
Model Transformation from UML 
State Machines to Input/Output 
Symbolic Transition Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

ausgeführt von

Christopher Thurnher
Matrikelnummer 0125913 

an der
Fakultät für Informatik der Technischen Universität Wien 

Betreuung:
Betreuer: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Wien, 24.09.2008 ________________ ________________
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0  http://www.tuwien.ac.at

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 

http://www.tuwien.ac.at/


Model Transformation from UML 
State Machines to Input/Output 
Symbolic Transition Systems

MASTER'S THESIS

to obtain the academic degree

Master of  Science

within the study

Software Engineering & Internet Computing

by

Christopher Thurnher
Matriculation Number 0125913 

at the
Faculty of Informatics at the Vienna University of Technology

Supervision:
Adviser: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Vienna, 24.09.2008 ________________ ________________
(Signation Author) (Signation Adviser)

Vienna University of Technology
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0  http://www.tuwien.ac.at

http://www.tuwien.ac.at/


To my father



Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
und die aus anderen Quellen entnommenen Stellen als solche gekennzeichnet habe.

Wien, 24. 09 2008

Christopher Thurnher

ii



Acknowledgments

I would like to thank all persons who contributed in many different ways to
my master’s thesis.

Thanks to Bernhard Peischl, Martin Weiglhofer and Franz Wotawa who su-
pervised me during this thesis. They always supported me with great ideas
and fruitful discussions. Without their advice it would not have been possible
to accomplish this work.

My special thanks goes to Armin Beer who offered me the opportunity to
work at Siemens and always helped me with his substantiated knowledge and
long time experience. Thanks to the people of the Test Support Center for the
pleasant work atmosphere.

Very special thanks goes to my family. Without their support it would not
have been possible to study computer science. They made it possible to wri-
te this thesis. Thanks to my girlfriend Silvia who always believed in me and
supported me in an emotional way.

The research herein is partially conducted within the competence network
Softnet Austria (www.soft-net.at) and funded by the Austrian Federal Mi-
nistry of Economics (bm:wa), the province of Styria, the Steirische Wirt-
schaftsförderungsgesellschaft mbH. (SFG), and the city of Vienna in terms
of the center for innovation and technology (ZIT).

Thank You!

Christopher Thurnher

iii



Abstract

Testing is a very important part in software engineering. A lot of research is done in the
field of automated test case generation. There are proper tools that are able to generate
test cases from Input/Output Symbolic Transition Systems (IOSTS), a state/transition
based model. This representation is however not used in industry for system specification
purposes. UML has become the de facto standard in this area.

This thesis fills the gap between system specification with UML 2 and automated
test case generation based on IOSTS. It presents a model transformation from UML 2
to Input/Output Symbolic Transition Systems. The generated IOSTS may then be used
by tools that are capable of automated test case generation based on IOSTS like the
Symbolic Test Generator (STG) that is also used in this thesis.

The test case generation process is based on conformance testing. Conformance test-
ing means testing a system specification against an implementation according to a con-
formance relation. In the context of this thesis, the sioco (symbolic input output confor-
mance) conformance relation is discussed, as well as the ioco (input output conformance)
conformance relation, the sioco relation is based on. A detailed description of IOSTS is
also part of this thesis as well as an explanation of the test case generation process.

UML is very general, there exist a lot of diagrams and elements for system specification
purposes. The subset of UML that is used by the transformation is also described in this
thesis.

The main part of this work is the transformation algorithm. There is a detailed
description how elements of UML are mapped to elements of IOSTS. A pseudocode im-
plementation of the algorithm is also part of this thesis. The transformation should not
rely on the tool that uses the IOSTS, so a general IOSTS meta model is introduced.
The transformation is split in two parts, a model to model transformation to generate an
IOSTS model that conforms to the IOSTS meta model defined in this thesis and a model
to text transformation to generate a specific textual representation an arbitrary tool can
handle (like the STG tool).

The transformation is illustrated by a practical example. The Conference Protocol
is used for this purpose. The example shows the whole transformation, starting with an
UML specification. The result is an IOSTS system specification in the STG language. The
STG tool is chosen since it is able to handle Input/Output Symbolic Transition Systems.

Last, some ideas about how the transformation may be improved in some future work
are introduced.

iv



Zusammenfassung

Testen ist sehr wichtig im Software Engineering Prozess. Automatische Testfallgenerie-
rung ist ein aktuelles Forschungsgebiet. Es gibt sehr gute Tools, die Testfälle ausgehend
von Input/Output Symbolic Transition Systems (IOSTS), ein auf State/Transition basie-
rendes Modell, erzeugen können. Diese Repräsentation wird in der Industrie jedoch nicht
zur Systemspezifikation verwendet. UML ist der de facto Standard in diesen Gebiet.

Diese Diplomarbeit schließt die Lücke zwischen der Systemspezifikation anhand von
UML 2 und den Möglichkeiten der automatisierten Testfallgenerierung basierend auf
IOSTS. Eine Modelltransformation von UML 2 zu IOSTS wird präsentiert. Tools, die
die Fähigkeit besitzen anhand von IOSTS Spezifikationen Testfälle zu generieren, können
diese dann nutzen. Der Symbolic Test Generator (STG), welcher auch im Rahmen dieser
Diplomarbeit vorgestellt wird, ist eines dieser Tools.

Der automatisierte Testfallgenerierungsprozess basiert auf Conformance Testing. Dies
bedeutet eine System Spezifikation anhand einer Conformance Relation mit einer Imple-
mentierung zu testen. Im Rahmen dieser Arbeit wird sowohl die sioco (symbolic input
output conformance), als auch die ioco (input output conformance) Conformance Relati-
on vorgestellt, da die sioco Relation auf ioco basiert. Des Weiteren werden sowohl IOSTS,
als auch der Testfallgenerierungsprozess genau erläutert und definiert.

UML ist sehr allgemein, es existieren sehr viele Diagramme und Elemente mit denen
Systeme spezifiziert werden können. Deshalb benutzt der Transformationsalgorithmus der
in dieser Arbeit vorgestellt wird nur eine Teilmenge von UML. Diese Teilmenge wird im
Rahmen der Diplomarbeit genau spezifiziert.

Der Hauptteil dieser Arbeit ist der Transformationsalgorithmus. Es wird sehr detail-
liert erklärt, wie die UML Elemente auf die IOSTS Elements abgebildet werden. Eine
Pseudocode Implementierung des Algorithmus wird auch präsentiert. Da die Transfor-
mation nicht vom Tool, das die generierten IOSTS benützt, abhängen soll, wird ein all-
gemeines IOSTS Metamodell eingeführt. Die eigentliche Transformation ist aufgeteilt in
eine Modell zu Modell Transformation, um ein IOSTS Modell zu generieren, welches dem
allgemeinen Metamodell entspricht und in eine Modell zu Text Transformation, um die
spezifische textuelle Repräsentation zu erstellen mit der ein beliebiges Tool umgehen kann.

Ein praktischen Beispiel, das Conference Protocol, veranschaulicht die Transformation.
Dieses Beispiel zeigt den gesamten Transformationsprozess ausgehend von einer UML
Spezifikation. Das Ergebnis ist eine IOSTS Spezifikation welche das STG Tool lesen kann.
Dieses Tool wird verwendet da es mit IOSTS umgehen kann.

Abschließend werden einige Ideen präsentiert, welche die Transformation in zukünfti-
gen Arbeiten verbessern können.

v



Contents

Erklärung ii

Acknowledgments iii

Abstract iv

Zusammenfassung v

Contents vi

List of figures x

List of tables xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Task Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Test Case Generation with UMLAUT and TGV . . . . . . . . . . . . . . . 6
2.3 AGEDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 OMEGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 The ioco Test Theory 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Definition of IOLTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 The ioco Conformance Relation . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Input Output Symbolic Transition Systems (IOSTS) 16
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Definition of IOSTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Conformance Testing with IOSTS . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Test Case Generation Process . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



CONTENTS vii

5 The Symbolic Test Generator (STG) 23
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 STG Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 STG Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.1 System Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.2 Test Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.3 Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 STG Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 UML 29
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.1 Structural Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3.2 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4.1 Behavioral Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4.2 State Machine Diagram . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4.3 Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.5 Extensibility Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.5.1 Stereotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.5.2 Tagged Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.5.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.6 OCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Transformation from UML to IOSTS 45
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 UML Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 Transformation of the Elements . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3.2 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.4 Pseudo Code of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4.1 Function createModel(modelUML) . . . . . . . . . . . . . . . . . . 54
7.4.2 Function createSystem(classUML) . . . . . . . . . . . . . . . . . . . 54
7.4.3 Function createProcess(stateMachineUML) . . . . . . . . . . . . . . 55
7.4.4 Function createState(stateUML) . . . . . . . . . . . . . . . . . . . . 55
7.4.5 Function createTransition(transitionUML) . . . . . . . . . . . . . . 56
7.4.6 Function splitTransition(transitionUML) . . . . . . . . . . . . . . . 56
7.4.7 Function processBehavior(activityUML) . . . . . . . . . . . . . . . 61
7.4.8 Function processStereotype(behavorialFeatureUML) . . . . . . . . . 61
7.4.9 Function combineTransition(incomingUML, outgoingUML) . . . . . 62

8 Implementation 63
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2 Eclipse Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2.1 Eclipse Modeling Framework . . . . . . . . . . . . . . . . . . . . . . 64



CONTENTS viii

8.2.2 openArchitectureWare (oAW) . . . . . . . . . . . . . . . . . . . . . 65
8.3 Test Case Generation Workflow . . . . . . . . . . . . . . . . . . . . . . . . 66
8.4 IOSTS Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.5 IOSTS Meta Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.6.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.6.2 Guards and Assignments . . . . . . . . . . . . . . . . . . . . . . . . 71
8.6.3 Owner Association . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9 Example: Conference Protocol 73
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.3 UML Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.3.1 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3.2 StateMachineDiagram . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.3.3 Differences to the Original Protocol . . . . . . . . . . . . . . . . . . 79

9.4 Conference Protocol IOSTS . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10 Future Work 81

11 Conclusion 84

A STG Language Specification 86

B Conference Protocol in STG Language 88

Bibliography 92



List of Figures

1.1 Overall Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Test Case Generation Workflow with UMLAUT and TGV (source: [Pickin
et al., 2002]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 IF Toolset (source: [Bozga et al., 2004] . . . . . . . . . . . . . . . . . . . . 9

3.1 Three IOLTS, one specification L and two implementations P1 and P2 . . . 14

4.1 Test Case Generation Process . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 STG Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Coffee Machine Specification (source [IRISA, 2008a]) . . . . . . . . . . . . 26
5.3 Coffee Machine Test Purpose [Clarke et al., 2002] . . . . . . . . . . . . . . 27
5.4 Coffee Machine Test Case (source [IRISA, 2008a]) . . . . . . . . . . . . . . 28

6.1 Simple Class Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 UML Packages that support Behavioral Modeling (source: [OMG, 2007b],

page 215) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Basic Behaviors (source: [OMG, 2007b], page 424) . . . . . . . . . . . . . . 34
6.4 Triggers (source: [OMG, 2007b], page 426) . . . . . . . . . . . . . . . . . . 35
6.5 Events (source: [OMG, 2007b], page 426) . . . . . . . . . . . . . . . . . . . 35
6.6 State Machine Meta Model (source: [OMG, 2007b], page 525) . . . . . . . 36
6.7 Final and Composite State . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.8 Initial and Choice Pseudostate . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.9 Two Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.10 ValueSpecification (source: [OMG, 2007b], page 28) . . . . . . . . . . . . . 41
6.11 Part of the Activity Meta Model (source: [OMG, 2007b], page 298 and 299) 41
6.12 Example of an Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1 Notation of the IOSTS Diagrams . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 IOSTS Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 IOSTS Final State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4 Transformation of an UML Choice Pseudostate to IOSTS . . . . . . . . . . 47
7.5 Call or Signal Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.6 Transformation of an UML Call Event to IOSTS . . . . . . . . . . . . . . . 49
7.7 Transformation of an UML Signal Event to IOSTS . . . . . . . . . . . . . 49
7.8 Two different Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



LIST OF FIGURES x

7.9 Transformation of an UML Call Operation Action to IOSTS . . . . . . . . 50
7.10 Transformation of an UML Send Signal Action to IOSTS . . . . . . . . . . 50
7.11 Value Specification Action . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.12 Transformation of a Value Specification Action to IOSTS . . . . . . . . . . 51
7.13 Multiple Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.14 Transformation of Multiple Actions of an UML Effect to IOSTS . . . . . . 52
7.15 Trigger and Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.16 Transformation of an UML Transition with Trigger and Effect to IOSTS . 53

8.1 Ecore Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2 Test Case Generation Workflow . . . . . . . . . . . . . . . . . . . . . . . . 66
8.3 Transformation Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.4 IOSTS Meta Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.1 CPE Interfaces (source: [ConfProt, 2008]) . . . . . . . . . . . . . . . . . . . 75
9.2 Class Diagram of the Conference Protocol . . . . . . . . . . . . . . . . . . 76
9.3 State Machine Diagram of the Conference Protocol . . . . . . . . . . . . . 77
9.4 IOSTS CPE Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10.1 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



List of Tables

9.1 Event - Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.2 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Task Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1



CHAPTER 1. INTRODUCTION 2

1.1 Motivation

Testing is a crucial part in almost any software engineering process. Especially in safety
critical systems, testing should be a major step in order to improve the propriety of the
systems. Nowadays, systems become more and more complex, so the effort that has to
be taken in testing increases. Manual testing is not always the best procedure, a lot of
research is made in the field of automatic test case generation.

One approach is test case generation from a formal system specification. There are
various tools that are able to generate executable test cases from specification languages
that are based on state/transition systems. Input/Output Labelled Transition Systems
(IOLTS, [Tretmans, 1996]) and Input/Output Symbolic Transition Systems (IOSTS,
[Rusu et al., 2000], [Frantzen et al., 2005]) are examples of these systems. The Sym-
bolic Test Generator (STG, [IRISA, 2008a]) is a tool that is able to generate executable
test cases from an IOSTS system specification.

Unfortunately, IOSTS are not really used in industry in order to formulate a system
specification. One reason for this may be that there are no tools that simplify the gen-
eration of an IOSTS. This however is certainly not the only one. Nowadays, the Unified
Modeling Language (UML, [OMG, 2007a], [OMG, 2007b]) has become the de facto stan-
dard for software specification purposes in industry. There exist various diagrams that
help to formalize almost any aspect of a system.

The goal of this diploma thesis is to fill the gap between UML modelling and automatic
test case generation from IOSTS (used by the STG tool). Since there exist tools that are
able to generate proper test cases from an IOSTS specification, the transformation from
an UML model to an IOSTS model in the STG language specification is a step towards
generating test cases from UML. Thus, a model transformation is the main part of this
thesis.

The UML specification is very complex and general. In order to perform the trans-
formation only a subset of the UML specification is used. The selection of this subset, as
well as the restrictions that have to be made is also part of this thesis. The main focus is
to show that a transformation is feasible, not to incorporate as many parts of the UML
specification as possible.

1.2 Task Outline

Figure 1.1 shows the overall task of generating executable test cases from UML models.
First, an UML model has to be constructed with an UML modeling tool. After that,
the model is passed to the IOSTS Generator. This is where the actual transformation
takes place. The generator takes as argument an UML model and produces one or more
IOSTS system specifications that conform to the STG language specification described
in Chapter 5.4. This specification is then passed to the STG tool. The STG tool is able
to generate executable test cases from an IOSTS system specification. Actually, the STG
tool does not generate the executable test cases directly. It first generates symbolic test
cases that are then transformed to executable test cases using a test driver. It also needs a
test purpose in order to generate executable test cases (see Section 5.2), but generating the
test purpose is not scope of this thesis, only the transformation from UML to an IOSTS



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Overall Task

specification is taken into account. The yellow frame in Figure 1.1 denotes the part of
the overall task that is covered in this thesis. It is supposed to fill the gap between UML
modelling and test case generation from Input/Output Symbolic Transition Systems.

1.3 Thesis Outline

Chapter 2 gives an overview of some projects that comprise a transformation from UML to
a state/transition based system in order to generate test cases. There are transformations
to IOLTS as well as transformations to the IF (Intermediate Format) language [Bozga
et al., 2002].

Chapter 3 comprises some theoretical background. Since an IOSTS that is used in
the transformation as target representation is based on IOLTS, a definition of IOLTS as
well as the introduction of the ioco conformance relation, an integral part in the theory
of conformance testing, is given. An example is also part of that chapter.

The next chapter (Chapter 4) provides a definition of IOSTS. Conformance testing
with IOSTS is also explained in this chapter. After that, the test case generation process
from IOSTS is shown in detail.

The STG tool is introduced in Chapter 5. The overall workflow that is provided by
this tool is explained. After that, an example for the test case generation process is given.
Last, the IOSTS language specification used by the STG tool is introduced.

Chapter 6 gives an overview of UML. There is a detailed description of the parts
of UML that are used by the transformation, i.e. Class, State Machine and Activity
Diagrams. Not all elements of these diagrams are used in the transformation process, the
restriction that have to be made are also part of this chapter. Finally, there is a brief
introduction to the Object Constraint Language (OCL) [OMG, 2006b].

The transformation from UML to IOSTS is explained in detail in Chapter 7. First, an
extension that has to be made to the UML model in terms of a stereotype is introduced.



CHAPTER 1. INTRODUCTION 4

Then, there is a description of how the elements of UML are mapped to the elements of
IOSTS. This chapter also comprises a pseudo code implementation of the transformation
algorithm.

Chapter 8 describes the implementation of the transformation. The algorithm is im-
plemented in the eclipse framework, a description of the plugins used for this purpose is
part of this chapter. The overall test case generation workflow from UML to IOSTS as
well as the implemented transformation workflow that is part of the overall workflow is
also discussed. Then, the IOSTS meta model that is used for the model transformation
is introduced. At the end, some implementation details are illustrated.

An example of the transformation is given in Chapter 9. The Conference Protocol is
used for this purpose. This protocol is explained first. Then, the UML specification of
the protocol is illustrated. At the end, the resulting IOSTS is depicted.

Chapter 10 comprises some ideas about how the application can be improved in some
future work.



Chapter 2

Related Work

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Test Case Generation with UMLAUT and TGV . . . . . . . . 6

2.3 AGEDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 OMEGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5



CHAPTER 2. RELATED WORK 6

2.1 Introduction

This chapter gives an overview of different projects that transform UML models into
an intermediate representation in order to generate test cases. Section 2.2 describes
a procedure of test case generation from UML 1.4 models with the aid of TGV and
UMLAUT by transforming the UML models into an IOLTS representation. The AGEDIS
framework presented in Section 2.3 is also based on UML 1.4. It uses the IF language
as intermediate format. Section 2.4 introduces the IF toolset which is a part of the IST
OMEGA project. This framework also uses the IF language as intermediate format taking
timing concepts into account.

2.2 Test Case Generation with UMLAUT and TGV

[Pickin et al., 2002] describe a method for test case generation from UML 1.4 models with
the assistance of the UMLAUT (Unified Modeling Language All pUrposes Transformer,
[Ho et al., 1999] and [IRISA, 2008b]) and TGV [Jard and Jéron, 2005] tool. The overall
process is depicted in Figure 2.1. First of all, the system to be tested has to be modelled
in UML. This model has to consist of at least one Class Diagram. Each main class has
to provide a State Machine Diagram as well. The initial state of the system has to be
described by means of an Object Diagram.

