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Deutsche Zusammenfassung

Quantifizierte Boolsche Formeln (QBFs) stellen eine Erweiterung der Formeln der Aussa-
genlogik dar, bei der zusätzliche Quantifikationen über aussagenlogische Variable erlaubt
sind. Aus der Komplexitätstheorie ist bekannt, dass beliebige QBFs PSPACE-vollständige
Probleme adäquat repräsentieren können, und dass geeignete (bzgl. der Anzahl von Quan-
toralternationen eingeschränkte) QBFs die Problemmengen der polynomiellen Hierarchie
charakterisieren. Eine Vielzahl von Problemen aus dem Bereich der Wissensrepräsentati-
on und AI liegen in unterschiedlichen Problemmengen der polynomiellen Hierarchie oder
sind PSPACE-vollständig. Diese Probleme können gelöst werden, indem man sie in ent-
sprechende ”äquivalente” QBFs übersetzt und die QBFs auswertet. Ein QBF Solver löst
also das Originalproblem, indem er die resultierende Übersetzungsformel evaluiert. Wegen
seiner Einfachheit und der Verfügbarkeit praktisch effizienter Solver ist dieser Überset-
zungsansatz sehr attraktiv. Fast alle state-of-the-art QBF Solver sind allerdings nicht in
der Lage, beliebige QBFs zu verarbeiten, sondern sie beschränken sich auf QBFs, deren
Struktur fix vorgegeben ist. Konkret handelt es sich dabei um die Konjunktive-Pränex-
Normal Form (prenex conjunctive normal form, PCNF). Die oben genannten Übersetzun-
gen von Problemen nach QBF liegen üblicher Weise nicht in PCNF vor, und es ist daher
eine Transformation in PCNF notwendig, bevor ein Solver die Formeln evaluieren kann.
Diese Transformation ist in mehrfacher Hinsicht problematisch: (i) die Formelgröße und
die Anzahl der Variablen in der Formel erhöhen sich, (ii) Information über die Struktur
der Formel geht verloren, und (iii) die Transformation ist nicht deterministisch, d.h. die
PCNF einer QBF ist im Allgemeinen nicht eindeutig. Wir konnten in umfassenden Tests
zeigen, dass die Laufzeiten der Solver extrem von der Auswahl der verwendeten Tranfor-
mationsstrategie abhängig sind. Aus diesen Gründen verfolgen wir einen anderen Ansatz,
um diese Probleme zu vermeiden: wir verzichten auf den Schritt der Normalformtransfor-
mation und verarbeiten Formeln beliebiger Struktur. Wir schlagen zwei Beweisverfahren
vor, um quantifizierte Boolsche Formeln mit beliebiger Struktur auswerten zu können:

• eine Variante der Bibelschen Konnektionsmethode für QBFs;

• eine Verallgemeinerung des Verfahrens von Davis, Putnam, Logeman und Loveland.

Die meisten QBF Solver implementieren DPLL, und auch in dieser Arbeit wird beson-
ders auf dieses Verfahren fokussiert. Der zu Grunde liegende Algorithmus ist sehr einfach,
allerdings erzielt DPLL sowohl im Bereich der Evaluierung von Formeln der Aussagenlogik
als auch bei der Evaluierung von QBFs momentan die größten Erfolge. Damit DPLL kon-
kurrenzfähig ist, bedarf es Optimierungstechniken wie Dependency-Directed Backtracking
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oder Miniscoping, die im auf Formeln in PCNF eingeschränkten Fall weniger mächtig
oder gar nicht möglich sind. Im Solver qpro haben wir diese verallgemeinerte Variante von
DPLL implementiert. Der Vergleich zu mehreren state-of-the-art Solvern in umfangreichen
Tests zeigte, dass der Verzicht auf die Normalformtransformation sich tatsächlich vorteil-
haft auf den Evaluierungsprozess auswirken kann, und dass qpro viele Formeln effizienter
lösen kann als andere, über Jahre entwickelte Systeme.



Abstract

Quantified Boolean formulas (QBFs) extend the formulas of propositional logic by quan-
tification over propositional variables. From the field of complexity theory, it is well known
that arbitrary QBFs are suitable to represent PSPACE-complete problems in an adequate
manner and that certain QBFs, restricted with respect to the number of quantifier alter-
nations, characterise the problem sets of the polynomial hierarchy.

Various problems of knowledge representation and artificial intelligence are located
within the polynomial hierarchy or are PSPACE-complete. Such problems can be solved
by translating them into ”equivalent”QBFs. Therefore, a QBF solver is the means to find
solutions to the original problems by evaluating the translations. Due to its simplicity
and the availability of solvers which have to be proven efficient in practice, this transla-
tion approach is very attractive. But almost all state-of-the-art QBF solvers are unable to
process arbitrary QBFs; they restrict themselves to QBFs with a fixed structure format,
namely the prenex conjunctive normal form (PCNF).

The previously mentioned translations of different problems to QBFs are usually not in
PCNF, therefore an extra transformation step is necessary before a solver can be applied.
Due to multiple reasons, this transformation is problematic: (i) the size of the formula
and the number of variables increase, (ii) information about the structure of the formula
is lost, and (iii) the transformation is not deterministic, i.e., the PCNF of a formula is,
in general, not unique. In numerous tests, we were able to show that the runtimes of the
solvers depend to a great extend on the selection of the transformation strategy.

We follow a different approach to avoid those problems: we abandon the step of normal
form transformation and directly process formulas of arbitrary structure. We propose two
decision procedures to evaluate QBFs of arbitrary structure:

• a variant of Bibel’s connection method;

• a variant of the algorithm by Davis, Putnam, Logeman, and Loveland (DPLL).

While most current solvers implement a variant of DPLL, we also focus on DPLL. The
basic algorithm is very simple; nevertheless, it is very successful in solving formulas from
propositional logic as well as in solving QBFs if certain optimisation techniques are in-
cluded. We implemented a variant of DPLL in the solver qpro. In multiple tests we were
able to show that the abandonment of PCNF is indeed advantageous with respect to the
evaluation process and that qpro performs very competitively when compared to other
state-of-the-art solvers.
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Chapter 1

Introduction

The investigation of reasoning, of understanding the operations of the human mind has
attracted the interest of researchers working in various fields for a long time. How do
humans draw conclusions? And can we go one step further and simulate and automate
this ability? At the moment this seems to be a hopeless task. So we restrict ourselves
to certain areas within well-defined bounds. The preferred tool of choice in computer
science comprises the usage of the formal languages of logic and the implementation of
these languages in practical systems.

The automation of logic deduction and reasoning by machines can be traced back for
centuries. Computers, as we know them today, were not the first means capable of auto-
matically making logical decisions (a detailed introduction of computing before computers
is given in [3]). The first approach in history was to construct special-purpose machines
for solving logical problems.

At the end of the 13th century, Ramon Llull, a Spanish theologian, already proposed
a logical device to calculate permutations of terms in his Ars Magna (the goal was to
prove the truths of Christianity). Around 1777, Charles Stanhope developed the Stanhope
Demonstrator which is considered as the first machine to accept challenges from the area
of mathematical logic. But not only the technical and mechanical progress played a
keyrole in the continuous improvement of logical devices. Much effort was spent on the
axiomatisation of logic — the names of Leibnitz, Boole, and De Morgan, among others,
should be mentioned in this context.

The first machine able to process logical problems faster than a human was the logic
machine by William Stanley Jevons in 1869. It was called Logical Piano due to its piano-
like keyboard. In 1885 Allan Marquand, an American art historian, proposed to construct
an electrical version of Jevon’s machine. Plans have been found, but it is unclear whether
it has been realised or not. It was only in 1936 that Benjamin Burack built the first
electronic logic machine. But that was just the beginning: In 1947, Theodore A. Kalin
and William Burckhart built a machine to calculate the truth assignments of propositional
logic formulas for up to twelve variables. In the 1950s, logic machines were at their zenith
as widely used and common appliances, yet at the same time, they were at the end of
their line as general-purpose computers successfully entered the scene.

1



2 CHAPTER 1. INTRODUCTION

Ever since the introduction of digital general-purpose computers, programs have been
developed to answer questions from logic by using efficient inference engines and automatic
reasoning tools realised in terms of software. The enormous interest in this area is due to
the fact that languages of logic can be used for the representation of application problems
(like planning, scheduling, formal verification, and more). Automatic reasoning tools can
be applied to evaluate the corresponding logical sentences, which now encode the original
problem.

The language selected for representing a specific problem has to be expressive enough to
capture all desired features of the problem domain on the one hand, on the other hand the
complexity of the formalism should not be so inherent that the practical application of the
decision procedure is limited to only a few pathological encodings. But even if the worst
case complexity of a decision procedure seems to make it practically useless (e.g., because
of exponential cost in time in the worst case complexity or even worse undecidability) and
even if the problem is theoretically intractable, this does not mean that these formalisms
have to be abandoned in practice. In this case, it is necessary to develop and implement
clever pruning techniques to prevent the occurrence of the worst case in many situations
to make the solving process possible in most cases. If a reasoning tool for a formalism
becomes efficient in the average case, then it becomes attractive for many applications.

A very important and extensively studied formalism used for a multitude of encodings
are propositional Boolean formulas. The determination of the truth value of a propositional
Boolean formula is called the Boolean Satisfiability Problem or SAT. SAT is prototypical
for the complexity class of problems in NP; indeed it was the first problem which has
been shown to be NP-complete [25]. Instances of this problem appear in many different
areas (e.g., hardware verification, combinatorial problems like ”The Travelling Salesperson
Problem” or the ”3-Colouring Problem” of a graph).

The most widely implemented SAT solving algorithm was developed by Davis, Putnam,
Logeman, and Loveland. The original decision method proposed by Davis and Putnam in
[28] was a part of one of the first procedures to prove the validity of first-order predicate
formulas explicitly designed for efficient execution on a computer. In a first step, level sat-
uration was performed to obtain a propositional formula and in a second step, this formula
was solved using Davis’ and Puntnam’s method. In [26], Davis, Logeman, and Loveland
presented a refinement, but it was exceeded by methods like Robinson’s resolution calcu-
lus [85] in the case of first-order theorem proving. The success of such methods is based
on unification which allows for a target-oriented instead of saturation-based instantiation
of the formulas.

After several years of disuse in the scientific community, the interest in this method
(called DPLL after it inventors) was revived — this time it was not in the context of first-
order theorem proving but in the field of satisfiability checking for propositional logic. It
became obvious that the simple DPLL technique performed extremely well in solving this
satisfiability problem. After more than 40 years, DPLL still ranks among the most efficient
basic algorithms for complete SAT solving.

Since then, DPLL has been steadily enhanced and extended. Numerous extensions and
pruning techniques have been developed, integrated, and practically implemented. Pro-
grams for the evaluation of propositional formulas as well as of QBFs are called solvers.
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Despite the NP-hardness of the decision problem, many instances of propositional formu-
las can be solved quite efficiently in practice. In the last years, SAT solvers proved to be
very effective tools for processing industrial-scale problems. Researchers spent much effort
in the tuning of their solvers and the success verifies their efforts. State-of-the-art solvers
are often capable of handling formula instances containing thousands of variables.

But sometimes propositional Boolean formulas are insufficient. Many real world prob-
lems fall into a harder category than NP. Even though it is not known for sure in complex-
ity theory, such problems can probably not be formulated efficiently using propositional
Boolean formulas. An alternative would be the usage of the very expressive and well
understood classical first-order predicate logic. Unfortunately, predicate logic is not de-
cidable any more. And for many problems it is too expressive. What we need is a weaker
formalism — something between first-order predicate and propositional logic.

One logic suitable for the representation of such problems is the language of quantified
Boolean formulas (QBFs). QBF extend the formulas of propositional logic by quantifi-
cation over propositional variables. From the field of complexity theory, it is well known
that arbitrary QBFs are suitable to represent PSPACE-complete problems in an ade-
quate manner and that certain QBFs, restricted with respect to the number of quantifier
alternations, characterise the problem sets in the polynomial hierarchy.

Various problems of knowledge representation and artificial intelligence are located in
different complexity classes within the polynomial hierarchy or are PSPACE-complete.
Such problems can be solved by translating them into ”equivalent” QBFs. Therefore,
a QBF solver is the means to find solutions to the original problems by evaluating the
translations.

Many efficient QBF solvers have been developed with the intention of continuing the
success story of the SAT solvers. But compared to SAT solvers, QBF solvers are still in
their infancy as the extensive research in this area has only started a few years ago. Again,
the DPLL algorithm (to be more precise an extension of this decision procedure) is widely
used.

Most available QBF solvers are unable to process arbitrary formulas, but expect the
formulas to be of a certain structure (prenex conjunctive normal form). Every QBF can
be transformed into an equivalent QBF in prenex conjunctive normal form. Unfortunately,
this transformation has its price. It usually results in an increase of formula size and the
numbers of variables, a loss of structure and, in most cases, the normal form is not unique.
Deciding how to perform the transformation enormously influences the solving process and
it is usually impossible to predict which strategy is going to be the best, as this depends
on the concrete solver used and on the kind of problem which should be solved.

In this thesis, we introduce a novel approach for the evaluation of quantified Boolean
formulas. We abandon the assumption that the QBF, we want to evaluate, is transformed
to prenex conjunctive normal form (PCNF), where all quantifiers are moved to the left
of the formula and the remaining propositional part of the formula is transformed to
conjunctive normal form. We do not restrict ourselves to process only sets of clauses. As
the normal form is usually not unique, we do not depend on the optimisations made by
other tools which perform this preprocessing step, since real-world problems rarely occur
in PCNF.
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Therefore, we integrate well researched ideas and techniques by generalising them so
that formulas of arbitrary structure can be solved. We will present a prototypical im-
plementation of the algorithm — the solver qpro. The comparison to top state-of-the-art
solvers shows that our approach is very successful. The experimental evaluation yields
promising and interesting results. Many classes of problems exist where other solvers en-
counter enormous problems; but not qpro. By taking advantage of structural information,
like the scope of a quantifier, qpro is able to evaluate formulas which were formerly out of
scope for any available solver.

1.1 Quantified Boolean Formulas

Quantified Boolean formulas (QBF) extend propositional formulas by allowing quantifiers
over atomic propositions. An atomic proposition is a statement that can be interpreted as
true (T) or as false (F), and which cannot be further split up. Examples are statements
like ”It rains.” or ”The street is wet.” Atomic propositions are also called (propositional)
variables or atoms.

Arbitrary formulas of propositional logic can then be constructed by assembling those
atoms to more complex formulas which themselves can be combined to even more complex
formulas and so on. To build these formulas in the language of propositional logic, the
following connectives are usually available: the negation ¬, the conjunction ∧, the disjunc-
tion ∨, the implication →, and the equivalence ↔. With this we can express a statement
like ”If it rains, the street is wet.” by r → w where r abbreviates ”It rains.” and w stands
for ”The street is wet.” and where the conditional is expressed by the implication. If we
know that it rains, we can automatically infer the fact that the street is wet. This simple
example illustrates how automatic reasoning works by making implicitly given knowledge
explicit. The semantics of the connectives is well-defined and is shown in the following
table where φ and ψ stand for arbitrary formulas:

φ ψ ¬φ φ ∧ ψ φ ∨ ψ φ→ ψ φ↔ ψ

F F T F F T T

F T T F T T F

T F F F T F F

T T F T T T T

The truth value of an atomic formula is determined by an interpretation. An interpre-
tation maps each atom either to T or to F. With an interpretation and the semantics
of the connectives, an arbitrary formula can be evaluated. If a formula evaluates to true
under a certain interpretation, we say that this interpretation satisfies the formula or that
the formula is satisfiable (i.e., an interpretation exists that makes the formula true). A
formula which is satisfied by all interpretations is called valid, a formula which has no
satisfying interpretation is called unsatisfiable.

Obviously, the number of all possible variable assignments is exponential in the number
of variables, but checking whether a given interpretation satisfies a formula or not is
possible in a polynomial amount of time with respect to the size of the formula. From
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a complexity point of view, the problem of testing if a formula of propositional logic is
satisfiable can be placed in NP. As mentioned before, the SAT problem is also NP-complete;
it was the first problem considered as characterising the class of NP problems [25]. Dually,
the validity checking problem is located in coNP.

As NP and coNP are complexity classes which contain prominent problems from very
different fields like graph theory, planning, scheduling, etc., a very natural approach is
to encode all of the problems as SAT problems and develop just one program to solve
them all. This approach was successful and available solvers perform so well that they are
able to handle problems of industrial scale and that they can be used for e.g. hardware
verification in practice [14, 33, 83].

For many problems, propositional logic is insufficient as a host language, because the
encoding would blow-up exponentially in size. Here we come back to the previously
mentioned quantified Boolean formulas. QBFs allow for quantifiers over the propositional
variables.

If we restrict the formulas to a certain structure, a QBF looks as follows:

Q1x1Q2x2 . . .Qnxnφ,

where Qi ∈ {∀, ∃}, xi are propositional variables, and φ is a purely propositional formula.
Q1x1Q2x2 . . .Qnxn is called prefix and φ is called matrix. When we introduce QBFs later,
we will also allow quantifiers to occur inside the formula φ, but for the moment it is
sufficient to consider formulas which have the given structure. To check whether a QBF
evaluates to true is a mixture between satisfiability and validity testing. A QBF is said
to be true if the formula is true for every assignment of an universally quantified variable
and for some assignment of an existentially quantified variable. For example, the following
QBF evaluates to true

∀x∃y(x ∨ ¬y) ∧ (¬x ∨ y),

but if we simply swap the quantifiers, the resulting formula evaluates to false:

∃x∀y(x ∨ ¬y) ∧ (¬x ∨ y).

Intuitively, solving a QBF can be seen as a two player game between the universal player
who tries to make the QBF false by all means and an existential player who tries to
make the QBF true. More formally, QBFs can be considered as a restricted variety of
second order logic where the arity of the predicates is restricted to zero (and there are,
in consequence, no function symbols and object variables). QBFs are closely related to a
very restricted subclass of classical first-order logic. This subclass allows only predicates
with arity one, no function symbols and object variables. These variables are interpreted
over the two-valued domain {true, false}.

1.2 Historical Overview

Quantified Boolean logic (i.e., the extension of propositional logics by quantifiers over
propositional variables) has been introduced long before the first implementation of a QBF
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solver. Originating from complexity theory, the practical interest in these formulas has
arisen only a few years ago because of the success of SAT solvers on large-scale instances
and real-world problems.

In his ”Theory of Implication” [86], B. Russel provided the first analysis of systems with
quantifiers over propositional variables in 1906. Further investigations were presented in
”Untersuchung über den Aussagenkalkül” by Lukasiewicz and Tarski in 1930.

At the beginning of the seventies of the last century, QBFs became very popular in
the context of the newly evolving field of complexity theory. Meyer and Stockmeyer [70]
showed that the evaluation problem of quantified Boolean formulas is PSPACE-complete.
The complexity class PSPACE contains those problems which can be computed by de-
terministic Turing machines requiring only polynomial space with respect to the problem
size. The same authors introduced the concept of the polynomial hierarchy [71] in analogy
to the arithmetic hierarchy.

Based on the class Σp
1 = NP, they constructed a whole hierarchy of complexity classes.

A problem which is located in NP can be calculated by a nondeterministic Turing machine
in polynomial time. They defined infinitely many classes Σp

k+1 “as the family of sets of
words accepted in nondeterministic polynomial time by Turing machines with oracles for
sets Σp

k” [71]. They also showed that the evaluation problem for a QBF is complete
for a certain class in the polynomial hierarchy depending on the number of quantifier
alternations in the prefix. To be more precise, the problem of checking the satisfiability
of a QBF of the form ∃X1∀X2 . . .QkXkφ is complete for Σp

k with Qk = ∃ if k is odd and
Qk = ∀ if k is even and φ is purely propositional.

In [89, 94] other classes like Πp
k and ∆p

k where introduced. Together with Σp
k they are

considered to be the elements which build up the polynomial hierarchy.

Since then, QBFs have been used as a tool for complexity analysis by showing that a
QBF can be encoded efficiently in a given formalism and this formalism is therefore located
at some level of the polynomial hierarchy (which can be seen by the number of quantifier
alternations in the prefix of the QBF). Examples are PSPACE-completeness proofs for
intuitionistic logics [88], for several modal logics [63], and for nonmonotonic logics [57].

Still it took a long time before the first solver was implemented. Finally in 1995, a
first implementation was presented by Kleine-Büning et al. [59] based on an extension of
resolution (Q-resolution). In 1998, Cadoli et al. [22] presented a more promising approach
based on a generalisation of the algorithm by Davis, Putnam, Logeman, and Loveland
(DPLL). As mentioned before, DPLL is one of the most widely used and most successful
approaches to solve the SAT problem of propositional logic.

Basically, there are two approaches to tackle this problem: bottom-up, where the vari-
ables are eliminated from the innermost to the outermost quantifier and top-down, where
the variable elimination is achieved vice versa. DPLL is a top-down decision procedure;
variables are succinctly assigned truth values until the whole formula evaluates to true
or to false. Alternatives to DPLL are the usage of Q-resolution, a variant of propositional
resolution, where the quantifications have to be taken into account, or the usage of bi-
nary decision diagrams (BDD), where the QBF is represented as a directed acyclic rooted
graph, which is reduced until the formula evaluates to true or to false. In the worst case,
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BDDs have an exponential space requirement.

With the advancements in solver development, the number of new applications increased
as well and with this, the challenges a solver has to face. The QBF community has grown
continuously throughout the last years. A common communication platform is the QBFLIB
which can be found at www.qbflib.org.

Today, QBFs are recognised as a promising paradigm for the encoding of various com-
putationally hard reasoning problems from different fields of computer science (especially
those located in the surroundings of artificial intelligence and knowledge representation).

1.3 Normal Forms

QBFs are expressive enough for the representation of many important problems for know-
ledge representation and AI. Unfortunately, the encoding of real-world problems in QBFs
does not usually result in formulas with the desired smooth structure that is necessary for
most current QBF solvers. There are two ways to deal with this problem:

1. Use solvers which are capable of processing arbitrary QBFs.

2. Transform a non-normal form QBF to normal form.

Until now, the second approach was usually taken. Before initiating the actual solving
process, a preprocessing step was necessary to obtain the formula in a suitable form.
This means thatthat the formula was transformed to an equivalent QBF of the following
structure:

Q1X1Q2X2 . . .QnXn

m
∧

i=0

(φm),

where Q1X1Q2X2 . . .QnXn is a sequence of quantifiers and the φi are disjunctions of
possibly negated propositional variables.

Fortunately, the normal form transformation of every formula terminates and always
results in a normal form. Unfortunately, this normal form is not unique. And even worse,
different normal forms of one formula are not of the same quality with respect to the
solving process. For example, quantifiers usually occur somewhere in the formula and
not only on the left-hand side. So they have to be shifted to obtain a prefix. Certain
dependencies have to be respected but, to a certain degree, there is a freedom of choice
(i.e., if the quantifiers occur in different subformulas they are independent of each other).
Consider the following example:

∀x1∃y1((∀x2∃y2∀z2φ) ∨ (∃y3ψ)).

In this example, the following dependencies hold: x2, y2, z2, and y3 depend on x1, and
y1 and y2 must not occur before x1 in the prefix. The variable z2 depends on y2 and x2.
Some equivalent QBFs in prenex normal form are

• ∀x1∃y1y3∀x2∃y2∀z2(φ ∨ ψ),
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• ∀x1∃y1∀x2∃y2y3∀z2(φ ∨ ψ),

• ∀x1∃y1∀x2∃y2∀z2∃y3(φ ∨ ψ).

The first and the second ”normalised” QBF are minimal with respect to the number of
quantifier alternations imposed by the original formula. According to complexity theory,
one more alternation indicates that the problem is located one level higher in the poly-
nomial hierarchy. A natural assumption is: the less quantifier alternations, the better for
the solvers. During the solving process it is necessary to choose which variable is treated
next, but in contrast to propositional logic, where any variable may be processed at any
time, in QBF the choice of freedom for the variable selection is restricted to the currently
processed quantifier block. So called branching heuristics will work better if there are
fewer and therefore larger quantifier blocks.

If we do not respect the quantifier dependencies imposed by the original formula, the
resulting formula, e.g., ∃y3∀x1∃y1∀x2∃y2∀z2(φ ∨ ψ) might not have the same meaning as
the original QBF from the example. Therefore, this is not a correct normal formal of the
original formula.

In [35], we showed that different arrangements of the quantifiers in the prefix have
a great impact on the performance of the solvers. Zolda [96] refined our results and
proposed further strategies to construct quantifier prefixes. In short, there are good and
less good normal forms with respect to the solving process. In general, there is not always
a straightforward answer regarding which shifting strategy is preferable. Together with
Zolda, we developed a quantifier shifting tool, qst, which supports 14 different strategies
for constructing the quantifier prefix. It is, of course, very time- and resource-consuming
to run a test set 14 times to learn which strategy behaves better than the others. Even
small pretests can be costly and time-consuming.

The ambiguity is not the only problematic aspect of the normal transformation. The
disruption of the structure of the formulas is almost as bad as the multiple ways to equiv-
alently transform the input problem. The scope of the quantifiers increases drastically
when they are shifted in front of the formula and forcing a structure which allows only
for propositional clauses inside the formula. A lot of information which can be profitable
for the solver with respect to the running time is lost. For example, originally obvious
contradictions and tautologies might be hidden by the construction of clauses. A current
trend is the recovery of the original structure in the normalised QBF during the solving
process to prune the search space.

We propose the solver qpro [36], which processes formulas that have a more general
structure than the previously introduced formulas of restricted structure. To the best of
our knowledge qpro is the only available solver which works efficiently on QBFs in non-
normal form (i.e., which implements an algorithm which is polynomial in space) and which
has not yet been proven to be incorrect. In numerous tests [75, 73, 76, 77, 74], we could
show that qpro is able to solve real world problems. qpro performs extremely competitively
compared with current state-of-the-art solvers.
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1.4 Thesis Overview

In this thesis we show how we developed the QBF solver qpro, which is capable of pro-
cessing formulas in non-prenex non-clausal normal form. We consider all different stages
of the development starting from a theoretical point of view and then shifting towards the
practical realization.

In Chapter 2 we review the syntax and semantics of the language of quantified Boolean
formulas and some associated terminology. We further discuss syntactical and semantical
properties that are the basis for the rest of this work. The following chapter provides an
overview of state-of-the-art QBF solving. We take a closer look at existing approaches
and we study available implementations which are only capable of processing QBFs in
prenex conjunctive normal form. In Chapter 4, we argue why we decided to follow a novel
approach by abandoning the restriction of the formula structure and why we investigate
decision methods for QBFs of arbitrary structure. Based on these insights, we present two
proof procedures — one is a generalisation of the well-known DPLL procedure, i.e., a search-
based technique, the other one is a proof theoretical method, namely the connection-
based matrix characterisation for QBFs. The next three chapters focus on the efficient
implementation of the DPLL method. In Chapter 5, we show how to prune DPLL by the
inclusion of various techniques which are used in our implementation. Finally, in Chapter
6, we show how we realized our solver qpro. In Chapter 7, we compare our implementation
to current state-of-the-art solvers. In the last chapter we conclude and discuss future
work.
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Chapter 2

Preliminaries

We formally introduce the language of quantified Boolean formulas (QBFs) in this chapter.
We review their syntax and semantics at first. Furthermore, we provide some basic ter-
minology and prove some fundamental properties of QBFs which will be used extensively
in this thesis.

2.1 Syntax

In this section, we discuss how to construct the set of quantified Boolean formulas and
describe important syntactical properties of them.

2.1.1 The Construction of a QBF

Definition 2.1.1 (Alphabet of LP)
The alphabet (or signature) of the quantified Boolean language LP consists of the following
symbols:

1. the truth constants > (verum) and ⊥ (falsum);

2. a countable set of propositional variables P = {p, q, p0, p1, ...};

3. the unary connective ¬ (negation);

4. the binary connectives ∨ (or) and ∧ (and);

5. the quantifier symbols ∀ (universal) and ∃ (existential);

6. parentheses ( and ).

Propositional variables are also called atoms. When we talk about atoms in a metalan-
guage, we use the symbols x, y, z possibly sub- or superscripted, primed, with bars, etc.
Uppercase letters like X, Y , Z refer to sets of atoms (i.e., to subsets of P).

11
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Definition 2.1.2 (Quantified Boolean Formula)
The quantified Boolean language over a set of propositional variables P is the smallest set
LP such that the following conditions hold.

1. P ∪ {>,⊥} ⊂ LP .

2. If φ ∈ LP then (¬φ) ∈ LP .

3. If φ, ψ ∈ LP then (φ ◦ ψ) ∈ LP where ◦ ∈ {∨,∧}.

4. If φ ∈ LP , x ∈ P and Q′x does not occur in φ then (Qx φ) ∈ LP where Q,Q′ ∈ {∀, ∃}.

A member of LP is called a quantified Boolean formula (QBF).

To name QBFs, we use lowercase Greek letters like φ, ψ, γ (possibly with subscripts,
primes, bars, etc.). A formula of the form φ∨ψ is called disjunction, a formula of the form
φ ∧ ψ is called conjunction. Additionally, we introduce the connectives → (implication)
and ↔ (equivalence) as syntactic shorthands. The string φ → ψ stands for ¬φ ∨ ψ and
φ↔ ψ abbreviates (φ→ ψ) ∧ (ψ → φ).

We do not restrict QBFs to a certain structure as we allow arbitrary nestings of conjunc-
tions and disjunctions. Quantifiers may appear anywhere in the formula. Obviously, LP

extends the language of propositional logic by the introduction of the quantifier symbols
∃ and ∀. In other words, formulas of propositional logic can be expressed by a subset of LP .

Example 2.1.1 The following expressions are QBFs.

1. >;

2. x;

3. ∀x(∃y(x ∨ (y → z)));

4. ¬(x ∨ (∀y(x ∧ y))).

The first and the second formula are just a constant and a variable. Therefore they are
among the smallest possible formulas. The third one contains the shorthand for the im-
plication and introduces quantifiers over the variables x and y (but not z).

Example 2.1.2 The expression

∀x(∃x(x ∨ (y → z)))

is not a QBF, because of the fourth condition in Definition 2.1.2.
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By convention, the outermost parentheses of a formula can be omitted. Further paren-
theses may be dropped if the omission does not result in ambiguities.

Definition 2.1.3 (Rules of Precedence)
For QBFs, we use the following rules of precedence.

• ¬, ∃, and ∀ bind stronger than ∧.

• ∧ binds stronger than ∨.

• ∨ binds stronger than → and ↔.

• For operators of the same priority the parentheses are considered to be left-associative.

To depict a formula graphically, we introduce the notion of structure tree.

Definition 2.1.4 (Structure Tree)
The structure tree of a QBF φ is defined on the structure of φ as follows.

• Truth constants and propositional variables are the leaf nodes of the structural tree.

• The root node is labelled by φ.

• A root labelled by ¬ψ has one child whose label contains the formula ψ.

• A node labelled by ψ1 ◦ ψ2 (◦ ∈ {∨,∧,→,↔} has two children labelled by the
formulas ψ1 and ψ2.

