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Kurzfassung

Verteilte Computeranwendungen ermöglichen es heutzutage, mit Partnern, die
sich an unterschiedlichen Orten, in unterschiedlichen Ländern und sogar auf
unterschiedlichen Kontinenten aufhalten, zusammenzuarbeiten und Geschäfte
zu machen. Derartige Computerprogramme haben spezielle Anforderungen, wie
beispielsweise die Organisation der im System eingebundenen Geräte, Abstrakti-
on deren Unterschiede, Koordination der involvierten Prozesse und vieles mehr.
Dies unterscheidet ihre Entwicklung von der lokaler Computeranwendungen,
und trotz existierender Software-Engineering-Ansätze ist es immer noch eine
groÿe Herausforderung, die Budgetpläne und Entwicklungszeiten verteilter Soft-
wareprojekte einzuhalten.
Um dies zu verbessern, muss die E�zienz der Entwicklung verteilter Anwendun-
gen gesteigert werden, indem die Komplexität des Entwicklungsprozesses redu-
ziert wird. Einer der wichtigsten Mechanismen zur Bewältigung von Komplexi-
tät ist Abstraktion, und so benutzt man Middleware-Systeme, um die Details
verteilter Systeme zu abstrahieren. Ein besonders bemerkenswertes Middleware-
Konzept ist das Modell des Space-Based Computing, das eine natürliche daten-
bezogene Abstraktion des zugrunde liegenden verteilten Systems bietet. Aktuel-
le Implementierungen dieses Modells bieten Programmierschnittstellen auf dem
neuesten Stand der Technik, die es Entwicklern erlauben, die Kommunikation
und Koordination verteilter Prozesse auf objektorientierte Weise über einen vir-
tuellen Datenraum abzuwickeln. Allerdings wirken genau diese Schnittstellen
dem eigentlichen Ziel der Reduktion von Komplexität durch Abstraktion ent-
gegen, da sie die Entwickler zwingen, ihre verteilten Ziele und Absichten auf
imperative Anweisungen an das Middleware-System abzubilden.
Diese Dissertation präsentiert eine neuartige Methode zur deklarativen Formu-
lierung der Verteilungsaspekte Space-basierter Anwendungen und macht somit
die explizite Formulierung imperativer Algorithmen zu diesem Zweck unnötig.
Durch den Einsatz des deklarativen Mechanismus zur Quelltext-Attributierung,
den die moderne objektorientierte Anwendungsplattform .NET bietet, erlaubt
sie das direkte Angeben von Verteilungszielen im Quelltext; die Aufgabe des
Interpretierens und Erreichens dieser Ziele wird einer entkoppelten Umgebung
überlassen. Dies ermöglicht es Entwicklern, besser dokumentierte und einfacher
verständliche Space-basierte verteilte Software in kürzerer Zeit und mit besserer
Codequalität zu erstellen, als dies bisher möglich war.
Um dies zu realisieren greift die Arbeit Konzepte der aspektorientierten Pro-
grammierung auf. Sie betrachtet die Anforderungen der Verteilung als cross-
cutting Concerns and benutzt aspektorientierte Konzepte wie Aspekte, Join-

i



ii Kurzfassung

Points und Pointcuts, um das Laufzeitverhalten, das den deklarativen Zielbe-
schreibungen zugrunde liegt, zu implementieren. Sie präsentiert eine einfach
einsetzbare und leichtgewichtige aspektorientierte Programmierumgebung für
.NET, die es erlaubt, die Anforderungen Space-basierter Anwendungen sauber
als modulare, wiederverwendbare Einheiten zu kapseln und in unterschiedlichs-
ten Szenarien einzusetzen.
Auf Basis des deklarativen Modells und des aspektorientierten Rahmenwerks
de�niert sie einen Katalog häu�g im Bereich von Space-Based Computing auf-
tretender Anforderungen und stellt aspektorientierte Implementierungen davon
in Form einer deklarativ anwendbaren Bibliothek zur Verfügung. Durch Analyse
und Auswertung der Implementierungen und durch Vergleich mit traditionellen
Lösungen dieser Anforderungen kann gezeigt werden, dass dieser neuartige An-
satz zu Space-Based Computing viele Vorteile bringt; er führt zu saubereren und
besser gekapselten Lösungen, reduziertem Entwicklungsaufwand und qualitativ
höherwertigem Quelltext.



Abstract

In the modern electronic world, distributed computer applications allow people
to perform collaborative work and conduct business transactions with partners
residing in di�erent places, countries, and even continents. Such applications
have distinguishing requirements, including the organization of the devices in-
volved in the system, abstraction of their di�erences, coordination of the pro-
cesses involved, and many more. This makes their development di�erent from
that of local applications, and despite existing software engineering and de-
velopment approaches, it is still a big challenge to keep planned budget and
development time frames when carrying out a distributed software project.
In order to improve on that, distributed application development must be made
more e�cient by reducing the complexity of the development process. One of the
most important ways of tackling complexity is abstraction, and so middleware
layers are used in order to abstract the details of distributed systems. A par-
ticularly remarkable concept for middleware layers is the model of space-based
computing, which provides a natural data-centered abstraction of the underlying
distributed system. Current implementations of this model o�er state-of-the-
art application programming interfaces, allowing developers to use a virtual
data space for communication and coordination of distributed processes in an
object-oriented way. However, exactly these interfaces e�ectively counteract the
original goal of reducing complexity through abstraction, because they force de-
velopers to map their distributional goals and intents to imperative instructions
to the middleware.
This thesis proposes a novel way of declaratively stating the distributional in-
tents of space-based applications, replacing the need to explicitly formulate
imperative algorithms. By employing the declarative source code attribution
mechanism o�ered by the modern object-oriented .NET application platform,
it enables programmers to directly specify their goals in the source code, leaving
the tasks of interpreting and �nding a way to achieve them to a decoupled envi-
ronment. This allows developers to create better documented and more easily
understandable space-based distributed software in less time and with better
code quality features than before.
To make this possible, the thesis adopts notions from aspect-oriented program-
ming. It regards the distributional intentions as cross-cutting concerns and
employs the aspect-oriented concepts of aspects, join points, and pointcuts in
order to implement the behavior backing the declarative goal speci�cations. It
presents an easily adoptable light-weight aspect-oriented programming environ-
ment for .NET, which e�ectively allows to cleanly encapsulate and modularize
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the requirements of space-based applications and to reuse them in many appli-
cation scenarios.
Based on the declarative model and the aspect-oriented framework, it de�nes a
catalog of concerns common to space-based computing and gives aspect-oriented
implementations of them in the form of a declaratively applicable distributed
concern library. By means of analyzing and evaluating the implementations and
comparing them to traditional ways of solving these concerns, it can be shown
that this novel approach to space-based computing is highly advantageous; it
leads to cleaner and more encapsulated solutions, reduced e�ort in development,
and higher quality source code.
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Chapter 1

Introduction

�[The major cause of the software crisis is] that the machines have become
several orders of magnitude more powerful! To put it quite bluntly: as
long as there were no machines, programming was no problem at all; when
we had a few weak computers, programming became a mild problem, and
now we have gigantic computers, programming has become an equally
gigantic problem.� Edsger Dijkstra, �The Humble Programmer�

Software crisis is a term which emerged at the end of the 1960s. For the �rst
time, software costs were higher than those of the hardware; an unanticipated
development, which resulted in the �rst big software project failures. In succes-
sion, a large number of software projects had to be canceled, many could only be
completed with reduced functionality or exceeded time and budget. To remedy
this situation, the concept of software engineering [Som01] was introduced�
software development with applied principles of engineering was meant to end
the crisis.
Nowadays, the term �software crisis� isn't used widely any more, but modern
software development still can hardly be called e�ective. Starting in 1994, The
Standish Group, a research and consulting facility specializing on IT project
success rates, has published annual �chaos reports� after surveying a number of
software projects. In its last publicly available report of the 3rd quarter of 2004
[Gro04], only 29% of the surveyed projects were successfully �nished within the
preestimated limits of cost and time. The remaining 71% were either considered
challenged��nished only with cutbacks in functionality or exceeded budgets
and time frames�or failed at all, as illustrated in �gure 1.1; an unsatisfactory
situation.
In 1986, Frederick P. Brooks, Jr., predicted in his article �No Silver Bullet�
[FPB87] that no silver bullet, no easy cure for the software crisis would be
found in the following years. Now, 20 years later, the disappointing success rate
of software projects proves him right. Brooks accredited the software crisis'
symptoms to two di�erent kinds of complexity: essential di�culties, i.e. com-
plexity which is inherent to the problem itself and which cannot be removed,
and accidental di�culties, i.e. complexity imposed on the programmer because
of the wrong or insu�cient tools and paradigms.

1



2 CHAPTER 1. INTRODUCTION

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994 2001 2004 (Q3)

Failed

Challenged

Succeeded

Figure 1.1: Success rate with software projects, from: 2004 Third Quarter Chaos
Research Report, The Standish Group, 2004

By de�nition, essential complexity must be coped with. This leaves acciden-
tal complexity as the only way to e�ective software development and improved
project success rates, and indeed this is the topic of this thesis: to give the pro-
grammer better, more suitable tools for his tasks, reduce accidental complexity,
and allow for more e�ective software development.

1.1 Distributed Application Development
A distributed computing system (DCS) interconnects many autonomous
computers to satisfy the information processing needs of modern enter-
prises. [...] Advances in coputer and communication technologies have
made possible DCSs of di�erent sizes, shapes and forms.

Amjad Umar, �Distributed Computing�

You know you have one when the crash of a computer you've never heard
of stops you from getting any work done Leslie Lamport (supposedly)

This thesis concentrates on a special kind of software application development:
creation of distributed applications [TS01]. Distribution is a most important
issue in our modern electronic world: large information networks such as the
World Wide Web span the globe, technologies allowing business to be conducted
all over the world are available, and buzzwords like eBusiness, eCollaboration,
and Web 2.0 are setting the trend. With distributed users, distributed software
applications, and distributed hardware and devices, distribution is omnipresent.

Unfortunate to software engineering, the property of distribution is inherently
connected to complexity: distributed applications face requirements which au-
tomatically raise their essential complexity, examples of which include the fol-
lowing [TS01][CD00][eKN98]:
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Organization and communication: Di�erent devices involved in the net-
work need to be organized, and physical network connections and network
software components (such as routers) must be interfaced in order to make
communication between the computers possible. Common protocols need
to be devised, implemented, and accessed from the software components.

Heterogeneity: The devices in the network may vary in capabilities, hardware
con�guration, operating system, and installed software components. To
combine them into a uniform system, these di�erences need to be taken
into account. Even if the same application logic is to be implemented on
di�erent devices, code written for one platform might not be compatible
with another one, unless some kind of abstraction mechanism is used.

Coordination: The software components making up the distributed applica-
tion need to be coordinated. For example, if two components simultane-
ously access and modify the same data, a consistent state must be reached.
If one component needs the results of another one in order to perform a
task, they must be synchronized.

Security: For sensitive data, authentication and identi�cation must be used
to ensure con�dentiality of the information and to guarantee that only
authorized parties can modify it. In addition, the software must make sure
that data consistency and integrity is maintained and that eavesdropping
is prevented, for example by using strong encryption mechanisms.

Reliability: When a component breaks, no matter if it is hardware or software,
the system itself and the application it is running should be able to work
around the fault and keep running if possible. Reliability is achieved by
making hardware more robust and providing backup computers, but it is
also a property of distributed software.

Scalability: If the number of users of a distributed application gets higher
than previously anticipated, the application must be able to adapt to this
situation automatically�provided the hardware is capable of supporting
the higher number of users. Requiring additional hardware as the number
of clients rises is costly, so the software should ensure existing hardware is
used as e�ciently as possible, balancing the data processing load as well
as possible between the computers involved in the system.

Issues such as those imply raised essential complexity, which in turn leads to a
higher chance of failure for distributed application development. Therefore, it
is especially important to provide the developer team of a distributed applica-
tion with the right tools and mechanisms, keeping accidental complexity at a
minimum.
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1.2 Middleware and Network Abstractions
�The history has been a continuous evolution towards more and more
�exiblility of techniques and tools. My message is now that this request
or change has reached unprecedented levels of speed and we are moving
towards what I call the open world that changes in unpredictable and
unanticipated ways.� Carlo Ghezzi, at ETAPS'06

The �rst and most important step to minimizing accidental complexity for dis-
tributed applications is to provide an abstraction for the distributed system and
underlying network. Middleware layers [CD00] and similar network abstraction
technologies do this by providing a high-level networking model, hiding the
details of communication and heterogeneity. They provide services for coordi-
nation and security, and thus o�er the programmer a convenient way of dealing
with the essential complexity. By providing prede�ned networking protocols,
they can�to a certain extent�remove the burdens of reliability and scalability
issues from the application developer.
Good abstractions already exist. Space-based computing peer-to-peer technolo-
gies such as CORSO (Coordinated Shared Objects) [eK94] and XVSM (Ex-
tensible Virtual Shared Memory) [eKBM05][eKRJ05] combine the high-level
networking model of a distributed shared memory (the space [Gel85]) with so-
phisticated replication protocols, which provide reliability and scalability �out
of the box�. The space abstraction, which is further detailed in chapter 2, al-
lows a natural and data-centered way of communication, and its aforementioned
implementations provide high-level transaction and noti�cation services for co-
ordination.
These tools provided, the goal of this thesis is not to reinvent the wheel by
de�ning or discussing models of network abstraction. Instead, because of its
well-de�ned positive properties (detailed in chaper 2), the space-based com-
puting model and its CORSO and XVSM implementations are selected as a
base for the work, going one step further and enabling programmers to make
most e�cient and most e�ective use of these existing tools. Because XVSM
is currently being devised, most concrete implementations we provide will be
based on CORSO's application programming interfaces (APIs) and the services
it provides. Many of the results will however not be restricted to space-based
computing, and some will be applicable for non-distributed applications as well.

1.2.1 Specifying Intent, Not Implementation
�What does a high-level language accomplish? It frees a program from
much of its accidental complexity.�

Frederick P. Brooks, Jr., �No Silver Bullet�

When designing a distributed application, the services provided by the network
abstraction layer have to be interfaced by the application. For example, space-
based application components typically need to access objects in the shared
space, add new space objects, subscribe to events which notify of changes per-
formed by other components, and so on [eKN98]. For this, CORSO provides
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language bindings: programming interfaces for general-purpose programming
languages, which enable an application component to communicate with the
middleware layer. Figure 1.2 illustrates this concept: application code written
in Java, C++, or any .NET programming language (these bindings are currently
supported by CORSO) address middleware services by invoking functionality of
the language bindings. The language bindings in turn directly communicate
with the CORSO kernel. In the �gure, arrows represent direct and explicit
communication; for example, an application component programmer must ex-
plicitly invoke the features of the language binding.

C++/Java/.NET code Application component

CORSO

Language binding

Abstraction layer

Access space object Create space object Subscribe notification

Figure 1.2: Access to the CORSO middleware using language bindings

However, is explicit communication with the middleware layer always a desirable
way of implementing a distributed application? We believe not. In fact, we state
that an explicit interface to the networking technology actually raises accidental
complexity of an application, because it does not provide an optimal level of
abstraction to the programmer. We believe that the process of formulating
concerns of distribution in an imperative way, as it is necessary with explicit
imperative procedural or object-oriented middleware language bindings, is not
a natural way of expressing these concerns.
Instead, programmers should be provided a high-level language allowing them
to express their intentions in a declarative way rather than having to spec-
ify the exact implementation steps. As early as 1983, Barbara Liskov and
Robert Schei�er demonstrated linguistic support for distributed programming
in a special-purpose programming language called Argus [LS83] [Lis88]. Other
approaches followed, including the D language framework [LK97] developed by
Cristina Lopes and Gregor Kiczales at the Palo Alto Research Center. Figure
1.3 illustrates how a special-purpose programming language could be combined
with CORSO: the component is developed in the special-purpose programming
language; because the programming language provides declarative features for
distributional concerns, no direct and explicit communication is necessary be-
tween component code and middleware (no arrows are shown), resulting in more
decoupled and more abstracted code.

CORSO Abstraction layer

Application componentCode in special-purpose language

Figure 1.3: Access to the CORSO middleware using a special-purpose language

However, although both Argus and D provide high-level language features for
distributed programming and thus ful�ll the requirement of lowering accidental
complexity of distributed software projects, they haven't been commercially
successful, a fate shared of many academic programming languages. We believe
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that a successful approach should provide similar high-level declarative access to
middleware services from within the context of already commercially successful
general-purpose programming languages such as C# or Java.
In this thesis, we therefore propose a new approach for developing space-based
distributed application components which employs the declarative facilities of-
fered by modern object-oriented programming languages. Source code annota-
tions [GJSB05], or custom attributes [ECM05a], as they are provided by Java
and .NET-based programming languages, enable developers to declaratively
specify concerns from within the context of an object-oriented program in an or-
thogonal way. With the help of an additional runtime environment component�
which interprets the annotations and informs the middleware about the desired
functionality�, these annotations can be used to indirectly interface the mid-
dleware. Figure 1.4 shows how an application component can be developed in a
decoupled and abstracted way�similar to the special-purpose language-based
implementation in �gure 1.3�, although it is written in a general-purpose pro-
gramming language. An annotation interpreter is used to translate the declar-
ative concerns to explicit interaction with the middleware via language bind-
ings, as in �gure 1.2. Note that a modern programming language supporting
source-code annotations must be used to implement the application component:
because standard C++ does not have such a concept, an extended version such
as managed C++ (MC++) or C++/CLI [ECM05c] must be used.

CORSO

Language binding

Abstraction layer

Access space object Create space object Subscribe notification

Annotation interpreter Runtime environment

Application componentMC++/Java/.NET code with annotations

Figure 1.4: Access to the CORSO middleware using annotations

So, what are the actual bene�ts provided to programmers via the ability of
declarative speci�cation of concerns? Declarativity enables them to specify in-
tent instead of implementation. It enables them to specify goals instead of
algorithms. This provides a better level of abstraction, reduces accidental com-
plexity, and, as will be shown in this thesis, signi�cantly improves the devel-
opment process of space-based distributed applications. Goal-direction aids in
separation of concerns, keeping the code for single concerns together in single
units of encapsulation and reducing dependencies and coupling between them.
The code for each concern therefore becomes more compact, more self-contained,
and more concise, making the whole application source code more readable, bet-
ter understandable, more extensible, and thus better maintainable. Altogether,
this considerably improves the programming process, and makes space-based
application development much more e�cient.

1.2.2 Aspects Make the System Recognize the Goal

Unfortunately, just writing annotations in front of a program element in source
code is not enough to make an application behave in a distributed way. While
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the broad intent of an attribute might be clear to the human reader, the com-
puter has to actually perform an algorithm when the method is executed. The
system running the program must therefore be made to recognize the intentional
attributes used in an application and execute according behavior; in �gure 1.4,
the �annotation interpreter� was included for this purpose.

Currently, object-oriented programming languages, even when providing the
concept of declarative source code annotations, do not o�er powerful built-in
mechanisms for interpretation of annotations and encapsulation of the algo-
rithms associated with them. To remedy this, we make use of a general concept
for introducing modularized additional behavior to programs: aspect-oriented
programming [KL+97].

With aspect-oriented programming, developers divide their software's function-
ality into two kinds of concerns: functional concerns deal with what we call
the application's core or business logic, i.e. the functionality implementing the
main purpose of the program. Cross-cutting concerns deal with orthogonal func-
tionality, such as transaction safety, data transfer to the space, error handling,
or security issues. While functional concerns are implemented using object-
oriented mechanisms like objects, inheritance, and aggregation, AOP provides
new mechanisms for cross-cutting concerns: aspects, join points, and pointcuts.
Aspect-oriented programming is further detailed in chapter 2.

This thesis adapts the aspect-oriented notions: it implements the distributional
concerns as aspects tied to declarative code annotations. The aspects translate
the intents speci�ed by the programmer to algorithms executed at runtime,
enabling goal-directed code to be written although algorithms are executed.

1.3 Distributed Whiteboard Example

To illustrate the bene�ts brought by an annotation-based and aspect-oriented
middleware interface and to quickly demonstrate the concepts we present, we
will use a collaborative example application, for which the space-based paradigm
is especially well-suited [eKS05a]: a distributed whiteboard. Users should be
able to login to this application from di�erent places and collaboratively cre-
ate drawings consisting of graphical shapes. Each user sees the modi�cations
performed by other participants and can join in the drawing process, adding,
removing, and manipulating shapes. In order to explain its implementation, we
will �rst explain how applications are designed using a space-based distribution
approach.

Consider the typical intentions when implementing the functional application
logic of distributed software. Developers usually have notions of what we call
business objects�objects which implement the actual application logic�with

1. data,

2. behavior, and

3. relationships to other business objects.
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In the space-based scenario, these properties map to the following concepts:

1. data can be shared via the space,

2. behavior results in manipulation of shared data, which is protected against
concurrency con�icts (CORSO uses a transaction model for this purpose)
and reacted upon via subscription to change noti�cations, and

3. relationships are expressed via links between shared data.

In addition, there are often orthogonal requirements for security and failure
conditions. Security is a complex topic: for example, data might need to be
encrypted, and users might be assigned certain privileges regarding object access
in the space. Concrete security demands are speci�c to the application domain;
in chapter 5 of this thesis, a domain-independent security concern (application-
level data encryption) will however be shown in greater detail.
Regarding failure conditions, there are two kinds of inherent fault situations in
space-based applications, both of which can be caused by network problems or
because a site involved in the system (or the middleware software running on it)
goes o�ine: disconnection of a client from the space and disconnection of a part
of the space from the rest. In the �rst case, the client can't access the space at
all, no space objects can be added, removed, or manipulated. In the second case,
clients will be able to manipulate only a subset of the space objects; the details
of this depend on the application implementation and CORSO's replication
protocol, which will be detailed in chapter 2.
All these issues apply when implementing the whiteboard application previ-
ously described. For it, we propose a space design with two kinds of distributed
objects: one for the individual shapes drawn by the users and one for a draw-
ing object acting as a container for the shapes. Figure 1.5 shows a schematic
overview of the application and its use of the space: several clients on hetero-
geneous devices are connected to the space, accessing the drawing object and
the shapes it contains. The visualization also shows that the same space can be
used to host multiple drawings at the same time.
To detail the whiteboard's requirements, we will use a schema consisting of the
issues just introduced�shared data, links, noti�cations, behavior, fallback, and
security:

Shared Data For each drawing, the space contains a single data object with
attributes concerning the whole drawing rather than individ-
ual shapes.
For each shape, the space contains a structured data object
with elements such as coordinates, size, color, and similar
shape attributes.

Links Each drawing object has links to all the shape objects com-
prising the drawing.

Noti�cations The application components which display the drawing on
each user's computer need to be noti�ed whenever a shape
is added, removed, or modi�ed. They therefore subscribe to
change noti�cations of the drawing object as well as of the
individual shape objects.
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Figure 1.5: Schematic overview over the distributed whiteboard application

Behavior There must be modi�er functionality for the individual shapes
(change of color, size, coordinates, etc.) as well as for the
drawing itself (addition and removal of shapes). For both,
concurrent invocation of this functionality by multiple clients
could lead to inconsistent, unpredictable, and unwanted re-
sults and must therefore be protected by transactions.

Fallback In case a client is disconnected from the space, participation
in the drawing process is no longer possible until the client
reconnects.
In case part of the space is disconnected from the rest, clients
will be able to manipulate only some objects. When the ap-
plication detects that a manipulation requested by the user is
not currently possible, it could react in two ways: inform the
user to try again later, or provide an o�ine mode, bu�ering
the changes in the reachable part of the space, until the rest
becomes connected again. The former solution is easier to im-
plement, the second solution is probably more user-friendly.

Security Security considerations are ignored for the moment. In chap-
ter 6, we will deal with the requirement of giving di�erent
users di�erent privileges.

With this high-level schema, we will now demonstrate how to use CORSO's
existing object-oriented language bindings to actually implement these require-
ments. We will concentrate on one behavioral concern: adding new shapes to
the drawing. Since the language bindings demand imperative interaction, this
involves the following steps:

1. Create a new space object for the shape,
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2. Write the shape data into the new object,

3. Begin a transaction to ensure that concurrent modi�cations of the drawing
are detected and handled correctly,

4. Read the drawing object's data from the space (to be sure to work on the
most recent data),

5. Add a reference to the new shape to the drawing,

6. Write the drawing object's data back to the space,

7. Commit the transaction.

In parallel, errors must be detected and handled according to the fallback mech-
anism.
Listing 1.1 shows concrete code of two methods AddShape and AddShapeRef-
erenceToDrawing, which implement these steps in C# using CORSO's .NET
language binding .NET &Co [Tec04c]. The code demonstrates that even a sim-
ple process such as addition of a shape to a drawing can involve many steps if the
algorithm is made explicit, rendering an imperative implementation complicated
to write and even more complicated to understand.
// The Drawing class represents a drawing and contains behavior for
// manipulating the drawing’s space representation.
// The class implements the CorsoShareable interface in order to
// allow for drawings to be written to and read from the space.
class Drawing : CorsoShareable {

private CorsoConnection connection; // represents the space entry point
private CorsoVarOid drawingObject; // space object for the drawing
private List<CorsoVarOid> shapeObjects; // links to the contained shape objects
private int spaceTimeout; // timeout for space operations

// constructor left out for brevity

public void AddShape(Shape shape) {
try {
// create a new space object for the shape
CorsoVarOid shapeObject = connection.CreateVarOid();
// write the shape data into the new object
shapeObject.WriteShareable(shape, CorsoConnection.INFINITE_TIMEOUT);

// add a link to the drawing object
AddShapeReferenceToDrawing(shapeObject);

}
catch (CorsoException) {
// the connection to the space has been lost
// => inform the user
HandleDisconnectError();

}
}

private void AddShapeReferenceToDrawing(CorsoVarOid shapeObject) {
// begin a new transaction to ensure that concurrent modifications of
// the drawing object are detected and handled correctly
CorsoTopTransaction tx = connection.CreateTopTransaction();
try {
// read the drawing object’s data (list of links) from the space
drawingObject.ReadShareable(this, tx);

// add a reference to the new shape to the drawing
this.shapeObjects.Add(shapeObject);

// write the drawing object’s data back to the space
drawingObject.WriteShareable(this, tx);
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// commit the transaction
tx.Commit(spaceTimeout);

}
catch (CorsoTransactionException) {

// concurrent modification detected, try again
AddShapeReferenceToDrawing(shapeObject);

}
catch (CorsoTimeoutException) {

// drawingObject cannot be reached, the space has been partitioned
// => inform the user
HandlePartitionError();

}
}

// Error handlers omitted for brevity
}

Listing 1.1: Addition of a shape using CORSO's language binding

For comparison, listing 1.2 shows the same class and AddShape method as before,
but this time, a more intentional approach is employed by using C#'s mechanism
of declarative attributes. The listing shows how this approach could improve
the source code both in a quantitative and a qualitative way: it gets shorter
and�subjectively�much easier to understand.
// The Drawing class represents a drawing and contains behavior for
// manipulating the drawing’s space representation.
class Drawing {
[SpaceLink]
private List<Shape> shapes;

// constructor left out for brevity

[Transactional(ConflictPolicy = TransactionPolicies.Repeat)]
[PartitionErrorPolicy("HandlePartitionError")]
[DisconnectErrorPolicy("HandleDisconnectError")]
public void AddShape(Shape shape) {

shapes.Add(shape);
}

}

Listing 1.2: Addition of a shape using declarative annotations

Of course, this is only an example of what a declarative approach could look
like�an actual full declarative middleware interface will be developed in a later
chapter. We will also use objective criteria for comparing the imperative and
declarative implementations later on, but at a �rst subjective glance, the com-
parison shows the motivation of our work: the existing imperative language
binding clearly is an inadequate tool, as the implementation based on it contains
a high amount of accidental complexity. A declarative version could remedy this
by providing a better interface to the network abstraction, subjectively reducing
complexity to that minimal amount which is essential due to the requirements.

1.4 Thesis Structure
The rest of this thesis is structured as follows: chapter 2 will give an introduc-
tion to the technical background of our work and summarize the state-of-the-art,
detailing why current approaches to developing distributed applications are in-
e�ective and insu�cient. In the course of doing so, we will cite work by other
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authors because of it either being a prerequisite of our work or because it solves
similar problems as we do. Chapter 3 will then introduce a thorough analysis of
a technology called runtime-generated subclass proxies, which we use as an un-
derlying infrastructure for our solution to the problems of e�cient1 space-based
application development. The chapter also contains performance considerations
regarding this technology, which directly maps to the performance considera-
tions applying to our �nal solution built upon the infrastructure. With this as
a prerequisite, chapter 4 introduces XL-AOF, our aspect-oriented framework to
support e�cient, declarative space-based application development, which can
equally well be used for general-purpose, light-weight aspect-oriented program-
ming. Using this framework, chapter 5 then provides an aspect-oriented dis-
tributed concern library, the proposed declarative CORSO language binding.
The concern library is a catalog of pre-implemented aspect-oriented, declara-
tively applicable low-level concerns of space-based computing, as well as a num-
ber of high-level concerns readily integrable into business applications. Chapter
6 picks up the distributed whiteboard application again, providing a tutorial-like
introduction to using the concern library for creating space-based applications.
Chapter 7 collects and puts into context the di�erent tables, statistics, and
other relevant evaluation data given in the previous chapters, analyzing the
actual usefulness of our approach. Finally, chapter 8 concludes the thesis.

1Throughout this thesis, we concentrate on e�cient development, not runtime or memory
e�ciency. Runtime and memory e�ciency of space-based computing has been and will be
dealt with by other authors in other works.



Chapter 2

Technical Background and
Related Work

In this chapter, we will introduce the background technology and basic techni-
cal infrastructure our work is based on. We give an overview of the concepts
of space-based computing, including its origins and current implementations,
describe the concepts of declarative programming language support for orthog-
onal concerns�including the concepts for declarative extensibility of modern
object-oriented programming languages�, and motivate and de�ne the notions
and mechanisms of aspect-oriented programming. In the course of this, we will
present and brie�y discuss related work dealing with these topics, show some
related work more closely related with this thesis, and �nally present a ma-
trix comparing the state-of-the-art products and solutions currently available,
showing the de�cits our approach is bound to solve.

2.1 Space-Based Computing

2.1.1 Linda Tuple Spaces

In 1985, David Gelernter of Yale University presented a new programming lan-
guage for distributed computing in his paper Generative Communication in
Linda [Gel85]. Linda is an implementation of an approach developed by Gel-
ernter, in which distributed applications consist of a number of concurrent pro-
cesses which communicate via an abstract environment called tuple space. The
tuple space is a kind of distributed shared memory containing tuples: collections
of passive data values or executable code. Processes communicate by generat-
ing tuples (out operation), withdrawing tuples (in or, more clearly named, take
operation), and reading tuples without withdrawing them from the space (read
operation). Gelernter calls this model of communication generative, because
once generated, each tuple persistently exists until it is withdrawn, accessible
to all processes within the space and independent of the process which created
it.

13
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Figure 2.1 shows an illustration of a simple tuple space-based distributed ap-
plication, in which producer processes generate tuples and consumer processes
withdraw them from the space. Together, the processes form a distributed sys-
tem, with the tuple space being the communication medium.

Producer

Consumer

Consumer

Tuple

Tuple

Tuple

outProducer

out

out
take

take

Figure 2.1: Illustration of a simple space-based producer/consumer application

Tuple Types, Names, and Coordination Operations

In the tuple space model, tuples are collections of typed data whose concrete
structure is dynamically de�ned when the tuple is generated. For example, if
a tuple should have three members, of which the �rst is of type integer, the
second is of type boolean, and the third of type character string, the respective
out operation would simply include values of these types (e.g. 5, true, and �foo�).
When this tuple is to be retrieved via an in or read operation, the programmer
needs to pass along variables of compatible types for each of the tuple's members.
That way, the desired data structure is speci�ed both when de�ning the tuple
and when retrieving it from the space. This dynamic typing approach without
prede�ned data schema allows for very �exible programming, but in turn lacks
the possibilities of static type checking [Gel85].

Tuples are accessed and identi�ed via textual names. These needn't be unique�
several tuples, even with di�erent data structure, of the same name may ex-
ist. Each in and read operation will nondeterministically return a tuple which
matches both the structure speci�cation and textual name passed to the oper-
ation.

In addition to textual naming, Linda de�nes a matching mechanism for accessing
tuples, which Gelernter calls structured naming [Gel85]. For structured naming,
in and read operations specify the values of one or several tuple members in
addition to a textual name. The retrieval operations will then only return tuples
which match the speci�ed values, the given name, and the structure speci�ca-
tion for the remaining members. Table 2.1 demonstrates a few exemplary in
operations taken from the original Linda article [Gel85].

Inverse structured naming [Gel85] is also possible: out operations can de�ne
tuples which match any given value passed to an in or read operation. Examples
for this are listed in table 2.2.
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Operation Request semantics
in(P, i:integer, j:boolean) Tuple with name �P�, whose mem-

bers are an integer and a boolean
in(P, 2, j:boolean) Tuple with name �P�, whose mem-

bers are 2 and a boolean
in(P, i:integer, FALSE) Tuple with name �P�, whose mem-

bers are an integer and FALSE
in(P, 2, FALSE) Tuple with name �P�, whose mem-

bers are 2 and FALSE

Table 2.1: Linda in operation examples

Operation De�nition semantics
out(P, 2, FALSE) Tuple with name �P�, whose members

are 2 and FALSE
out(P, i:integer, FALSE) Tuple with name �P�, whose last mem-

ber is FALSE and which matches all re-
quests specifying an integer value as sec-
ond argument

Table 2.2: Linda out operation examples

Coordination and synchronization of the di�erent processes accessing the space
is performed via the three space operations, which are executed in an atomic
and blocking fashion: if an in or read operation cannot �nd a tuple matching the
request's arguments, the operation blocks the executing process until another
process de�nes a matching tuple using an out operation. This can be used
to build powerful synchronization patterns; in fact, a tuple which only has a
name is semantically equivalent to a binary semaphore [Gel85]: in is equivalent
to a semaphore's P() operation (processes can only pass if another process
signals a V() operation), out is equivalent to V() (allowing waiting processes to
pass through P()). If a tuple generated by out matches blocked in requests of
multiple processes, one of the waiting processes is nondeterministically chosen,
guaranteeing fairness without starvation.
As Gelernter argues in Linda in Context [CG89], the coordination language
de�ned by Linda is orthogonal to the remaining programming language: the out,
in, and read operations can be embedded in any base language and enhance the
distributional capabilities of the language without in�uencing the remaining
language structure. Since the operations are inherently associated with side
e�ects (they are, basically, input/output operations), they are most naturally
embedded in imperative languages, but similar to Prolog's I/O predicates [SS86]
or Haskell's monad-based IO types [BHM02], inclusion in declarative languages
is also possible.
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Distinguishing Properties
�Our goal was to provide communication through space and time. That
is, we wanted to allow two processes to exchange information if they were
running in di�erent places (di�erent processors or computers) or at dif-
ferent times�one on Tuesday, one on Thursday.�

N. Carriero & D. Gelernter, �A Computational Model of Everything�

Tuple spaces are distinguished from the more traditional paradigms of concur-
rent programming (monitors, message passing and remote operations [And81])
because the entity of communication (the tuple) can be written to the space
without specifying a receiver, and retrieved from the space without specifying a
sender. Gelernter [Gel85] calls this the space-uncoupling property of the space.
Tuples can also be written without a process currently waiting for them, and
they can be read even if the original generator process is not connected to the
space any more, which is called the time-uncoupling property of the space.
These two notions of decoupling, which are again described by Beinhart, Murth,
and Kühn in 2005 [eKBM05], make the space approach a powerful and distin-
guished communication paradigm. In their paper �Linda in Context� [CG89],
Carriero and Gelernter show a number of concurrent scenarios easily and nat-
urally implemented with Linda (embedded in C), among others a client/server
scenario, the Dining Philosophers problem [SP88], and DNA sequence compari-
son. In their 2001 article �A Computational Model of Everything� [CG01], they
state that tuple spaces are clearly not a model of everything, but they are a
natural model of �asynchronous ensembles� of concurrently active processes.

JavaSpaces�A Recent Implementation

While Linda was already devised in the 1980s, the tuple space is still a dis-
tinguished and useful paradigm for communication between and coordination
of concurrent processes. Therefore, Sun Microsystems included their own ver-
sion of the tuple spaces, named JavaSpaces [Sun03], in their Java Naming and
Directory Infrastructure (Jini) speci�cation [WT00], according to their web
page �an open architecture that enables developers to create network-centric
services�whether implemented in hardware or software�that are highly adap-
tive to change�.
Because Jini is a speci�cation centered on Java, JavaSpaces is a version of tuple
spaces devised and adapted for the Java platform and integrated into the Java
programming language and object model. The JavaSpaces API can be used
by referencing a Java class library and contains operations equivalent to those
de�ned by the Linda language. JavaSpaces extends Linda by integrating the
space model with Jini's naming and discovery facilities and combining it with
Java's serialization mechanisms for easy sharing of objects rather than simple
tuples [FHA99].
The whitepaper �Build a Compute Grid with Jini Technology� [Sun04] by Sun
Microsystems describes how the space is used for easily implementing a dis-
tributed master/worker (producer/consumer) pattern on the Java plaform: mas-
ters create computational tasks (units of works) and publish them in the space,
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worker processes wait for tasks and execute them (see illustration in �gure 2.2).
Because of the nondeterminism with several processes waiting for the same kind
of objects (and because worker processes start waiting for new tasks as soon
as they have �nished one), load is equally and fairly distributed within the
�computational grid� of participating computers [Sun04].

Figure 2.2: Illustration of a master/worker implementation with JavaSpaces
(from: Building a Compute Grid with Jini Technology, Sun Microsystems, 2004)

Apart from Sun's own JavaSpaces implementation, a well-known implemen-
tation is realized by GigaSpaces, which extends the JavaSpaces speci�cation,
adding distributed implementations of diverse collection interfaces from the
Java J2SDK class library [Wel04]. Other Java-based implementations of the
tuple space paradigm are TSpaces [WMLF98] and XMLSpaces [TG01].

2.1.2 CORSO�Coordinated Shared Objects

While the space model as de�ned by Linda is a convenient abstraction for many
distributed scenarios, it has a few shortcomings. For example, tuples have no
identity, so references between tuples (e.g. for de�ning complex data structures)
are not possible, neither is updating the content of a tuple without removing
it from the space. Similarly, with the Linda model it is not possible for a
process to wait for several di�erently structured tuples at the same time. In
addition, although Linda operations are atomic, the approach does not de�ne
a mechanism of concurrency protection for operations involving more than one
operation.

To overcome these problems, a new space-based approach with newly de�ned
semantics was introduced by eva Kühn in 1994 in her paper �Fault-Tolerance
for Communicating Multidatabase Transactions� at the Hawaii International
Conference on System Sciences. While certainly inspired by Linda, the new ap-
proach (�rst titled CoK for �coordination kernel� [eK94] and later renamed to
CORSO for �coordinated shared objects�) provides a full platform-independent,
language-agnostic middleware layer for communication and coordination via a
shared space. Similar to the Linda model, CORSO processes communicate via
shared data objects and are coordinated with blocking operations, but CORSO
improves the concept by including peer-to-peer object replication, object iden-
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tities, distributed optimistic concurrency control, and near-time change noti�-
cations for multiple objects at the same time.

CORSO Space and Object Identi�ers

In 2001, Gelernter notes that �a tuple space wasn't centralized on some server;
it was distributed over many computers� [CG89], however this was an imple-
mentation detail not directly re�ected in Linda's tuple space model and space
operations. In contrast to that, CORSO has included the concept of peer-to-peer
data replication from the very beginning, making it a �rst-class bene�t of the
approach. With CORSO, a shared data space is implemented by a number of
coordination kernels running on di�erent devices connected via a network. Pro-
cesses participate in the distributed application by connecting to one of these
kernels, thus gaining access to the shared data space. Between the di�erent
kernels, data is replicated using an intelligent peer-to-peer replication protocol
(PRdeep), as detailed below, with data only being replicated to a kernel if neces-
sary. In addition, CORSO persists the contents of the space into local databases
situated on the devices running the kernel, resulting in easy and reliable auto-
matic data recovery if a kernel or device needs to be (temporarily) shut down
[eK94].

Similar to the Linda tuple space a CORSO space contains entities of structured
data for information exchange, but, di�erent from tuples, each of these data ob-
jects is identi�ed by an object identi�er (OID), making it uniquely referenceable
throughout the whole space. Because of this identity, data objects can not only
be created, read, or taken from the space, but they can also be (re-)written,
with CORSO objects being distinguished by being writable only once (constant
objects) or many times (variable objects). Read operations on variable objects
include a timestamp: a numeric version number n indicating that the initiator
of the operation requires at least the (n + 1)th value written to the object. For
example, a process which requires any data from a variable object could specify
a read timestamp of 0. However, if the process has already read from an object
with timestamp 3 and is waiting for the next data written to the object, it would
specify a timestamp of 4.

This mechanism of identi�able, rewritable, and versioned objects, which can
also link to each other, facilitates the implementation of complex coordination
data structures. For example, it allows the creation of linked lists (streams
[eKN98]) or trees, which�in combination with create, write, and blocking and
non-blocking read operations�can then be used to implement more complex co-
ordination patterns, examples of which include the classic Producer/Consumer
or Request/Answer patterns [eK01], the Connector/Acceptor design pattern for
supporting space access of devices with unreliable network connections [Sch96],
and the useful Replicator design pattern for replication of heterogeneous data
residing on di�erent computers [WeKT00]. As an entry point for these coordina-
tion data structures, objects can be assigned names and looked up using these,
as in the Linda model. Unfortunately, CORSO does not support an equivalent
to Linda's template-based object lookup.
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Lifecycle Management

For lifecycle and memory management of coordination data structures, CORSO
provides two mechanisms. On the one hand, automatic garbage collection is
implemented via reference counting; on the other hand, CORSO provides opera-
tions for manually deleting single objects and whole object graphs for optimiza-
tion. For automatic lifecycle management, the references to CORSO objects
held directly and indirectly by processes are counted, and the count is automat-
ically decremented when a process disconnects. When the reference count of
an object reaches zero, the object and all connected objects not referenced by
other processes are deleted from the space. Named objects always need to be
removed manually, because the automatic garbage collector cannot infer when
they aren't needed any longer.

Transaction Model

The original Linda operations read, in, and out were de�ned to be atomic;
parallel processes could safely execute them concurrently while keeping the space
in a consistent state. However, the processing of more complex data operations,
which might consist of multiple operations on di�erent data items, requires a
powerful synchronization mechanism.
With the original Linda model, the only way of achieving such synchronization
is to implement a lock protocol using a semaphore tuple, as described in sec-
tion 2.1.1. All processes would have to adhere to the lock protocol and refrain
from accessing any tuples guarded by the semaphore after a process has per-
formed a P() operation until it conducts a V() operation. With complex data
structures involving object identities, this is suboptimal for two reasons: �rst,
it does not allow multiple concurrent readers, hindering concurrency where no
con�icts would arise [KSUH93]; and second, it requires all processes to know the
semantics of all semaphores and behave accordingly. For example, if a process
wants to access the tuples A and B and de�nes semaphore S for this purpose, all
processes accessing either A or B must know about and respect semaphore S.
If one process doesn't know S or just doesn't respect the protocol, concurrency
con�icts will arise.
CORSO therefore implements a mechanism for optimistic concurrency control:
the Flex transaction model [eKPE92]. With CORSO transactions, all write
operations on space objects are performed in an isolated environment of the
coordination kernel the process is connected to. Only when the transaction is
committed, the kernel obtains a global lock on all objects involved (read or
written) in the transaction (following the PRdeep protocol, as described in the
following section). It then checks if the object values read during the transaction
are still valid and, if yes, makes the previously written values globally visible.
If not, the transaction fails and the process will have to compensate.
Compensation in case of transaction errors can be performed in di�erent ways,
the most simple being to repeat the whole complex operation. CORSO also
allows selective removal of single operations from the transaction if they caused a
failure, so that the transaction can be tried to be recommitted. Finally, the Flex
transaction model supports nested transactions, with compensation performed
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for single sub-transactions of the surrounding top-transaction; however since
this is not signi�cant for our work, we will skip a more detailed description of
the concept. For details on nested transactions in the Flex transaction model,
the paper �A Multidatabase Transaction Model for InterBase� [ELLR90] can be
consulted.

Replication Protocol PRdeep and Persistence

For developing CORSO applications, it is vital to understand the Passive Repli-
cation/Deep (PRdeep) protocol the middleware uses to replicate data objects
between the di�erent devices forming the space. Kühn presents this protocol in
the original CORSO paper (�Fault-Tolerance for Communicating Multidatabase
Transactions� [eK94]), and we quote an excerpt of the description she gives:

[E]very site that may access a communication object owns its
own copy (replica), with one copy, the main copy, distinguished as
the primary copy. All other copies are called secondary copies. If a
communication object is created, a primary copy is created. If the
communication object is transmitted to another site, a secondary
copy is created and transmitted to the [coordination kernel] at the
remote site. Thus, for each communication object i a distributed tree
(DTi) builds up, where each node knows the nodes to which is has
transmitted a copy (sons), and each son knows the node (father)
from which it has received a new copy. The root of a DTi is the
primary copy of communication object i.

To illustrate this concept, consider the distributed tree shown in �gure 2.3 for
an object O, whose primary copy is situated within the kernel at host H1
(the primary copy forms the root of the tree). When two other hosts H2 and
H3 request a reference to object O from host H1 (either by looking up the
object's name or by obtaining the reference from a coordination data structure),
secondary copies are generated and inserted in the tree below H1. Similarly,
secondary copies for H4 and H5 are generated and inserted below H3 when
these hosts obtain a reference to O via H3.

H1

H2 H3

H4 H5

Primary copy of O on H1

Secondary copy of O 
on H2, obtained via H1

Secondary copy of O 
on H3, obtained via H1

Secondary copy of O 
on H4, obtained via H3

Secondary copy of O 
on H5, obtained via H3

Figure 2.3: Distribution tree of the PRdeep protocol example

Only a host which owns the primary copy of an object is allowed to commit
a transactional operation on that object. Therefore, if a host tries to commit
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a transaction, it �rst needs to obtain the primary copies of all objects read or
written from within the transactional context. For this, a host sends migration
request messages to its parent nodes in the respective distributed trees, which
pass them on to their parent nodes, and so on. When the request reaches the
host owning the primary copy, the copy is transferred, unless the owner itself is
currently committing a transaction, in which case the request is denied [eK94].
When the primary copy is transferred, this results in the distribution tree being
reorganized so that the new owner of the copy is the new root of the tree. For
illustration, �gure 2.4 shows the transformed tree of �gure 2.3 after H5 received
the primary copy via H3 from H1. Note that the topology of the tree is not
changed by the primary copy migration, only the root node is changed.

H1

H2

H3

H4

H5
Primary copy of O on H5, 
now the root

Secondary copy of O 
on H2

Secondary copy of O on H3, 
now child of H5 (not H1)

Secondary copy of O 
on H4

Secondary copy of O 
on H1, now child of H3

Figure 2.4: Distribution tree after a primary copy migration

CORSO ensures that critical messages for reorganizing the tree are retransmit-
ted as necessary and that all participants always have a consistent view of the
tree. If a network connection breaks during reorganization, the distribution tree
can always be recovered when the connection is reestablished [eK94].
Besides indicating the current position of the primary copy, the distribution tree
also in�uences how object changes are distributed within the network, depending
on the distribution strategy of an object. Objects can be set to be either eager
or lazy. In the �rst case, changes conducted on the primary copy of an object
are immediately propagated to all the peers in the distribution tree (always
from parent to children), resulting in the di�erent replicas always being held
up-to-date.
In the second case, changes are not immediately propagated. Instead, a host will
retrieve the lazy objects' data only when a read operation is conducted on the
object. For a constant object, the host initiates a search for data via the object's
parents, searching up the tree until a host is reached which already holds the
object's value. Variable objects, on the other hand, are again distinguished in
read main and read next objects. Read main objects will always retrieve the
most current data from the holder of the primary copy (searching up the tree
from child to parent), whereas read next objects use the timestamp contained
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within the request: a search for data is started up the tree (from child to parent)
until a copy is found whose data, is recent enough, according to the request's
timestamp. The timestamp and distribution mechanisms do not in�uence the
transaction semantics: if a read request is part of a transaction and the read
data is found not to be up-to-date at the time of primary copy migration, the
transaction commit fails, no matter what the read timestamp was and whether
the object was lazy or eager.
Coordination kernels running the PRdeep protocol also provide object persis-
tence: depending on the persistency con�guration of a space object (0�no per-
sistence, 1�persistence, 2�redundant persistence), a coordination kernel will
save any changes made to the primary copy of an object in a local database.
Therefore, when the local system fails and the coordination kernel needs to be
restarted, the part of the space known by the kernel can be recovered from the
locally saved data [eKN98].
Obviously, the PRdeep protocol has bene�cial properties because communication
between the hosts is organized in a peer-to-peer, or rather child-parent fashion,
which results in logarithmic search complexity. It is also a robust protocol:
when a host holding a secondary copy is disconnected, the remaining space par-
ticipants can continue their work. However, it must be noted that the protocol
has a weakness when the host holding the primary copy is disconnected: in this
case, access to the object is stalled until that host reconnects: there is no way
of recovering a primary copy if the host holding it stays disconnected.

Near-Time Change Noti�cations

While original Linda-style read operations only allow a process to wait for a
single space object to be written, with complex collaboration data structures
there often comes the need of waiting for di�erent (maybe di�erently struc-
tured) objects at the same time. For this, CORSO provides a concept of change
noti�cations, a noti�cation being a special kind of space object managed by
the coordination kernel. OIDs of arbitrary space objects can be inserted into
the noti�cation object, and a process can wait for the noti�cation to be �red.
When the value of one of the objects referenced by the noti�cation is changed,
the kernel will automatically send wake-up messages to all processes waiting for
the noti�cation.
Change noti�cation messages include the new value of the changed objects and
are always sent to all waiting processes without regard to the distribution strat-
egy of an object, so the processes automatically retrieve the most recent data
as fast as possible�in near-time.

Language Bindings

The coordination mechanisms provided by the CORSO middleware must be in-
terfaced by an application programmer, but CORSO does not de�ne a new pro-
gramming language. Instead, it provides a set of language bindings�application
programming interfaces, usually in library form, for common current program-
ming languages. For the most recent CORSO kernel versions, bindings exist for
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integration with the Java platform [Tec04b], .NET [Tec04c], and C++ [Tec04a];
earlier bindings were also available for plain C [For95] and PROLOG [eK96].
The bindings provide encapsulations for connecting to a CORSO kernel via a
network, for executing coordination operations, for accessing and creating data
objects, and for reacting to noti�cations in a way suitable for the target lan-
guage.
Because it is important for this thesis, we will shortly describe the details of
the language binding .NET &Co (the �Co� standing for �Coordination�) in this
section for reference. We also include the interfaces of these classes in appendix
A.

CorsoConnection Class Instances of this class represent a network connec-
tion to a CORSO coordination kernel. They provide functionality for establish-
ing and closing the connection, and they act as factories for most other objects
in the language binding.

CorsoShareable Interface Classes which need to deposit complex data in a
CORSO data object need to implement this interface, which de�nes Read and
Write methods for deserialization and serialization of space data. The data
is serialized into and read from CorsoData objects provided by the language
binding.

CorsoData Class Provides methods for serializing and deserializing complex
data (structured objects) to and from the space.

CorsoStrategy Class Encapsulates replication strategy (eager or lazy), read
�ags (read main and read next), and persistence class (0, 1, or 2) of a CORSO
data object.

CorsoOid Class This class and its subclasses represent CORSO data ob-
jects in the space. They provide methods for reading and writing an object
(simple data is read and written directly, complex data is serialized via the
CorsoShareable interface), naming the object and retrieving its name, accessing
its distribution tree, and deleting it from the space. There are subclasses for
constant and variable objects, CorsoConstOid and CorsoVarOid, the latter of
which adds timestamp handling. CorsoOid objects are created by an instance
of CorsoConnection either as the result of looking up a named object or as
references to completely new data objects.

CorsoTopTransaction Class This class, together with its abstract base class
CorsoTransaction, allows the execution of complex transactional operations.
CorsoTopTransaction objects, after having been created by a CorsoConnection
object, are used to encapsulate primitive space operations, which is done by
passing them to the respective OID operations. When the complex operation
is fully de�ned, it can either be committed or aborted. In the former case,
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a CorsoTransactionException is raised if the transaction cannot be committed
due to a concurrency con�ict. CorsoTopTransaction also provides the option
of trying to commit a transaction and, if this fails, cancel (and maybe reexe-
cute) those primitive operations which caused the con�ict, as indictated by a
CorsoTransFailInfo object.

CorsoNoti�cation Class Instances of this class encapsulate CORSO's no-
ti�cation facility. They provide Add and Remove methods for adding OID
references (wrapped in CorsoNoti�cationItem objects) to the noti�cation, and
a blocking Start method, which blocks until a near-time change noti�cation
for one of the monitored data objects arrives. In many applicarion scenarios,
this method will be called from a dedicated background thread, thus allowing
background noti�cation without blocking the whole application.

CorsoException Class Because network-based communication is inherently
linked to failure, there is a high number of error conditions which may occur
while accessing the CORSO space. The methods of the .NET &Co language
binding indicate these by throwing CorsoExceptions or instances of one of its
subclasses. Unfortunately, exceptions meant for user errors (i.e. mistakes made
by the API user) are also part of the CorsoException hierarchy, which unneces-
sarily complicates error handling. There exist exception subclasses for di�erent
situations in which an error occurs, (such as CorsoReadException, CorsoWrite-
Exception, and CorsoTransactionException), but most failure details must be
accessed via numeric error codes from the exception object, which, must be
noted, is often inconvenient and cumbersome.

CorsoTimeoutException Class All CORSO operations potentially involv-
ing remote kernels (i.e. other kernels than those the process is directly con-
nected to) provide a timeout parameter. This speci�es the number of seconds
the connected kernel should spend trying to reach the remote kernels for such
an operation. If one of the remote kernels cannot be reached in the given time, a
CorsoTimeoutException is thrown. This indicates that either the remote kernel
cannot be reached or the given value is too low for the current network situation.

2.1.3 XVSM�Extensible Virtual Shared Memory

While the CORSO middleware is a powerful implementation of the space-based
computing paradigm, its concepts stem from 1994, at the time of this writing 12
years in the past. Real-world experience has shown need for additional features
(such as an additional replication protocol to PRdeep, which is optimal for some,
but not all cases, as well as Linda-style data matching), and a more extensible
approach (e.g. with pluggable persistence and and transaction managers) has
become desirable. Therefore, in �Improving Data Quality of Mobile Internet
Applications with an Extensible Virtual Shared Memory Approach� [eKBM05]
Kühn, Beinhart, and Murth �rst mention a new space-based approach called
XVSM (Extensible Virtual Shared Memory) as the successor of CORSO, but
without speaking of the di�erences and new features.
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In the meantime, the planned feature set of XVSM has been made available
as a technical report [eKRJ05], although the full speci�cation has not yet been
published. It can already be said that XVSM will provide a sophisticated dual
concept, o�ering a number of often-used coordination data structures preim-
plemented as so-called containers, which in turn can form more complex data
structures by being linked together. Within containers, data is stored in classic
tuple form and can be accessed using di�erent lookup mechanisms (e.g. indexed
access, �rst-in/�rst-out access, Linda-style matching, etc.). Containers will sup-
port pluggable extension by providing an interception mechanism: components
can be registered for di�erent interception points, reacting to, modifying, and
controlling access to individual containers or tuples.