Another input for this process is the test objective. It describes the part of the
overall system that has to be tested (like the test purpose described in Section 4.3). The
test objectives for this application have to be provided in terms of an UML Sequence
Diagram based notation, i.e. the TeLa language [Pickin et al., 2001] is used. The TeLa
language enhances the UML 1.4 Sequence Diagram notation with some constructs needed
for this application. The test objective has to comprise two parts, an accept scenario
that describes the parts of the system the tester wants to test and a reject scenario that
describes the parts of the system the tester wants to avoid.

The test case generation process is based on Input/Output Labelled Transition Sys-
tems (see Section 3.2). The UMLAUT tool is used to translate the UML model into an
Labelled Transition System (LTS) (step 1 in Figure 2.1). In order to specify the inputs,
outputs and internal actions needed for the IOLTS test case, the classes of the Class
Diagrams are associated with external actors. The visible actions are those that are as-
sociated with an external actor. This mechanism helps to generate .hide and .io files
(.hide files provide the internal, .io files the input and output actions). These files are
used to transform the LTS test case into an IOLTS later on. The test objectives are also
transformed to an LTS (step 2 in Figure 2.1).

After that (step 3 in Figure 2.1), the TGV tool takes care of generating an IOLTS
test case from the LTS system specification, the LTS test objective and the .hide and .io
files extracted from the system specification. The test case is a subgraph of the system
specification enhanced with the verdict states Pass, Inconclusive and Fail. The meaning
of these verdicts is the same as explained in Section 4.3.

Finally a test case represented in the TeLa language is derived from the IOLTS test
case using the UMLAUT tool (step 4 in Figure 2.1). The test case also takes asynchronous
communication and concurrency into account.



CHAPTER 2. RELATED WORK 7

Figure 2.1: Test Case Generation Workflow with UMLAUT and TGV (source: [Pickin
et al., 2002])

The method described in [Pickin et al., 2002] is very similar to the method described
in this thesis. One difference is the use of Input/Output Symbolic Transition Systems
instead of IOLTS (see Section 4.2). This application also uses UML 2 models instead of
UML 1.4. Another difference is the use of the STG tool (see Chapter 5) in place of TGV
for the test case generation purposes since it can handle IOSTS.

2.3 AGEDIS

The AGEDIS (Automated Generation and Execution of Test Suites for DIstributed
Component-based Software) tools [Hartman and Nagin, 2004] offer a whole framework
for test case generation from UML 1.4 models. The UML model is transformed to an IF
(intermediate format) specification [Bozga et al., 2002] from which the executable test
cases can be generated.

The input for this process is a behavorial model of the system under test (SUT) and a
test generation strategy. Both are UML models. The behavorial model comprises Class,
State Machine and Object Diagrams. A detailed description of the modelling language
used in the AGEDIS framework can be found in [Cavarra and Davies, 2001], actually, an
UML profile that must be used is defined there.

The Class Diagrams are used to define the static structure of the SUT as well how the
objects may interact. The operations and signals of the Class Diagram may be stereotyped
with �controllable� and �observable� to determine whether the operation or signal may
be called by the tester (like input actions in the context of IOSTS defined in Section 4.2)



CHAPTER 2. RELATED WORK 8

or only be observed (like output actions in the context of IOSTS). Attributes may also
be �observable�.

The State Machine Diagrams are used to show how objects may evolve during their
lifetime. The events that may be used here are call and signal events (see Section 6.4.2 for
a detailed description of these events). The actions that describe the effect of a transition
may be call, send, assign, procedure or function actions. Since this application uses the
UML 1.4 notation, the effect of a transition, that is a behavorial feature in UML 2 (see
Figure 6.6), is a simple chain of actions. Assign, procedure and function actions are actions
and functions defined in the IF language.

The Object Diagrams show which objects are involved in the start state of the system
under test.

It is also possible to add global functions and procedures defined in the IF action
language to the model by adding them as a note in a separate, empty structure diagram.

The test generation strategy is defined either in terms of test directives or test purposes.
Test directives must define start states, finish states, states that must be visited, states
that must be avoided, operations that must be used and operations that must be avoided.
Test purposes are defined in terms of State Machine Diagrams. These State Machines
describe the chain of operations that must be performed by the test.

After that, the behavorial model and the test directive is compiled together to create
a model execution interface described in [Bozga and Olvovsky, 2002]. This is the interme-
diate model defined in the IF language. Then, the test generator produces an abstract
test suite from this execution interface with the aid of TGV [Jard and Jéron, 2005] and
GOTCHA [Farchi et al., 2002]. The abstract test suite can then be transformed to an
executable test suite using the AGEDIS execution engine.

The AGEDIS framework has been evaluated in some case studies, details can be found
in [Hartman, 2004]. A difference between the AGEDIS test case generation process and
the one provided in this thesis in the use of UML 1.4 instead of UML 2. The use of
IF as action language is also very specific, nowadays OCL is more common in terms of
UML. The test directive is quite similar to the test purpose in the context of STG (see
Section 5.2). The IF language used to describe the intermediate model (model execution
interface) is also very close to the STG language specification (see Section 5.4), actually
STG used a subset of IF at the beginning and adopted it later on in order to take the
difference between IF and IOSTS into account [IRISA, 2008a].

2.4 OMEGA

The IST OMEGA project [OMEGA, 2008] aims at building an UML-based methodol-
ogy and a validation environment for real-time and embedded applications [Ober et al.,
2006]. This project comprises amongst others a toolset called timed system verification,
a subproject of IST OMEGA, also called IF toolset (refer to [Bozga et al., 2004] for a
detailed description). The overall architecture of the IF toolset is depicted in Figure 2.2.
Basically, it consists of three levels: the specification, the intermediate description and
the LTS level:

• specification level : this level consists of components capable of translating UML



CHAPTER 2. RELATED WORK 9

Figure 2.2: IF Toolset (source: [Bozga et al., 2004]

and SDL descriptions to the IF language. The UML specifications must conform
to a predefined UML profile described in [Graf et al., 2006]. This profile also takes
timing into account by defining concepts of time-triggered behavior and duration
constraints. The main focus of the IF toolset is modeling real-time applications,
thus the timing concepts defined in the UML profile play a crucial role.

• intermediate description level : the models of the specification level are transformed
to the IF language [Bozga et al., 2002]. This is an intermediate format based on
timed automata [Bozga et al., 2004].

• LTS level : a LTS describes an execution of an IF description. There are various
tools available that can be used for evaluation or simulation of these models. The
TGV tool can also be used for test case generation purposes.

This framework uses the IF language for defining the intermediate models that rep-
resent the UML (SDL) models. The application presented in this thesis uses IOSTS as
intermediate representation. The transformation from UML to IF (UML2IF translator)
is a basic component of the IF toolset but, unlike the transformation presented in this
thesis, it takes timing properties into account.



CHAPTER 2. RELATED WORK 10

2.5 Summary

This chapter presented three test case generation projects. All of them are based on a
transformation from UML to an intermediate model representation the test cases are gen-
erated from. These intermediate models are either based on IOLTS or the IF language.
This thesis presents a model transformation from UML to Input/Output Symbolic Tran-
sition Systems (IOSTS) [Rusu et al., 2000] (see chapter 4). IOSTS rely on symbolic data
and the sioco conformance relation [Frantzen et al., 2006].

Another difference to the previously presented projects is that the transformation
presented in this thesis is based on UML 2 models instead of UML 1.4. Most UML tools
are already based on UML 2, so taking this version as basis for the transformation makes
the whole process more acceptable.



Chapter 3

The ioco Test Theory

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Definition of IOLTS . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 The ioco Conformance Relation . . . . . . . . . . . . . . . . . . 12

3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

11



CHAPTER 3. THE IOCO TEST THEORY 12

3.1 Introduction

This chapter describes the ioco (input output conformance) test theory. Conformance
testing is based on the concept of testing an implementation against a specification ac-
cording to a conformance relation ( [Tretmans, 1994], [Tretmans, 1996]). To show the
concept of a conformance relation, the ioco conformance relation is introduced in this
chapter. Section 3.2 shows a definition of Input/Output Labelled Transition Systems
(IOLTS). The ioco test theory is based on such systems. Section 3.3 describes the ioco
test theory. Finally an example is given in Section 3.4 to show how ioco works. The ioco
conformance relation is introduced because the test generation algorithm described in the
next chapter is based on the the sioco conformance relation [Frantzen et al., 2006] which
itself is based on Input/Output Symbolic Transition Systems (IOSTS) [Rusu et al., 2000].
To understand the concepts of an IOSTS, it is beneficial to be familiar with IOLTS. The
same applies to sioco. sioco is based on the ioco conformance relation, it simply lifts the
ioco conformance relation to the level of symbolic transition systems. So this chapter deals
with the basic elements that are needed in order to become familiar with the definitions
of the following chapters.

3.2 Definition of IOLTS

An Input/Output Labelled Transition System is a structure consisting of states and tran-
sitions. Each transition is labelled with either an input or an output action [Tretmans,
1996]. The definition of an IOLTS is as follows:

An IOLTS is a quintuple 〈S, s0,ΣI ,ΣU ,→〉 whereas

• S is a is a countable set of states

• s0 ∈ S is the initial state

• ΣI is a countable set of input actions, ΣU is a countable set of output actions.
ΣI ∩ ΣU = ∅.

• →⊆ S ×Στ × S is the transition relation. Στ abbreviates the set Σ ∪ {τ}, whereas
τ denotes an unobservable action and Σ = ΣI ∪ ΣU .

3.3 The ioco Conformance Relation

Conformance testing means testing an implementation of a system against a specification
according to a conformance relation [Tretmans, 1994]. Only the observable behavior of the
implementation is tested, i.e. the outputs. This section describes the ioco conformance
relation. The formulas and definitions in this section are taken from [Tretmans, 1996],
[Frantzen et al., 2005] and [Frantzen et al., 2006].

In order to understand the ioco conformance relation, some additional notions have
to be introduced:



CHAPTER 3. THE IOCO TEST THEORY 13

• s
µ→ means ∃s′ ∈ S : s

µ→ s
′

with s ∈ S and µ ∈ Στ . The meaning of this
abbreviation is the existence of a simple transition with origin s, destination s

′
and

action µ ∈ Στ . s
µ→ s

′
abbreviates

(
s, µ, s

′) ∈→.

• s
σ

=⇒ means ∃s′ ∈ S : s
σ

=⇒ s
′

with s ∈ S and σ ∈ Σ∗ (Σ∗ denotes the set of all
finite sequences of actions over Σ). This notation is almost similar to the one before.
The σ also takes the unobservable action τ into account. σ ∈ Σ∗ means not a single
action but an action sequence µ0, µ1, µ2...µn ∈ Στ . So s

σ
=⇒ denotes the existence

of a path s
µ0→ s0

µ1→ s1
µ2→ ...

µn→ s
′

with origin s and destination s
′
. =⇒⊆ S×Σ∗×S

is also called generalized transition relation.

• traces (s) =def

{
σ ∈ Σ∗|s σ

=⇒
}

with s ∈ S. This abbreviation simply specifies the

set of paths with origin s.

Another concept that has to be explained is quiescence. An output action µ ∈ ΣU

at a given state of an IOLTS is called observation. A state where no observation can be
made is called a quiescent state. So a quiescent state s is a state that has no outgoing

transition labelled with an output action: ∀µ ∈ ΣU ∪ {τ} : s
µ

6→. A quiescent state is
denoted by δ (s).

δ is a special action label not part of the action label set Σ. Σδ = ΣI ∪ΣU ∪{δ}. Now
consider, every quiescent state s of an LTS L is extended with a self loop labelled δ. Σ∗δ
is called the set of extended traces that may also use the δ transitions of quiescent states.
The suspension relation is defined by =⇒δ⊆ S × Σ∗δ × S.

Three more functions are now being defined (s ∈ S, C ⊆ S and σ ∈ Σ∗δ):

• Straces (s) =def

{
σ ∈ Σ∗δ|s

σ
=⇒δ

}
is the set of suspension traces. The suspension

traces are almost the same as the traces defined before, they just take quiescence
into account, that means they also consider the δ transitions in quiescent states.

• C after σ =def

⋃
s∈C s after σ, whereas s after σ =def

{
s
′ ∈ S|s σ

=⇒δ s
′
}

. s after

σ is the set of states that can be reached by a suspension trace starting in s. C
after σ is simply the union of all these sets for each state s ∈ C ⊆ S.

• out(C) =def

⋃
s∈Cout(s), whereas out(s) =def

{
µ ∈ ΣU |s

µ→
}
∪ {δ|δ (s)}. out(s)

denotes all possible observations that can be made in state s. If there is no output
action, the observation is δ. In that case state s is a quiescent state. out(C) is the
union of the observations that can be made in all states s ∈ C ⊆ S.

Now the conformance relation ioco can be defined. As mentioned above, conformance
testing means testing an implementation against a specification according to a confor-
mance relation. This relation is defined by:

P ioco L iff ∀σ ∈ Straces (l0) : out (p0 after σ) ⊆ out (l0 after σ)

P is a model of the physical implementation of the specification L. P is an input-enabled
IOLTS defined by P = 〈P, p0,ΣI ,ΣU ,→P 〉, whereas L = 〈L, l0,ΣI ,ΣU ,→L〉. Input-enabled



CHAPTER 3. THE IOCO TEST THEORY 14

means that the IOLTS must be able to react to any given input action µ ∈ ΣI in any
state. The ioco conformance relation says that all observations that can be made after
any given path in the implementation must be a subset of the observations that can be
made in the specification.

3.4 Example

This section gives a brief example to illustrate the ioco conformance relation. Three IOSTS
are shown in Figure 3.1. The specification is defined by L = 〈L, l0,ΣI ,ΣU ,→〉, whereas
L = {l0, l1, l2, l3, l4} is the set of states of L. The initial state is l0. The set of input actions is
defined by ΣI = {coin}, the set of output actions is defined by ΣU = {coffee,milk, tea}.
This specification actually denotes a vending machine, where the user can insert a coin and
is then able to choose between coffee, milk and tea. The input actions of the specification
L are denoted by ? in the diagram, the output actions by ! respectively.

Figure 3.1: Three IOLTS, one specification L and two implementations P1 and P2

P1 describes one possible implementation of L. It is also an IOLTS defined by P1 =
〈P1, p10,ΣI ,ΣU ,→〉, whereas P1 = {p10, p11, p12, p13} is the set of states of P1. The
initial state is p10. The set of input actions is defined by ΣI = {coin}, the set of output
actions is defined by ΣU = {milk, tea}. To show that P1 ioco L, the observations of two
different paths are considered (actually all possible paths have to be considered in order
to show that P1 ioco L but in this small example this can be illustrated using only those
two paths).

First: σ = {} ⇒
out (p10 after σ) = {δ} ⊆
out (l0 after σ) = {δ}

Second: σ = {coin} ⇒
out (p10 after σ) = {milk, tea} ⊆



CHAPTER 3. THE IOCO TEST THEORY 15

out (l0 after σ) = {coffee,milk, tea}

There are of course a lot more paths, it is always possible to add a δ transition in the
path, but this does not really change anything in this short example. The observations
that can be made after any path in the implementation P1 are a subset of the observations
of the specification L, so P1 ioco L.

The second implementation P2 is almost the same as the specification, there is just
another transition from the state p21 to p25 labeled with the output action !soda. The set
of states of P2 is defined by P2 = {p20, p21, p22, p23, p24, p25}, the set of output actions
ΣU consists of {coffee,milk, soda, tea}. Consider again the two paths in the specification
L and in the implementation P2:

First: σ = {} ⇒
out (p20 after σ) = {δ} ⊆
out (l0 after σ) = {δ}

Second: σ = {coin} ⇒
out (p20 after σ) = {coffee,milk, soda, tea} 6⊆
out (l0 after σ) = {coffee,milk, tea}

The observations of the second path of the implementation P2 are no subset of the
specification L, so the ioco relation is not fulfilled for the implementation P2 and L.



Chapter 4

Input Output Symbolic Transition
Systems (IOSTS)

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Definition of IOSTS . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Conformance Testing with IOSTS . . . . . . . . . . . . . . . . 18

4.4 Test Case Generation Process . . . . . . . . . . . . . . . . . . . 19

16



CHAPTER 4. INPUT OUTPUT SYMBOLIC TRANSITION SYSTEMS (IOSTS) 17

4.1 Introduction

This chapter describes the concepts of Input/Output Symbolic Transition Systems (IOSTS).
There are basically two definitions of IOSTS in literature: [Rusu et al., 2000] and [Frantzen
et al., 2005]. The IOSTS defined in Section 4.2 is based on the definition in [Rusu
et al., 2000]. Section 4.3 describes the concept of conformance testing taking IOSTS
into account. There is a brief introduction of the sioco conformance relation [Frantzen
et al., 2006]. This relation defines the theoretical background of conformance testing with
IOSTS. The terms test purpose and test case are also explained. The last section (Section
4.4) describes the process of generating test cases from an IOSTS system specification and
an IOSTS test purpose.

4.2 Definition of IOSTS

An IOSTS [Rusu et al., 2000] is a tuple 〈D,Θ, Q, q0,Σ, T 〉 , whereas:

• D is a finite set of typed data. It consists of the disjoint union of a set V of variables,
a set P of parameters and a set M of messages.

• Θ is the initial condition, a boolean expression on V ∪ P .

• Q is a nonempty, finite set of states.

• q0 is the initial state.

• Σ is a nonempty finite alphabet of actions. It is a disjoint union of a set Σi of input
actions, a set Σo of output actions and a set Σint of internal actions. Each action
has a (possibly empty) set of types assigned to it called the signature of the gate
(sig (a) = 〈ϑ1, ...ϑk〉; the signature of an internal action a ∈ Σint is the empty tuple).

• T is a set of transitions. Each transition consists of:

– An origin q ∈ Q.

– A destination q
′ ∈ Q.

– An action a ∈ Σ. Each action has a tuple of messages µ = 〈m1, ...mk〉 assigned
to it, whereas mi ∈ M . The signature of the messages corresponds to the
signature of the action a ∈ Σ (sig (a) = 〈ϑ1, ...ϑk〉 ⇒ ∀i ∈ [1, k] , type (mi) =
ϑi).

– A guard which is a boolean expression on V ∪ P ∪ µ.

– A set of assignments A. Each variable x ∈ V has exactly one assignment in A,
of the form x := Ax, whereas Ax is an expression on V ∪ P ∪ µ.

An example of an IOSTS can be found in Section 5.3.



CHAPTER 4. INPUT OUTPUT SYMBOLIC TRANSITION SYSTEMS (IOSTS) 18

4.3 Conformance Testing with IOSTS

Conformance testing is the methodology of testing an implementation against a specifi-
cation. This is done by means of a conformance relation. Chapter 3 describes the confor-
mance relation ioco. However, this relation is based on Input/Output Labeled Transition
Systems. The transformation algorithm explained in this thesis uses Input/Output Sym-
bolic Transition Systems instead of that for generating test cases. [Frantzen et al., 2006]
define the conformance relation sioco (symbolic input output conformance) for IOSTS.
This relation is very similar to ioco, in fact they lift the ioco relation to the level of
symbolic transition systems. sioco is basically a symbolic version of ioco by taking the
enhancements of IOSTS into account (data-dependent control flow).

The specification of the system to be tested is an IOSTS defined in Section 4.2. In
order to understand the test case generation process in Section 4.4, two more concepts
have to be explained [Rusu et al., 2000]:

• Test Purpose: The test purpose is, like the specification, an IOSTS. It determines
the parts of the specification that should be tested. So the test purpose is like
a subset of the specification that only contains the relevant parts of it. There
are additional states that have to be added to the test purpose, an Accept and a
Reject state in order to determine whether the test purpose is fulfilled or not. The
paths that lead to the Reject state do not mean that the specification behaves false,
they are just not relevant in context of the test purpose. Thus, only paths that
lead to the Accept state should be considered by the resulting test case. Formally,
let S = 〈DS,ΘS, QS, q

0
S,ΣS, TS〉 be a specification, a test purpose is defined by

TP = 〈DTP ,ΘTP , QTP , q
0
TP ,ΣTP , TTP 〉. The set of states of the test purpose is

extended by an Accept and a Reject state: {Accept, Reject} ⊆ QTP .