• A node labelled by Qxψ (Q ∈ {∀, ∃}) has one child with a label containing the
formula ψ.

To make the structure tree more compact, we do not include whole QBFs in the labels
of the nodes. We reduce the formulas to their top-level symbols which are called main
connectives.

Definition 2.1.5 (Main Connective)
The main connective of a QBF φ denotes the primary symbol of φ. If φ = ¬ψ then the
main connective is ”¬”, if φ = ψ1 ◦ψ2 then the main connective is ”◦” (◦ ∈ {∨,∧,↔,→}),
and if φ = Qxψ then the main connective is ”Qx” (Q ∈ {∀, ∃}).

We sometimes call formulas by the name of their main connectives. For example, a QBF
of the form ¬φ is called negation, a QBF of the form φ1 ∨ φ2 is called disjunction and
so on. Note that the notion of main connective is only defined for complex QBFs, i.e.,
variables and truth constants do not possess main connectives.

Example 2.1.3 The structure tree of the QBF

∀x∃y((x ∨ y) ∧ (y ∨ x))

is given in Figure 2.1.

Although the formula is split into its single components, we can reconstruct the original
formula by traversing the tree in-order.
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∀x

∃y

∧

∨

x y

∨

y x

Figure 2.1: Structure tree of ∀x∃y((x ∨ y) ∧ (y ∨ x)).

2.1.2 Basic Terminology and Syntactic Properties

Having defined the language of quantified Boolean formulas, we continue with the intro-
duction of basic terminology to denote particular elements of the language.

Sometimes we are not interested in just one single QBF but in a set of formulas, e.g.,
for the representation of the background knowledge in a certain situation. Such a set is
called a theory.

Definition 2.1.6 (Theory)
A theory T is a set of arbitrary QBFs.

Definition 2.1.7 (n-ary Conjunction/Disjunction)
Let T = {φ1, . . . , φn} be a set of QBFs where the main connective of φi is different from
”∧” (resp. ”∨”) for 1 ≤ i ≤ n.

Then the n-ary conjunction is defined by

∧

φ∈T

φ =
n
∧

i=1

φi = φ1 ∧ · · · ∧ φn,

and respectively, the n-ary disjunction is defined by

∨

φ∈T

φ =
n
∨

i=1

φi = φ1 ∨ · · · ∨ φn.

If T = ∅ then
∧

φ∈T = > and
∨

φ∈T = ⊥.

Definition 2.1.8 (Quantifier Block)
The sequences ∃x1∃x2 · · · ∃xn and ∀y1∀y2 · · · ∀ym can also be written as one quantifier
block, namely ∃X and ∀Y, where X =

⋃n
i=1 xi and Y =

⋃m
i=1 yi.

Sometimes we are temporary not interested in the QBF as a whole, but we want to address
certain subparts of the formula. In what follows, we assign names to often considered
components.
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Definition 2.1.9 (Literal)
A literal l is an atom x (called positive literal) or its negation ¬x (called negative literal)
for x ∈ P.

In the following, the letters l and k denote literals.

Definition 2.1.10 (Literal Variable)
The literal variable, var(l), of a literal l is l if l = x and x if l = ¬x.

Definition 2.1.11 (Complementary Literal)
Let l be a literal. The complementary literal l is defined as follows.

l =

{

x if l = ¬x;

¬x if l = x.

Definition 2.1.12 (Complementary Quantifier Symbol)
The complementary quantifier Q of a quantifier Q is defined as follows.

Q =

{

∀ if Q = ∃;

∃ if Q = ∀.

Definition 2.1.13 (Subformula)
The set of subformulas of a QBF φ (denoted by sub(φ)) is the smallest set that contains
φ and which is closed under the following rules:

1. If ¬ψ is a subformula of φ, so is ψ.

2. If ψ1 ◦ ψ2 is a subformula of φ, so are ψ1 and ψ2, where ◦ ∈ {∨,∧}.

3. If Qxψ is a subformula of φ, so is ψ, where Q ∈ {∃, ∀}.

Definition 2.1.14 (Proper Subformula)
If ψ is a subformula of φ and if φ 6= ψ, then ψ is called a proper subformula of φ.

Definition 2.1.15 (Cardinality of a Formula)
The cardinality of a formula φ (written as |φ|) is (|sub(φ)| − 1), i.e., the cardinality of a
formula is given by the number of its proper subformulas.

Example 2.1.4 Let φ = ∀x∃y((x→ y) ∧ (y → x)). Then

sub(φ) = {∀x∃y((x→ y) ∧ (y → x)),

∃y((x→ y) ∧ (y → x)),

(x→ y) ∧ (y → x),

(x→ y), (y → x), x, y}

Note that all elements of sub(φ) are proper subformulas except the first. Obviously,
|φ| = 6.
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Definition 2.1.16 (Complexity of a QBF)
The complexity k(φ) of a QBF φ is given as follows.

k(φ) =























0 if φ ∈ (P ∪ {>,⊥});

1 + k(ψ) if φ = ¬ψ;

1 + k(ψ1) + k(ψ2) if φ = ψ1 ◦ ψ2, ◦ ∈ {∨,∧};

1 + k(ψ) if φ = Qxψ, Q ∈ {∀, ∃}.

The complexity of a QBF counts the number of occurrences of connectives and quantifiers.
Parentheses, atoms, and truth constants are ignored.

Example 2.1.5 Let φ be a QBF of the form

∀x∃y((¬x ∨ y) ∧ (¬y ∨ x))).

Then k(φ) = 7.

Definition 2.1.17 (Scope of a Quantifier)
The scope of a quantifier (occurrence) Qx in a QBF φ is defined as ψ, where Qxψ is a
subformula of φ. An occurrence of a variable x is called existential (resp. universal) if it
is located within the scope of a quantifier ∃x (resp. ∀x).

Definition 2.1.18 (Free Variable Occurrences)
The free variable occurrences free(φ) of a QBF φ are defined as follows:

• If φ = > or φ = ⊥ then free(φ) = ∅.

• If φ = x and x ∈ P then free(φ) = {x}.

• If φ = ¬ψ then free(φ) = free(ψ).

• If φ = φ1 ◦ φ2 and ◦ ∈ {∨,∧,←,↔} then free(φ) = (free(φ1) ∪ free(φ2)).

• If φ = Qxψ and Q ∈ {∀, ∃} then free(φ) = (free(ψ)\{x}).

An occurrence of a variable x ∈ P is called bound in a QBF φ if x occurs within the scope
of a quantifier Qx in φ (Q ∈ {∀, ∃}). By bound(φ) we denote the set of bound variables of
the QBF φ.

The expression vars(φ) denotes the set of all variables occurring in φ. I.e., vars(φ) is the
union of free(φ) and bound(φ). A QBF φ is closed if free(φ) = ∅. We call a closed formula
also a sentence.

As we will see in Section 2.2, closed formulas can be evaluated ”in a more simple
fashion”. For example, the QBF x evaluates to true or to false depending how x is
interpreted whereas the truth value of ∀xx is definitely false.

Definition 2.1.19 (Fresh Variable)
A variable x is fresh with respect to a QBF φ if x 6∈ (bound(φ) ∪ free(φ)).
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Definition 2.1.20 (Polarity of a Variable)
Let φ be a QBF. A specific occurrence x′ of a variable x is positive (resp. negative) provided

• φ = x′ (resp. φ = ¬x′);

• φ = ¬ψ and x′ is negative (resp. positive) in ψ;

• φ = ψ1 ◦ ψ2, ◦ ∈ {∧,∨} and x′ is positive (resp. negative) in ψi (i ∈ {1, 2});

• φ = (Qy ψ), Q ∈ {∀, ∃} and x is positive (resp. negative) in ψ.

The function lit : LP × P → {pos, neg, both, none} returns in which polarity a variable
occurs in a formula:

lit(φ, x) =























none if x 6∈ vars(φ);

pos if all occurences of x are positive in φ;

neg if all occurences of x are negative in φ;

both otherwise.

Definition 2.1.21 (Pure Literal)
A literal l with var(l) = x is pure in a QBF Qxφ if lit(φ, x) = pos or lit(φ, x) = neg
(Q ∈ {∀, ∃}).

Definition 2.1.22 (Local Unit Literal)
A literal l is local unit with respect to ψ in a QBF φ if φ contains a subformula (l ∨ ψ) or
(l ∧ ψ).

Definition 2.1.23 (Global Unit Literal)
A literal l is global unit with respect to a QBF φ if φ contains a subformula

Q1X1 . . .QnXnQn+1Y1Qn+2Y2 . . .Qn+mYm(ψ ◦ l),

where var(l) = x, ◦ ∈ {∨,∧}, and for all 1 ≤ n ≤ (n + m) and for all 1 ≤ j < (n + m),
Qj ∈ {∀, ∃}, Qi 6= Qi+1.

Definition 2.1.24 (Substitution)
Let φ, ψ and γ be QBFs. We define the substitution of φ by ψ in γ (written as γ[φ/ψ])
as follows.

γ[φ/ψ] =































ψ if γ = φ;

x if γ = x, x ∈ P;

¬γ′[φ/ψ] if γ = ¬γ′;

γ1[φ/ψ] ◦ γ2[φ/ψ] if γ = γ1 ◦ γ2;

Qx γ′[φ/ψ] if γ = Qx γ′.

Occurrences of φ in ψ are not replaced by ψ and therefore, the process of substitution
terminates.

The last term introduced in this subsection is the notion of propositional skeleton.
Roughly speaking, the propositional skeleton of a QBF φ is the propositional formula
obtained by removing all quantifier occurrences from φ.
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Definition 2.1.25 (Propositional Skeleton)
The propositional skeleton, psk(φ), of a QBF φ is given by

psk(φ) =























x if φ = x, x ∈ P;

¬(psk(ψ)) if φ = ¬ψ;

psk(ψ1) ◦ psk(ψ2) if φ = ψ1 ◦ ψ2, ◦ ∈ {∨,∧};

psk(ψ) if φ = Qx ψ, Q ∈ {∃, ∀}.

2.1.3 Normal Forms

Sometimes it is easier to establish results about QBFs when they are standardised with
respect to a certain structure. In other words, not the whole set LP is of interest but a
subset which contains formulas whose structure obey a certain schema. The usage of such a
normal form is motivated for example by the better manageability and easier adaptability
of formulas with restricted syntax and by the applicability of certain decision methods
(e.g., resolution).

Definition 2.1.26 (Standard Form)
A QBF φ is in standard form if for every subformula ψ1◦ ψ2 of φ (◦ ∈ {∨,∧}), x 6∈ vars(ψ1)
(resp. x 6∈ vars(ψ2)) if ψ2 (resp. ψ1) contains a subformula of the form Qxψ with Q ∈ {∀, ∃}.

Definition 2.1.27 (Negation Normal Form)
A QBF φ in standard form is in negation normal form (NNF) if

1. φ = > or φ = ⊥;

2. φ = x or φ = ¬x with x ∈ P;

3. φ = ψ1 ◦ ψ2 and ψ1 and ψ2 are in NNF with ◦ ∈ {∨,∧};

4. φ = Qxψ and ψ is NNF with Q ∈ {∃, ∀}.

Negation normal form does not impose a very strong restriction on the structure of a
formula and, as we will see, the transformation into NNF is inexpensive in terms of struc-
ture loss, increase of formula size, introduction of new variables, etc. The transformation
can be achieved deterministically by the rules which will be introduced in Theorem 2.2.1
below.

Unless stated otherwise, all considered QBFs are assumed to be closed, in standard
form and in negation normal form which can be obtained deterministically and which
only causes a neglectable increase of the formula size.

Note that special care has to be taken if equivalences are allowed connectives. If the
equivalences are nested, an exponential blow-up can happen. It can be avoided by labels,
which abbreviate the corresponding formula parts can be introduced (which results in an
increase of the variable number). We will not use this connective in our encodings and
therefore, we do not have this problem but for the sake of completeness, we included it in
our language.
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Definition 2.1.28 (Prenex Normal Form)
A QBF φ is said to be in prenex normal form (PNF) if φ is in standard form and of the
structure

Q1X1Q2X2 . . .QnXnψ,

where ψ is a purely propositional formula, i.e., no quantifiers occur in ψ, the Xi are disjoint
sets of propositional variables (1 ≤ i ≤ n), Qj ∈ {∀, ∃} (1 ≤ j ≤ n), and Qk 6= Qk+1 for
1 ≤ k < n. The quantifier sequence Q1X1Q2X2 . . .QnXn is called prefix and ψ is called
matrix of φ.

Definition 2.1.29 (Clause, Prenex Conjunctive Normal Form)
A clause is a disjunction of literals. A QBF φ is in prenex conjunctive normal form if φ
is in PNF and of the form

Q1X1Q2X2 . . .QnXn

m
∧

i=0

(φm),

where the φi are clauses. Obviously, the matrix of a formula in PCNF consists of a
conjunction of clauses.

Within this thesis, the normal form, the normal form transformation, and how to avoid
it play a key role. A detailed discussion about this topic will be given in Chapter 4. Most
state-of-the-art solvers are only able to evaluate formulas in PCNF. But as the encoding of
practical problems does usually not result in a PCNF formula and as the transformation
causes a severe change in the structure of the formula, we investigate if it is preferable
to omit the transformation and to directly process the formula in its original structure.
We develop decision methods which do not rely on restrictions on the formula structure
stronger than NNF to overcome certain limitations and to avoid the costs induced by the
normal form transformation (e.g., loss of structural information, increase of the formula
size, etc.).

2.2 Semantics

In this section, we present the semantics of quantified Boolean formulas and establish some
basic results about their semantical properties.

2.2.1 The Meaning of a QBF

Like the formulas of propositional logic, QBFs are two-valued: QBFs always evaluate to
true or to false. We take the set {T,F} as the set of truth values. T represents truth, F

stands for falsehood. To define the semantics of a QBF, we need the concept of a variable
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assignment.

Definition 2.2.1 (Interpretation Function)
Let S be a set of literals where l ∈ S implies that l 6∈ S. Then the interpretation function
ιS : P → {T,F,U} with respect to S is defined as follows:

ιS(x) =











T if x ∈ S;

F if ¬x ∈ S;

U otherwise.

We often use the term ”interpretation” instead of interpretation function. The letter I
denotes the set of all possible interpretations. If we talk about an arbitrary interpretation,
the subscripted S can be omitted, i.e., we just write ι(l).

Definition 2.2.2 (Evaluation Function for QBFs)
Let φ be a QBF in standard form and let S be a set of literals such that for each x ∈ free(φ),
either x ∈ S or ¬x ∈ S (but not both and nothing else). The evaluation function υS : LP
→ {T,F} is inductively defined on the structure of φ as follows.

• υS(>) = T and υS(⊥) = F

• υS(x) = ιS(x) for x ∈ P

• υS(¬φ′) =

{

T if υS(φ′) = F

F if υS(φ′) = T

• υS(φ1 ∨ φ2) =

{

T if υS(φ1) = T or υS(φ2) = T

F otherwise

• υS(φ1 ∧ φ2) =

{

T if υS(φ1) = T and υS(φ2) = T

F otherwise

• υS(∀xφ′) =

{

T if υS′(φ′) = T for all S ′ ∈ {S ∪ {x}, S ∪ {¬x}}

F otherwise

• υS(∃xφ′) =

{

T if υS′(φ′) = T for some S ′ ∈ {S ∪ {x}, S ∪ {¬x}}

F otherwise

At the moment, our definition of the semantics of QBFs might seem very complicated,
but as we need partial interpretations later on, it will facilitate many definitions and
formulations of algorithms later in this thesis. For closed formulas, the subscripted S can
be omitted. The evaluation function — and therefore the proof of a closed QBF — can
be graphically represented by the semantic tree.

Definition 2.2.3 (Semantic Tree)
The semantic tree of a QBF φ is a binary tree whose nodes are labelled by the the variables
of φ, whose edges are labelled by > and ⊥, and whose leaves are labelled by ⊥ and >,
according to the evaluation function applied on φ.
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If we would strictly define the semantic tree according to the evaluation function, we
would have to label the branches with x (resp. ¬x). As the quantifier rules of the evaluation
function could also be seen as a replacement of the quantified variable by > and/or ⊥, and
as this notation is more convenient for the proof procedures we will introduce, we prefer
to use the truth constants.

A path from the root to one leaf of the tree describes one single assignment. The whole
semantic tree contains all possible assignments necessary to obtain the truth value of a
formula and therefore, a semantic tree depicts a proof of a QBF.

Example 2.2.6 Let φ be a QBF of the form

∀x1∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∧ (x1 ∨ y1)).

The semantic tree of φ is shown in Figure 2.2. Note that the branches which are not
necessary for the evaluation of the formula are not included. For example, if an existential
variable is assigned the truth constant ⊥ and under this assignment the formula evaluates
to true then it is not necessary to consider the case where > is assigned.

x1

y1

⊥

x2

⊥

y2

⊥

T
⊥

y2

>

F
⊥

T
>

x2

>

y2

⊥

T
⊥

y2

>

F
⊥

T
>

y1

>

x2

⊥

y2

⊥

T
⊥

y2

>

F
⊥

T
>

x2

>

y2

⊥

T
⊥

y2

>

F
⊥

T
>

Figure 2.2: Semantic tree of a QBF.

Definition 2.2.4 ((Un)Satisfiability, Model, Validity)
A QBF φ is satisfied by an interpretation ιS if υS(φ) = T. Then ιS is called a model of
φ and we write ιS |= φ. We denote the set of φ’s models by Mod(φ). If Mod(φ) 6= ∅ then
φ is satisfiable. Otherwise, φ is unsatisfiable. If every interpretation of φ is a model, φ is
said to be valid.

Note that closed QBFs are either valid or unsatisfiable as the evaluation is independent
of any interpretation.

Definition 2.2.5 (Contradiction, Tautology)
A formula φ with Mod(φ) = ∅ (i.e., a formula without models) is called a contradiction.
In contrast, a formula φ with Mod(φ) = I (i.e., φ is valid) is called a tautology.

Definition 2.2.6 (Equivalence)
The QBFs φ and ψ are logically equivalent (written as φ⇔ ψ) iff υS(φ) = υS(ψ) for every
interpretation ιS .
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Lemma 2.2.1 (Validity and Equivalence Checking)
Let φ and ψ be QBFs. Then the following holds.

• φ is valid iff ¬φ is unsatisfiable.

• φ is satisfiable iff ¬φ is not valid.

• φ is valid iff φ is equivalent to >.

• φ and ψ are logically equivalent iff φ↔ ψ is valid.

Lemma 2.2.2 (Satisfiability of a Theory)
Let T be a theory, i.e., T = {φ1, . . . , φn}. Then T is satisfiable iff φ1∧· · ·∧φn is satisfiable.

2.2.2 Semantical Properties

In the following, we present important properties which will be used extensively in the
solving process to simplify and to evaluate formulas. The following theorem introduces
many useful equivalences and implications for reasoning. Then we state and prove two
important theorems adapted for QBFs: (1) the Equivalence Replacement Theorem and
(2) the Monotonic Replacement Theorem.

Theorem 2.2.1 (Important Properties)

(1) ¬> ⇔ ⊥
¬⊥ ⇔ >

(truth constant negation)

(2) ¬¬φ⇔ φ (removal of double negation)

(3) (φ1 ∧ φ2)⇔ (φ2 ∧ φ1)
(φ1 ∨ φ2)⇔ (φ2 ∨ φ1)

(commutativity)

(4) ((φ1 ∧ φ2) ∧ φ3)⇔ (φ1 ∧ (φ2 ∧ φ3))
((φ1 ∨ φ2) ∨ φ3)⇔ (φ1 ∨ (φ2 ∨ φ3))

(associativity)

(5) φ1 ∨ (φ2 ∧ φ3)⇔ (φ1 ∨ φ2) ∧ (φ1 ∨ φ3)
φ1 ∧ (φ2 ∨ φ3)⇔ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3)

(distributivity)

(6) φ ∨ φ⇔ φ
φ ∧ φ⇔ φ

(idempotency)

(7) φ ∨ (φ ∧ ψ)⇔ φ
φ ∧ (φ ∨ ψ)⇔ φ

(adjunctivity)

(8a) ¬(φ ∨ ψ)⇔ ¬φ ∧ ¬ψ (De Morgan’s laws)
¬(φ ∧ ψ)⇔ ¬φ ∨ ¬ψ
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(8b) ¬∃xφ⇔ ∀x¬φ (De Morgan’s laws for
¬∀xφ⇔ ∃x¬φ quantifiers)

(9) ¬φ ∨ φ⇔ > (excluded middle)

(10) φ ∧ ¬φ⇔ ⊥ (contradiction)

(11) > ∧ φ⇔ φ
⊥ ∧ φ⇔ ⊥
>∨ φ⇔ >
⊥∨ φ⇔ φ

(removal of truth constants)

(12) ∀x> ⇔ > (constant quantification)
∀x⊥ ⇔ ⊥
∃x> ⇔ >
∃x⊥ ⇔ ⊥

(13) ∀xx⇔ ⊥ (literal quantification)
∃xx⇔ >
∀x (¬x)⇔ ⊥
∃x (¬x)⇔ >

(14) ∀xφ⇔ φ[x/⊥] ∧ φ[x/>] (quantifier replacement)
∃xφ⇔ φ[x/⊥] ∨ φ[x/>]

(15) ∀x∀y φ⇔ ∀y∀xφ (quantifier commutability)
∃x∃y φ⇔ ∃y∃xφ

(16) for Q ∈ {∀, ∃} and x 6∈ free(φ), (Qxφ) ⇒ φ (quantifier elimination)

(17) ∀x (φ ∧ ψ) ⇒ (∀xφ) ∧ (∀xψ) (miniscoping)
∃x (φ ∨ ψ) ⇒ (∃xφ) ∨ (∃xψ)
if x 6∈ free(ψ), ∀x (φ ∨ ψ) ⇒ (∀xφ) ∨ ψ
if x 6∈ free(ψ), ∃x (φ ∧ ψ) ⇒ (∃xφ) ∧ ψ

(18) ∀xφ ∧ ∀y ψ ⇒ ∀x (φ ∧ ψ[y/x]) (quantifier fusion)
∃xφ ∨ ∃y ψ ⇒ ∃x (φ ∨ ψ[y/x])

(19) ∀x (φ ∧ ψ[y/x])⇒ ∀xφ ∧ ∀y ψ (quantifier distribution)
∃x (φ ∨ ψ[y/x])⇒ ∃xφ ∨ ∃y ψ

Proof. All the equivalences and implications above can be easily shown by the semantics
of the QBFs. 2
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Theorem 2.2.2 (Equivalence Replacement Theorem)
Let φ[ψ] be a QBF φ and let ψ be a subformula of φ. Furthermore, let ψ ⇔ γ. Then it
holds that φ[ψ] ⇔ φ[γ].

Proof. We proof the Equivalence Replacement Theorem by induction on the complexity
k(φ) of φ minus the complexity of k(ψ) of ψ, i.e., by |k(φ)− k(ψ)|.

Basis Step. In the first step, we show that the Equivalence Replacement Theorem holds
for (1) φ = ψ and (2) for atomic formulas and truth constants. Then (k(φ)− k(ψ) = 0).

(1) Let φ = ψ. Then φ[ψ] = ψ and φ[γ] = γ. From ψ ⇔ γ, it follows that φ[ψ]⇔ φ[γ].

(2) Let φ′ ∈ P ∪{⊥,>} and φ = φ′ with φ′ 6= ψ and φ′ 6= γ. Then φ[ψ] = φ′ and φ[γ] = φ′

and therefore, φ[ψ] ⇔ φ[γ]. So the Equivalence Replacement Theorem holds for atomic
formulas and truth constants.

Induction Hypothesis. Let n ≥ 0 and assume that the Equivalence Replacement The-
orem holds for the QBFs φ and ψ with (k(φ)− k(ψ)) ≤ n.

Induction Step. We have to show that the Equivalence Replacement Theorem also holds
for (k(φ)− k(ψ)) = n+ 1.

Five cases can be distinguished with respect to the main connective of φ. We prove the
Equivalence Replacement Theorem exemplarily for the disjunction and for the existential
quantification — for the other connectives the proof is performed accordingly.

(1) Disjunction

Let φ[ψ] = φ1[ψ]∨φ2[ψ] and φ[γ] = φ1[γ]∨φ2[γ] and ψ ⇔ γ. By the induction hypothesis,
φ1[ψ] ⇔ φ1[γ] and φ2[ψ] ⇔ φ2[γ]. We show that the equivalence φ[ψ] ⇔ φ[γ] holds by
performing the following transformations.

υ(φ[ψ]) = υ(φ1[ψ] ∨ φ2[ψ]) = T if υ(φ1[ψ]) = T or if υ(φ2[ψ]) = T.

Since φ1[ψ]⇔ φ1[γ] and φ2[ψ]⇔ φ2[γ], υ(φ1[ψ] ∨ φ2[ψ]) = T if

υ(φ1[γ]) = T or if υ(φ2[γ]) = T.

This is equivalent to υ(φ1[γ] ∨ φ2[γ]) that again is equivalent to υ(φ[γ]).

(2) Existential Quantification

Assume that φ′[ψ] ⇔ φ′[γ] holds by induction hypothesis. From the semantics of ⇔ and
∃, it follows immediately that ∃xφ′[ψ]⇔ ∃xφ′[γ]. 2
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Theorem 2.2.3 (Monotonic Replacement Theorem)
Let φ be a QBF and let x be a variable, which is only positive or only negative in φ. Let
further ψ and γ be arbitrary QBFs.

1. If υ(ψ → γ) = T then υ(φ[x/ψ]→ φ[x/γ]) = T if all occurrences of x are positive in
φ, and

2. if υ(ψ → γ) = T then υ(φ[x/γ] → φ[x/ψ]) = T if all occurrences of x are negative
in φ.

Proof. We proof the Monotonic Replacement Theorem by induction on the complexity
k(φ) of φ under the assumption that all occurrences of the variable x are positive in φ.
The proof for 2. proceeds analogously.

Basis Step. In the first step, we show that the Monotonic Replacement Theorem holds
for atomic formulas and truth constants. The k(φ) = 0.

(1) Let φ = > (resp. φ = ⊥). Then φ[x/ψ] = > (resp. φ[x/ψ] = ⊥) and also φ[x/γ] = >
(resp. φ[x/γ] = ⊥). Therefore, υ(φ[x/ψ]) = υ(φ[x/γ]) holds and consequently, the impli-
cation υ(φ[x/ψ]→ φ[x/γ]) holds too.

(2) Suppose φ ∈ P. Then either φ = x or φ 6= x. If φ = x then φ[x/ψ] = ψ and φ[x/γ] = γ.
Since υ(ψ → γ) = T by assumption, υ(φ[x/ψ] → φ[x/γ]) = T trivially holds. If φ 6= x
then υ(φ[x/ψ]→ φ[x/ψ]) = T because υ(φ→ φ) = T.

Induction Hypothesis. Let n ≥ 0 be and assume that the Monotonic Replacement
Theorem holds for every QBF with φ with k(φ) ≤ n.

Induction Step. We have to show that the Monotonic Replacement Theorem also holds
for every QBF with k(φ) = n+1. To prove the Monotonic Replacement Theorem we have
to distinguish between four cases depending on the main connective of the formula φ.

(1) Disjunction

Let φ = φ1 ∨ φ2. By induction hypothesis, it holds that υ(φ1[x/ψ] → φ1[x/γ]) = T

and υ(φ2[x/ψ] → φ2[x/γ]) = T. We must show that υ(φ[x/ψ] → φ[x/γ]) = T, i.e., the
following implication must hold: υ((φ1[x/ψ] ∨ φ2[x/ψ]) → (φ1[x/γ] ∨ φ2[x/γ])) = T. We
can rewrite this as υ(¬(φ1[x/ψ] ∨ (φ2[x/ψ]) ∨ (φ1[x/γ] ∨ φ2[x/γ])) = T.

By the application of De Morgan’s laws and the associative and the commutative law, we
obtain υ((¬φ1[x/ψ]∨ φ1[x/γ]∨ φ2[x/γ]) ∧ (¬φ2[x/ψ]∨ φ1[x/γ]∨ φ2[x/γ])) = T which can
be rewritten as υ(((φ1[x/ψ]→ φ1[x/γ])∨φ2[x/γ])∧ ((φ2[x/ψ]→ φ2[x/γ])∨φ1[x/γ])) = T.
This holds because of the induction hypothesis.

(2) Conjunction

Let φ = φ1 ∧ φ2. By induction hypothesis, it holds that υ(φ1[x/ψ] → φ1[x/γ]) = T

and υ(φ2[x/ψ] → φ2[x/γ]) = T. We have to show that υ(φ[x/ψ] → φ[x/γ]) = T, i.e., the
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following implication must hold: υ((φ1[x/ψ] ∧ φ2[x/ψ]) → (φ1[x/γ] ∧ φ2[x/γ])) = T. We
can rewrite this as υ(¬(φ1[x/ψ] ∧ φ2[x/ψ]) ∨ (φ1[x/γ] ∧ φ2[x/γ])) = T. This is the same
as υ(((φ1[x/ψ]→ φ1[x/γ]) ∨ φ2[x/γ]) ∧ ((φ2[x/ψ]→ φ2[x/γ]) ∨ φ1[x/γ])) = T.
This holds because of the induction hypothesis.

(3) Negation

Let φ = ¬φ′. Then we have to show that the implication υ(¬φ′[x/ψ] → ¬φ′[x/γ]) holds
under the assumption that ψ → γ. Now we distinguish between two cases:

(a) φ′ is a variable or a truth constant. It can be shown similarly to the basis step
that the Monotonic Replacement Theorem holds.

(b) Otherwise, we can shift the negation inside the formula by the application of De Mor-
gan’s laws. Now the main connective is either a conjunction, a disjunction, or a quantifier
and the Monotonic Replacement Theorem holds as previously proven.

(4) Quantification

Assume that υ(φ′[x/ψ] → φ′[x/γ]) = T by induction hypothesis. Therefore, if it holds
that υ(φ′[x/ψ][y/⊥]) = T and/or υ(φ′[x/ψ][y/>]) = T, also υ(φ′[x/γ][y/⊥]) = T and
υ(φ′[x/γ][y/>]) = T. Therefore, υ(Qy φ′[x/ψ] → Qy φ′[x/γ]) = T with Q ∈ {∀, ∃} (to
obtain a QBF in standard form a suitable renaming has to be performed). 2

Theorem 2.2.4 (Pure Literal Elimination)
Let the literal l = x (resp. l = ¬x) be pure in the QBF φ. Then

φ⇔

{

φ[x/>] (resp. φ[x/⊥]) if x is existential;

φ[x/⊥] (resp. φ[x/>]) if x is universal.

Proof. We show that φ ⇔ φ[x/>] under the assumption that all occurrences of x are
positive in φ and that x is an existential variable. Since φ is in standard form and due to
the Equivalence Replacement Theorem, it suffices to prove that the subformula ∃xφ′ of φ
is equivalent to φ′[x/>]. We show that ∃xφ′ → φ′[x/>] and φ′[x/>]→ ∃xφ′ hold.

