

Tool-Supported
Web Accessibility Evaluation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Informatik

eingereicht von

Shadi Abou-Zahra
Matrikelnummer 9426418

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Univ. Prof. Dr. Harald Gall
Mitwirkung: Univ. Prof. Dr. Schahram Dustdar

Wien, 17.10.2008 _______________________ ______________________
 (Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 Hhttp://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Master’s Thesis

Tool-Supported
Web Accessibility Evaluation

Carried out at the

Information Systems Institute
Distributed Systems Group

Technical University of Vienna

Under the guidance of
Univ. Prof. Dr. Schahram Dustdar

and
Univ. Prof. Dr. Harald Gall

as the contributing advisor responsible

By

Shadi Abou-Zahra
shadi@abou-zahra.net

Matr.Nr. 9426418

Vienna, 17 October 2008

Tool-Supported Web Accessibility Evaluation

Acknowledgements
Many thanks to Wendy Chisholm for the precious discussions that lead to the initial idea for
this study back in 2002, to Shawn Lawton Henry from who I’ve learned much about the user
side of Web accessibility evaluation, and to Andrew Arch for the invaluable feedback during
many iterations of this work. This work is also the result of numerous exchanges with people
in the field, especially participants of the W3C Evaluation and Repair Tools Working Group
and other members of the W3C Web Accessibility Initiative (WAI).

Disclaimer: the views in this study do not necessarily represent the views of the W3C Web
Accessibility Initiative (WAI) or the W3C Evaluation and Repair Tools Working Group. The
study does not endorse any of the mentioned tools, vendors, or references. However, it does
encourage the development of tools and solutions for Web accessibility and evaluation.

Credits: Figures 1 and 1a – images by Michael Duffy, from: Essential Components of Web
Accessibility, Copyright W3C (MIT, ERCIM, Keio) [WAI, 2]. Figures 2a and 11 – images
from the W3C Web Accessibility Initiative (WAI) and Semantic Web Activity respectively,
Copyright W3C (MIT, ERCIM, Keio). Parts of this study have been published in modified
form in other publications by Shadi Abou-Zahra [Abou-Zahra 2005a - Abou-Zahra 2005d,
Abou-Zahra 2006b, Harper and Yesilada 2008].

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

3/99

Tool-Supported Web Accessibility Evaluation

Abstract
While there is currently a broad selection of Web accessibility evaluation tools, most of them
are designed around post-development quality control principles rather than on-going quality
assurance measures. It seems that many of the Web accessibility evaluation tools encourage
separated evaluation processes rather than to integrate evaluation tasks into the natural Web
development process. It also seems that Web accessibility evaluation tools are designed for a
specific type of developers rather than to address the broad diversity of Web content creators.

A more effective approach would be to ensure tool support throughout the entire development
process, including the design, implementation, and maintenance stages. Ideally the evaluation
functionality would merge into the existing development and management systems rather than
to be presented through separated Web accessibility evaluation tools. For instance, that design
utilities, code editors, content management systems and monitoring tools provide accessibility
evaluation functionality that is executed by integrated evaluation tools, plug-ins, or extensions.

In order to facilitate this integration of Web accessibility evaluation tools into other types of
applications, these tools must be able to exchange accessibility information. Host applications
need to delegate and trigger evaluation functionality, and evaluation tools need to support the
common protocol for data exchange. These common data formats and protocols are ideally
platform-independent, vendor-neutral, and royalty-free to ensure the widest possible support.
Furthermore, these formats need to be practical and simple to implement by tool developers.

This study proposes a distributed model for tool supported Web accessibility evaluation based
on Semantic Web technologies. It explores the requirements and identifies existing promising
techniques that enable the construction of collaborative systems that support different types of
developers who may be using a variety of tools to develop and maintain accessible Web sites.
Although there are challenges in realizing such systems, the approach is principally feasible.
There are reasonably low risks and high return on investments for the application developers.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

4/99

Tool-Supported Web Accessibility Evaluation

Zusammenfassung
Obwohl es derzeit eine breite Auswahl von Evaluierungswerkzeuge für Web-Barrierefreiheit
gibt, wurden die meisten für Zwecke der Qualitätskontrolle entwickelt eher als für andauernde
Qualitätssicherung. Es scheint das viele der Evaluierungswerkzeuge für Web-Barrierefreiheit
getrennte Evaluierungsprozesse förden anstatt diese in den natürlichen Entwicklungsprozess
zu integrieren. Es scheint auch das die Evaluierungswerkzeuge nur für bestimmte Entwickler
konzipiert wurden anstatt die breite Vielfalt der Web-Entwickler zu beachten.

Ein wirksamerer Ansatz wäre die Sicherstellung von Werkzeug-Unterstützung während den
gesamten Entwicklungsprozess, einschließlich der Konzipierung, Implementierung, und der
Wartung. Idealerweise wäre die Evaluierungsfunktionalität in den existierenden Entwicklungs
und Managementsysteme eingebunden anstatt diese durch getrennte Evaluierungswerkzeuge
anzubieten. Zum Beispiel, dass Gestaltungswerkzeuge, Code-Editoren, Content Management
Systeme und andere Werkzeuge Evaluierungsfunktionalität für Web-Barrierefreiheit anbieten,
die durch integrierte Evaluierungswerkzeuge, Plug-ins, oder Extensions ausgeführt werden.

Um diese Integration der Evaluierungswerkzeuge für Web-Barrierefreiheit in Anwendungen
zu erleichtern, müssen diese Werkzeuge Informationen austauschen. Anwendungen müssen
die Evaluierung delegieren und auslösen, und Evaluierungswerkzeuge müssen einheitliche
Protokolle für den Datenaustausch einhalten. Diese einheitliche Datenformate und Protokolle
sind idealerweise Plattform-unabhängig, Hersteller-neutral, und Gebührenfrei um die größte
mögliche Unterstützung zu erzielen. Weiters müssen diese Formate praktikabel und einfach
zu implementieren für die Werkzeughersteller sein.

Diese Studie untersucht ein verteiltes Modell für Werkzeugunterstützte Evaluierung der Web-
Barrierefreiheit das auf Technologien des Semantic Web beruht. Es erforscht Anforderungen
und identifiziert viel versprechende Techniken um die Konstruktion solcher Kollaborativen
Systeme zu ermöglichen, die von unterschiedlichen Entwicklern die verschiedene Werkzeuge
verwenden benutzt wird um barrierefreie Web-Auftritte zu entwickeln und warten. Obwohl es
Herausforderungen gibt um solche Systeme zu realisieren, ist der Ansatz prinzipiell erfüllbar.
Es geht verhältnismäßig wenige Risiken und hohe Nutzen für die Anwendungshersteller.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

5/99

Tool-Supported Web Accessibility Evaluation

Table of Contents
1. Problem Description... 9

1.1. Introduction ... 10

1.1.1. Context ... 11

1.1.2. Background .. 12

1.2. Motivation ... 13

1.2.1. Auxiliary Benefits .. 14

1.2.1.1. Mobile Users ... 14

1.2.1.2. Older Users.. 14

1.2.1.3. General Usability... 14

1.3. Problem Definition.. 15

2. Current State-of-the-Art in Web Accessibility Evaluation .. 17

2.1. Technical Standards for Web Accessibility .. 18

2.1.1. International Standards... 19

2.1.1.1. W3C Web Content Accessibility Guidelines (WCAG) 2.0 20

2.1.1.1.1. Evaluation Aspects... 23

2.1.1.1.2. Specifics and Caveats... 25

2.1.1.2. W3C Authoring Tool Accessibility Guidelines (ATAG) 2.0 28

2.1.2. National Standards ... 29

2.1.3. Other Standards .. 29

2.2. Processes for Web Accessibility Evaluation... 30

2.2.1. Evaluation Parameters.. 32

2.2.1.1. Scope of the Evaluation... 33

2.2.1.2. Thoroughness of the Evaluation.. 33

2.2.1.3. Complexity of the Web Content.. 34

2.2.1.4. Consistency of the Web Content... 34

2.2.1.5. Expertise of the Evaluators ... 35

2.2.1.6. Tool Support for the Evaluators .. 35

2.2.2. Testing Approaches.. 36

2.2.2.1. Automated Testing .. 37

2.2.2.2. Manual Testing.. 37

2.2.2.3. User Testing .. 38

2.2.3. Roles and Responsibilities ... 39

2.2.3.1. Aesthetics Designer... 39

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

6/99

Tool-Supported Web Accessibility Evaluation

2.2.3.2. Application Developer .. 40

2.2.3.3. Content Publisher .. 40

2.2.3.4. Content Maintainer.. 40

2.2.3.5. Project Manager .. 40

2.2.3.6. Accessibility Expert .. 40

2.2.4. Evaluation Methodologies.. 41

2.2.4.1. Sampling Strategies... 42

2.2.4.2. Informed Methodologies ... 43

3. Analysis of Current Web Accessibility Evaluation Tools ... 44

3.1. Current Approach for Web Accessibility Evaluation Tools ... 46

3.1.1. Post-Development Evaluation Paradigm ... 46

3.1.2. Developer-Oriented Application Design.. 47

3.1.3. Disjoined and Monolithic Architectures .. 48

3.1.4. Centralized Responsibility and Expertise .. 49

3.2. A Need for Integrating Web Accessibility Evaluation Tools 50

3.2.1. Example 1: Integration of Manual and Automated Evaluation Tools 51

3.2.2. Example 2: Integration of Authoring Tools and Evaluation Tools........................ 52

3.2.3. Example 3: Integration of Data Analysis Tools and Evaluation Tools.................. 53

4. Promising Techniques for Web Accessibility Metadata .. 54

4.1. The W3C Evaluation and Report Language (EARL) ... 55

4.1.1. W3C Evaluation and Report Language (EARL) 1.0 Schema................................ 57

4.1.2. W3C HTTP Vocabulary in RDF.. 59

4.1.3. W3C Representing Content in RDF... 60

4.1.4. W3C Pointer Methods in RDF... 61

4.2. Other Relevant Semantic Web Technologies.. 62

4.2.1 W3C Protocol for Web Description Resources (POWDER) 63

4.2.2. W3C RDFa: Bridging the Human and Data Webs .. 63

4.2.3. W3C Gleaning Resource Descriptions from Dialects of Languages 64

4.2.4. W3C SPARQL Protocol and RDF Query Language (SPARQL) 64

4.2.5. W3C Rule Interchange Format (RIF)... 64

5. Excursion: Proposed Test Description Notation Format.. 65

5.1. Example Formalizations in Web Accessibility Evaluation Tools................................. 66

5.1.1. ATRC Accessibility Checker ... 67

5.1.2. IBM Rule-Based Accessibility Validation Environment (RAVEn) 68

5.1.3. UC3M Web Accessibility Evaluator in a single XSLT file (WAEX) 69

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

7/99

Tool-Supported Web Accessibility Evaluation

5.1.4. WebAIM Logical Rapid Accessibility Evaluation (LRAE) 69

5.2. Example Formalizations in Software Quality Assurance Tools 70

5.3. Possible Approach for a Unified Test Description Notation... 71

6. Proposed Model for Web Accessibility Support Tools.. 73

6.1. Framework for Distributed Web Accessibility Evaluation Tools 74

6.2. Common Format for Test Descriptions – Request.. 75

6.3. Common Format for Test Results – Response.. 76

6.4. Common Format for Communication – Protocol ... 77

7. Evaluation of the Proposed Tools-Supported Model ... 78

7.1. Potential Impact on Web Accessibility Evaluation... 79

7.2. Relationship to Generic Web Quality Assurance.. 80

7.3. Practical Considerations for the Implementation .. 81

7.4. Opportunities for Research and Development .. 82

8. Summary and Conclusions... 83

9. References .. 85

9.1. Scientific Papers.. 85

9.2. Printed Publications... 88

9.3. Online Publications ... 90

9.4. Standards ... 93

9.5. Organizations .. 98

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

8/99

Tool-Supported Web Accessibility Evaluation

1. Problem Description
Web accessibility evaluation is an assessment of how well Web content can be used by people
with disabilities. It is a quality assurance measure that is ideally carried out throughout all the
development stages of Web content, including its design, implementation and maintenance. It
is the responsibility of all parties involved in the development of the Web content to ensure its
accessibility. This includes visual designers, code programmers, content authors, as well as
Webmasters. Each individual involved in the development of the Web content, for instance a
single Web page or an entire Web site, can contribute towards ensuring that the accessibility
requirements are met. In fact, each individual involved in the development of Web content is
an asset for the production of high quality Web content that better serves a broader audience.

However, it is not realistic to expect that each individual involved in the development of Web
content has the same level of awareness and technical understanding of the requirements. It is
important to understand the different roles of individuals involved in the production chain and
to design an appropriate development process that takes advantage of their skills and expertise.
Software tools play an essential part in enabling efficient and effective development processes
that consider quality assurance. Even though evaluating Web content for accessibility can not
be fully automated, tools can significantly reduce the effort required for evaluation. They can
examine the Web content and assist developers in carrying out the different evaluation tasks,
while they cache away much of the technical detail that overwhelms many of the developers.

Unfortunately Web accessibility is often not considered from the start but rather after the Web
content has been developed, and sometimes even after it has been published. It is a common
misconception that accessibility can be built into the Web content after it has been developed.
In many cases it is however not economically feasible to retrofit Web content for accessibility
because it may require significant alterations to the underlying design concepts. At the same
time, the overhead for accommodating most of the accessibility requirements is negligible if
they are considered from the start of a project. Also many Web accessibility evaluation tools
focus primarily on evaluating existing Web content, rather than on supporting developers in
creating accessible Web content throughout the different stages of the development processes.

Many Web accessibility evaluation tools also seem to focus on a specific group of users who
are more technical. They generally also require some level of knowledge and expertise in the
domain of Web accessibility, so that they can be often cumbersome and confusing for novice
evaluators. In fact, in extreme cases Web accessibility evaluation tools could even reduce the
efficiency of novice evaluators rather than help them become more productive. It is inherent
to nature that Web accessibility is not automatable and needs human judgment in many cases.
However, there is a lot of potential for Web accessibility evaluation tools to further assist the
developers and evaluators who may have different backgrounds and expertise. The tools need
to be more flexible and fit into the environment of the users, rather than the other way around.

There are promising techniques, especially in the domain of the semantic Web, that provide
methods for expressing structured data. Machine-readable and semantically rich information
could allow Web accessibility evaluation tools to exchange information with authoring tools
or with other types of quality assurance tools. It could provide a new approach for small and
focused tools that could be connected together into a collaborative system that supports the
development and the evaluation of Web content for accessibility. This study explores some of
these techniques and proposes a model in which different types of Web accessibility tools can
better support Web developers in creating and maintaining accessible Web sites.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

9/99

Tool-Supported Web Accessibility Evaluation

1.1. Introduction
Web accessibility is the extent to which Web content can be used by people with disabilities.
A widely accepted definition is provided by [Slatin and Rush 2002]: “Web sites are accessible
when individuals with disabilities can access and use them as effectively as people who don’t
have disabilities”. The definition includes two important aspects of Web accessibility, namely
the technical aspect of gaining access to the content as well as the functional aspect of being
able to use the content in an effective manner. Also several other prominent definitions for
Web accessibility, such as those provided by [Henry 2007], [Paciello 2000], or [Thatcher et al.
2006], underline these two closely related and fundamental principles of Web accessibility.

In order to be able to provide equal access to the Web content for users with disabilities, one
must first better understand how users with disabilities use the Web [WAI, 3]. In some cases,
users with disabilities make use of adaptive strategies such as enlarging the default font-size
or customizing the default text colors. In other cases, users with disabilities may use assistive
technologies which are specialized software or hardware that assist them in performing tasks.
An Example assistive technology is screen reader software which reads the information on a
screen out-loud to the users, or displays it on a refreshable Braille-display for blind computer
users. Other examples include screen magnifiers which enlarge the screen for user with low
vision. Also specialized keyboards, single-key switches, head-sticks, eye-tracking systems,
voice commands, and many other software and hardware are used by people with disabilities.

One aspect in providing equal access for people with disabilities is therefore to ensure that the
Web content is compatible with the assistive technologies and adaptive strategies. This means
providing adequate structure and semantics so that the content can be processed and rendered
in different modes as needed. For instance, structures such as lists, headings, and links need to
be identified within the document structure, such as HTML markup code, so that these can be
utilized by software. Another aspect of providing equal access is to implement accessibility
features within the Web content to support the usage by people with disabilities. For instance,
to improve the user experience and the quality in which the Web content is delivered.

While accessibility evaluation is part of the Web development process, there may be varying
motivations for carrying out evaluations. Some of the common motivations for evaluating the
accessibility of Web content include the following situations:

• A programmer wants to test the efficacy of an accessibility feature in the prototype for
a new Web application that is currently under development.

• A content author wants to ensure that the newly developed text meets the requirements
and conventions of the organization before it is published.

• A project manager wants to learn about potential accessibility barriers on the Web site
to estimate the current situation and plan for improvements.

• A Webmaster wants to ensure that all Web content published on a Web site meets the
minimum technical (possibly also legal) requirements.

Some of the dimensions for Web accessibility evaluations are therefore the thoroughness and
the scope. In the first scenario highlighted above, the Web developer is carrying out a focused
evaluation on a specific feature. While the scope of such an evaluation is limited, it is ideally
carried out thoroughly before the accessibility feature is deployed on the actual Web site. This
is the opposite situation to the project manager who may carry out a very coarse evaluation on
a number of different Web pages to get an overview of the overall accessibility of a Web site,
or to the Webmaster who needs to carry out a sufficiently broad and thorough evaluation.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

10/99

Tool-Supported Web Accessibility Evaluation

1.1.1. Context
The accessibility of the Web for people with disabilities is dependent on several components
[WAI, 2]. The most elementary component of Web accessibility is the accessibility support
provided by the underlying Web technologies. If Web technologies such as HTML, CSS, or
others do not support the accessibility requirements of people with disabilities, then any Web
content that is developed using these technologies will also not meet these requirements. An
example of an accessibility feature that has been built directly into HTML is the alt attribute,
which can be used to provide equivalent alternatives for images in the form of text. This and
many more accessibility features have been built into the Web technologies provided by the
W3C [WAI, 10]. Also many of the non-W3C Web technologies such as Flash, PDF, or Word
are undergoing continual improvements with regard to their support for accessibility.

Web browsers and media players are equally critical in making the Web accessible for people
with disabilities. If browsers and media players (called user agents) do not provide support for
the accessibility features provided by the Web technologies, then there is no point in adding
these accessibility features in the first place. For instance, if Web browsers do not support the
HTML alt attribute, for example by displaying the text equivalents to the users or by making
them available to the assistive technologies, then these accessibility features become useless.
Web browsers and media players are the points of contact between the users and the Web, and
must therefore observe the accessibility requirements of the users. This means providing an
accessible user interface for the user agent software, rendering the accessibility features in the
Web content, and providing APIs or other means of interacting with assistive technologies.

Similarly, the authoring tools and evaluation tools are the points of contact between the Web
developers and the Web content being developed. They are vital for supporting the production
of accessible content. For instance, authoring tools could prompt the users to provide the text
equivalents for the images that they want to publish. In the case of HTML the authoring tool
could insert the text provided by the author into to the alt attribute without requiring that the
author knows HTML. This is an important aspect because the majority of the Web content is
developed by non-technical authors who need to be able to rely on the authoring tools to help
them meet the accessibility requirements. In fact, they may often not even know the specifics
of the accessibility requirements, but can still contribute effectively to the evaluation process.

Since Web accessibility encompasses these components, the evaluation of Web accessibility
is in the formal sense an assessment of the underlying Web technologies, the authoring tools,
the browsers, as well as the media players. However, the more common implication of Web
accessibility is the development of Web content that is accessible for people with disabilities.
It is the perspective of Web developers who are creating Web content but have no influence
on the development of the other components. In turn, the more common understanding for the
context of Web accessibility evaluation is the assessment Web content for accessibility. It also
contains an implicit assumption about the current state of the remaining Web components.

It is important to remember that these definitions for Web accessibility and Web accessibility
evaluation are bound to the assumptions made about the remaining components outside the
Web content. As these components evolve and change, the assumptions made may need to be
revised in order to maintain an accurate understanding for Web accessibility and evaluation.
Also, by neglecting these factors in an evaluation process there is a risk of missing potential
accessibility barriers or of failing to identify the causality. For instance, if a developer relies
on specific accessibility features that are not supported by user agents then the Web content
may be effectively inaccessible. Conversely, if users can not access the Web content then it
could be an issue of the user agent that they are using rather than of the Web content itself.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

11/99

Tool-Supported Web Accessibility Evaluation

1.1.2. Background
People with disabilities encounter different kinds of barriers on the Web even though, like all
users, they may not be able to articulate what is stopping them from being able to use the Web
content effectively. Technical barriers are directly related to the way in which the content has
been programmed and coded. For instance, sometimes section headings are not coded as such
within the HTML or PDF documents but are only presented visually by using bold and larger
font-size. These types of headings will not be recognized as such by browsers and assistive
technologies, and will therefore not appear in the headings outline view of the documents. In
turn, people who are using software to navigate the content by headings, such as most screen-
reader users, will not be able to use the content effectively by scanning the headings.

In other cases people with disabilities can encounter functional barriers that are inherent to the
way in which the accessibility features are implemented. For instance, providing navigational
cues in the document structure can help users to identify their current position within the Web
content and to orient themselves. However, providing too many cues can be distracting to the
users and could actually disorient them in some cases. These types of issues are usually less
technical but they require some basic knowledge about how people with disabilities use their
computers and how they interact with the Web. They are generally also directly related to the
design concepts of the Web content, and are therefore especially important to consider during
the early requirements analysis and design stages of the development processes.

Another facet of accessibility barriers is a differentiation between objectively measurable and
qualitative requirements. Examples of objectively measurable requirements are providing alt
attributes for images or headings for rows and columns of data tables. Each of these tests can
be carried out objectively, regardless of the context of the Web content or the knowledge of
the evaluators. The outcomes of such tests are pretty much consistent among different persons
or tools evaluating the same Web content because the requirements are not subject to any bias.
Qualitative requirements however usually need some level of knowledge of how they relate to
the use of the Web content by people with disabilities, and are usually strongly dependent on
the context of the Web content. An example of a qualitative requirement is ensuring that the
alt attributes provide equivalent alternatives that adequately describe the respective images.

Only few accessibility requirements can be fully automated and most of them require human
judgment to evaluate. A challenge for many organizations in ensuring that their Web sites are
accessible for people with disabilities is to optimize the distribution of the tasks and processes
between the different individuals involved in the development and maintenance of the Web
content. For instance, to make sure that Web designers adhere to the requirements for reading
order, color combinations, and text styles when they are developing the ‘look and feel’; that
programmers adhere to the requirements for content structure and interaction when they are
developing Web applications; or that content authors adhere to the requirements of reading
level, information design, and equivalent alternatives when they are publishing Web content.

Web accessibility evaluation is ideally carried out during the development of the Web content
to ensure that it is published accessibly. It is also essential to carry out periodic evaluations as
a quality assurance measure, to monitor and continually improve the level of accessibility. In
some cases evaluations may be more exploratory to learn about potential accessibility barriers
or how the accessibility features are being used (to further improve the user experience), and
in other cases evaluations may be only intended to confirm that the Web content meets the set
requirements for accessibility. Web accessibility evaluations may be carried out by in-house
developers or by acquiring expertise, depending on the skills and knowledge of the developers.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

12/99

Tool-Supported Web Accessibility Evaluation

1.2. Motivation
Equal access to the information society is a human right. It has been recognized by the United
Nations (UN) in its Convention on the Rights of Persons with Disabilities [UN-CRPD], which
entered into force on 3 May 2008. Also the European Commission (EC) as well as many other
governments around the world is addressing the discrimination of people with disabilities in
their policies or legislations [WAI, 13]. Providing accessible Web sites is an obligation and a
social responsibility rather than a voluntary option for motivated individuals.

However, studies show that an opposite situation is the reality and that only few Web sites are
accessible for people with disabilities. In 2006 the UN commissioned a study that surveys the
accessibility of 100 Web sites from around the world, to identify that only approximately 3%
comply with existing standards1. In 2008 the EC commissioned a comprehensive study that
surveys the broader scope of eAccessibility within the European Union (EU), and identifies
similarly low values for the compliance of Web sites to existing accessibility standards2.

The primary reason for this severe discrepancy between the ideal goal of an inclusive society
and the reality of inaccessible Web sites seems to origin from:

• Lack of awareness – many developers and Web site owners are unaware of the issues
that people with disabilities encounter while using the Web. They are often unaware of
the availability of standards for Web accessibility and of the technical solutions.

• Lack of education – many developers and Web sites owners lack sufficient education
and training in the domain of Web accessibility, in order to be able to implement the
accessibility requirements for people with disabilities effectively and efficiently.

• Lack of tool support – many software tools that are used to create Web content do
not generate code that is sufficiently accessibility, and do not provide adequate
support to assist Web developers in improving the accessibility of the Web content.

Web accessibility evaluation tools also play a considerable role in reducing the effort required
to meet the accessibility needs of people with disabilities. They can help explore Web content
to learn about potential accessibility barriers. They can also help learn about the requirements
for accessibility and how to meet them in a practical way. Web accessibility evaluation tools
are also essential for determining and managing the level of accessibility in larger Web sites,
and are therefore crucial for meeting the paramount goal of providing equal access to the Web.

At the same time, there seems to be a need for research and development activities to further
improve the performance and functionality of Web accessibility evaluation tools. There is a
demand to develop new approaches for tackling Web content, especially in today’s interactive
and application-driven Web. For instance, heuristics and fuzzy algorithms are rarely used in
many tools, even though they could provide valuable feedback to the developers. Moreover,
there is a considerable potential in semantic Web technologies to facilitate a collaborative
environment for development and evaluation tools to work together more effectively.

Also outside the domain of Web accessibility there seems to be an opportunity for advanced
quality assurance tools that help mange basic compliance with the Web standards, privacy and
security requirements, as well as generic quality assurance. Pursuing the enhancement of tool
support in Web accessibility evaluation is potentially beneficial for Web quality assurance.

1 Nomensa: http://www.nomensa.com/resources/research/united-nations-global-audit-of-accessibility.html
2 MeAC: http://ec.europa.eu/information_society/activities/einclusion/library/studies/meac_study/index_en.htm

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

13/99

http://www.nomensa.com/resources/research/united-nations-global-audit-of-accessibility.html
http://ec.europa.eu/information_society/activities/einclusion/library/studies/meac_study/index_en.htm

Tool-Supported Web Accessibility Evaluation

1.2.1. Auxiliary Benefits
Besides the ultimate goal of providing equal access for people with disabilities, there are also
numerous business opportunities for evaluating and implementing Web accessibility [WAI, 4].
Accessibility requirements for people with disabilities enlarge the market reach and provide
benefits for the majority of the Web site users. In 2003 Microsoft commissioned a study to
survey the market for accessible technologies3, to identify that while only approximately 15%
of the population is considered as having some form of disability, approximately 25% of the
population is very likely to benefit from the use of accessible technologies. Moreover, another
approximately 37% is likely to benefit from the use of accessible technologies, so that one can
roughly estimate that over 60% of the working-age adults benefit from accessible solutions.

1.2.1.1. Mobile Users
Nokia forecasts that the usage of the Web through mobile devices will soon outnumber the
usage of the Web through desktop computers4. It is therefore essential that the Web can work
equally well on desktop computers, as well as on compact cell phones with typically minimal
screens and minimal set of keys. There are many overlapping requirements between designing
content for mobile devices and making it accessible for people with disabilities [WAI, 11].
For instance, making the Web content usable by keyboard enables people who can not use the
mouse, such as users with physical disabilities or blind users, to operate the Web content. This
also benefits many users with mobile phones that do not have pointing devices such as rocker
switches, and can therefore not operate Web sites that rely on input through a mouse.

1.2.1.2. Older Users
Statistics from around the world have shown that as we grow older we develop ageing-related
functional limitations [W3C, 4]. This is typically reflected in the gradual deterioration of the
vision, hearing, memory, or dexterity capabilities; in some cases several of these symptoms
can occur at the same time. It is clear that the needs of older users on the Web correlate very
strongly with the needs of people with disabilities. At the same time, the population of older
people who are using the Web is growing very rapidly in many parts of the world. In many of
these countries older users are considered to have a substantial purchasing power. Developing
accessible content has a critical impact on increasing the audience-reach to older users, and is
therefore a direct business benefit. It increases the return of investment (ROI) substantially.

1.2.1.3. General Usability
While usability and accessibility are separate disciplines, conceptually they are related and
share some fundamental approaches. In general, usability has an impact on the experienced
satisfaction of the users, while accessibility has a more focused impact on the efficiency of
people with disabilities. Some of the requirements that address the accessibility of the Web
content by people with disabilities also benefit other users. For example, the requirement for
clear and consistent navigation mechanisms in essential for people who rely on the navigation
cues to orient themselves within the Web content. This includes blind users but also users
with cognitive disabilities. At the same time, clear and consistent navigation mechanisms also
benefit other users, especially novice computer users or who do not know the Web site.

3 Forrster Research: http://www.microsoft.com/enable/research/phase1.aspx
4 Source: Nokia forecast for 2006, and forecast report by Morgan Stanley Communications Equipment Research

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

14/99

http://www.microsoft.com/enable/research/phase1.aspx

Tool-Supported Web Accessibility Evaluation

1.3. Problem Definition
The objective of this study is to explore potential opportunities for increasing the tool support
in Web accessibility evaluation. Evaluation is hereby defined as a quality assurance measure
to ensure that the accessibility needs of people with disabilities are met throughout the entire
development process for Web content. In particular it includes the design, the implementation
and the maintenance stages. Evaluation in the general sense is not confined to quality control
which takes place after the production but is a continuous quality assurance procedure that is
an intrinsic part of the Web development process.

Currently Web accessibility evaluation tools focus primarily on the evaluation of Web content
after its design and development stages. For instance, many evaluation tools are designed to
crawl through Web pages in order to help assess the accessibility of collections of Web pages
such as entire Web sites. While other types of evaluation tools focus on evaluating individual
Web pages, they also seem to follow the post-production quality control paradigm. Measuring
the accessibility of existing Web content is clearly an essential use-case. However, there is an
untapped potential to broaden the coverage of Web accessibility evaluation tools to the other
stages of the Web development process. For instance, other use-cases for evaluation include:

• Requirements Analysis – do the requirements for the development or the re-design of
Web content include adequate considerations for accessibility?

• Prototyping and Design – are the layouts, visual designs, and templates functionally
and technically compliant with the accessibility requirements?

• Code Programming – does the source code including markup and application scripts
comply with the accessibility requirements?

• Content Production – does the main content including text, images, and multimedia
comply with the accessibility requirements?

• Conformance Audits – does the Web content (in this case usually entire Web pages
or Web sites) as a whole conform to formal standards for Web accessibility?

• Enhancement Audits – are there improvements that can be made to further enhance
the experience of people with disabilities using the Web content?

• Change Management – does the addition, modification, or removal of Web content
lead to accessibility barriers, possibly in other parts of the Web content?

• On-Going Monitoring – has the Web content (in this case usually entire Web sites)
undergone changes that impact its overall level of accessibility?