2.2 Language Support for Orthogonal Concerns
When developing a software application, there often arise requirements (con-
cerns) which are said to be orthogonal to the main application functionality,
including, for example, data distribution, caching, security, fault tolerance, and
similar. In this context, orthogonality means that the concerns have no side-
e�ects or dependencies on each other or on the main, functional concerns. Ide-
ally, implementations of such concerns could be exchanged independently and
without the rest of the application having to change [Ray03].
In practice, even if high-level concerns such as the ones mentioned above are
orthogonal in concept, they almost never are in implementation: concerns and
functionality always in�uence each other in code. Still, implementation and
application of orthogonal concerns should be performed as independently as
possible, keeping the points of interaction between the concerns at an absolute
minimum in order to achieve a decoupled and modularized design. Unfortu-
nately, imperative programming, including the object-oriented programming
paradigm, which is by far the most common paradigm for software development
at the time of this writing, is not well-suited for implementing and applying
orthogonal concerns, because it requires concern functionality to be explicitly
and imperatively invoked at (usually) many program points. Because these in-
vocations connect and couple otherwise unrelated classes and methods, they can
be seen to cut through the application code and design; Kiczales et al denote
them as cross-cutting concerns in the paper �Aspect-Oriented Programming�
[KL+97].
The problems caused by cross-cutting concerns are twofold: on the one hand,
modular source code entities (e.g. methods and classes in object-oriented pro-
gramming languages) meant for encapsulating a functional concern are forced to
contain code for the cross-cutting concerns as well, which breaks the �one class,
one responsibility� rule considered an important design guideline for object-
oriented software [Sut00]. Kiczales et al call this property tangling of concerns
[KL+97]. On the other hand, code belonging to single cross-cutting concerns
is separated and duplicated among di�erent source code entities (methods and
classes); this is called scattering of concerns [KL+97].
For illustration of scattering and tangling, consider �gure 2.5, which is taken
from the �AO Tools: State of the (AspectJTM) Art and Open Problems� pre-
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Figure 2.5: Logging code in the Apache Tomcat application server (from: AO
Tools: State of the (AspectJTM) Art and Open Problems, Mik Kersten, 2001)

sentation held by Mik Kersten at the OOPSLA 2002 AOSD Tools Workshop. It
shows an often-cited cross-cutting concern buried within the J2EE open-source
application server Apache Tomcat : logging [Ker02]. In the picture, logging code
is highlighted red, demonstrating e�ectively how it is tangled with functional
code (white) and scattered over many classes and methods.

2.2.1 Built-In Support
There are di�erent strategies to cope with cross-cutting concerns in impera-
tive programming languages. One common approach in research environments
is to extend an existing general-purpose programming language and include
declarative support for a number of prede�ned concerns. As two representative
examples for this approach, we will very brie�y discuss the classic Argus system
[Lis88] and the more recent D framework, both of which constitute research
extensions of programming languages with support for concerns for communi-
cation and coordination.
The Argus system, devised in the early 1980s by Barbara Liskov and Robert
Schei�er, is an extension of the CLU programming language [LSAS77], which
in turn is an Algol-based programming language featuring encapsulation mech-
anisms for abstract data types. As Liskov and Schei�er explain in �Guardians
and Actions: Linguistic Support for Robust, Distributed Programs� [LS83],
Argus extends CLU with linguistic features such as guardian modules, which
implement concerns of fault tolerance, and atomic actions, which implement
concurrency concerns.
Similarly, the D framework presented in 1997 by Cristina Videira Lopes and
Gregor Kiczales in �D: A Language Framework for Distributed Programming�
[LK97] is an extension of the object-oriented Java programming language. It
allows the main functionality of programs to be written in Jcore, a Java di-
alect, and adds a separate new coordination language, Cool, for declaratively
implementing concerns of distribution and synchronization.
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Both systems provide very convenient ways of dealing with the speci�c orthogo-
nal concerns in a declarative way, but neither of both approaches had signi�cant
industrial access. This might well be caused by the fact that both approaches of-
fer support only for the limited number of cross-cutting concerns they explicitly
address�the problems caused by cross-cutting still persist for other concerns.
Nowadays, industrial languages also take this approach for dedicated orthogo-
nal concerns: both the Java and C# languages have built-in declarative mech-
anisms for thread synchronization through mutual exclusion (synchronized in
Java [Lea96], lock in C# [ECM05a]), Java also provides language support for
serialization control through its transient keyword [BP01], C# has a declarative
mechanism for explicit resource cleanup (using).

2.2.2 Extensible Support through Extensible Metadata

For both research and industrial programming languages, the lack of extensi-
bility makes language extension for speci�c cross-cutting concerns a poor way
of dealing with the problem. Therefore, recent developments have been about
making general-purpose programming languages more extensible by so-called
extensible metadata mechanisms [Lum02].
With such mechanisms, programmer-de�ned descriptive items (metadata) are
declaratively attached to program source code elements, giving them additional
or di�erent semantics to that prede�ned by the programming language. Meta-
data is usually not evaluated by the standard compiler for the language, but by
additional tools which know and implement its semantics. The �rst industrially
successful programming platform to include this feature was the Microsoft .NET
Common Language Infrastructure [ECM05b], and all its main programming lan-
guages (C# [ECM05a], Visual Basic .NET [BM02], Managed C++ [Sut02], and
Visual J#) included language support for metadata. In 2005, version 1.5 of
the Java programming language also introduced metadata, calling it program
annotations [FF04].
While metadata solves the problem of extensibility, current implementations
have an important de�cit: they do not provide a convenient and powerful mech-
anism for specifying the semantics of programmer-de�ned metadata�metadata,
in its current form, is information without behavior, unless explicitly and man-
ually inspected and reacted upon by the application programmer or a dedicated
tool.

2.2.3 Custom Attributes�Metadata in .NET

Because the code samples provided in this thesis are mostly given in C#, and
the environment introduced in later chapters targets the .NET platform, we
will now give a short introduction to C#'s implementation of metadata, called
custom attributes.
As de�ned by the �C# Language Speci�cation�, standardized by the Euro-
pean Computer Manufacturer's Association (ECMA-334), attributes are cre-
ated through the declaration of attribute classes, which can have positional and
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Figure 2.6: Possible attribute argument types and values

named parameters, are associated with program entities using attribute speci�-
cations, and can be retrieved at runtime as attribute instances [ECM05a].

Attribute Class An attribute class is a class which is directly or indirectly
derived from the abstract System.Attribute base class provided by the .NET
Base Class Library. By declaring an attribute class, a new kind of attribute is
created, which can be applied to program entities. By default, the attribute can
be applied to any kind of program entity, but this can be restricted by applying
a meta-attribute called System.AttributeUsage to the attribute class. The meta-
attribute can also be used to control details such as whether the newly de�ned
attribute can be applied to the same program entity more than once.

Positional and Named Parameters The attribute de�ned by an attribute
class declaration can take parameters, which are identi�ed either by their po-
sition in the attribute speci�cation or by a name. Positional parameters are
de�ned in the attribute class by de�nition of a constructor: the parameter
list of the constructor is also the list of positional parameters of the attribute.
Named parameters are de�ned in the attribute class in form of public �elds or
settable properties.
Both positional and named parameters can only be of a small subset of types:
they must either be of a primitive type (string, int, double, etc.), of type Type,
of an enumeration type, of type object, or of an array of the aforementioned
types. At speci�cation time, the parameter values must be constant or typeof
expressions, which implies that only primitive, type, enum, array, and null values
are allowed. Figure 2.6 illustrates the possible parameter types and values. This
restricted type system results in easy serialization of the speci�ed parameter
values into the resulting .NET assembly �le [ECM05b], but it is also a serious
restriction for attribute usage.

Attribute Speci�cations An attribute is applied to a program entity by
putting the attribute class name, optionally followed by a parameter list, be-
tween square brackets in front of the program entity. If the attribute class name
ends with �Attribute�, this last part of the name can be left out in the speci�-
cation. For the parameter list, one constructor of the attribute class must be
picked, and all positional parameters de�ned by the constructor must be given
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a value. Named parameters can optionally be given a value by appending name
= value expressions to the positional parameter list.
As an example, listing 2.1 de�nes a new custom attribute for describing pro-
gram entities by de�ning an attribute class DescriptionAttribute. It restricts the
attribute's usage on class and method declarations, with only one application
per entity allowed, by using the meta-attribute System.AttributeUsage. The at-
tribute de�nes one positional parameter, description, and one optional named
parameter SeeAlso. The attribute is then used to describe a sample class C and
its members.
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
AllowMultiple = false)]

class DescriptionAttribute : Attribute {
private string description;
private string[] seeAlso;

public DescriptionAttribute(string description) {
this.description = description;
this.seeAlso = new string[0];

}

public string Description { get { return description; } }

public string[] SeeAlso {
get { return seeAlso; }
set { seeAlso = value; }

}
}

[Description("This is a class for demonstrating attribute usage.")]
class C {
[Description("Does nothing, actually.", SeeAlso = new string[] {"Bar"})]
public void Foo() { }

[Description("Does nothing either.", SeeAlso = new string[] { "Foo" })]
public void Bar() { }

}

Listing 2.1: Attribute de�nition and usage sample

In some cases, it is not clear from the context which program entity an attribute
speci�cation is targeted at. In such situations, the target can be speci�ed ex-
plicitly by preceding the attribute name with string such as assembly:, module:,
method:, return:, and similar.

Attribute Instances The attributes applied to a program entity can be in-
spected at runtime using .NET Re�ection [Ric06]. For example, the attributes
de�ned on a class or method can be extracted using the prede�ned re�ec-
tive Type.GetCustomAttributes or MethodInfo.GetCustomAttributes operations.
When the attributes for a speci�c program entity are requested for the �rst time,
the .NET runtime will create one instance of the respective attribute classes for
each attribute speci�cation associated with the entity, and return the instances
as objects to the requester, who may then use them like any other object created
with new.

2.2.4 Source Code Annotations�Metadata in Java 1.5
Although we will not use it in this work, Java's metadata mechanism de�ned
by the document �JSR 175: A Metadata Facility for the JavaTM Programming
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Language� [B+04] could be used to implement a Java port of our declarative
approach. Therefore, we will include a short introduction to the mechanism for
comparison with C#'s implementation.
In the Java programming language, annotations are de�ned through abstract
annotation types, with parameters being expressed as method declarations of
these types. Annotations are applied to program elements via annotation modi-
�ers and can be inspected at compile-time, load-time, or runtime, as de�ned by
their retention policies. Sun's Java virtual machine distribution also includes an
annotation processor tool, which can be used to perform code transformations
based on annotations.

Annotation Types Annotation types are a special kind of interface, declared
via the @interface keyword. By declaration of an annotation interface, a new
annotation is de�ned and can be applied to program elements. The program
element kinds to which the annotation can be applied are speci�ed via the
meta-annotation @Target, which is prede�ned by the Java class library.

Annotation Type Methods Like ordinary interfaces, annotation types can
declare methods (without specifying implementation). The methods of anno-
tation types, however, represent the parameters of the declared annotation;
therefore their signature is restricted: methods of annotation types must not be
generic and are not allowed to take any parameters. The methods' return types
specify the types of the annotation's parameters and are restricted to primi-
tive types, String or Class, an enumeration, an annotation type, or an array
of these types. It is also possible to specify default values for an annotation
parameter�making it optional at annotation application time�by appending
a default clause to the respective method declaration.
The method names de�ne the parameter names of the de�ned annotation. If an
annotation should only have one parameter, the respective method should be
called value.
When an annotation is instantiated via re�ective access to a program element,
an automatically generated implementation of the interface is returned, whose
(parameterless) methods return the parameter values speci�ed within the an-
notation modi�er attached to the program element.
It has to be noted that in comparison to .NET attributes, annotation interfaces
are somewhat restricted because as interfaces they cannot have any methods
with user-de�ned behavior. When an instance of a .NET attribute is retrieved,
it is a fully featured object, wheres an instance of a Java annotation is merely
a container for user-de�ned values. On the other hand, annotation interfaces
allow the programmer to pass annotations as the parameter of another annota-
tion, thus enabling the programmer to apply tree-like annotation structures to
program elements�a feature missing with .NET.

Annotation Modi�ers Annotations are applied to a program element (such
as classes, �elds, or methods) by means of an annotation modi�er, which con-
sists of the symbol @ followed by the name of the annotation type and the
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annotation's parameter list. The parameter list can be omitted for annotations
whose interfaces contain no methods (or only methods with default values); for
annotations with only one parameter, this parameter is simply written between
parentheses. For more complex annotations, the parentheses contain comma-
separated name = value pairs, where name must correspond to one of the
methods of the annotation interface. The parameter order is not signi�cant,
but all methods without default values must be speci�ed, with null references
not being permitted as values regardless of the parameter type.

As an example, listing 2.2 shows an @Description annotation serving the same
purpose as DescriptionAttribute in listing 2.1. The annotation is then used to
describe a class C and its members.
@Target({ElementType.TYPE, ElementType.METHOD})
@interface Description {
String value();
String[] seeAlso() default {};

}

@Description("This is a class for demonstrating annotation usage.")
class C {
@Description(value = "Does nothing, actually.", seeAlso = {"Bar"})
public void Foo() { }

@Description(value = "Does nothing either.", seeAlso = {"Foo"})
public void Bar() { }

}

Listing 2.2: Annotation de�nition and usage sample

Retention Policies The Java class library provides the meta-annotation Re-
tentionPolicy, which is applied to an annotation type in order to specify whether
the annotation should be retained in the source �le only (i.e. the annotation can
only be retrieved at compile time), in the class �le as well (i.e. the annotation can
be retrieved at compile-time or at load-time), or even for runtime representation
(so that it can be retrieved at any time, including runtime).

Annotation Processor Tool The Java 5 SDK provided by Sun Microsys-
tems includes an annotation processor tool, which provides a number of re�ec-
tive and code generator classes for de�ning program transformations based on
annotation speci�cations as a build step when compiling the program. Unfor-
tunately, the tool's object model is somewhat restricted. For example, it is
not possible to inspect a method's source code from within the program trans-
former. Third-party transformation tools such as SPOON [Paw05] are therefore
preferable for nontrivial transformations.

2.3 Aspect-Oriented Programming

In 1997, Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier,
Cristina Videira Lopes, Chris Maeda, and Anurag Mendhekar, a research team
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of the XEROX Palo Alto Research Center published a paper titled Aspect-
Oriented Programming [KL+97] at the European Conference on Object-Orien-
ted Programming. According to the authors, the�at that time�most wide-
spread methodologies for software development su�er from a common de�cit.
Procedural and object-oriented programming inherently support separation of
concerns�the process of breaking a program into distinct non-overlapping units
of encapsulation�only in one dimension. Using these paradigms, software prob-
lems are always decomposed in one direction.
This property, which was later coined as the tyranny of the dominant decompo-
sition [TOHSMS99], makes the mechanisms of encapsulation provided by these
paradigms, i.e. procedures, modules, and classes, very well-suited for decom-
posing (hierarchically structured) functional concerns. However, it makes them
equally ill-suited for encapsulation of orthogonal concerns, whose decomposi-
tion, by de�nition, does not follow the same dimension. Integration of orthogo-
nal concerns into procedural or object-oriented programs automatically makes
them cross-cutting concerns�concerns which cut through the functionally de-
composed classes, modules, and procedures.
As a solution to this dilemma, Kiczales et al suggested to apply a new method-
ology of decomposition in parallel to the existing ones: like classes, which en-
capsulate and decompose functional concerns, aspects should be employed to
encapsulate cross-cutting concerns. According to the research team, such en-
capsulations should be similar to classes, but include an additional mechanism
for specifying the points of interaction between the cross-cutting and the func-
tional concerns, the so-called join points. A system executing or compiling an
aspect-oriented program would automatically link the well-encapsulated imple-
mentations of the functional and cross-cutting concerns together at these points
as de�ned by a set of rules (the so-called weaving process), resulting in a fully
composed and thus fully functional program. Figure 2.7 illustrates this approach
schematically.

Weaving rules
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Full Program
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Figure 2.7: AOP weaving process

While weaving is usually done at compile time (including the possibilities of
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pre- or postcompilers) or load-time, it is also possible to implement weaving
at runtime [CS06]. Runtime weaving, also known as dynamic weaving, allows
aspects to be added and removed at runtime, which is bene�cial especially in
mobile and long-running (24/7) applications, which cannot be easily redeployed,
or even recompiled, when a change in aspect con�guration is needed. Dynamic
AOP still has some weaknesses, though; a clean semantic model is missing
(what happens if an aspect is currently executing when it should be removed?),
and implementation can be hard without support by the underlying platform
[PAG03].

2.3.1 AspectJ�De Facto Reference Implementation

Although there are many implementations of the AOP paradigm for di�erent
platforms (e.g. JBoss AOP [FR03], Spring AOP [JH+05], or JAC [PSDF01] for
Java, AspectS [Hir03] for Smalltalk, AspectR for Ruby), there is one de facto
reference implementation, which is an aspect-oriented extension of the Java
platform: AspectJ [tAT05]. Its popularity probably stems from three reasons:
it was the �rst AOP tool which implemented the criteria de�ned in the origi-
nal �Aspect-Oriented Programming� paper, with Gregor Kiczales being among
the founding members of the project [LK98], it has by far the most exhaus-
tive feature set of aspect-oriented implementations currently available, and it
is based on the industrially successful general purpose programming language
Java [PSR05].
AspectJ picked up the terms de�ned by Kiczales et al [KL+97], giving them more
speci�c semantics in a concrete implementations. The terms and notions used
for AOP research are therefore mostly identical with the language constructs de-
�ned by AspectJ, and we will also use these terms in this thesis. Their semantics
is de�ned by �The AspectJ 5 Development Kit Developer's Notebook� [tAT05],
�The AspectJ Programming Guide� [tAT03], and other sources [PSR05], and we
will describe it in the following sections. It has to be noted, however, that the
de�nition of AOP is still somewhat �exible, and even AspectJ can't be said to
implement the AOP paradigm, because the paradigm is still being researched
and evolving.

Aspects, Join Points, and Join Point Shadows

An aspect is a modular unit for encapsulation of a cross-cutting concern. Like
classes, aspects can have methods, �elds, and constructors, but unlike classes,
they can have crosscutting members, as explained in the subsequent sections.
To form a concrete program, aspects are woven with target code (also called base
code), in�uencing both its static structure and dynamic behavior. The concrete
program points during dynamic program execution where aspects change the
behavior of the target code are called join points. The locations re�ecting these
points in the static program source code are called join point shadows.
Aspects can be instantiated, and as with ordinary objects, each aspect instance
contains one independent set of the instance �elds de�ned by the aspect. In
contrast to ordinary object instantiation, however, aspect instantiation is not
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performed explicitly by a programmer (e.g. using a new expression), but auto-
matically within the context of the target code associated with the aspect. In
AspectJ, aspect instantiation can follow di�erent policies: singleton (there ex-
ists one aspect instance per application), per type (aspect instances are created
for and associated with speci�c target classes), per object instance (aspect in-
stances are created for and associated with object instances in the target code),
and per control �ow (aspect instances are associated with the control �ow of
target code, e.g. to a speci�c method call sequence). Other, more �ne-grained
and user-controlled policies (e.g. per join point or per group of object instances),
are also conceivable.

Advice, Pointcuts, and Introduction

When an AOP tool weaves together aspect code and target code, there are three
issues that need to be taken into account:

• At which join points does the aspect in�uence the behavior of target code?

• In what ways does the aspect in�uence the behavior of target code?

• In what ways does the aspect in�uence the static structure of the target
code?

These questions are dealt with in AspectJ using the three notions of pointcuts,
advice, and introduction, in that order.
Pointcuts select a subset of the available join points in the program. For this,
AspectJ de�nes a dedicated pointcut language, which allows to quantify over
the program elements, e.g. via specifying class and method names (including
wildcards), parameter values, and control �ows (e.g. method call sequences).
Pointcut expressions can be combined using boolean and, or, and xor operators.
AspectJ's pointcut language is very verbose, although (subjectively) not very
readable, and pointcut expressions can easily become very complicated. It is
therefore both possible and sensible to use simple named pointcuts, i.e. pointcut
expressions assigned a name, and combine those in order to form more complex,
but still understandable pointcut expressions.
Advice speci�es the behavior executed by an aspect at the join points selected
by a pointcut expression. AspectJ classi�es the behavior into before, after, and
around advice, where the �rst is executed just before a join point and the second
just after it. The third is executed in place of the join point, and the advice
can freely decide whether to proceed with the join point or not. The after kind
has the extensions after returning, which only occurs if a join point returns
a value (i.e. throws no exception), and after throwing, invoked when the join
point throws an exception. While this distinction is de�nitely useful, it is not
compatible with all join point kinds (e.g. an after returning advice can only be
attached to method call join points, but not, for example, to �eld access join
points). Therefore, some approaches apply the classi�cation to the join points
instead of advice (e.g. having before method call, after method call, and around
method call join points instead of just one method call join point).
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In AspectJ, advice code can also get contextual information from the associated
join points. For example, an advice woven to a method call join point has access
to the parameters passed to the method, to the object making the call, and to
the object receiving the call. This is an important feature, because cross-cutting
concerns are seldom completely decoupled from the remaining code�most often,
they need access to such contextual information.
Finally, introduction, also called inter-type declaration, allows aspects to change
the static structure of their target code. Aspects can add �elds and methods
to their target objects, change the base types of classes, and add interfaces and
interface implementations to their target types.
Together, these three notions allow e�ective encapsulation of cross-cutting con-
cerns, and while the recent version 5 of AspectJ has changed some details about
the AspectJ language [tAT05], the base features are still consistent with the
notions introduced in the original AOP paper.

2.3.2 De�nition of AOP

While the paper of Kiczales et al [KL+97] is considered the origin of aspect-
oriented programming, and AspectJ is considered a de facto reference imple-
mentation, the essence of AOP has yet to be de�ned. Filman and Friedman
tried to do so in their much-quoted paper �Aspect-Oriented Programming is
Quanti�cation and Obliviousness� [FF00], where they de�ne AOP as follows:

�[We propose] that the distinguishing characteristic of Aspect-Oriented
Programming (AOP) systems is that they allow programming by making
quanti�ed programmatic assertions over programs written by program-
mers oblivious to such assertions. [...] AOP can be understood as the
desire to make quanti�ed statements about the behavior of programs,
and to have these quanti�cations hold over programs written by oblivious
programmers.� Robert E. Filman and Daniel P. Friedman

Quanti�cation, in this context, refers to the ability of saying: �In programs
P, whenever condition C arises, perform action A� [FF00]. According to the
authors, this makes three dimensions of classi�cation available for AOP tools:
quanti�cation, i.e. what set of conditions C the tool allows to be speci�ed (this
comprises the join point model 's feature set as well as the pointcut language),
interface, i.e. how the actions A interact with the target code and with each
other, and weaving, i.e. how the system is made to intermix actions A and P.
Obliviousness refers to the property of the programmer not being aware of what
cross-cutting concerns a�ect a class (and the class not being speci�cally designed
to allow for the concerns to a�ect it).
While quanti�cation is indisputably one of the most important features of
aspect-oriented programming, the demand for obliviousness has evoked some
controversy. Most notably, Sullivan, Griswold, et al have performed an exten-
sive case study showing that obliviousness of the base code, while desirable,
leads to very awkward aspects full of ad-hoc pointcut expressions, making the
cross-cutting concerns hard to encapsulate and the aspects unsuitable for reuse
[SG+05]. Instead of oblivious base code, the authors propose that base code
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needs to adhere to certain design guidelines in order to make them �aspect-
friendlier�, enabling clean encapsulations and reusable aspects [GS+06].

2.3.3 AOP vs. Interception

From the (undisputed) de�nition that AOP needs a mechanism for quanti�-
cation comes an important implication: AOP is not the same as interception,
which it is often confused with.

According to Brenda M. Michelson's article �Service-Oriented World Cheat
Sheet: A Guide to Key Concepts, Technology, and More� [Mic05], intercep-
tion is a type of collaboration in which an entity intercepts a request to (or a
reply from) a target, forwarding the request (or reply) to the original target
if necessary, providing additional behavior in an othogonal fashion. Michelson
also states that �interception is used to perform common functions such as se-
curity, policy, audit, and translation� and that �in many interception scenarios,
the requesting and providing parties are unaware of the intermediary service.�

Thus, at �rst glance, interception and AOP have much in common: both are
used to implement orthogonal services, both are sometimes applied to oblivious
targets. And indeed, di�erent implementations of interception (such as service
interception or method interception) can be used as an infrastructure for AOP
in di�erent surroundings. However, the important di�erence between AOP and
interception is the notion of quanti�cation, i.e. a mechanism or language for
quantifying over program conditions in order to invoke cross-cutting code. This
is an important part of AOP, but it is not a property of interception.

2.3.4 AOP vs. Extensible Metadata

Extensible metadata implementations like Java annotations or .NET custom at-
tributes allow to orthogonally extend a programming language by new declara-
tive mechanisms, so are they the same as aspect-oriented programming? In fact,
metadata and AOP actually have quite di�erent goals�the former is meant to
provide a �exible language extension mechanism, while the latter is a paradigm
supporting encapsulation of cross-cutting concerns. However, declarative meta-
data and AOP can complement each other in two important and useful ways.

Firstly, extensible metadata can be used to implement an aspect language (i.e.
language constructs allowing to de�ne aspects, associate them with join points,
etc.) on top of an existing programming language in a standardized, portable
way. AspectWerkz [Bon04] was the �rst AOP tool to do so�its aspect language
is set on top of the Java programming language and is implemented completely
with Java annotations. (In fact, AspectWerkz had this even before Java in-
cluded an extensible metadata mechanism�AspectWerkz analyzed an applica-
tion's source code comments for annotations in earlier versions.) Following its
example, AspectJ, while traditionally being based on an aspect-oriented Java
language extension (and thus requiring a dedicated compiler), now also includes
a purely metadata-based variant of its aspect language in its recent version 5
[tAT05].
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Secondly, metadata can be used to declaratively describe program elements
within base code. These descriptions can be used by an aspect-oriented tool
for join point selection. As an example, a logging aspect might be de�ned to
in�uence the behavior of all methods tagged with a Logged attribute in a certain
class. This is discussed by Mezini and Kiczales in �Separation of Concerns
with Procedures, Annotations, Advice and Pointcuts� [KM05], and the authors
conclude that this is indeed a good way of selecting join points, which can
often replace unstable and unreadable enumerative pointcut expressions (which
simply list a number of target methods by name). They also state, however,
that it is often desirable to have semantic annotations, which are not bound
to a certain aspect. The example of a Logged annotation is clearly bound to
the logging aspect. According to Mezini and Kiczales, a better aspect-oriented
design would be to �nd common properties connecting the methods to be logged.
For example if all business methods should be logged, a more semantic Business
attribute could be applied to those, and the logging aspect could then be tied
to this Business annotation.

2.3.5 AOP Infrastructure Classi�cation

As described earlier, Filman and Friedman noted that aspect-oriented tools
could be classi�ed by their quanti�cation abilities (or join point model), inter-
faces between target code and aspects (as well as aspects among each other),
and their weaving model. This classi�cation model is good for full AOP tools,
but it is not fully satisfactory when classifying AOP infrastructure�platforms,
toolkits, or frameworks providing a weaving mechanism which can be used to
build an AOP tool.

In recent work [eKFS06], we ourselves have therefore published a similar clas-
si�cation model for AOP infrastructure based on the Microsoft .NET platform
(although it could be easily mapped to the Java platform). Since this schema
will be used for classifying the AOP infrastructure presented in chapter 3, a
description of the classi�cation structure will be given in this section.

Source Code Form

Intermediate Form

In-Memory Form

loader

compiler

Assembly Lifecycle Woven Code

Source Code Weaving

Intermediate Code 
Weaving

Augmenting Weaving

Time of Weaving

Static Weaving

Load-Time Weaving

Run-Time Weaving

Figure 2.8: Classi�cation of weaving mechanisms

Figure 2.8 shows two orthogonal classi�cations of weaving mechanisms with
regard to an application component's (.NET assembly's) lifecycle. On the one
hand, weaving is classi�ed based on the kind of woven code: source code weaving
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manipulates an assembly's source code to inject aspect or glue code1; it can be
performed either by a code transformation tool or by a dedicated compiler (plu-
gin). Intermediate code weaving manipulates the intermediate code generated
by .NET-based compilers (consisting of executable code in the common inter-
mediate language CIL or IL and type information called metadata [ECM05b])
to inject aspect or glue code; this is usually done by a post-compiler or cus-
tom class loader. Augmenting weaving does not manipulate existing code, but
instead augments its in-memory form with new glue code, connecting it to as-
pect code; this can be performed by frameworks rather than tools. Traditional
approaches like AspectJ are source code or intermediate code weaving mecha-
nisms or mixes thereof, but recently, augmenting approaches have drawn much
attention [Joh05][eKS05b][CS06].

On the other hand, weaving can be classi�ed based on when it is performed:
AspectJ, for example, has traditionally been a static weaver, performing the
combination of aspect and target code before the application is loaded into
memory [tAT05]. Load-time weavers do that combination just as the application
is loaded, and runtime approaches weave while it is actually executing.

With regard to the kind of code being woven, we characterize based on the fol-
lowing properties, displayed in table 2.3 with advantageous properties in bold-
face:

Invasiveness is a measure for the degree of manipulation the weaving approach
performs on user-written code. Source code weaving approaches compiling a
dedicated aspect language have low invasiveness, augmenting approaches only
extend and also have low invasiveness. Other approaches change the structure
of user-written code and are thus highly invasive.

Debuggability denotes how much e�ort is needed to make the woven program
debuggable with standard mechanisms (e.g. Microsoft Visual Studio). This is
easy with augmenting approaches, because the original debug information re-
mains valid after weaving. Source code weaving also results in correct debug
information. With intermediate code weaving, debuggability involves manip-
ulating a debugger-speci�c �le format. This is not portable and often hard:
for example, the undocumented Program Database �le format used by Visual
Studio cannot be easily manipulated.

Join point model denotes the join point kinds an approach can provide.
Source code weaving makes no restrictions whatsoever to the join point model.
With intermediate code weaving, the only restrictions are those posed by IL
and metadata (e.g. there are no �for� loops available in IL; to a certain extent
this can be overcome by pattern matching as it is also done by decompilers).
Augmenting weaving relies on the manipulation mechanisms provided by the
.NET environment, i.e. OOP techniques such as interface implementation and
method overriding.

Design prerequisites describes prerequisites needed from the perspective of
the application designer. With augmenting weaving, it is often necessary to use
a factory which performs the in-memory weaving when objects are instantiated.
With source code and intermediate code weaving, there is no such restriction.

1Glue code is code which �glues� an aspect to its target objects.
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Tool prerequisites describes the tools needed for the approach. Source code
weaving needs a precompiler or real compiler, intermediate code weaving needs
a postcompiler or class loader, augmenting weaving can be done by a framework
or library.
Implementation e�ort is a measure for the e�ort needed to create a tool
based on the approach and keep it up to date with platform changes. Source
code weaving requires the most e�ort by an implementer: it needs at least
a source code parser and code emitter. If the tool is to be a full compiler,
complexity is even worse. With intermediate weaving, an IL and metadata
parser and emitter are needed, although IL is typically simpler to parse than
source code. Augmenting weaving only requires a very simple framework.
Compatibility is a measure for the compatibility of the approach with third-
party compilers, frameworks, or metaprogramming tools. With compiler-based
source code weaving tools, third-party compilers cannot be used. Intermediate
code and augmenting weaving tools pose no compatibility problems and can
usually be easily combined with any compiler, framework, or tool.
Language support denotes the number of supported programming languages.
While intermediate code and augmenting weaving strategies can handle all pro-
gramming languages targeting .NET, a source code weaving tool can only target
a single programming language. Since one of .NET's goals is to be a multi-
language environment [ECM05b], this is an important restriction which might
exclude a high number of potential users (much more important than on the
Java platform, which has only one dominant language).
Performance is a measure for the runtime e�ciency of the approach. With
source code weaving, performance is optimal, all compiler optimizations and JIT
(just-in-time, i.e. runtime compilation) optimizations can be performed. With
IL code weaving, compiler optimizations should be disabled in order to retain a
powerful join point model (e.g. target methods must not be inlined by the com-
piler), but JIT optimizations can be performed without any restriction. With
augmenting weaving, some optimizations are disabled by the use of certain OOP
features (like virtual method calls), but most JIT optimizations are available.

Source Intermediate Augmenting
Invasiveness low to high high low
Debuggability no-e�ort hard no-e�ort
Join point model arbitrary IL and metadata OOP
Design prerequ. none none factory
Tool prerequ. compiler postcompiler framework
Impl. e�ort very high high low
Compatibility low high high
Language support one all all
Performance optimal good medium

Table 2.3: Weaving approaches by code form

With regard to the time of weaving, we characterize the approaches as follows,
summarized in table 2.4:
Changeability denotes how much e�ort is needed to add or remove an aspect
to or from the application. With static weaving, recompilation or reinstrumen-
tation of the assembly is needed, the application has to be restarted and rede-
ployed. With load-time weaving, the application domain needs to be reloaded,
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often requiring a restart of the application. With runtime weaving, changes can
be applied immediately.
Deactivating aspects is equally possible in all three weaving variants and
requires some sort of join point manager which is asked before a join point is
triggered.
Error detection refers to the point of time when weaving con�guration er-
rors are detected. With static weaving, this is before application deployment,
whereas it is after deployment with the other two approaches.
Testability is inversely proportional to the e�ort needed to test an object in
scenarios with di�erent (or no) aspects attached to it. This follows directly
from changeability: static and load-time weaving require much e�ort, whereas
runtime weaving does not.

Static Load-Time Runtime
Changeability recompilation reload immediately
Deactivating aspects immediately immediately immediately
Error detection before depl. after depl. after depl.
Testability low low high

Table 2.4: Weaving approaches by time of weaving

2.3.6 Infrastructure Classi�cation in Context

The scheme presented in the previous section is used to classify infrastructure,
i.e. weaving mechanisms, not AOP tools. Therefore, its classi�cation model dif-
fers from that of Filman and Friedman. We di�erentiate infrastructural mecha-
nisms based on the form of woven code and the time of weaving, which includes
Filman and Fiedman's join point model, but in addition comprises other proper-
ties as well. For example, the important feature of changeability, i.e. how much
support an AOP tool can provide for adding and removing aspects to/from
an application, is completely missing in the original classi�cation mechanism.
On the other hand, our classi�cation ignores pointcut languages and interface,
because these are properties of AOP tools rather than infrastructure.

2.4 Summary of the State-of-the-Art

After having given an introduction to the base technology of this thesis and work
related to that, we will now take a closer look at existing approaches tackling
the same problems we are addressing in our work. In this thesis, we aim to
give an easily adoptable mechanism for more e�cient distributed application
development by combining the concepts of space-based computing, declarativity
in object-oriented programming languages, and aspect-oriented programming,
and to the best of our knowledge, we are the �rst to do so. However, there is
work by others that has similar goals as we have or provides similar solutions
as we do.
Regarding our goal of facilitating distributed application development by em-
ploying the declarative facilities of modern programming languages and aspect-
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oriented programming, the open-source J2EE (Java 2 Enterprise Edition) ap-
plication server JBoss [FR03], as well as the recent Enterprise Java Beans
(EJB) speci�cation version 3.0 [D+06] are related work in that they both em-
ploy Java 5 annotations for specifying enterprise concerns on so-called plain
old Java objects (POJOs). JBoss also allows aspect-oriented development of
application components via its aspect-oriented mechanism JBoss AOP. At a
closer glance, however, both JBoss and the EJB 3.0 speci�cation actually ad-
dress di�erent kinds of systems: J2EE is a container-based architecture targeted
at large-scale client/server enterprise applications, possibly incorporating pub-
lish/subscribe systems. The space-based paradigm on the other hand postulates
a lightweight form of distributed computing, with stateful, data-driven commu-
nication instead of message passing, with �exible peer-to-peer solutions instead
of client/server architectures. Our solution is also di�erent because we provide a
lightweight, easily deployable and adoptable framework-based approach to AOP,
whereas JBoss AOP is part of a large and heavy-weight application server.
The Spring framework [JH+05], on the other hand, and its aspect-oriented com-
ponent Spring AOP as well as its .NET port Spring .NET [JP+06] go more into
this direction, aiming to provide a lightweight framework for J2EE software de-
velopment based on inversion of control technology. Their goal is to remove
much of the accidental complexity introduced by large-scale J2EE application
servers and thus to signi�cantly facilitate enterprise application development.
Indeed, Spring's approach to AOP is similar to ours, but where we aim for
easy adoptibility and ease of use, leveraging built-in declarativity and extensi-
ble metadata, Spring aims for adaptability and makes heavy use of XML-based
con�guration. Also, Spring is still based on J2EE, providing no support what-
soever for space-based technology.
Of the existing implementations of space-based technology�e.g. Linda, JavaS-
paces, CORSO, and XVSM�none provides a declarative language interface
and none provides support for encapsulating cross-cutting concerns by means
of aspect-oriented programming. In the thesis �Distributed Shared Memory in
Modern Operating Systems� [sS04], Tomá² Seidmann of the Slovak University of
Technology, Bratislava, also describes somehow related work: he implemented
a completely new space-based system for distributed computing, including a
.NET API which does make minimal use of .NET's custom attributes. Seid-
mann, however, has his focus more on the implementation of the distributed
shared memory than on an intuitive declarative language binding. And again,
he does not provide a mechanism for general encapsulation of cross-cutting con-
cerns.
The research-based approaches Argus and D, described earlier in this chapter,
di�er from our approach in several ways: while both of them provide a declar-
ative interface to the concerns of distribution�and D does so in a lightweight
fashion�, they implement it via language extensions rather than extensible
metadata; they do not allow to encapsulate additional cross-cutting concerns,
and they were not designed for easy adoptability.
Lastly, there are quite a few aspect-oriented environments already existing. We
already introduced AspectJ, which�being compiler-based�is not a lightweight
approach and, due to its complexity, hard to adopt; but in addition, NAspect
[Joh05] should be included, because it is a lightweight and adoptable AOP
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implementation for .NET not unlike our own. Unfortunately, neither AspectJ
nor NAspect include any support whatsoever for distributed (not to mention
space-based) computing; NAspect, like Spring AOP, also relies heavily on XML
rather than declarativity through extensible metadata.

Distr SBC Decl MD AOP LW Adopt
JBoss x - x x x - -
EJB 3.0 x - x x - - -
Spring x - x - x x -
Linda x x - - - x x
JavaSpaces x x - - - x x
CORSO x x - - - x x
XVSM x x - - - x x
DSM x x - - - - -
Argus x - x - - - -
D x - x - - x -
AspectJ - - x x x - -
NAspect - - - - x x x
Our approach x x x x x x x

Table 2.5: State-of-the-art feature matrix

Table 2.5 summarizes the properties of the state-of-the-art approaches given
in this section and chapter, graphically presenting their feature set and short-
comings. This makes fairly clear that none of the approaches ful�lls all the
requirements we found for our work; none of the approaches supports distribu-
tion (Distr) through the mechanism of space-based computing (SBC ), provides
a declarative language interface (Decl) through extensible metadata (MD), al-
lows for encapsulation of additional cross-cutting concerns via lightweight (LW )
AOP, and was designed with adoptability (Adopt) in mind. This is where our
approach �ts in.



Chapter 3

An Underlying AOP
Infrastructure

Before describing the aspect-oriented tool we developed to ful�ll the require-
ments of our work, we will give a detailed analysis of the infrastructure we base
our approach on. Using an existing infrastructure for implementing an aspect-
oriented tool has the advantage that one can concentrate on the high-level layer
of the tool, i.e. how the tool presents itself to the developer, rather than having
to deal with the low-level details of implementing an aspect weaver.
In this chapter, we will therefore describe the mechanism of runtime-generated
subclass proxies as an infrastructure for AOP. Runtime-generated subclass prox-
ies are not a new concept, they have already been used by AOP tools such as
JAC [PSDF01] or NAspect [Joh05] as well as non-AOP tools such as NHibernate
[Har05]�the novelty of our approach is concentrated on a higher level. We were,
however, to the best of our knowledge the �rst to publish a thorough analysis
of the subclass proxy concept with regard to AOP and the �rst to augment it
with the new dynamic method concept of .NET [eKFS06]1.
In the following sections, we will �rst introduce the concept of runtime-generated
subclass proxies and its use for AOP, then describe our dynamic method-based
extensions to the mechanism. We will evaluate the concept based on the classi-
�cation scenario given in section 2.3.5 in chapter 2 and describe the join point
and introduction model realizable with the approach. Concluding our analysis,
we will give the results of a performance benchmark of existing implementations
of the subclass proxy approach.

3.1 Subclass Proxies

A proxy P is de�ned to be an object which acts as a placeholder for a target
object T [GHJV95]. Wherever T is expected, the proxy can be used instead,

1The contents of this chapter, as well as the classi�cation scheme introduced earlier in
chapter 2 mostly stem from the cited publication.
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transparently extending the target object's behavior or controlling access to it
without client code needing to be adapted. Runtime proxies are proxies created
dynamically at runtime, without the programmer having to prepare a dedicated
proxy class for every target class.
The idea of proxies extending target classes, adding new behavior without the
target code needing to be extended, is similar to that of aspects extending the
behavior of oblivious base code. This makes proxy approaches, and especially
runtime proxy approaches, for which the system rather than the programmer
generates the proxy code, a good candidate for an AOP weaving infrastructure.
The Microsoft .NET Common Language Runtime (CLR) already provides a run-
time proxy mechanism called �transparent proxies� [Low03], which are needed
for .NET Remoting�remote method invocation-based communication between
di�erent application domains, processes, and computers. Its uses as an AOP
infrastructure are however limited by its functionality and its impact on appli-
cation design.
Design-wise, it requires all target objects to be derived from a common base
class: System.ContextBoundObject. This will not be an option in some cases,
in other scenarios it might require unclean changes to the application design,
which is contrary to the goals of AOP [KL+97].
Functionally, as it is designed for .NET Remoting, the transparent proxy mech-
anism can only extend behavior which occurs at the crossing of so-called �con-
texts�, i.e. boundaries between application domains, processes, or computers.
Although it is possible to create a single context for each target object, the
transparent proxy mechanism cannot extend behavior of an object being ac-
cessed from its own context. This means that self calls�methods called on
the this reference�cannot be extended. This would be a real drawback if the
mechanism were used to realize a join point model. In addition, the static struc-
ture extension needed for the aspect-oriented feature of introduction can not be
implemented using transparent proxies at all.
Positive aspects of the mechanism include that proxies are also created transpar-
ently because the CLR intercepts the instantiation of target objects and returns
proxies instead. In addition, the CLR automatically corrects the this reference
within T 's methods�it refers to P instead of T , which is important if it is to
be passed to other objects.
Since transparent proxies are suboptimal as an AOP infrastructure, alternative
proxy mechanisms should be considered. In this process, it can be noted that
the property of substitutability used previously for de�ning the term �proxy�
is similar to the Liskov Substitution Principle (LSP) [LW94], which describes
the relationship between subtypes. Like a proxy P , which can be substituted
for an object T , the LSP states that an object of a subtype can be substituted
for one of a supertype. This similarity can be used to implement proxies using
the subtyping mechanisms present in .NET: interfaces and inheritance/subclass-
ing. Figure 3.1 illustrates these proxy types, comparing them with transparent
proxies and the unproxied scenario.
To realize a proxy using interface implementation�we call this an interface
proxy approach�the target object T must implement a set of interfaces I and
all client code must access T via these interfaces only. Then, a proxy object P
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Figure 3.1: Proxy approach visualization

can be created which also implements I and holds a reference to T for delegation.
T in the client code can be transparently replaced by P , which plays the role of
a proxy. Within T 's method implementations, however, the this reference refers
to T rather than P , which is problematic if the reference is used to access the
object: such access will not be registered by the proxy. In addition, like with
transparent proxies, the interface proxy approach does not allow self calls to be
extended, it would therefore be a suboptimal AOP infrastructure as well.
Realizing proxies using inheritance�the subclass proxy approach�is di�erent
from the aforementioned approaches. Whereas transparent and interface proxies
have an object instance P replacing a target object instance T (and delegating),
inheritance allows proxy and target to be one and the same object: a class
P is derived from the target class T , overriding its methods and delegating
to the original implementation. When P is instantiated, one object instance
implements both P 's and T 's functionality.
Since subclasses are subtypes in .NET, the LSP applies and instances of P can
be used wherever instances of T are expected. Subclass proxies intercept self-
calls correctly, the this reference is automatically correct, and introduction is
possible via interface implementation (see below).
In contrast to transparent proxies, both interface and subclass proxy have the
disadvantage of needing a class factory [GHJV95] to make object creation trans-
parent to client code. Table 3.1 summarizes the properties of the di�erent proxy
approaches, positive characteristics are shown in boldface. From this table, it is
apparent that subclass proxies are the most appropriate proxy mechanism for
creating an AOP infrastructure.

Transparent Interface Subclass
Parent class ContextBoundObject arbitrary arbitrary
Creation transparent factory factory
Usage direct interfaces direct
This reference P T P
Extend self calls no no yes
Introduction no yes yes

Table 3.1: Properties of proxy approaches
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3.1.1 Runtime Subclass Proxies
In the simplest form, subclasses do not implement a runtime proxy approach:
the programer needs to write dedicated derived classes for each target type, man-
ually overriding the methods that need to be extended. Using code generation,
this can however be generically performed at runtime by a tool or framework.
The .NET Base Class Library provides two powerful mechanisms allowing for
runtime code generation: the System.Re�ection.Emit namespace contains low-
level classes and methods to dynamically generate .NET assemblies and types,
System.CodeDom provides base classes for higher-level code generation. In this
chapter, we will concentrate on System.Re�ection.Emit.
Listing 3.1 shows how to dynamically generate a subclass of an arbitrary type
at runtime using System.Re�ection.Emit ; this can for example be used to create
a subclass proxy. The code �rst asks the current application domain to de�ne a
dynamic assembly, naming it �proxies�, which in turn is used to de�ne a dynamic
module named �proxies� as well. By giving the module a DLL �le name and
using the RunAndSave �ag when creating the assembly, it is possible to save
the module to disk after generation in addition to using its types. The dynamic
module is then used as a factory for the subclass type to be created. The type's
base class is speci�ed to be baseType, the parameter passed to the method, its
access attribute is Public to make it publicly accessibly from other assemblies,
and its name is de�ned by attaching �___Subclass� to the base type's name.
By calling its CreateType method, the dynamically created subclass is �nished
and the corresponding Type object is returned and can be instantiated using
System.Activator.CreateInstance.
public Type DefineSubclass(Type baseType) {
AssemblyBuilder a = AppDomain.CurrentDomain.DefineDynamicAssembly(new
AssemblyName("proxies"), AssemblyBuilderAccess.RunAndSave);

ModuleBuilder m = a.DefineDynamicModule("proxies", "proxies.dll");
TypeBuilder subtype = m.DefineType(baseType.Name + "___Subclass",
TypeAttributes.Public, baseType);

return subtype.CreateType();
}

Listing 3.1: Creating a subclass at runtime

3.1.2 Weaving Based on Subclass Proxies
Aspect-oriented programming is based on two main concepts: join points, i.e.
points in the imperative program �ow where aspects' advice methods are trig-
gered, and introduction of new members to the aspects' target classes. Both
concepts can�to a degree�be implemented with subclass proxies; the method
of doing so is described in this section. An analysis on the join point model
which is gained from this mechanism is performed later in section 3.3.1.

Join Points

By overriding the methods of its base class, a proxy class can provide replace-
ment code for them, delegating to the original (base) implementation if neces-
sary and executing additional code before, after, and instead of method execu-
tions. This e�ectively implements before, after, and around method execution
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join points, with advice code being called (or even inlined) from the proxy's
method overrides.
With System.Re�ection.Emit, overriding methods is easily possible by inserting
code prior to calling TypeBuilder.CreateType. Listing 3.2 shows how to over-
ride all virtual methods of the given base type. It does so by using the .NET
Re�ection mechanism to �nd all the public and nonpublic instance methods of
the base type, checking whether they are virtual, and, if yes, de�ning a method
with the same name, return type, and parameter types. The parameter types
are found by inspecting the parameter information of the base method (the code
uses ConvertAll and an anonymous delegate for brevity); the override's return
type is the same as that of the base method.
foreach (MethodInfo m in baseType.GetMethods(

BindingFlags.Public | BindingFlags.NonPublic |
BindingFlags.Instance)) {

if (m.IsVirtual) {
ParameterInfo[] parameters = m.GetParameters();
Type[] parameterTypes =

Array.ConvertAll<ParameterInfo, Type>(parameters,
delegate(ParameterInfo parameter)
{ return parameter.ParameterType; });

MethodBuilder subMethod = subtype.DefineMethod(m.Name,
MethodAttributes.Virtual | MethodAttributes.Public,
m.CallingConvention, m.ReturnType, parameterTypes);

ILGenerator il = subMethod.GetILGenerator();
il.Emit(OpCodes.Ldarg_0);
foreach (ParameterInfo parameter in parameters) {
il.Emit(OpCodes.Ldarg, parameter.Position + 1);

}
il.EmitCall(OpCodes.Call, m, null);
il.Emit(OpCodes.Ret);

}
}

Listing 3.2: Overriding methods

The code snippet then de�nes the override's method body via IL (intermediate
language) opcodes. The body loads the object reference (argument 0) and the
parameters, calls the base method, and �nally returns to the caller. An AOP
approach can insert additional code into the body, implementing before, after,
and around advice and delegating back to the original method if desired.
Although method join points are very important, they are not the only join point
kind that should be supported by an AOP infrastructure. Property get and set
join points are equivalent to method join points, since all properties are backed
by respective getter and setter methods. Construction and creation join points,
triggered when an object is (to be) instantiated, can easily be implemented by
the factory used to create the proxy types and their instances. Finalization
join points, triggered when the .NET garbage collector �nds the lifetime of an
object to be ended, can be implemented as a special kind of method join point
by overriding the Finalize method of the object. Field get and set join points
cannot however be implemented with subclass proxies.

Introduction

As opposed to static AOP approaches, runtime weaving approaches cannot sim-
ply introduce new members to a class. While it would be easily possible to add
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these members to a subclass proxy, client code uses the proxy transparently and
has no way of accessing the introduced entities with a statically typed program-
ming language. The only form of introduction easily conceivable for runtime
approaches is interface introduction: an aspect can add an interface and its im-
plementation to an object, and client code can cast its object reference to the
interface type. Since the proxy implements the interface, the cast succeeds.
Interface introduction can be easily implemented with Re�ection.Emit by having
the dynamically created subclass implement the interface. This is similar to
listing 3.2 and therefore not separately demonstrated here.

Introduction via Mixins For reasons of �exibility, the interface implemen-
tation within the proxy subclass should be able to delegate to a separate imple-
mentation of the introduced interface, a so-called mixin. The mixin mechanism,
which is similar in concept to the notion of interface proxies, allows aspects to
de�ne an interface implementation in their own context and pass it to the proxy,
where it gets invoked when client code accesses the proxy via the introduced
interface. This �exibility makes for a very powerful means of separation of con-
cerns. Figure 3.2 demonstrates the class layout of mixins in combination with
subclass proxies.
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mixin.InterfaceMethod(); specified by aspect

Figure 3.2: Class layout of mixins with subclass proxies

3.2 Privileged Access to Target Objects' Inter-
nals

One important property of aspects is that they often require more privileged
access to their target object's internals than other objects should have. This is
because they implement cross-cutting concerns, whose implementations can be
tightly coupled to the objects they cut. While a subclass proxy naturally has
access to all public and protected (family-accessible) �elds and methods of its
base class, it has no access to private or assembly-visible members.
.NET provides a re�ection mechanism to work around this: given the necessary
rights, every object can re�ect over another object's private �elds and methods
in order to inspect and change the �elds' values or invoke the methods. However,
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.NET Re�ection is not optimized for performance: our tests have shown that
accessing a �eld via re�ection is around 200 to 700 times slower than direct
access, and still 180 times slower than invoking an accessor method would be.
Since �eld access is such a basic operation, this might conceivably slow down
an aspect-oriented application, depending on the degree of coupling between
aspects and object state.
Since direct �eld access cannot be implemented from a subclass and re�ective
access is so slow, it would be desirable to at least have accessor methods for
those private �elds required by an aspect. Unfortunately, such a method cannot
be added to a subclass, which has no access to private members. As a solution,
with .NET 2.0 there is a new mechanism called Lightweight Code Generation
(LCG), or Dynamic Methods [Mic06a]. It allows methods to be generated at
runtime which can be attached to any existing type, allowing access to all its
private data. Access to the method is provided via a delegate, allowing �exible
invocation which is still 15 to 20 times faster than re�ection-based �eld access.
The diagram in �gure 3.3 shows a performance comparison of the di�erent ways
of accessing �elds (measured on an Athlon XP1800+ with 512 MB RAM and
.NET framework v2.0.50727).
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Figure 3.3: Access method performance

3.2.1 Field Access Framework

For an AOP approach based on subclass proxies, we suggest a �eld access in-
frastructure, as illustrated in listing 3.3. It consists of strongly typed wrappers
Setter and Getter for accessor methods, an accessor method generator Method-
Generator, which generates the methods using LCG, and a wrapper structure for
�elds, which automatically initiates the accessor method generation when being
constructed and provides a Value property delegating to the accessor methods
for convenient use.
The listing shows the source code for these infrastructure entities. The method
body constructed by CreateSetter simply loads the given target object (argu-
ment 0) followed by the value (argument 1), which is then stored in the given
�eld before returning. The method body constructed by CreateGetter �rst loads
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the target, then loads the �eld value, and then returns, leaving the �eld value
on the evaluation stack for it to be returned to the caller. Because the created
dynamic methods are associated with the target type (ClassType), they can
safely access even private �elds using the ld�d and st�d opcodes.

delegate FieldType Getter<ClassType, FieldType>(
ClassType target);

delegate void Setter<ClassType, FieldType>(
ClassType target, FieldType value);

class MethodGenerator {
public static Setter<ClassType, FieldType> CreateSetter

<ClassType, FieldType>(FieldInfo fieldInfo) {
DynamicMethod newMethod = new DynamicMethod(

fieldInfo.Name + "___GeneratedSetter", typeof(void),
new Type[] { typeof(ClassType), typeof(FieldType) },
typeof(ClassType));

ILGenerator ilGenerator = newMethod.GetILGenerator();
ilGenerator.Emit(OpCodes.Ldarg_0);
ilGenerator.Emit(OpCodes.Ldarg_1);
ilGenerator.Emit(OpCodes.Stfld, fieldInfo);
ilGenerator.Emit(OpCodes.Ret);
return (Setter<ClassType, FieldType>)

newMethod.CreateDelegate(
typeof(Setter<ClassType, FieldType>));

}

public static Getter<ClassType, FieldType> CreateGetter
<ClassType, FieldType>(FieldInfo fieldInfo) {

DynamicMethod newMethod = new DynamicMethod(
fieldInfo.Name + "___GeneratedGetter",
typeof(FieldType), new Type[] { typeof(ClassType) },
typeof(ClassType));

ILGenerator ilGenerator = newMethod.GetILGenerator();
ilGenerator.Emit(OpCodes.Ldarg_0);
ilGenerator.Emit(OpCodes.Ldfld, fieldInfo);
ilGenerator.Emit(OpCodes.Ret);
return (Getter<ClassType, FieldType>)

newMethod.CreateDelegate(
typeof(Getter<ClassType, FieldType>));

}
}

struct Field<ClassType, FieldType> {
public readonly FieldInfo FieldInfo;
public readonly ClassType Target;
public readonly Getter<ClassType, FieldType> Getter;
public readonly Setter<ClassType, FieldType> Setter;

public Field(ClassType target, FieldInfo fieldInfo) {
this.FieldInfo = fieldInfo;
this.Target = target;
this.Getter = MethodGenerator.CreateGetter

<ClassType, FieldType>(fieldInfo);
this.Setter = MethodGenerator.CreateSetter

<ClassType, FieldType>(fieldInfo);
}

public FieldType Value {
get { return Getter(Target); }
set { Setter(Target, value); }
}

}

Listing 3.3: Infrastructure for e�cient �eld access



3.3. CONCEPTUAL ANALYSIS 51

3.2.2 Other Uses of LCG for AOP

In the context of AOP, dynamic methods cannot only be used for accessing
private �elds (and methods), they also constitute an easy way of adapting an
already generated subclass proxy to new requirements. Consider a proxy ex-
tending a target object with an advice method that takes join point context
information. In order to correctly pass the information needed by the advice, a
subclass proxy approach must either settle for untyped advice parameters (e.g.
an argument of type object[] which is �lled with the parameters) or generate
adapter code. Such adapter code generation can only be done at the time of
proxy generation. Therefore, if a new aspect is to be attached to an instance
of a previously generated proxy class, adapter code may not be available, thus
restricting the runtime adaptability facilities of a subclass proxy infrastructure.
With dynamic methods, however, it is possible to generate adapter code even
after proxy generation has �nished and thus react to changing aspect bindings.
This makes subclass proxy weaving truly dynamic, enabling aspect recon�gura-
tion to be performed at any time at runtime (not only before object instantia-
tion). Figure 3.4 illustrates the working of adapter code: without an adapter,
the proxy class P needs to directly bind its method M to the aspect's advice
method (requiring the s parameter to be passed through to the aspect). With
an adapter, P can pass all its arguments to the adapter method which then
selects the arguments to be passed to the aspect. With the latter mechanism,
an aspect can be added at runtime without P needing to change.
(Note that, while runtime generation of whole adapter types was already pos-
sible without LCG, this had a much higher memory footprint. In addition,
the garbage collector cannot remove unneeded types from memory, but it can
remove dynamic methods when they aren't needed any longer [Mic06b].)

