

Behavior Recognition and
Prediction in Building
Automation Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik
eingereicht von

Josef Mitterbauer

Matrikelnummer 0025067

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: O.Univ.Prof. Dipl.-Ing. Dr.techn. Dietmar Dietrich
Mitwirkung: Dipl.-Ing. Dr.techn. Dietmar Bruckner

Wien, 9.11.2008 ____________________ ____________________
 (Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien • Karlsplatz 13 • Tel. +43/(0)1/58801-0 • http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Mit ständig besser und günstiger werdenen Technologien im Bereich der Gebäudeautomatisierung
findet diese immer mehr Verbreitung, sowohl im öffentlichen Bereich als auch im Wohnbau. Durch
die Verbesserungen in den Bereichen der Sensorik, Aktuatorik und Kommunikationssystemen,
werden immer leistungsfähigere Systeme möglich. Jedoch steigt mit der Leistungsfähigkeit auch
die Komplexität. Damit auch in Zukunft mit der zu erwartenden Komplexität umgegangen wer-
den kann, sind neue Verfahren zur Verarbeitung von Sensorwerten erforderlich. Eine Möglichkeit
besteht darin, mithilfe statistischer Methoden die erfasste Situation in Gebäuden zu beschreiben.
Eine interessante Fragestellung ist, ob sich aus derartigen Modellen Prognosen für zukünftig zu
erwartende Situationen ableiten lassen.
In dieser Arbeit wird untersucht, inwieweit sich die Theorie über Hidden Markov Modelle (HMM)
eignet, um das Verhalten von Personen in einem Raum zu beschreiben und anhand der erlern-
ten Beschreibungen Vorhersagen über das zukünftige Verhalten einer Person zu machen. Das
Erstellen dieser Prognosen basiert auf bekannten Algorithmen. Weiters wird untersucht, in-
wieweit sich Daten unterschiedlicher Sensortypen in ein Modell integrieren lassen und welche
Vorhersagen so ein System liefern kann. In dieser Arbeit meint ”Vorhersage des Verhaltens“
die Berechnung der Wahrscheinlichkeit der möglichen Aktionen, die eine Person als nächstes
ausführen kann und die auch vom System wahrgenommen werden können. Jene Aktionen mit
der höchsten Wahrscheinlichkeit werden den Personen mitgeteilt. Aus diesem Grund sollte die
Verarbeitung der Daten in Echtzeit erfolgen. Hierfür wurde eine Software Applikation entwick-
elt, welcher eine Liveanbindung an das Sensorwerterfassungssystem zur Verfügung steht. Diese
Anwendung ermöglicht den Personen im Gebäude (d.h. in dem Raum, wo das System betrieben
wird), einen Blick hinter die Kulissen des Systems, indem sie die relevanten Informationen auf
einem Bildschirm darstellt, welcher von den Benutzern betrachtet werden kann.
Diese Darstellung zeigt einen Grundriss des Raumes und alle installierten Sensoren. Aus den
ausgelösten Sensoren wird eine Abschätzung der vorhandenen Personen und deren Positionen er-
rechnet, die dargestellt wird. Für jede dieser vermuteten Personen wird eine Vorhersage errechnet
und ebenfalls dargestellt. Dadurch kann ein Benutzer sehen, an welcher Position er vom System
vermutet wird und welche Vorhersage errechnet wurde.
Es hat sich gezeigt, dass HMMs für die Aufgabe der Modellierung derartiger Syteme gut geeignet
sind und die Möglichkeiten des Erstellens von Modellen mannigfaltig sind. Die Art der Gener-
ierung ist entscheidend für die Qualität der Modelle. Weiters stellte sich heraus, dass in eher
kleinen Räumen, wie der, der zur Verfügung stand, die Handlungen der Personen relativ ident
sind, aber trotzdem große Unterschiede zwischen ständig auftretenden und eher seltenen Szenarios
klar erkennbar sind.
Die Integration von Werten verschiedener Sensortypen in ein Modell ist insofern problematisch,
als diese Werte untschiedliche Wahrscheinlichkeiten des Auftretens haben. Dies wurde durch eine
Priorisierung bei der Auswertung kompensiert. Dieses Vorgehen bringt gute Lösungen in dieser
Anwendung, da alle Aktionen sehr stark auf die räumliche Lokalität bezogen sind, kann aber mit
hoher Wahrscheinlichkeit nicht verallgemeinert werden. Für einen allgemeinen Lösungsansatz
sollte hier eine zusätzliche Abstraktionsebene eingeführt werden.

i

Abstract

Building automation systems are spreading more and more, thanks to technologies in that field
constantly becoming better and cheaper; not only in public spaces but also in domestic archi-
tecture. Due to the improvements in the field of sensors, actuators and communication systems,
increasingly efficient systems can be realized. But together with the efficiency also the complexity
increases. For handling the expected complexity in future times, new methods for the processing
of sensor values become necessary. The use of statistic methods is one possibility for describing
recognized situations in buildings. It is an interesting question if it is possible to derive prognoses
for expected future situations from such models.
How far the theory about Hidden Markov Models is useful for describing the behavior of persons
in a room and to make predictions about a person’s behavior out of the learned descriptions, will
be determined in this work. The calculation of these predictions is based on common algorithms.
In which way data of different sensor types can be integrated in one model and which predictions
such a system can make, is also topic of this work. “Prediction of behavior” in this work means
the calculation of the probability of possible actions (which can be perceived by the system) a
person can do next. Those actions with the highest probability will be shown to the persons.
For this reason data processing should be done in real-time. Therefore a software application,
providing a live-data connection to the sensor value gathering hardware, was developed. This
application allows the persons in the building (i.e. the room in which the system runs), a look
behind the scenes of the system, because it shows the relevant information on a screen that can
be watched by the users.
This illustration shows the layout of the room and all the installed sensors. From the triggered
sensors an estimation of the number of present persons and their positions is calculated and
depicted. For each of the assumed persons a prediction is calculated and also depicted. Therefore
a user can see, where on which position the system assumes him to be and which prediction was
calculated.
It has turned out that HMMs are very appropriate for the task of modeling such systems and
that there are many possibilities for the creation of models. The quality of the models depends
on the kind of generation. It also turned out that in rather small rooms, like the one we have
used for our disposal, the actions of the persons are relatively identical, however, big differences
between frequently occurring scenarios and rather rare ones can be observed.
The integration of values from different sensor types into one model is problematic so far, as these
values have different probabilities of occurrences. This was compensated by a prioritization in
the evaluation. This method brings good solutions for this application, because all actions are
strongly referring to the spatial locality of persons, but it likely cannot be generalized. For a
general approach an additional level of abstraction should be introduced.

ii

Acknowledgements

Writing this diploma thesis would not have been possible without the support of several mentors.
First of all I would like to thank Prof. Dietmar Dietrich for the opportunity to write this thesis at
the Institute of Computer Technology. Special thanks go to my supervisor Dietmar Bruckner and
the ARS project leader Gerhard Zucker for their great support to my thesis. Further, I would like
to thank all members of the ARS team for fruitful hints as well as humorous private discussions.
My deep gratitude goes to my parents, for the opportunity to study and their support during
my student’s career. Furthermore, I would like to thank my brother Ferdinand and my cousins
Ludwig and Dieter for fruitful technical discussions and a humorous leisure time. Special thanks
go to my girlfriend Silvia for loving and supporting me.

iii

Table of Contents

1 Introduction 1
1.1 ARS Project . 1
1.2 Problem Statement . 2
1.3 Outline . 3

2 Environment 4
2.1 Smart Kitchen . 5

2.1.1 Layout . 5
2.1.2 Tactile Sensors . 7
2.1.3 Movement Sensors . 7
2.1.4 Switch Sensors . 8

2.2 ARS Sensor Database . 8
2.2.1 Static Data . 8
2.2.2 Dynamic Data . 10
2.2.3 Database Management System . 11

2.3 Data Gathering Modules . 13
2.3.1 Octobus . 13
2.3.2 SymbolNet . 15

3 Hidden Markov Models 17
3.1 Definitions . 17
3.2 Markov Model . 18
3.3 Hidden Markov Model . 20

3.3.1 Forward Algorithm . 21
3.3.2 Viterbi Algorithm . 22
3.3.3 Baum-Welch Algorithm . 23

4 System Design 26
4.1 Sensor Data . 26
4.2 Person Model . 27

4.2.1 Motivation . 28
4.2.2 Recognition . 29
4.2.3 Design of the Model . 30

4.3 Modeling HMMs . 33
4.3.1 Prediction . 33

iv

4.3.2 Global and Local . 34
4.3.3 Visualization of Parameters . 35
4.3.4 Data Structure . 35

4.4 HMM Structure Learning . 37
4.4.1 State Merging Principles . 37
4.4.2 Learning from Sensor Data . 39
4.4.3 Create a Chain . 40
4.4.4 Preprocessing of Chains . 41
4.4.5 Merge Horizontally . 43
4.4.6 Merge Vertically . 45
4.4.7 Merge Sequences . 48

5 Software Application Design 50
5.1 Terminology . 51
5.2 Base Part . 51
5.3 Data Abstraction . 54
5.4 Graphics . 56
5.5 Markov . 60
5.6 Persistence . 62

6 Implementation 65
6.1 Package base . 66
6.2 Package data . 70
6.3 Package gui . 71

6.3.1 User Interface . 71
6.3.2 Building Visualization . 72
6.3.3 Graph Visualization . 75

6.4 Package markov . 77
6.5 Package pers . 80

6.5.1 ARS Sensor Database Connectivity . 81
6.5.2 Live-Data Interface . 82

6.6 Config Files and Resources . 84

7 Results and Discussion 85
7.1 Visualization of Prediction . 85
7.2 Graph Drawing . 87
7.3 Verification of Predictions . 87
7.4 Outlook . 91

A Config Files and Resources 93

B List of Classes 95

Literature 96

Internet References 99

v

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

ARS Artificial Recognition System

ASN.1 Abstract Syntax Notation One

BASE Building Assistance System for Safety and Energy efficiency

CPU Central Processing Unit

DB Database

DER Distinguished Encoding Rules

DBMS Database Management System

FSA Finite State Automaton

GUI Graphical User Interface

HBM Heart Beat Message

HMM Hidden Markov Model

I2C Inter-Integrated Circuit

ICT Institute of Computer Technology

ID Identification

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

JDBC Java Database Connectivity

MAP Maximum A Posteriori

MHz Megahertz

ML Maximum Likelihood

MM Markov Model

MSF Micro Symbol Factory

MVC Model View Controller

NFA Nondeterministic Finite Automaton

NFS Network File System

NP3 Neurology, Psychology, Psychoanalysis and Pedagogic

vi

NSM New Symbol Message

OOD Object Oriented Design

OOP Object Oriented Programming

PC Personal Computer

pdf probability density function

PIR Passive Infra-Red

PVP Probability of Viterbi Path

pmf probability mass function

SmaKi Smart Kitchen

SQL Structured Query Language

TCP/IP Transmission Control Protocol / Internet Protocol

UML Unified Modeling Language

URL Uniform Resource Locator

XML Extensible Markup Language

vii

1 Introduction

Due to continuous improvements in technology, electronic equipment becomes more powerful and
cheaper. This makes it possible to establish new fields of applications. Some of those new areas
are ubiquitous computing and ambient intelligence, however, some ideas exist quite a long time,
like described in [Wei91]. Technology is also getting smaller, this makes it possible to hide it
from the users, to make it invisible and incorporate it into our everyday’s surroundings. The
vision is, to have an intelligent environment which is able to fulfill tasks self-contained. Explicit
user interactions are not necessary any longer to execute everyday’s duties, however, the system
should offer support if wanted. One big research area for those new applications are building
automation systems. Future houses should make life more comfortable, safe and secure for their
occupants. To overcome this challenge, developments in many fields of computer technology are
required, like chip design, power supplies, sensors, actuators, communication technology, data
mining, data protection, data encryption, privacy, pattern recognition, artificial intelligence, and
many others.

Today’s and future automation systems will be equipped with more and more sensors for monitor-
ing and for controlling functionality [Rus03]. This brings along new challenges to the information
processing modules. To study these new arising problems the ARS project was founded, which
is described in Section 1.1.

This chapter gives an overview of the context this work is related to. The first section is a
motivation to the enclosing research project in the broader sense, which deals with basic problems
of today’s building automation systems. The second section describes the basic goals of this work,
finally the third section gives an overview about the approach to solve the given problems.

1.1 ARS Project

The Artificial Recognition System (ARS) project was founded at the Institute of Computer Tech-
nology (ICT) in the year 2000. Originally the institute’s focus was on research in field buses and
their applications. Due to rising complexity of modern building automation systems, traditional
approaches reached their limits. So the idea came up to find out what kind of methods nature
provides to deal with complex problems. This was the start of the ARS project [Die00].

As the ARS project introduction [8] says, the aim of the project was to use results from other
research areas than engineering: Studying the human brain is a task fascinating humans a fairly

1

Introduction

long time. However, especially the last 20 years the work of neurologists, psychologists, psycho-
analysts and pedagogics (NP3) brought amazing results. It was intimating to use that expertises
in the bionic field as well and to add them to traditional Artificial Intelligence (AI). Currently
NP3 hold that consciousness and human consciousness cannot be explained by classical methods
of mathematics.

As described in [PP05] there are two main fields of research within the ARS project, which are
ARS-PC (Perceptive Consciousness) and ARS-PA (Psychoanalysis). The field of ARS-PC deals
with the scientific theme, how to transform pure sensor data to images and scenarios which
can be used at a higher level information processing unit. The field of ARS-PA researches how
the Id-Superego-Ego model of Sigmund Freud [Fre23] can be used for technical concepts. This
model is much more complex than other models which are currently used in automation systems
[DLP+06].

Furthermore, there are two projects in the surroundings of the ARS which should be mentioned
for the sake of completeness. This is the Building Automation system for Safety and Energy
efficiency (BASE) project, described in [SBR05b, SBR05a]. This project uses statistical methods
to model the situations in a building. The second one is the Smart Kitchen (SmaKi) project,
described in [SRT00].

This work is related to the projects ARS-PC, BASE and SmaKi. The hardware which was
installed for the SmaKi project delivers raw sensor data which has to be integrated into a system;
statistical methods are used to build a model for making predictions. Inspired by the PHD-thesis
of Dietmar Bruckner [Bru07], which uses HMMs for modeling scenarios in buildings automation
systems, this work uses the approach of HMMs to make predictions of the behavior of persons,
using the forward algorithm.

1.2 Problem Statement

In the course of the ARS and the BASE project, the idea emerged, to use the approach of
HMMs for a statistical prediction of the behavior from persons in a building. As there is a room
equipped with sensors available from a former project (SmaKi), this room was chosen as the
object of interest. This room is the ICT’s kitchen, henceforth called SmaKi. So within this work
the term SmaKi denotes the kitchen of the ICT, i.e. the room with all the installed sensors, the
hardware which is necessary to read their values and the software to transmit the perceived data.

The assignment for this work can be subdivided into two tasks, the generation of a prediction
model on the one hand and the live-data visualization on the other hand.

Behavior Prediction Model

The goal is to model the behavior of a person inside the room with an HMM. Once a model is
generated, common algorithms can be used to make predictions of the expected behavior of the
person. The main focus is on the position data of a person, i.e. the task is to make predictions of
the next position the person will take. As the test room is equipped with several other sensors,
like closet door switches or a coffee machine vibration detection sensor, it should be analyzed if
such sensor data can be integrated in one HMM. So it would be possible to make predictions on
other activities than the movements, like the opening of the fridge or the preparation of coffee.
This presumes that these activities can be associated with a certain position.

2

Introduction

Real-Time Live-Data Visualization

The results of the system’s prediction should be visualized to the kitchen’s users, i.e. an appli-
cation which displays the actual situation in the room on a screen needs to be developed. This
should be done by showing the layout of the room in a (software-)window with all the occurring
events, i.e. events which are recognized by the system. The application gets the current sensor
values from the SmaKi’s hardware in real-time and displays the triggered sensors. From the
sensor values is calculated the number of persons which are currently present in the room and
the positions of those persons. However, these are estimations. The system displays icons at the
positions where it ‘believes’ that a person is. These positions are used for the Behavior Prediction
Model, mentioned above. This model is realized by an HMM, which can be depicted as a graph.
The graph should be visualized in a separate window, if wanted by the user. As the model calcu-
lates predictions, those values should be visualized as well, in case of predicted positions this is
an arrow from the person to the position, in case of other predictions this should be visualized in
some meaningful way. The window which is showing the room’s layout gets the data live from the
hardware and should display the person estimations and predictions in real-time. However, there
are no hard constraints of deadlines, only for usability the persons in the room should see what
the system actually recognizes. So this is a soft real-time system [Kop97]. The configuration of
the basic properties of the application should be easy, i.e. without recompilation of the software.

1.3 Outline

The environment of this project is described in Chapter 2 (“Environment”). This includes the
hardware which is used as well as software parts from former projects which are necessary for
this work.
Chapter 3 (“Hidden Markov Models”) gives an overview about the theory of Hidden Markov
Models (HMM). The structure of an HMM is described as well as some basic algorithms.
The Chapter 4 (“System Design”) presents a description of some problems which came to light
during the development process and the approaches to solve these problems. The creation of
HMMs from scratch is explained within this chapter.
The Chapter 5 (“Software Application Design”) gives an overview about the design of the software
application which was developed within this work.
The implementation of the software application described in the previous chapter is explained
in Chapter 6 (“Implementation”). Simple parts of the software implementation, which do not
contribute anything to a better understanding of the system, are omitted.
Finally the results of this work are depicted in Chapter 7 (“Results and Discussion”) and some
interpretations of these results are given too.
Appendix A (“Config Files and Resources”) shows examples of the configuration files which allow
to adapt the settings of the connections and to customize the visualization.
Appendix B (“List of Classes”) shows a list of all classes which are used to build the application.

3

2 Environment

This chapter attempts to give an overview of the technical implementation of the environment
for this project. At this work we focus on a higher level of data processing. It is not of interest
how the hardware works. However, it is necessary to understand the basic entities which are used
to accomplish this work. As one goal is to make predictions of a person’s behavior in a building,
we need an environment where this can be tested. A whole building would be an overkill and
far too complex and expensive, therefore it is restricted to one room. This room is the kitchen
of the ICT, called Smart Kitchen (SmaKi). For previous projects this room was equipped with
different sensors for observation of occurrences in the room. Section 2.1 describes this room in
detail as far as it is necessary for this project. This includes the layout and the different types of
sensors which are installed. Information about the sensors is stored at the ARS Sensor Database
which is described in Section 2.2. This database contains information about the mounted sensors
as well as values retrieved from these sensors. Whenever the recognition system is running, each
retrieved sensor value is stored at this database. The second goal of this work is to make a live
data application. For this reason it is necessary to retrieve sensor data in real-time. However,
this is not very strict for this work, so it is a soft real-time system. Nevertheless a live-data
connection to the SmaKi’s recognition hardware is required. This part is described in Section
2.3. Figure 2.1 shows an overview of the environment in concerning this work. SmaKi Prediction
Application and Visualization are part of this project.

Visualization

Room
Sensor

 Database
Recognition
Hardware

LiveData Sender

SmaKi Prediction
Application

Figure 2.1: Environment Overview

4

Environment

2.1 Smart Kitchen

The Smart Kitchen Project (SmaKi) was started in the year 2000 at the Institute of Computer
Technology (ICT) [7] in order to evaluate future aspects of building automation. The original
intention was to elaborate field bus systems for smart applications in future buildings as well as
the integration of many different sensors. The term SmaKi is used for naming the room where
this project was implemented as well, since this is the kitchen of the ICT. The ICT is not a normal
household, for this reason there is some office stuff in the kitchen, like a copier and bookshelfs1.
The server cabinet contains some hardware of the SmaKi, for example the Octobus, described in
Section 2.3.1.

Already for former projects, the room was equipped with several different sensors, which are
tactile floor sensors, movement detection sensors, switch sensors, a vibration detection sensor and
a camera. A description of the sensors of the SmaKi is given in Section 2.1.1. The camera is not
used for this project. Figure 2.2 shows a picture of the SmaKi without floor cover. What looks
like a black mat on the floor are the tactile floor sensors.

Figure 2.2: Picture of Smart Kitchen

This section describes the technical implementation of the SmaKi as far as it is necessary for this
work, i.e. the room’s layout and the sensor types. A detailed description of the SmaKi project is
given at [SRT00]. As mentioned above, the interfaces to the SmaKi’s hardware environment are
the ARS Sensor Database (see Section 2.2) and the Octobus (see Section 2.3.1).

2.1.1 Layout

To get an overview of the installed sensors, this section describes the layout of the SmaKi. It
may seem surprising, finding a copier and a bookshelf in a kitchen, this is because the room was
not only used as a kitchen. For the project this has no effect. Figure 2.3 shows the layout of the
SmaKi. At the left hand side there is the door, on the right a shelf. At the bottom (from left
to right) there is a shelf, a copier and a bookshelf. On the top (again from left to right) there is
the kitchenette with a coffee machine, a fridge, a server cabinet and a desk. The coffee machine

1In August 2008 there were made some modifications, so the office stuff has gone, but this project was started
before.

5

Environment

and the fridge are most frequently used appliances in an office kitchen. In the server cabinet
there is some hardware for the sensor evaluation and the computer for the data processing. The
application, which was developed as a practical part of this work, is also running on this machine.
On a screen in the server cabinet the people in the kitchen can see how the kitchen’s system
works, i.e. a visualization is running there. All up to here mentioned objects are static, i.e. they
don’t move around. This is a kind of a priory knowledge. At the center of the right third of
the room there are a table and some chairs. These are moveable objects, however, they have no
sensors and therefore they cannot be detected directly2. These objects can only be recognized by
the sensors of the SmaKi, so they are just objects. A detailed discussion of this problem is given
in Section 4.2.

Figure 2.3: Layout of Smart Kitchen

As shown in Figure 2.3 there are three different kinds of sensors3: Several tactile sensors on the
floor, three movement sensors, mounted at the walls and three so called switch sensors. These
switch sensors are: A door switch, indicating if the door is open or closed, a fridge switch with
the same functionality like the door switch and a coffee machine switch, which is indicating if the
coffee machine is working. To be correct it should be mentioned that the last one is a vibration
detection sensor, however, for this work this distinction is not necessary. The three movement
detection sensors have a sphere of action which is indicated by the lines between the sensors, but
be aware that this is only an estimation. The placement of the tactile sensors is also shown (the
small, gridded rectangles). Note that in the area of the entrance there are no such sensors.

The positions of the sensors shown in Figure 2.3 are the real positions of the sensors taken
from the ARS Sensor Database (see Section 2.2). To get the tactile sensor’s identifications
(IDs) corresponding to the layout, a helper function of the application can be used. When the
application is started, select “Test/Test1” from the menu of the GUI (see Screenshot 6.1).

2In the implementation of the visualization there is a static object table, too.
3which are used for this project

6

Environment

2.1.2 Tactile Sensors

The floor of the SmaKi is equipped with 97 tactile sensors. The alignment of the sensors can be
seen at Figure 2.3, a configuration schema for a single sensor is shown in Figure 2.4. A tactile
sensor gives a signal true if some pressure is performed, i.e. if a person stands on it. The sensors
have a size of 600 x 175 mm. They are described by three points, like shown in Figure 2.4. The
center position c can be calculated by equation 2.1 using the three4 positions pi.

c.x = max(pi.x)+min(pi.x)
2 for i = 1, 2, 3

c.y = max(pi.y)+min(pi.y)
2 for i = 1, 2, 3

(2.1)

Due to protection of physical influences the tactile sensors are placed between the blank bottom
and the floor covering. Although this is a necessity it makes some problems, because the floor
covering distributes the pressure performed by a person. Sometimes this results in erroneous
triggering of sensors, especially at the border of the covered area.

Figure 2.4: Tactile Sensor with Positions

2.1.3 Movement Sensors

In the SmaKi there are three Passive Infra-Red (PIR) motion detection sensors. They are called
passive because they do not emit energy, but only observe the IR-spectrum of their environment.
PIR sensors detect changes in the infrared spectrum. For this reason they can detect movements
of persons since the body’s warmness belongs into the IR spectrum. If the changing rate is beyond
a threshold, the sensor is triggered. Because of the evaluation of changing rates a PIR sensor
cannot detect very slow movements and accordingly IR emitting sources which are too far away.