Moreover, Web accessibility evaluation tools seem to focus on a specific group of users who
are more technical or who have knowledge in the domain of Web accessibility evaluation. It
is a common practice that Web accessibility evaluation tools, especially the automated tools,
generate reports of their findings. Despite the fact that some of these tools can also produce
summaries and diagrams to provide higher-level overviews on the evaluation findings, these
types of reports are generally more apt for technical users who are familiar with bug reports
and similar formats. In other cases, evaluation tools require that their users have knowledge
about how to carry out evaluation tasks, or how to interpret the results or feedback provided
by the tools. Web accessibility evaluation tools needs to better address the heterogeneity and
diversity of the developers in order to further assist them in carrying out different evaluation
tasks that are part of a comprehensive quality assurance measure. The evaluation tools need to
better fit into the production chain in order for them to be optimally effective for developers.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

15/99

Tool-Supported Web Accessibility Evaluation

This study aims to analyze the parameters that influence the dimensions of Web accessibility
evaluation processes. For instance, which parameters change between focused evaluations of
specific features and coarse evaluations to learn about the overall performance (as discussed
in section 1.1. Introduction)? When during the development process are the different types of
evaluation tasks ideally carried out and which types of developers are involved in these tasks?

It is also equally important to analyze the characteristics of the accessibility requirements for
people with disabilities in order to better understand how these influence the evaluation tasks.
For instance, can the evaluation of these requirements be partially automated and could tools
provide assistance for non-automatable requirements? What skills and experience do different
types of accessibility requirements need in order to be evaluated effectively and efficiently?

Finally, it is also important to explore currently available Web accessibility evaluation tools
and learn about how they generally work. Which types of situations do they address and what
type of functionality do they typically provide? How do current evaluation tools fit into the
development process and how do they integrate with other types of tools such as authoring or
generic quality assurance tools? What are the benefits and drawbacks of using such tools?

These questions are all part of the review on the current state of the art in Web accessibility
evaluation. The answers to these questions are expected to give a solid foundation that helps
identify some of the opportunities for additional tool support in Web accessibility evaluation.
In particular this study aims to pursue the use of structured data formats to describe evaluation
procedures, evaluation results, and Web resources in machine-readable forms. These types of
descriptions enable the exchange of semantically rich information between different types of
tools such as authoring tools, evaluation tools, and generic quality assurance tools. They are
therefore promising techniques that could enable ad-hoc integration of different types of tools.

Based upon these findings the study is set out to propose and discuss potential approaches for
a distributed model of tools that can connect ad-hoc depending on the overall evaluation and
development process for the Web content. It should investigate the potential interoperability
of evaluation tools that have been created to help carry out different evaluation tasks. These
evaluation tasks are possibly carried out by different developers who typically have varying
backgrounds in technical skills or expertise in Web accessibility and evaluation.

While this approach is significantly different than what seems to be commonly employed by
Web accessibility evaluation tools, there is reason to believe that it is principally feasible. The
domain of software engineering provides mature concepts and strategies for quality assurance
that could be reused in the domain of Web engineering. There are numerous software quality
assurance tools that help users model their software, examine their code, and debug the issues.
There are considerable differences between code development and user interface design that
could lead to challenges in adopting many of these concepts and strategies, but many of the
basic approaches and models should be promising for the domain of Web quality assurance.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

16/99

Tool-Supported Web Accessibility Evaluation

2. Current State-of-the-Art in Web Accessibility Evaluation
As introduced in section 1.1.1. Context, there are essential components of Web accessibility
that need to work together in order to ensure that Web content is accessible for people with
disabilities. The underlying Web technologies such as HTML, CSS, SMIL, SVG; the user
agents such as browsers and media players; the authoring tools and evaluation tools; as well
as the Web content itself need to support accessibility. The W3C Web Accessibility Initiative
(WAI) [WAI] developed a suite of accessibility guidelines that complement each other and
address each of the components described above [WAI, 5-7]:

• Web Content Accessibility Guidelines (WCAG) – defines criteria for the creation of
accessible Web content for people with a variety of disabilities, including people with
different forms of visual-, hearing-, physical-, neurological-, or cognitive disabilities.

• Authoring Tool Accessibility Guidelines (ATAG) – defines criteria for software that
is used to generate Web content, so that the interface of these tools is accessible for
people with disabilities and so that the content generated by these tools is accessible.

• User Agent Accessibility Guidelines (UAAG) – defines criteria for software, such as
browsers and media players, that are used to render Web content, so that they provide
accessibility features and so that they can be compatible with assistive technologies.

Figure 1: Essential Components of Web Accessibility

This section explores the current state-of-the-art in Web accessibility evaluation. It examines
the current standards for Web accessibility and the processes for Web accessibility evaluation.
This section also outlines the relationship between the processes for Web development and
accessibility evaluation processes, and how these can be assisted by software tools.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

17/99

Tool-Supported Web Accessibility Evaluation

2.1. Technical Standards for Web Accessibility
The accessibility features built into the technical specifications of the core Web technologies
play a vital role in Web accessibility. The support for these accessibility features within the
Web browsers, media players, and assistive technologies plays an equally decisive role in the
evaluation of the accessibility of Web content. For instance, the HTML specification provides
the longdesc attribute which can, in addition to the alt attribute that can convey the textual
equivalent for the purpose of the images, link the images to extended descriptions. While this
feature seems like a useful accessibility solution, the longdesc attribute is actually not widely
supported by browsers and assistive technologies. This means that in practice it is not a viable
accessibility solution on its own due to the broad lack of support for the feature.

We are also observing an increased deployment of formats such as Adobe PDF, and those of
Microsoft Office, Open Office, or other office applications on the Web. While these formats
were traditionally used as formats for desktop documents, they are being increasingly used on
the Web for publishing information. Some of these formats provide varying levels of support
for accessibility, such as capabilities for identifying the document structures, for providing the
captions for images, or for defining the reading flow for text. Because many of these formats
were initially proprietary, it was difficult to develop tools such as accessible browser plug-ins,
assistive technologies, or evaluation tools which could support them directly. Some of these
formats, such as ODF [ISO 26300] and PDF/X [ISO 32000], have been recently standardized
by ISO [ISO]. This allows more insight into the accessibility provided by these formats, and
enhances the interoperability and the availability of accessibility solutions.

Also multimedia formats are being increasingly deployed and used on the Web. Formats for
video and audio also need to provide accessibility features for people with disabilities. For
instance, these formats need to facilitate subtitling5, transcription6, or audio descriptions7 for
multimedia presentations. Only few of the widely used multimedia formats such as [MPEG]
have been formally standardized, the majority of the formats such as Microsoft Windows
Media, Real Media, Quick Time, or Flash Video are proprietary. Unfortunately, the current
situation of licensing for these formats has created severe interoperability issues amongst the
media players. This has a significant impact on the development of accessible multimedia
content, as developers need to be aware of the capabilities of the individual media players and
to create tailored content rather than to be able to rely on a common behavior of the tools.

Web accessibility is therefore a moving target that strongly
depends on the current state of the Web technologies and
the support provided by the user agents for the accessibility
features. The accessibility standards must therefore account
for the current state of the Web with the multitude of Web
technologies, increasing number of browsers and assistive
technologies, and a wide variety of Web applications. This
section examines some of the accessibility standards that
are related to the production of Web content. It explores
how authoring and evaluation tools work together to help
developers create and publish accessible Web content.

5 Subtitles: captions that are presented with a video presentation and describe the audio for the hard of hearing.
6 Transcripts: textual files that provide equivalent alternatives for the visual tracks of multimedia presentations.
7 Audio Descriptions: audio narration that provides descriptions of the visual tracks of multimedia presentations.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

18/99

Tool-Supported Web Accessibility Evaluation

2.1.1. International Standards
The three W3C Web accessibility Initiative (WAI) [WAI] guidelines for Web accessibility
introduced earlier have been internationally recognized as the standard for Web accessibility.
Especially the W3C Web Content Accessibility Guidelines (WCAG) [WAI, 5] has become
widely adopted by many organizations and governments from around the world. Currently the
following versions of these WAI Guidelines are operational and generally regarded as stable:

• W3C Web Content Accessibility Guidelines (WCAG) 1.0 [W3C, 5-10]

• W3C Authoring Tool Accessibility Guidelines (ATAG) 1.0 [W3C, 12-14]

• W3C User Agent Accessibility Guidelines (UAAG) 1.0 [W3C, 15-17]

W3C is currently working on a new generation of these guidelines to meet the current state of
the Web and address the current challenges that people with disabilities face. In this study the
focus is this new generation of the guidelines, in particular on WCAG 2.0 which is expect to
become a final Web standard during 20088. This section examines the following standards:

• W3C Web Content Accessibility Guidelines (WCAG) 2.0 [W3C, 18-21]

• W3C Authoring Tool Accessibility Guidelines (ATAG) 2.0 [W3C, 22-23]

These standards are developed in the collaborative environment of the W3C with stakeholder
representatives from research, disability organizations, industry, policy, as well as experts and
individuals in the field. W3C standards are developed through the W3C Process that ensures a
transparent and consensus-oriented approach. The development process is iterative to provide
opportunities for contribution by the public [WAI, 15]. As with all W3C standards, the WAI
Guidelines are published with royalty-free licensing. This is an important aspect as it can be
made available to all users including developers, researchers, and accessibility advocates with
out licensing fees. This promotes the adoption and usage within the Web community.

Unfortunately diverging derivatives of WCAG are creating fragmentation in the field of Web
accessibility. Diverging standards have a negative impact on Web developers as well as on
authoring tools, browsers, media players, assistive technologies, and evaluation tools. It is
often not economically feasible to support all the different standards so that the solutions and
tools are not easily reusable. In the worst case, diverging standard may be incompatible and
the competing requirements can not be achieved by Web developers or software producers.

There are different motivations and drivers for standards fragmentation [WAI, 14], many of
which are organizational and are of non-technical nature. One significant driver is however
inherent to the technical design of WCAG 1.0 as it was in some areas open to interpretation,
and in other areas it made assumptions about the capabilities of the user agents and assistive
technologies. As the user agents and assistive technologies evolved, many requirements that
were built around assumptions of their capabilities became outdated very quickly.

Many of the diverging standards were therefore initially developed as an interpretation for
WCAG 1.0, also to help developers evaluate if they have met the requirements or not. They
were not specifically designed to remove, add, or modify the overall requirements but rather
to define more granular steps for meeting these requirements or for evaluating them. Other
standards were developed with less attention for harmonization of standards, and now pose
some additional challenges for defining a generic approach to Web accessibility evaluation.

8 As announced by W3C on 30 April 2008 at http://www.w3.org/WAI/WCAG20/wcag2faq.html#done.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

19/99

http://www.w3.org/WAI/WCAG20/wcag2faq.html#done

Tool-Supported Web Accessibility Evaluation

2.1.1.1. W3C Web Content Accessibility Guidelines (WCAG) 2.0
The W3C Web Content Accessibility Guidelines (WCAG) 2.0 [W3C, 18] is the successor of
the WCAG 1.0 standard. WCAG 2.0 is, at the time of writing this study, in the final stages of
development and currently published as a W3C Candidate Recommendation. This is the pre-
final development stage according to the W3C Process [WAI, 15], and is the stage in which
the document is regarded as stable and is published to gather feedback about its maturity. If
the document proves to be implementable in practice, in other words that its requirements are
achievable on real and live Web sites, the document will proceed to the final development
stage before publication as a W3C Recommendation (the term used to denote W3C standards).

WCAG 2.0 is designed to overcome many of the design issues that were intrinsic to the prior
version 1.0. It is specifically designed to meet the following objectives:

• Objectively Testable – requirements must not be open to subjective interpretations.

• Technology-independent – requirements do not relate to specific Web technologies.

• Future-proof – requirements must apply to the current and future Web technologies.

From these objectives it was clear that the guidelines now needed to primarily address the
functional requirements of people with disabilities interacting with Web content, rather than
to prescribe technical approaches for accessible Web design. Four Principles are defined:

• Principle 1: Perceivable – Information and user interface components must be
presentable to users in ways they can perceive.

• Principle 2: Operable – User interface components and navigation must be operable.

• Principle 3: Understandable – Information and the operation of user interface must
be understandable.

• Principle 4: Robust – Content must be robust enough that it can be interpreted
reliably by a wide variety of user agents, including assistive technologies.

WCAG 2.0 Principles – http://www.w3.org/TR/WCAG20/

Each Principle is a category that has several Guidelines. Guidelines in WCAG 2.0 are similar
in intent to those of WCAG 1.0. They are however clearer, especially when they are read in
the context of their respective Principle. For instance, WCAG 2.0 Guideline 2.1 says:

“Guideline 2.1 Keyboard Accessible: Make all functionality available from a
keyboard” – http://www.w3.org/TR/WCAG20/#keyboard-operation

The WCAG 2.0 guidelines are still fairly abstract even though they are more detailed than the
principles. Additional precaution has been taken to ensure that the guidelines in WCAG 2.0
remain agnostic to any specific Web technologies. For instance, the quoted guideline above
applies to HTML and XHTML equally to PDF, Flash, or Word. It is a requirement for people
with disabilities to be able to (functionally) operate the Web content effectively, regardless of
how it has been implemented or realized technically.

The Working Group developing WCAG also moved away from the concept of Checkpoint in
version 2.0, and adopted the concept of Success Criteria. This may be somewhat subject to a
rather philosophical discussion but it reflects that the requirements are criteria that need to be
fulfilled functionally. In practical terms this means that these Success Criteria are usually not
evaluated directly, but rather using Techniques. One evaluates if Techniques that meet the
Success Criteria were adequately used. For instance, WCAG 2.0 Success Criteria 2.4.1 says:

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

20/99

http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/#keyboard-operation

Tool-Supported Web Accessibility Evaluation

“A mechanism is available to bypass blocks of content that are repeated on multiple
Web pages” – http://www.w3.org/TR/WCAG20/#navigation-mechanisms-skip

This Success Criteria is provided under the WCAG 2.0 Guideline 2.4 “Provide ways to help
users navigate, find content and determine where they are”. It is a however still a functional
requirement that needs to be manifested into the specific Web technologies. The appropriate
implementation of such a requirement will depend on the accessibility features built into the
specific Web technologies being used, and the availability of user agents the provide support
for this feature. While these may change with time as the technologies evolve, it is expected
that the functional requirement of this success criteria will have a longer lifetime.

Similarly to WCAG 1.0, this second version of the standard has separated the Techniques into
its own document called Techniques for WCAG 2.0 [W3C, 21]. This is published as a W3C
Working Group Note, which has a less rigorous development process than the official WCAG
guidelines themselves. While the Techniques for WCAG 2.0 document can be viewed as a
single file, it is actually an extensive collection of approaches for meeting the Success Criteria,
and is not intended to be read from top to bottom. The Techniques are categorized by the
primary Web technology that they address. Currently there are General, HTML, CSS, and
Scripting techniques. Additional techniques for W3C technologies such as SMIL, SVG, and
XForms as well as for non-W3C technologies such as PDF, Flash, or Silverlight are expected.

There is a sub-category of techniques called Sufficient Techniques. These provide means for
adequately satisfying the respective Success Criteria. These techniques are not exclusive and
it is principally possible to use other means to satisfy the requirement, ideally techniques that
are well documented and widely accepted as solutions. In addition to the group of Sufficient
Techniques there are Advisory Techniques, which are recommended best practices that go
beyond the minimum requirement. There are also Failure Techniques which are common
mistakes that fail the criteria. These could be seen as the ‘worst practices’ that should not be
followed. The overall structure of WCAG 2.0 therefore looks as follows:

• Principles – Perceivable, Operable, Understandable, Robust – “POUR”

o Guidelines – functional requirements for accessible Web design

 Success Criteria – testable statements for each guideline

• Techniques – General, HTML, CSS, Scripting, …

o Sufficient Techniques – bare minimum

o Advisory Techniques – best practices

o Failure Techniques – common mistakes

o (External Techniques – not from W3C)

Along with the official WCAG 2.0 standard and the accompanying techniques document, two
support documents are published as part of WCAG 2.0. The documents match the diverging
needs of the different audiences that range from developers, evaluators, and authors to project
managers, policy makers, and executives. Any of these readers may be more or less technical,
and more or less experienced in Web accessibility. These additional documents are provided:

• How to Meet WCAG 2.0 [W3C, 19] – provides a customizable and quick reference
to the WCAG 2.0 guidelines and success criteria, and provides links to the techniques.

• Understanding WCAG 2.0 [W3C, 20] – provides detailed background on the intent,
benefits, and examples for each of the WCAG 2.0 guidelines and success criteria.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

21/99

http://www.w3.org/TR/WCAG20/#navigation-mechanisms-skip

Tool-Supported Web Accessibility Evaluation

It is expected that most of the developers and evaluators will use the How to Meet WCAG 2.0
document as their main starting point. It provides a quick overview of all the Guidelines and
Success Criteria, and pulls the currently available and relevant Techniques dynamically from
the underlying database. For developers and evaluators who are new to Web accessibility or
who occasionally need to lookup background information on the intent or purpose, there are
links referring to the Understanding WCAG 2.0 document. This document is like a reference
manual that contains a lot of valuable background information about the specific requirements.

The How to Meet WCAG 2.0 document is also customizable. There are toggles to display or
to hide Success Criteria and Techniques that relate to multimedia, scripting, CSS, or others if
they are not applicable to the respective Web content being developed or evaluated. It is also
possible to adjust the target accessibility level, which will also result in displaying or hiding
the respective Success Criteria. The How to Meet WCAG 2.0 document is thus a dynamic
checklist that displays only the minimum information needed by the Web developers.

The following figure illustrates the WCAG 2.0 documents described above. It highlights the
WCAG 2.0 document as the central Web standard, with the supplementary three documents
derived from it. The How to Meet WCAG 2.0 document is a customizable quick reference
that links to the more detailed Understanding WCAG 2.0 and Techniques for WCAG 2.0:

Figure 2: Overview of WCAG 2.0 Documents

To help readers transition from WCAG 1.0 to WCAG 2.0, W3C provides a comparison of the
checkpoints and success criteria [WAI, 16]. While there is no pure one-to-one mapping of the
two, there is a high degree of compatibility. This is because functional requirements of people
with disabilities are the underlying intents in both versions. Developers who implemented the
first version thoroughly will not be impacted significantly. Also evaluators who have learned
to assess Web accessibility according to WCAG 1.0 will be able to carry over most of their
skills and knowledge when they are using the new version. WCAG 2.0 does however provide
many more features to address the current state of the Web. It also provides flexibility to be
able to address different situations such as evolving Web technologies. It is however a larger
suite of documents that needs to be first understood so that it can be used efficiently.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

22/99

Tool-Supported Web Accessibility Evaluation

2.1.1.1.1. Evaluation Aspects
The Web Content Accessibility Guidelines (WCAG) 2.0 [W3C, 18] provides far more support
for evaluation than the previous version. As noted in the previous introduction, WCAG 2.0 is
specifically designed to be more testable. Each Success Criteria is formulated to be a testable
statement. For instance, WCAG 1.0 Checkpoint 14.1 “Use the clearest and simplest language
appropriate for a site's content” is an example of a requirement that is open to interpretation.
In order to make this requirement objectively testable, WCAG 2.0 Success Criteria 3.1.5 uses
the following formulation that provides more clarity and testability:

“When text requires reading ability more advanced than the lower secondary
education level, supplemental content, or a version that does not require reading
ability more than lower secondary education level, is available”
– http://www.w3.org/TR/WCAG20/#meaning-supplements

The threshold ‘lower secondary education level’ is well defined by the International Standard
Classification of Education of the UNESCO. It is therefore a standardized reading level, even
though it may vary according to the specific region of the world, culture, or other factors9.

Despite all this effort to make the requirements objectively testable, evaluators must be clear
that for some requirements there is no solid yes/no boundary. It is in the nature of some of the
requirements that there is a grey zone between correct and incorrect implementation. To take
the Success Criteria cited above as an example, there are situations in which individual words
or phrases require ‘borderline’ decisions (decisions that can go either way depending on the
interpretation and context of the situation). This is especially when such words or phrases are
used in unconventional or irregular ways10. Another example that highlights such situations is
the judgment of the appropriateness of ‘equivalent text alternatives’. Since by virtue this is an
interpretation from one form of the information to another (for example from audio content to
text or from visual content to text), there may be differences between such ‘transformations’.

It is however the role of technical standards to minimize the spectrum for the ‘grey zone’, and
to minimize the potential inaccuracies that can occur. WCAG 2.0 has taken significant steps
to manage the ‘space of interpretation’ in its requirements. For instance, WCAG 2.0 Success
Criteria 1.1.1 enumerates specific situations for ‘text alternatives’ such as alternatives for tests
or for decorations 11. Text equivalents for decorative images are therefore handled differently
than the equivalents for informative images. This means that it is less likely that one evaluator
reaches a contradicting conclusion to another, because many of the key situations are outlined
in the requirements. Without separating some of the key situations, evaluators would be left
with more decisions to make and therefore more chances of reaching diverging results.

A lot of valuable information such as scenarios and examples that describe the background
and intent for the requirements is part of the Understanding WCAG 2.0 document [W3C, 20]
that accompanies the actual standard. While the information provided in this document is not
normative, it provides useful clarifications to help educate developers and evaluators. Also,
less experienced developers and evaluators may find additional guidance on specific context
and situations and therefore further reduce the discrepancy in interpretation. The document is
however lengthy and it is therefore intended to be used as a reference manual.

9 At the time of writing this study, Success Criteria 3.1.5 is under discussion by the responsible Working Group.
10 WCAG 2.0 tries to address this through Success Criteria 3.1.3 as a counterpart to 3.1.5, but the issue of having
‘borderline’ situations for individual words or phrases is still applicable to both of these Success Criteria.
11 The term ‘Test’ in WCAG 2.0 Success Criteria 1.1.1 refers to exams for performance in educational settings.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

23/99

http://www.w3.org/TR/WCAG20/#meaning-supplements

Tool-Supported Web Accessibility Evaluation

In practice, the main starting point for most evaluators will be the How to Meet WCAG 2.0
document [W3C, 19]. As introduced in the previous sub-section, it provides a customizable
interface to toggle the display of the relevant Success Criteria and Techniques. Evaluators can
select the technologies that are used in the Web content or for which they want to evaluate for.
The HTML Techniques are always
selected as it is considered
the basic technology for most We
sites. As more techniques for t
different Web technologies are
added to the techniques database,
more options will be provided for
evaluators to select from. Also
priority level can be selected by
evaluators, depending on t
level of accessibility that they are
evaluating for. Finally, evaluators
can select to show the techniques,
and especially the Advisory ones.
This is an important aspect to help
manage the amount of information
that is displayed. Many developer
and evaluators may only want to
know about the least amount of
information to fulfill a specific

 to be
b

he

the

he target

s

 them.

ce,
ues

d

ML Techniques.

task that has been assigned to

After adjusting the dynamic checklist through the Quick Reference interface, evaluators will
likely refer to the Techniques listed for the Success Criteria. Each Success Criteria may have
several Techniques that may be organized in specific groups or combinations. For instan
for WCAG 2.0 Success Criteria 1.1.1 that was discussed on the previous page, the Techniq
are organized into groups that reflect the specific situations that are elaborated in the wording
of the requirement. Within “Situation A: If a short description can serve the same purpose an
present the same information as the non-text content” for instance, there is a combination of
two Techniques that have to be used to meet the Success Criteria according to the current set
of Techniques in WCAG 2.0. The first is a General Technique describing how to author ‘short
text alternatives’, and the second needs to be one from a selection of HT

Each Technique includes a dedicated section describing a specific test procedure to evaluate if
the technique was correctly implemented. For instance, WCAG 2.0 Technique H37 “Using
alt attributes on img elements” defines the following evaluation steps:

1. Examine each img element in the content.

2. Check that each img element which conveys meaning contains an alt attribute.

3. If the image contains words that are important to understanding the content, the
words are included in the text alternative.

List 1: WCAG 2.0 Technique H37 Test Procedure – http://www.w3.org/TR/WCAG20-TECHS/H37

Despite WCAG 2.0 starting at the very high-level of the abstract Principles, it drills-down to
very specific evaluation guidance and testing procedures. Evaluators can customize the view
on this rich resource of information by displaying or hiding the information relevant to them.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

24/99

http://www.w3.org/TR/WCAG20-TECHS/H37

Tool-Supported Web Accessibility Evaluation

2.1.1.1.2. Specifics and Caveats
The Web Content Accessibility Guidelines (WCAG) 2.0 [W3C, 18] is, at the time of writing
this study, still a draft work in progress so there is little experience with it in practice. There
are some opportunities for improving issues encountered in its current testing phase of the
development process, and so it is expected to be a robust and stable Web standard when it is
finalized. However, there are some observations that can be made at this stage regarding its
conceptual and architectural design. There are important differences between the first and
second version of the guidelines. These differences have an impact on some of the approaches
for Web accessibility evaluation, and on the tools that support evaluation.

In WCAG 2.0 more attention has been given to making the requirements as pure as possible,
so that they cover only the designated needs of people with disabilities. They are also pure in
the sense that they only relate to the Web content, and try to decouple and relationship to the
underlying Web technologies and user agents as much as possible. One of the implications of
this approach was a seemingly minor yet significant change to the requirement that was first
defined by WCAG 1.0 Checkpoint 3.2 “Create documents that validate to published formal
grammars”. The intent of this requirement was to provide valid HTML and CSS content, on
which user agents and assistive technologies could rely. Besides the fact that this formulation
is only applicable to markup languages such as SGML and XML variants (it does not apply to
PDF, Flash, or Word documents because they have no formal grammars), it is argued that
user agents and assistive technologies accept and sometimes even prefer code that is not valid
according to the HTML or CSS specifications. This is of course a less optimal situation from
an engineering perspective but it is a fact and relates to the implementation and support for
HTML and CSS in the mainstream browsers, rather than to the specific needs of people with
disabilities. WCAG 2.0 Success Criteria 4.1.1 has therefore chosen a different formulation to
address these issues highlighted above; the requirement says:

“In content implemented using markup languages, elements have complete start and
end tags, elements are nested according to their specifications, elements do not contain
duplicate attributes, and any IDs are unique, except where the specifications allow
these features” – http://www.w3.org/TR/WCAG20/#ensure-compat-parses

This Success Criteria first limits itself to the family of markup languages then it enumerates
properties that the content needs to have in order to be parsed and processed appropriately by
browsers and assistive technologies. It is theoretically possible to develop code that does not
validate to the specification, such as HTML, but still meets the requirements of WCAG 2.0.

Also the formulation of the requirements so that they are objectively testable has an impact on
their coverage and applicability. When requirements need to provide a concrete threshold and
an approach for measurement, their scope and reach needs to be understood and well defined.
In some cases this means that ‘blanket requirements’ that had a broad coverage in WCAG 1.0,
had to be broken down into individual and focused requirements. For instance, the WCAG 1.0
Checkpoint 3.2 “Use style sheets to control layout and presentation” is very broad and needs
several individual steps to evaluate. In WCAG 2.0 there is no directly corresponding Success
Criteria but there are several criteria that relate to the individual user needs that are part of this
WCAG 1.0 requirement. In WCAG 2.0, Success Criteria 1.3.1 “Info and Relationships”, 1.3.2
“Meaningful Sequence”, 1.4.1 “Use of Color”, 1.4.4 “Resize Text”, 1.4.5 “Images of Text”,
1.4.8 “Visual Presentation”, 1.4.9 “Images of Text (No Exception)”, and 2.4.7 “Focus
Visible” all relate to the different aspects presented by the WCAG 1.0 requirement. They are
however more focused in scope and more specific in their formulation. This makes them
easier to implement and to evaluate for in practice.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

25/99

http://www.w3.org/TR/WCAG20/#ensure-compat-parses

Tool-Supported Web Accessibility Evaluation

One of the ground-breaking aspects of WCAG 2.0 is that, unlike its predecessor, it allows the
use of client-side scripts such as JavaScript12. For instance, the WCAG 1.0 Checkpoint 6.3
requires that the Web content works when scripts are turned off. This was mainly due to the
fact that back in 1999 scripting was very inconsistently supported by the mainstream browsers
such as Netscape Navigator and Internet Explorer. Also assistive technologies such as major
screen readers had little or no support for JavaScript. Scripting was also most commonly used
for simple tasks such as for checking form submissions or for creating effects for navigation
menus (for example ‘drop-down or ‘fly-out’ effects). There were all features that could often
be built onto an accessible HTML base using a ‘layering’ approach. For instance, the form
checking script is only triggered if scripting is available in the user agent but it is not required
for the form to be submitted. A similar approach can be used for constructing navigation
menus that used overlay scripts and that have fallback mode.

In today’s Web however, scripting has become a central feature and whole Web applications
are built using scripts. More specifically ‘Ajax’ – Asynchronous JavaScript and XML – set a
buzz in the Web developer scene. It is a technique that allows content to be fetched from the
server dynamically and be added to the Web pages13, for instance to load database entries or
to retrieve other types of data dynamically. Meanwhile client-side scripting is standardized
and is largely supported in major browsers and assistive technologies. The issue for people
with disabilities is however that HTML provides too few semantics so that user agents are
unaware of what is happening while they are executing the scripts. A ‘Tree View’ component
is often coded as a complex nesting of div, span, and a elements. Visually these elements are
shown or hidden depending on the user interaction but browsers and assistive technologies
have no means of identifying the actual ‘Role’ and ‘State’ of each of these items. In turn they
can not render this information for the users who can not see the screens, and who therefore
need the information to be presented in a different mode (for example through audio).

The failure to provide sufficient semantics is however a shortcoming of the underlying Web
technology, in this case it is the HTML 4 family. It is expected that HTML 5 which is under
heavy development may remedy many of these issues. People with disabilities however need
solutions to be available today. For this reason, W3C developed a suite of documents called
Accessibility Rich Internet Applications (WAI-ARIA) [W3C, 26]. WAI-ARIA provides the
taxonomy of semantics that can be used in XML-based languages and HTML. It can be used
to identify the type of object and the functionality that it provides. For instance, to say that a
div element is actually a button that is currently pressed, the following code can be used:

<div role="button" aria-pressed="true">Pressed!<div>

The values in the role and the aria-… attributes are defined by the WAI-ARIA specification.
They are currently being implemented by most of the mainstream Web browsers, including
Firefox, Opera, Safari, and Internet Explorer. They also map to the accessibility API of the
operating systems and can therefore be accessed by assistive technologies. WAI-ARIA also
provides ‘Live Regions’ which can be used by Web browsers to notify assistive technologies
about changes in the Web content, for instance after an update to the content using an Ajax
function call. WAI-ARIA is expected to be an interim solution that will be built into the Web
technologies directly. For client-side scripting to be accessible it is essential that the Web
content provides sufficient semantics about the different objects and about the functionality
that they provide. This ways the can be operated independently of the interaction modality.

12 Formally JavaScript is a dialect of the ECMA-262 standard [ECMAScript], but it is the common term used.
13 The term ‘Web page’ in the context of scripting refers to the Web content in a browser observed by the user.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

26/99

Tool-Supported Web Accessibility Evaluation

WCAG 2.0 has been designed with the assumption that Web technologies can provide the
necessary semantics to make scripting accessible for people with disabilities. For the moment
WAI-ARIA will need to be used for scripted Web content developed with HTML 4. Ideally
future Web technologies such as HTML 5, Flash, and Silverlight will provide the semantics
natively. WCAG 2.0 has a requirement for providing these semantics in the Web content. It is
agnostic to whether these semantics are provided in the Web content by using WAI-ARIA or
the native properties of a Web technology. WCAG 2.0 Success Criteria 4.1.2 says:

“For all user interface components (…), the name and role can be programmatically
determined; states, properties, and values that can be set by the user can be
programmatically set; and notification of changes to these items is available to user
agents, including assistive technologies”
– http://www.w3.org/TR/WCAG20/#ensure-compat-rsv

As observed in many other examples throughout this passage, WCAG 2.0 only describes how
the Web content must behave for it to be conformant with the requirements. It decoupled the
requirements from the current state of Web technologies and from the support provided by the
user agents and assistive technologies. The Techniques for WCAG 2.0 document [W3C, 21]
provides an extensive collection of approaches to manifest these requirements into some of
the currently available Web technologies. It is expected that this knowledge base will be kept
up to date as the best practices for implementing the requirements evolve (due to changes in
the key Web technologies or in their support by user agents and assistive technologies). This
will probably satisfy the needs for developing the majority of the Web sites effectively.