+M(in i : int, in s : string)

T

+M(in i : int, in s : string)

P

+Advice(in s : string)

Aspect

Adapter
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with adapter

Figure 3.4: Binding to join points with and without adapter

3.3 Conceptual Analysis

Classi�ed by the schema given in section 2.3.5, runtime-generated subclass prox-
ies make for an augmenting approach performed at runtime, thus resulting in
bene�cial properties for invasiveness, debuggability, implementation e�ort, com-
patibility, and language support. It has negative properties regarding the join
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point model (to be discussed in detail), design prerequisites (a factory is needed
for creating proxied instances), and performance (also to be detailed).

3.3.1 Join Point Model

From an AOP perspective, a number of join points can be implemented using
subclass proxies, whereas others can't. Table 3.2 characterizes the join point
model realizable with the approach. Using a source code weaving tool, all the
join points shown could be realized.

Join Point Type Before Instead of After
Object creation yes yes yes
Constructor execution yes no yes
Class construction no no no
Object �nalization yes yes yes
Method execution yes (virtual) yes (virtual) yes (virtual)
Method call no no no
Property get yes (virtual) yes (virtual) yes (virtual)
Property set yes (virtual) yes (virtual) yes (virtual)
Field get no no no
Field set no no no
Exception thrown no no no
Exception caught no no no
Exception escaping yes (virtual) yes (virtual) -
Construct (for, if, . . . ) no no no

Table 3.2: Join point model with subclass proxies

While this join point model is de�nitely restricted when compared to that of a
source code weaving tool, we believe that this is not a problem in most AOP
scenarios. When an application is designed from scratch in an aspect-oriented
way, all join points are known in advance, before any of the classes or aspects are
to be implemented. With a subclass proxy approach, the design would naturally
evolve around the join point kinds being available, ignoring those which can't
be used. In most cases, however, small design changes can work around the
missing join point types.
For example, because �eld access join points cannot be realized using subclass
proxies, a design guideline could be created to access �elds via accessor meth-
ods (or properties) only, which is a common guideline with object-oriented pro-
gramming anyway. Those methods needed as join points would be de�ned to
be virtual. The only join points which can't be worked around are: instead-of
constructor execution, class construction, exceptions thrown and caught in the
same method, and join points at a statement-level granularity. In addition, sub-
class proxies cannot advise non-virtual methods or distinguish between method
call and execution.

3.3.2 Psychological Factors

Adoption of AOP is hindered by many factors, which are remedied to a great
extent by the use of an approach based on subclass proxies:
AOP can make a program incomprehensible: AOP as an invasive mech-
anism is often regarded with distrust, because aspect-oriented tools weave code
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together as a black box. Since aspect de�nitions aren't necessarily visible when
reading base source code, it is hard to make conclusions about the actual run-
time behavior of the code. Similar to the object-oriented mechanism of dynamic
dispatch, but in a more poweful and more extensive way, the code being exe-
cuted is not necessarily the code which can be inspected in a class de�nition.
With this prerequisite, concerns about reliability and debuggability (if an error
occurs in mangled code, will it be retraceable to the original source code?) as
well as the question of unpredictable execution paths in woven code naturally
arise with invasive tools. In contrast, subclass proxies are built on established
object-oriented concepts such as method overriding and interface implementa-
tion. These are well-known, don't introduce reliability or debuggability prob-
lems, and developers can comprehend what happens at runtime.

Adaption to new tools: Aspect-oriented tools often replace the tools (e.g.
compilers) developers are used to instead of augmenting them. With all ap-
proaches, developers need to adapt to new tools with new error messages, longer
or di�erent update cycles, and sometimes incompatibilities with the original
tools. Since subclass proxies can be implemented as a framework or class li-
brary, there is no need to switch tools with such an approach�developers can
continue using their familiar environment and still obtain the bene�ts of AOP.

Un�nished tools: AOP tools usually need a lot of work, this is the cause of
the lack of production quality .NET-based AOP tools. However, since subclass
proxies are much simpler to implement than code weaving tools, the probability
of reaching production status is much higher with this approach.

AOP based on subclass proxies therefore has high adoption potential. With the
described prerequisites, users should be easily convincable of the new technology.

3.4 Performance Evaluation

With proxy-based approaches, aspect code is not directly inserted into the target
code; object-oriented mechanisms are used instead. This is often regarded as a
performance disadvantage of such approaches. On the .NET platform, however,
most optimizations are not done by a language compiler inlining code, but
by the JIT compiler's optimizer at runtime. There are some restrictions to
JIT optimization with subclass proxies, because virtual method calls to the
target object are always performed through the proxy and can't be replaced by
ordinary calls, but these apply just as well when the application makes use of
the object-oriented mechanisms itself. Most JIT optimizations should not be
a�ected adversely by the use of subclass proxies.

In this section, we will take a look at two implementations of the subclass
proxy mechanism�NAspect and DynamicProxy [Ver04]�and analyze object
construction time and method call time, since these represent the main points
during program �ow where a proxy-based mechanism performs di�erently from
a mechanism based on code weaving.
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3.4.1 Object Creation

The �rst time an object is created from a target type, the proxy-creating factory
must construct the new proxy subclass. This is a lengthy operation, our measur-
ings have shown this to take up to 37ms (DynamicProxy) and 12ms (NAspect),
as opposed to the few nanoseconds an ordinary new operation (usually) needs.
Seen as isolated numbers, this is a tremendous slowdown.

However, analysis of cross-cutting concerns in space-based computing [eKS05a]
reveals common scenarios which only have few types being aspectized at the
same time, with a higher number of instances created from those. In such sce-
narios, the generated proxy subclasses can and should be cached, making an in-
stantiation consist of one hashtable lookup plus one call to the type's constructor
(either via Re�ection or, optimized, via a delegate), which takes a few hundred
microseconds at most in our measurements. In the use cases we studied, this
makes instantiation time of proxied objects not a problem. On the other hand,
if it is vital that proxied objects of many di�erent types are created with rigid
performance requirements (a few nanoseconds per instantiation), pure proxy-
ing might not be the mechanism of choice; pooling and �yweight techniques
[GHJV95] can improve on that.

Figure 3.5 shows the benchmark of an instantiation benchmark done with 1000
di�erent types on an Intel Pentium M4 1.8 GHz with 512 MB RAM.
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Figure 3.5: Instantiation benchmarks

Regarding memory usage, an AOP tool based on subclass proxies should use as
few dynamic assemblies and modules as possible. Our tests have shown this to
scale much better than having one assembly per proxied type. Caching of the
generated proxy types will also improve memory footprint. A user should be
aware that the only way to remove the generated proxy types from memory is
by unloading their application domain (of course, their instances are garbage
collected as usual), although again this will not be an issue in scenarios with a
reasonable number of aspectized types.
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3.4.2 Method Invocation

Method join point performance is more important than object creation perfor-
mance because�as can be seen for example by analyzing the classes in .NET's
Base Class Library�the frequency of method calls as compared to object in-
stantiations is typically very high. With subclass proxies, method join points
are implemented via method overrides. A method join point of an optimal proxy
is therefore no di�erent from a virtual method call (a few nanoseconds) plus one
non-virtual base call if delegation to the original code is needed (a few nanosec-
onds as well). This optimal approach however requires injection of advice code
into the subclass proxy, which is not trivial to implement. Current implemen-
tations therefore choose not to directly invoke the base method from within the
override. Instead, they encapsulate the base call and hand it to an interceptor
provided by the aspect, which may then choose to invoke the method or not.
For this encapsulation, DynamicProxy constructs a delegate, whereas NAspect
relies on Re�ection. Both approaches are not ideal what regards method inter-
ception performance, although delegates are an order of magnitude faster than
Re�ection.

0

10

20

30

40

50

60

70

Virtual Call Dynamic Proxy NAspect Ideal Proxy

T
im

e 
(µ

s)

Figure 3.6: Method call benchmarks

Figure 3.6 shows a method call benchmark done with an AMD XP1800+ system.
The values for ordinary virtual call, DynamicProxy, and NAspect are measured,
the value for the ideal proxy is calculated�an implementation can achieve this
performance if call times are of much importance. We measured the call and
return time of empty methods (with the proxies delegating to the original empty
methods); in real scenarios, these values have to be seen in relation to concrete
method execution time. For example, our tests have shown that with an average
method whose body needs several microseconds for execution, the measured
call times are not that signi�cant. This might well be the reason why existing
subclass proxy implementations have not yet chosen to implement the ideal
approach.
To summarize, while current implementations show medium to high method
call slowdowns, an ideal subclass proxy approach can lead to call times in the
range of nanoseconds, not much higher than ordinary method calls. Even the
call times of current implementations are less signi�cant if the called methods
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have nontrivial bodies.

3.5 Concluding Remarks to Subclass Proxies

In the previous sections, we have motivated, described, and analyzed the sub-
class proxy mechanism as an implementation infrastructure for aspect-oriented
programming. We compared the di�erent proxy approaches available on the
.NET platform, identifying subclass proxying to be the most powerful one.
Classifying the weaving approach implementable with subclass proxies, we have
shown the disadvantages of the model, such as a more constrained join point
model and design restrictions, but have also identi�ed technical advantages over
classical implementation mechanisms, such as easy debuggability and runtime
weaving capabilities.
Performance benchmarks have shown current subclass proxy implementations to
be of mediocre performance with regards to intercepted method calls. However
the proxy concept could be improved in this regard in order to achieve call times
not much di�erent from ordinary virtual method calls if necessary.
Analyzing the psychological properties of subclass proxies, we have identi�ed
a high adoptability potential of the non-invasive mechanism which requires no
dedicated compiler tools. With such prerequisites, industrial acceptance of an
aspect-oriented programming tool based on subclass proxies should be possible.



Chapter 4

XL-AOF

After having introduced an infrastructure for aspect-oriented weaving on the
.NET platform, the next step towards an e�cient space-based programming ex-
perience is XL-AOF, an extensible and lightweight framework for aspect-oriented
programming on the .NET platform. It is designed especially for the develop-
ment of a declarative and well-encapsulated interface for space-based network
abstractions, but can be used for general aspect-oriented programming as well.
Before introducing the framework, we will �rst de�ne the notions of light weight
and extensibility, as these are the two fundamental requirements for the aspect-
oriented framework.

4.1 Light Weight, Extensibility, and Adoptability

Following the de�nition Matthew Deiters gives in his article �Aspect-Oriented
Programming� [Dei05], we denote approaches to be lightweight implementations
of the aspect-oriented paradigm if they have minimal impact on the system as
a whole. An approach (or tool) is of light weight if

• It can be cleanly integrated into the tool chain (IDE, debugger, compiler,
disassembler, etc.) used by the programmers building a system,

• It is naturally integrated into the mainstream programming languages the
system is implemented in,

• It is noninvasive, i.e. it extends the base code without modifying it, and

• The target program can decide at runtime whether to use it or not.

A lightweight approach usually provides less freedom in the development of an
aspect-oriented tool: due to the property of noninvasiveness, a tool has to rely
on other mechanisms than code instrumentation to invoke aspect code at join
points, and this usually reduces the set of join points the tool can o�er to the
programmer.

57
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We de�ne an approach or tool to be (easily) extensible if new modularized cross-
cutting concerns can easily be added even though they were not considered at
the tool's design time. This is in fact a property of most current AOP tools, but
it clearly distinguishes these approaches from application containers providing a
�xed set of services (implementing cross-cutting concerns) to the programmer.

We de�ne it to be (easily) adoptable if

• Its aspect language is easy to learn and use,

• It does not require complicated and time-consuming build or application
con�guration,

• It relies on well-known and easily understandable infrastructural concepts,

• It does not need complicated or hard-to-use build or weaving tools, and

• It does not break any mainstream tools typically used for building the
system.

Since light weight and adoptability have similar requirements, they go hand-
in-hand, and lightweight implementations are typically easier to adopt than
heavyweight ones.

As already indicated in chapter 3, we base XL-AOF on the runtime-generated
subclass proxy mechanism (we use the DynamicProxy implementation [Ver04]),
which, being a highly compatible, noninvasive, runtime-based, and framework-
implemented infrastructure, fortunately does not stand in the way of ful�lling
the requirements stated above. It is, of course, far too low-level to be considered
easily adoptable; achieving this will be the task of XL-AOF. While describing
the aspect features of XL-AOF, we will therefore analyze each feature's impact
on adoption.

4.2 ObjectFactory as an Entry Point

As already indicated in chapter 3, tools based on runtime-generated subclass
proxies must provide a factory, which has to be used for target object instan-
tiation instead of the ordinary new operation. In the factory, the AOP tool
analyzes the target object's class, �nds all applying aspect bindings, and in-
structs the infrastructure to weave (i.e. produce a subclass proxy) accordingly.

With XL-AOF, this task is performed by a singleton class ObjectFactory , which
provides a generic factory method Create<T> for type-safe creation of objects
of arbitrary types, as shown in listing 4.1.
public static class ObjectFactory {

public static T Create<T>(params object[] constructorArgs) { ... }
public static object Create(Type aspectType, object[] constructorArgs);
... // additional methods not shown here

}

Listing 4.1: ObjectFactory class
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The Create<T> method takes a variable parameter list of arguments which are
to be passed to the constructor. The non-generic variant of the Create method
is equivalent, but takes the target type as a re�ected Type object rather than
a type parameter, which is better-suited for re�ective scenarios. The object
factory also has additional methods for aspect con�guration and custom join
point handling, which will be explained in section 4.3.2 and 4.3.3.
For a user of XL-AOF, the ObjectFactory class is the entry point to aspect-
orientation. Objects created with the Create<T> method are guaranteed to be
at least of type T, but if an aspect applies to them, they will actually be of a
derived proxy type. For the weaving to work as expected, a target class must
be extensible, i.e. it must not be sealed or inaccessible.

Positive Adoptability Issues

• ObjectFactory provides a simple central entry point to aspect-orientation.

• For the user, there is no need to be concerned about the underlying weaver
and infrastructure, there is also no need to pass any aspect context infor-
mation to the factory.

• The intention and external working model of the factory is easy to under-
stand.

• One factory can be used for all object instantiations, even if the object
does not have any aspects associated with it.

• The Create<T>method is generic, thus allowing objects of arbitrary types
to be created without typecast.

Negative Adoptability Issues

• The Create<T> method is not statically safe: it allows an argument list
to be speci�ed which has no corresponding constructor. Such an error can
only be found at runtime.
Comment Unfortunately, this cannot be helped with .NET's current
generics support if a general object factory is needed. The only (cum-
bersome) workaround is to build concrete factory methods for each type
needing static safety. These factory methods would need to have argument
lists corresponding to the relevant constructors and would delegate to the
ObjectFactory.

• Object instances created with the standard new operation will not be
aspectized.
Comment As .NET currently does not allow interception of the new
operation, this cannot be resolved.

• Classes must be extensible, i.e. not be sealed or inaccessible.
Comment As we use a non-invasive, augmenting infrastructure, this is
indeed an essential demand.
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4.3 XL-AOF Declarative Aspect Language
Although XL-AOF is based on a framework approach and does not de�ne a new
aspect-oriented programming language, it provides an aspect-oriented feature
set, mostly implemented in the form of declarative attributes. We call this
feature set, which is one of the distinguishing and novel characteristics of our
work, the aspect language of XL-AOF, and we will describe it in the following
sections.

4.3.1 Aspect De�nition

Like other aspect-oriented toolkits, XL-AOF provides a mechanism for encapsu-
lating cross-cutting concerns�the aspect. However, similar to only a few other
tools, XL-AOF does not de�ne a new modularizing language concept for this
purpose, but instead reuses the existing object-oriented modularizing entity:
the class.
In XL-AOF, an aspect is simply de�ned as a class. There are no special rules or
constraints for aspect classes, an aspect can have �elds, methods, and construc-
tors just like any other class, and it can also be instantiated just like any other
class. It becomes an aspect (with pointcuts, advice, and introduction elements)
only by aspect con�guration (see below, section 4.3.2), and can be a target class
of other aspects just as well.

Positive Adoptability Issues

• Aspects are declared as ordinary classes, which does not require any new
concepts or language mechanisms to be learned.

• There are no constraints for aspect classes, they can be derived from any
base class and implement any interfaces.

• Aspects can be instantiated by user code as well as by XL-AOF, which
allows their functionality to be used and, most important, tested indepen-
dently of their target classes.

4.3.2 Aspect Con�guration

In order to write an aspect-oriented application, it is necessary to specify what
aspects should be bound to what target classes. With XL-AOF, this is even more
important, since aspects are de�ned as ordinary classes and become aspects only
by being con�gured to be bound to another class. In fact, aspects can also be
bound to other aspect classes, allowing aspects of aspects to be realized.
XL-AOF provides three di�erent ways of binding aspects to target classes, which
are explained in the following sections with ascending �exibility, but also with
increasing complexity. All of them are, however, based on the concept of as-
pect factory attributes . Factory attributes are .NET custom attributes used to
specify the binding, which at the same time provide functionality for actually
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instantiating the aspect. An aspect factory attribute is de�ned as an ordinary
custom attribute class, which has one factory method tagged with an Aspect-
FactoryAttribute.
As an example, listing 4.2 shows the declaration of a factory attribute, whose
factory method creates an instance of an exemplary LogAspect. When this
attribute is involved in the aspect con�guration of a class which is instantiated
via the object factory, its factory method will be called in order to instantiate
the respective aspect. Factory methods must either have an empty argument
list or (as in listing 4.2) take the target type and the constructor arguments of
the instance as parameters.
class LoggedAttribute : Attribute {
[AspectFactory]
public LogAspect Create(Type aspectizedType, object[] constructorArgs) {

return ObjectFactory.Create<LogAspect>();
}

}

Listing 4.2: Factory attribute de�nition for an exemplary LogAspect

Because the factory attributes can decide when to create a new object and when
to return an existing (cached) one, they implement the aspect scopes known from
other AOP approaches (AspectJ [tAT05], AspectWerkz [Bon04]): if they return
a new instance for every invocation (as in listing 4.2), one dedicated aspect in-
stance is created for every constructed object instance, e�ectively implementing
the binding mechanism known as per object, per instance, or per target scope.
If a factory attribute class always returns the same aspect instance, caching it
between calls to its factory methods, it implements a singleton mechanism also
known as per VM scope. A factory attribute can also implement more sophisti-
cated caching mechanisms, for example instantiating one aspect per aspectized
type (per class scope) or one per thread (per thread scope). Currently, XL-AOF
does however not support per joinpoint scopes, where a new aspect instance is
created for every joinpoint reached at application runtime.

Discussion of Novelty The idea of having factory attributes for aspect in-
stantiation is new; to our knowledge no other AOP tool exposes so much control
over how an aspect is instantiated. The approach makes aspect creation much
more powerful than with the usual automatic scope management mechanisms,
allowing for many kinds of user-de�ned instantiation schemata. For example,
the aspect's constructor arguments could be taken into account for instantiation,
e.g. for implementing some kind of multi-singleton, where two equal combina-
tions of parameter values always cause the same cached aspect instance to be
returned. Instances could also be taken nondeterministically from a pool of as-
pects to implement some kind of aspect load balancing. And instantiation can
also be declaratively con�gurable by adding a set of attribute arguments to the
factory attribute.
Of course, the mechanism by itself is also more complicated than prede�ned
scope-based aspect creation. Therefore, XL-AOF already contains a number of
prede�ned factory attributes for the most common con�guration purposes (see
below). This makes the attribute-based approach as easy to use as a prede�ned
one would be, but still leaves all the power for situation where it's needed.
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Positive Adoptability Issues

• Factory attributes can implement di�erent (and novel) instantiation sce-
narios and scopes.

• Aspect classes can be target classes of other aspects, allowing aspects of
aspects to be realized.

Negative Adoptability Issues

• Factory methods are imperative and make the attribute-based approach
more complicated than comparable built-in scopes as they are provided
by other AOP tools.
Comment There are easily usable attributes prede�ned for most simple
scenarios. New attributes only have to be de�ned for aspects requiring
complex initialization logic or for novel instantiation scenarios, which are
use cases not supported by other tools. Also, having dedicated attributes
for reusable aspects delivered in a library can constitute a means of in-code
documentation of the aspects' e�ects.

Declarative Type-Level Con�guration

The simplest way to bind an aspect to a target type is to apply the aspect's
factory attribute to the target class de�nition. For example, listing 4.3 de�nes
an exemplary target class Account and associates it with the LogAspect from
listing 4.2 by annotating it with the LoggedAttribute factory attribute.
[Logged]
public class Account {

... // methods not shown
}

Listing 4.3: Aspect con�guration at type level

This way of con�guring aspects has the advantage of good understandability
and self-documenting code: by looking at a class de�nition, it is immediately
clear what cross-cutting concerns in�uence the class, even though these are not
tangled within the class. It is, however, contradictory to the obliviousness prop-
erty given in section 2.3.2 in chapter 2�when a class declaration (indirectly)
enumerates the applying cross-cutting concerns, it is by de�nition not oblivi-
ous of these concerns, and an approach relying on such an enumeration is not
aspect-oriented according to the de�nition of Filman and Friedman [FF00]. As
also stated in that section, this de�nition is, however, heavily disputed, and
we ourselves believe that in many cases, increased understandability and self-
documentation is more important than target code obliviousness.
For this aspect con�guration mechanism, XL-AOF provides three prede�ned fac-
tory attributes: PerObjectAspectAttribute, PerClassAspectAttribute, and Sin-
gletonAspectAttribute are general implementations for aspects without compli-
cated initialization logic and can readily be used for con�guring any instance-,
class-, and singleton-scoped aspects. They take the type of aspect to be bound



4.3. XL-AOF DECLARATIVE ASPECT LANGUAGE 63

to the respective target class as an attribute parameter and also allow additional
(optional) attribute parameters to be passed to the aspect's constructor. List-
ing 4.4 illustrates the use of the PerObjectAspectAttribute, again by applying
the exemplary LogAspect to the Account class of listing 4.3, this time however
by employing a standard factory attribute. The prede�ned attributes clearly
communicate aspect scope and make the de�nition of custom factory attributes
unnecessary for most aspects.
[PerObjectAspect(typeof(LogAspect))]
public class Account {
... // methods not shown

}

Listing 4.4: Aspect con�guration at type level with a standard attribute

PerClassAspectAttribute and SingletonAspectAttribute are employed in the same
way as PerObjectAspectAttribute and only di�er in aspect scope and instantia-
tion model.

Positive Adoptability Issues

• Factory attributes applied to target classes are an easily learned mecha-
nism, which makes for self-documenting and understandable code.

• The adoptability concern of feared incomprehensibility (see section 3.3.2
in chapter 2), which is already addressed by employing subclass proxies
as an infrastructure, is further mitigated by attaching aspect bindings to
the target classes.

• A number of easily-understandable prede�ned attributes are available for
the most important con�guration scenarios.

Negative Adoptability Issues

• Attaching aspect-con�guration to target class de�nition violates the prin-
ciple of target code obliviousness and can therefore be seen not to ful�ll
the de�nition of AOP and to reintroduce cross-cutting, as con�guration
clauses would be required on all (otherwise unrelated) target classes of an
aspect.
Comment The de�nition requiring obliviousness is heavily disputed, and
we believe such a con�guration mechanism to be well-suited for many us-
age scenarios, especially for a declarative space-based programming lan-
guage interface. What regards the problem of reintroducing cross-cutting
code, we argue that the code introduced by aspect con�guration is minimal
when compared to fully tangled cross-cutting concerns. Many examples of
this will be given in chapter 5. For situations, where obliviousness is abso-
lutely required, two additional con�guration mechanisms will be presented
in the following sections.
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Declarative Assembly-Level Con�guration

While the simple type-level con�guration approach is well-suited for many situ-
ations, use cases are conceivable where oblivious target classes are desirable or
even necessary. For example, if the same application should be compiled with
di�erent aspect con�gurations, it would be desirable to have all con�guration
clauses in one place rather than on di�erent class de�nitions. If a class is to be
part of a class library, aspect con�guration might depend on the actual applica-
tion where the class is used. And generally, if an aspect con�guration should be
changed, but the target class cannot be recompiled, the type-level con�guration
approach isn't applicable either.

For these scenarios, another con�guration mechanism is needed. While it might
be tempting to implement a con�guration mechanism at aspect level (where
the aspect declaration speci�es what target classes it should be bound to, as
implemented by AspectJ [tAT03]), such aspects would not be reusable without
recompilation, and the change would only relocate the problems.

A more sophisticated mechanism should separate aspect con�guration from both
target and aspect class declarations, allowing the aspect con�guration to be
changed without recompilation of either target or aspect code, in fact without
requiring the source code of either to be available. XL-AOF supports such a
mechanism by implementing a declarative assembly-level con�guration mecha-
nism: custom attributes of type GlobalAspectBinding and derived can be ap-
plied to any assembly linked with the application, allowing very �exible, yet still
declarative aspect con�guration.

Listing 4.5 shows the interface of the GlobalAspectBindingAttribute, which takes
the target type and the factory attribute's type and arguments as attribute
parameters, as well as an example con�guration clause. The example again
con�gures the LogAspect of listing 4.3.2 to be applied to an Account target class
via the LoggedAttribute factory attribute. This con�guration is semantically
equivalent to listing 4.3, but it can be applied to any assembly linked to the
application, which has the bene�t of greater �exibility, but also the drawback
of somewhat decreased code clarity.
[AttributeUsage(AttributeTargets.Assembly, AllowMultiple = true)]
public class GlobalAspectBindingAttribute : Attribute {

public GlobalAspectBindingAttribute(Type targetType, Type attributeType, params
object[] attributeArgs) {...}

... // implementation details not shown
}

// example configuration
[assembly:GlobalAspectBinding(typeof(Account), typeof(LoggedAttribute))]

Listing 4.5: Aspect con�guration at assembly level

For assembly-level con�guration, there also exist a number of prede�ned con-
�guration attributes, which are the direct counterparts of the prede�ned stan-
dard factory attributes: GlobalPerObjectAspectAttribute, GlobalPerClassAspec-
tAttribute, and GlobalSingletonAspectAttribute. Listing 4.6 shows an example
con�guration clause equivalent to that of listing 4.5, but using a prede�ned
assembly-level con�guration attribute.
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[assembly:GlobalPerObjectAspect(typeof(Account), typeof(LogAspect))]

Listing 4.6: Aspect con�guration at assembly level with a standard attribute

Positive Adoptability Issues

• Assembly-level attributes allow �exible, yet declarative aspect con�gura-
tion without binding the con�guration clause to either target or aspect
class.

• Assembly-level con�guration can be inserted in any assembly linked to
the application, allowing recon�guration without recompilation of either
target or aspect class.

• All con�guration attributes can be collected in a single place, allowing
easy aspect recon�guration, for example for building di�erent editions of
an application.

Negative Adoptability Issues

• Since assembly-level attributes can be attached to any assembly in the
application, it is hard to see at a glance what aspects are applied to a
class.
Comment It is true that detached con�guration makes code less self-
documenting and less understandable. The assembly-level con�guration
mechanism should therefore only be used after careful consideration, and
the con�guration clauses should be collected in one or a few dedicated code
�les, making it easier to analyze an application. In the future, tool/IDE
support could remedy the situation by providing visual clues as of what
aspects apply to a target class.

Dynamic Con�guration

While declarative assembly-level con�guration is already very powerful, it still
has some restrictions. Most notably, changes in aspect con�guration require
recompilation of the assembly containing the con�guration clause, making it
hard to add or remove aspects to/from a running application, for example as a
means for patching or extending a long-running applications.
To overcome these limitations, XL-AOF provides an imperative API for chang-
ing an application's aspect con�guration by attaching and detaching aspects to
and from target types at any point during application runtime. As indicated
in section 2.3 in chapter 2, such runtime weaving is a feature of dynamic AOP,
which provides great �exibility, but often comes with only loosely de�ned se-
mantics, because aspect recon�guration could happen asynchronously to aspect
execution. XL-AOF solves the semantical problem by de�ning a strict model
for dynamic weaving (which is also enforced by its subclass proxy infrastruc-
ture): runtime changes in an application's aspect con�guration always in�uence
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only those target object instances which are created after the con�guration has
changed. All instances created prior to the change remain unin�uenced, and the
ObjectFactory class ensures that instantiation and con�guration changes cannot
occur in parallel by sequentializing multithreaded access.

The dynamic aspect con�guration API is implemented by two generic methods
of ObjectFactory : AttachAspect<TTarget> and DetachAspect<TTarget>. Both
take the target type of the aspect as type arguments and an instance of an
aspect factory attribute as a parameter, as shown in listing 4.7. (Similar to
the ObjectFactory's creational methods, both methods also exist in non-generic
variants, which are easier to use in re�ective scenarios.)
public static class ObjectFactory {

public static void AttachAspect<TTarget>(object factoryAttribute) { ... }
public static void AttachAspect(Type targetType, object factoryAttribute) { ...
}

public static bool DetachAspect<TTarget>(object factoryAttribute) { ... }
public static bool DetachAspect(Type targetType, object factoryAttribute) {... }

... // additional methods not shown
}

Listing 4.7: Imperative API for dynamic aspect recon�guration

Listing 4.8 shows a usage sample for the dynamic recon�guration API, which
again is equivalent to listing 4.3 in that it attaches the exemplary LogAspect to
an Account class. It di�ers however in that the binding is performed at runtime
and temporarily only: the aspect binding is removed again after an instance
of the class is created, so the aspect con�guration only in�uences this single
Account instance. Although the example uses the custom LoggedAttribute, any
of the prede�ned factory attribute described in section 4.3.2 can equally well be
used with the imperative approach.
public Account CreateLoggedAccount() {

object factoryAttribute = new LoggedAttribute()
ObjectFactory.AttachAspect<Account>(factoryAttribute);
try {

return ObjectFactory.Create<Account>();
}
finally {

ObjectFactory.RemoveAspect<Account>(factoryAttribute);
}

}

Listing 4.8: Dynamic aspect recon�guration

For removal of an aspect from the con�guration, the exact attribute instance
which was used for registration is needed. If this instance is not available, for
example because the aspect was con�gured declaratively, aspect introspection
(see section 4.3.6) must be used to obtain it.

Although dynamic runtime recon�guration is the most powerful aspect con�g-
uration mechanism, it should only be used if absolutely necessary (e.g. with
applications which cannot be restarted). If used carelessly, it can lead to com-
plicated programs, which are very di�cult to analyze and understand. Also,
the task of aspect con�guration can in itself be seen as a cross-cutting concern,
so tangling and scattering should sought to be avoided.
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Positive Adoptability Issues

• Runtime aspect recon�guration provides a means for dynamic AOP, giving
much �exibility, but within a strictly de�ned model.

• This can be used to implement a user-interactive mechanism for hot-
deployment (and removal) of aspects. For example, a long-running appli-
cation could allow a user to apply a bug�x or extension patch at runtime
via an aspect.

• XML-con�guration mechanisms, as they are o�ered by some existing AOP
tools (NAspect [Joh05], Spring [JH+05], JBoss [Bur04]) can be easily im-
plemented by leveraging this mechanism.

Negative Adoptability Issues

• Runtime recon�guration is somewhat restricted: only target instances cre-
ated after the recon�guration step are in�uenced, and one cannot add
aspects to objects previously created.
Comment It is true that the model is restricted by the de�nition that re-
con�guration only a�ects subsequent object instantiations. However, this
makes for a semantically sound model which circumvents many problems
of self-modifying programs arising without such restrictions.

• Imperative runtime recon�guration can lead to scattering and tangling
of con�guration statements, and it makes program analysis hard or even
impossible.
Comment Power comes at the price of complexity. Runtime recon�gura-
tion should therefore only be used if absolutely necessary. Alternatively,
runtime recon�guration can be done in a temporary and localized way by
undoing the changes after making the necessary object instantiations, as
it was shown in listing 4.8.

4.3.3 Join Point Model

Building the base for the quanti�cation part of an AOP tool (which is actually
formed by the pointcut mechanism, see below), the join point model provided
by an AOP implementation is one of its most important features. It de�nes the
functionality available to an aspect for in�uencing the dynamic behavior of an
application at runtime.
The join point model provided by XL-AOF is at the same time its biggest
liability and an important asset. As was already discussed in chapter 3, an
AOP tool built on top of a subclass proxy infrastructure can only implement a
limited join point model, and while XL-AOF implements the full model provided
by the infrastructure, it will always be inferior to any static and code weaving-
based approach in this regard. On the other hand, XL-AOF provides a recursive
join point model (aspects can be applied to other aspects), which is powerful
and not very common, and it has a completely new feature of extensibility: it
allows aspects to de�ne (and trigger) new kinds of join points.
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Join Point Kinds

Join points are very dynamic: every execution of a method at runtime, for
example, can constitute a separate join point. However, it is possible to classify
collections of join points based on their semantics of occurrence, and to give
these join point kinds unique names. Of course, join points of di�erent kinds
occur at di�erent places during program execution, at which di�erent context
information is available to an advice method. Similarly, some join points can
have return values (e.g. a method execution), whereas in other situations, a join
point will not return a value.
Therefore, we de�ne di�erent signatures for each join point kind: a signature
comprises a list of parameter de�nitions, which speci�es the context information
available at a join point, as well as a return type de�nition. For example, after
returning join points would have a common signature as indicated in listing
4.9: it comprises the target object whose method is to be executed, a re�ective
MethodInfo object, a list of the method's arguments, the value returned from
the method, and a re�ective IJoinPointInfo object comprising any additional,
but less often used context information (for example, the number of advice
methods already executed in the context of this join point or the current advice
call stack; the full de�nition of this interface is given in a later section on join
point introspection). The signature speci�es a return value of type object, which
indicates that the join point returns an (object) value.
object (object target, MethodInfo method, object[] args, object returnValue,
IJoinpointInfo context)

Listing 4.9: After returning join point signature de�nition

In principle, a join point kind signature is built the same way as a method
signature, and indeed the signature of a join point can be seen as the method
signature of advice methods bindable to it (although XL-AOF de�nes some
relaxed rules, which will be explained in section 4.3.4). Due to this property,
and also because pointcuts need to identify the join point kinds they reference,
it is necessary to have a way of expressing a join point kind de�nition in source
code.
The type system of the .NET platform already includes a mechanism for de�ning
signature-oriented types: delegates. Actually meant as a kind of type-safe func-
tion or method pointer (which can be used implement complex behaviors, such
as instantiations of the Command or Observer patterns [GHJV95] in an easy
way), they constitute a convenient way of integrating join point kind de�nition
into a .NET-based AOP platform. XL-AOF therefore uses a unique delegate
type for each join point kind it de�nes. For example, the after returning join
point kind is de�ned as an AfterReturning delegate type, as shown in listing
4.10. The delegate's signature directly corresponds to the join point signature
de�nition of listing 4.9.
public delegate object AfterReturning(object target, MethodInfo method, object[]
args, object returnValue, IJoinpointInfo context);

Listing 4.10: After returning join point kind de�ned as a delegate

Listing 4.11 shows the whole set of join point kinds prede�ned by XL-AOF:
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• ObjectCreation de�nes a kind of join point which encapsulates the creation
of a target object instance�an aspect can advise this join point in order
to in�uence how (and if) an object is actually created when a client uses
ObjectFactory.Create<>. This can be used, for example, to implement
object pooling aspects. The creator parameter should be used if the advice
chooses to instantiate an object�it ensures that the instance is aspectized
as needed.

• BeforeConstruction join points occur after ObjectCreation join points, just
before a speci�c constructor is to be run. They can be used for parameter
or security checks previous to executing a constructor, for example, but
they do not have access to the constructed object yet.

• AfterConstruction join points occur immediately after an object instance
has been successfully created�after the constructor has run, but be-
fore the instantiating code regains control. They can be used for post-
initialization work.

• BeforeMethod, AfterMethod, and AroundMethod join points have the usual
AspectJ semantics, as described in section 2.3.1 in chapter 2: they occur
before, after, and around method executions (with around occurring be-
tween before and after join points).
Note, however, that XL-AOF incorporates the before, after, and around
properties into dedicated join point kinds rather than classifying advice
with these properties (as AspectJ does). The reason for this is that we
believe the concept is most meaningful only in conjunction with method
execution join points (especially when considering after returning and after
exception, see below) and should therefore be directly associated with these
join point kinds rather than all advice methods.
The nextProceeder parameter of the AroundMethod join point can be used
by an advice to invoke the original method encapsulated by the join point
(or the next advice, if several advice methods are bound to it).

• While AfterMethod join points always occur subsequent to a method exe-
cution (no matter whether successful or not), AfterReturning join points
only occur (following the AfterMethod join points) if the respective method
successfully returns a value. An advice bound to such a join point can in-
spect the return value and either return it directly to the caller, modify it
before returning, or return a completely di�erent value.

• AfterException join points occur instead of AfterConstruction or After-
Returning join points when a constructor or method throws an exception.
Advice bound to such join points can handle the exception simply by re-
turning a value (for constructors, the value should be null), in which case
the usual AfterReturning and AfterConstruction join points are triggered
(if these handlers throw an exception on their own, these do not trigger
an AfterException join point for the executed method). An advice can
also rethrow the exception passed to the join point as the exception prop-
erty. This join point kind is useful for implementing error handling code
associated with a cross-cutting concern.
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public delegate object ObjectCreation(Type type, object[] constructorArgs,
IObjectInstanceCreator creator, IJoinpointInfo context);

public delegate void BeforeConstruction(Type constructedType, ConstructorInfo
constructor, object[] constructorArgs, IJoinpointInfo context);

public delegate void AfterConstruction(Type constructedType, object
constructedObject, ConstructorInfo constructor, object[] constructorArgs,
IJoinpointInfo context);

public delegate void BeforeMethod(object target, MethodInfo method, object[] args,
IJoinpointInfo context);

public delegate void AfterMethod(object target, MethodInfo method, object[] args,
IJoinpointInfo context);

public delegate object AroundMethod(object target, MethodInfo method, object[]
args, IMethodProceeder nextProceeder, IJoinpointInfo context);

public delegate object AfterReturning(object target, MethodInfo method, object[]
args, object returnValue, IJoinpointInfo context);

public delegate object AfterException(object target, MethodBase
methodOrConstructor, object[] args, Exception exception, IJoinpointInfo
context);

public interface IObjectInstanceCreator {
object CreateInstance(Type type, object[] constructorArgs);

}

public interface IMethodProceeder {
object Proceed(object[] args);

}

Listing 4.11: Join point kinds prede�ned by XL-AOF

There are no dedicated join point kinds for property get and set operations.
This is because these operations are de�ned by the CLI speci�cation as method
executions [ECM05b], so they also trigger method execution join points. As
will be explained in section 4.3.6, however, XL-AOF provides special support
for accessing the property associated with a getter or setter method from within
an advice bound to a method join point, and the pointcut mechanism allows an
aspect to explicitly bind advice to getter or setter methods of speci�c properties.

Custom Join Points

One important feature of XL-AOF is that the set of join points available to
an aspect is not �xed, but extensible: a programmer of an aspect-oriented
application can easily de�ne a new join point kind and trigger a join point of
this kind at any time during object or aspect execution.
For example, a developer of an aspect which stores and loads object state
to/from some persistence mechanism could use this feature to provide a docking
point for other aspects: triggering before data saved and after data loaded cus-
tom join points just before the state is saved and just after it has been loaded
would allow other aspects to extend this mechanism, for example by adding
encryption or compression to the stored state data.
While the same would of course also be possible using object-oriented means
(e.g. using inheritance or an Observer [GHJV95] implementation), the mech-
anism of declaring custom join points is both decoupled and quanti�able (see
section 2.3.2). Decoupled means that neither aspect needs to know of the other
one (in contrast, using inheritance makes the extending class depend heavily on
the base class, using an Observer requires a common controller connecting the
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extending and the base object), their only connection point is the custom join
point. Quanti�able means that the extending aspect can use the quanti�cation
facilities (i.e. the pointcut mechanism) to bind to its targets, i.e. it can as easily
be applied to a subset of the custom join point occurrences as to all of them.
Custom join points can also be triggered by aspect-aware base (i.e. non-aspect)
code. Aspect-aware in this context means that the base code needs to be aware
that it might be extended by aspects, it need of course not be aware of the
concrete aspects applied to it.

Implementation From an implementation perspective, adding and triggering
a custom join point requires the following steps:

• De�ne a delegate identifying the join point kind and its signature,

• De�ne and register a join point handler type, as explained below,

• Trigger the custom join points at the appropriate places during program
execution.

Listing 4.12 shows an example of creating a new custom join point kind by
declaring a new delegate type. It is identi�ed by the delegate's name (Before-
DataIsUsed), and it is de�ned to take a string (data) as context information
and to return a string to the triggering code.
public delegate string BeforeDataIsUsed(string data);

Listing 4.12: Custom join point kind de�nition

As the next step, a custom join point handler needs to be de�ned. A join point
handler does the advice management for a speci�c join point kind: is keeps a
list of advice methods bound to a join point kind, it determines which advice
methods should be executed when a join point of that kind is triggered, and it
executes the actual advice method, passing it the required context information
and storing the return value.
Implementing a custom join point handler requires deriving a new class from
the JoinpointHandler<> base class, and usually only involves overriding a sin-
gle method: ExecuteAdvice, as illustrated in listing 4.13. ExecuteAdvice is
called for each single advice which is executed at a speci�c join point occur-
rence. It is passed an object encapsulating the advice method (advice) and an
object holding all the context information available at the time of triggering
(JoinpointInfo), and it returns a value signaling whether the advice was actu-
ally executed. The JoinpointInfo object can be changed by the ExecuteAdvice
method, for example if the advice changes the join point's return value, and
advice methods executed subsequently for the same join point will receive the
changed information.
In the listing, the advice method is executed with context information extracted
from the JoinpointInfo's AdditionalContext property set (detailed in section
4.3.6), and its return value is stored in joinpointInfo.ReturnValue. In order to
allow subsequent advice methods to react on the data returned by previously
executed advice method, the context information is also updated.
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After de�nition, the join point handler also needs to be registered, which is
done declaratively with a CustomJoinpoint attribute. The attribute is applied
to the delegate de�ning the custom join point kind and associates the custom
join point type with the join point handler type. At runtime, the handler will
automatically be instantiated for every aspect used in the assembly contain-
ing the attribute. Listing 4.13 thus extends listing 4.12 to contain all that is
necessary to de�ne a new custom join point kind.
class BeforeDataIsUsedHandler : JoinpointHandler<BeforeDataIsUsed> {

protected override bool ExecuteAdvice(Advice<BeforeDataIsUsed> advice,
JoinpointInfo joinpointInfo) {
string contextInfo = (string)joinpointInfo.AdditionalContext["data"];
joinpointInfo.ReturnValue = advice.AdviceMethod(contextInfo);
joinpointInfo.AdditionalContext["data"] = joinpointInfo.ReturnValue;
return true;

}
}

[CustomJoinpoint(typeof(BeforeDataIsUsedHandler))]
public delegate string BeforeDataIsUsed(string data);

Listing 4.13: Custom join point handler de�nition

The last step, illustrated in listing 4.14, involves the triggering of the join point,
which is performed via the TriggerJoinpoint<> method of the AspectEnviron-
ment class. In the listing, the join point is triggered from a LogString method,
which receives some data and logs it to the console. The method allows aspects
to examine and possibly change the data prior to the logging, so it creates a
JoinpointInfo object holding the context information (including join point type
and this reference), triggers the join point, and uses the value returned by the
aspects. After the triggering, the JoinpointInfo structure contains the return
value of the last advice method being executed, but if no advice were executed,
it wouldn't contain a value. Therefore, the method checks whether an advice
was executed before using the return value.
void LogString(string data) {

JoinpointInfo jp = new JoinpointInfo(typeof(BeforeDataIsUsed), this);
jp.AdditionalContext["data"] = data;
AspectEnvironment.TriggerJoinpoint<BeforeDataIsUsed>(jp);
if (jp.NumberOfExecutedAdvice > 0) {

data = (string)jp.ReturnValue;
}
Console.WriteLine(data);

}

Listing 4.14: Custom join point triggering

Discussion of Novelty To our knowledge, XL-AOF is the �rst AOP tool
which allows new join point kinds to be added and join points to be explicitly
triggered by aspect or base code. In part, this can compensate for the restricted
join point model provided by the subclass proxy infrastructure; however it is not
suitable for all join point scenarios (for example, in general it wouldn't be used
to implement a before �eld access join point, since this would require custom
join point triggering code before every single �eld access). On the other hand,
the mechanism provides possibilities of semantic and domain-speci�c join points
not o�ered by other AOP tools.
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Positive Adoptability Issues

• XL-AOF's join point model o�ers the most important join points used
in aspect-oriented programming: method execution, object-creation, and
after object construction.

• XL-AOF o�ers the full join point model realizable with the subclass proxy
infrastructure.

• With the possibility of providing custom join points, XL-AOF provides an
extensible join point model not yet seen in any other AOP tool.

• Custom join points allow the extension of classic, prede�ned join point
kinds by new, semantic (i.e. object- or aspect-de�ned) kinds, which allows
more decoupled and �exible designs.

Negative Adoptability Issues

• The join point model provided by XL-AOF is restricted. For example,
there are no �eld access join points, and only virtual method executions
can be advised by an aspect.
Comment Unfortunately, the subclass proxy infrastructure only allows
a limited number of join point kinds to be triggered by the AOP tool.
XL-AOF however does its best to circumvent these limitations: many
situations can be remedied by using custom join points, others can be
resolved by using method join points in conjunction with the right quan-
ti�cation. For example, instead of binding an advice to a �eld join point,
a pointcut can be written to advise all methods which access the �eld,
often with the desired results.

• Custom join points triggered from within base code require the code to be
aware of aspects.
CommentAspect-awareness only means that the base code needs to know
that it might be in�uenced by aspects, it doesn't couple the base code to
any concrete aspects. However, triggering custom join points from base
code means a tradeo� between obliviousness and expressiveness, and thus
should only be used when the feature is really required.

4.3.4 Pointcuts and Advice

As the quanti�cation part of AOP (see section 2.3.2 in chapter 2), the pointcut
mechanism is one of the most important features of an aspect-oriented tool
implementation: it allows the programmer to quantify over the set of available
join points in an application, specifying the connection points between the cross-
cutting concerns and the base code. Advice methods contain the aspect code
which is executed when a join point picked by a pointcut is reached.
Pointcuts and advice are de�ned in a combined way in XL-AOF: advice methods
are simply instance methods of the aspect class, and pointcuts are declaratively
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applied to them using the AdviceAttribute in connection with a number of �lters.
The simplest form of an advice method is annotated only with the AdviceAt-
tribute without �ltering, as illustrated in listing 4.15. The AdviceAttribute takes
the kind of join points to which the advice should be bound as a declarative
parameter, so in the example, the advice will be bound to every after return-
ing join point occuring on the aspect's target objects (selected via the aspect
con�guration, as described in section 4.3.2).
[Advice(typeof(AfterReturning))]
public object AnAdvice(object target, MethodInfo method, object[] args, object
returnValue, IJoinpointInfo context) {
Console.WriteLine("Execution of " + method.Name + " finished successfully.");
return returnValue;

}

Listing 4.15: Simple advice de�nition

As already indicated in section 4.3.3, when an advice method is executed, it can
access context information available for the current join point and it can return
a value to the code triggering the join point. In the example listing, the advice
method takes �ve parameters as context information from the after returning
join point: the target object which executed the method, a re�ective MethodInfo
object, the method's arguments, the value it returned, and the IJoinpointInfo
object holding any additional context information. The advice also has a return
value, which is substituted for the join point's (i.e. method call's) own return
value.
The advice can only have these parameters and return type because the join
point declaration de�nes them. In other words, the delegate de�ning a join point
kind also speci�es the signature of the advice methods that can be bound to a
join point of that kind. In detail, however, XL-AOF is very �exible what regards
compatibility of an advice's signature with the join points it is bound to: as long
as a mapping between advice arguments and join point context information can
be unambiguously determined, and as long as the return types are compatible,
the framework does not require the advice's signature to be exactly the same as
the join point kind's signature.
In particular, an advice's parameters need not be in the order de�ned by the
delegate's signature, it can omit a context information argument (unless it is an
out argument), and advice parameters can have names and types di�erent from
those of the arguments in the delegate de�nition.
In order to determine the mapping between advice parameters and the context
information provided by a join point, XL-AOF will �rst try to associate each
parameter with a context information object by name. If none can be found
that way, it looks for a context information object with a matching type. The
advice method is compatible with the join point kind if (and only if) this lookup
sequence unambiguously returns a matching context information argument (i.e.
an argument with a compatible type) for each advice parameter, if there is
a matching advice parameter for each out argument in the join point kind's
speci�cation, and if the advice's return type is compatible with the join point
kind's return type.
Type compatibility between advice argument and context information is thereby
de�ned using contravariance, i.e. an advice's parameter type must be the same
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or more general than the type of the context information. Conversely, for the
return value, covariance is used: the advice's return type must be the same or
more speci�c than the return type of the join point. The types of out and ref
parameters must be invariant, i.e. the advice parameter types are required to
be exactly the same as the join point kind's parameter types.
Type compatibility for in parameters can also be forced by including an Auto-
CastAttribute declaration on the respective advice parameter declaration: if it
is clear to the programmer that a certain context information parameter will
always be of a more speci�c type than de�ned by the join point kind, the Auto-
CastAttribute will automatically cast (and box/unbox, as needed) the parameter
at runtime, and contravariance is no longer enforced. This can, however, lead
to runtime cast exceptions if the assumption was wrong.
To illustrate the possibilities o�ered by this de�nition of signature compatibility,
consider listing 4.16, which shows three variations of the advice method de�ned
in listing 4.15.
The �rst advice (AdviceWithSignatureVariation1) is equivalent to the advice of
listing 4.15, but changes both the order and the names of some advice parame-
ters. This is possible because XL-AOF can still �nd an unambiguous mapping
to the join point kind's context information arguments by using the parameter
types.
The second advice (AdviceWithSignatureVariation2) omits those parameters it
doesn't make use of, which is possible because the respective context information
arguments are not declared as out parameters.
The third advice (AdviceWithSignatureVariation3) assumes the return value
of the advised join points will always be an integer and therefore includes an
automatic cast declaration.
[Advice(typeof(AfterReturning))]
public object AdviceWithSignatureVariation1(IJoinpointInfo context, MethodBase
myMethod, object target, object returnValue, object[] args) {
Console.WriteLine("Execution of " + myMethod.Name + " finished successfully.");
return returnValue;

}

[Advice(typeof(AfterReturning))]
public object AdviceWithSignatureVariation2(MethodBase myMethod, object
returnValue) {
Console.WriteLine("Execution of " + myMethod.Name + " finished successfully.");
return returnValue;

}

[Advice(typeof(AfterReturning))]
public object AdviceWithSignatureVariation3(MethodBase myMethod, object target,
[AutoCast]int returnValue, object[] args, IJoinpointInfo context) {
Console.WriteLine("Execution of " + myMethod.Name + " finished successfully.");
return returnValue;

}

Listing 4.16: Advice de�nition possibilities

Multiple Join Point Kinds Advice methods can be bound to multiple join
point kinds at the same time by applying multiple AdviceAttributes to them.
The semantics of such a combination is that of a logical or, i.e. the advice is
bound to join points of either kind. Of course, the advice's signature must
match the signatures of all join point kinds it is bound to.
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Typesafe Advice

While XL-AOF's model of advice signature compatibility o�ers great �exibil-
ity, it has one important disadvantage: the rules of compatibility can only be
enforced at runtime (when the aspect is used for the �rst time); no static type
checking of the advice's signature is performed at compile-time. Usually, this
dynamic checking will not be a problem, because unit-tests of the aspect will
immediately show the problem. However, in some situations more static type
safety will be desired. For these cases, XL-AOF provides an alternative way to
combine pointcut and advice declaration in the aspect de�nition, as illustrated
in listing 4.17.
[Pointcut]
public AfterReturning APointcut() {

return delegate(object target, MethodInfo method, object[] args, object
returnValue) {
Console.WriteLine("Execution of " + method.Name + " finished successfully.");
return returnValue;

};
}

Listing 4.17: Typesafe advice declaration

As illustrated in the listing, a dedicated method declaration, attributed with a
PointcutAttribute, is used to specify the pointcut. Its return type speci�es the
kind of join points selected by the pointcut, and its return value is a delegate
holding the advice method. In this example, an anonymous delegate (i.e. an
inline declaration of the advice method) is used for brevity, but the advice
method could also be separately de�ned.

Compared with the equivalent pointcut/advice speci�cation in listing 4.15, this
approach is a little longer, it can't combine multiple join point kinds for one
advice method, and it doesn't provide the signature-related �exibility o�ered
by the dynamic way, but it has the great advantage of static type safety: the
compiler will check signature compatibility at compile-time.

Discussion of Novelty To our knowledge, XL-AOF is currently the only
AOP framework relying only on the standard compile-time tools (in fact, not in-
cluding any demands for application compilation) providing a compiler-checked,
type-safe advice declaration mechanism.

Filters

For both ways of pointcut/advice de�nition, �lters are an important feature
for selecting the join points targeted by an advice method. If a pointcut is
simply bound to a join point kind such as AfterReturning, the respective advice
methods will be invoked on every after returning join point occurring in the
context of the aspect's target objects. To constrain this set to a number of
speci�c join points, �lters are used.

A �lter is simply a custom attribute applied to the advice method de�nition (if
the �exible AdviceAttribute approach is taken) or the pointcut method de�nition
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(if the type-safe PointcutAttribute approach is taken). The attribute must im-
plement the prede�ned IJoinpointFilter interface, whose straight-forward de�ni-
tion is given in listing 4.18: it contains just one method, which decides whether
the pointcut matches a join point (given its JoinpointInfo context information
object) or not.
public interface IJoinpointFilter {
bool Matches(JoinpointInfo joinpoint);

}

Listing 4.18: IJoinpointFilter interface

XL-AOF prede�nes a number of useful �lters, which comprise �ltering on:

• Name of the join point (WhereNameEqualsAttribute and WhereNameD-
i�ersAttribute for exact comparison, WhereNameMatchesAttribute and
WhereNameDoesntMatchAttribute for regular expression matches),

• Declaring type of the join point (WhereDeclaringTypeEqualsAttribute and
WhereDeclaringTypeDi�ersAttribute),

• Attributes de�ned on the join point (WhereDe�nedAttribute, WhereNot-
De�nedAttribute),

• Whether the method is a property's getter or setter method (WhereGet-
terAttribute, WhereNotGetterAttribute, WhereSetterAttribute, WhereNot-
SetterAttribute), and

• What exception is thrown from a method (WhereExceptionAttribute; of
the prede�ned join point kinds, this is only useful for after exception join
points).