The PIR sensors of the SmaKi are modeled with a pyramid-like field of perception [Goe06]. Thus
this field is described by four points. Point one, the apex of the pyramid, is the point where the
sensor is mounted. The points (2,3,4) define a rectangle as it is described for the tactile sensors.
This rectangle is the base of the pyramid.

As experiments have shown, this field of perception is not very exact. To avoid using a 3D model
of the SmaKi room in the software implementation and the given inexactness of the pyramid
shape, a simplified calculation of the sphere of action for the movement sensors is used: The
sphere of action is approximated by a simple 2D-rectangle.

4This ensures a correct calculation, independent from the order of the positions in the ARS Sensor Database.

7

Environment

2.1.4 Switch Sensors

The door, the fridge and the cabinets5 are equipped with contact switches which indicate the
status of their door. The status can be opened or closed, thus it can be represented by a boolean
value whereas true means opened and false means closed. A vibration detection sensor, mounted
at the coffee machine indicates if it is working. This is a boolean value too (true: coffee machine
is working; false: not working). Combined, these sensors are called switch sensors, since a
distinction of how the sensors work physically is not necessary at the level of abstraction we focus
on. Switch sensors are defined by only one position which is the location where they are mounted
in the room. The semantics of a switch sensor is given by the sensor itself, e.g. the fridge door
contact switch indicates if the fridge is open or closed.

2.2 ARS Sensor Database

As known from Subsection 2.1.1 we have a room equipped with a high number of sensors. A
question might be, where the important information about the sensors can be found. For example
we have to know which type of sensor is located at which position in the room. Moreover sensors
can have additional properties which are important to understand the information given by the
sensor. A further question is, which type of data gives a sensor, i.e. its value domain. All this
information is stored in a database. This is called static data, since once the room’s system
implementation is finished, this data is never changed, except in case of broken hardware or for
maintenance. This is information of how the system perceives its environment. A description
of this information is given in Subsection 2.2.1. Subsection 2.2.2 describes how the information
coming from the sensors is stored. This is called “sensor data”, the data which is collected when
the system is running, i.e. what the system perceives. Finally, Subsection 2.2.3 gives an overview
to the database management system which is used for the implementation.

In terms of reusability for other rooms or even buildings a relational database schema was de-
veloped to store such sensor information. This is the so called ARS Sensor Database. Figure
2.5 shows an entity relationship diagram of this database schema. All relations are one-to-many
relations, where ‘one’ is indicated by the key-symbols (because there are foreign keys at those
tables) and ‘many’ is indicated by the infinity symbol ∞.

2.2.1 Static Data

This Section gives an overview about the static data in the ARS Sensor Database. Static data
is information which doesn’t change after it is entered once. This is for example the number
of sensors, the types of sensors and their properties. Only in case of a broken sensor this data
will need a change, so changes of static data are only for maintenance, but not for operation.
However, this static data is a necessity for running the SmaKi application since the information
about the sensors comes from the database.

The database schema was designed to be flexible and to be able to handle several rooms, buildings,
sensortypes etc. The design of the database is shown in Figure 2.5. Table 2.1 describes the
relations, i.e. the tables of the database6.

5However, the switches of the cabinets are not connected.
6The prefix“ARS SEN” of all the tables is omitted here.

8

Environment

ARS_SEN_DATA_BIN
ID

senID

objID

envID

value

TimeStamp

simulationRun

ARS_SEN_DATA_FLT
ID

senID

objID

envID

senDataID

value

TimeStamp

ARS_SEN_DATA_INT
ID

senID

objID

envID

senDataID

value

TimeStamp

ARS_SEN_DATADEF
ID

SensorDefID

Description

Unit

ValueType

ValueRange

TableName

ARS_SEN_DEFINITION
ID

DESCRIPTION

ARS_SEN_ENVIRONMENT
ID

DESCRIPTION

ARS_SEN_OBJECT
ID

envID

Description

ARS_SEN_PROPDEF
ID

SensorDefID

Description

Unit

ValueType

ARS_SEN_PROPERTY_INT
ID

senID

objID

envID

propID

value

ARS_SEN_SENSOR
ID

defID

objID

envID

Description

ARS_SEN_TYPEDEF
ID

DESCRIPTION

1-1

Figure 2.5: Entity Relationship Diagram of the ARS Sensor Database

The ARS Sensor Database is very powerful, however, for this work some attributes are constant.
For this reason there could be made some simplifications which make the SQL-statements in the
implementation part easier and shortens their execution time.

Simplification Assumptions

These assumptions are based on the given configuration of the SmaKi at the time of this project.

Since we have only one room (and this room belongs to one building) there is only one environment
and one object. In other words, these values are constant. So we don’t care about these tables
and their entries for a sensor, respectively. As a further consequence the field ID in the table
SENSOR becomes primary key.

9

Environment

Table 2.1: ARS Sensor Database Relations

ENVIRONMENT This is for example the building where the sensors are
mounted.

OBJECT An environment can have several objects, e.g. a building
has multiple rooms.

SENSOR A sensor belongs to an environment and a room. It can be
identified by their IDs and a sensor ID. So the sensor ID does
not need to be unique in a global sense, but only locally for
the room of interest.

TYPEDEF The definition of data types, like boolean, integer, float. It
is used for the sensors’s properties as well as for the sensor’s
data.

DEFINITION Stores which kind of sensor is available. For example Move-
ment, Switch, Tactile.

PROBDEF Each type of sensor has specific properties. For example a
tactile sensor has three positions and a position has three
coordinates (x, y, z).

PROPERTY INT This table stores the properties of a concrete sensor. For
example: The door switch sensor is at position x=1850 y=0
z=2000.

DATADEF The data given by a type of sensor has a value domain, like
switch sensors return boolean values.

DATA {*} For dynamic data see Section 2.2.2.

All sensors in the database have a boolean value domain, in the database they are called binary
sensors or binary data in case of their output is supposed. So the table DATADEF is not needed.

All sensor-type’s properties are positions. A position has three coordinates which are given in
millimeters. This data is stored as an integer datatype. So we have only integers for the properties.
Together with the assumption about the value domain of the sensor’s data, the table TYPEDEF
can be neglected, since now all used datatypes are known.

However, the sensor database does not only contain this static data but there is also the possibility
to save dynamic data there. The term dynamic data addresses the values of the sensor when the
SmaKi’s recognition system is running. This means that it is possible to save every single sensor
value.

2.2.2 Dynamic Data

As mentioned above, it is also possible to save every single sensor value during the SmaKi’s
recognition system is running, this is the dynamic data.

As we know from Section static data, every sensor can be identified by the sensor’s ID7. Since all
used sensors of the SmaKi are boolean, we need only the table ARS SEN DATA BIN. The values in
this table have positive logic, so one represents true and zero represents false. For each detection
there is created a sensor value, so each sensor value is represented by a row in this table.

7the primary key at the table “SENSOR” in the database

10

Environment

Again we make a simplification assumption: Since we do not work with simulations the value
of the field simulationRun is constant. Therefore it can be neglected and the field ID becomes
primary key (instead of ID and simulationRun).

A whole data set entry is composed of the columns shown in Table 2.2.

Table 2.2: Columns of Table SEN DATA BIN

ID the primary key
senID foreign key to the field ID of table sensor
objID not used since simplification assumption about static data
envID not used since simplification assumption about static data
value the value of the sensor (integer)
TimeStamp a timestamp when the value was retrieved
simulationRun not used since simplification assmuption about dynamic

data

As can be seen in Table 2.2 we only need three entries of one row, therefore a sensor value can
be represented by a triple (Sensor ID, value, TimeStamp).

Dynamic data is added to the database whenever the recognition system is forced to do so. This is
when the sensor value observation system is started with the appropriate parameter. See Section
Octobus 2.3.1 for detail.

2.2.3 Database Management System

A Database Management System is:

“The software that manages and controls access to data in a database. In a database
management system (DBMS), the mechanisms for defining its structures for stor-
ing and retrieving date efficiently are known as data management. A database is a
collection of logically related data with some inherent meaning [GrH07].”

There are a lot of vendors for DBMSs. When the ARS Sensor Database was built, a DBMS of the
company Oracle8 was used. Due to the fact that it is no good idea to use original data during the
developing process, it makes sense to have a clone of the ARS Sensor Database. Furthermore, in
our application it increases performance if the database (DB) is locally, this is a benefit which is
of interest especially during the developing process, because sometimes huge amounts of data are
required. Since my experiences with Microsoft’s DBMS, the circumstance that a ‘light’ version
of it is available for free and the easy installation process, it was decided to make a clone of the
original Oracle DB to a Microsoft9 DB. This is the reason for the ability of the application to
deal with different DBMSs.

8www.oracle.com
9www.microsoft.com

11

www.oracle.com
www.microsoft.com

Environment

Oracle DBMS

As mentioned above, the original ARS Sensor Database is based on Oracle. For accessing Oracle
DBs an open source tool called iSQL-Viewer (IndependentSQL-Viewer) was used. This tool is
based on Java, and it is available for free at sourceforge.net [9]. The project description says:

“iSQL(IndependentSQL)-Viewer is a JDBC 2.0-compliant application that is designed
to exploit JDBC Features for all compliant drivers. Support for Interactive Transac-
tions, Running Batches, Schema Viewing, and support for various import and export
filters.”

For connecting to an Oracle DB, an Oracle JDBC (Java Database Connectivity) driver is nec-
essary. To get access to the ARS Sensor Database, a so called service has to be defined, which
includes the following data:

Table 2.3: iSQL-Viewer Service Configuration

Connection Name Example Name
JDBC-Driver oracle.jdbc.driver.OracleDriver
JDBC-URL jdbc:oracle:thin:@jupiter.ict.tuwien.ac.at:1521:ict
Username ARS SENSORS

The line JDBC-URL consists of the following parts:

Table 2.4: Connection configuration for Oracle DB

driver prefix jdbc:oracle:thin:@
hostname jupiter.ict.tuwien.ac.at
port 1521
sid ict

Sid is the name of the database within an Oracle-DBMS, since a common DBMS can manage
several databases. The path to the JDBC-driver has to be added at the Resources tab.

Microsoft DBMS

For this project the Microsoft SQL Server 2005 Express Edition was used. This is a ‘light’ version
of the Microsoft’s DBMS. It is available for free and can be downloaded from Microsoft’s hompage.
Simple and small Microsoft databases (as we have) consist of two files, which can be copied and
attached to a new instance of SQL Server 2005 (Express) very easily. For maintainance of this
product the tool Microsoft SQL Server Management Studio Express is necessary. It is available
for free as well. Note that currently there is no way to write new sensor values automatically to a
Microsoft DB, since this DB was designated for development only. It is essential to choose Mixed
Authentication Mode when installing the SQL Server 2005 product, because otherwise it is not
possible to gain access with a Java application. The parameters as described for the Oracle DB
are at the administrator’s choice. The default port for TCP/IP connections is 1433, however,
this service is disabled by default within the Express edition10.

10Microsoft Knowledge Base Article 914277

12

Environment

2.3 Data Gathering Modules

This section describes the interface between the kitchen’s hardware and the SmaKi application’s
software. For the hardware part an embedded Linux system is used. The application’s software
should be able to run at a standard PC. Subsection Octobus describes the hardware which collects
the data of every single sensor, Subsection SymbolNet describes the communication protocol which
is used for sending data from the embedded system to the PC.

2.3.1 Octobus

All sensors (except cameras) from the SmaKi are connected to an embedded system platform.
This is a product of the company haag.cc R©11 and it is called Octobus R©. The core of the Octobus
is an IBM12 PowerPC

TM
CPU module operating at 333 MHz. As operating system an embedded

Linux is used. The sensors are attached to extension boards which are connected with the platform
by an I2C bus. Each extension board features 12 digital inputs and 12 digital outputs, the bus
system can address up to 16 board, so in total the Octobus supports 184 inputs/outputs. The
connectivity to a standard PC is given by two ethernet ports. Figure 2.6 shows an image of the
Octobus.

Figure 2.6: The Octobus R©

For transmission of sensor data the micro symbol factory (MSF) is implemented at the embedded
platform. The MSF is the starting point in the SymbolNet communication protocol which was
developed for the ARS System. A description of SymbolNet is given in Section 2.3.2. Figure 2.7
shows a schematic illustration of the SmaKi hardware/software interface.

To make the software development for the target system easier, the filesystem of the Octobus
is hosted on a remote PC. This is a linux machine running a network file-system (NFS) server.
All necessary tools and the development software for the embedded system is available at this
PC. Connectivity is given by a TCP/IP network. Furthermore, there is a proxy daemon process
running at the remote PC which allows the forwarding (and possible transformations) of the
Octobus’s sensor data to the ARS sensor database. The Octobus itself, i.e. the hardware, is
located at the server cabinet in the SmaKi.

11www.haag.cc
12www.ibm.com

13

www.haag.cc
www.ibm.com

Environment

Kitchen

Octobus

Remote PC

Database

Figure 2.7: SmaKi Hardware/Software Interface

Hence, for correct data recording three systems have to be online:

• Octobus hardware

• Remote PC

• Database Server

If data recording is not necessary but only data recognition, the database server is not necessary,
however, since the Octobus’s file system is hosted on the remote PC, this PC is a necessity. The
Octobus can be accesssed by a secure shell.

The software module running at the Octobus which collects and preprocesses all sensor informa-
tion is called sensaware and can be started via command line. Furthermore, this software allows
sending this data to a TCP/IP network. The frequently used command line arguments for the
sensaware program are described in Table 2.5.

Example

We want to send sensor data to an application on the host 128.131.80.119 (port 59999). Moreover
the sensor data should be stored in a database at a server 128.131.80.16713 (port 2222). The
name of the database within the DBMS is ARSNEW, the database username username and the
password password. This can be done by typing the follwing command line at the Octobus:

13The real database might be on another server, this is only the address where the proxy daemon is running.

14

Environment

Table 2.5: Arguments for sensaware

-help Get help on the target system.
-c 〈v〉 Read the sensors ‘v’ times. Default value is 0, i.e. endless mode.
-F 〈IP:port〉 Forward to specified host.
-dburl 〈url〉 Write to database with specified connection string ‘url’. If no argument

of this type is specified, a default database is used. To avoid writing to
any database, write ‘-dburl none’. Example for ‘url’:
128.131.80.167 2222 oracle:uid=user/pass@dbname.

sensaware -c 0 -dburl 128.131.80.167 2222 oracle:uid=username/password@ARSNEW
-F 128.131.80.119:59999

A more detailed description of the sensaware parameters can be found at [Goe06].

2.3.2 SymbolNet

At the SmaKi’s hardware/software interface the software package SymbolNet is used for trans-
mission of sensor data. It was developed at the ICT for the ARS project to allow symbolic data
processing. While SymbolNet is quite powerful here only a subset of the functionality is used
and only the used parts are described in the following. A complete description can be found at
[Hol06].

The three main parts of the SymbolNet framework are symbol container, symbol messages and
symbol beans14. Relevant data for a given context is enclosed in beans. Beans are stored and
manipulated in containers. These containers also provide functionality for creating, updating and
deleting of beans. Messages are used for communication between the containers. The messages
are transmitted by using the DER (Distinguished Encoding Rules) coding schema. This coding
schema is defined in ASN.1 (Abstract Syntax Notation One) [Dub00].

The source of real world information is sensor data. The first processing step is done at the so
called microsymbol factory (MSF) [Pra06]; it creates microsymbols based on sensordata. In this
work only these microsymbols are used. So a MSF is implemented at the sender’s site of the
communication, in our case, this is the Octobus.

Messages

Since only microsymbols are used, the Octobus needs only two types of messages:

• New Symbol Message (NSM): When an NSM is received by a container, a new symbol is
generated. All relevant data is inside the NSM. Each occurence of a modification of a sensor
value results in sending an NSM with the sensor’s ID, the new value and the timestamp
when the modification occured.

• Heartbeat Message (HBM): This is designated for time synchronization of the communica-
tion partners. HBMs are sent every 100 milliseconds. They do not contain any additional
data.

14For better readability the prefix ‘symbol’ is omitted at this paragraph.

15

Environment

Application Programming Interface

SymbolNet is implemented in Java. This excerpt of the Application Programming Interface (API)
gives an overview to the most important functions for using the SymbolNet-package.

public TcpSender(InetAddress address, int port) throws IOException
Establishes a connection to the given address and port and starts sending messages. Pro-
gram flow remains in this constructor until connecting is successful or an IOException
occurs.

public TcpReceiver (InetSocketAddress address, boolean waitForPeer)
throws IOException
Listen at the specified port (which is part of the InetSocketAddress) for incoming con-
nections. If waitForPeer is true, program flow remains in this constructor until a peer has
connected successfully.

public MessagePoller TcpReceiver.getPoller()
To get the received messages a MessagePoller is required.

Message MessagePoller.PollMessage()
Returns a message if there is one, null otherwise.

Message MessagePoller.PollMessageBlocking() throwsInterruptedException
Returns a message; waits until a message is available (or exception occured).

16

3 Hidden Markov Models

A Hidden Markov Model is a statistical model which can be described by two random processes.
One process is assumed to be a Markov process which is responsible for transitions between
states. These states are not directly visible. The other random process, which is influenced
by the current state of the model, generates output symbols. Only these output symbols can be
observed. However, since it is known that states influence the probability distribution of symbols,
the sequence of output symbols allows conclusions to the sequence of states.

In comparison to the room which should be observed, there are some similarities: From the point
of view of a computer system, there exists a kind of inner states of the room, i.e. the people inside
the room. These people are not directly visible, only the triggering of sensors can be observed,
but we know that this is influenced by persons. So it is possible to draw conclusions to the
inner state from the observed sensor emissions. As we have a model of the inner state, it can
be calculated what will happen next in the model. This abstract prediction is transformed to a
prediction in the real world. Thus HMMs seem to be a promising approach to achieve the goal
of predicting the behavior of persons in buildings. For this reason short introduction to HMMs
is given here.

3.1 Definitions

Before introducing the theory of HMMs, some basic principles are explained first. Thus in this
section some required definitions are depicted. These definitions are described in the following.

Stochastic Process

A stochastic process is a mathematical description of a system which generates temporally ordered
random variables. A formal definition is given in [Doo96]:

A stochastic process is a family of random variables {x(t, •), t ∈ J } from some prob-
ability space (S,S, P) into a state space (S′, S′). Here, J is the index set of the
process.

17

Hidden Markov Models

Markov Process

As is defined at [Wei99]:

A random process whose future probabilities are determined by its most recent values.
A stochastic process x(t) is called Markov if for every n and t1 < t2 . . . < tn, we have

P (x(tn) ≤ xn|x(tn−1), . . . , x(t1)) = P (x(tn) ≤ xn|x(tn−1)).

This is equivalent to

P (x(tn) ≤ xn|x(t)∀t ≤ tn−1) = P (x(tn) ≤ xn|x(tn−1)).

Markov Chain

A Markov Chain is a Markov Process with a discrete state space. Markov Chains can be discrete
or continuous, depending on their parameter space. A sequence of random variates Xt

P (Xt = j|X0 = i0, X1 = i1, . . . , Xt−1 = it−1) =
= P (Xt = j|Xt−n = it−n, Xt−n+1 = it−n+1, . . . , Xt−1 = it−1) with 0 < n ≤ t

is called a Markov Chain of nth order. If the random variates Xn take discrete values it is a
discrete Markov Chain. Most common are discrete Markov Chains of first order, sometimes with
Markov Chain this special case is associated. Assume random variates Xn that take discrete
values a1, . . . , aN then a discrete Markov Chain of first order is a sequence of

P (xn = ain |xn−1 = ain−1 , . . . , x1 = ai1) = P (xn = ain |xn−1 = ain−1)

For short this is called a Markov Chain1 [Pap84].

3.2 Markov Model

A Markov Model (MM) is a Markov Chain with a finite state space. For this reason an MM can
be described by a directed graph, extended by an output alphabet. This is very similar to a finite
state automaton (FSA) with the difference that the transitions in an MM are represented by prob-
abilities. So it is a kind of probabilistic automaton. A probabilistic automaton is a generalization
of a non-deterministic finite automaton (NFA), because of the transition probabilities, of course.
Each state produces some output symbol which is an element of the output symbol alphabet Σ.
According to the definition of Hidden Markov Models in [RJ86], a MM can be described by a
quadruple λ = (S,A, π,Σ):

S = {S1, . . . , Sn} set of states
A = {aij} transition probability matrix
π initial state distribution vector
Σ output alphabet

1This definition is used within this work.

18

Hidden Markov Models

As known from graph theory [BK96] a transition is a pair of states2. In a directed graph, this is
an ordered pair. The set of such pairs can be represented by a (n× n)-matrix, called adjacency
matrix A, where the transition pair (Si, Sj) is represented by an entry at row(i) and column(j)
of the matrix. Because we have transition probabilities these entries take values between zero
and one, i.e. (aij ∈ [0, 1], aij ∈ R).

We don’t want to focus on trivial models, so we assume that all sets are not empty and that
the norm of each row- and column vector of the transition matrix A is non-zero i.e. no state is
isolated.

Due to the modeling by probability distributions, there also is no well defined start state as known
from FSAs. Instead, here a distribution is given, denoting for each state the probability for being
the start state.

An output alphabet is a finite set of output symbols.

S1 Sn

Si

t1n

t1i tin

tni

tn1

ti1

t11 tnn

tii

Figure 3.1: A Markov Model with n States.

Assume a synchronized process. With each step a transition is taken and every state which is
visited emits a symbol. So the MM generates a random sequence of symbols. Figure 3.1 shows
an MM with n states S and (n× n) transitions t.

In some cases such a model is not sufficient, especially if the states are not known. If there is no
idea of the driving force behind a process, an MM can’t be built. For such problems a Hidden
Markov Model (HMM, see Section 3.3) could be an appropriate answer.

2States are corresponding to vertices and transitions are corresponding to edges.

19

Hidden Markov Models

3.3 Hidden Markov Model

A Hidden Markov Model (HMM) is a Markov Model (MM) extended by an emission probability
distribution over the output symbols for each state. An HMM can be defined [RJ86] by a quintuple
λ = (S,A,B, π,Σ) where

S = {S1, . . . , Sn} set of states
A = {aij} transition probability matrix
B = {b1 . . . , bn} set of emission probability distributions
π initial state distribution vector
Σ output alphabet

The terms S, A, π, Σ are equivalent to the MM (see Section 3.2). B is a set of probability
distributions. Due to the fact that Σ is an alphabet and therefore a finite set, B is a probability
mass function (pmf). However, there are HMMs conceivable, with an infinite set of output
symbols. In that case B would be a probability density function (pdf).

S1 Sn

Si

Em

EjE1

e11

ei1

en1 e1j
enj

eij

enme1m

eim

Figure 3.2: A Hidden Markov Model with n States and m Emission Symbols.

Figure 3.2 shows an HMM with n states (S) and m emission symbols (E). Emission probabilities
are denoted by eij . For better view, the transitions are grayed out. In such a model the emission
probabilities can be represented by a (n×m) matrix B with values (bij ∈ [0, 1], bij ∈ R).

This model is called Hidden Markov Model because the states are not visible. An observer can
only see a sequence of output symbols. This sequence allows conclusions to the sequence of
states. The recognition of a specific output symbol at a current instant by an observer is called
an observation.

20

Hidden Markov Models

The three problems for HMM’s

As written in [RJ86] there are three key problems for HMMs:

Given the observation sequence O = o1, . . . , oT and the model λ = (S,A,B, π,Σ) we can elaborate

1. Evaluation: How to compute Pr(O|λ), the probability of the observation sequence.

2. Decoding: How to choose a sequence of states I = i1, . . . , iT which is optimal in some
meaningful sense.

3. Learning: How to adjust the model parameters (A,B, π) to maximize Pr(O|λ).

The evaluation problem is about how to compute the probability that the observed sequence was
produced by the model. In other words, how to “score” or evaluate the model concerning the
given observation sequence. This is of interest if we have several competing models. An efficient
method to solve this problem is the forward algorithm which is described in Section 3.3.1.