There are however specific situations in which the developers may need to develop alternative
techniques for meeting the requirements. For instance, if they are using new technologies for
which there are no documented techniques. A more common situation may however be a
closed environment such as a corporate or otherwise private network. In some of these cases
the network operators are aware of the computer hardware, operating systems, and installed
software. In fact, in some cases they may develop customized browsers or media players for
the network users. This is a completely different situation to developing a public Web site in
which the operators can not guarantee the functionality of the clients, or rely on a specific user
profile. In turn, some of the commonly accepted techniques may not be suitable for a specific
environment. For instance, because the browser or assistive technology relied upon does not
provide support for it (it may however be more widely supported by other user agents and is
therefore an accepted technique). Conversely, some techniques that are not widely supported
and thus not generally regarded as valid may be supported by the user agents relied upon in
the closed environment, and may therefore be a valid solution for the particular situation.

It is however not a trivial task to decide whether a technique is acceptable or not in a specific
situation. It is very dependant on what purpose the Web content has, what technologies have
been used to realize it, and what level of support there is for the particular feature of the Web
technology in the assumed user agents. To take a concrete example, an intranet login may be
developed using an embedded plug-in for security purposes. The intranet operators assume
that the users have a Web browser on their machine that is compatible with the plug-in. They
need to be able to assess if the plug-in framework (the API) provides sufficient accessibility
support so that the users with assistive technology can also use the login functionality. This is
different than assessing the actual coding of the plug-in (which is also a necessary step). It is
an assessment if such login functionality can be made accessible using the specific browser
and assistive technologies. The W3C Web Accessibility Initiative (WAI) considers providing
a repository with information about the accessibility support in different Web technologies to
aid developers make decisions about the techniques that they can use in specific situations.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

27/99

http://www.w3.org/TR/WCAG20/#ensure-compat-rsv

Tool-Supported Web Accessibility Evaluation

2.1.1.2. W3C Authoring Tool Accessibility Guidelines (ATAG) 2.0
The W3C Authoring Tool Accessibility Guidelines (ATAG) 2.0 [W3C, 22] complements the
other WAI Guidelines introduced earlier in this section. It is currently a working draft but it is
generally considered to be fairly mature. It follows the ATAG 1.0 and focuses on two primary
objectives relating to the accessibility of authoring tools:

• Production of accessible Web content – the Web content produced by the authoring
tools should support accessibility by adhering to requirements such as WCAG 2.0.

• Providing an accessible user interface – the interface of the authoring tools should
itself be accessible to people with disabilities by adhering to relevant requirements.

While the first objective is pretty obvious, the second one is commonly forgotten. Many tool
developers are not aware that contributing to the production of Web content is equally part of
participating in the information society. Especially if we consider applications such as blogs,
wikis, or other publicly available channels for user-generated content it becomes apparent that
users, including people with disabilities, are sometimes authors. But also the traditional code
editors, content management systems (CMS), or integrated development environments (IDE)
are used by people with disabilities to create and publish Web content, and therefore also need
to be accessible. ATAG 2.0 defines the term Authoring Tools as:

“… any software, or collection of software components, that authors can use to create
or modify Web content for use by other people.”
– http://www.w3.org/TR/ATAG20/#intro-def-au

This definition is intentionally very broad and potentially includes tools that were not initially
designed for the production of Web content. For instance, if the production chain for the Web
content includes using a word processor at some stage, then this word processor must also be
accessible for people with disabilities. More importantly however, this definition includes the
Web accessibility evaluation tools, generic quality assurance tools, as well as other types of
tools that help improve or manage the accessibility of the Web content.

ATAG 2.0 considers the different types of editing views that are often provided by authoring
tools, such as WYSIWYG or source code views. For Web-based authoring tools such as many
CMS, the accessibility of the user interfaces is defined by conformance to WCAG 2.0 or other
similar standards. However, authoring tools are commonly not Web-based but rather desktop
applications. This includes but is not limited to code editors or IDE tools. For these situations
ATAG 2.0 defines some of the functional requirements such as providing compatibility with
assistive technologies or observing accessibility settings of the operating systems. The actual
implementation of these requirements may often depend on the underlying operating system,
accessibility API, and on software accessibility standards such as [ISO 9241-171].

While ATAG 2.0 does not define a specific development process or production chain, it has
been specifically designed to be flexible and to fit into different process structures (hence the
broad definition of the term). However, it explicitly relates so called ‘accessibility checks’ to
the authoring process, which is where evaluation tools typically fit in. Specifically ATAG 2.0
Guideline B.2.2 says “Assist authors in checking for accessibility problems”, and is essential
for defining the interplay between development and evaluation tasks. It acknowledges that the
checks sometimes need to be carried out manually by the developer rather than automatically
by the software tool. However, it recognizes the importance of guiding the developers through
any evaluation processes, and promotes the use of software tools to support the developers. It
also recognizes the potential of metadata to describe the accessibility of the Web content in a
machine readable form. This is an important aspect for later discussions in this study.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

28/99

http://www.w3.org/TR/ATAG20/#intro-def-au

Tool-Supported Web Accessibility Evaluation

2.1.2. National Standards
As discussed in section 1.2 Motivation, accessibility of the Web for people with disabilities is
an essential aspect of our modern information society. Many countries around the world have
recognized this need, and have therefore developed policies or legislations that address the
discrimination of people with disabilities on the Web [WAI, 13]. For instance, the Americans
with Disabilities Act (ADA) or the Disability Discrimination Act (DDA) in the UK recognize
access to information technology as a right of people with disabilities. In many cases these
laws or policies apply to public sector as well as commercial Web sites equally. However, it is
the strength and enforcement of these laws and policies that determines how effective they are.

In order to drive implementation and deployment of accessible solutions, some governments
have additional and more stringent policies that relate to public Web sites. For instance, the
US Section 508 law includes regulation of accessibility in public procurement that requires
governmental institutions to acquire accessible Web sites. Since the US Federal Government
has a substantial purchasing power, this mechanism has shown to be an effective vehicle for
the promotion of accessible Web sites. Also individual European countries and the European
Commission (EC) as a whole have or are in the process of adopting such public procurement
approaches. Overall however, legal frameworks differ strongly from one country to another.

Regardless of the legal framework and jurisdictional implication, the technical definition for
Web accessibility needs to be provided. In general there are three main approaches for this:

• Adoption of existing standards – some countries such as Austria, Australia, Ireland,
Switzerland, or the UK have adopted the W3C Web Content Accessibility Guidelines
(WCAG) 1.0 [W3C, 5] by referencing it as a technical standard for Web accessibility.

• Development of formal standards – some countries such as Japan, the Netherlands,
or Spain have developed competing standards through their national standardization
organizations. This was primarily done where the legal framework does not permit to
reference standards developed by international standards consortia such as the W3C.

• Development of legal provisions – some countries such as Germany, Italy, France, or
the United States have developed provisions that are directly part of the legislation or
the policies, rather than to reference any existing international or national standards.

While most of these formal standards or legal provisions are derivatives of the WCAG 1.0, in
many cases they include some modifications that sometimes lead to substantial fragmentation.
For instance, in several cases requirements have been added, removed, or their meaning was
changed so that the different standards have become incompatible. This fragmentation of the
accessibility standards has a severely negative impact on the implementation and deployment
of accessible solutions, including Web accessibility evaluation tools [WAI, 14].

2.1.3. Other Standards
Besides the formal international or national standards there are also less formal standards that
were primarily developed by organizations that provide evaluation or certification services. In
many cases these standards were initially developed as interpretation for WCAG 1.0 but have
since been commonly perceived as separate standards, especially when they are coupled with
certification programs. Examples include AnySurfer in Belgium, AccessiWeb in France, or
the See It Right label in the UK. This progression also applies to criteria for awards such as
the BIENE award in Germany which focuses exclusively on the accessibility of Web sites, or
on corporate guidelines such as those by HP or IBM. It has become a requirement for Web
accessibility evaluation tools to be able to address also these standards for Web accessibility.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

29/99

Tool-Supported Web Accessibility Evaluation

2.2. Processes for Web Accessibility Evaluation
The process for Web accessibility evaluation is closely linked to the development process. At
each stage of the Web development process, different types of evaluation tasks are carried out
to assess the different aspects of the overall accessibility. In order to better understand when
and how the evaluation tasks are carried out, it is important to separate out and to analyze the
different stages of the Web development process. This section examines the process for Web
accessibility evaluation including its parameters and dimensions. It also discusses how these
relate to the overall development process, and how they can be supported by software tools.

There are currently no standards that define the Web development process. However, the ISO
Software Life Cycle Processes [ISO 12207] defines the development process for software. It
includes considerations for the different modes of acquiring, commissioning, or supplying the
software, and outlines the different stages and activities that take place. It is a comprehensive
standard, although it can be simplified to a circular process that consists of a ‘Requirements
Analysis’, ‘Design’, ‘Implementation’, and ‘Operation’ stages. The assumption is that any
software is created by first analyzing its requirements, then creating some initial designs, then
implementing the logic and code, and finally released as an operational application. A new
version of the same software starts with analyzing the new requirements, preparing updated
designs, and so forth. This is generally referred to as a waterfall development model, although
this concept is also imminent for other development models such as in agile programming.

While this life cycle refers to software development processes, it can be assumed that Web
development processes follow a similar flow. There is however a considerable difference in
that software is generally unchangeable after its release, with the exception of configuration
or adjustment options. Web content is on the other hand commonly designed to change with
time. Especially when observing Web sites in their entirety it becomes apparent that most of
the development (such as publication of new content and modification of old content) takes
place after they are launched. Also, the development of software is primarily focused on the
underlying logic and programming. Web content is however much more dependent on the
information that it provides, and on the user interface design aspects. These are the primary
difference between software and Web development.

The following image illustrates these development stages that are further explained below:

Figure 3: Illustration of the Web development life cycle

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

30/99

Tool-Supported Web Accessibility Evaluation

• Requirements Analysis – during the requirements analysis stage of development, the
vision, purpose, and objectives are identified. Typically, common techniques such as
sketches, storyboards, and personas are used to develop the requirements and to ensure
that they address the needs of the end-users. The accessibility requirements are ideally
also considered during this early stage of the development as it will save valuable time
and effort in addressing these requirements later. For instance, a common accessibility
requirement is to grant the user sufficient time to complete tasks, such as by alerting
the user before a timeout is reached. These types of requirements tend to influence the
overall behavior and characteristics of the Web content. Also the formulation and the
presentation of text, images, and multimedia are subject to accessibility requirements.

• Design Stage – after the objectives and requirements are matured, first prototypes and
mock-ups to validate the requirements are created. During this stage of development,
formative and functional evaluations are carried out to asses the design and interaction
concepts. This includes the document structure, visual layout, navigational features,
color schemes, and other presentational aspects. Often the templates that later control
the overall presentation and key interaction concepts (the ‘look and feel’) of the Web
content are developed during this stage. These are critical assets for evaluation as it is
usually much more difficult to change these underlying concepts during later stages of
development. Also, templates and snippets are often used throughout the entire Web
content and can quickly improve or degrade the level of accessibility.

• Implementation Stage – once the overall design has been matured, the realization of
the actual Web content starts during this stage. This primarily involves developing the
markup code that controls the content structure, as well as the server- and client-side
scripts that control the functional behavior of the content. However, this development
stage also involves the creation of the actual content such as the text, video, or sound
that constitutes the Web resources. These are equally important aspects to evaluate but
unfortunately they often tend to be neglected during many evaluation processes.

• Operation Stage – if the Web content has been initially developed with consideration
for accessibility and meets certain standards for accessibility, then the evaluations that
are carried out during the operation phase are primarily intended to maintain that level
of accessibility or to identify additional optimizations that can be made to improve the
level of accessibility. However, many Web sites continue to be developed with little or
no consideration for accessibility so that broader-scoped evaluations are necessary to
determine the overall level of accessibility, and to help plan for improvements.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

31/99

Tool-Supported Web Accessibility Evaluation

2.2.1. Evaluation Parameters
The effort required to carry out Web accessibility evaluation varies strongly depending on
several different parameters. These parameters depend mainly on the following variables:

• Purpose of the evaluation – the more ambitious, the more effort is required.

• Realization of the content – the more intelligible, the less effort is required.

• Capacity of the evaluators – the more advanced, the less effort is required.

Each evaluation may have significantly different dimensions due to changes of these variables
according to the specific situation. For instance, if an organization wants to evaluate its own
Web site for accessibility then the realization of the Web content can be assumed as constant.
Depending on the purpose of the evaluation and on the capacity of the evaluators, the level of
effort will vary from one organization to the other. If the scope of the purpose exceeds the
capacity of the evaluators then the organization may consider acquiring external expertise to
manage the required effort. It may also optimize the evaluation process and tools used to help
improve the capacity of the evaluators and therefore reduced the overall effort required.

In a different situation, and organization may offer an accessibility evaluation service. In this
case, the capacity of the evaluators can be assumed as constant since it is the capability of the
service provider. The effort required for the evaluation will therefore depend on the purpose
of the evaluation and on the realization of the content. Usually accessibility evaluation service
providers will evaluate according to a specific methodology which governs the dimensions of
the purpose so that this variable can also be regarded as constant (or at least discrete). In other
words, the effort in this scenario maps directly to the realization of the Web content, possibly
also to the type of service that was acquired. Such service providers therefore usually measure
their effort based on the realization of the Web content, often by the number of Web pages.

Each of the variables described above can be further broken-down into individual parameters,
each of which will be described in more detail in the following sub-sections:

• Purpose of the evaluation
o Scope – more broad, more effort required

o Thoroughness – more detailed, more effort required

• Realization of the content
o Complexity – more complex, more effort required

o Consistency – more homogenous, less effort required

• Capacity of the evaluators
o Expertise – more skills, less effort required

o Tools – more support, less effort required

To help picture how these parameters fit together in calculating the effort required for a Web
accessibility evaluation, the following equation can be used as rough guidance for estimation:

ToolsExpertiseyConsistenc
ComplexityssThoroughneScopeEffort
++

++
=

Equation 1: Estimating the effort required for evaluation

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

32/99

Tool-Supported Web Accessibility Evaluation

2.2.1.1. Scope of the Evaluation
While the terms ‘scope’ or ‘coverage’ are sometimes used to refer to the overall purpose of
the evaluation, in this context it is used to refer to the realm. For instance, an evaluation may
be targeted to evaluate only a small component of the Web content such as a navigation menu
or even just a single button. Such a narrow-focused evaluation can be useful in several cases:

• A developer is testing a prototype before it is deployed on the Web site.

• An evaluator is examining an existing component that will be re-designed.

• A customer is exploring why they are not able to use the component.

For similar reasons, an evaluation might also only target a specific portion of a Web site such
as an application or sub-site. For instance, the customer online shop, the employee intranet, or
the ‘press releases’ section of a Web site could be candidates of a targeted evaluation. In some
cases organizations may also narrow the scope of the evaluation by the ‘depth’ of the Web
pages. For instance, they may carry out an evaluation of all the pages that can be reached by a
certain number of links from a starting point such as the homepage as these are regarded to be
the more important ones. In other cases legacy content may be excluded from an evaluation.

In many of the cases however, the scope of the evaluation is the entire Web site. It is usually
not economically feasible to evaluate the accessibility of all the features on all the Web pages
provided on a Web site. It is usually also not necessary to evaluate all of the Web content in
order to achieve the purpose of the evaluation. In many cases sampling can be used to reduce
the scope of the evaluation and therefore also to reduce the effort needed for carrying out the
evaluation. The tradeoff in selecting only a sample from the Web content is that accessibility
problems can be potentially missed so that the evaluation result will be inaccurate. However,
using carefully selected sampling strategies can achieve adequately results [Brajnik 2006].

2.2.1.2. Thoroughness of the Evaluation
The level of detail that is pursued by the evaluation is an important metric and probably has
the most significant impact on the required effort for the majority of Web sites. An evaluation
could be very coarse to get an initial sense for the level of accessibility on the Web site before
deciding subsequent measure to take. While these types of evaluations do not find all of the
accessibility barriers, they are fairly easy to carry out and could also be conducted by non-
technical evaluators. It is therefore an effective indicator for the level of accessibility.

Sometimes an evaluation may also only focus on a single type of issue or a group of related
ones. For instance, to evaluate the navigation and orientation features on a Web site, or to
check how the layout works with screen magnification. Also these types of evaluations could
be regarded as narrow since they do not identify all the accessibility issues but rather focus on
only specific aspects. These approaches are however very useful to learn about the individual
features and how they perform in practice. For instance, it could be used to collect input for a
redesign project, or to confirm that the changes to the content were actually an improvement.

Conversely, an evaluation may be very detailed and intense. For instance it may include high
end usability testing experiments in laboratories with specialized software. This can be useful
to get the full picture of the accessibility performance of the Web site in order to plan for the
improvement of any issues. In many of the cases however, Web accessibility evaluations are
targeted to assess the conformance to the technical standards such as the W3C Web Content
Accessibility Guidelines (WCAG) [WAI, 5]. Commonly these standards have different levels
of conformance, such as the WCAG Priority Levels, which are used to determine the target
and therefore also the thoroughness of the Web accessibility evaluations.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

33/99

Tool-Supported Web Accessibility Evaluation

2.2.1.3. Complexity of the Web Content
The complexity of Web content is mainly determined by the amount of different types of Web
technologies used in conjunction with how these technologies are used. For instance, a Web
site that only used HTML and CSS is likely to be less demanding to evaluate than a similar
Web site that uses scripting, multimedia, or other advanced technologies. The usage of these
technologies is not necessarily a challenge for Web accessibility evaluation but it requires
more work to evaluate the additional requirements that are applicable to such technologies. It
may also be more demanding to evaluate specific types of Web technologies such as Flash as
it is fairly complex (it is a programming language rather than a markup language). Evaluating
multimedia is typically more time consuming as it requires the files to be examined in real
time, for instance to compare the captions, transcripts, or other alternative formats provided.

Also the variety of features that are part of the Web content has an impact on the effort. For
instance, a simple layout with few page elements is less demanding to evaluate than pages
with navigation structures, forms, and tables. The more sophisticated page elements there are,
the more time it will take for them to be analyzed and evaluated appropriately. Especially
when the Web pages become larger more attention has to be paid to the usability aspect of the
accessibility features. For instance, as Web pages become larger the in-page navigation and
the orientation cues become increasingly important. Finally, also dynamically generated Web
content may be more demanding to evaluate, especially if it generated by client-side scripting.
Dynamically generated content requires some level of knowledge about how the script works
in order to be able to evaluate it effectively. For instance to understand the transaction process
of an application or to anticipate potential accessibility issues that may occur for certain users.

2.2.1.4. Consistency of the Web Content
Web content that is developed within confined boundaries tends to show steady performance,
also with regard to accessibility. For instance, if Web pages are created consistently using a
set of templates in a closed content management system environment then all the pages will
tend to have a similar coding structure. If the templates contain accessibility problems then
these will quickly propagate into all the Web pages that were created using these templates.
Also, if the content management system generates certain code for table, forms, or other page
elements then these will likely be repeated on all the Web pages that contain these elements.

The benefit of evaluating Web pages with a high level of consistency in their structure is that
they become predictable. For instance, if it is clear how a script generates lists then evaluating
one instance of a generated list will likely be a good representative for all the lists throughout
the entire Web site. It will also be easier to anticipate potential issues, for example that the
script may fail to produce accessible content for nested lists because it fails to nest the HTML
elements appropriately. One could therefore search explicitly for such instances in order to
confirm or dismiss the assumption. The more structured and logically the content is developed
the less content needs to be evaluated in order to achieve acceptable evaluation results. There
is therefore a direct correlation between the consistency and a sampling strategy that may be
used to reduce the scope of the evaluation (see also section 2.2.1.1. Scope of the Evaluation).

Also content that is not generated by database scripts or content management systems could
be more or less consistent. For instance, if there are guidelines for the Web developers and
authors (often called ‘coding conventions’ or ‘style guides’) that are being implemented than
it is more likely that there will be a higher level of similarity between the different Web pages
than without such common rules. Unfortunately however many Web sites are developed over
many years and using different technologies, development approaches, and have usually been
developed by different people. Such Web sites require a high degree of effort to evaluate.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

34/99

Tool-Supported Web Accessibility Evaluation

2.2.1.5. Expertise of the Evaluators
The skills and knowledge of the evaluators to carry out a specific evaluation task is a critical
aspect of the efficiency of the evaluation. This does not mean that evaluators must be experts
in the field of Web accessibility but they must posses the capabilities to carry out evaluation
tasks that meet the purpose of the evaluation. For instance, non-technical authors who want to
evaluate the publication text need to be able to evaluate the relevant requirements such as the
reading level or headings structure. They could also evaluate color contrast combinations,
depending if the system allows them to modify the text colors in an uncontrolled manner.

The expertise of the evaluators plays a significant role. In the field of usability which uses
similar evaluation approaches to accessibility, expert evaluators are ~1.8 times more effective
than novice evaluators. Furthermore, usability experts with expertise in the respective domain
of application can be ~2.7 times more effective than novices [Nielsen 1993]. The experience
is an aspect of the expertise, and contributes similarly significantly to the efficacy of the Web
accessibility evaluations. Even a basic initial training, for example for authors and developers
to learn about the principles of Web accessibility, could have relevant implications. It has
been observed that such training for novice Web accessibility evaluators could make them up
to ~31% more effective than their untrained novice evaluators [Chevalier and Ivory 2003].

2.2.1.6. Tool Support for the Evaluators
Web accessibility evaluation tools will be discussed in more details in later sections of this
study. In the context of this section however, it is important to note that tools are an equally
important parameters that significantly influences the effort required for an evaluation. While
Web accessibility evaluation can not be carried out fully automatically, tools can assist the
evaluators in many different ways. These range from scanning entire Web sites to help find
potential accessibility barriers to helping evaluate for specific requirements. The tools used by
the evaluators need to match the evaluation tasks that will be conducted [Brajnik 2004b]. For
instance, some tools may provide better support for evaluating color contrast, table structures,
or form controls in specific situations (such as Web technologies) than others.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

35/99

Tool-Supported Web Accessibility Evaluation

2.2.2. Testing Approaches
In section 2.1 Technical Standards for Web Accessibility the accessibility requirements for
people with disabilities were discussed. Each of these requirements can be evaluated through
individual evaluation checks. These evaluation checks typically consist of series of individual
atomic testing steps. In the W3C Web Content Accessibility Guidelines (WCAG) 2.0 [W3C,
18] and its accompanying Techniques for WCAG 2.0 document [W3C, 21], this corresponds
to the Success Criteria as the requirements and the Test Procedure sections of the Techniques
as the evaluation checks. Consider evaluating the accessibility of an image in HTML:

 WCAG 2.0 Structure Practical Implication

Requirement Success Criteria 1.1.1 Images need equivalent alternatives

Evaluation Check Technique H37 Equivalent alternatives need to be provided
by the alt attribute of the img element

Testing Steps Test Procedure of H37 1. Examine each img element in the content

2. Check that each img element which
conveys meaning contains an alt attribute

3. If the image contains words that are
important to understanding the content,
the words are included in the text
alternative

Table 1: Example of the practical implication of the WCAG 2.0 structure on the evaluation approach

Each of the individual testing steps for evaluation may be carried out in different modes. In
general, there are three basic types of testing modes:

• Automated Testing – carried out by software without human intervention

• Manual Testing – carried out by evaluators, possibly using some software

• User Testing – carried out by end-users following usability testing methods

These testing approaches are however not mutually exclusive. In fact, each testing approach
provides better performance for testing specific types of accessibility barriers. Each testing
approach can also be used to go beyond what the accessibility standards address, which is a
subset of all possible accessibility barriers. Ideally the different testing approaches are used
together to maximize the effectiveness and efficiency of an evaluation.

Figure 4: Testing approaches

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

36/99

Tool-Supported Web Accessibility Evaluation

2.2.2.1. Automated Testing
Automated testing is carried out without the need for human intervention. It is cost effective
and can be efficiently executed periodically over large amounts of Web pages. At the same
time, automated testing only addresses a subset of the accessibility requirements set out by
Web accessibility standards. This is inherent to the nature of the requirements as they tend to
be qualitative rather than measurable. For instance, they address user interface, interaction, as
well as natural language aspects. For example, a common requirement for Web accessibility
is to ensure that the document markup reflects the semantic structure that is conveyed through
its visual presentation, yet it is difficult to develop algorithms that analyze such semantics.

Another difficulty of automated testing is simply computational limitations. For example, an
accessibility requirement is to ensure sufficient color contrast between the foreground and the
background of the Web content. For text in HTML and other document formats, this can be
calculated using the Red-Green-Blue (RGB) values. However, for bitmapped content such as
images it is generally difficult to differentiate between foreground and background pixels
automatically. Also using Optical Character Recognition (OCR) approaches to help evaluate
images of text are resource intensive and not sufficiently reliable in many cases. In general,
one could differentiate between the following types of automated testing:

• Syntactic Checks – analyze the syntactic structure of the Web content such as check
for the existence of alt attributes in img elements, or lang attributes in the HTML
root elements. While these types of syntax checks are reliable and often quite simple
to realize, they only address the minor subset of the accessibility requirements.

• Heuristic Checks – fuzzy algorithms that examine some of the semantics in the Web
content such as the layout and markup, or the natural language of information. While
these types of checks cover a broader range of requirements than syntactic checks,
they are considered less reliable and usually only serve as warnings for evaluators.

• Indicative Checks – use statistical metrics and profiling techniques to estimate
performance of whole Web sites or large collections of Web content. While these
checks are too imprecise for detailed assessments of the Web content, they are useful
for large-scale surveys. For example as indicators to monitor the overall progress.

2.2.2.2. Manual Testing
In practice, the majority of the tests need to be carried out by human evaluators, even if they
are sometimes guided or supported by software tools. For instance, while software tools can
quickly determine the existence alt attributes of img elements, human evaluators need to
judge the adequacy of the text in these attributes. In many cases automated heuristic checks
can provide additional assistance for the evaluators, for example by triggering warnings if the
alt attribute contains typical default texts such as ‘image’, or ‘spacer’, and so on. However,
the primary responsibility for making the final decisions is held by the human evaluators.

Because manual tests cover such a broad range of accessibility requirements and have varying
degrees of software tool support, they have varying requirements with regard to the skills and
knowledge of the evaluators. Some tests can be carried out by non-technical evaluators while
others may need more technical knowledge. Some tests can be carried out by evaluators who
only know basic principles of Web accessibility while others may require significantly more
domain knowledge. While the required skills are mainly determined by the nature of the tests
to be carried out, the software tool support provided to the evaluator can also be an important
factor. In general, one can differentiate between the following types of manual testing:

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

37/99

Tool-Supported Web Accessibility Evaluation

• Non-Technical Checks – can be carried out by non-technical evaluators such as Web
content authors. For instance to determine if the alt attributes describes the purpose
of the images appropriately, or if the captioning (or transcriptions) for the multimedia
provide adequately equivalent alternatives.

• Technical Checks – are usually carried out by Web developers who have technical
expertise with Web technologies. However, they may often only need to understand
the basics of Web accessibility to check for potential barriers. Such checks typically
address markup code and document structure as well as compatibility with assistive
technology and other programming aspects.

• Expert Checks – are carried out by evaluators who have knowledge of how people
with disabilities use the Web, and who can identify issues that relate to the user
interaction. This is comparable to ‘walkthroughs’ and ‘heuristic evaluations’ in the
field of usability engineering, as the experts anticipate the issues that end-users may
encounter in the Web content.

2.2.2.3. User Testing
User testing is carried out by real end-users rather than by human evaluators or by software
tools. It is a broad field of study and closely relates to usability. In fact, it is often referred to
as ‘Usability Testing with People with Disabilities’ [Henry 2002]. User testing is an important
testing approach that complements the other ones highlighted so far. It focuses on the end-
users and how well the technical solutions match their requirements in a specific context. For
instance, it is generally good practice to provide orientation cues and landmarks to help users
to navigate through the Web content. At the same time, too many cues can be irritating or
even become a barrier in itself. While it is the goal of accessibility standards to capture such
conflicts and define provisions to avoid them, studies show that even experienced usability
evaluators find only about 35% of the usability problems on average [Nielsen 1993]. It is
essential to involve people with disabilities to improve the efficacy of evaluation processes.

Probably the biggest caveat with user testing is the difficulty to filter out personal bias and
preferences, and identify the actual issues. For instance, that a user was not able to complete a
task does not automatically mean that there is a valid accessibility barrier in the Web content
but it could equally be an issue with the browser, or the assistive technology, or even that the
user is not able to use these tools effectively; for example if the user is a novice computer or
assistive technology user. Conversely, that users were able to successfully complete the tasks
does not automatically imply accessibility since the completion of the task often relates to the
experience of the user (for example to find workarounds) and likely also to their specific type
of disability. While these issues are usually related, it is important to separate them in order to
identify the underlying causes and address them accordingly. Although the methods for user
testing cover a broad spectrum, in general there are two main directions:

• Informal Checks – do not strictly follow the usability procedures, for example by
asking individuals such as friends or colleagues for their opinions. While these types
of quick checks can be effective and useful, they are coarse and thus prone to personal
characteristics, bias, and preferences. Some informal checks can also be simple do that
they can be carried out by non-experts, if they understand the cautions and caveats.

• Formal Checks – are usually carried out by professionals who follow well established
usability procedures. It is important that the evaluators can identify an appropriate user
population and establish appropriate tasks. They also need to understand how people
with disabilities use the Web and how to interpret the observations.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

38/99

Tool-Supported Web Accessibility Evaluation

2.2.3. Roles and Responsibilities
Regardless of the experience and skills provided by evaluators (as described in section 2.2.1.5
Expertise of the Evaluators) there are different roles and responsibilities throughout the entire
Web accessibility evaluation process. Depending on the structure of the development process,
an individual can take one or more of these roles. In fact, typically only larger enterprises tend
to have distinct employees or groups that assume specific roles. For instance, in many projects
the application developers also author or publish the actual content as part of their tasks. On
larger Web sites there may typically be separate groups of application developers and content
publishers. In fact, enterprises may sometimes even have sub-groups such as the testers who
share the application development responsibility with the programmers.

Essential to evaluation is however the role of the accessibility expert. It is a central entity that
provides guidance and support to the individuals in the Web accessibility evaluation process,
and is therefore a crucial advisor [Thatcher et al 2006]. The following image illustrates this
central role of the accessibility experts that actively provides support to the remaining actors
(each of the roles illustrated in this image is described in the following sections):

Figure 5: Roles in Web accessibility evaluation

The roles and responsibilities are not necessarily assumed by a single entity such as an agency
or an organization that owns the Web content. They are commonly outsourced depending on
the structure of the development process. For instance, often the visual design may be done
with the help of an external agency or expert. In some cases the entire development process is
contracted to a Web agency. For instance, if the Web site owner does not have in-house Web
developers. This practice also applies to expertise in accessibility – especially the accessibility
expert could be an external entity that provides consulting or support services, and that works
with the contracting organization throughout the entire development process.

