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Abstract

Over the last years, the complexity of web applications has grown
significantly, challenging desktop programs in terms of functionality
and design. Along with the rising popularity of web applications, the
number of exploitable bugs has also increased. Web application flaws,
such as cross-site scripting or SQL injection bugs, now account for
more than two thirds of the reported security vulnerabilities.

Black-box testing techniques are a common approach to improve
software quality and detect bugs before deployment. There exist a
number of vulnerability scanners, or fuzzers, that expose web applica-
tions to a barrage of malformed inputs in the hope to identify input
validation errors. Unfortunately, these scanners often fail to test a
substantial fraction of a web application’s logic, especially when this
logic is invoked from pages that can only be reached after filling out
complex forms that aggressively check the correctness of the provided
values. Also, there are cases in which certain functionality (e.g., credit
card payment) is enabled only after the user has executed a number
of previous steps (e.g., add items to cart and checkout) in the correct
order.

In this thesis I will introduce a number of techniques that make it
possible to increase the overall coverage of these tools. One technique
leverages information from existing use cases. This information en-
ables the scanner to correctly fill out forms and exercise parts of the
functionality that other tools cannot reach. The test generation pro-
cess also abstracts from the available use cases, allowing the scanner to
further expand the search, analyze more pages and, as a result, create
more persistent database objects. The ability to create database ob-
jects is important to expose stored XSS vulnerabilities. This use-case-
driven testing technique has been implemented and used to analyze a
number of web applications.

Building on the guided crawling of applications the need arises
to not only reach more depth within the test subject, but also to
discover unknown functionality. Possible solutions to this problem
are also presented and evaluated.



Zusammenfassung

Die Komplexität von webbasierten Applikationen hat in den ver-
gangenen Jahren stetig zugenommen, oft ziehen sie in Bezug auf Funk-
tionalität und Design mit herkömmlichen Desktopapplikationen gleich.
Gemeinsam mit der steigenden Popularität wurden auch sicherheits-
relevante Fehler in diesen Applikationen alltäglich, so sehr, dass mitt-
lerweile sogar mehr als zwei Drittel aller gemeldeten Sicherheitslücken
diese Programmgattung betreffen.

Black-Box Tests sind ein gängiges Mittel um die Qualität von Soft-
ware zu verbessern und Fehler darin aufzuspüren. Für webbasierte
Applikationen existieren viele Programme, die das Entdecken von si-
cherheitsrelevanten Fehlern automatisieren und vereinfachen sollen.
So genannte Scanner oder Fuzzer konfrontieren die Applikation mit
fehlerhaften Eingabewerten und schließen aus den Antworten auf das
Vorhandensein einer Sicherheitslücke. Diese Programme haben aller-
dings beträchtliche Nachteile beim Navigieren einer webbasierten Ap-
plikation, da sie oft an Formularen scheitern, die ein Vordringen in die
Tiefen der Applikation verhindern. Ebenso stellt sie eine Abfolge an
Unteraufgaben vor unlösbare Probleme, wenn die Reihenfolge dieser
Schritte von Bedeutung ist, wie beispielsweise das Befüllen des virtu-
ellen Einkaufwagens und das nachfolgende Bezahlen mit Kreditkarte
in einem Webshop.

Diese Arbeit präsentiert, implementiert und evaluiert einige Me-
thoden die es sich zum Ziel setzen eine höhere Testabdeckung inner-
halb einer webbasierten Applikation zu erreichen. Zuerst werden aus
bestehenden Anwendungsfällen der Applikation Informationen gewon-
nen die es sowohl erlauben einen Scanner mit sinnvollen Eingabedaten
anzureichern als auch komplexe Arbeitsabläufe zu ermöglichen, die ein
Vordringen in die Tiefen der Applikation erst erlauben. Weiters ist es
möglich von diesen vorgegebenen Informationen zu abstrahieren und
so automatisiert weitere Testfälle zu erzeugen und auszuführen.
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1 Introduction

The first web applications were collections of static files, linked to each other
by means of HTML references. Over time, dynamic features were added,
and web applications started to accept user input, changing the presenta-
tion and content of the pages accordingly. This dynamic behavior was tra-
ditionally implemented by CGI scripts. Nowadays, more often then not,
complete web sites are created dynamically. To this end, the site’s content
is stored in a database. Requests are processed by the web application to
fetch the appropriate database entries and present them to the user. Along
with the complexity of the web sites, the use cases have also become more
involved. While in the beginning user interaction was typically limited to
simple request-response pairs, web applications today often require a multi-
tude of intermediate steps to achieve the desired results.
When developing software, an increase in complexity typically leads to a
growing number of bugs. Of course, web applications are no exception. More-
over, web applications can be quickly deployed to be accessible to a large
number of users on the Internet, and the available development frameworks
make it easy to produce (partially correct) code that works only in most
cases. As a result, web application vulnerabilities have sharply increased.
For example, in the last two years, the three top positions in the annual
Common Vulnerabilities and Exposures (CVE) list published by Mitre [37]
were taken by web application vulnerabilities.
To identify and correct bugs and security vulnerabilities, developers have a
variety of testing tools at their disposal. These programs can be broadly cat-
egorized as based on black-box approaches or white-box approaches. White-
box testing tools, such as those presented in [14, 33, 51, 56], use static analysis
to examine the source code of an application. They aim at detecting code
fragments that are patterns of instances of known vulnerability classes. Since
these systems do not execute the application, they achieve a large code cov-
erage, and, in theory, can analyze all possible execution paths. A drawback
of white-box testing tools is that each tool typically supports only very few
(or a single) programming language. A second limitation is the often signif-
icant number of false positives. Since static code analysis faces undecidable
problems, approximations are necessary. Especially for large software appli-
cations, these approximations can quickly lead to warnings about software
bugs that do not exist.
Black-box testing tools [26] typically run the application and monitor its
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execution. By providing a variety of specially-crafted, malformed input val-
ues, the goal is to find cases in which the application misbehaves or crashes.
A significant advantage of black-box testing is that there are no false pos-
itives. All problems that are reported are due to real bugs. Also, since
the testing tool provides only input to the application, no knowledge about
implementation-specific details (e.g., the used programming language) is re-
quired. This allows one to use the same tool for a large number of different
applications. The drawback of black-box testing tools is their limited code
coverage. The reason is that certain program paths are exercised only when
specific input is provided.
Black-box testing is a popular choice when analyzing web applications for se-
curity errors. This is confirmed by the large number of open-source and com-
mercial black-box tools that are available [12, 34, 39, 53]. These tools, also
called web vulnerability scanners or fuzzers, typically check for the presence
of well-known vulnerabilities, such as cross-site scripting (XSS) or SQL in-
jection flaws. To check for security bugs, vulnerability scanners are equipped
with a large database of test values that are crafted to trigger XSS or SQL in-
jection bugs. These values are typically passed to an application by injecting
them into the application’s HTML form elements or into URL parameters.
Web vulnerability scanners, sharing the well-known limitation of black-box
tools, can only test those parts of a web site (and its underlying web ap-
plication) that they can reach. To explore the different parts of a web site,
these scanners frequently rely on built-in web spiders (or crawlers) that fol-
low links, starting from a few web pages that act as seeds. Unfortunately,
given the increasing complexity of today’s applications, this is often insuffi-
cient to reach “deeper” into the web site. Web applications often implement
a complex workflow that requires a user to correctly fill out a series of forms.
When the scanner cannot enter meaningful values into these forms, it will
not reach certain parts of the site. Therefore, these parts are not tested,
limiting the effectiveness of black-box testing for web applications.
In this thesis, I present techniques that improve the effectiveness of web
vulnerability scanners. To this end, the improved scanner leverages input
from real users as a starting point for its testing activity. More precisely,
starting from recorded, actual user input, test cases are generated that can
be replayed. By following a user’s session, fuzzing at each step, the tool is
able to increase the code coverage by exploring pages that are not reachable
for other tools. Moreover, the techniques allow a scanner to interact with
the web application in a more meaningful fashion. This often leads to test
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runs where the web application creates a large number of persistent objects
(such as database entries). Creating objects is important to check for bugs
that manifest when malicious input is stored in a database, such as in the
case of stored cross-site scripting (XSS) vulnerabilities. Finally, when the
vulnerability scanner can exercise some control over the program under test,
it can extract important feedback from the application that helps in further
improving the scanner’s effectiveness.
In addition to leveraging existing user input to increase the coverage, the
presented system also uses feedback that is obtained from the application
under test while scanning for vulnerabilities. This feedback allows me to
create a knowledge base that establishes a mapping between back-end server
functions and the input data that these functions operate on. Using this
knowledge base, the system can reuse input data that was collected for one
point of the application to generate valid input data at another, seemingly
unrelated, point. This allows the scanner to provide meaningful input to
forms and thereby further increase the overall coverage.
I have implemented these techniques in a vulnerability scanner that can an-
alyze applications that are based on the django web development frame-
work [22]. The experimental results demonstrate that the presented tool
achieves larger coverage and detects more vulnerabilities than existing open-
source and commercial fuzzers.
Section 3 describes the current approaches to automated penetration testing
of web applications and describes the weaknesses of current implementations
and how I plan to improve coverage by providing real user input as a starting
point for the fuzzing activities. In Section 4.2, this thesis provides a short
introduction to a popular software design pattern that is often used to imple-
ment web applications. Furthermore, I will propose techniques to improve
web application scanners based on attributes that can be exported from web
applications built on top of these.
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2 Security in Web Applications

There are multiple known attack vectors against web applications. Many of
them target the server hosting the application while others target the users of
a particular site. The most common vulnerabilities [37] that affect software
products are found in the realm of web applications. This has numerous rea-
sons, one being the widespread availability of these applications that makes
them both interesting as well as susceptible to attackers [36]. Furthermore
they are less involving than classical exploits such as stack and heap based
overflows and do not require the same amount of technical sophistication
from the attacker, making them easier to detect and subsequently easier to
exploit. This thesis focuses on the detection of cross-site scripting vulnera-
bilities, according to the Mitre [37] vulnerability type distribution report [36]
the most common type of vulnerability reported in todays applications.

