
Kfl 0.04 0.18 111.00 98.62 16.22 1796.55 1555.29 250.54

Table 5.4: Analysis times for problem set 2

procedural IPET, uppaal model checking and for model checking a locally sim-
plified problem (Table 5.4). The simplified problem is obtained by first analyzing
invocation-free inner loops and leaf methods separately, and then replacing them
by pseudo locations annotated with the WCET of the corresponding program
fragment. The columns N and CH list the time needed for uppaal computation
without and with convex hull approximation, respectively, while SIMP is the time
needed for the simplified problem using convex hull approximation.

For the non-simplified problems, uppaal needed a considerable amount of time
for the CRC (16 seconds) and Kfl (1797 seconds) problem. For the simplified
problems on the other hand, uppaal solved CRC almost instantly, and needed
“only” 250 seconds for the Kfl problem. This suggests that local simplifications
should be further investigated, and is the reason we used the simplification when
experimenting with method cache simulations below.

Unsurprisingly, the ILP solver managed to handle all problems easily, as no in-
terprocedural flow facts were present. The cumulative time spent in the solver in
the per-method approach is below 0.1 seconds for all problems, so it seems this
approach can be used for interactive evaluation and similar tasks requiring instant
response.

61

5.2. EVALUATION

Evaluation of the Method Cache Approximations Now we present the
results of computing the WCET of some of the programs in the second problem
set using different method cache configurations. For each problem, we vary the
size of the cache depending on the size of the program. The uppaal models are
simplified in a preprocessing step as described in the previous section.

The following cache approximations were evaluated:

• IPET VAR: Variable block FIFO method cache, using IPET and the
all-fit code region approximation.

• uppaal VAR: Variable block FIFO method cache, using uppaal and
the corresponding cache simulation.

• uppaal LRU : On-block-per-method LRU cache, using uppaal and
the corresponding cache simulation.

• uppaal FIFO : On-block-per-method FIFO cache, using uppaal and
the corresponding cache simulation.

For uppaal FIFO and uppaal VAR, an initially empty cache is assumed. That
is, the WCET bound is only safe if a cache flush is inserted before executing the
method. The results of the experiments are given in Table 5.5, 5.6, 5.7, 5.8 and
5.9.

We observe that in in general, the variable block method cache outperforms the
fixed blocked caches if the same cache size is assumed. This is because a block
in a fixed block cache has to be at least as large as the largest method possibly
invoked.

Comparing the uppaal and IPET estimations for the variable block cache, the
latter does not work well if the cache is small, and delivers slightly worse results
even when all methods fit into the cache, due to the fact that cache loads have to
be assumed to happen on return. On the other hand, the IPET approximation is
still good enough for most purposes.

In the Kfl.Triac benchmark, the time spend in the model checker varies signifi-
cantly depending on the cache implementation, where the time needed for fixed
block LRU cache is significantly lower than that needed for FIFO caches.

62

5.2. EVALUATION

Cache Approximation Blocks WCET Verify Search Ratio
Size x Block Size (s) (s) WCET

64
IPET VAR 8 x 8 469726 0.01 1.00
uppaal VAR 8 x 8 469652 0.36 6.78 1.00

128
uppaal LRU 1 x 128 469726 0.31 5.54 1.00
IPET VAR 16 x 8 383026 0.01 0.82
uppaal VAR 16 x 8 382965 0.32 5.99 0.82

256
IPET VAR 16 x 16 383026 0.01 0.82
uppaal VAR 16 x 16 382965 0.32 5.82 0.82
uppaal LRU 2 x 128 383142 0.29 5.18 0.82
uppaal FIFO 2 x 128 394179 0.31 5.81 0.84

512
IPET VAR 16 x 32 383026 0.01 0.82
uppaal VAR 16 x 32 382965 0.31 5.71 0.82
uppaal LRU 4 x 128 383045 0.31 5.84 0.82
uppaal FIFO 4 x 128 383142 0.30 5.27 0.82

Table 5.5: Cache analysis: Cyclic redundancy check

Cache Approximation Blocks WCET Verify Search Ratio
Size x Block Size (s) (s) WCET

64
uppaal LRU 1 x 64 2610 0.10 1.04 1.00
IPET VAR 8 x 8 2582 0.01 0.99
uppaal VAR 8 x 8 2443 0.09 1.07 0.94

128
IPET VAR 16 x 8 2411 0.01 0.92
uppaal VAR 16 x 8 2368 0.09 1.05 0.91
uppaal LRU 2 x 64 2453 0.11 1.00 0.94
uppaal FIFO 2 x 64 2471 0.09 1.04 0.95