2.2.3.1. Aesthetics Designer
The aesthetics designers are responsible for the visual design and overall ‘look and feel’ of
the Web content. This includes layout, branding, corporate design, as well as the navigation.
Also multimedia or scripts that enhance the user experience are being increasingly used. For
instance to provide background sounds, interactive dialogs, or special effects such as fly-out
menus and similar. The relevant accessibility issues usually relate to orientation, navigation,
use of colors, and other functional aspects. In several cases they could also relate to technical
aspects of the implementation, such as the CSS presentation or the HTML document structure.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

39/99

Tool-Supported Web Accessibility Evaluation

2.2.3.2. Application Developer
Application developers are commonly technical such as programmers, testers, and application
architects. They are responsible for developing the underlying scripts, applications, as well as
markup code that is often dynamically generated by the scripts and programs. The application
developers are often also involved in the acquisition or development of content management
systems, and are primarily responsible for installing and configuring these. It is essential that
the application developers are aware of the accessibility requirements that apply to CMS and
other development tools as these are likely to be used by others such as the content publishers.

2.2.3.3. Content Publisher
Content publishers are typically non-technical users who are responsible for the authoring and
publishing of information through the Web. For instance, journalists writing articles for news
Web sites, public relations personnel updating the information about their organizations, or
teaching staff publishing educational resources are common situations. Also User Generated
Content such as blogs, wikis, and other applications are becoming an increasingly popular
mean of interacting with the public. For instance, employees could use such communication
channels to provide job-related information, just as private individuals for social interaction.

2.2.3.4. Content Maintainer
Content maintainers are responsible for monitoring and maintaining the proper functionality
of the Web content. This includes ensuring that the Web content meets the desired level of
quality such as conformance with Web standards. In many organizations the responsibility for
maintaining the content is delegated to the Webmasters. Depending on the nature of the Web
site, new Web content may be generated continually or it may be modified rapidly by content
publishers and editors. Content maintainers are often also confronted with legacy content, and
may sometimes be responsible for migrating it to new applications or to new Web standards.

2.2.3.5. Project Manager
Project managers are instrumental in delegating responsibilities to individual actors, and in
assigning the respective tasks. They oversee the Web development process and are primarily
responsible for integrating the accessibility requirements throughout the entire process. They
need to be able to monitor the overall situation and progress on accessibility in order to ensure
that the Web content meets the requirements at all times. Project managers also need to assess
the feasibility of meeting certain targets and what impact such decisions may have on the rest
of the project. For instance, there are often key applications that are easy to retrofit or that are
crucial to the functionality of the Web sites; these should be prioritized in the project plans.

2.2.3.6. Accessibility Expert
As discussed in the introduction, accessibility experts are essential for any Web development
process that considers accessibility. The expert provides guidance to the remaining actors in
the development process. In particular, the expert should be in the position to inform and
advise the project manager on optimizing the development process to better address the needs
of people with disabilities. Accessibility experts are not necessarily technical though they
need to have founded knowledge about the technical standards and how to implement these in
practice, so that they can train developers or help identify the cause of accessibility barriers.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

40/99

Tool-Supported Web Accessibility Evaluation

2.2.4. Evaluation Methodologies
The term ‘evaluation methodology’ typically refers to a documented quality control process
that is carried out on Web sites after they have been developed. Evaluation methodologies are
typically designed for the following purposes [WAI, 17-21]:

• Preliminary evaluation – coarse assessment to explore some of the potential barriers.

• Conformance evaluation – rigorous assessment of conformity to technical standards.

• Comprehensive evaluation – assessment of the user experience beyond the standards.

The objective of evaluation methodologies is therefore to provide processes that are:

• Precise – identify all accessibility barriers without false negatives or false positives.

• Repeatable – produces repeatable outcomes regardless of the evaluators involved.

• Scalable – can be used for larger or smaller Web sites, without losing effectiveness.

Evaluation methodologies therefore describe the specific procedures and approaches that are
used in an organization or for specific types of Web sites. For instance, they often define:

• User needs – documented user requirements, such as WCAG 2.0 [W3C, 18], against
which the Web content is to be tested for accessibility.

• Testing procedures – documented steps for carrying out the testing, such as these
provided by the Techniques for WCAG 2.0 [W3C, 21].

• Sampling procedures – documented steps for selecting the representative samples of
Web pages from the Web site to be tested (see section 2.2.4.1. Sampling Strategies).

• Tools – documented list of browsers, media players, assistive technologies, evaluation
tools, and operating systems that are to be used for testing.

Often evaluation methodologies may also define other aspects of the processes. For instance,
they commonly define the reporting format or methods for aggregating the results into some
form of an overall score or indicator. There are not many publicly documented methodologies
since many are regarded as corporate or organization-internal intellectual property. However,
most of the well known evaluation methodologies are designed for the use-case of evaluating
the conformance of Web sites against a set of standards such as WCAG. For instance, the
Unified Web Evaluation Methodology (UWEM) [UWEM] is such a methodology that was
developed through an EC-funded project involving 24 project partners from Europe.

There is a close relationship between the underlying user needs and how well these have been
formulated and the evaluation methodologies. For instance, in WCAG 1.0 some requirements
were open to interpretation and different testing procedures emerged as a consequence. This
has an immediate impact on the precision and repeatability of evaluation methodologies built
around WCAG 1.0. Because WCAG 2.0 also defines the exact testing procedures it is less
prone to these issues, so that more effective evaluation methodologies can be designed for it.

As mentioned earlier, evaluation methodologies are typically used to determine the current
state of existing Web sites. For instance, Web site owners may commonly commission such
an evaluation as an initial step to learn about the accessibility barriers and to repair them in
later versions of the Web site. These types of evaluations can also be carried out periodically
by the content maintainer or accessibility experts of an organization (see section 2.2.3. Roles
and Responsibilities) to monitor the level of accessibility on a Web site.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

41/99

Tool-Supported Web Accessibility Evaluation

2.2.4.1. Sampling Strategies
As discussed in section 2.2.1. Evaluation Parameters, there are inter-dependent relationships
between different evaluation parameters. Since the evaluation methodologies are typically
designed to evaluate larger collections of Web pages such as entire Web sites, the intended
scope can quickly become very significant. It is however usually not economically feasible to
evaluate all the Web pages with the same thoroughness to identify the issues on the Web site.
Instead, sampling strategies can be used to take advantage of the consistency and similarity
between the Web pages on a Web site. It is often sufficient to evaluate an adequately diverse
selection of Web pages to identify the majority of the types of barriers that occur in the Web
content. The optimal sample size depends primarily on the diversity of features, technologies,
and development practices used to create the Web pages, but also on how representative the
selected pages are. For instance, consider the following situations:

Figure 6: Sample size versus identified issue types

Figure 6 illustrates the relationship between the sample size and the identified types of issues.
In the first situation, ‘A’, the increase of the sampling size is directly proportional to the types
of issues identified. This would mean that all the Web pages are unique in terms of the profile
for accessibility, and that each page provides new types of issues. This is however an unlikely
scenario, since Web sites usually demonstrate clustering behavior with respect to accessibility
characteristics of Web pages [Vigo et al. 2007]. The second situation, ‘B’, makes use of this
behavior. It creates profiles of the pages and selects representatives from each to identify the
types of issues more quickly. The third situation, ‘C’, illustrates inefficient sampling methods
that only gradually identify the different types of issues. This occurs when strictly sequential
approaches are used, such as selecting Web pages from the same logical group. For instance,
selecting all the Web pages that contain forms, or that belong to a department, or that are
linked from the home page are strategies that confine the evaluation findings to similar types
of accessibility barriers. Using appropriate sampling strategies can significantly reduce the
amount of effort needed to identify the existing barriers [Brajnik et al. 2007].

There are currently only few Web accessibility evaluation tools that consider these factors to
help evaluators identify representative samples of Web pages from a given collection such as
an entire Web site. At the same time, several studies have demonstrated that Web pages can
be profiled according to their accessibility characteristics based on automatically measurable
metrics. For instance, it is likely that Web pages with similar structure and elements will
demonstrate similar accessibility characteristics. Such sampling approaches can significantly
improve the precision, repeatability, and scalability of evaluation methodologies.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

42/99

Tool-Supported Web Accessibility Evaluation

2.2.4.2. Informed Methodologies
When Web accessibility evaluation methodologies are executed in complete isolation from
the development processes, then the evaluators have no knowledge about the internals of the
Web site and how the code is generated. This resembles the black-box testing approaches in
traditional software quality assurance. Most publicly documented evaluation methodologies
seem to be designed with this assumption. However, in many cases it is possible to provide
the evaluators with background information to accelerate the evaluation. For instance:

• What were the outcomes from previous evaluation runs?

• Which pages have been added, removed, or changed since?

• How are the Web pages created, and what scripts are used?

Some Web accessibility evaluation tools can actually store the history of previous evaluation
runs or keep track of the changes made to the Web pages. This can significantly improve the
scalability and efficiency of such broad evaluations. However, it seems that more research is
required to help identify the relationships between the internals of the Web sites (‘backend’)
and the accessibility characteristics observed on the user interface (‘frontend’). This would
resemble white-box testing approaches in traditional software quality assurance.

Another approach to support informed methodologies is by maintaining information about the
accessibility of the Web content as it is being developed. For instance, if Web developers add
information about the accessibility testing they have done to the Web content, then evaluators
could use this information during conformance evaluations. This concept is generally referred
to as ‘incremental evaluation’, in which each actor in the production chain of the Web content
provides additional segments of information about the accessibility of the Web content being
developed. An example scenario could be evaluation information provided incrementally by:

• Designers: templates, code snippets, and ‘look and feel’ aspects.

• Developers: scripts, markup, and other programmatic components.

• Publisher: text, images, multimedia, and other informative content.

• Maintainer: composition of all the above in the actual Web pages.

This means that the level of accessibility is not only measured on discrete intervals when the
conformance evaluations are executed, instead there is continually reliable information about
level of accessibility available. Informed methodologies establish a relationship between the
evaluation carried out during development and the evaluation carried out after the publication.
Section 2.1.1.2. W3C Authoring Tool Accessibility Guidelines (ATAG) 2.0 describes the role
of authoring tools for supporting evaluation during the development process. In particular, the
ATAG 2.0 Success Criterion B.2.2.8 “Metadata for Discovery” provides an opportunity for
tools to support the concept of incremental evaluation. The requirement says:

“If the authoring tool records accessibility status, then authors have the option to
associate this status with the content as metadata to facilitate resource discovery by
end users” – http://www.w3.org/TR/ATAG20/#checking-scAA

While this may not be a very strong requirement, it is an important starting point to informing
post-development evaluation methodologies, and to help manage the overall accessibility of a
Web site. However, hardly any Web accessibility evaluation tools provide support for these
types of quality management approaches. Later sections of this study will look at potentially
viable methods to promote frameworks that fit into this Web development concept.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

43/99

http://www.w3.org/TR/ATAG20/#checking-scAA

Tool-Supported Web Accessibility Evaluation

3. Analysis of Current Web Accessibility Evaluation Tools
W3C defines Web accessibility evaluation tools as “software programs or online services that
help determine if a Web site is accessible” [WAI, 22]. This is a very broad definition and also
includes software that may not have been explicitly designed for the purpose of evaluating the
accessibility of Web content. For instance, in many cases standard functions in Web browsers
or assistive technologies can be used to evaluate how the Web content renders using different
settings. In fact, the W3C Preliminary Evaluation approach [WAI, 17] uses such techniques to
evaluate the accessibility of Web content. However, in a narrower sense the term ‘evaluation
tools’ refers to software that provides specific functionality to help evaluate the accessibility
of Web content. This includes stand-alone or plug-in tools that can carry out automatic, semi-
automatic, or manual tests for accessibility. The W3C List of Web Accessibility Evaluation
Tools [WAI, 23] currently contains over 120 such software tools.

While Web accessibility evaluation tools can significantly reduce the time and effort required
to carry out evaluations, no single software tool can automatically determine the accessibility
of Web content without human judgment. As described in section 2.2.2. Testing Approaches,
only a minority of the accessibility requirements can be tested automatically. Moreover, only
the syntactic checks of the automatic tests can be considered as reliable, while the other types
of automated tests need to be verified by human evaluators. Evaluation tools can be compared
to dictionaries in word processors as they generally only identify potential issues, rather than
reliably determine the level of accessibility [UI Access, 1]. Despite the limitations, evaluation
tools can assist evaluators in many different ways, and are therefore essential assets.

There are many types of Web accessibility evaluation tools that provide different functionality.
Some focus on evaluating only one or two specific requirements such as the color contrast or
the table markup, while others aim to address the broader scope of requirements. Also some
pages evaluate only single pages while other can crawl across large collections of Web pages
such as entire Web sites. In general however evaluation tools tend to provide these following
modes to interact with the evaluators, some tools provide more than one of these [WAI, 22]:

• Reports – listings that typically contain line numbers, error messages, or an indication
whether certain requirements were or were not met. Sometimes it may contain lists of
tests that were not carried out but still need to be executed based on the Web content.

• User Dialogs – guide the users through accessibility checks step-by-step, or otherwise
prompt the users for input. For instance, a tool may prompt the evaluators to select the
foreground and background colors, or may query if a table is used for layout purposes.

• In-Page Feedback – insert temporary icons and markup to display evaluation results
or to highlight areas of interest directly within the Web content. For instance, to show
the location of errors, outline forms and tables, or highlight the text equivalents.

• Transformations – modify the display of the pages to help highlight potential issues.
This includes displaying the content with altered color schemes, without style sheets,
or as it would be presented by assistive technologies such as screen readers.

Besides the coverage of accessibility requirements, the coverage of multiple Web pages, and
the user interface characteristics above, there are other aspects that differentiate between the
Web accessibility evaluation tools. Some of these include:

• Application Type – while some Web accessibility evaluation tools are plug-ins for
authoring tools or Web browsers, they are more commonly stand-alone desktop
applications or remote online services and do not integrate well into other tools.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

44/99

Tool-Supported Web Accessibility Evaluation

• Technology Support – the majority of the Web accessibility evaluation tools focus on
evaluating HTML and often also CSS content. However, only few focus on evaluating
other formats such as SVG, SMIL, PDF, or other formats and Web technologies.

• Platform Support – many of the Web accessibility evaluation tools are designed for
the Windows operating system and only few support other systems. This also applies
to evaluation tools that are installed as remote services such as on an intranet.

• Reliability – there is a strong discrepancy between the outcomes of different types of
Web accessibility evaluation tools, so that it can be assumed that some tools are more
accurate than others with respect to false negative and false positive results.

All these parameters contribute to vast differences between Web accessibility evaluation tools.
Different evaluation tools seem to demonstrate varying benefits for specific contexts, such as
the Web content to be evaluated or the background of the evaluators. For instance, advanced
evaluators may find wizard-based tools as verbose and annoying while novice evaluators may
find them informative and helpful. Also, an evaluation tool that only focuses on color contrast
may be exactly what a Web designer needs during the early design and color selection phase,
especially if it can be plugged into the software that the designer uses to create the designs (in
many cases Photoshop, Gimp, or similar products). On the other hand, such an evaluation tool
may be too focused for a content maintainer who is primarily interested in other requirements.

Often a selection of different Web accessibility evaluation tools may provide optimal support
throughout the development life cycle. Commonly one of these is a primary tool and others
are used to provide additional support for specific situations. For instance, often an enterprise
tool may be used as the central repository in a university, corporate, or other organization. In
addition to this, the content maintainer may be using an evaluation tool that plugs directly into
the Web browser, and provides in-page feedback for page-by-page evaluations of a selected
sample of Web pages. In a smaller or medium-sized organization such as a Web agency, the
central evaluation tool may be one that can execute automated tests rather than the enterprise
solutions. However, since individual developers tend to assume multiple roles in these types
of settings, the continuous switching between different types of tools can become problematic.
In these cases the integration functionality of the evaluation tools has increased importance.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

45/99

Tool-Supported Web Accessibility Evaluation

3.1. Current Approach for Web Accessibility Evaluation Tools
Throughout the previous sections it was identified that Web accessibility evaluation is ideally
an intrinsic part of the Web development process from the early requirements analysis phases
to the maintenance phases. However, in general evaluation tools are not specifically designed
to be part of this development process. Evaluation is often designed to be a separate process
that is often carried out after the actual development of the Web content.

This section explores the current approach that many Web accessibility evaluation tools seem
to employ. It is however important to note that these evaluation tools have been developed to
address the demand by developers. As long as the developers continue to address accessibility
during later stages in the development process rather than during earlier stages, tool vendors
are not likely to change their approach. At the same time, if the evaluation tool vendors do not
change their approach then the developers will be less encouraged to evaluate earlier on in the
development process. It is a cycle that needs to be broken by raising awareness for the issue.

3.1.1. Post-Development Evaluation Paradigm
Many of the currently available Web accessibility evaluation tools introduced at the beginning
of this section are designed for post-development evaluation. In other words, the evaluation is
carried out on already existing Web content. This is generally known as summative evaluation,
and is a useful approach for identifying and documenting the status of the given Web content.
For instance, it is an effective method for developers who have not implemented accessibility
consistently and want to determine the current level of accessibility. After an initial evaluation,
post-development evaluation is ideally carried out periodically in order to monitor and ensure
the intended level of accessibility for a Web site.

Unfortunately it is a common situation that Web content is not developed with awareness for
accessibility requirements from the start, and therefore needs to be evaluated thoroughly after
it has been already implemented. Web accessibility evaluation tools – especially tools that can
crawl across Web pages and carry out automated testing – are essential to help evaluate large
volumes of Web content effectively. This is possibly a primary use-case for developing many
of the currently available Web accessibility evaluation tools. Especially the commercial tools
seem to focus strongly on crawling and automation features, even though many of them seem
to have started to shift their focus towards monitoring and managing the level of accessibility.

It is however not always economically feasible to retrofit Web content for accessibility after it
has been implemented. For instance, it is often too expensive to rewrite database scripts after
they have been deployed, even though the changes that need to be made could be minute. The
overhead for re-opening the development process, making the changes, and then carrying out
regression testing to ensure that the change did not break anything else is often too expensive.
Often the changes made, if any, are therefore only compromise and work-around solutions.
On the other hand, incorporating accessibility requirements from the start is often a negligible
effort, especially for technical requirements such as improving the output of database scripts.

While most of the Web accessibility evaluation tools can also be used during the development
of Web content, only some are specifically designed to help evaluate Web content during its
development. For instance, some of the Web accessibility evaluation tools are designed to be
extensions or plug-ins for authoring tools such as editors and content management systems.
Some evaluation tools extend the functionality of authoring tools by providing direct feedback
on the Web content as it is being developed. For instance, they highlight code segments that
contain or that may contain accessibility barriers. Other evaluation tools can be launched from
the menu options of the authoring tools, and provide their feedback directly in the workspace.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

46/99

Tool-Supported Web Accessibility Evaluation

It is essential to continue promoting the availability of Web accessibility evaluation tools that
can help evaluate Web content during its development. These types of tools can considerably
reduce the overall development costs on the long run since they help ensure the production of
accessible Web content. This also applies to tools that can help design accessible Web content,
even before any development. For instance, the selection of aesthetic and accessible fonts and
color combinations is often only a matter of awareness. It is far easier to address these design
issues before any development rather than after the content or applications are created. There
are hardly tools that have been specifically designed to help design accessible Web content.

On the other hand, there are software quality assurance concepts and tools for modeling user
interfaces. These early models, such as wireframes or storyboards, are used to help assess the
overall requirements after which the user interfaces are created. While many of these concepts
for software quality assurance have found their way into Web development, unfortunately it
seems that they have not yet found their way into many Web accessibility evaluation tools.

3.1.2. Developer-Oriented Application Design
The user interface design of Web accessibility evaluation tools has been subject of discussion
in various literature and relevant forums. While Web accessibility evaluation tools provide a
broad selection of user interface designs, it seems that they primarily target a similar audience
of more experienced and technical developers. A considerable number of Web accessibility
evaluation tools is developed using a report-based approach. This is especially applicable to
automated Web accessibility evaluation tools. They are designed to launch accessibility tests
on either a single Web page or on an entire collection of Web pages, and report their findings.

The reports generated by Web accessibility evaluation tools differ in many ways. For instance,
some of the text-based report formats provide the following options [WebAIM, 1]:

• Errors listed by the location of the errors.

• Errors listed by the type of error or priority.

• Errors listed according to the source code.

• Errors listed according to the visual display.

Some Web accessibility evaluation tools also provide features to summarize the reports and to
generate different views on the data. For instance, barometer-type displays that only indicate
the current level of accessibility are very popular among executives and project managers. In
some cases it is possible to generate graphs and charts, for example to visualize the progress.

Despite the views and representations for the evaluation findings, reporting-based approaches
are in general more apt for experienced Web developers. Often the evaluation reports will cite
the requirements set out by the technical standards. For evaluators who are new to the field of
Web accessibility, these types of error messages may often be too difficult to understand and
may therefore not provide sufficient guidance. In fact, in some cases the usage of evaluation
tools can reduce rather than improve the performance of novice evaluators [Ivory 2003a].

The stronger focus on more experienced Web developers seems to be also present in the case
of manual evaluation tools. For instance, in order to effectively use toolbar-based evaluation
tools, developers must know how the different functions of the application can be used. They
must know the requirements and how to carry out the test procedure in order to be able to use
these types of tools effectively. While it is certainly desirable that developers understand the
technical requirements, it is not always the case. Especially non-technical developers such as
content authors and publishers are often not included in Web accessibility training programs.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

47/99

Tool-Supported Web Accessibility Evaluation

In response to this, some Web accessibility evaluation tools have employed wizard-based user
interfaces. While these types of evaluation tools are generally considered as verbose by more
experienced Web developers, they provide better assistance for novice developers. Still, many
of the wizard-based tools seem to be targeting novice technical developers rather than content
authors or designers for example. For instance, only a handful of Web accessibility evaluation
tools are specifically designed to help visual designers in selecting color combinations that
provide sufficient contrast, without requiring them to know about the technical requirements.

While many argue that it is not the responsibility of evaluation tools to educate the developers
in the topic of accessibility, tools could substantially contribute to the implementation of Web
accessibility. By creating tools that target more diverse audiences than experienced technical
Web developers, tools can serve considerably larger audiences. They can also lower the entry
level for learning about Web accessibility and therefore promote the implementation.

3.1.3. Disjoined and Monolithic Architectures
In general, Web accessibility evaluation tools tend to be disjoined from the normal process of
Web development. Many tools are designed as desktop applications that need to be installed
and run separately. When for instance content authors are publishing articles using many of
the currently available content management systems, they must use additional evaluation tools
outside the content management system in order to evaluate the content. They must repeat the
following steps as long as the evaluation tool identifies accessibility barriers:

1. create a preview of the article

2. launch an evaluation tool

3. evaluate the article preview

4. retrofit any found barriers

Potentially they may need to carry out these steps with other evaluations tools, for example to
evaluate other aspects of the Web content that one tool could not evaluate adequately. With
all the other priorities that the Web developers have, it is likely that some of these evaluation
steps may be skipped or may not be carried out thoroughly. As a result, inaccessible content
will be published or Web developers will spend additional effort to compensate for the tools.
It is essential that Web accessibility evaluation tools are integrated into normal processes of
design, development and maintenance for them to be effective [Brajnik 2004b].

Enterprise Web accessibility evaluation tools aim to improve the coverage of the tests so that
developers do not need additional tools for evaluation. They also tend to be customizable so
that they can be tailored to the specific needs of an organization. For instance, different Web
developers can have their own accounts to manage the accessibility of the Web content that
they are responsible for, such as Web pages that they published or that they are maintaining.
Webmaster may have a different view in their account, for instance to get an impression of the
overall situation across the Web site or to generate specific types of reports. Some tools offer
complete workflow support, similar to these presented by content management systems.

While these types of evaluation tools aim to address the different developer roles and support
their specific needs for Web accessibility evaluation, many of these tools follow a monolithic
approach where all the functionality is centralized in a single tool or sometimes system. It still
forces Web developer to go out of their normal development environment such as the content
management system or the integrated development environment (IDE) and to carry out their
evaluations using a different tool. This continuous switching between different types of tools
is a significant constraint to the efficacy of the Web developers [Englefield et al. 2005].

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

48/99

Tool-Supported Web Accessibility Evaluation

3.1.4. Centralized Responsibility and Expertise
As introduced in section 2.2.3 Roles and Responsibilities, the responsibility for evaluating the
accessibility of the Web content needs to be distributed among the different developers that
are involved in the production. However, the role of the ‘content maintainer’ is commonly
delegated to the Webmasters. The Webmasters are tasked with regularly evaluating all the
Web content being developed or modified, and to contact the responsible developers with
issues. In turn, Webmasters often have to respond to the queries of the developers in order to
resolve issues. Webmasters therefore often also assumes the role of the ‘accessibility expert’.

Figure 7: Illustration of the Webmaster bottleneck

This phenomenon is known as the ‘Webmaster bottleneck’ and is illustrated above. In the first
situation ‘A’, the developers are publishing content that has not been evaluated and therefore
potentially contains accessibility barriers. The Webmaster has to evaluate all the content in
order to maintain the level of accessibility. The Webmaster has to establish a dialog with each
of the developers in order to resolve the issues and respond to additional queries that they may
have. These are all tasks in addition to the other responsibilities that a Webmaster usually has.

This model is not scalable and quickly results in an overload of queries to the Webmaster and
a low response time in return. Usually this model can not be maintained over longer periods,
especially if there are several Web content authors. However, in the second situation ‘B’, the
developers are publishing content that is evaluated by them. It may occasionally still contain
some uncaught accessibility barriers but it is generally reliable and good quality content. The
Webmaster can focus on verifying the accessibility of the Web content and retrofit occasional
uncaught accessibility barriers. It is a scalable and economically feasible model for evaluation.

While the Webmaster bottleneck is primarily a managerial issue, Web accessibility evaluation
tools could play a significant part in diminishing it. When evaluation tools help developers in
evaluating the content throughout the different development stages, when they do not require
technical expertise for non-technical requirements, and when they can better integrate into the
normal development process of the developers, then they can help distribute the responsibility
and expertise within the organization. Moreover, such a distribution of expertise could further
contribute to the development of more specialized evaluation tools. However, currently many
Web accessibility evaluation tools seem to be designed with the understanding that the main
expertise and responsibility for evaluation is centralized; an understanding that propagates the
Webmaster bottleneck as well as other organizational gridlocks.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

49/99

Tool-Supported Web Accessibility Evaluation

3.2. A Need for Integrating Web Accessibility Evaluation Tools
A new approach for Web accessibility evaluation tools could be taken by following a more
distributed model where different tools, potentially developed by different vendors, could
dynamically plug into a collaborative framework. The tools in this framework have varying
functionality and user interfaces, to address the needs and preferences of the evaluators. For
instance, one tool could focus solely on improving its heuristics for evaluating tables while it
relies on the user interface being provided by a hosting authoring tool. Another tool could
focus solely on processing and reporting evaluation results in different ways while it relies on
other tools to carry out the actual evaluations and generate the initial results. There are many
different combinations that could be realized, if the tools could communicate with each other.

In the paper A Proposed Architecture for Integrating Accessibility Test Tools [Englefiled et al.
2005], the authors outline similar motivations for integrating the Web accessibility evaluation
tools into a common framework. The proposal is based on the following assumptions:

1. The coverage of tests carried out by different Web accessibility evaluation tools varies
strongly between different types of tools so that developers need to use several tools in
order to compensate for the lack of performance in each

2. The development of the crawling, parsing, reporting, and user interface infrastructure
“consumes 40-50% of the effort” for each tool, and therefore has a significant impact
on the costs for the production of the individual tools

3. Many of the Web accessibility evaluation tools are developed by academic, research,
or charity organizations who may not have the expertise and competence to develop
such a comprehensive infrastructure effectively

4. Learning the different user interfaces and specifics of the different Web accessibility
evaluation tools, as well as having to use them sequentially in order to carry out the
evaluation procedures is a significant burden

The conclusion drawn from the analysis in the paper is that an integration of different Web
accessibility evaluation tools into a common framework would significantly reduce the costs
of production. The framework is designed to provide the I/O and user interface infrastructure
that is otherwise reinvented in each tool, if at all. Web developers and evaluators would only
be confronted with a single user interface that allowed them to launch several evaluation tools
in parallel, and manage the results in a uniform reporting functionality.

However, the paper focuses almost exclusively on automated testing in the analysis and in the
approach. The framework is therefore limited to evaluation tools that do not need to provide a
user interface and can be launched in the background. Many testing approaches and therefore
also the evaluation tools require an interaction with the evaluators, especially if these tools
provide an explanatory interface such as a wizard dialog. There is also an implicit assumption
about the context for application of this framework, namely evaluation contexts that set out to
assess the accessibility of complete Web sites. In other words, the framework is not suitable
for a context in which an evaluator, such as a Web content author, wants to evaluate a single
Web page for accessibility. It is also a centralized and monolithic approach that primarily
serves the needs of Webmasters or other quality assurer roles in Web accessibility evaluation
rather than the needs of the Web developers and evaluators during earlier development stages.

It is however imaginable to achieve a distributed model where different types of tools could
connect in an ad-hoc manner, without any presumptions by the tool developers. There already
exists such ad-hoc integration of different tools that were not specifically designed to work
with each other to evaluate Web accessibility. Some of these examples are described below.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

50/99

Tool-Supported Web Accessibility Evaluation

3.2.1. Example 1: Integration of Manual and Automated Evaluation Tools
Web accessibility evaluation tools that can be launched directly from within the Web browser
have become increasingly popular. Initially there were several evaluation tool developers that
offered a Web-based service. Developers could go to a Web page and type in the Web address
for another Web page that they wanted to evaluate. This Web-based application launched an
evaluation tool on the server that displayed its findings directly within the Web interface of
the tool. This was a simple and comfortable approach for many developers. They only had to
keep a list of the favorite services for evaluating Web pages in order to be able to launch them.

As Web browsers became increasingly customizable and allowed plug-in applications to be
developed for them, Web accessibility evaluation tool developers started using this possibility
to create a new form of toolbar tools. These tools provided functionality such as resizing the
window and font sizes to observe how the Web content behaves, outline inline tables, forms,
and other page structures, or reveal the text alternatives to compare the images and more. An
interesting new feature was however the possibility of launching some of the Web-based tools
directly from the toolbar and receiving the results directly within the browser. Especially the
more experienced tool evaluators who know what they are looking for in a specific Web page
seem to prefer such toolbar applications.

Figure 8: Toolbar that can launch external evaluation tools

While some toolbar tools can launch many different external evaluation tools, they are usually
not well integrated into the toolbars. Often initiating evaluation functions just takes the user to
the external Web-based service, rather than to actually launch the external evaluation tool in
the background and present the user with the results. This is due to the fact that the evaluation
tools do not usually provide a uniform interface such as a Web-service14 to interact with other
applications such as the toolbars. Only in a few examples where the tool developers explicitly
coded their plug-ins for specific services could they reach more transparent integration. These
solutions are however not reusable for other services. In fact, most of the toolbars can not be
easily customized to use different sets of external services because they need to hard-code the
functionality around the services they want to provide. A uniform interface between the types
of evaluation tools would improve their collaborative capabilities for the end-users.

Figure 9: Browser plug-ins

14 ‘Web-service’ refers to the technical standard as opposed to providing a service through a Web-based interface

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

51/99

Tool-Supported Web Accessibility Evaluation

3.2.2. Example 2: Integration of Authoring Tools and Evaluation Tools
The importance of providing accessibility support within authoring tools has been highlighted
throughout many areas of this study. It is an essential aspect of Web accessibility as it allows
Web content to be directly accessible at publication time, and it lowers the burden for both the
individual evaluators as well as for the organization as a whole [WAI, 2]. Therefore the W3C
Authoring Tool Accessibility Guidelines (ATAG) [WAI, 6] contains several requirements for
authoring tools to carry out different types of evaluation checks to support the developers in
creating accessible. Some of these checks are automated, for example to check the nesting of
the elements in the markup code (this only applies to situations were the developers can enter
the source code by hand, in WYSIWYG interfaces however the authoring tool should ensure
the production of accessible code). Other checks are manual, for example to prompt the user
to provide equivalent text alternatives for images that they want to publish.