2.1 HTTP attack vectors

A web application can be defined as a client-server architecture style applica-
tion that communicates by the means of the HTTP protocol [30]. Commonly
web applications are rendered inside a web browser and encapsulate their
logic on the server side, with the users browser acting as a thin client to the
functionality the server provides. The attack surface of a web application is
rather limited and it is possible to define the entry points that are control-
lable by the user or by an attacker of an application. According to [49], the
possible points of attack are:

• the URL, including any GET data

• the POST data contained in a request

• the cookies

Tainting of any one of these parameters can lead to a security breach within
the attacked application and there are numerous known attacks that can
affect both the server (i.e. SQL injections) or the other users of the site (i.e.
cross-site scripting). Note that the kind of attacks under discussion try to
compromise the application itself and not any layers in between, such as the
network stack of the server or the firewall.
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2.2 Cross-Site Scripting

Cross-site scripting, often referred to as XSS, is a vulnerability typically found
in Web Applications. It is based on the principle that user input, as can be
passed to the application using either one of the three methods described
in 2.1, is echoed back to the user by the web application [19]. The attack
usually has the intention of injecting javascript into the HTML source of a
site that will be executed by the browser when the page is visited. The real
danger of XSS results from the fact that the injected javascript has access to
all properties of the page it is shown on. Note that this does not only mean
that it can change the DOM (resulting in a defacement of the site) of the
page but can also access cookies (which are often used to authorize users)
and form values as well as form actions. This can potentially lead to a form
submission being redirected to a page controlled by the attacker and while
this is not much of a problem for the user of a search engine it could have
devastating results on an online banking site, where the login form can be
redirected. A simple example should explain the basics of this attack.

XSS Example A search engine that upon querying returns a result page
that includes the original search term. The imaginary URL of the results
page would now be

http ://www. example . com/ search . php?q=searchterm

Listing 1: URL with get data

and this leads to the following HTML snippet being generated by the server
and displayed in the browser:

<p>
Resu l t s f o r ” searchterm” .

</p>

Listing 2: HTML Snippet displayed on the search result page

The problem here could be that user supplied input (i.e. the search term) is
embedded unfiltered into the results page returned by the server and thereby
also embedded into HTML code. The browser has no way of differentiating
between the static parts of the page (i.e. the HTML code the results page is
made of) and the dynamically generated part (i.e. the reflected search term).
An attacker could now use the query parameter to inject code into the page,
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making this an example of a reflected cross-site scripting attack (see 2.2.1
for details). By replacing the GET parameters in the URL with the following
string,

q=%3Cscr ip t%3Ea l e r t (%27XSS%27);%3C/ s c r i p t%3

Listing 3: XSS attack string embedded into GET data

where the value for the q parameter is the URL escaped version of this piece
of javascript code:

<script>a l e r t ( ’XSS ’ ) ;</ script>

Listing 4: XSS payload

The results returned by the server now generates the following HTML snip-
pet:

<p>
Resu l t s f o r ”<s c r i p t >a l e r t ( ’XSS ’ ) ;</ s c r i p t >” .

</p>

Listing 5: HTML snippet with embedded javascript

The script tags that were injected into the HTML source are valid and will
be executed by a browser that has javascript enabled. This simple example
results in an annoying but harmless alert box, as shown in 1. Using a similar
technique it is also possible to construct a URL that contains the cookie value
of the site and points to a server controlled by the attacker. The browser can
not differentiate between legitimate and malicious requests, eventhough the
same origin policy for javascript is in place [25]. Used this way the attacker
has effectively taken over the victims session.
This was a very basic example and has the sole reason to demonstrate the
basic concepts of XSS attacks. Further information, explanations and a
number of sample attacks can be found in [20] and [50]. A XSS vulnerability
known as the Samy Worm made the headlines in 2005 [10] and was targeted
at the social networking website MySpace. With the use of a stored XSS
vulnerability within the profile page Samy was able to alter the profiles of
visiting users. Furthermore the worm copied it’s own payload to the victims
profile, thereby propagating to millions of users and finally leading to down
time of the MySpace servers.
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2.2.1 Types of XSS

There are three known types of XSS, each with their own characteristics.

Reflected XSS This is the simplest form of XSS and at the same time
the easiest to detect. As described in 2.2 this vulnerability is most often
encountered on dynamic pages that reflect (hence the name) user supplied
input parameters. The attack payload is delivered to the victim with the
help of a crafted URL, such as shown in the example in 2.2. The execution
of the attack is then staged within a single request-response transaction to
the server, which is why reflected XSS is sometimes referred to as first-order
XSS.

Stored XSS This is the most dangerous form of XSS as it does not involve
delivering the attack URL to the potential victim. The single unique feature
of this attack is that the payload is stored on the server and displayed to users
of the site. The storage usually takes place in a back-end database system
that is queried by the web application in order to display it’s contents. A

Figure 1: A reflected XSS vulnerability
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typical example would be the comment section of a blog that allows the reader
of the article to post his thoughts on the subject at hand. A vulnerability
within this system has the potential to reach every reader of the article.
Considering the fact that many sites require registration, and thereby a login
form, in order to post contents on a site this is all the more interesting for
attackers wishing to acquire login credentials or session cookies. There is no
technical difference in the possible attack payloads as compared to reflected
XSS attacks. The way in which the payload reaches the site on the other
hand can vary, either by ways provided by the application itself, such as the
aforementioned comment form or via off-site means such as sending a tainted
email message to users of a webmail service. This attack usually involves
a number of steps, namely those for the attacker delivering the malicious
content to the site and those that the unaware user undertakes to retrieve
(and eventually execute) the payload. This attack is sometimes referred to
as second-order XSS.

DOM based XSS This kind of attack is relatively new and was first de-
scribed in 2005 in [13]. It relies on the existence of exploitable javascript
on a page and a crafted URL. The use case this attack exploits is found
when javascript accesses the URL of the currently shown document, extracts
values from it and injects them into the pages HTML source. The attacker
can taint parts of the URL with executable javascript that is subsequently
copied to the HTML and then executed. The difference in comparison with
the reflected XSS attack is that the attack payload is not echoed by the
server, but is both inserted and executed by the client (i.e. the browser).

2.2.2 Mitigating XSS attacks

The example shown in 2.2 is very simple and is based upon the assumption
that no sanitization whatsoever is performed upon the user input. This is
often not the case in real world situations, where web developers have become
more aware to the problems raised by user interaction with a web application.
Often filters are used to clean user input so that it can be safely used within
a web application. A simple but effective way to sanitize input strings such
as the example above is to convert all HTML special characters into their
escaped form. Other approaches try to do selective filtering of HTML tags
in order to allow custom HTML and/or CSS supplied by the user, to strip
the input from any malicious code it might contain.
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Using such an escaping filter for the XSS attack string from 4 yields the
following string that can be safely embedded into HTML:

&l t ; s c r i p t&gt ; a l e r t ( ’XSS ’ ) ;& l t ; / s c r i p t&gt ;

Listing 6: escaped XSS payload

This string is not executable by a browser, but would be rendered in the
graphic presentation, making an attack upon this particular form impossible.
Unfortunately there are other ways to stage XSS attacks, depending on how
the site under test composes the response. The escaping of HTML entities
might not be sufficient depending on the location inside the HTML code
where user supplied input is being echoed by the application.
If for example the user submitted string reappears inside of javascript code
or in other locations where javascript is allowed outside of script tags, such
as event handlers, the escaping of HTML entities is not sufficient.
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3 Web Application Testing

The realm of black-box testing tools for websites is closely related to the
scanning for vulnerabilities inside the same. I will first discuss general black-
box testing tools that target the audience of web developers, then round up
current solutions to vulnerability scanning of websites and their limitations.

3.1 Black-box testing tools for web applications

The selection of tools for black-box testing of web applications has steadily
grown over the last years, for python alone there exist many solutions that
differ in usage, focus and maturity [3]. The same is even more true for
other popular programming languages like Java [2] and Ruby [7]. The aim of
many of these tools is to integrate well with unit testing frameworks, which
is the reason many of them are language dependant. Some frameworks,
such as django [22] even supply their own black-box testing tools for web
applications [6] and have the advantage that they offer functionality that
would not be possible without framework integration.
More general testing tools such as Twill [54] or Selenium [4] offer a more gen-
eralized way of describing test cases, as both are scriptable without knowl-
edge of a programming language, but also are programmable from within
applications. For this Selenium offers a component called Remote Control
(RC [5]) that is available for numerous programming languages (Python,
Java, PHP,..). Twill on the other hand offers an API that is similar to real
browsers, including back buttons and reload functions from within python.
These tools are generally classifiable into two types, namely protocol (or
application) drivers (such as Twill) and browser drivers (such as Selenium).
While protocol drivers can interact with web servers, they are often limited in
the way they handle non-HTML content, hardly any of them can handle and
execute javascript. Furthermore they need to deal with malformed HTML.
Spiders that crawl and parse websites for information such as those used
by search engines are examples of protocol drivers. Browser drivers on the
other hand do not have to rely on their ability to handle malformed HTML,
as they use and control a real browser through the use of plugins. Browser
drivers are potentially more powerfull for the purpose of testing for certain
vulnerabilities that affect the browser, as they can eliminate the occurrence
of false positives and can potentially detect vulnerabilities within embedded
content such as Flash.
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While protocol drivers, due to the missing display functionality, offer a speed
advantage the strength of browser drivers lies within the ability to detect
certain non-functional characteristics, such as cross-browser compatibility.

3.2 Web Application Vulnerability Scanners

Penetration testers auditing a web site have numerous possibilities to achieve
their goals, depending on the vulnerabilities they wish to find the selection
of tools varies greatly. Vulnerability detection software for web applications
mostly operates in the realm of black box testing. This is due to the client-
server architecture of common web applications where the content generated
on the server is sent to the clients web browser and displayed there using
markup languages. With the advent of the so called Web 2.0 techniques this
strict separation of the server generating markup and the client displaying
the same has been changed to the role of the server delivering content that
is then interpreted and displayed by the client. The markup of choice is
still HTML, but the responsibility of generating markup can now be shifted
towards the client.
One way to quickly and efficiently identify flaws in web applications is the use
of vulnerability scanners. These scanners test the application by providing
malformed inputs that are crafted so that they trigger certain classes of vul-
nerabilities. Typically, the scanners cover popular vulnerability classes such
as cross-site scripting (XSS) or SQL injection bugs. These vulnerabilities
are due to input validation errors. That is, the web application receives an
input value that is used at a security-critical point in the program without
(sufficient) prior validation. In case of an XSS vulnerability [24], malicious
input can reach a point where it is sent back to the web client. At the client
side, the malicious input is interpreted as JavaScript code that is executed in
the context of the trusted web application. This allows an attacker to steal
sensitive information such as cookies. In case of a SQL injection flaw, mali-
cious input can reach a database query and modify the intended semantics
of this query. This allows an attacker to obtain sensitive information from
the database or to bypass authentication checks.
By providing malicious, or malformed, input to the web application under
test, a vulnerability scanner can check for the presence of bugs. Typically,
this is done by analyzing the response that the web application returns.
For example, a scanner could send a string to the program that contains
malicious JavaScript code. Then, it checks the output of the application
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for the presence of this string. When the malicious JavaScript is present in
the output, the scanner has found a case in which the application does not
properly validate input before sending it back to clients. This is reported as
an XSS vulnerability.
To send input to web applications, scanners only have a few possible injection
points, as defined in 2.1. These points are often derived from form elements
that are present on the web pages. That is, web vulnerability scanners an-
alyze web pages to find injection points. Then, these injection points are
fuzzed by sending a large number of requests that contain malformed inputs.
There are of course many other security related issues that can not be tested
using scanners, these being mainly in the realm of of incomplete authorization
or flaws in the business logic of an application [28], but many scanners also
fail to identify the flaws they are supposed to detect, simply because they
can not interpret the output of a web application on a semantic level. This
brings us to the challenges faced by current vulnerability scanners.