256
IPET VAR 16 x 16 2411 0.01 0.92
uppaal VAR 16 x 16 2368 0.10 1.09 0.91
uppaal LRU 4 x 64 2453 0.09 0.97 0.94
uppaal FIFO 4 x 64 2453 0.10 1.00 0.94

Table 5.6: Cache analysis: Line Following Robot

63

5.2. EVALUATION

Cache Approximation Blocks WCET Verify Search Ratio
Size x Block Size (s) (s) WCET
128

uppaal LRU 1 x 128 8897 0.13 1.63 1.00
IPET VAR 16 x 8 8595 0.02 0.97
uppaal VAR 16 x 8 8400 0.54 2.26 0.94

256
IPET VAR 16 x 16 8595 0.01 0.97
uppaal VAR 16 x 16 8355 0.21 1.94 0.94
uppaal LRU 2 x 128 8422 0.14 1.50 0.95
uppaal FIFO 2 x 128 8422 0.13 1.49 0.95

512
IPET VAR 16 x 32 8466 0.04 0.95
uppaal VAR 16 x 32 8343 0.14 1.91 0.94
uppaal LRU 4 x 128 8355 0.11 1.47 0.94
uppaal FIFO 4 x 128 8411 0.12 1.47 0.95

1024
IPET VAR 16 x 64 8466 0.04 0.95
uppaal VAR 16 x 64 8343 0.15 1.62 0.94
uppaal LRU 8 x 128 8344 0.14 1.58 0.94
uppaal FIFO 8 x 128 8355 0.12 1.52 0.94

Table 5.7: Cache analysis: Lift Controller

Cache Approximation Blocks WCET Verify Search Ratio
Size x Block Size (s) (s) WCET
128

uppaal LRU 1 x 128 11976 0.23 2.08 1.00
IPET VAR 16 x 8 11022 0.01 0.92
uppaal VAR 16 x 8 8234 0.89 11.33 0.69

256
IPET VAR 16 x 16 8216 0.01 0.69
uppaal VAR 16 x 16 8152 0.80 11.36 0.68
uppaal LRU 2 x 128 9492 0.36 4.97 0.79
uppaal FIFO 2 x 128 10444 1.12 7.64 0.87

512
IPET VAR 16 x 32 8216 0.01 0.69
uppaal VAR 16 x 32 8152 0.80 11.29 0.68
uppaal LRU 4 x 128 8153 0.74 10.59 0.68
uppaal FIFO 4 x 128 8153 0.79 11.08 0.68

Table 5.8: Cache analysis: Kippfahrleitung communication task

64

5.2. EVALUATION

Cache Approximation Blocks WCET Verify Search Ratio
Size x Block Size (s) (s) WCET
128

uppaal LRU 1 x 128 6139 0.80 9.93 1.00
IPET VAR 16 x 8 5564 0.03 0.91
uppaal VAR 16 x 8 5105 7.55 93.86 0.83

256
IPET VAR 16 x 16 5537 0.06 0.90
uppaal VAR 16 x 16 5039 33.52 416.09 0.82
uppaal LRU 2 x 128 5806 0.99 12.77 0.95
uppaal FIFO 2 x 128 5806 1.17 15.47 0.95

512
IPET VAR 16 x 32 5252 0.04 0.86
uppaal VAR 16 x 32 5025 32.43 428.71 0.82
uppaal LRU 4 x 128 5266 1.36 17.96 0.86
uppaal FIFO 4 x 128 5422 3.70 49.30 0.88

1024
IPET VAR 16 x 64 5252 0.04 0.86
uppaal VAR 16 x 64 5025 31.78 426.86 0.82
uppaal LRU 8 x 128 5026 6.82 92.48 0.82
uppaal FIFO 8 x 128 5041 31.35 414.94 0.82

Table 5.9: Cache analysis: Kippfahrleitung sensor and control task

65

Chapter 6

Conclusion

In this thesis, techniques for the WCET analysis of high-integrity Java applications
were investigated, presenting and evaluating an analysis tool for the Java processor
JOP.

WCET calculation takes a high-level, abstract model of the program, focusing on
control flow, and a low-level model of the execution platform as input. After the
model extraction, the main challenges are to include flow facts, static context de-
pendencies, and dynamic dependencies on the execution history in the calculation,
reducing the gap between the actual and the statically computed WCET.