While there is currently no tool vendor that claims full support for ATAG, many of them have
been investing gradual work in improving the accessibility functionality. Many authoring tool
manufactures now support at least some basic level of accessibility ‘out-of-the-box’. Often it
is also possible to improve the initial level of support, for instance by setting specific types of
preferences or by otherwise customizing the applications. In general there are four categories
of authoring tools, each of which is typically used slightly differently:

1. Content management system – is typically template driven and limits the types of
accessibility barriers that the often non-technical users can create.

2. HTML Editor – is typically used by slightly more technical developers, some of who
may use the source-code views to manipulate the content directly.

3. Programming IDE – is typically used by programmers and application developers,
especially to create Web applications with a run-time code.

4. Save-as HTML functionality – is typically used by non-technical users who prefer to
work with the word-processing tools that they are acquainted with.

In each of these categories there are individual examples of integration between authoring and
evaluation tools. However, most of these implementations are in the commercial or enterprise
arena, especially to support commercial content management systems such as the Microsoft
Content Management Server (MCMS). Other evaluation tools support market-leading HTML
Editors such as FrontPage and Dreamweaver, or office applications such as Microsoft Word,
Excel, and PowerPoint. Only few examples of evaluation tools support open source authoring
tools, for instance some tools are already working towards the open Eclipse platform [ACTF].

This situation is probably due to the fact that it is not economically feasible for evaluation tool
developers to support multiple frameworks and APIs. They need to select a minimal number
of the frameworks that they can realistically support, and work towards these. However, since
the overall economical market of Web accessibility is not immense, this situation is unlikely
to change unless a new open and vendor-neutral approach is taken. A single framework that is
common among several authoring tools and accessibility evaluation tools, and that facilitates
a cost-effective mechanism for integration between different types of tools.

This assumption seems to be supported by several examples for the Eclipse or for the FireFox
platforms. These open source products provide a framework for arbitrary plug-ins that allows
the core functionality of these products to be extended. As these products became increasingly
popular among the users, more evaluation tool developers started to work towards providing
support for them. This concludes a market demand for integrated Web accessibility evaluation
tools. However, the initial cost for supporting the framework needs to be lucrative.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

52/99

Tool-Supported Web Accessibility Evaluation

3.2.3. Example 3: Integration of Data Analysis Tools and Evaluation Tools
There are not many examples of tools that specifically focus on analyzing Web accessibility
evaluation data. However, several evaluation tools, especially enterprise commercial tools,
have sophisticated data analysis and reporting functionality. Based upon evaluation results
collected from automated testing as well as from additional testing carried out by the users,
these tools monitor the progress on the Web site and analyze the results. For instance, they
could highlight specific areas of the Web site that need more attention or Web pages that are
more likely to contain accessibility barriers based upon the evaluation history. It is important
to be able to provide the different developers with specifically tailored reports that contain the
information that they need most. For instance, application developers may prefer the detailed
and technical error reports in a bug-report format while project managers may prefer overall
statistics and tables showing the progress. This reporting functionality in the evaluation tools
is also part of the infrastructure that must be repeatedly reinvented in each of the tools.

One example of a tool that was specifically developed to analyze the evaluation results that
are generated by Web accessibility evaluation tools is the Simple Tool for Error Prioritization
(STEP) [Gieber and Caloggero 2006]. STEP has some built-in information about the relative
‘severity’ for some of the accessibility barriers so that it could prioritize the issues that it
recognizes from the results in the evaluation reports. It also provides functionality to visualize
the data and to highlight some of the key areas of focus. The STEP tool can therefore provide
additional information about the data than the raw evaluation reports, and is a useful tool to
help manage the accessibility of Web content. However, STEP relies on the evaluation tools
to provide machine-readable and structured formats for the evaluation results so that it can
process them. Moreover, because Web accessibility evaluation tools provide different formats
for their reports, STEP was only designed to support a limited number of evaluation tools. It
had to build a pre-processor for each of the formats in order to convert them to an internal
form that it can process uniformly. It is maybe the reason why STEP is only one of the few
examples of such tools available.

A slightly different example of a tool that included data analysis functionality that is based on
the evaluation results generated by Web accessibility evaluation tools is the European Internet
Accessibility Observatory (EIAO) [EIAO]. The EIAO framework is significantly larger than
the data analysis module, as it is primarily intended to monitor the accessibility of Web sites
all around Europe. It contains crawlers that fetch selections of pages from candidate Web sites,
a sampling module to identify representative Web pages, and a data warehouse that contains
pre-parsed information for the reporting module. The interesting part in the context of this
study is however the testing module which launches different kinds of quality assurance tools
to measure the required ‘Web Accessibility Metrics’. It is important to note that EIAO is a
fully automated approach so that the framework resembles more the proposal in [Englefield et
al. 2005] than the one suggested by this study. It does however underline the demand for a
uniform framework in which Web accessibility evaluation tools can be integrated into a data
analysis system, in this specific case to carry out large-scale Web accessibility monitoring.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

53/99

Tool-Supported Web Accessibility Evaluation

4. Promising Techniques for Web Accessibility Metadata
In the previous sections the current state of the art in Web accessibility evaluation was under
investigation. It was identified that there are:

• Several phases of Web development in which accessibility evaluation occurs

• Different types of accessibility testing that is carried out on the Web content

• Variety of actors that carry out accessibility testing for different purposes

There is a similarly large variety of actors that need to access or process the information that
is generated about the accessibility of the Web content. For instance, Web developers may be
interest in the problems found on specific Web pages or collection of Web pages so that they
can retrofit these. Web project managers may be interested in getting overviews about the
overall level of accessibility for entire Web sites. All the involved parties, regardless if they
are contributing or consuming accessibility information for Web content need to be able to
share data. They need to be able to exchange the information in a collaborative environment.

Figure 10: Collaborative environment

Often enterprise Web accessibility evaluation tools provide functionality to manage a central
repository of accessibility information. They support different types of roles that may want to
carry out evaluation or query the data. However, each evaluation tool has its own proprietary
system and controls the data. The information is often locked into the specific evaluation tool
and can not be easily shared with other types of tools such as authoring tools.

The central question in this section is if there are promising technologies that enable this basic
collaborative system to be extended beyond Web accessibility evaluation tools alone. In other
words, the evaluation tools should be a part of the suite of applications that interact with the
accessibility information but the system should not be confined to such tools. It is imaginable
to have other types of tools interact with this information. For instance, drawing utilities such
as those often used by visual designers may be able to output accessibility information about
the color contrast or about the font selection. At the same time, a reporting tool that generates
statistics and overviews (not necessarily about accessibility only) may need to access this data
repository to include the information in the surveys.

This concept of ‘opening the data’ or sharing knowledge across different types of applications
is the underlying concept of the Semantic Web. It is an already existing framework with many
readily available standards, tools, and resources so that it lends itself to closer inspection. The
domain of Web accessibility evaluation can potentially benefit from reusing or building upon
this comprehensive set of technologies that constitute the Semantic Web.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

54/99

Tool-Supported Web Accessibility Evaluation

4.1. The W3C Evaluation and Report Language (EARL)
The W3C Evaluation and Report Language (EARL) [WAI, 9] is a machine-readable format to
express test results, such as those generated by Web accessibility evaluation tools. EARL is
designed to be flexible and accommodate different types of Web accessibility evaluation tools
that currently exist, and different types of contexts in which they may be used. For instance,
EARL does not make assumptions about the tests that are carried out or how they fit into any
evaluation procedures or into evaluation methodologies. Instead, EARL captures information
about a test execution. EARL provides syntax to capture the following type of information:

• What or who carried out the test?

• What was the subject under test?

• Which criterion was tested for?

• What was the result of this test?

This basic set of information is applicable to any quality assurance test run for any purpose.
For instance, any bug report should contain exactly this type of information so that the error
can be reproduced and followed-up on. In fact, EARL is designed to be reusable for generic
quality assurance purposes outside the field of Web accessibility evaluation. It was however
specifically optimized to address Web accessibility evaluation, especially through extensions
to the core EARL vocabulary that allow EARL reports to record the specifics of the content
tested. These extensions are described in later parts of this section.

While EARL was primarily designed to provide a uniform format for exporting test results in
Web accessibility evaluation tools, there are several additional scenarios for which it can be
used. EARL was designed to address the following use-cases:

• Combining Results – a standardized format for expressing test results allows the
combination of output from different Web accessibility evaluation tools. This enables
different reviewers to carry out separate evaluation tasks using different tools, and for
reviewers to employ different tools at different stages evaluation of the process, yet
still be able to combine the results effectively in a uniform manner.

• Comparing Results – calibrated results, such as results from pre-defined test suites,
could be recorded in the same standardized format that Web accessibility evaluation
tools use to express test results. This allows evaluation tool developers to compare the
output from their tools to the test suites, and for end-user to have better benchmarks
about the performance of the different evaluation tools.

• Processing Results – quality assurance and monitoring tools for Web accessibility
can rely on a standardized format to analyze, sort, and prioritize issues. For instance,
tools could specialize in analyzing evaluation data that is generated by evaluation tools
without actually executing any tests. These tools could monitor the overall status and
highlight specific areas of Web sites that need more attention.

• Reporting Results – tools that specialize in visualizing data and on reporting could
rely on a standardized input format for the data. These reports can be used to provide
customized views such as more verbose bug reports with line numbers and error
messages for the programmers, or statistical and higher-level management reports for
the project managers and executives.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

55/99

Tool-Supported Web Accessibility Evaluation

• Authoring Tool Integration – Web authoring tools could use the standardized format
to integrate the test results provided by Web accessibility evaluation tools directly into
the development environment of the developers. It enables evaluation tool developers
to focus on the testing techniques and algorithms, and rely on the authoring tools to
provide the user interface for the developers.

• Web Browser Integration – Web accessibility evaluation results in a standardized
format could be used by Web browsers to improve the experience of the end-users.
For instance, Web browsers could use the results from Web accessibility evaluation
tools to indicate Web pages that do not match the requirements of the end-users, for
example because they content moving or distracting content.

• Search Engine Integration – similar to Web browsers, search engines could enhance
the experience of the end-users by considering their preferences for accessibility. For
instance, users may want to limit their search results to Web pages that they can use
effectively, for example to prefer Web pages that can be operated through a keyboard
or Web pages that do not cause them to have seizures.

• Accessibility Metadata – Web site owners may choose to publish information about
the accessibility tests that were carried out on their Web pages, in order to promote
transparency and confidence. For instance, the test results may be used to supplement
a conformance claim or a quality mark, and provide the information about the quality
assurance testing in a standardized format.

While some of these use-cases have been realized in different forms, many of them remain to
be realized. EARL is currently still under development so that only few implementations are
available. However, the motivations for EARL fit well with the current move towards a more
semantically rich Web in which different types of tools can share and exchange information.
More discussion about the potential impact of EARL in improving the overall availability and
performance of Web accessibility evaluation tools can be found in later sections of this study.

Inline with the move towards more semantics on the Web, EARL is designed using the W3C
Resource Description Format (RDF) [W3C, 32]. RDF provides a semantic Web framework to
develop semantically rich vocabularies. For instance, RDF provides a framework to define the
terms in EARL such as Assertor, which represents a person or a tool that carried out the test.
The formalization and processing rules for this term is governed by the RDF framework and
does not need to be reinvented for EARL. The EARL specification only serves to define the
meaning for each of the terms that it introduces.

In a way this is similar to defining the terms in a framework like XML, however RDF is more
semantically rich and can provide more information about the relationship between different
entities. Also similarly to XML, RDF is supported by a large community so that EARL can
benefit from the availability of processors, libraries, and other resources. In fact, EARL reuses
existing RDF vocabularies to describe people or specific types of relationships rather than to
redefine such widely deployed terms.

Another important aspect of RDF is its flexibility for extension through inheritance features.
For instance, the more specific EARL term Software can be used instead of the abstract term
Assertor from above. Even if a processor does not know the exact definition for this term, it
understands that it is a type of assertor and can continue working with the information. EARL
therefore provides a minimal set of terms to construct semantically rich assertions about test
results. It is a common language for different tools to exchange specific type of information.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

56/99

Tool-Supported Web Accessibility Evaluation

4.1.1. W3C Evaluation and Report Language (EARL) 1.0 Schema
The W3C Evaluation and Report Language (EARL) 1.0 Schema [W3C, 27] provides the core
EARL vocabulary. It defines a set of terms in RDF to provide a common format for quality
assurance tools, such as Web accessibility evaluation tools, to describe test results. The basic
structure of an EARL report is a collection of assertions about test results. An Assertion in
EARL is defined to be “a statement about the results of performing a test” [W3C, 27]. Each
assertion creates a relationship between entities of the following:

• Assertor – An Assertor determines the results of a test.

• Subject – The Test Subject is the class of things that have been tested.

• TestCriterion – A Test Criterion is a testable statement.

• TestResult – The actual result of the test.
EARL 1.0 Schema, Assertion – http://www.w3.org/TR/EARL10-Schema/#assertion

Each of these basic building blocks provides semantics to provide more detailed information,
for example about the specific type of assertor or about the subject that has been tested. The
assertor can be one of two of the following types:

• Single Assertor – a single entity such as person, organization, or software.

• Compound Assertor – a group of one or more entities, with at least one of them
being the primary entity responsible for the claim in the test result.

This definition for the Assertor accommodates many different combinations to describe many
types of situation, especially in collaborative environments. For instance, if an evaluator was
using a tool to conclude a test result, this could be represented through a Compound Assertor
with the person as the primary assertor (mainAssertor) and the tool as the secondary assertor
(helpAssertor). Conversely, it is imaginable to have the opposite situation in which a tool
uses human judgment to conclude a test result. In this case the software tool does not require
that a human evaluator carries out the test procedure but rather to provide input. For instance,
if a tool can not automatically determine if a table is used for layout or for providing data, it
may ask a human evaluator to provide a judgment. Based upon this input the tool can now
resume testing the syntax of the table to serve the specific purpose (layout tables should not
have header or summary elements, data tables on the other hand should provide these).

While the Assertor class in EARL is quite sophisticated and well established, the Test Subject
is quite abstract and generic. It only provides some basic properties to provide rudimentary
information and describe simple relationships. For instance, to describe a Web page that has
been tested, the following EARL code could be provided:

<earl:TestSubject rdf:about="http://www.example.org/index.html"/>

In this case EARL is taking advantage of the fact that RDF is built on the Universal Resource
Identifier (URI) schema so that the address of the Web page is a sufficient identifier for the
Test Subject. While one can add some context information, such as the date for fetching the
subject or in-line parameters passed on to the Web page, in general this approach has several
limitations to addressing Web content. Especially dynamically generated content, such as that
created by client-side scripts, is difficult to represent using only the URI for the Web page. A
more comprehensive approach to represent this type of Web content is explained in the next
sub-section. It is however important to note that this class has been kept intentionally generic
so that it can be applied to other contexts, for example for non Web-based content.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

57/99

http://www.w3.org/TR/EARL10-Schema/#assertion

Tool-Supported Web Accessibility Evaluation

A Test Criterion in EARL is a testable statement against which the Test Subject is tested. It is
difficult to define this term any closer as it strongly depends on the type of test and the type of
subject that is being tested. Some claims that quality assurance tools may want to make could
be very broad (for instance ‘subject X conforms to standard Y’), while others may be specific
(for instance ‘element X has property Y’). While both assertions essentially have the same
syntactic and semantic structure, they have very different implications in relationship to their
meaning. To better address specific situations, EARL provides two further refinements:

• TestRequirement – A higher-level requirement that is tested by executing one or
more sub-tests. For instance, WCAG 1.0 Checkpoint 1.1 which is tested by executing
several sub-tests and combining the results.

• TestCase – An atomic test, usually one that is a partial test for a requirement. For
instance, checking if an image has an alt attribute which could be part of testing
WCAG 1.0 Checkpoint 1.1.

EARL 1.0 Schema, Test Criterion – http://www.w3.org/TR/EARL10-Schema/#testcriterion

The actual payload of an EARL assertion is provided through the Test Result. It contains both
structured as well as unstructured information. For instance, the Test Results provides a value
for the Outcome of the test which could be one of the following predefined values:

• pass – An assertor claims a test passed successfully.

• fail – The Test Subject did not meet the Test Criterion.

• cannotTell – An Assertor can not tell for sure what the outcome of the test is.
Usually this happens when an automated test requires human judgment to make a
definite decision.

• notApplicable – The Test Criterion is not applicable to the given Test Subject.

• notTested – Test has not been carried out. This is useful for reporting as well as for
other uses of progress monitoring.
EARL 1.0 Schema, Outcome Value – http://www.w3.org/TR/EARL10-Schema/#outcomevalue

Finally, EARL also provides an optional property to record information about the mode in
which the test was carried out in. The Test Mode can be one of the following values:

• manual – Where the test was performed based on a person's judgment. This includes
the case where that judgment was aided through the use of a software tool (…)

• automatic – Where a software tool has carried out the test automatically without any
human intervention.

• semiAutomatic – Where a software tool was primarily responsible for generating a
result, even if with some human assistance.

• notAvailable – Where a combination of persons and/or software tools was used to
carry out the test, but there is no detailed information about the primary responsibility
for determining the outcome of the test. This includes when testing is carried out by
organizations or groups of assertors, and the exact testing process is not disclosed.

• heuristic – This property was designed to cover assertions which are made by
inference, for example based on several existing test results.

EARL 1.0 Schema, Test Mode – http://www.w3.org/TR/EARL10-Schema/#testmode

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

58/99

http://www.w3.org/TR/EARL10-Schema/#testcriterion
http://www.w3.org/TR/EARL10-Schema/#outcomevalue
http://www.w3.org/TR/EARL10-Schema/#testmode

Tool-Supported Web Accessibility Evaluation

4.1.2. W3C HTTP Vocabulary in RDF
The W3C HTTP Vocabulary in RDF [W3C, 29] is an extension to the W3C Evaluation and
Report Language (EARL) 1.0 Schema [W3C, 27] vocabulary, and provides terms to record
HTTP exchanges between clients and servers. These terms can be used for several purposes,
for instance by quality assurance tools that want to evaluate the compliance of HTTP servers
to the specification. However, it has been specifically created with the motivation that Web
accessibility evaluation tools could use it to record information about the Web content that
they are testing. For instance, an evaluation tool may want to keep information about the
HTTP headers that were sent to the server, for example during a content negotiation exchange.
Without this information, Web developers may not be able to identify the versions of the Web
pages that were evaluated, and may therefore not be able to reproduce the problem.

This scenario is applicable to both automated Web accessibility evaluation tools, as well as to
manual evaluation tools. For instance, a toolbar application could capture the HTTP exchange
and provide it for the evaluators to include in their evaluation reports. Recording these HTTP
exchanges is vital for two primary reasons:

• Web sites are commonly driven by cookies, which store information about the user’s
preferences or behavior. This means that two different users may essentially receive
different content depending on the parameter values stored in their cookies. In order to
reproduce the content, these same parameters must be known to the developers.

• Web applications commonly fetch additional information from the server using AJAX
technology. The Web content as observed by the evaluator or evaluation tool is built
dynamically through a series of HTTP exchanges with the server. These exchanges
depend largely on the interaction of the users with the Web content and can therefore
not be anticipated. Recording them is one approach to reconstruct the situation.

The vocabulary to record such HTTP exchange is designed from the perspective of an entity
that is located at the client and is recording the communication coming from both directions.
The basic class is the Connection, which is used to record information about the connection;
for instance, which server host was contacted and at which port. The Connection Class also
records the series of Request and Response messages that were sent by the client and received
from the server. Each of these classes can contain properties that represent the HTTP headers
that were exchanged within these messages. For instance, these headers are typically at least
the Request URI to fetch a specific Web page from the server, and a Response Code sent by
the server to confirm each request.

The W3C HTTP Vocabulary in RDF contains terms to record the HTTP headers as received
from the server (usually this means as a literal value), as well as representations for most of
the commonly used headers. For instance, to facilitate efficient processing and querying of
recordings provided in HTTP Vocabulary in RDF format, the vocabulary contains dedicated
terms to represent common HTTP headers such as the accept-language, which is commonly
used to negotiate the language preference for the Web content. At the same time, the actual
sequence of characters ‘accept-language’ received from the server can also be recorded in
addition, for example to debug faulty HTTP exchanges or to preserve the exchange in its
original form to the largest extent possible.

HTTP requests and response message have body elements which contain the actual content of
the messages. However, since these could be byte sequences in any format, for instance to
transmit non-text content such as images, it is not trivial to record this as RDF because it is
text based. A further extension to this vocabulary has been developed to tackle this issue.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

59/99

Tool-Supported Web Accessibility Evaluation

4.1.3. W3C Representing Content in RDF
The W3C Representing Content in RDF [W3C, 30] vocabulary is designed to represent any
type of content in RDF format. For instance, it could be used to represent text-based, XML, or
binary content that is stored in a local media or on the Web. It is an extension to the W3C
HTTP Vocabulary in RDF [W3C, 29], which was described in the previous sub-section but it
can also be used separately. For instance, SMTP messages have a very similar structure to
HTTP messages so that this vocabulary could be potentially reused in another context which
was not specifically addressed by EARL. This work could also be used to directly extend the
core W3C Evaluation and Report Language (EARL) 1.0 Schema [W3C, 27] vocabulary, for
instance to represent the subject that was evaluated.

However, the primary use-case for which this vocabulary was developed is for it to be used in
conjunction with the W3C HTTP Vocabulary in RDF, and as part of an EARL 1.0 report. It is
designed to provide different representations for content, potentially for the same content. For
instance, an XHTML Web page returned by a server in response to an HTTP GET request
could be recorded in an XML representation as well as in a plain-text representation for tools
(including browsers) that are unable to parse XML effectively. It could also be represented in
binary (byte64) encoding to overcome any potential character encoding issues and to preserve
the original byte sequence returned from the server to the largest extent possible.

Besides a generic and abstract Content class the W3C Representing Content in RDF provides
the following three main classes as instance representations for the content:

• Base64Content – Base64 encoded binary content as defined by RFC 2045

• TextContent – textual content using a specific character encoding

• XMLContent – XML-based content using XML declarations

While recording the full content downloaded from the server may seem to be excessive, there
are different situations when it is useful. For instance if only a small sample of Web pages is
selected to represent entire Web sites, it may be necessary to precisely document what has
been subject to testing. Also when heuristics are involved or if further testing needs to take
place, it may be worth capturing the current content being evaluated. The following example
shows how Web content from a specific URI could be recorded, along with the relevant
HTTP headers, in an EARL 1.0 report using different representation for the content:

<earl:TestSubject rdf:about="http://www.example.org/index.html">
…
<http:Connection …>

…
<http:Response …>

…
<http:body>

…
<content:XMLContent …>

…
</content:XMLContent>

</http:body>
</http:Response>

</http:Connection>
<content:TextContent …>

…
</content:TextContent>

</earl:TestSubject>

Code Listing 1: Representations of content in EARL 1.0

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

60/99

Tool-Supported Web Accessibility Evaluation

4.1.4. W3C Pointer Methods in RDF
The W3C Pointer Methods in RDF [W3C, 31] is also an extension for the W3C Evaluation
and Report Language (EARL) 1.0 Schema [W3C, 27] vocabulary. However, it is intended to
be used as part of the Test Result, and to identify the key areas within the Test Subject that
lead to the Test Result. For instance, if a test to check the existence of alt attributes for img
elements in HTML failed because one or more instances in a Web page did not provide such
attributes, then the pointer vocabulary could be used to identify these instances that did not
meet the test requirement. In a trivial approach, these identifiers could be line and character
counts or another offset value. However, depending on the type of content being tested there
could be other means to provide more indicative identifiers.

Traditionally software debugging has been using line and character counts to identify areas in
the source code that caused an error. While this approach is simple and effective for syntax
checks, such as during compiling or pre-processing software code, it has many considerable
limitations. For instance, it may be more precise to describe an HTML element using XPath
or XPointer identifiers than using the line and character counts. It is more semantically robust
to identify such complete elements, attributes, or areas of the Web content rather than to point
to the beginning or the end of these because it could lead to ambiguity. It may also be more
resilient to changes that can occur in the source code which may lead to destruction of all the
offset-type identifiers that rely on a specific version of the source.

Moreover, it would be useful to provide identifiers for non text-based content. For instance, it
would be important to identify the relevant part of a multimedia file, such as an audio or video
track, that does not provide adequate captioning. In many cases one may also want to cut out
a piece of the content, a snippet, and provide it as an exemplary instance for the error. This is
the case for text-based or for byte-based content. However, in both cases a line and character
count approach will not suffice to provide such information.

The W3C Pointer Methods in RDF vocabulary therefore describes a variety of different types
of pointers that could be used to identify the key pieces of the content. Different pointers can
be used in an EquivalentPointer class, each of which is assumed to be equivalent. In other
words, each is a different pointer format to identify the same piece of the content. The tool
that is processing the information can select any of the formats provided, depending on its
preferences and capabilities. Some of the varieties provided by the vocabulary include XPath,
XPointer, CSS Selector, Offset and Line/Character counts. In addition, the vocabulary also
provides pointers that can identify entire ranges, such as those that provide a start and an end
or those that record a snippet. For instance, the pointer type StartEndPointer contains a start
pointer and an end pointer so that it could point to the beginning and to the end of an item list.

A different use-case for combining pointers is to identify causal effects that lead to an error.
This is a situation that is less common in traditional software programming. If for instance the
background and foreground color combinations do not provide sufficient contrast, then it
would be important to be able to point the developers to both color definitions rather than to
only one. That means that it would need a mechanism for pointing to two different locations
within the content that are together responsible for the result of the test. It is different than a
range pointer as there may be no sequence between the two areas identified. In fact, in some
cases they may be located on different Web pages (for instance to test consistent navigation).

The W3C Pointer Methods in RDF vocabulary is currently an early draft that is undergoing a
lot of development and refinement. It is however a useful extension to the core EARL 1.0
vocabulary as it significantly contributes to the machine-readability of test reports.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

61/99

Tool-Supported Web Accessibility Evaluation

4.2. Other Relevant Semantic Web Technologies
W3C defines the Semantic Web as a Web of data. It envisions that data in daily applications
is provided in a common language that can be understood and used by browsers. The typical
example provided is linking transaction statements from a banking application to a calendar
application, rather than having these two sets of information be disjoined. It is connections or
‘links’ that human can make between different sets of related information, but is however not
systematic enough for computers to be able to process effectively.

The basic building block of the Semantic Web is provided by the W3C Resource Description
Format (RDF) [W3C, 32]. It is a simple format that allows any resource that is identified by a
URI to be described with properties. For instance, statements such as "John" isA Person or
Person has Parent can be expressed using RDF. Ontologies, such as the W3C Evaluation
and Report Language (EARL) [WAI, 9], can be created using RDF to describe specific type
of information. In the case of EARL, it is to describe test results such as those created by Web
accessibility evaluation tools (see section 4.2. Evaluation and Report Language).

Figure 11: Semantic Web layer-model

While the Semantic Web has not yet reached wide-spread deployment in daily applications,
there are several attempts to make use of the currently existing data and formats to enable the
exchange of information between different types of applications. There are also ontologies
emerging in different domains that could prove to be useful in the context of this study. This
section looks at some of the currently existing standards in the domain of the Semantic Web
and how these could be useful for advancing the concept of tool-supported Web accessibility
evaluation. In particular, this section looks at how accessibility metadata could be exchanged
between different types of tools that aim to improve or manage the accessibility of Web sites.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

62/99

Tool-Supported Web Accessibility Evaluation

4.2.1 W3C Protocol for Web Description Resources (POWDER)
The W3C Protocol for Web Description Resources (POWDER) [W3C, 42-44] is a format to
help identify the content of Web resources. For instance, it could be used to label Web sites
according to child protection ratings to identify content that contains violence or potentially
offending material. Similarly, POWDER descriptions could be used to identify the level of
accessibility provided by Web sites or individual Web pages. This type of information could
be useful to end-users in many ways:

• Identify content that particularly matches their needs and preferences;

• Assess the expectations for the level of quality provided by the content.

An example use-case is for search engines to consider such labels and provide the end-users
with more directly matching results. POWDER has been specifically designed to work with
HTML through the usage of the Link element. For instance:

<link rel="powder" href="powder.xml" type="application/xml">

This directive can be processed by applications that understand the powder protocol, and can
relate the referenced XML data with the HTML document. Similarly to the W3C Evaluation
and Report Language (EARL) [WAI, 9], POWDER makes use of the RDF/XML notation to
support XML-based applications. POWDER is however an RDF language and can be reused
or extended in other vocabularies. In other words, data in POWDER and EARL format could
be used together to comprehensively describe the accessibility of resources. For instance, the
CMS used to create the Web content could provide a machine-readable claim about the level
of accessibility of the resource using POWDER, and provide an EARL report that contains
detailed information about the accessibility testing that has been carried out in order to justify
the claim. The EARL data would contribute to the trust and perceived validity of the claim
while the POWDER claim provides simple information that could be searched for more easily.

4.2.2. W3C RDFa: Bridging the Human and Data Webs
The W3C RDFa [W3C, 38-39] is a notation to embed RDF data into XHTML documents. It
makes use of the existing XHTML framework to add metadata. For instance, the following
code could be used to identify the author of the Web content:

<meta property="dc:creator" content="John Doe" />

This is similar to the currently widely used approach of using the meta element to identify
such metadata, however, RDFa uses ‘compact URIs’ to refer to RDF ontologies. In this case it
refers to the property creator that is defined by the Dublin Core Metadata Initiative [DCMI].
RDFa also makes use of many other hooks within the XHTML framework including the rel
and rev attributes which can be used within the anchor elements. This is particularly useful
for linking datasets or otherwise relating them to each others.

There are two interesting use-cases for RDFa in the context of Web accessibility evaluation:

• Identifying accessibility – for Web applications that aggregate content from different
sources or that include user generated content, RDFa could provide a mechanism to
add accessibility metadata directly into the Web content. It could used to identify parts
of the Web site that conform or that do not conform to the accessibility requirements.

• Providing single reports – for Web accessibility evaluation tools that can generate
reports, RDFa could provide a mechanism to insert machine-readable data directly
into the XHTML reports that are intended to be read by human evaluators. It is a mean
of providing a single report with rich information that could be repurposed as needed.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

63/99

Tool-Supported Web Accessibility Evaluation

4.2.3. W3C Gleaning Resource Descriptions from Dialects of Languages
The W3C Gleaning Resource Descriptions from Dialects of Languages (GRDDL) [W3C, 40]
is a format for declaring that XML-based documents contain data that could be represented in
RDF, and links to transformations (such as XSLT) that can be used to extract this data from
the source document. In a way this is similar to RDFa although the RDF data is not as directly
embedded into the source documents in a uniform manner but it relies on a transformation to
extract the data. The transformation is therefore application specific and ‘knows’ how to parse
the source document for relevant information. This is then exported into uniform RDF data.

GRDDL provides a promising approach for many of the current Web accessibility evaluation
tools that already export information in XML-based formats. Rather than updating the core of
the application to generate EARL reports, tools could use external transformations (such as
simple XSLT scripts) that convert the source data into the EARL format. This approach could
also be used by authoring tools such as CMS or quality assurance tools such as issue and bug
tracking systems to export any relevant accessibility information in a uniform format.

4.2.4. W3C SPARQL Protocol and RDF Query Language (SPARQL)
The W3C SPARQL Protocol and RDF Query Language (SPARQL) [W3C, 33-35] is both a
protocol as well as an RDF query language in a single framework. The query language was
specifically designed to be similar to the widely deployed Structured Query Language (SQL)
that is used for relational databases. However, the SPARQL query language is designed to
traverse RDF data and to perform similar types of functionality as SQL. The protocol part
allows applications to query HTTP servers directly. The query and response messages are
wrapped into HTTP envelopes. From the application perspective it is irrelevant if the data is
stored in separate databases or if it is directly part of the Web content.