3.3 Limitations

Automated scanners have a significant disadvantage compared to human
testers in the way they can interact with the application. Typically, a user has
certain goals in mind when interacting with a site. On an e-commerce site, for
example, these goals could include buying an item or providing a rating for
the most-recently-purchased goods. The goals, and the necessary operations
to achieve these goals, are known to a human tester. Unfortunately, the
scanner does not have any knowledge about use cases; all it can attempt to
do is to collect information about the available injection points and attack
them. More precisely, the typical workflow of a vulnerability scanners consists
of the following steps:

• First, a web spider crawls the site to find valid injection, or entry,
points. Commonly, these entry points are determined by collecting the
links on a page, the action attributes of forms, and the source attributes
of other tags. Advanced spiders can also parse JavaScript to search for
URLs. Some even execute JavaScript to trigger requests to the server.

• The second phase is the audit phase. During this step, the scanner
fuzzes the previously discovered entry points. It also analyzes the ap-
plication’s output to determine whether a vulnerability was triggered.
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• Finally, many scanners will start another crawling step to find stored
XSS vulnerabilities. In case of a stored XSS vulnerability, the ma-
licious input is not immediately returned to the client but stored in
the database and later included in another request. Therefore, it is
not sufficient to only analyze the application’s immediate response to
a malformed input. Instead, the spider makes a second pass to check
for pages that contain input injected during the second phase.

The common workflow outlined above and shown in figure 3.3 yields good
results for simple sites that do not require a large amount of user interaction.
Unfortunately, it often fails when confronted with more complex sites. The
reason is that vulnerability scanners are equipped with simple rules to fill out
forms. These rules, however, are not suited well to advance “deeper” into an
application when the program enforces constraints on the input values that
it expects. To illustrate the problem, I briefly discuss an example of how a
fuzzer might fail on a simple use case.

Figure 2: Workflow of common web application vulnerability scanners.



3.3 Limitations 21

POST

302

POST

/comments/posted/

/article/1/

/

/comments/postfree/

Figure 3: A user interaction example of a visitor posting a comment to the blog.

The example involves a blogging site that allows visitors to leave comments
to each entry. To leave a comment, the user has to fill out a form that
holds the content of the desired comment. Once this form is submitted, the
web application responds with a page that shows a preview of the comment,
allowing the user to make changes before submitting the posting. When
the user decides to make changes and presses the corresponding button, the
application returns to the form where the text can be edited. When the
user is satisfied with her comment, she can post the text by selecting the
appropriate button on the preview page. A graphical representation of the
user interaction required to successfully post a comment to the is given in
figure 3. The dotted lines show the parts of the workflow a spider was not
able to follow.
The problem in this case is that the submit button (which actually posts the
message to the blog) is activated on the preview page only when the web
application recognizes the submitted data as a valid comment. This requires
that both the name of the author and the text field of the comment are
filled in. Furthermore, it is required that a number of hidden fields on the
page remain unchanged. When the submit button is successfully pressed, a
comment is created in the application’s database, linked to the article, and
subsequently shown in the comments section of the blog entry.
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For a vulnerability scanner, posting a comment to a blog entry is an entry
point that should be checked for the presence of vulnerabilities. Unfortu-
nately, all of the tools evaluated in the experiments (details in Section 6.3)
failed to post a comment. That is, even a relatively simple task, which re-
quires a scanner to fill out two form elements on a page and to press two
buttons in the correct order, proved to be too difficult for an automated
scanner. Clearly, the situation becomes worse when facing more complex use
cases.
During the evaluation of existing vulnerability scanners, I found that, com-
monly, the failure to detect a vulnerability is not due to the limited capa-
bilities of the scanner to inject malformed input or to determine whether a
response indicates a vulnerability, but rather due to the inability to gener-
ate enough valid requests to reach the vulnerable entry points. Of course,
the exact reasons for failing to reach entry points varies, depending on the
application that is being tested and the implementation of the scanner.
There are obviously attack vectors that rely on invalid input data, such as
unescaped error messages when a form is filled in incorrectly, but for the sake
of detecting the existence of stored XSS vulnerabilities the supplied datasets
need to be at least as valid as the server side validation allows. It is therefore
necessary to find a way that helps the fuzzer to apply it’s attack strings to
valid input data.

3.4 Current solutions

As shown in 3.3 and evaluated in 6 there is a need to teach web application
scanners to crawl deep into existing applications and at the same time not
destroy the state of their session. There are a number of current solutions
that aim to solve this problems.

Proxying requests Most web application vulnerability scanners can func-
tion as a proxy for manual input through a web browser. For this the pene-
tration testerś browser is configured to utilize a local proxy that is supplied
by the scanner. The tester then navigates the web application while the
proxy monitors the (previously undiscovered) endpoints and the values sub-
mitted with each request. This can for obvious reasons greatly improve the
coverage a scanner can reach within a web application and at the same time
supplies sane input data, that it can then use to audit forms. Sometimes
this is also the only way to actually collect endpoints, as a site may link to
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important URLs only within Flash animations or Java applets, both formats
that the spider components of the scanners are unlikely to support. From the
evaluated auditing tools each supports this feature in one way or the other:
While w3af [55] does so via the so called spiderMan plugin, the burp suite
even has it’s main focus on the proxy functionality. Acunetix offers a proxy
and even a specialized browser that records login sequences. The downside
this approach suffers from in most implementations is that the discovery and
the auditing phases are decoupled. The proxy, that is part of the auditing
phase, is able to collect endpoints, but the endpoints and the name-value
pairs associated with it may no longer be valid in the auditing phase for
various reasons, such as dynamic URLs or a complex workflow that requires
certain actions to be completed in the correct order.

Blocking URLs Especially in applications that support some kind of ses-
sion management it is essential to differ between registered and anonymous
users. The way an application acts might greatly depend on this factor, or
an application might even only be available to authenticated users. In the
latter case it is definitely undesireable to follow the logout link, as a spider
might be unable to restore it’s session or the applications logic might prevent
it from doing so. Similar rules must be put in place when testing the admin-
istrative interface of a site, where it is probably undesireable, even within a
controlled testing environment, to delete all database entries. The current
solutions involve a blacklist of URLs that the spider does not follow. Again
each tool supports this feature, and Acunetix additionaly offers the ability
to graphically select log out links, that it will then block during the auditing
phase. Depending on the web application under test the effort to correctly
configure the tool may vary greatly, and penetration tester might not even
be aware of all links that would require blocking. On the other hand rigorous
blocking of functionality may lead to bad results in terms of coverage.

Guessing form values It is essential for a scanner to submit forms when
testing for XSS vulnerabilities. Furthermore they need to fill these forms
with reasonable values in order to proceed and eventually find vulnerabilities.
With no input data supplied to the scanners the fall back to using use a
number of heuristics to find reasonable input values. Starting with the burp
spider that fills out every textfield with the same user configurable string and
leading to w3af that parses the input elements labels to find useable values
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based on these labels, the techniques are as diverse as they are unreliable for
large forms with rigorous server side validation of the submitted values.
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4 Increasing Test Coverage

To address the limitations of existing tools, I propose several techniques that
allow a vulnerability scanner to detect more entry points. These entry points
can then be tested, or fuzzed, using existing databases of malformed input
values such as [9]. The first technique, described in Section 4.1, introduces a
way to leverage inputs that are recorded by observing actual user interaction.
This allows the scanner to follow an actual use case, achieving more depth
when testing. The second technique, presented in Section 4.2, discusses a
way to abstract from observed user inputs, leveraging the steps of the use
case to achieve more breadth. The third technique, described in Section 4.3,
makes the second technique more robust in cases where the broad exploration
interferes with the correct replay of a use case.

4.1 Increasing Testing Depth

One way to improve the coverage, and thus, the effectiveness of scanners,
is to leverage actual user input. In order to achieve this it is necessary to
first collect a small set of inputs that were provided by users that interacted
with the application. These interactions correspond to certain use cases, or
workflows, in which a user carries out a sequence of steps to reach a particular
goal. Depending on the application, this could be a scenario where the user
purchases an item in an on-line store or a scenario where the user composes
and sends an email using a web-based mail program. Based on the recorded
test cases, the vulnerability scanner can replay the collected input values
to successfully proceed a number of steps into the application logic. The
reason is that the provided input has a higher probability to pass server-
side validation routines. Of course, there is, by no means, a guarantee that
recorded input satisfies the constrains imposed by an application at the time
the values are replayed. While replaying a previously recorded use case, the
scanner can fuzz the input values that are provided to the application.