• Test Case: The test case is the result of the test case generation process explained
in Section 4.4. The test case is also an IOSTS that has some additional states called
verdicts; these are Pass, Inconclusive and Fail. The test case is then run parallel
with the implementation. The state of the test case at the end is observed to de-
termine whether the implementation behaves in conformance with the specification
or not. The verdict Pass means, that the implementation behaves correctly. That
means that it behaves in conformance with the specification and the test purpose
is satisfied. Inconclusive means, the implementation behaves in conformance with
the specification but the test purpose is not satisfied. It is just known that the
implementation behaves right until it leaves the test purpose, it is not known if it
behaves correct after that. So inconclusiveness means that it is not really clear if
the behavior of the implementation is right or wrong. Remember the test purpose
has an Accept and an Reject state. Paths that lead to a Reject state are just not
considered by the test purpose, although they are conformant with the specification.
Finally, Fail denotes that the implementation is not conformant with the specifica-
tion, i.e. an output is observed at any state that is not allowed there. There are
two attributes a test case should comprise

– input completeness : A test case should be input complete, that means it can
handle all inputs at all state where inputs are possible.



CHAPTER 4. INPUT OUTPUT SYMBOLIC TRANSITION SYSTEMS (IOSTS) 19

– determinism: The result of a test case should not depend on the path that is
taken w.r.t. to a non deterministic choice, that means a state cannot have two
outgoing transition labelled with the same action.

4.4 Test Case Generation Process

There are different approaches to generate test cases from an IOSTS. There is an algorithm
for on-the-fly test case generation based on LTS [Tretmans, 1996] or STS [Frantzen et al.,
2005] specifications. It produces test cases with verdicts Pass and Fail. This algorithm
is not deterministic. It is also shown that the test cases produced with the algorithm
are sound and complete. A test suite T is sound means that for all implementations P

that conform to a specification S w.r.t iocoF (iocoF is just a general version of the ioco
conformance relation described in Section 3.3), the implementations P pass the test suite
T. Completeness means that the algorithm can produce test cases that show that an
implementation is non conformant if it is not iocoF -correct w.r.t. the specification. In
general [Frantzen et al., 2005]:

• T is sound =def ∀P : P iocoF S⇒ P passes T

• T is complete =def ∀P : P iocoF S⇐ P passes T

whereas S is a specification, P an implementation and T a test suite. The algorithm is
not described in detail here.

As explained in Section 4.3, the sioco conformance relation can be defined with the
aid of ioco. The ioco conformance relation is just lifted to the level of STS. So soundness
and completeness can also be achieved with this algorithm which is based on STS. Details
about the algorithm can be found in [Frantzen et al., 2005], the algorithm is not discussed
in detail here since it is not used in this application.

Another approach for generating test cases from IOSTS is described in [Rusu et al.,
2000]. The algorithm uses some operations on IOSTS like product, closure, determiniza-
tion,... The exact definitions of these operations are not shown here, only their meaning
is explained. For a detailed description refer to [Rusu et al., 2000] and [Constant et al.,
2007]. The process consists of the following steps (see Figure 4.1):

• product between test purpose and specification: The product operation is one of the
operations defined in [Rusu et al., 2000] and [Constant et al., 2007]. It results in
an IOSTS that combines the states and transitions of the specification and the test
purpose, including the Accept and Reject states of the test purpose. Paths that
lead to an Accept state fulfill, paths that lead to a Reject state are not considered
by the test purpose. The result of this operation is a subgraph of the specification
enriched with Accept and Reject states, the two IOSTS are somehow put together.
The product operation cannot be applied to two arbitrary IOSTS, they have to
fulfill some requirements: They have to share the same input and output actions
as well as the same parameters. They must not have any variables or internal
actions in common. A feature of the resulting IOSTS is that each input action of



CHAPTER 4. INPUT OUTPUT SYMBOLIC TRANSITION SYSTEMS (IOSTS) 20

the specification/test purpose becomes an output action in the result and vice versa
(the renaming is actually a separate step not included in the product operation, but
here it is assumed that this step is done after the product). This is due to the fact
that the generation process produces a test case. The test case is then run parallel
against an implementation, thus an observed output of the implementation serves
as input to the test case.

• closure: The test case under construction has to run parallel to the implementation,
so it has to react to inputs from the implementation at any given state. One problem
that may occur is that a state of the resulting IOSTS, after the product operation
described above, has only transitions leaving it labelled with output or internal
actions. If there is no transition labelled with an input action, the test case cannot
react to an input of the implementation. There is a requirement of the test case
that says a test case, i.e. its states must be input complete (see Section 4.3), that
means that a state must be able to react to all inputs at any given state. The closure
operation takes care of this by eliminating internal actions. If a transition leaving a
state is labelled with an internal action, its guard and assignments are added to the
next transition (the state between the two transition can be eliminated). If the next
transition is also labelled with an internal action, this is repeated until all internal
actions are eliminated. The resulting IOSTS has no longer transitions with internal
actions and can in that way better react to a given input of the implementation
(note that the closure operation does not make the whole IOSTS input complete,
this is done in the selection step). One problem concerning closure are cycles of
internal actions. This issue is addressed in [Rusu et al., 2000].

• determinization: One characteristic of a test case is the fact that it should be
deterministic. After the product and closure operation it is however not assured that
the resulting IOSTS is deterministic, so a determinization step has to be applied
on the result. A typical case of nondeterminism is a state that has two outgoing
transition with the same action assigned to it. The result of the test case should not
depend on which of the two transitions is taken because this could cause a tester to
wrongly declare a conformant implementation to be non-conformant. [Rusu et al.,
2000] and [Constant et al., 2007] propose a method to eliminate nondeterminism, a
detailed description on this issue can be found in [Jéron et al., 2006].

• selection: The goal of the selection step is adding verdicts to the test case. As
mentioned in Section 4.3, a test case contains states called verdicts. These are
Pass, Inconclusive and Fail. The IOSTS created after the product, closure and
determinization consists amongst others of states called Accept and Reject. Adding
verdicts to this IOSTS is done as follows:

– Every Accept state is labelled with Pass. These are the states in which the
implementation behaves conformant to the specification and the test purpose
is fulfilled

– Every Reject state is labelled with Inconclusive. These are the states in which
the implementation behaves conformant to the specification but the test pur-
pose cannot be fulfilled.



CHAPTER 4. INPUT OUTPUT SYMBOLIC TRANSITION SYSTEMS (IOSTS) 21

Figure 4.1: Test Case Generation Process

– Every other state is labelled with Lead2Pass.

Now there are three sets of states, Pass, Inconclusive and Lead2Pass. Although the
closure step removed internal transitions, the IOSTS obtained so far is not input
complete, i.e. there are states in the set Lead2Pass that cannot handle every input.
To be able to make the test case input complete, a new state called Fail is added
to the IOSTS. Every input in a state of the set Lead2Pass that is not handled yet
does not conform to the specification, that means that this input is not allowed
at the given state. So, for each of this inputs in every state a transition is added
labelled with that input that leads to the new Fail state. The test case in now input
complete. It can handle every input at every state and every path leads to either a
Pass, Inconclusive or Fail state.

• simplification: The test case obtained so far comprises all properties defined in 4.3.
However, due to the generation so far, the test case can contain some unreachable
parts. [Rusu et al., 2000] refer to methods to detect and eliminate such unreachable
paths. This makes the resulting test case much simpler and easier to understand,
although this step is not mandatory.

[Rusu et al., 2000] also show that the resulting test case is correct, by defining that the
test case must be sound for the specification and implementation and relatively complete,
accurate and conclusive for the specification, test purpose and the implementation.

• sound : Soundness means a test case does not reject conformant implementations,
only non conformant ones.

• relatively complete: Relatively completeness means that the test case can discover
all implementations that are not conformant to the specification.



CHAPTER 4. INPUT OUTPUT SYMBOLIC TRANSITION SYSTEMS (IOSTS) 22

• accurate: Accuracy means that if in the implementation a trace is observed, that
conforms to the implementation and is included in the test purpose (it ends in an
Accept state), the test case always gives the verdict Pass.

• conclusive: Conclusiveness means that if the observed trace of an implementation
which is also a trace in the specification leads to the verdict Inconclusive, this path
cannot be extended in any way to produce the verdict Pass subsequently.



Chapter 5

The Symbolic Test Generator (STG)

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 STG Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 STG Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.1 System Specification . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.2 Test Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.3 Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 STG Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

23



CHAPTER 5. THE SYMBOLIC TEST GENERATOR (STG) 24

5.1 Introduction

This section gives an overview of the Symbolic Test Generator (STG). This tool im-
plements the test generation process described in Section 4.4 based on an IOSTS system
specification and test purpose. It then generates executable test cases. The basic workflow
of this tool is explained in Section 5.2. Section 5.3 gives a short example of a coffee ma-
chine that illustrates the process of generating test cases. Another example can be found
in [Clarke et al., 2001a]. The last section (Section 5.4) introduces the STG language
specification the STG tool uses for specifying IOSTS.

5.2 STG Workflow

The STG tool is introduced in [Clarke et al., 2001b] and [Clarke et al., 2002]. It is
implemented in Ocaml. It implements the test case generation process described in [Rusu
et al., 2000] and Chapter 4.4. The overall workflow of the STG tool is depicted in Figure
5.1. The STG tool takes as input two IOSTS, a specification of a system and a test
purpose. They have to conform to the STG language specification described in Section
5.4. The STG tool does not take care of constructing these IOSTS, they have to be
provided. Afterwards, the STG tool generates a symbolic test case by performing the test
generation process described in Chapter 4.4. The simplification step of this process is
done with the NBAC [Jeannet, 2008] tool. This tool provides the opportunity to analyze
the test case and remove unreachable parts. After the test case generation process, the
symbolic test case can be translated to either an executable C++ or JAVA test program.
Since the symbolic test case provides no actual values to the symbolic data, the Lucky
library [Verimag, 2008] is used to instantiate this data in the test case. The test program is
able to interact with an implementation that is interface-compatible with the specification.
The results of the test program are Pass, Inconclusive or False. Their meaning is described
in the test case generation process (see Section 4.4). The STG tool can be obtained
here [IRISA, 2008a].

5.3 STG Example

This section provides an example application of the test case generation process imple-
mented in STG. First, the system specification is introduced. The next section provides
the test purpose. Last, the resulting test case is depicted.

5.3.1 System Specification

The system specification depicted in Figure 5.2 describes a simple vending machine. A
user may insert coins, choose a beverage or cancel the transaction. The first line of a
transition always denotes the guard, surrounded by parenthesis (if there is no guard, true
is depicted). The action of a transition is clarified through the sync keyword. Input actions
are denoted by ?, output actions by ! respectively. The assignments of the transition are
situated below the action.



CHAPTER 5. THE SYMBOLIC TEST GENERATOR (STG) 25

Figure 5.1: STG Workflow

The set of variables V is defined by {total, drink}, the set of parameters P is {price}.
The set of states S contains {PreInit Start, Begin, Idle, Pay, Choose, Return, Delivery},
whereas the initial state is PreInit Start. The set of input actions is defined by {Coin,
ChooseBeverage, Cancel}, the set of output actions comprises {Return, Deliver}. The
first transition from PreInit Start to Begin just contains a guard (price > 0). This is the
initial condition Θ (see Section 4.2). In STG, the first transition always defines the initial
condition. In this case, the parameter price must not be negative. The transition from
Begin to Idle just initializes the variable total (all variables must be initialized in STG).
The transition from Idle to Pay simulates the insertion of a coin into the vending machine.
So there is an input action Coin that takes as message the actual coin that is inserted.
The value of the message coin must be greater that 0, this is checked in the guard. The
value of the inserted coins is accumulated in the variable total. If this value is smaller
than the price of the beverage stored in the parameter price, the transition from Pay to
Idle is taken. The machine informs the user about the remaining amount of coins she
has to enter (output action Return). Now the user can insert some more coins or cancel
the transaction (transition from Idle to Return) by calling the input action Cancel. The
transition from Pay to Choose is taken if the user entered enough money (total ≥ price).
The difference between the entered amount and the actual price is returned to the user
by calling the output action Return. In the Choose state, the user may again cancel
the transaction by calling the input action Cancel (transition from Choose to Cancel).
Otherwise, the machine checks whether the entered amount of money equals the price of
the beverage (guard on the transition from Choose to Delivery). The user is now able to
choose the drink by performing the ChooseBeverage action. The drinkRequest message



CHAPTER 5. THE SYMBOLIC TEST GENERATOR (STG) 26

is saved in the variable drink. After that, the transition from Delivery to Begin checks
if the actual drink equals the selected and delivers the drink to the user by performing
the Deliver output action. Finally, if the user chooses to abort the transaction in the Idle
or Choose state, the transition from Return to Begin takes care of returning the already
inserted money back to the user (output action Return).

Figure 5.2: Coffee Machine Specification (source [IRISA, 2008a])

5.3.2 Test Purpose

Figure 5.3 shows one possible test purpose of the coffee machine system specification
depicted in Figure 5.2. As mentioned in Section 4.3, a test purpose is a subgraph of the
specification that only contains the elements that should be tested. The test purpose also
comprises Accept and Reject states, denoting whether the test purpose is fulfilled or not.
This test purpose is just interested whether the coffee machine is able to deliver coffee.
Only by choosing coffee, the path ends in the accept state. If the user chooses tea, the
path ends in the reject state, since the test purpose is not interested in that behavior (this
behavior is not false, it is just not part of the test purpose). The user may also insert a
coin only once, otherwise the test purpose is not fulfilled. Canceling the transaction is
also not in the scope of the test purpose. So the test purpose is only interested in paths
on which the user inserts a coin (the value of the coin must be big enough so that she
does not have to insert a coin again) and chooses coffee, which is then delivered.



CHAPTER 5. THE SYMBOLIC TEST GENERATOR (STG) 27

Figure 5.3: Coffee Machine Test Purpose [Clarke et al., 2002]

5.3.3 Test Case

Figure 5.4 shows the test case produced by the STG tool from the specification and test
purpose after the test case generation process explained in Section 4.4. It consists of a
path where the user inserts a coin and chooses coffee. Afterwards the coffee is delivered
by the coffee machine. For readability reasons, the transitions that lead to a Fail state
are removed in the figure. In this example the selection and simplification step of the
test case generation process also removed the Inconclusive states. The guards of the
transitions are not easy to understand, they seem to be very complex. This is due to the
fact that the STG tool uses the NBAC tool for the simplification step. This tool does not
deal with equalities, just with inequalities. So a simple equality like x = 0 is translated
to ¬ ((x− 1) >= 0) ∧ x >= 0. This makes the guards seem to be a lot more complex
than they actually are. This test case can now be translated to a executable test case
in C++ or JAVA and the run parallel to the implementation to obtain the test results
(Pass, Inconclusive or Fail).



CHAPTER 5. THE SYMBOLIC TEST GENERATOR (STG) 28

Figure 5.4: Coffee Machine Test Case (source [IRISA, 2008a])

5.4 STG Language

In STG the top level element is called system. Each system consists of a system identifier
(a unique name), a set of constants, a set of types, a set of gates and a set of processes.
Constants and types may be empty. Each process is an IOSTS which conforms to the
definition in Chapter 4.2. All actions used in the processes must be defined in the top
level system (actions are gates in the system). The distinction between input, output and
internal actions is not made in the system. Each process may classify the predefined gates
on its own. So the same gate may be an input action in one process and an output action
in the other. Variables and parameters are also defined within each process. A detailed
definition of the language used in STG can be found in Appendix A.



Chapter 6

UML

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.1 Structural Elements . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.2 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.4.1 Behavioral Elements . . . . . . . . . . . . . . . . . . . . . . . . 33

6.4.2 State Machine Diagram . . . . . . . . . . . . . . . . . . . . . . 36

6.4.3 Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.5 Extensibility Mechanisms . . . . . . . . . . . . . . . . . . . . . 43

6.5.1 Stereotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.5.2 Tagged Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.5.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.6 OCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

29



CHAPTER 6. UML 30

6.1 Introduction

This section describes general concepts of the Unified Modelling Language UML, espe-
cially those parts that are used in the transformation process. Section 6.2 describes the
overall structure of UML. Section 6.3 introduces the structural elements of UML used
in this application, especially the Class Diagram. The next section (Section 6.4) takes a
closer look at the behavioral elements of UML. The main focus in this section are State
Machine and Activity Diagrams. There is an overall description of these elements. Ac-
cording to that, the restrictions that have to be made in this application are also discussed.
Section 6.5 introduces the extensibility mechanisms of UML. The last section (Section 6.6)
shows some concepts of the OCL language that is also part of the UML specification.

6.2 General

The UML 2 specification is structured in four different parts:

• UML Infrastructure:

The UML Infrastructure [OMG, 2007a] describes the main elements used in UML
like classes, associations or packages. These elements are used by the UML meta
model defined in the UML Superstructure, so this specification defines the meta
meta model of UML.

• UML Superstructure:

The UML Superstructure [OMG, 2007b] defines the UML meta model. It describes
all model elements by means of the elements defined in the UML Infrastructure. All
elements are introduced with a Class Diagram of the meta model and their meanings
in prosa. The specification is divided in structure, behavior and supplement.

Static elements that describe the overall architecture of the system are defined in
the structure part of the UML Superstructure like classes, components, etc. Note
that the UML specification describes model elements, not diagrams. However, the
graphical definition used in diagrams of these model elements is also part of the
specification. For example, the UML Superstructure defines the model element
State Machine that contains other model elements like states, transitions, regions,
etc. The graphical definition of these model elements is described later. It is divided
in graphic nodes (e.g. like states) and graphic paths (like transitions).

The behavior part describes the behavior of the system. There are elements that
describe the life cycle of an object such as State Machines as well as elements to
depict how objects interact with each other (Interactions). Elements that describe
work flow are also part of the specification (Activities). The UML Superstructure
also defines basic elements that are used by more than one diagram like Common
Behaviors or Actions.

Last, the supplement part of the specification describes Auxiliary Constructs, i.e.
information flows, modules, primitive types and templates. Another part of this
chapter deals with the use of Profiles to extend the UML specification.



CHAPTER 6. UML 31

Thus the UML Superstructure is structured in:

– Structure

∗ Classes

∗ Components

∗ Composite Structures

∗ Deployments

– Behavior

∗ Actions

∗ Activities

∗ Commmon Behaviors

∗ Interactions

∗ State Machines

∗ Use Cases

– Supplement

∗ Auxiliary Constructs

∗ Profiles

• UML Diagram Interchange Specification:

This specification [OMG, 2006a] extends the UML specification with some graph-
oriented information to ease the interchange of UML models between different UML
tools.

• UML OCL Specification:

This specification [OMG, 2006b] defines the Object Constraint Language. OCL is an
extension to UML that can be used to describe constraints on UML models. Section
6.6 gives a closer look to the OCL language.

The system to be transformed to an IOSTS is modeled in UML. Basically there are three
diagram types involved in the transformation.

• A Class Diagram to describe the overall static architecture of the system.

• A State Machine Diagram to describe the behavior of the classes.

• A very basic Activity Diagram to describe an effect of a transition in a State Machine.

Since there are a lot of concepts in UML concerning these diagrams, only the basic
parts of the UML specification are used in this application.