SPARQL provides a heart piece for the Semantic Web and enables powerful interactions with
the underlying data. There are already several implementations for SPARQL that are provided
in different programming languages and frameworks. Web accessibility evaluation tools can
make use of these readily available libraries and modules to access the data provided by other
tools. For instance, Web accessibility evaluation tools could query their own reports generated
through previous evaluation runs in order to sort, filter, or summarize the findings. At the
same time, these tools are not confined to managing reports generated by themselves but can
essentially make use of any reports available in a uniform format such as EARL.

4.2.5. W3C Rule Interchange Format (RIF)
The W3C Rule Interchange Format (RIF) [W3C, 41] is in it infancy but promises to become a
central component of the Semantic Web. It enables basic Horn-type rules and other types of
constraints to facilitate the construction of simple logical statements. For instance, basic ‘if …
then … else …’ type conditions can be declared for processing RDF data.

RIF is particularly interesting for formalizing the logic that is part of test descriptions, as it is
described in the next section of this study. It is unclear how powerful RIF logics will become
and which exact functionality it will provide as it develops. However, it is likely that RIF will
provide sufficient logic to express the structure of basic requirements, such as the W3C Web
Content Accessibility Guidelines (WCAG) [WAI, 5], in a machine-readable format. This
could be used by authoring tools, quality assurance tools, and Web accessibility evaluation
tools to process EARL reports and to identify which requirements the individual accessibility
tests map to. It enables a basic framework to manage accessibility requirements set out by
technical standards and the accessibility data generated different types of tools.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

64/99

Tool-Supported Web Accessibility Evaluation

5. Excursion: Proposed Test Description Notation Format
Formalized test descriptions express testing procedures in a uniform format. For instance to
express the testing procedures provided by the Techniques for WCAG 2.0 [W3C, 21] using
formal notations rather than natural language. Currently there is no widely accepted format
for expressing testing procedures for Web content. This is partially due to the fact that testing
procedures tend to be application specific, since they are translations of the requirements from
natural language into computer logic. Moreover, they are very domain specific with regard to
the type of requirements that need to be formalized as well as the type of subjects that need to
be tested. For instance, testing the syntax of markup code or formal grammar is significantly
different to testing the accessibility behavior of navigation mechanisms.

In traditional software testing, testing procedures primarily describe parameters for executing
tests and the expected outcome value. These are used by test harness systems to compare the
output of the application or component to the normalized input and output pairs. While this
approach can be reused to create test cases that assess the syntax of markup or the validity of
programming logic that is part of Web content, it can not be easily reused to assess the user
interface behavior. The W3C Test Metadata [W3C, 37] describes properties that are needed to
describe test cases for Web quality assurance. It does not however formalize the actual testing
procedure, such as the testing steps or the sequences in which they need to be carried out.

Testing user interface behavior is significantly different than testing programming logic or
formal grammar. There is no output value as such but rather an output behavior. For instance,
what is expected to happen when a button is selected? Some software quality assurance tools
can model user interface structures. For instance, Rational15, TestComplete16, or WebKing17
use the Universal Modeling Language (UML) or variants of it to constrain how elements can
be nested or where properties may be used. Such models could potentially address some of
the accessibility checks that are based on user actions such as the situation described above.

However, testing user interfaces, such as for accessibility, often includes qualitative tests. The
main interest is to evaluate the behavioral and interaction characteristics of the Web content
rather than to compare any output to test cases. UML-type modeling languages may also not
suffice to express the actual steps that need to be taken in order to evaluate the Web content.

Formalizing the accessibility requirements for Web content into a uniform notation such as
pseudo-code has several benefits:

1. Clarity – facilitates a common understanding for the requirements.

2. Coverage – ensures that tests address all aspects of the requirements.

3. Validity – helps validate and possibly optimize the requirements.

While there is currently no single and widely used standard for formalizing test descriptions
for Web content, there are individual projects and initiatives in the field of Web accessibility,
usability, and Web quality assurance with interest in such formalizations. However, currently
there does not seem to be as strong interest from industry vendors as there seems to be from
researchers and other practitioners. On the other hand, quality assurance is generally less well
attained by many organizations and developers, especially in the Web arena.

15 http://www.ibm.com/software/rational/
16 http://www.automatedqa.com/
17 http://www.parasoft.com/

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

65/99

http://www.ibm.com/software/rational/
http://www.automatedqa.com/
http://www.parasoft.com/

Tool-Supported Web Accessibility Evaluation

5.1. Example Formalizations in Web Accessibility Evaluation Tools
Unfortunately there is not much documentation about the specific approaches that are adopted
by Web accessibility evaluation tool developers. However, it seems that there is a significant
trend for evaluation tools to move away from hard-coding the evaluation logic and implement
more flexible approaches using rule-sets. One motivation for evaluation tool developers is so
that they can more easily adapt their tools to different technical standards. For instance to be
able to accommodate WCAG 1.0, Section 508, as well as the new WCAG 2.0 requirements
without needing to redesign the entire application. Another growing motivation for evaluation
tool developers is to be able to accommodate other types of requirements such as the W3C
Mobile Web Best Practices (MWBP) [W3C, 33]. The evaluation tools are morphing into rule
execution engines that execute arbitrary rule-sets that are plugged into them.

From analyzing a small selection of freely available Web accessibility evaluation tools it can
be concluded that many of the rule formalizations share a similar approach. This approach is
generally referred to as Keyword-Driven testing18. It is an approach that creates a mapping
between the input data that initiates triggers and the actions that are then executed. While the
studied implementations use different programming languages, technologies, and formalities
to express these relationships, it is the basic structure that seems to be common among many
of the tools observed. Also many of the commercially available tools are designed to have
interchangeable rule-sets so that they can be easily customized. It is unclear how these are
realized internally but it is an indication that they must also have some form of formalization.

The evaluation tools selected for this study show varying degrees of automation. They were
also noticeably developed for different types of target audiences. For instance, some tools are
more verbose and are designed to assist the evaluators through the evaluation process, while
others target more experienced evaluators. One tool is specifically targeted to Web application
developers and has likely therefore adopted a sophisticated framework for testing. It was also
designed to be used as a plug-in for an IDE rather to provide its own user interface. In other
words, there are many ways in which the same requirement could be translated into a set of
rules. These differences depend largely on the capabilities of the tool, but also on the method
that the tool employs for interacting with the evaluators.

There were also considerable differences with regard to declarative versus procedural variants
of the rule-sets. While one tool chose a strictly declarative approach, another chose a strictly
procedural approach. However, the other two examined in this case study seem to use both of
these approaches combined. For instance, they use declarative approaches for identifying the
key parts of the (markup-based) Web content, but then revert to procedural approaches or for
executing the actual tests. In general there is a strong dependency between the rule-sets and
the rule execution engines. However, there seem to be significant commonalities between the
different approaches so that a common framework may be possible to construct.

18 Also referred to as Table-Driven or Action-Word testing http://en.wikipedia.org/wiki/Keyword-driven_testing

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

66/99

http://en.wikipedia.org/wiki/Keyword-driven_testing

Tool-Supported Web Accessibility Evaluation

5.1.1. ATRC Accessibility Checker
• Reference: http://checker.atrc.utoronto.ca/

The ATRC Accessibility Checker is a Web-based evaluation tool. It was developed to execute
automated tests for WCAG 1.0, but it was designed to be flexible and adaptable to WCAG 2.0
or other technical standards. Rule-sets are separated out from the rule execution engine into an
XML-based file. The rule-set file contains all the information that is necessary for the tests to
be carried out. This includes textual descriptions of the test procedures, the dialogs and error
messages, as well as additional information and advice about the purpose of the test. Much of
the information in the rule-sets is similar to that provided by the W3C Techniques for WCAG
2.0 [W3C, 21] or the Understanding WCAG 2.0 [W3C, 20] documents that were introduced
in section 2.1.1.1. W3C Web Content Accessibility Guidelines (WCAG) 2.0.

While the rule-sets also contain XQuery expressions to formalize some of the syntax-based
tests, they do not seem to be required. The necessary directives for the test executions are the
trigger which specifies the trigger, and the function which specifies a Boolean function to
be executed. For instance, consider the following code that checks for HTML images that do
not have an alt attribute:

<machine>
<trigger element="img"/>
<function call="attribute-missing" node="." value="alt"/>
<xquery>

//img[not(@alt)]
</xquery>

</machine>

Each img element that appears in the input Web content is therefore a trigger for the function
attribute-missing(), which checks if the current node (the image itself) has an attribute
that is called ‘alt’. The rule-sets for the ATRC Accessibility Checker can also contain simple
logics, such as ‘AND’ or ‘OR’ combinations of the Boolean functions that are executed in by
the function directive. This functionality is very important to keep the Boolean functions
atomic and simple, and allows the overall logic to be described in the rule-sets.

The rule-sets also provide simple mechanisms to define the sequence for the tests the needs to
be followed in order to evaluate for a requirement. For instance, the following part of the test
description contains the error message that should be displayed to the evaluator when the test
fails, and identifiers for subsequent tests that should be executed if the test succeeds:

<fail>
<step>Add an <code>alt</code> attribute to each
<code>img</code> element.</step>

</fail>
<pass>

<next-check number="3">
…

</pass>

Finally, the test descriptions also identify the confidence provided by each test. For instance,
automatic tests could identify errors that are definitely existent (called ‘Known Problem’ in
the tool), errors that are ‘Likely Problems’ (such as suspicious alt attributes), or ones that are
‘Potential Problems’ (such as a mouse-based event handler in the JavaScript). Current the tool
supports ~267 tests with these varying degrees of confidence, which are expected to be used
in a manual context. That is, the tests are executed automatically but are intended to highlight
key areas of the Web content for the evaluators to further examine manually.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

67/99

http://checker.atrc.utoronto.ca/

Tool-Supported Web Accessibility Evaluation

5.1.2. IBM Rule-Based Accessibility Validation Environment (RAVEn)
• Reference: http://www.alphaworks.ibm.com/tech/raven

The IBM Rule-Based Accessibility Validation Environment (RAVEn) is a plug-in tool for the
open source Eclipse19 development platform. RAVEn is a user interface checker that supports
Java AWT, Java Swing, and Eclipse Standard Widget Toolkit (SWT) programming languages
as well as Web applications. It is therefore very developer-oriented, and primarily intended to
be used by developers while they are creating new applications using the Eclipse IDE. While
it is not an ideal tool for Web accessibility evaluators who are evaluating Web content after it
has been developed, it is one of the few tools that evaluate the accessibility of client-side Web
applications. It uses the Mozilla Document Object Model (DOM)20 to render the Web content,
and analyze the different elements and attributes as they are manipulated through the scripting
and the interaction with the end-user. In other words, it does not only assess the static HTML
markup, it can also execute the scripts and continually assess the HTML as it changes its state.

RAVEn also distinguishes between the rule-sets and the rules execution engine. The engine is
actually a suite of Java classes that extend the core functionality of the Eclipse IDE using the
Aspect-Oriented Programming (AOP) approach. It observes the execution of the source code
and carries out the tests as indicated by the rule-sets. The rule-set files themselves are written
in Jython21, which is a scripting language based on Java and Python. While the rule-sets for
Web content use the XML hierarchy to reflect the structure of the markup to be evaluated, the
actual execution seems to be more procedural rather than declarative. Especially the logic and
the test procedures are coded in the Jython script code. For instance, the following code is the
famous check that images have alt attributes:

<alt raven:severity="ERROR" raven:message="Missing ALT text for
non-textual element">

isPlaceHolderImage(thisComponent) or
isValidAltText(propertyValue)

</alt>

Unlike the rule-sets used by the ATRC Accessibility Checker, the rules used by RAVEn can
not be easily related to each other, such as to describe a sequence for executing the tests. The
rules are strictly based on the trigger and action principle, and are not aware of an evaluation
process. This makes sense since RAVEn is not intended to provide a user interface and help
an evaluator carry out an evaluation process, but rather to generate the error messages and
warnings that are transmitted to the debugging functionality of the Eclipse IDE.

However, through the programming functionality of the Jython scripts and its interface with
the Eclipse framework, the RAVEn rule-sets provide a powerful mechanism to define highly
complex rules. It is essentially possible to write rule-sets that not only check the Web content
but also interact with it, for instance to submit forms or to imitate other user interactions. One
could record a sequence of steps, for example to carry out a transaction in a Web application,
and replay this sequence for debugging purposes as a rule. The downside is however that such
scripting is very application-specific and is not easily portable to other frameworks.

19 http://www.eclipse.org/
20 http://developer.mozilla.org/
21 http://www.jython.org/

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

68/99

http://www.alphaworks.ibm.com/tech/raven
http://www.eclipse.org/
http://developer.mozilla.org/
http://www.jython.org/

Tool-Supported Web Accessibility Evaluation

5.1.3. UC3M Web Accessibility Evaluator in a single XSLT file (WAEX)
• Reference: http://www.it.uc3m.es/vlc/waex.html

The UC3M Web Accessibility Evaluator in a single XSLT file (WAEX) is, as the name says,
an XSLT file. It is therefore a strictly declarative approach based on the well-known XSLT
standard. While this has significant limitations, for instance XSLT does not work with invalid
HTML, there is a lot of functionality in XSLT and XQuery that this tool makes use of. For
instance, it makes use of external Web-based services such as the W3C HTML Validator22 to
check the validity of the content before it is further processed. It also uses advanced XQuery
expressions that identify patterns in the content that match the test requirement. For instance,
the following code matches HTML links and area elements that use javascript: function
calls as the target rather the designated onClick attribute:

<xsl:for-each select="(//xhtml:a|//xhtml:area)[starts-
with(@href,'javascript:') and not(@onclick)]">

Since there is no dedicated rules execution engine other than the XSLT processor, WAEX can
not rely on any additional function calls other than what is provided by XSLT. For instance, it
can not initiate a dialog with the evaluator to get additional input on a specific decision before
it continues to carry out further tests. It is therefore strictly limited to tests that can be realized
in XQuery expressions. However, it is highly portable as it makes use of the widely deployed
XSLT standard. Since XSLT is supported by many different kinds of processors for different
platforms, WAEX can be easily plugged into different kinds of applications.

5.1.4. WebAIM Logical Rapid Accessibility Evaluation (LRAE)
• Reference: http://eval.webaim.org/lrae/

The WebAIM Logical Rapid Accessibility Evaluation (LRAE) was specifically designed to
be a counterpart for the W3C Evaluation and Report Language (EARL)23. The idea was to
create a standardized format for rules as input for Web accessibility evaluation tools, and to
receive the output of the tools in a standardized format as well. It was primarily designed for
the WebAIM WAVE24 Web accessibility evaluation tool which is available as a Web-based
service, a browser toolbar, and previously also desktop application.

While developed independently, LRAE is astonishingly similar to the approach used for the
ATRC Accessibility Checker. It is based on an XML format and uses XQuery expressions to
match for triggers in the Web content. It also relies on function calls that are provided by the
rule execution engine. Most of the logic and sequence for carrying out the individual tests is
however represented directly in the rule-sets. This enables a flexibility to adapt to different
types of requirements and to optimize the tool without needing to recode the application.

The framework conceived for LRAE was to evaluate formats beyond HTML such as Linux
Glade, Mozilla XUL, or the Open Document Format (ODF). It therefore aims to be agnostic
to any specific technology as much as possible. It is left to the rule execution engine to parse
and to execute the tests on the respective technologies that are supported by the application.
The rules focus on the test descriptions and procedures while the application handles the I/O,
including any interaction with the human evaluator.

22 http://validator.w3.org
23 Hence the word-play with the reversing order for the letters in the acronyms ‘LRAE’ and ‘EARL’.
24 http://wave.webaim.org

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

69/99

http://www.it.uc3m.es/vlc/waex.html
http://eval.webaim.org/lrae/
http://validator.w3.org/
http://wave.webaim.org/

Tool-Supported Web Accessibility Evaluation

5.2. Example Formalizations in Software Quality Assurance Tools
• Reference: Software Automation Framework Support25

• Reference: Abbot Java GUI Test Framework26

• Reference: Marathon Integrated Testing Environment27

Also outside the field of Web accessibility evaluation there is significant interest in testing the
user interfaces. As noted at the beginning of this section, there are several tools to help model
software user interfaces. For instance, to describe where the components should appear, what
properties they should have, as well as other characteristics. However, there do not seem to be
as many tools that help evaluate the behavior of such user interfaces. For instance, do actions
such as clicking specific types of buttons generate the expected type of behavior? These types
of checks do not observe the static properties of the user interface but rather how the interface
reacts to simulated user interactions with the software.

From studying a variety of freely available tools for software user interface quality assurance,
it seems that their primary focus is on automating the testing steps and measuring deviances
rather than measuring qualitative aspects, such as the usability design. The testing scripts for
many these tools therefore resemble macros and recordings rather than rule-sets that describe
the behavior. In other words, the testing script is strongly dependent on the sequence in which
the individual steps are executed. Each step may include directives that change the state of the
application or of the user interface, which in turn changes the assumptions about the interface
for the remaining steps to be executed.

This approach is generally also a variant of Keyword-driven testing. However, as opposed to
the approach adopted by most of the Web accessibility evaluation tools, it does not only query
the content but also interacts with it (simulates keyboard or mouse events, changes settings, or
carries out other events). It is likely that the following arguments are reason for this difference
between software user interface and Web quality assurance approaches:

• Generic Requirements versus Application Requirements – evaluating accessibility
is based on a set of functional requirements that need to be met throughout the entire
application. However, quality assurance at large measures whether applications have
met specific requirements, such as the behavior set out by the product specification.

• Static User Interfaces versus Dynamic User Interfaces – initially Web pages were
static HTML. Even if they were generated by server-side scripting, they were often
based on fairly simple parameters and could be reconstructed. Software applications
that need automated testing of the interface are however often dynamically generated.

With the advancement of Web applications and dynamically generated Web content, testing
frameworks that interact with the content are becoming increasingly important for evaluating
the accessibility. Sub-section 5.1.2 IBM Rule-Based Accessibility Validation Environment
(RAVEn) explores one of the currently available Web accessibility evaluation tools that have
such capabilities. It is therefore not surprising to see many of the currently available software
user interface testing frameworks use a similar approach to RAVEn. They provide an API and
use programming languages such as Java or Jython for writing the procedural rule-sets.

25 http://safsdev.sourceforge.net/
26 http://abbot.sourceforge.net/
27 http://marathonman.sourceforge.net/

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

70/99

http://safsdev.sourceforge.net/
http://abbot.sourceforge.net/
http://marathonman.sourceforge.net/

Tool-Supported Web Accessibility Evaluation

5.3. Possible Approach for a Unified Test Description Notation
From studying the different approaches for formalizing test descriptions in Web accessibility
evaluation tools and in software user interface quality assurance tools it can be concluded that
there are significant commonalities. In fact, the two disciplines provide complementary means
for addressing different aspects of user interface testing. While Web accessibility evaluation
tools traditionally approach the content from the perspective of testing qualitative properties
of static components, software quality assurance tools traditionally approach the content from
the perspective of finite state machines (FSM). In principle however, both approaches seem to
be based on Keyword-driven testing concepts with rule-sets that are based on a collection of
atomic tests, each of which consists of the following parts:

1. Trigger – an entity such as an element, pattern, or parameter that triggers an action.

2. Action – a condition that is evaluated for in the context of the specific action trigger.

For instance, consider the following examples of atomic tests and how they may be realized:

Natural Language Pseudo Code

Each img element must have an
alt attribute

Trigger(img) :=
Action(check_alt_exists(img))

The alt attribute must describe its
img element appropriately

Trigger(img,alt) :=
Action(check_alt_good(img,alt))

Table 2: Requirement translation into computer logic

Beyond these basic tests there are also testing procedures that define the rules for combining
the individual testing outcomes. For instance, the result from the first test does not constitute a
result for the overall requirement. Only after carrying out the second test and combining the
two individual results can claims be made. In some cases there could be a complex sequence
of (branching) logic that needs to be followed in order to determine the compliance with the
requirements. The above requirement would therefore be likely to be realized as follows:

Test1(Trigger(img) := Action(check_alt_exists(img)))

Test2(Trigger(img,alt) := Action(check_alt_good(img,alt)))

Requirement := True(Test1) & True(Test2)

While this is a simple example, it highlights some important aspects of formalizing the testing
procedures and test descriptions for Web accessibility. While the function check_alt_exists()
can be easily realized by rule execution engines, the function check_alt_good() needs human
intervention. Where evaluation tools can not interact with the human evaluators, for instance
because they are fully automated, the result ‘cannotTell’ should be assumed. This is a first
hurdle already since the logic for combining the atomic tests now needs to consider multiple
outputs rather than simple Boolean ‘True’ or ‘False’ type results. However, the output can be
a set of discrete possible results so that they remain computable with a reasonable amount of
effort (potentially using logical truth-tables).

From the previous examples of quality assurance tools that test dynamic user interfaces it can
be concluded that not only query functions are required but also functions that perform events
on the content. For instance, functions such as click_button() or submit_form () are useful to
help evaluate dynamically generated Web content and Web applications. These functions can
be used by rule-sets that are designed to test the behavior of generic Web content (they map to
WCAG requirements), or that test the behavior of specific Web applications (custom rules).

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

71/99

Tool-Supported Web Accessibility Evaluation

Finally, from studying the previous examples for formalizing test descriptions, it seems that
most of the rules employ some form of an indicator for the level of severity for an error. For
instance, while some functions such as check_alt_exists() identify existing errors (they have
high confidence values), other functions such as check_suspicous_alt() are not regarded as
reliably. These types of functions are however very useful and provide additional information
to evaluators. Part of the test description therefore needs to declare properties of the test such
as the severity or the confidence. Different Web accessibility evaluation tools could use this
information differently depending on their approach for interacting with the evaluators.

In conclusion it can be suggested that the formal descriptions for Web accessibility evaluation
tests consist of the following components:

• Context – each test needs to provide context information such as the requirement that
it tests for (for instance, a WCAG 2.0 Success Criteria), the Web technologies that it
addresses, its relationships to other tests, the severity of the outcome, etc.

• Logic – the formal grammar and the operators that can be used to express the testing
procedures or the individual tests. The more operators are provided by the logic (for
example ‘if … then … else’, ‘XOR’, or ‘length()’ etc. type operators), the more
tests and test procedures can be adequately expressed using the formalization.

• Functions – the built-in or API functions provided by the test execution engines that
support the formalization. This should be a minimal set of atomic functions that can
not be realized using the logic describe above. For instance, the functions should not
provide string operations if these are already provided by the formal logic.

Ideally, the main difference between the execution engines would be in the realization of the
set of basic functions. For instance, which types of functions do they support and for which
Web technologies? For example, a technology-independent function image_has_equivalent()
as opposed to the HTML-centric check_alt_exists() could be applicable to PDF, Flash or other
formats. Different execution engines would likely provide varying support for the different
functions, also with regard to the performance (such as speed) for executing these functions.

Also the user interfaces (if any) provided by the rule execution engines will likely help to
differentiate between the implementations. While one may be more automatic, another may
specialize on providing dialogs to interact with the evaluators during evaluation. However,
these tools will be flexible to interpret different sets of rules that evaluate different
requirements. The tools can be easily reused in different domains such as, mobile Web,
privacy, security, or usability. At the same time, they can be easily customized by developers
or evaluators, for instance to debug sophisticated Web applications. Using a common format
for test descriptions promotes the exchange of knowledge and adoption of the format among
different types of tools, such as existing quality assurance tools.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

72/99

Tool-Supported Web Accessibility Evaluation

6. Proposed Model for Web Accessibility Support Tools
The previous sections outlined a broad variety of promising technologies that can be used to
aid Web accessibility evaluation tools, as well as other types of tools that are part of the Web
development process, to share accessibility information. While some of these technologies are
currently still under development, they are potentially essential building blocks for creating a
collaborative environment for Web accessibility evaluation. In particular the W3C Evaluation
and Report Language (EARL) [WAI, 9] has been specifically designed for exchanging data
about evaluation between different types of tools. The question for this section is what is the
added benefit in exchanging this type of information and how should this exchange look like?

In particular this section explores the concept of ‘incremental evaluation’ that was outlined in
section 2.2.4.2. Informed Methodologies of this study. The following illustrates this concept:

Figure 12: Incremental evaluation

During the development of Web content, the different types of developers are responsible for
creating different parts of the Web content. Ideally each developer carries out the accessibility
evaluation that relates to their respective roles (see section 2.2.3. Roles and Responsibilities).
However, without some level of system support this information about what has been checked
and by who is easily lost and not anymore retrievable at a later point in time. Conversely, if an
authoring system supports accessibility information to supplement the Web content then each
developer in the production chain can incrementally add small pieces of information about the
accessibility of the resource. By the time the resource is operational, basic information about
the level of accessibility is available. Even if this information is incomplete, the alternative is
not having any information about the accessibility of resources. In fact, this is the usual case
for the majority of Web sites, the information about the level of accessibility is only known at
discrete intervals when comprehensive evaluations are carried out to assess the Web sites.

This does not mean that recurring post-development accessibility evaluation is not important.
In fact, it is an essential quality control mechanism to help check the accuracy of the internal
quality assurance mechanism. The incremental evaluation complements the post-development
evaluation and provides continuous information about the level of accessibility for any given
point in time. It encourages developers to think about accessibility and to declare which of the
checks they have carried out. At the same time, it facilitates accurate monitoring of the status
and helps track the origin of accessibility barriers.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

73/99

Tool-Supported Web Accessibility Evaluation

6.1. Framework for Distributed Web Accessibility Evaluation Tools
While previous examples demonstrated the demand and feasibility of integrating different
Web accessibility evaluation tools, they also underline the fundamental problem that hinders
more availability and deployment of such solutions. Without a common, open, and vendor-
neutral framework it is not economically feasible to realize such consistent integration, and
only occasional examples will emerge. The open interface that underlies this framework can
be based on currently existing technologies. The open interface can be used to connect the
following types of components that integrate into a system:

• User Applications – are the programs that are launched by the end-users and that
provide the user interface. Usually these are Web accessibility evaluation tools but
they could also be authoring tools, toolbars, or data analysis tools. These tools can
communicate with any of the components listed below, or they can access the Web
content directly as needed.

• Remote Services – are programs that run remotely on a server to carry out a specific
task. They may access the Web content directly and/or process information in a data
repository, depending on the service that they provide. They can launch other remote
services or plug-in components as needed.

• Plug-in Components – are extensions to any of the two components above. They do
not necessary provide a user interface although they may initiate system dialogs. They
may access the Web content directly and/or process information in a data repository.
They may also launch other remote services or plug-in components as needed.

• Data Repositories – are usually not active components, for example they could be
data files located in a shared space so that they can be accessed by the components.
They can be located and used by the different components, for example they could be
generated by a server-side script and processed by a data-analysis application.

Figure 13: Framework components

Assuming there is a uniform method for these building blocks to exchange information, any
of the combinations of tool integration that were discussed in the previous section could be
realized. For instance, a toolbar application could use a remote service to carry out some of
the automated evaluations as outlined in example 1 of the previous section. At the same time,
it could export the evaluation results into a common data repository, for instance to record the
status of the Web content at a specific point in time. A different tool, such as a data analysis
tool, could then use this information to monitor the overall status of the Web site, including
the Web content evaluated manually through the toolbar. The following sub-sections describe
the different parts that provide a uniform method for tool interaction.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

74/99

Tool-Supported Web Accessibility Evaluation

6.2. Common Format for Test Descriptions – Request
As discussed in section 5. Excursion: Proposed Test Description Notation Format, there to
date no widely used standard for test descriptions. While such a standard would promote the
exchange of rule-sets between different types of quality assurance tools, it is unclear if such a
standard will become available in the foreseeable future. However, a simple approach that
uses existing resources could be a starting point for immediate implementation. The increased
granularity of the W3C Web Content Accessibility Guidelines (WCAG) 2.0 [W3C, 18] lends
itself as a common basis for a reference point. As described in previous sections, each WCAG
2.0 Technique has a unique Universal Resource Identifier (URI). Also each WCAG 2.0
Principle, Guideline, and Success Criteria can be uniquely identified in the same manner. This
means that while tools are currently not able to exchange information about the context, logic,
and execution of the test procedures, they can exchange information through the identifiers of
the requirements. For instance, larger quality assurance frameworks could delegate specific
requirements, such as individual Techniques or entire Success Criteria, to integrated Web
accessibility evaluation tools. Any of the examples for ad-hoc evaluation tool integration that
were highlighted in the previous sections could be realized this way.

Figure 14: Delegation of test requests

The image above illustrates this interaction in which overarching applications delegate testing
to plug-in tools. The applications need to identify two entities in their request to the delegates:

1. Test Procedure – an identifier for the test requirement or test procedure.

2. Test Subject – an identifier or the actual content that needs to be tested.

Both of these entities are however already defined by the vocabulary of the W3C Evaluation
and Report Language (EARL) Schema 1.0 [W3C, 27], and could therefore be reused until a
more comprehensive test description vocabulary becomes available. Specifically the EARL
terms TestCriterion and TestSubject could be used by evaluation tools to delegate testing
requests. They could also be used to query repositories for information about the test results.
For instance, the following code segment could be used by applications to request that plug-in
tools execute the WCAG 2.0 Technique ‘G55’ on a local file called ‘index.html’, or to query
data repositories for information about previous executions of this test.