Collecting input. There are different locations where client-supplied in-
put data can be collected. One possibility is to deploy a proxy between a
web client and the web server, logging the requests that are sent to the web
application (see 3.4) for details on current implementations. Another way
is to record the incoming requests at the server side, by means of web server
log files or application level logging. For simplicity, the prese nted solution
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records requests directly at the server, logging the names and values of all
input parameters.
For the presented implementation I chose to save the requests on the server
side, which, given the overall goal to improve the testing abilities for the
developers of web applications, is often the same machine that runs the tests.
Furthermore there are the big advantages of not having to set up any kind
of proxy or browser plug-in and being able to create test cases by simply
using the application, a task that most web developers will have to do in
order to verify their code in the first place. This also gives the developer the
ability to save test cases that can be reused at a later point or even packaged
with the application as a regression test or as a starting point for testing the
deployment of an application.
Taking the reverse approach it is now also possible to record the input that
is produced during regular, functional testing of applications. Typically,
developers need to create test cases that are intended to exercise the complete
functionality of the application. When such test cases are available, they can
be immediately leveraged by the vulnerability scanner. Another alternative
is to deploy the collection component on a production server and let real-
world users of the web application generate test cases. This obviously results
in a performance penalty on the web server, but might be applicable in
environments with small amounts of traffic.
In any case, the goal is to collect a number of inputs that are likely correct
from the application’s point of view, and thus, allow the scanner to reach
additional parts of the application that might not be easily reachable by
simply crawling the site and filling out forms with essentially random values.

Replaying input. Each use case consists of a number of steps that are
carried out to reach a certain goal. For each step, requests were recorded
and based upon these input values, the vulnerability scanner can replay a
previously collected use case. To this end, the vulnerability scanner replays a
recorded use case, one step at a time. After each step, a fuzzer component is
invoked. This fuzzer uses the request issued in the previous step to test the
application. More precisely, it uses a database of malformed values to replace
the valid inputs within the request sent in the previous step. In other words,
after sending a request as part of a replayed use case, the tool attempts to
fuzz this request. Then, the previously recorded input values stored for the
current step are used to advance to the next step. This process of fuzzing a
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request and subsequently advancing one step along the use case is repeated
until the test case is exhausted. Alternatively, the process stops when the
fuzzer replays the recorded input to advance to the next page, but this page is
different from the one expected. This situation can occur when a previously
recorded input is no longer valid.
Using this technique the evaluation will demonstrate that it is possible are
able to generate requests that will with some certainty pass server side val-
idation and will subsequently lead to a tainted object being stored in the
back-end storage.
When replaying input, the vulnerability scanner does not simply re-submit
a previously recorded request. Instead, it scans the page for elements that
require user input. Then, it uses the previously recorded request to provide
input values for those elements only. This is important when an application
uses cookies or hidden form fields that are associated with a particular ses-
sion. Changing these values would cause the application to treat the request
as invalid. Thus, for such elements, the scanner uses the current values in-
stead of the “old” ones that were previously collected. The rules used to
determine the values of each form field aim to mimic the actions of a benign
user. That is, hidden fields are not changed, as well as read-only widgets
(such as submit button values or disabled elements).
By not forcing the web application to deal with potentially broken data that
it does not expect this technique can reach a level of robustness that results
in a higher number of requests being accepted by the aplication as valid.
This allows the scanner to create a high number of database objects which
is an advantage when searching for stored XSS vulnerabilities.

Guided fuzzing. I call the process of using previously collected traces to
step through an application guided fuzzing. Guided fuzzing improves the
coverage of a vulnerability scanner because it allows the tool to reach entry
points that were previously hidden behind forms that expect specific input
values. That is, this method can increase the depth that a scanner can reach
into the application.

4.2 Increasing Testing Breadth

With guided fuzzing, after each step that is replayed, the fuzzer only tests
the single request that was sent for that step. That is, for each step, only a
single entry point is analyzed. A straightforward extension to guided fuzzing
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Figure 4: Workflow of the guided fuzzing approach.
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is to not only test the single entry point, but to use the current step as a
starting point for fuzzing the complete site that is reachable from this point.
That is, the fuzzer can use the current page as its starting point, attempting
to find additional entry points into the application. Each entry point that is
found in this way is then tested by sending malformed input values. In this
fashion, the workflow does not only increase the depth of the test cases, but
also their breadth. For example, when a certain test case allows the scanner
to bypass a form that performs aggressive input checking, it can then explore
the complete application space that was previously hidden behind that form.
In this thesis this approach is referred to as extended, guided fuzzing. The
schematic representation of this approach can be seen in figure 4.2.

Figure 5: Workflow of the extended, guided fuzzing approach.

Extended, guided fuzzing has the potential to increase the number of entry
points that a scanner can test.

4.2.1 Problems and pitfalls

However, alternating between a comprehensive fuzzing phase and advancing
one step along a recorded use case can also lead to problems. To see this,
consider the following example. Assume an e-commerce application that
uses a shopping cart to hold the items that a customer intends to buy. The
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vulnerability scanner has already executed a number of steps that added an
item to the cart. At this point, the scanner encounters a page that shows
the cart’s inventory. This page contains several links; one link leads to the
checkout view, the other one is used to delete items from the cart. Executing
the fuzzer on this page can result in a situation where the shopping cart
remains empty because all items are deleted. This could cause the following
steps of the use case to fail, for example, because the application no longer
provides access to the checkout page. A similar situation can arise when
administrative pages are part of a use case. Here, running a fuzzer on a page
that allows the administrator to delete all database entries could be very
problematic. In general terms, the problem with extended, guided fuzzing
is that the fuzzing activity could interfere in undesirable ways with the use
case that is replayed. In particular, this occurs when the input sent by the
fuzzer changes the state of the application such that the remaining steps of
a use case can no longer be executed. This problem is difficult to address
when assumed that the scanner has no knowledge and no control of the inner
workings of the application under test. In the worst case the first fuzzing
phase breaks the use case, in which case the results would be the same as
without any modifications to the workflow of the fuzzer.
In the following Section 4.3, I consider the case in which the test system
can interact more tightly with the analyzed program. In this case, it will
be possible to prevent the undesirable side effects (or interference) from the
fuzzing phases.

4.3 Stateful Fuzzing

The techniques presented in the previous sections work independently of
the application under test. That is, the system builds black-box test cases
based on previously recorded user input, and it uses these tests to check the
application for vulnerabilities.
In this subsection, I consider the case where the scanner has considerable
control over the application under test to adress the shortcomings described
in 4.2.1
In order to understand how state information can be captured it is also
essential to discuss the pattern that makes this approach possible.
One solution to the problem of undesirable side effects of the fuzzing step
when replaying recorded use cases is to take a snapshot of the state of the
application after each step that is replayed. Then, the fuzzer is allowed
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to run. This might result in significant changes to the application’s state.
However, after each fuzzing step, the application is restored to the previously
taken snapshot. At this point, the replay component will find the application
in the expected state and can advance one step. After that, the process is
repeated - that is, a snapshot is taken and the fuzzer is invoked. In this thesis
this process will be called stateful fuzzing. The workflow of this approach can
be seen in figure 4.3.
In principle, the concrete mechanisms to take a snapshot of an application’s
state depend on the implementation of this application. Unfortunately, this
could be different for each web application. As a result, it would be necessary
to customize the test system to each program, making it difficult to test
a large number of different applications. Clearly, this is very undesirable.
Fortunately, the situation is different for web applications. Over the last
years, the model-view-controller (MVC) scheme has emerged as the most
popular software design pattern for applications on the web.

Figure 6: Workflow of the stateful fuzzing approach.
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The MVC design pattern and web application development. Java
programmers often refer to it as “Model 2” and not only since Ruby on Rails
was released in 2004 many web development frameworks have made good use
of the advantages offered by this paradigm. The goal of the MVC scheme is
to separate three layers that are present in almost all web applications. These
are the data layer, the presentational layer, and the application logic layer.
The data layer represents the data storage that handles persistent objects.
Typically, this layer is implemented by a backend database and an object
(relational) manager. The application logic layer uses the objects provided
by the data layer to implement the functionality of the application. It uses
the presentational layer to format the results that are returned to clients. The
presentation layer is frequently implemented by an HTML template engine.
Moreover, as part of the application logic layer, there is a component that
maps requests from clients to the corresponding functions or classes within
the program. The terms used in the different frameworks built on this stack
often vary and lead to some confusion amongst developers and users alike [1],
but the basic principles remain the same.
Based on the commonalities between web applications that follow an MVC
approach, it is possible (for most such applications) to identify general inter-
faces that can be instrumented to implement a snapshot mechanism. To be
able to capture the state of the application and subsequently restore it, I am
interested in the objects that are created, updated, or deleted by the object
manager in response to requests. Whenever an object is modified or deleted,
a copy of this object is serialized and saved. This way, it becomes possible,
for example, to undelete an object that has been previously deleted, but that
is required when a use case is replayed. In a similar fashion, it is also possible
to undo updates to an object and delete objects that were created by the
fuzzer.
The information about the modification of objects can be extracted at the
interface between the application and the data layer (often, at the database
level). At this level, a component is inserted that can serialize modified ob-
jects and later restore the snapshot of the application that was previously
saved. Clearly, there are limitations to this technique. One problem is that
the state of an application might not depend solely on the state of the persis-
tent objects and its attributes. Nevertheless, this technique has the potential
to increase the effectiveness of the scanner for a large set of programs that
follow a MVC approach. This is also confirmed by the experimental results
presented in Section 6.
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4.4 Application feedback

Given that stateful fuzzing already requires the instrumentation of the pro-
gram under test, it should be considered what additional information might
be useful to further improve the vulnerability scanning process.
Another piece of feedback from the application that I consider useful is the
mapping of URLs to functions. This mapping can be typically extracted
by analyzing or instrumenting the controller component, which acts as a
dispatcher from incoming requests to the appropriate handler functions. Us-
ing the mappings between URLs and the program functions, I can increase
the effectiveness of the extended, guided fuzzing process. To this end, the
scanner attempts to find a set of forms (or URLs) that all invoke the same
function within the application. When the system has previously seen user
input for one of these forms, it can reuse the same information on other forms
as well (when no user input was recorded for these forms). The rationale is
that information that was provided to a certain function through one par-
ticular form could also be valid when submitted as part of a related form.
By reusing information for forms that the fuzzer encounters, it is possible to
reach additional entry points.
When collecting user input (as discussed in Section 4.1), this system records
all input values that a user provides on each page. More precisely, for each
URL that is requested, the system store all the name-value pairs that a user
submits along with the request. In case the scanner can obtain application
feedback, it also stores the name of the program function that is invoked by
the request. In other words, the system records a unique identifier of the
function that the requested URL maps to. When the fuzzer later encounters
an unknown action URL of a form (i.e., the URL where the form data is sub-
mitted to), the application is queried to determine which function this URL
maps to. Then, the tool searches the collected information to see whether
the same function was called previously by another URL. If this is the case,
it examines the name-value pairs associated with this other URL. For each
of those names, it attempts to find a form element on the current page that
has a similar name. When a similar name is found, the corresponding, stored
value is supplied. As mentioned previously, the assumption is that valid data
that was passed to a program function through one form might also be valid
when used for a different form, in another context. This can help in correctly
filling out unknown forms, possibly leading to unexplored entry points and
vulnerabilities.
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As an example, consider a forum application where each discussion thread
has a reply field at the bottom of the page. The action URLs that are
used for submitting a reply could be different for each thread. However, the
underlying function that is eventually called to save the reply and link it to
the appropriate thread remains the same. Thus, when the tool encounters
one case where a user submitted a reply, it would recognize other reply fields
for different threads as being similar. The reason is that even though the
action URLs associated with the reply forms are different, they all map to
the same program function. Moreover, the name of the form fields are (very
likely) the same. As a result, the fuzzer can reuse the input value(s) recorded
in the first case on other pages.
It is of course questionable if it is at all desirable to fuzz the same back-end
function over and over again and in reality this decision must be made by the
penetration tester. At the very least this is also the way scanners work that
have no knowledge about the applications structure and depending on the
complexity of the application this might yield additional results, as attributes
that are not foreseeable for the test case without using white box testing
techniques can influence the servers response.
If such behavior is in deed not wanted a similar technique could be used to
block scanners completely from fuzzing the same back-end callable over and
over again, thereby reducing the time it takes for the tests to run.