CHAPTER 6. UML 32

6.3 Structure

This section deals with the structural part of the UML Superstructure.

6.3.1 Structural Elements

Structural elements define static constructs that are contained in the structural diagrams
of UML such as Class Diagrams, Component Diagrams, Deployment Diagrams. Exam-
ples for structural elements are classes, components, nodes artifacts... Since only Class
Diagrams are part of the application, there won’t be a detailed description of all these
elements, only the main parts contained in Class Diagrams which are needed for the
application are described next.

6.3.2 Class Diagram

A Class Diagram describes the overall static structure of a system [Pender, 2003]. A class
consists of three compartments, the name compartment, the attributes compartment and
the operations compartment.

Figure 6.1: Simple Class Model

Name: This compartment contains the class name that must be unique within the
Class Diagram.

Attributes: This compartment contains a list of the attributes of the class. An
attribute is defined by its name and a type. The syntax of an attribute declaration is:

[visibility] name [: data-type]

whereas the visibility is either public (+), private (−), protected (#) or package (∼).
The name of the attribute must be unique within the class. In UML it is also possible
to model derived attributes. Derived attributes depend on other attributes. They cannot
be set manually; they are computed on the fly. This concept is not provided in this ap-
plication.



CHAPTER 6. UML 33

Operations: This compartment contains the operations of the class. Operations can
be called from other objects (if they are public) and may cause a change in the state of
the object. The notation of an operation is:

[visibility] name ([parameter-list]) ':' [return-result]

parameter-list := name [':' data-type ]

The visibility of the operation is the same as of attributes. Each operation has a name
and optionally a return value. The parameters of an operation are also defined by a name
and a data type.

Associations: Relations between classes are described using associations. An associ-
ation is represented by a solid line between classes. Objects of classes may only interact
with each other if they share an association in the Class Diagram.

6.4 Behavior

This section deals with the behavioral part of the UML Superstructure.

6.4.1 Behavioral Elements

UML provides a lot of behavioral elements to describe behavioral diagrams such as State
Machine Diagrams, Sequence Diagrams, Activity Diagrams,... Only those needed for the
application are described in this chapter.

Figure 6.2 shows a Package Diagram of those packages that support behavioral mod-
eling in UML. The CommonBehaviors package comprises the BasicBehaviors package
shown in Figure 6.3, which contains the Behaviors, as well as the Communication pack-
age that includes constructs like Event (see Figure 6.5) and Trigger (see Figure 6.4). The
package Activities contains elements to construct Activity Diagrams. Sequence Diagrams
use elements of the Interactions package. State Machine and Use Case Diagrams use
constructs of their respective package. The Action package contains various elements
describing actions in UML.

BasicBehaviors

The class Behavior of the BasicBehaviors package (see Figure 6.3) is very important for
the application since transitions and states of the State Machine Diagram (see Figure 6.6)
reference it. Each behavior has a specification, which is a BehavioralFeature (e.g. an oper-
ation of a class or a signal), associated with it. Subclasses of Behavior are OpaqueBehavior
(which itself is a superclass of FunctionBehavior). State Machine, ProtocolStateMachine,
Activity and Interaction are also generalized from Behavior (not depicted in Figure 6.3),
so whenever a Behavior is needed, one of these elements can be used.



CHAPTER 6. UML 34

Figure 6.2: UML Packages that support Behavioral Modeling (source: [OMG, 2007b],
page 215)

Figure 6.3: Basic Behaviors (source: [OMG, 2007b], page 424)



CHAPTER 6. UML 35

Trigger

Triggers are contained in the Communications package contained in the CommonBehav-
iors package of Figure 6.2. In State Machines, transitions and deferred events reference
triggers. A trigger itself is a named element which is always associated with exactly one
event. Events are explained in the next section.

Figure 6.4: Triggers (source: [OMG, 2007b], page 426)

Event

UML defines many kinds of events, not all of them are supported by the application.
Since STG does not deal with timing, TimeEvents are omitted. AnyReceiveEvents are
also not part of the application. SignalEvents are always associated with a given signal
of the UML model. CallEvents on the other hand are associated with an operation of
the given Class Diagram. ChangeEvents contain a ValueSpecification which is basically a
boolean expression. They are also not part of this application. So, only CallEvents and
SignalEvents are considered.

Figure 6.5: Events (source: [OMG, 2007b], page 426)



CHAPTER 6. UML 36

6.4.2 State Machine Diagram

A State Machine Diagram describes the life cycle of an object. It depicts the states of
an object as well as its behavior, i.e. how the object reacts to events (events are always
contained in a trigger). A State Machine is associated with a class, so every active class
is supposed to have a State Machine Diagram associated to it. The basic components of
a State Machine are states and transitions. Figure 6.6 shows the complete meta model of
a State Machine. A State Machine consists of at least one region. Each region contains
several vertices and transitions. Vertices are either states or pseudostates. The type of the
pseudostate is enumerated in the PseudostateKind enumeration. This Application only
allows initial and choice pseudostates. The number of regions is also restricted to one
since more regions imply concurrency which is not really supported in the target model
(IOSTS). States and transitions are basically the main parts of a State Machine, so they
are described in the next sections.

Figure 6.6: State Machine Meta Model (source: [OMG, 2007b], page 525)



CHAPTER 6. UML 37

States

A state describes the current status of an object, i.e. the values of its attributes at a
certain period of its life cycle. There are different kinds of states that are described next.

Simple State: A simple state is a state with the boolean flag isSimple set to true.
As mentioned before, a simple state describes the state of the object, i.e. the values of its
attributes at a certain period in its life cycle. Since a state is generalized from vertex, it
may have incoming and outgoing transitions. There are some additional concepts a simple
state may contain. If an action, i.e. a behavior occurs at every event that transitions into
the state, it may be modeled as an entry action in the given state. The same concept can
be applied to exit actions. Another construct that may be applied to simple states is a
do activity. Do activities are performed from the time the object enters the state until
it leaves it. As depicted in Figure 6.6, entry actions, exit actions and do activities are
behaviors in the UML 2 meta model. As described in Chapter 6.4.1, a behavior may be
an OpaqueBehavior, a FunctionBehavior, an Activity, an Interaction, a State Machine or
a Protocol State Machine. This application does not include entry and exit actions since
a State Machine can be modeled without them not changing its semantic. It also does
not support the concept of do activities. Deferred events are events the object cannot
respond to at the given state. The event is then passed to the next state until the object
can respond to it. The syntax of these concepts is shown next:

Entry actions: ['entry /'[behavior]]
Exit actions: ['exit /'[behavior]]
Do activities: ['do /'[behavior]]
Deferred event: [Trigger '/defer']

Final State: A State Machine may optionally have a final state. This state must not
have outgoing transitions. The final state does not mark the destruction of the object,
but being in the final state implies never leaving it again. Figure 6.7 shows the graphical
UML notation of a final state.

Final State Composite State

Figure 6.7: Final and Composite State



CHAPTER 6. UML 38

Composite State: States that contain other states are called composite states. They
have the same features as simple states. There are sequential and concurrent composite
states. A sequential composite state is like a simple state containing a State Machine
within its boundaries. A state that contains more than one State Machine in different
regions that are supposed to perform concurrently is called concurrent composite state.
Composite states will not be considered in this application. Figure 6.7 shows the graph-
ical notation of a concurrent composite state with two regions. The symbol in the lower
right corner denotes a composite state.

Initial Pseudostate: Each State Machine must have an initial state. An initial state
in UML is a pseudostate. A pseudostate does not have all features of a simple state, e.g.
it may neither contain entry nor exit actions. A transition leaving an initial state must
not have a trigger, but it can have a guard and an effect. Figure 6.8 shows the graphical
notation of an initial pseudostate.

Choice Pseudostate: A choice pseudostate is like a decision point in the State
Machine Diagram. If the same event contained in a trigger occurs more than once from
one state but with different guards and actions, a choice pseudostate may be used to
simplify the diagram. Figure 6.8 shows the graphical notation of a choice pseudostate.

Initial Pseudostate Choice Pseudostate

Figure 6.8: Initial and Choice Pseudostate

Transitions

A transition may have one or more triggers, a guard and an effect (see Figure 6.6). All of
these properties are optional. This application allows at most one trigger associated to a
transition. The syntax of a transition is (source [OMG, 2007b], page 574):

<transition> ::= [<trigger>[','<trigger>]* ['['<guard>']'] ['/'<effect>]]

Regarding Figure 6.4, each trigger is associated with exactly one event. The guard
of the trigger is a boolean expression that must be true before the transition can be
fired. The effect is the behavior of the transition and may be any subclass of UML::
CommonBehaviors::BasicBehaviors::Behavior. Only simple activities are allowed in this



CHAPTER 6. UML 39

application.

Trigger
UML defines a lot of events that can be associated with a trigger, not all of them

are shown in Figure 6.5. Basically there are four kinds of events that are intended to
be associated to triggers in State Machine Diagrams : call events, signal events, change
events and time events.

• Call Event

This event is basically a synchronous operation call of the current object from an-
other object. A call event must be associated to a specific operation of the object.
The syntax of a call event is defined as (source: [OMG, 2007b], page 425):

<call-event> :: <name> ['(' [<assignment-specification>] ')']
<assignment-specification> ::= <attr-name> [',' <attr-name>]*

A call event consists of a name and an assignment-specification. The name is the
name of the specified operation associated with the call event. The assignment-
specification assigns the parameters of the operation defined by the name to an
attribute that is defined by a name (attr-name). Since the assignment-specification
is optional, it may be omitted even if the associated operation has parameters.

• Signal Event

A signal event is an asynchronous event. It is associated with a signal and does not
have a corresponding operation defined in any object. A signal is specified in the
Class Diagram as a special class with the stereotype �signal�; its parameters are
attributes of this class (no operations may be defined). A signal event is defined as
(source: [OMG, 2007b], page 450):

<signal-event> ::= <name> ['(' [<assignment-specification>] ')']
<assignment-specification> ::= <attr-name> [','<attr-name>]*

The elements of a signal event are quite the same as of a call event.

Figure 6.9 shows the graphical notation of two signals defined in a Class Diagram.

Figure 6.9: Two Signals



CHAPTER 6. UML 40

• Change Event

A change event is triggered if a predefined condition becomes true, no operation
or signal has to be considered. A condition could be a special assignment to one
attribute of the class, e.g. attribute x becomes lower than zero. The keyword when
specifies a change event (source: [OMG, 2007b], page 436):

<change-event> ::= 'when' <expression>

The change event is not considered in this application.

• Time Event

This event deals with timing. There are relative and absolute time events. A tran-
sition of a relative time event is fired after a predefined amount of time, a transition
of an absolute time event is fired at a certain point in time. The specification of
this event is defined by (source: [OMG, 2007b], page 452):

<time-event> ::= <relative-time-event> | <absolute-time-event>

<relative-time-event> ::= 'after' <expression>

<absolute-time-event> ::= 'at' <expression>

The time event is not considered in this application.

Guard
As mentioned before, a guard is a condition which must be fulfilled at the time the

event occurs. It is basically a boolean expression. If the condition of the guard is not
true, the transition cannot be fired. Guards are optional. In UML, guards are constraints.
Each constraint has an attribute called specification, which is a ValueSpecification. Figure
6.10 shows the meta model of the class ValueSpecification. There are a lot of subclasses
generalized from ValueSpecification. In this application, the specification of a constraint
of a guard is a LiteralString. The value of the LiteralString describes the boolean expres-
sion of the guard. This application restricts the values of the LiteralString to be valid
OCL expressions.

Effect
As mentioned in Section 6.4.1, an effect is a behavior, thus it can be an OpaqueBehav-

ior, FunctionBehavior, State Machine, ProtocolStateMachine, Activity or Interaction. In
this application, only simple activities are allowed. A detailed description about activities
that may be used in this application follows in Chapter 6.4.3.



CHAPTER 6. UML 41

Figure 6.10: ValueSpecification (source: [OMG, 2007b], page 28)

6.4.3 Activity Diagram

This chapter deals with Activities in UML. Recall the State Machine meta model (see
Figure 6.6). Each transition or state is associated with elements from the class UML::
CommonBehaviors::BasicBehaviors::Behavior. Subclasses of this class are OpaqueBehav-
ior, FunctionBehavior, Activity, Interaction, State Machine and Protocol State Machine.
In a State Machine Diagram, behaviors are used to describe the effect of a transition,
entry actions, exit actions and do activities. This application only allows very simple
Activity Diagrams.

Meta Model of Activity Nodes Meta Model of Activity Edges

Figure 6.11: Part of the Activity Meta Model (source: [OMG, 2007b], page 298 and 299)

Figure 6.11 shows the meta model of the basic elements used in Activity Diagrams. An
Activity Diagram describes workflow; it describes the sequence of actions defined by an
object. Each Activity contains several ActivityNodes and ActivityEdges. Nodes are con-
nected by edges which describe the flow of the Activity Diagram. This application only
allows very basic Activity Diagrams. Each diagram has an initial node and an activity
final node. There are several other types of nodes like fork, join or merge nodes, but they



CHAPTER 6. UML 42

are not allowed in this application. Nodes can also be actions. Again UML defines a huge
amount of actions. For this application, only three actions are permitted: call operation
action, send signal action and value specification action. A call operation action may call
any operation of any class in the Class Diagram (of course the objects have to share an
association in the Class Diagram and the called operation of the associated object needs
to be public). A send signal action is almost the same as a call operation action, it just
sends signals except of calling a specific operation. The signal must be defined within
the Class Diagram; it does not have to correspond to a specific operation. Both actions
are subtypes of the class InvocationAction in the UML meta model. Value specification
actions describe expressions. They are used to specify changes of the attributes of the
object. They are not of the type InvocationAction, but they contain exactly one value of
the type UML::Classes::Kernel::ValueSpecification (see Figure 6.10). There are different
subtypes of ValueSpecification, like LiteralString, LiteralInteger, Expression... This appli-
cation uses an OpaqueExpression to describe the value of the value specification action.
An OpaqueExpression comprises an attribute called body, that contains the expressions.
It is also possible to define the language used by the expressions in the language at-
tribute. Note that it is not possible to have two consecutive value specification actions in
an activity diagram in this application because all assignments can be done in one value
specification action; there is no need to split it. Edges that connect the nodes may only
be ControlFlow edges in this application (see Figure 6.11). They connect the edges in a
straight line. Consequently, the Activity Diagram is just a sequence of the three permit-
ted actions with no partition of the control flow. That means that each node must have
exactly one incoming and one outgoing edge (except initial and final node).

Figure 6.12: Example of an Activity Diagram

Figure 6.12 shows an example of an Activity Diagram allowed in the application. It
is a simple control flow without branching. There are three actions called consecutively,
one of each action type defined in this section.



CHAPTER 6. UML 43

6.5 Extensibility Mechanisms

UML provides three constructs that can be used for extension [Pender, 2003]: Stereotypes,
tagged values and constraints.

6.5.1 Stereotypes

Stereotypes extend the semantic of the meta model although they must be based on
existing types or classes. In a diagram, a stereotype is written between guillemots (�...�).
UML provides some predefined stereotypes like �entity� or �subsystem�, but it is also
possible to define other stereotypes as needed, e.g. to indicate all user interface classes
with a stereotype �userInterface�.

6.5.2 Tagged Values

Tagged values are additional features that may be added in addition to those already
defined in the meta model. They consist of a tag and an assigned value in the form
name=value, in some diagram types they are also enclosed within curly braces. The
author of a class for example may be included in a class diagram through a tagged value
in the name compartment of a class by writing name=”Christopher”.

6.5.3 Constraints

A constraint defines a condition that must hold true for the duration of the context in
which it is defined, e.g. a constraint of an attribute must hold true for the lifetime of an
object whereas a constraint of an operation must only hold true for the duration of the
operation. Constraints are placed within curly braces and can be defined in any given
language. It is quite common to use OCL (see Chapter 6.6).

6.6 OCL

OCL is an extension to UML that can be used to describe constraints on UML models.
It is a pure specification language which means it cannot change anything in the model.
The state of a system cannot be altered through an OCL expression, though it can specify
how the state of a system may change during execution. OCL just describes expressions,
it is no programming language, thus it cannot be used to write program logic.

An OCL expression may be used for the following purposes [OMG, 2006b]:

• as a query language

• to specify invariants on classes and types in the class model

• to specify type invariant for stereotypes

• to describe pre- and post- conditions on operations and methods

• to describe guards



CHAPTER 6. UML 44

• to specify target (sets) for messages and actions

• to specify constraints on operations

• to specify derivation rules for attributes for any expression over a UML model

Some basic OCL constructs to describe these purposes are explained next.

Context: Each OCL expression is defined in a context. This can for example be a
class or just a method of a class in a Class Diagram. It could also be a transition in
a State Machine Diagram. The context is always defined at the beginning of an OCL
expression. If the expression is defined in a diagram and the context is obvious, it can be
omitted. The context declaration is optional. For example:

context c : className

defines an OCL expression for a class, whereas

context className::operationName(param1 : Type1, ...): ReturnType

defines an OCL constraint for an operation of a class.

Invariants: An invariant must always be true for all instances of the given type at
any time. In OCL, this is done by the inv keyword. For example:

context c : className inv:

c.var > 0

defines, that the variable in class c must always be positive.

Pre- and Postconditions: In OCL it is also possible to define pre- and postcondi-
tions on behavioral elements like operations. This is done by the pre and post keyword.
For example:

context className::operationName(param1 : Type1, ...): ReturnType

pre : preconditionName: param1 > ...

post : postconditionName: result = ...

describes a pre- and a postcondition for the given operation. The reserved keyword
result denotes the result of the operation. The names of the conditions are optional.



Chapter 7

Transformation from UML to IOSTS

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 UML Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Transformation of the Elements . . . . . . . . . . . . . . . . . . 46

7.3.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3.2 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.4 Pseudo Code of the Algorithm . . . . . . . . . . . . . . . . . . 54

7.4.1 Function createModel(modelUML) . . . . . . . . . . . . . . . . 54

7.4.2 Function createSystem(classUML) . . . . . . . . . . . . . . . . 54

7.4.3 Function createProcess(stateMachineUML) . . . . . . . . . . . 55

7.4.4 Function createState(stateUML) . . . . . . . . . . . . . . . . . 55

7.4.5 Function createTransition(transitionUML) . . . . . . . . . . . . 56

7.4.6 Function splitTransition(transitionUML) . . . . . . . . . . . . . 56

7.4.7 Function processBehavior(activityUML) . . . . . . . . . . . . . 61

7.4.8 Function processStereotype(behavorialFeatureUML) . . . . . . 61

7.4.9 Function combineTransition(incomingUML, outgoingUML) . . 62

45



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 46

7.1 Introduction

This chapter describes the basic transformation from UML to IOSTS. For this purpose, an
extension to the UML model in terms of a stereotype has to be provided. This is explained
in Section 7.2. Section 7.3 describes how the elements of the UML model (remember the
UML model consists of Class, State Machine and Activity Diagrams) are transformed to
elements in an IOSTS specification. A detailed pseudo code of the algorithm is presented
in Section 7.4.

7.2 UML Extension

In an IOSTS, there is a distinction between input, output and internal actions. An IOSTS
action corresponds to an operation or a signal in the UML model as explained in Section
7.3. However, UML does not really support this distinction. Thus, a mechanism is needed
to provide this to the UML model. As explained in Section 6.5, it is possible to extend
the UML model in terms of stereotypes. This application introduces an IO stereotype.
This stereotype must be applied to all operations and signals of the given model. The
value of the stereotype may be either �input�, �output� or �internal�.