By default, the prede�ned �lters check the actual join point for a match. For
example, if the WhereNameEqualsAttribute is applied to a pointcut for before
method join points, it checks whether the method's name equals a given string.
In some situations, however, a di�erent context would be desired. For example,
as XL-AOF doesn't have explicit property join points but instead uses method
join points, the context of a pointcut �lter will often target the surrounding
property rather than the method itself.
Therefore, some of the prede�ned �lter attributes can be declaratively con�g-
ured to match some speci�c context information of the join point. They have
a Context parameter which takes values such as Default, Method, Field, Type,
Constructor, or Property, which allow the programmer to select a speci�c con-
text value if available. (If not, the �lters will not match.)
Listing 4.19 shows an example pointcut/advice pair which binds to the before
method join points of getter methods of properties, on which a speci�c TagAt-
tribute is de�ned. It combines two �lters with two di�erent contexts: the
WhereGetterAttribute is matched against the executed method, whereas the
WhereDe�nedAttribute is matched against the surrounding property.
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[Advice(typeof(BeforeMethod))]
[WhereGetter]
[WhereDefined(typeof(TagAttribute), Context = Context.Property)]
void BeforePropertyGet(MethodInfo method) {

Console.WriteLine("Property is retrieved.");
}

Listing 4.19: Advice targeting the getter method of speci�c properties

And-Combination of Filters If multiple �lters are applied within a pointcut
de�nition at the same time, the respective advice is only invoked if all of the
�lters match. This is equivalent to a logical and operation. The order in which
the �lters are evaluated is not speci�ed, because the .NET speci�cation does
not de�ne an ordering relation on custom attributes applied to a source code
entity [ECM05b]. An or -combination of �lters is not possible; it is necessary to
de�ne multiple separate pointcuts instead.

Control Flow Filters Sometimes, the advice method of an aspect should be
executed only if not within the context of another advice method. For example,
reentrancy of advice methods should often be avoided, a code example for which
is given in listing 4.20. In the example, a before method advice is declared which
prints the method name and the result of the target object's ToString method
to the console. The problem with code such as this, which is a very common
mistake made by AOP beginners, is that the advice is reentrant: the invocation
of the target object's ToString method again invokes the advice, which leads to
a (potentially) in�nite recursion and (in reality) a StackOver�owException.
[Advice(typeof(BeforeMethod))]
public void Advice(object target, MethodInfo method) {

Console.WriteLine("Entering method " + method.Name + " of " +
target.ToString());

}

Listing 4.20: Advice de�nition with problematic reentrancy

While this could be remedied by constraining the advice to only trace methods
whose name is di�erent from ToString, the advice will then not log executions
of the ToString method at all, and the protection is not very robust (i.e. the
error reoccurs, if another method of the target object, e.g. its Equals method,
is called).

A more robust pointcut would need to involve the current control �ow (i.e. the
execution stack) of the join point, only selecting those join points not located
(directly or indirectly) within the Advice method. XL-AOF supports this sce-
nario with prede�ned control �ow �lters, which allow the call stack to be checked
before an advice is executed. XL-AOF provides the following �lters:

• WhereCFlowAttribute, which executes an advice only if the control �ow
(i.e. the call stack) of the join point contains the given method or type,
including the join point itself if it is a method call; its opposite Where-
NotCFlowAttribute; as well as
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• WhereCFlowBelowAttribute and its opposite WhereNotCFlowBelowAttri-
bute, which are identical toWhereCFlowAttribute andWhereNotCFlowAt-
tribute, but do not include the join point itself in the control �ow check.

The di�erence between the c�ow and the c�ow below �lters, which also exist in
AspectJ with these semantics, is subtle, but important. If a �lter is needed to
include or exclude all join points regarding a certain method and all join points
triggered (directly or indirectly) from within that method, the c�ow �lter is
needed. If, on the other hand, the �lter should ignore the join points for the
method itself and handle only those join points triggered within the method,
the c�ow below �lter is needed.
All control �ow �lters exist in variants taking a method name (for all methods
with this name), a type and a method name (for speci�c methods only), and a
type (for all methods of that type). Listing 4.21 shows the solution to listing
4.20's problem by checking that the control �ow is not below a method named
Advice.
[Advice(typeof(BeforeMethod))]
[WhereNotCFlowBelow("Advice")]
public void Advice(object target, MethodInfo method) {
Console.WriteLine("Entering method " + method.Name + " of " +
target.ToString());

}

Listing 4.21: Reentrancy problem solved via control �ow �lter

Custom Filters It is simple to implement custom �lters simply by de�ning
a custom attribute implementing the IJoinpointFilter interface. For the default
join points, this will seldom be necessary, but for custom join points, this might
well be reasonable.
As an example, consider again the BeforeDataIsUsed custom join point from
listing 4.12 in section 4.3.3 and suppose this join point is to be used to implement
a compression aspect, which compresses a string's data before it is used. A
developer could choose that the compression algorithm is too ine�ective for
small amounts of data and should therefore be executed only for strings longer
than 20 characters. Of course, this could be implemented manually by checking
the string's length within the advice method, but this is not really where it
belongs: it should be part of the quanti�cation, i.e. of the aspect's pointcut
de�nition.
Listing 4.22 therefore shows a custom �lter de�nition implementing the de-
scribed logic (while allowing the minimum length to be declaratively con�gured)
and an application of the �lter within a pointcut de�nition. The �lter is im-
plemented by accessing the context information stored within the JoinpointInfo
object by the code triggering the join point (see listing 4.14 in section 4.3.3).

Ordering of Advice

If multiple advice methods are applied to the same join point, XL-AOF de�nes
an order of execution only for AfterException join points: advice bound to such
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public class WhereLengthAtLeastAttribute : Attribute, IJoinpointFilter {
private int minLength;

public WhereLengthAtLeastAttribute(int minLength) {
this.minLength = minLength;

}

public bool Matches(JoinpointInfo joinpointInfo) {
string data = joinpointInfo.AdditionalContext["data"] as string;
if (data != null) {
return data.Length >= minLength;

}
else {
return false;

}
}

}

...

[Advice(typeof(BeforeDataIsUsed))]
[WhereLengthAtLeast(20)]
public string BeforeDataIsUsed(string data) {

return packer.Compress(data);
}

Listing 4.22: Custom �lter de�nition for a custom join point

a join point are executed as if they were catch handlers (i.e. handlers for derived
exception types are executed before handlers of base exception types). For
all other join points, and also for multiple AfterException advice for the same
exception type, no ordering is de�ned.
This is not a problem in most scenarios, but sometimes, an aspect dependency
requires a speci�c ordering. For this, XL-AOF allows programmers to priori-
tize aspects and advice methods in di�erent ways by means of precedence and
priority. Precedence is a relation between two aspects, where one aspect has
precedence over another, meaning that the �rst aspect's advice methods are
executed before (or around, in the case of around method advice) those of the
second. Priority is a property of an advice method (which is relevant only af-
ter evaluation of aspect precedence): an advice method with a smaller numeric
priority value is executed before an advice method with a larger priority value.
Precedence and advice can be de�ned as follows:

• An aspect developer can declare an aspect to have higher precedence than
another aspect by applying a PrecedenceAttribute to the aspect's class
de�nition which denotes the aspect with lower precedence,

• An aspect developer can include a PriorityAttribute in a pointcut speci�-
cation in order to set the priority of the respective advice method,

• Any developer can include an assembly-level GlobalAspectPrecedenceAt-
tribute into an application, which allows application-speci�c ordering of
aspects, and

• Any developer can express precedence of an aspect over another for a
speci�c target object at the time of aspect con�guration; this is achieved
via applying an AspectPrecedenceAttribute for type-level con�guration, by
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setting a declarative parameter of the GlobalAspectBindingAttribute for
assembly-level con�guration, and by using a respective overload of the
AttachAspect<> method for dynamic con�guration (see section 4.3.2).

Specifying aspect precedence can easily lead to problems, e.g. circular depen-
dencies, which cannot be resolved at runtime, and de�ning aspect dependencies
adds an amount of complexity to an application. It is therefore important to use
the precedence and priority features only if they are really necessary; ideally,
independent cross-cutting concerns should not have any in�uence on each other.

Positive Adoptability Issues

• XL-AOF provides a simple way of de�ning advice methods simply as meth-
ods annotated with an AdviceAttribute.

• Due to the model of using delegate types to identify join point kinds,
it is easy and typesafe to select a speci�c join point kind for a pointcut
simply by passing the type as a parameter to the AdviceAttribute. Typing
errors are immediately detected by the compiler, and IDE typing support
(�intellisense�) is available.

• The default way of de�ning advice methods provides a great deal of signa-
ture �exibility: an advice can choose which context information it needs
and which it doesn't, and it can rename a join point's contextual argu-
ments if necessary.

• It is possible to use an advice method for di�erent join point kinds (or-
combination).

• For situations where unit tests are not available for aspects, XL-AOF pro-
vides a di�erent, compiler-checked (yet less �exible) way of pointcut/ad-
vice declaration.

• Declarative, and-combinable �lters o�er a readable and powerful way of
narrowing the set of joinpoints selected by a pointcut.

• A number of �lters is prede�ned for common pointcut expressions, and it
is easy to de�ne new ones.

• XL-AOF provides great �exibility for aspect ordering on precedence and
priority basis. Precedence can be de�ned at aspect development time as
well as at con�guration time.

Negative Adoptability Issues

• The �exible way of advice de�nition isn't compiler-checked, whereas the
compiler-checked way is not �exible.
Comment Due to the fact that XL-AOF needs to rely on existing compil-
ers, it is not possible to implement a �exible and compiler-checked model
for advice de�nition. In fact, we are quite proud that we have found a
way to exploit anonymous delegates to include a compiler-checked model
at all, even though it is less �exible than the default one.
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• Filters are only evaluated at runtime; i.e. it is not possible to evaluate
whether a �lter is faulty (e.g. matches no target methods) at compile-
time.
Comment This is also by design, due to the fact that XL-AOF comes
without a compiler. We've tried, however, to work with compiler-checkable
entities as often as possible. For example, we use Type objects and enumer-
ations instead of relying on (error-prone) string literals wherever possible,
as opposed to many other aspect-oriented tools.

• Aspect precedence can lead to errors and inconsistencies.
Comment This is true, and precedence and priority should therefore only
be used if absolutely necessary.

4.3.5 Interface Introduction

As explained previously, aspect-oriented tools should not only be able to in�u-
ence the dynamic behavior of an application, but its static structure as well.
While the join point/pointcut/advice mechanism targets the former require-
ment, XL-AOF also provides an introduction (or intertype declaration) mecha-
nism for the latter.

In section 3.1.2 in chapter 3, we explained that the only kind of introduction
implementable by runtime approaches with statically compiled languages is in-
terface introduction, which is enabled through dynamic type casts supported
by such languages. XL-AOF provides interface introduction by means of the
declarative IntroduceAttribute.

Usage of introduction is very simple: if an aspect should add an interface im-
plementation to its target class, this interface implementation must be provided
in the form of a nested type or a �eld (�introducer�) attributed with the Intro-
duceAttribute.

Listing 4.23 shows two equivalent aspects adding the .NET-de�ned interface
ICloneable to a target object, the �rst implemented via a nested class, the
second with a �eld as an introducer. While the �rst version is somewhat more
compact, the second version is useful in situations where existing classes should
be used as introducers. In addition, it allows other code to access the introducer
instance, which can be useful in some situations. In both versions, cloning is
implemented by calling the protected MemberwiseClone method implemented
by the System.Object base class.

The aspects use introspection and �eld injection in order to access the target
object and to call the protected method, this will be further discussed in section
4.3.6. For this section, it will su�ce to say that introducers can use exactly the
same features of aspect-related introspection and injection as the surrounding
aspect can. In addition, XL-AOF optionally allows introducers de�ned as nested
types of an aspect to take a reference to the aspect as a constructor parameter�
XL-AOF will automatically pass a reference to the surrounding aspect via that
parameter when it instantiates the introducer.
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public class CloneableAspect1 {
[Introduce]
public class CloneableIntroducer : ICloneable {

[Target] private object target = ReflectedField<object>.InjectedTarget;

public object Clone() {
return AspectEnvironment.Call<object>(target, "MemberwiseClone");

}
}

}

public class CloneableAspect2 {
[Introduce]
private CloneableIntroducer introducer = new CloneableIntroducer();

}

public class CloneableIntroducer : ICloneable {
[Target]
private object target = ReflectedField<object>.Injected;

public object Clone() {
return AspectEnvironment.Call<object>(target, "MemberwiseClone");

}
}

Listing 4.23: Implementing ICloneable via introduction

Positive Adoptability Issues

• XL-AOF provides a very simple and easily understandable system of in-
terface introduction via introducers: nested types or �elds implementing
the introduced interface and annotated with the IntroduceAttribute.

• Interface introduction is very �exible: introducers can employ the same
means of introspection and �eld injection as the surrounding aspects can.

• By using the underlying mixin technology provided by DynamicProxy,
interface introduction is very fast.

Negative Adoptability Issues

• Introduction can only add interfaces, not �elds or single methods. XL-
AOF also doesn't provide a mechanism for changing base classes, as some
other AOP tools do.
Comment As a runtime approach for statically type-checked program-
ming languages, interface introduction is the only kind of introduction
implementable, as discussed in chapter 3, section 3.1.2.

4.3.6 Aspect-Related Introspection

Runtime introspection of objects, also called re�ection, is an important feature
on modern object-oriented platforms, described for example by Je�rey Richter
in his book �CLR via C#� [Ric06]. .NET provides introspection support with
the System.Re�ection namespace, and XL-AOF employs this namespace for a
large part of its functionality; e.g. for analyzing the attributes de�ned on classes
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and methods, and for retrieving the MethodInfo context information objects
of method-related join points. The underlying subclass proxy infrastructure
uses the re�ection extension Re�ection.Emit to generate the subclass proxies
XL-AOF's weaving is based on.
Due to the dynamic code generation transparently performed by XL-AOF at
runtime, there are two important caveats when using the .NET-provided re�ec-
tion mechanisms in an AOP-enabled scenario:

• Type equality checks must be avoided: direct type tests as illustrated
in listing 4.24 will not work in AOP scenarios. Instead, polymorphism-
enabled assignability checks should be used, as shown in listing 4.25.

• Member lookups might not work with an object created via the ObjectFac-
tory, although they do when the object is created via new. Like with type
tests, lookups such as <object>.GetType().GetMethod(<methodname>)
should be avoided, inheritance-enabled lookups should be used instead.

if (<object>.GetType() == typeof(<Class>)) {
...

}

Listing 4.24: Direct type test failing in AOP scenarios

if (<object> is <Class>)} {
...

}

if (typeof(<Class>).IsAssignableFrom(<object>.GetType())) {
...

}

Listing 4.25: Polymorphism-enabled type test working well in AOP scenarios

Both problems are based on the fact that the dynamic type of an object needn't
be the type passed to the ObjectFactory.Create<> method, and also arise in
ordinary object-oriented programming scenarios as soon as polymorphism is
employed. Since both issues have simple work-arounds, they aren't limiting,
but should be known by programmers wishing to make use of instrospection in
AOP-enabled scenarios.
In parallel to the .NET-provided re�ection mechanism, XL-AOF also provides
additional mechanisms for aspect-related introspection, which will be discussed
in the following.

Retrieving Factory Attributes

In some cases, it can be important to be able to retrieve all the factory at-
tributes involved in the aspect con�guration of a class. For example, if a certain
aspect binding should be removed from a type via XL-AOF's dynamic aspect
con�guration mechanisms (see section 4.3.2), it is necessary to �rst retrieve the
exact factory attribute instance constituting that binding.
For this, the ObjectFactory class provides a method called GetFactoryAttribu-
tes<TTarget>, which returns all factory attribute instances for a given target
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type. These instances include those directly declared on the type, those in-
cluded via assembly-level con�gurations, and those manually added via calls to
AttachAttribute.

Join Point Introspection with IJoinpointInfo

As shown in section 4.3.3, a JoinpointInfo object (in conjunction with a join
point handler) is used to pass information from the context of a join point to
an advice method. All join point kinds preimplemented by XL-AOF are de�ned
in such a way that advice methods bound to such join points can request to
receive a read-only version (IJoinpointInfo) of that object. While most context
information is directly available in the form of advice parameters, information of
less importance or information which is expensive to create can only be accessed
via the IJoinpointInfo object.
In particular, the IJoinpointInfo object provides access to the kind of the join
point which triggered the advice, the name of the join point (if available), the
custom attributes associated with the join point, the number of previously exe-
cuted advice methods, and the call stack at the time of advice execution (which
is also used by the control �ow �lters, see section 4.3.4). In addition, custom
join points can add customized introspective information by using an IJoin-
pointInfo.AdditionalContext name/object repository.
The full de�nition of the IJoinpointInfo interface is given in listing 4.26.
public interface IJoinpointInfo {
Type Kind { get; }
string Name { get; }
object[] Attributes { get; }
int NumberOfExecutedAdvice { get; }
Stack<MethodInfo> CallStack { get; }
IDictionary<string, object> AdditionalContext { get; }

}

Listing 4.26: IJoinpointInfo interface

AspectEnvironment Introspection

For common aspect-related instrospection requirements, the AspectEnvironment
class o�ers the following methods:

• public static T AspectOf<T>(object o): Returns an aspect instance of
type T applied to the object o, or null if no such aspect instance exists.

• public static Type GetOriginalBaseType(object o): Returns the original,
unaspectized type of the object o, i.e. the type passed to ObjectFac-
tors.Create<> when the object o was created.

• public static Type GetOriginalBaseType(Type t): Like GetOriginalBase-
Type(object o), this returns the original, unaspectized type of an object,
but this method is given the object's dynamic type rather than the object
itself.
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• public static Re�ectedProperty<TValue> PropertyOf<TValue>(object tar-
get, MethodInfo getterOrSetter): This method returns the property (of
type TValue) from the getter or setter method of an object target. While
not speci�cally related to AOP, this is very useful when writing get/set ad-
vice methods for properties. An example usage for this is given in section
4.4.6.

• public static ParameterCollection GetParameterCollection(MethodInfo me-
thod, object[] args): The prede�ned method-related join points provide
both a re�ective MethodInfo object and an array of parameter values.
Often, however, more sophisticated methods of re�ective access to param-
eters are needed. For such situations, this method creates a Parameter-
Collection for the given method and argument values, which holds a set
of re�ective Parameter objects, allowing enumeration over the parame-
ters, or direct access by index and by parameter name. The Parameter
objects allow simple access to a parameter's name, its value, its custom,
attributes, and its type. While the utility of this class is not restricted to
aspect-oriented applications, it makes implementation of method-related
advice much easier.

Injected Fields and Properties

In addition to manual introspection, XL-AOF also supports a mechanism for
automatic introspective �eld or property injection for aspects. Injection means
that the aspect declares a special re�ective member, which is �lled by XL-AOF
at runtime. In particular, XL-AOF can inject references to the target object of
an aspect as well as to �elds and properties of the target object, as illustrated
in �gure 4.1.

int field;string Property {  get { … }  set { … }} object target;ReflectedField<int> field;ReflectedProperty<string> Property;
Field injection

Property injection

AspectTarget object

Target injection

Figure 4.1: Injections supported by XL-AOF

Injections are performed just after the object has been created by the Object-
Factory and before any after construction advice is executed. Note that the
semantics of injections are only meaningful for aspects having exactly one tar-
get object. For aspects shared by di�erent target objects, the injected �elds will
always reference the target object created last and can therefore only be relied
upon in after construction advice methods.

Target Injection As illustrated in listing 4.27, a TargetAttribute can be ap-
plied to �elds of an aspect in order to instruct XL-AOF to inject a reference to
the target object into that �eld. XL-AOF de�nes an InjectedTarget constant in
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the Re�ectedField<> class which should be assigned to injected �elds in order
to making it clear to the reader and the compiler that the �eld is injected by
XL-AOF�this improves readability and suppresses any compiler warnings over
the �eld not being assigned a value.
class Aspect {
[Target] private object targetObject = ReflectedField<object>.InjectedTarget;

[Advice(AfterConstruction)]
public void Advice(object constructedObject) {

Debug.Assert(constructedObject == targetObject);
}

}

Listing 4.27: TargetAttribute for injecting a reference to the target object

Field and Property Injection Often, an aspect needs access to a target
object's properties or, due to the cross-cutting nature of its concern, even to
the object's private state. For these cases, XL-AOF allows an aspect to declare
�elds of type Re�ectedField<> and Re�ectedProperty<>, which are automat-
ically injected with references to a �eld or property of the target object. The
declared �elds must either be called the same as their respective target �elds
or properties, or they must be attributed with a SourceNameAttribute. Listing
4.28 shows this for �eld injection: both re�ected �elds shown in the example
equivalently reference the integer �eld �dataField� of the target object; property
injection works equivalently. For documenting that the contents of the �eld will
be injected at runtime, the constant Injected provided by XL-AOF should be
assigned to the �eld in the source code.

As explained in section 3.2 in chapter 3, Re�ectedField<> can be implemented
very e�ciently, while providing access to public as well as private and protected
�elds of the target object. Get and set operations conducted on an Re�ect-
edProperty<> object simply result in calls to the property's getter and setter
methods and are thus also very e�cient.
class Aspect {
ReflectedField<int> dataField = ReflectedField<int>.Injected;
[SourceName("dataField")] ReflectedField<int> secondReflectedField =
ReflectedField<int>.Injected;

[Advice(typeof(BeforeMethod))]
void BeforeAdvice() {

Console.WriteLine(dataField.Value);
++secondReflectedField.Value;
Debug.Assert(dataField.Value == secondReflectedField.Value);

}
}

Listing 4.28: Re�ectedField<> members for injecting references to �elds

Field and Property Collection Injection If an aspect needs access to a
whole row or all of the target object's �elds or properties, Re�ectedField<>
and Re�ectedProperty<> might be cumbersome, especially with a high number
of target members. If the target members' names or number are unknown at
compile time, it's even impossible to use single member injection. For example,
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a serialization aspect would need to access all �elds of its target object in a
uniform way, no matter how many there are and how they are called.

For this, XL-AOF can inject references to all or a speci�c subset of the target ob-
ject's �elds or properties into aspect �elds of types Re�ectedFieldCollection<>
and Re�ectedPropertyCollection<>, as illustrated in listing 4.29 for �elds (prop-
erty injection works in an analoguous way). The collection objects allows the
injected �elds and properties to be enumerated or accessed by name. By de-
fault, all �elds or properties are injected; to select a speci�c subset, the same
�lters used for pointcuts, such as WhereDe�nedAttribute or WhereNameMatch-
esAttribute, can be used. In the listing, the WhereDe�nedAttribute �lter is used
to only inject those �elds which are tagged with a speci�c attribute.

Similar to the single member injections, Re�ectedFieldCollection<> and Re�ect-
edPropertyCollection<> provide an Injected constant to improve readability and
avoid compiler warnings.
class Aspect {

ReflectedFieldCollection<object> allFields =
ReflectedFieldCollection<object>.Injected;

[WhereDefined(typeof(Tag))]
ReflectedFieldCollection<int> taggedFields =
ReflectedFieldCollection<int>.Injected;

[Advice(typeof(BeforeMethod))]
void BeforeAdvice() {

foreach (ReflectedField<object> field in allFields) {
Console.WriteLine(field.Value.ToString());

}
++taggedFields["dataField"];

}
}

Listing 4.29: Re�ectedFieldCollection<> for injecting of a whole set of �elds

Positive Adoptability Issues

• XL-AOF does not restrict the use of .NET re�ection in AOP-enabled
applications.

• Aspect-related introspection is provided by an additional re�ection mech-
anism provided by the framework.

• Join point context information can be inspected using the IJoinpointInfo
context object.

• The AspectEnvironment class provides useful aspect-level re�ection such
as returning the aspects attached to a class, and it provides convenient
support for writing method-based advice for properties.

• Target, �eld, and property injection can be used to provide an aspect with
references to the target object, its properties, and even its internal state.



4.3. XL-AOF DECLARATIVE ASPECT LANGUAGE 89

Negative Adoptability Issues

• There is a .NET re�ection caveat for objects created with the ObjectFac-
tory concerning the dynamic type of object.
Comment The same caveat applies for ordinary code making use of
object-oriented polymorphism, and should therefore be considered all the
time.

• Access to private �elds of objects can be considered a breach of data
hiding.
Comment With traditional object-oriented programming, the concerns
implemented by aspects are part of the object itself and therefore have
access to the object's private state. Encapsulating the concern as an aspect
often cannot remove this coupling. Ideally, there should be an accessibility
level comparable to protected explicitly allowing access to a �eld only to
aspects applied to a class, but unfortunately the .NET speci�cation does
not provide such an accessibility level. Access to private �elds is therefore
necessary.

4.3.7 Aspect Dependencies
While aspects should in all cases be as decoupled as possible from each other,
there are many situations where aspects have in�uence on each other, and some
cases where they have to interact. Aspect interactions are a complex research
topic, whose current state-of-the-art has been summarized by Samen et al in the
AOSD-Europe deliverable Study on interaction issues in early 2006 [STW+06].
The topic of aspect interactions would go beyond the scope of this thesis, but
XL-AOF supports the interaction kind denoted by Samen et al as Dependency�
an aspect requiring another aspect to be applied to the same target.
With XL-AOF, this requirement can be expressed by applying an instance of
RequiresAspectAttribute to the aspect's class. RequiresAspectAttribute takes an
aspect type and a factory attribute type (as well as constructor arguments for it)
as its parameters, and XL-AOF guarantees that the factory attribute is used to
instantiate an aspect on every target class, unless an aspect of the given type is
already applied to it. For convenience, specializations of RequiresAspectAttribute
already exist for the prede�ned singleton, per object, and per class factory
attributes.
For better illustration, consider listing 4.30. In this example, an aspect As-
pect1 is declared, which depends on an aspect Aspect2. Whenever Aspect1 is
applied to a target class, XL-AOF will analyze whether an instance of Aspect2
has already been applied. If not, it will use the SingletonAspectAttribute factory
attribute in order to instantiate Aspect2. For simpli�cation, the listing uses the
RequiresSingletonAspectAttribute, which is equivalent to an RequiresAspectAt-
tribute con�gured to use the SingletonAspectAttribute.
[RequiresSingletonAspect(typeof(Aspect2))]
class Aspect1 {
...

}

Listing 4.30: Aspect dependency with standard attribute



90 CHAPTER 4. XL-AOF

Positive Adoptability Issues

• Dependencies are a very common form of aspect interaction. Because
XL-AOF provides prede�ned support for them, many scenarios where one
aspect uses or extends structure or behavior added by another aspect can
be e�ortlessly implemented.

4.4 Tutorials and Samples
Concluding this section about XL-AOF, we will now give a number of introduc-
tory examples for cross-cutting concerns solved using XL-AOF, presented in a
tutorial-like fashion. These concerns are of general purpose and not directly re-
lated to distributed or space-based computing yet, but they are aimed to make
readers more acquainted with XL-AOF's features, and should lead to a better
understanding of the more complex distribution-oriented aspects given in the
following chapters.

4.4.1 Motivating Example: Accounts

As a motivating example for the tutorials, we choose a very simple scenario,
which allows for integration of many di�erent cross-cutting concerns: a bank-
ing application. In particular, we will concentrate on one single class of the
application: Account , which is illustrated in listing 4.31. The class encapsu-
lates information about one single bank account, which has an ID, an owner,
and a balance as its state information. It allows for money to be deposited,
withdrawn, and transfered, the latter of which consists of a joint deposit and
withdraw operation.
public class Account {

private string id;
private decimal balance;
private string owner;

public Account(string id, decimal initialBalance, string owner) {
this.id = id;
this.balance = initialBalance;
this.owner = owner;

}

public virtual string ID {
get { return id; }

}

public virtual decimal Balance {
get { return balance; }
protected set { balance = value; }

}

public virtual string Owner {
get { return owner; }
set { owner = value; }

}

public virtual void Deposit(decimal amount) {
this.Balance += amount;

}
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public virtual void Withdraw(decimal amount) {
this.Balance -= amount;

}

public virtual void Transfer(decimal amount, Account to) {
to.Deposit(amount);
this.Withdraw(amount);

}

public override string ToString() {
return Owner + "’s account, current balance: USD " + balance.ToString("N");

}
}

Listing 4.31: Account class used as a base for the following tutorials

To illustrate the use of this account, we will create a test driver simulating
interactions with accounts conducted by two �ctional characters called Homer
and Jack. Consider the test driver shown in section 4.32, which �rst creates an
account for Homer, who then deposits and withdraws certain amounts. Next,
an account for Jack is created, and Homer transfers an amount of money to
Jack's account.
Account homer = ObjectFactory.Create<Account>("10242083", 1000m, "Homer");
homer.Deposit(100.0m);
homer.Withdraw(100.0m);

Account jack = ObjectFactory.Create<Account>("213456757", 2000m, "Jack");
homer.Transfer(1532.95m, jack);

Listing 4.32: Simple test driver for the Account class

In the following, we will give a number of additional (and cross-cutting) require-
ments for the Account class and explain how these can be implemented using
XL-AOF. After that, we will ask the question of the exact advantages of the
aspect-oriented solutions we present as compared to a traditional solution and
give a short summary of the advantages and disadvantages of the aspect-oriented
implementations of the particular concern.

4.4.2 Concern 1: Method Tracing

When executing the test driver, it can be noted that nothing whatsoever is
printed to the console. In order to ensure the correct workings of the Account
class, some sort of diagnostic information should be displayed on the screen. In
fact, it would be nice to just get a trace of all operations executed on account
objects and of their states when running the test driver. Such method tracing�a
classical cross-cutting concern�of course should be implemented as an aspect.
By using XL-AOF, we can write a perfectly reusable tracing aspect, which is
completely oblivious of its concrete target objects; we'll call the respective class
TraceAspect . For starters, TraceAspect should simply write a log message to the
console whenever an operation is invoked on an account object. We therefore
add an advice method bound to before method join points within the TraceAspect
class, as shown in listing 4.33.
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public class TraceAspect {
[Advice(typeof(BeforeMethod))]
public void LogActionStart() {

Console.WriteLine("Operation starting!");
}

}

Listing 4.33: First attempt at logging aspect de�nition

In order to try out the aspect, we need to con�gure the aspect to be applied to
the Account class. We could do that by applying a factory attribute to Account.
However, tracing is a concern which shouldn't be too tightly bound to the target
class. For example, a requirement might be to switch on and o� logging without
changing Account's source code, or to have all debugging aspect con�gurations
located in one common place. Therefore, we will supply an assembly-level con-
�guration attribute; and because the TraceAspect does not store any instance
data, we can use the prede�ned GlobalSingletonAspectAttribute. Listing 4.34
shows both aspect con�guration and aspect de�nition, and listing 4.35 shows
the console output generated by the test driver.
[assembly: GlobalSingletonAspect(typeof(Account), typeof(TraceAspect))]
...
public class TraceAspect {

[Advice(typeof(BeforeMethod))]
public void LogActionStart() {

Console.WriteLine("Operation starting!");
}

}

Listing 4.34: Logging aspect with con�guration

Operation starting!
Operation starting!
Operation starting!
Operation starting!
Operation starting!

Listing 4.35: Output of the �rst logging aspect

The output is encouraging: the aspect seems to work correctly. However, it's not
very useful yet, as it doesn't provide any usable information. We will therefore
change the advice method to include a dump of the operation's method name
and the target object's string representation, as illustrated in listing 4.36.
[assembly: GlobalSingletonAspect(typeof(Account), typeof(TraceAspect))]
...
public class TraceAspect {

[Advice(typeof(BeforeMethod))]
public void LogActionStart(object target, MethodInfo method) {

Console.WriteLine("STARTING: " + method.Name + ", target: " +
target.ToString());

}
}

Listing 4.36: Second attempt at logging aspect de�nition

This, however, now yields a StackOver�owException; what went wrong? The
explanation is simple: the ToString method, invoked from the LogActionStart
advice, is also handled by the advice, which results in an endless loop and,
eventually, a StackOver�owException.
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To remedy this, we will simply include a �lter in the advice's pointcut: by using
a control �ow restriction, we can ensure that the ToString method itself and
any methods called from within it will not trigger the advice's execution. The
working aspect is shown in listing 4.37, and its output is displayed in 4.38. It
uses a c�ow �lter rather than a c�ow below one; the e�ect of this�apart from
stopping the in�nite loop�is that the trace log doesn't show any calls to the
ToString method.
[assembly: GlobalSingletonAspect(typeof(Account), typeof(TraceAspect))]
...
public class TraceAspect {
[Advice(typeof(BeforeMethod))]
[WhereNotCFlow("ToString")]
public void LogActionStart(object target, MethodInfo method) {

Console.WriteLine("STARTING: " + method.Name + ", target: " +
target.ToString());

}
}

Listing 4.37: Second, corrected attempt at logging aspect de�nition

STARTING: Deposit, target: Homer’s account, current balance: USD 1.000,00
STARTING: Withdraw, target: Homer’s account, current balance: USD 1.100,00
STARTING: Transfer, target: Homer’s account, current balance: USD 1.000,00
STARTING: Deposit, target: Jack’s account, current balance: USD 2.000,00
STARTING: Withdraw, target: Homer’s account, current balance: USD 1.000,00

Listing 4.38: Output of the second logging aspect

After that, it's trivial to fully make TraceAspect a useful debugging tool: listing
4.39 adds after returning and after exception advice methods to the aspect
and �ne tunes it not to log any property accessors, and listing 4.40 shows the
respective console output.
[assembly: GlobalSingletonAspect(typeof(Account), typeof(TraceAspect))]
...
public class TraceAspect {
[Advice(typeof(BeforeMethod))]
[WhereNotCFlow("ToString")]
[WhereNotSetter, WhereNotGetter]
public void LogActionStart(object target, MethodInfo method) {

Console.WriteLine("STARTING: " + method.Name + ", target: " +
target.ToString());

}

[Advice(typeof(AfterReturning))]
[WhereNotCFlow("ToString")]
[WhereNotSetter, WhereNotGetter]
public object LogActionEnd(object target, MethodInfo method, object
returnValue) {
Console.WriteLine("FINISHED: " + method.Name + ", target: " +
target.ToString());

return returnValue;
}

[Advice(typeof(AfterException))]
[WhereNotCFlow("ToString")]
[WhereNotSetter, WhereNotGetter]
public object LogActionException(object target, MethodBase method, Exception
exception) {
Console.WriteLine("FAILED: " + method.Name + ": " + exception.Message);
throw exception;

}
}

Listing 4.39: Third, complete attempt at logging aspect de�nition
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STARTING: Deposit, target: Homer’s account, current balance: USD 1.000,00
FINISHED: Deposit, target: Homer’s account, current balance: USD 1.100,00
STARTING: Withdraw, target: Homer’s account, current balance: USD 1.100,00
FINISHED: Withdraw, target: Homer’s account, current balance: USD 1.000,00
STARTING: Transfer, target: Homer’s account, current balance: USD 1.000,00
STARTING: Deposit, target: Jack’s account, current balance: USD 2.000,00
FINISHED: Deposit, target: Jack’s account, current balance: USD 3.532,95
STARTING: Withdraw, target: Homer’s account, current balance: USD 1.000,00
FINISHED: Withdraw, target: Homer’s account, current balance: USD -532,95
FINISHED: Transfer, target: Homer’s account, current balance: USD -532,95

Listing 4.40: Output of the third logging aspect

Comparison

Implementing method tracing directly within the Account class would have re-
quired instrumentation of every method with calls to the Console.WriteLine
method. If exceptions should be traced, which isn't needed at the moment but
might be with the changes made by the subsequent tutorial sections, try/catch
blocks would be required, as illustrated in listing 4.41 for the Transfer method.
public void Transfer(decimal amount, Account to) {

Console.WriteLine("STARTING: Transfer, target: " + ToString());
try {

to.Deposit(amount);
this.Withdraw(amount);

}
catch (Exception exception) {

Console.WriteLine("FAILED: Transfer: " + exception.Message);
throw;

}
Console.WriteLine("FINISHED: Transfer, target: " + ToString());

}

Listing 4.41: Transfer method tangled with tracing code

Advantages of the Aspect-Oriented Solution

Code locality and understandability: With the better separation of con-
cerns achieved by encapsulating the tracing concern as an aspect, code
locality is improved: code dealing with the logging of method starts is
located in one dedicated (advice) method, as is method return and ex-
ception logging code. Each method of the Account class also deals with
exactly one (functional) concern, such as depositing, withdrawing, and
transferring money. This locality of code is bene�cial for readability and
understandability of the code�in order to understand how a concern is
dealt with, just one single method (possibly advice) needs to be consid-
ered. In contrast, with the object-oriented solution, di�erent concerns are
spread across several methods, and every method contains several con-
cerns, which makes the code much harder to understand.

Reusability of the target class: In the aspect-oriented implementation, the
Account class can easily be reused in situations where no logging should
be performed, without making any changes to its class de�nition. To reuse
the object-oriented implementation in such a scenario means to manually
untangle and remove all logging code from every single method of Account.
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Reusability of the aspect: The tracing aspect is also highly reusable; noth-
ing in its code depends on implementation details of the Account class.
Therefore, it can be applied to other target classes without making any
changes to the aspect's code. With the object-oriented version, new trac-
ing instrumentation has to be inserted into every new target class by hand.

Scalability of the aspect: In the aspect-oriented version, tracing is automat-
ically added to every new method of the Account class without any addi-
tional work and to every other class with only minimal e�ort. In contrast,
considerable e�ort would have to be taken to make new methods/classes
traceable with an object-oriented implementation.

Changeability of the class: The functionality of the Account class can be
changed easily without a�ecting the tracing concern. In contrast, with
a tangled object-oriented implementation, each change to the Account's
functionality would need special care to be taken in order not to change
the tracing concern's semantics.

Changeability of the aspect: In the aspect-oriented version, changes in the
tracing behavior can be performed without touching the Account source
code, which is not possible with an object-oriented implementation.

Con�gurability: Tracing can be separately implemented and declaratively
con�gured in a single, central place, without touching either aspect or
Account source code. Using XL-AOF's runtime con�guration mechanism,
tracing can even be added, removed, and recon�gured at runtime. All this
is not possible with an object-oriented solution, which needs the tracing
code to be written together with the Account class.

Disadvantages of the Aspect-Oriented Solution

ObjectFactory and virtual methods: All objects to be traced must adhere
to the design restrictions implied by XL-AOF: they must be created using
the ObjectFactory and methods used as join points must be virtual. These
restrictions would not apply to an object-oriented version.

CFlow �lter necessary: In order to avoid a StackOver�owException, a some-
what complex control �ow �lter is necessary. In an object-oriented imple-
mentation, the stack over�ow potential would be obvious (since ToString
would be called from the logging code in ToString) and would thus be
easily avoided.

4.4.3 Concern 2: Declarative Parameter Checking

An important weakness of the existing Account implementation is easily demon-
strated by extending the test driver of listing 4.32: as the tracing aspect tells
us, Homer's account is overdrawn by about 533 dollars after the test driver's
code. Homer could therefore try to outbalance it by outwitting implementation
as shown in listing 4.42�he �rst tries withdrawing a negative amount of money
and then transfers 600 dollars from a fake account without owner. (The TryOut
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method simply swallows any exceptions thrown by the code executed within its
context.)
Account homer = ObjectFactory.Create<Account>("10242083", 1000m, "Homer");
homer.Deposit(100.0m);
homer.Withdraw(100.0m);

Account jack = ObjectFactory.Create<Account>("213456757", 2000m, "Jack");
homer.Transfer(1532.95m, jack);

TryOut(delegate {
homer.Withdraw(-600m);

});

TryOut(delegate {
Account falseAccount = ObjectFactory.Create<Account>("fake", 600m, null);
falseAccount.Transfer(6000m, homer);

});

Listing 4.42: Outwitting the Account class

When running this code, it works both times: tracing output shows that Homer's
account now contains about 600 dollars. Why didn't the Account class catch
this?
Of course, Account doesn't perform any parameter checking. Neither the con-
structor, nor the Withdraw, Deposit, or Transfer methods check whether their
argument values are consistent when executed. To remedy this, we could sim-
ply insert parameter checks into every method, which would however result in
code duplication. The problem can be solved much more naturally in a declar-
ative way�by specifying the intention of parameter checking rather than the
algorithm of doing so.
Aspects can help us here; we will write an aspect allowing us to amend the
parameter declarations of Account's methods with declarative attributes, spec-
ifying rules for valid values. We will use NotNull to indicate a parameter which
must not be null, GreaterThanZero to indicate that a parameter must be posi-
tive, and NotEmptyString to indicate that a non-null string must hold a value.
We will also apply these attributes to property declarations in order to check
the property's value when it's being set.
Then, we will write the respective ParameterCheckingAspect , which checks that
the rules attached to the parameters are met prior to every method execution
or property setter. In contrast to the previous tracing aspect, this aspect should
not be con�gured at assembly level; the concern of parameter checking is vital
for the behavior of the Account class and should therefore stay near Account's
de�nition. We will thus con�gure the aspect directly on the class with a class-
level con�guration attribute. Since the aspect will not hold any state, we can
use a SingletonAspectAttribute.
The modi�ed Account class and the attribute de�nitions are given in listing
4.43. The listing also declares a common interface for all validation attributes,
which will make it easier to handle them in an aspect.
For writing the aspect, we need to consider advice for execution of constructors
and ordinary methods as well as for property setters. We can handle construc-
tors and methods in the same way: we simply iterate through their parameter
lists and check each parameter for violated rules�the corresponding advice is
shown in listing 4.44.
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[SingletonAspect(typeof(ParameterCheckingAspect))]
public class Account {
private string id;
private decimal balance;
private string owner;

public Account([NotNull,NotEmptyString]string id,
[GreaterThanZero]decimal initialBalance,
[NotNull,NotEmptyString]string owner) {

this.id = id;
this.balance = initialBalance;
this.owner = owner;

}

public virtual string ID {
get { return id; }

}

public virtual decimal Balance {
get { return balance; }
protected set { balance = value; }

}

[NotNull] public virtual string Owner {
get { return owner; }
set { owner = value; }

}

public virtual void Deposit([GreaterThanZero]decimal amount) {
this.Balance += amount;

}

public virtual void Withdraw([GreaterThanZero]decimal amount) {
this.Balance -= amount;

}

public virtual void Transfer([GreaterThanZero]decimal amount,
[NotNull]Account to) {

to.Deposit(amount);
this.Withdraw(amount);

}

public override string ToString() { /* as before */ }
}

public interface IParameterChecker {
bool IsValid(ParameterInfo parameter, object value);

}

[AttributeUsage(AttributeTargets.Parameter | AttributeTargets.Property)]
public class GreaterThanZeroAttribute : Attribute, IParameterChecker {
public bool IsValid(ParameterInfo parameter, object value) {

object zero = Activator.CreateInstance(parameter.ParameterType);
return ((IComparable)value).CompareTo(zero) > 0;

}
}

[AttributeUsage(AttributeTargets.Parameter | AttributeTargets.Property)]
public class NotNullAttribute : Attribute, IParameterChecker {
public bool IsValid(ParameterInfo parameter, object value) {

return value != null;
}

}

[AttributeUsage(AttributeTargets.Parameter | AttributeTargets.Property)]
public class NotEmptyStringAttribute : Attribute, IParameterChecker {
public bool IsValid(ParameterInfo parameter, object value) {

return !object.Equals(value, string.Empty);
}

}

Listing 4.43: Acocunt class with declarative parameter checking



98 CHAPTER 4. XL-AOF

[Advice(typeof(BeforeMethod))]
[Advice(typeof(BeforeConstruction))]
[Priority(-10)]
public void CheckParameters(MethodBase methodOrConstructor, object[] args) {

ParameterCollection parameters =
AspectEnvironment.GetParameterCollection(methodOrConstructor, args);

for (int i = 0; i < parameters.Count; ++i) {
IEnumerable<IParameterChecker> checkers =
parameters[i].GetCustomAttributes<IParameterChecker>();

CheckParameter(parameters[i], checkers);
}

}

private static void CheckParameter(ParameterCollection.Parameter parameter,
IEnumerable<IParameterChecker> checkers) {
foreach (IParameterChecker checker in checkers) {

if (!checker.IsValid(parameter.Info, parameter.Value)) {
throw new ArgumentException(checker.GetType().Name + " not fulfilled.",
parameter.Name);

}
}

}

Listing 4.44: Advice for method and constructor parameter checking

The advice is bound to both before method and before construction join points�
this is possible because we only access context information which is available for
both join point kinds. We give the advice a priority of -10, i.e. slightly above
the default priority of 0�this ensures that by default this advice is executed
prior to any other (e.g. prior to the method tracing advice). The advice uses
the ParameterCollection introspection mechanism in order to enumerate the
parameters of the method or constructor and to retrieve the validation rules
declared on them.
For parameter checking in property setters, we need a second advice, which
needs to extract the validation attributes from the property de�nition itself
(rather than the method), and we have to validate them against the single
value parameter of the setter method, as shown in listing 4.45. The advice is
also bound to BeforeMethod join points, but only to those of setter methods
of properties which have at least one IParameterChecker attribute de�ned on
them.
[Advice(typeof(BeforeMethod))]
[WhereSetter]
[WhereDefined(typeof(IParameterChecker), Context=Context.Property)]
[Priority(-10)]
public void CheckPropertyValue(object target, MethodInfo setter, object[] args) {

ReflectedProperty<object> property =
AspectEnvironment.PropertyOf<object>(target, setter);

IEnumerable<IParameterChecker> checkers =
property.GetCustomAttributes<IParameterChecker>(true);

ParameterCollection parameters =
AspectEnvironment.GetParameterCollection(setter, args);

CheckParameter(parameters["value"], checkers);
}

Listing 4.45: Advice for property value checking

When put together, these two advice and one helper method form the whole
aspect needed in order to implement declarative parameter checking. Running
the extended test driver now leads to exceptions when trying to exploit the
behavior shown before.
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Comparison

As already mentioned, we could have implemented the concern of parameter
checking imperatively rather than declaratively�in fact, this is how it is usually
done. This would have involved an if/throw block for each parameter to be
checked at the beginning of the respective method.
As with the logging aspect, we will shortly compare the aspect-oriented solution
with the traditional one.

Advantages of the Aspect-Oriented Solution

Code locality and understandability: In the aspect-oriented version, the
code for parameter checking is much better separated: within the Account
class, only short declarative attributes hint at what rules apply to the
parameters; the actual rule implementation is encapsulated in dedicated
attribute classes, and the implementation of parameter checking is cleanly
packaged into the parameter checking aspect. Again, this improves un-
derstandability and readability of the Account class; the method bodies
are concise and are easily analyzed and understood. In contrast, in an
object-oriented version, large parts of the method bodies (with the one-
line implementations of the Deposit and Withdraw methods at least 50%,
but likely more) would consist of parameter checking and would distract
from the actual purpose of the method.

Code size and e�ort: Seen in isolation, the methods in the Account class
are much shorter in the aspect-oriented solution than they would be in
an object-oriented implementation. But even when considering the as-
pect code, it's much less e�ort to add parameter checking in the aspect-
oriented implementation: the parameter checking code, e.g. for ensuring
that amounts need to be greater than zero, is reused instead of retyped;
only the (short) declarative attribute needs to be duplicated.

Declarativity for documentation: The declarative validation rules allow to
grasp the preconditions for each parameter simply by looking at its decla-
ration, without needing to read the method body. The attributes therefore
act as documentation as well as program source code, increasing under-
standability even more.

Reusability of the aspect: The parameter checking aspect is highly reusable
and can be readily applied to any other target class.

Scalability of the aspect: Parameter checking can easily be applied to any
parameter of any method with a single attribute speci�cation.

Changeability of the class: The functional semantics (i.e. the method bod-
ies) of the Account class can easily be changed without a�ecting the pa-
rameter checking.

Changeability of the aspect: Parameter checking semantics (e.g. changing
the exception to be thrown if a parameter is null) can easily be changed
in one single place without a�ecting the Account class.
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Disadvantages of the Aspect-Oriented Solution

ObjectFactory and virtual methods: Again, all instances of Account must
adhere to the design restrictions implied by XL-AOF. In particular, objects
not created with the ObjectFactory will not check their method parame-
ters.

4.4.4 Concern 3: Call Privileges Aspect

Another way how Homer's account could be outbalanced in the original test
driver would be that of impersonating Jack and transferring money away from
Jack's account. Consider again an extended test driver implementing this in
listing 4.46.
Account homer = ObjectFactory.Create<Account>("10242083", 1000m, "Homer");
homer.Deposit(100.0m);
homer.Withdraw(100.0m);

Account jack = ObjectFactory.Create<Account>("213456757", 2000m, "Jack");
homer.Transfer(1532.95m, jack);

TryOut(delegate {
jack.Transfer(600m, homer);

});

Listing 4.46: Transferring back the money

Implementation-wise, there is no reason why this shouldn't work�if Homer can
get an instance of Jack's account, he can also call its Transfer method. In order
to avoid this unwanted situation, a security model is needed. Whenever an
Account object is created (or, in a more realistic scenario, loaded from a storage
system), the respective creator should be required to authenticate. And while
everyone is allowed to deposit money and transfer money to an acocunt, only
the owner is allowed to withdraw or transfer money away from it. And this is
our next cross-cutting concern.
Using aspects, it's simple to implement privileges checking: we will create a per-
object aspect which retrieves a security token from the user when an Account
object is created. And whenever a method is executed, before method advice
checks if the user is permitted to execute the operation.
In order to declaratively con�gure the required privileges, we can de�ne a custom
attribute OwnerOnlyAttribute, which is applied to the Withdraw method of the
account class�the action which can only be performed by the owner. Since
Transfer calls that operation, it is automatically guarded as well. Deposit is
not tagged and is thus still available to anyone using an Account object.
Listing 4.47 shows the Account class with the new Withdraw method as well
as the custom attribute declaration. Like the parameter checking aspect, the
security aspect is applied directly onto the class (using a PerObjectAspectAt-
tribute)�this really depends on whether the security aspect is seen to be in-
herent to the Account class or if a use of Account without security checks is
conceivable. In our case, security is vital, therefore the aspect is tightly inte-
grated.
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[SingletonAspect(typeof(ParameterCheckingAspect))]
[PerObjectAspect(typeof(SecurityAspect))]
public class Account {
... // unchanged

public virtual void Deposit([GreaterThanZero]decimal amount) {
this.Balance += amount;

}

[OwnerOnly]
public virtual void Withdraw([GreaterThanZero]decimal amount) {

this.Balance -= amount;
}

// [OwnerOnly] implicit with call to Withdraw
public virtual void Transfer([GreaterThanZero]decimal amount, [NotNull]Account
to) {
to.Deposit(amount);
this.Withdraw(amount);

}

... // unchanged
}

...

[AttributeUsage(AttributeTargets.Method)]
public class OwnerOnlyAttribute : Attribute { }

Listing 4.47: Adding an owner only security restriction to the Account class

For our demonstration purposes, we will implement the security aspect in a very
simple way�we need an after construction advice to gain a security token and
a before method advice to check the token as explained above, but in the actual
implementation, we will not employ any sophisticated authentication system.
Instead, the security token is generated when an Account is constructed simply
by the user entering his name via the console. When a method tagged with
the OwnerOnly attribute is executed, we check whether this name matches the
string of the Account's owner �eld. This aspect is shown in listing 4.48.
public class SecurityAspect {
private string user;
private ReflectedField<string> owner = null;

[Advice(typeof(AfterConstruction))]
public void DoLogin(object instance) {

Console.Write("Please login for using account ’" + instance + "’: ");
user = Console.ReadLine();

}

[Advice(typeof(BeforeMethod))]
[WhereDefined(typeof(OwnerOnlyAttribute))]
public void CheckForOwnerPrivileges(MethodInfo action) {

if (user != owner.Value) {
throw new SecurityException(action.Name + " can only be performed by " +
owner.Value + ".");

}
}

}

Listing 4.48: Aspect ensuring that the OwnerOnlyAttribute is respected

While this is a really simple implementation, integrating this with Windows
authentication services, for example, would not require much more work on the
aspect side.
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Comparison

Without an aspect-oriented approach, we could have implemented this concern
directly within the Account class, having the user authenticate in the constructor
and checking for privileges at the beginning of the Withdraw method. So, what
are the bene�ts of doing it the aspect-oriented way?

Advantages of the Aspect-Oriented Solution

Code locality and understandability: Implementing the security concern
inline within the Account method wouldn't really be much of a problem,
as there is only one method to protect. However, the aspect-oriented
solution still has the bene�t of better encapsulation of concerns�adding
authentication to the constructor, security checks to Withdraw, and a user
�eld to the Account class wouldn't make the class easier to understand, on
the contrary. Even with this simple situation, the aspect-oriented solution
makes for a better readable and more easily understandable solution.

Declarativity for documentation: One can immediately see whether every-
one or only the owner of an account can perform an operation simply by
looking at the method declaration, without parsing the code; the declar-
ative approach here again serves as a means of documentation. In the
object-oriented version, this would have to be explicitly documented.

Reusability of the aspect: While only supporting two di�erent kinds of per-
missions (�owner-only� and �everyone�), the aspect can be applied to every
class where this concept is needed�as long as the target class has an owner
�eld.

Scalability of the aspect: Security checks can easily be applied to any new
method with a single declarative attribute.

Changeability of the class: When changing the functional concerns of the
Account class, the security aspect is not a�ected.

Changeability of the aspect: When changing the security concern, the Ac-
count class is not a�ected.

Disadvantages of the Aspect-Oriented Solution

ObjectFactory and virtual methods: As with the previous aspects, the re-
strictions imposed by XL-AOF make for a disadvantage of the aspect-
oriented solution. (Since these restrictions are inherent to XL-AOF, we
will apply this disadvantage to every aspect in these tutorials.)

Code size and e�ort: In this case, the e�ort is actually a little higher with
the aspect-oriented solution since we did not achieve any code reuse in our
example. The situation would however turn around as soon as additional
classes or methods to be protected are added to the program.
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4.4.5 Concern 4: Atomic Operation Aspect

Incorporating the security check into the program makes another problem ap-
parent. Take a look at the excerpt of the tracing output generated by the
previous section's extended test driver shown in listing 4.49, paying attention
to how the balance of Homer's account changes.
...
Please login for using account ’Jack’s account, current balance: USD 2.000,00’:
Homer

...
STARTING: Transfer, target: Jack’s account, current balance: USD 3.532,95
STARTING: Deposit, target: Homer’s account, current balance: USD -532,95
FINISHED: Deposit, target: Homer’s account, current balance: USD 67,05
STARTING: Withdraw, target: Jack’s account, current balance: USD 3.532,95
FAILED: Transfer: Withdraw can only be performed by Jack.
ERROR: Withdraw can only be performed by Jack.
Homer’s account, current balance: USD 67,05

Listing 4.49: Tracing output generated by the previous test driver

The security aspect correctly aborts the Transfer operation as soon as the invalid
Withdraw operation is started, however, it doesn't roll back the changes (i.e.
the Deposit operation) made up to this moment!
While we could easily work around this by either turning around the statements
in the Transfer method or by applying the OwnerOnlyAttribute to the Transfer
method as well as to Withdraw, this wouldn't solve the fundamental problem of
Transfer having to be an atomic operation�if any of its suboperations fail at
any time, the whole operation needs to be rolled back.
This atomicity requirement makes for an interesting cross-cutting concern. It
will be implemented with an aspect more complex than those presented so far.
We will start by de�ning how we can achieve atomicity. Although it's a sim-
pli�cation, we will de�ne for this sample that at the beginning of an atomic
operation the states of all objects involved in the operation (this means the
target object itself as well as all of the method's parameters) need to be saved.
If (and only if) an exception is thrown in the course of the operation, the states
need to be restored before the exception leaves the method.
Actually, this by itself is easily formulated as an aspect with an around method
advice, as shown in listing 4.50. However, the atomicity concern depends on an
additional cross-cutting concern: storeability. The CreateSnapshot and snap-
shot.Restore methods need a way to store and load the state of the target object.
We now have two possibilities�either make use of the .NET-integrated serial-
ization and demand that Account be declared Serializable, or implement our
own serialization mechanism. The �rst possibility is much cleaner, using an
already available and tested mechanism, and should therefore de�nitely be pre-
ferred whenever possible. We will however choose the second one for the sake of
explaining how to implement a serialization aspect with XL-AOF: we implement
a StoreabilityAspect , which the AtomicityAspect depends on.
For this example, we will only perform a very simple sort of serialization: we will
store the values of all �elds of the target object in a dictionary object and, on
deserialization, reassign the values from the dictionary to the �elds. Of course,
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[AttributeUsage(AttributeTargets.Method)]
public class AtomicAttribute : Attribute { }
...
public class AtomicityAspect {

[Advice(typeof(AroundMethod))]
[WhereDefined(typeof(AtomicAttribute))]
public object AroundMethod(object target, object[] args, IMethodProceeder
nextProceeder) {
Snapshot snapshot = CreateSnapshot(target, args);
try {
return nextProceeder.Proceed(args);

}
catch {
snapshot.Restore();
throw;

}
}

private Snapshot CreateSnapshot(object target, object[] args) {
... // shown later

}
}

class Snapshot {
... // shown later

}

Listing 4.50: Aspect implementing atomicity for arbitrary methods, incomplete

a real serialization mechanism would have to analyze the �elds' types and act
accordingly, but for the account example, it will su�ce. A more sophisticated
serialization aspect for space-based computing will be given in the next chapter.