The decoding problem is an attempt to uncover the hidden part of the model. The goal is to
calculate the sequence of states which fits best to the given sequence of observation. This is
a typical estimation problem. It can be solved by the Viterbi algorithm, which is described in
Section 3.3.2.

The learning problem is about how to optimize the model parameters in a way that an observation
sequence is described best. In this case the observation sequence is called a training sequence.
The learning problem can be split in two subproblems: One is structure learning, which is about
appointing states and (initial) connections (i.e. transitions) between them. The other one is para-
meter estimation, which means adjusting the transition and emission probability distributions.
The second part of the learning problem can be done by the Baum-Welch algorithm, which is
described in Section 3.3.3. For the fist part of learning (structure learning) there is no general
solution available. Finding an initial model is very close to the real world phenomena which
should be described by the HMM.

3.3.1 Forward Algorithm

Consider a scenario where we have one sequence of observations O (of length T) and several dif-
ferent models λ. It is obvious that someone would like to know, which model is most appropritate
generating this sequence. To make them comparable we can calculate the probability Pr(O|λ).
The most straightforward way doing this is through enumerating every possible state sequence I
of length T , calculate the probability of the observation sequence O for this specific I, calculate
the probability of I itself, build the joint probability of them and summing up over all possi-
ble state sequences. This algorithm is unfeasable even for small models (e.g. for a model with
N = 5 states and a sequence of length T = 100 the calculation would need 2 · 100 · 5100 ≈ 1072

computations [RJ86].

21

Hidden Markov Models

Forward Probability

However, this problem can be solved efficiently3 by the forward algorithm. First of all we define
a forward variable or forward probability αt(i) as

αt(i) = Pr(O1, O2, . . . , Ot, it = qi|λ)

This is the probability of a partial observation sequence with length t, for state qi, at time t,
given the model λ. αt(i) can be calculated inductively by

1. α1(i) = πibi(O1) 1 ≤ i ≤ N

2. for t = 1, . . . , T − 1; 1 ≤ j ≤ N

αt+1(j) =

[
N∑

i=1

αt(j)aij

]
bj(Ot+1)

3. P r(O|λ) =
N∑

i=1

αT (i)

At step 1 the forward probability (for each state qi) is initialized with the joint probability of
state qi and the initial observation O1. At step 2 the inductive calculation is shown: Each state
qj can be reached from several other states qi if the transition probability aij is not 0. This
transition probability together with the forward probabilty of the source state is summed over all
incoming transitions. This result together with the probability, making the observation Ot+1, is
the forward probability for this state (qj) at time t+ 1.

Finally the sum of the terminal forward variables αT (i) gives the designated value Pr(O|λ). With
this algorithm the computation requires on the order of N2T calculations (e.g. the example from
above with N = 5 states and T = 100 observations will need about 3000 computations [RJ86].

3.3.2 Viterbi Algorithm

To solve the decoding problem the Viterbi algorithm can be used. The goal is to find the most
probable sequence of states (which are hidden, of course) for an observation sequence O in an
HMM λ. This is quite similar to the evaluation problem and as known from the forward algorithm,
the simple straightforward approach is not feasable in terms of computation time. To make
this problem solvable we define a Viterbi path probability (PVP) δt(i), which is the probability
reaching a particular state along the most likely path. The difference to the forward probability
αt(i) is that αt(i) sums up all path probabilities for the given state whereas δt(i) is the probability
of the most likely path (to the state i, for an observation sequence of length t).

The goal of the Viterbi algorithm is to find the best path through a model (the Viterbi path)
rather than calculating the probability of it, however, the latter is obviously an essential part.
Therefore the predecessor state Ψt(i) of the current maximum has to be stored at each step.
Calculating the Viterbi path requires the following four steps:

3in terms of computational complexity theory

22

Hidden Markov Models

1. δ1(i) = πibi(O1) 1 ≤ i ≤ N

Ψ1(i) = 0

2. for 2 ≤ t ≤ T 1 ≤ j ≤ N

δt(j) = max
1≤i≤N

[δt−1(i)aij]bj(Ot)

Ψt(j) = arg max
1≤i≤N

[δt−1(i)aij]

3. P ∗ = max
1≤i≤N

[δT (i)]

i∗T = arg max
1≤i≤N

[δT (i)]

4. for t = T − 1, T − 2, . . . , 1

i∗t = Ψt+1(i∗t+1)

The initialization step (step 1) is the same as in the forward algorithm. Predecessors are undefined,
of course.

In step 2 of the algorithm for each state j of the model the PVP is calculated: Multiply the
predecessors PVP and the probability of transition (predecessor → current state j) for each
possible predecessor and take their maximum. Together with the probability of the current
observation Ot for this state, this gives the current PVP. Do this for each observation of the given
observation sequence. As mentioned above, we have to remember the predecessors, this can be
done by taking the value of index i of the maximum function for which the maximum of the
expression is returned. Since the emission probabilities are all the same within the maximum
function they are not necessary to be computed4.

Step 3 shows the calculation of the PVP P ∗(O|λ) of the model λ with a given observation sequence
O and its correspondig state i∗T . P ∗ is the maximum of the PVPs from all states at t = T , i.e.
the whole observation sequence. The corresponding index i denotes the final state of the Viterbi
path (as in step 2).

To get the whole Viterbi path it is necessary to step back the stored states, as shown in step 4.

3.3.3 Baum-Welch Algorithm

The Baum-Welch algorithm is an attempt to solve problem three of HMMs which is probably,
the most difficult one. This is the learning problem, i.e. a method to adjust the model’s (λ)
parameters to maximize the probability of a given sequence of observations O. There is no
general way to do this. All that can be done is to locally optimize P (O|λ). For this task some
more variables are necessary. One is the backward probability βt(i).

4When implementing in practice it is likely to do the two calculations of step 2 at once.

23

Hidden Markov Models

Backward Probability

This is the probability of a partial observation sequence from t+ 1 to T and it is quite similar to
the forward probability αt(i), but starting from the end. It is defined as

βt(i) = Pr(Ot+1, Ot+2, . . . , OT |it = qi, λ)

and can be calculated by using the following induction:

1. βT (i) = 1 1 ≤ i ≤ N

2. for t = T − 1, . . . , 1 1 ≤ i ≤ N

βt(i) = bik

N∑
j=1

aijβt+1(j)

Together with the forward probability αt(i) from above we can define the probability of being in
state qi at step t (with O and λ) as Current State Probability.

Current State Probability

γt(i) = Pr(it = qi|O, λ)

=
αt(i)βt(i)
Pr(O|λ)∑N

i=1 γt(i) = 1 due to the normalization factor Pr(O|λ). So it is a conditional probability.

Current Transition Probability

This is the probability of being in state qi and making the transition (qi → qj) at the next step,
with the given observation sequence O and the model λ. It is defined as

ξt(i, j) = Pr(it = qi, it+1 = qj |O, λ)

Together with the current state probability we can write this as

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

Pr(O|λ)

On the other hand, the current state probability γt(i) is the probability of being in state qi at t;
so we can relate γt(i) to ξt(i, j) by

γt(i) =
N∑

j=1

ξt(i, j)

24

Hidden Markov Models

If we sum γt(i) over the observation sequence index t, we get the number of times the state qi is
visited. If the last index T of the sequence is excluded, we get the expected number of outgoing
transitions from qi. Analogical we can use ξt(i, j) to get the expected number of transitions from
state qi to state qj .

T−1∑
t=1

γt(i) = expected number of outgoing transitions from state qi

T−1∑
t=1

ξt(i, j) = expected number of transitions from state qi to state qj

With these definitions the Baum-Welch method can be described. This method changes the
models’s parameters (π,A,B) in a way that P (O|λ) rises or does no change in case of a local
optimum.

Baum-Welch Reestimation Formulas

The reestemated model’s parameters (π̄i, āij , b̄jk) are

π̄i = probability of being in state qi at t = 1

π̄i = γ1(i), 1 ≤ i ≤ N

āij =
expected number of transitions from qi to qj

expected number of outgoing transitions from qi

āij =
T−1∑
t=1

ξt(i, j)

/
T−1∑
t=1

γt(i)

b̄j(k) =
expected number of times observing symbol k in state qj

expected number of times being in state qj

b̄j(k) =
∑
t∈T ′

γt(j)

/
T∑

t=1

γt(j) T ′ = {t′ : Ot′ = k}

25

4 System Design

The previous chapter has introduced the theory of Hidden Markov Models (HMMs). This chapter
represents a definition of a system design for using HMMs to fulfill the tasks described at the
problem statement, see Section 1.2. The implementation of this design is described in Chapter 6.

Section 4.1 describes an abstraction of sensor data, so that this data can be used within the
HMM algorithms. For this task the information from the sensors is encapsulated into emission
symbols. In Section 4.2 a model of persons is introduced. To achieve our goals, sensor data has
to be assigned to persons, the behavior of this persons is modeled with the HMMs. The reasons
for introducing this model and its description is given at this section. In Section 4.3 an overview
is given, how HMMs are modeled within this project. The section describes how the HMMs are
used to make predictions, the necessity of having an own HMM for each person, the visualization
of HMM’s parameters and the data structure which was used at this work to represent HMMs.
The learning of the structure of HMMs is described in Section 4.4. At this work HMM structure
learning is done by creation of a very specific model from sensor data. This model is generalized
by merging of similar states. Different approaches for defining which states should be merged are
described in this section.

4.1 Sensor Data

As known from the environment description in Chapter 2, there are three different types of sensors:
Switches, movement detection sensors and tactile floor sensors. These types differ in the kind of
information the system retrieves from a triggered sensor. In case of a switch it was the opening (or
closing) of a door. The specific door is identified by the sensor’s identity (ID). For example, the
sensor with the ID “4801” indicates if the fridge is open or closed. The mapping from sensor-ID
to it’s semantics is stored at the Sensor Database as a verbal description. Movement detection
sensors indicate if persons are present in their sphere of action. Due to the size of the covered area
of a movement detection sensor this information cannot be used for exact localization of persons.
Movement sensors rather give some additional redundancy, however, they are a good example for
showing the integration of different sensor types into one model. At the system the semantics of
this type of sensors is given by their ID. This is the same like the switch sensors. For this reason
these two types are grouped together at the implementation part, called BinaryID, because the
values given by the sensor are binary and semantic is given by the sensor’s ID. The third kind
of sensors which are installed, are the tactile floor sensors. Such a sensor triggers if a person
steps on it (or an object with a sufficient mass). These sensors can be used to localize persons,

26

System Design

however, things aren’t that simple, as can be seen in Section 4.2. In comparison to movement
detection sensors the tactile floor sensors give very exact information about the location, because
the point of happening is where the sensor is mounted. Thus, semantics of a tactile floor sensor
is given by its position, which is stored in the Sensor Database as well. With one indirection
the position of the sensor can be determined from its ID. So the model uses positions instead of
tactile sensor IDs. Another advantage of using positions is that in case of having more tactile
sensors activated, an average position can be calculated, this is important for the Person Model,
described in Section 4.2.

To use these different types of information in one model, the semantics of the sensors and positions
respectively, are encapsulated in symbols. As known from Chapter 3 one part of HMMs are the
emissions. An emission has a probability per state and a corresponding value, i.e. what will
be emitted. For flexibility, this value is encapsulated in a class, called IEmissionSymbol, and
instances of this class can contain data of the three different sensor types. For the algorithms of
the HMM this is transparent. Figure 4.1 shows the interface between the Markov part and the
Data part.

IEmission
Symbol

Position
Symbol

BinaryID
Symbol

Emission

Movement
Symbol

Switch
Symbol

Markov Data

Figure 4.1: Interface Markov - Data

At the Markov side we have Emissions and Emissions contain IEmissionSymbols. This is an
abstract form of any conceivable symbol, concrete data is not of interest. At the data side the
functionality of an IEmissionSymbol has to be provided; important is a comparison operator. By
means of semantics there are two kinds of symbols, Position Symbols and BinaryID Symbols,
whereas the last ones are either Movement Symbols or Switch Symbols.

Another benefit of this symbolization is that the HMM package can deal with any kind of symbol
as long as comparison operators are provided. This allows reusability of the HMM implementa-
tion.

4.2 Person Model

This project deals with the observation of persons in buildings. More precisely, this work is
restricted to one room. Not the state of the building is of interest, but the behavior of the

27

System Design

persons staying in the room, including arrival and leaving. As this is a technical project the
interaction of a person with the technical environment is of interest. To give some demonstrative
examples: The opening and closing of closet doors, activation and deactivation of kitchenware
or just how a person moves around; more precisely, the positions of the person in the room at
certain instants. External influences of natural phenomenons like temperature or humidity are
not of interest.

4.2.1 Motivation

As the focus is on the behavior of persons with the goal of making predictions therefore, it is
necessary to know how many persons are in the room and which person does what. From the view
of a computer system, while observing the room the system has less information than a human
who is located in the room and is doing the same. However, there is very exact information about
the room itself, even more precise than the human observer. Sometimes the definition of what is
part of the room is not quite clear, think about tables and chairs. Furthermore, there is exact
information about the perception system, quasi the sense organs of the computer system. These
are the sensors which are installed in the room. The type of sensor, their sphere of action, the
delivered data and their positions are well known.

However, the driving force which triggers a sensor is mostly unknown. The perception of a human
depends on the memory [ST02]. In some cases this is the same with computer systems, illustrated
with the following example: Consider a tactile floor sensor like described in Section 2.1.2. The
intended behavior would be: If a person steps over the sensor, this sensor will deliver a value true.
At a higher level of data processing, the system ‘knows’ that at the position of this sensor a person
is located. This is based on a priori stored knowledge, which can be seen as a kind of memory.
But an essential question is, if this assumption holds in practice. There are a lot of possibilities
which could cause the system to get a value from this sensor: For example, there could be an
error at the sensor or an error at the transmission of data. For this work such errors are not
taken into account, they are neglected. However, not only errors of the perception hardware can
cause receiving an unintended value: An item or a pet can also trigger a tactile sensor. So we
assume, that there are no pets at the institute’s kitchen, but of course there are items: The table
and some chairs. However, we can make a further assumption: An item does not move around
by itself, this can only be done by a person. So if the first derivation of the sensor values is taken,
only person-caused events remain.

Nevertheless this is not sufficient. With the assumptions above it is known that a person is the
driving force for the changes of sensor values. But consider a scenario like shown in Figure 4.2.
A corridor with two switches (l and r), one at each end of it, and two persons activating the
switches in an alternating manner. When observing this corridor the sequence (l, r, l, r, l, r, . . .) is
recognized. In fact, this is the behavior of both persons together. Each person separately causes
a sequence (l, l, l, . . .) or (r, r, r, . . .) respectively. Since we want to model the behavior of a person
rather than the behavior of a crowd, it is important to know which person is responsible for
triggering a sensor, except the special case if we know that there is only one person present. In
practice even the count of persons in the room is unknown. For this reason it is a necessity to
have a person model and not to use sensor data directly for learning of HMMs, i.e. the system
tries to assign the observed sensor values to already recognized persons.

28

System Design

Figure 4.2: Corridor with two Switches and Persons

Assumption Coverage

As we use statistical methods there is no problem with taking those assumptions as long as their
violations are rare enough. In fact the frequency of occurrence of such assumption violating events
is estimated.

Privacy Statement

In terms of privacy it should be mentioned that the term person in this work means an abstract
description of a human being. There are no personal properties collected or processed. For this
reason the system has no discrimination criterions of human beings, therefore it is completely
impossible to draw conclusions from an instance of the system’s person model to a concrete human
person in real life.

4.2.2 Recognition

The key questions are, how the system can recognize if there is a person present at the observed
room, and, if it is only one person or more. With the assumptions made above, it is assumed
that sensors are only triggered by persons. Obviously it seems to be a good idea to count the
persons entering the room and make a person tracking. This was the first attempt.

A First Attempt

As can be seen at the SmaKi’s layout (see Figure 2.3), there is only one possibility where a person
can enter the room: The door. When observing the scenario where a person enters the room, it
can be seen that the order of emitting sensors is approximately the same every time. However,
there are small variations, i.e. which tactile sensor triggers first.

1. The door sensor indicates opening.

2. The movement sensor which is closest to the door indicates movement.

3. One of the tactile sensors near the door indicates pressure.

As can be seen in the following, this description does not hold, because only such a way of a
persons’s arrival is insufficient.

29

System Design

Person Distinction Limitation

Assume the following situation: Two persons going closely together enter the room, walk to the
coffee machine and split there; one makes coffee, the other one goes to the bookshelf. The question
is, how this situation will be recognized by the system. The start sequence would be the same
as described above (First Attempt), because the persons are too close to be distinguished by the
system. The system only perceives one person. At the point, where the persons split, the system
will get confused. It ‘sees’ one person, who triggers sensors at different regions of the room.

Since our recognition system has limits it is not possible to get arbitrary exact information. As
known from Chapter 2, we have three kinds of sensors: Switch sensors, which give no information
about the count of persons in the room. There is for example no relation between an open door
and the count of people in the room, even if we examine the door sensors’s history. At the SmaKi
there is a standard door, so it is possible that more than one person enter or leave the room once
the door is open. Even worse are the movement sensors. As known from the sensor description
in Section 2.1.3 they only trigger in case of human movements. However, it is not known if the
change in the IR spectrum, which is observed by these sensors, is caused by one person or even
more. So we only have the tactile sensors to distinct persons and in addition to get the count
of persons which are currently present in the room. A tactile sensor has a size of 600 x 175 mm
which is its sphere of action simultaneously. So we can assume that if exact one tactile sensor
is activated, this is from exact one person. But if more than one tactile sensor is activated, the
question about the count of persons is not easy to answer. Two adjacent sensors can be triggered
by one or two persons. So we need a heuristic to get an estimation of the count of present persons
in the room, this is given by the described model.

4.2.3 Design of the Model

For the reasons mentioned above a person model was developed. This is a rather simple model
since this is only a subtask of this project. However, the estimations about the persons in the
room which are taken from this model are sufficient to accomplish our task. The main focus is
on the tactile sensors because this type gives the most accurate information. This is based in the
number of these sensors and the sphere of action of each one.

The basic idea is to assign sensor values to persons. Therefore we have to manage two lists: For
the room there is a list of the present persons. Each person manages a list of tactile sensors which
are assigned to it. The policy how persons are created and sensor values are assigned to them
is shown in Figure 4.3. If the System receives a value true1 of a tactile sensor it searches the
room’s person list. If this list is empty, a new person will be created, the sensor which emitted
the value is added to this person’s sensor list and the person is added to the room’s person list.
The position of the newly created person is the center position of the tactile sensor. If the list is
not empty, i.e. there is at least one person in the room, the system searches the person of which
the position is closest to the center of the sensor which emitted the value. If the distance to the
closest person is not within a predefined threshold, a new person will be created, the procedure
is the same as if the room was empty. In the other case, i.e. there is already a person which is
close enough to the emitting sensor, this sensor will be added to the person’s sensor list and the
person’s position is recalculated; the new position is the average over all center positions of the
assigned tactile sensors.

1This indicates the presence of a person.

30

System Design

As a consequence of this algorithm it is possible that persons can appear (and disappear) at any
position in the room. So the system is able to deal with the problems described in paragraph
Person Distinction Limitation.

Add Sensor to
Person

Room Empty

Within Critical
Distance

Find Closest
Person

Yes

No

Yes

No

Tactile Sensor
Emits

Add New Person
to Room

Figure 4.3: Assign Tactile Sensor to Person

The other sensors are treated in a similar manner. Switch sensors are assigned to the closest
person. Movement sensors have a sphere of action. They are assigned to all persons within this
area. The big difference to the tactile sensors is that deactivation is not evaluated. Doing so
could be an improvement, but this would make it necessary to distinguish between the switch
sensors, i.e. each switch sensor would need it’s own implementation since their semantics are
different. When comparing a closet door switch and the coffee machine vibration switch, we see
the following difference: The ‘deactivation’ of a door, i.e. the closing of it, needs a person as
driving force. The deactivation of the coffee machine, i.e. the coffee is ready, doesn’t need a
person, this happens automatically. Movement sensors are deactivated automatically as well. So
for simplification only the activations are evaluated.

Sensor Value Removal

Now we know how the system creates persons and assigns tactile sensor values to them. The
next important question is how these values are removed. When a person releases a tactile sensor
the system receives a value false from that sensor. The system iterates the room’s person list
and the false emitting sensor is removed from every person’s sensor list. Actually there should
only be one person to which this sensor was assigned to, however, to be sure all persons are
tested; uninvolved persons are skipped. The person whose sensor is removed from the list, will
recalculate the position as average of the remaining sensors. In the case the person’s sensor list

31

System Design

is empty after removal, the position cannot be recalculated. A person with an empty sensor list
is called an orphan.

The Role of Orphans

An orphan (in the context of this person model) is a person with an empty tactile sensor list, i.e.
no sensor is assigned to this person. As a consequence there is no sensor indicating some pressure,
i.e. at this current instant it seems that there is nothing present. When observing some activity
in the room it can be seen that tactile sensors sometimes are bouncing. However, a debouncing
is already implemented at the hardware part [Goe06] but this is still not sufficient for this person
model. Another example (than bouncing) is given when a person walks quite fast through the
room; the posticous sensor will release before the ahead sensor will trigger. To kill two birds
with one stone, orphans are allowed. After removal of the last assigned sensor, the person is not
removed, but a timer is started. The orphan’s time is running, but otherwise it is handled like
a normal person. If within a certain deadline a sensor is assigned to it, the orphan becomes a
normal person again. If not, it will be removed.

Entrance Workaround

As can be seen at the SmaKi’s layout (Figure 2.3) there are no tactile sensors nearby the door. As
a consequence the system can recognize persons first, when they reach the area which is covered
by tactile sensors. A similar problem is given when a person leaves the room, but this problem
is already solved by allowing orphans. However, we don’t want to lose the door switch value of
the first person who enters a room. Remember, this is the start of a sequence. For this reason
the system makes a check if there are already persons present in the room when a door switch
value is received. In the case it can be assigned to a person (must be close enough) this is done.
Otherwise it will remember this value. If a person is created within a few seconds (and this
person is located nearby the door), the remembered value is assigned to that person. Due to the
fact that movement sensors have a high frequency in emitting values (in comparison to the other
sensors) they do not need a particular attention.

Person Deactivation

At the beginning of this section it was mentioned that the system cannot distinguish persons
from objects when using values of tactile sensors. For this reason the first derivation of them is
used. The whole application triggers on changing of sensor values. This system can be improved
as follows: Consider a scenario where a person, carrying a chair, enters the room. The person
walks until the center of the room, puts down the chair and leaves the room. At the instant when
the distance between chair and person exceeds the specified threshold, the system recognizes two
persons. There is no chance to identify the chair as an object. However, we can assume that no
person will stay at exact one position for a very long time. For this reason each person has a timer
which is reseted with every change of the person. If there is no changing for a predefined period
of time, the system assumes that the force activating the sensor(s) is no person but rather an
object. For the prediction algorithms the distinction between persons and objects is not necessary,
however, a human observer of the visualization may get confused if there are shown predicted
paths for the objects in the kitchen.

32

System Design

4.3 Modeling HMMs

This section describes how the theory of HMMs (described in Chapter 3) is used for this project.
In Section 4.2 a Person Model was introduced to combine sensor values and assign them to
persons. The person’s behavior is modeled with an HMM. First of all we have to build such
a model. This is based on the person’s positions. How the models are built is described in
Section 4.4. Once we have a model we can solve the Evaluation Problem (see Section 3.3) to
make predictions. How this can be done under the given conditions is described in Section 4.3.1.
For a look behind the scenes, the HMM can be visualized, this is described in Section 4.3.3. For
efficient and fast calculation there was a special data structure implemented which is described
in Section 4.3.4.