7.3 Transformation of the Elements

This section describes how elements from the UML model are transformed to elements
in the IOSTS. The notation of the IOSTS diagrams used in this section in depicted in
Figure 7.1. States are identified by their name (<state>). A transition may have a guard
(<guard>) which is illustrated with the keyword if. The action of a transition is identified
with the keyword sync (tau denotes an internal action). Input actions are marked with ?,
output actions with ! respectively. The keyword do designates the assignment block (an
IOSTS transition may have more that one assignment, see Section 4.2). The assignment
block is enclosed in curly brackets separated by |.

Figure 7.1: Notation of the IOSTS Diagrams



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 47

7.3.1 States

Four kinds of states and pseudostates respectively in UML State Machines are considered
in the application.

• Initial Pseudostate

An initial pseudostate in UML is transformed to an init state in IOSTS (see Figure
7.2).

Figure 7.2: IOSTS Initial State

• Final State

A final state in UML is transformed to a state in IOSTS that has no outgoing
transitions (see Figure 7.3).

Figure 7.3: IOSTS Final State

• Simple State

A simple state in UML is transformed to a state in IOSTS. Entry and exit actions,
as well as do activities and deferred events are not allowed in this application.

• Choice Pseudostate

A choice pseudostate is not transformed to a state in IOSTS. Each guard and effect
of an outgoing transition of the choice pseudostate is joined with the trigger of
the incoming transition and a new transition is created in IOSTS containing these
elements. Consider the choice pseudostate of Figure 6.8, it is transformed to the
IOSTS depicted in Figure 7.4.

Figure 7.4: Transformation of an UML Choice Pseudostate to IOSTS

An incoming transition of a choice pseudostate must not have a guard or effect
associated with it, whereas outgoing transitions are not allowed to contain a trigger.



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 48

7.3.2 Transitions

In an IOSTS each transition has either an input, output or internal action. In UML,
a transition may have an trigger that contains either a call or a signal event and is
so either associated with an operation or a signal. According to the stereotype of the
operation/signal, the trigger is transformed to an input, output or internal action in
the context of IOSTS. An effect is an activity. Activities may contain call operation
or send signal actions (see Chapter 6.4.3) that are also associated with an operation or
signal respectively. So these actions in an activity are also transformed to input, output or
internal actions according to the stereotype of the operation/signal of the event. Activities
may also comprise value specification actions. They are transformed to assignments in
IOSTS. Each expression in the body of the value attribute of the value specification action
(the value of the value specification action is actually an opaque expression) is added to
the statement of the transition in the IOSTS. Guards in UML and IOSTS are quite the
same, they are just added to the guard of the transition in IOSTS. Here is the syntax of
a transition in STG defined in Appendix A:

<transition> := from <state-id>

[<guard>]

[<action>]

[<statement>]

to <state-id>;

The next two sections describe how transitions are transformed when there is either
a trigger or an effect associated to it. Afterwards, the transformation for the case that
both, trigger and effect, are part of a transition is described.

Trigger

There are different types of events that can be associated to triggers; their transformation
to IOSTS is described in this section. Call events and signal events are operation calls
or signals from outside the object. They are transformed to actions (gates) in context
of an IOSTS. The type of the action is determined through the stereotype of the opera-
tion/signal that is associated to the call/signal event of the trigger. Figure 7.5 shows the
graphical notation of an UML trigger in a State Machine Diagram.

Figure 7.5: Call or Signal Event



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 49

• Call Event

A trigger that contains a call event in UML is transformed to an action in IOSTS.
The guard of the transition is also added to the transition in IOSTS. Figure 7.5
shows the graphical notation of a trigger. The event of the trigger is specified by
its property event in UML.

The transition in Figure 7.5 is transformed to the IOSTS depicted in Figure 7.6.

Figure 7.6: Transformation of an UML Call Event to IOSTS

• Signal Event

Signal events are treated the same way as call events, except that the signal event
is associated to a signal, not to an operation. Considering the trigger in Figure 7.5
contains a signal event, it is transformed to the IOSTS depicted in Figure 7.7.

Figure 7.7: Transformation of an UML Signal Event to IOSTS

• Change Event

Change events are not considered in this application.

• Time Event

Time events are not considered in this application.

Guard

A guard in UML and IOSTS is quite the same. It is simply added to the guard of the
transformed transition. If the transition has to be split in more than one transition, the
guard is added to the first one. As mentioned in Chapter 6.4.2, the guard in UML is the
value of a LiteralString which itself is the specification of a constraint (guard).

Effect

In this application effects are Activities. As explained in Section 6.4.3 an activity is a
simple chain of three different kinds of actions. First of all, the transformation of each
kind of action is described, that means activities with only one action (of course these
Activities have an initial and an activity final node). The transformation of multiple
actions is explained next.



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 50

• Call Operation Action

A call operation action in an activity that describes an effect of a transition in a
State Machine Diagram becomes an input, output or internal action in the context
of IOSTS according to the stereotype of the associated operation. The operation of
the call operation action is defined in the operation property of the action.

Call Operation Send Signal Action

Figure 7.8: Two different Actions

The transition in Figure 7.8 is transformed to the IOSTS depicted in Figure 7.9.

Figure 7.9: Transformation of an UML Call Operation Action to IOSTS

• Send Signal Action

Send signal actions are treated the same way as call operation actions. The only
difference is that the property that contains the signal is called signal, not operation.

The transition in Figure 7.8 is transformed to the IOSTS depicted in Figure 7.10.

Figure 7.10: Transformation of an UML Send Signal Action to IOSTS



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 51

• Value Specification Action

A value specification action contains a value that is a subtype of the class Val-
ueSpecification (see Figure 6.10). In this application, only opaque expressions are
allowed. The opaque expression contains a body attribute that consists of a list of
expressions. Each of these expressions is added to the assignment in the context of
IOSTS. If there is only one value specification action contained in an activity/effect
of a transition in UML and the transition does not have a trigger, the action of the
transition in IOSTS becomes the internal tau transition.

Figure 7.11: Value Specification Action

The transition of Figure 7.11 is transformed to the IOSTS depicted in Figure 7.12.

Figure 7.12: Transformation of a Value Specification Action to IOSTS

• Multiple Actions

In UML it is possible to define the effect of a transition in terms of an Activity Di-
agram. Of course even the very simple Activity Diagram allowed in this application
may have several actions. If there is more than one call operation or send signal
action assigned to a transition, it has to be split in IOSTS since a transition in an
IOSTS may only have one action assigned to it. The value of the value specifica-
tion action is added to the transition that contains the preceding call operation or
send signal action (if there is none, they are added to the first transition). If the
transition has a guard, it is added to the first transition in IOSTS.

Consider the Activity Diagram of Figure 7.13 describes the effect of a transition
of a State Machine. The transition has no trigger and no guard associated with
itself. The source of the transition is state State1, the target is state State2. It is
transformed to the IOSTS depicted in Figure 7.14.



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 52

Figure 7.13: Multiple Actions

Figure 7.14: Transformation of Multiple Actions of an UML Effect to IOSTS

Trigger and Effect

Of course it is possible to have both, trigger and effect assigned to a transition in an
UML State Machine. In that case the transition has to be split, except the effect of
the transition is an activity that contains only one value specification action. Otherwise,
the effect of the transition is an activity that contains any number of the three types of
actions allowed in this application (see Chapter 6.4.3), but at least one call operation or
send signal action. The guard of the transition in UML is always added to the transition
in IOSTS that contains the event of the trigger as either input, output or internal action



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 53

Figure 7.15: Trigger and Effect

according to the stereotype of the operation/signal assigned to the event of the trigger.
The value of a value specification action is added to the transition that contains the
preceding event or action.

Considering the effect of the transition in Figure 7.15 is defined by the Activity Diagram
in Figure 7.13, the equivalent IOSTS representation looks like the IOSTS depicted in
Figure 7.16:

Figure 7.16: Transformation of an UML Transition with Trigger and Effect to IOSTS



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 54

7.4 Pseudo Code of the Algorithm

This section presents a pseudo code implementation of the transformation described in
the previous chapter. As a matter of form, all UML elements are are named with the
suffix UML, whereas all IOSTS elements carry the suffix IOSTS.

7.4.1 Function createModel(modelUML)

Function 1 createModel(modelUML) takes as argument an UML model modelUML. The
model element is always the root element in an UML description, as it is in the IOSTS
model. The function first sets the name of the IOSTS model element to the name used
in the UML representation (Line 1). Then it iterates through all classes of the UML
model. If there is a State Machine associated to a class (Line 3), it calls Function 2
createSystem(classUML) for the given class (Line 4).

Algorithm 1: createModel(modelUML)

input: UML model modelUML

name← modelUML.name;1

foreach Class classUML in modelUML do2

if number of modelUML.class.stateMachine > 0 then3

createSystem (classUML);4

end5

end6

7.4.2 Function createSystem(classUML)

Function 2 createSystem(classUML) constructs an IOSTS system described in chapter
4.2. It first assigns an id to the overall system which is the name of the UML class. Then
it initializes an empty set of gates because the gates of the system are determined later in
the algorithm. After that, it calls Function 3 createProcess(stateMachineUML) for each
State Machine the class contains.

Algorithm 2: createSystem(classUML)

input: Class classUML

id← classUML.name;1

Set of Gates gatesIOSTS ← {};2

foreach State Machine stateMachineUML in classUML do3

createProcess (stateMachineUML);4

end5



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 55

7.4.3 Function createProcess(stateMachineUML)

Function 3 createProcess(stateMachineUML) first assigns the name of the State Machine
to the id attribute of the process. After that, a couple of sets are initialized according to
the definition of the process in the IOSTS meta model introduced in section 8.5. The set
of variables varIOSTS is initialized with the attributes of the class that are not constant
(in UML, the isReadOnly attribute is set to false; the owner attribute of a State Machine
is the Class that contains it). The set of parameters parIOSTS is initialized with the con-
stant attributes of the class. The set of internal actions internalIOSTS is initialized with
the default value tau. All other sets are yet empty, since their values are determined during
the algorithm. After the initialization, Function 4 createState(stateUML) is called for each
state of the State Machine (Lines 9-11) and Function 5 createTransition(transitionUML)
is invoked for each transition (Lines 12-14).

Algorithm 3: createProcess(stateMachineUML)

input: StateMachine stateMachineUML

id← stateMachineUML.name;1

Set of Variables varIOSTS ← stateMachineUML.owner.attributes;2

Set of Parameters parIOSTS ← stateMachineUML.owner.constantAttributes;3

Set of InputActions inputIOSTS ← {};4

Set of OutputActions outputIOSTS ← {};5

Set of InternalActions internalIOSTS ← {tau};6

Set of Transitions transitionsIOSTS ← {};7

Set of States statesIOSTS ← {};8

InitialState initStateIOSTS ← null;9

foreach State stateUML in stateMachineUML do10

createState (stateUML);11

end12

foreach Transition transitionUML in stateMachineUML do13

createTransition (transitionUML);14

end15

7.4.4 Function createState(stateUML)

Function 4 createState(stateUML) takes as argument a state of the UML State Machine.
First it checks the kind of the state. If the state is a choice pseudostate, no state in
the IOSTS is created. Remember a choice pseudostate has to be transformed to at
least two transitions, one for each outgoing transition of the choice pseudostate (it does
not make sense to have a choice pseudostate with only one outgoing transition, since
a normal transition can be used it that case). Each guard and effect of the outgoing
transition is combined with the trigger of the incoming one. This is done in Function
10 combineTransition(sourceUML, targetUML) that is called in Line 3. The returned
transition tempT is then processed in Function 5 createTransition(transitionUML) (Line
4). If the state is an initial pseudostate, an init state is created in IOSTS(Lines 6-9).



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 56

The name of the initial pseudostate in UML is assigned to the id of the init state of the
IOSTS. At last the initial state variable initStateIOSTS of the process is set to the state
stateIOSTS. Simple and final states are treated the same way as initial states, except a
normal state in the IOSTS is created, no init state (Lines 10-14) and all of those states
are added to the set statesIOSTS of states of the process.

Algorithm 4: createState(stateUML)

input: State stateUML

if stateUML is kind of ChoiceState then1

foreach outgoing Transition oT in stateUML do2

Transition tempT ← combineTransition (stateUML.incoming, oT );3

createTransition (tempT );4

end5

else if stateUML is kind of InitialState then6

State stateIOSTS ← new init State;7

stateIOSTS.id← stateUML.name;8

initStateIOSTS ← stateIOSTS;9

else10

State stateIOSTS ← new State;11

stateIOSTS.id← stateUML.name;12

statesIOSTS.add (stateIOSTS);13

end14

7.4.5 Function createTransition(transitionUML)

Function 5 createTransition(transitionUML) takes as argument a transition of the UML
model and processes it in order to generate transitions in the IOSTS. First it checks
whether the transition’s source or target is a choice state (Line 1). These transitions
are treated in Function 4 createState(stateUML). After that, the transition is passed
to Function 6 splitTransition(transitionUML) which returns a set of transitions (Line 2).
Recall that a transition of the UML model may result in multiple transitions in the IOSTS.
Then, all returned transitions are added to the set transitionsIOSTS of transitions of the
process (Lines 3-5).

7.4.6 Function splitTransition(transitionUML)

Function 6 and 7 splitTransition(transitionUML) describe the most complex function of
the algorithm. It takes as argument an UML transition and creates one or more IOSTS
transitions.

Lines 1, 2 and 3 initialize three variables, one that contains the set of created IOSTS
transitions (setTransIOSTS ), another that comprises the information about the current
IOSTS transition being processed (tempT ) and one boolean variable, that decides whether
the transition has to be split or not.



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 57

Algorithm 5: createTransition(transitionUML)

input: Transition transitionUML

if transitionUML.source is not kind of ChoiceState and transitionUML.target is1

not kind of CoiceState then
Set of Transitions setTransIOSTS ← splitTransition (transitionUML);2

foreach Transition t in setTransIOSTS do3

transitionsIOSTS.add (t);4

end5

end6

After that (Line 4) an empty set of actions is introduced (setActions). A transition
in UML may have an effect. An effect is a behavior. This application only allows simple
Activities (see Section 6.4.3). In Line 5 all actions of the effect are appended to the set
setActions of actions (they are ordered the same way as they appear in the activity from
the initial to the activity final node). Function 8 processBehavior(activityUML) is called
for the effect, which takes as argument an activity and returns a set of actions.

Variable tempT is a placeholder for an IOSTS transition. Here is the definition of a
transition given in Appendix A:

<transition> := from <state-id>

[<guard>]

[<action>]

[<statement>]

to <state-id>;

There are five properties an IOSTS transition may contain: fromState and toState
are mandatory, guard, action and statement are optional. First of all, the action of the
transition tempT is determined. As mentioned in Section 7.3, an IOSTS action can arise
either from call/signal events associated to a trigger or from call operation/send signal
actions contained in an effect that is an Activity in this application. Since an IOSTS
transition may only contain one action, the UML transition has to be split if there is
more than one of the elements mentioned above assigned to it. The expressions of the
body of the value of a value specification action are added to the statement of the IOSTS
transition.

The first if instruction (Line 6) checks whether there is a trigger assigned to the
transition. If not, the algorithm checks if there is an effect (Line 7). Line 8 and 9 handle
the case that neither a trigger, nor an effect is contained in the UML transition. Thus,
the action of the IOSTS transition is the internal tau transition which is saved to variable
a.

If there is an effect (no trigger, Line 10) the set setActions that contains all actions
of the activity is not empty, it must contain at least one call operation, send signal or
value specification action. So the first call operation or send signal action is saved in
variable a (Line 11). Line 12 checks whether a is not null. Function 9 processStereo-
type(behavorialFeatureUML) is called in Line 13 and passes the operation or signal of the



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 58

Algorithm 6: splitTransition(transitionUML)

input: Transition transitionUML
output: Set of Transitions setTransIOSTS

Set of Transitions setTransIOSTS ← {};1

Transition tempT ← new IOSTS Transition;2

split← false;3

Set of Actions setActions← {};4

setActions.append (processBehavior (transitionUML.effect));5

if transitionUML.trigger == null then6

if transitionUML.effect == null then7

Action a← tau;8

tempT.action← a;9

else10

Action a← first Action not kind of Value Specification in setActions;11

if a != null then12

processStereotype (a.[operation|signal]);13

tempT.action← a.[operation|signal];14

setActions.remove (a);15

else16

Action a← tau;17

tempT.action← tau;18

end19

end20

else21

Event a← transitionUML.trigger.event;22

processStereotype (a.[operation|signal]);23

tempT.action← a.[operation|signal];24

end25

if number of Actions not kind of Value Specification in setActions >= 1 then26

split← true;27

end28

gatesIOSTS.add (a.[operation|signal]);29

tempT.fromState← transitionUML.source;30

tempT.guard← transitionUML.guard.specification.value;31

...32

action (operations and signals are behavorialFeatures in UML). It just determines if the
operation/signal is transformed to an input, output or internal gate of the IOSTS. After
that (Line 14), the action attribute of variable tempT is set to the operation/signal of the
action. Action a can be removed from the set setActions (Line 15) since it has already
been processed. Now it is possible, that setActions only contains value specifications
actions. Since, in that case, the transition does not have to be split (there is no trigger,



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 59

only one call operation or send signal action), these actions are treated in Lines 23-27 in
Function 7.

Lines 17 and 18 handle the case, the transition has no trigger, but an effect that
only consists of one value specification action (if variable a in Line 11 is null, there is no
call operation or send signal action contained in the activity and this application does
not allow two consecutive value specification actions, as described in chapter 6.4.3). This
value specification action is also treated in Lines 23-27 in Function 7. The action of tempT
is the tau transition, since there is neither a trigger, nor a call operation or send signal
action contained in the effect.

If the transition has a trigger (Line 21), the event of the trigger is saved in variable
a. The operation/signal (the event can be a call event containing an operation or a
signal event containing a signal) of the event is processed in Function 9 processStereo-
type(behavorialFeatureUML), just like the operation/signal of the call operation/send sig-
nal action in Line 13. Then (Line 24) the attribute action of tempT is set to the opera-
tion/signal of the event. Again it is possible that there is an effect that only contains one
value specification action, but since the transition does not have to be split in that case,
this is treated as well in Lines 23-27 in Function 7.

Now tempT has either an input, output or internal (tau) action assigned to it. If the
set setActions contains another action that is not kind of a value specification action, the
transition has to be split since it can only have one action assigned to it. This is shown
in Lines 26-28.

The operation/signal of the action/event a that has been assigned to tempT must also
be added to the set gatesIOSTS of gates of the system (Line 29). Then, two properties of
tempT are assigned, the source of the transition and the guard. The function is continued
in Function 7 splitTransition(transitionUML) ...continue.

If the transition has to be split (Line 2), all remaining actions of the set setActions
are checked successively (Line 3). If the current action is a value specification action,
all expressions of the body of the value of the value specification action are added to
the statement property of tempT (Lines 4-7). All other kinds of action (and there is
at least one) start the splitting (Lines 8-18). First, a new intermediate state iState is
introduced. The property toState of tempT is set to it. Now tempT is complete, i.e.
all needed properties are set, so it can be added to the set setTransIOSTS of transitions
(remember this set is the return value of the function). In order to save the values
of the next transition in the variable tempT it has to be reset (Line 12). Function 9
processStereotype(behavorialFeatureUML) is called to determine if the action is added to
the input, output or internal actions of the process (Line 13). Then, the action of tempT
is set to the operation/signal of the action. It also has to be added to the set gatesIOSTS
of gates of the system (Line 15). The origin (attribute fromState of tempT ) is set to the
previously created intermediate state iState which is also added to the set statesIOSTS
of states of the process (Lines 16-17). This is done as long as there are actions left in the
set setActions. If there are no more actions left, the destination of tempT is set to the
destination of the original UML transition and tempT is added to the set setTransIOSTS
of transitions (Lines 20-21).