IPET is an established and fast technique for calculating the WCET. Relative
execution frequency constraints and a static call-context dependencies can be en-
coded efficiently, while on the other hand dependencies on the execution history,
or facts which depend on the order of execution, are difficult to incorporate into
this static timing model.

Timed automata are an alternative, powerful modeling method. Beside their sup-
port for an expressive notion of time, the allow to model the execution path set
using finite-state automata, and the simulation of global low-level timing depen-
dencies, e. g., those caused by instruction caches. The analysis time is a significant
issue when using timed automata, and so it seems to be most important to simplify
the model as far as possible.

We combined IPET and model checking, allowing us to get rid of large inner loops
in a preprocessing step. While this approach was quite effective for our purposes,
it seems that a scalable model checking approach ultimately depends on the ability
to solve the problem in a compositional way, abstracting away details which are
not of immediate interest. For scheduling analysis, for example, the model should
only reflect synchronization and concurrency aspects, but abstract away as many
sequential details as possible.

66

There seem to be a lot of optimization opportunities for model checking based
WCET calculation. For the analysis of sequential code fragments, it is not even
necessary to use the strong timed automata model, and using a model checker with
a simpler notion of time would be sufficient, potentially improving performance.
We note that:

• All states which only differ with respect to the elapsed time can be
merged, keeping only the state with the largest time stamp.

• The WCET model checking might benefit from a carefully chosen
search order, which can be easily derived by analyzing the control flow
graphs.

• For sequential analysis, it should be possible to summarize the effect
of executing some automaton in some initial state, as only the set of
final states with the corresponding elapsed time matters.

Regarding the tool implementation, it turned out that JOP is indeed a good tar-
get platform for WCET analysis. The only global low-level effect, method caches,
can be approximated rather effectively. If the variable block method cache is
sufficiently large, the static approximation worked very well, while the uppaal
simulation showed even better results for smaller variable block caches. Small per-
thread cache areas could be beneficial for the analysis of preemptive systems, were
the context switch cost has to be taken into account. The all-fit region approx-
imation would benefit from a better analysis proving there is no cache overflow,
instead of the currently used, simple heuristic, summing the size of all methods
possibly invoked.

The analysis times for IPET where below one second for all problems, although we
used decision variables for the static cache approximation. However, no interpro-
cedural flow facts or context dependencies beside the ones for cache approximation
were present, so we cannot safely conclude that analysis time is not an issue when
using IPET in general. The timed automata calculation was fast enough for pro-
gram fragments spanning a few methods, but took too long to calculate cache
approximation for the largest of the test applications. The size of the cache, and
the replacement strategy used, also has a significant impact on the analysis time,
and even using simplifications we only managed tasks with up to 14 methods when
using a realistic cache model.

In the future, we want the tool to support other Java processors, such as jamuth
[UW07], and hardware extensions to JOP, and improve the quality of the WCET
bound for the multiprocessing extension. Finally, the high-level analysis should
be improved, reducing the needs for loop bound annotations further and taking
infeasible paths and context dependencies into account.

67

Appendix A

Obtaining and Using the WCET
Tool

The new WCET tool is part of the GPL-licensed JOP project.

First, obtain the source via CVS,1 as explained in the download area of JOP’s
webpage 2.

The tool chain’s source is located in java/tools/src and is build with

make tools

After a successful build, the JOP tool library should reside at
java/tools/dist/lib/jop-tools.jar. The necessary third-party Java li-
braries 3 4 5 6 7 8 are included in the CVS tree, and need to be on the classpath,
along with the JOP tools archive:

CLASSPATH = java/lib/bcel -5.1. jar:java/lib/jakarta -regexp -1.3. jar:\

java/lib/lpsolve55j.jar:java/lib/log4j -1.2.15. jar:\

java/lib/jgrapht -jdk1 .5. jar:java/lib/velocity -dep -1.5. jar:\

java/tools/dist/lib/jop -tools.jar

Additionally, the WCET tool needs the free lp solve ILP solver library 9, and

1http://www.nongnu.org/cvs/
2http://www.jopdesign.com/
3BCEL Bytecode Engineering Library: http://jakarta.apache.org/bcel/
4Jakarta Regexp: http://jakarta.apache.org/regexp/
5lp solve Java bindings: http://lpsolve.sourceforge.net/5.5/Java/README.html/
6Apache log4j: http://logging.apache.org/log4j/
7JGraphT free Java graph library: http://jgrapht.sourceforge.net/
8The apache Velocity project: http://velocity.apache.org/
9http://sourceforge.net/projects/lpsolve