4.3.1 Prediction

If we calculate the forward probability αt(i) for a partial observation sequence of length t as
described in Section 3.3.1, we get for each state I the probability of being in that state at time t.
To get a prediction about the next observed symbol, the joint probabilities of forward probability
αt(i), transition probability aij and emission probability at next state bjs have to be summed up.
So for each symbol s a next step probability σt+1(s) can be calculated as:

σt+1(s) =
∑

αt(i)aijbjs ∀i, j, s

The most probable symbol s∗t+1 at the next step, i.e. the prediction is

s∗t+1 = arg max
∀s

[σt+1(s)]

Example

Let us illustrate this algorithm by an example shown in Figure 4.4. For not losing track of things,
we assume a lot of probabilities to be zero as it is in practice. The ellipses are states, the arrows
are transitions (i.e. transitions with a probability greater than zero) and the digits in the states
are emission symbols (with the probability to be emitted greater than zero); so we have no explicit
labels of the states and we name them by the symbols they can emit, i.e. the most left state
is called “240” because it can emit the symbols “2”, “4” and “0”. Furthermore, we assume the
same probabilities for the shown objects, i.e. each transition from state “240” has a probability
of 1/3 (because there are three transitions), the same with symbols, respectively. The bold states
indicate a forward probability greater than zero at the current time t.

To keep things simple the shown example is following the software implementation of the al-
gorithm, which is quite faster than a greedy implementation of the formal description above.
This can be done due to the used data structure described in Section 4.3.4. As we see, the
feasible current states are {(245), (250)}. Following the possible transitions, we get the feasible
states at the next step t + 1, which are {(246), (241), (250)}; thus all possible next symbols are
{(0), (1), (2), (4), (5), (6)}. The probability for a symbol (for example the symbol (2)) is calculated
as:

33

System Design

Figure 4.4: Prediction Example

σt+1(s) =
∑
αt(i)aijbjs ∀i, j, s

σt+1(2) = αt(245)a(245)(246)b(246)(2) + αt(250)a(250)(241)b(241)(2) + αt(250)a(250)(250)b(250)(2)

= (1/2)(1)(1/3) + (1/2)(1/2)(1/3) + (1/2)(1/2)(1/3)

= 1/3

If this is done for each symbol (their probabilities will sum up to 1), we will get the corresponding
values. For the symbols {(0), (1), (2), (4), (5), (6)} we get σt+1 = {1/12, 1/12, 1/3, 1/4, 1/12, 1/6},
thus the prediction would be the symbol (2):

s∗t+1 = arg max
∀s

[σt+1(s)] = (2)

4.3.2 Global and Local

Again, consider the example above. We assumed that feasable current states are {(245), (250)},
which are calculated by t iterations of the forward algorithm. Since we want to make a prediction
at each step, it is reasonable to reuse the values from the previous iteration. These values are
stored at the model. For this reason the model becomes person-related, i.e. the current forward
probabilities belong to a specific person. To be able to deal with several persons simultanously,
as this is required, each person gets its own HMM, i.e. a clone of the original one which can be
modified in any conceivable way. So the person’s clone is used to calculate the prediction. How-
ever, a person needs a second HMM for learning, see Section 4.4. This second model initionally is
empty, it grows with the values a person receives. When a person disappears, the learned model
can be merged with the global model. Figure 4.5 shows an overview of this structure. The class
Base manages the (unique) global HMM. It provides two methods for cloning and merging. Each
instance of class Person contains two HMMs, one for learning and one for predicting. So if there
are n persons in the SmaKi, the system has to deal with (2n+ 1) HMMs.

34

System Design

Base

+cloneHMM()
+mergeHMMs()

HMM Evaluate

+getPrediction()

HMM Learn

+addEmission()

Person

HMM Global

Figure 4.5: Global and Local HMMs of a Person

4.3.3 Visualization of Parameters

In figure 4.4 we assume some parameters of an HMM to make the calculation of predictions com-
prehensible, however, in practice we don’t get such nice values and the symbols aren’t numbers
but rather symbols of a specific type, containing some data. Figure 4.6 shows how these param-
eters are visualized at the application. This is a detail view of one state of an HMM. Each row
inside the state represents an emission, the string describes the type of the associated symbol, the
first number (always ‘1’ at this example) the number of occurences of this emission and the second
number is the probability of this emission (always ‘0.2’ at this example). For emissions containing
position-symbols, the position represeted as string is shown, for example ‘(917.0,1542.0)’ at the
first line. The probability of transitions is shown as lable of the edge, ‘0.75’ at this example.

Figure 4.6: Visualization of HMM Parameters

4.3.4 Data Structure

HMMs can be represented by two matrices, one with the transition probabilities, the other one
with the emission probabilities. A model with n states and m different emissions needs an n× n
matrix for the transitions and an n×m matrix for the emissions. Depending on the application,
these matrices may be sparce, i. e. lots of probabilities are zero. At this project this is expected.
Furthermore, there is the problem that the count of emission symbols is not known a priori,
since for example, position can take arbitrary values (at this level of abstraction2). If matrix

2At the Person Model the countable position values from the tactile sensors are averaged.

35

System Design

representation is used, adding of new values is expensive since this would need a new column
for each value. All entries of this column would be zero except one. The implementation of this
matrix representations with arrays would be a waste of resources (memory and time). For this
reason a data structure as presented here was implemented for representing HMMs.

The used datastructure for representation of HMMs is based on linked lists [Sed98]. The model
consists of a list of states and (for a basic description) each state contains two lists, one for
the transitions and one for the emissions, see Figure 4.7. Each emission contains a symbol,
i.e. the symbol which is emitted. However, here a kind of double linked list was used, so each
state holds a third list with incoming transitions (Backtransitions). With this representation
inserting and deleting of data (states as well as emission) is quite fast. Zero-probabilities are not
stored; this saves memory and speeds up some algorithms. Table 4.1 shows a comparison of array
representation and this list representation. The asymptotic time complexity of some actions is
shown in big O notation [Knu97] for an HMM with n states, m emissions, k transitions to a
particular state and l occurences of a particular emission, with (k, l ≤ n). The inserting at arrays
is faster than removing because insertion can always be done at the end of the data structure.
Note that the given values are related to this project and the concrete implementation of the
operations which are used.

Table 4.1: Asymptotic Time Complexity Comparison

Array List
Inserting a state O(n) O(1)
Deleting a state O(n2) O(k)
Inserting a new emission O(n) O(1)
Deleting an emission O(nm) O(l)

Deleting of states is a task which will be done very often at the learning phase, because at this
project learning of HMMs is done by state merging (see Section 4.4). So this data structure will
speed up state merging in comparison to array representation.

State

Symbol

StateStateTransition Transition

Transition

Symbol

Emission EmissionEmission

Figure 4.7: Data Structure for HMM

36

System Design

Implementation

A symbol contains some data about the concrete symbol which is not of interest here. A state
contains three lists:

• A list of referencing States

• A list of Transitions

• A list of Emissions

A Transition is a triple (SourceState,DestinationState, Probability).
An Emission is a tuple (Symbol, Probability).
The ‘source’ of an Emission, i.e. the corresponding state, is given by its membership.

4.4 HMM Structure Learning

In Chapter 3 an overview of the theory of Hidden Markov Models is given. As mentioned, there
are three key problems for HMMs, which are Evaluation, Decoding and Learning. Probable solu-
tions are given by correspondig algorithms, which are explained as well. However, the introduced
method for learning is only for estimating a fixed number of model parameters. This stan-
dard approach is called Baum-Welch algorithm, it uses dynamic programming to approximate
a maximum likelihood (ML) or maximum a posteriori probability (MAP) estimate of the HMM
parameters [BPSW70]. So this algorithm supposes a given model structure, but the problem how
to find such a structure is not solved.

One approach is to choose the HMM topology by hand, however, this would be a long winded
process and the optimization process would be very costly, since the Baum-Welch algorithm has
to be applyed to many different models, because at the beginning there is absolutely no idea how
the structure of such a model could be. In [SO93] the authors describe a technique for learning
structures of HMMs from examples, i.e. to define the number of states and the connectivity
(the non-zero transitions and emissions). The indroduced induction process starts with the most
specific model consistent with the training data and generalizes by successively merging states.
The basic ideas of this approach are used in this project. So we start building HMMs from scratch
by using training data.

4.4.1 State Merging Principles

Two similar or even identical states can be merged to one new state to reduce the model’s size.
The decision when states should be merged is not part of this section, this is explained in the
following section. Consider two states, I1 and I2, which should be merged, i.e. replaced by a
new state I. So the model’s probability distributions have to be replaced. The distributions
for transitions and emissions of the new state I are a weighted average of I1 and I2. Transition
probabilities into I are the summed up probabilities into I1 and I2. The weights for calculating
the mixture distributions are the relative frequencies of visitations of the states I1 and I2. This
is illustrated in the following example.

37

System Design

Example

Figur 4.8 shows the merging of two states, I1 and I2 to a new state I. As can be seen, the
transitions into I1, I2 have to be redirected to I. Transitions and emissions from I1, I2 are from
I after merging.

I1 I2

Ia

Ib

Id

Ie

Ia

Ic

Id

If

Ea Eb EcEa

Ia

Ib

Ie

If

Ea Eb

Ic

Id

Ig

Ih

EdEc

I

I

Ia

Ic

Id

If

EcEa

Ib Ie

Eb

Figure 4.8: Merging two States

Using the notation from Chapter 3 (transition matrix A, emission matrix B) the transition
probabilities into new state I are calculated as:

aIxI = aIxI1 + aIxI2 ∀x

To get the values for emissions and transitions from new state I, we need the number of times
the original states were visited, denoted as c(I):

aIIx =
c(I1)aI1Ix + c(I2)aI2Ix

c(I1) + c(I2)
∀x

bIEx =
c(I1)bI1Ex + c(I2)bI2Ex

c(I1) + c(I2)
∀x

Assuming c(I1) = 1, c(I2) = 2 and an intuitive3 probability for all transitions and emissions at the
left hand side of the example shown in Figure 4.8, the values of the merged model are calculated
as shown in Table 4.2.

There are two special cases to be considered: Selftransitions (aIxIx) and transitions between the
two states which are merged, i.e. aI1I2 or aI2I1 . For this reason the self transition probability of
the new state after merging has to be recalculated as

aII =
c(I1)aI1I1 + c(I2)aI2I2 + c(I1)aI1I2 + c(I2)aI2I1

c(I1) + c(I2)

The states I1, I2 and all probabilities concerning them are removed from the model after merging.
3p = 1.0 / count of outgoing edges; note: Ia has two outgoing transitions

38

System Design

Table 4.2: Calculation of Values

Formular Values Result

aIaI aIaI1 + aIaI2 0.5 + 0.5 1.0

aIbI aIbI1 + aIbI2 1.0 + 0.0 1.0

aIcI aIcI1 + aIcI2 0.0 + 1.0 1.0

aIId

c(I1)aI1Id
+c(I2)aI2Id

c(I1)+c(I2)
(1)(0.5)+(2)(0.5)

(1)+(2) 1/2

aIIe

c(I1)aI1Ie+c(I2)aI2Ie

c(I1)+c(I2)
(1)(0.5)+(2)(0.0)

(1)+(2) 1/6

aIIf

c(I1)aI1If
+c(I2)aI2If

c(I1)+c(I2)
(1)(0.0)+(2)(0.5)

(1)+(2) 1/3

bIEa

c(I1)bI1Ea+c(I2)bI2Ea

c(I1)+c(I2)
(1)(0.5)+(2)(0.5)

(1)+(2) 1/2

bIEb

c(I1)bI1Eb
+c(I2)bI2Eb

c(I1)+c(I2)
(1)(0.5)+(2)(0.0)

(1)+(2) 1/6

bIEc

c(I1)bI1Ec+c(I2)bI2Ec

c(I1)+c(I2)
(1)(0.0)+(2)(0.5)

(1)+(2) 1/3

As we see in part two and three of Table 4.2, outgoing transitions and emissions probabilities of a
state sum up to (1.0). To achieve highest possible accuracy, at the implementation not the number
of times of visiting a state, but the number of ‘using’ a transition is stored at the transition, the
same for emissions, respectively. As state merging is a basic concept of learning at this project,
it is done very often. When using the standard formular above, there would be a lot of floating
point additions and multiplications, since probabilities are represented by floating point variables.
However, these operations are not associative4 [DR06], so this could cause numerical errors. To
avoid this, counters in the transitions and emissions are used, which are in integer arithmetic.

4.4.2 Learning from Sensor Data

The higher the number of states in a model, the more specific the underlying system is depicted.
Whereas models with a lower number of states represent a generalization of the underlying process.
The resulting inexactness is intended, because this raises the chance that a later perceived scenario
can be represented by the model. However, with a too generic model it is not possible to elaborate
differences between the scenarios. For this reason one of the key challenges is to find the balance
between a very specific model with the risk of not finding a representation for a particular scenario
on the one hand and a very generic model, which produces results for every situation but little
significance, on the other hand.

In this project learning is implemented only by state merging, like described in Section 4.4.1.
This form of learning HMMs from sensor data was introduced by [Bru07]. As this project deals
with sensor data and HMMs as well, the basic principles are considerated. However, for future
research it might be reasonable to additionally use other forms of learning, like the Baum-Welch
algorithm, once the HMM’s structure is fixed.

4(a + b) + c = a + (b + c)

39

System Design

As mentioned in Section 4.2, a person model is introduced to assign sensor values retrieved by
the SmaKi’s hardware to particular persons. This person models are used for the HMMs, so we
don’t use sensor values directly, i.e. there is some kind of pre-processing before. So we model
the behavior of a particular person in order to make predictions out of that model. Exacting,
this is the model of occurrences of sensor values which are assigned to a person. The way from
recognition of a sensor value to the HMMs of a particular person is shown in Figure 4.9.

Room
Observation

Unit

Sensor Value
Retrieval Unit

Sen. Val.
Assignment

Learn
Model

Person

Hardware Software

Prediction
Model

Person

Person

Figure 4.9: Assigning of Sensor Values to Person Models

In the following it is explained how an HMM is generated from the sensor values, received by
the system. Furthermore, it is described how this model is generalized by state merging. To get
designated results, it is necessary to do the follwing steps in the correct order.

1. Create a Chain

2. Preprocessing of Chains

3. Merge Horizontally

4. Merge Vertically

5. Merge Sequences

This steps are described in the following subsections.

4.4.3 Create a Chain

As known from 4.3.2, each person has two HMMs, one for continuously calculating the prediction
algorithm and the other one for learning. The latter is empty at the beginning. In this section it
is explained how learning works within this project. This includes the building of a single model
for one person and the consolidation of several such models to one unique global model.

When a person is created, its learning HMM is empty. However, an ‘empty’ HMM is initialized
by two artificial states, a start state and an end state. These artificial states never have any
emissions. For each sensor value which is assigned to a person a new state is created which has
exact one emission. The symbol of this emission contains a representation of the sensor value. A
new transition is added to the predecessor state with the actually created state as destination. The

40

System Design

P SM P

Figure 4.10: An Initial Chain of States

predecessor of the very first created state is the artificial start state. When a person disappears,
a transition is added to the last created state with the artificial end state as destination. Thus,
we get a chain like shown in Figure 4.10. The letters inside the states show the type of symbol
the emission contains (‘P’ for Position Symbol, ‘M’ for Movement Symbol, ‘S’ for Switch Symbol).
Such a chain fulfills the following conditions:

• Each state (except the artificial end) has exact one transition with the probability of 1.0.

• Each state (except the artificial start and end) has exact one emission with the probability
of 1.0.

Each emission contains exact one emission symbol; there are three kinds of such symbols: Switch,
Movement and Position. The first two are identified by the sensor’s ID which emitted the value,
Position symbols are identified by their value, i.e. the contained position. For short we call an
emission which contains a Position symbol a PositionEmission, the same for Switch and Movement
symbols, respectively.

Using this algorithm we get a chain for each person. Such a chain represents the exact episode
of activity of the person, as far as this is detectable and correctly assigned to the person by
the system. The most simple approach would be to consider a model as an accumulation of
many parallel arranged chains. This would be the most specific model conceivable. Already
the smallest deviation in data would cause a newly perceived scenario that it doesn’t fit the
model, and so a prediction would not be possible or gives unfeasable results. The goal is to find
similarities between the chains and to combine equal patterns. So we get a smaller model which
is a gerneralization of the original.

4.4.4 Preprocessing of Chains

The first consideration is about some preprocessing of chains before combining chains of several
persons. As the factor time has a very weak representation within the used HMMs, the first goal is
to avoid misinterpretations concerning temporal order. If we receive a value from a tactile sensor
and a value from a movement sensor in series, we only know that this sensor values are perceived
by the system in this order. However, at the models’s level, we do not know, how long the
duration between the occurence of emitting of the sensors is. That ranges from simultaneuously
(and therefore a random order, due to transmission and processing is serial) to infinity, i.e. the
person disappears. Taking into accout the whole system (described in Chapter 2) it can be seen
that in order to the weak time modeling the order of triggering of different sensor types has no
significance. To use this information it is necessary to have a model of time which would result in
a far more complex system. This could be done by Hidden Semi Markov Models, like described
in [Bru07].

41

System Design

This system mainly uses the tactile floor sensors, since they give the most accurate information
about the location of a person. Due to the mentioned weak time model and the focus on positions
calculated from the tactile sensors, we start with the following ‘preprocessing’ of a chain: It should
be ensured that each state has a PositionEmission, i.e. each state is related to a position. It’s
obvious that states can have more than one emission after this step. So the states ‘M’ and ‘S’ in
Figure 4.11 are merged to the state ‘P’, the result is a new state ‘P,M,S’, shown in Figure 4.12.
The pseudocode of this preprocessing is shown in Algorithm 4.1.

P SM P

Figure 4.11: Raw Data Chain Merging

Algorithm 4.1: PreprocessChain()
Input: a state chain
// merge start
posindex← 0
while state[posindex].emission 6= PositionEmission do

posindex← posindex+ 1
for i← 0 to posindex do

merge(state[i], state[posindex])
// merge rest
for i← posindex+ 1 to chain.length do

if state[i].emission = PositionEmission then
posindex← i

else
merge(state[posindex], state[i])

P,M,
S P,MP P,M,

M

Figure 4.12: Preprocessed Chain

For this algorithm some preconditions have to be fulfilled. The input model is a chain, i.e. states
have at most one incoming transition and at most one outgoing transition. All states, except the
start and the end, have exactly one emission. At least one state has a PositionEmission.

After this preprocessing is done, we get a chain where each state (except start and end) has
exactly one PositionEmission (and any number of other emissions). An example of a result is

42

System Design

shown in Figure 4.12. The first5 state (‘P,M,S’) is the reslut of merging the first states from the
chain shown in Figure 4.11. The other states are examples.

Concerning the application domain, the information of movement and switch sensors is dependent
on the persons’s position. The movement sensors give a redundant information anyway, however,
the switch sensors can only be triggered from a specific position of the person. For this reason
only the activations of sensors are modeled, since only this is related to the persons’s position.
Consider the coffee machine vibration switch: The machine is started by a person, the sensor
changes its value from false to true. When the coffee is ready, the machine stops vibrating and
the sensor changes its value back to false. However, this cannot be assigend to a person, since
this event happens independently. It also cannot be assigned to the person which started the
machine, since there is no relation to the actual position of the person when the coffee is ready,
yet the person may have left the room.

4.4.5 Merge Horizontally

A person standing in the SmaKi can trigger several tactile floor sensors. If a person’s foot is
placed over two sensors either the one or the other or both can be triggered, like shown in Figure
4.13. This depends on the person’s shifting of weight, so this can cause bouncing. Although this is
filtered by the introduced Person Model (see Section 4.2), we get a new position for each retrieved
sensor value. At application level such differentiation of positions are useless. Moreover we want
to model different positions in some meaningful way, so we don’t need exact values. An accuracy
which allows us to distinguish if a switch can be reached from a person at a position would be
enough. For this reason the HMM is generalized by merging states with similar positions.

Figure 4.13: Persons’s Foot Placement

Positions are defined as similar if the distance between them is within a certain distance d. As
every state contains exactly one PositionEmission after the preprocessing, we can compare each
pair of consecutiv states like shown in Figure 4.14 and merge them if the distance between their
associated positions is within d.

When states are merged, where each state has a PositioEmission, the resulting state has two
PositionEmissions. This has to be taken into account when the resulting state is compared again.
The overall position of a state which has more than one PositionEmission is calculated as a
weighted6 average of its associated positions. So we apply Algorithm 4.2 on chains like shown in
Figure 4.14 and get chains with combined positions like shown in Figure 4.15.

5first state with data, not the artificial start
6The emissions are probabilities.

43

System Design

P,M,
S P,MP P,M,

M

Figure 4.14: Find Consecutive States within Small Distance

Algorithm 4.2: MergeHorizontally()
Input: a preprocessed chain, mergedistance
statesmerged← true
while statesmerged = true do

statesmerged← false
// skip the artificial start state: start at 1
for i← 1 to chain.length− 1 do

if distance(state[i], state[i+ 1]) ≤ mergedistance then
merge(state[i], state[i+ 1])
statesmerged← true

P,M,
S

P,M,
M

P,P,
M ...

Figure 4.15: Horizontally Merged Chain

As the resulting chain (see Figure 4.15) shows, states can contain more than one PositionEmission.
Such states are compared by the distance function which is already used in Algorithm 4.2. This
function calculates a weighted average of the state’s PositionEmissions.

Distance Function

As mentioned above, positions are treated as similar if they are within a certain distance d
and the position of a state with more than one PositionEmission is a weighted average of all
PositionEmissions of the state. In our algorithm the merging is done several times. After each
merging of two states, the new position of the resulting state is calculated as a weighted average
of all merged states.

If we would take this weighted average positions of the states for the decision whether to merge
them or not, in worst case, each new state’s position is exactly d away from the last calculated
average d̄. If we have only one state, d̄ = 0. The first added state can ‘move’ this to d/2 = (0+d)/2.
The third state (the second added) influences it with a weight of 1/3. So d̄3 = d̄2 + d/3 and so
forth. As can be seen, in worst case the value d̄ is:

44

System Design

d̄ =
n∑

i=2

d

i

When d is normalized, this is the Harmonic Series, which diverges for n→∞. In this application
this means that d̄ is unbounded. So a state can be of arbitrary size. To avoid this, the distance
function calculates the maximum distance of any two positions within a state.

4.4.6 Merge Vertically

To construct a general model of the values learned from each person, the gained chains are joined
together. As mentioned in the Section Person Model 4.2, persons can appear and disappear at
any position in the room. For this reason the lifetime of a person might be very short, i.e. only
a few sensor values are assigend to that person. With the merging of the chains (preprocessing
and horizontally merging) this results in chains with only a few states. The decision, what ‘a few’
means, is taken by the user. We can assume that this short chains are errors of the recognition
system, so they are not added to the global model. Even if this assumption doesn’t hold, it would
be no problem, since this very short actions are part of longer actions. So only chains with a
minimal number of states are added to the global prediction model. Figure 4.16 shows such a
global prediction model.

P,M

P,P,
S

P,SP

P,M,
S

P,M,
M

...

P,M,
M

P,P,
M ...

P,M

Figure 4.16: Joined Chains; Short Chains are Discarded

Once the chains are joined together we can merge the model globally. The idea is to reuse parts
of chains. Consider the following example, shown in Figure 4.17. One person enters the room and
walks along a path, i.e. the person produces the sequence of positions (A,B,C,D,E). Another
person who walks around, produces the sequence (A,B,C, F,G). In our model this is represented
by two chains, corresponding to the positions. These chains are similar until the point where one
person goes to (D) and the other one to (F). So we can merge the start of the sequences in our
model and split where the scenarios differ.

How the merging of similar start sequences can be calculated is shown in Algorithm 4.3. This
algorithm is applied to the model whenever a new chain is added. As can be seen, this algorithm
runs until no more states can be merged.

45

System Design

A B C

D

E

F

G

Table

Figure 4.17: Splitting Paths of two different Persons in a Room

Algorithm 4.3: MergeVertical()
Input: HMM
statesmerged← true
while statesmerged = true do

statesmerged← false
foreach State s ∈HMM do

for i← 0 to s.transitions.count− 1 do
for j ← i+ 1 to s.transitions.count do

s1 = s.transition[i].destination
s2 = s.transition[j].destination
// skip self-transition
if s1 = s or s2 = s then

continue
if similar(s1, s2) then

merge(s1, s2)
statesmerged← true

P,M

...