If the transition does not have to be split (Lines 22-30), there are only value specifica-
tion actions left in the set setActions ; it is also possible that the set setActions is empty,



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 60

Algorithm 7: splitTransition(transitionUML) ...continue

...1

if split then2

foreach Action act in setActions do3

if act is kind of Value Specification then4

foreach String s in vsAction.value.body do5

tempT.statement.add (s);6

end7

else8

Create new Intermediate State iState;9

tempT.toState← iState;10

setTransIOSTS.add (tempT );11

tempT ← new IOSTS Transition;12

processStereotype (act.[operation|signal]);13

tempT.action← act.[operation|signal];14

gatesIOSTS.add (act);15

tempT.fromState← iState;16

statesIOSTS.add (iState);17

end18

end19

tempT.toState← transitionUML.target;20

setTransIOSTS.add (tempT );21

else22

foreach Value Specification Actions vsAction left in setActions do23

foreach String s in vsAction.value.body do24

tempT.statement.add (s);25

end26

end27

tempT.toState← transitionUML.target;28

setTransIOSTS.add (tempT );29

end30

return setTransIOSTS;31

if the UML transition does not have an effect. For each value specification action left in
setActions (there may be at most two: this is the case when the transition has no trigger
and the sequence of actions in the effect looks like: value specification action→ call oper-
ation/send signal action→ value specification action; if so, the call operation/send signal
action is the action of the IOSTS transition and is then removed in Line 15 of Function
6. The two value specification actions remain in the set setActions), all expressions of the
body of the value of the value specification actions are added to the statement property
of tempT (Lines 23-27). After that, the target of tempT is set to the target of the UML
transition (Line 28). Now, all required values of tempT are set, so it can be added to the
set setTransIOSTS (in that case, the set setTrans contains only one transition). The set



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 61

setTransIOSTS is then returned in Line 29.

7.4.7 Function processBehavior(activityUML)

Function 8 processBehavior(activityUML) is called by Function 6 splitTransition
(transitionUML). It takes as argument an activity activityUML and returns a set of ac-
tions. First it introduces an empty set of actions setActions (Line 1). Then it iterates
sequential from the initial to the activity final node (Lines 2-7) of activityUML. Remem-
ber all nodes (except initial and final) must have exactly one incoming and one outgoing
edge. So, all nodes (nodes are actions) between the initial and the activity final one are
added to the set setActions of actions. This set is then returned.

Algorithm 8: processBehavior(activityUML)

input: UML Behavior activityUML
output: Set of Actions setActions

Set of Actions setActions← {};1

ActivityNode an = activityUML.initialNode;2

while an.outgoing.target != ActivityFinalNode do3

an← an.outgoing.target;4

setActions.add (an);5

end6

return setActions;7

7.4.8 Function processStereotype(behavorialFeatureUML)

Function 9 processStereotype(behavorialFeatureUML) takes as argument a behavorial fea-
ture of UML. This may either be an operation or a signal. Recall Section 7.2, each
operation and signal must have a stereotype assigned to it. So this function simply
reads the stereotype, that may either be input, output or internal and then adds the
operation/signal to the set of input inputIOSTS, output outputIOSTS or internal inter-
nalIOSTS actions of the process.

Algorithm 9: processStereotype(behavorialFeatureUML))

input: UML Behavorial Feature (Operation or Signal) bfUML

if bfUML.IO Stereotype.equals (”input”) then1

inputIOSTS.add (bfUML);2

else if bfUML.IO Stereotype.equals (”output”) then3

outputIOSTS.add (bfUML);4

else5

internalIOSTS.add (bfUML);6

end7



CHAPTER 7. TRANSFORMATION FROM UML TO IOSTS 62

7.4.9 Function combineTransition(incomingUML, outgoingUML)

Function 10 combineTransition(incomingUML, outgoingUML) is called by Function 4
createState(stateUML) in order to combine the incoming and outgoing transitions of a
choice pseudostate. The new transition has the source of the incoming transition, as well
as its trigger. The target, guard and effect are taken from the outgoing transition.

Algorithm 10: combineTransition(incomingUML, outgoingUML)

input: UML Transition incomingUML, UML Transition outgoingUML
output: UML Transition combined

Transition combined← new UML Transition;1

combined.source← incomingUML.source;2

combined.trigger ← incomingUML.trigger;3

combined.target← outgoingUML.source;4

combined.guard← outgoingUML.guard;5

combined.effect← outgoingUML.effect;6

return combined;7



Chapter 8

Implementation

Contents
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2 Eclipse Environment . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2.1 Eclipse Modeling Framework . . . . . . . . . . . . . . . . . . . 64

8.2.2 openArchitectureWare (oAW) . . . . . . . . . . . . . . . . . . . 65

8.3 Test Case Generation Workflow . . . . . . . . . . . . . . . . . . 66

8.4 IOSTS Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.5 IOSTS Meta Model . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 70

8.6.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.6.2 Guards and Assignments . . . . . . . . . . . . . . . . . . . . . 71

8.6.3 Owner Association . . . . . . . . . . . . . . . . . . . . . . . . . 72

63



CHAPTER 8. IMPLEMENTATION 64

8.1 Introduction

This chapter describes details about the implementation of the transformation. Section
8.2 describes the platform on which the transformation is implemented, i.e. the eclipse
platform. There is a short description of two eclipse plugins used in the transformation
process from UML to IOSTS, the eclipse modeling framework and the openArchitec-
tureWare plugin. Section 8.3 illustrates the overall test case generation workflow from
generating UML models to obtaining executable test cases using the STG tool. The
workflow of the IOSTS generation step in the test case generation workflow is described
in detail in Section 8.4. Section 8.5 presents the meta model of the IOSTS models used by
this application. Finally, Section 8.6 comprises some details about the implementation,
some issues and assumptions that have to be made in this application.

8.2 Eclipse Environment

The transformation is implemented in the eclipse environment. Reasons for this are the
good model engineering tool support as well as the framework used in this application is
open source. Following plugins are needed:

• Eclipse Modeling Framework (EMF) [Eclipse, 2008a]: this is the basic plugin for
model engineering with eclipse

• Eclipse Model Developing Tools (MDT) [Eclipse, 2008c]: this plugin contains the
UML2 and the OCL plugin

• openArchitectureWare (oAW) [oAW, 2008]: this plugin contains capabilities for
model to model and model to text transformation

8.2.1 Eclipse Modeling Framework

The application is implemented with the help of the eclipse modeling framework. This
framework offers the basic components for model engineering. One essential possibility is
the definition of meta models by means of Ecore. All meta models in the eclipse modeling
framework are defined by Ecore which itself is based on EMOF (Essential Meta Object
Facility). EMOF is basically the meta meta model that defines elements that may be
used by meta models. EMOF itself is a subset of MOF [OMG, 2004]. Actually the
EMOF and Ecore specification are not exactly the same, there are a few small differences
(mostly naming differences). Ecore is very simple, there are basically only classes allowed
which may contain attributes and operations. There are three types of links between
classes, generalization, association and aggregation. Generalization is the same concept
as in almost every object oriented programming language. Association is a reference to
another class. Aggregation is stronger than association, the referenced object must not
live without the object containing the aggregation. Packages and enumerations are also
part of the Ecore specification. Figure 8.1 shows the class hierarchy of the elements that
may be used in Ecore (gray boxes are abstract classes).



CHAPTER 8. IMPLEMENTATION 65

Figure 8.1: Ecore Elements

8.2.2 openArchitectureWare (oAW)

On top of the eclipse modeling framework, the openArchitectureWare plugin provides a
whole model engineering framework, consisting of facilities for model to model and model
to text transformation. It also offers possibilities for constraint checking on models. The
UML2 implementation of the eclipse framework is also totally supported.

oAW introduces three languages, Check, Xtend, Xpand2. Each of these languages is
based on the same type system and expression language, though they are used for different
purposes:

• Check : this language is used for model validation. It is possible to define constraints
that are checked against an arbitrary model. Check is feasible to define constraints
on UML2 and Ecore models. Check files have the file extension .chk.

• Xtend : this language can be used for model to model transformations. It is also
possible to define arbitrary operations based on oAW expressions. Another feature
of Xtend is the possibility to call static methods written in JAVA. Thus it is possible
to define JAVA extensions and call them directly from Xtend. Xtend files have the
file extension .ext.



CHAPTER 8. IMPLEMENTATION 66

Figure 8.2: Test Case Generation Workflow

• Xpand2 : this language is used for model to text transformations. Xpand2 files have
the file extension .xpt.

The oAW framework offers a lot more facilities, such as aspect oriented templating
and text to model transformation but these components are not used in this application.

8.3 Test Case Generation Workflow

Figure 8.2 shows the overall test case generation process for generating executable test
cases from UML models. First, an UML model containing Class and State Machine Dia-
grams has to be constructed with an UML modeling tool. This implementation uses the
UML2 plugin of the eclipse platform for constructing these UML models. The generation
of UML models with this plugin is not very user-friendly. It is used because the whole
implementation of the transformation is based on the eclipse modeling framework. Of
course the model has to conform to the constraints described in Chapter 6. After that,
the model is passed to the IOSTS Generator. There the actual transformation takes place.
The generator takes as argument an UML model and produces one or more IOSTS system
specifications that conform to the STG language specification described in Chapter 5.4.
This specification is then passed to the STG tool. Together with an IOSTS test purpose
the STG tool is able to generate executable test cases. Actually the STG tool does not
generate the executable test cases directly. It first generates symbolic test cases that are
then transformed to executable test cases using a test driver. Generating the test purpose
is not scope of the application, only the transformation from UML to an IOSTS system
specification is taken into account (yellow frame in Figure 8.2). Generating the test pur-
pose as well as defining an UML representation for it is not scope of this application, this
transformation could be topic of some future work (blue frame in Figure 8.2).



CHAPTER 8. IMPLEMENTATION 67

8.4 IOSTS Generator

This chapter takes a closer look at the IOSTS generator where the actual transformation
takes place. Figure 8.3 shows the workflow of the generator. The whole transformation
is implemented with the openArchitectureWare plugin described in Section 8.2.2. The
transformation consists of two major steps:

• the transformation from UML to IOSTS (model to model transformation)

• the transformation from IOSTS to STG (model to text transformation)

Figure 8.3: Transformation Workflow

First of all an UML model is needed. This model has to conform to the eclipse
implementation of the UML2 meta model and to the restrictions described in Chapter
6. Basically the model can be created by any arbitrary UML tool, it just needs to be
exported to the eclipse UML2 representation. Then, the UML model is passed to the
UML2IOSTS transformator. This transformation is implemented in Xtend.

The UML2IOSTS transformator produces an IOSTS model that conforms to the
IOSTS meta model explained in Section 8.5. Defining this meta model is also part of
this thesis. After that, the IOSTS model is passed to the IOSTS2STG transformator.
This transformation is the model to text transformation implemented in Xpand2 that
produces one or more IOSTS that conform to the STG specification language shown in
Chapter 5.4. The top level element of the IOSTS model is Model, as it is in an UML
model. Since an IOSTS model can have more than one system and each system becomes
an IOSTS specification in STG, it is possible to obtain more than one IOSTS specification
from only one UML/IOSTS model.

As mentioned in Section 8.2.2, the oAW framework offers possibilities to validate both,
UML and Ecore models. This is done in Check components. In this application, there are
two validation components that are called before each of the two transformations takes
place. The UML constraint check validates the UML model that has to be transformed.
Remember that there are a couple of restrictions introduced in Chapter 6. There are
almost hundred constraints defined which check whether the passed UML model fulfills
these restrictions. There are also some IOSTS constraints, but not so many. There are
basically only checks, if the types of the parameters or variables are either int or bool,



CHAPTER 8. IMPLEMENTATION 68

since these are the only datatypes the STG tool can handle. The transformation can only
take place if all constraints validate to true.

The whole workflow depicted in Figure 8.3 is contained in an openArchitectureWare
workflow file (extension .oaw). This is an XML based workflow description which makes it
very easy to modify the workflow to e.g. change the UML model or add remove constraint
files etc.

8.5 IOSTS Meta Model

As depicted in Figure 8.3, the transformation from UML to IOSTS needs an IOSTS meta
model in order to perform the model to model transformation. It would also be possible
to skip the model to model transformation and define the model to text transformation
directly on the UML model, but having the model to model transformation step in between
has some benefits:

• extensibility : the IOSTS meta model does not depend on the tool that uses the
IOSTS model such as STG in this case. Thus, it is possible to define another model
to text transformation to transform the IOSTS model into a language another tool
can understand. The model to model transformation remains the same, only the
model to text transformation has to be changed (and of course the constraints that
rely on the underlying tool, the STG tool in this application).

• restrictions : The STG tool has a lot of restrictions, e.g. the type of a variable or
parameter may only be int or bool. The IOSTS meta model does not have these
restrictions. It is better to define the constraints that have to be made according
to the tool that uses the IOSTS model as late as possible, in this case before the
model to text transformation.

The IOSTS meta model is depicted in Figure 8.4. There are a couple of datatypes
defined in the meta model. A Type has three attributes: type, upper and lower. The
type attribute consists of a TypeValue, which is an enumeration of the possible datatypes
allowed in an IOSTS model that conforms to this meta model. These are: int, bool,
float, string and char. As mentioned before, the STG tool can only handle int and bool
datatypes, but since the IOSTS meta model is more general, most of the basic datatypes
are taken into account. The Type class also has an upper and lower attribute. These
are integer values, that define the upper and lower bound of the Type. These attributes
are used to define arrays or sets of Types (of course the lower bound has to be smaller
than the upper bound), sets of infinite length are defined using the value -1 for the
upper attribute. There are two subclasses of Type, UnnamedType and NamedType. A
NamedType is also generalized from NamedElement, so it also has an attribute called
name. Type and NamedType are abstract.

The IOSTS meta model contains the elements Model, System and Process. These
elements are not defined in the IOSTS definition (see Section 4.2), but they are needed
because an UML model can produce more that one IOSTS specification (see Section 7.4).
These specifications should all be contained in one model (as it is in UML), so there
have to be some container elements that comprise these IOSTS. The Process is the actual



CHAPTER 8. IMPLEMENTATION 69

Figure 8.4: IOSTS Meta Model

IOSTS, IOSTS specifications that belong together are maintained in a System (e.g. an
IOSTS system specification and an IOSTS test purpose).

The top level element of an IOSTS is Model. It is generalized from NamedElement.
NamedElements have an attribute called name. So each IOSTS model has a name.
NamedElement is abstract. A Model has null or more Systems aggregated to it. A Sys-
tem is also generalized from NamedElement. The name of the System is the system-id. A
System consists of Gates and Processes.

A Gate is basically an operation or signal in UML. Each Gate has null or more
UnnamedTypes. These are the types of the parameters of the operation and the types of
the attributes of the signal respectively. A Gate is also generalized from NamedElement, so



CHAPTER 8. IMPLEMENTATION 70

it contains a name which is in principle the name of the operation/signal of the transformed
UML model.

Null or more Processes are part of a System. A Process consists of a disjoint set
of internalGates, inputGates and outputGates. The Process only references the Gates
(association); it may only reference Gates that are contained in the owning System. A
Process also contains a couple of Variables and Parameters. They are generalized from
NamedType and have no more attributes.

Each State Machine of an UML model becomes a Process in an IOSTS model, so the
Process also consists of States and Transitions. A State is generalized from NamedEle-
ment, so it also has a name. A Process has exactly one initialState and null or more
states.

A Transition has two associations to the class State. It has exactly one fromState, the
origin of the Transition and exactly one toState, the target of the Transition.

A Transition may also have a Guard. A Guard has an expression attribute which is a
string value containing the boolean expression of the Guard.

There are also null or more Assignments contained in a Transition. An Assignment,
like a Guard, consists of an attribute called expression, but unlike the Guard, this expres-
sion is not a boolean value but an update mapping, an assignment of a Variable of the
underlying Process.

A Transition has at most one Action as well. An Action is always associated to exactly
one Gate. This Gate must be contained in the System that contains Action. The Action
also comprises null or more Messages. A Message is generalized from NamedElement.
The number of Messages and their type, as well as their upper and lower value must be
exactly the same as defined in the set of UnnamedTypes of the associated Gate.

The classes Guard, Assignment ans Action also have an association to their owning
Transition called owner. This is due to implementation issues (see Section 8.6.3).

8.6 Implementation Details

This section gives a closer look at some implementation details and issues.

8.6.1 Parameters

In an IOSTS, the action of a transition relates to an operation or signal in UML. In a
State Machine, the operation/signal is referenced by a call/signal event of a trigger. In
the UML Superstructure, the notation of a call/signal event is denoted as (source [OMG,
2007b], page 425 and 450):

<call|signal-event> :: <name> ['(' [<assignment-specification>] ')']
<assignment-specification> ::= <attr-name> [',' <attr-name>]*

The assignment-specification contains the names of the parameters passed to the oper-
ation defined in the name. The assignment-specification is optional, even if the associated
operation has parameters. Unfortunately there is no possibility to define the assignment-
specification with the UML2 plugin of eclipse. Hence the application needs an assignment-
specification since the action in an IOSTS contains messages that are NamedTypes (see



CHAPTER 8. IMPLEMENTATION 71

Section 8.5). So the names of the parameters are passed in the property name of the
call/signal event. The name of an event must be an arbitrary event name, followed by a
comma separated list of parameter names enclosed in parenthesis. For example:

callEvent(param1, param2)

The UML check component of the transformation workflow (see Figure 8.3) checks the
correctness of the name of the events. It first checks if the number of parameters passed
in the name is the same as the number of parameters of the associated operation and the
same as the number of attributes of the associated signal respectively. Then it checks
the correctness of the name by comparing it to a regular expression. This is implemented
with the java.util.regex package [Sun, 2008]. The regular expression is denoted by:

\w+\((\w+[,\w+]*)?\)

The \w+ denotes an arbitrary sequence of letters and/or numbers (+ means that there
must be at least one). This defines the name of the event. The parameters passed by the
event are enclosed in parenthesis ’\(...\)’. Inside the parenthesis reside the parameters
’\w+’, if there are more, they are separated by a , (see [,\w+] - the square brackets denote
that these are optional). The * after the closing square bracket indicates that there may
be more that one ore none. The ? defines that the whole parameter-list is optional.

The operation/signal that is transformed to an action in an IOSTS is not only refer-
enced by events. It can also derive from call operation/send signal actions in an activity
of an effect of a transition in UML. In that case it is easy to determine the parameters.
In UML, call operation/send signal actions may have input pins as arguments. An input
pin has properties like name, type, upper and lower, just the same as the message in an
IOSTS. So each input pin is directly transformed to a message. The UML check compo-
nent verifies whether the number of input pins is the same as the number of parameters
of the associated operation and the same as the number of attributes of the associated
signal respectively. It also checks the type values of the input pins against the type values
of parameters of the operation and attributes of the signal respectively.

Return parameters also have to be considered. Actions of an IOSTS must not have
return parameters. Return parameters defined in operations of the Class Diagram in UML
are added to the action of the IOSTS to be passed by reference, thus a return parameter
is translated to a message of an action in an IOSTS with the name returnValue.

8.6.2 Guards and Assignments

The guards in UML in this application are constraints that contain a literal string. The
value specification actions that become assignments in an IOSTS contain an opaque ex-
pression whose body attribute consists of a list of strings that define the context updates
of the variables. There was no validation of these strings so far.