4.5 Summary

In this section I have presented various techniques that can help to improve
the test coverage of web application scanners. To summarize the approaches,
here is a short rundown of the methods that were implemented and evaluated
in the course of this thesis.

Guided Fuzzing. Current scanners do not have the necessary skills to fill
out complex forms or follow workflows within web applications. By
feeding them with real user input and guiding them through workflows
that a ret ypical for the application under test it is possible to greatly
enhance the effectiveness.

Extended, Guided Fuzzing. Using the guided fuzzing approach it is pos-
sible to crawl deep into web applications. Invoking a crawling and
fuzzing stage after each step of the use case it is possible to increase
coverage in terms of breadth of the application.
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Stateful Fuzzing. As extended, guided fuzzing can have unwanted side ef-
fects, that will cause the use case to fail, there is the need to take
snapshots of the applications state at the time when the fuzzer starts
his work. As soon as the fuzzer returns the applications state is reset,
so that the use case can proceed.

Mapping of callables This is a more general approach that can and will
be applied to both the extended and guided fuzzing techniques. The
knowledge about the functions that are invoked when a client requests
specific URLs is important feedback that can help to improve the cov-
erage of the vulnerability scanner. The reason is that, in some cases,
it is possible to identify the types of inputs that a certain function ex-
pects. When the tool knows which URLs invoke this function, it can
speculated that all those URLs use similar input parameters. If this
speculation turns out to be correct, the scanner can correctly fill out
HTML forms on pages for which no user input was previously recorded.
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5 Implementation Details

A custom vulnerability scanner was developed that implements the tech-
niques outlined above.
As discussed in the last section, some of the techniques require that a web
application is instrumented (i) to capture and restore objects manipulated
by the application, and (ii) to extract the mappings between URLs and
functions.
The implementation of this observing component was done as a stand-alone
Django [22] application that can be easily integrated into an existing project.
One of the goals was to make the program as independent as possible and so
there are no dependencies on other 3rd party Django applications.
The reason Django was chosen is that it is a web framework that implements
the model-view-controller (MVC) scheme. Other candidates for the imple-
mentation were Ruby on Rails [21] and Java Servlets [52], both popular web
development frameworks based upen the MVC pattern. This choice implies
that the current implementation can only test web applications that are built
using Django. Note, however, that the previously introduced concepts are
general and can be ported to other development frameworks, but for obvi-
ous reasons require the core mechanisms, namely the capturing and mapping
logics, to be implemented in their respective language and adapted to the
needs of the framework.
The automated replaying and deep-crawling stage of the test procedure is
then done by a component that utilizes a python web browser, namely
twill [54]. Twill is a black box testing tool for web applications that en-
ables the user to script site navigation, form-filling and -submission. It also
supports a simple scripting language that can be used to create testcases
without knowledge of python, but can also be embedded into python appli-
cations to enable programmatic browsing of web applications.
By themselves the aforementioned components can not attack web applica-
tions, but actually try to focus on the task of generating valid requests that
will pass server side validation and enable a spider to reach new and unknown
points within a web application. In order to audit the security of the applica-
tion being tested a attack component was implemented that reuses the XSS
plugin provided by the w3af [55] security auditing framework. This plugin
provides a number of attack strings that can be injected into an application
and the logic necessary to detect the existence of XSS vulnerabilites.
The full list of components that were combined to support the extensive
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testing procedures shown in this thesis are now:

• django [22] - a web development framework, the

• twill [54] - a testing tool for web applications

• w3af [55] - a security auditing framework for web applications

5.1 Extending the web framework

The main modules that monitor the applications state as well as all incom-
ing requests are two middleware classes. Middleware in the django workflow
has access to every incoming request. Any incoming request is first tunneled
through the corresponding functions of all configured middleware classes be-
fore reaching the core application. Right after the view to be called has been
determined and the arguments for the same prepared (this happens in the
URL dispatcher, which matches the incoming request’s path to a function via
regular expressions), but before the actual view is invoked another function
of the middleware is called, that gets the view function and it’s applied po-
sitional and keyword arguments passed over. Then the view does it’s work,
gathers data from the database, renders the template and creates a HTTP-
response object, which is returned. Before the response is returned to the
client another function of the middleware is invoked that now also has access
to the response object. A graphic representation of how the framework deals
with requests and responses as well as errors can be seen in figure 7.
The information that is captured is stored in a relational database and since
the implementation was made as a django application the tables used are
represented as django models. The documentation for each model in use can
be seen in Appendix A.

5.1.1 Capturing web requests.

The first task was to extend a Django application such that it can record the
inputs that are sent when going through a use case. This makes it necessary
to log all incoming requests together with the corresponding parameters.
This was implemented in the form of a middleware class that intercepts every
request made to the server, extracts information 5.1.1 from it and saves it to
a database. At this point, the presented solution can log the complete request
information. So far this implementation could have also been implemented
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by parsing verbose server log files, but by extending this middleware it is also
possible to capture additional information that is not available to the web
server component.
Another middleware method of the same class captures a unique identifier of

Figure 7: How the django framework processes a HTTP request. [29]
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the view that is called to serve the request.
On returning the response the corresponding method of the middleware is
invoked. Here all the information is commited to the database backend and
(if necessary) a custom cookie is set that tracks the users interaction with
the website throughout the session.
This is the complete list of properties that can be captured by the middleware:

• the resource being requested,

• HTTP request headers,

• the request method (POST/GET),

• any GET or POST data (if available),

• the response code that was returned for the request,

• the response headers,

• the view that was called to process the request, and

• a list of templates that were used for rendering the response.

For a detailed description of the middleware please refer to Appendix B.

5.1.2 Capturing object manipulations.

The implementation for this part is again a django middleware class. A
custom eventlistener object is assigned to each request that subscribes to
signals that are sent by the framework at various stages throughout the
workflow. These signals, as described in [46], can be sent anywhere in the
code and a dispatcher component routes these notifications to any methods
or objects that subscribe to them, making this approach a convenient solution
for decoupling tasks that need to be performed before or after an action has
taken place, from the components where these actions are actually invoked.
The eventlistener component registers and waits for signals that are raised
every time an (database) object is created, updated, or deleted. The signals
are handled synchronously, meaning that the execution of the code that sent
the signal is postponed until the signal handler has finished. I can exploit
this fact to create copies of objects before they are saved to or deleted from
the backend storage, allowing us to later restore any object to a previous
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state. Note that these objects usually correspond to database entries, but
this is not necessarily so. For example, objects could also be stored in mem-
ory, using a mechanism such as memcached [35]. It is however necessary
that modifications of these objects omit a signal that can be caught by this
implementation.
Each request to the application now triggers the creation of a new state
and, depending on the actions performed within the application, any number
of object states, which are serialized copies of the original object. Take
a blogging application as an example where a user can create comments,
the request that triggers the storage of the comment to the database would
create a state, that when rolled back would now delete the object from the
database. When rolling back to a state, all intermediate states that were
created in between are reverted as well as all attached objectstates. I had to
apply a small patch to the framework that adds a small number of signals
to make the implementation aware that intermediate tables that are used for
many to many relationships in the database design are being altered. Out of
the box this functionality is not provided by django, but this was necessary
to fully capture the state that an application is in, especially in cases where
no objects are altered but only these intermediate tables are affected.
After a request has been processed, but before returning the response to the
clients machine all state information is saved to a persistent storage location
(in this case again a database).

5.2 Altering the workflow of web application scanners

With the help of the properties described in 5.1 it is now possible to replay
real user interactions, that will be used as a basis for the advanced fuzzing
techniques described in this thesis.

5.2.1 Replaying use cases

Once a use case, which consists of a series of requests, has been collected, it
can be used for replaying. To this end, I have developed a test case replay
component based on twill [54], a testing tool for web applications. This
component analyzes a page and attempts to find the form elements that
need to be filled out, based on the previously submitted request data.
This process is more robust than simply replaying the complete request that
was recorded because it can leave values in hidden fields and read-only ele-
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ments untouched, while replaying those values that were entered into editable
form elements.
Using some of these properties it is possible to recreate a user session and
replay it. In order to simply replay HTTP sessions it would be enough to
capture the request/response pairs using some other mechanism that doesn’t
require server side support and this is also the approach that security testing
tools use, but as I will show later some of the framework specific properties
that were captured along with the usual data can be put to good use when
testing a site.
For simple operations in the process of navigating the tested site, such as the
clicking of links the test runner instructs the browser to find and subsequently
follow the link described in the testcase. The process of form submission is
naturally more involving and in order to reach a certain level of robustness
within the testcases a special form filler takes care of these steps by exam-
ining the data recorded in the test case and the currently browsed page. It
subsequently tries to find a suitable form within the page that matches the
given user data. This is more than a simple replay of user session as the
implementation and also the testing tool takes care of applying the correct
values to forms that are being filled out and finally submitted. This means
that depending on the type of HTML form widget encountered on the page
the test browser decides whether to copy the supplied user values from the
(known good) form submission data or to make it’s own decision on what
the value should be. This decision is based on a number of rules that are laid
out to generate valid form submissions that the server is likely to accept.
From this knowledge it then creates a HTTP Request that can be submitted
to the server. The test browser is instructed to place the request and handle
the response. A optional callback function reports request and response
objects to external handlers. This function is used later on in order to create
fuzzable requests.