P,SP

P,M,
S

...

P,M,
M

P,P,
M ...

... ...

Figure 4.18: HMM before Merging Vertically

46

System Design

Figure 4.18 shows the model before merging. The grayed, dotted chain indicates that there
are several other chains. Beginning from the artificial start state, any two successor states are
compared if they are similar (within a similarity criterion, explained later). If similarity is given,
the states are merged. So the arising new state has two successors, shown in Figure 4.19. Now
the same is done for the newly created state. This procedure is repeated until nothing could
be merged anymore. At the person-movement example above, the first three states would be
merged, because the sequence (A,B,C) is the same for both persons. The resulting model of
Horizontal Merging from the start is shown in Figure 4.20. The same can be done with the end
of the sequences. So we use the same algorithm starting from the artificial end state.

P,M

...

P,S

P,P,
M,S

...

P,M,
M

P,P,
M ...

... ...

Figure 4.19: Two States Merged Vertically

When comparing Figure 4.18 to Figure 4.19 it can be seen that the states with the symbols
{P,M, S} and P are merged to a state {P, P,M, S}, i.e. all symbols are obtained. At the next
step of the example, comparing Figure 4.19 and Figure 4.20, the states {P, P,M} and {P,M}
are merged to a state {P, P, P,M}, i.e. at the resulting state is only one ‘M ’. The reason is that
the same symbols are stored only once, with higher probability of course. This also can happen
with PositionSymbols if they represent exactly the same position.

...

P,S

P,P,
M,S

...

P,M,
M

P,P,
P,M

...

... ...

Figure 4.20: Vertically Merged HMM

Similarity Criterion

Unlike the horizontal merging at the vertical merging a Similarity Criterion is used to decide
wether two states are merged. When merging horizontally it is sufficient to take the PositionE-
missions of the states into account. All other emissions are merged to the predecessor state (or

47

System Design

successor, if there is no predecessor). When merging vertically we have to distinguish whether a
state contains a SwitchEmission7 or not. The reason is that Horizontally Merging is a kind of
information reduction within a scenario whereas vertical merging is finding similarities between
scenarios. Walking to a point, activating a switch and walking back is not the same as just
walking to the point and back.

4.4.7 Merge Sequences

As described in the previous section we get a model where similar start-sequences and end-
sequences are merged together, with the limitation of comparing only two states. Another ap-
proach is to search the model for sequences of several states in the midst of the model, like shown
in Figure 4.21. For better readability the more abstract notation (A,B,C) is used for the symbols,
i.e. two states are similar if they contain the same letter. States with a ‘.’ are not of interest for
this example. If two similar sequences are found, the start and the end state of such a sequence
is merged. The states between start and end of one chain become useless since they cannot be
reached anymore. The result of merging the model from Figure 4.21 is shown in Figure 4.22.
The grayed out sequence is the unused one, these states are removed from the model. However,
this algorithm can cause Backtransitions. As can be seen in Figure 4.22 the same sequence can
appear several times within one chain. If the algorithm is applied several times, all occurences of
the sequence (A,B,C) are merged together. This results in a model shown in Figure 4.23. We
get a transition from a state later in the scenario back to a state which occured earlier. This
transition is called a Backtransition. However, Backtransition could be suppressed, but it might
be of interest allowing them.

. A

B

B.

A

C

C

CB .

.

BA

. .

CA

Figure 4.21: Comparing Sequences of States

Interpretation of Backtransitions

Consider the following scenario, shown in Figure 4.24. A person walks around the table several
times. This results in a sequence (A,B,C,D,E, F,G,A,B,C, . . .). If Backtransitions are allowed,
the laps are merged. This results in a sequence (A,B,C,D,E, F,G) where only the probabilities
for incoming transitions of state ‘A’ have to be recalculated. The count of laps gets lost. If this
is an intended behavior depends on the application.

7MovementEmissions can be neglected due to their probabilities at this application.

48

System Design

. A

B

B.

C

C

.

.

BA

. .

CA

A B C

Figure 4.22: Merged Sequence of States

CA

. A B. C

.

.

. .

A BB C

Figure 4.23: Backtransition as a Consequence of Sequence Merging

A

B C

D

EF

G

Table

X

Figure 4.24: Person going around the Table

49

5 Software Application Design

In order to achieve the two main goals, the prediction system modeling and the visualization
which are defined in Section 1.2, a software application was developed. This is the SmaKi
Prediction Application. It has to fulfill several tasks; for this reason it was subdivided into
packages correspondig to these tasks. Figure 5.1 gives an overview to the most important parts
and the interactions between them. The core of the application is called Base. All other parts are
controlled by this core element. The core element itself is controlled by the part called Graphics,
because the Graphics part contains the Graphical User Interface (GUI). In Chapter 6 this part is
called GUI since the package at the Java implementation is called gui1. Since a GUI handles user
interactions it is obvious that this part can control the core of the system. The Persistence part
is the application’s interface at data level. This contains sensor values, information about sensors
and sensor meta-data, i.e. information about sensor values. Since the visualization should show
(among other things) the sensors and their values, the Graphics part can control the Persistence
part. For reusability all source code concerning HMMs is accumulated in part Markov. To have a
clear separation, there is a part Data between Markov and Persistence. The Data part contains
symbolized data from the sensors. Markov controls Data and Data controls Persistence.

Markov Data

Graphics Persistence

Base

Figure 5.1: Schematic Drawing of the Application Design

1In Java package names start with a lower case letter by convention [LL08].

50

Software Application Design

5.1 Terminology

This chapter gives a high-level description of the software application’s design, the detailed de-
scription is given in Chapter 6. According to [Kai99], “an OOD2 model is a model of the proposed
software system’s internal construction”, in this chapter the chosen solutions are defined by de-
scribing the objects of the software system.

The Term ‘Interface’

The term ‘interface’ is used in a double manner within this chapter. Once it is used in the
computer science manner, mostly (at this work) this means the separation of classes from different
packages. The other meaning is the interface of the Java programming language, i.e. an abstract
class that contains only abstract methods and constants. For better distinction, the Java-Interface
is written with a capital letter or extended by the prefix ‘Java-’ as in this sentence.

5.2 Base Part

The part Base is the core of the SmaKi Prediction Application. As can be seen in Figure
5.1, it interacts with all other parts in some way. For better overview this part is subdivided
into Application Core, World Representation and Sensor Representation. This subdivision is
discretionary and only for better explanation, at the implementation this is one package.

Application Core

The core of the application is the class MainModel. Figure 5.2 shows the most important classes
which are used by MainModel. The MainModel manages the persons which are currently present
in the SmaKi, i.e. persons which are recognized by the system. Real world persons are represented
by instances of the class WorldPerson, for the task of managing those, we have a WorldPersonList.
New persons are added to this list, persons which disappear are removed from the list. The class
HiddenMarkovModel represents the global HMM. Whenever a new WorldPerson is created, it
gets a clone of this global HMM for its prediction calcualtions. HiddenMarkovModel provides
XML-serialization, i.e. the HMM can be stored in an XML-file. At startup of the application a
default HMM is loaded, when the application is terminated, the changes of HiddenMarkovModel
are saved in another XML-file to keep the original unchanged. However, it is possible to load and
save HMMs from/to any XML-file manually. The class MergeProvider provides the algorithms
for HMM structure learning, described in Section 4.4. This learning is done on the global HMM,
represented by HiddenMarkovModel.

Class MainController is the interface to the graphical user interface (GUI). All instructions from
the user are passed to the application via MainController. User interactions concerning this
part are loading/saving of HMMs, adding a specific HMM which is stored in an XML-file to the
system’s global HMM, applying a specific merge algorithm on the global HMM, configure merging,
force the LiveDataReader to establish a connection, disconnect the LiveDataReader and starting
the live-data processing.

2Object-oriented Design

51

Software Application Design

MainModel

Main
Controller

Persistence
Classes

WorldPerson
List

LiveData
Reader

Merge
Provider

Hidden
Markov
Model

Sensor
Factory

Sensor
List

11

1
1

1

1

1

1

Figure 5.2: OOD of the Application’s Core

The LiveDataReader receives sensor data from the SmaKi’s perception hardware via a TCP/IP
connection and passes it to the MainModel. For each sensor value which is retrieved by the
MainModel, the corresponding sensor is searched from the SensorList and updated. Furthermore,
the MainModel tries to assign the sensor value to a person from the WorldPersonList. If this is
possible, the affected WorldPerson is updated, otherwise a new WorldPerson is created in case of
the retrieved sensor value is from a tactile sensor. Other sensor values which cannot be assigend
to a person are ignored.

The class SensorList represents a list of all available sensors of the SmaKi. At startup of the
application this sensor list is created by the SensorFactory. The SensorFactory uses the Persis-
tence Classes, which are described in detail in Section 5.6, to establish a connection to the ARS
Sensor Database and to create the Sensors from the so called static data (see Section 2.2.1) of
the database. Then the Sensors are added to the SensorList.

World Representation

The class WorldPerson is the core of the world representation. As mentioned above, the class
MainModel tries to assign received sensor values to WorldPersons. In case of tactile and switch
sensors, the person is chosen, which is closest to the position of the emitting sensor. Values of
movement sensors are assigned to all persons within the sphere of action of the emitting sensor.

As can be seen in Figure 5.3 a WorldPerson contains two HiddenMarkovModels. One is for learn-
ing, the other one for the prediction. When a WorldPerson is created it gets an empty HMM for
learning and a deep-copy3 of the global HMM from the MainModel for the prediction. With each
sensor value that is assigned to a person, a new state is added to the learning model. This state

3The clone() method of Java only makes a flat copy. For making a deep copy the XML-serialization functionality
of HiddenMarkovModel and its referenced object is used.

52

Software Application Design

World
Person

Verification
Model

Hidden
Markov
Model

Tactile
Sensor

Prediction
Entity

*
1

*1

Hidden
Markov
Model

1
1 1

1

Figure 5.3: OOD of the Classes concerning WorldPerson

has one emission with the current sensor value as emission symbol. At the other HMM one step
of the forward algorithm is calculated. The WorldPerson contains a list of n PredictionEntities,
where n is a predefined number, i.e. there are always at most n PredictionEntities. The content
of the n most probable emissions from the result of applying the forward algorithm is stored at
the n PredictionEntities. The VerificationModel ‘remembers’ the prediction(s) and calculates in
the next step the difference from the predicted value to the occured value. This only works for
positions, since only for positions the calculation of a difference is useful. With the Verification-
Model it is possible to compare the quality of predictions of different HMMs, i.e. of different
merging strategies.

Furthermore, the class WorldPerson manages a list of TactileSensors. For each sensor value of a
tactile sensor which is assigned to the WorldPerson, the corresponding tactile sensor is added to
this list if the content of the value is true, or removed if the content is false. For each modification
of the list of tactile sensors, the WorldPerson updates its position. This is done by calculating
a weighted average of the center positions of the tactile sensors in the list. If the last sensor is
removed from the list, the position cannot be updated, but the WorldPerson stays for a certain
duration. If within this duration no new tactile sensor value is assigned to the WorldPerson, it
is removed. If a WorldPerson with a non empty tactile sensor list, gets no new sensor value for
a fairly long time, the person becomes an item. This is a smoth process. Once this process is
completed, i.e. the object is an item with 100 %, there are no new sensor values assigned to it.

Sensor Representation

Figure 5.4 shows an overview of the modeling of the different sensor types which are installed at
the SmaKi. The class Sensor is the base class of all sensor types, which are MovementSensor,
SwitchSensor and TactileSensor. These classes contain the static sensor data from the ARS
Sensor Database. Most important for this application is the location where a sensor is mounted

53

Software Application Design

in the room. This is given in a different way for each type of sensor. As sensors emit values in
the real world, this is realized by the use of corresponding SensorValues, i.e. a MovementSensor
uses a SensorValueMovement and so forth. The SensorValueKeepAlive is not from a real sensor,
it is an artificial value, created by the LiveDataReader to indicate that the system is running.
The corresponding ‘Sensor’ is Heartbeat, but it is not inherited from Sensor.

Sensor

Movement
Sensor

Switch
Sensor

Tactile
Sensor

Sensor
Value

Sensor
Value

Movement

Sensor
Value
Switch

Sensor
Value
Tactile

Sensor
Value

KeepAlive
Heartbeat

«uses»

«uses»

«uses»

«uses»

«uses»

Figure 5.4: OOD of the Sensor Representation

5.3 Data Abstraction

To have a clear encapsulation of the Markov algorithms there is a part Data between Markov
and Persistence. As the algorithms of the Markov part work with symbols, Data Abstraction
provides the interface to the data which is represented by those symbols. Figure 5.5 shows an
OOD of this package. This part is used to get the data from the predicted symbols, which can be
positions, movement sensor activations or switch sensor activations, i.e. it is used to get the data
which was filled into the HMM during the learning phase back from the model at the prediction
phase.

The root class is DataAbstractionProvider which is the interface to the Markov and Base packages.
It controlls the DataAccessor which is part of the Persistence package and therefore the interface
to it. The SensorList contains all sensors of the SmaKi. As can be seen in Figure 5.5, there are

54

Software Application Design

Data
Abstraction

Provider

DataAccessor

SensorList

Emission
SymbolList

Position
SymbolList

BinaryID
SymbolList

BinaryID
Symbol

Position

Movement
Symbol

Position
Symbol

Switch
Symbol

IEmission
Symbol

*1

*1

*1

11

Figure 5.5: OOD of the Package Data

several lists of EmissionSymbols. Each emission of the HMM implementation contains exact one
IEmissionSymbol, i.e. the symbol which is emitted. In the implementation of the Hidden Markov
Model this is as abstract as in the theory of HMMs. So IEmissionSymbol is a Java-Interface
of the Markov package. The DataAbstractionProvider manages a list of such symbols. As can
be seen, this Java-Interface is implemented either by a PositionSymbol or a BinaryIDSymbol,
whereas the last one is an abstract class. The concrete implementations of a BinaryIDSymbol are
either MovementSymbol or SwitchSymbol. Furthermore, the DataAbstractionProvider has two
separated lists, one for PositionSymbol and the other one for BinaryIDSymbol. These lists are
used if the type of an incoming IEmissionSymbol is known to prohibit the instanceof operation.
A PositionSymbol contains exact one Position.

Prediction Data Retrieval

From the prediction algorithm we get a probability distribution over all available symbols of
the model. Those symbols with the highest probability are the prediction which is visualized
to the user. As we have three different types of sensors and therefore three different types of
symbols, it is obvious to have three different types of representations. However, we can handle
MovementSymbols and SwitchSymbols in the same manner, this is the reason for indroducing the
common super-class BinaryIdSymbol. As PositionSymbols contain a Position and the visualiza-
tion of a position prediction is realized by drawing an arrow from the person’s current position
to the predicted position, this is simply done by using the contained Position directly. This is
not that simple with BinaryIDSymbol, which contains the ID of the appropriate sensor. The
prediction of triggering a movement or switch sensor is visualized by drawing a line from the

55

Software Application Design

person’s current position to the sensor, for which triggering is predicted. To get the position of
the sensor from a sensor-ID, the SensorList is used.

5.4 Graphics

The Graphics part is responsible for everything that should be displayed to users. It is subdivided
into three parts: Building Visualization, Graph Visualization and the Main part. The Main part
contains the GUI, whereas the two others are for information displaying only. For this reason
the main part has control over the others. A quite useful approach for the design of graphical
computer applications is the Model View Controller software design pattern, which is used in a
nested way, as explained later.

Model View Controller Pattern

Controller

ModelView

Figure 5.6: MVC Pattern

In software engineering so called design patterns are elaborated to reuse collective experiences.
In [AIS+77] Christopher Alexander says:

Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever doing it the same way twice.

The Model-View-Controller (MVC) pattern was introduced in [KP88] to build user interfaces in
Smalltalk-804. There are three kinds of objects within the MVC. The Model contains everything
concerning the application, the View object is responsible for screen representation, and the
Controller handles user inputs. MVC is a good solution for decoupling these things to increase
flexibility and the chance for reusability. The design of the MVC triad is shown in Figure 5.6.
User input can concern the Model or the View, the Controller processes these events and may
invoke changes on the Model or cause the View to change the way how information is displayed
on the screen. The View renders the Model and visualizes it to the user. If the inner state of the

4Smalltalk-80 is the first generally released version of the Smalltalk programming language which is object-
oriented, dynamically typed and reflective. See http://smalltalk.org

56

http://smalltalk.org

Software Application Design

Model is changed, the View is notified to enforce redrawing. It is possible to have multiple Views
of one Model for different purposes.

Graphics Control Structure

As mentioned above, the basic design element of the Graphic package is the MVC pattern in a
nested way. We have a Main part, which is responsible for the GUI and controlling the two other
parts, which are the visualization of the building and the visualization of the underlying HMM.
The HMM is a graph of course. For each visualization part a MVC pattern was used. Due to the
given control structure, the overall structure is given as shown in Figure 5.7.

Building
Controller

MainFrame
(View)

Graph
Controller

Main
Model

Main
Controller

Figure 5.7: Graphics Control Structure

As can be seen, control flow concerning MainFrame is inverted in comparison to the original
MVC pattern. This is motivated by the used framework for developing the software. The class
MainFrame encapsulates the whole MFC structure of a GUI using Java Swing5 [LEW+02]. The
class MainController is an interface to the two other controllers and the MainModel.

The Class MainFrame

The class MainFrame is also the main entry of the whole application, it contains the (static)
main method. To be platform independent it was decided to use Lightweight Components i.e.
Swing elements for implementation of the GUI [Kru00]. As recommended for drawing frames
with Swing, the class MainFrame inherits from JFrame. MainController is the interface to the
application. A look to the application design (see Figure 5.1) shows that this is the interface
to the package Base. Since MainFrame contains the user interface it also provides some dialogs
which are inherited from JDialog. Note that class Dialog in Figure 5.8 is only a schematic drawing
to show the structure of the Graphics Main part, in the implementation there are several different
dialogs with extended names, like Dialog Suffix.

5See Chapter 6 for more information about Java Swing

57

Software Application Design

JDialog

Dialog Main
Controller

MainFrame

+main()
JFrame

Figure 5.8: Entry Point of the Application

Building Visualization

This is the part which is responsible for visualizing the results of the prediction. For better
imagination, the input data, i.e. the sensor values which are delivered to the system, are shown
as well. The aim of this part is a real-time6 live animation of the system, which shows the
results of the prediction process to the user. Figure 5.97 shows the static structure of this part.
As can be seen it is based on the MVC pattern. The real screen representation is done by
ViewPanel. This class is inherited from the Java Swing class JPanel (for the screen drawing
stuff) and implements the Java-interface Runnable for the animation stuff. The implementation
of the Runnable interface makes it possible to run it in an own thread, which is a good idea
for graphics animations [Knu99]. The Model contains all entities which should be rendered. To
ensure a correct registration and for better factorization of the software, the creation of all entities
is centralized in a factory class, called ObjectFactory. Note that Object is the abstract superclass
of all visualizable entities, the concrete subclasses are neglected here since this gives no further
information for understanding the structure.

1

*

ViewPanel Controller Object
Factory Object

View Model

Figure 5.9: Structure of the Building Visualization

6a soft real-time system in terms of [Kop97]
7The prefix Building is omitted within the class names.

58

Software Application Design

The Building Visualization shows the ground plan of the SmaKi’s room and the actions inside
the room. the predicted actions should be shown as well. So it has to fulfill several tasks. It has
to show the static layout of the room, i.e. the walls, the door, several closets and the positions
of the sensors. These are so called static8 entities, since once shown, they do not change their
appearance. On the other hand are the dynamic entities which can be distinguished between
persistent and non-persistent. Persistent entities are sensors, they are created at startup and
never deleted. However, they change their appearance according to the value the sensor takes.
Non-persistent entities are persons and the prediction according to them. Persons are created
and removed dynamically, as well as the predictions about their behavior.

Graph Visualization

The driving force behind the prediction are Hidden Markov Models (HMMs). Simplified (with
sufficient correctness for this chapter) it can be said, HMMs are directed graphs. We are interested
to look at those graphs to analyze their structure and their properties. According to a common
saying “One Picture is Worth a Thousand Words” these graphs should be visualized. This is
done by this part of the software.

However, the automated visualization of graphs, called Graph Drawing is a great field in computer
science [KWE01] which is still not completed. A scientific community [5] exists, which is engaged
in esthetic drawing of graphs. Besides the annual Graph Drawing Symposium, they organize the
annual Graph Drawing Contest, actually the 15th [4].

Because of that complexity, it was decided to use a third party tool to accomplish this task. An
open source project exists, called Graphviz [1] which provides a binding to the Java programming
language, called Grappa [2]. With this tool it is possible to make nice visualizations of the HMMs.
An example of such graphs can be seen in Figure 5.10.

Figure 5.10: Example of a Graph visualized by Graphviz & Grappa

Details about how to use this third party tool are described in Chapter 6. This section describes
the structure of the software and the envolved classes. An overview is given in Figure 5.11. As
can be seen here the MVC pattern is used again. The class Model is a container for all objects
of the graph which are nodes, i.e. instances of class State, and edges, i.e. instances of class Edge.
Object is the abstract super class of them. The interface to the third party tool is within the
Model.

8Static in the sense of not moveable in the room, not to be confused with static objects in terms of computer
programming language.

59

Software Application Design

Controller

EdgeState

Object

ModelView

1

*

Figure 5.11: Structure of the Graph Visualization

5.5 Markov

This part contains the program logic about Hidden Markov Models (HMM). This software does
not use matrix representation for the HMM, but rather a datastructure according to linked lists.
As can be seen in Figure 5.12 an emission contains a symbol. The decision of using only symbols
rather than application specific data, decouples the markov part from the data part. This rises
the possibility of reuseability and allows to make changes easier.

As Figure 5.12 shows, the algorithms, the functionality for merging and the interface to the ap-
plication specific data (DataAbstractionProvider are separated from the HMM’s implementation.
HiddenMarkovModel represents an HMM. As described in Chapter 3, an HMM is defined by a
quintuple λ = (S,A,B, π,Σ) which is represented as follows: S, the set of states, is represented
by a list of States of HiddenMarkovModel. The initial state distribution π is a property of States,
i.e. a variable of type IEEE-double9. The transition probability A is represented by Transition
which is associated to State. A State can have (0 . . . n) Transitions (in a model with n states),
a Transition contains exact two States, the source and the destination. The probability is a
property of Transition. If the transition probability between two states is zero, there is no Tran-
sition necessary. This saves memory and enhances performance. The emission probability B
is represented by Emission which is associated to State. A State can have (0 . . .∞) Emissions,
an Emission is part of one State. The probability is a property of Emission. Emissions with a

9IEEE 754-1985, Standard for Binary Floating-Point Arithmetic; the standard double datatype in Java

60

Software Application Design

Hidden
Markov
Model

StateEmission Transition

IEmission
Symbol

MergeProviderAlgorithms

1
**

1

Data
Abstraction

Provider

1* *2

«uses»

Figure 5.12: OOD of the Package Markov, Prefix ‘HMM’ is suppressed

probability of zero are not stored. The output alphabet Σ is represented by the collection of all
IEmissionSymbols within the model, however, this is not required at this application. The IEmis-
sionSymbol represents one output symbol, new IEmissionSymbols can be created at runtime, so
the set of output symbols is unbounded and therefore it is no alphabet. This approach is chosen
since the possible output symbols are not known a priori, they are learned. This is described in
Section 4.4. This design of the HMM representation allows efficient learning, because if a new
symbol is added to the system, this affects only the state10, which can emit this symbol.

Learning

For the learning task, the HiddenMarkovModel is initialized with two States, the artificial start
state and the artificial end state. For each new added State, a Transition is added to the immediate
previously added State with the new State as destination. For the first added State the immediate
predecessor is the artificial start. Merging of the learned models is provided by the MergeProvider.
As the system manages several HMMs for learning (one for each person) the MergeProvider
takes the HiddenMarkovModel which should be merged as a parameter for its static methods.
However, MergeProvider only provides algorithms for defining which states should be merged,
the real merging of two States is done within State itself.