To implement the serialization mechanism, we will �rst de�ne an IStoreable
interface, as shown in listing 4.51. Objects implementing this interface provide
SaveState and RestoreState methods for storing and loading their internal states
into and from dictionary objects.

public interface IStoreable {
void SaveState(Dictionary<string, object> state);
void RestoreState(Dictionary<string, object> state);

}

Listing 4.51: IStoreable interface for storing and restoring object state

Of course, the Account class does not implement this interface; therefore, the
StoreabilityAspect needs to add this interface via introduction�the respective
StoreableIntroducer nested class shown in listing 4.52 implements the interface
for the target objects.

The StoreableIntrocer class gets access to the target object's �elds via an injected
Re�ectedFieldCollection. Its implementations of SaveState and RestoreState
can therefore easily iterate through the �elds and store/restore their contents
in/from a dictionary object. Storing only makes sense for value types and
(immutable) string objects�for other objects only a reference rather than the
content would be stored. For reference types, the serialization mechanism needs
to be recursively invoked; and the aspect does so for objects which themselves
implement IStoreable (either directly or via an aspect).
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public class StoreabilityAspect {
[Introduce]
public class StoreableIntroducer : IStoreable {

ReflectedFieldCollection<object> targetFields =
ReflectedFieldCollection<object>.Injected;

public void SaveState(Dictionary<string, object> state) {
foreach (ReflectedField<object> field in targetFields) {
if (field.FieldType.IsValueType || field.FieldType == typeof(string)) {

state[field.Name] = field.Value;
}
else if (field.Value is IStoreable) {

Dictionary<string, object> innerState = new Dictionary<string,
object>();

((IStoreable)field.Value).SaveState(innerState);
state[field.Name] = innerState;

}
else {

throw new InvalidOperationException("Can only automatically implement
IStoreable on classes holding " +
"only primitive types, value types, and IStoreables as fields.");

}
}

}

public void RestoreState(Dictionary<string, object> state) {
foreach (ReflectedField<object> field in targetFields) {
if (field.FieldType.IsValueType || field.FieldType == typeof(string)) {

field.Value = state[field.Name];
}
else if (field.Value is IStoreable) {

Dictionary<string, object> innerState = (Dictionary<string,
object>)state[field.Name];

((IStoreable)field.Value).RestoreState(innerState);
}
else {

throw new InvalidOperationException("Can only automatically implement
IStoreable on classes holding " +
"only primitive types, value types, and IStoreables as fields.");

}
}

}
}

}

Listing 4.52: Using introduction to implement IStoreable

As the last step in implementing the atomicity aspects, we �ll in the missing
pieces of the AtomicityAspect, now that we have the StoreabilityAspect, as shown
in listing 4.53. The AtomicityAspect depends on StoreabilityAspect. Due to the
RequiresSingletonAspect attribute, XL-AOF will automatically add the store-
ability aspect to every target class the atomicity aspect is applied to (unless the
user has manually and explicitly applied the storeability aspect).
The listing now also shows the implementation of the Snapshot utility class,
which simply acts as a wrapper for a number of state dictionaries, and the
CreateSnapshot method, which stores the target object itself and any parameters
implementing the IStoreable interface.
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[AttributeUsage(AttributeTargets.Method)]
public class AtomicAttribute : Attribute { }

[RequiresSingletonAspect(typeof(StoreabilityAspect))]
public class AtomicityAspect {

[Advice(typeof(AroundMethod))]
[WhereDefined(typeof(AtomicAttribute))]
public object AroundMethod(object target, object[] args, IMethodProceeder
nextProceeder) {
Snapshot snapshot = CreateSnapshot(target, args);
try {
return nextProceeder.Proceed(args);

}
catch {
snapshot.Restore();
throw;

}
}

private Snapshot CreateSnapshot(object target, object[] args) {
Snapshot ss = new Snapshot();
ss.TakeSnapshot((IStoreable)target);
for (int i = 0; i < args.Length; ++i) {
ss.TakeSnapshot(args[i] as IStoreable);

}
return ss;

}
}

class Snapshot {
private Dictionary<IStoreable, Dictionary<string, object>> snapshots = new
Dictionary<IStoreable, Dictionary<string, object>>();

public void TakeSnapshot(IStoreable o) {
if (o != null) {
Dictionary<string, object> state = new Dictionary<string, object>();
o.SaveState(state);
snapshots.Add(o, state);

}
}

public void RestoreSnapshot(IStoreable o) {
if (o != null) {
o.RestoreState(snapshots[o]);

}
}

public void Restore() {
foreach (IStoreable snappable in snapshots.Keys) {
RestoreSnapshot(snappable);

}
}

}

Listing 4.53: Complete atomicity aspect

Listing 4.54 �nally shows the adapted Account class implementing an atomic
Transfer method. Again, we use class-level aspect con�guration to express that
this aspect is inherent to the Account class, that it cannot exist without it. And
indeed, running the test driver with the new aspect attached to the class works
as expected�the method fails, and the Deposit operation is rolled back.

Comparison

Now, in this particular situation, we could have implemented the rollback of
the Transfer method simply by storing the account balances in local variables
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[SingletonAspect(typeof(ParameterCheckingAspect))]
[PerObjectAspect(typeof(SecurityAspect))]
[SingletonAspect(typeof(AtomicityAspect))]
public class Account {
... // unchanged

[Atomic]
public virtual void Transfer([GreaterThanZero]decimal amount, [NotNull]Account
to) {
to.Deposit(amount);
this.Withdraw(amount);

}

... // unchanged
}

Listing 4.54: Account class extended to support atomic operations

at the beginning of the method and by reassigning them in catch blocks when
an exception is caught. Is the aspect-oriented solution, which is clearly more
complex, really any better?

Advantages of the Aspect-Oriented Solution

Code locality and understandability: Once again, the aspect-oriented so-
lution improves code locality. Instead of tangling the Transfer method
with exception handling and roll-back code, we managed to implement
that code outside of the class. While this needed more work, since we
wanted make to the aspect generally reusable, it's worth it what regards
readability and understandability of the code.

Declarativity for documentation: Also again, the use of a custom attribute
to mark atomic operations makes for a great implicit means of documen-
tation, enabling a reader to immediately see what operations are atomic
without needing to read the full code.

Reusability of the aspect: Because the serialization and atomicity mecha-
nisms were implemented in a very generic way (they don't access the
balance �eld by its name, for example), the aspect can be readily applied
to any other target class without e�ort.

Scalability of the aspect: One declarative attribute is enough to add atom-
icity to any new method.

Changeability of the class: When changing the functional concerns of the
Account class, the atomicity concern is not a�ected.

Changeability of the aspect: When changing the atomicity concern, the Ac-
count class is not a�ected.

Disadvantages of the Aspect-Oriented Solution

ObjectFactory and virtual methods: As always, the design restrictions im-
posed by XL-AOF apply.
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Code size and e�ort: And again, in this situation our e�ort is actually much
higher to achieve a generic aspect-oriented solution than to implement an
ad-hoc object-oriented one. This only pays o� in scenarios where we can
reuse the aspect's functionality.

4.4.6 Concern 5: Property Change Noti�cation Aspect

To conclude this section about XL-AOF, we will demonstrate the implemen-
tation of one last concern. Suppose we want to show the Account class in a
Windows Forms application, employing data binding to display account data in
a window as shown in �gure 4.2.

Figure 4.2: Account viewing application

Creating such a window is simple with Windows Forms, binding the account
data to the di�erent controls is even simpler and requires only three lines of
code thanks to Windows Forms Data Binding, as demonstrated in listing 4.55.
However, running the application and using either the withdraw or dispose
functionality shows that something is missing: Windows Forms Data Binding
is not noti�ed when the account's balance changes, and the shown values are
therefore not updated.
id.DataBindings.Add("Text", account, "ID");
owner.DataBindings.Add("Text", account, "Owner");
balance.DataBindings.Add("Value", account, "Balance");

Listing 4.55: Using Data Binding in order to display the account's properties

To make data binding work correctly, we would need to implement the INoti-
fyPropertyChanged interface which comes with Windows Forms. Its implemen-
tors need to provide an event called PropertyChanged , which, when invoked,
tells Windows Forms Data Binding which property has changed, so the display
can be updated.

Property change noti�cations for Windows Forms are a cross-cutting concern,
therefore we will use an aspect to implement them. We use introduction to
add the interface to the Account class, and we create an around advice for all
property setters, which invokes the introduced event when the property's value
changes. Listing 4.56 shows the full implementation of aspect and introducer.
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public class NotificationAspect {
[Introduce]
private PropertyChangedIntroducer propertyChangedIntroducer = new
PropertyChangedIntroducer();

[Advice(typeof(AroundMethod))]
[WhereSetter]
public object AroundPropertySet(object target, MethodInfo method, object[] args,

IMethodProceeder nextProceeder) {
ReflectedProperty<object> property =
AspectEnvironment.PropertyOf<object>(target, method);

object oldValue = property.InvokeGetMethod();
object returnValue = nextProceeder.Proceed(args);
object newValue = property.InvokeGetMethod();
if (!object.Equals(oldValue, newValue)) {

propertyChangedIntroducer.Raise(target, property.Name);
}
return returnValue;

}

class PropertyChangedIntroducer : INotifyPropertyChanged {
public event PropertyChangedEventHandler PropertyChanged;

public void Raise(object sender, string propertyName) {
if (PropertyChanged != null) {
PropertyChangedEventArgs args = new
PropertyChangedEventArgs(propertyName);

PropertyChanged(sender, args);
}

}
}

}

Listing 4.56: Full change noti�cation aspect

The aspect's around advice simply extracts the property's value before and after
assignment, and, if the values di�er, instructs the introducer to raise the noti-
�cation event. The introducer itself is perfectly simple�it only adds the event
and provides a method to raise it. We use a �eld as a means for introduction
rather than a nested class; this way, the introducer can be accessed from the
advice method.
Change noti�cation is not a concern inherently linked to the Account class.
Instead, it's only necessary for data binding; therefore we will use a global
con�guration attribute rather than a target class-level one. Listing 4.57 shows
the con�guration, the Account class itself has not changed.
[assembly: GlobalSingletonAspect(typeof(Account), typeof(NotificationAspect))]

Listing 4.57: Con�guring the noti�cation aspect

Comparison

With the change noti�cation aspect, we have implemented a very frequent con-
cern: every class to be used with Windows Forms Data Binding, and these are
numerous, needs to implement the INotifyPropertyChanged interface. The most
important strength of the aspect is its reusability�once written, data binding
gets a breeze to be implemented on any class.
An object-oriented solution for just the Account would have been simple, how-
ever. Implementing the interface just adds one event to the class, and the event
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needs to be raised from only two properties. Once again, we will therefore
compare the two ways of solving this concern.

Advantages of the Aspect-Oriented Solution

Code locality and understandability: As could be seen from all aspects
implemented in these tutorial sections, AOP implementations of cross-
cutting concerns tend to improve code locality and understandability by
way of better separation of concerns. Unless used in a wrong or unsuitable
way, this is a constant bene�t of the aspect-oriented paradigm and applies
also in this case, where all change noti�cation concern code is cleanly
modularized in an aspect.

Reusability of the aspect: As already indicated, reusability is the most im-
portant asset of this aspect. It can be used to make virtually any class
behave correctly with data binding with no changes being made to the
class itself.

Reusability of the class: The Account class can easily be reused without no-
ti�cation.

Scalability of the aspect: The aspect automatically includes any new prop-
erty added to the Account class.

Changeability of the class: When changing the functional concerns of the
Account class, the noti�cation concern is not a�ected.

Changeability of the aspect: When changing the noti�cation aspect, the
Account class is not a�ected.

Disadvantages of the Aspect-Oriented Solution

ObjectFactory and virtual methods: As always, the design restrictions im-
posed by XL-AOF apply.

Code size and e�ort: With this aspect, we are already saving code dupli-
cation, because there are two properties which would need to be instru-
mented with change noti�cation code in an object-oriented implementa-
tion, whereas we only write the aspect code once. Still, the e�ort spent for
write the aspect is higher than simply implementing the concern within
the Account class. Once the aspect exists, however, it is a real code saver.



Chapter 5

AO-DCL�An
Aspect-Oriented Distributed
Concern Library

After having described a lightweight and extensible aspect-oriented framework
in the previous chapter, we will now return to the core motivation of our work:
providing an e�cient means for space-based application development. In this
chapter, we present an AO-DCL, an aspect-oriented distributed concern library,
which provides a number of pre-implemented concerns common to distributed
computing.
The AO-DCL will be based on two grounds: XL-AOF, the framework intro-
duced in the previous chapter, will be the aspect-oriented and declarative in-
frastructure we build the concerns on, and .NET &Co [Tec04c] will provide the
interface to the (CORSO) space needed for implementing the concerns with. To
the client, most of the imperative .NET &Co-related details will be hidden by
the aspects, since we aim at providing a declarative, goal-oriented rather than
an imperative, algorithmic concern library.
We will divide the concerns we are dealing with in two groups. First, we will
present a number of low-level concerns dealing with the basic requirements of
space-based applications�sharing of objects, data representation, noti�cations,
and suchlike. After these, we will present a selection of common high-level re-
quirements, such as caching, monitoring, and error handling concerns, which
are implemented with the low-level aspects previously shown. Depending on
the concrete application scenario, programmers can either directly employ those
high-level aspects �tting their needs or use them as an impulse for implementing
their own. The latter is even more important than providing highly reusable
generalized space aspects, because many space-based applications comprise dis-
tributional concerns tightly coupled to the application scenario. For that reason,
we will give source code listings and class diagrams for these aspects wherever
necessary.
We will not show complete implementations of the concerns in this chapter,
especially not of the low-level concerns. In parts, the implementations are al-
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ready available from our previous publications (most notably �Attributes &Co�
Collaborative Applications with Declarative Shared Objects� [eKS05a]), and all
others are trivially implemented with the information given in this chapter.
We will also not do extensive performance benchmarks of the aspect-oriented
concerns: most aspects are completely equivalent with their object-oriented im-
plementations (within the limits of a proxy-based infrastructure we presented
in chapter 3); if not, we will include a corresponding remark in the aspect's de-
scription. Also, reusability of the aspects presented in this chapter is prioritized
very high (higher than ideal performance, for example), because the purpose
of our distributed concern library is to provide solutions for many distributed
scenarios, not just a few specialized ones.
For the low-level concerns, we will present each aspect using the following struc-
ture:

Goal and usage scenario: This section brie�y describes the concern's goals,
giving its motivation and communicating its underlying use cases.

Classic realization: We �rst show the problems or shortcomings of imple-
menting the concern with the classic .NET API, which should be remedied
by the aspect.

Aspect-oriented realization: Then, we show how to implement the concern
using XL-AOF.

Design: We start by introducing the aspect design, giving the involved
entities and roles (aspects, introducers, target objects, etc.), and their
relationships.

Implementation: Then, we explain what features of XL-AOF need to
be used in order to implement the aspect. As already mentioned, we
won't give full source code, but we will explain the implementation
su�ciently detailed to make writing the actual code a trivial task.

Example usage: Last, we give a short example of using the aspect in
code.

Evaluation: After describing the realization of the concern as an aspect, we
will provide a thorough evaluation of the concern implementation, ana-
lyzing whether it actually contributes to our goal of making space-based
development more e�cient.

Relevance for space-based computing: The concerns presented in this the-
sis have been designed and implemented for use in conjunction with the
CORSO middleware as a space-based abstraction layer. However, CORSO
is not the only implementation of space-based computing; therefore, we
will shortly discuss the relevance of each concern for space-based comput-
ing in general and CORSO's successor XVSM in particular.

Because these make the heart of the distributed concern library, we will evaluate
the aspects using a template adapted from �Design Pattern Implementation
in Java and AspectJ� by Jan Hannemann and Gregor Kiczales [HK02] and
�Foundations of AOP for J2EE Development� by Renaud Pawlak et al (pages
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150�) [PSR05], and extended by us with a few additional criteria. The template
contains software quality criteria which provide a measurement for e�ciency
with regards to the software development process. It consists of the following
items:

Code locality: As one of the most important goals of aspect-oriented pro-
gramming is to achieve better separation of concerns, code locality eval-
uates the modularization of cross-cutting concerns and their separation
from business code: is all the code for each speci�c concern modularized
in a dedicated class or aspect (or a number thereof)? This naturally has
direct e�ects on readability and maintainability of the application, which
a�ect the e�ciency of the overall development process [May99].

Understandability: When looking at the code, can one grasp without thor-
ough reading what it is about? This criterion is about choosing appropri-
ate names and declarative attributes, which should act as documentation
and goals at the same time, which again improves readability. It is es-
pecially important for e�ciency in software teams, as programmers can
faster understand a piece of code created by their peers if this criterion is
ful�lled.

E�ective code size and e�ort: Given the implemented concern, how much
code and e�ort is needed to apply it to a target class? Does it make
space-based application development more e�cient with regards to the
time spent for actual programming?

Performance: As stated before, we will not give performance benchmarks
here, but we will ask the question of whether there are any considerable
performance advantages or drawbacks of the aspect-oriented implementa-
tion.

Changeability of target code: Can the target code be changed without im-
pacts on the concern code, and can the target code be recompiled without
the concern having to? This is important for maintainability and extensi-
bility of the application, vital factors for software development e�ciency
[May99].

Changeability of concern code: Can the concern code change without ad-
verse impacts on the target code, and can the concern code be recompiled
without the target code having to? Again, this is important for maintain-
ability and extensibility.

Reusability of concern code: Is the concern implementation general enough
to be reused in many scenarios? What assumptions about the target code
does it make? As indicated previously, this is a most vital point, since a
concern library with hardly reusable concern implementation couldn't do
much to improve space-based application development.

Transparency of composition: Can the concern be transparently composed
with others, or does the programmer need to pay extra attention for doing
so? Similar as with reusability, it is important that a concern implemen-
tation doesn't create too many dependencies or even potential sources for
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errors. Otherwise, it could actually make application development less
e�cient.

Each aspect will �rst be evaluated in textual form according to these criteria.
Then, we will give an evaluation matrix, grading both the aspect-oriented and
the classic implementation with one of the following marks in order to give an
impression of the improvements brought by the aspect at a single glance: 1
(catastrophic), 2 (bad), 3 (unsatisfactory), 4 (good), 5 (excellent).
The high-level aspects following the low-level ones will also be evaluated ac-
cording to that schema. However, as they leverage the features of space-based
computing based on the low-level DCL core, their presentation will therefore
not include a classic implementation and their evaluation will not include a
comparison with such an implementation.

5.1 General Common Infrastructure
Before presenting any aspects, we will provide some general object-oriented
extensions to .NET &Co, which are needed by many of the following concerns.

5.1.1 Connection Management

Usually, space-based applications connect to one, typically local, CORSO kernel
as their entry point to the shared space. Of course, .NET &Co provides support
for establishing and handling connections, but it does not o�er centralized ac-
cess to an established connection. Many of the aspects presented later require
an established CORSO connection in order to work with the space, retrieve and
create API objects, etc. We therefore introduce a central ConnectionManager
class to the API, which acts as a singleton wrapper around the CorsoConnection
API class, instantiating and opening the CORSO connection at �rst use, keep-
ing it alive while the application is running, and closing it only at application
shutdown (or when it is explicitly closed).
The connection manager's interface is presented in listing 5.1, its implementation
can be any of the .NET-based versions of the singleton pattern [Ske06]; in the
listing, we use a static class. The parameters needed for the connection (user
name, password, domain, application ID, site, and port of the CORSO kernel)
can be con�gured either via the application's app.con�g or machine.con�g �les
[Ric06], as illustrated in listing 5.2, or by setting the connection manager's static
properties before the connection is established�changes made to a connection
parameter while a connection is open will lead to an error. The class also
manages two kinds of timeouts which can be used consistently throughout the
application: a local timeout, which is used to access the local CORSO kernel,
and a network timeout, which is used to access remote CORSO kernels over the
network.
The connection manager can be used to temporarily close a connection, in which
case it will be reestablished the next time it is accessed. Any CORSO API
objects become invalid by closing and reopening a connection, which might
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lead to unforeseen errors with some of the aspects presented below. Explicit
disconnects should therefore only be used in controlled situations, and in most
scenarios they shouldn't be necessary.

public static class ConnectionManager {
public static string Site {

get { ... }
set { ... }

}

public static int Port {
get { ... }
set { ... }

}

public static string UserName {
get { ... }
set { ... }

}

public static string Password {
get { ... }
set { ... }

}

public static string Domain {
get { ... }
set { ... }

}

public static int ApplicationID {
get { ... }
set { ... }

}

public static TimeSpan LocalTimeout {
get { ... }
set { ... }

}

public static TimeSpan NetworkTimeout {
get { ... }
set { ... }

}

public static CorsoConnection GetConnection() {
...

}

public static void CloseConnection() {
...

}
}

Listing 5.1: Connection manager extension of .NET &Co

5.1.2 Shared Object Identity

In space-based application, their are typically objects which are shared over the
space, and such which aren't. Shared objects are distinguished because they
have an associated data object in the space�an object identity (OID)�and
methods for synchronizing the object with the space.
With .NET &Co, every class can decide on its own how to implement this
contract of OID and synchronization. However, for the purpose of the concern
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<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="corso" type="Corso.Util.Configuration.ConfigurationHandler,
Corso.Util"/>

</configSections>

<corso>
<connection>
<site>localhost</site>
<port>5006</port>
<username>fabian</username>
<!-- password set in code, empty domain, default application ID -->
<localtimeout>-1</localtimeout> <!-- infinite timeout for localhost -->
<networktimeout>5000</networktimeout> <!-- five seconds timeout for the
network -->

</connection>
</corso>

</configuration>

Listing 5.2: Con�guring the connection using the app.con�g �le

library, we need to standardize this contract. We therefore de�ne an interface
ISpaceObject, as shown in listing 5.3, which de�nes a property for accessing the
object's OID, and Refresh and Persist methods for synchronizing the object
with the space. Both methods take the respective CorsoTransaction object to
use, and the Refresh method also requires a timeout in case a remote kernel
must be contacted for reading the object. This interface should be implemented
by every shared object used in conjunction with the concern library.
public interface ISpaceObject {

CorsoVarOid Oid { get; set; }
void Refresh(CorsoTransaction tx, TimeSpan timeout);
void Refresh(TimeSpan timeout); // reads without a transaction
void Persist(CorsoTransaction tx);
void Persist(TimeSpan timeout); // uses implicit transaction

}

Listing 5.3: Common ISpaceObject interface contract

5.1.3 Asynchronous Change Noti�cations

One of the most important space-based features for coordinating distributed
processes is the possibility of subscribing to near real-time change noti�cations:
processes registered for speci�c OIDs will immediately (i.e. as fast as possible,
in a best-e�ort manner) be noti�ed when the respective OID's data changes.
Unfortunately, .NET &Co only provides low-level support for these change
events; in particular, it does not o�er out-of-the-box support for asynchronous
noti�cations. Instead, the respective API call (CorsoNoti�cation.Start) blocks
the calling thread until either the speci�ed timeout expires or a noti�cation is
received.
Extending this infrastructure for the purpose of easier implementation of asyn-
chronously watchable objects, we de�ne a wrapper AsyncNoti�cationManager
around CorsoNoti�cation. The wrapper, whose interface is given in listing 5.4,
provides functionality for registering and unregistering arbitrary OIDs for asyn-
chronous noti�cation. Its implementation simply incorporates a background
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thread, which periodically call's the not�ciation's Start method in a loop, per-
forming the actual waiting. When a noti�cation occurs, a Noti�cationReceived
event is �red on a .NET thread pool worker thread. Subscribers to this event
receive a reference to the manager and to the changed OID as well as the data
sent with the noti�cation. The manager can be disposed of, which frees any
resources held by the manager and �nishes the background thread.
public class AsyncNotificationManager : IDisposable {
public delegate void NotificationReceivedHandler(AsyncNotificationManager
sender, CorsoOid oid, CorsoData data);

public event NotificationReceivedHandler NotificationReceived;

public CorsoNotification Notification {
get { ... }

}

public void Dispose() {
...

}

public void Add(CorsoOid oid) {
...

}

public void Remove(CorsoOid oid) {
...

}
}

Listing 5.4: AsyncNoti�cationManager class

5.2 Low-Level Concerns

5.2.1 Object Serialization

Goal and Usage Scenario With every space-based application, the data to
be shared via the space must be speci�ed. Usually, there are objects within
the application (business objects, e.g. account data, graphical objects, etc.),
which directly map to space data items; in other words: their state needs to
be serialized and deserialized into and from the space. CORSO's .NET &Co
provides an interface for this purpose (CorsoShareable, see appendix A) which
de�nes Read and Write methods for serializing state into a space data object.
The object serialization aspect's goal is to automate the process of implement-
ing this interface, i.e. to make an arbitrary business class automatically serial-
izable to the CORSO space. The implementation should provide mechanisms
for declaratively con�guring which �elds of the class should or shouldn't be
serialized and for specifying custom serialization strategies for special cases.

Problems of Platform-Independent Serialization A naive implementa-
tion of serialization could simply be based on the binary or SOAP serialization
mechanisms already available on the .NET platform; serializing an object graph
into a binary or string-based stream and writing that binary or string data
into the space. However, this would make for extremely poor integration with
other platforms: only platforms supporting the .NET serialization formats could
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take part in the distributed application. Java or native C++ applications, for
example, would be excluded (unless a complex parser for these formats were
implemented).
Therefore, it is extremely important to make use of the space-based architec-
ture's platform-independent interface de�nition language: with CORSO, this
means explicit mapping of objects to structures and �elds to either nested struc-
tures or primitive values such as integers, �oating point numbers, strings, or
byte arrays. For good interoperability, it's also important to have a de�ned
serialization order for an object's �elds (e.g. alphabetical order).
Implementation of such a platform-independent serialization mechanism must
also provide a way to identify the .NET type associated with a space structure.
While it would be possible to simply use CORSO's structure name tag to contain
the full type name, this could once again hinder interoperability. It would
therefore be better to have a generalized mapping mechanism, which should
allow any structure name to be registered with any .NET type.

Classic Realization Classically, each business class implements the Read and
Write methods de�ned by the CorsoShareable interface, calling serialization
methods of the CorsoData object passed to the method for each �eld, thus
serializing the object in a structured manner. Depending on the �eld type, Cor-
soData provides serialization methods for integer values, �oating-point numbers,
strings, etc.
An exemplary implementation of this concern is given in listing 5.5, where a
RectangleShape class, which holds data representing a rectangular graphical
object, is given the ability to be serialized to the space. To achieve compat-
ibility with other clients to the space, the rectangle's members are serialized
in alphabetic order: �rst the bounds �eld is handled by serializing its x and y
coordinates, width, and height (again in alphabetic order) within a substructure
of the data item, then the color �eld is serialized after being converted to an
ARGB integer value. Deserialization involves reading the serialized data in the
same order as it was written and additionally checks for invalid data.
public class RectangleShape : IShape, CorsoShareable {

private Color color;
private Rectangle bounds;

public RectangleShape(Color color, Rectangle bounds) {
this.color = color;
this.bounds = bounds;

}

public Color Color { get { return color; } }
public Rectangle Bounds { get { return bounds; } }

public virtual void Draw(Graphics g) { ... }

public void Write(CorsoData data) {
data.PutStructTag("RectangleShape", 2); // name and arity of structure
data.PutStructTag("Rectangle", 4); // bounds field as nested structure
data.PutInt(bounds.Height); // fields of Rectangle in alphabetical order
data.PutInt(bounds.Width);
data.PutInt(bounds.X);
data.PutInt(bounds.Y);
data.PutInt(color.ToArgb()); // color converted to integer

}
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public void Read(CorsoData data) {
// check name and arity of structure
StringBuilder structName = new StringBuilder();
int arity = data.GetStructTag(structName);
if (arity != 2 || structName.ToString() != "RectangleShape") {

throw new InvalidOperationException(...);
}

// bounds field as a nested structure
structName = new StringBuilder();
arity = data.GetStructTag();
if (arity != 4 || structName.ToString() != "Rectangle") {

throw new InvalidOperationException(...);
}
int height = data.GetInt();
int width = data.GetInt();
int x = data.GetInt();
int y = data.GetInt();
bounds = new Rectangle(x, y, width, height);

// color converted from integer
color = Color.FromArgb(data.GetInt());

}
}

Listing 5.5: Serializing RectangleShape object using .NET &Co

Aspect-Oriented Realization

Design Figure 5.1 shows the entities making up the aspect-oriented imple-
mentation of this concern. First, there is the role of the target class�any .NET
object whose �elds are to be serialized. To it, the serialization aspect is applied;
we de�ne a dedicated singleton factory attribute SpaceSerializableAttribute for
it to improve readability of the resulting code.
At the heart of the aspect is, of course, an introduction�after all, the goal is
to add an implementation of the CorsoShareable interface to the aspect's target
class. An introducer is used to implement the Read and Write methods by ac-
cessing the target object's �elds via �eld injection. For the actual serialization,
we use a separate subsystem, represented in the �gure by the SpaceSerializer-
Manager.

+any operations()

-field 1
-...
-field  n

«role»
Target Class SpaceSerializationAspect

+Read(in data : CorsoData)
+Write(in data : CorsoData)

-fields : ReflectedFieldsCollection

CorsoShareableIntroducer

+Read(in data : CorsoData)
+Write(in data : CorsoData)

«interface»
CorsoShareable

«nests»

applied to

+GetAspectInstance() : SpaceSerializationAspect

«attribute»
SpaceSerializableAttribute

creates

+WriteFields(in fields : ReflectedFieldsCollection, in data : CorsoData)
+ReadFields(in fields : ReflectedFieldsCollection, in data : CorsoData)

«singleton»
SpaceSerializerManageruses

Figure 5.1: Design of the serialization aspect

The serialization subsystem itself is detailed in �gure 5.2, although it's not
strictly part of the aspect�in fact, it's an extension of an automatic CORSO
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serializer implemented by Andreas Rottmann at the Vienna University of Tech-
nology [Rot05] in the course of our work. Its entry point is the SpaceSerializer-
Manager, which provides a way of serializing a collection of �elds as a structured
CORSO data object by delegating to a number of serializers it manages. Each
serializer has a method to read an object from the space data�either into an
existing target object or into a newly allocated one, depending on whether it
is a reference type or value type instance�and a method to write it into a
CorsoData object.

«attribute»
NotSpaceSerializedAttribute

+Read(in data : CorsoData, in type : Type, in target : object) : object
+Write(in data : CorsoData, in type : Type, in value : object)

«interface»
ISpaceSerializer

+WriteFields(in fields : ReflectedFieldsCollection, in data)
+ReadFields(in fields : ReflectedFieldsCollection, in data)
+WriteField(in field : FieldInfo, in data : CorsoData)
+ReadField(in field : FieldInfo, in data : CorsoData)
+WriteObject(in ...)
+ReadObject(in ...)
+RegisterSerializer(in serializer : ISpaceSerializer)
+UnregisterSerializer(in serializer : ISpaceSerializer)
+RegisterTypeAlias(in type : Type, in alias : string)

«singleton»
SpaceSerializerManager

+SerializedByAttribute(in serializer : Type)

«attribute»
SerializedByAttribute

specifies

+Read(in data : CorsoData, in type : Type, in target : object) : object
+Write(in data : CorsoData, in type : Type, in value : object)

{Int, Double, Long, Float, …}Serializer

+Read(in data : CorsoData, in type : Type, in target : object) : object
+Write(in data : CorsoData, in type : Type, in value : object)

StringSerializer

+Read(in data : CorsoData, in type : Type, in target : object) : object
+Write(in data : CorsoData, in type : Type, in value : object)

OIDSerializer

+Read(in data : CorsoData, in type : Type, in target : object) : object
+Write(in data : CorsoData, in type : Type, in value : object)

SimpleListSerializer

+Read(in data : CorsoData, in type : Type, in target : object) : object
+Write(in data : CorsoData, in type : Type, in value : object)

BinarySerializer

+ConvertedForSerializationAttribute(in targetType : Type, in conversionMethod : string, in backConversionMethod : string)

«attribute»
ConvertedForSerializationAttribute

+SpaceAliasAttribute(in alias : string)

«attribute»
SpaceAliasAttribute

+SpaceStructureAliasAttribute(in type : Type, in alias : string)

«attribute»
SpaceStructureAliasAttribute

Figure 5.2: Serialization subsystem

Prede�ned serializers already exist for primitive types, strings, binary byte ar-
rays, and collections which implement the IList interface, and new ones are
easily added by implementing the ISpaceSerializer interface and registering the
new serializer with the SpaceSerializationManager. If an object should be seri-
alized whose type is not handled by a registered serializer, the manager creates a
substructure and recursively serializes the �elds of the object, similar to how the
bounds member was serialized as a substructure in listing 5.5. It identi�es the
object's type by using the full class name as an identi�er. Alternatively, it also
allows to register aliases for types either imperatively by its RegisterTypeAlias
method, declaratively by applying a SpaceAliasAttribute on the respective class
de�nition, or by using an assembly-level SpaceStructureAliasAttribute. When-
ever the serialization must instantiate a speci�c type while reading data from
the space, it requires a parameterless constructor to be present.
The SpaceSerializationManager also detects when a �eld references an imple-
mentation of ISpaceObject and serializes a named structure containing only a
reference to its OID instead of the whole object by using the prede�ned OID-
Serializer.
If the automatic serializer selection mechanism, which selects the serializer based
on the respective �eld type, isn't su�cient, a programmer can declaratively
con�gure a �eld to be serialized with a speci�c serializer via the SerializedBy-
Attribute. If a �eld is marked with the NotSpaceSerializedAttribute, it will be
ignored by the serialization manager.
If a �eld needs to be converted to another type prior to serialization or de-
serialization, the ConvertedForSerializationAttribute can be used: it takes the
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target type, the name of a conversion method, and the name of a back-conversion
method. The conversion method must either be an instance method of the object
to be converted from or a static method of the target type, the back-conversion
method must be a static method of the �eld's static type or an instance method
on the target type. This mechanism can be used to serialize types unknown
to the serialization structure without re�ecting over their members if only they
can be converted into types known by the serializers.

Implementation The serialization aspect is easily implemented by de�ning
the introducer as a nested class of the aspect and tagging it with an Intro-
duceAttribute. The target object's �elds can be retrieved by using an injected
Re�ectedFieldsCollection.

The serialization subsystem doesn't need any aspect-oriented features, the only
XL-AOF mechanism it uses is the Re�ectedFieldsCollection it needs to enumer-
ate the �elds to be serialized.

Extensibility We allow other aspects to in�uence the serialization process of
objects by triggering custom before object serialization and before object dese-
rialization join point on the respective object when it is about to be serialized
or deserialized. By advising these join points, other aspects can exclude speci�c
data from the serialization process or add additional data to be serialized in
addition to the object's �elds. They can even avoid the whole deserialization
process by returning a non-null value from the before object deserialization join
point, in which case that value is assumed to be the deserialized object.

We also include before �eld serialization and before �eld deserialization join
points triggered on the target object before serialization and deserialization
of each of its �elds. This allows for other aspects to extend the serialization
process of single �elds, giving them the ability to manipulate both the value
to be serialized and the choice of serializer before any actual serialization or
deserialization is performed. Aspects can avoid deserialization of a single �eld
by returning a non-null value from the BeforeDeserialization join point, which
is then assumed to be the deserialized value.

The custom join point de�nitions are given in listing 5.6.
public delegate void BeforeObjectSerialization(object target, CorsoData corsoData,

ICollection<ReflectedField> fields);
public delegate object BeforeObjectDeserialization(Type targetType, CorsoData
corsoData, ICollection<ReflectedField> fields);

public delegate void BeforeFieldSerialization(object target, CorsoData corsoData,
ReflectedField<object> field, Type type, ref object data, ref ISpaceSerializer
serializer);

public delegate object BeforeFieldDeserialization(object target, CorsoData
corsoData, ReflectedField<object> field, Type type, ref ISpaceSerializer
serializer);

Listing 5.6: Custom join points triggered by the serialization manager

In addition to the delegate de�nitions, join point handlers are de�ned and reg-
istered as explained in section 4.3.3 of the previous chapter.
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Example Usage Listing 5.7 shows the same RectangleShape class as before,
but now implemented using the serialization aspect. The bounds member is
automatically serialized as a substructure named �Rectangle� due to the alias
con�guration, and the shape's color is declaratively con�gured to be converted
to and from integer by specifying the respective conversion methods of the Color
structure.
[assembly:SpaceStructureAlias(typeof(System.Drawing.Rectangle), "Rectangle")]

[SpaceSerializable]
public class RectangleShape : IShape {

[ConvertedForSerialization(typeof(int), "ToArgb", "FromArgb")]
private Color color;
private Rectangle bounds;

public RectangleShape(Color color, Rectangle bounds) {
this.color = color;
this.bounds = bounds;

}

public Color Color { get { return color; } }
public Rectangle Bounds { get { return bounds; } }

public virtual void Draw(Graphics g) {
g.DrawRectangle(Bounds, Color);

}
}

Listing 5.7: Making RectangleShape serializable using an aspect

Evaluation

Code locality (CL): The classic version mixes a cross-cutting concern�the
implementation of the CorsoShareable interface�into the code of the tar-
get class, which makes for bad code locality. Neither serialization code nor
target code are cleanly encapsulated as dedicated classes, tangling occurs
on class-level (although not on method level). The aspect-oriented version
separates serialization and target code; both are cleanly encapsulated in
modularized entities.

Understandability (U): To understand that a class is serializable in the clas-
sic version, one only needs to look at the list of implemented interfaces. To
fully understand what �elds are serialized and whether special serialization
code is used for them, one needs to look both at the �eld declarations and
at the method implementations. In contrast, the aspect-oriented version
also clearly states the serializability (by means of the dedicated factory
attribute), but in addition allows to understand the full serialization se-
mantics only by looking the the �eld declarations.

E�ective code size and e�ort (CSE): Object-oriented implementations of
the CorsoShareable interface generally tend to result in a lot of code lines,
since it adds methods with at least two lines per serialized �eld. In the
example, the interface implementation actually makes up most of the class
body. Applying the aspect is much more e�ortless and results in much
less code�it's just one line for the factory attribute. Additional tagging
of non-serialized or special �elds only needs one line for a vast minority of
�elds. (In the example, only one �eld needed to be tagged.)
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CL U CSE PI CT CC RC TC Average
Classic 2 3 1 5 1 1 1 5 2.375 (bad)
Aspect-oriented 5 5 5 5 5 4 5 5 4.875 (good)

Table 5.1: Evaluation matrix for serialization aspect

Performance implications (PI): Since the �elds can be accessed using fast
�eld access (see 3.2), no signi�cant performance implications are caused
by the aspect-oriented implementation.

Changeability of target code (CT): In the classic implementation, changes
to the target code cannot be conducted independently from the target
code, since they are implemented within the same class. In the aspect-
oriented version, target code can easily be changed without the aspect
having to be adapted, separate recompilation is possible.

Changeability of concern code (CC): In the classic implementation, con-
cern code cannot be changed independently from the concern code, since
they are implemented within the same class. In the aspect-oriented ver-
sion, concern code can easily be changed without the target code having
to be adapted as long as none of the per-�eld attributes changes its name
or interface. Separate recompilation is possible.

Reusability of concern code (RC): In the classic implementation, concern
code cannot be reused, serialization code needs to be repeated (with mod-
i�cations) for every new target class. In the aspect-oriented implementa-
tion, the aspect is general enough to be reused on any target class.

Transparency of composition (TC): The concern has no implications on
other concerns in both implementations.

Relevance for Space-Based Computing Of course, the described serializa-
tion mechanism depends on CORSO, other space-based systems however have
similar cross-cutting serialization mechanisms which can be encapsulated as an
aspect. The interface names and the details of the interface de�nition language
provided by the space-based abstraction di�er, but a similar mechanism is also
used for serializing objects into XVSM containers and entries.

5.2.2 Shared Object Identity

Goal and Usage Scenario Earlier in this chapter, we have established a com-
mon contract for objects with a shared identity with the ISpaceObject interface.
The goal of this concern is to associate a .NET class with a shared identity by
implementing the ISpaceObject interface on the class. This involves backing the
class with an internal OID variable of type CorsoVarOid1 and implementing
the interface's methods and properties by delegating to the OID object. It does
not involve deciding when exactly a shared object is to be refreshed or persisted,
which is a concern dealt with later in this chapter.

1We ignore CORSO's feature of constant objects for this explanation. A corresponding
aspect could be implemented in much the same way as this one is.
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Classic Realization Implementation of the ISpaceObject always follows the
same process: �rst, a variable of type CorsoVarOid is added to the respective
class; then, the Refresh and Persist methods are implemented by delegating
to the OID's ReadShareable and WriteShareable methods. The OID is usually
passed to the constructor of the class, having either been newly created or
retrieved from the space by the caller.
Listing 5.8 shows an exemplary implementation of the interface for the Rectan-
gleShape object already used to illustrate the previous concern examples. The
implementation depends on the class implementing CorsoShareable�code for
this has already been shown.
public class RectangleShape : IShape, CorsoShareable, ISpaceObject {

private CorsoVarOid oid;

private Color color;
private Rectangle bounds;

public RectangleShape(CorsoVarOid oid, Color color, Rectangle bounds) {
this.oid = oid;
this.color = color;
this.bounds = bounds;

}

public Color Color { get { return color; } }
public Rectangle Bounds { get { return bounds; } }

public virtual void Draw(Graphics g) {
g.DrawRectangle(Bounds, Color);

}

public void Write(CorsoData data) {
// see previous concern

}

public void Read(CorsoData data) {
// see previous concern

}

// ISpaceObject implementation

public CorsoVarOid Oid {
get { return oid; }
set { oid = value; }

}

public void Refresh(CorsoTransaction tx, TimeSpan timeout) {
oid.ReadShareable(this, tx, timeout);

}

// reads without a transaction
public void Refresh(TimeSpan timeout) {

oid.ReadShareable(this, null, timeout);
}

public void Persist(CorsoTransaction tx) {
oid.WriteShareable(this, tx);

}

// uses implicit transaction
public void Persist(TimeSpan timeout) {

oid.WriteShareable(this, timeout);
}

}

Listing 5.8: Giving RectangleShape object a shared identity using .NET &Co
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Aspect-Oriented Realization

Design Realization of the shared object identity concern as an aspect is quite
straight-forward: a space identity aspect introduces the ISpaceObject interface
to the target object, as illustrated in �gure 5.3. Again, we add a dedicated
factory attribute to improve readability: the aspect is instantiated per object,
because it holds object-associated state (the OID). Although not visible in the
�gure, the aspect requires the presence of the serialization aspect (or another
implementation of the CorsoShareable interface) presented previously.

+any operations()

-any fields

«role»
Target Class SpaceIdentityAspect

+Refresh(in ...)
+Persist(in ...)
+get_OID() : CorsoVarOid
+set_OID(in value : CorsoVarOid)

-oid : CorsoVarOid

SpaceObjectIntroducer

+Refresh(in ...)
+Persist(in ...)
+get_OID() : CorsoVarOid
+set_OID(in value : CorsoVarOid)

«interface»
ISpaceObject

«nests»

applied to

+GetAspectInstance() : SpaceIdentityAspect

«attribute»
SpaceObjectAttribute

creates

Figure 5.3: Design of the space-based identity aspect

The only remaining question is how and when an OID is to be assigned to the
object. Although we could simply have the caller pass it through the construc-
tor, as in the classic solution, this would require the instantiating code to pass
more arguments to the constructor than declared in the target class�such a
hidden requirement would clearly break modularization and encapsulation. We
therefore de�ne that with this aspect, the OID is unset (null) unless explicitly
set from the outside. We will present an automated way of doing so with the
next concern.

Implementation Implementation of this concern as an aspect follows its de-
sign: the aspect de�nes a nested class introducing the interface, which also holds
the OID variable. The introduced Refresh and Persist methods delegate to the
OID's ReadShareable and WriteShareable methods, as with the classic realiza-
tion. The dependency on the serialization aspect is expressed via XL-AOF's
RequiresAspectAttribute.
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Example Usage Listing 5.9 shows an example usage of this aspect. The only
trace of the concern in this code is the application of the factory attribute to
the RectangleShape class. The serialization aspect from the previous section is
automatically added to the class through the aspect dependency.
[assembly:SpaceStructureAlias(typeof(System.Drawing.Rectangle), "Rectangle")]

[SpaceObject]
public class RectangleShape : IShape {

[ConvertedForSerialization(typeof(int), "ToArgb", "FromArgb")]
private Color color;
private Rectangle bounds;

public RectangleShape(Color color, Rectangle bounds) {
this.color = color;
this.bounds = bounds;

}

public Color Color { get { return color; } }
public Rectangle Bounds { get { return bounds; } }

public virtual void Draw(Graphics g) {
g.DrawRectangle(Bounds, Color);

}
}

Listing 5.9: Giving RectangleShape object a shared identity using an aspect

Evaluation

Code locality (CL): With the classic implementation, the cross-cutting con-
cern of space identity is not cleanly separated from the functional concerns
(e.g. managing a rectangular graphical shape), tangling occurs at class and
constructor level (no other methods are involved); this mixture makes for
bad code locality. The aspect-oriented solution, on the other hand, sepa-
rates identity and functional concerns; for both concerns, code is located
in separate modules.

Understandability (U): In the classic version, it can easily be understood
whether a class has a space-based identity by looking at its list of im-
plemented interfaces. To grasp the details of this identity, however, the
constructor must be mentally untangled, and the methods and properties
added by the interface must be located. In the aspect-oriented version, the
former can also be understood by looking at the list of attributes applied
to the class. In addition, however, the aspect also improves understand-
ability of the details because it enforces consistency: the details are the
same for every target class the aspect is applied to. While this consistency
is also possible with a classic implementation, it is not enforced and can
therefore not be relied on.

E�ective code size and e�ort (CSE): Classic implementation of this con-
cern requires e�ort for adding a constantly high amount of code to each
class (one variable, one line in the constructor, methods and properties of
the interface). In the aspect-oriented implementation, exactly one line of
code (the factory attribute) is added to each class de�nition.
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CL U CSE PI CT CC RC TC Average
Classic 2 3 2 5 2 2 2 4 2.75 (bad)
Aspect-oriented 5 5 5 5 5 5 5 5 5 (excellent)

Table 5.2: Evaluation matrix for space-based identity aspect

Performance implications (PI): The classic and aspect-oriented versions do
not di�er in performance, as interface introduction performs more or less
the same as explicit interface introduction does.

Changeability of target code (CT): In the classic implementation, changes
to the target code can only be conducted independently from the identity
concern in a limited way, since the concerns are tangled at constructor
level. In the aspect-oriented version, target code can change without af-
fecting the concern code, separate recompilation is possible.

Changeability of concern code (CC): The classic version only allows the
identity concern to be changed independently from the target code in a
limited, because they are located in the same class and tangling occurs at
constructor level. In the aspect-oriented version, the aspect can change
without a�ecting the target code, separate recompilation is possible.

Reusability of concern code (RC): In the classic version, the identity con-
cern is not reusable, its code has to be repeated for each class. Although it
would be possible to implement parts of the concerns in a base class, this
would make for severe design restrictions. The aspect, on the other hand,
is highly reusable and general enough to be used on any target class.

Transparency of composition (TC): The identity concern has no implica-
tions on other concerns in both implementations. In the classic imple-
mentation, the concern requires an implementation of CorsoShareable to
be present, the aspect-oriented version automatically adds the respective
aspect.

Relevance for Space-Based Computing Shared identity is a very CORSO-
speci�c concern, because other space-based systems either do not provide the
concept of uniquely identi�able data objects within the space at all or di�er-
entiate between identi�able and non-identi�able data items. The original tuple
space de�nition works with unidenti�able tuples only, which makes the space
merely a container for data items without providing the possibility of creat-
ing distributed coordination data structures. With XVSM, on the other hand,
there are two kinds of objects in the space: uniquely identi�able and pub-
lishable containers, which in turn contain unidenti�able data structures called
entries. Entries would be implemented simply by making them serializable, as
discussed with the previous aspect. Containers, on the other hand, act similar
to collections, which often makes their usage a functional rather than a cross-
cutting concern. In those cases, where objects should however be mapped to
non-collection containers, this section's solution works well also for XVSM.
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5.2.3 OID Retrieval

As indicated in the previous section, it is often not trivial to associate a .NET
object with a space OID. In principle, there are the following common scenarios:

1. Create a completely new OID for every new .NET instance of a class (and
usually persist the object immediately after construction).

2. Create and register a completely new named OID, with either a constant
name (given in code or app.con�g �le), or a dynamically calculated name
(e.g. from user input). Usually, the object should be persisted immediately
after construction.

3. Retrieve the OID from a name registered at some CORSO kernel. Again,
the name can be constant or dynamically calculated. The kernel to re-
trieve the OID from is either the local kernel managed by the Connec-
tionManager class, or it is located at an address con�gured via app.con�g
or dynamically calculated (e.g. based on user input). Usually, the object
should be refreshed immediately after construction.

4. Combine 2 and 3, depending on whether an OID of this name already
exists.

5. Retrieve the OID from a shared data structure in the process of deserial-
izing a space data item.

Scenario 1 could easily be automated by an aspect using an after construction
advice, and scenario 5 is already handled by the serialization structure and the
OIDSerializer class used by the serialization aspect. Automation of scenarios 2,
3, and 4 in a declarative and aspect-oriented fashion, however, cannot be done
in a general way, especially if name or kernel address are dynamically calculated
at runtime. These values usually come from within the functional components
of the application (e.g. from within a GUI control), and they must be passed to
the concern implementation in some way.
Therefore, we suggest to implement this concern not as an aspect, but to make
it imperatively explicit: we provide a space object factory as an extension of the
object factory provided by XL-AOF. Programmers can use this new factory to
create objects with a space-based identity, and in turn get the ability to specify
names and kernel addresses as necessary.
Because this concern is not implemented as an aspect, this section does not
contain any comparisons or an evaluation matrix.

Realization

Design The new space object factory will act as an entry point to retrieving
and creating space objects, similar to how the connection manager already pro-
vides an entry point for managing CORSO kernel connections. As the act of
space object retrieval is always associated with a kernel connection, we extend
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the connection manager class to provide a reference to a single SpaceObjectFac-
tory instance, as illustrated in �gure 5.4. For brevity, the rest of this chapter will
just refer to �the SpaceObjectFactory� when referring to the factory referenced
by the connection manager.

+CreateObject<T>(in constructorArgs) : T

«singleton»
ObjectFactory

+operations()

«singleton»
ConnectionManager

+CreateNewSpaceObject<T>(in strategy : CorsoStrategy, in constructorArgs) : T
+CreateNamedSpaceObject<T>(in name : string, in strategy : CorsoStrategy, in constructorArgs) : T
+GetNamedSpaceObject<T>(in name : string, in site : string, in constructorArgs) : T
+GetOrCreateNamedSpaceObject<T>(in name : string, in strategy : CorsoStrategy, in constructorArgs) : T

SpaceObjectFactory

creates objects with

gets connection via

+CreateVarOid() : CorsoVarOid
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+GetNamedVarOid(in name : string, in site : string) : CorsoVarOid
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-any fields
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creates
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+Refresh()
+Persist()
+get_OID()
+set_OID()

«interface»
ISpaceObject

directly or via aspect

Figure 5.4: Design of the space object factory

The new factory depends on the CorsoConnection instance supplied by the
connection manager to lookup and create OIDs, and it uses XL-AOF's Ob-
jectFactory to handle the actual object instance creation. Its public interface is
therefore a mixture of CorsoConnection's and ObjectFactory's public interfaces,
containing generic methods for creating local instances of speci�c types with ar-
bitrary constructor argument lists and associate them with named or unnamed
space-based data objects. All methods which create new space objects allow the
user to specify the replication strategy and persistence �ags as CORSO supports
eager and lazy replication as well as di�erent persistence levels to tackle di�erent
networking scenarios and synchronicity and reliability requirements.

Implementation The factory is almost trivially implemented. Its methods
�rst create new object instances by delegating to ObjectFactory.Create<>, pass-
ing it the type to be instantiated and any available constructor arguments.
Then, it uses the CORSO connection obtained from the connection manager to
create or retrieve an OID and assigns that OID to the created object (which
must implement ISpaceObject either directly or e.g. via an aspect). The only
point of some complexity is to determine whether the object should be refreshed
or persisted after it has been created.
For this, we make use of CORSO's ability to test OIDs for values: if the OID of
an object already has a value, we read it; if not, we write it instead. This ensures
that the object is best-e�ort synchronized with the space immediately after
creation. (Of course, to guarantee synchronization in a subsequent operation,
transactions have to be used, as will be explained later in this chapter.)
This concern does not implement any pooling: when two .NET objects are
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assigned equal OIDs (e.g. because the same name was speci�ed for retrieving
them), two separate object instances are created. This behavior was chosen
for better consistency (the factory behaves more like the .NET new instruction
that way), and it actually facilitates space-based multi-threaded programming,
because threads don't have to manually synchronize access to objects with space-
based identity, but can instead rely on the space concepts of transactions and
noti�cations to achieve consistency.
To facilitate easy implementation of pooling on top of this aspect, the fac-
tory passes the OID as context information when delegating to ObjectFac-
tory.Create<>. This results in any ObjectCreation advice getting the context
information in their additionalContext parameter, so aspects can implement
pooling based on that information.

Relevance for Space-Based Computing The idea of named space objects
was introduced by CORSO, and its successor XVSM extends this by provid-
ing extended ways of publishing and looking up containers. A similar factory
approach like the one just described would therefore work well for XVSM.