5.2.2 Fuzzer component

An important component of the vulnerability scanner is the fuzzer. The task
of the fuzzer component is to expose each entry point that it finds to a set
of malformed inputs that can expose XSS vulnerabilities. Typically, it also
features a web spider that uses a certain page as a starting point to reach
other parts of the application, checking each page that is encountered.
Because the focus of this work is not on the fuzzer component but on tech-
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niques that can help to make this fuzzer more effective, I decided to use an
existing web application testing tool. The choice was made for the “Web
Application Attack and Audit Framework,” or shorter, w3af [55], mainly
because the framework itself is easy to extend and actively maintained.
W3af works in what the developers call phases [45]. The first phase is called
discovery. This phase crawls an application to find entry points. To this
end, the scanner follows links and attempts to fill out forms, so as to gather
as much information as possible. As the experiments demonstrate (in Sec-
tion 6.3), despite the presence of the simple web crawler, the effectiveness
of the w3af scanner can be significantly improved when using the techniques
proposed within this thesis.
After the discovery phase, the audit phase is launched. This phase searches
for vulnerabilities in the endpoints discovered in the previous phase. For the
audit phase, there are numerous plug-ins available that focus on different
classes of vulnerabilities, ranging from cross-site request forgery detection
to buffer overflows. As cross-site scripting the most common vulnerability
found in web applications today [11], I chose to enable this plug-in for the
experiments. Of course, more plug-ins could be easily added.
One problem I had with the implementation as it is, is that these phases are
completely decoupled and it is not easy for a plug-in running in one part
of the application to instruct another plug-in to do some work. A simple
wrapper was created that allows the easy usage of the XSS plug-in from the
scripts that control the guided fuzzing phases.
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6 Evaluation

For the evaluation of the approaches, I installed three publicly available,
real-world web applications based on Django (SVN Version 6668):

• The first application was a blogging application, called Django-basic-
blog [23]. I did not install any user accounts, as there was no func-
tionality on the site that required an authenticated session. Initially,
the blog was filled with three articles. Comments were enabled for
each article, and no other links were present on the page. That is, the
comments were the only interactive component of the site.

• The second application was a forum software, called Django-Forum [44].
To provide all fuzzers with a chance to explore more of the application,
every access was performed as coming from a privileged user account,
which was ensured by a server side middleware component. Thus, each
scanner was making requests as a user that could create new threads
and post replies. Initially, a simple forum structure was created that
consisted of three forums.

• The third application was a web shop, the Satchmo online shop 0.6 [47].
This site was much larger than the previous two applications, and,
therefore, more challenging to test. The online shop was populated
with the test data included in the package, and one user account was
created.

I selected these three programs because they represent common archetypes
of applications on the Internet. The test setup was run on Apache 2.2.4
(with pre-forked worker threads) and mod python 3.3.1. Note that before a
scanner was tested on a site, the application was restored to its initial state,
so as to have level playgrounds for all applications.

6.1 Test Methodology

These three web applications were tested for XSS vulnerabilities by three
freely available scanners as well as the tool presented in this thesis. The
3rd party scanners used were Burp Spider 1.21 [17], w3af spider [55], and
Acunetix Web Vulnerability Scanner 5.1 (Free Edition) [12].
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Each scanner is implemented as a web spider that can follow links on web
pages. All scanners also have support for filling out forms and, with the
exception of the burp spider, a fuzzer component to check for XSS vulner-
abilities. For each page that is found to contain an XSS vulnerability, a
warning is issued. In addition to the three vulnerability scanners and the
presented tool, I also included the statistics of a very simple web spider into
the tests. This web spider serves as the lower bound on the number of pages
that should be found and analyzed by each vulnerability scanner.
When testing my tool, I first recorded a simple use case for each of the
three applications. The use cases included posting a comment for the blog,
creating a new thread and a post on the forum site, and purchasing an item
in the online store. Then, I executed the system in one of three modes. First,
guided fuzzing was used. In the second run, I used extended, guided fuzzing
(together with application feedback). Finally, I scanned the program using
stateful fuzzing.

Reference Spider This is a very simple self written webspider, that follows
the first link found on a page and puts the location string onto a stack.
It does so until it can’t find any new locations to visit and then back-
tracks to the previous page until it has found all URLs. It does not fill
out forms or parse anything but <a> tags with href attributes, so its
presence in the tables is mainly for having a base line.

Burp Spider This is the spider component of the burpsuite, which has some
basic form filling skills and also searches the source of the response
for useable URLs (such as those embedded in javascript code). The
default configuration was used for this spider, with the exceptions that
the proxy option was deactivated and the maximum link depth was
turned off as well as the option to search for session dependant pages.
Furthermore the form filling option was activated and the maximum
submissions allowed for each form was set to 10, the default behavior
being to prompt the user for input. The version of the spider was 1.21
which comes with version 1.1 of the suite.

w3af The web spider discovery and XSS audit plug-in of the w3af suite. The
spider has some simple functions for filling out forms and can therefore
find more locations than the reference spider. The webSpider plug-in
was used for finding injection points, which auto-enables another plug-
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in name allowedMethods. The number of checks was set to the maxim
um of 10. For all tests the svn revision 800 was used.

Acunetix Web Vulnerability Scanner (Free Edition) The free edition
of a commercial tool, that can check for various vulnerabilities in web
applications. This edition is limited to auditing for XSS vulnerabil-
ities and hence, served the purpose well. The default configuration
was used besides enabling the Extensive Scan feature , optimizing for
mod python and checking for stored XSS. The version in use reported
itself as 5.1 (Build 20080313).

6.2 Measuring the effectiveness of scanners

There are different ways to assess the effectiveness or coverage of a web
vulnerability scanner. One metric is clearly the number of vulnerabilities
that are reported. Unfortunately, this number could be misleading because
a single program bug might manifest itself on many pages. For example, a
scanner might find a bug in a form that is reused on several pages. In this
case, there is only a single vulnerability, although the number of warnings
could be significantly larger. Thus, the number of unique bugs, or vulnerable
injection points, is more representative than the number of warnings.
Another way to assess coverage is to count the number of locations that a
scanner visits. A location represents a unique, distinct page (or, more pre-
cisely, a distinct URL). Of course, visiting more locations potentially allows
a scanner to test more of the application’s functionality. Assume that, for
a certain application, Scanner A is able to explore significantly more loca-
tions than Scanner B. However, because Scanner A misses one location with
a vulnerability that Scanner B visits, it reports fewer vulnerable injection
points. In this case, one might still conclude that Scanner A is better, be-
cause it achieves a larger coverage. Unfortunately, this number can also be
misleading, because different locations could result from different URLs that
represent the same, underlying page (e.g., the different pages on a forum, or
different threads on a blog).
Finally, for the detection of vulnerabilities that require the scanner to store
malicious input into the database (such as stored XSS vulnerabilities), it
is more important to create many different database objects than to visit
many locations. Thus, I also consider the number and diversity of different
(database) objects that each scanner creates while testing an application.



6.3 Experimental Results 46

The coverage a web application vulnerability scanner achieves is a useable
metric to measure it’s effectiveness. Clearly, this is true for discovering re-
flected XSS vulnerabilities, assuming that the detection algorithm can prop-
erly determine if the injected code is executable by the browser. For the
detection of stored XSS, on the other hand, it is essential that the spider can
actually generate datasets that are then saved in a backend storage by the
web application (i.e., the injected script is retrieved at a later point in time).
By monitoring the activities of the spiders on the server side, it is possible
to create listings of generated objects for each test run. In this setup, these
numbers directly correspond the number of database objects created by the
actions of a spider. Hence, the more objects a spider is able to create, the
higher its coverage.

6.3 Experimental Results

In this section, I present and discuss the results that the different scanners
achieve when analyzing the three test applications. For each application,
I list the number of locations that the scanner has visited, the number of
reported vulnerabilities, the number of injection points (unique bugs) that
these reports map to, and the number of relevant database objects that were
created.

Locations POST/GET XSS Warnings Injection Points
Requests Reflected Stored Reflected Stored

Spider 4 4 - - - -
Burp Spider 8 25 0 0 0 0
w3af 9 133 0 0 0 0
Acunetix 9 22 0 0 0 0
Use Case 4 4 - - - -
Guided Fuzzing 4 64 0 1 0 1
Extended Fuzz. 6 189 0 1 0 1
Stateful Fuzz. 6 189 0 1 0 1

Table 1: Scanner effectiveness for blog application.

Blogging application. Table 1 shows the results for the simple blog ap-
plication. Compared to the simple spider, one can see that all other tools
have reached more locations. This is because all spiders requested the root of
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Comments created
Spider -
Burp Spider 0
w3af 0
Acunetix 0
Use Case 1
Guided Fuzzing 12
Extended Fuzz. 12
Stateful Fuzz. 12

Table 2: Object creation statistics for the blogging application.

each identified directory. When available, these root directories can provide
additional links to pages that might not be reachable from the initial page.
As expected, it can be seen that extended, guided fuzzing reaches more loca-
tions than guided fuzzing alone, since it attempts to explore the application
in breadth. Moreover, there is no difference between the results for the ex-
tended, guided fuzzing and the stateful fuzzing approach. The reason is that,
for this application, invoking the fuzzer does not interfere with the correct
replay of the use case.
None of the three existing scanners was able to create a valid comment on the
blogging system. This was because the posting process is not straightforward:
Once a comment is submitted, the blog displays a form with a preview button.
This allows a user to either change the content of the comment or to post it.
The problem is that the submit button (to actually post the message) is not
part of the page until the server-side validation recognizes the submitted data
as a valid comment. To this end, both comment fields (name and comment)
need to be present. The commenting system is similar to the one described
in 3.3. Here, the advantage of guided fuzzing is clear. Because the presented
system relies on a number of previously recorded test cases, the fuzzer can
correctly fill out the form and post a comment. This is beneficial, because
it is possible to include malicious javascript into a comment and expose the
stored XSS vulnerability that is missed by the other scanners.

Forum application. For the forum application, the scanners were able
to generate some content, both in the form of new discussion threads and
replies. Table 3 shows that while Burp Spider [17] and w3af [55] were able to
create new discussion threads, only the Acunetix scanner managed to post
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Locations POST/GET XSS Warnings Inject. Points
Requests Reflect Stored Reflect Stored

Spider 8 8 - - - -
Burp Spider 8 32 0 0 0 0
w3af 14 201 0 3 0 1
Acunetix 263 2,003 63 63 0 1
Use Case 6 7 - - - -
Guided Fuzzing 16 48 0 1 0 1
Extended Fuzz. 85 555 0 3 0 1
Stateful Fuzz. 85 555 0 3 0 1

Table 3: Scanner effectiveness for the forum application.