(1) ∃xφ′[x/x] → ∃xφ′[x/>] is valid due to the Monotonic Replacement Theorem (since,
for any ψ, the formula ψ → > is a tautology). The quantifier on the right-hand side
of the implication can be omitted because all occurrences of x are removed. Therefore,
∃xφ′ → φ′[x/>] holds.

(2) (φ′[x/>]→ ∃xφ′)⇔ (φ′[x/>]→ (φ′[x/>] ∨ φ′[x/⊥])), which is valid. 2

Theorem 2.2.5 (Local Unit Literal Elimination)
Let the literal l = x (resp. l = ¬x) and let ψ be a subformula of the form (l◦ψ ′) in φ. Then
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ψ ⇔























x ∧ ψ′[x/>] if ψ = x ∧ ψ′;

x ∨ ψ′[x/⊥] if ψ = x ∨ ψ′;

¬x ∧ ψ′[x/⊥] if ψ = ¬x ∧ ψ′;

¬x ∨ ψ′[x/>] if ψ = ¬x ∨ ψ′.

Due to the Equivalence Replacement Theorem ψ can be substituted by the corresponding
formula.

Proof. We show that, regardless whether we assign x to ⊥ or to >, x∧ψ ′ ⇔ x∧ψ′[x/>]
holds under this assignment. The other equivalences can be shown in a similar manner.
We distinguish between the following two cases:

Case 1: x is set to true.

Then (x ∧ ψ′)[x/>]⇔ (> ∧ ψ′[x/>])⇔ >∧ (ψ′[x/>])[x/>].

Case 2: x is set to false.

Then (x ∧ ψ′)[x/⊥]⇔ ⊥⇔ (⊥ ∧ ψ′[x/>])⇔ ⊥∧ (ψ′[x/>])[x/⊥]. 2

Theorem 2.2.6 (Global Unit Literal Elimination)
Let the literal l = x (resp. l = ¬x) be global unit in the QBF φ. Then

φ⇔

{

φ[x/>] (resp. φ[x/⊥]) if x is existential;

φ[x/⊥] (resp. φ[x/>]) if x is universal.

Proof. By the application of Theorem 2.2.4 and 2.2.5. 2

2.3 Complexity

Quantified Boolean formulas are strongly connected to the theory of computational com-
plexity. Computational complexity is the area of computer science that researches the
reasons why some problems are so hard to solve by computers [82]. Complexity theory
is the branch, where problems are not considered as entities which have to be solved but
where problems become objects worth to be studied by themselves. Complexity theory
provides a classification for problems which indicates the worst-case complexity for the
solution of a particular problem instance.

The problem, we are interested in, is the decision problem for QBFs. It can be formu-
lated as follows.

Definition 2.3.1 (Decision Problem for QBFs (QSAT))
Let φ be a QBF of the form

Q1X1 . . .QnXnψ

with Qi ∈ {∀, ∃} and ψ being purely propositional. The decision problem for QBF is
testing whether φ is satisfiable or not.



28 CHAPTER 2. PRELIMINARIES

Note that the decision problem for QBFs is usually defined for formulas in prenex normal
form because there is a close relation between the number of quantifier alternations in
the prefix of the formula and the complexity classification of the corresponding decision
problem.

To discuss the complexity of the decision problem, we have to introduce a machine
model to provide ”a computer” where we can run the implementation of our algorithm. A
very prominent model for the simulation of arbitrary algorithms is the Turing Machine.
We will provide a short, informal introduction sufficient for our purposes. For further
information, we refer the reader to [82].

A deterministic Turing machine (DTM) consists of a tape with an infinite number of
memory fields controlled by a finite automata. A read-write head can read symbols from
the tape, write symbols on the tape from the finite alphabet Σ and it can move one field
to the left or to the right. The alphabet Σ always contains one special symbol: the blank
symbol b. Further, a Turing machine is specified by a set of states S. S contains the
special states sI , the initial state, and the two end states sA and sR (the accepting state
and the rejecting state). The actual program of a Turing machine is given by the state
transition function δ which maps (S\{sA, sR}×Σ) to (S×Σ×{←,→}). ← and→ indicate
the direction of the next move.

The input of a program — a string consisting of symbols from Σ — is initially written
on the tape (one symbol per field). The other fields are initialised with the blank symbol.
The execution of the program starts in the initial state sI and the head is positioned at
the beginning of the input string. The calculation is performed stepwise according to δ
until either no application of δ is possible or one of the end states is reached. E.g., if
δ(s, 1) = (s′, 0,←) then the state of the finite automata changes from s to s′, the ”1”
in the current field is overwritten by ”0” and the read-write head moves one position to
the left. If the program terminates with the state sA then the input string is said to be
accepted, if the program terminates with the state sR then the the input string is said to
be rejected.

The Turing machine we have presented is referred to as a deterministic Turing machine
because this machine changes to exactly one state in each computation step. A probably
more powerful machine model is the nondeterministic Turing machine (NDTM). A NDTM
is defined similar to a DTM except that it does not have a single, uniquely defined next
state. As far as it is known, DTMs can simulate NDTMs only with an exponential loss of
efficiency — otherwise the prominent problem P = NP would be answered positively.

With NDTMs we are able to characterise the very famous class of NP, the set of decision
problems solvable in polynomial time by a NDTM. NDTMs are also referred to as guess-
and-check Turing machines. The non-deterministic part is used to guess a solution of
the problem (like a variable assignment if we want to solve the SAT problem) and the
deterministic part is used to check the correctness of the guessed solution.

Definition 2.3.2 (NP)
The class NP includes all decision problems for which all its instances can be solved by a
NDTM in polynomial time with respect to the instance size.
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Definition 2.3.3 (Many-one Reducibility)
Let Σ be an alphabet and Σ∗ be the set of all strings over Σ. Given two languages L1

and L2, L1 is called polynomial time many-one reducible to L2 (L1 ≤
P
m L2) if there exists

a function f : Σ∗ → Σ∗ such that f(w) is computable in polynomial time with respect to
the length |w| of w and w ∈ L1 iff f(w) ∈ L2 for all w ∈ Σ∗.

Definition 2.3.4 (C-hardness, C-completeness)
• Given a class C, a language A is C-hard if B ≤P

m A, for every B ∈ C.

• Given a class C, a language A is C-complete if A is C-hard and A ∈ C.

A very famous statement in complexity theory is the following: The satisfiability problem
for propositional logic (SAT) is NP-complete [25].

We are not concerned with the decision problem for propositional logic but with the
problem for quantified Boolean formulas. It is assumed that this problems is located
outside NP, so we need to introduce complexity classes for probably harder problems.

The class PSPACE includes all problems calculated by a DTM using only polynomial
space with respect to the size of the input. PSPACE includes naturally all problems which
are solvable in polynomial time. The central problem shown to be PSPACE-complete is
the satisfiability problem for QBFs [71].

PSPACE can be divided into several complexity classes itself. These classes span the
so-called polynomial hierarchy. To set up the polynomial hierarchy, we have to extend
the Turing Machines by the facilities of an oracle. The usage of an oracle corresponds
to the call of a subroutine which is of unit cost and where we are interested neither in
its time nor in its space usage. The classes PC and NPC refer to the classes of decision
problems that can be solved in polynomial time by a deterministic (in the case of P) and
nondeterministic (in the case of NP) Turing Machine using an oracle for problems in C
where C is an arbitrary complexity class.

Definition 2.3.5 (Polynomial Hierarchy [71])
The polynomial hierarchy consists of classes ∆p

k, Σp
k, and Πp

k, which are defined using the
notion of oracles as follows:

∆p
0 = Σp

0 = Πp
0 = P,

and, for all k ≥ 0,

∆p
k+1 = PΣp

k , Σp
k+1 = NPΣp

k , Πp
k+1 = co-Σp

k+1.

Definition 2.3.6 (Levels of the Polynomial Hierarchy)
A problem is located at the kth level of the polynomial hierarchy, if it is contained in ∆p

k+1

and if it is either Σp
k-hard or Πp

k-hard.

Based on those classes, further classes can be derived. For instance,

DP
k+1 = {L1 × L2 | L1 ∈ Σp

k, L2 ∈ Πp
k}

can be seen as the “conjunction” of Σp
k and Πp

k. The class DP
2 is also known as DP .
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Figure 2.3: The polynomial hierarchy.

To conclude this chapter, we present two results on the complexity of QBFs due to Meyer
and Stockmeyer [70] and Wrathall [94]: the complexity characterisation of QBFs. As we
will see, QBFs span the whole polynomial hierarchy where many important problems can
also be found.

Theorem 2.3.1 (The SAT Problem for QBFs)
1. The problem of satisfiability checking of a QBF of the form

∃X1∀X2 . . .QkXkφ

is complete for Σp
k with Qk = ∃ if k is odd and Qk = ∀ if k is even and φ is purely

propositional.

2. The problem of satisfiability checking of a QBF of the form

∀X1∃X2 . . .QkXkφ

is complete for Πp
k with Qk = ∀ if k is odd and Qk = ∃ if k is even and φ is purely

propositional.

As Theorem 2.3.1 indicates, QBFs span the whole polynomial hierarchy. This makes
QBFs a suitable tool for proving the complexity of many formalisms by translating them
from and to QBFs. Therefore QBFs can serve as a powerful language to encode many
problems. One generic solver — the QBF solver — can then be applied to solve formulas
from very different fields. This is why QBFs became so popular during the last few years
and why there is an enormous claim for efficient solvers.



Chapter 3

Decision Procedures

This chapter provides an overview of various ways to solve the QSAT problem. The basic
concepts and methods used during the evaluation process will be reviewed including the
following four decision procedures:

• the resolution calculus for QBFs;

• the decision procedure by Davis, Putnam, Loveland, and Lodgeman (DPLL);

• binary decision diagrams (BDDs);

• the sequent calculus for QBFs.

All of the decision methods listed above are extensions of procedures for propositional
logic. In practice, only the first three are implemented in the state-of-the-art solvers
presented at the end of this chapter. When discussing those algorithms, we will notice
that resolution and DPLL do not work on arbitrary QBFs. The QBFs are expected to
be transformed to a certain normal form, i.e., some assumptions about the structure of
the formula are made. The impact of this transformation will be considered in the next
chapter.

3.1 Resolution for QBFs

One of the most prominent and most widely used inference systems for first-order theorem
proving is Robinson’s resolution calculus [85]. A very appealing aspect of this decision
method is its simplicity. Resolution can not only be applied to predicate logic, but a
simpler version can also be used to evaluate formulas of propositional logic.

The extension of simple propositional logic’s resolution to QBFs is called Q-resolution
and was introduced in [59]. The main difference between ordinary resolution and Q-
resolution is that universally quantified variables can be dropped in certain cases. It only
works for QBFs in prenex conjunctive normal form, so we deal with formulas of the format

Q1X1Q2X2 . . .QnXn

m
∧

i=0

(φi),

31
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where the φi are clauses which contain literals from X1 ∪ · · · ∪ Xn. We assume that no
clause is tautological (i.e., it does not contain l and l at the same time), and we assume
that no clause contains multiple occurrences of one literal. A literal l1 is said to precede a
literal l2 if var(l1) ∈ Xi, var(l2) ∈ Xj and i < j. The clauses φi are of the form (l1∨· · ·∨lni

).
In the following, we consider clauses as sets of literals.

A clause is called a pure ∀-clause if it is a non-tautological clause, which contains only
universally quantified literals. The empty clause ∅ is a pure ∀-clause.

Definition 3.1.1 (∀-Reduct)
Let φ be a QBF in PCNF. The ∀-reduct of a clause ψ in φ is the clause ψ′ resulting from
the removal of any universal literal in ψ, which does not precede an existential literal of
ψ in the prefix of φ.

Definition 3.1.2 (Q-Resolution)
The resolution operation for QBF — called Q-resolution — is defined as follows.

1. Every clause is replaced by its ∀-reduct. All clauses, which contain only universally
quantified variables, are replaced by the empty clause.

2. Let φ1 be a clause, which contains an existentially quantified literal l and let φ2 be a
clause with the complementary literal l. Furthermore, let φ′

1 and φ′2 be the ∀-reduct
of φ1 and φ2.

The Q-resolvent φr is obtained from φ′1 ∪ φ
′
2 as follows:

(a) φ′r = (φ′1 ∪ φ
′
2)\{l, l}.

(b) There exists no resolvent if φ′r contains complementary literals. Otherwise, the
Q-resolvent φr is the ∀-reduct of φ′r.

Theorem 3.1.1 (Soundness and Completeness of Q-resolution)
1. A QBF is false if the empty clause can be derived by repeated application of the

resolution operator.

2. If a QBF is true then the empty clause cannot be derived.

The proof can be found in [59].

Although Q-resolution is theoretically complete, it is almost never used, because the
single underlying decision method in an implementation as the number of clauses can
grow exponentially. Usually, it is integrated to strengthen other decision methods, for
example in his solver semprop, Letz [68] uses Q-resolution to calculate lemmas.

3.2 The DPLL Decision Method

The DPLL decision procedure for propositional logic was introduced at the beginning of the
1960s by Davis, Putnam, Logeman, and Loveland [26, 27, 28], and for a long time DPLL

ranks among the most famous methods in the field of automatic theorem proving.
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The original intention of M. Davis and P. Putnam was to provide a theorem proving
technique suitable for satisfiability testing of propositional logic in order to develop an
efficient proof procedure for first-order logic [27, 28]. The first practical implementation
showed to be very memory consuming, and so M. Davis, G. Logeman, and D. Loveland
proposed a modified variant in [26]. Today, DPLL is still among the fastest and most
widely used methods for solving propositional formulas, and DPLL is implemented in many
systems.

In the last few years, DPLL has been successfully adapted for QBFs, and it is used in
many state-of-the-art solvers [41, 54, 68]. In the following, we present a version of DPLL,
where we abstract from implementation details. We will also introduce some advanced
pruning techniques. Without them, this method would not be practically applicable for
bigger formulas. After discussing alternative approaches to solve a QBF, we will provide
an overview of available solvers.

3.2.1 The Basic Decision Procedure

The DPLL decision procedure evaluates QBFs in prenex conjunctive normal form. As we
will see in the next chapter, this is not a limitation, because every QBF can be transformed
into PCNF. But we will also see that this transformation is bound up with some costs
and trade-offs. This means that a preprocessing step is usually necessary to convert the
input formula into an equivalent formula of the required format. At the moment, this
preprocessing step is completely ignored in most implementations and all input formulas
are assumed to be in PCNF (in fact, the language of QBFs is often introduced in such
a manner that it contains exclusively formulas in PCNF). This distinguishes our solver
qpro from most available implementations as we omit this preprocessing step by accepting
formulas of nearly arbitrary structure. A trend in current QBF research is the attempt
to reconstruct the structure of the original formula or to store the prefix as a tree, from
which more information can be extracted. We focus on keeping and working with the
original formula structure. Therefore, we can directly read off the information about the
quantifier dependencies without performing any complicated analysis. Before we present
the implementation of our solver (which is in fact also a variant of DPLL), it is necessary
to obtain a rudimentary understanding of the ”standard” DPLL decision procedure first.

Figure 3.1 shows the decision procedure in pseudo-code. We use a language similar to
C. The language provides operators like || (logical or) and && (logical and) to connect
Boolean values. A comparison can be performed by the usage of ==.

DPLL, also referred to as splitting algorithm, implicitly builds up the previously intro-
duced semantic tree and realises a simple search-based backtracking algorithm. The sim-
plicity of the algorithm was certainly critical to its success as it can almost be implemented
as the pseudo-code proposes. Recursively, the structure tree is traversed and whenever a
node containing a quantification is reached, the quantifier is eliminated by replacing the
corresponding variable by ⊥ and/or > depending on the type of the quantifier. Since we
are dealing with closed formulas only, the formula evaluates to > or ⊥ in any case.

The simplify-function performs — as the name indicates — simplifications on the
formula. The truth constants are eliminated according to Theorem 2.2.1. Another op-
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BOOLEAN dpll(QBF φ in PCNF) {

switch (simplify (φ)) {

case >: return True;

case ⊥: return False;

case (QXψ): select x ∈ X;

if Q = ∃ return (dpll(QX ′ψ[x/⊥]) ‖ dpll(QX ′ψ[x/>]));
if Q = ∀ return (dpll(QX ′ψ[x/⊥]) && dpll(QX ′ψ[x/>]));

}
}

Figure 3.1: The DPLL decision procedure.

timisation consists of the removal of tautological clauses, i.e., clauses which contain two
complementary literals l and l. During the solving process, tautological clauses can never
be introduced. The size of the clauses can only decrease as no new literals are added at
any time. So the removal of tautological clauses has to be applied only once.

To use the algorithm in practice, it is indispensable to implement the unit propagation
and pure literal elimination rules based on Theorems 2.2.4 and 2.2.6. As we are dealing
with QBFs in PCNF, we can define the term unit clause.

Definition 3.2.1 (Unit Clause)
Let φ be a QBF in PCNF. A clause ψ of φ is called unit if it contains exactly one
existentially quantified literal l and the universal literals of ψ do not precede any existential
variable in the prefix of φ.

The unit propagation rule and the pure elimination rule are as follows:

• Unit Rule. If a QBF φ in PCNF contains a unit clause ψ with an existentially
quantified atom x (resp. ¬x) then x can be replaced by > (resp. ⊥) in φ immediately.

• Pure Rule. If a QBF φ contains a pure literal x (resp. ¬x) then x can be immediately
replaced in φ by

– > (resp. ⊥) if x is existentially quantified;

– ⊥ (resp. >) if x is universally quantified.

A refinement of the unit elimination rule is the removal of clauses, which contain only
universally quantified literals.

• Non-tautological All-Clause Rule. A QBF φ in PCNF, which contains a non-tautological
clause with only universally quantified literals, is unsatisfiable.

By every application of a variable substitution by > and ⊥ and by the application of the
simplify-function, the formula size decreases until it reduces to a single truth constant
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if the QBF is closed. It is straight forward to see that the algorithm terminates but is
exponential in time in the worst case and polynomial in space.

Theorem 3.2.1 (Soundness, Completeness, Termination)
DPLL is sound, complete and terminating, i.e., for every QBF φ in PCNF, DPLL returns

• ”True” if υ(φ) = T;

• ”False” if υ(φ) = F.

3.2.2 Improvements of DPLL

As we have seen, DPLL traverses the semantic tree in a depth-first fashion. Therefore, the
necessary space is bounded polynomially by the size of the input formula. The solving
time, however, is exponential in the worst case, because the number of variable assignments
which has to be considered is exponential with respect to the number of variables occurring
in the formula. Even for small formulas the worst case situation is not acceptable in
practice. So optimisation techniques have to be integrated into the basic split-algorithm
to prune the search space and to avoid the worst-case situation as much as possible.
In the following, we will present some of the most important and successful techniques
implemented in current state-of-the-art solvers.

Dependency-Directed Backtracking

As already discussed, DPLL chronologically traverses the semantic tree of a formula. Due to
the semantics of the quantifiers, sometimes it is not necessary to build the second subtree of
a node (e.g., if the variable of the node is existentially quantified and the first subproblem
evaluates to true), and the procedure can backtrack to the node above. But what if the
variable is existentially quantified (resp. universally quantified) and the first subproblem
evaluates to false (resp. to true)? Is there a chance to omit the second branch without
influencing the result? The answer is yes — the technique we need is dependency-directed
backtracking (DDB).

DDB, also called backjumping, is for example described by Letz in [68]. The idea is very
simple but nevertheless very effective. Letz distinguishes between two different kinds of
dependency-directed backtracking: DDB for false subproblems and DDB for true subprob-
lems.

Furthermore, Letz presents two versions of DDB for false subproblems, namely DDB
by labelling and DDB by relevance sets. The first one causes almost no implementational
overhead, but it does not prune the search space as much as the second one. When
branching on a variable, say x, this variable is marked as irrelevant and assigned a truth
constant, e.g., ⊥. If during the search an assignment is found which sets the formula
to true or to false, all variables which are responsible for the result are set to relevant.
When returning to x during backtracking it is checked if x is irrelevant or not. If x is
still irrelevant then the second problem, where x is set to > can be omitted in any case.
Obviously, the less variables are marked as relevant the better.
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Dependency-directed backtracking by relevance set can decrease the number of relevant
variables if both subproblems at the branching point of a variable have to be considered.
We will explain DDB in a more detailed manner later.

The Use of Lemmas

Lemma cashing (also called nogood learning) is indispensable for solving certain unsatis-
fiable formulas (for examples, see [68]). The generation of the lemmas is achieved by the
usage of the previously introduced Q-resolution. Since Q-resolution is sound, any resol-
vent of a QBF φ can be added to the matrix of φ without changing φ’s truth value. The
Q-resolvents are the lemmas and by the integration of them into the original formula, the
proof of the QBF might be shortened.

In the following we will briefly describe how DPLL can be extended by lemma cashing.

Definition 3.2.2 (DPLL with Lemmas)
Let Ni be a node in the semantic tree, which has evaluated to false. We associate Ni with
a clause as follows.

1. If Ni is a leaf node, the associated clause is the ∀-reduct of one unsatisfiable clause.

2. If Ni contains a variable, which is universally quantified, then it can be assumed
that Ni has exactly one false successor node, and we set the associated clause of Ni

equal to the associated clause of the successor node.

3. If Ni contains a variable x, which is existentially quantified then its two successor
nodes N ′

i and N ′′
i must be false. Furthermore, let C ′ be the clause associated with N ′

i

and let C ′′ be the clause associated with N ′′
i . Then two cases can be distinguished.

(a) x ∈ C ′ and ¬x ∈ C ′′. Then the associated clause of Ni is the Q-resolvent of C ′

and C ′′ (if the resulting clause is non-tautological).

(b) Otherwise, one of the clauses does not contain the respective literal — e.g.,
¬x 6∈ C ′′. But this means that x is irrelevant in N ′′

i and therefore, we can set
the associated clause of Ni to C ′.

It is important to note that the integration of lemmas is not as straightforward for QBFs
as it is in the propositional case, because the resolvent lemma does not hold for QBFs
containing universally quantified variables.

Lemma 3.2.1 (Resolvent Lemma)
Let T be the semantic tree of a propositional formula φ in CNF. For any node N of T , no
associated clause is tautological.

As tautological lemmas are worthless, it is necessary to avoid the creation of them, so
techniques to prevent them have to be necessarily included (for details see [68]).
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Model Cashing

Model cashing can be seen as the dual form of the employment of lemmas [68]. To perform
model cashing, some technique has to be introduced, which corresponds to Q-resolution:
model resolution.

Definition 3.2.3 (Model Resolvent)
Let φ be a QBF and let ιS1

and ιS2
be models of psk(φ). Assume further that S1 and

S2 contain two complementary literals — say x with x ∈ S1 and ¬x ∈ S2. The model
resolvent of ιS1

and ιS2
is (S′

1\{¬x} ∪ S
′
2\{x}) where S ′

1 (resp., S′
2) is obtained from S1

(resp. S2) by removing any existential literal, whose variable does not precede the variable
of any universally quantified literal occurring in S1 (resp., S2) in the prefix.

Lemma 3.2.2 (Model Resolvent Lemma)
If a model resolvent S of two models for a QBF φ is consistent then ιS is also a model for
psk(φ).

The integration of model cashing into DPLL is similar to the integration of lemma cash-
ing. At the leaves of the semantic tree, models are extracted. If a node contains a
universally quantified variable, the minimal models of the two branches are combined by
model resolution. If the model resolvent exists, it is added disjunctively to the formula.
When a partial assignment satisfies the model resolvent then it subsumes the literal on
the branch, and the subproblem is immediately solved.

Trivial Truth and Trivial Falsity

In certain cases, the evaluation problem for QBFs can be reduced to the evaluation problem
of propositional logic. The following lemmas provide two criterions.

Lemma 3.2.3 (Trivial Truth)
A QBF φ in PCNF with the matrix ψ is true if the propositional formula ψ ′ is satisfiable,
where ψ′ is obtained from ψ by simply deleting all universally quantified literals.

Lemma 3.2.4 (Trivial Falsity)
A QBF φ in PCNF is unsatisfiable if one of the two following conditions holds.

1. φ contains a non-tautological clause consisting only of universally quantified vari-
ables.

2. The propositional formula ψ′ consisting of the clauses, which contain only existen-
tially quantified variables, is unsatisfiable.

3.3 Binary Decision Diagrams

An alternative approach to solve a QBF is the usage of Binary Decision Diagrams [19, 66].
BDDs are widely used in the model checking community but there are efforts to integrate
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them into standard decision procedures. Before defining BDDs, we have to introduce the
notion of Binary Decision Trees.

Definition 3.3.1 (Binary Decision Tree)
A binary decision tree is a tree such that the following holds.

• The internal nodes are labeled by variables.

• The leaves are labeled by F and T.

• Every internal node has exactly two children. The edge to one node represents the
assignment of the variable by F (and is therefore labeled by F), whereas the other
edge represents the assignment by T (and is therefore labeled by T).

• Nodes on a path in the tree have always different labels.

At the first glance a Binary Decision Tree (BDT) looks like the previously introduced
semantic tree. But in contrast to the semantic tree, which illustrates the steps performed
by the splitting algorithm, the BDT represents the underlying data structure for those
solvers.

Using BDTs directly would be extremely inefficient because of its memory consumption.
Therefore, BDDs are introduced.

Definition 3.3.2 (Binary Decision Diagram)
A binary decision diagram (BDD) is a rooted dag with the same properties as the BDT
plus the following two properties:

• for every node, its left and right subdag are non-isomorphic;

• every pair of subdags rooted at two different nodes are non-isomorphic.

There are implementations of QBFs based on BDDs and some extensions like OBDDS
(Ordered BDDs) or ZBDDs (zero-supressed BDDS) [47], but we did not include them in
our tests because either the solvers were not available or the memory consumption showed
to be inherent in pretests.

3.4 The Sequent Calculus for QBFs

Gentzen’s sequent calculus is one of the most prominent and elegant proof system for many
logics including classical propositional and first-order logic. In this section, we develop a
cut-free sequent calculus for proving QBFs [61]. In particular, we take a look at a variant
called Gqve, which was introduced in [29].

Definition 3.4.1 (Sequent, Antecedent, Succedent)
A sequent is an ordered pair 〈Φ,Ψ〉 of finite sets of formulas, written Φ ` Ψ. Φ is called
antecedent and Ψ is referred to as succedent.
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φ,Φ ` Ψ, φ Ax ⊥,Φ ` Ψ ⊥l Φ ` Ψ,> >r

Figure 3.2: Axioms Ax, >l and >r of Gqve.

By convention, ` Ψ and Φ ` denote 〈∅,Ψ〉 and 〈Φ, ∅〉. Φ, φ (resp. Ψ, ψ) abbreviates
Φ ∪ {φ} (resp., Ψ ∪ {ψ}).

Definition 3.4.2 (Validity of Sequents)
A sequent φ1, . . . , φm ` ψ1, . . . , ψn is valid iff whenever v(φi) = T for all 1 ≤ i ≤ m then
there exists a ψj with v(ψj) = T (1 ≤ j ≤ n).

Intuitively, Definition 3.4.2 semantically identifies a sequent>, φ1, . . . , φm ` ψ1, . . . , ψn,⊥
with the implication (> ∧ φ1 ∧ · · · ∧ φm) → (ψ1 ∨ · · · ∨ ψn ∨ ⊥). The empty sequent ` is
invalid. For techniqual reasons, we sometimes write the empty sequent as > ` ⊥.

Definition 3.4.3 (Rules of the Sequent Calculus)
A sequent calculus consists of three kinds of rules:

1. initial rules (axioms);

2. logical rules;

3. structural rules.

The axioms are summarised in Figure 3.2, the structural rules are shown in Figure 3.3
and the logical rules in Figure 3.4. The sequents above the line of a rule are called premises,
the sequent below the line is called conclusion. Axioms do not have any premises and
the line is omitted. Each logical rule introduces a connective or a quantifier either in the
antecedent or in the succedent. The variable c introduced in ∀l, ∃r may be a truth constant
or an arbitrary propositional variable, whereas e of ∀r, ∃l has to respect the eigenvariable
condition, i.e., it does not occur in the conclusion of the rule and is neither > nor ⊥. Gqve
is a cut-free calculus, i.e., it does not include the cut rule shown in Figure 3.4. We used a
set based formulation of the sequent calculus. In contrast to sequence based formulations,
it is not necessary to state the structural rules explicitly.

When we read an instance of a logical rule from premise to conclusion, we call it an
inference, if we read it the other way round (i.e., from conclusion to premise), we call it
reduction.

Definition 3.4.4 (Logical Complexity of a Sequent)
Let S be a sequent of the form φ1, · · · , φn ` ψ1, · · · , ψm, then the logical complexity of S
is defined by

k(S) = Σn
i=1k(φi) + Σm

j=1k(ψj).

A derivation in this calculus is a tree generated by the (bottom-up) application of the
logical rules. The root of this tree is called endsequent. The leaves are sequents which
contain only formulas with a complexity of zero.
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Φ ` Ψ

φ,Φ ` Ψ
Wl

Φ ` Ψ

Φ ` Ψ, φ
Wr

φ, φ,Φ ` Ψ

φ,Φ ` Ψ
Cl

Φ ` Ψ, φ, φ

Φ ` Ψ, φ
Cr

Φ1, φ, ψ,Φ2 ` Ψ

Φ1, ψ, φ,Φ2 ` Ψ
El

Φ ` Ψ1, φ, ψ,Ψ2

Φ ` Ψ1, ψ, φ,Ψ2
Er

Figure 3.3: Structural rules for Gqve.

Φ ` Ψ, φ

¬φ,Φ ` Ψ
¬l

φ,Φ ` Ψ

Φ ` Ψ,¬φ
¬r

φ, ψ,Φ ` Ψ

φ ∧ ψ,Φ ` Ψ
∧ l

Φ ` Ψ, φ Φ ` Ψ, ψ

Φ ` Ψ, φ ∧ ψ,
∧ r

φ,Φ ` Ψ ψ,Φ ` Ψ

φ ∨ ψ,Φ ` Ψ
∨ l

Φ ` Ψ, φ, ψ

Φ ` Ψ, φ ∨ ψ
∨ r

Φ ` Ψ, φ ψ,Φ ` Ψ

φ→ ψ,Φ ` Ψ
→ l

φ,Φ ` Ψ, ψ

Φ ` Ψ, φ→ ψ
→ r

φ[x/c], φ,Φ ` Ψ

∀xφ,Φ ` Ψ
∀l

Φ ` Ψ, φ[x/e]

Φ ` Ψ, ∀xφ
∀r

φ[x/e],Φ ` Ψ

∃xφ,Φ ` Ψ
∃l

Φ ` Ψ, φ, φ[x/c]

Φ ` Ψ, ∃xφ
∃r

Figure 3.4: Logical rules for Gqve.

Φ ` φ,Ψ φ,Φ ` Ψ

Φ ` Ψ
cut

Figure 3.5: The cut rule.
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A proof is a derivation, whose leaves are labelled with axioms. A proof of the endsequent
` φ can be constructed iff the QBF φ is valid.

Note that the axioms >l and ⊥r can be faithfully omitted, if we construct a proof for
> ` ⊥, φ instead of ` φ to show a QBF φ’s validity since ¬>∨⊥∨φ is logical equivalent to φ.