5.2.4 Asynchronous Change Noti�cations

Goal and Usage Scenario Since noti�cations are such an important space-
based feature for coordinating distributed processes, the goal of this concern
is to augment a .NET object having an associated space-based identity with
an event indicating that the respective space data item has changed. Users
of the object can then easily subscribe to this event and react on the changes
asynchronously. This is an especially important concern for coordination and
synchronization of distributed processes.
Before talking about the concrete realization of the concern, we will again pro-
vide a common contract for objects with an active noti�cation, similar as we
did with the space-based identity concern. Listing 5.10 shows the de�nition of
an interface IWatchedSpaceObject which should be implemented by all objects
with space-identity that provide the possibility of subscribing to change events.
public interface IWatchedSpaceObject {

void Start(AsyncNotificationManager manager);
void Stop(AsyncNotificationManager manager);

event SpaceRepresentationChangedHandler SpaceRepresentationChanged;
}

public delegate void SpaceRepresentationChangedHandler(IWatchedSpaceObject sender,
CorsoData newData);

Listing 5.10: IWatchedSpaceObject interface

The interface makes use of the AsyncNoti�cationManager shown earlier in this
chapter: the Start method registers the object's OID with the noti�cation man-
ager, Stop unregisters it again, and SpaceRepresentationChanged �res when a
noti�cation event is received. CORSO sends the object's changed data together
with the noti�cation�this can be used to immediately deserialize the object
without having to perform a Refresh operation.
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Classic Realization Classic realization of the interface is straight-forward:
the respective class is given a SpaceRepresentationChanged event, and Start and
Stop are implemented to simply hand the object's OID over to the noti�cation
manager. In Start, the object needs to subscribe to the noti�cation manager's
Noti�cationReceived event: when this event is �red for the corresponding OID,
the SpaceRepresentationChanged event must be raised as well. Listing 5.11
shows such an implementation of the interface on the RectangleShape object
introduced in the previous examples.

public class RectangleShape : IShape, IWatchedSpaceObject, ISpaceObject,
CorsoShareable {
private CorsoVarOid oid;
public event SpaceRepresentationChangedHandler SpaceRepresentationChanged;

... // code from previous and functional concerns left out

public void Start(AsyncNotificationManager manager) {
manager.NotificationReceived += manager_NotificationReceived;
manager.RegisterOid(oid);

}

public void Stop(AsyncNotificationManager manager) {
manager.UnregisterOid(oid);
manager.NotificationReceived -= manager_NotificationReceived;

}

private void manager_NotificationReceived(AsyncNotificationManager sender,
CorsoVarOid oid, CorsoData data) {
if (oid.Equals(this.oid) && SpaceRepresentationChanged != null) {

SpaceRepresentationChanged(this, data);
}

}
}

Listing 5.11: Classic implementation of the IWatchedSpaceObject interface

Aspect-Oriented Realization

Design Aspect-oriented realization of this concern is just as straight-forward
as the classic implementation: an introducer adds the IWatchedSpaceObject in-
terface to a target class, as shown in �gure 5.5. The introducer needs a reference
to the target object in order to access the OID (it depends on the ISpaceObject to
be implemented by the target object) and for the SpaceRepresentationChanged
event's parameter. For convenience and documentation purposes, a factory at-
tribute is de�ned as well, which instantiates the aspect in a per-object fashion.
(Per-object instantiation is needed because the introducer needs to hold a ref-
erence to the target object.)

Implementation For the interface introduction, a nested class introducer is
used, which receives the target object as an injected �eld. To ensure that the
target implements ISpaceObject, the aspect explicitly requires the space identity
aspect. Apart from this, the interface implementation is equivalent to the classic
implementation.
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Figure 5.5: Implementing the noti�cation concern in an aspect-oriented way

Example Usage Listing 5.12 shows the same RectangleShape class as be-
fore, this time made asynchronously watchable via an aspect. The space iden-
tity aspect is automatically added by the WatchedSpaceObjectAspect's depen-
dencies, so it is not necessary to explicitly specify the SpaceObjectAttribute.
Noti�cation handling for a RectangleShape instance will start as soon as its
new IWatchedSpaceObject.Start method is called, and it can be stopped via
IWatchedSpaceObject.Stop.
[WatchedSpaceObject]
public class RectangleShape : IShape {

... // code from previous and functional concerns left out
}

Listing 5.12: Implementation of the IWatchedSpaceObject interface using an
aspect

Evaluation

Code locality (CL): The classic implementation mixes the cross-cutting con-
cern and functional concerns at class-level; this tangling makes for bad
modularization, although no tangling occurs on method level. The aspect-
oriented solution provides clear separation of concerns: all noti�cation-
related code is in a dedicated aspect.

Understandability (U): In the classic implementation, it is immediately vis-
ible that a class supports asynchronous noti�cations by looking at the list
of the interfaces it implements. To understand the details of noti�cations,
only the methods added by the interface need to be located and read,
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CL U CSE PI CT CC RC TC Average
Classic 2 4 2 5 3 3 2 5 3.25 (unsatisf.)
Aspect-oriented 5 5 5 5 5 5 5 5 5 (excellent)

Table 5.3: Evaluation matrix for noti�cation aspect

which makes for good understandability. Understandability of the aspect-
oriented version is even better, however: not only can it be immediately
determined that a class is a watchable space object by looking at its list
of attributes�the factory attribute again acts as documentation and goal
at the same time�, the details are also situated in a well-known place:
the aspect implementation.

E�ective code size and e�ort (CSE): The interface implementation code
needs to be repeated for every watchable class, adding two methods and
an event to the class. This adds unnecessary e�ort and makes the code
longer than necessary. Because the interface implementation is readily
available via introduction in the aspect-oriented realization, e�ort and
code size are minimized: only one attribute needs to be added to the class
de�nition.

Performance implications (PI): There are no adverse performance implica-
tions to be expected by either realization.

Changeability of target code (CT): In the classic implementation, changes
to the target code can be conducted independently from the concern code,
but separate recompilation is not possible. The aspect-oriented realization
allows for both changes to be made and separate recompilation.

Changeability of concern code (CC): The classic implementation does al-
low changing the concern implementation independently from changing
code dealing with functional concerns, but separate compilation is not
possible. The aspect-oriented realization also allows changes to be made,
and separate compilation is also supported.

Reusability of concern code (RC): In the classic implementation, concern
code cannot be reused, since it is integrated into the target code. Because
it does not depend on the target code, it could be refactored into a base
class, however this would require all watchable objects to be derived from
this class and would thus severely restrict an application's class design. In
the aspect-oriented solution, the aspect can be reused for any target class.

Transparency of composition (TC): The noti�cation concern has no im-
plications on other aspects in either realization. In the classic solution,
the concern requires an OID to be available (shared identity concern), the
aspect-oriented version automatically adds the respective aspect to the
target class if necessary.

Relevance for Space-Based Computing Other space-based implementa-
tions as well provide noti�cations, however their speci�cs di�er according to
the respective space model. With tuple spaces, it is usually possible to register
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for changes on the whole space and be noti�ed when an item with a speci�c
structure (and maybe values) is added to the space. With XVSM, noti�ca-
tions are o�ered for container changes (e.g. items being added or removed), but
also�via XVSM's interception mechanism�for ordinary entry read and write
operations. Depending on how the mapping between .NET objects and XVSM
containers/entries is solved, noti�cations could become functional rather than
cross-cutting concerns. If a mapping between business objects and watchable
containers is required, an aspect-oriented solution would again be superior to
an object-oriented one.

5.2.5 Transactional Operations

Goal and Usage Scenario The space object factory provides best-e�ort
synchronization at object construction time, and noti�cations can be used to
invoke an object's Refresh method in near real-time when its space representa-
tion changes. Still, these mechanisms cannot safely guard against concurrency
con�icts, when two or more processes modify a space object in parallel.

For this, transactional operations must be used. Before the actual operation
is performed, a transaction must be created and the object (usually) be re-
freshed. After the operation has �nished, the object must be persisted and the
transaction be committed. Since CORSO uses an optimistic locking model, the
transaction can fail at commit time, and usually needs to be restarted. If an
error occurs while conducting a transactional operation, the transaction needs
to be rolled back.

Classic Realization Classically, transactions are implemented ad-hoc for
each operation: at the beginning of a transactional operation, a CorsoTransac-
tion is created, then the actual operation is conducted, refreshing and persisting
involved objects when needed, and, at the end, the transaction is committed.
Concurrency exceptions are manually caught, and in most cases, the transac-
tion is simply retried in case of such an error. This same process needs to be
repeated for every transactional operation of every space-based object, so code
is heavily repeated.

Following the previous graphical shapes examples, listing 5.13 shows an example
implementation of a transactional AddShape operation of a CompoundShape
container class. A compound shape simply contains a collection of subshapes,
which together form one larger shape. The AddShape operation adds a new
shape to the collection. In order to guarantee correct concurrent behavior,
AddShape needs to be transactional, including a refresh and a persist operation
ensuring synchronization with the space.

Aspect-Oriented Realization

Design Our aspect-oriented solution for this concern is based on an aspect
with an around method advice bound to methods tagged with a dedicated
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public class CompoundShape : IShape, ISpaceObject, CorsoShareable {
private List<Shape> shapes;

public void AddShape(Shape shape) {
CorsoTopTransaction tx =
ConnectionManager.GetConnection().CreateTopTransaction();

try {
this.Refresh(tx, ConnectionManager.NetworkTimeout);
shapes.Add(shape);
this.Persist(tx);
tx.Commit(ConnectionManager.NetworkTimeout);

}
catch {

tx.Abort();
throw;

}
}

// other methods left out
}

Listing 5.13: Classic implementation of a transactional operation

declarative TransactionalAttribute. Before such a method is executed, the ad-
vice acquires a transaction, conducts a refresh operation on the current object
if necessary, performs the operation, persists the object (if necessary), and then
disposes of the transaction. The attribute can be used to con�gure this pro-
cess, specifying whether the object on which the method is invoked needs to
be refreshed or persisted during the operation; by default, full synchronization
including refresh and persist is conducted. For applying the aspect to a class, a
dedicated factory attribute is provided instantiating the aspect as a singleton.

The actual transaction management is centered around a thread-a�ne trans-
action manager, which the aspect delegates to. Due to its thread a�nity, it
can handle nested operations: if a transactional operation calls other such op-
erations (directly or indirectly), the same transaction instance is used for all of
these. The manager also ensures that space objects are only read at most once
(in order not to overwrite changes made by methods previously executed in the
same transaction) and written at most once, deferring the persist operation to
the end of the transaction (because CORSO does not allow objects to be written
more than once per transaction).

If an exception occurs during execution of an operation, the aspect uses the
manager to abort the thread's current transaction. The manager will only com-
mit the thread's transaction instance when the �rst operation, the one for which
it was actually instantiated, successfully �nishes. If committing the transaction
fails due to concurrency reasons, the aspect will attempt to repeat the operation
up to a de�ned amount of times. By default, the aspect will continue to try con-
ducting the operation up to ten times, then throw an exception. Programmers
can change this limit by setting the TransactionalAttribute's MaxNumberOfRe-
tries property to a di�erent value. They can also request that the aspect should
wait for a random amount of time before repeating the operation by setting its
MinWaitOnRetry and MaxWaitOnRetry properties.

Figure 5.6 shows a UML diagram of the entities just described.
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Figure 5.6: Aspect-oriented design of the transactional operations concern

Implementation Implementing the aspect itself is not much of a challenge:
with the AroundMethod join point kind and the WhereDe�nedAttribute �lter,
XL-AOF provides all which is necessary to implement the advice for intercept-
ing transactional operations; and the aspect can immediately delegate to the
transaction manager.

The transaction manager is implemented as a global singleton; however, it needs
to store transactions in a thread-a�ne way. For this, we use .NET's Thread-
Static mechanism for storing thread-local data. When the BeginTransaction-
alOperation is called for the �rst time on a thread, the manager initializes its
thread-local transaction variable, as well as a reference count. For each sub-
sequent call to BeginTransactionalOperation, the reference count is increased,
EndTransactionalOperation calls decrease the count. When it reaches zero, the
transaction is actually committed and the thread-local variable is cleared again.
AbortTransaction immediately aborts the current transaction and resets both
transaction variable and reference count.

Besides the current thread's transaction, the manager also handles a thread-local
set of refreshed objects (so that every object is refreshed at most once) and of
objects to be persisted immediately before the transaction is to be committed (so
that all objects are only persisted once at the end of the transactional operation).
Objects which have already been registered for being persisted will also not be
refreshed in order not to overwrite changes made by previous methods.

Concurrency exceptions getting raised when the manager commits the trans-



5.2. LOW-LEVEL CONCERNS 137

action are caught by the advice method, which can then decide to reconduct
the operation or to rethrow the exception, depending on how the aspect was
con�gured.

Extensibility In order to allow other aspects to handle objects engaged in a
transaction in a special way, we include custom object enters transaction and
object leaves transaction join points. The former is triggered on the target
object just before the �rst transactional operation on the object is conducted
in the context of a transaction, and before the object is refreshed (if necessary).
The latter is triggered on the target object after the transaction an object was
engaged in has been committed or aborted. The custom join point de�nitions
are given in listing 5.14.
public delegate void ObjectEntersTransaction(object target, CorsoTopTransaction
tx, MethodInfo transactionalOperation, object[] args);

public delegate void ObjectLeavesTransaction(object target, CorsoTopTransaction
tx);

Listing 5.14: Custom join points triggered by the transaction aspect

Example Usage Listing 5.15 shows the same CompoundShape container class
as in the classic implementation before, now implementing the AddShape oper-
ation using the transactional operation aspect.
[SpaceObject, TransactionalObject]
public class CompoundShape : IShape {
private List<IShape> shapes;

[Transactional]
public void AddShape(Shape shape) {

shapes.Add(shape);
}

// other methods left out
}

Listing 5.15: Implementation of a transactional operation using an aspect

Evaluation

Code locality (CL): Made obvious by the listing given in this section, code
locality with the classic implementation is catastrophic: the transactional
operation concern is truly crosscutting, its implementation being tangled
with functional concerns not only at class level, but even at method level.
Contrarily, the aspect manages to cleanly encapsulate this complex cross-
cutting concern, taking it out both from the method and the class.

Understandability (U): Because methods such as AddShape in the example
tangle the cross-cutting concern with functional concerns in classic imple-
mentations, code is made very hard to understand. One needs to mentally
disentangle a method body in order to understand each of the concerns.
It is no coincidence that transactions are a very popular application of
AOP, making the advantages of this paradigm obvious (cf. declarative
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CL U CSE PI CT CC RC TC Average
Classic 1 1 1 5 1 1 1 4 1.875 (catastr.)
Aspect-oriented 5 5 5 4 5 5 5 4 4.75 (good)

Table 5.4: Evaluation matrix for transactional operation aspect

transactions for example in Spring [JH+05] or JBoss AOP [FR03]): an
aspect-oriented implementation of this concern makes the code immedi-
ately understandable, since it removes any tangling and leaves only one
concern per method.

E�ective code size and e�ort (CSE): The classic implementation needs to
repeat code (and the procedure of implementing it) for every transactional
method of every space-based class. The aspect-oriented implementation,
as shown in the example listing, requires only one factory attribute per
class and one tag attribute per method, minimizing the amount of code
necessary.

Performance implications (PI): The aspect e�ectively contains the same
code as methods in a classic implementation would. The only additional
runtime e�ort are the thread-local transaction bookkeeping as well as the
management of the collections of refreshed and persisted objects, both
of which are made necessary to make the aspect general enough to be
reusable. The performance impact of these, especially when seen in the
context of space-based distributed transactions, as well as refresh and
persist operations, is however not signi�cant.

Changeability of target code (CT): In the classic implementation, target
code cannot be changed without a�ecting concern code: both are located
within the same methods. In the aspect-oriented implementation, this is
easily possible, including separate recompilation.

Changeability of concern code (CC): In the classic implementation, con-
cern code cannot be changed without a�ecting target code: both are lo-
cated within the same methods. In the aspect-oriented implementation,
this is easily possible, including separate recompilation.

Reusability of concern code (RC): Since the concern code is tangled with
business code in the classic implementation, it cannot be reused. In the
aspect-oriented realization, the concern implementation is general enough
to be applied to arbitrary classes and methods.

Transparency of composition (TC): For both implementations, the con-
cern of transactional operations requires that all refresh and persist op-
erations belonging to the transaction are executed between creation and
committing of the transaction instance. This might create ordering de-
pendencies when additional concerns are included.

Relevance for Space-Based Computing Clean encapsulation is a common
goal for all systems providing transactional operations. Declarative transactions
are implemented for example by Spring [JH+05], JBoss [FR03], and the COM+-
related System.EnterpriseServices namespace present in the .NET framework
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[Bey01]. Therefore, an aspect-oriented implementation of declarative transac-
tions is relevant to all distributed space-based implementations with support for
transactions, although the details di�er with the transaction model.

5.3 High-Level Concerns

5.3.1 Space-Based Monitoring

Monitoring use cases make a large class of application scenarios for space-based
computing. The data-centered space model provides a very natural mechanism
for publishing diagnostic data, enabling distributed monitoring processes to read
and analyze it, reacting on any problems as fast as possible. In this section, we
therefore present a number of reusable aspects for making .NET applications
easily debuggable and monitorable via the space.

Directories

The concerns presented in this section deal with requirements of diagnosis and
monitoring. Often, these concerns will be applied to business objects whose
functional concerns do not actually involve the space; in fact, the implementa-
tions we discuss are designed for full transparency. As a result, the user of these
objects should not be bothered with the question of how to publish the space
data items created by the concerns.
Therefore, we will �rst present a generic common directory data structure for
the space, which can be used to publish and quickly �nd diagnosis objects
belonging to a certain process on a certain machine. The directory can publish
any object by means of the automatic serializer mechanism presented earlier in
this chapter.
For each concern, there should be one instance of the directory data structure
registered as a named object on the local kernel. The named object is a structure
used as a linear vector of entries, which contain references to the diagnostic data
objects of the concern. For identi�cation purposes, the entries also include the
machine name, process name, and process ID of the creating process, as well as
the date and time of registration in the directory.
The directory class itself provides a static factory method to create the speci�c
directory instances with prede�ned persistence and replication strategy values;
we use lazy replication�i.e. the directory will only be replicated to other ker-
nels on demand�and standard, non-redundant persistence. Adding, removing,
retrieving, and searching directory entries is performed via transactional and
thread-safe methods; for convenience, there also exist a number of helpful wrap-
pers around these. The whole directory implementation is given in listing 5.16.
While AddObject is very simple, the RemoveObject method should be used with
care, since it needs to compare its parameter to the di�erent directory entries in
order to determine which one to remove. The default way of comparison on the
.NET platform�the Equals method�will however not always work as intended:
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for reference types, it performs a reference equality check, which, due to the
serialization infrastructure creating new instances on deserialization, will always
yield false. Therefore, the RemoveObject method only works correctly for value
types (whose default implementation of Equals should work), for reference types
which explicitly implement Equals in a way compatible to space serialization,
and for implementations of ISpaceObject (for which RemoveObject compares the
OID rather than references or contents). RemoveAt can however be used in all
scenarios.
For retrieving or enumerating the entries of the directory, GetDirectoryEntries
can be used, which obtains a copy of the list of entries within a transaction.
Built on top of it, there are a number of �ltering methods for getting all the
entries created by a certain machine, a certain process, or a process with a given
name.
[SpaceSerializable]
public class DirectoryEntry<T> {

public readonly int ProcessID;
public readonly string ProcessName;
public readonly string MachineName;
public readonly DateTime CreationTime;
public readonly T PublishedObject;

public DirectoryEntry(T publishedObject) {
this.PublishedObject = publishedObject;
System.Diagnostics.Process process =
System.Diagnostics.Process.GetCurrentProcess();

this.ProcessID = process.Id;
this.ProcessName = process.ProcessName;
this.MachineName = Environment.MachineName;
this.CreationTime = DateTime.Now;

}
}

[TransactionalObject, WatchedSpaceObject]
public class SpaceDirectory<T> {

public static SpaceDirectory<T> GetOrCreate(string name) {
return SpaceObjectFactory.GetOrCreateSpaceObject<SpaceDirectory<T>>(name, new
CorsoStrategy(CorsoStrategy.LAZY | CorsoStrategy.RELIABLE1));

}

private List<DirectoryEntry<T>> entries;
private object monitor = new object(); // thread synchronization object

[Transactional]
public void AddDirectoryEntry(DirectoryEntry<T> entry) {

lock (monitor) {
entries.Add(entry);

}
}

public void AddObject(T obj) {
AddDirectoryEntry(ObjectFactory.Create<DirectoryEntry<T>>(obj));

}

[Transactional]
public void RemoveObject(T obj) {

lock (monitor) {
// check whether obj implements ISpaceObject interface
// if yes, its OID will be used to find the respective item
// otherwise, the object will be checked via Equals
ISpaceObject spaceObject = obj as ISpaceObject;
DirectoryEntry<T> entryToBeRemoved = entries.Find(delegate (DirectoryEntry
entry) {
if (spaceObject != null && entr is ISpaceObject) {

return
((ISpaceObject)entry.PublishedObject).Oid.Equals(spaceObject.Oid);

}
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else {
return entry.Equals(obj);

}
});
if (entryToBeRemoved != null) {
entries.Remove(entryToBeRemoved);

}
}

}

[Transactional]
public void RemoveAt(int index) {

lock (monitor) {
entries.RemoveAt(index);

}
}

[Transactional]
public List<DirectoryEntry<T>> GetDirectoryEntries() {

lock (monitor) {
return new List<DirectoryEntry<T>>(entries);

}
}

public DirectoryEntry<T> GetDirectoryEntry(string machineName, int processID) {
return GetDirectoryEntries().Find(delegate (DirectoryEntry<T> entry) {

return entry.MachineName == machineName && entry.ProcessID = processID;
});

}

public IEnumerable<DirectoryEntry<T>> GetDirectoryEntriesForMachine(string
machineName) {
return GetDirectoryEntries().FindAll(delegate (DirectoryEntry<T> entry) {

return entry.MachineName == machineName;
});

}

public IEnumerable<DirectoryEntry<T>> GetDirectoryEntries(string machineName,
string processName) {
return GetDirectoryEntries().FindAll(delegate (DirectoryEntry<T> entry) {

return entry.MachineName == machineName && entry.ProcessName = processName;
});

}

public IEnumerable<DirectoryEntry<T>> GetDirectoryEntriesForProcess(string
processName) {
return GetDirectoryEntries().FindAll(delegate (DirectoryEntry<T> entry) {

return entry.ProcessName = processName;
});

}
}

Listing 5.16: Directory data structure for holding diagnostic objects

Mirroring

Goal and Usage Scenario The �rst diagnostic concern we describe is simple,
but also incredibly useful: imagine a situation where it is vital that the states
of .NET business objects can be inspected at any time by an administrator or
system monitoring process over a network.
To implement this idea, this concern de�nes space-based mirrors of these ob-
jects, data objects re�ecting the objects' current states. Using a simple space
debugger or a dedicated monitoring tool, an administrator can inspect and check
a mirror's data; using noti�cations, one can be noti�ed whenever the respective
object is changed.
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Aspect-Oriented Realization

Design Mirroring works by giving the target object a space-based identity
and publishing its OID in a public directory. After execution of methods which
change the object's state in an interesting way, the space-based identity is up-
dated to re�ect the new object state.
This concern is realized simply as an aspect combining after construction and
after method advice with the space identity aspect in order to implement the
mirroring behavior, registering the object in the public directory and persisting
it as necessary.
To clean up the directory, the aspect causes the mirrored object representations
to be removed from the directory when their local counterpart is claimed by the
garbage collector. While this works, it is not guaranteed that all �nalizers run on
hard application exits, so orphaned mirror objects can be left behind. Therefore,
the directory should be periodically cleared by the system administrator or
monitoring system.

Implementation The public directory is simply an instance of the directory
data structure described in the previous section. The concern implementation
contains a class handling creation and retrieval of this instance, calling it Mir-
rors, which is used by the aspect for registering its target objects. As illustrated
in listing 5.17, it adds a dependency to the space identity aspect (and thus in-
directly the serialization aspect), which causes each target object to be stored
as a single space object with a dedicated OID when entered into the directory.
public class Mirrors {

public static readonly SpaceDirectory<ISpaceObject> Instance =
SpaceDirectory.GetOrCreate("Mirrors");

}

[AttributeUsage(AttributeTargets.Method)]
public class UpdatesMirrorAttribute : Attribute { }

[RequiresPerObjectAspect(typeof(SpaceIdentityAspect))]
public class MirrorAspect {

[Target]
ISpaceObject target = ReflectedField<ISpaceObject>.InjectedTarget;

[Advice(typeof(AfterConstruction))]
public void AfterConstruction([AutoCast]ISpaceObject constructedObject) {

CorsoVarOid oid = ConnectionManager.GetConnection().CreateVarOid();
constructedObject.Oid = oid;
constructedObject.Persist(ConnectionManager.LocalTimeout);
Mirrors.Instance.AddObject(constructedObject);

}

[Advice(typeof(AfterMethod)), WhereDefined(typeof(UpdatedMirrorAttribute))]
public void AfterMethod([AutoCast]ISpaceObject target) {

target.Persist(ConnectionManager.NetworkTimeout);
}

protected override void Finalize() {
Mirrors.Instance.RemoveObject(target);

}
}
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[AttributeUsage(AttributeTargets.Class)]
public class MirroredObjectAttribute : Attribute {
[AspectFactory]
public MirrorAspect CreateInstance() {

return ObjectFactory.Create<MirrorAspect>();
}

}

Listing 5.17: Aspect for mirroring object data in the space

Mirror registration is implemented using an after construction advice, which
registers the target object immediately after its construction, creating a new
OID for the mirrored object. This saves the programmer from instantiating the
object with the SpaceObjectFactory class and thus makes mirroring completely
transparent. Deregistration on �nalization is implemented by having a Finalize
method on the per-object aspect. As soon as the mirrored object becomes
eligible for garbage collection, the aspect becomes so as well, so its �nalize
method is invoked when the the object is collected. To make the space-based
mirror always re�ect the latest status, the aspect comes in association with an
UpdatesMirrorAttribute and an after method advice �ltered by that attribute.
The advice causes the mirrored object to be written to the space after each
execution of a method tagged with the attribute.
To improve readability of the resulting code, the aspect comes with a dedicated
factory attribute (MirroredObjectAttribute), which instantiates the aspect with
per-object scope in order to get the �nalizer to behave correctly.

Example Usage Usage of the aspect is very simple. As shown in listing 5.18,
it is enough to apply the MirroredObjectAttribute to the business object's class
de�nition and tag all methods which should cause the mirror to be updated with
the UpdatesMirrorAttribute. A mirror for the object is automatically created
and registered upon creation and deregistered at �nalization time.

[MirroredObject]
public class BusinessObject {
private string data;

public virtual string Data {
get { return data; }
[UpdatesMirror] set { data = value; }

}
}

Listing 5.18: Applying mirroring to any .NET business object

Evaluation

Code locality (CL): Code locality is excellent with this concern implemen-
tation: mirroring code is completely separated from the business code.
Mirroring concern and data structure are cleanly modularized in separate
aspects and classes.

Understandability (U): It is clearly communicated that an object has a
space-based mirror through the MirroredObjectAttribute. Together with
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CL U CSE PI CT CC RC TC Average
Aspect-oriented 5 5 5 3 5 5 5 3 4.5 (good)

Table 5.5: Evaluation matrix for mirroring aspect

the attribute used to tag methods which should cause the mirror to change,
it serves as documentation and as a goal to the aspect framework at the
same time.

E�ective code size and e�ort (CSE): Making a business class mirrorable
is very simple, because all imperative code is encapsulated in the aspect
and the data structure classes. Only one line of code is needed, plus one
line of code for methods that should cause the mirror to be updated.

Performance implications (PI): When an object is mirrored, it is to be ex-
pected that those methods which cause the mirror to be updated will
need somewhat longer to execute because of the serialization and persist
operations triggered by the aspect.

Changeability of target code (CT): Target code can be changed without
a�ecting the concern code, separate recompilation is possible.

Changeability of concern code (CC): Concern code can be changed with-
out a�ecting the target code, and separate recompilation is possible.

Reusability of concern code (RC): The aspect is implemented in a general
way and can be applied to any target class.

Transparency of composition (TC): The aspect's dependencies automati-
cally add a shared identity to its target objects. This might cause con�icts
if a target object is also part of a di�erent coordination data structure.
However, since this concern is meant for transparent monitoring of ob-
jects not otherwise present in the space, it should not be applied in such
situations.

Relevance for Space-Based Computing Distributed monitoring of objects
generally is an ideal application of space-based computing, because the space
concept provides a natural way of realizing it. The speci�c implementation of
course di�ers with the space implementation, depending e.g. on questions such
as the presence of space object identity, lookup mechanisms, and the implemen-
tation of low-level concerns.

Tracing Aspects

Goal and Usage Scenario A second important diagnostic concern is trac-
ing. Applications often write a history of method calls, uncaught exceptions,
and object instantiations into a local log �le in order to be able to reproduce
the behavior of an application in an unforeseen condition. The same mechanism
can also be used to conduct program pro�ling [PWBK05] and usability testing
[AB+03]. Writing the log to the space rather than a local disk has a few advan-
tages, the most important one being the ability of monitoring the application
over the network as it is running.
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Aspect-Oriented Realization

Design To start with, the tracing concern needs a certain infrastructure: a
way of just �appending� data to the space in a linear fashion, similar as one
would do with a local log �le. For this, we de�ne a space data structure: a
linked list, to which new items are always prepended, so that the �rst item is
always the newest one. Similar to the mirrors of the previous concern, log lists
are published in a named directory, providing immediate access to all traces of
all processes connected to a certain CORSO kernel.
The tracing itself is performed by a number of aspects, one for each variety
of this concern: tracing of object instantiations, method executions, and er-
rors. Each of these comes with a dedicated factory attribute, which allows
to control which kinds of traces should be generated. The object construc-
tion tracing aspect is not further con�gurable, but the method and exception
tracing aspects come with ExecutionTraced and ErrorTraced attributes, which
allow �ne-grained declarative speci�cation of what join points should actually
be logged. These attributes were including because tracing all method calls for
a class quickly results in huge logs in most situation. Therefore, it is usually
better to select only a subset of calls to methods one is actually interested in.
The error tracing aspect works the same way for reasons of consistency.

Implementation Using the low-level aspects, the log list data structure is
easily implemented, as shown in listing 5.19. Its reverse linking structure has
three advantages: �rstly, any monitoring process can simply watch the top-
level LinearSpaceLog object in order to always receive any new items. Secondly,
the whole list can be retrieved using only one single short transaction; this is
important, because the log is bound to change often, especially with method
tracing. Having to keep a transaction open while the whole log is being read
would lead to lots of concurrency con�icts. Thirdly, new items can easily be
appended without having to traverse the entire list. For the Traces directory,
we use a specialization of the general directory data structure shown earlier in
this chapter.
The space log provides methods for prepending new log entries to the data
structure, for getting the newest item (from which the previous items can be
traversed), and for getting the full log, all in a thread-safe and transactional
fashion. The data structure automatically ensures that the log items are dese-
rialized before being returned to the user. Because they are not meant to be
written more than once, it is not necessary to perform any further synchroniza-
tion or to make any of their operations transactional; so for getting the full log,
only the reading of the surrounding log structure must be transactional.
The actual data stored in the log data structure must be serializable for the space
and is wrapped in a dedicated substructure of the log entry objects together with
the date and time of creation for further reference.
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public class Traces {
private static readonly SpaceDirectory<LinearSpaceLog> Instance =
SpaceDirectory<LinearSpaceLog>.GetOrCreate("Traces");

}

[WatchedSpaceObject]
[TransactionalObject]
public class LinearSpaceLog {

private object monitor = new object(); // used for synchronizing multithreaded
access

private LogItem newestItem = null;

[Transactional]
public void AddData(CorsoShareable data) {

lock (monitor) {
newestItem = SpaceObjectFactory.CreateNewSpaceObject<LogItem>(new
ItemData(data), newestItem);

}
}

[Transactional(ShouldRefresh = true, ShouldPersist = false)]
public LogItem GetNewestItem() {

lock (monitor) {
return newestItem;

}
}

public IEnumerable<ItemData> GetFullLog() {
List<ItemData> log = new List<ItemData>();
LogItem item = GetNewestItem();
while (item != null) {
log.Insert(0, item.Data);
item = item.Next;

}
return log;

}
}

[SpaceObject]
public class LogItem {

private ItemData data;
private LogItem next;

public LogItem(ItemData data, LogItem next) {
this.data = data;
this.next = next;

}

public ItemData Data {
get { return data; }

}

public LogItem GetNext() {
return next;

}
}

[SpaceSerializable]
public class ItemData {

public readonly DateTime CreationTime;
public readonly CorsoShareable SharedData;

public ItemData(CorsoShareable sharedData) {
this.CreationTime = DateTime.Now;
this.SharedData = sharedData;

}
}

Listing 5.19: Space-based linear list data structure

With this data structure, the three tracing aspects are simple to implement.
For each aspect, there is a serializable data class, which contains the trace
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information to be stored in the log. The aspects themselves can be con�gured
by ways of their factory attributes whether to be instantiated per class, per
object, or as a singleton. On instantiation, each of them creates and registers
a new log object, which is used for tracing, so the instantiation policy also
in�uences whether there is one log per class, per object, or per application.
The actual tracing is performed within respective advice methods: instantiation
tracing is performed in an after construction advice, error tracing in an after
exception advice, and method executions are traced in an around method advice
in order to be able to log both method entries and exits as well as return
values. In each advice method, the tracing data (i.e. the method or type name,
exception data, constructor arguments convertet to strings, etc.) is packaged
into a data object and then added to the log structure. Code for the aspect
implementations is given in listing 5.20.
The logs are never removed from the directory; they will persist until explicitly
removed by an administrator or monitoring tool.
public enum TraceScope {
PerObject,
PerClass,
PerApplication

}

[AttributeUsage(AttributeTarget.Class)]
public class TraceInstantiationsAttribute : Attribute {
// holds one of the standard factory attributes for instantiation
private AbstractSimpleFactoryAttribute factoryAttribute;

public InstantiationTracedAttribute(TraceScope traceScope) {
// prepare respective standard factory attribute for later aspect
instantiation

switch (traceScope) {
case TraceScope.PerObject:
factoryAttribute = new
PerObjectAspectAttribute(typeof(InstantiationTracingAspect));

break;
case TraceScope.PerClass:
factoryAttribute = new
PerClassAspectAttribute(typeof(InstantiationTracingAspect));

break;
default:
factoryAttribute = new
SingletonAspectAttribute(typeof(InstantiationTracingAspect));

break;
}

}

[AspectFactory]
public InstantiationTracingAspect GetInstance(Type targetType, object[]
targetConstructorArgs) {
return (InstantiationTracingAspect)factoryAttribute.GetInstance(targetType,
targetConstructorArgs);

}
}

[AttributeUsage(AttributeTarget.Class)]
public class TraceMethodsAttribute : Attribute { ... }

[AttributeUsage(AttributeTarget.Class)]
public class TraceErrorsAttribute : Attribute { ... }

public class InstantiationTracingAspect {
[SpaceSerializable]
public class TraceData {

public string TypeName;
public string[] ConstructorArguments;

}
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private LinearSpaceLog log;

public InstantiationTracingAspect() {
log = SpaceObjectFactory.CreateNewSpaceObject<LinearSpaceLog>(new
CorsoStrategy(CorsoStrategy.LAZY | CorsoStrategy.RELIABLE1));

Traces.AddObject(log);
}

[Advice(typeof(AfterConstruction))]
public void TraceConstruction(Type constructedType, object[] constructorArgs) {

TraceData data = ObjectFactory.Create<TraceData>();
data.TypeName = constructedType.FullName;
data.ConstructorArguments = Array.Convert<object, string>(constructorArgs,
delegate (object arg) { return arg.ToString(); });

log.AddData((CorsoShareable)data);
}

}

[AttributeUsage(AttributeTargets.Method)]
public class ExecutrionTracedAttribute : Attribute { }

public class MethodTracingAspect {
[SpaceSerializable]
public class EntryData {

public int ThreadID;
public string Target;
public string MethodName;
public string[] Arguments;

}

[SpaceSerializable]
public class ExitData {

public int ThreadID;
public string MethodName;
public string ReturnValue;

}

private LinearSpaceLog log;

public MethodTracingAspect() {
...

}

[Advice(typeof(AroundMethod)), WhereDefined(typeof(ExecutionTracedAttribute))]
public void TraceMethods(object target, MethodInfo method, object[] args,
IMethodProceeder proceeder) {
EntryData entry = ObjectFactory.Create<EntryData>();
entry.ThreadID = System.Threading.Thread.CurrentThread.ManagedThreadId;
entry.Target = target.ToString();
entry.MethodName = method.Name;
entry.Arguments = Array.Convert<object, string>(args, delegate (object arg) {
return arg.ToString(); });

log.AddData((CorsoShareable)entry);

object returnValue = null;
try {
returnValue = proceeder.Proceed(args);
return returnValue;

}
finally {
ExitData exit = ObjectFactory.Create<ExitData>();
exit.ThreadID = System.Threading.Thread.CurrentThread.ManagedThreadId;
exit.MethodName = method.Name;
if (returnValue == null) {

exit.ReturnValue = "null";
}
else {

exit.ReturnValue = returnValue.ToString();
}
log.AddData((CorsoShareable)exit);

}
}

}
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[AttributeUsage(AttributeTargets.Method)]
public class ErrorTracedAttribute : Attribute { }

public class ErrorTracingAspect {
[SpaceSerializable]
public class TraceData {

public int ThreadID;
public string Target;
public string MethodName;
public string[] Arguments;
public string Exception;

}

private LinearSpaceLog log;

public ErrorTracingAspect() {
...

}

[Advice(typeof(AfterException)), WhereDefined(typeof(ErrorTracedAttribute))]
public void TraceErrors(object target, MethodBase methodOrConstructor, object[]
args, Exception exception) {
TraceData data = ObjectFactory.Create<TraceData>();
data.ThreadID = System.Threading.Thread.CurrentThread.ManagedThreadId;
if (target != null) {

data.Target = target.ToString();
}
else {

data.Target = "null";
}
data.MethodName = methodOrConstructor.Name;
data.Arguments = Array.Convert<object, string>(args, delegate (object arg) {
return arg.ToString(); });

data.Exception = exception.ToString();
log.AddData((CorsoShareable)data);

throw exception;
}

}

Listing 5.20: Tracing aspects and data structures

Example Usage Listing 5.21 shows how to use the tracing aspects on a sim-
ple business class. As the attribute declarations clearly communicate, the as-
pects are used to trace instantiations of BusinessClass in an application-wide
log. Calls to and exceptions occurring in its Operation1 method as well as er-
rors occurring in its Operation2 method are appended to a class-level log, and
Operation3 is not traced at all.

Evaluation

Code locality (CL): Code locality and separation of concerns as implemented
by this aspect is excellent: all concern code is cleanly encapsulated into
aspects and data structure classes. Every entity of modularization deals
with exactly one concern.

Understandability (U): The fact that the factory attributes as well as the
con�guration attributes can serve as documentation increases understand-
ability and readability of the code. By looking at the attribute declara-
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[TraceInstantiations(TraceScope.PerApplication)]
[TraceMethods(TraceScope.PerClass)]
[TraceErrors(TraceScope.PerClass)]
public class BusinessClass {

[Traced, ErrorTraced]
public virtual void Operation1() {

...
}

[ErrorTraced]
public virtual void Operation2() {

...
}

// not traced
public virtual void Operation3() {

...
}

}

Listing 5.21: Applying the tracing concern to a business class using aspects

CL U CSE PI CT CC RC TC Average
Aspect-oriented 5 5 4 3 4 5 5 5 4.5 (good)

Table 5.6: Evaluation matrix for tracing aspects

tions, it is immediately clear whether a class contains tracing code, what
exactly is traced, and what is the scope of the log �le.

E�ective code size and e�ort (CSE): E�ort for applying tracing to a class
is very low, only one line of code is needed. For tracing of method execu-
tions and errors, an additional line of code is needed per traced method.
While e�ort could be reduced by making the aspects log every call/error
by default, this would yield very large and complex logs, so this way of
explicit con�guration was chosen instead.

Performance implications (PI): Some performance implications are to be
expected for objects and methods whose instantiations respectively exe-
cutions are traced, because data needs to be serialized and written to the
space.

Changeability of target code (CT): Changes to the target code do not af-
fect the concern, separate recompilation is possible. Care needs to be
taken to update the con�guration attributes when methods are added or
changed.

Changeability of concern code (CC): Concern code can easily be changed
without a�ecting target code, separate recompilation is possible.

Reusability of concern code (RC): The aspects are implemented in a way
general enough for reusing them on any target class.

Transparency of composition (TC): The aspects have no side-e�ects or de-
pendencies on other concerns.
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Relevance for Space-Based Computing As indicated before, tracing gen-
erally is an important concern for diagnostic purposes. Tracing via the space
o�ers additional advantages, this is not restricted to a speci�c middleware. The
data structure details vary, of course; XVSM, for example, readily provides a
FIFO container type, which is ideally suited for a linear log.

Heartbeat and Heartbeat-If

Goal and Usage Scenario One common requirement for distributed diag-
nostics of long-running applications and services is to check whether the respec-
tive processes are still on-line, and, if yes, whether it is still performing its job
(as opposed to, for example, being stuck in a deadlock). A good solution for
this issue is to have a heartbeat, i.e. a signal published at regular intervals, and a
heartbeat-if, i.e. a signal published at regular intervals only if a certain condition
is met. Such a heartbeat can also be associated with a speci�c object instance
rather than a whole application to indicate that the object has not yet been
garbage-collected.
If the heartbeat concerns (including the heartbeat-if variation) are implemented
with the space-based computing paradigm, it requires a published space object
which is regularly written by a monitored service or application. Monitoring
software connected to the space can subscribe to the object's noti�cation and
watch the heartbeat similar to how a doctor can monitor a patient's pulse to
check whether the person is alive. For best diagnostics, the data written to the
heartbeat object should include the time at which the heartbeat was generated,
so that an administrator can quickly �nd out for how long a process is dead (an
improvement over real heartbeats).
Apart from the diagnostic use case, realizations of the heartbeat-if concern can
also be used for triggering purposes: a process listening for the heartbeat can be
triggered to take some action when the heartbeat stops (or starts), thus allowing
for a means for event-based programming over the network.

Aspect-Oriented Realization

Design To realize the heartbeat concerns in an aspect-oriented way, we will
use an aspect which incorporates an object with space identity and a background
thread regularly persisting this object. Being applied to a business class in a per-
object fashion, the background thread is established at object construction time
and halted only when the object (and thus the aspect) is �nalized. The object
being persisted is a very simple class structure holding only the aforementioned
timestamp of the heartbeat.
To include the heartbeat-if concern into the aspect, we de�ne an additional
HeartbeatConditionAttribute, which can be applied to boolean �elds and prop-
erties. The aspect will check all suchly annotated members and will issue the
heartbeat only if all yield true.
Publication of the heartbeat objects will be done via a Heartbeats specialization
of the directory structure shown earlier in this chapter.
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Implementation For the implementation, we �rst de�ne a heartbeat class
as illustrated in listing 5.22. The heartbeat class constitutes the object being
written into the space and also incorporates the pulse thread, which periodically
persists the object. Upon instantiation, objects of the class are passed the pulse
period (i.e. the time that should pass between two subsequent heartbeats) as
well as a set of condition �elds and properties. The constructor immediately
sets up and starts the background thread, which is only stopped (i.e. interrupted
and then joined) when the object is disposed or when the application �nishes.
The thread simply consists of a �ag-terminated loop, which alternately triggers
the pulse and sleeps for the speci�ed pulse period. The pulse only results in the
object to be updated and persisted if all condition members yield true.
The aspect simply instantiates a heartbeat object in its constructor, registering
it in the Heartbeats directory, and disposes it in its �nalizer, which is called when
the aspect and target object are �nalized prior to being garbage collected. This
is similar to the aspects already shown in this chapter and is not separately re-
demonstrated here. The collection of condition �elds is retrieved via XL-AOF's
�eld injection feature, the properties are retrieved via the AspectEnvironment.
For readability and declarative con�guration, the aspect again comes with a
dedicated factory attribute, which instantiates the aspect in a per-object fashion
(needed in order to correctly stop the heartbeat when the target object is claimed
by the garbage collector) and which takes the heartbeat's pulse period as a
declarative parameter.

Example Usage Usage of the aspect is demonstrated in listing 5.23, where
a heartbeat is established for a typical main form class of a .NET Windows
Forms application. When the aspect is applied to such a class, whose objects
live throughout the application runtime, the heartbeat can be seen as a life signal
for the whole process rather than single objects. The heartbeat is con�gured to
come at a rate of once per two seconds, and it will only be issued if the Online
property is set to true, which indicates that the application processed some data
in the last �ve seconds. The heartbeat will therefore cease to be signaled if the
application stops processing data, which could cause a system monitoring tool
to issue an administrator warning or switch to a backup system.

Evaluation

Code locality (CL): Code locality of the heartbeat concern implementation
is very good, we managed to implement both heartbeat and heartbeat-if
(because the latter is a generalization of the �rst) in a cleanly modularized
aspect.

Understandability (U): Due to the documentary nature of the aspect's fac-
tory and con�guration attributes, it is easily understandable from the
resulting code whether a class has a heartbeat or not, at what rate it
comes, and what �elds and properties are conditions for the pulse.

E�ective code size and e�ort (CSE): Because the aspect cleanly encapsu-
lates the aspect, code size and e�ort needed for adding the concern to a
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[SpaceObject]
public class Heartbeat {
private DateTime timeOfPulse = DateTime.MinValue;
private TimeSpan pulsePeriod;
[NotSpaceSerialized] private ReflectedFieldCollection<bool> conditionFields;
[NotSpaceSerialized] private ReflectedPropertyCollection<bool>
conditionProperties;

[NotSpaceSerialized] private volatile bool shouldStop = false;
[NotSpaceSerialized] private Thread heartbeatThread;

public Heartbeat() : this(TimeSpan.FromSeconds(5.0), null, null) {
}

public Heartbeat(TimeSpan pulsePeriod, ReflectedFieldCollection<bool>
conditionFields, ReflectedPropertyCollection<bool> conditionProperties) {
this.conditionFields = conditionFields;
this.conditionProperties = conditionProperties;
this.pulsePeriod = pulsePeriod;
heartbeatThread = new Thread(HeartbeatThread);
heartbeatThread.IsBackground = true;
heartbeatThread.Start();

}

public void Dispose() {
shouldStop = true;
heartbeatThread.Interrupt();
heartbeatThread.Join();

}

public DateTime TimeOfLastPulse {
get { return timeOfPulse; }

}

private void Pulse() {
timeOfPulse = DateTime.Now();
((ISpaceObject)this).Persist(ConnectionManager.NetworkTimeout);

}

private void PulseIfConditions() {
foreach (ReflectedField<bool> cond in conditionFields) {

if (!cond.Value) {
return;

}
}
foreach (ReflectedProperty<bool> cond in conditionFields) {

if (!cond.InvokeGetMethod()) {
return;

}
}
Pulse();

}

private void HeartbeatThread() {
while (!shouldStop) {

try {
PulseIfConditions();
Thread.Sleep(pulsePeriod);

}
catch (ThreadInterruptedException) {
// ignore, interruption is only to stop sleeping

}
}

}
}

Listing 5.22: Heartbeat class implementing the pulse thread

target class is very low. Just one line of code is needed per monitored
class, and one additional line of code is needed per condition.
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[HasHeartbeat(TimeSpan.FromSeconds(2.0).TotalMilliseconds)]
public class MainForm : Form {

...

[HeartbeatCondition]
public bool Online {

get { return DateTime.Now - lastProcessedData.DateTime <=
TimeSpan.Seconds(5.0); }

}
}

Listing 5.23: Usage sample for the heartbeat aspect

CL U CSE PI CT CC RC TC Average
Aspect-oriented 5 5 5 5 4 5 5 5 4.875 (good)

Table 5.7: Evaluation matrix for heartbeat aspect

Performance implications (PI): Because the heartbeat is performed in the
background, there are no adverse performance implications to be expected
by the implementation of this concern.

Changeability of target code (CT): The target code can be changed with-
out a�ecting the concern code, caution is only needed when a condition
�eld or property changes. Separate compilation is possible.

Changeability of concern code (CC): The concern code can be changed
without a�ecting the target code, separate compilation is possible.

Reusability of concern code (RC): The aspect is implemented in such a
general way that it is applicable to any target class.

Transparency of composition (TC): The concern has no dependencies or
negative implications on other concerns.

Relevance for Space-Based Computing The concern realization given in
this section is not speci�cally designed for CORSO and is equally applicable
to other space-based abstraction layers. However, the coordination data struc-
tures provided by advanced and modern technologies�such as XVSM's FIFO
structure�may provide even better structural possibilities for the heartbeat
object than the shared CORSO object we used as a realization.

5.3.2 Caching

Besides diagnostic and monitoring purposes, the space can also be used as a dis-
tributed data cache, temporarily or permanently holding data which is complex
to calculate or to retrieve. If a space-based implementation supports intelligent
replication, as CORSO and even more so XVSM do, cached data can be re-
trieved from the space much faster than it would take to reload or recalculate
it. In this subsection, we will therefore describe two caching aspects, of which
the �rst uses local memory and only illustrates the concept, whereas the second
implements the same cache in the space. Further extensions of these concern
(not shown here) could include a timeout-based cache content lifetime model.
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Local Memory Cache

Goal and Usage Scenario Consider a method which performs a very long
operation, e.g. calculating prime numbers, extracting a complicated query from
a database, or retrieving an XML �le via a slow web service. If this method
is called multiple times with the same arguments, it will always return the
same result, and it will always take the same long time. If the method is
used from di�erent places and at di�erent times during program execution, it
would therefore be sensible to cache its results based on method parameter
indexing: store them in an in-memory table based on the parameter values. If
used intelligently, this could signi�cantly improve program performance without
complicating the program source code.

Aspect-Oriented Realization

Design The aspect design for implementing this concern is simple: an around
method advice is used to intercept all methods tagged to be cached with a
dedicated declarative CachedResultAttribute. It passes the method arguments
to a cache data structure (explained later), which performs the actual caching,
and only executes the original method if the result has not yet been stored. A
dedicated factory attribute instantiates the caching aspect on a singleton basis,
resulting in a cache for the whole application. The class structure used for this
aspect is shown in �gure 5.7.

CorsoData

+any operations()
+cached operations()

-any fields

«role»
Target Class

+AroundCachedMethod(in target : ISpaceObject, in args : object[], in proceeder : IMethodProceeder)

LocalCachingAspect

«attribute»
CachedAttribute

+CreateAspectInstance() : LocalCachingAspect

«attribute»
HasCachedOperationsAttribute

applied to

+Put(in target : object, in method : MethodInfo, in args : object[], in result : object)
+Get(in target : object, in method : MethodInfo, in args : object[]) : object

-internalCache : Dictionary

LocalCache

stores method results in local memory

creates

filters

stores data via

+Read(in data : CorsoData)
+Write(in data : CorsoData)

-target : object
-args : object[]
-result : object

CacheEntry

Figure 5.7: Class structure for a local caching aspect

Implementation Implementation-wise, the aspect is almost trivial�it only
contains a single around advice bound to methods attributed with the tag at-
tribute, which checks whether the cache data structure already holds the result
for the given arguments, method, and target object. If yes, the result is re-
turned without invoking the actual method; if no, the result is calculated by the
method and subsequently stored in the cache, as illustrated in listing 5.24.
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[AttributeUsage(AttributeTargets.Method)]
public class CachedAttribute : Attribute { }

public class LocalCachingAspect {
private LocalCache cache = new LocalCache();

[Advice(typeof(AroundMethod)), WhereDefined(CachedResultAttribute)]
public object AroundCachedMethod(object target, Method method, object[] args,
IMethodProceeder proceeder) {
object result = cache.Get(target, method, args);
if (result == null) {
result = proceeder(args);
cache.Put(target, method, args, result);

}
return result;

}
}

Listing 5.24: Local memory caching aspect

The more complex issue is that of the cache structure, which contains results
indexed by a target/method/arguments triple. These (as well as the results)
cannot be stored by reference, but must be kept in an immutable representation
in order to guarantee correct application behavior.
We will use the space serialization mechanism presented earlier in this chapter
in order to serialize the target object, arguments, and results into a CorsoData
object2. The serialized data will be stored in a internal multi-map [Win05] cache
structure whose key is the full method name paired with the XOR-combined
hash codes of target and argument objects. For a cache lookup, the respective
CorsoData objects are retrieved and targets, arguments, and results are deseri-
alized. If real target and arguments match the data of a deserialized object, the
respective result is returned. The data structure's code is given in listing 5.25.
public class LocalCache {

private IDictionary<Pair<string,int>,List<CorsoData>> internalCache = new
Dictionary<Pair<string,int>,List<CorsoData>>();

public void Put(object target, Method method, object[] args, object result) {
CorsoData data = GetSerializedEntry(target, args, result);

string fullName = GetFullName(method);
int hashCode = GetCombinedHashCode(target, args);
Pair<string,int> id = new Pair(fullName, hashCode);
if (!internalCache.ContainsKey(id)) {
internalCache[id] = new List<CorsoData>();

}
internalCache[id].Add(data);

}

public object Get(object target, Method method, object[] args) {
string fullName = GetFullName(method);
int hashCode = GetCombinedHashCode(target, args);
Pair<string,int> id = new Pair(fullName, hashCode);
if (internalCache.ContainsKey(id)) {
CacheEntry entry = ObjectFactory.Create<CacheEntry>();
foreach (CorsoData data in internalCache[id]) {

... // first reset the CorsoData object to its beginning; not shown here
((CorsoShareable)entry).Read(data);

2Usually, one would rather use the built-in .NET serialization mechanism, which is faster
and doesn't depend on the CORSO middleware. CORSO-based serialization is used here in
order to prepare the structure for use in a space-based cache, see the next concern.
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if (entry.Matches(target, args)) {
return entry.Result;

}
}
return null;

}
else {

return null;
}

}

private CorsoData GetSerializedEntry(object target, object[] args, object
result) {
CacheEntry entry = ObjectFactory.Create<CacheEntry>();
entry.Target = target;
entry.Args = args;
entry.Result = result;
CorsoData data = ConnectionManager.GetConnection().CreateData();
((CorsoShareable)entry).Write(data);
return data;

}

private string GetFullName(MethodInfo method) {
return method.DeclaringType.FullName + "." + method.Name;

}

private int GetCombinedHashCode(object target, object[] args) {
int hashCode = target.GetHashCode();
foreach (object arg in args) {

hashCode ^= arg.GetHashCode();
}
return hashCode;

}
}

[SpaceSerializable]
class CacheEntry {
public object Target;
public object[] Args;
public object Result;

public bool Matches(object target, object[] args) {
if (!object.Equals(target, Target) || Args.Length != args.Length) {

return false;
}
for (int i = 0; i < args.Length; ++i) {

if (!object.Equals(args[i], Args[i]) {
return false;

}
}
return true;

}
}

Listing 5.25: Cache structure for operation results

Example Usage Usage of the local memory caching aspect is demonstrated
in listing 5.26, where the results of a supposedly long-running operation, which
retrieves a large set of data from a database, are cached.
[HasCachedOperations]
public class BusinessClass {
[Cached]
public string[] GetDataFromDatabase(string id) {

... // execute a long-running query based on id and return the results
}

}

Listing 5.26: Example usage of the local memory caching aspect
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CL U CSE PI CT CC RC TC Average
Aspect-oriented 5 5 5 5 4 5 5 5 4.875 (good)

Table 5.8: Evaluation matrix for local caching aspect

Evaluation

Code locality (CL): The aspect-oriented realization of local memory caching
makes for clean modularization and good separation of concerns, having
the concerns cleanly encapsulated in their dedicated aspects and classes.
There is one class holding all data structure code, an aspect holding all the
join point-related code, and business code is not in�uenced by the concern
code.

Understandability (U): The implementation with declarative attributes to
indicate whether a class uses operation caching and the results of what
methods are cached make for good understandability and self-documenting
code.

E�ective code size and e�ort (CSE): Code size and e�ort needed for ap-
plying the caching aspect to a business class are very low: one attribute to
be applied to the class de�nition, plus one attribute per cached method.

Performance implications (PI): There are no adverse performance impli-
cations to be expected by this aspect; in fact, performance is bound to
improve unless the aspect is wrongly applied to short-running methods.
(In such wrong applications, performance degradation due to the addi-
tional cache management e�ort is to be expected.)

Changeability of target code (CT): Target code can be changed without
a�ecting concern code, separate compilation is possible. Some caution
needs to be taken when changing methods with cached results.

Changeability of concern code (CC): Concern code can change without
the target code needing to change, separate compilation is possible.

Reusability of concern code (RC): The concern is implemented in such a
general way that it can be applied to any target class.

Transparency of composition (TC): The concern does not depend on or
a�ect any other aspect.