Threads created Replies posted
Spider - -
Burp Spider 0 0
w3af 29 0
Acunetix 687 1,486
Use Case 1 2
Guided Fuzzing 12 22
Extended Fuzz. 36 184
Stateful Fuzz. 36 184

Table 4: Object creation statistics for the forum application.

replies as well. w3af correctly identified the form’s action URL to post a
reply, but failed to generate valid input data that would have resulted in the
reply being stored in the database. However, since the vulnerability is caused
by a bug in the routine that validates the thread title, posting replies is not
necessary to identify the flaw in this program.
Both the number of executed requests and the number of reported vulnera-
bilities differ significantly between the vulnerability scanners tested. It can
be seen that the Acunetix scanner has a large database of malformed inputs,
which manifests both in the number of requests sent and the number of vul-
nerabilities reported. For each of the three forum threads, which contain
a link to the unique, vulnerable entry point, Acunetix sent 21 fuzzed re-
quests. Moreover, the Acunetix scanner reports each detected vulnerability
twice. That is, each XSS vulnerability is reported once as reflected and once
as stored XSS. As a result, the scanner generated 126 warnings for a single
bug. w3af, in comparison, keeps an internal knowledge base of vulnerabilities
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Figure 8: A user interaction example of the forum application.

that it discovers. Therefore, it reports each vulnerability only once (and the
occurrence of a stored attack replaces a previously found, reflected vulnera-
bility). However, it also reports three vulnerabilities, one for the occurrence
of the vulnerable injection point in each forum.
The results show that all the applied techniques were able to find the vul-
nerability that is present in the forum application. Similar to the Acunetix
scanner (but unlike w3af), they were able to create new threads and post
replies. Again, the extended, guided fuzzing was able to visit more loca-
tions than the guided fuzzing alone (it can be seen that the extended fuzzing
checked all three forum threads that were present initially, while the guided
fuzzing only analyzed the single forum thread that was part of the recorded
use case). Moreover, the fuzzing phase was not interfering with the replay
of the use cases. Therefore, the stateful fuzzing approach did not yield any
additional benefits.
The extended approach successfully submitted all forms found on the initial
site, thereby improving the raw numbers of created objects and vulnerabilities
and bringing them on par with the results of the commercial scanner.
Figure 8 shows the user interaction with the application as it was used for the
use case that the results for the guided fuzzing approaches are based upon.
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Locations POST/GET XSS Warnings Injection Points
Requests Reflected Stored Reflected Stored

Spider 18 18 - - - -
Burp Spider 22 52 0 0 0 0
w3af 21 829 1 0 1 0
Acunetix #1 22 1,405 16 0 1 0
Acunetix #2 25 2,564 8 0 1 0
Use Case 22 36 - - - -
Guided Fuzzing 22 366 1 8 1 8
Extended Fuzz. 25 1,432 1 0 1 0
Stateful Fuzz. 32 2,078 1 8 1 8

Table 5: Scanner effectiveness for the online shopping application.

Online shopping application. The experimental results for the online
shopping application are presented in Tables 5 and 6. Table 5 presents the
scanner effectiveness based on the number of locations that are visited and
the number of vulnerabilities that are detected, while Table 6 compares the
number of database objects that were created by both the Acunetix scan-
ner and the presented approaches. Note that the Acunetix scanner offers a
feature that allows the tool to make use of login credentials and to block
the logout links. For this experiment, two test were run with the Acunetix
scanner: The first run (#1) as an anonymous user and the second test run
(#2) by enabling this feature.
Both w3af and Acunetix identified a reflected XSS vulnerability in the login
form. However, neither of the two scanners was able to reach deep into
the application. As a result, both tools failed to reach and correctly fill
out the form that allows to change the contact information of a user. This
form contained eight stored XSS vulnerabilities, since none of the entered
input was checked by the application for malicious values. However, the
server checked the phone number and email address for their validity and
would reject the complete form whenever one of the two values was incorrect.
Other server side checks would also result in rejection of the form submission.
A small user interaction for the account management functions of the e-
commerce application can be seen in Figure 9. The dotted line is a redirect
that is issued by the server after a successful update of the users profile. Only
the approaches based on guided fuzzing were able to test this vector.
In contrast to the existing tools, guided fuzzing was able to analyze a large
part of the application, including the login form and the user data form.
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Object Acunetix Acunetix Use Case Guided Extended Stateful
Class #1 #2 Fuzzing Fuzzing Fuzzing
OrderItem - - 1 1 - 2
AddressBook - - 2 2 - 7
PhoneNumber - - 1 3 - 5
Contact 1 - 1 1 1 2
CreditCardDetail - - 1 1 - 2
OrderStatus - - 1 1 - 1
OrderPayment - - 1 1 - 2
Order - - 1 1 - 2
Cart 2 1 1 1 3 3
CartItem 2 1 1 1 5 5
Comment - - 1 21 11 96
User 1 - 1 1 1 1

Table 6: Object creation statistics for the online shopping application.

Thus, this approach reported a total of nine vulnerable entry points. In this
experiment, one can also observe the advantages of stateful fuzzing. With
extended, guided fuzzing, the fuzzing step interferes with the proper replay
of the use case (because the fuzzer logs itself out and deletes all items from
the shopping cart).
The stateful fuzzer, on the other hand, allows the scanner to explore a broad
range of entry points, and, using the snapshot mechanism, keeps the ability
to replay the test case. The number of database objects created by the
different approaches (as shown in Table 6) also confirms the ability of my
techniques to create a large variety of different, valid objects, a result of
analyzing large portions of the application Furthermore simple, but usually
irreversible operations like confirming the order can be undone.

6.4 Discussion

All vulnerabilities that were found during the experiments were previously
unknown, and were reported to the developers of the web applications. The
results show that the novel fuzzing techniques consistently find more (or,
at least, the same amount) of bugs than other open-source and commercial
scanners. Moreover, it can be seen that the different approaches carry out
meaningful interactions with the web applications, visiting many locations
and creating a large variety of database objects. The different techniques
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Figure 9: Account actions for the e-commerce application
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exhibit different strengths.
The guided fuzzing approach reaches exactly the same coverage as the use
cases, but can in some circumstances, where the application allows submis-
sion of the same form over and over, lead to a higher number of created
database objects as the request pairs are tainted as they are sent to the
server. This approach can be abstracted to a level where manual usage of the
application can lead to automatic fuzzing being executed in the background,
which is similar to the way the proxying functionality of web application vul-
nerability scanners work, with the advantage that this techniques generates
reuseable black box testcases that can be used for deployment testing, an
important aspect of web application testing.
Extending guided fuzzing has the potential to increase the breadth within
the tested application and can be used to discover additional endpoints that
are not covered by the test cases. This has obvious advantages and of-
ten increases the raw numbers of fuzzed endpoints, on the other hand the
e-commerce application is a good example of where this approach has its
limitations. When the state of an application matters this technique can
lead to unwanted results and the penetration tester might consider switching
to guided fuzzing, as the intermediate broad auditing stages hinder the use
cases from completing. This could be avoided by providing the tool with
configuration options that define which links to follow and which to ignore
(such as log-out links, delete buttons etc.), but this partly diminishes the ad-
vantages gained by guided fuzzing. As can be seen in the forum application
the knowledgebase adds value to the test results as all forms found on the site
can be submitted, without the need to guess any form values, eventhough
other applications fare well with guessing values for the simple forms found
within this application.
The advantages of stateful fuzzing become especially apparent when the
tested application is more complex and sensitive to the fuzzing steps, be-
cause the technique allows to undo unwanted operations that might have
been executed by the fuzzing component and would render the testcase use-
less in the case of the extended guided fuzzing approach. So this clearly adds
stability to the previous method at the expense of a larger overhead to the
application itself.
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7 Related Work

Concepts such as vulnerability testing, test case generation, and fuzzing
are well-known concepts in software engineering and vulnerability analy-
sis [15, 16, 26]. When analyzing web applications for vulnerabilities, black-
box fuzzing tools [12, 17, 55] are most popular. However, as shown by the
experiments, they suffer from the problem of test coverage. Especially for
applications that require complex interactions or that expect specific input
values to proceed, black-box tools often fail to fill out forms properly. As a
result, they can scan only a small portion of the application. This is also
true for SecuBat [34], a web vulnerability scanner that was previously devel-
oped at the Secure Systems Lab. SecuBat can detect reflected XSS and SQL
injection vulnerabilities. However, it cannot fill out forms and, thus, was not
included in the experiments.
In addition to web-specific scanners, there exist a large body of more general
vulnerability detection and security assessment tools. Many of these tools
(e.g., Nikto [39], Nessus [53]) rely on a repository of known vulnerabilities
that are tested. The presented system, in contrast, aims to discover unknown
vulnerabilities in the application under analysis. Besides application-level
vulnerability scanners, there are also tools that work at the network level,
e.g., nmap [32]. These tools can determine the availability of hosts and ac-
cessible services. However, they are not concerned with higher-level vulnera-
bility analysis. Other well-known web vulnerability detection and mitigation
approaches in literature are Scott and Sharp’s application-level firewall [48]
and Huang et al.’s [31] vulnerability detection tool that automatically exe-
cutes SQL injection attacks. Moreover, there are a large number of static
source code analysis tools [33, 51, 56] that aim to identify vulnerabilities.
A field that is closely related to this work is automated test case generation.
The methods used to generate test cases can be generally summarized as ran-
dom, specification-based [40, 42], and model-based [41] approaches. Fuzzing
falls into the category of random test case generation. By introducing use
cases and guided fuzzing, it is possible to improve the effectiveness of ran-
dom tests by providing some inputs that are likely valid and thus, allow the
scanner to reach “deeper” into the application.
A well-known application testing tool, called WinRunner, allows a human
tester to record user actions (e.g., input, mouse clicks, etc.) and then to
replay these actions while testing. This could be seen similar to guided
fuzzing, where inputs are recorded based on observing real user interaction.
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However, the testing with WinRunner is not fully-automated. The developer
needs to write scripts and create check points to compare the expected and
actual outcomes from the test runs. By adding automated, random fuzzing
to a guided execution approach, it is possible to combine the advantages
provided by a tool such as WinRunner with black-box fuzzers. Moreover,
the system provides techniques to generalize from a recorded use case.
Finally, a number of approaches [18, 27, 38] were presented in the past that
aim to explore the alternative execution paths of an application to increase
the analysis and test coverage of dynamic techniques. The work presented in
this thesis is analogous in the sense that the techniques aim to identify more
code to test. The difference is the way in which the different approaches are
realized, as well as their corresponding properties. When exploring multiple
execution paths, the system has to track constraints over inputs, which are
solved at branching points to determine alternative paths. The presented
system however leverages known, valid input to directly reach a large part
of an application. Then, a black-box fuzzer is started to find vulnerabilities.
This provides better scalability, allowing the tool to quickly examine large
parts of the application and expose it to black-box tests.
To the best of my knowledge, to date, no blackbox approaches have been
proposed in literature that are able to detect stored XSS vulnerabilities.
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8 Conclusions