The UML check component contains an OCL parser that checks if the passed strings
are valid OCL expressions. The context of the OCL expression (the context is basically
the reference of self in an OCL expression) is set to the underlying class of the State
Machine that contains the guard and value specification action respectively. So each



CHAPTER 8. IMPLEMENTATION 72

guard and body string of a value specification action is an OCL expression. In an IOSTS,
the guard is a boolean expression on the may contain variables, parameters and messages
of an action (see 4.2). So each expression, no matter if guard or assignment must also be
able to call the parameters passed by a message. Since the context of an OCL expression
is set to the underlying class, it cannot access the passed parameters. So every time the
OCL parser checks an expression, the passed parameters (no matter if they come from
an event or an action) are also added to the context classifier (it is possible to add user
defined attributes to the context classifier).

However, STG does not understand the whole OCL syntax. As mentioned in chapter
5.4, guards are simple boolean expressions and statements are very simple instructions.
Only these types of expressions can be translated to STG. The = operator also has a
different meaning in guards and value specification actions. In the context of a guard, it
denotes a comparison and is therefore translated to a = in STG. In a value specification
action, the = means an assignment. The assignment operator in STG is denoted by :=
(see Appendix A). That is why an = in a value specification becomes a := in context of
STG.

8.6.3 Owner Association

As mentioned in Section 8.5, the classes Guard, Assignment and Action of the meta model
have an association to their owning transition. This is due to some implementation issues
that emerged using the openArchitectureWare framework. A State Machine that consists
of two or more transitions, some of them contain a guard and two or more guards have
the same value in their literal string is not transformed correctly. Only the last guard
of those that have the same value is transformed properly, the other guards simply get
lost. By saving the owner of the guard as property, each guard becomes unique and the
problem disappears. The same issue appeared on assignments and actions.



Chapter 9

Example: Conference Protocol

Contents
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.3 UML Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.3.1 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.3.2 StateMachineDiagram . . . . . . . . . . . . . . . . . . . . . . . 77

9.3.3 Differences to the Original Protocol . . . . . . . . . . . . . . . 79

9.4 Conference Protocol IOSTS . . . . . . . . . . . . . . . . . . . . 79

73



CHAPTER 9. EXAMPLE: CONFERENCE PROTOCOL 74

9.1 Introduction

This chapter illustrates the example used in this application; the Conference Protocol.
First, the Conference Protocol is explained in Section 9.2. After that, the UML speci-
fication of the Conference Protocol is described in Section 9.3. Section 9.4 depicts the
resulting IOSTS produced by the transformation,.

9.2 General

The example application used for the transformation is the Conference Protocol [Conf-
Prot, 2008]. This protocol is used as a case study within the Côte de Resyste project.
The goal of this project is the development of methods/techniques for automatic test case
generation. The development of tools for this purpose is also scope of this project. One
of the main achievements of the project is the TorX tool [Tretmans and Brinksma, 2003]
(the tool can be obtained here [TorX, 2008]), a tool for automated test case generation
and execution from formal transition-based specifications.

The conference protocol is a simple UDP based chat protocol. There exist 28 different
implementations in C, so it is very useful to test the quality of an automated test case
generation process. There are also a lot of specifications available in the formal languages
LOTOS, Promela, SDL and FSM/EFSM.

The conference protocol is a service that provides the capabilities for a simple multicast
chat between a couple of users participating in a conference. The service consists of the
following primitives:

• join(nickname, confID): This service primitive is called when the user wants to join
a conference with a given ID. The user can later be identified by the nickname.
Initially, the user is only allowed to perform a join. Afterwards, the user may
perform any of the other three service primitives.

• leave(): This service primitive is called when the user wants to leave the conference
she has joined before. The user must participate in a conference to be able to
perform a leave.

• datareq(message): This service primitive is called when the user wants to send a
message to all participants of the conference which the user has joined before. A
datareq performed by one user causes a dataind by all other users of the same
conference.

• dataind(nickname, message): This service primitive is called when the user receives
a message from any participant of the conference which the user has joined before.

The messages that are exchanged by the service are called PDUs (Protocol Data
Units). A PDU that is sent to the underlying network is always delivered to all participants
of the conference (except answerPDUs). There are four types of PDUs available:

• joinPDU : used to indicate that a user wants to join the conference (contains nick-
name of the sender and conference id)



CHAPTER 9. EXAMPLE: CONFERENCE PROTOCOL 75

• answerPDU : used to indicate that the sender of this PDU participates in the same
conference as the receiver (contains nickname of the sender and conference id)

• dataPDU : contains the actual message that has to be delivered to all participants
(contains the nickname of the sender and the actual message)

• leavePDU : used to indicate that a user wants to leave the conference (contains
nickname of the sender and conference id)

The basic element of the conference protocol is a CPE (Conference Protocol Entity). A
CPE is responsible for implementing the conference service primitives and so for sending
and receiving PDUs to/from the underlying network. The CPE is also responsible to keep
track of the conference participants; it holds a set of potential conference participants
and a set of actual participants. A CPE that performs a join sends joinPDUs to all
potential conference partners contained in the set of potential participants. After receiving
a joinPDU, the CPE sends an answerPDU back to the sender (the nickname of the sender
is included in the answerPDU ). Then it adds the sender to the set of actual participants
if the conference id of the PDU is the same as of the conference the CPU is joined.
A CPE that receives an answerPDU adds the sender to the set of actual conference
participants if the conference id of the answerPDU is the same as the conference id of
the CPE. By performing a datareq, the CPE sends a dataPDU to all actual participants
of the conference. A CPE that receives a dataPDU delivers the message to the user by
performing a dataind. A CPE that performs a leave sends leavePDUs to all participants
contained in the set of actual participants. Then it clears this set. Receiving a leavePDU
results in removing the sender from the set of actual participants.

Figure 9.1 shows the interfaces that are provided by the CPE. The CSAP interface pro-
vides the communication between the user interface and the CPE. The service primitives
communicate through this interface. The USAP interface provides the communication
between the CSAP and the underlying (network) layer. The PDUs are sent and received
by this interface.

Figure 9.1: CPE Interfaces (source: [ConfProt, 2008])



CHAPTER 9. EXAMPLE: CONFERENCE PROTOCOL 76

9.3 UML Specification

This section explains the UML specification for the conference protocol described in Sec-
tion 9.2. It consists of a Class and State Machine Diagram. It also summarizes the
differences that had to be made to the original protocol in the UML specification.

9.3.1 Class Diagram

Figure 9.2 shows the class diagram of the conference protocol specification. It is very
simple, it just contains one class called CPE. This class has three attributes: num holds
the number of actual participants, confID holds the id of the joined conference (it has the
value 0 if the CPE is not connected to a conference) and userID holds the actual id of the
user (0 if the CPE is not connected, i.e. there is no user specified). Due to the fact that
the STG tool only understands int and bool parameters, the userID is an integer value
and not a string. The service primitives described in Section 9.2 are mapped to the four
public operations:

Figure 9.2: Class Diagram of the Conference Protocol

• �input�join(userID : Integer, confID : Integer)

• �input�leave()

• �input�datareq(message : Integer)

• �output�dataind(userID : Integer, message : Integer)

Operations sendLeavePDUs(), sendJoinPDUs(), sendAnswerPDUs() and sendDataP-
DUs() are stereotyped with �output�, whereas initialize(), addParticipant() and re-
moveParticipant() are �internal�. Because of the limitation of the STG tool, the type



CHAPTER 9. EXAMPLE: CONFERENCE PROTOCOL 77

of the message parameter of the datareq operation is integer, not string. The conference
protocol also keeps track of the actual participants by saving them in a set. This is not
possible in STG, it cannot handle sets or arrays. Therefore the operations �internal�ad-
dParticipant() and �internal�removeParticipant() are introduced to simulate this, as well
as the attribute num. The four PDUs described in Chapter 9.2 are implemented as signals
(they are not depicted in Figure 9.2). There are four signals:

• �input�joinPDU(uID : Integer, cID : Integer)

• �input�answerPDU(uID : Integer, cID : Integer)

• �input�dataPDU(uID : Integer, message : Integer)

• �input�leavePDU(uID : Integer, cID : Integer)

9.3.2 StateMachineDiagram

Figure 9.3 shows the State Machine Diagram that specifies the behavior described in
Section 9.2. As described in Chapter 6.4.2, each transition consists of a trigger, a guard
and an effect, all of them are optional. This State Machine Diagram shows the name of
the event that is associated with a trigger. It also shows the name of the effect of the
transition. Remember, an effect of a transition is always an Activity.

Figure 9.3: State Machine Diagram of the Conference Protocol



CHAPTER 9. EXAMPLE: CONFERENCE PROTOCOL 78

Event Type Event Called Operation/Signal

CallEvent performJoin(u, c) �input�join(u, c)
CallEvent performLeave() �input�leave()
CallEvent performDataReq(mes) �input�datareq(mes)
SignalEvent receiveJoinPDU(uID, cID) �input�joinPDU(uID, cID)
SignalEvent receiveAnswerPDU(uID, cID) �input�answerPDU(uID, cID)
SignalEvent receiveLeavePDU(uID, cID) �input�leavePDU(uID, cID)
SignalEvent receiveDataPDU(uID, mes) �input�dataPDU(uID, mes)

Table 9.1: Event - Operation

Table 9.1 shows a mapping between trigger (actually the name of the called event is
depicted in Figure 9.3) and the associated operation/signal. The type of the event is also
displayed.

Table 9.2 gives a closer look at the Activities used in the State Machine Diagram of
Figure 9.3. Since an Activity in this application is a linear sequence of actions without
branching, the sequence of actions is shown consecutively numbered in column two. Col-
umn three shows the called operation or signal, as well as the assignments of a value
specification action.

Activity Actions Operation/Signal/Assignments

InitializeActivity

1. CallOperationAction �internal�initialize()

2. ValueSpecificationAction
num = 0
userID = 0
confID = 0

JoinActivity
1. ValueSpecificationAction

num = num + 1
userID = u
confID = c

2. CallOperationAction �output�sendJoinPDUs()

LeaveActivity
1. ValueSpecificationAction

num = 0
userID = 0
confID = 0

2. CallOperationAction �output�sendLeavePDUs()

AnswerActivity
1. CallOperationAction �internal�addParticipant()
2. ValueSpecificationAction num = num + 1
3. CallOperationActio �output�sendAnswerPDUs()

AddActivity
1. CallOperationAction �internal�addParticipant()
2. ValueSpecificationAction num = num + 1

RemoveActivity
1. CallOperationAction �internal�removeParticipant()
2. ValueSpecificationAction num = num - 1

DataIndActivity CallOperationAction �output�dataind(uID, mes)

SendDataActivity CallOperationAction �output�sendDataPDUs()

Table 9.2: Activities



CHAPTER 9. EXAMPLE: CONFERENCE PROTOCOL 79

9.3.3 Differences to the Original Protocol

One main difference is the restriction to int and bool datatypes in order to be consistent
with the possibilities of the STG tool. The message and the userID are simple integer
values. This does not really change anything in the functionality, it just had to changed
due to the limitations.

Another difference is the lack of array support in the STG tool. The list of participants
is not provided in the UML specification. Adding and removing a participant is simulated
using the addparticipant() and removeParticipant() operations. The size of the array is
simulated with the num attribute.

9.4 Conference Protocol IOSTS

This section shows the resulting IOSTS that has been created by the transformation. The
IOSTS produced by the STG tool is depicted in Figure 9.4. Its definition in the STG
language can be found in Appendix B.

States are depicted by round shapes, the properties of a transition are situated in
rectangles between the transition. The first line describes the guard, if there is none, true
is displayed ([bool] just denotes the type of the expression, it is always bool on guards).
The sync keyword denotes an action, ? specifies an input action, ! labels an output action
respectively. The do {...} block denotes the assignments of the transition, the type of an
assigned variable of an assignment is surrounded by square brackets. The state Init is
the initial state of the State Machine Diagram of Figure 9.3, states Idle and Connected
are its simple states. All other states are a result of a transition that had to be split
during the transformation algorithm. For example the transition receiveLeavePDU(uID,
cID)/RemoveActivity of the State Machine is split into two transitions (upper right corner
of Figure 9.4), one from the state Connected to RemoveActivityCall1 and another from
RemoveActivityCall1 to Connected. Consider Table 9.1, the event receiveLeavePDU(uID,
cID) is associated with the signal �input�leavePDU(uID, cID). According to Table 9.2,
Activity RemoveActivity contains a CallOperationAction that is associated to the opera-
tion �internal�removeParticipants. Recall Sections 7.3 and 7.4, this transition has to be
split, as can be seen in Figure 9.4. The other Transition work the same way, they are not
discussed here.



CHAPTER 9. EXAMPLE: CONFERENCE PROTOCOL 80

F
ig

u
re

9.
4:

IO
ST

S
C

P
E

Sp
ec

ifi
ca

ti
on



Chapter 10

Future Work

This chapter contains some ideas about how the transformation could be improved or
enhanced in some further work

• Concurrency : by now, all elements in UML that imply concurrency are not consid-
ered in this application, like fork and join nodes in an Activity or different regions
in a State Machine. As mentioned in Chapter 6.4.2, an IOSTS does not really
support concurrency. Though there is a possibility to simulate concurrency in an
IOSTS. Consider the Activity Diagram of Figure 10.1 and imagine action A and B
are placeholders for any kind of action sequence. It is possible to transform this into
an IOSTS with two paths, one that first contains all actions of A followed by B and
another path that consists of the actions of B followed by the actions of A. [Pickin
et al., 2002] also propose this method in their work for handling concurrency. This
can be applied to every possible kind of concurrent element of UML. Of course, if
there are a lot of concurrent paths in an UML model this would lead to a huge
amount of paths in an IOSTS since n concurrent paths are transformed to n! paths
in an IOSTS.

Figure 10.1: Concurrency

• Reducing UML restrictions : As explained in Chapter 6, there are a lot of restrictions
that have to be applied to the UML models in order to perform the transformation.
Reducing these restrictions would be a topic for future work. Some proposals are
given below:

81



CHAPTER 10. FUTURE WORK 82

– State Machine: By now, only simple states are allowed. As mentioned in
Section 6.4.2, states may have entry and exit actions which are also behaviors.
Taking these actions into account would be an improvement to the overall
transformation.

Another point concerning State Machines is the restriction that an effect of
a transition must be an Activity. Regarding Section 6.4.1, an effect may be
an OpaqueBehavior, FunctionBehavior, State Machine, ProtocolStateMachine,
Activity or Interaction. Taking some of these elements into account would also
improve the UML modelling facilities. Incorporating FunctionBeahviors should
not be very difficult since a FunctionBehavior references only an operation of
the underlying UML model. It should also be possible to allow Interactions
(that are actually Sequence Diagrams) although this is not so easy since Inter-
actions and Activities are quite different.

By now, the assignments of the IOSTS are modelled by means of value speci-
fication actions in the Activity Diagrams. It should also be possible to define
context updates in terms of postconditions on transitions.

This application only allows call and signal events. Regarding Figure 6.5, UML
defines more than these events (change and signal events). Allowing more
of these events would improve the modelling possibilities and thus enhance
the whole transformation. Especially change events should not be difficult to
include (basically a change event is an event that is not associated with an
operation or signal). Time events are problematic since an IOSTS does not
support timing. It should be possible to use timed automata [Alur and Dill,
1994] or a symbolic version of tioco [Krichen and Tripakis, 2004] instead.

– Activity : This application uses Activities to describe the effect of a transition
in a State Machine. These activities may only contain three types of actions:
call operation actions, send signal actions and value specification actions. In-
corporating more types of actions would improve the transformation.

Instead of the value specification actions that contain the context updates of the
variables, it should be possible to add pre- and postconditions to the actions.
Postcondition can comprise the context updates, whereas preconditions define
boolean conditions that could be transformed to guards in an IOSTS.

By now, Activities are only straight sequences of actions without branching
since branching mostly denotes concurrency. This is not always the case. It is
possible to add decision nodes to Activity Diagrams in order to split the activity
path. The concept of decision nodes is the same as of choice pseudostates in
State Machines (see Section 6.4.2).

• Front-End : By now, the implementation of the transformation is only in a prove of
concept phase, so it is not very user friendly. Building a front-end (graphical user
interface) on the top of the transformation algorithm would be a major enhancement
of the overall project.

• Using other UML modelling tools : The transformation uses the eclipse implemen-
tation of UML 2. The generation of UML models in the eclipse environment is



CHAPTER 10. FUTURE WORK 83

not very user friendly. There exist other (non-)commercial tools that are quite a
lot more handy. Defining the UML model in an external tool and importing it in
the eclipse environment was not tested during this work. Though it should not be
difficult since UML models can be exchanged between different tools [OMG, 2006a].

• Eclipse Plugins : Some improvements to the implementation could be achieved by
using some of the facilities offered by the eclipse framework:

– Graphical Modeling Framework (GMF): GMF [Eclipse, 2008b] is based on the
eclipse modeling framework (EMF). It offers facilities to generate a graphical
editor to meta models defined in EMF (Ecore). Thus it is possible to define a
graphical editor for the IOSTS models that conform to the meta model defined
in Section 8.5. This offers possibilities for editing easily any kind of IOSTS
model. It also offers great presentation benefits because transformed UML
models could be displayed in a much more intuitively manner as it allows a
textual representation.

– Xtext : Xtext is part of the openArchitectureWare framework [Efftinge et al.,
2006]. It provides mechanisms for defining a textual editor in the eclipse en-
vironment for any kind of language, actually it supports the definition of a
domain-specific language. This mechanism is also based on ecore models. It
should be possible to enhance the transformation project with a textual editor
for the STG language specification with all the benefits a textual editor pro-
vides, such as syntax highlighting, code completion, code folding, a configurable
outline view and static error checking for the given syntax.

• Other Transformations : The transformation is split into two parts, the model to
model and the model to text transformation. This makes it easy to generate other
IOSTS representations, not only the STG language specification. Another topic
would be the transformation to another target language, refer to [Tretmans, 2008]
for more information of tools that are available. The model to model transformation
must possibly also be adapted in that case.

• Test Purpose: The test case generation process described in Section 4.4 takes as
argument an IOSTS system specification and an IOSTS test purpose. Defining the
test purpose is not part of this application. This could be the task of some future
work, i.e. how the test purpose can be modelled in UML and then transformed into
an IOSTS test purpose. It should be possible to model the test purpose in terms
of a State Machine Diagram with special states stereotyped with Accept and Reject
to determine these states which are needed by the test purpose (see Section 4.3).



Chapter 11

Conclusion

UML is the de facto standard language for system specification purposes. There exist
proper tools that are able to generate test cases like the STG tool, but the system speci-
fication used by this tools is not based on UML. There is a lack of generating test cases
directly from UML models (there are approaches to generate test cases from UML, though
not from UML2 and not with respect to sioco). This thesis fills this gap by providing a
transformation from UML to IOSTS, a specification language used amongst others by the
STG tool that is able to generate executable test cases from IOSTS system specifications.
Defining a meta model for IOSTS specifications is also comprised in this thesis.

The UML specification is very extensive, not all diagrams are appropriate for such a
transformation. One goal of this thesis is to show that the transformation is possible,
thus only a subset of UML is used for the transformation, i.e. Class, State Machine and
Activity Diagrams. There are also a lot of restrictions on these diagrams that have to be
made. This of course limits the practical use of the application. Some future work has to
be done in order to reduce these restrictions to improve the whole transformation process.