Distributed Results Cache

Goal and Usage Scenario As already indicated, extending the previous
concern by using the space as a distributed results cache has the advantage that
once the result has been calculated by one process connected to the space, all
other processes can use it as well.
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Aspect-Oriented Realization

Design Design-wise, the distributed result caching aspect is modeled com-
pletely the same way as its local counterpart presented in the previous section.
The only di�erence is that the cached data is not stored in a local dictionary
any longer, but instead in a distributed hash map.
With CORSO, there are di�erent ways to implement such a data structure;
the easiest (but not the most powerful one) being to employ CORSO's named
object feature, using the cache's index data as name and storing the rest in a
named object. More power and �exibility yields implementation of a real map
coordination data structure.

Implementation The aspect part of the distributed cache is equivalent to
the implementation of the local cache presented in the previous section. The
critical point is implementation of the map data structure. E�cient space-
based hash structures are not the topic of this work and are thus not discussed
here, and powerful collection space-based collection utilities have already been
implemented by others [Rie04]. However, we present an implementation of a
CORSO-based SpaceMap data structure created in the course of our work in
appendix B, which can be used to implement the internal cache dictionary in a
space-based manner�in fact, it even implements the IDictionary interface used
for the local cache in the previous section, so the necessary changes to the cache
structure's code are minimal. For further discussion of distributed and e�cient
hashtables, we refer to�for example��Kademlia: A Peer-to-peer Information
System Based on the XOR Metric� by Petar Maymounkov and David Mazières
[MM02].

Usage and Evaluation Usage of the space-based caching aspect is equivalent
to the local caching aspect; therefore, we will not give a dedicated usage sample
for it. Similarly, an additional evaluation wouldn't make sense, since the aspects'
implementations are exactly the same (safe the internal data structure, which
wouldn't be considered in the evaluation anyway). We therefore refer to the
previous section for both usage example and concern evaluation.

Relevance for Space-Based Computing Caching concerns are important
usage scenarios for space-based computing in general, not only for the CORSO
middleware. However, whereas CORSO does not include a pre-built dictionary
data structure for implementing this concern, it's successor XVSM provides
such a data container out of the box, making implementation of the concern's
backing data structure a breeze.

5.3.3 Error Handling

Goal and Usage Scenario An important issue that shouldn't be overlooked
when implementing a distributed concern library for space-based computing is
the group of general error handling concerns, and especially the dealing with
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distribution-induced errors. The aspects presented so far abstract many distri-
butional issues into reusable components, which present themselves to the user
of the library only in the form of declarative annotations. However, behind the
scenes, all of these concerns involve communication, possibly over unreliable
networks. Communication with the local CORSO kernel is often reliable�in
most scenarios, a kernel will be installed on the same machine on which the
process is executed. Communication which involves inter-kernel communication
(e.g. for primary copy migration), on the other hand, are potentially unsafe,
and errors must be expected.
With the subset of CORSO's .NET &Co we use in our work, errors come in
di�erent �avors:

• CorsoTimeoutExceptions in most cases indicate that a remote kernel could
not be reached in the given timeout period. In the aspects presented so
far, global timeout values con�gured with the connection manager are
used. If these are chosen sensibly, one can assume a network problem
if such an exception arises. In some cases, this exception can also come
in a controlled scenario; e.g. with blocking noti�cations or blocking read
operations. The aspects always know how to handle this kind of exception
in such cases, but they cannot handle general timeouts caused by network
problems.

• CorsoDataExceptions indicate a problem with the data in the space. Usu-
ally, these are caused by user errors, e.g. deserialization code not matching
the serialization code or a wrong type being assumed for deserialization
of a space object. Generally, the aspects presented so far cannot handle
these errors in a reusable fashion. In most cases, these errors point to a
faulty process being in the system.

• CorsoReadExceptions and CorsoWriteExceptions occur when reading or
writing of an object yields an error not caused by a network timeout. The
aspects presented so far can't handle these errors either.

• CorsoTransactionExceptions indicate that a transaction cannot be com-
mitted due to concurrency issues. The transaction aspect introduced ear-
lier in this chapter handles this error by repeating the transactional oper-
ation for a number of times, but in case of starvation, when the process
never gets the chance of committing the transaction, it also gives up and
propagates the error to the caller.

• CorsoException, �nally, is not only the base class of all other excep-
tion classes, but is also directly instantiated for all other error situations.
Reusable concern implementations cannot generally know how to handle
these.

Therefore, an application using one or several of the aspects in this library will
sooner or later come into the situation of having CORSO-related exceptions
being thrown. Usually, error handling is application-dependent, so users of the
library will have to write their own try/catch handlers or error handling aspects
(which XL-AOF makes very easy due to its after exception join points).
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However, there are three important error handling strategies, which are often
used (sometimes even in combination) and which are preimplemented in this
library:

• Logging the error to the console or a log �le,

• silently swallowing the error, and/or

• displaying a user interface, informing the user that an error occured.

In fact, these strategies aren't only used for distribution-related errors, but for
general error conditions, so reusable implementations of these strategies should
be suitable for any exception kinds, not only for CORSO exceptions.

Aspect-Oriented Realization

Design For each of the three strategies, we provide one aspect:

• One aspect, which has an after exception advice for tracing the error�
we use the in-built System.Diagnostics.Trace class for tracing�, and then
rethrowing it,

• one aspect for swallowing the error, and

• one aspect for displaying a user interface.

Each of the aspects comes with a dedicated factory attribute for applying the
aspect to target classes with singleton scope�the aspects do not store any state,
so this is the most e�cient way of instantiating them. In addition, the aspects
provide tag attributes to be applied to those methods for which the aspects
should handle escaping exceptions. Table 5.9 gives a summary of the aspect
and attribute types for the error handling concerns.

Aspect Factory Attribute Method Tag
ErrorTracingAspect TracesErrorsAttribute TracedErrorsAttribute
SwallowErrorHandlingAspect SwallowsErrorsAttribute SwallowedErrorsAttribute
UIErrorHandlingAspect HasErrorUIAttribute ErrorUIAttribute

Table 5.9: Aspect and attribute classes for the error handling concerns

Implementation Putting the aspect design into implementation is straight-
forward�listing 5.27 shows the error tracing aspect's source code as an example,
the other aspects are implemented in exactly the same way.
First, the code de�nes the singleton-scoped factory attribute, which always re-
turns the same aspect instance when XL-AOF calls its GetInstance method.
The method tagging attribute de�ned next provides a way of specifying the ex-
ception type the aspect should be able to handle. The tag can also be applied
to the same method multiple times�that way, the aspect can react on multiple
exception types on one method.



162 CHAPTER 5. AO-DCL

Then, the aspect itself is de�ned: it only consists of one after exception advice.
The advice cannot use the WhereException �lter provided by XL-AOF, but
instead has to manually extract the con�guration attribute from the method
object and check whether the thrown exception matches the con�gured excep-
tion types. This workaround is made necessary due to a limitation of the .NET
platform at the time of writing: attributes cannot reference type variables.
(Without this limitation, the aspect could be made a generic type, making the
manual check unnecessary.) If the exception matches one of the con�gured
types, a message is written to the trace stream; in any case, the exception is
rethrown.

The aspect de�nition includes a precedence declaration over the error swallowing
aspect. This causes errors to always be logged even if they are swallowed by
the other aspect. The swallowing aspect, on the other hand, has precedence
over the user interface aspect: this causes the UI not to be shown if the error is
swallowed.
[AttributeUsage(AttributeTargets.Class)]
public class TracesErrorsAttribute : Attribute {

private static ErrorTracingAspect aspect =
ObjectFactory.Create<ErrorTracingAspect>();

[AspectFactory]
public ErrorTracingAspect GetInstance() { return aspect; }

}

[AttributeUsage(AttributeTargets.Method, AllowMultiple = true)]
public class TracedErrorsAttribute : Attribute {

private Type exceptionType;

public TracedErrorsAttribute(Type exceptionType) {
this.exceptionType = exceptionType;

}

public Type ExceptionType {
get { return exceptionType; }

}
}

[Precedence(typeof(SwallowErrorHandlingAspect))]
public class ErrorTracingAspect {

[Advice(typeof(AfterException))]
[WhereDefined(TracedErrorsAttribute)]
public object PerformTraceAfterException(MethodInfo method, Exception
exception) {
foreach (TracedErrorsAttribute attribute in
method.GetCustomAttributes(typeof(TracedErrorsAttribute))) {
if (attribute.ExceptionType.IsAssignableFrom(exception.GetType())) {

System.Diagnostic.Trace.WriteLine("An error of type " +
exception.GetType() + " occurred while executing the method " +
method.DeclaringType.FullName + "." + method.Name + ": " +
exception.Message + ".", "ERR");

}
}
throw exception;

}
}

Listing 5.27: UI error handling aspect

The DCL implementation also contains a second set of these aspects which are
not con�gurable per method, but per class. Instead of handling only excep-
tions thrown from tagged methods, they handle exceptions thrown from any
method of the target class. Their design and implementation equals that of the
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method-level aspects (excluding the tag attribute de�nition, of course), only
that the advice is not �ltered at all. Instead, the exception type con�guration
is performed via the factory attribute.

Example Usage Listing 5.28 shows an example business class, whose �rst
method logs and then swallows all CORSO-induced errors. The class also shows
a user interface for all InvalidOperationExceptions thrown from the class.
[HasClassErrorUI(typeof(InvalidOperationException))]
[TracesErrors, SwallowsErrors]
public class BusinessClass {
[TracedErrors(typeof(CorsoException)), SwallowedErrors(typeof(CorsoException))]
public virtual void Operation1() {

...
}

}

Listing 5.28: Usage example for the error handling aspects

Evaluation

Code locality (CL): These concerns show how nicely error handling code can
be modularized�all error handling code is cleanly encapsulated into ded-
icated aspects.

Understandability (U): Because of the documentary e�ect of the well-named
factory and con�guration attributes, understandability of which classes
have error handling and what exceptions are handled in which way is very
good.

E�ective code size and e�ort (CSE): Code size and e�ort needed to apply
these aspects to a target class is very low. The method-level aspects re-
quire one attribute per class and one attribute for those methods requiring
error handling. The class-level aspects require only an attribute per class.

Performance implications (PI): No adverse performance implications are
to be expected by these concerns and their implementations.

Changeability of target code (CT): The target objects' method bodies can
be changed independently from aspect code, and separate recompilation
is possible. Nonetheless, error handling aspects are conceptually coupled
to their target methods: it is necessary to consider what exceptions could
be thrown from the target's methods and adapt the aspect applications
accordingly whenever a method is changed.

Changeability of concern code (CC): The concerns' implementations can
change without a�ecting the target code.

Reusability of concern code (RC): The concerns are implemented in such
a general way that they can easily be applied to any target class.

Transparency of composition (TC): Error handling aspects automatically
have an e�ect on other error handling aspects. The aspects included in
the distributed concern library have a prede�ned precedence setting to
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CL U CSE PI CT CC RC TC Average
Aspect-oriented 5 5 5 5 4 5 5 4 4.75 (good)

Table 5.10: Evaluation matrix for error handling aspects

correctly resolve this, but when they are to be composed with other error
handling concerns, this must be considered. They have no e�ects on other
concerns.

Relevance for Space-Based Computing The aspects as implemented in
this section are not speci�cally targeted at CORSO. In fact, they can be used for
any kind of exceptions occurring during program execution. Unfortunately, error
conditions automatically come with distributed applications, so these concerns
arise with any (distributed) space implementation.

5.3.4 Extensions of Low-Level Concerns

In this section, we will present higher-level extensions of the low-level concerns
presented in section 5.2. The extension aspects augment the base aspects of
noti�cation handling, serialization, etc., adding additional features and useful
functionality. In other words, the aspects presented in this chapter do not pro-
vide readily applicable solutions for high-level use cases (as the monitoring and
caching aspects did), but instead provide building blocks to facilitate implemen-
tation of space-based applications.

Auto-Refreshed Object (extends Noti�cation)

Goal and Usage Scenario The noti�cation aspect adds an interface to a
target object, enabling the user of the object to subscribe to asynchronous
change noti�cations from the space. When �red, the asynchronous noti�cation
event provides a CorsoData object containing the new data of the modi�ed
object.
Often, it is desirable for the .NET representation of a CORSO object to always
re�ect the most recent space data in near real-time without need of transactional
refresh operations�the object's internal state should always automatically be
updated whenever the space data changes. This is easily solvable by using the
noti�cation aspect and subscribing to its noti�cation event, but since this auto-
refreshed object concern is a separate, cross-cutting concern built on top of the
noti�cation aspect, it should be separately encapsulated.

Aspect-Oriented Realization

Design The concern realization consists of just one aspect, which�being in-
stantiated once per object�subscribes to the event provided by the noti�cation
aspect (or any other implementation of IWatchedSpaceObject). When the event
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is �red, the aspect employs the target object's Read method (supplied by the
serialization aspect or any other implementation of the CorsoShareable inter-
face) in order to read the data sent with the noti�cation event into the .NET
object. The aspect comes with a dedicated factory attribute implementing the
correct instantiation scope, and it leaves the task of starting and stopping the
noti�cation processing to the user in order provide most �exibility.
The behavior of automatic refreshing occurs asynchronously, on a background
thread. This is bound to cause problems in case the object is currently in use.
In particular, problems would arise if an object were automatically refreshed
while being engaged in a space transaction: due to the nature of networking,
the noti�cation data could actually be older than the data read with the trans-
actional refresh operation. Therefore, two guarding mechanisms are required: a
user must be able to lock an object, causing any asynchronous refreshes to be
postponed until the lock is released, and the aspect must automatically postpone
automatic refreshes for objects being used in a transaction.
For the former, we provide a custom attribute, which can be applied to a �eld of
the target class, which constitutes the lock object. The aspect will synchronize
on this object whenever an automatic refresh is to be made; if the user also
locks this object to guard a code block, this will result in mutual exclusion of
automatic refreshes with this code block.
For the latter, the aspect will use the extensibility join points provided by the
transaction aspect. Before an object enters a transaction (and before the trans-
action aspect actively refreshes the object, if necessary), the automatic refresh
aspect enlists the object for not being updateable. All automatic refresh noti�-
cations will be enqueued and postponed until the object leaves the transaction
(and after the transaction aspect has persisted the object, if necessary).
Figure 5.8 shows the entities involved in the aspect-oriented design for the auto-
refreshed object.

Implementation Implementation of the actual refreshing is straight-forward:
after construction of the object, the aspect registers for the asynchronous change
noti�cation event. In the event handler, it �rst locks the target's lock �eld (if
any available) and calls the object's Read method with the data delivered by
the event. In fact, the aspect uses a re�ected �eld collection rather than a single
�eld for the lock, so the class supports multiple lock �elds. Multiple locks should
be used with care, however, because they can quickly lead to deadlocks if taken
in inconsistent order.
For handling the mutual exclusion between transactional operations and au-
tomatic refreshes, we use a separate lock private to the aspect. The lock is
acquired each time the target object enters a transaction and released each time
it leaves a transaction. The noti�cation event handler also acquires the lock
and, since it is called on a background thread, will thus automatically wait until
the object has left all transactions. Listing 5.29 contains the full aspect imple-
mentation (excluding the factory attribute, which is equivalent to those already
presented).



166 CHAPTER 5. AO-DCL

+any operations()
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-field 1
-...
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AutoRefreshAspect

+Read(in data : CorsoData)
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subscribes

wait until target is not in transaction
wait until target's lock field is not taken
target.Read(newData)

«attribute»
AutoRefreshLockAttribute

Figure 5.8: Aspect-oriented design of the auto-refreshed object concern

[AttributeUsage(AttributeTargets.Field)]
public class AutoRefreshLockAttribute : Attribute { }

[RequiresPerObjectAspect(typeof(WatchedSpaceObjectAspect))]
public class AutoRefreshAspect {

[WhereDefined(typeof(AutoRefreshLockAttribute))]
private ReflectedFieldsCollection<object> targetLocks =
ReflectedFieldsCollection<object>.Injected;

[Advice(typeof(AfterConstruction))]
public void Initialize(object constructedInstance) {

((IWatchedSpaceObject)constructedInstance).SpaceRepresentationChanged += new
SpaceRepresentationChangedHandler(target_SpaceRepresentationChanged);

}

private void target_SpaceRepresentationChanged(IWatchedSpaceObject sender,
CorsoData newData) {
AcquireLocks();
((CorsoShareable)sender).Read(newData);
ReleaseLocks();

}

private object txLock = new object();

private void AcquireLocks() {
// always take transaction lock first, then specific locks
Monitor.Enter(txLock);
foreach (ReflectedField<object> lockField in targetLocks) {
Monitor.Enter(lockField.Value);

}
}

private void ReleaseLocks() {
// as we release all locks in one go, order doesn’t matter
foreach (ReflectedField<object> lockField in targetLocks) {
Monitor.Exit(lockField.Value);

}
Monitor.Exit(txLock);

}
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[Advice(typeof(ObjectEntersTransaction))]
public void OnObjectEntersTransaction() {

Monitor.Enter(txLock);
}

[Advice(typeof(ObjectExitsTransaction))]
public void OnObjectExitsTransaction() {

Monitor.Exit(txLock);
}

}

Listing 5.29: Implementation of the auto-refreshed object aspect

Example Usage Listing 5.30 shows an example applying the auto-refreshed
object aspect to a business class. When the IWatchedSpaceObject.Start method
is called on an instance of this class, the object starts to be synchronized
with the space in near real-time. The business class guards its DoubleState
property against concurrent automatic refreshes by using an attributed lock
�eld. The transactional method AppendState method is automatically guarded
against concurrent automatic refreshes. The automatic synchronization ends
when the instance is explicitly removed from the noti�cation manager using the
IWatchedSpaceObject.Stop method.
[AutoRefreshedSpaceObject]
[TransactionalObject]
public class BusinessClass {
private string state = "";
[AutoRefreshLock] private object autoRefreshLock = new object();

public string DoubleState {
get {

lock (autoRefreshLock) { return state + state; }
}

}

[Transactional]
public virtual void AppendState(string newState) {

state += newState;
}

}

Listing 5.30: Example usage of the auto-refreshed object aspect

Evaluation

Code locality (CL): The aspect manages to cleanly encapsulate all exten-
sions of the asynchronous noti�cation aspect that are required by the
auto-refreshed object concern, concern code is nicely separated from the
target code.

Understandability (U): Because of the documentary means of the dedicated
factory attribute, it is very easy to understand whether an object is auto-
matically refreshed or not. The AutoRefreshLockAttribute applied to �elds
used to guard against concurrent automatic refreshing also has a clear and
easily understandable meaning.

E�ective code size and e�ort (CSE): Only a single attribute (i.e. a single
line of code) is necessary to make an object automatically refreshed. If
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CL U CSE PI CT CC RC TC Average
Aspect-oriented 5 5 5 5 5 5 5 4 4.875 (good)

Table 5.11: Evaluation matrix for auto-refreshed object aspect

explicit guarding against concurrent refresh operations is needed, one ad-
ditional line of code is required in order to tag the respective �eld.

Performance implications (PI): There are no adverse performance implica-
tions to be expected by this aspect.

Changeability of target code (CT): Target code is easily changeable with-
out a�ecting the concern code, separate recompilation is possible.

Changeability of concern code (CC): Changes to the aspect code do not
interfere with target code, separate recompilation is possible.

Reusability of concern code (RC): The aspect is implemented in such a
general way that it is applicable to any target object with a space identity.

Transparency of composition (TC): The aspect requires an implementa-
tion of IWatchedObject and CorsoShareable to be present on its target
classes and automatically adds the respective aspects to the class if nec-
essary. In addition, it can cause the transaction aspect to block if an
automatic refresh operation is currently conducted. It has, however, no
adverse implications on other concerns.

Relevance for Space-Based Computing The auto-refreshed object con-
cern is a good extension of the asynchonous change noti�cation aspect for any
space-based implementation. The caveats noted for the noti�cation aspect in
section 5.2.4 of course also apply to this extension.

Pooling (extends OID Retrieval)

Goal and Usage Scenario The space object factory implementing the OID
retrieval, as described in section 5.2.3, does not implement any pooling. This
means that every time it is asked to create an object for an existing OID or
a named object, it will create a new local object reference. While this can be
exactly the desired behavior, some use case scenarios would require the factory
to keep track of the objects it created in an object pool and always return the
same object instances for the same CORSO OIDs.

Aspect-Oriented Realization

Design An aspect implementing this concern is easily created by advising the
object creation join point of classes for which pooling is desired. As indicated
earlier in this chapter, the space object factory passes the OID of the object to
be created as additional context information to this join point, so the aspect
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can extract it and use it to look up objects from a pool of instances created
earlier.
As with the other aspects, a specialized factory attribute (with singleton seman-
tics) is provided for better readability.

Implementation The implementation given in listing 5.31 follows directly
from the design. For the pooling, we use a dictionary object, mapping Corso-
VarOid objects to object references. To avoid memory leaks, it is important to
only use weak references; these do not keep the referenced objects in memory
and are cleared when the objects are claimed by the garbage collector. In the
listing, a WeakDictionary object is used, which automatically handles the man-
agement of weak references, scanning the dictionary for unused objects on every
50'th access.
When a pooled object is requested with a di�erent type than previously used, an
exception is thrown. If no OID context information is available (e.g. if another
factory is used to create the object), the pool is bypassed.
public class PoolingAspect {
private const int dictionaryScanThreshold = 50;
private WeakDictionary<CorsoVarOid, object> pooledObjects = new
WeakDictionary<CorsoVarOid, object>(dictionaryScanThreshold);

[Advice(typeof(ObjectCreation))]
public object ObjectCreated(Type t, object[] constructorArgs,
IObjectInstanceCreator creator, IJoinpointInfo context) {
if (context.AdditionalContext.ContainsKey("OID")) {

object pooledObject = pooledObjects[context.AdditionalContext["OID"]];
if (pooledObject == null) {
pooledObject = creator.CreateInstance(t, constructorArgs);
pooledObjects[context.AdditionalContext["OID"]] = pooledObject;

}
else if (!t.IsAssignableFrom(pooledObject.GetType())) {
throw new InvalidOperationException("This OID was previously used as an
object of type " + pooledObject.GetType().FullName +
" and therefore can’t be used for an object of type " + t.FullName +
".");

}
else {
return pooledObject;

}
}
else {

return creator.CreateInstance(t, constructorArgs);
}

}
}

Listing 5.31: Implementation of the pooling aspect

Example Usage Usage of this aspect directly integrates into the object fac-
tory: by simply attributing a target class with the PooledAttribute, the space
object factory will reuse instances with the same OIDs.

Evaluation

Code locality (CL): The complete pooling code is contained in a single as-
pect de�nition, which holds no other concern code, resulting in perfect
separation of concerns and code locality.
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CL U CSE PI CT CC RC TC Average
Aspect-oriented 5 5 5 5 5 5 5 4 4.875 (good)

Table 5.12: Evaluation matrix for pooling aspect

Understandability (U): Application of the dedicated factory attribute to a
target class makes it easily understandable that it is in�uenced by the
pooling concern.

E�ective code size and e�ort (CSE): Adding pooling to a class only re-
quires it to be attributed with one single attribute.

Performance implications (PI): There are no signi�cant performance im-
plications caused by this concern or its implementation.

Changeability of target code (CT): Target code can be changed without
a�ecting the concern implementation and separate compilation is possible.

Changeability of concern code (CC): Concern code can be changed with-
out a�ecting the target code and separate compilation is possible.

Reusability of concern code (RC): The concern is implemented in such a
general way that it is readily applicable for any object with space-based
identity.

Transparency of composition (TC): The concern has no direct e�ects on
other concerns. Due to its pooling nature, it could however a�ect other
object creation aspects, whose advice methods might not be called when
the aspect decides to reuse an existing object.

Relevance for Space-Based Computing Whenever data objects with iden-
tity are used�no matter whether there is an implicit identity, like with CORSO
objects or XVSM containers, or whether it must be explicitly modeled using
primary keys, as with JavaSpaces�, tracking and pooling of object instances
becomes of importance.

Lifetime Tracking (extends Pooling)

Goal and Usage Scenario One important issue in distributed systems is
lifetime management of the data stored in the system. CORSO provides a
garbage collection mechanism for unnamed space data objects: it counts the
number of processes that directly or indirectly reference an object. When that
sum reaches zero, the space data objects are removed. While this works well
for applications with short-lived processes, it might introduce memory problems
with long-lived processes, because CORSO cannot free any objects that were
referenced by such a process process at any time until it gets shut down.
For this, CORSO supports manually signaling that a process doesn't need a
space object any longer by invoking its CorsoVarOid.Free method. In .NET-
based applications which use pooling and want to actively help in space memory
management, that method should be called for a space data object as soon as
the local object representing that space data object isn't used any longer.



5.3. HIGH-LEVEL CONCERNS 171

Aspect-Oriented Realization

Design The .NET garbage collector has a kind of noti�cation mechanism,
notifying an object that it is about to be claimed as garbage: an object's �nalizer
can contain code that is executed at that time. If an object has an associated per
object scope aspect and that aspect implements a �nalizer, the aspect's �nalizer
will be called at the same time (or shortly before or after) the object's �nalizer
has run. We therefore use such an aspect as a lifetime tracker, which calls Free
on its target object's OID when the target is about to be claimed as garbage.
We also provide a special factory attribute, LifetimeTracked, which applies the
aspect to a target object with per object scope.

Implementation Listing 5.32 shows the implementation of the lifetime track-
ing aspect. It is a straight-forward implementation of the design: the aspect
holds an injected reference to the target object, by which it retrieves the target's
OID and frees it when the �nalizer is run.
public class LifetimeTrackerAspect {
[Target]
private ISpaceObject target = ReflectedField<object>.InjectedTarget;

~LifetimeTrackerAspect() {
target.Oid.Free();
target.Oid = null;

}
}

Listing 5.32: Implementation of the lifetime tracking aspect

Example Usage Usage of this aspect directly integrates with the pooling as-
pect: by simply attributing a target object with the LifetimeTrackedAttribute,
its life time will be tracked by the aspect and the OID will be freed on destruc-
tion. This aspect should only be used with pooled objects, because for others,
there might be more than one object instance referencing the same space data
object. Freeing the space object when one of these instances is garbage-collected
could therefore be very wrong.

Evaluation

Code locality (CL): The whole lifetime tracking concern is cleanly modu-
larized in a (very short) aspect, which contains no other concern code,
yielding ideal separation of concern and code locality.

Understandability (U): By making use of the documentary features of the
dedicated factory attribute, it is easily understandable that an object's
lifetime is tracked by looking at its class de�nition.

E�ective code size and e�ort (CSE): Tracking only requires one attribute
to be added to a target object's class.
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CL U CSE PI CT CC RC TC Average
Aspect-oriented 5 5 5 4 5 5 5 4 4.75 (good)

Table 5.13: Evaluation matrix for lifetime tracking aspect

Performance implications (PI): .NET objects with a �nalizer are claimed
in two steps (one for executing the �nalizer, one for the actual claiming),
which might slightly decrease performance in rare situations of very high
memory pressure or in scenarios with dozens to hundreds of objects being
created per second.

Changeability of target code (CT): Target code can be changed without
any e�ect on the concern implementation.

Changeability of concern code (CC): Concern code can be changed with-
out a�ecting target code.

Reusability of concern code (RC): The aspect is implemented to be ap-
plied to any pooled object with space identity.

Transparency of composition (TC): The implementation of this concern
depends on object pooling; in cases without pooling, it might yield er-
roneous results. Apart from that, there are no dependencies or adverse
e�ects on other aspects.

Relevance for Space-Based Computing While advanced space-based im-
plementations such as XVSM o�er di�erent lifetime service concepts, such as
lease times as well as reference tracking, explicit memory management is an
issue also with these network abstractions.

Up-to-Dateness Service Level Agreement (extends Shared Identity)

Goal and Usage Scenario With the auto-refreshed object concern, we have
described a solution for .NET objects being automatically refreshed whenever
the space data associated with them changes. The transactional operations as-
pect also presented earlier in this chapter provides a mechanism to automatically
call an object's refresh operation before a transactional operation is executed.
Both of these concerns aim at keeping the .NET object always up-to-date with
the space.
However, there are situations in which this isn't necessary, and even counter-
productive: sometimes, an object need not be completely up-to-date, its data
must only be su�ciently recent. In such cases, synchronizing an object with
its space representation at every call of the Refresh operation (e.g. at the be-
ginning of every transactional operation) would be a waste of bandwidth and
should therefore be avoided. Instead, a user should be able to con�gure an up-
to-datenesss service level agreement for classes with space-based identity, and
refresh operations should simply be ignored if not really necessary.
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Aspect-Oriented Realization

Design A realization of this concern must ful�ll two requirements. First, it
needs to provide a way of con�guring what �su�ciently recent� means for a class
with space-based identity. For this, it must allow the programmer to specify a
time period de�ning how old an object's data may be to be acceptable. Second,
it has to cause Refresh operations to be ignored if su�ciently recent data is
already available.
The second requirement can be solved via an aspect with an around method
advice bound to the Refresh methods of the target class. These are implemented
on the class either directly or via the space identity aspect and can thus be
intercepted by an around advice as any other method of the target object can.
The advice can store the date and time of invocation in a member variable of
the aspect and thus calculate the time passed since the last refresh operation.
If the passed time is greater then the con�gured time period (or if the object is
refreshed for the �rst time), it allows the Refresh method to be executed. Else,
it simply returns without proceeding to the method.
The con�guration requirement is solved by providing a custom factory attribute
for the aspect: the attribute's constructor can be used to specify the time period,
and the attribute can pass it on to the aspect when instantiating it. Since the
aspect needs to store object-related information (the date and time of the last
refresh), the attribute instantiates the aspect with per-object scope.

Implementation Implementation of this aspect is straight-forward, as shown
in listing 5.33. The listing shows both the aspect's factory attribute, which al-
lows con�guration of the up-to-dateness time period and instantiates the aspect
with per-object scope (passing the time period to the aspect's constructor), and
the aspect itself. The aspect contains one around advice, which is bound to the
Refresh methods declared by the ISpaceObject interface. The advice calculates
the time passed since the last refresh operation and only proceeds if it exceeds
the con�gured time period (or the object hasn't been refreshed yet). The aspect
does not require (and silently add) any other aspects: if the Refresh methods
of the ISpaceObject interface aren't present, it simply won't do anything.

Example Usage Listing 5.34 shows a business class whose data will only be
refreshed every �ve minutes. This applies to manual calls to the Refresh method
as well as to those automatically performed by the transactional operations
aspect.

Evaluation

Code locality (CL): The aspect manages to cleanly encapsulate the code for
the service level agreement concern and completely separate it from any
other concerns.

Understandability (U): The meaning and con�guration of this aspect as well
as whether it is applied to a target class is easily understand by looking
at the list of attributes applied to the target class.
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[AttributeUsage(AttributeTarget.Class)]
public class UpToDatenessSLAAttribute : Attribute {

private TimeSpan timePeriod;

public UpToDatenessSLAAttribute(TimeSpan upToDatenessPeriod) {
this.timePeriod = upToDatenessPeriod;

}

[AspectFactory]
public UpToDatenessSLAAspect CreateInstance() {

return ObjectFactory.Create<UpToDatenessSLAAspect>(timePeriod);
}

}

public class UpToDatenessSLAAspect {
private TimeSpan timePeriod;
private DateTime lastRefresh = DateTime.MinValue;

public UpToDatenessSLAAspect(TimeSpan timePeriod) {
this.timePeriod = timePeriod;

}

[Advice(typeof(AroundMethod), WhereNameEquals("Refresh"),
WhereDeclaringTypeEquals(typeof(ISpaceObject)))]

public object AroundRefresh(IMethodProceeder proceeder, object[] args) {
DateTime now = DateTime.Now;
TimeSpan timePassed = now - lastRefresh;
if (timePassed > timePeriod || lastRefresh == DateTime.MinValue) {
lastRefresh = now;
proceeder.Proceed(args);

}
return null; // Refresh methods are void and do not return a value

}
}

Listing 5.33: Implementation of the service level agreement aspect

E�ective code size and e�ort (CSE): E�ort for applying this aspect to the
target class comprises the addition of one single line of code: the attribute
application to the target class.

Performance implications (PI): There are no adverse performance implica-
tions to be expected by this aspect. In fact, the concern itself is bound to
improve application performance by reducing the amount of data sent on
the network.

Changeability of target code (CT): The target code can be changed with-
out a�ecting the concern, separate recompilation is possible.

Changeability of concern code (CC): Concern code can also be changed
without a�ecting the target code, separate recompilation is possible.

Reusability of concern code (RC): The aspect is implemented in such a
general way (being bound to the Refresh methods rather than use-case
speci�c target class methods) that it can be applied to any target class.

Transparency of composition (TC): The aspect does not require any other
aspects to be present on the target class (although it does nothing if there
is no implementation of the ISpaceObject interface present) and has no
e�ects on any other concerns apart from the space-based identity concern,
for whom it loosens the refresh operation semantics (which is the point of
the concern).
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[SpaceObject]
[TransactionalObject, UpToDatenessSLA(TimeSpan.FromMinutes(5))]
public class BusinessClass {
private string state;

public string State {
get { return state; }

}

[Transactional]
public virtual void ChangeState(string additionalText) {

state += additionalText;
}

}

Listing 5.34: Example usage of the up-to-dateness service level agreement aspect

CL U CSE PI CT CC RC TC Average
Aspect-oriented 5 5 5 5 5 5 5 5 5 (excellent)

Table 5.14: Evaluation matrix for up-to-dateness service level agreement aspect

Relevance for Space-Based Computing Service-level agreements such as
this one are an interesting feature for any distributed application, not only
space-based ones, and for any space-based platform, not only CORSO. In fact,
sophisticated space-based network abstractions such as XVSM can even provide
service-level agreements on the middleware level, which facilitates development
of higher level semantics otherwise hard to implement.

Compression/Encryption (extends Object Serialization)

Goal and Usage Scenario Space-based computing is based on the notion of
a common virtual shared memory. In principle, every process participating in
the space-based system can access all the data items it discovers in this virtual
shared memory. Of course, access control and security are most important issues
under these circumstances. While most space-based implementations provide
some sort of access control (CORSO has support for pluggable encryption and
access control modules, XVSM supports dynamically con�gurable, �ne-grained
security function pro�les through its interception mechanism), security must
sometimes be handled by the application itself. For such cases, an application
can choose to manually encrypt its data just when it is serialized into the space,
and decrypt it when it is deserialized.
Similarly, if an application needs to share large data items with other processes
on the network, it might want to compress the serialized data, possibly saving
a lot of bandwidth, and decompress it when it's being deserialized.
Although intended for di�erent purposes, these two concerns both deal with
manipulating the application's data at the boundaries to the space. We will
therefore realize them together as if they were a single concern.
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Aspect-Oriented Realization

Design The concerns can be realized as an aspect by extending the serial-
ization aspect, reacting on the custom before �eld serialization and before �eld
deserialization join points it exposes. The aspect is used to encapsulate the
serializer automatically detected by the serialization aspect within another seri-
alizer implementation, which streams the data to an encryption or compression
mechanism, performing the actual encryption/decryption or compression/de-
compression tasks.
Figure 5.9 shows the design of the concern realization. We provide a generic
serialization extension aspect, which is bound to the join points exposed by the
serialization aspect. It delegates to an implementation of the ISerializationEx-
tension interface, which builds a serializer wrapper encapsulating the serializer
chosen by the serialization infrastructure. There are two di�erent implemen-
tations of the interface, one returns an encrypting wrapper, one returns a de-
crypting wrapper. The aspect is con�gured and instantiated by two di�erent
factory attributes: one con�gures the aspect to use the encryption extension,
the other uses the compression extension. Each attribute instantiates the aspect
as its own singleton, i.e. there is one single instance for the aspect con�gured for
encryption and one single instance for the aspect con�gured for compression.
Of course, it is possible to apply both attributes to a class, resulting two wrap-
pers to be generated (one wrapping the other, which in turn wraps the original
serializer), achieving encryption and compression of data at the same time.

Implementation Implementation of the aspect is straight-forward, listing
5.35 shows how the design presented in the previous section can be realized
using XL-AOF. The listing shows only the aspect, as the factory attributes and
the wrappers are trivial to implement and the two serialization extensions can
be realized using readily available .NET framework and third-party encryption
and compression components. The single advice method can be used for both
serialization join points because they have the same signature.
public class SerializationExtensionAspect {

private ISerializationExtension extension;

public SerializationExtensionAspect(ISerializationExtension extension) {
this.extension = extension;

}

[Advice(typeof(BeforeFieldSerialization))]
[Advice(typeof(BeforeFieldDeserialization))]
public void BeforeFieldSerialization(ref ISpaceSerializer serializer) {

// change the serializer to be a wrapper
serializer = extension.BuildWrapper(serializer);

}
}

Listing 5.35: Compression and encryption of space data realized as an aspect

Example Usage Listing 5.36 shows an example application of both the en-
crypting and the compressing variant of the aspect to a business class which
contains highly redundant and very sensitive data.
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+any operations()
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«role»
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applied to

+BeforeSerialization()
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ISerializationExtension
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Figure 5.9: Design of the compression/encryption aspect

Evaluation

Code locality (CL): The aspect cleanly encapsulates all the concern code;
crosscutting code and code for encryption/compression are cleanly encap-
sulated in dedicated classes and aspects.

Understandability (U): It is cleanly understandable whether the concern is
applied to a target class simply by looking at the list of attributes applied
to the class.

E�ective code size and e�ort (CSE): The e�ort required for applying the
concern to a target class is very low: only one line of code must be added

[EncryptedObject, CompressedObject]
[SpaceSerializable]
public class BusinessClass {
private string sensitiveYetRedundantData;

public string SensitiveYetRedundantData {
get { return sensitiveYetRedundantData; }
set { sensitiveYetRedundantData = value; }

}
}

Listing 5.36: Example application of the compression and encryption aspect
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CL U CSE PI CT CC RC TC Average
Aspect-oriented 5 5 5 5 5 5 5 5 5 (excellent)

Table 5.15: Evaluation matrix for encryption and compression aspect

to the target class de�nition.

Performance implications (PI): No signi�cant adverse performance impli-
cations are to be expected by the concern imlementation (apart from the
costs of encrypting and compression, which however isn't caused by the
concern implementation).

Changeability of target code (CT): Target code is changeable completely
without a�ecting concern code, separate recompilation is possible.

Changeability of concern code (CC): Concern code can also be changed
without a�ecting target code, separate recompilation is possible.

Reusability of concern code (RC): The concern is an extension of the se-
rialization aspect and can thus be used in any scenario where the serial-
ization aspect can be used.

Transparency of composition (TC): The aspect depends on the join points
triggered by the serialization aspect (it won't do anything if these join
points aren't triggered), but it has no dependencies or implications on
other concerns.

Relevance for Space-Based Computing The ability of controlling access
to data on the application rather than the network abstraction level is useful for
every implementation of space-based computing, as is the ability of compressing
an object's data before it is sent over the network. It should be noted, however,
that as a particularly sophisticated space-based implementation, CORSO's suc-
cessor XVSM might make development of these concerns even easier with its
interceptor concept.

5.3.5 Application-Speci�c Concerns

There are many additional concerns which can easily be solved by employing
space-based computing; and using XL-AOF, they can be cleanly encapsulated
and modularized. Similar to typical design patterns [GHJV95], the concrete im-
plementation of these concerns can often be tightly coupled to the respective use
case and the application's functional concerns, but often, they can be described
in a generalized and easily realizable way. In this section, we will present two
such concerns, whose actual implementation can be quite specialized, but whose
purpose is general enough to be discussed in this chapter. We will not give im-
plementation and usage examples for these concerns, and we will not provide
an evaluation (which would depend on the implementation), but we will give
a short discussion of how these could be solved using XL-AOF for a concrete
application scenario.



5.3. HIGH-LEVEL CONCERNS 179

Space-Based Code Distribution

Goal and Usage Scenario For this concern, consider a componentized dis-
tributed application with high availability requirements (�24/7�). In such a sce-
nario, it is extremely hard to apply updates or patches to individual components
on the whole network without shutting down the application.
Using the space, it is, however, possible to distribute such patches in binary form
to all the processes involved in the application simply by putting them into the
space. Whenever a process instantiates an object, it could check whether a new
version of the object's assembly exists in the space, and, if yes, use this code
base instead of its local one. In fact, the whole application code could be put
into the space in the �rst place, allowing any process to join in the application
with only a small stub preinstalled on the computer.

Aspect-Oriented Realization This concern can be implemented by using
an aspect with an object creation advice. The advice method intercepts the
instantiation of the aspect's target types and looks up updated versions of their
assemblies in the space. If a new version exists, it downloads the assembly data
into a local �le, loads the assembly �le into memory, and instantiates the type
from that assembly.
The aspect however has some impact on the object-oriented design of the appli-
cation. Most importantly, the types instantiated by the aspect must be compat-
ible with the types requested by the application, i.e. be assignable to them as
de�ned by the rules of the .NET Common Type System. Ideally, this is solved
by the application only requesting interfaces, which are then implemented by
the types in the updated assembly. If the software is designed in a component-
oriented way, this should not be a problem, since cleanly de�ned interfaces
between components are one of the most important rules of that programming
paradigm anyway. Implementation of this aspect with XL-AOF is possible be-
cause the framework supports aspects applied to an interface as long as the
aspect provides a creation advice.

Space-Based State Versioning

Goal and Usage Scenario Usually, when an object is written into the space,
any state previously held for the object is lost. This default behavior is, however,
by no means mandatory�the di�erent states of the object can e.g. be collected
in a repository, allowing object edits to be tracked, di�erences between versions
to be found, and previous states to be restored at later times.
This concern is application-dependent mainly because it cannot be generally
de�ned when a change makes for a new version that should be kept in the
repository or how much data needs to be stored. Consider a word processor, for
example: the internal state of a document changes with every character being
typed or deleted by the user. If every one of these changes were stored as a
separate version, this would vastly worsen runtime and space e�ciency of the
application. Good word processors therefore go at great lengths to de�ne what
changes make for a new version and to decide whether and when the stored data
consists of the whole document or a data delta only.
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Aspect-Oriented Realization An easy way to implement this concern (after
deciding about the versioning details) in an aspect-oriented fashion would be
to have an aspect with an after method advice bound to the Persist methods
introduced by the object identity aspect. The advice would determine whether
the data just persisted makes for a new version and, if yes, store the data (or a
delta) in a repository, which can be implemented using the directory mechanism
introduced in section 5.3.1 of this chapter.
CORSO's successor XVSM makes implementation of this concern even easier
with its container concept: to hold a number of di�erent versions of an object,
a bounded bu�er container could be used.

5.4 Conclusion

In this chapter, we have shown �ve low-level concerns as well as eleven readily
implemented and two application-speci�c high-level concerns (mostly) for space-
based computing, collected in an aspect-oriented distributed concern library.
The low-level concerns can be used to implement distributed data structures
and other, application-speci�c higher-level concerns; high-level concerns either
immediately add sophisticated functionality to target applications with minimal
e�ort or extend the low-level ones with advanced behavior.
Of course, there exists an in�nity of additional distributional concerns for space-
based computer programs. Many of them are speci�c to concrete application
scenarios, some are not. The AO-DCL library contains a subset of those com-
pletely generalizable concern implementations, and we believe it provides a good
concern mixture, forming a solid foundation for more e�cient development of
CORSO-based applications. The library e�ectively and practically shows that
aspect-oriented programming allows for clean encapsulation of concerns which
wouldn't be as cleanly modularizable with traditional paradigms. Declarative
programming techniques allow these encapsulations to be understandably and
e�ortlessly applied to concrete use cases.



Chapter 6

Space-Based Programming
with the DCL

The previous two chapters presented an aspect-oriented framework and a dis-
tributed concern library based on it. The former can be used for encapsulating
the cross-cutting concerns of space-based applications, and the latter constitutes
a declarative space interface, allowing to specify distributional intent by using
C# attributes.
With these prerequisites, this chapter will now provide a sort of tutorial of how
XL-AOF and the AO-DCL can be used to develop distributed applications.
For this, we will walk through the di�erent steps involved in implementing
the whiteboard application introduced in chapter 1, showing how the di�erent
distributional requirements can be integrated with object-oriented design in a
clean and modularized way. Since the high-level aspects of the DCL are designed
to be readily applicable to any application wherever needed, we will concentrate
on using the low-level concerns of serialization, shared identity, noti�cations, and
transactions to build the whiteboard program, and we will also need to add a
few new aspects encapsulating error handling and security concerns.
Freshening up the application scenario, consider again the requirements speci�-
cation given in chapter 1 on page 7.

Users should be able to log into the application from di�erent places and
collaboratively create drawings consisting of graphical shapes. Each user
sees the modi�cations performed by other participants and can join in the
drawing process, adding, removing, and manipulating shapes.

The speci�cation states that:

• There should be one single space data object holding attributes concerning
the whole drawing rather than individual shapes;

• There should be a structured data object with information such as coor-
dinates, size, color, and similar attributes per shape;

181
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• Each drawing object should have links to all the shape objects comprising
the drawing;

• For modifying individual shapes as well as the drawing itself, concurrency
con�icts must be ruled out via transactions; and

• If participation in the drawing process is not possible due to some error,
the user should be informed.

In addition, it speaks about the possibility of giving di�erent users di�erent
privileges for modifying the drawing. In the following, this speci�cation will be
realized with CORSO, XL-AOF, and the AO-DCL.

6.1 Shared Data and Links: The Data Structure

The �rst thing one should think about when starting to create a space-based
application is the question of data structure: what data objects will be needed
in the application, and how will they be mapped to the CORSO space? Since
the whole point of the distributed concern library is to provide for separation of
concerns, a good way to begin is to simply start with a functional decomposition
of the problem, i.e. designing the data structure exactly as it would be for a local
application. Then, the mapping should be considered, applying serialization and
identity aspects to the di�erent objects in the design.

6.1.1 Functional Decomposition

In the case of the whiteboard application, the data structure consists of the
drawing itself and of the shapes contained in the drawing, as indicated in the
requirements speci�cation.

+Draw(in g : Graphics)
+GetBoundingBox() : Rectangle
+MoveTo(in newLocation : Point)

«interface»
IShape

-parent

1

-shapes

*

+Draw(in g : Graphics)
+GetBoundingBox() : Rectangle
+MoveTo(in newLocation : Point)

-bounds : Rectangle
-pen : Pen
-brush : Brush

RectangleShape

+Draw(in g : Graphics)
+GetBoundingBox() : Rectangle
+MoveTo(in newLocation : Point)

-bounds : Rectangle
-pen : Pen
-brush : Brush

EllipseShape

+Draw(in g : Graphics)
+GetBoundingBox() : Rectangle
+MoveTo(in newLocation : Point)

-startPoint : Point
-endPoint : Point

LineShape

+Draw(in g : Graphics)
+GetBoundingBox() : Rectangle
+MoveTo(in newLocation : Point)

-position : Point
-color : Color
-text : string
-font : Font

TextShape

+Draw(in g : Graphics)
+GetBoundingBox() : Rectangle
+MoveTo(in newLocation : Point)
+AddShape(in shape : IShape)
+RemoveShape(in shape : IShape)
+ContainsShape(in shaoe : IShape) : bool
+GetListOfShapes() : List<IShape>
+FindShapesAt(in position : Point) : List<IShape>

CompoundShape

+GetCompound() : CompoundShape

Drawing

-compound

Figure 6.1: Functional decomposition of the shape data structure

For the functional decomposition, shown in �gure 6.1, we start by de�ning an
interface IShape providing methods that need to be implemented by all shapes
likewise:
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Draw is used for drawing a shape to a Graphics surface,

GetBoundingBox is used to compute a minimal rectangular bounding box
containing the shape (this can be used to draw a border around a shape
when it is selected, to calculate its center, and for performing other user
interface tasks), and

MoveTo moves a shape to another position within a drawing.

This interface is implemented by a number of concrete shape classes:

RectangleShape represents a rectangular shape, de�ned by a bounding box,
a border de�ned by a .NET Pen object, and an interior �lling de�ned by
a .NET Brush object;

EllipseShape represents an oval shape, equally de�ned by a bounding box, a
border, and an interior �lling;

LineShape is simply a straight line, de�ned by a starting point and an end
point, as well as a Pen used for drawing;

TextShape contains user-de�ned text as a string, drawn in a particular color
and font; and

CompoundShape implements the Composite design pattern [GHJV95]: it
represents a group of shapes, which can together be handled just like a
single shape can. In addition to the operations de�ned by the interface,
it allows addition and removal of shapes, checking whether the compound
object contains a given shape, retrieval of the contained shapes as a list,
and selection of shapes from a certain screen position (which is useful for
selection of shapes from a user interface).

In addition, there is also a Drawing class, which simply contains a reference
to a root compound shape. The Drawing class could also contain convenience
methods (such as support for cut and paste, loading and saving of shapes,
printing, etc.), which are however ignored for this tutorial.

6.1.2 Mapping the Data Structure to the Space

After having the functional decomposition, the data structure must be mapped
to a space coordination data structure. Starting this is simple: the root of the
data structure is the Drawing object, which should also be an entry point, i.e.
a named data object, for the space data structure.
In the functional decomposition, the Drawing class contains a reference to a
single compound shape, which in turn contains references to other implementa-
tions of IShape. For mapping these to the space, there are two choices: make
the shapes �rst-class space objects (with an identity in the space) or simply
serialize them as nested structures within their parent objects.
Figures 6.2 and 6.3 illustrate this for a simple instance of the data structure,
where the drawing consists of one compound shape holding a text shape and
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shapes {

,

}

CompoundShape

Drawing

named

shapes {

,

}

CompoundShape

position {
  0, 0
},
0xff12cc22,
"Hello world!",
font {
  "Arial", "regular",
  12
}

TextShape

startPoint {
  50, 50, 75, 0
},
endPoint {
  75, 0, 100, 50
},
pen {
  "Pen",
  0xff000000
}

LineShape

bounds {
  50, 50, 100, 100
},
pen {
  "Pen",
  0xff000000
},
brush {
  "SolidBrush",
  0xffffffff
}

RectangleShape

Figure 6.2: Shape data structure with dedicated space objects

a second compound shape, which in turn is comprised of a line shape and a
rectangle shape. The shapes have serialized data corresponding to their �elds
in the functional decomposition, displayed in a simpli�ed form in the �gures.
In the one case (�gure 6.2), this structure is re�ected in the space objects�
for every shape object, there is also a corresponding space object (rectangular
boxes), a named drawing object constitutes the root of the data structure. In
the other case (�gure 6.3, there's also a named data object for the drawing,
however this time, the whole data structure is serialized into this one big space
object.
Both approaches have advantages and disadvantages, as summarized in the
following paragraphs.

Dedicated Space Objects

Network e�ciency: With �rst-class shape objects in the space, it is possible
to only replicate parts of the drawing to the participants, which might re-
sult in a better network utilization. On changes, only the changed objects
are propagated over the network.

Identity: If shape objects have a space-based identity, this could be mapped to
object reference identity. In other words, a pooling aspect could be used
in order to always return the same object references for the same space
objects. Methods such as CompoundShape.RemoveShape could then rely
on the default implementation of the shapes' Equals methods.

Noti�cations: If each shape is a separate space object, the whiteboard appli-
cation has to subscribe to a change noti�cations for every single one of
them in order to react on changes made to any shape.
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named

Drawing

CompoundShape {
  shapes {
    TextShape {
      position {
        0, 0
      },
      0xff12cc22,
      "Hello world!",
      font {
        "Arial", "regular",
        12
      }
    },
CompoundShape {
      LineShape {
        startPoint {
          50, 50, 75, 0
        },
        endPoint {
          75, 0, 100, 50
        },

        pen {
          "Pen",
          0xff000000
        }
      },
      RectangleShape {
        bounds {
          50, 50, 100, 100
        },
        pen {
          "Pen",
          0xff000000
        },
        brush {
          "SolidBrush",
          0xffffffff
        }
      }
    }
  }
}

Figure 6.3: Shape data structure with one big space object

Garbage collection: If every shape object has a single space data object, it
might be desirable to perform manual garbage collection rather than rely
on CORSO's automatic one (which only kicks in when a process is shut
down). This would mean to react on shapes being �nalized on local ma-
chines and manually notify CORSO's garbage collector that the process
doesn't need it any longer.

One Big Space Object

Network e�ciency: In a nested structure serialization scenario, the drawing
would be made of one big space object. This yields better performance
when retrieving the whole drawing (e.g. when a new client joins the draw-
ing process), but even on small changes, the whole drawing has to be
transferred over the network.

Identity: With nested serialization, the serialization system would create new
local shape object references whenever the drawing is read from the net-
work. This means that the default Equals implementation of the shapes
cannot be used for methods such as CompoundShape.RemoverShape or
CompoundShape.ContainsShape. Instead, a custom implementation would
be needed, checking the shape's contents rather than local object refer-
ences. As a second problem, the shapes' parent references would have to
be manually adjusted after reading a drawing from the space.

Noti�cations: Noti�cations handling would be simpler�it would be enough
to simply subscribe to the change event of the drawing object in order to
get noti�ed of any changes made to any shape in the drawing.
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Garbage collection: Since there is only one space object, which automatically
grows and shrinks when the number of shapes changes, garbage collection
would not be an issue.

In our example, we can probably ignore the issues of network e�ciency and
garbage collection, since the data sizes of whiteboard drawings will usually not
constitute a problem. It therefore boils down to the question of easier identity
management (in the case of shapes with space identities) or easier change no-
ti�cation management (in the case of shapes serialized as nested structures).
Since it better shows how to create coordination data structures in the space
using the AO-DCL, we will implement shapes with dedicated identities in this
tutorial.

Extending the Data Model to a Space Data Structure

To map the functional decomposition to the space data structure given in �gure
6.2, one can simply apply prede�ned aspects from the distributed concern library
to the classes already identi�ed.

Space-Based Identity Wanting to give every shape a space-based identity,
we �rst apply the space identity aspect by means of its SpaceIdentityAttribute.
The only implication of this aspect on the functional part of the application
is that all objects in the data structure must now be created with the space
object factory: instances of the Drawing class must be retrieved by name via
ShapeObjectFactory.GetOrCreateNamedSpaceObject<>, and when new shapes
are to be created, ShapeObjectFactory.GetNewSpaceObject<> must be used.

Serialization Similar to space-based identity, serialization also simply re-
quires application of the serialization aspect to all the classes in the func-
tional data structure. However, this time, it's not necessary to use the factory
attribute�the space identity aspect depends on serialization, so it automatically
adds the aspect to the classes.
An important issue to consider about serialization is cross-platform compati-
bility. When serializing an object such as a rectangular shape, for example,
the serializer needs to store metadata indicating the concrete type of object
being serialized. By default, it uses the full .NET type name, e.g. White-
board.Shapes.RectangleShape. However, if the whiteboard data is to be inter-
faced by other platforms, this type might not exist or be named di�erently.
Therefore, one should consider creating special type identi�er strings for inter-
operability by applying instances of SpaceAliasAttribute to the di�erent classes
or instances of SpaceStructureAliasAttribute to the assembly. Table 6.1 shows
the aliases suggested for the di�erent types used in the data structure.