Prediction

What MergeProvider is for learning, Algorithms is for the prediction. It provides the methods
for calculating the forward probabilities and based on them the prediction for the next step. It
is extended to look ahead more than one step, so up to three steps in the future are provided.

10With the learning principles at this work, this is always exact one state.

61

Software Application Design

However, Algorithms only provides algorithms for calculating the probability distributions. The
prediction is a selection of the most probable emissions. This selection is done by HiddenMarkov-
Model. As we have integrated sensor values of different sensor types into the same model, sensor
values of sensors, which emit a lower number of values than the others, are priorized. In a first
round the most probable next states are selected. In a second round the most probable emis-
sion of these states are selected, only in the second round the prioritization is used. To get the
real world values from the Emission’s IEmissionSymbols, the DataAbstractionProvider is used.
DataAbstractionProvider provides methods to get information from the IEmissionSymbols which
can be visualized, i.e. the position of a switch sensor, since the ID (which is the data of the
corresponding EmissionSymbol) would not be satisfying for a user.

5.6 Persistence

As the name supposes, this part deals with data which should be made persistent, i.e. the interface
to the database. However, the name ‘persistence’ is not to be seen too narrow, the interface to
the SmaKi’s sensors is within this part of software, too. So we can distinguish two subparts,
the connection to the database and the connection to the SmaKi’s sensor network. The first one
simply is called Database whereas the second one is called Livedata, because with this interface it
is possible to retrieve sensor values from the SmaKi’s room in real-time11. As described in Section
2.2.3, the system provides two different DBMS, from the companies Oracle and Microsoft. The
whole structure of the persistence part is shown as a schematic drawing, depicted in Figure 5.13.

Oracle RThread

Database Livedata

Persistence

Microsoft DataReader

Figure 5.13: Schematic Drawing of the Persistence Part

To use the SmaKi Prediction Application it is a necessity to have a connection to a ARS Sensor
database, because the information about the available sensors is taken from that storage. The
values of the sensors can be taken from the database as well, however, this is rather a task for
debugging during development. For the intended suppose of this application, a connection to
SmaKi’s observation hardware is needed, to get live-data.

11soft real-time

62

Software Application Design

Database

The application supports two kinds of DBMS, but this is an ‘either - or’ relationship, i.e. at run-
time only one database can be chosen. There are two classes which need access to the database.
These are the DataAccessor and the SensorFactory. The DataAccessor provides functionality to
create HMM-Chains from sensor values which are stored in the database. The aim of SensorFac-
tory is to create the system’s internal representation of the sensors at startup of the application.
Since some important information about the sensors, like type and position, is stored in the ARS
Sensor database, SensorFactory needs a connection. If the connecting fails, the system cannot
start.

IDatabase
Reader

IQueryString
Provider

Microsoft
Database
Reader

Oracle
QueryString

Provider

DataAccessor

Microsoft
QueryString

Provider

Oracle
Database
Reader

Sensor
Factory

Figure 5.14: OOD of the Connection Classes to the Database

Both classes need a IDatabaseReader and a IQueryStringProvider, which are Interfaces. As can be
seen in Figure 5.14, the concrete implementation of this interfaces depends on the available DBMS
(provided are DBMS from Oracle and Microsoft). IDatabaseReader contains information which
is necessary to establish a connection to the DBMS-server and to get access to the appropriate
database. All SQL queries are collected in IQueryStringProvider. The reason for this approach
is that each producer of a DBMS has his own SQL-dialect and this dialects are not compatible.

Livedata

This part provides the interface to the SmaKi’s observation hardware which is described in Sec-
tion 2.3. Sensor values are sent over a TCP/IP network using the SymbolNet protocol (see
Section 2.3.2). LiveDataReader establishes the connection. If this is successfully it starts the
ReaderThread which listens on a TCP/IP socket for incoming messages. The messages contain
a tuple (ID, value, timestamp) which represents a sensor value. This data is converted to the
appropriate datatypes of this software by the ReaderThread. The converted tuples are added to a
buffer of the LiveDataReader. LiveDataReader runs in an own thread, too. If a tuple is received,
the appropriate sensor value is created by using the DataAccessor, since the DataAccessor ‘knows’

63

Software Application Design

which sensor-ID corresponds to which sensor-type. An OOD of the involved classes is shown in
Figure 5.15.

Data
Accessor

Reader
Thread

LiveData
Reader

Sensor
Value

«uses»

Figure 5.15: OOD of the Live-Data Connection Classes

64

6 Implementation

This chapter describes the implementation of the SmaKi Prediction Application. As described in
Section 1.2 this software has to fulfill two main tasks: On the one hand the creation, parameter-
optimization and evaluation of HMMs and on the other hand a live animation, which makes
the SmaKi system’s behavior and the results visible to the users. It was decided to use Java as
programming language for the following reasons:

• Java is a state-of-the-art programming language.

• Java supports Object Oriented Programming (OOP) which is state-of-the-art for applica-
tions of this size.

• There are several sub projects concerning the ARS system which are implemented in Java.

• Interfaces to the Live-Data Modules are available for Java.

• The performance is sufficient; this is no hard-real-time application.

• An open source package for graph drawing is available for Java.

• Most of the students have sufficient programming skills in Java (for reusability).

For development the Eclipse IDE (Integrated Development Environment) was used, which is an
open source project that focuses on building open development platforms [6]. For creating the
graphical user interface (GUI) a WYSIWYG1 GUI editor was used. This editor is named Jigloo
and is available as a plugin for the Eclipse IDE. Jigloo “is free for NON-COMMERCIAL use
only” [3]. For this project the latest version of Java was used, this is Java Standard Edition 6
(1.6.0).

Applications which are written in Java are subdivided into packages. Packages encapsulate the
visibility of variables and methods and provide a structure for related modules. This is reasonable
for this project, so this form of organization was followed. Note that package names in Java start
with a lower case letter by convention, whereas names of classes start with a capital letter [LL08].
This chapter is organized like the software application, so the sections correspond to the packages
in the source code.

1acronym for What You See Is What You Get

65

Implementation

Important Classes, Methods and Member Variables

In this chapter the term ‘important’ is used in relation to classes, methods and member-variables.
In a computer program all those entities are necessary for running correctly. However, there are
a lot of very simple entities, like Getter and Setter methods2, which are essential for the program,
but provide no information to a programmer for a better understanding of the system’s structure.
Moreover, the description of such entities is annoying, for this reason this is omitted in this work.
In this chapter the term ‘important’ means, “important for a reader to understand the system’s
structure”.

6.1 Package base

The package base contains the basic classes of the SmaKi Prediction Application. It interacts
with all other packages and therefore it contains interfaces to all those packages. In the following
an overview of the classes of this package is given. Simple classes are neglected. Methods of
classes are mentioned only if they are important for understanding the system.

Class MainController

This class is the interface to the GraphController and the BuildingController of the package
gui. As the name of the package promises, this includes being the interface to the graphical user
interface. So this class has a lot of simple methods to pass the instruction given by the user to the
correct module of software. A detailed description of this methods is not required to understand
the system.

Class MainModel

The class MainModel contains basic data of the application, like a SensorList and a WorldPer-
sonList. It has references to many other classes, however, those are already described in Section
5.2. The important methods are:

init(MainController)
This has to be called before calling any other method. The parameter MainController
is registered at the model. In order to the chosen database, it instantiates the appropriate
implementations and establishes a connection.

loadHMM(String)
Loads an HMM from the XML-file, which is specified by the string. Throws an Excep-
tion if the specified file contains not a valid HMM representation.

saveHMM(String)
Saves the global HMM to the XML-file, which is specified by the string. Throws an Excep-
tion if the specified file cannot be written.

2accessor methods to access member variables

66

Implementation

addHMMChain(String)
Adds a Chain to the global HMM. The Chain is stored in an XML-file which is specified
by the string. If the file doesn’t contain a Chain, but a model, it is not added.

addHMMModel(String)
Adds an HMM to the global HMM. The HMM which should be added is stored in an
XML-file which is specified by the string. If the specified file contains a Chain the user is
asked whether to add it as a Chain, which does some preprocessing.

liveDataRetrieved(SensorValue)
This method is called from the LiveDataReader for each retrieved sensor value. The Sen-
sorValue is passed as argument. The corresponding sensor is updated and a method is
called, to handle the specific type of the sensor value. Furthermore, all WorldPersons of
the WorldPersonList are updated with the SensorValue’s timestamp. If the lifetime of a
WorldPerson is expired, it is removed from the list.

tactileSenValRetrieved(SensorValueTactile)
This method is called from the method liveDataRetrieved(SensorValue) if the
SensorValue is of type SensorValueTactile. If the raw value of the sensor value is equal
to ‘1’ (i.e. true), the appropriate TactileSensor is assigned to the closest WorldPerson.
If the distance to this WorldPerson is too big or if the WorldPersonList is empty, a new
WorldPerson is created. If the raw value of the sensor value is equal to ‘0’ (i.e. false), the
appropriate TactileSensor is removed from each WorldPerson in the WorldPersonList.

movementSenValRetrieved(SensorValueMovement)
This method is called from the method liveDataRetrieved(SensorValue) if the
SensorValue is of type SensorValueMovement. If the raw value of the sensor value is
equal to ‘0’, nothing has to be done. If the raw value of the sensor value is equal to ‘1’, the
SensorValueMovement is assigned to each WorldPerson in the WorldPersonList which is
in the sphere of action of the appropriate movement sensor.

switchSenValRetrieved(SensorValueSwitch)
This method is called from the method liveDataRetrieved(SensorValue) if the
SensorValue is of type SensorValueSwitch. If the raw value of the sensor value is equal
to ‘0’, nothing has to be done. If the raw value of the sensor value is equal to ‘1’, the
appropriate SwitchSensor is assigned to the closest WorldPerson. If the distance to this
WorldPerson is too big or if the WorldPersonList is empty, it is ignored. The door switch
needs some extra handling due to the entrance workaround (see Section 4.2.3).

Class VerificationModel

This class provides a verification mechanism. The resulting values are written to a text file the
name-suffix of which is generated using the current time. This ensures that verification files are
not overwritten. These files can be read with any text editor or imported by MS Excel. The first
column of the file represents the values from the prediction which got the highest probability. The
second column represents the values of the second highest prediction and so forth. Sometimes
there are blank values, they occur if there was no position emission at this rank.

67

Implementation

Class PredictionEntity

This class is the representation of a prediction. It contains a Type which denotes which kind of
prediction it is, since at the visualization there are differences in drawing predictions of different
types. Type is an enum and can take the values (POSITION, SWITCH, MOVEMENT, NONE). All provided
methods are Getters and Setters, so a detailed description of these methods is not required to
understand the system.

Class WorldPerson

This is the class representing the abstraction of the persons in software. It contains the Person
Model, described in Section 4.2. The most important member variables are the Position, which
represents the position of the person in the room. For the calculation of this position it contains
a list of assigned tactile sensors, which is a list of type LinkedList<TactileSensor>. A value
which indicates if the person is active is also within this class. For the predictions it contains a list
of type ArrayList<PredictionEntity>, with PredictionEntity as argument. The important
methods are:

Constructor(TactileSensor, HiddenMarkovModel)
The constructor takes two arguments. As described in Section 4.2.3 a new person is cre-
ated if a sensor value of a tactile sensor cannot be assigned to a existing person. The
emitting sensor of this unassigned value is passed to the constructor as the first argument
(TactileSensor). The second argument is a reference to a copy of the global Hidden-
MarkovModel, which is needed for the prediction calculation. The constructor creates a
new HiddenMarkovModel, the HMM which is used for learning; it is empty at the begin-
ning. The list of tactile sensors which is necessary for the calculation of the position is
allocated, as well as the list of prediction entities.

movementSenValRetrieved(SensorValueMovement)
This method is called if a sensor value of a movement sensor is retrieved. The appropriate
SensorValueMovement is passed to it as an argument. The method creates a MovementSym-
bol and forces the learn-HMM to ‘learn’ this symbol.

switchSenValRetrieved(SensorValueSwitch)
This method is called if a sensor value of a switch sensor is retrieved. The appropriate
SensorValueSwitch is passed to it as an argument. The method creates a SwitchSymbol
and forces the learn-HMM to ‘learn’ this symbol.

add(TactileSensor)
If the current value of the TactileSensor is equal to ‘1’ it is added to the persons’s list
of tactile sensors. So the position of the person has to be recalculated, this is indicated by
setting a PositionChanged bit.

remove(TactileSensor)
If the current value of the TactileSensor is equal to ‘0’ it is removed from the persons’s
list of tactile sensors. So the position of the person has to be recalculated, this is indicated
by setting a PositionChanged bit.

68

Implementation

double weightDistance(Position)
The distance from the person (i.e. the WorldPerson’s Position) to the Position given by
the parameter is calculated and returned as a value of type double. The method is called
weight, because if the person is not active, i.e. it is an item (as described in Section 5.2),
the method returns Double.MAX VALUE and if the person is active, but has an empty sensor
list, the distance is shortened. This is done to prioritize a person with an empty sensor list
when assigning tactile sensor values to persons.

boolean update(long timeMillis)
The parameter of this method represents a timestamp which is used to calculate if the
lifetime of an inactive person has expired. This method uses the PositionChanged bit
which is set by add(TactileSensor).
If this bit is true, this indicates that a step of this person occurred. The term step has two
meanings in this context: On the one hand, it is a footstep of a real person in the SmaKi,
on the other hand it is a step in the HMM (prediction) representation. So a new Posi-
tionSymbol is created and learned by the learning-HMM. The prediction-HMM calculates
the next step by use of the created PositionSymbol. After that, the PredictionEntities
and the VerificationModel are updated.
If the PositionChanged bit is false, the lifetime-timers are updated. If lifetime has expired,
the person is marked as inactive in case of having an assigned tactile sensor. If there is no
tactile sensor assigned, the learning-HMM is saved to a file an the person is marked to be
removed from the MainModel’s WorldPersonList.

delMe()
This is a simulation of a destructor. It sets all references to null and forces the Java’s
garbage collector to run immediately. This is a necessity to avoid OutOfMemoryExceptions
when the system is running several weeks.

saveLearnmodel()
This method creates a file name by the use of a predefined prefix and the current time
of the system. This ensures unique file names. The learned HMM is saved to this file.

Class WorldPersonList

This class represents a list of WorldPersons. The basic operators add, remove and an iterator
are implemented. The extension (due to standard lists) of interest is the method WorldPer-
son getClosest(Position). It takes a Position as parameter and returns a reference to the
WorldPerson which is closest to this Position. If the list of WorldPersons is empty or if all
WorldPersons of the list are inactive, the method returns null.

Class Sensor

This is an abstract class representing a (generic) sensor. All implementations of specific Sensors
are inherited from this class. It contains the sensor’s identity (ID) as an integer value and a
description as String. It also provides a field Timestamp where the point in time where the last
modification of those sensor’s value occurred, can be saved. There are two important methods
within this class. The first one is updateValueRaw(SensorValue) with the purpose to update
the sensor’s value. This method has to be overwritten by a subclass. The second important

69

Implementation

class is Point getPosition() which is abstract, so it has to be overwritten by a subclass. This
method returns the center Point of a sensor. The concrete implementations are MovementSensor,
SwitchSensor and TactileSensor.

Class SensorList

A list of all available sensors is represented by this class. The basic operators add, remove and a
iterator are implemented. The extension (due to standard lists) of interest is the method Sensor
get(int ID) which returns a Sensor with the given ID, null if there is no sensor with the given
ID. Since this functionality is used frequently (for each sensor value retrieved by the system)
and searching a list takes a long time (O(n)) compared with a dictionary-search (O(log(n))), the
internal representation of the list is a TreeMap<Integer, Sensor> with the Sensor’s ID as key.
The class TactileSensorList represents a list of the TactileSensors only.

Class SensorValue

This class represents a sensor value retrieved from the SmaKi’s hardware. This is an abstract
class which contains only one field, an integer with the ID of the sensor3 which emitted this
value. All implementations of specific SensorValues are inherited from this class, these concrete
implementations are SensorValueMovement, SensorValueSwitch, SensorValueTactile and the
‘pseudo’ value SensorValueKeepAlive for the keep-alive messages.

6.2 Package data

This package is the interface between the package markov and the package pers. It is used to get
the underlying data from the IEmissionSymbols at the prediction phase. When learning from
live-data this package is not necessary, however, it is used for learning from the database.

Class DataAbstractionProvider

This class provides the interface to the package pers, which is a reference to class DataAccessor.
The interface to the package markov is given by a reference to class HiddenMarkovModel. Fur-
thermore, it provides functionality for getting data of the predicted emissions and for the creation
of simple HMMs from data from the database. The most important methods are:

setPredictionEntity(PredictionEntity, Emission)
The first parameter is a PredictionEntity. This is a class which contains data for the visu-
alization of predictions. The second parameter is the Emission which should be visualized.
An Emission contains an IEmissionSymbol which denotes which type of PredictionEn-
tity should be displayed. Furthermore, the IEmissionSymbol contains data which denotes
how the PredictionEntity should be displayed. This method uses the information stored
in the Emission to configure the content of the PredictionEntity.

3The sensor of the real world, not the internal representation which is denoted Sensor.

70

Implementation

IEmissionSymbol createEmissionSymbolFromXML(Node)
This method takes an XML-node as parameter which contains an IEmissionSymbol and
creates this symbol from the XML-data. If Node contains no symbol data, an exception is
thrown.

Class Position

This class represents a position in world coordinates. It is like the Java’s Point2D.double class,
but it implements the Comparable Interface. This allows ordering of Positions and therefore
a dictionary-search in a sorted collection.

Symbol Classes

The classes MovementSymbol and SwitchSymbol inherit from BinaryIDSymbol, BinaryIDSymbol
and PositionSymbol implement the IEmissionSymbol Interface of the package markov. All
these classes provide functionality for creating an XML-structure to save their content to an
XML-file.

There are three classes representing lists of symbols, which are PositionSymbolList for Posi-
tionSymbols only, BinaryIDSymbolList for MovementSymbols and SwitchSymbols, and Emis-
sionSymbolList for all kinds of symbols. The last one is used if the type of symbol is not known.
These lists provide special get() methods which implement a dictionary-search in the internal
collection.

6.3 Package gui

This section describes the package gui. This package covers everything which should be displayed
to the user. Not every subpart of this package allows user input (except default operations,
like closing the window) since they are intended for displaying information only. Almost all
user interaction elements are located within the class MainFrame. Since building graphical user
interfaces from scratch is a long winded work, it was decided to use a graphical GUI editor for
creating these classes. This editor is named Jigloo and is available as a plugin for the Eclipse
IDE.

This package can be subdivided into three parts, the user interface which is encapsulated in class
MainFrame, the Building Visualization which is the real-time part that shows the current situation
to the users of the SmaKi and the Graph Visualization for the drawing of the HMM’s structure
as a directed graph.

6.3.1 User Interface

As mentioned above, the user interface is in class MainFrame. This class also contains the entry
point of the application. All user actions are forwarded to the class MainController, which is
located in package base.

71

Implementation

The user interface was designed with Jigloo, a plugin for Eclipse which allows rapidly developing
of GUIs, based on a visual GUI editor. It generates the source code for the GUI elements auto-
matically, only the actions of the handlers have to be added manually. The handlers themselves
are autogenerated too, the source code is appended at the end of the file. Their name ends with
“ActionPerformed” and an ActionEvent argument is passed to the implementation of them,
but this is never used.

Since this class contains the entry point of the application, i.e. the static main() method and it
is responsible for some initialization stuff which takes some time, it was decided to show a splash
screen to the users when the application starts. However, this increases usability, because the
initial connection to the database may take some time, this is not a necessity. Java provides a
module for creating splash-screens which is started at the very beginning to reduce the time in
which no feedback is given to the user.

Figure 6.1 shows a screenshot of the GUI. As can be seen, the system will display dialogs to
suppose actions the user might have done. For each action a user starts, this class delivers an
ActionEvent to the MainController.

Figure 6.1: Screenshot of the GUI

6.3.2 Building Visualization

This section describes the classes for the visualization of the SmaKi’s layout. Since each type of
item which should be drawn on the sceen is represented by its own class, not all of these classes
are described here. The important classes are described in the following.

Class BuildingController

This class is the interface to the package base of the application. It gets instructions from the
MainController and handles the affected building-visualization classes.

72

Implementation

Class BuildingView

This class provides a JFrame4 to draw the BuildingViewPanel. The constructor gets a reference
to the BuildingController as parameter. This is necessary to tell the the controller if the size
of the window, represented by the JFrame is changed. Resizing of windows can be done by the
user, i.e. it is not disabled.

Class BuildingViewPanel

This class is responsible for drawing the scenes. It extends JPanel and implements the Runnable
Interface, i.e. it runs as an own thread. Once a screen is rendered, the thread sleeps for a
certain period. As rerendering is not necessary if no changes happen, the frequency of redrawing
is reduced if no sensor value is retrieved for a while. This is done to save power and reduce
generation of heat. All periods and durations are configurabel. The important methods are:

start() and stop()
Starts or stops the animation thread.

paint()
The overriden method for painting of the JPanel. It calls the paintObjects() method
of class BuildingModel to redraw all objects on the screen.

setAnimationSpeed(AnimationSpeed value)
Sets the durations between the redrawing of the scenes. AnimationSpeed is an enum which
can take three values: fast, slow, powersave.

Class BuildingModel

This class contains all objects inside the room which have to be visualized. For this task it
manages two lists: A list of BObjects and a list of BPersons. The transformation from world
coordinates to screen coordinates is also done within this class. For this task, the class manages
the viewing area of the screen and the size of the world representation. The important methods
are:

addObject(BObject)
This method takes a BObject as argument and adds it to the model’s object list. If the
world coordinates of the added object are outside the model’s world representation range,
this range is updated.

addPerson(BPerson)
This method takes a BPerson as argument and adds it to the model’s person list. Ad-
ditionally the person is added to the model’s object list, by using the method addOb-
ject(BObject). As a BPerson is inherited from BObject this can be done.

paintObjects(Graphics)
This method is called from the BuildingViewPanel and gets the Graphics object from
there. It iterates over all BObjects in the model’s object list and calls the BObjects’s
paint() method. This is the reason that BPersons are added to this list too.

4JFrame is used to draw windows with Java Swing.

73

Implementation

updatePersons()
This method updates all BPersons of the model’s persons list, i.e. it recalculates their
positions and predictions and their appearance (inactive persons become an item). Fully
inactive persons are marked for deletion.

removePersons()
BPersons which are marked for deletion are deleted. Furthermore, all the BPredictio-
nentities which are associated with this BPerson are deleted too.

setWindowSize(Dimension)
This method is called if the size of the window where the visualization is displayed has
changed. So the scale factor for the transformation from world to device coordinates has to
be recalculated and all objects which are displayed have to be updated.

toDeviceCoordinates()
This method calculates the device coordinates from the world coordinates for all BOb-
jects. This method is used at startup and when the size of the device has changed, i.e.
the viewing window is resized by the user.

toDeviceCoordinates(BObject)
This overloaded method which takes a BObject as parameter only recalculates the de-
vice coordinates of the given BObject. This method is used for recalculation of moveable
objects, which are for example BPerson and BPredictionEntity.

Class BuildingObjectFactory

This class creates all objects which should be visualized and adds them to the BuildingModel’s
object list. At startup of the application this class is used for creating all the visual entities
of the displayed SmaKi’s layout. At runtime it is used to dynamically produce BPersons. The
important methods are:

createSensors(SensorList)
This method takes a SensorList as parameter. For all sensors within this list, which
can be of different types, the appropriate graphical representation of the sensor-object is
created and added to the BuildingModel.

createPerson(WorldPerson)
This method takes a WorldPerson as parameter. For this WorldPerson a corresponding
graphical representation is created and added to the BuildingModel.

createStaticItems()
This method creates all static items which should be displayed. These are rectangles show-
ing the kitchenette, shelfs, table et cetera. The values are hardcoded.

createStaticItemsFromFile(String)
To make modifications of such trivial things of the SmaKi’s layout easier, this method
provides functionality to read the static configuration of the layout from an XML-file. The
filename is given by the parameter. If wanted, the system can draw images inside the
rectangles.