68

Option Description
app-class the name of the class containing the main entry point of the application
target-method the name (optional: class,signature) of the method to be analyzed
dataflow-analysis whether dataflow analysis should be performed
outdir parent directory for generating output
cp the classpath for the analyzed application
sp the sourcepath for the analyzed application
debug whether to print verbose debugging messages

Table A.1: General options

Option Description
cache-impl method cache implementation (no, LRU fixed block or FIFO variable block)
cache-size-words size of the cache in words
cache-blocks number of cache blocks
cache-approx static cache approximation (no or all-fit approximation)

Table A.2: Options for analyzing the method cache

Option Description
uppaal whether uppaal should be used for WCET calculation
dyn-cache-approx dynamic cache approximation (no or uppaal simulation)
uppaal-verifier path to uppaal’s verifier binary (verifyta)
uppaal-collapse-leaves pre-calculate inner loops and leaf methods to speed up simulation
uppaal-convex-hull use uppaal’s convex hull approximation

Table A.3: Options for the uppaal model checker

the uppaal model checker 10.

The main entry point of the WCET analyzer is
com.jopdesign.wcet.WCETAnalyis. Supplying -help as a command line
argument provides an overview of the available options. Options can bet set by
specifying a property file, or as command line arguments.

The WCET tool takes the main entry point of a real-time Java application, and the
name of the method to be analyzed. It then performs a fast, local IPET analysis,
followed by a more precise one, either using intraprocedural IPET, or the uppaal
model checker. The options accepted by the tool are listed in Table A.1, A.2, A.3
and A.4.

The tool outputs the requested WCET bounds, and generates HTML reports in
the configured report directory.

10http://www.uppaal.com/

69

Option Description
reportdir the directory to write reports into
templatedir directory with custom templates for report generation
error-log the error log file
info-log the info log file
program-dot if graphs should be generated, the path to the dot binary
dump-ilp whether the LP problems should be dumped to files

Table A.4: Options for generating reports

70

References

[Bal96] F. Balarin. Approximate reachability analysis of timed automata. In
RTSS ’96: Proceedings of the 17th IEEE Real-Time Systems Sym-
posium (RTSS ’96), page 52, Washington, DC, USA, 1996. IEEE
Computer Society. 47

[BBW00] Guillem Bernat, Alan Burns, and Andy Wellings. Portable worst-
case execution time analysis using java byte code. In Proc. 12th
EUROMICRO Conference on Real-time Systems, Jun 2000. 25, 26

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial
on uppaal. In Marco Bernardo and Flavio Corradini, editors, For-
mal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communica-
tion, and Software Systems, SFM-RT 2004, number 3185 in LNCS,
pages 200–236. Springer–Verlag, September 2004. 45

[BDV03] Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide to the
use of the ada ravenscar profile in high integrity systems. Technical
Report Technical Report YCS-2003-348, University of York (UK),
2003. 5, 14

[BDV04] Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for the
use of the ada ravenscar profile in high integrity systems. Ada Lett.,
XXIV(2):1–74, 2004. 13

[BEG+08] Dani Barkah, Andreas Ermedahl, Jan Gustafsson, Björn Lisper, and
Christer Sandberg. Evaluation of automatic flow analysis for wcet
calculation on industrial real-time system code. In ECRTS ’08: Pro-
ceedings of the 2008 Euromicro Conference on Real-Time Systems,
pages 331–340, Washington, DC, USA, 2008. IEEE Computer Soci-
ety. 27

71

REFERENCES

[BGB+] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve
Furr, and Mark Turnbull. The real-time specification for java 1.0.2.
Available at: http://www.rtsj.org/specjavadoc/book index.html. 9

[BKHO+08] Thomas Bogholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thom-
sen, and Kim G. Larsen. Model-based schedulability analysis of safety
critical hard real-time java programs. In Proceedings of the 6th inter-
national workshop on Java technologies for real-time and embedded
systems (JTRES 2008), pages 106–114, New York, NY, USA, 2008.
ACM. 47, 48

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computa-
tion: Decision Procedures with Applications to Verification. Springer,
Berlin, 1 edition, September 2007. 34

[BS88] T. P. Baker and A. Shaw. The cyclic executive model and ADA. In
Real-Time Systems Symposium, 1988., Proceedings., pages 120–129,
1988. 4

[BY03] Johan Bengtsson and Wang Yi. On clock difference constraints and
termination in reachability analysis of timed automata, 2003. 44