<earl:TestSubject rdf:about="file://index.html"/>

<earl:TestCase rdf:about="http://www.w3.org/TR/WCAG20-TECHS/G55">
<dc:title xml:lang="en">G55: Linking to definitions</dc:title>
<dc:description xml:lang="en">For each word, phrase, or
abbreviation to be defined:
1. Check that at least the first instance of the item is a link.
2. Check that each link navigates to the definition of the item.
</dc:description>
<dct:isPartOf rdf:resource=
"http://www.w3.org/TR/WCAG20/#meaning-idioms"/>

</earl:TestCase>

Code Listing 2: Request arguments

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

75/99

Tool-Supported Web Accessibility Evaluation

6.3. Common Format for Test Results – Response
As described in section 4.1 The W3C Evaluation and Report Language (EARL), a common
format for exchanging test results is currently under development. It is the counterpart for the
test description and could be used to collect the test results from the delegates in an integrated
system of tools. Consider the example from the previous sub-section in which an overarching
tool, potentially an authoring tool, delegated specific testing requirements to plug-in tools. In
reaction to this, the individual plug-in tools need to communicate their findings back to the
main application. The following illustration highlights the direction of communication flow:

Figure 15: Collection of test results

As opposed to the scenario previous sub-section, the response flow from the individual plug-
in delegates to the main application. The responses consist of complete EARL assertions that
satisfy the requests made. For instance, the following code segment could be the response to
the query described in code listing 2 in the previous sub-section:

<earl:Assertion>
<earl:assertedBy>

<foaf:Person rdf:about="jd">
<foaf:name>Jon Doe</foaf:name>

</foaf:Person>
</earl:assertedBy>
<earl:subject rdf:resource="file://index.html"/>
<earl:test>

<earl:TestCase rdf:about=
"http://www.w3.org/TR/WCAG20-TECHS/G55"/>

</earl:test>
<earl:result>

<earl:TestResult>
<earl:outcome rdf:resource=
"http://www.w3.org/ns/earl#fail"/>
<dc:title xml:lang="en">Unusual phrase not
defined</dc:title>
<dc:date>2008-08-31</dc:date>

<earl:TestResult>
</earl:result>
<earl:mode rdf:resource="http://www.w3.org/ns/earl#manual"/>

</earl:Assertion>

Code Listing 3: Response output

In this specific case, the response from the delegate is that a person called ‘Jon Doe’ asserted
on the ‘31 August, 2008’ that the content in file ‘index.html’ fails the test procedure of ‘G55’,
because there was an ‘unusual phrase that was not defined’. This information could have been
generated upon request, or it may have been previously recorded in a data repository.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

76/99

Tool-Supported Web Accessibility Evaluation

6.4. Common Format for Communication – Protocol
The W3C SPARQL Protocol and RDF Query Language (SPARQL) [W3C, 33-35] provides a
protocol for exchanging queries between different entities as well as defines a query language
for RDF. The SPARQL protocol uses the W3C Web Services Description Language (WSDL)
Version 2.0 [W3C, 36]. It defines HTTP bindings and so allows different entities to exchange
RDF queries using the well-known HTTP Protocol. For instance, it allows the following type
of requests between different types of tools:

GET /sparql/?query=[SPARQL Query Expression] HTTP/1.1
Code Listing 4: SPARQL Request

The response is also based on the HTTP Protocol and reuses the status codes, error messages,
as well as the other parts of the specification. For instance, the request from above could have
the following response:

HTTP/1.1 200 OK
Date: Fri, 06 May 2005 20:55:12 GMT
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

[SPARQL Query Result]
</sparql>

Code Listing 5: SPARQL Response

This is a useful mechanism for interacting with remote services. However, SPARQL queries
can also be exchanged directly without the HTTP/WSDL wrapper. SPARQL query language
is similar to existing database query languages such as SQL. It is therefore easy to learn and
understand by many developers, even though they may not have prior experience with RDF.
The following code is an example SPARQL query in which one tool requests to receive all
the EARL assertions about the file called ‘index.html’:

PREFIX earl: <http://www.w3.org/ns/earl>
SELECT ?assertion
WHERE { ?assertion earl:subject "file://C:\index.html" }

Code Listing 6: SPARQL Query

If the request is sent to a data repository then it will return all the information it has about this
resource. Otherwise, if the request is sent to an evaluation tool, then the tool may carry out the
tests that it is capable of executing, and return the results. The output of such a SPRQL query
could be in the RDF/XML notation, such as that of code listing 3 in the previous sub-section.
However, SPARQL also provides an XML format for the query results [W3C, 35] so that it
can be more easily processed by XML-based applications.

In summary, SPARQL provides a complete protocol and query language that can be reused
by Web accessibility evaluation tools to exchange EARL assertions. SPARQL also cascades
the details of RDF from developers who may not have experience with it. It provides a query
language that is similar to SQL and provides the results in XML format. Both of these formats
are well-known and widely used by many developers and implementations.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

77/99

Tool-Supported Web Accessibility Evaluation

7. Evaluation of the Proposed Tools-Supported Model
The previous section provides and in-depth discussion about the current approach employed
by Web accessibility evaluation tools, the need for integrating different types of tools, as well
as a potential approach for a distributed model that supports a collaborative environment. The
discussion proposes a vendor-neutral format and protocol for different types of tools that are
part of the development process, to exchange accessibility information about resources. This
can be used to support incremental evaluation that is paired with post-development evaluation
to provide comprehensive quality management with respect to accessibility evaluation.

Figure 16: Quality management in the Web development process

The image above depicts some of the quality management practices that take place during the
development of Web content. It includes:

• Quality Assurance – organization of the internal production and processes to ensure
that the Web content being developed meets certain criteria such as accessibility.

• Quality Control – testing that takes place after the production to validate the level of
quality, such as the accessibility, of the published Web content.

• Quality Improvement – testing that takes place after the production to assess possible
opportunities to further improve the quality of the published Web content.

Note however that the term ‘quality assurance’ is commonly used to refer to all these aspects
of quality management. This is likely due to the fact that quality control and improvement is
not frequently practiced in Web development. Once the Web content is published it quickly
becomes legacy and less interesting to developers in many Web development situations.

Web accessibility evaluation is however slightly different and currently seems to focus much
more on the quality control aspect than on the other areas of quality management. This may
be due to the introduction of policies and legislation, and the reaction of Web site owners and
developers. They were confronted with the need to assess the compliance of the existing Web
content to legal requirements and created a market for such solutions. However, the previous
sections showed that there are technologies available to help broaden this focus towards the
other areas of quality management. This section analyzes the proposed distributed model and
discusses some of the benefits as well as challenges for this approach.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

78/99

Tool-Supported Web Accessibility Evaluation

7.1. Potential Impact on Web Accessibility Evaluation
Employing a structured format for describing accessibility checks, evaluation results, as well
as a protocol to exchange this information provides many opportunities for Web accessibility
evaluation and tools that support such evaluation. The foremost impact is on the integration of
different types of tools, such as the scenarios discussed in section 4.2. A Need for Integrating
Web Accessibility Evaluation Tools. It includes the integration of evaluation tools within:

• Authoring tools – different types of Web accessibility evaluation tools, including
ones with broad or narrow evaluation focus and ones that could be automatic or that
need manual interaction, could integrate seamlessly with different types of authoring
tools including content management systems, code editors, or WYSIWYG editors.

• Evaluation tools – primarily manual Web accessibility evaluation tools or other
evaluation tools that already provide mature interfaces (such as enterprise evaluation
tools) could integrate with primarily automated evaluation tools that work in the
background, or evaluation tools that provide specific functionality or heuristics.

• Data-Analysis tools – new bug-tracking and performance monitoring tools could be
specifically developed on the basis that the evaluation data could be provided by the
evaluation tools in a uniform structure.

While this has a direct impact on some of the currently existing tools, it is equally an indirect
opportunity for the development of new types of tools. For instance, the smaller and focused
evaluation tools could save significant development costs for the interface and other types of
I/O-infrastructure as outlined in [Englefield et al. 2005]. This could encourage development
of a larger variety of plug-in tools. Since many of these types of tools are typically developed
in the research sector and therefore often provide sophisticated algorithms and heuristics, the
increase of such tools could quickly stimulate the overall production of evaluation tools.

Especially now that Web accessibility evaluation has entered into a new generation of content
that is dynamic and highly interactive new approaches need to be developed. For instance, the
evaluation of Web applications requires consideration for the runtime and the code-execution
which are new concepts of many Web accessibility evaluation tools. Only few of these tools
currently support the W3C Accessibility Rich Internet Applications (WAI-ARIA) [W3C, 26],
and probably need considerable amount of effort to be re-engineered to support applications.
The possibility of integrating focused tools that address dynamic content and other types of
Web applications could therefore be a more viable approach under some circumstances.

Besides the opportunities for tools and tool vendors there is potentially also significant impact
on the overall practice of Web accessibility evaluation. Especially the direct integration of the
authoring and evaluation tools brings numerous benefits to the developers involved during the
production of the Web content. When developers can evaluate ‘in-place’ rather than needing
to switch back and forth between different tools, there is a direct increase of their efficiency as
well as the efficiency of the overall development process. The developers can also spend the
time and effort in implementing optimal solutions from the early development stages because
their authoring tools support them in doing so, rather than spending this same time and effort
in finding less optimal workaround solutions after the content has been published.

Finally it should also be noted that common formats for exchanging accessibility information
can also be used by tool vendors to calibrate their tools against test suites such as the WCAG
2.0 Test Samples [WAI, 24]. The output of the tools could be compared to a normalized set of
results to ensure correct implementation of the tools. Similarly, evaluation tools could also be
directly compared to each other using such a uniform data exchange mechanism.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

79/99

Tool-Supported Web Accessibility Evaluation

7.2. Relationship to Generic Web Quality Assurance
Web accessibility evaluation has had strong spotlight which induced the production of many
types of tools and solutions. However, the evaluation practices and tools could easily be used
to address many other aspects of Web quality assurance that are quickly gaining traction:

• Mobile Web – there is a substantial overlap between the accessibility needs of people
with disabilities and designing Web sites for mobile devices [WAI, 11]. In fact, many
of the checks can be directly re-used to help evaluate the criteria for both requirements.
Many evaluation tool developers have therefore already started to support the criteria
of the W3C Mobile Web Best Practices [W3C, 45].

• Privacy and Security – while privacy and security were predominantly aspects of the
Web infrastructure, with the rapid advancement of Web applications and scripting the
issue has moved more directly into the Web content arena. Web developers need to be
much more aware of the potential issues and related solutions than they needed to be
for the creation of more static Web sites and content.

• General Usability – also general usability seems to be increasingly an important part
of the Web development processes. This may be due to the rapid uptake of the Web
for commercial purposes, and the strong competition that has evolved in a relatively
short period. Web sites therefore need to provide a better experience for the end-users
in order to convey an impression of high quality and build trust.

The existing solutions and practices in Web accessibility evaluation, including the proposed
distributed model for evaluation tools, could be reused to advance generic quality assurance.
Conversely, the deployment of such practices and solutions into other areas of development
could significantly benefit the mainstreaming of Web accessibility.

Figure 17: Mutual benefits of accessibility evaluation and quality assurance

Web accessibility evaluation encompasses several disciplines and has over the years bridged
between the different types of testing approaches (see section 2.2.2. Testing Approaches) that
are involved in comprehensive evaluation processes. Each of the other areas mentioned above
seem to however focus on specific types of testing approaches and could benefit from reusing
the existing models in Web accessibility. For instance:

• Mobile Web testing has been, so far, focusing primarily on the automatically testable
criteria and could benefit from approaches that include manual and user testing.

• Privacy and security testing is primarily addressed by experts who carry out manual
inspections of the source code, some of which could be formalized for non-experts.

• Usability testing is also primarily address by experts, possibly involving end-users;
some basic usability tests could however be addressed by non-experts or by tools.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

80/99

Tool-Supported Web Accessibility Evaluation

7.3. Practical Considerations for the Implementation
While the adoption of a distributed model of Web accessibility evaluation tools brings many
advantages to Web accessibility evaluation and generic Web quality assurance, there are also
many challenges that may prevent the rapid deployment of such solutions in the near future.
Most importantly is that Web quality assurance, including accessibility evaluation, seems to
be generally less funded. For instance, the majority of the Web accessibility evaluation tools
have been developed by academia and research, charity organizations, or small and medium-
sized enterprises (SME). Besides this reflection in the evaluation tools market, the numerous
surveys on the conformance with Web accessibility standards or even basic HTML validation
lead to believe the Web quality assurance is currently not the priority for many organizations
and Web site owners. It is unlikely that this situation will change rapidly in the near future.

Due to this smaller market share of Web accessibility evaluation, it can be assumed that there
is less margin and opportunities for evaluation tool vendors to venture into new approaches.
There is little time and resources to experiment with new technologies and or to substantially
change existing models. Also, despite the rapid maturing of Semantic Web technologies and
the increasing availability of applications, modules, and education resources, in general they
are not as well supported by mainstream development environments as other technologies are.
For instance, it seems much easier to learn about XML and deploy it in existing applications
than it is to understand and correctly implement RDF. The architecture needs to change from
hierarchical to graph concept models, which sometimes brings substantial changes. Especially
when the true benefits of the Semantic Web technologies are used, for example reification, the
gaps and issues related to the infancy of the Semantic Web start to consume vital resources.

Fortunately the transition to the distributed model for Web accessibility evaluation could take
place in a series of small steps rather than in a single large switch-over, and therefore lower
the risk and potential drawbacks for tool vendors. Many of the automated Web accessibility
evaluation already provide functionality to export the evaluation results in structured formats,
most commonly in XML format. Several evaluation tool developers are also directly or less
directly involved in the development of the W3C Evaluation and Report Language (EARL)
[WAI, 9]. While EARL is an RDF syntax, it explicitly supports an XML serialization to help
facilitate the adoption by developers of automated Web accessibility evaluation tools. This is
a first step that should be feasible without substantial changes to existing tool functionality.

Once automated evaluation tools start to provide a consistent output format, it is likely that
manual evaluation tools that already interact with automated tools may make use of this new
format in order to also interact with other tools. For instance, toolbar applications that have
been designed to work with specific online evaluation services could equally work with any
other online service. A uniform output format may also be a crucial incentive for authoring
tools to adopt it, and to include the evaluation output of automated evaluation tools into the
testing or debugging functionality. It would be an important proof of concept that integration
of different types of tools can take place without significant adaptation of current approaches.
Finally, it would also set the stage for quality management tools, such as data analysis and
reporting tools, and would encourage the development of many new types of tools.

The difficulty will however be the integration of manual tools as plug-in components in the
distributed model. Without a broadly recognized and widely adopted standards to formalize
test descriptions and to formalize a protocol for exchanging evaluation data, it will remain
difficult to integrate such tools. It is essential to develop these standards as well as a vendor-
neutral and platform-independent API that complement EARL in order to realize the model.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

81/99

Tool-Supported Web Accessibility Evaluation

7.4. Opportunities for Research and Development
While tool-supported Web accessibility evaluation has evolved and matured over the previous
years, there are still significant opportunities for research and development to further improve
the level of tools support in many areas. For instance, similar to the software development life
cycle [ISO 12207], also the stages, processes, and actors in the Web development life cycle
need to be well-defined and understood. As was described in the introduction for section 2.2.
Processes for Accessibility Evaluation, it can be expected that there exist several similarities
between the two disciplines but that there are severe differences in some areas. For instance in
the evolution and maintenance of Web content after it has been produced, and how this differs
from software production that happens in more discrete releases of static products.

Also on the testing level it seems that there are many similarities and approaches that can be
reused from traditional software testing, yet more research is required to better understand
how these approaches can be adapted for the context of Web content [Mendes and Mosely
2004]. Especially with the advancement of Web applications and the growing complexity of
Web content, the traditional ‘black-box’, ‘white-box’, or ‘grey-box’ testing approaches need
to be repurposed. Also the, for software testing well defined, terms of ‘component’, ‘module’,
or ‘regression’ testing seem to be useful approaches that could support incremental evaluation.
However, these terms are not commonly used in the context of Web quality assurance and do
not seem to have a broadly accepted definition in that context [Ash 2003].

Besides the opportunities for research in the field of Web quality assurance, the proposed use
of Semantic Web technologies to exchange accessibility information between different types
of tools also relates to the concepts of content adaptation. Different approaches have been
undertaken to realize systems that allow content, including Web content, to be transformed
according to users preferences and accessibility needs. For instance, the IMS Global Learning
Consortium [IMS] is pursuing the development of learning environments in which learning
objects can be matched to user profiles, so that learners can receive modules that meet their
accessibility needs. Also the Dublin Core Metadata Initiative [DCMI] is pursuing this notion
of content adaptation although on a broader level. However, one of the main issues remains
the actual production of the accessibility metadata about the resources with which the proxies
or content adaptation systems can work. Tool-supported Web accessibility evaluation could
help provide this information in Semantic Web formats which are especially apt for reusing
for other purposes or in other contexts than was anticipated by the initial author.

The potential approaches discussed in this study also provide numerous opportunities for the
development of prototype applications that demonstrate the feasibility. For instance, it should
be fairly simple to build an application that collects and summarizes data from any evaluation
tool that provides the results in EARL format. This would be an immediate benefit for the tool
developers and an incentive for them to provide support for EARL. Other examples include
support for EARL in toolbar applications, development environments, or in online evaluation
services. In many cases these developments would be simple extensions that may not have a
significant impact on the core functionality of any of these applications. In fact, for some of
the open source applications such as Eclipse28, Hera29, or the W3C Validator30, these types of
extensions could be provided by the community or research projects.

28 http://www.eclipse.org/
29 http://www.sidar.org/hera/
30 http://validator.w3.org/

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

82/99

http://www.eclipse.org/
http://www.sidar.org/hera/
http://validator.w3.org/

Tool-Supported Web Accessibility Evaluation

8. Summary and Conclusions
Web accessibility evaluation encompasses automatic, manual, and user testing approaches
that complement each other. Technical standards for Web accessibility define the criteria for
many of these checks, especially the automatic and manually testable requirements. In turn,
several Web accessibility evaluation tools have been developed that address these criteria and
help developers in evaluating them. Over the years a broad variety of evaluation tools have
been developed. Each of these tools demonstrates different evaluation functionality and user
interface characteristics without clear categories between them. The evaluation tools have
been developed based on slightly different use-cases that reflect the preferences of evaluators
and others users of the tools. For instance, some have been based on wizard approaches that
are helpful for some developers but equally described as too verbose by other developers.
Some have a Web-based interface, others are desktop applications, and others are plug-ins for
browsers or content management systems.

Despite this broad variety of Web accessibility evaluation tools, it seems that most of them
focus on post-development evaluation of the Web content by more experienced developers
rather than on evaluation throughout the entire development process. Especially the support
during early design stages and during the actually implementation stages of the development
life cycle seem to be largely unaddressed with the exception of few undertakings. While it is
possible to use some of the existing tools during these early stages, it seems that accessibility
evaluation would be better served with tools that are specifically designed to address these
purposes. For instance, toolbar evaluation tools that plug into browsers have become popular
among many evaluators. However, in order to use these during the development process, the
developers have to preview the Web content in a browser and evaluate it separately from the
normal development environment, rather than have this evaluation functionality directly from
within the WSYIWYG interface of the authoring tools.

Moreover, Web content is often created by non-technical developers who do not know much
about Web technologies and the accessibility requirements. They are end-users of the content
management systems and are often unaware of the possibilities of installing additional tools
that help them to evaluate Web accessibility, and how to best switch back and forth between
these different types of applications in order to develop accessible Web content. Evaluation is
an integral part of the development process and therefore also the evaluation tools must be a
natural part of the development environment, and must effectively assist the heterogeneous
developer community in evaluating the accessibility of the Web content. Currently it seems
that the majority of Web accessibility evaluation tools focus on more experienced evaluators
rather than to reach out to many of the novice and often also non-technical evaluators.

There are several reasons why Web accessibility evaluation tools currently only address this
confined group of users and seem to prefer the post-development paradigm. These include the
awareness and training of the developers, which are necessary factors in creating the demand
for other types of solutions. As long as developers prefer to carry out accessibility evaluation
towards the end of the development process rather than during the earlier stages, the demand
for other types of evaluation tools will remain minimal. However, several individual attempts
seem to show that there may be sufficient demand by the developers. For instance, there exist
evaluation tools that are specifically designed to work with certain authoring tools, and even
one or two examples of evaluation tools that are specifically designed to work with drawing
utilities that are often used by Web designers. It seems however to be uneconomical and not
well scalable for evaluation tools to be specifically designed for only certain types of host
applications, rather than to use open standards and APIs to plug into any application.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

83/99

Tool-Supported Web Accessibility Evaluation

Providing this vendor-neutral and platform-independent interface between different types of
tools that are involved in Web accessibility evaluation could open up new approaches and a
new era in evaluation tools. Especially the direct integration of authoring tools and evaluation
tools could significantly change the Web development processes and promote the production
of accessible Web content. It could also contribute to the development of new types of tools
that help monitor, report, or otherwise manage the accessibility of the Web content based on
the evaluation results provided by Web accessibility evaluation tools. It would provide a new
approach for tool-supported Web accessibility evaluation that takes place during the entire
development process, and that addresses the needs of many different types of Web developers.

Semantic Web technologies seem particularly apt for this purpose and a promising approach
for ‘opening the data’ and allowing the exchange of information between different types of
tools. Especially the W3C Evaluation and Report Language (EARL) [WAI, 9] is an important
milestone and a first step in providing a uniform format for representing evaluation results. It
can be easily adopted by evaluation tools that already generate structured reports, yet enable
many use-cases based on the availability of such an open format. However, EARL needs to be
complemented by a test description format as well as an API to manage the actual interaction
between the different types of tools. This study examined potential approaches based on many
of the currently existing standards, conventions, and practices employed by Web accessibility
evaluation tools. In conclusion it can be said that the technologies for realizing a distributed
model of Web accessibility evaluation tools that connect and act together as a collaborative
system already exist or are currently under development. These need to be deployed into the
domain of Web accessibility evaluation and into the actual evaluation tools.

There are significant benefits of evaluation tool developers to pick up on these technologies
and implement them early. Especially open source solutions and smaller exemplary solutions
may pave the way for mainstream adoption of these technologies in accessibility evaluation.
Also, while these solutions are specifically beneficial for Web accessibility evaluation, they
are also beneficial for generic Web quality assurance. Especially in the domains of Mobile
Web, privacy and security, and general usability many of the models and approaches that are
developed in the field of Web accessibility evaluation can be reused. There are also several
opportunities for research and development to help better understand the Web development
life cycle and the testing practices, and to further improve the current approaches for Web
quality assurance. Especially in the light of rich internet applications and the rapidly growing
complexity of the Web content there needs to be a better understanding of the core processes
and activities that constitute Web development.

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

84/99

Tool-Supported Web Accessibility Evaluation

9. References

9.1. Scientific Papers
[Abou-Zahra 2005a]

Automated Web Site Accessibility Evaluation
Abou-Zahra S.; Proceedings of 1st International Workshop on Automated
Specification and Verification of Web Sites (WWV) 2005

[Abou-Zahra 2005b]
A Vendor Neutral Reporting Language for Web Accessibility Evaluation
Abou-Zahra S.; Proceedings of 20th CSUN Conference 2005

[Abou-Zahra 2005c]
Semantic Web Enabled Web Accessibility Evaluation Tools
Abou-Zahra S.; Proceedings of 2nd W4A Conference 2005

[Abou-Zahra 2005d]
A Common Vocabulary to Facilitate the Exchange of Web Accessibility
Evaluation Results
Abou-Zahra S.; Proceedings of 10th Dublin Core Conference 2005

[Abou-Zahra 2006a]
Selecting and Using Web Accessibility Evaluation Tools
Abou-Zahra S.; Proceedings of 21st CSUN Conference 2006

[Abou-Zahra 2006b]
Managing and Monitoring Web Site Accessibility
Abou-Zahra S.; Proceedings of 10th ICCHP Conference 2006

[Abou-Zahra 2007]
Introducing the WCAG 2.0 Test Samples Repository
Abou-Zahra S.; Proceedings of 22nd CSUN Conference 2007

[Archer 2005]
Quatro – A Metadata Platform for Trustmarks
Archer P.; Proceedings of 10th Dublin Core Conference 2005

[Brajnik 2004a]
Comparing Accessibility Evaluation Tools: A Method for Tool Effectiveness
Brajnik G.; Universal Access in the Information Society, 2004, 3(3-4):252-263,
http://sole.dimi.uniud.it/~giorgio.brajnik/papers/eval-method.pdf

[Brajnik 2004b]
Using Automatic Tools in Accessibility and Usability Assurance Processes
Brjanik G.; Proceedings of 8th ERCIM User Interfaces for All 2004,
http://sole.dimi.uniud.it/~giorgio.brajnik/papers/qa_processes.pdf

[Brajnik 2006]
Web Accessibility Testing: When the Method is the Culprit
Brajnik G.; Proceedings of 10th ICCHP Conference 2006,
http://sole.dimi.uniud.it/~giorgio.brajnik/papers/bw06.pdf

[Brajnik 2007]
Ranking websites through prioritized web accessibility barriers
Brajnik G.; Proceedings of 22st CSUN Conference 2007

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

85/99

http://sole.dimi.uniud.it/%7Egiorgio.brajnik/papers/eval-method.pdf
http://sole.dimi.uniud.it/%7Egiorgio.brajnik/papers/qa_processes.pdf
http://sole.dimi.uniud.it/%7Egiorgio.brajnik/papers/bw06.pdf

Tool-Supported Web Accessibility Evaluation

[Brajnik et al. 2007]
Effects of Sampling Methods on Web Accessibility Evaluations
Brajnik G., Mulas A., Pitton C.; Proceedings of 9th ASSETS Conference 2007,
http://sole.dimi.uniud.it/~giorgio.brajnik/papers/sampling-assets.pdf

[Bühler et al. 2005]
A Framework for Automated Web Accessibility Assessment
Bühler C., Heck H., Perlick O., Snaprud M.; Proceedings of AAATE Conference 2005

[Bühler et al. 2007]
Combining empirical and theoretical methods
to enhance large scale web accessibility monitoring results
Bühler C., Heck H., Nietzio A., Craven J., Snaprud M.H.;
Proceedings of AAATE Conference 2007

[Bühler et al. 2008]
Monitoring Accessibility of Governmental Web Sites in Europe
Bühler C., Heck H., Nietzio A., Olsen M.G., Snaprud M. H.; Proceedings of 11th
ICCHP Conference 2008

[Chevalier and Ivory 2003a]
Web Site Designs: Influences of Designer’s Experience and Design Constraints
Chevalier A., Ivory M.Y.; International Journal of Human-Computer Studies, 2003

[Chevalier and Ivory 2003b]
Can novice designers apply usability criteria and recommendations to make web
sites easier to use?
Chevalier A., Ivory M.Y.; International Journal of Human-Computer Studies, 2003

[Craven 2005]
Whose web is it anyway?
Craven J.; 9th Institutional Web Management Workshop (IWMW) 2005

[Craven and Nietzio 2007]
A taks-based approach to assessing the accessibility of web sites
Craven J., Nietzio A.; Performance Measurement and Metrics, 8(2):98-109

[Englefiled et al. 2005]
A Proposed Architecture for Integrating Accessibility Test Tools
Englefiled P., Paddison C., Tibbits M., Damani I.; IBM Systems Journal, 2005

[Gieber and Caloggero 2006]
Prioritizing Web Site Errors with STEP
Giber K., Caloggero R.; Proceedings of 21st CSUN Conference 2006,
http://www.csun.edu/cod/conf/2006/proceedings/2925.htm

[Gjøsæter et al. 2006]
Modelling Accessibility Constraints
Gjøsæter T., Nytun J.P., Prinz A., Snaprud M.H., Skjelten T. M.;
Proceedings of 10th ICCHP Conference 2006

[Henry et al. 2001]
Adapting the Design Process to Address More Customers in More Situations
UI Access – Henry S.L., Law C., Barnicle K.; Proceedings of UPA Conference 2001,
http://www.uiaccess.com/upa2001a.html

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

86/99

http://sole.dimi.uniud.it/%7Egiorgio.brajnik/papers/sampling-assets.pdf
http://www.csun.edu/cod/conf/2006/proceedings/2925.htm
http://www.uiaccess.com/upa2001a.html

Tool-Supported Web Accessibility Evaluation

[Henry 2002]
Another -ability: Accessibility Primer for Usability Specialists
UI Access – Henry S.L.; Proceedings of UPA Conference 2002,
http://www.uiaccess.com/upa2002a.html

[Ivory 2001]
An Empirical Foundation for Automated Web Interface Evaluation
Ivory M.Y.; PhD Dissertation, University of California at Berkley, 2001

[Ivory et al. 2001]
Empirically Validated Web Page Design Metrics
Ivory M.Y., Sinha R.R., Hearst M.A.; Proceedings of SIGCHI Conference 2001

[Ivory and Hearst 2002]
Statistical Profiles of Highly-Rated Web Sites
Ivory M.Y., Hearst M.A.; Proceedings of SIGCHI Conference 2002

[Ivory and Chevalier 2002]
A study of automated web site evaluation tools
Ivory M.Y., Chevalier A.; University of Washington, 2002
http://ubit.ischool.washington.edu/pubs/tr02/toolstudy.pdf

[Ivory 2003b]
Characteristics of Web Site Designs: Reality vs. Recommendations
Ivory M.Y.; Proceedings of 10th HCI Conference, 2002

[Ivory et al. 2003]
Using Automated Tools to Improve Web Site Usage by Users w. Diverse Abilities
Ivory M.Y., Mankoff J., Le A.; IT & Society Journal, 2003

[Krishnamurthi 2005]
Web Verification: Perspective and Challenges
Krishnamurthi S.; Proceedings of 1st International Workshop on Automated
Specification and Verification of Web Sites 2005

[Law et al. 2000]
Usability screening techniques:
evaluating for a wider range of environments, circumstances and abilities
UI Access – Law C., Branicle K., Henry S.L.; Proceedings of UPA Conference 2000,
http://www.uiaccess.com/upa2000a.html

[Nevile 2005]
Anonymous Dublin Core Profiles
for Accessible User Relationships with Resources and Services
Nevile L.; Proceedings of 10th Dublin Core Conference 2005

[Nietzio 2006]
Barrieres in (Vector-)Space:
A Clustering Approach to Web Accessibility Evaluation
Nietzio A.; Workshop on Web Accessibility and Modeling 2006

[Nietzio et al. 2007]
A framework for quality assurance
for data from large scale accessibility evaluations
Nietzio A., Ulltveit-Moe N., Gjøsæter T., Olsen M.G., Snaprud M.H.;
Proceedings of HCI Conference 2007

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

87/99

http://www.uiaccess.com/upa2002a.html
http://ubit.ischool.washington.edu/pubs/tr02/toolstudy.pdf
http://www.uiaccess.com/upa2000a.html

Tool-Supported Web Accessibility Evaluation

[Pickin et al. 2001]
A UML-integrated test description language for component testing
Pickin S., Jard C., Heuillard T., Jezequel J.M., Desfray P.; UML Workshop, 2001

[Rioux 2005]
Improving the Quality of Web-based Enterprise Application with Extended
Static Checking: A Case Study
Rioux F., Chalin P.; Proceedings of 1st International Workshop on Automated
Specification and Verification of Web Sites 2005

[Robles et al. 2005]
Promoting Accessibility by Using Metadata in the Framework of a Semantic-
Web Driven CMS
Robles R.G., Diaz del Rio F., Civit A., Prieto J.A.;
Proceedings of 10th Dublin Core Conference 2005

[Rodriguez et al. 2005]
Testing web applications in practice
Rodriguez J.J.G., Cuaresma M.J.E., Risoto M.M., Valderrama J.T.; Proceedings of 1st
Int’l Workshop on Automated Specification and Verification of Web Sites 2005

[Sinha et al. 2001]
An Empirical Analysis of Criteria for Award-Winning Websites
Sinha R., Hearst M., Ivory M.Y.; Proceedings of Human-Factors for the Web, 2001

[Stone 2005]
Validating Scripted Web-Pages
Stone R.G.; Proceedings of 1st International Workshop on Automated Specification
and Verification of Web Sites 2005

[Vigo et al. 2007]
Quantitative Metrics for Measuring Web Accessibility
Vigo M., Arrue M., Brajnik G., Lomuscio R., Abascal J.;
Proceedings of 4th W4A Conference 2007

9.2. Printed Publications
[Alpuente et al. 2005]

Proceedings of 1st International Workshop on
Automated Specification and Verification of Web Sites 2005
Alpuente M., Escobar S., Falaschi M. (eds.); Politechnic University of Valencia

[Ash 2003]
The Web Testing Companion
Ash L.; ISBN 0471430218, Wiley Publishing 2003

[Berners-Lee 1999]
Weaving the Web
Berners-Lee T.; ISBN 0062515861, Harper-Collins 1999

[Black 1999]
Managing the Testing Process
Black R.; ISBN 073560584, Microsoft Press 1999

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

88/99

Tool-Supported Web Accessibility Evaluation

[Harper and Yesilada 2008]
Web Accessibility: A Foundation for Research
Harper S., Yesilada Y. (eds.); ISBN 9781848000490, Springer 2008

[Henry 2007]
Just Ask: Integrating Accessibility Throughout Design
Henry S.L.; ISBN 9781430319528, Friends of Ed (Apress) 2007
http://www.uiaccess.com/accessucd/

[Ivory 2003a]
Automated Web Site Evaluation
Ivory M. Y.; ISBN 1402016727, Kluwer Acadamic Publishers 2003

[Kan 2004]
Metrics and Models in Software Quality Assurance
Kan S.H.; ISBN 0201729156, Addison-Wesley 2004

[Mendes and Mosely 2004]
Web Engineering
Mendes E., Mosely N. (eds.); ISBN 9783540281962, Springer-Verlag