74

Implementation

Color getColor(String)
This method takes a String as parameter and tries to convert the represented value to
a Color object and returns it. The paramter can contain rgb-values or the name of a
system color. The String "[128,128,128,128]" represents rgb-values with the optional
alpha parameter, the String "yellow" represents a known system color. To ensure that
all system colors are provided, the method uses reflection to get the correspondig values of
the string.

Class BObject

This is the abstract super-class of all entities which can be visualized by the Building Visualization.
It only contains one method, this is the abstract method paint(Graphics) which takes a
Graphics object as parameter. However, there are two member variables worth mentioning: An
array of WorldPoints which are of type Point2D, i.e. take double values for ‘x’ and ‘y’ and an
array of DevicePoints which are of type Point, i.e. take int values for ‘x’ and ‘y’. Memory
allocation for this arrays is done by the implementing class. The class BuildingModel which
manages all BObjects which are displayed uses these two arrays of points to transform world
coordinates to device coordinates.

All concrete implementations of this class override the paint() method to draw the appropri-
ate graphic on the screen. All classes have a “B” as prefix in their name. Implementations of
dynamic items contain a reference to the corresponding world representation object, e.g. BTac-
tileSensor contains a reference to a TactileSensor. To get the values from the world-object
an update() method is used. This is all the same for the implementations of BObject, so a
detailed description is not necessary here. All concrete implementations of BObject are: BRect-
angle, BImage, BHeartbeat, BMovementSensor, BSwitchSensor, BTactileSensor, BPerson and
BPredictionEntity.

6.3.3 Graph Visualization

This section describes the classes for the visualization of the global HMM as a directed graph.
The local HMMs do not contain further information since the learn models are simple chains and
the prediction models are clones of the global one. The graph’s layout is calculated with a tool
called Graphviz, for visualization the library Grappa is used, see Section 5.4 for the motivation
using this. The important classes for Graph Visualization are described in the following.

Class GraphController

This class is the interface to the package base of the application. It gets instructions from the
MainController and handles the affected graph-visualization classes.

Class GraphView

This class provides a JFrame5 to draw a Panel and it has two important member variables, which
are GrappaPanel and Graph which are both from the Grappa library. Graph contains the internal

5JFrame is used to draw windows with Java Swing.

75

Implementation

representation of the graph and is filled at the class GraphModel. So it is forwarded to this class
by the use of GraphController. The Graph is passed to the constructor of the GrappaPanel.
This panel manages the visual representation of the graph.

Class GraphModel

This class provides the generation of the graph from the HMM’s structure. The constructor takes
a HiddenMarkovModel as parameter which represents the HMM that is visualized. The layout
of the graph is calculated by a call of the method createGraph(). This method uses the inner
class GraphFactory to render the graph’s layout. Furthermore, this class provides methods for
marking and unmarking of edges and nodes. Edges are represented by the class GEdge, nodes are
represeted by GState; they have a common super class, named GObject.

Class GraphFactory

This is an inner class of GraphModel. It creates the graph from the HMM by using the Graphviz
and Grappa packages. For this task the following methods are used.

createGraphSpec()
This method creates a graph specification file. This file contains all nodes, a description of
these nodes, all edges, a description of the edges and some general properties of the graph.
The file name is a specified constant. For the creation of the nodes two alternatives are
possibel, one which represents the correspondig HMMState’s label as node label, the other
one uses a description of the HMMState’s emissions as label for the nodes in the graph. For
the description of a graph-specification file, see the online documentation6.

createGraphLayout()
This method creates the graph layout file from its specification file. The file names are
constants which are defined within the class. The method uses an external tool which
is part of the Graphviz application. This tool is an executable which is started by the
command line “dot -Tdot specfile -o layoutfile”. It is executed as a Process in a
Runtime environment.

readGraphLayout()
This method reads the graph layout file and uses Grappa to parse it. If parsing is successful,
the result is a grappa.Graph object which can be visualized by the class GraphView.

bindGrappa()
When the specification of the graph is created, for each object of the HiddenMarkovModel
which is added to the specification file, a corresponding GObject with a reference to the
HMMObject is created. As the corresponding grappa.Objects are created when the layout
file is parsed, these grappa.Objects are binded to the corresponding GObject with this
method.

6www.graphviz.org

76

www.graphviz.org

Implementation

Class GObject

This abstract class represents an entitiy of the graph, concrete implementations are GEdge and
GState. It provides two overloaded methods equals() for testing if two GObjects represent the
same entity. One takes a GObject as argument, the other one a String which represents the
name of the entity, i.e. one label in case of a state, two lables separated by an arrow in case of a
transition. Furthermore, it contains two abstract methods mark() and unmark().

Class GState

This class represents one node of the graph. It contains a reference to a grappa.Node and a
reference to an HMMState. The constructor is private and takes an HMMState as parameter. The
HMMState’s label is used to call the constructor of the super-class GObject. A static method
createGState(HMMState) is used for instantiation of an object.

Class GEdge

This class represents one edge of the graph. It contains a reference to a grappa.Edge and a
reference to a HMMTransition. The constructor is private and takes the label of the edge as
parameter. So a static method createGEdge(HMMTransition) is used for instantiation of an
object. This method builds a string which is the label of the edge from the given HMMTransition.

6.4 Package markov

The package markov encapsulates the software for internal representation of HMMs. This in-
cludes the data structure described in Section 4.4 and the algorithms for learning, merging and
predicting. The root class is named HiddenMarkovModel. This class represents the core of an
HMM and is the interface to the package base as well. The important classes of this package are
described in the following.

Class Algorithms

This class contains the prediction algorithms. This is the forward algorithm, known from Chapter
3 which gives a probability distribution over all next states. To take an appropriate selection
is part of another algorithm. Calculating the forward probability is done iterative with each
retrieved EmissionSymbol. The current forward probability is stored at the class HMMState for
each state separately. The prediction algorithm allows to see ahead up to three steps in the future.
The method calcForward(IEmissionSymbol) takes the actually received Emission Symbol and
calculates the forward probabilities for the next three steps for all states. Due to the forward
algorithm inherent the probabilities become very small numbers. This will cause problems with
the value range of the IEEE-floating point numbers, even if double precision is used. A definition
can be found at [IEE85]. One approach is to use the logarithm of the probabilities, however, this
is not possible due to the necessary summation of probabilities. So the shiftProbs() method
was introduced. If the highest forward probability of any state is below a certain threshold, the
values of all states are multiplied by this threshold. So it is ensured that at least one forward
probability always is within the value range of the IEEE-double, the others could be zero.

77

Implementation

Class Emission

An Emission belongs to an HMMState and contains an IEmissionSymbol which contains the
intrinsic data. The Emission itself contains a counter of occurrences and its probability. The
method update(count) recalculates the probability dependent on the given value count, which
is the sum of all emissions belonging to a state.

Class HiddenMarkovModel

At startup two states are created, the artificial start state and the artificial end state, which are
necessary for the systems structure learning, see Section 4.4. This class provides several methods
which are described in the following.

learnSymbol(IEmissionSymbol)
For a PositionSymbol a new state is added to the model and a new emission contain-
ing this PositionSymbol is added to this new state. All other EmissionSymbols are added
to the CurrentLearnState, which is a reference to the last created state, null at startup.

getPredictionEntities(ArrayList<PredictionEntity>)
This method calculates the most probable predictions. It takes a list of PredictionEntity
which has to be allocated at the caller. There are several strategies how to calculate the
most probable prediction, since the different types of sensor produce different probability
distributions. For this reason this method exists with several suffixes, like “ 1”, which are
not used at the current compiled version, but might be of interest.

addModel(HiddenMarkovModel)
This method allows to combine two models. As known from Section 4.4, so called Chains
are created at the learning phase. These Chains are combined to one model using this
method.

saveToFile(filename)
This method provides functionality for saving the HMM to an XML-File, the filename
is given by the parameter. An inner class XMLSerializer provides the serialization of the
HMM.

loadFromFile(filename)
This method provides functionality for loading the HMM from an XML-File, the filename
is given by the parameter. An inner class XMLSerializer provides the deserialization of
the XML-structure.

delMe()
This is a simulation of a destructor. It sets all references to null, so the Java’s Garbage
Collector can remove this object from memory. The removal of the reference to this object
is in response of the caller, which is the method delMe() of the class WorldPerson in the
package base.

78

Implementation

Class MergeProvider

This class provides algorithms for state merging which is necessary for the learning of HMMs (see
Section 4.4). The methods are static since they operate on the HiddenMarkovModel which is
passed to them as a parameter. This is done because there are several different HMMs within the
learning phase (each person has its own HMM, see Section 4.3.2 for details). Originally it was
planned to use gaussian distribution (µ, σ2) of position’s distances to define whether to merge two
states. But as the parameter σ has to be estimated as well as the resulting variable x, with the
effect of cancelling each other out (and for simplification), it was decided to use distances. The
name ‘Gauss’ remained in the method names to indicate that this is no merging of exact data.

boolean isChain(HiddenMarkovModel)
This function checks whether the assigned HiddenMarkovModel is a chain, i.e. each state
(except the artificial end state) has exact one transition.

processChain(HiddenMarkovModel)
This method does the preprocessing of chains like described in Section 4.4.4. Addition-
ally states with exact the same positions are merged, the input HiddenMarkovModel has to
be a chain.

mergeHorizGauss(HiddenMarkovModel)
Does the horizontal merging like described in Section 4.4.5. The input HiddenMarkov-
Model has to be a chain.

mergeStartGauss(HiddenMarkovModel)
The vertically merging described in Section 4.4.6 is implemented in this method. The
used algorithm begins at the artificial start state.

mergeEndGauss(HiddenMarkovModel)
The same as mergeStartGauss(HiddenMarkovModel), but using an algorithm that begins
at the artificial end state.

mergeConsecutive(HiddenMarkovModel)
This method provides the merging of sequences which is described in Section 4.4.7.

boolean haveSameSwitch(HMMState, HMMState)
Having same SwitchEmission7 means that if a state Sa contains a SwitchEmission Ea,
a state Sb also contains Ea and vice versa. SwitchEmissions are distinguished by the ID of
their contained SwitchSymbol.

Class HMMState

This class represents a state within the HMM. As can be seen in Figure 5.12, a HiddenMarkov-
Model contains 0 . . . n HMMStates. Each HMMState contains 0 . . . n Emissions and 0 . . . n HMM-
Transitions. Thus the Emissions and HMMTransitions are represented as ArrayLists of the
appropriate type. Furthermore, each HMMState contains an ArrayList of referencing HMMStates,
i.e. of states which contain a transition with this state as destination.

7An Emission which contains a SwitchSymbol is called a SwitchEmission for short.

79

Implementation

Constructor
The constructors of this class are private, so it provides a method for creating which is
called createState(HiddenMarkovModel) and takes the HMM where the state should be
assigned to, as a parameter. This ensures that an HMMState is part of a HiddenMarkov-
Model. The constructor and the appropriate creation-method which take a name as second
parameter, create a state with the given name, this is used when a HiddenMarkovModel is
created from a file. Those without the name as parameter define their own name by using
a static counter variable which is incremented for each created state. Since a model is
either learned or loaded from a file, overlappings are impossible. However, overlappings can
occur when combining models at the learning phase as described in Section 4.4.6, so it has
to be ensured that the name is unique and if necessary the state has to be renamed.

merge(HMMState)
This method merges the given state with this state. The method ensures that the emis-
sions and transitions from the given state are added to this state, or if already contained
that their probabilities are updated. Also the list of referencing states is updated and the
transitions to the given state are redirected to this state.

Class HMMTransition

A HMMTransition has a source state and a destination state. Furthermore, it contains a counter
of occurrences and its probability. The method update(count) recalculates the probability de-
pendent on the given value count, which is the sum of all HMMTransitions with the same source
state.

Interface IEmissionSymbol

This represents the interface to the package data. Each concrete EmissionSymbol has to imple-
ment this interface.

Class XMLSerializer

This is an inner class of class HiddenMarkovModel. It provides the functionality to save HMMs
to XLM-Files. The method removeTextNodes(Node root) is necessary to remove unintended
text nodes from the XML-structure when an XML-file is read.

6.5 Package pers

This package has to fulfill two tasks. First it has to provide connectivity to the ARS-Sensor
database. The second task is to provide the interface to the live-data, which is sent from the
SmaKi’s observation hardware via TCP/IP. The OOD class diagrams for this two tasks are shown
in Figures 5.14 and 5.15.

80

Implementation

6.5.1 ARS Sensor Database Connectivity

The classes which are described here provide connectivity to the static data and the dynamic
data of the sensor database. The software provides DBMS of different vendors, here only the
interfaces are described in detail. Concrete implementations are given for Microsoft and Oracle
databases.

Class DataAccessor

This class is the interface to the package data. It provides methods for creation of SensorValues.

Constructor(IQueryStringProvider, Connection)
The constructor takes a IQueryStringProvider and a valid connection as parameter. Thus
the connection has to be established at the creator.

ArrayList<SensorValue> getSensorValues(Calendar start, Calendar end)
The ARS Sensor Database is able to store all sensor values of the SmaKi’s recognition
system if this is wanted. To get these values from the database this method can be used. It
takes two Calendar arguments, where the first one is the start timestamp and the second
one the end timestamp. So the method returns an ArrayList of all sensor values between
start and end.

static SensorValue createSensorValue(senID,value,timestamp)
The return value of this static method (SensorValue) has several subtypes. If the system
receives a sensor value from the hardware, this is a triple (sensor ID, value, timestamp). To
create the correct subtype of SensorValue, corresponding to the ID, this method is used.
For simplification the mapping (‘sensor ID’ - ‘sensor type’) is hard coded, for this reason
this method doesn’t need a database connection and can be static.

Class SensorFactory

As the name promises this class is used to create the sensors. The constructor takes three
parameters, a IQueryStringProvider, a valid Connection and a SensorList. The connection
to the database has to be established at the creator. Once an instance of this class is created there
is only one method of interest, the method createSensors(). If it is called, the SensorList is
filled with all sensors which are stored in the database. At this project there are three types of
sensors, which are TactileSensor, SwitchSensor and MovementSensor, they all are subtypes of
Sensor and therefore stored in one SensorList.

Interface IDatabaseReader

For connecting to a database this interface has to be implemented. The method Connection
getConnection() returns the Connection which has to be established by calling the connect()
method. The implementations used at this project are called MicrosoftDatabaseReader and
OracleDatabaseReader. They contain the data which is necessary to connect to a database,
however, this data comes from a config file over one indirection.

81

Implementation

Interface IQueryStringProvider

An implementation of IQueryStringProvider contains the required SQL queries. As each vendor
of DBMS has its own SQL dialect, all queries which are used by the system are collected within
this class. There is nothing done in terms of security, so we assume that there is no malicious
person at the institute who tries to make SQL injections.

6.5.2 Live-Data Interface

For using live data from the SmaKi’s oberservation hardware, two classes are necessary: Live-
DataReader as the interface to the application and ReaderThread for listening on a TCP/IP
socket for incoming data. A tool called Message Distributor provides the distribution of data
from the Octobus to several receivers.

Class LiveDataReader

This class represents the interface to the live data. It implements a thread for polling on incoming
sensor values. It has a synchronized buffer, which is filled by the ReaderThread. If a value is
added to the buffer, the LiveDataReader’s thread is notified. As the thread starts, the value is
consumed, transformed in a SensorValue and passed to the MainModel (both part of package
base). For handling data from SymbolNet it implements an inner class SymbolNetTuple, which
contains three values: Sensor-ID, value, timestamp. The buffer is implemented as a double ended
queue. If for a certain time (which is configurable) no data is retrieved, it tells the graphics part
to reduce the animation speed. Important methods are:

Constructor(MainModel)
The constructor gets a reference to the MainModel as parameter to be able to pass Sensor-
Values to it. Some initialization and memory allocation for the buffer is also done within
the constructor.

addTuple(int id, int value, long timestamp)
This method is called by the ReaderThread to add data to the buffer. The three sin-
gle values are converted to a SymbolNetTuple, this tuple is added to the buffer by the
synchronized method addLast(SymbolNetTuple).

run()
This is the implementation of the thread. It blocks until the buffer contains a value. If
there is a value in the buffer (of type SymbolNetTuple), this is converted to a SensorValue
by using class DataAccessor. Afterwards this SensorValue is passed to the MainModel.
However, there is a timeout implemented when waiting for a new value in the buffer. If this
timeout expires, a keep alive message is sent to the MainModel.

connect()
When this method is called, the ReaderThread is created and started. Once the Read-
erThread is running, a connection from the Octobus can be established by using the appro-
priate command line parameters (see Section 2.3.1). This can be automated by using the
sendConnectMessage(int port) method which uses a tool, called MessageDistributor.

82

Implementation

sendConnectMessage(int port)
If the MessageDistributor is used, this method is used to force the MessageDistributor
to establish a connection to the caller. The port to which should be connected, is given by
the parameter of the method.

disconnect()
First the ReaderThread is stopped, then the this thread is stopped.

Class ReaderThread

This class implements a thread, which is listening the TCP/IP-Socket for incoming symbol-
messages of the SymbolNet-Protocol. These messages are added to the LiveDataReader’s buffer.
As communication is done by using the SymbolNet-Protocol (see Section 2.3.2), it has an inner
class SymbolReceiver which inherits TcpReceiver. TcpReceiver is part of the SymbolNet li-
brary. This inner class decodes the SymbolNet messages and passes it to the LiveDataReader.
The methods of ReaderThread are:

Constructor(InetSocketAddress, LiveDataReader)
The first argument is the address of incoming data, the second is a reference to the Live-
DataReader, which is necessary for adding messages to its buffer.

run()
The thread’s runnable implementation.

disconnect()
Disconnects the SymbolReceiver and stops the thread.

isConnected()
Returns true if the thread is running correctly.

Message Distributor

For automated establishing of connections there is a tool called Message Distributor (MD). The
MD can be started on any PC with a TCP/IP connection. Instead of connecting from the Octobus
to a computer with an application that needs data from it, the Octobus is connected to the MD.
MD listens on a port for incoming connect-messages (which contain a port as parameter). If such
a message is retrieved, the MD tries to establish a connection to the IP-address, from which the
message was retrieved, with the specified port. If this is successful, the data from the Octobus is
forwarded to this machine. Data can be forwarded to several connections.

83

Implementation

6.6 Config Files and Resources

The SmaKi Prediction Application is configurabel by config files and it produces some data files.
A description of these files is given in this section. A list of the used resources and libraries as
well as examples of the config files are shown in the Appendix.

prConfig.xml
Important constants of the application are summarized in the class Constants. At startup
the application tries to open the file prConfig.xml to override the constants in this class,
hence these are not really constants, however, once set, they are never changed. The file
has to be located at the root directory of the application.

SmaKiItems.xml
This is the default filename of the static items which are displayed at the Building Vi-
sualization. This items can be illustrated as simple rectangels or as images.

MDConfig.xml
Config file for the MessageDistributor tool; it has to be located where the MessageDis-
tributor is started (if it is used).

Graph Generation
For the generation of the graph, two files are built. One contains the specification of the
graph, the file name is input.txt. The other one, which is generated by the Grapgviz-tool
‘dot.exe’ is named out.dot.

HMM Files
The default global HMM is loaded from the file HMM.xml at startup. When the appli-
cation is closed, the actual global HMM is saved to the file HMM.mod.xml. The global HMM
is changed if some merging is applied. The Chains which are learned are saved to files with
the name LearModel suffix.xml, where suffix is the current system time in milli seconds
since 1st January 1970. This is done to have unique file names which can be ordered.

84

7 Results and Discussion

The aim of this work was to build a system for behavior recognition and prediction in building
automation systems with the use of the theory about Hidden Markov Models (HMM). The cre-
ation of HMMs from scratch is not a straight forward task and there exists no universal solution
because this is application dependent. In this work HMMs are created from sample data which
results in very specific models. These models are generalized by merging of states. For this task
several approaches are tested.

The second part of this work is a software application for a real-time prediction, which is called
SmaKi Prediction Application. This software receives sensor values from the SmaKi’s observation
hardware by a TCP/IP connection and shows the values on a screen. Furthermore, an estimation
of the currently present persons and their positions is calculated and visualized. For each rec-
ognized person, the system calculates a prediction of its next action and displays it on a screen.
Last but not least the underlying HMM can be visualized as a directed graph.

Section 7.1 shows and describes the results of the room’s visualization. Section 7.2 depicts the
results of some merging strategies by showing the corresponding graphs. In Section 7.3 it is
described how the quality of the predictions of different HMMs can be compared. Finally Section
7.4 gives an outlook how the system could be improved.

7.1 Visualization of Prediction

This section describes the visualization of the SmaKi’s room. A description of the static layout
is given in Section 2.1.1 at Figure 2.3. Figure 7.1 shows a screenshot of the application of a
situation where two persons are recognized. The depicted situation can be interpreted as follows.
At the top of the figure there are three circles. An exact comparison to the layout description
reveals that the filled circle in the center is not mentioned. The reason is that this is not the
representation of a movement sensor like the other (small) circles, but the heartbeat indicator. At
the original application the circles can be distinguished by their color. The heartbeat indicator
shows the user that the system is running. If it doesn’t change its value periodically, the system
has crashed. The left circle is filled, this indicates that this movement sensor has triggered. The
unfilled right circle indicates that this sensor has not triggered, respectively.

For better readability some details are depicted in Figure 7.2. The black filled rectangles in
Subfigure 7.2(a) indicate that these tactile sensors have triggered. The bright square shows an
object to which these sensors are assigned, so the object is located at the center of these two

85

Results and Discussion

Figure 7.1: Screenshot of the Smart Kitchen’s Layout

sensors. The Subfigure 7.2(b) shows a person (the big gray filled circle) where one triggered
tactile sensor is assigned to. The arrows indicate the predictions. The heavy arrows point to
the location, where the person is estimated at the next step. The darker arrow represents the
prediction with the higher probability. As can be seen, there are thin arrows starting at the head
of the heavy arrows. These are the predictions for a second and a third future step. Subfigure
7.2(c) shows a person where no tactile sensor is assigned to, i.e. an orphan. The thin line to the
(triggered) door switch sensor indicates the prediction that the person will activate this switch at
the next step. As can be seen, there are no more tactile sensors at the left side of the person and
the single arrow which predicts a position, points to the most left tactile sensor’s center. This
altogether can be interpreted that the person is currently leaving the room and is at a location
that cannot be recognized by the system, this includes that the person already may have left the
room. The orphan will disappear within a few seconds. Subfigure 7.2(d) shows at the left side
a person which becomes an item. This is shown by the almost transparent square around the
circle. At the right side, there is a person where this process is almost completed; it already looks
like an item, however, there are still predictions; items do not have any predictions.

A B C D

Figure 7.2: Detail View: A: Item; B: Person with Predictions;
C: Orphan; D: Person Morphing to Item

86

Results and Discussion

7.2 Graph Drawing

The automated visualization of graphs, called Graph Drawing, is a great field in computer sci-
ence. It makes no sense to reinvent the wheel, so a third party tool, called Graphviz was used
to accomplish the graph drawing task. Graphviz provides a binding to the Java programming
language, called Grappa. Figure 7.3 shows the graph representation of an HMM which is already
merged. Except the method of merging sequences (described in Section 4.4.7) all merging strate-
gies are applied on the shown HMM. The numbers inside the states are the labels of them. When
the program is running it is possible to get the probabilities of the transitions and emissions by
pointing with the mouse cursor to a transition or a state, respectively. Then the probability is
shown as a tool-tip. Furthermore, it can be seen that the chain structure of the learned models is
preserved. The effects of vertically merging can be seen at the start and at the end. One splitting
which is a result of vertically merging occurs at state 92 (left side of figure). At state 89 (right
side of figure) a conflation occurs, which results from vertically merging from the end state.

Figure 7.3: Parts of a Merged HMM, drawn with Graphviz and Grappa

As can be seen in Figure 7.3, all transitions point from left to right (except the self transitions),
i.e. there is no possibility to come back to a previous state. So we have a time order from left
to right at the model. If we apply the sequence merging algorithm on a HMM, this order is not
given any more as well as the chain structure is disbanded. Such a model is shown in Figure 7.4.
As can be seen, there is a Backtransition from state 81 to state 53.