Based on this foundations we will present a more compact representation for proofs by
eliminating certain redundancies. This method is known as the matrix characterisation of
logical validity.

3.5 An Overview of State-of-the-Art Solvers

3.5.1 QuBE−BJ

The solver QuBE1 [54, 52] developed by Enrico Giunchiglia, Massimo Narizzano, and
Armando Tacchella is also based on DPLL. It is implemented on top of SIM [50], a library
for SAT solving, in the programming language C.

At the moment, three versions of QuBE are publicly available:

1. QuBE−BT which implements just chronological backtracking;

2. QuBE−BJ which implements dependency-directed backtracking;

3. QuBE−REL which implements learning.

We included QuBE−BJ in our tests, because QuBE−BJ uses an algorithm similar to
the one implemented in our solver, and because in previous tests, it proved to be the
most stable solver of the three versions. Updated and extended versions QuBE have been
presented in the last two years, but unfortunately they were not available to us.

3.5.2 quantor

The solver quantor2 [16] by Armin Biere implements an expansion-based decision procedure
where existentially quantified variables are resolved and universally quantified formulas are
removed by expansion until the formula becomes propositional and can be solved by a SAT
solver. At the moment, quantor includes the SAT Solver BooleForce3 as backend.

Basically, quantor does the following:

1. Eliminate the innermost existentially quantified variables by Q-resolution.
To avoid a huge increase in space consumption, the resource usage is carefully moni-
tored and only the cheapest variable is eliminated such that the size of the resulting
formula does not inherently increase.

1http://www.mrg.dist.unige.it/ qube/
2http://fmv.jku.at/quantor/
3http://fmv.jku.at/booleforce/
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2. Eliminate universally quantified variables by expansion. To expand a uni-
versally quantified variable x from the quantifier block ∀Xn−1 it is necessary to
generate a copy of the last existential quantifier block ∃Xn. The resulting formula
is of the following format:

Q1X1Q2X2 . . .∀(Xn−1\{x})∃(Xn ∪X
′
n)(φ[x/>] ∧ φ′[x/⊥] ∧ ψ),

where φ[x/>] denotes the result of substituting x by > in φ. Likewise, φ[x/⊥]
denotes the result of replacing x by ⊥ in φ′, a copy of φ where the variables of the
literals quantified in Xn are replaced by the variables from X ′

n. All the clauses in ψ
do not contain variables from Xn.

3. Repeat 1. and 2. until the formula is propositional and apply a SAT
solver.

Further pruning techniques like the detection of equivalences and subsumption are im-
plemented. The author also realized ”that there are situations in which a linear quanti-
fier prefix is not optimal and the basic expansion step as described above copies to many
clauses”. In this context the notion of locally connected variables is introduced. A variable
is called locally connected to another variable if both variables occur in the same clause.
Then the relation connected is defined as the transitive closure of locally connected, ignor-
ing variables which are left to the expanded variable in the prefix and all other universally
quantified variables in the same scope. Then only these clauses are copied which contain
a variable which is connected to the variable which will be expanded.

3.5.3 semprop

The solver semprop4[68] developed by Reinhold Letz is also based on DPLL, i.e., a splitting
algorithm combined with the unit and pure rules. Further it integrates the following
features:

1. dependency-directed backtracking,

2. model and lemma caching, and

3. the sign abstraction method.

3.5.4 sKizzo

The solver sKizzo5 [10, 11, 12, 13] by Marco Bendetti integrates multiple reasoning tech-
niques: classical resolution-based reasoning, structure reconstruction, propositional skolemi-
sation, BDDs, symbolic and search-based decision procedures. The evaluation process
consists of six steps.

4http://www4.informatik.tu-muenchen.de/∼letz/semprop/
5http://skizzo.info/
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1. Normalisation of the PCNF input formula.
Simplification rules such as unit an pure propagation are applied as extensively as
possible.

2. Extraction of a tree-shaped syntactic structure.
In this step, some of the information lost by the normal form transformation is
reconstructed by the creation of a quantifier tree as the PCNF structure allows.

3. Application of the Skolem theorem.
By this transformation, a universal but satisfiability-equivalent formula is obtained.
Therefore, function symbols are introduced. Since the Skolem function symbols are
not conformant with the language of QBFs, they must be eliminated. This is done
by the expansion of their propositional meaning. Unfortunately, this results in an
exponential blow-up which is dealt with a compact symbolic representation. The
QBF is translated into an equivalent first-order logic formula by the introduction of
a predicate symbol.

Then the Skolem theorem for first-order logic is applied such that all existential
quantifiers are eliminated. This formula is translated into an equivalent SAT in-
stance.

4. Solving.
After Step 3 the formula instance is completely propositional. A set of incomplete
inference rules is applied.

5. Devision of the problem into smaller subproblem.
Now the new problems can solved by the means of Step 4 or a SAT solver is used.

6. Application of the SAT solver.

3.5.5 Qubos

The solver Qubos was one of the first and quite efficiently working QBF solvers which
dealt with formulas of arbitrary structure.

Qubos follows a different approach than ours.

The basic idea behind Qubos is to integrate some kind of normalisation using miniscoping
with selective quantifier expansion and simplification. Qubos works as follows.

1. Calculate the weight of the quantifiers.

Here it is determined whether the average quantifier weight is smaller for ∀ or ∃. If
the weight is small for universally quantified variables then they are eliminated and
a SAT solver is used to solve the SAT problem of the remaining propositional for-
mula. Otherwise, the existentially quantified variables are deleted and the remaining
propositional formula’s validity has to be checked.
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2. Apply transformations until there is only one kind of quantifiers.

To eliminate either all universally or all existentially quantified variables, the follow-
ing techniques are applied iteratively.

• Push the quantifiers inside the formula as far as possible (miniscoping).

• Expand the variables to eliminate by replacing them by > and ⊥.

• Apply semantic simplification rules.

• Eliminate pure and unit literals.

3. Apply a SAT solver.

On first sight, Qubos performs very well. It would have been very interesting to compare
Qubos to our solver. But tests showed that Qubos is not sound on certain (quite trivial)
instances and therefore, we exclude this solver from our solver comparison.

3.6 Summary

To solve the satisfiability problem of QBFs, a variety of decision procedures has been
developed. Some of them, like the sequent calculus, are only of theoretical interest, whereas
others are implemented in practical systems. The algorithm of Davis, Putnam, Loveland,
and Logeman is a simple search-based algorithm directly implementing the semantics of
the QBFs. Solvers based on DPLL are the systems semprop and QuBE−BJ. Using only the
plain algorithm, would not lead to an efficient implementation, so a diversity of pruning
techniques like for example dependency-directed backtracking are included. The solvers
quantor and sKizzo follow a different approach to solve the evaluation problem. But all
solvers have one property in common: they are only capable of processing formulas in
PCNF. In the next section, we will we see that using PCNF can be problematic.



Chapter 4

Towards Decision Methods for

Arbitrary QBFs

Most solvers presented so far are only capable of processing formulas in prenex conjunctive
normal form. This restriction on the formulas’ structure is not only used in QBF solving,
but represents a very common approach in automated deduction for many formalisms
(e.g., see [67]). The motivation behind the usage of normal forms is twofold.

• Every closed QBF can be transformed into an equivalent QBF in normal form.

• Due to that less complex structure, a QBF in normal form is easier to process.

The transformation of such a closed formula to an (equivalent) formula in normal form
allows to make certain assumptions about the structure. Then simpler decision procedures
and calculi can be applied for the evaluation. But the simplification has its price. As we
will see, the following drawbacks arise.

• There is an increase in the formula size.

• There is an increase in the number of variables.

• There is a loss of information about the formula’s structure.

• In general, a formula’s normal form is not unique.

Important normal forms (like the negation, the prenex, and the conjunctive normal
form) were introduced in Chapter 2. In this chapter, we will consider the concept of
normal form transformation in a more detailed manner; we will see different approaches to
obtain certain normal forms of a given formula, and we will discuss the impacts and trade-
offs resulting from the transformation. Based on this findings, we will develop decision
procedures, which make this normal form transformation obsolete.

As mentioned before, the decision procedure of Davis, Putnam, Loveland and Logeman
presented in Chapter 3 represents one of the most widely used methods for calculating the

45
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truth values of propositional formulas. The adaption of this method for QBFs has been
implemented very successfully in numerous state-of-the-art QBF solvers (e.g., [22, 24, 41,
54, 68]).

We have seen a variant of the DPLL algorithm realised in the function split, which
evaluates QBFs in prenex conjunctive normal form. This facilitates the handling of the
formula, because the structure is reduced to sets of literals. Therefore, the implementation
becomes less complex. As argued before, the encodings of real-world problems often do
not lead to formulas in this normal form and thus an extra transformation, which is not
deterministic, and which destroys the original structure of the formula, has to be applied.

We present a generalisation of split in such a way that the transformation into prenex
conjunctive normalform can be omitted, and arbitrary QBFs can be processed. In this
chapter, we give a sequent-style version of split to show its soundness and correctness.

Although we focus mainly on DPLL, it is not the only decision procedure considered in
this thesis. We will also discuss the connection-based validity characterisation for QBFs.
In contrast to DPLL which is a search-based decision procedure, the connection-based
validity characterisation makes use of proof theoretical properties of QBFs. In fact, this
calculus represents a compact and more efficient version of the previously introduced
sequent calculus.

4.1 Normal Form Transformation Revised

”The normal form”of a formula does not exist. Normalisations can be applied to a certain
degree depending on the demands of the processing tool. For example, we have seen
negation normal form, where the negation signs may only appear in front of atoms, we
have seen prenex normal form, where the quantifiers are extracted from the formula, and
where they are shifted to the left-hand side, and finally we have seen conjunctive normal
form where only a very restricted formula structure is allowed.

There are often many ways and strategies to generate a normalised version of a formula.
Unfortunately, not all variants of a formula’s normal form turn out to be of the same
quality with respect to the solving process. Below we will briefly discuss how the kind
of the chosen transformation influences the behaviour of the solvers. Following [7], we
introduce the concept of normal form transformation in the style of a term rewriting
system.

Definition 4.1.1 (Reduction)
A reduction is a binary, irreflexive relation on the set of QBFs. We write a reduction as
a set of pairs containing QBFs. Note that a rule of a reduction can be applied to any
suitable subformula of a QBF φ, not only to φ itself.

Example 4.1.1 Let⇒ be a reduction which is given by {(¬(φ1∧φ2),¬φ1∧¬φ2)} and let
¬(p1 ∧ p2) and (q1 ∧ q2) be QBFs. Then the first formula can be rewritten as ¬p1 ∧ ¬p2.
There exists no reduction rule which can be applied to the second formula.
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In the example above, the formula on the left-hand side of ⇒ is not equivalent to
the formula on the the right-hand side. Considerations about the preservation of the
semantics during the transformation process are omitted. Such transformations are not
of any interest for our purposes, because the idea of normalisation is to simplify only the
structure and not to alter the meaning. So we introduce the notion of correct reductions.

Definition 4.1.2 (Correct Reductions)
Let ⇒ be a reduction on QBFs. It is called correct if for all (φ, ψ) ∈ ⇒, φ ⇒ ψ implies
that φ is equivalent to ψ.

Example 4.1.2 The reduction ⇒ = {(¬(φ1 ∧ φ2),¬φ1 ∨ ¬φ2)} is a correct one, because
¬(φ1 ∧ φ2) is equivalent to ¬φ1 ∨ ¬φ2 due to De Morgan’s laws.

Definition 4.1.3 (Termination)
A reduction ⇒ is called terminating if there exists no infinite chain φ1 ⇒ φ2 ⇒ . . .

Example 4.1.3 The reductions {(¬φ,¬¬φ)} and {(φ∨ψ,ψ∨φ)} are not terminating. Note
that the first reduction increases the logical complexity of the QBF with every application,
whereas the second does not.

Definition 4.1.4 (Normal Form, Irreducibility)
Let ⇒ be a reduction on QBFs. Furthermore, let φ be a QBF and let φ′ be a subformula
of φ. The formula φ is in normal form with respect to⇒ if there exists no formula ψ with
φ⇒ ψ or φ′ ⇒ ψ. Then φ is called irreducible under ⇒.

To get a normal form of a formula, we iteratively apply the reduction on each subformula,
until we obtain an irreducible formula. Therefore, we introduce the following definition.

Definition 4.1.5 (Normal Form of a Formula)
Let ⇒ be a reduction and ⇒∗ be the transitive closure of ⇒. Let φ⇒∗ ψ hold and let ψ
be irreducible under ⇒. Then ψ is the normal form of φ.

Note that this definition does neither guarantee the uniqueness nor the existence of the
normal form of a formula. The QBF ¬φ has no normal form with respect to the first
reduction introduced in Example 4.1.2.

Now we define the reduction relation for negation normal form (NNF). Recall that a
QBF φ is in NNF if the negation symbol solely occurs directly in front of atoms, and and
if all conjunctively and disjunctively truth constants have been eliminated.

Definition 4.1.6 (The Reduction Relation of the NNF Transformation)
The reduction relation of the negation normal form ⇒n of a QBF is given as follows.

1. > ∧ φ ⇒n φ, φ ∧ > ⇒n φ

2. ⊥ ∧ φ ⇒n ⊥, φ ∧ ⊥ ⇒n ⊥

3. > ∨ φ ⇒n >, φ ∨ > ⇒n >

4. ⊥ ∨ φ ⇒n φ, φ ∨ ⊥ ⇒n φ
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5. ¬⊥ ⇒n >, ¬> ⇒n ⊥

6. ¬¬φ ⇒n φ

7. ¬(Qxφ) ⇒n Qx (¬φ), Q ∈ {∀, ∃}

8. ¬(φ ∨ ψ) ⇒n (¬φ ∧ ¬ψ)

9. ¬(φ ∧ ψ) ⇒n (¬φ ∨ ¬ψ)

If the reduction is applied, until no application is possible then a formula is said to be in
negation normal form.

Theorem 4.1.1 (Properties of the NNF Reduction)
The NNF reduction relation ⇒n has the following properties.

1. ⇒n is terminating.

2. ⇒n is correct.

3. For φ ⇒n ψ, k(ψ) ≤ k(φ) + 1.

Proof.

1. To show the termination of⇒n, we have to introduce a measure n(·), which decreases
with every application of ⇒n, i.e., it holds that n(φ) > n(ψ) for φ ⇒n ψ. Let
n(φ) (resp. n(ψ)) be the sum of twice the number of all connectives and quantifiers
occurring in the scope of any negation sign plus the number of negation signs plus
the number of truth constants in the QBF φ (resp. in ψ). For any rule given in
Definition 4.1.6 it holds that n(φ) > n(ψ). Therefore, ⇒n is terminating.

2. Correctness can be easily shown by proving that φ is equivalent to ψ for every rule
φ ⇒n ψ in Definition 4.1.6. The equivalences hold according to Theorem 2.2.1.

3. Rule 1 and 4 of Definition 4.1.6 decrease the logical complexity of the QBF on
the left-hand side by one, the logical complexity of the QBF resulting from the
application of rule 2 and 3 is zero. Rules 5 and 6 decrease the logical complexity of
the QBF on the left-hand side by one and two, the seventh rule has no impact on
the logical complexity. Only the last two rules increase the logical complexity of the
formula by one. 2

Theorem 4.1.2 (Negation Normal Form Transformation)
Let φ be a QBF and ψ a normal form of φ w.r.t. ⇒n according to Definition 4.1.6. Then
ψ is (1) in negation normal form and (2) φ and ψ are equivalent.

Proof. (1) Assume that ψ is in normal form with respect to ⇒n, but not in negation
normal form. If ψ is not in NNF then it contains a subformula of the form ¬ψ ′ with
ψ′ 6∈ P, or for ◦ ∈ {∧,∨}, a subformula of the form > ◦ ψ′, ψ′ ◦ >, > ◦ ψ′, or ψ′ ◦ >.
This means that one of the rules of Definition 4.1.6 is applicable. This contradicts the
assumption that ψ is in normal form with respect to ⇒n.
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(2) Since ψ is a normal form of φ w.r.t.⇒n, a chain of reductions φ⇒n φ
′
1⇒n . . . φ′n⇒n ψ

exists. According to Theorem 4.1.1, φ ⇔ φ′1, φ′i ⇔ φ′i+1, and φ′n ⇔ ψ hold for 1 ≤ i < n.
Since ⇔ is an equivalence relation and therefore transitive, φ and ψ are equivalent. 2

Theorem 4.1.3 (Uniqueness of the NNF Transformation)
The negation normal form of a QBF is unique.

Proof. To prove the uniqueness of the NNF reduction, we need several results from
term rewriting. We sketch how the proof can be done and refer the reader to [6] for the
characterisations and properties of term rewriting systems.

1. If ⇒n is normalising and confluent then every QBF has a unique normal form (see
Lemma 2.1.8 from [6]).

Normalising means that every QBF has a normal form with respect to ⇒n. We
showed this in Theorem 4.1.2. What is left to prove is the confluence.

2. A reduction is confluent if multiple rules can be applied to rewrite a QBF and finally
yield the same resulting QBF (i.e., if φ ⇒∗

n ψ1 and φ ⇒∗
n ψ2, there exists a QBF γ

with ψ1 ⇒
∗
n γ and ψ2 ⇒

∗
n γ for every QBF φ, ψ1, ψ2). Confluence is a very strong

property and cannot be shown easily. In fact, it is an undecidable problem to prove
the confluence of a finite term rewriting system.

3. Fortunately, we are dealing with a terminating term rewriting system. Therefore,
we can apply Newman’s Lemma (Lemma 2.7.2 in [6]), which states the following: A
terminating reduction is confluent if it is locally confluent.

4. Local confluence is a weaker property than confluence (a reduction is locally confluent
if φ⇒n ψ1 and φ⇒n ψ2, there exists a QBF γ with ψ1 ⇒

∗
n γ and ψ2 ⇒

∗
n γ for every

QBF φ, ψ1, ψ2). Local confluence can be shown by using the Critical Pair Lemma
(Lemma 6.2.3 in [6]) which states the following: a reduction is locally confluent if
all its critical pairs are joinable. The QBFs ψ1 and ψ2 are joinable if there exists a
QBF γ with ψ1 ⇒

∗
nγ and ψ2 ⇒

∗
nγ.

5. So, we have to find all the critical pairs. Shortly speaking, a critical pair is the
result of unifying the left-hand side of one rule with a non-variable subterm of the
left-hand side of another rule and reducing the resulting QBF using both rules (for
a detailed explanation see page 139 in [6]). In our case, the critical pairs result
from the combination of the ”elimination of double negation rule” with any of the
other rules except the rules for the elimination of the truth constants. It can be
shown easily that the critical pairs are joinable (i.e., that they can be reduced to the
same formula) and therefore ⇒n is locally confluent and therefore confluent. So the
negation normal form of a QBF is unique. 2

Example 4.1.4 Let φ be a QBF of the form

¬(∀x1∃y1(¬(¬(x1 ∨ y1) ∧ x1) ∧ ∀x2(x1 ∨ ¬x2 ∨ y1))).
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The negation normal form of φ is

∃x1∀y1((¬x1 ∧ ¬y1 ∧ x1) ∨ ∃x2(¬x1 ∧ x2 ∧ ¬y1)).

To sum up, the negation normal form transformation has the following properties.

• It is deterministic.

• It does not introduce new variables.

• The structure of the QBF is almost retained.

• It increases the logical complexity of the formula at most linearly by the distribution
of the negation signs.

Because of these properties, the changes of a QBF by the negation normal form trans-
formation are very moderate. The NNF transformation removes the polarities from sub-
formulas other than literals by shifting negations inside the formula. As the difference
between the original QBF and its NNF are not very sever, we will develop our solver for
QBFs in NNF.

For most solvers NNF is not enough. The next step to obtain prenex conjunctive normal
form, which those solvers process, is the prenexing. Here the quantifiers are moved to the
left of the formula in such a manner that we get a sequence of quantifiers (i.e., the prefix)
and the quantifier-free propositional part of the formula (called matrix). In the following,
we assume the QBFs to be in standard form; otherwise the renaming of bound variables
would be necessary.

Definition 4.1.7 (The Reduction Relation of Prenexing)
The reduction relation of the prenex normal form ⇒p for a QBF is given as follows (where
Q ∈ {∀, ∃}).

1. ¬(Qxφ) ⇒p Qx(¬φ);

2. ((Qxφ) ◦ ψ) ⇒p Qx(φ ◦ ψ), ◦ ∈ {∨,∧};

3. (φ ◦ (Qxψ)) ⇒p Qx(φ ◦ ψ), ◦ ∈ {∨,∧}.

If the reduction is applied until no application is possible then the resulting formula is
said to be prenex normal form.

Note that the first rule of the prenexing reduction relation can be omitted if we assume
the QBF to be in negation normal form.

Theorem 4.1.4 (Properties of the Prenex Reduction)
The prenex reduction relation ⇒p respects to the following properties.

1. ⇒p is terminating.

2. ⇒p is correct.
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3. The formula size remains constant.

Proof.

1. As in the termination proof for the NNF reduction, we introduce a measure n(·),
which decreases with every application of a reduction rule from ⇒p. A possible
measure is the sum of the depth of the quantifiers in the structure tree. For any rule
given in Definition 4.1.7 it holds that n(φ) > n(ψ). Therefore, as the quantifiers are
shifted upwards within the structure tree, ⇒p is terminating.

2. Correctness can be easily be shown by proving that φ is equivalent to ψ for every
rule in Definition 4.1.7 for ⇒p. The equivalences hold according to Theorem 2.2.1.

3. For each (φ, ψ) ∈ ⇒p, both formulas φ and ψ have the same logical complexity. 2

Theorem 4.1.5
Let φ be a QBF and ψ a normal form of φ w.r.t. ⇒p according to Definition 4.1.7. Then
(1) ψ is in prenex normal form and (2) φ and ψ are equivalent.

Proof. (1) Assume that ψ is in normal form with respect to⇒p, but not in prenex normal
form. If ψ is not in PNF then it contains a subformula of the form Qxψ′, which is neither
ψ nor has an immediate superformula with a quantifier as its main connective. This means
that one of the rules of Definition 4.1.7 is applicable. This contradicts the assumption that
ψ is in normal form.

(2) Since ψ is a normal form of φ w.r.t.⇒p, a chain of reductions φ⇒p φ
′
1 ⇒p . . . φ

′
n ⇒p ψ

exists. According to Theorem 4.1.4, φ ⇔ φ′1, φ′i ⇔ φ′i+1, and φ′n ⇔ ψ hold for 1 ≤ i < n.
Since ⇔ is an equivalence relation and therefore transitive, φ and ψ are equivalent. 2

Example 4.1.5 Let φ be a QBF of the form

∃x1∀y1((∀y2(¬y2 ∧ ¬y1) ∧ x1) ∨ ∃x2(¬x1 ∧ x2 ∧ y1)).

A prenex normal form of φ is

∃x1∀y1∀y2∃x2((¬y2 ∧ ¬y1 ∧ x1) ∨ (¬x1 ∧ x2 ∧ y1)).

Now we encounter the first severe problem on the way to PCNF. The transformation to
PNF is not deterministic. Consider the very simple QBF (∀xx) ∨ (∃yy). The application
of ⇒p results in

∀x∃y(x ∨ y),

or
∃y∀x(x ∨ y),

depending on the order the rules are applied. This simple example illustrates that the
prenexing is not deterministic, and therefore, the prenex normal form of a QBF is not
unique in general. Note that we are only interested in the prenex normal forms of a
formula with the smallest possible number of quantifier alternations.
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∀x1

∀x2 ∃y1

∃y2 ∀z1

∀z2 ∃p ∃z3

∀y3

∃x3

Figure 4.1: A quantifier dependency tree.

Also note that there is only a freedom of choice to order two quantifiers if they appear
not on the same path in the structure tree. We can reduce the structure tree to the
quantifier dependency tree, which imposes an order on the quantifiers which has to be
respected during the prenexing.

Definition 4.1.8 (Quantifier Dependency Tree)
The quantifier dependency tree of a QBF φ is the structure tree of φ, where only the nodes,
which contain a quantifier, are included.

Example 4.1.6 Let φ be a QBF of the form

∀x1((∀x2x2 ∨ ∃x3x3) ∨ ∃y1(∃y2y2 ∧ ∀y3y3) ∨ ∀z1(∀z2z2 ∨ ∃z3z3) ∨ ∃pp).

The quantifier dependency tree of φ is shown in Figure 4.1. The formula φ has eight dif-
ferent prenex normal forms minimal with respect to the number of quantifier alternations.
Three of them are shown in Figure 4.2. Details about prenexing can be found in [96].

∀ x1, x2

∃ y1, y2, x3

∀ y3, z1, z2

∃ z3, p

∀ x1

∃ y1

∀ x2, y3, z1, z2

∃ x3, y2, z3, p

∀ x1, x2

∃ y1

∀ z1, z2, y3

∃ x3, y2, z3, p

Figure 4.2: A quantifier dependency tree of formulas in PNF.

The situation becomes even worse as we continue. The last missing step is the transfor-
mation of the matrix into conjunctive normal form. Shortly speaking, two different kinds
of CNF transformations are possible, namely a nonstructural normal form transformation
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and a structure-preserving normal form transformation. As the name indicates, the non-
structural transformation results in a loss of structural information of the input formula
since parts of subformulas are disrupted by the application of the distributive law. Those
parts are distributed into different clauses of the resulting formula.

Definition 4.1.9 (The Reduction Relation of the CNF Transformation)
Let φ be a QBF in prenex negation normal, form, i.e., φ = Q1X1 . . .QnXnψ where ψ is
purely propositional and in negation normal form. The reduction relation of the conjunc-
tive normal form is given as follows.

1. (ψ1 ∧ ψ2) ∨ ψ3 ⇒c1 (ψ1 ∨ ψ3) ∧ (ψ2 ∨ ψ3)

2. ψ3 ∨ (ψ1 ∧ ψ2) ⇒c1 (ψ3 ∨ ψ1) ∧ (ψ3 ∨ ψ1)

If the reduction is applied on every subformula until no application is possible then the
resulting formula is said to be in conjunctive normal form.

Theorem 4.1.6 (Properties of the CNF Reduction)
The CNF Reduction Relation ⇒c1 has the following properties.

1. ⇒c1 is terminating.

2. ⇒c1 is correct.

Proof.

1. Again, we introduce a measure n(·), which decreases with every application of a
reduction rule of ⇒c1 .

n(φ) =











2 if φ is a literal or a (negated) truth constant;

n(φ1) + n(φ2) if φ = φ1 ∧ φ2;

2n(φ1) ∗ 2n(φ2) if φ = φ1 ∨ φ2.

Therefore, ⇒c1 terminates.

2. Correctness can be easily be shown by proving that φ is equivalent to ψ for every
rule in Definition 4.1.9 for ⇒c1 . The equivalences hold due to Theorem 2.2.1. 2

Theorem 4.1.7
Let φ be a QBF in NNF and in prenex normal form and ψ a normal form of φ w.r.t. ⇒c1

according to Definition 4.1.9. Then ψ is (1) in conjunctive normal form and (2) φ and ψ
are equivalent.

Proof. (1) Assume that ψ is in normal form with respect to ⇒c1 but not in conjunctive
normal form. If ψ is not in CNF then it contains a subformula of the form (ψ1 ∧ ψ2) ∨
ψ3. Therefore, a rule of the reduction given in Definition 4.1.9 is applicable. But this
contradicts the assumption that ψ is in normal form.
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(2) Since ψ is a normal form of φ w.r.t.⇒c1 , a chain of reductions φ⇒c1 φ
′
1⇒c1 . . . φ

′
n⇒c1 ψ

exists. According to Theorem 4.1.6, φ ⇔ φ′1, φ′i ⇔ φ′i+1, and φ′n ⇔ ψ hold for 1 ≤ i < n.
Since ⇔ is an equivalence relation and therefore transitive, φ and ψ are equivalent. 2

Unfortunately, ⇒c1 can result in an exponential blow-up with respect to the formula
size. Consider the following example.

Example 4.1.7 Let φ be a QBF in prenex negation normal form of the structure

Q1X1 . . .QmXm

n
∨

i=1

(l(i,1) ∧ l(i,2)),

where li,j are pairwise distinct literals, i.e., φ contains 2n literal occurrences. The
conjunctive normal form of φ is

Q1X1 . . .QmXm

∧

j1,...,jn∈{1,2}

(l(1,j1) ∨ · · · ∨ l(n,jn)).

The normal form contains 2n literal occurrences.

A transformation, which might increase the formula size exponentially, is problematic
in general. We introduce a second reduction to conjunctive normal form, which behaves
better. The idea is very simple: we abbreviate a complex subformula ψ in a QBF φ by a
label — a new existentially quantified variable p, which is defined to be equivalent to ψ.
We replace every occurrence of ψ by p and add the formula (p↔ ψ) conjunctively to the
matrix. Then we append ∃p at the end of the prefix.

Before providing an algorithm to perform the structure-preserving CNF transformation,
we have to introduce the notations of simple formulas and short definitions.

Definition 4.1.10 (Simple Formula, Short Definition)
A formula is called simple if all of its proper subformulas are either literals or truth
constants. A formula is called short definition if it is of the form p → φ where p is a
variable and φ is simple.

Definition 4.1.11 (Structure-Preserving CNF Transformation)
Let φ be a QBF in NNF and PNF. To obtain φ’s PCNF by structure-preserving CNF
transformation the following steps have to be performed.

1. Rewrite the formula by the application of the associativity law to the form

Q1X1 . . .QnXnφ
′,

such that φ′ =
∧m

i=0 ψi and no ψi is a conjunction (for 1 ≤ i ≤ n).

2. If φ′ is in conjunctive normal form then terminate.

3. If some ψi is a short definition, apply the nonstructural CNF transformation on ψi.
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4. Choose one ψi which is neither a clause nor a short definition and a simple subformula
ψ′

i of ψi. Substitute all occurrences of ψ′
i by a fresh variable p in φ′. Let φ′′ be the

result of the replacement. The variable p is called a label. Replace the matrix φ′ by

(∃p (φ′′ ∧ (p→ ψ′
i)).

5. Continue with 1.

Theorem 4.1.8 (Complexity of Structure-Preserving NFT)
The time complexity (and therefore also the space complexity) of the transformation of a
given QBF φ to PCNF is polynomial with respect to the size of φ.

The newly introduced labels encode the structure of the original formula. If the prefix
of a QBF in PNF ends with a block of universally quantified variable then the quantifier
depth is increased by one. The new variables can have a great impact on the solving pro-
cess depending on the solver used, even though theoretically, it should not. In practice,
however, it can happen that thousands of new variables will be introduced, because of the
complexity of the formula’s structure. Most solvers are not able to distinguish between
labels and ”normal” variables. This matters enormously, because in most decision meth-
ods, it is not necessary to assign truth values to the labels as they get eliminated by the
simplification rules automatically (as in the non-normal form case) under the assumption
that the quantifications of the labels are appended at the end of the prefix. It is also
possible to place the labels at another place in the prefix. The dependencies to the other
variables in the formula have to be considered in order to decide where the quantifier is
placed.