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algo-
rithms and tools. 2004. 38

[CL00] Franck Cassez and Kim Larsen. The impressive power of stopwatches.
In In Proc. of CONCUR 2000: Concurrency Theory, pages 138–152.
Springer, 2000. 48

[Dah01] Markus Dahm. Byte code engineering with the BCEL API. Technical
report, Freie Universitat Berlin, April 2001. 55

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Third Edition. The Java Series. Addison-
Wesley Professional, Boston, Mass., 2005. 5

[Hav97] Paul Havlak. Nesting of reducible and irreducible loops. ACM Trans.
Program. Lang. Syst., 19(4):557–567, 1997. 21

[HBW02] Erik Yu-Shing Hu, Guillem Bernat, and Andy Wellings. A static tim-
ing analysis environment using Java architecture for safety critical
real-time systems. In WORDS ’02: Proceedings of the The Seventh
IEEE International Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS 2002), page 77, Washington, DC, USA,
2002. IEEE Computer Society. 26

72

REFERENCES

[HK07] Trevor Harmon and Raymond Klefstad. Interactive back-annotation
of worst-case execution time analysis for java microprocessors. In
Proceedings of the Thirteenth IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA
2007), August 2007. 26

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. Information
and Computation, 111:394–406, 1994. 38

[KKP+05] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and
Ingomar Wenzel. Wcet analysis: The annotation language challenge.
In Proc. 7th International Workshop on Worst-Case Execution Time
Analysis, Pisa, Italy, July 2005. 23

[KWK02] Jagun Kwon, Andy Wellings, and Steve King. Ravenscar-Java:
A high integrity profile for real-time Java. In Proceedings of the
2002 joint ACM-ISCOPE conference on Java Grande, pages 131–140.
ACM Press, 2002. 5, 14

[LY97] Kim G. Larsen and Wang Yi. Efficient verification of real-time sys-
tems: Compact data structure and state-space reduction. In In Proc.
of the 18th IEEE Real-Time Systems Symposium, pages 14–24. IEEE
Computer Society Press, 1997. 44

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifi-
cation. Addison-Wesley, Reading, MA, USA, second edition, 1999. 6,
8

[Mue00] Frank Mueller. Timing analysis for instruction caches. Real-Time
Syst., 18(2-3):217–247, 2000. 31

[Mye81] Eugene M. Myers. A precise inter-procedural data flow algorithm. In
POPL ’81: Proceedings of the 8th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 219–230, New
York, NY, USA, 1981. ACM. 21

[OL] Martin Ouimet and Kristina Lundqvist. Verifying execution time
using the TASM toolset and UPPAAL. Technical Report Embedded
Systems Laboratory Technical Report ESL-TIK-00212, Embedded
Systems Laboratory Massachusetts Institute of Technology. 47

[Par93] Chang Yun Park. Predicting program execution times by analyz-
ing static and dynamic program paths. Real-Time Syst., 5(1):31–62,
1993. 24

73

REFERENCES

[PB01] Peter Puschner and Guillem Bernat. WCET analysis of reusable
portable code. In ECRTS ’01: Proceedings of the 13th Euromicro
Conference on Real-Time Systems, page 45, Washington, DC, USA,
2001. IEEE Computer Society. 20

[Pit08] Christof Pitter. Time-predictable memory arbitration for a Java chip-
multiprocessor. In Proceedings of the 6th international workshop on
Java technologies for real-time and embedded systems (JTRES 2008),
pages 115–122, New York, NY, USA, 2008. ACM. 29

[PS97] Peter Puschner and Anton Schedl. Computing maximum task execu-
tion times – a graph-based approach. Journal of Real-Time Systems,
13(1):67–91, Jul. 1997. 33, 34, 36

[PS08] Wolfgang Puffitsch and Martin Schoeberl. Non-blocking root scan-
ning for real-time garbage collection. In Proceedings of the 6th Inter-
national Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES 2008), September 2008. 29

[Puf09] Wolfgang Puffitsch. Supporting wcet analysis with data flow analysis
of java bytecode. Research Report 16/2009, Technische Universität
Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040
Vienna, Austria, 2009. 27, 55

[PW01] Peter Puschner and Andy Wellings. A profile for high integrity real-
time Java programs. In 4th IEEE International Symposium on Object-
oriented Real-time distributed Computing (ISORC), 2001. 14, 15, 19

[RGBW07] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm.
Timing predictability of cache replacement policies. Journal of Real-
Time Systems, 37(2):99–122, Nov. 2007. 31