7.3 Verification of Predictions

The creation of HMMs is done by learning from sample data. The so created HMMs are general-
ized by merging of states. The decision which states to merge, is a crucial task. Several strategies
are supposed. These strategies have to be applied in the correct order. To make the resulting
HMMs comparable, a kind of evaluation function is needed. The verification process is limited to
the predicted position, since there are too little other sensors at the SmaKi to make meaningful
statements about the accuracy of the prediction. To make predictions of positions comparable,

87

Results and Discussion

Figure 7.4: Part of a Fully Merged HMM with Backtransitions, drawn with Graphviz and Grappa

the distance between the predicted position and the real position at the next step is calculated.
These distances can be compared, smaller values are from more exact predictions.

To make the distances of different models comparable, the same sample data was used to create
the models. After this initial procedure, the different merging strategies are applied to the model.
Then the same scenario is tested with each model. The test scenario is quite simple: A person
enters the empty room (i.e. there are no other persons), walks to the fridge, opens the fridge,
closes the fridge, goes on to the server cabinet (where the screen with the visualization is located),
turns around and leaves the room. The results are shown in the following.

0

0,5

1

1,5

2

2,5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Steps

D
is

ta
nc

e
[m

]

d(P1)
d(P2)
d(P3)

Figure 7.5: Evaluation of a Horizontally Merged HMM

88

Results and Discussion

Figure 7.5 shows the evaluation of a horizontally merged HMM. At the x-axis there is the count of
steps, at the y-axis the distance as mentioned above. The series d(P1) represents the prediction
with the highest probability, series d(P2) the second highest and d(P3) the third one. Before we
start the interpretation of this diagram, we should remember the tactile sensors: They have a size
of 600 x 175 mm, so all distances below 0.6 m are only one sensor-size away (in the dimension of
the lower resolution).

As can be seen, d(P1) is only from step 10 to 14 above the value of 0.6 m, however, d(P2) has
lots of higher deviations. Finally d(P3) has still higher deviations than d(P2). This is what we
expected: The prediction with the highest probability gives the best estimations.

If we compare this to Figure 7.6, which shows the evaluation of a fully merged HMM, it can
be seen that the predictions get better. The term fully means that merging of sequences, like
described in Section 4.4.7, is also applied. The vertically merging, which is the next step after
the horizontal merging is not mentioned here, since there are only very little differences for this
example. The reason therefore is that little sample data was used. However, for models with
several hundreds of states, this would be an important task.

0

0,5

1

1,5

2

2,5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Steps

D
is

ta
nc

e
[m

]

d(P1)
d(P2)
d(P3)

Figure 7.6: Evaluation of a Fully Merged HMM

Figure 7.7 shows another fully merged HMM. It cannot be compared to the others directly, since it
is learned from other sample data as well as the tested scenario was another one. This evaluation
is shown to describe things which have not occurred in the other example. At step 16 the distance
of d(P1) gets higher than the distance of d(P2) and remains higher until step 34. This can be
interpreted as follows: At step 16 the person had two alternative ways. Here the second most
probable path was taken. There is no intersection between the two alternative paths until state
34. The other point of interest in this figure is the lack in d(P3) between step 8 and 13. This
indicates that the system could not calculate a third prediction of positions. The reason could
be that there are only two predictions possible, but this is not very likely. The system calculates
at most six predictions, where all types of predictions are included, i.e. additionally to position
predictions these are movement sensor predictions and switch sensor predictions.

89

Results and Discussion

0,00

0,50

1,00

1,50

2,00

2,50

3,00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Steps

D
is

ta
nc

e
[m

]

d(P1)
d(P2)
d(P3)

Figure 7.7: Evaluation of another Fully Merged HMM

0

0,5

1

1,5

2

2,5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Steps

D
is

ta
nc

e
[m

]

d(P1)
d(P2)
d(P3)

Figure 7.8: Evaluation of the Second Step Prediction

As the system provides to look more than one step into the future, these predictions are evaluated
as well. Figure 7.8 shows the distances for a second future step. The underlying model which was
used for this example, is the same like in the Figures 7.5 and 7.6. Finally Figure 7.9 shows the
distances when making three steps into the future. It can be seen that all distances are longer.
So for a third future step the predictions are unexact.

90

Results and Discussion

0

0,5

1

1,5

2

2,5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Steps

D
is

ta
nc

e
[m

]

d(P1)
d(P2)
d(P3)

Figure 7.9: Evaluation of the Third Step Prediction

7.4 Outlook

The represented model works quite well for the intended purpose. However, it has a weak time
representation. The occurrence of events is ordered, but the duration between two occurring
events is not evaluated. Consider the following two scenarios: Scenario one, a person enters the
room, goes to the fridge, opens it, closes it and leaves the room. Scenario two, a person enters
the room, goes to the fridge, opens it, has a look at it, does nothing for a while, closes the fridge
and leaves the room.

With the simple time model of this system, these scenarios will be identified as the same, because
the time span where nothing happened is not taken into account. To provide a better repre-
sentation of time, the standard approach of HMMs is not sufficient. In [Bru07] a system of a
higher order model, the Hidden Semi Markov Model is described. Such models could be used to
overcome the weak modeling of time within the standard HMMs. So the system should be able
to distinguish better between persons who trigger tactile floor sensors and objects doing this.

A system with a higher resolution of the tactile floor sensors would be able to define the positions
of persons and objects more exactly. The currently installed sensors have a size of 600 x 175
mm. Since a person can be located between two adjacent sensors, the circumcircle of a person
raises to 1200 mm. At such an area there can be several persons, this makes it difficult to make
a good estimation of the number of persons in the room. If the area near the door would be
equipped with tactile sensors, the system would be able to detect a scenario of leaving the room
more precisely.

The status of the door is indicated by one switch. If the door is open, the system cannot recognize
how many persons are arriving or leaving. Even better would be a light barrier, but still not
optimal. However, an optimal person counter, like a security turnstile, would be an overkill and
not accepted by the users.

91

Results and Discussion

The person model described in 4.2 could be improved by applying a physical model to it. Moreover
the implementation of (person) tracking algorithms could overcome the problem that persons
could disappear or make jerky leaps.

A more sophisticated integration of the movement detection sensors could improve the distinction
between persons and items. The current system can recognize a very calm person as an item.
This can be eliminated in some cases, e.g. if a movement detection sensor triggers and there is
only one person present in its sphere of action.

If such a system is equipped with pressure detection floor sensors it would be possible to deter-
mine the number of persons very exact. However, such a system might be too exact for many
applications: If the sensor values are stored in a database, as it is possible within this project,
it might be possible to draw conclusions which person has entered the room. Even worse, if the
habit of a person is known (e.g. time of arriving in the morning), such a system would make it
possible to determine that person’s weight.

It becomes apparent that more precise systems can reach a level of performance which even
might be rejected by the affected people. For this reason it is necessary to find the balance
between a surveillance system which violates our privacy and a supporting system making life
more comfortable.

92

A Appendix

Config Files

This chapter shows examples of the config files which are used by the SmaKi Prediction Appli-
cation. They are located at the application’s root directory.

prConfig.xml

This is an example of the main config file of the application. The values of the database connection
need to be adapted.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<PredictionConfiguration>
 <Database Type="Microsoft">
 <Connection Server="128.131.80.10" Port="1433" Sid="ARS" User="josef" Pass="josef1234"/>
 </Database>
 <GUI>
 <!-- names of colors are specified in java class Color -->
 <!-- "[r,g,b,a]" color by rgb values, 4th is alpha value -->
 <MovementSensor Diameter="0.1" ActiveColor="yellow" InactiveColor="red"/>
 <SwitchSensor Diameter="0.075" ActiveColor="yellow" InactiveColor="red"/>
 <TactileSensor ActiveColor="yellow" InactiveColor="light_gray"/>
 <AnimationDelay Fast_ms="40" Slow_ms="200" Powersave_ms = "4000"/>
 <AnimationWait Slow_s="15" Powersave_s="300"/>
 <HeartbeatSymbol Show="true" PosX_mm="100" PosY_mm="3500" Diameter_mm="75"/>
 <SplashScreen Time_s="0"/>
 <!-- <HeartbeatSymbol PosX_mm="10" PosY_mm="10" Diameter_mm="5"/> -->
 <StaticItems Filename="SmaKiItems.xml"/>
 <Prediction MaxPredictionEntities="6" FutureSteps="3">
 <Arrow_1 HiColor="red" LoColor="[255,128,128,192]" HiStroke="7" LoStroke="5"/>
 <Arrow_2 HiColor="red" LoColor="[255,128,128,128]" HiStroke="3" LoStroke="1"/>
 <Arrow_3 HiColor="red" LoColor="[128,128,128,128]" HiStroke="1" LoStroke="1"/>
 </Prediction>
 </GUI>
 <Livedata KeepAliveMessageIntervall_ms="200">
 <LiveDataReader MDIP="128.131.80.119" MDPort="65523" ConnectionPort="12346"/>
 <Person NewPersonDistance_mm="1000"/>
 <PersonTiming TimeToStartDisappear_0_ms="4000" TimeToStartDisappear_1_ms="8000"
 DisDeferment_0="20" DisDeferment_1="100"/>
 </Livedata>
 <DataFiles Path="data">
 <VerificationFile Write="true" Path="verification" PrefixName="Verification" Extension="txt"/>
 <LearnmodelFile Write="true" Path="learnmodel" PrefixName="Learnmodel" Extension="xml"/>
 </DataFiles>
 <Editor name="C:\Program Files\PSPad editor\PSPad"/>
</PredictionConfiguration>

93

SmaKiItems.xml

This is an example of the file which stores the data of the static items in the SmaKi layout.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<SmartKitchenItems>
 <!-- Attention: If ShowImages is true, the Application would require much more HeapSpace -->
 <!-- Start with appropriate option to avoid Exceptions -->
 <StaticItems ShowImages="false" ImagesPath="D:\\DA\\prj\\resources\\" Color="black">
 <!-- Name is not optional, except Boundary: it is invisible -->
 <Rectangle Name="table" x1="1.258" y1="4.514" x2="2.109" y2="6.142" ImageFile="table1_big.jpg"/>
 <Rectangle Name="cupboard" x1="2.072" y1="0.0" x2="3.145" y2="0.592" ImageFile="cupboard1_big.jpg"/>
 <Rectangle Name="copier" x1="2.294" y1="1.110" x2="3.145" y2="2.590" ImageFile="copier1_big.jpg"/>
 <Rectangle Name="bookshelf1" x1="2.664" y1="2.849" x2="3.145" y2="4.68" ImageFile="bookshelf1_big.jpg"/>
 <Rectangle Name="bookshelf2" x1="2.664" y1="4.68" x2="3.145" y2="6.512" ImageFile="bookshelf2_big.jpg"/> 1234567890
 <Rectangle Name="shelf" x1="0.0" y1="6.956" x2="3.145" y2="7.326" ImageFile="shelf1_big.jpg"/>
 <Rectangle Name="desk" x1="0.0" y1="4.514" x2="0.629" y2="5.994" ImageFile="desk1_big.jpg"/>
 <Rectangle Name="servcab" x1="0.0" y1="3.182" x2="0.65" y2="3.848" ImageFile="servcab1_big.jpg"/>
 <Rectangle Name="kitchenette" x1="0.0" y1="0.0" x2="0.592" y2="3.182" ImageFile="kitchenette1_big.jpg"/>
 <Rectangle Name="fridge" x1="0.0" y1="2.590" x2="0.592" y2="3.182" ImageFile="fridge1_big.jpg"/>
 <Rectangle Name="coffee" x1="0.05" y1="2.35" x2="0.295" y2="2.58" ImageFile="coffee1_big.jpg"/>
 <Rectangle Name="Boundary" x1="0.0" y1="0.0" x2="3.18" y2="7.36" ImageFile=""/>
 </StaticItems>
</SmartKitchenItems>

MDConfig.xml

If the Message Distributor is used, it can be configured by this file. The Port specified at node
Clients, is the same as the MDPort in node LiveDataReader of the file prConfig.xml.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<MessageDistributorConfiguration>
 <Octobus Port="59999"/>
 <Clients Port="65523"/>
 <Andi IP="128.131.80.119" Port="65000"/>
</MessageDistributorConfiguration>

Icons and Libraries

The application uses some icons, one image and some libraries which are listed here, together
with their corresponding directories.

.\resources\s_ki_klein1.gif

.\resources\smki.GIF

.\resources\SplashScreen.png

.\lib\grappa1_2.jar

.\lib\ojdbc14.jar

.\lib\sqljdbs.jar

94

B Appendix

List of Classes

Here is shown a list of classes which are necessary to run the SmaKi Prediction Application. Each
class is stored in a file with the name Classname.java.

Package base

Heartbeat
MainController
MainModel
MovementSensor
MovementSensorList
PredictionEntity
PredictionProcessor
Sensor
SensorList
SensorValue
SensorValueKeepAlive
SensorValueMovement
SensorValueSwitch
SensorValueTactile
SwitchSensor
TactileSensor
TactileSensorList
VerificationModel
WorldPerson
WorldPersonList

Package data

BinaryIDSymbol
BinaryIDSymbolList
DataAbstractionProvider
EmissionSymbolList
IDataAbstractionLayer
MovementSensor
Position
PositionSymbol
PositionSymbolList
SwitchSymbol

Package gui

BArrow
BDoor
BHearbeat
BImage
BMovementSensor
BObject
BPerson
BPredictionEntity
BRectangle
BSwitchSensor
BTactileSensor
BuildingController
BuildingModel
BuildingObjectFactory
BuildingView
BuildingViewPanel
DialogHelpAbout
DialogMerge
GEdge
GObject
GraphController
GraphModel
GraphView
GState
MainFrame
TactileAlignment

Package markov

Algorithms
Emission
HiddenMarkovModel
HMMComparator
HMMState
HMMTransition
IEmissionSymbol
MergeProvider
PositionEmissionComparator
TactileDistanceComparator

Package pers

DataAccessor
IDatabaseReader
IQueryStringProvider
LiveDataReader
MicrosoftDatabaseReader
MicrosoftQueryStringProvider
OracleDatabaseReader
OracleQueryStringProvider
ReaderThread
SensorFactory

Package utils

Constants
MyMath

95

Literature

[AIS+77] Alexander, Christopher ; Ishikawa, Sara ; Silverstein, Murray ; Jacobson, Max
; Fiksdahl-King, Ingrid ; Angel, Shlomo: A Pattern Language. Oxford University
Press, New York, p. X, 1977 56

[BK96] Baron, Gerd ; Kirschenhofer, Peter: Einführung in die Mathematik für Infor-
matiker, Band 3, Zweite, verbesserte Auflage. Springer-Verlag, Wien New York, p.
149ff, 1996 19

[BPSW70] Baum, L.E. ; Petrie, T. ; Soules, G. ; Weiss, N.: A maximization technique
occuring in the statistical analysis of probabilistic functions in Markov chains. In:
The Annals of Mathematical Statistics 41(1), 1970, p. 164–171 37

[Bru07] Bruckner, Dietmar: Probabilistic Models in Building Automation: Recognizing Sce-
narios with Statistical Methods, Vienna University of Technology, Institute of Com-
puter Technology, Diss., 2007 2, 39, 41, 91

[Die00] Dietrich, Dietmar: Evolution potentials for fieldbus systems. In: IEEE Int. Work-
shop on Factory Communication Systems WFCS 2000, 2000 1

[DLP+06] Deutsch, Tobias ; Lang, Roland ; Pratl, Gerhard ; Brainin, Elisabeth ; Te-
icher, Samy: Applying Psychoanalytic and Neuro-Scientific Models to Automation.
In: Institute of Computer Technology at Vienna University of Technology, Wiener
Psychoanalytische Vereinigung, Sigmund Freud Institut Wien, Anton Proksch Insti-
tut Klinikum, 2006 2

[Doo96] Doob, J. L.: The Development of Rigor in Mathematical Probability (1900-1950).
In: Amer. Math. Monthly 103, 1996, p. 586–595 17

[DR06] Dahmen, Wolgang ; Reusken, Arnold: Numerik fuer Ingenieure und Naturwis-
senschaftler. Springer-Verlag, Berlin Heidelberg New York, p.39, 2006 39

[Dub00] Dubuisson, Olivier: ASN.1 - Communication between heterogeneous systems. Mor-
gan Kaufmann Publishers, 2000 15

[Fre23] Freud, Sigmund: The ego and the id. In: The Standard Edition of the Complete
Psychological Works of Sigmund Freud, 1923, p. 12–66 2

96

[Goe06] Goetzinger, Sigfried: Scenario Recognition Based on a Bionic Model for Multi-Level
Symbolization, Vienna University of Technology, Institute of Computer Technology,
Diplomarbeit, 2006 7, 15, 32

[GrH07] McGraw-Hill encyclopedia of science and technology - 10th ed. McGraw-Hill Compa-
nies Inc., USA, 2007 11

[Hol06] Holleis, Edgar: SymbolNet - Ein Application Framework für symbolische Kommu-
nikation. 2006. – ICT, TU Wien 15

[IEE85] IEEE Standard for Binary Floating-Point Arithmetic. In: ANSI/IEEE Std 754 1985,
1985 77

[Kai99] Kaindl, Hermann: Difficulties in the transition from OO analysis to design. In:
IEEE Software, 1999, p. 94–102 51

[Knu97] Knuth, Donald: The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms, Third Edition. Addison-Wesley, pp.107-123, 1997 36

[Knu99] Knudsen, Jonathan: Java 2D Graphics. O’Reilly, Sebastopol (USA), chap. 14, 1999
58

[Kop97] Kopetz, Hermann: Real-time systems. Kluwer, Boston, 1997 3, 58

[KP88] Krasner, Glenn E. ; Pope, Stephen T.: A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80. In: Journal of Object-Oriented
Programming, 1988, p. 26–49 56

[Kru00] Krueger, Guido: Go To Java 2, Zweite Auflage. Addison Wesley, Germany, chap.
35, 2000 57

[KWE01] Kaufmann, Michael ; Wagner, Dorothea ; (Eds.): Drawing Graphs, Methods and
Models. Springer-Verlag, Berlin Heidelberg New York, chap. 1, 2001 59

[LEW+02] Loy, Marc ; Eckstein, Robert ; Wood, Dave ; Elliott, James ; Cole, Brian:
Java Swing 2nd Edition. O’Reilly, Sebastopol (USA), p. 13, 2002 57

[LL08] Liguori, Robert ; Liguori, Patricia: Java Pocket Guide. O’Reilly, Sebastopol
(USA), chap. 1, 2008 50, 65

[Pap84] Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 2nd ed. New
York: McGraw-Hill, p. 532, 1984 18

[PP05] Pratl, Gerhard ; Palensky, Peter: Project ARS - The next step towards an
intelligent environment. In: Vienna University of Technology, Institute of Computer
Technology, 2005 2

[Pra06] Pratl, Gerhard: Processing and Symbolization of Ambient Sensor Data, Vienna
University of Technology, Institute of Computer Technology, Diss., 2006 15

[RJ86] Rabiner, Lawrence R. ; Juang, Biing-Hwang: An Introduction to Hidden Markov
Models. In: IEEE ASSAP Magazine 3 (1986), January 18, 20, 21, 22

[Rus03] Russ, Gerhard: Situation-dependent Behavior in Building Automation, Vienna Uni-
versity of Technology, Diss., 2003 1

97

[SBR05a] Sallans, B. ; Bruckner, D. ; Russ, G.: Statistical Detection of Alarm Conditions
in Building Automation Systems. In: Proceedings of the 5th IEEE International
Conference on Industrial Informatics, 2005 2

[SBR05b] Sallans, B. ; Bruckner, D. ; Russ, G.: Statistical Model-based Sensor Diagnostics
for Automation Systems. In: Proceedings of the 6th IFAC International Conference
on Fieldbus Systems and their Applications, 2005 2

[Sed98] Sedgewick, Robert: Algorithms in C. Addison-Wesley, pp.90-109, 1998 36

[SO93] Stolcke, Andreas ; Omohundro, Stephen: Hidden Markov Model Induction by
Bayesian Model Merging. In: Hanson, Stephen J. ; Cowan, Jack D. ; Giles, C. L.
(eds.): Advances in Neural Information Processing Systems Bd. 5, Morgan Kaufmann,
San Mateo, 1993, p. 11–18 37

[SRT00] Soucek, S. ; Russ, G. ; Tamarit, C.: The Smart Kitchen Project - An Applica-
tion on Fieldbus Technology to Domotics. In: Proceedings of the 2nd International
Workshop on Networked Appliances (IWNA2000), 2000, p. 1 2, 5

[ST02] Solms, Mark ; Turnbull, Oliver: The Brain and the Inner World. Karnac/Other
Press, Cathy Miller Foreign Rights Agency, London, England, p. 152ff, 2002 28

[Wei91] Weiser, M.: The Computer for the 21st Century. In: Scientific American, 1991, p.
66–75 1

[Wei99] Weisstein, Eric W.: CRC Concise Encyclopedia of Mathematics. Chapman and
Hall / CRS, Boca Raton, London, New York, Washington p.1139, 1999 18

98

Internet References

[1] Graphviz - Graph Visualization Software, September 2008. http://www.graphviz.org/.

[2] AT&T Labs. Grappa - A Java Graph Package, September 2008. http://www.research.att.
com/~john/Grappa/.

[3] CloudGarden. Jigloo, September 2008. http://www.cloudgarden.com/jigloo/.

[4] Committee. 15th Graph Drawing Contest, September 2008. http://www.graphdrawing.de/
contest2008/.

[5] Committee. graphdrawing.org, September 2008. http://graphdrawing.org.

[6] eclipse.org. eclipse, September 2008. http://www.eclipse.org/.

[7] Institute of Computer Technology. Homepage, September 2008. http://www.ict.tuwien.
ac.at.

[8] Project ARS, Institute of Computer Technology. ARS - Artificial Recognition System, Septem-
ber 2008. http://ars.ict.tuwien.ac.at/.

[9] sourceforge.net. iSQL-Viewer, September 2008. http://sourceforge.net/projects/
isql/.

99

http://www.graphviz.org/
http://www.research.att.com/~john/Grappa/
http://www.research.att.com/~john/Grappa/
http://www.cloudgarden.com/jigloo/
http://www.graphdrawing.de/contest2008/
http://www.graphdrawing.de/contest2008/
http://graphdrawing.org
http://www.eclipse.org/
http://www.ict.tuwien.ac.at
http://www.ict.tuwien.ac.at
http://ars.ict.tuwien.ac.at/
http://sourceforge.net/projects/isql/
http://sourceforge.net/projects/isql/

	Titlepage
	Introduction
	ARS Project
	Problem Statement
	Outline

	Environment
	Smart Kitchen
	Layout
	Tactile Sensors
	Movement Sensors
	Switch Sensors

	ARS Sensor Database
	Static Data
	Dynamic Data
	Database Management System

	Data Gathering Modules
	Octobus
	SymbolNet

	Hidden Markov Models
	Definitions
	Markov Model
	Hidden Markov Model
	Forward Algorithm
	Viterbi Algorithm
	Baum-Welch Algorithm

	System Design
	Sensor Data
	Person Model
	Motivation
	Recognition
	Design of the Model

	Modeling HMMs
	Prediction
	Global and Local
	Visualization of Parameters
	Data Structure

	HMM Structure Learning
	State Merging Principles
	Learning from Sensor Data
	Create a Chain
	Preprocessing of Chains
	Merge Horizontally
	Merge Vertically
	Merge Sequences

	Software Application Design
	Terminology
	Base Part
	Data Abstraction
	Graphics
	Markov
	Persistence

	Implementation
	Package base
	Package data
	Package gui
	User Interface
	Building Visualization
	Graph Visualization

	Package markov
	Package pers
	ARS Sensor Database Connectivity
	Live-Data Interface

	Config Files and Resources

	Results and Discussion
	Visualization of Prediction
	Graph Drawing
	Verification of Predictions
	Outlook

	Config Files and Resources
	List of Classes
	Literature
	Internet References