In what follows, we will propose two decision methods, which directly work on for-
mulas of arbitrary structure, and thus are independent of any problematic normal form
transformation.

4.2 The Basic DPLL Algorithm

The algorithm developed by Davis, Putnam, Logeman, and Loveland (DPLL) presented in
the previous chapter is one of the most successful methods to decide the satisfiability of
propositional formulas as well as the satisfiability of QBFs.

Since this method can be easily written down in a programming language, it is usually
presented in a procedural manner. Because of its close relation to the semantics of the
formalisms, discussions about soundness and correctness are omitted. We will follow this
informal approach too, but we will wait until the next chapter to present our variant of
DPLL in pseudo-code. This section is dedicated to a declarative description of DPLL by
presenting the algorithm in a sequent calculus like style. By doing so, we abstract from
implementational aspects as well as from practical concerns like memory requirements and
control flow. This allows for a stronger focus on the discussion of theoretical properties,
especially on soundness and completeness.

We characterise DPLL for closed but otherwise unrestricted QBFs by the set of axioms
and rules shown in Figures 4.3 to 4.6 by providing rules as in the sequent calculus. Due to
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⊥ ` (Ax⊥) ` > (Ax>)

Figure 4.3: Axioms of DPLL.

` φ

¬φ `
(¬l)

φ `

` ¬φ
(¬r)

Figure 4.4: The negation rules.

φ `

φ ∧ ψ `
(∧l′)

ψ `

φ ∧ ψ `
(∧l′′)

` φ ` ψ

` φ ∧ ψ
(∧r)

φ ` ψ `

φ ∨ ψ `
(∨l)

` φ

` φ ∨ ψ
(∨r′)

` ψ

` φ ∨ ψ
(∨r′′)

Figure 4.5: The conjunction and disjunction rules.

φ[x/⊥] `

∃xφ `
(∀l′)

φ[x/>] `

∃xφ `
(∀l′′)

` φ[x/⊥] ` φ[x/>]

` ∀xφ
(∀r)

φ[x/⊥] ` φ[x/>] `

∃xφ `
(∃l)

` φ[x/⊥]

` ∃xφ
(∃r′)

` φ[x/>]

` ∃xφ
(∃r′′)

Figure 4.6: The quantifier rules.

this similarity, we also use the notion of sequents in this context. Recall that a sequent is
an ordered pair of the form 〈Φ,Ψ〉, where Φ and Ψ are sets of QBFs. Φ is called antecedent,
Ψ is called succedent. Figure 4.3 shows the two axioms or initial sequents, namely Ax⊥

and Ax>, which indicate that (a part of) the formula has been evaluated to a truth value.
For all possible main connectives of a formula, i.e., for the negation, the conjunction, the
disjunction and the quantifications, rules are provided.

As in the previously introduced sequent calculus, the sequents above the line are called
the premises and the sequents below are called the conclusion. By the term reduction we
refer to a rule, which is read from the conclusion to the premise(s). A proof in DPLL is a
tree constructed by the application of the rules, where the end sequent (i.e., the root of
the tree) is the formula, which has to be proven and where the leaves are axioms. In the
next two subsections, we will prove the rules to be sound and correct. Before doing so, we
will illustrate how to apply DPLL.
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Example 4.2.8 Let φ be a QBF of the form

∀x∃y((¬x ∨ y) ∧ (x ∨ ¬y)).

In the following, we are able to show that φ is satisfiable by the following DPLL-proof:

α1 α2

` ∀x∃y((¬x ∨ y) ∧ (x ∨ ¬y))
(∀r)

The subproofs α1 and α2 are as follows.

⊥ `
` ¬⊥

(¬r)

` (¬⊥ ∨ ⊥)
(∨r′)

⊥ `
` ¬⊥

(¬r)

` (⊥ ∨ ¬⊥)
(∨r′′)

` (¬⊥ ∨ ⊥) ∧ (⊥ ∨ ¬⊥)
(∧r)

` ∃y(¬⊥ ∨ y) ∧ (⊥ ∨ ¬y)
(∃r′)

` >
` (¬> ∨ >)

(∨r′′)
` >

` (> ∨ ¬>)
(∨r′)

` (¬> ∨ >) ∧ (> ∨ ¬>)
(∧r)

` ∃y(¬> ∨ y) ∧ (> ∨ ¬y)
(∃r′′)

Shortly speaking, DPLL consists of two parts: (1) the part, which ”processes” the closed
formula, and which does the search, and (2) the part, which does the simplifications. In
our characterisation of DPLL, we omit the simplification part for the moment. The simpli-
fications are of minor interest for now as they are equivalence-preserving transformations
which decrease the formula’s complexity, and therefore the search space. They can be
applied at any time during the prove and will not change the result. We also do not
care about the space used by the decision method. Obviously, if we do not impose the
constraint that we only perform a depth-first and not a breath-first search, the amount of
necessary space would not remain polynomial with respect to the input formula.

4.2.1 Soundness

In this subsection, we prove the soundness of DPLL for closed QBFs.

Theorem 4.2.1 (Soundness of DPLL)
DPLL is sound (i.e., every closed QBF provable in DPLL is valid).

Proof. We prove that the axioms and rules are sound (i.e., by the application of a rule
on one (resp. two) valid sequents, only a valid sequent can be derived). In other words,
we show that that valid premises lead to valid conclusions.

Recall the semantics of a sequent: A sequent φ1, . . . , φm ` ψ1, . . . , ψn is valid iff when-
ever v(φi) = T for all 1 ≤ i ≤ m then there exists a formula ψj with v(ψj) = T (1 ≤ j ≤ n).

a) The axioms are sound.

The soundness of the axioms

⊥ ` (Ax⊥) ` > (Ax>)



58 CHAPTER 4. TOWARDS DECISION METHODS FOR ARBITRARY QBFS

follows immediately from the semantics of the truth constants and from the semantics of
the sequent.

b) The rules are sound.

• The negation rules.
` φ

¬φ `
(¬l)

Assume ` φ is valid. Then for each possible evaluation function υ, υ(φ) = T and
υ(¬φ) = F. Therefore, it holds that the sequent ¬φ ` is valid.

φ `

` ¬φ
(¬r)

Assume φ ` is valid. Then for each possible evaluation function υ, υ(φ) = F and
υ(¬φ) = T. Therefore, it holds that the sequent ` ¬φ is valid.

• The conjunction rules.
φ `

φ ∧ ψ `
(∧l′)

ψ `

φ ∧ ψ `
(∧l′′)

Assume φ ` or ψ ` or both are valid. Then for each possible evaluation function υ,
υ(φ) = F or υ(ψ) = F. Therefore, it holds that the sequent φ ∧ ψ ` is valid.

` φ ` ψ

` φ ∧ ψ
(∧r)

Assume ` φ and ` ψ are valid. Then for each possible evaluation function υ,
υ(φ) = T and υ(ψ) = T. Therefore, it holds that ` φ ∧ ψ is valid.

• The disjunction rules.
φ ` ψ `

φ ∨ ψ `
(∨l)

Assume φ ` and ψ ` are valid. Then for each possible evaluation function υ, υ(φ) = F

and υ(ψ) = F. Therefore, it holds that φ ∨ ψ ` is valid.

` φ

` φ ∨ ψ
(∨r′)

` ψ

` φ ∨ ψ
(∨r′′)

Assume ` φ or ` ψ or both are valid. Then for each possible evaluation function υ,
υ(φ) = T or υ(ψ) = T. Therefore, it holds that ` φ ∨ ψ is valid.

• The existential quantifier rules.

φ[x/>] ` φ[x/⊥] `

∃xφ `
(∃l)

Assume φ[x/>] ` and φ[x/⊥] ` are valid. Then for each possible evaluation function
υ, υ(φ[x/>]) = F and υ(φ[x/⊥]) = F. Therefore, it holds that ∃xφ ` is valid.

` φ[x/>]

` ∃xφ
(∃r′)

` φ[x/⊥]

` ∃xφ
(∃r′′)
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Assume ` φ[x/>] or ` φ[x/⊥] or both are valid. Then for each possible evaluation
function υ, υ(φ[x/>]) = T or υ(φ[x/⊥]) = T. Therefore, it holds that ` ∃xφ is
valid.

• The universal quantifier rules.

φ[x/>] `

∀xφ `
(∀l′)

φ[x/⊥] `

∀xφ `
(∀l′′)

Assume φ[x/>] ` or φ[x/⊥] ` or both are valid. Then for each possible evaluation
function υ, υ(φ[x/>]) = F or υ(φ[x/⊥]) = F. Therefore, it holds that ∀xφ ` is valid.

` φ[x/>] ` φ[x/⊥]

` ∀xφ
(∀r)

Assume ` φ[x/>] and ` φ[x/⊥] are valid. Then for each possible evaluation function
υ, υ(φ[x/>]) = F and υ(φ[x/⊥]) = F. Therefore, it holds that ` ∀xφ is valid. 2

4.2.2 Completeness

In this subsection, we prove the completeness of DPLL. For this, we need the following
lemma.

Lemma 4.2.1 (Validity of Premises)
If the conclusion of a sequent is valid then all premises are valid in the case of the rules
(¬l), (¬r), (∨l), (∧r), (∃l), and (∀r). For the other rules, at least one of the premises is
valid.

Proof. This lemma can be easily shown by proving for each rule that valid conclusions
imply valid premises. This can be done like in the soundness proof, but in the other
direction. 2

Theorem 4.2.2 (Completeness of DPLL)
DPLL is complete for QBFs (i.e., every valid QBF is provable in DPLL).

Proof. We show that every valid sequent S has a proof in DPLL by induction over the
complexity k(S) of S.

Basis Step. Assume S is a valid sequent with k(S) = 0. Then S is of the form x ` or
` y, where x and y are truth constants since we are only dealing with closed formulas.
The variable x must be ⊥ and y must be >, because of the validity of S. Therefore, S is
an axiom and provable in DPLL.

Induction Hypothesis. If S is a sequent with k(S) ≤ n and if S is valid then S is
provable in DPLL.
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Induction Step. We have to show that a sequent S with k(S) = n+ 1, which is valid, is
provable in DPLL.

Since the complexity of S is greater than zero, S contains a formula φ which is not a truth
constant. Therefore a rule of DPLL according to the main connective of φ can be applied.
The resulting premise(s) are (i) valid sequents because of Lemma 4.2.1 (or at least one is
valid in the case of disjunction and existential quantification) and (ii) the complexity of
the sequent of the premise(s) is not bigger than n. By induction hypothesis it follows that
the premises are provable in DPLL. Hence S has a proof in DPLL. Note that in the case of
(∧l), (∨r), (∀l), and (∃r) it might happen that only one of the premises is valid. Then this
premise has to be chosen to continue in order to obtain a proof. 2

4.3 The Connection Calculus for QBFs

In this section, we present another approach to evaluate QBFs: the connection calculus
for QBFs. This decision procedure is also known as the matrix-characterisation of logical
validity, originally developed for full classical first-order formulas in normal form by Bibel
[15] and extended for arbitrary formulas in classical and non-classical first-order logic
by Wallen [92]. A similar method has been developed by Andrews [1]. Unlike DPLL,
the connection calculus is based on a proof-theoretical characterisation of the underlying
formalisms and not on an almost brute-force search algorithm.

The sequent calculus as presented in Chapter 3 is a very prominent decision method
not only for QBFs, but for many other formal languages too. Nevertheless, only few
implemented proof system use it as the underlying decision method, because the sequent
calculus is not suited for direct implementation due to redundancies identified by Wallen
[92]. These redundancies can be divided into three groups:

1. notational redundancy;

2. irrelevance;

3. non-permutability of inference rules.

In the following, we will discuss what these redundancies in the context of QBF solving
are, how they influence the proving process and how they can be eliminated. Before we
present the connection calculus for QBFs, we have to introduce some basic terminology
used for the new validity characterisation.

Definition 4.3.1 (Signed Formula, Uniform Notation)
A signed formula is a pair 〈φ, n〉, where φ is a QBF and n ∈ {0, 1}. If φ ∈ (P ∪ {>,⊥})
then the signed formula is said to be atomic.

Non-atomic signed formulas can be classified as follows.

1. A signed formula of the form 〈φ1 ∨ φ2, 0〉, 〈φ1 ∧ φ2, 1〉, 〈¬φ, 0〉 or 〈¬φ, 1〉 is of α-type
(also conjunctive type).
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2. A signed formula of the form 〈φ1 ∨φ2, 1〉 or 〈φ1 ∧φ2, 0〉 is of β-type (also disjunctive
type).

3. A signed formula of the form 〈∃xφ, 0〉 or 〈∀xφ, 1〉 is of γ-type (also universal type).

4. A signed formula of the form 〈∀xφ, 0〉 or 〈∃xφ, 1〉 is of δ-type (also existential type).

4.3.1 Formula Trees and Notational Redundancies

Wallen [92] identified notational redundancy as the first redundancy to eliminate. Nota-
tional redundancy concerns the representation of intermediate states, which arise during
the search. A proof in a sequent calculus contains many intermediate states (i.e., the
intermediate derivations, which lead to the axioms). Especially disjunctive choices (like
∨r or ∃r) demand to keep multiple states in memory, because it might be necessary to
duplicate the current formula. In theory, this is no problem, but in practice, memory
consumption has a great impact on the efficiency of the proof system. Alternative search
paths make it often impossible to abandon the auxiliary sequents. Intermediate deriva-
tions can become very large, especially when the formula to evaluate is very large. This
prohibitive overhead is one reason, why the sequent calculus is not suitable for imple-
mentation. To overcome this problem, we present a method to capture shared structures
between sequents. Therefore, we need the notion of formula tree and multiplicity.

The cut-free sequent calculus as presented earlier possesses the subformula property.
This means that a formula occurring during the derivation of an endsequent, is also a
subformula of that endsequent. In this context, the notion of subformula is extended as
follows. If φ = Qxψ is a QBF and y is an arbitrary propositional variable then ψ[x/y] is
a subformula of φ. Premises of each rule are completely formed from subformulas of the
conclusion of the rule. This observation can be used to eliminate the notational redun-
dancy. Each subformula is assigned a name — a position — which can be considered as
a pointer to a concrete representation of the subformula. This method has been proposed
in Bibel’s connection calculus [15].

Definition 4.3.2 (Formula Tree)
A formula tree is the representation of the structure of a QBF φ, where each node of the
tree contains a label (called position). A label is associated with one of φ’s subformulas.
The formula tree obeys the following ordering: a position p is below a position q in the
tree (written as p¿ q) if the subformula associated with p is a proper subformula of the
formula associated with the formula of q. By lab(k), we denote the subformula associated
with the position k.

Example 4.3.9 The formula tree of ∀x∃y((¬x ∨ y) ∧ (x ∨ ¬y)) is shown in Figure 4.7.
The assignment of positions to the subformulas is given in Table 4.1.

Γ and ∆ denote the positions of type γ (resp. δ). By Γ′ (resp. ∆′) we denote the set
of positions, whose direct preceding positions are of type γ (resp. δ). A position labelled
by an atom or a truth constant is called atomic position. Positions alone are not powerful
enough to identify the occurrence of a subformula, because no differences between formulas,
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position p lab(p)

a0 ∀x∃y((¬x ∨ y) ∧ (x ∨ ¬y))
a1 ∃y((¬x ∨ y) ∧ (x ∨ ¬x))
a2 (¬x ∨ y) ∧ (x ∨ ¬y)
a3 (¬x ∨ y)
a4 x
a5 y
a6 (x ∨ ¬y)
a7 y
a8 x

Table 4.1: The positions of the QBF ∀x∃y((¬x ∨ y) ∧ (x ∨ ¬y)).

a0

a1

a2

a3

a4 a5

a6

a7 a8

Figure 4.7: Formula tree of ∀x∃y((¬x ∨ y) ∧ (x ∨ ¬y)).

which appear in the antecedent and formulas, which appear in the succedent of the proof,
are made. The second problem is the loss of information about the quantification of the
variable in an atomic position. To identify the side, where a subformula occurs in an
endsequent, we have to introduce the notion of polarity of a subformula.

Definition 4.3.3 (Polarity of a Subformula or a Sequent)
The polarity of a subformula or a sequent is inductively given as follows.

1. A QBF φ is always a positive subformula of φ.

2. If ψ is a positive (resp. negative) subformula of a QBF φ then it is

• a positive (resp. negative) subformula of φ∨φ′, φ∧φ′, ∀xφ, ∃xφ, and Φ ` φ,Ψ;

• a negative (resp. positive) subformula of ¬φ and Φ, φ ` Ψ.

A cut-free sequent calculi has the well-known property that a subformula can only occur
as a succedent (resp. antecedent) formula if it is a positive (resp. negative) subformula of
the formula in the endsequent. To capture this property, we define the formula tree for
signed formulas. A signed formula can be used for the representation of a formula in the
proof, where 0 indicates that the formula is positive and 1 indicates that the formula is
negative.
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• 〈φ, 0〉 represents a formula in the succedent of a sequent;

• 〈φ, 1〉 represents a formula in the antecedent of a sequent.

Definition 4.3.4 (Polarities of Position)
The polarity pol(·) of a position p in a formula tree of a formula 〈φ, n〉 (n ∈ {0, 1}) is given
as follows.

• If lab(p) occurs positively in φ then pol(p) = n.

• Otherwise, pol(p) = (n+ 1) mod 2.

Example 4.3.10 Table 4.2 shows the polarities of the positions of the positive QBF

∀x∃y((¬x ∨ y) ∧ (x ∨ ¬y))

shown in Table 4.1.

position a0 a1 a2 a3 a4 a5 a6 a7 a8

pol(p) 0 0 0 0 1 0 0 1 0

Table 4.2: The polarities of the positions of ∀x∃y((¬x ∨ y) ∧ (x ∨ ¬y)).

The given notions are still not enough to completely capture a proof in the sequent
calculus. What happens if a subformula has to be duplicated, i.e., if the contraction rule
of the sequent has to be applied? Consider the following example.

Example 4.3.11 Let φ be a QBF of the form

∀y∀z(¬∀xx ∨ (y ∧ z)).

It can be easily shown that φ is satisfiable (i.e., by the usage of the semantics). Our first
trial to prove the formula in the sequent calculus is shown in Figure 4.8. Even though the
derivation is obviously not finished, it will not work, i.e., we will not get a proof. So what
went wrong? We would have got a proof if we had duplicated ∀xx or if we had applied
the ∀r at the latest possible moment when the splitting due to the ∧r had been already
done.

y ` y ∧ z

∀xx ` y ∧ z
∀l

` ¬∀xx, (y ∧ z)
¬r

` (¬∀xx ∨ (y ∧ z)
∨r

` ∀z(¬∀xx ∨ (y ∧ z))
∀r

` ∀y∀z(¬∀xx ∨ (y ∧ z))
∀r

Figure 4.8: The proof of ∀y∀z(¬∀xx ∨ (y ∧ z)).

The problematic rule of the sequent calculus are the ∀l and the ∃r rules, where arbitrary
constants and variables can be introduced, which might be necessary multiple times. Those
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formulas are also called generative formulas. Without loss of completeness, it is only
necessary to duplicate the generative formulas during a derivation. So we have to identify
the positions, where such a duplication may occur. To indicate how many instances
of a particular subformula may occur in a derivation, we introduce a property called
multiplicity.

Shortly speaking, a multiplicity is a function encoding the number of different subfor-
mulas which have to be considered during the proof search. Let p be a position, which
represents a subformula lab(p). Different instances of this formulas can be distinguished by
indexing the position, i.e., we write pκ where κ is a sequence of positive integers. Instances
of subformulas are only equal if they are equally indexed, i.e.,

lab(kκ) = lab(kτ ) if κ = τ.

Definition 4.3.5 (Multiplicity)
Let Φ = 〈φ, 0〉 be a signed formula. A function µ which maps formulas of type Γ′ to the
natural numbers is called multiplicity for Φ.

Definition 4.3.6 (Indexed Formula)
Φµ is called an indexed formula if Φ is a signed formula and µ is a multiplicity function.

Definition 4.3.7 (Indexed Formula Tree, Indexed Position)
An indexed formula tree for an indexed formula Φµ is the formula tree of Φ with indexed
positions of the form pκ, where p is a position of Φ and κ is a sequence of positive integers
defined as follows.

Let p1 ¿ · · · ¿ pn ¿ p all those positions with (pi ∈ Γ′) that precede p in the formula
tree of Φ. By pκ we denote a position of the formula tree of the indexed formula Φµ if the
following conditions hold.

• p is a position of Φ,

• µ(pi) 6= 0 (1 ≤ i ≤ n), and

• κ = m1m2 . . .mn where 1 ≤ mi ≤ µ(pi), 1 ≤ i ≤ n.

The expression κ ≺ τ denotes that κ is a proper initial sequence of τ . The tree ordering
¿ is extended to the indexed tree as follows. An indexed position pκ is below an indexed
position qτ (written as p ¿µ q) if p ¿ q and κ ¹ τ . The polarities are defined as in
the unindexed case. The label lab(pκ) of an indexed position pκ of a QBF φ is defined
inductively as follows.

1. lab(p) = φ if p is the root position of the tree.

2. If lab(pκ) = ¬ψ and pκ
1 is the child of pκ then lab(pκ

1) = ψ.

3. If lab(pκ) = ψ1 ◦ ψ2 and pκ
1 and pκ

2 are the children of pκ then lab(pκ
i ) = ψi.

4. If lab(pκ) = Qxψ and p′τ is the child of pκ for some sequence τ with κ ¹ τ then
lab(pτ

1) = ψ[x/pτ
1 ].
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4.3.2 Paths, Connections and Irrelevance

Let us illustrate the problem of irrelevance by an example.

Example 4.3.12 Assume we obtained the following derivation during the backward proof
search of a QBF.

x ` (x ∨ φ)ψ

x ` (x ∨ φ) ∨ ψ,
∨r

The formulas φ and ψ are arbitrary QBFs, and x is as usual a variable. At this point, we
are forced to make a choice: which of the two possible formulas shall we choose to continue?
Is it preferable to choose x ∨ φ or is it better to continue with ψ? Probably ψ would be
the wrong decision. If we choose ψ, it could happen that we will spend much effort into
the decomposition of this formula and its subformulas (and this maybe for nothing). If
we choose x ∨ ψ instead, we immediately obtain an axiom, and we are finished.

Those disjunctive choices are very problematic during the proof search. On the one
hand, they could cause an enormous waste of resources. On the other hand, they also
provide a high potential for optimisations. If the correct choice is made at such a decision
point, it could prune the search space drastically. Unfortunately, it is not always so obvious
as in the previous example, which formula is better, and which one is not.

We call this problem irrelevance. The sequent calculus has the problem of irrelevance,
because only the main connectives of the formulas are considered, and because the internal
structure of the formulas is neglected. Irrelevance can be prevented by introducing the
concepts of paths and connections.

Definition 4.3.8 (α- and β−related Atomic Positions)
Two atomic positions p1 and p2 are α-related (denoted by p1 ∼α p2), resp. β-related
(denoted by p1 ∼β p2) if p1 6= p2 and their greatest common ancestor w.r.t. < is a formula
of type α (resp. β).

Definition 4.3.9 (Path)
A path is the union of the maximal set of mutually α-related atomic positions and {>,⊥}.
The polarity of > (resp. ⊥) is 1 (resp. 0).

As mentioned above, logically, it is of no importance if we prove a QBF φ or (¬>∨⊥∨φ).
Since the polarity of the formula to prove is 0, and because the truth constants are con-
nected by ∨ to φ, ¬> and ⊥ are α-related to every other position in φ, so we include them
in every path by definition.

Example 4.3.13 {>,⊥, a4, a5}, {>,⊥, a7, a8} are the paths of φ of the formula tree
depicted in Figure 4.7.

Lemma 4.3.1 (Paths and Gqve)
Let S be the set of all paths of a QBF φ. For every leaf of a derivation of the QBF
(¬> ∨ ⊥ ∨ φ) in Gqve of the form (Φ ` Ψ), S contains a path P with

Φ = { lab(p) | p ∈ P, pol(p) = 1 },
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and
Ψ = { lab(p) | p ∈ P, pol(p) = 0 }.

Definition 4.3.10 (Connection)
A pair of α-related atomic positions 〈u, v〉 is called connection if their polarities are dif-
ferent.
The connection is complementary under a substitution σ iff

• lab(u) = lab(v) where lab(u), lab(v) ∈ ∆′;

• σ(lab(u)) = σ(lab(v)) where lab(u), lab(v) ∈ Γ′;

• σ(lab(u)) = lab(v) where lab(u) ∈ Γ′, lab(v) ∈ ∆′;

• lab(u) = σ(lab(v)) where lab(v) ∈ Γ′, lab(u) ∈ ∆′.

A substitution is a mapping σ : Γ′ 7→ Γ′∪∆′. It induces an equivalence relation ∼ ⊆ Γ′×Γ′

as follows. If σ(p) = q and q ∈ Γ′ then p ∼ q. Furthermore, a binary relation @ ⊆ ∆× Γ
is induced as follows. If σ(p) = q and q ∈ ∆′ then p @ q, and if p @ q and q ∼ p′ then
p @ p′.

4.3.3 Reduction Orderings and Permutability

Wallen [92] states the third and last redundancy as the most fundamental and severe
problem within the sequent-based proof search. This redundancy does not occur in the
sequent calculus of propositional logic but only in the sequent calculus of first-order logic.
Unfortunately, the sequent calculus of QBFs is also affected by the redundancy of non-
permutability.

Again, we illustrate the problem with an example:

Example 4.3.14 Assume we obtained the following sequent during a derivation:

∀x(x ∨ (¬x ∧ ⊥)) ` ∀yy.

If we continue with ∀l then we get

y ∨ (¬y ∧ ⊥) ` ∀yy

∀x(x ∨ (¬x ∧ ⊥)) ` ∀yy
∀l

It can be checked easily that we have lost at this point, and that we will not obtain a
proof even though the sequent is satisfiable. The situation would have been different if
we had applied the ∀r rule before the ∀l rule because we could have chosen the variable
replacement of x accordingly to the eigenvariable introduced in the succendent of the
sequent.

Although it could have been easily detected in which order to apply the rules in this
simple example, this non-permutability has a great impact and influence on the solving
process in practice. To overcome this problem, we introduce the notion of admissible sub-
stitution which expresses Skolemization, well-known from the normal form transformation
in first order logic, where the quantifier dependencies are expressed in terms of functions.
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Definition 4.3.11 (Admissible Substitution)
A substitution σ is called admissible with respect to a QBF φ iff the reduction ordering
/ := (@ ∪ ¿)+ is irreflexive.

Note that the check if a substitution is admissible corresponds to the occur check in the
unification.

Lemma 4.3.2
Let P ′ denote the set of paths with respect to a QBF φ after the application of the
substitution σ (i.e., the labels with type Γ′ of some positions may have been changed). σ
is admissible iff there is a reduction in Gqve, which corresponds to P ′ (i.e., σ respects to
the eigenvariable condition).

4.3.4 The Connection-Based Validity Characterisation

Now we have provided enough formal background to apply the connection-based validity
characterisation to QBFs.

Theorem 4.3.1 (Connection-Based Validity Characterisation)
A QBF φ is valid iff there is an admissible substitution σ and a set of σ-complementary
connections such that every path through φ contains a connection from this set.

Note that we use unification not only to express substitutions but to ensure the exis-
tence of a sequent proof of the formula. Moreover, no single concrete order needs to be
preferred. Redundant sequent derivations are removed from the search space by the iden-
tification. Now the problem of notational redundancies is solved by the usage of positions,
the problem of irrelevance is void due to the notion of path and non-permutability is dealt
with admissible substitutions.

Example 4.3.15 Figure 4.9 shows the reduction ordering of

∀x∃y((¬x ∨ y) ∧ (x ∨ ¬y)).

The graph is acyclic and therefore the substitution is irreflexive and according to Theo-
rem 4.3.1 the formula is valid, which is obviously the case.

Example 4.3.16 Figure 4.10 shows the reduction ordering of the unsatisfiable formula of

∃x∀y((¬x ∨ y) ∧ (x ∨ y)).

As the reduction ordering is not irreflexive (i.e., it contains a cycle), according to The-
orem 4.3.1, the formula is not valid.
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Figure 4.9: The reduction ordering of ∀x∃y((¬x ∨ y) ∧ (x ∨ ¬y)).
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Figure 4.10: The reduction ordering of ∃x∀y((¬x ∨ y) ∧ (x ∨ ¬y)).

4.4 Discussion

In this chapter, we presented two different proof procedures for the evaluation of QBFs:
(i) the search-based DPLL method, and (ii) the connection-based validity characterisation
based on results from proof theory. Both methods have in common that they can be used
to evaluate QBFs of arbitrary structure, i.e., no transformation to a specific normal form
like prenex conjunctive normal form is necessary.

For both decision method, we implemented a prototype in the programming language
Haskell and compared them. Tests indicated that the DPLL is the more promising decision
method in practice. The implementation of the connection calculus performs well, as long
as the multiplicities do not come into the play. But without multiplicities, the calculus
is not complete any more, and therefore, not interesting for our purposes. Although the
connection-based validity characterisation is the more elegant decision method of these
two, we decided to focus on DPLL.



Chapter 5

The Solver qpro

So far, we have presented split in a very formal and abstract manner to analyse properties
like soundness and completeness. In this chapter, we rewrite the decision method in a
more operational manner (as it is usually done in the literature) and include some very
important pruning techniques. Even if we get closer, we are still very far from a practical
implementation as we do not consider the data structure and other details like how to
realise the backtracking yet (this topic will be discussed in the next chapter). But still,
the pseudo-code we present in the following, is the basis for our solver qpro.

BOOLEAN split(QBF in NNF φ) {
/* In: closed QBF φ in negation normal form */

/* Out: {T,F} (i.e., the truth value of φ) */

switch (simplify (φ)) {

case >: return T;

case ⊥: return F;

case (φ1 ∨ φ2): return (split(φ1) ‖ split(φ2));

case (φ1 ∧ φ2): return (split(φ1) && split(φ2));

case (∃xψ): return (split(ψ[x/⊥]) ‖ split(ψ[x/>]));
case (∀xψ): return (split(ψ[x/⊥]) && split(ψ[x/>]));

}

}

Figure 5.1: The basic algorithm of qpro.

69



70 CHAPTER 5. THE SOLVER QPRO

5.1 The Basic Algorithm

Figure 5.1 shows the basic procedure split for the evaluation of QBFs in negation nor-
mal form. The pseudo-code we use consists of a mixture of elements found in standard
procedural programming languages like C or Pascal and formal logics. The symbols of
negation, disjunction, and conjunction are denoted by ”!”, ”||”, and ”&&”, a comparison
is expressed by ”==”.

Note that our algorithm works in a deterministic manner: (i) we always take the left-
most variable from quantifier block when it is necessary to choose a variable, (ii) we always
replace the chosen variable first by ⊥ and only if necessary by >, and (iii) we process the
immediate subformulas of a conjunction or disjunction in the order they are given. It is
possible to integrate selection heuristics.

We restrict our attention to the deterministic version of split as given above, since
tests showed that the improvement gained by heuristics is not very promising and the
impact is not as much as one might suspect. Also in the QBF literature, the heuristics
are not emphasised and nearly never mentioned, although implemented in most solvers.