[Mendez 2005]
Proceedings of 10th International Conference on Dublin Core
Mendez E.R. (ed.); ISBN 8489315442, Universidad Carlos III De Madrid

[Miesenberger et al. 2004]
Proceedings of 9th International Conference on
Computers Helping People with Special Needs 2004
Miesenberger K., Klaus J., Zagler W., Burger D. (eds.); ISBN 3540223347,
Springer Lecture Notes in Computer Science (LNCS) 2004

[Miesenberger et al. 2006]
Proceedings of 10th International Conference on
Computers Helping People with Special Needs 2006
Miesenberger K., Klaus J., Zagler W., Karshmer A. (eds.); ISBN 3540360204,
Springer Lecture Notes in Computer Science (LNCS) 2006

[Miesenberger et al. 2008]
Proceedings of 11th International Conference on
Computers Helping People with Special Needs 2008
Miesenberger K., Klaus J., Zagler W., Karshmer A. (eds.); ISBN 9783540705390,
Springer Lecture Notes in Computer Science (LNCS) 2008

[Mueller 2003]
Accessibility for Everybody:
Understanding the Section 508 Accessibility Requirements
Mueller J.P.; ISBN 1590590864, Apress 2003

[Nielsen 1993]
Usability Engineering
Nielsen J.; ISBN 9780125184069, Academic Press, 1993

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

89/99

http://www.uiaccess.com/accessucd/

Tool-Supported Web Accessibility Evaluation

[Paciello 2000]
Web Accessibility for People with Disabilities
Paciello M.G.; ISBN 1929629087, CMP Books, 2000

[Slatin and Rush 2002]
Maximum Accessibility: Making Your Web Site More Usable for Everyone
Slatin J., Rush S.; ISBN 0201774224, Addison-Wesley, 2002

[Stary and Stephanidis 2004]
Proceedings of 8th International Workshop of User Interfaces for All: User-
Centered Interaction Paradigms for Universal Access in the Information Society
Stary C., Stephanidis C. (eds.); ISBN 354023375X, Springer LNCS 2004

[Thatcher et al. 2002]
Constructing Accessible Web Sites
Thatcher J., Bohman P., Burks M., Henry S.L., Regan B., Swierenga S., Urban M.,
Waddell C.D.; ISBN 1590591488, glasshaus (Apress) 2002

[Thatcher et al. 2006]
Web Accessibility: Web Standards and Regulatory Compliance
Thatcher J., Burks M.R., Heilmann C., Henry S.L., Kirkpatrick A., Lauke P.H.,
Lawson B., Regan B., Rutter R., Urban M., Waddell C.D.;
ISBN 9781590596388, Friends of Ed (Apress) 2006

9.3. Online Publications
[UI Access, 1]

Web Accessibility Evaluation Tools Need People
UI Access – Henry S.L.; http://www.uiaccess.com/evaltools.html, August 2002

[UI Access, 2]
About Web Accessibility
UI Access – Henry S.L.; http://www.uiaccess.com/accessibility.html

[UWEM]
Unified Web Evaluation Methodology (UWEM)
WAB Cluster; http://www.wabcluster.org/uwem1_2/

[WAI, 1]
Introduction to Web Accessibility
W3C Education and Outreach Working Group (EOWG) – Henry S.L. (ed.);
http://www.w3.org/WAI/intro/accessibility.php

[WAI, 2]
Essential Components of Web Accessibility
W3C Education and Outreach Working Group (EOWG) – Henry S.L. (ed.);
http://www.w3.org/WAI/intro/components.php

[WAI, 3]
How People with Disabilities Use the Web – Draft, 5 May 2005
W3C Education and Outreach Working Group (EOWG) – Brewer J. (ed.);
http://www.w3.org/WAI/EO/Drafts/PWD-Use-Web/

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

90/99

http://www.uiaccess.com/evaltools.html
http://www.uiaccess.com/accessibility.html
http://www.wabcluster.org/uwem1_2/
http://www.w3.org/WAI/intro/accessibility.php
http://www.w3.org/WAI/intro/components.php
http://www.w3.org/WAI/EO/Drafts/PWD-Use-Web/

Tool-Supported Web Accessibility Evaluation

[WAI, 4]
Developing a Web Accessibility Business Case for Your Organization
W3C Education and Outreach Working Group (EOWG) – Henry S.L. (ed.);
http://www.w3.org/WAI/bcase/

[WAI, 5]
Web Content Accessibility Guidelines (WCAG) Overview
W3C Education and Outreach Working Group (EOWG) – Henry S.L. (ed);
http://www.w3.org/WAI/intro/wcag.php

[WAI, 6]
Authoring Tool Accessibility Guidelines (ATAG) Overview
W3C Education and Outreach Working Group (EOWG) – Henry S.L. (ed.);
http://www.w3.org/WAI/intro/atag.php

[WAI, 7]
User Agent Accessibility Guidelines (UAAG) Overview
W3C Education and Outreach Working Group (EOWG) – Henry S.L. (ed.);
http://www.w3.org/WAI/intro/uaag.php

[WAI, 8]
Accessible Rich Internet Applications (WAI-ARIA) Overview
W3C Education and Outreach Working Group (EOWG) – Henry S.L. (ed.);
http://www.w3.org/WAI/intro/aria.php

[WAI, 9]
Evaluation and Report Language (EARL) Overview
W3C Education and Outreach Working Group (EOWG) – Abou-Zahra S., Henry S.L.
(eds.); http://www.w3.org/WAI/intro/earl.php

[WAI, 10]
Accessibility Improvements in HTML 4.0
W3C Education and Outreach Working Group (EOWG) – Jacobs I., Brewer J.,
Dardailler D. (eds.); http://www.w3.org/WAI/References/HTML4-access

[WAI, 11]
Web Content Accessibility and Mobile Web: Making a Web Site Accessible Both
for People with Disabilities and for Mobile Devices
W3C Education and Outreach Working Group (EOWG) and W3C Mobile Web Best
Practices Working Group (BPWG) – Thorp J., Henry S.L. et al (eds.);
http://www.w3.org/WAI/mobile/

[WAI, 12]
WAI: Ageing Education and Harmonization (IST 035015)
W3C Web Accessibility Initiative (WAI); http://www.w3.org/WAI/WAI-AGE/

[WAI, 13]
Policies Relating to Web Accessibility
W3C Education and Outreach Working Group (EOWG) – Henry S.L. (ed.);
http://www.w3.org/WAI/Policy/

[WAI, 14]
Why Standards Harmonization is Essential to Web Accessibility
W3C Education and Outreach Working Group (EOWG) – Brewer J. (ed.);
http://www.w3.org/WAI/Policy/harmon.html

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

91/99

http://www.w3.org/WAI/bcase/
http://www.w3.org/WAI/intro/wcag.php
http://www.w3.org/WAI/intro/atag.php
http://www.w3.org/WAI/intro/uaag.php
http://www.w3.org/WAI/intro/aria.php
http://www.w3.org/WAI/intro/earl.php
http://www.w3.org/WAI/References/HTML4-access
http://www.w3.org/WAI/mobile/
http://www.w3.org/WAI/WAI-AGE/
http://www.w3.org/WAI/Policy/
http://www.w3.org/WAI/Policy/harmon.html

Tool-Supported Web Accessibility Evaluation

[WAI, 15]
How WAI Develops Accessibility Guidelines through the W3C Process:
Milestones and Opportunities to Contribute
W3C Education and Outreach Working Group (EOWG) – Henry S.L. (ed);
http://www.w3.org/WAI/intro/w3c-process.php

[WAI, 16]
Comparison of WCAG 1.0 Checkpoints to WCAG 2.0, in Numerical Order
W3C Education and Outreach Working Group (EOWG) and W3C Web Content
Accessibility Guidelines Working Group (WCAG WG);
http://www.w3.org/WAI/WCAG20/from10/comparison/

[WAI, 17]
Preliminary Review of Web Sites for Accessibility
W3C Education and Outreach Working Group (EOWG) – Abou-Zahra S. (ed);
http://www.w3.org/WAI/eval/preliminary.html

[WAI, 18]
Conformance Evaluation of Web Sites for Accessibility
W3C Education and Outreach Working Group (EOWG) – Abou-Zahra S. (ed);
http://www.w3.org/WAI/eval/conformance.html

[WAI, 19]
Involving Users in Web Accessibility Evaluation
W3C Education and Outreach Working Group (EOWG) – Henry S.L. (ed);
http://www.w3.org/WAI/eval/users.html

[WAI, 20]
Evaluation Approaches for Specific Contexts
W3C Education and Outreach Working Group (EOWG) – Abou-Zahra S. (ed);
http://www.w3.org/WAI/eval/considerations.html

[WAI, 21]
Using Combined Expertise to Evaluate Web Accessibility
W3C Education and Outreach Working Group (EOWG) – Brewer J. (ed);
http://www.w3.org/WAI/eval/reviewteams.html

[WAI, 22]
Selecting Web Accessibility Evaluation Tools
W3C Education and Outreach Working Group (EOWG) – Abou-Zahra S. (ed);
http://www.w3.org/WAI/eval/selectingtools.html

[WAI, 23]
Web Accessibility Evaluation Tools
W3C Education and Outreach Working Group (EOWG) and W3C Evaluation and
Repair Tools Working Group (ERT WG) – Abou-Zahra S. (ed);
http://www.w3.org/WAI/ER/tools/

[WAI, 24]
WCAG 2.0 Test Samples
W3C Evaluation and Repair Tools Working Group (ERT WG) and W3C Web Content
Accessibility Guidelines Working Group (WCAG WG);
http://www.w3.org/WAI/ER/tests/

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

92/99

http://www.w3.org/WAI/intro/w3c-process.php
http://www.w3.org/WAI/WCAG20/from10/comparison/
http://www.w3.org/WAI/eval/preliminary.html
http://www.w3.org/WAI/eval/conformance.html
http://www.w3.org/WAI/eval/users.html
http://www.w3.org/WAI/eval/considerations.html
http://www.w3.org/WAI/eval/reviewteams.html
http://www.w3.org/WAI/eval/selectingtools.html
http://www.w3.org/WAI/ER/tools/
http://www.w3.org/WAI/ER/tests/

Tool-Supported Web Accessibility Evaluation

[WebAIM, 1]
Accessibility Evaluation Tools
Article by WebAIM; http://www.webaim.org/articles/tools/

[WebAIM, 2]
A Review of Free, Online Accessibility Tools
Article by WebAIM; http://www.webaim.org/articles/freetools/

[WebAIM, 3]
Using the AIS Web Accessibility Toolbar
Article by WebAIM, Steve Faulkner, August 2005;
http://www.webaim.org/articles/ais/

[WebAIM, 4]
Evaluating Web Sites for Accessibility with the Firefox Web Developer Toolbar
Article by WebAIM, Patrick H. Lauke, September 2005;
http://www.webaim.org/articles/evaluatingwithfirefox/

[WebAIM, 5]
Toward User-Centered, Scenario-Based Planning and Evaluation Tools
Article by WebAIM, July 2004; http://www.webaim.org/articles/scenarios/

[WebAIM, 6]
Planning, Evaluation, Repair, and Maintenance
Article by WebAIM; http://www.webaim.org/articles/process/

9.4. Standards
[ECMAScript]

ECMAScript Language Specification
Standard ECMA-262 – 3rd Edition, December 1999;
http://www.ecma-international.org/publications/standards/Ecma-262.htm

[ISO 9241-171]
Ergonomics of Human-System Interaction – Part 171:
Guidance of Software Accessibility
TC 159/SC 4; ISO 9241-171:2008

[ISO 12207]
Software Life Cycle Processes
JTC 1/SC 7; ISO 12207:2008

[ISO 26300]
Information Technology – Open Document Format for Office Applications
JTC 1/SC 34; ISO 26300:2006

[ISO 32000]
Document Management – Portable Document Format – Part 1 : PDF 1.7
ISO TC 171/SC 2; ISO 32000-1:2008

[W3C, 1]
Accessibility Features of CSS
W3C Protocols and Formats Working Group (PFWG) – Jacobs I., Brewer J. (eds.);
http://www.w3.org/TR/CSS-access

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

93/99

http://www.webaim.org/articles/tools/
http://www.webaim.org/articles/freetools/
http://www.webaim.org/articles/ais/
http://www.webaim.org/articles/evaluatingwithfirefox/
http://www.webaim.org/articles/scenarios/
http://www.webaim.org/articles/process/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.w3.org/TR/CSS-access

Tool-Supported Web Accessibility Evaluation

[W3C, 2]
Accessibility Features of SMIL
W3C Protocols and Formats Working Group (PFWG) – Koivunen M.R., Jacobs I.,
(eds.); http://www.w3.org/TR/SMIL-access/

[W3C, 3]
Accessibility Features of SVG
W3C Protocols and Formats Working Group (PFWG) – McCathieNevile C.,
Koivunen M.R. (eds.); http://www.w3.org/TR/SVG-access/

[W3C, 4]
Web Accessibility for Older Users: A Literature Review
W3C Education and Outreach Working Group (EOWG) – Arch A.;
http://www.w3.org/TR/wai-age-literature/

[W3C, 5]
Web Content Accessibility Guidelines 1.0
W3C Web Content Accessibility Guidelines Working Group (WCAG WG) –
Chisholm W., Vanderheiden G., Jacobs I. (eds.); http://www.w3.org/TR/WCAG10/

[W3C, 6]
Techniques for Web Content Accessibility Guidelines 1.0
W3C Web Content Accessibility Guidelines Working Group (WCAG WG) –
Chisholm W., Vanderheiden G., Jacobs I. (eds.);
http://www.w3.org/TR/WCAG10-TECHS/

[W3C, 7]
Core Techniques for Web Content Accessibility Guidelines 1.0
W3C Web Content Accessibility Guidelines Working Group (WCAG WG) –
Chisholm W., Vanderheiden G., Jacobs I. (eds.);
http://www.w3.org/TR/WCAG10-CORE-TECHS/

[W3C, 8]
HTML Techniques for Web Content Accessibility Guidelines 1.0
W3C Web Content Accessibility Guidelines Working Group (WCAG WG) –
Chisholm W., Vanderheiden G., Jacobs I. (eds.);
http://www.w3.org/TR/WCAG10-HTML-TECHS/

[W3C, 9]
CSS Techniques for Web Content Accessibility Guidelines 1.0
W3C Web Content Accessibility Guidelines Working Group (WCAG WG) –
Chisholm W., Vanderheiden G., Jacobs I. (eds.);
http://www.w3.org/TR/WCAG10-CSS-TECHS/

[W3C, 10]
Checklist of Checkpoints for Web Content Accessibility Guidelines 1.0
W3C Web Content Accessibility Guidelines Working Group (WCAG WG) –
Chisholm W., Vanderheiden G., Jacobs I. (eds.);
http://www.w3.org/TR/WCAG10/full-checklist

[W3C, 11]
Techniques for Accessibility Evaluation and Repair Tools – Draft, 26 April 2000
W3C Evaluation and Repair Tools Working Group (ERT WG) – Ridpath C.,
Chisholm W. (eds.); http://www.w3.org/TR/AERT

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

94/99

http://www.w3.org/TR/SMIL-access/
http://www.w3.org/TR/SVG-access/
http://www.w3.org/TR/wai-age-literature/
http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG10-TECHS/
http://www.w3.org/TR/WCAG10-CORE-TECHS/
http://www.w3.org/TR/WCAG10-HTML-TECHS/
http://www.w3.org/TR/WCAG10-CSS-TECHS/
http://www.w3.org/TR/WCAG10/full-checklist
http://www.w3.org/TR/AERT

Tool-Supported Web Accessibility Evaluation

[W3C, 12]
Authoring Tool Accessibility Guidelines 1.0
W3C Authoring Tool Accessibility Guidelines Working Group (AUWG) – Treviranus
J., McCathieNevile C., Jacobs I., Richards J. (eds.); http://www.w3.org/TR/ATAG10/

[W3C, 13]
Techniques for Authoring Tool Accessibility Guidelines 1.0
W3C Authoring Tool Accessibility Guidelines Working Group (AUWG) – Treviranus
J., McCathieNevile C., Richards J., Rosmaita G. (eds.);
http://www.w3.org/TR/ATAG10-TECHS/

[W3C, 14]
Checklist of Checkpoints for Authoring Tool Accessibility Guidelines 1.0
Treviranus J., McCathieNevile C., Jacobs I., Richards J. (eds.) ;
http://www.w3.org/TR/ATAG10/atag10-chktable

[W3C, 15]
User Agent Accessibility Guidelines (UAAG) 1.0
W3C User Agent Accessibility Guidelines Working Group (UAWG) – Jacobs I.,
Gunderson J., Hansen E. (eds.); http://www.w3.org/TR/UAAG10/

[W3C, 16]
Techniques for User Agent Accessibility Guidelines 1.0
W3C User Agent Accessibility Guidelines Working Group (UAWG) – Jacobs I.,
Gunderson J., Hansen E. (eds.); http://www.w3.org/TR/UAAG10-TECHS/

[W3C, 17]
Table of Checkpoints for User Agent Accessibility Guidelines 1.0
W3C User Agent Accessibility Guidelines Working Group (UAWG) – Jacobs I.,
Gunderson J., Hansen E. (eds.); http://www.w3.org/TR/UAAG10/uaag10-chktable

[W3C, 18]
Web Content Accessibility Guidelines 2.0 – Draft, 30 April 2008
W3C Web Content Accessibility Guidelines Working Group (WCAG WG) –
Caldwell B., Cooper M., Guarino Reid L., Vanderheiden G. (eds.);
http://www.w3.org/TR/WCAG20/

[W3C, 19]
How to Meet WCAG 2.0 – Draft, 30 April 2008
W3C Web Content Accessibility Guidelines Working Group (WCAG WG) –
Vanderheiden G., Guarino Reid L., Caldwell B., Henry S.L., (eds.);
http://www.w3.org/WAI/WCAG20/quickref/

[W3C, 20]
Understanding WCAG 2.0 – Draft, 30 April 2008
W3C Web Content Accessibility Guidelines Working Group (WCAG WG) –
Caldwell B., Cooper M., Guarino Reid L., Vanderheiden G. (eds.);
http://www.w3.org/TR/UNDERSTANDING-WCAG20/

[W3C, 21]
Techniques for WCAG 2.0 – Draft, 30 April 2008
W3C Web Content Accessibility Guidelines Working Group (WCAG WG) –
Caldwell B., Cooper M., Guarino Reid L., Vanderheiden G. (eds.);
http://www.w3.org/TR/WCAG20-TECHS/

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

95/99

http://www.w3.org/TR/ATAG10/
http://www.w3.org/TR/ATAG10-TECHS/
http://www.w3.org/TR/ATAG10/atag10-chktable
http://www.w3.org/TR/UAAG10/
http://www.w3.org/TR/UAAG10-TECHS/
http://www.w3.org/TR/UAAG10/uaag10-chktable
http://www.w3.org/TR/WCAG20/
http://www.w3.org/WAI/WCAG20/quickref/
http://www.w3.org/TR/UNDERSTANDING-WCAG20/
http://www.w3.org/TR/WCAG20-TECHS/

Tool-Supported Web Accessibility Evaluation

[W3C, 22]
Authoring Accessibility Guidelines 2.0 – Draft, 10 March 2008
W3C Authoring Tool Accessibility Guidelines Working Group (AUWG) – Treviranus
J., Richards J. (eds.); http://www.w3.org/TR/ATAG20/

[W3C, 23]
Implementation Techniques for Authoring Accessibility Guidelines 2.0 – Draft,
10 March 2008
W3C Authoring Tool Accessibility Guidelines Working Group (AUWG) – Treviranus
J., Richards J., Boland T. (eds.); http://www.w3.org/TR/ATAG20-TECHS/

[W3C, 24]
User Agent Accessibility Guidelines 2.0 – Draft, 12 March 2008
W3C User Agent Accessibility Guidelines Working Group (UAWG) – Allan J.,
Richards J. (eds.); http://www.w3.org/TR/UAAG20/

[W3C, 25]
XML Accessibility Guidelines – Draft, 3 October 2002
W3C Protocols and Formats Working Group (PFWG) – Dardailler D., Palmer S.B.,
McCathieNevile C. (eds.); http://www.w3.org/TR/xag

[W3C, 26]
Accessible Rich Internet Applications (WAI-ARIA) 1.0 – Draft, 4 February 2008
W3C Protocols and Formats Working Group (PFWG) – Seeman L., Coopers M.,
Schwerdtfeger S., Pappas L. (eds.); http://www.w3.org/TR/wai-aria/

[W3C, 27]
Evaluation and Report Language (EARL) Schema 1.0 – Draft, 23 March 2007
W3C Evaluation and Repair Tools Working Group (ERT WG) – Abou-Zahra S. (ed.);
http://www.w3.org/TR/EARL10-Schema/

[W3C, 28]
Evaluation and Report Language (EARL) Guide 1.0 – Draft, 2 August 2007
W3C Evaluation and Repair Tools Working Group (ERT WG) – Velasco C.A., Koch
J., Abou-Zahra S. (eds.); http://www.w3.org/TR/EARL10-Guide/

[W3C, 29]
HTTP Vocabulary in RDF – Draft, 23 March 2007
W3C Evaluation and Repair Tools Working Group (ERT WG) – Velasco C.A., Koch
J., Abou-Zahra S. (eds.); http://www.w3.org/TR/HTTP-in-RDF/

[W3C, 30]
Representing Content in RDF – Draft, 27 June 2008
W3C Evaluation and Repair Tools Working Group (ERT WG) – Koch J., Velasco
C.A. (eds.); http://www.w3.org/TR/Content-in-RDF/

[W3C, 31]
Pointer Methods in RDF – Draft, 23 June 2008
W3C Evaluation and Repair Tools Working Group (ERT WG) – Iglesias C. (ed.);
http://www.w3.org/TR/Pointers/

[W3C, 32]
W3C Resource Description Framework (RDF)
http://www.w3.org/RDF/

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

96/99

http://www.w3.org/TR/ATAG20/
http://www.w3.org/TR/ATAG20-TECHS/
http://www.w3.org/TR/UAAG20/
http://www.w3.org/TR/xag
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/EARL10-Schema/
http://www.w3.org/TR/EARL10-Guide/
http://www.w3.org/TR/HTTP-in-RDF/
http://www.w3.org/TR/Content-in-RDF/
http://www.w3.org/TR/Pointers/
http://www.w3.org/RDF/

Tool-Supported Web Accessibility Evaluation

[W3C, 33]
SPARQL Protocol for RDF
W3C RDF Data Access Working Group (DAWG) – Clark K.G., Feigenbaum L.,
Torres E. (eds.); http://www.w3.org/TR/rdf-sparql-protocol/

[W3C, 34]
SPARQL Query Language for RDF
W3C RDF Data Access Working Group (DAWG) – Prud'hommeaux E., Seaborne A.
(eds.); http://www.w3.org/TR/rdf-sparql-query/

[W3C, 35]
SPARQL Query Results XML Format
W3C RDF Data Access Working Group (DAWG) – Beckett D., Broekstra J. (eds.);
http://www.w3.org/TR/rdf-sparql-XMLres/

[W3C, 36]
Web Services Description Language (WSDL) Version 2.0
Chinnici R., Moreau J-J., Ryman A., Weerawarana S. (eds.);
http://www.w3.org/TR/wsdl20/

[W3C, 37]
Test Metadata
W3C Quality Assurance Working Group (QA WG) – Curran P., Dubost K. (eds.);
http://www.w3.org/TR/test-metadata/

[W3C, 38]
RDFa Primer: Bridging the Human and Data Webs
W3C Semantic Web Deployment Working Group (SWD WG) – Adida B., Birbeck M.
(eds.); http://www.w3.org/TR/xhtml-rdfa-primer/

[W3C, 39]
RDFa in XHTML: Syntax and Processing
W3C Semantic Web Deployment Working Group (SWD WG) – Adida B., Birbeck M.,
McCarron S., Pemberton S. (eds.); http://www.w3.org/TR/rdfa-syntax/

[W3C, 40]
Gleaning Resource Descriptions from Dialects of Languages (GRDDL)
W3C GRDDL Working Group – Connolly D. (ed.); http://www.w3.org/TR/grddl/

[W3C, 41]
Rules Interchange Format (RIF)
W3C Rules Interchange Format Working Group (RIF);
http://www.w3.org/2005/rules/wg/

[W3C, 42]
Protocol for Web Description Resources (POWDER): Description Resources
– Draft, 15 August 2008
W3C POWDER Working Group – Archer P., Smith K., Perego A. (eds);
http://www.w3.org/TR/powder-dr/

[W3C, 43]
Protocol for Web Description Resources (POWDER): Grouping of Resources
– Draft, 15 August 2008
W3C POWDER Working Group – Archer P., Perego A., Smith K. (eds);
http://www.w3.org/TR/powder-grouping/

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

97/99

http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/test-metadata/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/grddl/
http://www.w3.org/2005/rules/wg/
http://www.w3.org/TR/powder-dr/
http://www.w3.org/TR/powder-grouping/

Tool-Supported Web Accessibility Evaluation

[W3C, 44]
Protocol for Web Description Resources (POWDER): Formal Semantics
– Draft, 15 August 2008
W3C POWDER Working Group – Konstantopoulos S., Archer P. (eds);
http://www.w3.org/TR/powder-formal/

[W3C, 45]
Mobile Web Best Practices 1.0: Basic Guidelines
W3C Mobile Web Best Practices Working Group (BPWG) – Rabin J.,
McCathieNevile C. (eds.); http://www.w3.org/TR/mobile-bp/

9.5. Organizations
[ACTF]

Accessibility Tools Framework (ACTF)
Eclipse Project; http://www.eclipse.org/actf/

[BenToWeb]
Benchmarking Tools and Methods for the Web (BenToWeb)
EC-Funded Project; http://www.bentoweb.org

[DCMI]
Dublin Core Metadata Initiative
http://www.dublincore.org

[EIAO]
European Internet Accessibility Observatory
EC-Funded Project; http://www.eiao.net

[IMS]
IMS Global Learning Consortium
http://www.imsglobal.org

[ISO]
International Organization for Standardization (ISO)
http://www.iso.org

[MPEG]
Moving Picture Experts Group (MPEG)
JTC 1/SC 29/WG 11; http://www.chiariglione.org/mpeg/

[UN-CRPD]
United Nations (UN) Convention on the Rights of Persons with Disabilities
http://www.un.org/disabilities/

[W3C]
World Wide Web Consortium (W3C)
http://www.w3.org

[WAI]
W3C Web Accessibility Initiative (WAI)
http://www.w3.org/WAI/

[WAT-C]
Web Accessibility Tools Consortium (WAT-C)
http://www.wat-c.org

Master’s Thesis by Shadi Abou-Zahra (9426418), Technical University of Vienna

98/99

http://www.w3.org/TR/powder-formal/
http://www.w3.org/TR/mobile-bp/
http://www.eclipse.org/actf/
http://www.bentoweb.org/
http://www.dublincore.org/
http://www.eiao.net/
http://www.imsglobal.org/
http://www.iso.org/
http://www.chiariglione.org/mpeg/
http://www.un.org/disabilities/
http://www.w3.org/
http://www.w3.org/WAI/
http://www.wat-c.org/

	Acknowledgements
	Abstract
	Zusammenfassung
	Table of Contents
	1. Problem Description
	1.1. Introduction
	1.1.1. Context
	1.1.2. Background

	1.2. Motivation
	1.2.1. Auxiliary Benefits
	1.2.1.1. Mobile Users
	1.2.1.2. Older Users
	1.2.1.3. General Usability

	1.3. Problem Definition

	2. Current State-of-the-Art in Web Accessibility Evaluation
	2.1. Technical Standards for Web Accessibility
	2.1.1. International Standards
	2.1.1.1. W3C Web Content Accessibility Guidelines (WCAG) 2.0
	2.1.1.1.1. Evaluation Aspects
	2.1.1.1.2. Specifics and Caveats

	2.1.1.2. W3C Authoring Tool Accessibility Guidelines (ATAG) 2.0

	2.1.2. National Standards
	2.1.3. Other Standards

	2.2. Processes for Web Accessibility Evaluation
	2.2.1. Evaluation Parameters
	2.2.1.1. Scope of the Evaluation
	2.2.1.2. Thoroughness of the Evaluation
	2.2.1.3. Complexity of the Web Content
	2.2.1.4. Consistency of the Web Content
	2.2.1.5. Expertise of the Evaluators
	2.2.1.6. Tool Support for the Evaluators

	2.2.2. Testing Approaches
	2.2.2.1. Automated Testing
	2.2.2.2. Manual Testing
	2.2.2.3. User Testing

	2.2.3. Roles and Responsibilities
	2.2.3.1. Aesthetics Designer
	2.2.3.2. Application Developer
	2.2.3.3. Content Publisher
	2.2.3.4. Content Maintainer
	2.2.3.5. Project Manager
	2.2.3.6. Accessibility Expert

	2.2.4. Evaluation Methodologies
	2.2.4.1. Sampling Strategies
	2.2.4.2. Informed Methodologies

	3. Analysis of Current Web Accessibility Evaluation Tools
	3.1. Current Approach for Web Accessibility Evaluation Tools
	3.1.1. Post-Development Evaluation Paradigm
	3.1.2. Developer-Oriented Application Design
	3.1.3. Disjoined and Monolithic Architectures
	3.1.4. Centralized Responsibility and Expertise

	3.2. A Need for Integrating Web Accessibility Evaluation Tools
	3.2.1. Example 1: Integration of Manual and Automated Evaluation Tools
	3.2.2. Example 2: Integration of Authoring Tools and Evaluation Tools
	3.2.3. Example 3: Integration of Data Analysis Tools and Evaluation Tools

	4. Promising Techniques for Web Accessibility Metadata
	4.1. The W3C Evaluation and Report Language (EARL)
	4.1.1. W3C Evaluation and Report Language (EARL) 1.0 Schema
	4.1.2. W3C HTTP Vocabulary in RDF
	4.1.3. W3C Representing Content in RDF
	4.1.4. W3C Pointer Methods in RDF

	4.2. Other Relevant Semantic Web Technologies
	4.2.1 W3C Protocol for Web Description Resources (POWDER)
	4.2.2. W3C RDFa: Bridging the Human and Data Webs
	4.2.3. W3C Gleaning Resource Descriptions from Dialects of Languages
	4.2.4. W3C SPARQL Protocol and RDF Query Language (SPARQL)
	4.2.5. W3C Rule Interchange Format (RIF)

	5. Excursion: Proposed Test Description Notation Format
	5.1. Example Formalizations in Web Accessibility Evaluation Tools
	5.1.1. ATRC Accessibility Checker
	5.1.2. IBM Rule-Based Accessibility Validation Environment (RAVEn)
	5.1.3. UC3M Web Accessibility Evaluator in a single XSLT file (WAEX)
	5.1.4. WebAIM Logical Rapid Accessibility Evaluation (LRAE)

	5.2. Example Formalizations in Software Quality Assurance Tools
	5.3. Possible Approach for a Unified Test Description Notation

	6. Proposed Model for Web Accessibility Support Tools
	6.1. Framework for Distributed Web Accessibility Evaluation Tools
	6.2. Common Format for Test Descriptions – Request
	6.3. Common Format for Test Results – Response
	6.4. Common Format for Communication – Protocol

	7. Evaluation of the Proposed Tools-Supported Model
	7.1. Potential Impact on Web Accessibility Evaluation
	7.2. Relationship to Generic Web Quality Assurance
	7.3. Practical Considerations for the Implementation
	7.4. Opportunities for Research and Development

	8. Summary and Conclusions
	9. References
	9.1. Scientific Papers
	9.2. Printed Publications
	9.3. Online Publications
	9.4. Standards
	9.5. Organizations