[Sch04a] Martin Schoeberl. Restrictions of Java for embedded real-time sys-
tems. In Proceedings of the 7th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC 2004),
pages 93–100, Vienna, Austria, May 2004. IEEE. 8, 15

[Sch04b] Martin Schoeberl. A time predictable instruction cache for a Java
processor. In On the Move to Meaningful Internet Systems 2004:
Workshop on Java Technologies for Real-Time and Embedded Sys-
tems (JTRES 2004), volume 3292 of LNCS, pages 371–382, Agia
Napa, Cyprus, October 2004. Springer. 31

74

REFERENCES

[Sch05] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded
Real-Time Systems. PhD thesis, Vienna University of Technology,
2005. 27, 29

[SP06] Martin Schoeberl and Rasmus Pedersen. WCET analysis for a Java
processor. In Proceedings of the 4th International Workshop on Java
Technologies for Real-time and Embedded Systems (JTRES 2006),
pages 202–211, New York, NY, USA, 2006. ACM Press. 55

[SR94] K.G. Shin and P. Ramanathan. Real-time computing: a new disci-
pline of computer science and engineering. Proceedings of the IEEE,
82(1):6–24, Jan 1994. 3

[SSTR07] Martin Schoeberl, Hans Sondergaard, Bent Thomsen, and Anders P.
Ravn. A profile for safety critical Java. In 10th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC’07), pages 94–101, Santorini Island,
Greece, May 2007. IEEE Computer Society. 9

[The02] Henrik Theiling. Ilp-based interprocedural path analysis. In EM-
SOFT ’02: Proceedings of the Second International Conference on
Embedded Software, pages 349–363, London, UK, 2002. Springer-
Verlag. 37

[UW07] Sascha Uhrig and Jörg Wiese. jamuth: an IP processor core for
embedded Java real-time systems. In Proceedings of the 5th Interna-
tional Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES 2007), pages 230–237, New York, NY, USA, 2007.
ACM Press. 67

75

List of Figures

2.1 JVM types . 7

3.1 Control Flow Graph example . 21

3.2 Supergraph example . 22

4.1 Timed automaton . 39

4.2 Zone graph . 43

4.3 Calculating the WCET bound using uppaal 47

4.4 uppaal basic blocks . 48

4.5 uppaal loops . 49

4.6 Timed automaton for nested loop 50

4.7 uppaal method invocations . 51

4.8 uppaal cache access . 52

5.1 WCET tool architecture . 57

5.2 Report generation . 58

76

List of Tables

5.1 Problem sets for evaluation . 60

5.2 Measured Execution Time and WCET calculated using IPET . . . 60

5.3 Analysis times (uppaal) for problem set 1 61

5.4 Analysis times for problem set 2 . 61

5.5 Cache analysis: Cyclic redundancy check 63

5.6 Cache analysis: Line Following Robot 63

5.7 Cache analysis: Lift Controller . 64

5.8 Cache analysis: Kfl.Msg . 64

5.9 Cache analysis: Kfl.Triac . 65

A.1 General options . 69

A.2 Options for analyzing the method cache 69

A.3 Options for the uppaal model checker 69

A.4 Options for generating reports . 70

77

Listings

2.1 Ravenscar Java example . 16

2.2 JOP real-time application . 17

3.1 Example of complex execution path set 25

3.2 Bytecode and microcode . 28

3.3 Analyzing microcode . 30

3.4 FIFO cache timing anomaly . 31

4.1 LRU cache simulation . 53

4.2 FIFO variable block cache simulation 53

5.1 Delegator patterns and Dataflow Analysis 56

78

	1 Introduction
	2 Real-Time Java
	2.1 Introduction to Real Time Systems
	2.2 The Java Programming Language
	2.3 The Real Time Specification for Java
	2.4 High-Integrity Real-Time Java

	3 WCET Analysis of Java Tasks
	3.1 Control Flow Analysis
	3.2 High-level Program Analysis
	3.3 The Java Optimized Processor
	3.4 Low-Level Timing and Cache Analysis for JOP
	3.5 Calculating the WCET using IPET

	4 Calculating the WCET using Timed Automata
	4.1 Introduction to Timed Automata
	4.2 The Model Checker uppaal
	4.3 Calculating the WCET of Java Tasks

	5 A WCET Analysis Tool for JOP
	5.1 WCET Tool Architecture
	5.2 Evaluation

	6 Conclusion
	A Obtaining and Using the WCET Tool
	References
	List of Figures
	List of Tables