QBF simplify(QBF in NNF φ) {
/* In: QBF φ in negation normal form */

/* Out: simplified QBF in NNF equivalent to φ */

switch(φ) {
case (ψ1 ∧ ψ2) : φ′ = (simplify(ψ1) ∧ simplify(ψ2));

case (ψ1 ∨ ψ2) : φ′ = (simplify(ψ1) ∨ simplify(ψ2));

case (Qxψ) : φ′ = simplify(ψ);
if x ∈ free(φ′) then φ′ = Qxφ′;

otherwise : φ′ = φ;
}

switch(φ’) {

case (¬>) : return(⊥);
case (¬⊥) : return(>);
case (l ∧ l) : return(⊥);
case (l ∨ l) : return(>);
case (⊥ ∧ ψ) : return(⊥);
case (> ∨ ψ) : return(>);
case (> ∧ ψ) : return(ψ);
case (⊥ ∨ ψ) : retunr(ψ);
otherwise : return(φ′);

}

}

Figure 5.2: The function simplify.
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Every call of split induces an application of simplify which is shown in Figure 5.2.
This function removes every occurrence of the truth constants ⊥ and > according to
Theorem 2.2.1. It eliminates simple tautologies and contradictions as well. In the normal
form case, the check if a clause contains a literal l and a literal l has to be done only once
at the beginning, because the formula structure never changes — the size of a clause can
only decrease, but no literal is added to a clause at any time during the solving process.
In the nonclausal case, the structure of the formula changes very dynamically.

For the ease of readability, we write the disjunction and the conjunction only as binary
connectives. But in an actual implementation, it is preferable to consider them as n-ary
connectives (which does not change the semantics as the associative and commutative laws
hold). Much more tautologies and contradictions can be detected this way.

For the moment, we only consider this very simple version of simplify, but during this
chapter, we will extend it to a very powerful component of our algorithm and discuss it
in a more detailed manner. Note that simplify is linear in space and time w.r.t. the size
of a given QBF φ under the assumption that the check if a variable x occurs freely in φ.

Obviously, split is a direct application of the QBFs’ semantics. The formula is split
into subproblems, whose return values are included in an adequate manner, the bound
variables are replaced by the truth constants and simplifications are applied until a truth
value is obtained. The basic decision procedure is a simple search-based backtracking
algorithm which is polynomial in space.

Theorem 5.1.1 (Space and Time Complexity)
Deciding the satisfiability of a QBF with the procedure split has polynomial space com-
plexity w.r.t. the formula size and exponential time complexity w.r.t. the number of vari-
ables in the worst case.

5.2 Dependency-Directed Backtracking

Assume that split has to be applied on a QBF φ, which has a quantifier as its main
connective, i.e., φ is of the form Qxψ (Q ∈ {∀, ∃}). Then the application of split on
φ results in two subproblems, namely ψ[x/⊥] and ψ[x/>]. At least one of them has to
be solved in any case. Under certain circumstances, the solution of the first subproblem
allows for the omission of the second subproblem. If the quantifier is existential (resp.
universal) and if the solution of the first treated subproblem is true (resp. false) then, due
to the semantics of the quantifier, the second subproblem can be neglected. Suppose that
the variable x does not influence the evaluation result (i.e., x is irrelevant) for the result
of the first subproblem (see the example below). Obviously, it is not necessary to solve the
second subproblem in any case. This technique to avoid to solve the second subproblem
in this situation is called dependency-directed backtracking (also backjumping or level cut),
and it is implemented by many state-of-the-art solvers [51, 52, 54, 68].

In the following, we present a generalisation of dependency-directed backtracking (DDB)
in such a manner that we can integrate it into split. Before we start with the technical
details, we give an example in order to illustrate how this technique prunes the search
space.
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Figure 5.3: The splitting tree of ∀x1∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ (x1 ∧ y1)).

Example 5.2.1 Let φ be the formula

∀x1∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ (x1 ∧ y1)).

The semantic tree of φ is shown in Figure 5.3. Observe that the same subtree occurs on
the left and on the right below x1. The algorithm performs as follows.

1. Branch on the variable x1 and start with φ′[x1/⊥] (φ′ denotes φ without ∀x1).
When we replace x1 by ⊥ in φ′ and simplify φ′ afterwards, we obtain the formula
∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)). Note that simplify eliminates the quantifier ∃y1,
since y1 does not occur in the formula anymore.

2. Branch on the variable x2, and set it to ⊥, which results in ∃y2(¬y2) after the
simplification.

3. If we replace y2 by ⊥, the formula evaluates to T. We realize that only the variables
x2 and y2 are responsible that the formula becomes true, i.e., x1 does not influence
the evaluation result. This is because the subformula ((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2))
evaluates to true, which suffices that the whole formula evaluates to true. But this
subformula contains no occurrence of x1. Only x2 is of interest for us, since it is
universally quantified. If we return to the node of y2 during backtracking, we can
skip the second subproblem anyway when the first one has evaluated to true.

4. Since x2 is universally quantified, we have also to consider the subproblem, where
the variable x2 is replaced by >.

5. Setting y2 to ⊥ results in F, but setting y2 to > yields T. Again, the relevant variables
with respect to the result of this branch in the semantic tree are x2 and y2.

6. As x1 is universally quantified and the solution of the first subproblem is true, we
should also consider the second subproblem. As x1 is never relevant for making
φ′[x1/⊥] true, it is unnecessary to consider the other problem.

In the following, we present two versions of dependency-directed backtracking quite
similar to the algorithms implemented in the solver semprop for PCNF formulas by Letz
[68]. The first one is a weaker version but with less implementational overhead, whereas
the second one has higher potential in decreasing the search space.
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Our algorithm works in the same way for a universal variable where the solution of the
first subproblem is true (as in the example above), and for an existential variable where the
solution of the first subproblem is false. If the QBF is in prenex clausal normal form then
the handling of true and false subproblems must be distinguished. When the subproblem
is false, the set of relevant variables is obviously given by the set of literals of one single
false clause. But which variables shall be chosen as relevant if the subproblem is true?
However, the complex formula structure allows us for a dual handling of true and false
subproblems.

5.2.1 DDB by Labelling

To apply dependency-directed backtracking, we have to determine which variables are
relevant for the solution of the first considered subproblem and which are not, such that
we can decide if we shall solve the second subproblem during splitting or not. Therefore,
we have to introduce the notion of the set of relevant variables with respect to a partial
interpretation, which represents the assignment of variables during the search.

Definition 5.2.1 (Set of Relevant Variables)
Let φ be a QBF, ιS be an interpretation and φ′ = psk(φ) be the propositional skeleton of
φ.

1. If υS(φ′) = T then the set of relevant variables RVφ(S) is defined as follows.

• If φ′ is a literal (say l) then

RVφ(S) =

{

{var(l)} if var(l) is universal in φ;

{} otherwise.

• Let φ′ be a disjunction of the form φ1 ∨ φ2 and let RV1
φ(S) (resp. RV2

φ(S)) be
the set of relevant variables for φ1 (resp. φ2). Then, for some i from {1, 2}, the
set of relevant variables is defined as RVφ(S) = RVi

φ(S) such that υS(φi) = T.

• Let φ′ be a conjunction of the form φ1 ∧ φ2 and let RV1
φ(S) (resp. RV2

φ(S)) be

the set of relevant variables for φ1 (resp. φ2). Then RVφ(S) = RV1
φ(S)∪RV2

φ(S).

2. If υS(φ′) = F, then RVφ(S) is defined as follows.

• If φ′ is a literal (say l) then

RVφ(S) =

{

{var(l)} if var(l) is existential in φ;

{} otherwise.

• Let φ′ be a conjunction of the form φ1 ∧ φ2 and let RV1
φ(S) (resp. RV2

φ(S)) be
the set of relevant variables for φ1 (resp. φ2). Then, for some i from {1, 2}, the
set of relevant variables is defined as RVφ(S) = RVi

φ(S) such that υS(φi) = T.
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• Let φ′ be a disjunction of the form φ1∨φ2 and let RV1
φ(S) (resp. RV2

φ(S)) be the

set of relevant variables for φ1 (resp. φ2). Then RVφ(S) = RV1
φ(S) ∪ RV2

φ(S).

Note that the set of relevant variables is not necessarily unique for a propositional skeleton
of a QBF and an interpretation. Not all rules are deterministic, e.g., when φ′ = φ1 ∨ φ2

and both φ1 and φ2 evaluate to true then a choice has to be made. In fact, it would not
be incorrect to include the relevant variables of both formulas, but later we will need the
set of relevant variables to decide if we must consider the second subproblem of a certain
variable (as demonstrated in the previous example). The smaller the relevance set is, the
better, because a variable missing in this set indicates that the second problem can be
omitted. We also distinguish between variables of different quantification: if we calculate
the set of relevant variables for a true subproblem, we only collect universally quantified
variables, otherwise we only collect existentially quantified variables. We skip the second
branch in the semantic tree of a universally quantified variable only if the subproblem has
been evaluated to true — otherwise we would omit the second problem anyway.

In Figure 5.4, we present our algorithm extended by dependency-directed backtracking by
labelling. The idea is very simple: when we branch on a variable x, we mark x as irrelevant.
If we reach a leaf of the semantic tree, we calculate the set of relevant variables, and we
label all variables contained in this set as relevant. If we return to the variable x during
the backtracking process, we check whether x has been set to relevant or not. If x is still
irrelevant, the second subproblem can be omitted and we can continue to backtrack.

The function split in Figure 5.4 has got further arguments now. In S, the current
variable assignments are stored, i.e., if the variable x is substituted by > then x ∈ S, if x
is substituted by ⊥ then ¬x ∈ S, otherwise x has not got a truth value yet, and therefore
x 6∈ S. We need S to calculate the set of relevant variables. Note that we distinguish
between the formulas Φ and φ. The third argument Φ stands for the original input QBF,
which is never altered. Therefore, Φ can be seen as some kind of ”global” variable and φ
as a local variable to the procedure representing the currently processed formula, i.e., the
result of simplifications, variable substitutions, etc.

Obviously, dependency-directed backtracking allows for the removal of whole branches
from the semantic tree. As we will see later, it turns out that DDB is absolutely necessary
for obtaining competitive runtimes. In fact, an implementation of split without further
pruning techniques except the inclusion of unit and pure rules is worthless for larger
problem instances. But the important question we have to ask now is the question for
soundness and completeness: is our algorithm still sound and complete? If not, the pruning
technique would be worthless for us, because we are not interested to create a solver which
does not work for either true or false instances in any case.

Lemma 5.2.1
Let φ be a QBF, φ′ = psk(φ) the propositional skeleton of φ, and let x be a universally
quantified variable in φ. Further assume that υS(φ′) = T, ¬x ∈ S, and let x be irrelevant,
i.e., x 6∈ RVφ(S). Then υS′(φ′) = T with S ′ = (S \ {¬x}) ∪ {x}.

Proof. We prove this lemma by induction over the logical complexity k(φ′) of φ′.
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Basis Step. Assume that φ′ is a literal or a truth constant, i.e., φ′ = l, with var(l) = y or
φ′ ∈ {>,⊥,¬>,¬⊥}. Therefore, k(φ′) ≤ 1. For ordinary literals, we have to distinguish
between three cases; the (negated) truth constants are treated accordingly.

Case 1: y 6= x.

From υS(l) = T, immediately follows that υS′(l) = T holds because S\{¬x} = S ′\{x}.

Case 2: l = x.

Since ¬x ∈ S, υS(l) = F holds. But this contradicts the assumption that υS(φ′) = T.

Case 3: l = ¬x.

From υS(l) = T, it follows that x ∈ RVφ(S) because x is responsible that the formula
evaluates to true. But this contradicts the assumption that x 6∈ RVφ(S).

Induction Hypothesis. Let φ be a QBF. For all propositional formulas φ′ with k(φ′) ≤ n
which are subformulas of psk(φ), it holds that, if υS(φ′) = T, ¬x ∈ S, and x is irrelevant
with repsect to φ, i.e., x 6∈ RVφ(S) then υS′(φ′) = T with S ′ = (S \ {¬x}) ∪ {x}.

Induction Step. Let φ be a QBF and let φ′ be a propositional formula which is a
subformula of psk(φ) with k(φ′) = n+ 1. If υS(φ′) = T and the variable x with ¬x ∈ S is
irrelevant with respect to φ then υS′(φ′) = T with S ′ = S\{¬x} ∪ {x}. We have to show
all cases for φ′.

(1) Let φ′ = φ1 ∨ φ2.

Then either υS(φ1) = T or υS(φ2) = T or both are true. It holds that for at least one i
for i ∈ {1, 2}, x 6∈ RVi

φ(S) with υS(φi) = T where RVi
φ(S) denotes the set of relevant vari-

ables with respect to φi; otherwise x would not be irrelevant. By the induction hypothesis
υS′(φi) = T holds and so υS′(φ′) = T.

(2) Let φ′ = φ1 ∧ φ2.

Then υS(φ1) = T and υS(φ2) = T hold. As x is irrelevant in φ, it holds that for all
i ∈ {1, 2}, x is not included in the set of relevant variables with respect to φi. By the
induction hypothesis υS′(φi) = T holds and so υS′(φ′) = T. 2

Definition 5.2.2 (Assignments for Bound Variables)
Let φ be a closed QBF and S be a variable assignment. By φS we denote the formula
obtained from φ by substituting all occurrences of a variable x by ⊥ if ¬x ∈ S and by
substituting x by > if x ∈ S.

Definition 5.2.3 (Satisfying Assigments)
Let b be the semantic tree of a QBF φ with υ(φ) = T. Then the set of satisfying assignments
contains the sets of literals corresponding to the paths of b with leaves labelled by T.

Theorem 5.2.1
Let Φ and ∀xψ be QBFs, such that ΦV = ∀xψ (where V is the current assignment).

Furthermore, let υ(ψ[x/⊥]) = T and let A be the set of satisfying assignments of ψ[x/⊥].
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Let A ∈ A. If υS(psk(Φ)) = T (with V ∪ A ∪ {¬x} ⊆ S) and x 6∈ RVΦ(S) then (i)
υS′(psk(Φ)) = T (with V ∪ A ∪ {x} ⊆ S ′). (ii) the subproblem υ(ψ[x/>]) = T.

Proof. (i) follows immediately by the application of Lemma 5.2.1 on each element of A.

(ii) A contains every assignment A necessary to satisfy psk(ψ[x/⊥]). Furthermore, there
exists an assignment S with A ∪ {¬x} ⊆ S such that υS(psk(Φ)) = T. According to (i),
υS′(psk(Φ)) = T with A∪{x} ⊆ S. So the variable x has no influence on the satisfiability
of Φ with respect to the assignment S. Since this holds for all A ∈ A, the subproblem
ψ[x/>] also evaluates to >. 2

Theorem 5.2.2
Let Φ and ∃xψ be QBFs, such that ΦV = ∃xψ (where V is the current assignment).

Furthermore, let υ(ψ[x/⊥]) = F and let A be the set of satisfying assignments of ψ[x/⊥].
Let A ∈ A. If υS(psk(Φ)) = F (with V ∪ A ∪ {¬x} ⊆ S) and x 6∈ RVΦ(S) then (i)
υS′(psk(Φ)) = F (with V ∪ A ∪ {x} ⊆ S ′). (ii) the subproblem υ(ψ[x/>]) = F.

5.2.2 DDB by Relevance Sets

The smaller the set of variables labelled as relevant, the better it is for the efficiency of the
solving process. If a variable is irrelevant then the second subproblem can be skipped under
any circumstances. Consider the following case: we branch on an existentially quantified
variable and the first subproblem evaluates to false. As x is labelled as relevant, we have
to consider the second subproblem too. But also the second subproblem evaluates to false,
but now x is not relevant. We have labelled the variables of both subproblems as relevant.
If we had considered the second subproblem as the first one, the situation would have been
very different: (1) the other problem could have been omitted, (2) the set of the variables
labelled as relevant would have been smaller.

We cannot undo our decision to avoid the processing of the wrong subproblem, but
we can reduce the set of relevant variables at least. We collect the relevant variables of
the subproblems in relevance sets, make some case distinctions with respect to the main
connective of the currently processed formula and construct the smaller set of relevant
variables accordingly. Before we describe how to construct and treat such relevance sets,
we motivate the approach by a short example.

Example 5.2.2 Let φ be the formula

∀z∀x1∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ (¬x1 ∧ ¬y1 ∧ ¬z)).

A semantic tree of φ is shown in Figure 5.5.

1. Branch on the variable z and set z to ⊥.

We get ∀x1∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ (¬x1 ∧ ¬y1)) after simplification.

2. Branch on the variable x1 and set x1 to ⊥.

We get ∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ (¬y1)) after simplification.
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BOOLEAN split(φ,S,Φ) {
/* In: closed QBF φ in NNF, set S of assignments, the input QBF Φ */

/* Out: {T,F} (i.e., the truth value of φ) */

φ′ = simplify(φ);

switch(φ′)
case > : calculate RVΦ(S);

for all x ∈ RVΦ(S) setRelevant(x);
return T;

case ⊥ : calculate RVΦ(S);
for all x ∈ RVΦ(S) setRelevant(x);
return F;

case (φ1 ∨ φ2) : return (split(φ1,S,Φ) ‖ split(φ2,S,Φ));
case (φ1 ∧ φ2) : return (split(φ1,S,Φ) && split(φ2,S,Φ));

case ∃xψ : setIrrelevant(x)
if ((split(ψ[x/⊥],S ∪ {¬x},Φ) == F) {

if isIrrelevant(x) return F;

else return split(ψ[x/>],S ∪ {x},Φ);

}
return T;

case ∀xψ : setIrrelevant(x)
if ((split(ψ[x/⊥],S ∪ {¬x},Φ) == T) {

if isIrrelevant(x) return T;

else return split(ψ[x/>],S ∪ {x},Φ);

}
return F;

}

Figure 5.4: The algorithm with dependency-directed backtracking.

3. Branch on the variable y1 and set y1 to ⊥. The formula evaluates to T. Obviously,
the relevant (universal) variables are z and x1, so we mark them as relevant.

4. As x1 is universally quantified, we have also to consider the subproblem, where x1

is set to >. We obtain ∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) after simplification.

5. If we replace x2 and y2 by ⊥, the formula evaluates to T. We realize that x2 is the
only universally quantified variable responsible that the formula φ becomes true, i.e.,
x1, y1 and z do not influence the result.
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6. Since x2 is universally quantified, we have also to consider the second subproblem of
∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)), where the variable x2 is replaced by >. We obtain
∃y2y2 after simplification.

7. Setting y2 to ⊥ results in F, but setting y2 to > yields T. Again, the only relevant
universal variable with respect to the result of this branch in the semantic tree is x2.

8. When we return to x1 during backtracking, we notice that x1 is not relevant in the
second subproblem, where the variable has been replaced by >. That is bad luck —
if we had chosen the second subproblem as the first one to consider, we could have
omitted setting x1 to ⊥. The set of relevant variables would have been a different
one: z would not have been included (recall that z is still labelled as relevant because
of 3.).

z

x1

⊥

y1

⊥

T
>

y1

>

x2

y2

⊥

T
⊥

y2

>

F
⊥

T
>

...
>

Figure 5.5: The semantic tree of ∀x1∃y1(∀x2∃y2((x2∨¬y2)∧ (¬x2∨y2∨¬x1))∨ (x1∧y1)).

Definition 5.2.4 (Relevance Set for False Subproblems)
Let R1 and R2 be the relevance sets of the QBFs φ1 and φ2. Let φ be a QBF and φ′

be a formula obtained during the splitting. The relevance set R of φ′ with respect to an
interpretation ιS with υS(psk(φ)) = F is obtained as follows.

• If φ′ = ⊥ then R = RVφ(S).

• If φ′ = φ1 ∨ φ2 then R = R1 ∪ R2.

• If φ′ = φ1 ∧ φ2 then, for some i from {1, 2} and for υS(φi) = F, R = Ri.

• If φ = ∀xψ with φ1 = ψ[x/⊥] and φ2 = φ[x/>] then, for some i from {1, 2} and for
υS(φi) = F, R = Ri.

• If φ = ∃xψ, we get two subproblems φ[x/⊥] and φ[x/>] — let us call them φ1 and
φ2. Let further R denote the relevance set of φ, R1 denote the relevance set of φ1

and R2 denote the relevance set of φ2.

– If x 6∈ R1 then φ2 can be considered as false and R = R1.

– Otherwise φ2 has to be solved. If φ2 is also false, then

∗ if x 6∈ R2 then R = R2;

∗ if x ∈ R1 ∩ R2 then R = R1 ∪ R2.
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Definition 5.2.5 (Relevance Set for True Subproblems)
Let R1 and R2 be the relevance sets of the QBFs φ1 and φ2. Let φ be a QBF and φ′

be a formula obtained during the splitting. The relevance set R of φ′ with respect to an
interpretation ιS with υS(psk(φ)) = T is obtained as follows.

• If φ′ = > then R = RVφ(S).

• If φ′ = φ1 ∧ φ2 then R = R1 ∪ R2.

• If φ′ = φ1 ∨ φ2 then, for some i from {1, 2} and for υS(φi) = T, R = Ri.

• If φ = ∃xψ with φ1 = ψ[x/⊥] and φ2 = φ[x/>] then, for some i from {1, 2} and for
υS(φi) = T, R = Ri.

• If φ′ = ∀xψ, we get two subproblems φ[x/⊥] and φ[x/>] — let us call them φ1 and
φ2. Let further R denote the relevance set of φ, R1 denote the relevance set of φ1

and R2 denote the relevance set of φ2.

– If x 6∈ R1 then φ2 can be considered as true and R = R1.

– Otherwise φ2 has to be solved. If φ2 is also true, then

∗ if x 6∈ R2 then R = R2;

∗ if x ∈ R1 ∩ R2 then R = R1 ∪ R2.

Theorem 5.2.3
Dependency-directed backtracking by relevance sets is sound and complete.

Proof. Follows immediately from Theorem 5.2.1 and Theorem 5.2.2 as the order the
subproblems are processed is of no importance for the truth value of a QBF. 2

Figure 5.6 shows the implementation of split extended by dependency-directed back-
tracking by relevance sets. It has the same arguments as split extended by labelling but
the return value is different. Besides the truth value, the procedure returns the current
relevance set.

5.3 Improving the Function simplify

The efficiency of split relies heavily on the functionality of simplify. This function
not only removes the truth constants from the formula but it is also responsible for the
application of more sophisticated simplification rules like local and global unit and pure.
The pseudo-code of the improved version is given in Figure 5.7. The function simplify

is applied to the QBF φ until no more simplifications can be performed.

One important task of simplify is the removal of truth constants occurring in the
formula. This is achieved by making use of the rules given in Theorem 2.2.1. The last
feature we included in Figure 5.7 is the application of pure and unit when possible (see
Figure 5.8, 5.9, and 5.10) as well as miniscoping (see Figure 5.11). Note that all functions
have a variable assignment S as argument, that they manipulate the current assignment
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(BOOLEAN, relset) split(φ,S,Φ) {
/* In: closed QBF φ in NNF φ, set S of assignments,

the input QBF Φ */

/* Out: ({T, F}, set of relevant variables) */

φ′ = simplify(φ,S);

switch(φ′)
case > : return (T, RVΦ(S));
case ⊥ : return (F, RVΦ(S));

case (φ1 ∨ φ2) : (r1,R1) = split(φ1,S,Φ);
if (r1 == T) then return (T,R1);

(r2,R2) = split(φ2,S,Φ);
if (r2 == F) then return (F,R1 ∪ R2);

else return (T,R2);

case (φ1 ∧ φ2) : (r1,R1) = split(φ1,S,Φ);
if (r1 == F) then return (F,R1);

(r2,R2) = split(φ2,S,Φ);
if (r2 == T) then return (T,R1 ∪ R2);

else return (F,R2);

case ∃xψ : (r1,R1) = (split(ψ[x/⊥],S ∪ {¬x},Φ);
if (r1 == T) then return (T, R1);

if (x 6∈ R1) then return (F, R1);

(r2,R2) = (split(ψ[x/>],S ∪ {x},Φ);
if (r2 == T) then return (T, R2);

if (x 6∈ R2) then return (F,R2);

return (F,R1 ∪ R2);

case ∀xψ : (r1,R1) = (split(ψ[x/⊥],S ∪ {¬x},Φ);
if (r1 == F) then return (F, R1);

if (x 6∈ R1) then return (T, R1);

(r2,R2) = (split(ψ[x/>],S ∪ {x},Φ);
if (r2 == F) then return (F, R2);

if (x 6∈ R2) then return (T,R2);

return (T,R1 ∪ R2);

}

Figure 5.6: DPLL extended by DDB by relevance sets.
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S and that they return the altered set. As we will see soon, this is necessary to combine
unit and pure reduction with DDB.

Note that simplify, as well as pure, gunit, and lunit make use of auxiliary functions
which we describe only verbally. The function isUnit (resp. isPure) checks whether a
variable in the second argument of the function is unit (resp. pure) in the QBF in the first
argument according to Definitions 2.1.21 and 2.1.22. The function quant determines the
kind of quantification of a variable, i.e., it determines whether the variable is universal or
existential. The function lit(φ, x) is applied on a QBF φ and a variable x. The return
value is positive if all occurrences of x in φ are positive, the return value is neg if all
occurrences are negative and both in the remaining case. In gunit we use the function
getPolarityOfUnitVar which determines the polarity of the literal where it is unit in the
formula.

The function miniscope shifts quantifiers inside the formula which is in contrast to
prenexing where the quantifiers are shifted outside. Miniscoping is done to increase the
probability that a variable becomes unit or pure.

5.3.1 DDB with Unit and Pure

What we have presented so far, is a simplified version of our algorithm: we have omit-
ted the unit (local as well as global) and the pure rule (recall Definitions 2.1.21, 2.1.22,
and 2.1.23). Dependency-directed backtracking also works together with them, in fact,
it is very important to include all of the three rules but the description of the algorithm
becomes more complex. The following example illustrates how the algorithm becomes
incorrect if we do not handle this optimisation rules in a special manner.

Example 5.3.3 Assume we want to solve the QBF

∀x∃y((x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ y)).

We use a variant of split which only implements the removal of truth constants, pure,
and DDB by labelling. The algorithm performs as follows.

1. Replace the variable x by ⊥ and remove the truth constants. We obtain ∃y y.

2. Now we can apply the pure rule on y and the formula evaluates to true.

3. We calculate the relevant variables for the labelling. The only important variable is
y, so we set y relevant.

4. Then we return to x during the backtracking. As x is still irrelevant, we can stop
— the formula evaluates to true.

Obviously, our result is wrong — if we had considered the second subproblem (i.e., if we
had set x to >), we would have obtained ∃y(y ∧ ¬y) which is contradictory.

What went wrong in the last example? We only considered y as the relevant variable.
The variable y was not eliminated in the usual manner (i.e., during splitting) but it was
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(QBF, assign) simplify(φ, S) {
/* In: QBF φ in NNF, set S of assignments */

/* Out: simplified QBF equivalent to φ, set of assignments */

switch(φ) {

case (l ∧ ψ) : (φ,S ′) = simplify(lunit(ψ, l,∧,S));
case (l ∨ ψ) : (φ,S ′) = simplify(lunit(ψ, l,∨,S));
case (ψ1 ∧ ψ2) :

(ψ′
1,S1) = simplify(ψ1,S);

(ψ′
2,S2) = simplify(ψ2,S1);

(φ′,S ′) = (ψ′
1 ∧ ψ

′
2,S2);

case (ψ1 ∨ ψ2) :

(ψ′
1,S1) = simplify(ψ1,S);

(ψ′
2,S2) = simplify(ψ2,S1);

(φ′,S ′) = (ψ′
1 ∨ ψ

′
2,S2);

case (Qxψ) : if isunit(ψ, x) then (ψ,S1) = gunit(φ, x,S);
if ispure(ψ, x) then (ψ,S2) = pure(φ, x,S1);

(ψ′,S3) = simplify(ψ,S2);

(φ′,S ′) = (miniscope(Qxψ′),S3)

otherwise : (φ′,S ′) = (φ,S)

}

switch(φ′) {

case (¬>) : return (⊥,S ′);
case (¬⊥) : return (>,S ′);
case (⊥ ∧ ψ) : return (⊥,S ′);
case (> ∨ ψ) : return (>,S ′);
case (> ∧ ψ) : return (ψ,S ′);
case (⊥ ∨ ψ) : return (ψ,S ′);
otherwise : return (φ′,S ′);

}

}

Figure 5.7: The improved function simplify.

removed because of a special rule. The special rule is not applicable at any time, only
under certain circumstances. The question, we have to ask, is: which part of the formula
and the truth assignment of which variables was responsible that we are allowed to apply
this rule. For example, the assignment of which variables removed instances of y, such
that it became unit? It was x. And if we label x as relevant then everything goes fine as
we cannot skip the second subproblem and therefore, we obtain the correct result.
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(QBF, assign) pure(φ,x,S) {
/* In: QBF φ, pure variable x, set S of assignments*/

/* Out: QBF φ with x substituted by a truth constant,

set of variable assignments */

if (quant(x) == ∀) then {

if (lit(φ, x) == pos) then return (φ[x/⊥],S ∪ {¬x});
else return (φ[x/>],S ∪ {x});

}

if (lit(φ, x) == pos) then return (φ[x/>],S ∪ {x});
else return (φ[x/⊥],S ∪ {¬x});

}

Figure 5.8: The function pure.

(QBF, assign) gunit(φ,x,S) {
/* In: QBF φ, unit variable occurrence x,

set S of assignments */

/* Out: QBF φ where x has been substituted by a truth constant,

set of variable assignment */

pol = getPolarityOfUnitVar(φ, x);

if (quant(x) == ∀) then {

if (pol == pos) then return (φ[x/⊥],S ∪ {¬x});
else return (φ[x/>],S ∪ {x});

}

if (pol == pos) then return (φ[x/>],S ∪ {x});
else return (φ[x/⊥],S ∪ {¬x});

}

Figure 5.9: The function global unit.

To combine unit and pure with DDB we have to do the following.

1. We have to collect the dependencies to be able to figure out why unit or pure was
applicable.

2. We have to remember why a variable was eliminated (because of common splitting
or because of unit or pure).

3. When we label a variable as relevant which was removed because of unit or pure,
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(QBF, assign) lunit(φ,l,c,S) {
/* In: QBF φ, literal l local unit w.r.t. φ,

operator c which connects l to φ, set S of assignments */

/* Out: QBF φ with x substituted by a truth constant,

set of variable assignments */

if (c == ∧) then {

if (l == var(l)) then return (l ∧ φ[l/>],S ∪ {l});
else return (l ∧ φ[var(l)/⊥],S ∪ {l});

}

if (l == var(l)) then return (l ∨ φ[l/⊥],S ∪ {¬l});
else return (l ∨ φ[var(l)/>],S ∪ {var(l)});

}

Figure 5.10: The function local unit.