The transformation is implemented in the eclipse environment. There are some pow-
erful plugins and frameworks for model engineering, especially the openArchitectureWare
framework offers effective components for model to model and model to text transfor-
mation, as well as possibilities for constraint checking on models. The UML models are
generated using the eclipse UML2 plugin. This is not very user-friendly, since the UML
models have to be constructed with a tree editor. There is also a plugin called UML2Tools
that offers a graphical editor for UML2 models, but it is not possible to modify all elements
of an UML model in this editor.

It is important to mention that the main focus of the thesis is the transformation from
UML to IOSTS, so a generalized IOSTS meta model is introduced. The transformation
is split into two parts, the model to model and the model to text transformation. The
IOSTS model obtained after the model to model transformation can be used as input
for any arbitrary tool that can handle IOSTS models (there is no restriction to the STG
tool). Only the model to text transformation, that is tailored to the STG tool in this
application, has to be changed.

The Conference Protocol example shows a practical example of the transformation
algorithm presented in this thesis, although it is not easy to model an UML specification
with all the restrictions that have to be made to the UML model (and the limitations

84



CHAPTER 11. CONCLUSION 85

the STG tool provides). Reducing these limitations in some future work will improve
the modelling capabilities and so the practical value of the whole test case generation
workflow.

The application developed in this thesis fills the gap between UML modelling and test
case generation tools based on Input/Output Symbolic Transition Systems with respect
to the sioco conformance relation. Thus, it is a step of generating test cases directly from
UML models.



Appendix A

STG Language Specification

<system> := system <system-id>;

[const <constant>]

[type <type>]

gate <gate>

<process>

<gate> := <gate-id> [(<type-id>{, <type-id>})];

<process> := process <process-id>;

input <gate-id>

output <gate-id>

internal <gate-id> [tau]

[parameters <params>]

[variables <vars>]

state <state>

transition <transition>

<params> := <ident_name> : <type>;

<vars> := <ident_name> : <type>;

<state> := init : <state-id>; | <state-id>;

<transition> := from <state-id>

[<guard>]

[<action>]

[<statement>]

to <state-id>;

<guard> := if <expression>

<action> := sync <action_type>

86



APPENDIX A. STG LANGUAGE SPECIFICATION 87

<action_type> := <internal_action> | <other_action>

<internal_action> := <gate> | tau

<other_action> := <gate> {?|!} (<io_list>)

<io_list> := <mess-id>{, <mess-id>}

<mess-id> := <ident> | <constant-id>

<statement> := do {<inst>{| <inst>}}

<inst> := <expression> := <expression>

<expression> := <constant_value> |

<name> |

+ <expression> |

- <expression> |

not <expression> |

<expression> [<expression>] |

<expression> . <expression> |

<expression> -> <expression> |

(<expression>) |

<expression> <binop> <expression>

<binop> := or | and | = | <> | < | <= | >= | > | + | - |

* | / | %

<name> ::= _IDENT_



Appendix B

Conference Protocol in STG
Language

system CPE;

gate

initialize();

join(int,int);

sendJoinPDUs();

leave();

sendLeavePDUs();

leavePDU(int,int);

removeParticipant();

dataPDU(int,int);

dataind(int,int);

datareq(int);

sendDataPDUs();

answerPDU(int,int);

addParticipant();

joinPDU(int,int);

sendAnswerPDU();

process CPEBehavior;

input

join, leave, leavePDU, dataPDU, datareq, answerPDU, joinPDU;

output

sendJoinPDUs, sendLeavePDUs, dataind, sendDataPDUs, sendAnswerPDU;

internal

initialize, removeParticipant, addParticipant;

88



APPENDIX B. CONFERENCE PROTOCOL IN STG LANGUAGE 89

variables

num : int;

confID : int;

userID : int;

state

init : Init;

Idle;

Connected;

JoinActivityCall1;

LeaveActivityCall1;

RemoveActivityCall1;

DataIndActivityCall1;

SendDataActivityCall1;

AddActivityCall1;

AnswerActivityCall1;

AnswerActivityCall2;

Init2Idle;

transition

from Init

if(true)

to Init2Idle;

from Init2Idle

sync initialize

do {

num := 0 |

userID := 0 |

confID := 0

}

to Idle;

from Idle

sync join?(u,c)

do {

num := num + 1 |

userID := u |

confID := c

}

to JoinActivityCall1;

from JoinActivityCall1

sync sendJoinPDUs!()



APPENDIX B. CONFERENCE PROTOCOL IN STG LANGUAGE 90

to Connected;

from Connected

sync leave?()

do {

num := 0 |

userID := 0 |

confID := 0

}

to LeaveActivityCall1;

from LeaveActivityCall1

sync sendLeavePDUs!()

to Idle;

from Connected

if (confID = cID)

sync joinPDU?(uID,cID)

to AnswerActivityCall1;

from AnswerActivityCall1

sync addParticipant

do {

num := num + 1

}

to AnswerActivityCall2;

from AnswerActivityCall2

sync sendAnswerPDU!()

to Connected;

from Connected

if (confID <> cID)

sync joinPDU?(uID,cID)

to Connected;

from Connected

if (confID = cID)

sync answerPDU?(uID,cID)

to AddActivityCall1;

from AddActivityCall1

sync addParticipant

do {

num := num + 1



APPENDIX B. CONFERENCE PROTOCOL IN STG LANGUAGE 91

}

to Connected;

from Connected

if (confID <> cID)

sync answerPDU?(uID,cID)

to Connected;

from Connected

sync leavePDU?(uID,cID)

to RemoveActivityCall1;

from RemoveActivityCall1

sync removeParticipant

do {

num := num - 1

}

to Connected;

from Connected

sync dataPDU?(uID,mes)

to DataIndActivityCall1;

from DataIndActivityCall1

sync dataind!(uID,mes)

to Connected;

from Connected

sync datareq?(mes)

to SendDataActivityCall1;

from SendDataActivityCall1

sync sendDataPDUs!()

to Connected;



Bibliography

[Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata. The-
oretical Computer Science, 126(2):183–235.

[Bozga et al., 2002] Bozga, M., Graf, S., and Mounier, L. (2002). If-2.0: A validation
environment for component-based real-time systems. In Computer Aided Verification,
volume 2404/2002 of Lecture Notes in Computer Science, pages 630–640, London, UK.
Springer-Verlag.

[Bozga et al., 2004] Bozga, M., Graf, S., Ober, I., Ober, I., and Sifakis, J. (2004). The IF
Toolset. In Formal Methods for the Design of Real-Time Systems, volume 3185/2004 of
Lecture Notes in Computer Science, pages 237–267, Berlin, Heidelberg. Springer-Verlag.

[Bozga and Olvovsky, 2002] Bozga, M. and Olvovsky, S. (2002). Intermediate Language
2.0 with Test Directives Specification. AGEDIS Project Website: http://www.agedis.de.
Last visited: 09.2008.

[Cavarra and Davies, 2001] Cavarra, A. and Davies, J. (2001). AGEDIS: Language Spec-
ification. AGEDIS Project Website: http://www.agedis.de. Last visited: 09.2008.

[Clarke et al., 2001a] Clarke, D., Jéron, T., Rusu, V., and Zinovieva, E. (2001a). Au-
tomated Test and Oracle Generation for Smart-Card Applications. In Smart Card
Programming and Security, volume 2140/2001 of Lecture Notes in Computer Science,
pages 58–70, Berlin, Heidelberg. Springer-Verlag.

[Clarke et al., 2001b] Clarke, D., Jéron, T., Rusu, V., and Zinovieva, E. (2001b). STG:
A Tool for Generating Symbolic Test Programs and Oracles from Operational Specifi-
cations. ACM SIGSOFT Software Engineering Notes, 26(5):301–302.

[Clarke et al., 2002] Clarke, D., Jéron, T., Rusu, V., and Zinovieva, E. (2002). STG:
A Symbolic Test Generation Tool. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 2280/2002 of Lecture Notes in Computer Science, Berlin,
Heidelberg. Springer-Verlag.

[ConfProt, 2008] ConfProt (2008). The Conference Protocol Case Study. Conference
Protocol Website: http://fmt.cs.utwente.nl/ConfCase. Last visited: 09.2008.

[Constant et al., 2007] Constant, C., Jéron, T., Marchand, H., and Rusu, V. (2007). In-
tegrating Formal Verification and Conformance Testing for Reactive Systems. IEEE
Transactions on Software Engineering, 33(8):558–574.

92

http://www.agedis.de
http://www.agedis.de
http://fmt.cs.utwente.nl/ConfCase


BIBLIOGRAPHY 93

[Eclipse, 2008a] Eclipse (2008a). Eclipse Modeling Framework Project (EMF). EMF
Website: http://www.eclipse.org/modeling/emf. Last visited: 09.2008.

[Eclipse, 2008b] Eclipse (2008b). Graphical Modeling Framework Website (GMF). GMF
Website: http://eclipse.org/gmf. Last visited: 09.2008.

[Eclipse, 2008c] Eclipse (2008c). Model Development Tools (MDT). MDT Website: http:
//www.eclipse.org/modeling/mdt. Last visited: 09.2008.

[Efftinge et al., 2006] Efftinge, S., Graf, S., and Völter, M. (2006). oAW xText - A frame-
work for textual DSLs. Eclipse Summit 2006, Workshop: Modeling Symposium.

[Farchi et al., 2002] Farchi, E., Hartman, A., and Pinter, S. S. (2002). Using a model-
based test generator to test for standard conformance. IBM Systems Journal, 41(1):89–
110.

[Frantzen et al., 2005] Frantzen, L., Tretmans, J., and Willemse, T. A. C. (2005). Test
Generation Based on Symbolic Specifications. In Formal Approaches to Software Test-
ing, volume 3395/2005 of Lecture Notes in Computer Science, pages 1–15, Berlin, Hei-
delberg. Springer-Verlag.

[Frantzen et al., 2006] Frantzen, L., Tretmans, J., and Willemse, T. A. C. (2006). A Sym-
bolic Framework for Model-Based Testing. In Formal Approaches to Software Testing
and Runtime Verification, volume 4262/2006 of Lecture Notes in Computer Science,
pages 40–54, Berlin, Heidelberg. Springer-Verlag.

[Graf et al., 2006] Graf, S., Ober, I., and Ober, I. (2006). A real-time profile for UML.
International Journal on Software Tools for Technology Transfer (STTT), 8(2):113–
127.

[Hartman, 2004] Hartman, A. (2004). Final Report. AGEDIS Project Website: http:
//www.agedis.de. Last visited: 09.2008.

[Hartman and Nagin, 2004] Hartman, A. and Nagin, K. (2004). The AGEDIS Tools for
Model Based Testing. ACM SIGSOFT Software Engineering Notes, 29(4):129–132.

[Ho et al., 1999] Ho, W. M., Jézéquel, J.-M., Guennec, A. L., and Pennaneac’h, F. (1999).
UMLAUT: An Extendible UML Transformation Framework. In ASE ’99: Proceedings
of the 14th IEEE International Conference on Automated Software Engineering, page
275, Washington, DC, USA. IEEE Computer Society.

[IRISA, 2008a] IRISA (2008a). The STG Tool Page. STG Website: http://www.irisa.fr/
prive/ployette/stg-doc/stg-web.html. Last visited: 09.2008.

[IRISA, 2008b] IRISA (2008b). UMLAUT: Unified Modeling Language All pUrposes
Transformer. UMLAUT Website: http://www.irisa.fr/UMLAUT. Last visited: 09.2008.

[Jard and Jéron, 2005] Jard, C. and Jéron, T. (2005). TGV: theory, principles and al-
gorithms. International Journal on Software Tools for Technology Transfer (STTT),
7(4):297–315.

http://www.eclipse.org/modeling/emf
http://eclipse.org/gmf
http://www.eclipse.org/modeling/mdt
http://www.eclipse.org/modeling/mdt
http://www.agedis.de
http://www.agedis.de
http://www.irisa.fr/prive/ployette/stg-doc/stg-web.html
http://www.irisa.fr/prive/ployette/stg-doc/stg-web.html
http://www.irisa.fr/UMLAUT


BIBLIOGRAPHY 94

[Jeannet, 2008] Jeannet, B. (2008). The NBAC verification/slicing tool. NBAC Website:
http://pop-art.inrialpes.fr/people/bjeannet/nbac. Last visited: 09.2008.

[Jéron et al., 2006] Jéron, T., Marchand, H., and Rusu, V. (2006). Symbolic Determini-
sation of Extended Automata. In Fourth IFIP International Conference on Theoretical
Computer Science- TCS 2006, volume 209/2006 of IFIP International Federation for
Information Processing, pages 197–212, Boston, MA, USA. Springer-Verlag.

[Krichen and Tripakis, 2004] Krichen, M. and Tripakis, S. (2004). Black-Box Confor-
mance Testing for Real-Time Systems. In Model Checking Software, volume 2989/2004
of Lecture Notes in Computer Science, pages 109–126, Berlin, Heidelberg. Springer-
Verlag.

[oAW, 2008] oAW (2008). openArchitectureWare. oAW Website: http://www.
openarchitectureware.org. Last visited: 09.2008.

[Ober et al., 2006] Ober, I., Graf, S., and Ober, I. (2006). Validating timed UML models
by simulation and verification. International Journal on Software Tools for Technology
Transfer (STTT), 8(2):128–145.

[OMEGA, 2008] OMEGA (2008). IST OMEGA Project. OMEGA Project Website:
http://www-omega.imag.fr. Last visited: 09.2008.

[OMG, 2004] OMG (2004). Meta Object Facility (MOF) 2.0 Core Specification. Technical
report, The Object Management Group.

[OMG, 2006a] OMG (2006a). Diagram Interchange, V1.0. Technical report, The Object
Management Group.

[OMG, 2006b] OMG (2006b). Object Constraint Language, V2.0. Technical report, The
Object Management Group.

[OMG, 2007a] OMG (2007a). OMG Unified Modeling Language (OMG UML), Infras-
tructure, V2.1.2. Technical report, The Object Management Group.

[OMG, 2007b] OMG (2007b). OMG Unified Modeling Language (OMG UML), Super-
structure, V2.1.2. Technical report, The Object Management Group.

[Pender, 2003] Pender, T. (2003). UML Bible. John Wiley & Sons, Inc., New York, NY,
USA.

[Pickin et al., 2001] Pickin, S., Jard, C., Heuillard, T., Jézéquel, J.-M., and Desfray, P.
(2001). A UML-integrated Test Description Language for Component Testing. In
Practical UML-Based Rigorous Development Methods - Countering or Integrating the
eXtremists. Workshop of the pUML-Group held together with the UML 2001 October
1st, 2001 in Toronto, Canada, pages 208–223. German Informatics Society.

[Pickin et al., 2002] Pickin, S., Jard, C., Traon, Y. L., Jéron, T., Jézéquel, J.-M., and
Guennec, A. L. (2002). System Test Synthesis from UML Models of Distributed Soft-
ware. In Formal Techniques for Networked and Distributed Systems - FORTE 2002,

http://pop-art.inrialpes.fr/people/bjeannet/nbac
http://www.openarchitectureware.org
http://www.openarchitectureware.org
http://www-omega.imag.fr


BIBLIOGRAPHY 95

volume 2529/2002 of Lecture Notes in Computer Science, pages 97–113, Berlin, Heidel-
berg. Springer-Verlag.

[Rusu et al., 2000] Rusu, V., du Bousquet, L., and Jéron, T. (2000). An Approach to
Symbolic Test Generation. In Integrated Formal Methods: Second International Con-
ference, IFM 2000, Dagstuhl Castle, Germany, November 2000. Proceedings, volume
1945/2000 of Lecture Notes in Computer Science, pages 338–357, Berlin, Heidelberg.
Springer-Verlag.

[Sun, 2008] Sun (2008). The java.util.regex Package. API Documentation: http:
//java.sun.com/javase/6/docs/api/java/util/regex/package-summary.html. Last visited:
09.2008.

[TorX, 2008] TorX (2008). TorX Test Tool. TorX Website: http://fmt.cs.utwente.nl/tools/
torx/introduction.html. Last visited: 09.2008.

[Tretmans, 1994] Tretmans, J. (1994). A Formal Approach to Conformance Testing. In
Protocol Test Systems, volume C-19 of IFIP Transactions, pages 257–276, Amsterdam,
The Netherlands. North-Holland Publishing Co.

[Tretmans, 1996] Tretmans, J. (1996). Test generation with inputs, outputs and repetitive
quiescence. Software - Concepts and Tools, 17(3):103–120.

[Tretmans, 2008] Tretmans, J. (2008). Model based testing with labelled transition sys-
tems. In Formal Methods and Testing, volume 4949/2008 of Lecture Notes in Computer
Science, pages 1–38, Berlin, Heidelberg. Springer.

[Tretmans and Brinksma, 2003] Tretmans, J. and Brinksma, E. (2003). TorX : Auto-
mated Model Based Testing. In Hartman, A., Dussa-Zieger, K. eds. Proceedings of
the First European Conference on Model-Driven Software Engineering, Nürnberg, Ger-
many. Imbuss.

[Verimag, 2008] Verimag (2008). Lucky: A (target) language for describing and sim-
ulating stochastic reactive systems. Lucky Website: http://www-verimag.imag.fr/
∼synchron/index.php?page=lurette/lucky. Last visited: 09.2008.

http://java.sun.com/javase/6/docs/api/java/util/regex/package-summary.html
http://java.sun.com/javase/6/docs/api/java/util/regex/package-summary.html
http://fmt.cs.utwente.nl/tools/torx/introduction.html
http://fmt.cs.utwente.nl/tools/torx/introduction.html
http://www-verimag.imag.fr/~synchron/index.php?page=lurette/lucky
http://www-verimag.imag.fr/~synchron/index.php?page=lurette/lucky

	Erklärung
	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	List of figures
	List of tables
	Introduction
	Motivation
	Task Outline
	Thesis Outline

	Related Work
	Introduction
	Test Case Generation with UMLAUT and TGV
	AGEDIS
	OMEGA
	Summary

	The ioco Test Theory
	Introduction
	Definition of IOLTS
	The ioco Conformance Relation
	Example

	Input Output Symbolic Transition Systems (IOSTS)
	Introduction
	Definition of IOSTS
	Conformance Testing with IOSTS
	Test Case Generation Process

	The Symbolic Test Generator (STG)
	Introduction
	STG Workflow
	STG Example
	System Specification
	Test Purpose
	Test Case

	STG Language

	UML
	Introduction
	General
	Structure
	Structural Elements
	Class Diagram

	Behavior
	Behavioral Elements
	State Machine Diagram
	Activity Diagram

	Extensibility Mechanisms
	Stereotypes
	Tagged Values
	Constraints

	OCL

	Transformation from UML to IOSTS
	Introduction
	UML Extension
	Transformation of the Elements
	States
	Transitions

	Pseudo Code of the Algorithm
	Function createModel(modelUML)
	Function createSystem(classUML)
	Function createProcess(stateMachineUML)
	Function createState(stateUML)
	Function createTransition(transitionUML)
	Function splitTransition(transitionUML)
	Function processBehavior(activityUML)
	Function processStereotype(behavorialFeatureUML)
	Function combineTransition(incomingUML, outgoingUML)


	Implementation
	Introduction
	Eclipse Environment
	Eclipse Modeling Framework
	openArchitectureWare (oAW)

	Test Case Generation Workflow
	IOSTS Generator
	IOSTS Meta Model
	Implementation Details
	Parameters
	Guards and Assignments
	Owner Association


	Example: Conference Protocol
	Introduction
	General
	UML Specification
	Class Diagram
	StateMachineDiagram
	Differences to the Original Protocol

	Conference Protocol IOSTS

	Future Work
	Conclusion
	STG Language Specification
	Conference Protocol in STG Language
	Bibliography