In this thesis, I presented a web application testing tool to detect reflected
and stored cross-site scripting (XSS) vulnerabilities. The core of the system
is a black-box vulnerability scanner. Unfortunately, black-box testing tools
often fail to test a substantial fraction of a web application’s logic, especially
when this logic is invoked from pages that can only be reached after filling out
complex forms that aggressively check the correctness of the provided values.
To allow the presented scanner to reach “deeper” into the application, I intro-
duced a number of techniques to create more comprehensive test cases. One
technique, called guided fuzzing, leverages previously recorded user input to
fill out forms with values that are likely valid. This technique can be further
extended by using each step in the replay process as a starting point for the
fuzzer to explore a program more comprehensively. When feedback from the
application is available, the scanner can reuse the recorded user input for
different forms during this process. Finally, I introduced stateful fuzzing as
a way to mitigate potentially undesirable side-effects of the fuzzing step that
could interfere with the replay of use cases during extended, guided fuzzing.
I have implemented all these use-case-driven testing techniques and analyzed
three real-world web applications. The experimental results demonstrate that
these approaches are able to identify more bugs than several open-source and
commercial web vulnerability scanners.

8.1 Future work

This leaves the question how to apply these approaches to existing vulner-
ability scanners. A sample implementation was given that makes use of an
existing fuzzer and yields good results, but since w3af, due to its phases, is
not designed to support the guided fuzzing approach the presented solution
is limited to using the XSS plug-in. It would be desireable to integrate such
functionality into an existing tool, but the way current vulnerability scanners
work (strict separation of discovery and audit phase) makes it hard to do so
without re-implementing the core functionality.

Improving existing solutions. In my opinion, backed by the results of
the experiments, modern web applications can not be fully tested by enumer-
ating their endpoints and subsequently fuzzing them but need to be treated
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and subsequently tested as the stateful applications that they are. Pene-
tration testers know about the shortcomings of these tools and can leverage
these by extensive test configuration or manual testing methods. Unaware
users on the other hand are given a false sense of security when their scanner
reports no vulnerabilities, because it has simply failed to supply sufficiently
correct input to trigger the vulnerability or the spider component was unable
to reach certain parts of the application that might be vulnerable. At the
very least users of the scanners should be made aware of these limitations and
the tools should issue warnings to reflect this. As a quick fix I would propose
to implement some heuristics to determine the success of automated form
filling. The user should be issued a warning when a submitted form reap-
pears in the reply from the server, as this might indicate that the supplied
input did not pass server side validation.

Another obvious place for improvement is the test runner itself. In its
current state it is useable for a large number of web applications, but fails
on javascript-heavy sites, because twill, the underlying tool of the browsing
component, does not execute javascript.

Improving the test runner. In order to reliably detect cross-site script-
ing vulnerabilities on web pages that make use of javascript to generate con-
tent it is necessary to integrate a javascript engine that will execute the code
in a similar fashion that a browser would. Perhaps the best way to combine
functional black-box tests with the security auditing methods described in
this thesis would be with the help of a in-browser tool such as Selenium [4].
This would obviously have a negative impact on the speed of the auditing
process, but is necessary when confronted with web applications that make
extensive use of javascript.

As the techniques that were presented in this thesis are strongly related
to testing of software in general and black-box testing in particular it would
be interesting to see implementations of security fuzzers that can be directly
used inside native testing tools for web applications.

Integration with existing test suites. As described in [6], django comes
with its own test client to test applications without the overhead of using
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the HTTP protocol, but by interfacing directly via wsgi [8, 43] with the ap-
plication. Similar tools are available for other programming languages and
frameworks, some of them even language independent [4, 5], so the the tools
available to support black-box testing of web applications are in place. But
there is a gap between functional testing tools and security auditing tools that
is hard to bridge with the current solutions. This thesis presents a way to
combine traditional testing techniques, namely use cases, with fuzzing and
auditing strategies for penetration testing. Combining security and func-
tional tests is in many cases a feasible way to fully test a web application
and it would be desireable if this were respected in future tools.
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A Models

A.1 Functions

safedumps(dic, types= canpickle)

A helper function for pickling unsafe dicts. It checks for simple
python types inside the dicts values and removes key value
pairs that can not be pickled correctly.

Parameters

dic: a python dictionary to be pickled.

types: an optional iterable of python types that
will be used to check for compatibility with
pickle.

Return Value

a pickled string of the possibly shortened dict.

revert(self )

Reverts all many to many relationships that may have existed
between 2 models.

A.2 Class Session

django.db.models.Model

models.Session
The Session model.
Handles session ids that are used to track a users movement on the site.

A.2.1 Methods

unicode (self )
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A.3 Class SimpleStep

django.db.models.Model

models.SimpleStep
The model class that represents a single request-response pair.
It’s attributes represent the properties that are captured for each request
response pair. Together with the Session model this enable the tracking of
user interactions inside the application.

A.3.1 Methods

init (self, *args, **kwargs)

unicode (self )

save(self )

Pickles it’s attributes and saves the resulting object to the
database backend.

A.4 Class State

django.db.models.Model

models.State
The primary state model that all state related models link to.
A SimpleStep object links to exactly one State, which in turn consists of a
number of ModelState and SimpleM2MState objects

A.4.1 Methods

revert(self )

The main revert() method of a state object.

I calls revert on all related ModelState and Many2ManyState
objects. When calling this method, it is adviseable to do so
within a single database transaction, as dependencies are only
guaranteed to be resolved when the state has been completely
reverted.
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A.5 Class ModelState

django.db.models.Model

models.ModelState
This model keeps track of the state of models (database entries). It stores the
action that was taken during a particular step and saves a serialized copy of
the object. This also takes into account ForeignKeyFields, as this property
is stored inside a field of the model.

A.5.1 Methods

unicode (self )

restore model(self )

load model(self, data)

Loads and returns a model, based on the serialized version of it.

revert(self )

Reverts models to their previous state.

Depending on the action that was taken by the application it
restores the state of a models instance. If an instance was
deleted, it will be recreated. If it was updated, the changes will
be undone. If a new instance was created, it will be deleted.

A.6 Class SimpleM2MState

django.db.models.Model

models.SimpleM2MState
The model that saves many to many relationships that can be altered within
a request response pair.
For Many2ManyFields we need a special model that stores all relations that
are changed during a operation. Relations can be either added or deleted. A
new SimpleM2MState model is created for each instance whose relations are
changed.
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B Tracker middleware

B.1 Functions

makeSessionId(st)

Creates a unique session id, from a string and the current
timestamp.

B.2 Class SimpleClientTracker

object

middleware.simpletracker.SimpleClientTracker
The SimpleClientTracker middleware class applies to each request and moni-
tors the user input (request) as well as the response. Usage of this middleware
usually results in one database insert operation for each request, so if this is
acceptable it can be used on production machines to gather use cases.
It attaches a SimpleTracker object to each request that is then populated in
the appropriate methods of this middleware class.
This middleware monitors and save the following properties of a request-
response pair:
Request:

• request path

• POST and GET data

• headers

View:

• name of the view called

• list of templates used to render the response (if any)

Response:

• response status code

• response headers
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B.2.1 Methods

process request(self, request)

Depending on the order of the middleware this method is
called after the request has been received.

It first checks for a existing session cookie and creates one if
needed. If template tracking is enabled it monkeypatches
djangos templating system to record the templates in use by
attaching a signal to the template loader that is fired every
time the templating system renders a template.

For production machines turn off the template system patching.

process view(self, request, view func, view args, view kwargs)

This function is called just before the actual view is called.
The data collected from this method can be used to map out
the application in another way than simply collecting URLs.

process response(self, request, response)

Before returning the generated response this method saves the
SimpleTracker instance to the database.
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C TestClient middleware

C.1 Class TestClientMiddleware

object

middleware.testclient.TestClientMiddleware
This middleware must be put after the tracker middleware, but should be
placed before any middleware that changes objects within the database.
This middleware first checks if the requesting client is a testclient. If not, then
the request is skipped and return immediately. Otherwise it creates a new
state and attaches a StateMachine object to the request (request. SM). The
StateMachine is then connected to the model signals to listen for changes to
objects that are affected by the request. Furthermore it sets a custom header
in the response that the client can use to reset the applications state.
The middleware connect to the following signals, defined in django.db.models.signals:

• pre save, in the case of an update the object that emits this signals is
serialized, before the changes are written to the database.

• post save, with the help of this signal the implementation is able to
determine what objects were created during a request.

• pre delete, is needed to intercept delete operations, so that deleted
objects can be later restored.

The reason that both save signals need to be listened for by the middleware
is that it is in some cases impossible to determine if an object is created
or updated when listening for the pre save signals, whereas the post save
signal has an argument created that indicates if the objects was created in
the database.
The StateMachine that is attached by this middleware uses in an internal
cache so that it doesn’t collect multiple versions of the same object during
one state, but only the first alteration of it, which is important in the case
of a operation running multiple times on the same object.
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C.1.1 Methods

process request(self, request)

This function is called after the request has been received (but
before any view is called). Depending on the order of the
middleware no interaction with the database should have
occured at this point, with the exception that other
middlewares might have changed objects. Therefore it is
important that this middleware appears early within the
middleware settings in the global settings file.

The request object stays the same during the whole workflow
of django so this is the best place to attach the StateMachine.

process response(self, request, response)

This method is run after the application has finished it’s
processing.

The StateMachine is instructed to dump it’s collected data to a
persistent storage. Also the custom header containing the
state-id is applied to the response.
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