QBF miniscope(φ) {
/* In: QBF φ */

/* Out: QBF which is euqivalent to φ */

if (φ = ∀x(φ1 ∧ φ2)) && x 6∈ φ2 then return ((∀xφ1) ∧ φ2);

if (φ = ∀x(φ1 ∨ φ2)) && x 6∈ φ2 then return ((∀xφ1) ∨ φ2);

if (φ = ∃x(φ1 ∧ φ2)) && x 6∈ φ2 then return ((∃xφ1) ∧ φ2);

if (φ = ∃x(φ1 ∨ φ2)) && x 6∈ φ2 then return ((∃xφ1) ∨ φ2);

/* x′ is a fresh variable */

if (φ = ∃x(φ1 ∨ φ2)) then return (∃xφ1 ∨ ∃x
′φ2[x/x′]);

/* x′ is a fresh variable */

if (φ = ∀x(φ1 ∧ φ2)) then return ((∀xφ1 ∧ ∀x
′φ2[x/x′]);

}

Figure 5.11: The function miniscope.

we have to label the variables too, which were responsible that one of the rules was
applicable.

5.4 Discussion

In this section, we anticipate the content of Chapter 7, which is about the benchmarks. We
do so to discuss the impact of the different pruning techniques. Therefore, we consider two
benchmark sets: (i) encodings of reasoning on nested counterfactuals, and (ii) encodings
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of the modal logic K. We enabled/disabled the following options:

solver name unit pure labelling rel. sets

qpro

qproup X X

qprol X

qpros X

qpropl X X X

qproups X X X

The formuals of the nested counterfactual encodings are grouped in six sets according to
their nesting depth, the encodings from the modal formulas are grouped in 18 sets, where
each contains 21 formulas. The half of the set evaluates to true, the other half to false. The
formulas of both sets differ strongly in their structure: the nested counterfactuals yield
QBFs of a very complex quantifier structure, whereas the structure tree of the encodings
from the modal formulas is linear.

Table 5.1 shows the number of solved formulas according to the result (0 is false, 1 is
true, t is timeout) and Table 5.2 shows the average runtime for each set of the nested
counterfactual encodings. Table 5.3 shows the number of solved formulas for each set of
the modal formula encodings and Table 5.4 contains the average runtimes.

We see that the integration of the optimisation techniques has an enormous impact
on the number of (un)solved formulas and on the average runtime. The variant qpro,
which just implements plain chronological backtracking is not very successful. We also
see that more advanced pruning techniques have their price and the enabling of the most
sophisticated techniques does not alway yield the best result. In the case of the nested
counterfactuals, the disabling of unit and pure in combination with dependency-directed
backtracking by labelling improves the runtimes. Furthermore, dependency-directed back-
tracking by relevance sets is indeed better for these formulas than dependency-directed
backtracking by labelling. This is not the case for the encodings of the modal formulas.
DDB by labelling or DDB by relevance sets behave almost the same.
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depth truth value qpro qproup qprol qpros qpropl qproups

2 0 18 28 28 28 28 28
2 1 5 22 22 22 22 22
2 t 27 0 0 0 0 0
3 0 0 19 19 19 19 19
3 1 3 31 31 31 31 31
3 t 47 0 0 0 0 0
4 0 0 21 21 21 21 21
4 1 0 29 29 29 29 29
4 t 50 0 0 0 0 0
5 0 0 19 17 19 19 19
5 1 0 31 31 31 31 31
5 t 50 0 2 0 0 0
6 0 0 16 16 17 16 17
6 1 0 31 31 33 31 33
6 t 50 3 3 0 3 0

Table 5.1: Results of the nested counterfactual set.

depth qpro qproup qprol qpros qpropl qproups

2 80.30 0.42 0.59 0.00 0.60 0.40
3 98.42 2.17 1.13 0.00 1.53 1.05
4 99.98 4.27 3.76 0.01 3.04 2.06
5 99.98 4.64 7.33 0.04 3.49 2.34
6 99.98 11.01 11.84 0.10 9.65 6.81

Table 5.2: Average runtimes of nested counterfactual set.
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qpro qproup qprol qpros qpropl qproups

1 2 9 2 3 11 11
2 1 4 2 5 18 18
3 2 7 4 5 7 7
4 3 11 7 21 10 12
5 6 21 7 8 21 21
6 4 21 7 10 21 21
7 0 21 3 9 21 21
8 0 21 1 9 21 21
9 2 21 5 5 21 21
10 2 8 3 17 21 21
11 3 14 3 8 12 12
12 4 17 4 10 14 15
13 5 21 6 10 21 21
14 4 6 4 5 6 6
15 2 21 3 3 21 21
16 2 21 5 21 21 21
17 61 4 1 2 4 4
18 61 8 2 4 6 8

Table 5.3: Number of solved formulas of the modal formulas.

qpro qproup qprol qpros qpropl qproups

1 90.85 62.28 90.46 86.78 54.16 52.26
2 95.21 81.02 90.48 79.46 24.58 23.06
3 90.79 69.28 84.42 80.64 68.41 68.46
4 85.85 50.46 72.01 0.23 54.51 45.90
5 72.99 0.00 68.30 62.75 0.03 0.03
6 83.27 0.41 69.91 57.08 0.73 0.51
7 99.98 0.00 89.81 60.54 0.00 0.00
8 99.98 0.00 95.76 64.50 0.00 0.00
9 90.52 0.01 80.62 78.98 0.02 0.02
10 90.73 67.35 85.84 32.844 0.00 0.00
11 86.45 36.72 85.88 68.65 46.73 45.63
12 83.36 25.10 81.49 58.61 37.00 35.34
13 77.99 0.20 74.45 55.73 0.26 0.23
14 81.13 72.70 80.94 76.31 72.32 72.34
15 90.46 6.22 86.39 86.45 7.59 7.75
16 90.86 0.27 79.40 1.94 0.28 0.28
17 95.59 81.56 95.23 90.95 81.81 81.53
18 96.98 66.63 94.78 85.17 68.32 68.42

Table 5.4: Average runtimes of the modal formulas.
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Chapter 6

qpro’s Insides

Until now, we have provided a description of the algorithms used in the solver qpro in a very
formal manner (Chapter 4) to prove certain properties, and we have considered the applied
techniques in an abstract way, which proposes an implementation (Chapter 5). But still
one important point is missing: how can all these parts be composed in one whole program
which is executable on a computer? The pseudo-code given in the previous chapter can be
written down almost directly in any imperative and/or declarative programming language,
but the result would be very disappointing. When a variable is assigned a truth value,
the structure tree is searched for the variable occurences in a top-down manner. It is
preferable to use data structures which allow for the direct access of the occurrences of a
certain variable.

Anticipating the next chapter, it can be stated already here that qpro performs very
competitive with respect to current state-of-the-art solvers in many situations (and some-
times even outperforms them). But this competiveness does not only result from the
presented algorithms, but also from the usage of clever implementation techniques and
data structures. This chapter is dedicated to the internal structure of the solver and
shows how it actually works in very concrete manner (i.e., we take a closer look at the
code of the solver).

Our solver qpro was developed in the programming language C and consists of about
10,000 lines of code. First prototypes were developed in the declarative languages Haskell
and Prolog. The development of the prototypes was done in a very short amount of time
and the solvers worked. Unfortunately, these implementation could only be considered to
be proof of concepts, because they were inherently inefficient. Large QBF instances could
not be dealt with. So the reimplementation was necessary to get a well performing solver.
The language of choice was C because of its flexibility and because of the availability of
compilers which deliver efficient code. This did not come for free — the flexibility (i.e.,
absolute control over the data structures) demands also for an accurate testing.

This chapter reviews the concrete components necessary to build an efficient solver
like qpro. We present the used data structure, then we will consider the parsing and
preprocessing. Finally, we will describe how the actual solving process runs off.

89
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6.1 The Data Structure

As we do not make any assumption about the structure of the formula (except the formerly
mentioned restriction that negations only occur directly in front of atoms), we have to be
able to represent an arbitrary closed QBF. The restriction to conjunctive normal form
allows to use a list of list as basic data structure. In the general case, a QBF is naturally
represented as a structure tree. We could use a binary tree, because the disjunction and
the conjunction are binary connectives by definition.

For the implementation, it is more convenient to use n-ary instead of binary connec-
tives. So the data structure of a single formula is very close to the input format which is
specified in the appendix.

struct formula {

char type; /* CONJ, DISJ */

char *val; /* TRUE, FALSE, UNKN */

unsigned int relp, relh, reln; /* infos for backjumping */

unsigned int moved_up;

struct formula *dep;

struct quant *q; /* quantifier list */

struct var *plits; /* list of pos literals */

struct var *nlits; /* list of neg literals */

struct formulas *fs; /* list of direct subformulas */

struct formulas *fs_fix; /* list of subformulas

of orig. formula */

struct formulas *superfs; /* position in superformula */

struct formula *super; /* link to the super formula */

struct formula *super_fix; /* link to super formula

of orig. formula */

};

Figure 6.1: The data structure for a formula.

Note that the code given in Figure 6.1 is just a simplified version of the original code
which contains even more information used during the solving process.

A formula has a type which is either a disjunction or a conjunction (globally defined
constants). The value val of a formula can be either TRUE, FALSE, UNKN which represent
the evaluation status of a (sub)formula. The structure formulas is a doubly-linked list
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struct quant {

char type; /* EX or FA */

struct vinfo *var; /* the var’s name */

struct quant *prev; /* previous quantifier */

struct quant *next; /* next quantifier */

};

Figure 6.2: The data structure for a quantifier.

containing elements of type formula.

Note that we deal with a pointer to a truth value. This is due to the fact that the truth
value of a formula can depend on the truth value of either one of its literals or of one of
its subformulas. If during the solving process all literals and subformulas except one have
been eliminated, the remaining literal or subformula is shifted up and inserted into the
direct superformula. The shift may allow the application of simplification rules like unit,
which can accelerate the solving process. But for the dependency-directed backtracking,
it can be necessary to know the truth value of the formula and therefore, it is coupled to
the assignment of the shifted literal or subformula.

The variables used for dependency directed backtracking will be explained later. A
formula may have a doublyx-linked list of quantifiers which can be empty. An entry of
this list is given in Figure 6.2. The structure and the intentions behind vinfo will be
considered soon — it contains all necessary information about a variable.

In the code shown in Figure 6.1, plits and nlits are pointers to doubly-linked lists
containing the positive and negative literals of a formula (see Figure 6.3 for details). next
and prev point to the predecessor and to the successor node of a literal.

The string ” fix” in a variable’s name indicates that this value (usually a pointer) is
only set once — namely during the parsing process. Such a pointer may not be altered.
These pointers are used to maintain the information about the original input formula’s
structure as the structure is altered during the solving process. Dependency-directed
backtracking makes use of these variables to identify the relevant parts of a formula for a
solved subproblem.

A literal contains a second pair of pointers, nextv and prevv, besides the two pointers
for the literal list. These pointers link the literal to a list contained in the data structure
vinfo which administrates a list of all occurrences of a variable. This is necessary in
order to find them efficiently during the branching when a variable is assigned a truth
value. The alternative would be a top-down search within the structure tree to locate
every occurrence of a certain variable but this would be computationally very costly and
should be avoided. Before the parsing, an array of type vinfo is created where every entry
represents one variable (the name of a variable is given by an integer and is therefore used
as the corresponding index in the array). The size of the array is given by the the number
of variables indicated in the input file given by the qpro-format (see Appendix A for a
detailed description).

Subformulas are also represented by a doubly-linked list very similar to the literal lists.
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struct var {

struct formula *f; /* position in formula */

struct formula *f_fix; /* pos. in orig. formula */

char value; /* TRUE, FALSE, UNKN */

struct vinfo *name; /* variable name */

struct var *next; /* next literal */

struct var *next_fix; /* next lit. in orig. form. */

struct var *prev; /* previous literal */

struct var *prevv; /* previous var in vinfo */

struct var *nextv; /* next var in vinfo */

struct var *nextv_fix; /* nextv in orig. formula */

struct formula *dep; /* dependency for backjumping */

};

Figure 6.3: The data structure of a literal.

Now we have considered all components necessary to build a formula in the program.
There are many other data structures used in the implementation (for example very spe-
cialised kinds of stacks), but we do not describe them here as they are just auxiliary
elements to the program and not so important for understanding the basic functionality.

struct vinfo {

char quant; /* EX, FA */

struct quant *qp; /* quantifier position */

unsigned int name; /* internal var name */

char value; /* TRUE, FALSE, UNKN */

struct var *p; /* list of pos. instances */

struct var *n; /* list of neg. instances */

};

Figure 6.4: The data structure of a variable.
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6.2 The Preprocessing of the Formula

The main function of qpro is very compact and initates the following three processes:

1. the setting of the options,

2. the preprocessing of the formula, and

3. the actual solving.

The options enable/disable the various techniques described in the previous chapter
and are mainly motivated to test the impact of switching on and off different features like
unit and pure elimination. Internally, flags are set to indicate which operations have to
be performed and which not. More interesting and very important is the preprocessing
step of the formula. qpro’s preprocessing of a formula is tightly coupled with parsing and
building-up the data structure of the formula.

By preprocessing, we do not refer to the same kind of preprocessing necessary for PCNF
solvers (i.e., the normalisation of the input formula). We include certain optimisation
directly into the parsing process. At this early stage, we try to identify and remove
tautologies and contradictions, we try to apply the unit and pure literal elimination rules
as extensively as possible to reduce the formula as far as possible.

As we directly integrate those optimisations into the parsing process and as the structure
of the input formula is not very complicated, we decided to refrain from the usage of a
lexical analyser like FLEX and a parser generator like YACC or BISON and to implement
the parsing by ourselves. Therefore, we developed the parser by the well-known technique
of recursive descendance, where the single components of a formula are described by
procedures which call each other accordingly.

The main function of the parser is to initialise the data structure which contains the
formula. The first task is to allocate an array (a global variable which can be accessed at
any time and at any point within the whole program) and which is not altered any more
during the program execution (except if miniscoping is enabled where new variables are
dynamically introduced). The input formula has to be checked if its syntax is correct and
contains only variables named according to the name convention (i.e., they are integers
ranging from 0 to the maximum value according to the input format (see Appendix A).
If the input file contains an incorrect formula, an error message is provided, and the
program execution is stopped. When the literal lists are build, trivial tautologies and
contradictions are detected and are immediately removed. As a consequence, it sometimes
can happen that very large subformulas become obsolete and can be abandoned. This can
start an avalanche of further reduction opportunities and in the optimal case, the formula
is evaluated without even starting the actual solving process.

Before a variable is inserted into the respecting literal list, all superformulas are searched
for occurrences of this variable. If the search succeeds then the local unit literal elimination
rule can be applied and the variable has either not to be inserted or the whole subformula
(and if we are lucky maybe some superformulas) can be eliminated.

These reductions are not for free, much searching has to be done and many checks have
to be performed. But this preparatory work proved to be crucial for the later program
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execution as the number of variables (and therefore the number of splittings) can be
reduced.

In the following, let φ be the input formula, and let φ′ be the reduced formula. Having
a small φ′ is very important for the dependency-directed backtracking as, whenever a
variable assignment is found which makes the whole formula true or false, it has to be
checked which variables are responsible and therefore which variables have to marked as
relevant. And this search for relevant variables is always done on φ.

At the end of the parsing, we check for every variable whether it is pure. Note that it
is only necessary during the parsing process to test all variables for purity. During the
solving process, it can be done on-the-fly: whenever an occurrence of a variable is removed,
it is checked whether the remaining instances of this variable are of the same polarity.

If a variable is pure, we can remove every occurrence in the formula accordingly, and
we check if the application of further optimisations is possible (for example the removal of
a pure literal could cause that another literal has to be shifted up in the formula and can
also be removed which could cause another variable to become pure and so on). We apply
all optimisation rules until no application is possible any more and the formula structure
is stable. If the whole formula has not been assigned a truth value yet, the actual solving
process has to be started.

6.3 The Basic Solving Process

The implementation of the splitting (i.e., the solving of subproblems by the assignment of
variables) represents the heart of the solver. The splitting function is responsible for five
tasks.

1. Select the next splitting variable or the next subformula.

2. Save the data structure of the formula for backtracking.

3. Assign the truth value if a splitting variable was selected.

4. Continue recursively with the evaluation until a truth value for the whole formula is
found.

5. Restore the data structure during backtracking.

The variable selection is done accordingly to the chosen heuristic. In the simplest case,
always the first variable of a formula’s quantifier list is taken. Before starting to solve the
subproblem by assigning the selected variable a truth value, it is necessary to store the
current state of the formula. Otherwise, the other subproblem (i.e., the complementary
assignment of the variable) has to be considered and the formula has to be restored as it
has been at this point during the program execution before the first subproblem has been
considered. If the quantifier list of the current formula is empty, then a subformula has to
be chosen, which is processed next.

Generally speaking, there are two ways to save the formula:
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1. copy the whole formula, and

2. track the changes.

The first proposed method is not very sophisticated and can be implemented easily, but
obviously it is very memory consuming. In the worst case, the memory consumption for
storing the QBF almost doubles at every branching step. So we implemented the second
method: every change of the formula’s structure is reported and recorded in the so-called
”UNDO-stack”. Every stack entry contains a type with the information what has to be
undone and one or more pointers which reference the locations in the formula where the
changes have taken place and where they should be undone.

Before solving a new subproblem, a special item is pushed on the stack to indicate that a
new block of tracking elements will follow. When calling the UNDO-function (in practice
it is a macro) then all elements are popped from the stack and are processed until this
special item is reached. The elements left on the stack are subject to an other call of
the UNDO-function. With the increase of the solvers functionality also the numbers of
operations to undo grows. The implementation of the current UNDO-function is able to
distinguish between 27 operations.

When a variable has been chosen and the special item to indicate a new block has
been pushed on the UNDO-stack, every occurrence of the variable can be replaced by the
according truth value. As it would be very inefficient to directly search for the variable
in the formula tree in a top-down manner, now we make use of the information stored in
the vinfo data structure. Recall that vinfo contains a list of pointers to all occurrences
of the variable. The only action we have to perform is to process the lists and replace the
literals by true or false. Instantly, we remove them from the formula and also propagate
the values to sub- and/or superformulas if possible. We also apply pruning techniques like
unit and pure literal elimination if possible. In contrast to the application of those rules
during the parsing process, we do not check for every variable if the rules can be used.
We assume that all possible applications of the rules have been made before, but when we
change the structure of the formula, we get new candidates for the application of those
rules.

For example, if a literal is shifted up into its direct subformula because it is the only
component left in a formula, it is possible that

1. it has been shifted directly in front of the quantifier block containing its quantifica-
tion. Then global unit can be applied;

2. at least the local unit rule becomes applicable.

If all reductions have been performed, and no truth value for the formula has been
obtained then the splitting process must be repeated until a truth value is found.

If a truth value has been found, the changes on the formula structure can be undone and
depending on the type of quantifier and the calculated truth value, the second subproblem
(i.e., the complementary assignment of the variable) has to be considered or can be omitted.
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6.4 Dependency Directed Backtracking

Even though the idea behind dependency-directed backtracking is simple, the implemen-
tation is not so straightforward as it may seem at the first sight. The important aspect
is to maintain the correctness of the solver and therefore, it is necessary to carefully keep
track of the dependencies of the variable elimination (i.e., to remember if one literal has
been removed because another variable has been assigned a truth value).

The function where the splitting is performed has to be extended as follows:

1. Set a variable to irrelevant before it is assigned a truth value.

2. Check if the variable is still irrelevant when returning from backtracking.

This setting and checking of the (ir)relevance of a variable is the easiest part about the
integration of the dependency-directed backtracking. Two more aspects are left to do:

1. extend the simplify function to get the order on the elimination times of the vari-
ables;

2. implement a function, which calculates the set of relevant variables.

Especially when pruning techniques like unit and pure are involved, when whole sub-
formulas are removed by one single literal, or when subformulas are shifted upwards in
the formula tree, many more details have to be considered for getting the correct set of
relevant variables. Every variable has a pointer dep to the formula where the reason can
be found why it has been removed (note that the pointer is not set if the variable has been
assigned a truth value in the usual manner).

The set of relevant variables is calculated top-down with respect to the formula tree of
the original input formula (the pointer containing ” fix” provides the necessary informa-
tion).

The difference between the implementation of dependency-directed backtracking by la-
belling and the implementation of dependency-directed backtracking by relevance sets is
not so severe. In the second case, efficient operations on sets have to be implemented, in
the other case only a flag has to be set if a variable is irrelevant.



Chapter 7

Experimental Evaluation

In this chapter, we report on QBF encodings ”from practice” and about the behaviour
of the previously presented solver qpro compared to current state-of-the-art systems when
evaluating those formulas. With other words, we dedicate this chapter to the testing of our
implementation. The motivation behind testing is twofold: (1) we want to verify whether
qpro works correctly by experiments and (2) we are interested how qpro performs with
respect to other state-of-the-art solvers.

One of the most severe problems a solver programmer has to face during the development
process is to detect and correct programming errors. It is possible to prove soundness and
completeness of the algorithm on which the implementation is based (what we have done
previously). But how can thousands of lines of code be shown to be correct? When
using an imperative language with side effects and with pointers, this task becomes very
hard and cumbersome. And a buggy solver is absolutely useless: for example consider a
program, which always returns true. In some cases, this solver yields correct results, in
others, it does not but it always needs a constant amount of time and space. This drastic
example illustrates very clearly the fact that an error (here it concerns an algorithmic and
not an implementational bug) can prune the search space enormously. The elimination
of this problem would result in an implementation with a very different behaviour with
respect to time and space consumption.

In the last years, the QBF community has collected a large number of various benchmark
sets, which are available at the QBFLIB [53]. These benchmarks are used in the QBF solver
evaluations and competitions [65, 64, 72] and by many solver developers to test and to
evaluate their systems.

Roughly speaking, there are two different kinds of formulas: (i) randomly generated in-
stances and (ii) formulas stemming from encodings of ”real-world” applications. As most
solvers only process formulas in PCNF, the random formulas are artificially generated
PCNF formulas parametrised by the number of variables, the number of quantifier alter-
nations, the size of the clause, etc. The real-wold problem instances are, unfortunately,
translated to the qdimacs format, which is the standard format for PCNF formulas.

Therefore, the sets are not interesting for our purposes. To run our tests, we had to
create our on benchmark sets and we adapted QBFs encodings from the literature except
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the encodings of modal logic K in QBFs, which were kindly provided to us by G. Pan.

We have chosen three different sets of formulas:

1. Encodings of reasoning with nested counterfactuals.

2. Encodings of formulas from modal logic K.

3. Encodings of correspondence-tests from answer-set programming.

The formulas of these benchmarks are originally not encoded in PCNF and they differ
in the complexity of their structure and depth of quantifier prefix. We will describe the
nested counterfactuals and the correspondence check problems in a very detailed manner,
as we created this benchmark sets by ourselves. Translated to qdimacs, we submitted
them to the QBFLIB. A subset of the formulas is now publicly available at the QBFLIB

website [53] and they were used in the QBF solver evaluation. For the encoding of the
modal formulas, we refer to [80].

For the comparison of our implementation qpro to other solvers, we have chosen the well-
established systems QuBE−BJ [51] (v1.2), sKizzo [10] (v0.4), semprop [68] (rel. 24/02/02),
and quantor [16] (rel. 25/04/01). We selected those solvers because they are publicly
available, showed to be very competitive in previous solver evaluations, and so far, they
did not deliver wrong results on our tests. Moreover, QuBE−BJ and semprop implement
the dependency-directed backtracking technique similar to qpro. The solvers sKizzo and
quantor try to extract information about the quantifier dependencies in the original formula
from the quantifier prefix of the formula already transformed into PCNF. As already
mentioned, we did not include the solver Qubos [5] because we encountered some problems
in our pretests but we hope to be able to compare qpro and Qubos as soon as a bug fix is
available.

For all solvers, we used their predefined standard options and for qpro, we enabled
the standard simplification techniques together with dependency-directed backtracking by
relevance sets.

As all solvers except qpro are only capable to process formulas in PCNF, we applied
the following testing strategy: Given a QBF φ from the benchmark set not in PCNF, we
(i) provided φ as input to qpro; (ii) translated φ into PCNF and provided the outcome
as input to the other solvers. For normal form transformation, we used the tool qst [96],
which applies structure preserving normal form transformation (see Chapter 4) and which
implements fourteen different prenexing strategies. Which strategy we have chosen for
each test set, is described below. We ran our test on an Intel Xeon 3 GHz with 4 GB
of RAM unless reported differently below. We set the timeout to 100 seconds for each
formula.

7.1 Nested Counterfactuals

A counterfactual is an expression of the form A > B which can informally be read as the
conditional query ”If A held, would B necessarily hold too?”. A is called the premise and
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B is called the conclusion of the counterfactual. If either the premise or the conclusion
of a counterfactual contains a counterfactual too, we speak about a nested counterfactual
(NCF). For illustration consider the following example from [39].

Example 7.1.1 Let a theory T encode the structure and the functionality of a car’s
electric system. We are interested in the following question: ”If the headlight switch was
turned on (h) and the light did not shine (¬s), would it shine (s) if the fuse protecting
the light (f) was changed by a new one?”.

In the context of nested counterfactuals, a theory T encodes the background knowledge
in terms of purely propositional formulas in our case. A nested counterfactual can express
the question above as follows:

(h ∧ ¬s) > (f > s)

Eiter and Gottlob showed in [39] that the problem of deciding right nested counter-
factuals (i.e., only the conclusion of a counterfactual contains further counterfactuals) is
ΠP

k+2-complete for a nesting depth bound by k and PSPACE-complete if the nesting depth
is unbound. Therefore, the number of quantifier alternations in the QBF encoding is
parametrised by the nesting depth of the corresponding nested counterfactual. We pre-
sented a translation of right nested counterfactuals to QBFs in [35] and we used them
as a case study to investigate the impact of different prenexing strategies on the solving
process. A refinement and extension of this work can be found in [96].

As the encoding of right nested counterfactuals results in QBFs of a complex structure
which is far from being in PCNF, this type of formulas are very interesting for this thesis
as they can show clearly if the avoidance of the normal form transformation and the usage
of a solver like qpro results in better runtimes.

Definition 7.1.1 (Right Nested Counterfactuals)
The set C of right nested counterfactuals is defined inductively as follows:

1. if A,B are formulas from propositional logic then A,B, (A > B) ∈ C;

2. if A is a formula from propositional logic and N ∈ C then (A > N) ∈ C;

3. if N ∈ C then (¬N) ∈ C.

Note that we write nested counterfactuals of the form (¬(A > N)) as (A 6> B). Further,
we assume the operators > and 6> to be right associative. As mentioned before, we
presented a translation of right nested counterfactuals to QBFs in [35].

Definition 7.1.2 (Nesting Depth)
The nesting depth nd(N) of a nested counterfactual N is defined as follows.

nd(N) =







nd(A > N ′) if N = (A 6> N ′);
1 + nd(N ′) if N = (A > N ′);
0 otherwise.
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Definition 7.1.3 (Maximal Consistent Subtheories)
Let T be a theory. The set of maximal A-consistent subtheories of T is defined by

mct(A, T ) = {S | S ⊆ T ,S 6` ¬A,S ⊆ S ′ ⊆ T → S ′ ` ¬A}.

Definition 7.1.4 (Semantics of Nested Counterfactuals)
The evaluation function vncf for a nested counterfactual is defined as follows.

• vncf (T , A 6> N) =

{

T if vncf (T , A > N) = F;

F otherwise.

• vncf (T , A > N) =































T if nd(N) > 0 and for all S ∈ mct(A, T )

vncf (S ∪A,N) = T;

T if nd(N) = 0 and for all S ∈ mct(A, T )

S ∪A ` N ;

F otherwise.

Definition 7.1.5 (Validity of Nested Counterfactuals)
A nested counterfactual N is valid w.r.t. a theory T , if vncf (T , N) = T. Otherwise, it is
said to be unsatisfiable w.r.t. the theory T .

Theorem 7.1.1 (The Complexity of Nested Counterfactuals)
1. The problem of evaluating a right nested counterfactual N with nd(N) ≤ k is ΠP

k+2-
complete.

2. The problem of evaluating a right nested counterfactual is PSPACE-complete if the
nesting depth is unbound.

Proof. The proof can be found in [39]. 2

7.1.1 The Encoding

In the following, we describe how reasoning about nested counterfactuals can be expressed
in terms of QBFs. Therefore, we introduce two shorthands. The expression S ≤ T
abbreviates {φi → ϕi | 1 ≤ i ≤ n} and is identified with

∧n
i=1(φi → ϕi). Moreover,

S < T stands for (
∧n

i=1(φi → ϕi)) ∧ ¬(
∧n

i=1(ϕi → φi)).

Definition 7.1.6 (Encodings of NCFs in QBFs)
Let N be a nested counterfactual with nd(N) = k and of the structure

A0 Â0 (A1 Â1 (. . . Âk−1 (Ak Âk Ak+1) . . .)),

where Âi ∈ {>, 6>}. Let T = {ϕ1, . . . , ϕn} be a propositional theory. Let S = {φ1, . . . , φn}
be an indexed set of formulas.

Furthermore, let Si = {si,1, . . . , si,n+i} and Ui = {ui,1, . . . , ui,n+i} be sets of new atoms
(0 ≤ i ≤ k).
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Now we define M0[T , N ] = S0 ≤ T and, for 0 < j ≤ k,

Mj [T , N ] = Sj ≤
(

Mj−1[T , N ] ∪ {Aj−1}
)

.

For 0 ≤ i ≤ k, we furthermore define

Φi =∃Vi

(

Mi[T , N ] ∧Ai

)

∧ ∀Ui

(

(Si < Ui) → ∀Vi((Mi[T , N ])[Si/Ui]→ ¬Ai)
)

,

where each Vi denotes the set of atoms occurring in T ∪ {A0, . . . , Ai}, as well as

Ψi =

{

∀Si(Φi → Ψi+1) if Âi =>;
∃Si(Φi ∧ ¬Ψi+1) if Âi = 6>,

with Ψk+1 = ∀W ((Mk[T,N ] ∧ Ak) → Ak+1), where W contains all atoms from Vk and
those occurring in ψ. Then the desired encoding, E [T , N ], is given by Ψ0.

Theorem 7.1.2 (Correctness of the Encoding)
Let T be a propositional theory and let N be a nested counterfactual. It holds that

vncf (T , N) = υ(E [T , N ]).

For illustration, we consider the encoding E [T , N ] with nd(N) = 3 which can be written
as

∃S0(Φ0 ∧ ∀S1(Φ1 → ∃S2(Φ2 ∧ ∀S3(Φ3 → ∀W ((M3[T , N ] ∧ p3) → q))))).

The quantifier ordering for the QBF E [T , N ] is graphically represented as follows:

∃S0

∃V0 ∀S1

∀V1 ∃S2

∃V2 ∀S3

∀V3 ∀W ∃U3V
′
3

∀U2V
′
2

∃U1V
′
1

∀U0V
′
0

The quantifier tree of this nested counterfactual is quite complex, even though the
nesting depth is very small. This fact makes the nested counterfactuals very interesting
and promising formulas for our tests.

Obviously, there are multiple possibilities to linearise the quantifier dependency tree to
obtain a quantifier prefix. For illustration, we apply four different (and correct) shifting
strategies and we obtain a quantifier prefix of the form ∃P0∀P1∃P2∀P3∃P4ψ where the sets
Pi are given as follows:

# Strategy P0 P1 P2 P3 P4

0 ∃↓∀↓ S0 S1 S2 S3U0V
′
0V1U2V

′
2V3W V0U1V

′
1V2U3V

′
3

1 ∃↑∀↑ S0V0 S1U0V
′
0V1 S2U1V

′
1V2 S3U2V

′
2V3W U3V

′
3

2 ∃↑∀↓ S0V0 S1 S2U1V
′
1V2 S3U0V

′
0V1U2V

′
2V3W U3V

′
3

3 ∃↓∀↑ S0 S1U0V
′
0V1 S2 S3U2V

′
2V3W V0U1V

′
1V2U3V

′
3



102 CHAPTER 7. EXPERIMENTAL EVALUATION

The second column of the table contains a short description for each strategy. The
expression Q↑ (resp. Q↓) indicates that the quantifier Q is shifted as left-most (resp. as
right-most) within the quantifier prefix as possible. A detailed description of prenexing
may be found in Chapter 4.

7.1.2 The Generator

We developed a simple random generator for right nested counterfactuals. The generator
accepts the following input parameters:

• the number of clauses n in the theory,

• the number of literals per clause m in the theory,

• the total number of variables o, and

• the nesting depth k.

The generator produces a theory and a single nested counterfactual of the following
structure:

1. o0 6> (o1 6> (· · · 6> (ok 6> ok+1)) . . .)) for an odd nesting depth;

2. o0 > (o1 6> (· · · 6> (ok 6> ok+1)) . . .)) for an even nesting depth.

The oi is a variable randomly selected from a set of o variables. The QBF generated
from a nested counterfactual with an odd nesting depth is in ΣP

k+2 and a QBF generated

from a nested counterfactual with an even nesting depth is in ΠP
k+2.

The associated theory is a set of n clauses with length m consisting of the literals chosen
from the same set as the variables in the nested counterfactuals. The literals are negated
with a probability of 0.5.

7.1.3 The Experiments

We present two different sets of benchmarks containing right nested counterfactuals. The
first set is a part of the set used by Zolda [96] to explore the impact of different prenexing

Nested Counterfactuals number of instances 10000

nesting depth 6
number of clauses 6–30
number of variables 3–22

Encoding in QBF

number of clauses average 2293
number of variables average 1106

Table 7.1: Information about the benchmarks by Zolda.
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strategies. Some information about the 1000 formulas contained in this set is given in
Table 7.1. It is important to note that this set contains very easy formulas as well as very
hard formulas even though the nesting depth of the underlying nested counterfactuals is
restricted to 6. The reason why some formulas cannot be solved within the time bounds is
due to wide range of the number of chosen variables and on the number of clauses. Most
formulas can be solved within milliseconds, whereas others have to be abandoned due to
the timeout.

solver strategy timeouts average runtimes median 75% 80%

qpro - 445 6.67 0.03 0.16 0.43

QuBE−BJ ∃↑∀↓ 447 5.64 0.04 0.19 0.36
∃↓∀↑ 642 7.33 0.03 0.17 0.35

semprop ∃↓∀↑ 2189 24.45 0.08 31.84 100
↑ 2270 25.34 0.08 47.77 100

Table 7.2: Results of the benchmark set by Zolda.

As this test was performed on a cluster of older machines (namely Intel Pentium with 256
MB of RAM), it was not possible to run all of the presented solvers as the available memory
was insufficient and the most time was spent by writing to the swap space. Therefore,
we excluded sKizzo and quantor. The solver qpro performs very well even if only small
memory resources are available. If the formula is in memory and the data structure is
built up, almost no memory is allocated during the solving process any more.

Table 7.2 shows the number of timeouts and the average runtime of the solvers qpro,
QuBE−BJ, and semprop. Zolda [96] ran semprop and QuBE−BJ on each formula to test
the fourteen different shifting strategies. We show only the best two shifting strategies
for the two normal form solvers. Without going into details, ∃↑∀↓ denotes the strategy
where the existential quantifiers are shifted as leftmost in the prefix as possible whereas
the universal quantifiers are shifted as rightmost as possible. The strategy ∃↓∀↑ is defined
dually and when ↑ is applied, all quantifiers are shifted as leftmost as possible (i.e., at the
highest possible position in the linearised quantifier dependency tree).

Our solver qpro is the solver which solved the most formulas, i.e., with the smallest
number of timeouts. Nevertheless, qpro is not the solver with the best average runtime.
This is QuBE−BJ with the strategy ∃↑∀↓. To analyse the behaviour in more detail, we
take a look at the quantiles to find out at which time QuBE−BJ outperforms qpro. A
quantile indicates at which time a certain percentage of the formulas has been solved.
E.g., the 50% quantile (also called median) is the time when half of the formulas has been
solved. The value of the median is almost the same for both solver (the 0.01 – 0.03 second
difference is neglectable due to inprecisions of the CPU clock in the area of milliseconds).
At the 75% quantile, both solvers still perform equally well but the point where QuBE−BJ

shakes off qpro is around the 80% quantile. This indicates that there are a few formulas
which both solvers can hardly solve anymore. These are the formulas which influence the
average runtime such that QuBE−BJ is better than qpro even though qpro is able to solve
more formulas.

Interestingly, the second best shifting strategy for QuBE−BJ increases the number of
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formulas which could not be solved by about two hundred. The average solving time is
increased by about two seconds. But the increase of average runtime is only caused by
very few formulas — if we take a look at the 80% quantile, we see that the two strategies
are almost equally good at this point.

The solver semprop is far behind. It is not able to solve about one quarter of the formulas
and this also can be seen in the average runtime. The choice of a different shifting strategy
influences the runtimes minimal. The other two solvers are capable to solve 80% of the
formals within less than a second whereas the 80% quantile value for semprop is already
the timeout.

Nested Counterfactuals number of instances 250

true 60%
false 40%

number of variables 8
number of clauses 20
clause size 3
nesting depth 2 – 6
instances per nesting depth 50

Encoding in QBF

number of variables nesting depth
2 183
3 245
4 309
5 375
6 433

number of variables after NFT nesting depth
2 464
3 600
4 786
5 934
6 1132

Table 7.3: Information about the second NCF benchmark set.

The second set of nested counterfactuals has been chosen very differently. The clause
size and the number of variables are fixed but the nesting depth of the counterfactuals
ranges from 2 to 6 (see Table 7.3). Therefore, the resulting QBFs have a quantifier depth
ranging from 4 to 8. The parameters have been chosen to create hard formulas for normal
form solvers and to test how qpro behaves in this case.

Table 7.4 shows the number of timeouts and the average runtimes for each solver. This
time we only include the outcome for the best strategy for each solver. And again, we
want to emphasise that qpro does not need the preprocessing of the formula (i.e., it is not
necessary to select any shifting strategy).

For this benchmark set, qpro is clearly the winner. Our solver qpro is able to solve all
formulas whereas the others have enormous problems with the increasing quantifier depth.
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number of timeouts average runtimes (in sec.)

qpro QuBE−BJ semprop sKizzo quantor qpro QuBE−BJ semprop sKizzo quantor

∃↑∀↓ ↑ ∃↓∀↑ ∃↓∀↑ ∃↑∀↓ ↑ ∃↓∀↑ ∃↓∀↑

4 0 1 8 9 31 0.41 5.10 39.39 22.30 86.27
5 0 3 10 13 30 1.06 9.35 28.69 32.72 88.62
6 0 4 34 26 42 2.06 11.66 69.01 57.20 82.87
7 0 8 32 28 41 2.34 20.45 63.34 60.06 82.87
8 0 12 45 38 41 6.81 32.08 79.72 78.55 90.47

Table 7.4: Results of the second NCF benchmark set.

The ”expand and resolve” solver quantor is the only solver which cannot deal with those
formulas in any depth. In the tests it could be observed that quantor solves a formula
either within the first few seconds or never within the timeout.

But also the other solvers have their problems with these formulas. Because the com-
plex quantifier dependency tree of nested counterfactuals allows for many ways to obtain
the prefix and due to the complex formula structure, qpro benefits enormously from the
omission of the normal form transformation. Finally, Figure 7.1 illustrates the behaviour
of the solvers graphically.
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Figure 7.1: Runtimes for nested counterfactuals.
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7.2 Correspondence Checking in Answer-Set Programming

Logic programming under the answer-set semantics (ASP) [44] represents an important
and significant paradigm for encoding and solving a wide range of problems in AI like
planning, diagnosis, inheritance reasoning, etc. (for an overview see [43]). A very relevant
issue in answer-set programming consists in supporting the check of the equivalence of two
different programs which should encode the same problem. In [76], we presented a tool to
reduce the problem of correspondence checking to the satisfiability problem of QBFs.

In this section, we provide a short introduction of answer-set programming, introduce
some notions of equivalence and give an overview about the encoding.

Definition 7.2.1 (Propositional Disjunctive Logic Program)
A propositional disjunctive logic program (DLP) is a finite set of rules of the form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an,

n≥m≥ l≥ 0, where all ai are propositional atoms from some fixed universe U and not
denotes default negation. Rules of the form a ← are called facts and are also identified
by the atom a, itself. If all atoms occurring in a program P are from a given set A ⊆ U
of atoms, we say that P is a program over A.

A rule r of the form a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an is said to be true
under an interpretation I, symbolically I |= r, iff {a1, . . . , al} ∩ I 6= ∅, whenever it holds
that {al+1, . . . , am} ⊆ I and {am+1, . . . , an} ∩ I = ∅. If I |= r holds, then I is also said
to be a model of r. An interpretation I is a model of a program P iff I |= r, for all r ∈ P .

Following Gelfond and Lifschitz [44], an interpretation I is an answer set of a program
P iff it is a minimal model of the reduct P I , resulting from P by

• deleting all rules containing default negated atoms not a such that a ∈ I; and

• deleting all default negated atoms in the remaining rules.

The collection of all answer sets of a program P is denoted by AS(P ).

Definition 7.2.2 (Notions of Equivalences)
Two programs, P and Q, are ordinarily equivalent iff AS(P ) = AS(Q). P and Q are
strongly equivalent iff, for any program R, AS(P ∪R) = AS(Q ∪R).

In abstracting from these equivalence notions, Eiter et al. [40] introduce the notion of
a correspondence problem which allows to specify, on the one hand, a context, i.e., a class
of programs used to be added to the programs under consideration and, on the other
hand, the relation that has to hold between the collections of answer sets of the extended
programs. Following Eiter et al. [40], we focus here on correspondence problems where the
context is parametrised in terms of alphabets and the comparison relation is a projection
of the standard subset or set-equality relation.
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Definition 7.2.3 (Inclusion and Equivalence Problems)
Let U denote a universe. A correspondence problem, Π over U is a quadruple of form
(P,Q,PA, ρB), where P,Q ∈ PU . The sets A,B ⊆ U contain atoms.

By ρB we denote either ⊆B or =B, which are defined as follows: for any sets S,S ′, S ⊆B S
′

iff S|B ⊆ S
′|B, and S =B S

′ iff S|B = S ′|B, where S|B = {I ∩B | I ∈ S}.
We say that Π holds iff, for all R ∈ PA, (AS(P ∪ R),AS(Q ∪ R)) ∈ ρB. We call Π an
equivalence problem if ρB is given by =B, and an inclusion problem if ρB is given by ⊆B,
for some B ⊆ U .

Note that (P,Q,PA,=B) holds iff (P,Q,PA,⊆B) and (Q,P,PA,⊆B) jointly hold.

Theorem 7.2.1 (Complexity of Correspondence Checking)
Given programs P and Q, sets of atoms A and B, and ρ ∈ {⊆B,=B}, deciding whether a
correspondence problem (P,Q,PA, ρ) holds is:

1. Πp
4-complete, in general;

2. Πp
3-complete, for A = ∅;

3. Πp
2-complete, for B = U ;

4. coNP-complete for A = U .

While Case 1 provides the result in the general setting, for the other cases we have the
following: Case 2 amounts to ordinary equivalence with projection, i.e., the answer sets
of two programs relative to a specified set B of atoms are compared. Case 3 amounts to
strong equivalence relative to A and includes, as a special case, viz. for A = ∅, ordinary
equivalence. Finally, Case 4 includes strong equivalence (for B = U) as well as strong
equivalence with projection.

The Πp
4-hardness result shows that, in general, checking the correspondence of two

programs cannot (presumably) be efficiently encoded in terms of ASP, which has its basic
reasoning tasks located at the second level of the polynomial hierarchy (i.e., they are
contained in Σp

2 or Πp
2).

7.2.1 The Experiments

In our experiments, we consider two different reductions from inclusion problems to QBFs,
S[·] and T[·], where T[·] can be seen as an explicit optimisation of S[·]. Recall that equiv-
alence problems can be decided by the composition of two inclusion problems. Thus, a
composed encoding for equivalence problems is easily obtained via a conjunction of two
particular instantiations of S[·] (or T[·]). The QBF encodings are described in [73].

For our tests, we created 1000 of small QBFs which can be solved very easily by any
of the QBF solvers. Then we encoded these QBFs in terms of answer-set correspondence
checks. We translated those encodings back to QBFs which resulted in large and not
so easily solvable formulas. For this, we used the tool cc> developed by Oetsch at our
departement [75]. This approach to generate test formulas might seem a little bit com-
plicated but now we know for sure whether a complex QBF evaluates to true or to false
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problem instances 1000

true 465
false 535

number of atoms in P, Q 40
rules in program P 620
rules in program Q 280
atoms in set A 16
atoms in set B 16

encoding S

atoms in corresponding QBF 200
after NFT 2851

clauses after NFT average 6577
minimum 6391
maximum 6631

encoding T

atoms in corresponding QBF 152
after NFT 2555

clauses after NFT average 6217
minimum 6031
maximum 6271

Table 7.5: Information about the correspondence-check encodings.

which is not always given. By evaluating the original, simple QBF, we can verify the
output of the solvers. Information about the formulas is shown in Table 7.5.

Table 7.6 shows the number of timeouts and the average runtimes ordered by the dif-
ferent shifting strategies (two are possible) and the different encodings. Figures 7.2 and
7.3 illustrate the average runtimes as a diagrams. As quantor could not deal with these
formulas, we did not include this solver in the pictures.

This test set illustrates the enormous influence of the shifting strategy. With the correct
shifting strategy and the optimised encoding, the solvers suddenly perform very well. If
the wrong strategy with the unoptimised encoding is chosen then all solvers have the
biggest problems with the formulas. But not so qpro. Again we emphasise that our solver

number of timeouts average runtimes (in sec.)

qpro QuBE−BJ semprop sKizzo quantor qpro QuBE−BJ semprop sKizzo quantor

S↑ – 842 117 527 1000 – 87.34 81.82 74.67 100
S↓ – 90 6 0 1000 – 43.21 27.60 2.67 100
T↑ – 43 38 0 1000 – 20.85 54.86 2.97 100
T↓ – 0 0 0 1000 – 9.26 16.90 1.13 100
S 29 – – – – 33.37 – – – –
T 0 – – – – 17.87 – – – –

Table 7.6: Results from answer-set correspondence checking.
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Figure 7.2: Runtimes from answer-set correspondence checking for true instances.

Figure 7.3: Runtimes from answer-set correspondence checking for false instances.

is independent of any shifting strategy. But more remarkable is the fact, that qpro is not
as depended as the other solvers on the optimisations performed during the encoding.
Overall, qpro’s performance is competitive with the other solvers especially considering
the low number of quantifier blocks.

We also considered a second benchmark set of encodings from answer set correspondence
checking problems. Based on randomly generated (2, ∃)-QBFs according to Model A [46]
the reduction of every formula following Eiter and Gottlob [38] yields a program which
posses an answer set iff the original QBF is valid. To simulate a ”sloppy” programmer
a randomly selected line of each program is extinguished and the ”buggy” program is
compared to the ”correct” one in terms of ordinary equivalence.

Figure 7.4 shows the average running times parameterised according to the number of
variables of the original input QBF which ranges from 10 to 24. For each data point 100
instances where generated (details about the benchmarks can be found in [78]). Due to
the fact that the underlying QBFs are set on the second level of the polynomial hierarchy,
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Figure 7.4: Runtimes of answer-set correspondence checks.

there is only one prenexing strategy.

Interestingly, qpro performs best although the linear quantifier tree. This is due to the
complex formula structure on the one side, on the other side it is because of the dual
implementation of DDB for false and for true subproblems. The separated runtimes are
shown in the Figures 7.5 and 7.6. It is interesting to observe the different behaviours of the
solvers depending on the truth value of the formula. For example, QuBE−BJ and semprop

are absolutely not able to handle the true instances of this benchmark set in contrast to
quantor which even outperforms sKizzo in this case. On the other hand, quantor performs
not so well on the false instances in contrast to QuBE−BJ.

qpro QuBE−BJ semprop sKizzo quantor

10 0.01 0.29 56.00 12.27 1.15
12 0.02 1.49 65.06 18.24 4.01
14 0.07 5.35 69.35 33.17 17.73
16 0.23 25.48 86.53 100 83.59
18 0.50 46.10 65.74 100 100
20 1.95 100 90.34 100 100
22 6.11 100 86.95 100 100
24 14.81 100 92.43 100 100

Figure 7.5: Runtimes for correspondence checks which evaluate to F.
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qpro QuBE−BJ semprop sKizzo quantor

10 0.05 100 100 14.71 2.37
12 0.17 100 100 18.45 10.05
14 0.51 100 100 48.70 35.38
16 1.54 100 100 100 100
18 4.85 100 100 100 100
20 15.07 100 100 100 100
22 46.23 100 100 100 100
24 100 100 100 100 100

Figure 7.6: Runtimes for correspondence checks which evaluate to T.

7.3 Modal Formulas by Pan and Vardi

The benchmark set due to Pan and Vardi [80, 81] contains encodings of the modal logic K.
This modal logic extends propositional logic by the two unary propositional operators 2

and 3. The semantics of formulas in K is given by a Kripke structure K = 〈D,W,R,L〉.
The letter D denotes a non-empty set, the domain W is the set of possible worlds, R ⊆W 2

is the accessibility relation on worlds and the function L : W → 2D maps every world to
a subset of the domain, i.e., L(w) is interpreted as the domain of world w (w ∈W ).

A Kripke structure K = 〈D,W,R,L〉 satisfies a formula µ (written as K,w |= µ) if, for
every w ∈W ,

• K,w |= 2µ if for all (w, v) ∈ R,K, v |= µ holds;

• K,w |= 3µ if for some (w, v) ∈ R,K, v |= µ holds.

The semantics of the other connectives is the same as in propositional logic. The problem
of checking the satisfiability of formulas from the modal logic K is PSPACE-complete.

In [80], Pan and Vardi provide a translation of K to QBF. They use their BDD-based
modal solver KBDD to generate models which they encode in terms of QBFs.

Even though the structure of the resulting QBFs is quite complex with respect to
nestings of conjunctions and disjunctions, the quantifier dependency tree is linear. This
means that there exists only one single quantifier prefix for each formula and that all
different prenexing strategies yield this prefix. Considering this property of the encoding,
it will be very interesting to observe the behavior of qpro with respect to the other solvers
to watch how qpro handels formulas with a linear quantifier dependency tree.

7.3.1 The Experiments

The benchmark set consists of 18 scalable classes from modal logics K constructed by
Heuerding and Schwendimann [58]. The modal properties are nested to construct succes-
sively harder formulas. Each class consists of 21 formulas. The resulting QBFs are also
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grouped in the same classes. The names of the formula classes indicate the truth values
of its formulas: the formulas contained in classes whose names start with an odd number
evaluate to true, the other formulas evaluate to false. The quantifier depth of the formulas
scales linearly within a class and the formulas successively get harder.

Table 7.7 shows the the number of timeouts as well as the average runtime for each
solver grouped by the different formula classes. Obviously, some sets are very easy for all
solvers whereas others have an average runtime which is quite close to the timeout (e.g.,
the average runtime of set 17-* for quantor is 82.57 seconds). For the solver quantor, the
whole benchmark set is very difficult to handle. There are only two classes of which all its
members could be solved without a timeout.

The solvers QuBE−BJ and semprop perform best on those formulas in most cases. If the
formula class is a class easy to solve — like the classes 05-* to 10-* — qpro is among the
best solvers. As soon as the classes contain harder formulas which cannot be solved within
milliseconds, qpro is thrown back but still the number of timeouts remains moderate.

number of timeouts average runtimes (in sec.)

qpro QuBE−BJ semprop sKizzo quantor qpro QuBE−BJ semprop sKizzo quantor

01-* 10 7 7 0 18 52.34 37.43 38.29 12.65 67.90
02-* 2 0 0 0 18 23.90 6.92 0.08 0.89 71.67
03-* 14 10 14 17 17 70.30 52.92 68.27 80.72 80.69
04-* 9 8 0 0 17 45.06 45.22 0.01 0.18 79.79
05-* 0 0 0 7 13 0.01 0.00 0.11 37.25 63.09
06-* 0 0 0 0 12 0.00 0.00 0.32 0.29 54.90
07-* 0 0 0 0 8 0.00 0.00 0.00 0.17 43.10
08-* 0 0 0 4 8 0.00 0.00 0.01 0.12 40.24
09-* 0 0 0 1 2 0.00 0.00 0.01 2.33 15.09
10-* 0 0 0 0 0 0.00 0.00 0.01 0.00 0.07
11-* 9 8 0 0 16 45.09 43.63 0.14 0.22 76.02
12-* 6 6 0 0 15 34.28 32.67 0.07 0.21 72.10
13-* 0 4 0 0 1 0.22 26.74 0.02 1.00 6.79
14-* 13 13 12 10 11 72.26 64.57 58.89 50.13 56.22
15-* 0 0 0 0 0 3.90 0.01 0.39 0.04 0.05
16-* 0 0 0 0 19 0.27 0.28 0.01 0.57 73.96
17-* 16 0 12 4 20 78.74 0.72 61.29 47.83 82.57
18-* 13 0 0 6 18 65.63 0.26 0.04 41.46 79.95

Table 7.7: Number of solved formulas and average runtimes of modal Logic K.

To conclude, our solver qpro performs very well considering the fact that the quantifier
tree of the non-prenex formulas are simply linear lists and that no information about
the structure of the quantifier dependencies is lost during prenexing. The shifting only
increases the scope of the quantifiers but in this case the impact is minimal.
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7.4 Summary

We tested our solver qpro on thousands of formulas from three different sets of benchmarks.
On the one hand, we wanted to test the correctness of our solver empirically, on the other
hand, we wanted to know how qpro performs compared to current PCNF solvers.

The results of the tests are very encouraging. They indicate clearly that not only the
prenexing but also the transformation to CNF has an enormous impact on the runtimes
of the solvers. The tests strongly confirm our assumption that the omission of the normal
form transformation can positively influence the solving process. We could show that our
implementation is very efficient and even though we have to build more complex data
structures than the other solvers, the more powerful optimisation techniques compensate
the overhead due to the more complex structure in many cases.
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Chapter 8

Conclusion

From a historical point of view, the most efficient and successful theorem provers and
solvers attacking the evaluation problems of various formalisms are those, which rely on
(prenex) clausal normal form. This holds e.g., for propositional, as well as for the more
expressive classical first-order logic. Following this approach, many efficient QBF solvers
have been implemented during the last decade. Although QBFs are still far from gaining
the attention propositional logic is experiencing at the moment for large scale industrial
domains, much effort is spent on researching QBFs. Those formulas present themselves
as promising host language for the efficient encoding of problems located at some level of
the polynomial hierarchy which includes many reasoning tasks from artificial intelligence
and knowledge representation.

Usually, real world instances of QBFs are not directly available in prenex conjunctive
normal form (PCNF). Before they can be passed on to the solvers for evaluation, they
have to be transformed to an equivalent formula of the demanded structure which is easier
to handle and to process. Naturally, this simplification comes at a price. Not only is the
formula structure disrupted and information that could have been used for the solving
process is lost, but the size of the formula and the number of propositional variables
increase as well. Further, the transformation to PCNF is not deterministic in general.

In previous work [35, 96], it was empirically shown that all these arguments against
PCNF transformation are well founded in practice and that the PCNF transformation has
an enormous influence on the behaviour of the utilised solver. We were able to confirm
and extend the results in this thesis. Consequently, we developed a solver independent of
the preprocessing tools which transform the input formulas to PCNF.

In this thesis, we presented the non-prenex, non-conjunctive normalform solver qpro,
which we completely developed from scratch. We first proposed two decision procedures
to evaluate quantified Boolean formulas: (i) the connection calculus and (ii) a generalisa-
tion of the DPLL algorithm. The connection calculus is a proof-theoretical characterisation
of the validity of QBFs, whereas DPLL is a depth-first search method on the formula tree
used in most implementations of current state-of-the-art solvers. The special feature of
our variant of DPLL, on which we focused, is that we abandoned the assumption that the
formula to solve is available in PCNF. We only imposed one restriction on the formula
structure: negation signs are only allowed to appear in front of propositional variables
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which is far less restrictive. We could show that, in contrast to prenexing and the trans-
formation to conjunctive normal form, the transformation to the negation normal form is
harmless, but very advantageous for the implementation.

We analysed DPLL and proved important properties like soundness and correctness using
a sequent calculus style notation. Then we refined the basic algorithm and included
optimisation techniques like dependency-directed backtracking to prune the search space.

Finally, we presented our implementation qpro and compared our solver to publicly
available state-of-the-art systems in numerous tests. We included formulas from different
areas like reasoning on nested counterfactuals, encodings of a modal logic and answer-
set correspondence checks, in our set of benchmarks. The results were very encouraging:
qpro performed very competitive in comparison to well established systems. As soon
as the structure of the formulas of the test sets became more complicated, qpro easily
outperformed the other solvers and was able to find solutions to formulas, which were
out of scope for any available solver until now. Even for formulas with a structure close
to PCNF and with few quantifier alternations, qpro provided solutions of formulas which
have never been solved.

Nevertheless, many improvements and extensions are possible, like the refinement of
the data structures on the implementational side and the integration of further pruning
techniques like more specialised kinds of learning. It would also be very interesting to
compare qpro with solvers based on BDDs, which are not available at the moment, and
then maybe consider an integration of BDD techniques into DPLL.

To conclude, non-normal form solvers will gain a lot of importance in the future and
that the solver development will follow this direction.
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qpro’s Input Format

As almost all current solvers are only able to process formulas in normal form, the quasi
standard input syntax is — not surprisingly — restricted to formulas in PCNF. This
format, called qdimacs [2], allows for the representation of a QBF in ASCII. One file
which contains exactly one QBF is divided into three sections:

• the preamble,

• the quantifier prefix, and

• matrix.

The preamble contains arbitrary many, human readable comments which are ignored by
the solver followed by exactly one problem line of the form

p cnf VARIABLES CLAUSES

In the expression above, VARIABLES and CLAUSES are integers, where VARIABLES stands
for the maximal numbers of variables occurring in the formula and accordingly, CLAUSES
denotes the number of the formula’s clauses.

Information about the quantifier blocks is encoded in the quantifier prefix. Every line
of the prefix starts either with an ”e” (for an existential quantifier) or an ”a” (for an
universal quantifier) or an ”r” (for an random quantifier) which indicates the type of
quantification. The letter is followed by a sequence of variables separated by a space and
terminated by ”0”. The variables are represented as positive integers between 1 and the
number VARIABLES provided in the problem line. Note that each number may occur only
once in the prefix.

The last section — the matrix — contains the clauses (one clause per line). Every line
contains a sequence of integers, now positive as well as negative ones. Positive integers
stand for positive literals, whereas negative integers represent negative literals.

For our purposes qdimacs is insufficient as we need a format which is general enough
to represent QBFs in NNF. The input syntax used by qpro is given in Figure A.1.
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qbf → (comment)* problemLine formula

comment → c string \n

problemLine → QBF posInteger \n

formula → qformula \n |
cformula \n |
dformula \n

qformula → q \n
(aQBlock | eQBlock)
(dformula | cformula)
/q \n

aQBlock → aQuant (eQuant aQuant )* (eQuant)?
eQBlock → eQuant (aQuant eQuant )* (aQuant)?

aQuant → a posInteger posIntSeq
eQuant → e posInteger posIntSeq

dformula → d \n
posIntSeq
posIntSeq
(qformula | cformula)*
/d \n

cformula → c \n
posIntSeq
posIntSeq
(qformula | dformula)*
/c \n

posIntSeq → posInteger posIntSeq | \n

Figure A.1: The input syntax for qpro.
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Our format is not very different from qdimacs. In fact, it can be seen as a generalisation
of it. The main difference is that qpro’s format has only two sections instead of three,
namely the preamble and the formula. There is no special area for the quantifier blocks
as they are included directly in the formula.

According to our format, a QBF file may start with human-readable comments which
begin with ”c” and which are ignored by qpro. The line starting with QBF which is followed
by a positive integer is the first line of real relevance. The number indicates how many
variables occur in the formula. If the file respects the format then it can be assumed that
the names of the variables are numbers between 1 and the given integer.

In the next line the actual formula starts. It can either be a conjunction, a disjunction or
a quantified formula. We consider conjunction and disjunction as n-ary connectives and we
do not allow that a direct subformula of a conjunction is a conjunction and that the direct
subformula of a disjunction is a disjunction. The same holds for a QBF with a quantifier as
the main connective: it may contain an arbitrary number of alternating quantifier blocks,
but it is not allowed to have a direct subformula with starts with a quantifier. We denote
a formula with a quantifier as main connective a qformula, accordingly disjunction and
conjunction are called dformula and cformula.

A qformula starts with a line containing the single letter ”q” and ending with a line
”/q”. For the disjunction (resp. for the conjunction) the ”q” is exchanged by a ”d” (resp.
a ”c”).

The lines after the ”q” contain the quantifications. They start either with an ”a” or an
”e” indicating whether quantifier is universal (”a”) or existential (”e”). A line starting
with ”e” may not be followed by a line starting with an ”a” and vice versa. The letters at
the beginning of the line are followed by an ordered list of positive integers - the variable
names which are separated by blanks. So the ”q” and the closing ”/q” define the scope
of a variable. After the alternating quantifier blocks a cformula or a dformula follows.

The conjunctions and disjunctions, i.e., cformulas and dformulas, are constructed sim-
ilarly: the first two lines contain ordered lists of positive integers. In the first line all
positive literals are collected whereas we find all the negative literals in the second one.
If a formula contains no positive or negative integers, the lines remain blank. Then arbi-
trary many subformulas (which are not literals) follow before the formula is closed either
by ”/c” or by ”/d”.

By this means we are able to describe any formula in NNF. An example is given in
Figure A.2.
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QBF

10

q

a 2

e 3 4

c

4

q

a 5 6

d

c

5

6

/c

q

e 7 8 9 10

c

7 8 9 10

/c

/q

/d

/q

/c

/q

QBF

Figure A.2: The QBF ∀a2∃e2e4(e4 ∧ ∀a5a6((a5 ∧ ¬a6) ∨ ∃e7e8e9e10(e7 ∧ e8 ∧ e9 ∧ e10))) in
qpro’s input format.
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