Custom Serialization There are a few types in the data structure which are
not directly supported by the serialization infrastructure. While classes such as
Rectangle and Point are automatically parsed and serialized member by member
(in alphabetical order) as substructures, this automatic behavior does not work



6.1. SHARED DATA AND LINKS: THE DATA STRUCTURE 187

Type Alias
Whiteboard.Shapes.RectangleShape RectangleShape
Whiteboard.Shapes.EllipseShape EllipseShape
Whiteboard.Shapes.LineShape LineShape
Whiteboard.Shapes.TextShape TextShape
Whiteboard.Shapes.CompoundShape CompoundShape
System.Drawing.Rectangle Rectangle
System.Drawing.Point Point

Table 6.1: Aliases for type identi�cation in cross-platform scenarios

for colors, pens, brushes, and fonts, which contain operation system handles and
other data that wouldn't be valid on deserialization.
For colors, an easy way is to serialize them simply as 32-bit integers by in-
structing the serialization system to convert them to an ARGB (Alpha, Red,
Green, Blue) value on serialization (and back on deserialization). This is easily
achieved by using a ConvertedForSerializationAttribute, as explained in section
5.2.1 in the previous chapter: [ConvertedForSerialization(typeof(int), "ToArgb",
"FromArgb")].
For pens, brushes, and fonts, however, there is no such conversion prede�ned
by the .NET classes. There are two choices: implement a custom conversion
mechanism or implement custom serializers for these types. Since this is often
the simpler way to go, we will now show how to implement a custom conversion
mechanism for the Pen class, the idea works the same way for brushes and fonts.
As explained in the previous chapter, the ConvertedForSerializationAttribute
takes as its parameters a substitute type which the serialization mechanism can
automatically serialize. There must exist a conversion method from the source
type to the substitute type (for serialization) and a conversion method from the
substitute type back to the source type (for deserialization). While there is no
substitute type with conversion methods for pens, one can simply create one, as
illustrated in listing 6.1. This substitute type only accounts for a small subset
of the capabilities of .NET pens: it stores the type of pen as a string as well as
the pen's color. As previously explained, the color is con�gured to be serialized
as an ARGB integer number.
public struct PenSerializedData {
private string penType;
[ConvertedForSerialization(typeof(int), "ToArgb", "FromArgb")]
private Color color;

public static PenSerializedData FromPen(Pen p) {
PenSerializedData substitute = new PenSerializedData();
substitute.penType = p.GetType().FullName;
substitute.color = p.Color;

}

public Pen ToPen() {
Pen pen = new Pen(color); // only supports simple pens at the moment
Debug.Assert(pen.GetType().FullName == penType);
return pen;

}
}

Listing 6.1: Substitute type for conversion of .NET pens

With this simple substitute type, XL-AOF can now successfully serialize .NET
Pen objects.



188 CHAPTER 6. SPACE-BASED PROGRAMMING WITH THE DCL

Operations and Transactions Since the local data structure obtained from
the functional problem decomposition is now mapped to a space-based data
structure via identity and serialization aspects, synchronization of local objects
and their space-based counterparts should be considered next. First of all, lo-
cal changes to the data structure must be synchronized to the space: calls to
the MoveTo, AddShape, and RemoveShape methods should cause the respective
shape objects to be persisted. Second, changes made by other people should be
immediately displayed on the screen, so change noti�cations need to be used,
which are dealt with in the next section. Third, the possibility of several pro-
cesses changing the same shapes at the same time must be considered and
guarded against.
For the �rst and third issues, the distributed concern library provides the trans-
action handling aspect�by applying the TransactionalObjectAttribute to the
shape classes and the TransactionalAttribute to the aforementioned methods,
these are automatically guarded against concurrent modi�cations. And with-
out further con�guration, they also cause the respective shape objects to be
synchronized with the space at the beginning and at the end of the operation.
CORSO transactions are executed in an optimistic fashion, without any lock-
ing. This prevents deadlocks, but it also means that several processes can enter
transactions on the same objects at the same time, which will result in only
one process �winning� and being able to commit the transaction. The default
transaction policy of the aspect is to retry the operation up to ten times, but
in very busy scenarios, it is possible that a process does not succeed in exe-
cuting the transaction, causing an error to be thrown to the caller. Due to
the identity-based data structure, this will only happen when many processes
are manipulating the same shape objects, so it is not very likely to happen in
practice. If it does, though, it might be remedied by specifying a higher retry
count in the TransactionalAttribute.

Change Noti�cation To always have the local data structure objects as up
to date with their space-based representations as possible�and also to make
for a good collaborative experience�, the whiteboard application hosting the
data model must react whenever some process connected to the space changes
the drawing. It must subscribe to change noti�cations, applying any changes
to the shape objects and updating the on-screen representation of the draw-
ing. Therefore, the space objects must be made observable by applying the
watchable space object aspect to them with the WatchableSpaceObjectAttribute.
(Because this aspect depends on the identity aspect, this makes application of
the SpaceObjectAttribute obsolete.)
For the hosting application, it is a little more complex: it must subscribe to
the noti�cation event of every single shape in the drawing and start and stop
noti�cation processing via the respective start/stop methods. This is the trade-
o� of the identity-based data structure mentioned before. On the other hand,
the application gets the chance to optimize drawing that way if necessary: when
a single object changes, it is su�cient to update (and redraw) just that object
instead of refreshing the whole drawing.
When the event is raised, the event handler needs to update the shape (e.g.
by calling the Read method added by the serialization aspect with the data
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provided by the event) and then redraw the updated parts of the drawing.
Since noti�cation events come asynchronously, in parallel to normal program
�ow, this requires thorough synchronization. With Windows applications, this is
quite easy, however, since all such applications follow a message pumping model
with a single UI thread per window or group of windows on which all window
manipulations must be performed [Sel04]. For the whiteboard, it is therefore
su�cient to post an update message to the hosting application's message pump
(a standard procedure in .NET UI programming) and do the updating from the
UI thread to ensure proper synchronization.

Pooling The most important advantage of choosing a data structure with
space-based identities is the possibility of tracking local object references in a
pool, reusing the same reference whenever a certain space object is needed.
For this, we presented the pooling high-level aspect in chapter 5, and indeed
it's enough to simply apply the PooledAttribute to the shape classes in order to
make the space object factory handle pooling correctly. As a result, there will be
at most one local object reference per space data object, no matter how often
its parent object is deserialized. As indicated before, this makes the default
implementations of the Equals method, which is used by the compound shape's
ContainsShape and RemoveShape methods, work correctly; and it even results
in the parent back reference of the shapes being deserialized correctly.

Garbage Collection As mentioned before, garbage collection in the space
might be an issue with large drawings and long-running processes. Since the
automatic garbage collection supported by CORSO is based on process refer-
ence counting and therefore only kicks in when a process disconnects, it might
be useful to manually free space data objects that aren't needed any longer.
The lifetime tracking high-level aspect given in the previous chapter helps with
that by releasing a process' reference to a space data object when its local rep-
resentation gets claimed by the .NET garbage collector. Since every space data
object has at most one local representation due to pooling, the lifetime tracking
aspect can be used by applying its factory attribute to the shape classes.

6.2 Integrating into the Application
Now, by simple application of six pre-de�ned aspects to the data structure
constructed through functional decomposition, we have achieved full mapping
to a space-based data structure. For most aspects this only needed one attribute
to be applied to the data structure classes, only serialization required a little
work for the specialized graphical types. The space-based data structure can
now be integrated into an actual graphical whiteboard program with a graphical
user interface, e.g. into one with a design similar to the one in �gure 6.4.
In the �gure, there is a main window, which is a standard .NET Windows Form,
comprising a tool bar and a drawing canvas. The canvas is a .NET control
constituting the main drawing area and hosts the actual Drawing object, while
the tool bar contains a number of tools the user can select to change the way
drawing is performed.
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Figure 6.4: Whiteboard application sample integrating the data structure

The canvas is responsible for loading the drawing from the space (using the space
object factory's methods) at application startup time, it delegates mouse com-
mands entered by the user to the active tool, and it holds a number of methods
the tools can use for creating and adding new shapes. Via these methods, the
canvas can ensure that it is always subscribed to all change noti�cation events,
which are handled by the shape_SpaceRepresentationChanged event handler by
scheduling an update on the main UI thread, as previously explained.

The tools, which are managed via the tool bar and selected into the drawing
canvas' currentTool property, are derived from a common abstract base class,
which de�nes an interface via which a tool can paint itself, initialize when being
selected, reset itself (e.g. when the user presses Escape), and react to the mouse
commands coming from the canvas. The �gure only shows a concrete tool class
for drawing rectangles, but similar subclasses (indicated by the ... tool) exist for
ellipses, lines, text, and for grouping shapes together into a compound shape.

This design was implemented in a whiteboard program prototyped for �At-
tributes &Co � Collaborative Applications with Declarative Shared Objects�
[eKS05a]; two screen shots of the application are given in �gure 6.5.
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Figure 6.5: Sample user interface hosting the data structure

6.3 Fallback: Informing the User of Errors
Although we have now described all the steps necessary for creating a com-
pletely functional collaborative space-based application using the distributed
concern library, there is an important point yet to consider: error handling.
While CORSO manages to mask many kinds of errors, there are still some that
must be explicitly handled by the application. For example, the connection to
the CORSO kernel could break (causing a CorsoException to be thrown), the
connection between kernels could break (causing space operations to time out
and CorsoTimeoutExceptions to be thrown), somebody could corrupt the data
structure in the space (resulting in CorsoDataExceptions being thrown), and
starvation might occur, as indicated in the paragraph on transactional opera-
tions.
In this tutorial chapter, we will not implement a sophisticated error handling
mechanism with nice user-interface integration. Instead, we will simply show
how to write an aspect handling such exceptions by showing a message box to
the user. Nevertheless, the same aspect-oriented mechanisms could equally well
be used to implement user-friendly solutions, which is however out of scope for
this thesis.
Although we could use the UI error handling aspect, which is already part of
the distributed concern library (see section 5.3.3), that one is not extensible and
more suitable for rapid prototyping scenarios rather than real applications. If
we wanted to upgrade this message box-based solution into a sophisticated one
later on, we would need a custom implementation anyway.
We therefore write a custom aspect to encapsulate error handling code in a
cleanly modularized way. The aspect advises XL-AOF's after exception join
point, which applies whenever an exception gets thrown from a (virtual) method,
and we do not use a �ltering pointcut expression, which results in the advice
being executed for any uncaught exception on any virtual method on the target
type. By applying this aspect on the shape classes, all errors not handled
within the data structure get propagated to the user, who can then decide what
to do next. The aspect code is shown in listing 6.2. It synchronizes the actual
error dialog to the UI thread using Form.ActiveForm.Invoke, because message
boxes may not be shown from any other thread (while errors can occur on these
threads). Since the advice chooses to swallow the exception, it needs to return a
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�default� value; i.e. 0 for primitive types, an empty value for value types, or null
for reference types (and void methods). To obtain this value, a helper method
provided by XL-AOF's AspectEnvironment is used.
public class ErrorUIAspect {

[Advice(typeof(AfterException))]
public object TellUser(MethodInfo method, Exception exception) {

string message = string.Format("An error of type {0} occurred in " +
"method {1}. Exception text: {2}", exception.GetType().Name,
method.Name, exception.ToString());

Form.ActiveForm.Invoke(delegate { MessageBox.Show("Error", message,
MessageBoxButtons.OK); });

// return a default value for the respective return type
Type returnType = method.ReturnType;
return AspectEnvironment.GetDefaultValue(method.ReturnType);

}
}

Listing 6.2: Custom, cleanly modularized error handling

6.4 Security: Di�erent Roles for Di�erent Users
Now, nearly all of the distributional requirements stated for the whiteboard ap-
plication have been integrated into the data structure obtained from the func-
tional problem decomposition in a clean, modularized, and mostly very simple
and e�cient way. The only requirement that is still missing is that of security
checking�having di�erent roles for di�erent users. In particular, we introduce
the following security system:

• When starting the whiteboard application, users need to log in.

• A security database determines which roles are assigned to each user. For
example, users can be administrators (which can remove and modify any
shape) or default users (which can remove and modify only those shapes
they created).

• Every shape object has a token associated with it which identi�es the user
it was created by.

• Every method on a shape object checks with the security database if the
user currently logged in is allowed to perform the operation, considering
the user's identity and role as well as the shape's creator.

+ T h ro w E x c e p tio n ( in  m e s s a g e  :  s tr in g )
+ Is A llo w e d ( in  u s e r ID  : s t r in g ,  in  ta rg e t  :  o b je c t,  in  m e th o d  : M e th o d In fo , in  c re a to r Id e n t if ie r  :  s t r in g )  :  b o o l
+ g e t_ C u r re n tU s e r( )  :  s tr in g

« s in g le to n »
S e c u r ity S y s te m

Figure 6.6: Security database interface for the whiteboard application

For this concern, there is no prede�ned implementation in the distributed con-
cern library (although we've already discussed a similar concern in chapter 4,
section 4.4.4), so we need to manually implement the security system. The �rst
issue, login functionality, is not really a cross-cutting concern, since it doesn't
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cut through any design. It can be cleanly encapsulated as a graphical user in-
terface component shown at application startup time. The security database for
the second requirement can be implemented as a cleanly encapsulated object-
oriented component, e.g. as illustrated in �gure 6.6. In the �gure, there is just
one singleton class representing the API of the security component. It provides
mechanisms for retrieving the currently logged in user, checking whether an
operation on a target with a certain creator is allowed, and throwing security
exceptions in case of violations of the secutiry rules.
The third and fourth requirements, however, need to be integrated into the
functional data structure. This makes them clearly cross-cutting, so they are
best implemented as aspects. In fact, we will use a single aspect holding the
creator identi�er for its target shape object (which make it necessary for the
aspect to be instantiated on a per-object basis). The aspect advises the method
calls performed on the shape, checking for every method execution whether the
operation is allowed. The code in listing 6.3 shows how to implement such an
aspect with one data member for the identi�er and an advice method bound
to the before method join points of arbitrary method calls on the target class.
The advice delegates to the security system interface, passing it the necessary
context information and throwing an exception if the system decides that the
operation is not allowed. If the security system authorizes the operation, no
exception is thrown and execution of the method continues.

class SecurityAspect {
private string creatorIdentifier;

public SecurityAspect() {
creatorIdentifier = SecuritySystem.CurrentUser;

}

[Advice(typeof(BeforeMethod))]
public void CheckPermissionsBeforeMethod(object target, MethodInfo method) {

if (!SecuritySystem.SecurityDatabase.IsAllowed(SecuritySystem.CurrentUser,
target, method, creatorIdentifier)) {
SecuritySystem.ThrowException("The current user is not allowed to" +
" perform the operation " + method + " on the object of type " +
typeof(target).FullName + ".");

}
}

[Advice(typeof(BeforeObjectSerialization))]
[Advice(typeof(BeforeObjectDeserialization))]
public void AddMemberToSerializationProcess(ICollection<ReflectedField> fields)
{
fields.Add(AspectEnvironment.FieldOf<string>(this, "creatorIdentifier"));

}
}

Listing 6.3: Security aspect implementation for the whiteboard application

The aspect initializes the creator of its target shape to the user currently logged
in on construction. However, this default value will not be correct when an
existing shape is loaded from the space; similarly, the owner identi�er must also
be persisted when the shape is written to the space in order to communicate
it to others. Therefore, the aspect also contains advice for the before object
serialization and before object deserialization join points of its target objects.
These are are triggered by the serialization aspect and allow the security aspect
to process additional data when serializing or deserializing a shape object. The
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additional data (respectively the �eld which is to receive the data) must be
provided in form of Re�ectedField<> objects, which can be created easily using
the AspectEnvironment re�ective class. Since the logic to be performed for
serialization and deserialization process is the same, the same advice method
can be used for both join point kinds.

This aspect can be applied to the shape classes using the prede�ned per-object
factory attribute or by de�ning a custom one.

6.5 Wrapping Up

In this chapter we have led through the process of creating the space-based part
of a distributed application with the help of XL-AOF and the aspect-oriented
distributed concern library. We took a straight-forward approach consisting of
the following steps:

• Create a functional decomposition, as you would without distributional
concerns.

• Plan how to map the data structure to the space, i.e. which objects need to
be serializable and which additionally need space-based identities. This
mapping is important, since it contributes to the e�ciency and ease of
use of the resulting shared data structure. In our example, we had to
balance the advantages regarding network e�ciency and reference identity
of the identity-based mapping versus the noti�cation handling and garbage
collection advantages of the more monolithic variant. In out case, the
mapping did not require any changes on the functional decomposition,
but in general, slight adaption might be required.

• Map the data structure to the space by applying the prede�ned AO-DCL
aspects to the objects of the data structure. If you use any special classes
(such as the fonts and pens used in our example), specialized serialization
might be needed. This is most easily implemented by adding substitute
types as we showed for the Pen class.

• Identify the operations that should be transactionally safe with regards
to the space; usually this involves those methods performing any changes
on objects with space-based identity. You can also include convenience
methods that group single actions to bigger transactions if this helps the
user.

• Apply the prede�ned transaction aspect to the respective objects and tag
the methods accordingly.

• Find the objects with space-based identity you want to use change noti-
�cations upon and apply the prede�ned aspect from the AO-DCL. Don't
forget to manually start and stop event noti�cation when using the data
structure in a program.
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• Identify and apply any other, higher level concerns from the concern li-
brary that apply to your scenario. In our case, we used the pooling aspect
to get reference identity for shared objects and the lifetime tracking aspect
in order to aid the middleware layer in memory management.

• Consider fallback requirements and identify the places in the program
where they should be handled. You can write a custom aspect using XL-
AOF if you want to encapsulate cross-cutting error handling code.

• Consider any other cross-cutting requirements for which there are no pre-
de�ned concerns in the library (in our example that was the security con-
cern). Write custom aspects for each of them, which shouldn't be much
work with the functionality provided by XL-AOF.

By following this �recipe�, space-enabled applications can be developed in a
highly e�cient way, with cleanly modularized, easily understandable results. On
the one hand, this is due to the highly declarative distributed concern library and
its pre-built solutions for the usual concerns of space-based applications, which
can easily and readably be integrated into the functional problem decomposition.
On the other hand, it is made possible by XL-AOF, which makes the reusable
encapsulations of the library possible in the �rst place and also provides a way
to extend the program by additional aspects for concerns not prede�ned.
As a side note, this list of instructions does not necessarily apply when space-
enabling one small part of an application, for example in order to achieve dis-
tributed monitoring. In such cases, it is often enough to just apply one or a
few high-level library aspects to the respective classes without having to think
about space data structures, mappings, etc.
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Chapter 7

Summary and Evaluation

The previous chapters introduced an AOP infrastructure based on runtime-
generated subclass proxies. They described a lightweight and extensible aspect-
oriented framework built on top of it, which enabled the creation of a declarative
distributed coordination concern library for space-based computing. All this was
under the single common goal of achieving an e�cient development experience
for space-based applications.

This goal was presented and detailed in the introduction chapter of this the-
sis, which described current interfaces to space-based middleware layers to be
too complex�the advantages of the space-based computing paradigm notwith-
standing. We attributes this to the imperative object-oriented programming
paradigm, whose rules these interfaces have to adhere to, and identi�ed declar-
ative techniques to be a good alternative for space-based interfaces:

We believe that a successful approach should provide [...] high-level declar-
ative access to middleware services from within the context of already
commercially successful general-purpose programming languages such as
C# or Java. [...] A declarative version could remedy [the problem] by
providing a better interface to the network abstraction, subjectively re-
ducing complexity to that minimal amount which is essential due to the
program requirements. Introduction chapter

While modern object-oriented programming languages have some built-in sup-
port for declarativity through customized tagging of program elements (exten-
sible metadata), declarativity alone won't solve the problems of complex inter-
faces. In addition, programmers need mechanisms allowing them to modularize
the implementations and algorithms behind the declarations. We found aspect-
orientation to be a programming paradigm o�ering these mechanisms through
so-called aspects:

The aspects translate the intents speci�ed by the programmer to algo-
rithms executed at runtime, enabling goal-directed code to be written
although algorithms are executed. Introduction chapter

197
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In chapter 2, this work therefore investigated the state-of-the-art of these tech-
nologies and especially of the idea of achieving e�cient distributed application
development through combination of space-based computing, declarativity, and
aspect-oriented programming. This yielded a feature matrix (see table 2.5 on
page 42), which showed that an implementation of this idea didn't exist at the
moment.
As a result, this thesis constitutes the �rst existing attempt at creating and
analyzing an integrative solution of space-based distributed computing, declar-
ativity in object-oriented languages, and lightweight, easily adoptable aspect-
oriented programming, all with the �nal goal of e�cient space-based application
development. In this chapter, it will be investigated whether this �nal goal has
been ful�lled by pulling together the evaluation parts given in the course of this
thesis, summarizing their results and putting them into context.

7.1 The Suitable AOP Infrastructure with Great
Adoptability Potential

In chapter 3, the �rst step to achieving a better space-based programming expe-
rience was taken with an AOP infrastructure for aspect-oriented programming.
We identi�ed runtime-generated subclass proxies as a suitable weaving technol-
ogy, and provided an analysis of the concept, �nding two important character-
istics:

• The runtime-generated subclass proxy approach is de�nitely limited what
regards aspect-oriented features.

• It is, however, highly advantageous what regards psychological and adopt-
ability properties.

The �rst point refers to the join point model limitations of a proxy-based ap-
proach. Subclass proxies lack features typically found in code weaving ap-
proaches: subclass proxies can simply not intercept class construction, �eld
access, nonvirtual method execution, method calls (as opposed to executions),
nonescaping exceptions, or single control statements, and thus cannot expose
those features as aspect-oriented join points. In addition, client code of an
aspect-oriented framework built on subclass proxies needs to instantiate objects
through a dedicated factory in order to have the proxies correctly instantiated.
What does that mean in the context of space-based computing, though? As
was shown in the later chapters on implementing space-based concerns in an
aspect-oriented way (chapters 5 and 6), it doesn't have much implication: the
join points not supported aren't needed for this kind of concerns at all. When
space objects are instantiated, a factory is mandatory in any case, because space
object IDs need to be looked up and the locally created instances have to be
synchronized with space data.
There is only one restriction posed by this infrastructure which remains in the
context of space-based computing: non-virtual method executions cannot be
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join points. In e�ect, this means that all methods guarded against concurrency
problems and errors or otherwise in�uenced by aspects need to be made virtual.

The second characteristic mentioned, subclass proxies standing out against other
AOP approaches regarding psychological factors, has more implications, though.
Common approaches face adoptability problems such as

• Aspect-oriented programs becoming incomprehensible,

• Existing tools becoming incompatible with the approach, and

• Infrastructure not being available due to its complexity.

These problems were shown to be ameliorated by the choice of runtime-gen-
erated subclass proxies as an AOP infrastructure. This is important, because
e�cient space-based application development must not be hindered by the typ-
ical adoptability problems of aspect-oriented solutions.

With these conceptual evaluation results, a performance evaluation of the in-
frastructure approach was conducted. Of course, dynamic mechanisms such as
runtime-generated subclass proxies can never be faster at runtime than compile-
time approaches are, but the question was how much performance penalty sub-
class proxies really introduce.

First, we analyzed the performance of object creation with two existing imple-
mentations of the approach. These implementations generated the proxy classes
when the target classes were instantiated for the �rst time, so a slowdown was
expected. Emitting a new class and instantiating it is much more complex than
simply allocating memory for an instance of an existing class, so the measured
performance hit was high indeed: instantiation needed about 12-37ms with
proxy generation as opposed to about as many nanoseconds with an ordinary
allocation. This is a relative factor of one million, and seeing only the isolated
numbers, it seems catastrophic at �rst.

On the other hand, the absolute numbers should be regarded: several millisec-
onds for the �rst instantiation of a class are not really a problem. Even if an
application instantiated �fty di�erent classes all at the same �rst time�which
is a very improbable situation�, this would only yield about a second delay.
Typically, there will be fewer classes, and they will not all be instantiated at the
same time, so the resulting delays won't even be noticeable in user interaction
[Saf06]. And since subsequent instantiations do not require repeat class gener-
ation, class generation time should not be an issue for all practical purposes.

Next, the performance penalty induced on methods intercepted for join point
handling was measured and analyzed. This is typically more important than
object creation, because method invocations usually occur much more often in
programs than object instantiations do1.

1This is obvious considered that in order to work with an object in object-oriented sense
(i.e. an encapsulation of data and behavior) at least two method calls are necessary for every
object instance: the constructor call and the method holding the object's behavior. For such
objects there will be at least twice as many method calls as object instantiations. This point
is not valid, of course, for pure data containers without behavior.



200 CHAPTER 7. SUMMARY AND EVALUATION

An analysis showed that this penalty can be in the order of one non-virtual
method call if the aspect needs to call back to the original method. If it doesn't,
there is no penalty at all�the virtual call made by the calling code is simply
automatically redirected to the subclass proxy.
In praxis, however, existing implementations of the infrastructure have chosen
not to implement this highly performant interception mechanism. Instead, they
go via delegates or even via Re�ection to invoke the original method, which is
somewhat more expensive than a non-virtual method call. We have found the
reason for this to be that more e�ciency simply isn't necessary: with methods
holding nonempty (and nontrivial) bodies, it doesn't matter whether a method
is invoked via an ordinary call instruction or via a delegate�performance bot-
tlenecks stem from within the methods. This is even more so in the context of
distributed applications: in these, the bottleneck is in data transfer, not in the
time needed to invoke a method.
Summarizing, feature-wise and performance-wise, runtime-generated subclass
proxies are at least a su�cient means for implementing an aspect-oriented
toolkit. As was seen in subsequent chapters, they provide everything needed to
facilitate e�cient space-based application development. Regarding their adopt-
ability potential, they are even a great infrastructure.

7.2 The Aspect-Oriented FrameworkWell-Suited
for Space-Based Development

The next step was to build an aspect-oriented framework in chapter 4. The
framework would later be used to encapsulate the cross-cutting code behind
the declarative language binding suggested in chapter 1, and for this, three
important features were identi�ed: light weight, extensibility, and adoptability.
In section 4.1, a tool was de�ned to be of light weight when it is cleanly inte-
grated into the tool chain, is naturally integrated into a mainstream program-
ming language, weaves in a noninvasive way, and allows one to decide at runtime
whether to use it or not. A tool was said to be extensible if new modularized
cross-cutting concerns can easily be added even though they were not considered
at design or implementation time of the tool. And adoptability was stated to
require that an aspect language is easy to learn, that the tool has a simple and
e�cient way of build and application con�guration, that it relies on well-known
and easily understandable infrastructural concepts, that it does not need com-
plicated or hard-to-use build or weaving tools, and that it does not break any
mainstream tools typically used for building the system.
In the course of the chapter, an aspect-oriented tool was developed, which indeed
is lightweight: as a framework, it is cleanly integrated into the tool chain, as
it does not introduce any additional tools at all; it is simply a library. It is
naturally integrated into mainstream .NET programming languages with its
aspect language being based on the declarative metadata mechanisms de�ned by
the .NET platform standard. It is built on the subclass proxy infrastructure and
thus weaves in a noninvasive way, and as a factory-based framework dynamically
con�gurable, it allows one to decide at runtime whether to use it or not. In these
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terms, it is di�erent from other aspect-oriented toolkits currently in use (see also
chapter 2).

Its aspect language provides general aspect-oriented features, which allows new
cross-cutting concerns to be implemented easily, even if the concerns have not
been anticipated at framework development time. This can be seen from the
later chapters 5 and 6, where the aspect language was used to implement all the
di�erent general-purpose concerns as well as one special-purpose requirement in
a cleanly modularized fashion. This distinguishes the aspect-oriented framework
from the existing non-AOP application frameworks or application containers for
distributed (or even space-based) computing.

Regarding adoptability, the framework was built on top of the subclass proxy
infrastructure, inheriting the positive adoptability properties of that technology.
Via the infrastructure, the framework only relies on well-known object-oriented
concepts. It does not need any additional build or weaving tools, and it does not
break any existing mainstream tools typically used for building .NET applica-
tions. The framework does not require any build con�guration, and application
con�guration can be intuitively done via declarative attributes, or, if the power
is needed, from imperative code.

The aspect language was modeled as intuitively as possible, and to prove this,
adoptability properties for every single language feature were collected. Natu-
rally, a full AOP tool has some complex properties: we identi�ed 16 points that
could negatively in�uence adoption of the framework because of complicated
and advanced features or because of the infrastructure's limitations; each of
those remains in the framework with a good rationale.

On the other hand, 40 positive adoptability issues were identi�ed, features of
simplicity, which make our framework very easy to use, or features of expressive
power, which make problems very easy to solve. We were able to illustrate the
comprehensiveness of our framework by providing a tutorial consisting of �ve
general-purpose sample aspects, which illustrated both extensibility and adopt-
ability features of the framework: logging, parameter checking, call privileges,
atomicity, and property change noti�cation.

Each of the samples was informally analyzed and compared to a classical, object-
oriented implementation of the same concerns. The results of this analysis are
illustrated in table 7.1: a plus sign indicates that the aspect-oriented version
improves the code for the respective property, a minus sign indicates that the
object-oriented version yielded better results.

Log. Param. Privil. Atom. Notif.
Code locality/understandability + + + + +
Reusability of aspect + + + + +
Scalability of aspect + + + + +
Changeability of class + + + + +
Changeability of aspect + + + + +
Declarative documentation + + +
Reusability of class + +
Con�gurability +
Code size/e�ort + - - -
CFlow needed -
Object factory/virtual methods - - - - -

Table 7.1: Sample aspect evaluation
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As can be seen from the table, all the sample concerns pro�ted from improved
code locality and understandability, aspect reusability and scalability, as well as
aspect and class changeability in their aspect-oriented implementation. Most
also pro�ted from the declarative documentation obtained via aspect applica-
tion through declarative attributes. Two aspects made the target classes better
reusable and one aspect made the concern better con�gurable.

On the other hand, all aspect-oriented solutions of course su�er from the re-
strictions imposed by the subclass proxy approach�they need to use object
factories for instantiation, and methods to be used as join points must be vir-
tual. One aspect needs to make use of a control �ow-analyzing pointcut, which
is somewhat more complicated than a straight-forward object-oriented solution.

Three of the samples need greater code size and programming e�ort for the
aspect-oriented solution than for a straight-forward one, which seems contrary
to the actual goals of aspect-oriented programming. The reason is simple: each
of the samples showed the cross-cutting concerns in the context of just one
class, so the concerns didn't really cross-cut a lot. Aspects are superior in code
size and programming e�ort only in cases where the concerns cross-cut a lot,
involving many di�erent classes. This can be seen with the only sample concern
cross-cutting heavily on a method level: for the parameter checking concern,
the aspect was superior even in the simple sample case.

How does this all �t into the context of simplifying space-based application de-
velopment? In a later chapter, the declarative distributed concern library was
built on top of the aspect-oriented framework. And just like the samples pro�ted
from better code locality and understandability, reusability, scalability, change-
ability, and documentation, the distributional concerns later implemented in the
library pro�ted from these properties. And, since these aspects were designed
to be implemented once, but used often, they of course also pro�ted from the
better code size/e�ort properties brought by aspect-orientation. Together with
its good adoptability features, XL-AOF is therefore perfectly well-suited for
building an e�cient space-based programming interface upon. And due to its
focus on extensibility, programmers can easily augment the library with their
own modularizations of cross-cutting concerns when needed.

7.3 The Distributed Concern Library for Highly
Improved Code Quality

In chapter 5, the declarative language binding motivated in the �rst chapters was
�nally implemented. The most important low-level concerns dealt with by the
CORSO middleware, as a mature representative of the space-based paradigm,
were taken and encapsulated into reusable, cleanly separated, and declaratively
applicable modules with the help of the aspect-oriented framework developed
in chapter 4. Then, a number of useful high-level concerns were implemented,
also in an aspect-oriented fashion. Together, these concern implementations
form an aspect-oriented and declarative distributed concern library (AO-DCL),
whose goal is to provide an e�cient way of developing space-based distributed
software. And while this library is implemented on top of CORSO, we analyzed
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the concerns it contained to be of relevance also to XVSM, CORSO's successor,
and space-based computing in general.
To prove that the concern library really leads to e�cient space-based program-
ming, each concern implementation was evaluated by analyzing its source code
and giving it score points for di�erent static code quality properties. The eval-
uation schema for this process was taken and extended from Hannemann and
Kiczales [HK02] and Pawlak et al [PSR05], and the source code was charac-
terized regarding the following properties, with possible scores ranging between
one point (catastrophic) and �ve points (excellent) per item:

• Code locality, modularity, and separation of concerns;

• E�ective code size and e�ort needed for integration of the concern in an
application;

• Performance implications caused by the concern;

• Target code changeability;

• Concern code changeability;

• Concern code reusability; and

• Transparency of composition.

For each concern implementation, an overall score was calculated by taking
the average of the property score points. To show that the aspect-oriented
implementation is actually superior to the classic imperative approach, object-
oriented variants of the low-level concerns were presented and evaluated as well.
Table 7.2 shows the scores of the low-level concerns in both aspect-oriented and
object-oriented implementation.

Concern Object-Oriented Aspect-Oriented
Serialization 2.375 4.875
Space-Based Identity 2.75 5
Noti�cation 3.25 5
Transactional Safety 1.875 4.75

Table 7.2: Scores of low-level concern implementations

Analyzing these �gures of the most basic concerns, which are the foundations
of all CORSO applications, there were no excellent, not even good implemen-
tations with the classic object-oriented API. The best score is a mediocre 3.25
(noti�cation handling), the worst is 1.875 (transaction handling), which is quite
poor from a code quality standpoint.
On the other hand, when built on top of the aspect-oriented framework, half of
the concerns were assigned an excellent 5 points, and the �worst� score is 4.75,
which is still very good.
These numbers support the main hypothesis of our work: declarative and aspect-
oriented techniques can be used to provide a more e�cient space-based appli-
cation development experience than current standard practices do.



204 CHAPTER 7. SUMMARY AND EVALUATION

And then, they even allowed to go a step further�using the aspect-oriented
framework, we were able to de�ne clean encapsulations of high-level concerns.
These comprise self-contained units which can be applied to a program to im-
mediately make use of space-enabled techniques as well as building blocks for
sophisticated space-based applications. They provide out-of-the-box solutions
to issues such as distributed monitoring and caching, as well as pooling or life-
time tracking problems. Issues like these cannot be reusably encapsulated using
object-orientation, they can only be described as design patterns, which have to
be implemented every time they need to be used, as described by Gamma et al
[GHJV95] and Hannemann and Kiczales [HK02]. Aspect-oriented technology,
on the other hand, allowed them to be encapsulated and included into a concern
library.
Table 7.3 shows the score summary of their evaluations. Since these concern
implementations highly depend on the low-level aspects and cannot be reusably
encapsulated with purely object-oriented techniques, they have not been sepa-
rately compared with object-oriented variants.

Concern Aspect-Oriented Implementation
Mirroring 4.5
Tracing 4.5
Heartbeat 4.875
Local Caching, Distributed Results Cache 4.875
Error handling 4.75
Auto-refreshed object 4.875
Pooling 4.875
Lifetime tracking 4.75
Up-to-dateness service level agreement 5
Encryption and compression 5

Table 7.3: Scores of high-level concern implementations

The table clearly shows that aspect-orientation leads to good software quality
in the �eld of space-based computing: there are two concern implementations
which had excellent scores (5 points), and no concern had less then 4.5�a very
good result.
The �nal evidence for the e�ectiveness of our approach towards e�cient space-
based application development was given in chapter 6, where a methodology
for implementing space-based applications with the declarative concern library
and the aspect-oriented framework was presented. Based on the example of a
collaborative whiteboard application, the chapter provided a �cookbook�, show-
ing that with the help of the library, most requirements of distribution could
be solved simply by declaratively specifying intent: through mere application of
declarative attributes. The e�cient declarative language binding demanded in
the introduction chapter of the thesis has thus been realized.



Chapter 8

Conclusion

Now and in the last 40 years, a vast number software projects have been canceled
due to their complexity. While the essential part of this complexity is inherent
to the problem and cannot be coped with, the accidental part can�by the use
of the right tools. Distributed applications are more di�cult to develop than
non-distributed computer programs because their level of essential complexity
is higher; they have to deal with a number of additional requirements when
compared to local ones. It's therefore especially vital to employ the right tools
for developing distributed applications.
The most important tools, middleware systems, help to cope with the com-
plexity of distributed applications by abstracting as many details as possible,
eliminating accidental di�culties. The space-based computing paradigm is a
particularly good existing abstraction, providing a natural, data-centered com-
munication model well-suited for many applications.
However, as we have illustrated throughout this work, the object-oriented in-
terfaces space-based middlewares have traditionally provided to programmers
are often not intuitive and hinder an e�cient development process. In the con-
text of space-based applications, the imperative object-oriented programming
paradigm, which forces developers to explicitly formulate algorithms and imple-
mentations of their distributional intentions, directly exposes the programmer
to accidental di�culties.
This thesis proposed a solution to this problem, a way to reduce the accidental
di�culties of space APIs and a way to provide an e�cient space-based de-
velopment experience: it described a declarative interface to the space-based
middleware, a way to employ the declarative metadata mechanisms of modern
object-oriented programming languages for expressing intents of space-based
computing. In hindsight, it seems that space-based computing was a particularly
good basis for the realization of this idea, because its data-centered approach,
which often results in a high correlation of space-based coordination data struc-
tures and their local object-oriented counterparts, lent itself to a goal-directed,
intentional, and declarative way of programming.
The space-based concerns expressable via declarative metadata were, however,
inherently cross-cutting and therefore e�ectively resisted modularization through
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object-oriented means. And so, the thesis adopted aspect-oriented methodology
in order to successfully encapsulate these concerns into reusable and extensible
modules.

An aspect-oriented weaving infrastructure for .NET was designed, a technology
that allowed to implement aspect-oriented programming on the purely object-
oriented .NET platform. As a particularly lightweight approach, we chose
runtime-generated subclass proxies for this infrastructure, a dynamic weaving
mechanism purely based on object-oriented mechanisms and runtime code gen-
eration, both well-supported by .NET. Based on this infrastructure, the aspect-
oriented framework XL-AOF was devised and implemented1. Due to the novel
factory attribute approach, where declarative attributes are used to instantiate
aspects on target classes and objects, the framework was designed for declara-
tive con�guration from the start. It is well-integrated into the .NET platform,
and even allows for dynamic aspect con�guration for respective use cases.

Finally, the actual declarative space interface was implemented with the aspect-
oriented framework: the declarative distributed concern library AO-DCL. AO-
DCL is a catalog of preimplemented, reusable aspects for many requirements in
applications based on the CORSO middleware. It comprises realizations of the
most important low-level space concerns supported by CORSO�shared objects
with serialization and identity, transactional operations, and noti�cations�as
well as a number of high-level components. The resulting declarative middle-
ware interface con�rms the idea of it being more e�ciently employable than the
original object-oriented API.

In a dedicated chapter, we showed the process involved in creating a space-based
application with the AO-DCL by implementing the distributed data structure
of a collaborative whiteboard application. We demonstrated that this process
mostly consisted of applying declarative attributes on the application's func-
tionally decomposed data structure, and we also illustrated how XL-AOF could
be used to implement a special issue not preimplemented in the AO-DCL. We
generalized the process shown in that chapter to provide a �recipe�, a list of
instructions for implementing distributed applications with the AO-DCL.

To further support our claims and show that this thesis has indeed managed
to reach the goal of providing e�cient space-based computing through declara-
tive and aspect-oriented techniques, we lastly summarized and put into context
the evaluations done throughout this thesis in a separate evaluation chapter.
With its results, we can now conclude that we indeed managed to replace the
original space-based application architecture with a new and improved one: in-
corporating the technologies presented in this thesis, programmers can now fully
leverage space-based computing with the declarative AO-DCL and encapsulate
any further cross-cutting concerns with the powerful, yet lightweight XL-AOF.
And it should also not remain unmentioned that XL-AOF constitutes a great,
lightweight, and easily adoptable aspect-oriented framework for general .NET-
based application development as well.

1A full implementation of the framework is available and can be obtained via the author.
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8.1 Future Work

Although the thesis ends with this conclusion, the work it describes prepares
the ground for future research and implementation work. First of all, at the
time of this writing, the �rst open source implementation of XVSM, the new
sophisticated space-based middleware, is being created. While many concepts
of XVSM are di�erent from those of CORSO, the fact of space-based program-
ming being full of cross-cutting concerns remains�a distributed concern library
should therefore be created for XVSM as well. Second, many ideas remain yet
unresearched what regards the combination of aspects and spaces; for example
the dynamic distribution of aspects over a space is facilitated by XL-AOF's
means for dynamic weaving, but it is still a matter of some complexity. Also,
broad usability studies could further strengthen this thesis' points with empirical
data for selected aspects. Third, as the .NET platform evolves, new possibil-
ities for AOP infrastructures and language support will come up that should
be analyzed and used to extend XL-AOF whenever �tting. And �nally, devel-
opment of debugging visualizers, aspect browsers, and similar IDE extensions
will all contribute to make aspect-oriented programming and thus space-based
application development even more e�cient.



208 CHAPTER 8. CONCLUSION



Appendix A

.NET &Co�CORSO's .NET
Language Binding

This appendix shows the public APIs of most of the classes and interfaces con-
stituting CORSO's .NET &Co language binding for reference purposes. The
shown code was automatically generated by the free Re�ector tool for .NET.
The semantics of the shown classes and methods are shortly described in section
2.1.2, for a more detailed and more complete reference see the Corso .NET &Co
Documentation [Tec04c].

A.1 CorsoConnection Class
public class CorsoConnection
{
// Methods
public CorsoConnection();
public void AddService(string typeCreator, string typeName, string serviceName,
ArrayList allowedUsers, int serviceKind, int commType, int bootType);

public void AddServiceType(string typeName, string programName, int adminType,
ArrayList allowedUsers, string description);

public void Boot(string[] args);
public void Connect(string userId, string password, CorsoStrategy strat, int
aid, string serviceName, string corsoSite, string domain, int port);

public CorsoNotification CreateAcceptor(CorsoStrategy strategy, string name,
byte[] authorizationKey);

public CorsoProcess CreateCompensateProcess(string entryName, CorsoData
entryParam, CorsoTransaction tx, string serviceCreatorName, string
serviceName, string siteName);

public CorsoConstOid CreateConstOid(CorsoStrategy strategy);
public CorsoConstOid[] CreateConstOids(CorsoStrategy strategy, int number);
public CorsoData CreateData();
public CorsoProcess CreateDependentProcess(string entryName, CorsoData
entryParam, CorsoTransaction tx, string serviceCreatorName, string
serviceName, string siteName);

public CorsoProcess CreateIndependentProcess(string entryName, CorsoData
entryParam, string serviceCreatorName, string serviceName, string siteName);

public CorsoConstOid CreateNamedConstOid(CorsoStrategy strategy, string name,
byte[] authorizationKey);

public CorsoVarOid CreateNamedVarOid(CorsoStrategy strategy, string name,
byte[] authorizationKey);

public CorsoNotification CreateNotification(ArrayList notificationItems,
CorsoStrategy strategy);
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public CorsoProcess CreateOnAbortProcess(string entryName, CorsoData entryParam,
CorsoTransaction tx, string serviceCreatorName, string serviceName, string
siteName);

public CorsoProcess CreateOnCommitProcess(string entryName, CorsoData
entryParam, CorsoTransaction tx, string serviceCreatorName, string
serviceName, string siteName);

public CorsoSubTransaction CreateSubTransaction(CorsoTransaction tx);
public CorsoTopTransaction CreateTopTransaction();
public CorsoVarOid CreateVarOid(CorsoStrategy strategy);
public CorsoVarOid[] CreateVarOids(CorsoStrategy strategy, int number);
public void DeleteService(string serviceCreator, string serviceName);
public void DeleteServiceType(string typeCreator, string typeName);
public void DestroyLocalOids(CorsoOid[] oids, bool recursive);
public void DestroyOids(CorsoOid[] oids, bool recursive);
public void Disconnect();
public void DisconnectFromPartnerCorsoKernel(IPAddress inetAddress);
public override bool Equals(object anObject);
public void FreeOids(CorsoOid[] oids, bool recursive);
public CorsoNotification GetAcceptor(string name, byte[] authorizationKey);
public int GetCurrentAid();
public string GetCurrentCodePage();
public CorsoTransaction GetCurrentEntryTransaction();
public CorsoConstOid GetCurrentPid();
public string GetCurrentService();
public string GetCurrentServiceCreator();
public int GetCurrentServiceKind();
public int GetCurrentStartType();
public string GetCurrentStderr();
public string GetCurrentStdout();
public CorsoStrategy GetCurrentStrategy();
public string GetCurrentUser();
public bool GetCurrentWinConsoleFlag();
public string GetCurrentWinConsoleTitle();
public bool GetCurrentWinDetachedFlag();
public string GetCurrentWinDomain();
public string GetCurrentXDisplay();
public string GetCurrentXSetting();
public override int GetHashCode();
public DateTime GetLastMessageTimeStampOfCorsoKernel(IPAddress inetAddress);
public CorsoConstOid GetNamedConstOid(string name, string site, byte[]
verificationKey, bool localCache, int timeout);

public CorsoVarOid GetNamedVarOid(string name, string site, byte[]
verificationKey, bool localCache, int timeout);

public CorsoConstOid GetOrCreateNamedConstOid(CorsoStrategy strategy, string
name, byte[] authorizationKey);

public CorsoVarOid GetOrCreateNamedVarOid(CorsoStrategy strategy, string name,
byte[] authorizationKey);

public bool IsConnected();
public bool IsCorsoSuperUser();
public int ProcessEnd(int exitValue, int timeout);
public void SecureConnect(string userId, string password, CorsoStrategy strat,
int aid, string serviceName, string corsoSite, string domain, int securePort);

public void SetCommType(string site, int commType);
public void SetCurrentCodePage(string newCodePage);
public void SetCurrentStartType(int newStartType);
public void SetCurrentStderr(string newStderr);
public void SetCurrentStdout(string newStdout);
public void SetCurrentStrategy(CorsoStrategy newStrategy);
public void SetCurrentUser(string newUser);
public void SetCurrentWinConsoleFlag(bool newWinConsoleFlag);
public void SetCurrentWinConsoleTitle(string newWinConsoleTitle);
public void SetCurrentWinDetachedFlag(bool newWinDetachedFlag);
public void SetCurrentWinDomain(string newWinDomain);
public void SetCurrentWinPassword(string newWinPassword);
public void SetCurrentXDisplay(string newXDisplay);
public void SetCurrentXSetting(string newXSetting);
public void ShutdownCorso();
public void UnregisterOidByName(CorsoTransaction tx, string name, byte[]
verificationKey);

public void WaitForEntryTermination();

// Fields
public const int AUTO_START = 100;
public const int BOOT = 10;
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public const int COMM_TYPE_AUTO = 3;
public const int COMM_TYPE_TCP = 2;
public const int COMM_TYPE_UDP = 1;
public const int CONNECT = 20;
public const int DEPENDEND_PROCESS_TYPE = 1;
public const int INDEPENDEND_PROCESS_TYPE = 2;
public const int INFINITE_TIMEOUT = -1;
public const int MANUAL_START = 200;
public const int MAX_AID = 4;
public const int NO_TIMEOUT = 0;
public const int PERMANENT = 1;
public const int PIPES = 1;
public const int SHARED_MEMORY = 3;
public const int SYSTEM_ADMINISTRATED = 2;
public const int TCP_IP = 2;
public const int TRANSIENT = 2;
public const int USER_ADMINISTRATED = 1;
public const int X_TRANSIENT = 4;

}

A.2 CorsoBase Class
public abstract class CorsoBase
{
// Methods
public CorsoConnection GetConnection();

}

A.3 CorsoStrategy Class
public class CorsoStrategy
{
// Methods
public CorsoStrategy(CorsoStrategy st);
public CorsoStrategy(int aStrat);
public override bool Equals(object stOther);
public override int GetHashCode();

// Fields
public const int PR_DEEP = 1;
public const int PR_DEEP_EAGER = 0x100001;
public const int PR_DEEP_LAZY = 1;
public const int PR_DEEP_READ_MAIN = 0x200001;
public const int PR_DEEP_READ_NEXT = 1;
public const int RELIABLE_0 = 0;
public const int RELIABLE_1 = 0x800;
public const int RELIABLE_2 = 0xc00;

}

A.4 CorsoShareable Interface
public interface CorsoShareable
{
// Methods
void Read(CorsoData data);
void Write(CorsoData data);

}
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A.5 CorsoOid Class
public abstract class CorsoOid : CorsoBase, CorsoShareable
{

// Methods
public int Aid();
public int CompareTo(object obj);
public void Destroy(bool recursive);
public void DestroyLocal(bool recursive);
public override bool Equals(object oidOther);
public void Free(bool recursive);
public ArrayList GetDistributionTopology();
public override int GetHashCode();
public string GetName();
public CorsoStrategy GetStrategy();
public bool IsZero();
public int LastRequestNr();
public void Name(string name, byte[] authorizationKey);
public void Name(CorsoTransaction tx, string name, byte[] authorizationKey);
public void Read(CorsoData data);
public byte[] ReadBinary(CorsoTransaction tx, int timeout);
public bool ReadBoolean(CorsoTransaction tx, int timeout);
public void ReadData(CorsoData value, CorsoTransaction tx, int timeout);
public double ReadDouble(CorsoTransaction tx, int timeout);
public int ReadInt(CorsoTransaction tx, int timeout);
public long ReadLong(CorsoTransaction tx, int timeout);
public void ReadShareable(CorsoShareable value, CorsoTransaction tx, int
timeout);

public string ReadString(CorsoTransaction tx, int timeout);
public override string ToString();
public void Write(CorsoData data);
public int WriteBinary(byte[] value, CorsoTransaction tx);
public void WriteBinary(byte[] value, int timeout);
public int WriteBinaryCompressed(byte[] value, CorsoTransaction tx);
public void WriteBinaryCompressed(byte[] value, int timeout);
public int WriteBoolean(bool value, CorsoTransaction tx);
public void WriteBoolean(bool value, int timeout);
public int WriteData(CorsoData value, CorsoTransaction tx);
public void WriteData(CorsoData value, int timeout);
public int WriteDouble(double value, CorsoTransaction tx);
public void WriteDouble(double value, int timeout);
public int WriteInt(int value, CorsoTransaction tx);
public void WriteInt(int value, int timeout);
public int WriteLong(long value, CorsoTransaction tx);
public void WriteLong(long value, int timeout);
public int WriteShareable(CorsoShareable value, CorsoTransaction tx);
public void WriteShareable(CorsoShareable value, int timeout);
public int WriteString(string value, CorsoTransaction tx);
public void WriteString(string value, int timeout);
public int WriteStringCompressed(string value, CorsoTransaction tx);
public void WriteStringCompressed(string value, int timeout);

// Fields
public const int CONST = 2;
public const int VAR = 4;

}

A.6 CorsoConstOid Class
public class CorsoConstOid : CorsoOid
{

// Methods
public CorsoConstOid();
public CorsoConstOid(CorsoConstOid oid);
public CorsoConstOid(CorsoConnection con, CorsoStrategy strategy);
public bool Test(CorsoTransaction tx);

}
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A.7 CorsoVarOid Class
public class CorsoVarOid : CorsoOid
{
// Methods
public CorsoVarOid();
public CorsoVarOid(CorsoVarOid oid);
public CorsoVarOid(CorsoConnection con, CorsoStrategy strategy);
public int Append(CorsoTransaction tx, byte[] data);
public byte[] Consume(CorsoTransaction tx, int timeout);
public int GetTimeStamp();
public void SetTimeStamp(int ts);
public bool Test(CorsoTransaction tx, int timestamp);
public override string ToString();

}

A.8 CorsoData Class
public class CorsoData : CorsoBase
{
// Methods
public byte[] GetBinary();
public byte[] GetBinaryCompressed();
public bool GetBoolean();
public double GetDouble();
public int GetInt();
public void GetListTag();
public long GetLong();
public void GetShareable(CorsoShareable obj);
public short GetShort();
public string GetString();
public string GetStringCompressed();
public int GetStructTag(StringBuilder structName);
public int PeekOidType();
public byte PeekSignature();
public int PeekStructTag(StringBuilder structName);
public void PutBinary(byte[] val);
public void PutBinaryCompressed(byte[] val);
public void PutBoolean(bool val);
public void PutDouble(double val);
public void PutInt(int val);
public void PutListTag();
public void PutLong(long val);
public void PutShareable(CorsoShareable obj);
public void PutShort(short val);
public void PutString(string val);
public void PutStringCompressed(string val);
public void PutStructTag(string structName, int arity);

// Fields
public const byte SIG_BINARY = 0x65;
public const byte SIG_BINARY_COMPRESSED = 0x66;
public const byte SIG_BOOLEAN = 0x6f;
public const byte SIG_DOUBLE = 0x6d;
public const byte SIG_INT = 0x6a;
public const byte SIG_LIST = 110;
public const byte SIG_LONG = 0x6b;
public const byte SIG_OID = 100;
public const byte SIG_STRING = 0x67;
public const byte SIG_STRING_COMPRESSED = 0x68;
public const byte SIG_STRUCT = 0x69;

}
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A.9 CorsoTransaction Class

public abstract class CorsoTransaction : CorsoBase
{

// Methods
public void Abort();
public void CancelRequest(int reqNr);
public override bool Equals(object txOther);
public override int GetHashCode();
public override string ToString();
public CorsoTransFailInfo TransFailInfo();

}

A.10 CorsoTopTransaction Class

public class CorsoTopTransaction : CorsoTransaction
{

// Methods
public CorsoTopTransaction();
public CorsoTopTransaction(CorsoConnection con);
public void CCommit(int timeout);
public void Commit(int timeout);
public void Create(CorsoConnection con);
public void TryCCommit(int timeout);
public void TryCommit(int timeout);

}

A.11 CorsoNoti�cation Class

public class CorsoNotification : CorsoBase, CorsoShareable
{

// Methods
public CorsoNotification();
public CorsoNotification(CorsoVarOid notifOid);
public void AddItem(CorsoNotificationItem item, CorsoTransaction tx);
public void AddItem(CorsoNotificationItem item, int timeout);
public void AddItems(ArrayList items, CorsoTransaction tx);
public void AddItems(ArrayList items, int timeout);
public void ConfigureItem(CorsoNotificationItem item, int timeout);
public void ConfigureItems(ArrayList items, int timeout);
public override bool Equals(object notifOther);
public override int GetHashCode();
public ArrayList GetInvalidItems();
public ArrayList GetItems();
public ArrayList GetItemsForCurrentConnection();
public CorsoVarOid NotificationId();
public void Pause(CorsoProcess process);
public void Read(CorsoData data);
public void RemoveItem(CorsoNotificationItem item, CorsoTransaction tx);
public void RemoveItem(CorsoNotificationItem item, int timeout);
public void RemoveItems(ArrayList items, CorsoTransaction tx);
public void RemoveItems(ArrayList items, int timeout);
public void Reset();
public CorsoNotificationItem Start(int timeout, CorsoData data);
public override string ToString();
public void Write(CorsoData data);

}
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A.12 CorsoNoti�cationItem Class
public class CorsoNotificationItem : CorsoBase
{
// Methods
public CorsoNotificationItem(CorsoNotificationItem r);
public CorsoNotificationItem(CorsoConstOid oid, int flags);
public CorsoNotificationItem(CorsoVarOid oid, int mytimeStamp, int flags);
public int Configuration();
public void Configuration(int flags);
public CorsoConstOid ConstOid();
public void ConstOid(CorsoConstOid oid);
public override bool Equals(object anObject);
public override int GetHashCode();
public int ObjectType();
public int TimeStamp();
public void TimeStamp(int ts);
public override string ToString();
public CorsoVarOid VarOid();
public void VarOid(CorsoVarOid oid);

// Fields
public const int CURRENT_TIMESTAMP = 0x10;
public const int IGNORE_ITEM = 1;
public const int INCREMENT_TIMESTAMP = 8;
public const int INITIALIZE_WITH_CURRENT_TIMESTAMP = -2;
public const int PAUSE_NOTIF = 4;
public const int RESET_NOTIF = 2;

}

A.13 CorsoException Class
public class CorsoException : Exception
{
// Methods
public CorsoException(int p);
public CorsoException(int p, int s);
public string GetMessage();
public int Primary();
public int Secondary();
public override string ToString();
public int UserError();

// Fields
public const int DATA = -101;
public const int DATA_TAG = -102;
public const int ERR_ABORT_TX = -11;
public const int ERR_ADD_NOTIFICATION_ITEMS = -51;
public const int ERR_ADD_SERVICE = -42;
public const int ERR_ADD_SERVICE_TYPE = -40;
public const int ERR_ALREADY_CONNECTED = -32;
public const int ERR_C_COMMIT_TX = -13;
public const int ERR_CANCEL_REQ = -18;
public const int ERR_COMMIT_TX = -12;
public const int ERR_COMPENSATE_PROCESS = -7;
public const int ERR_CONFIG_NOTIFICATION_ITEMS = -56;
public const int ERR_CONNECTING_FAILED = -30;
public const int ERR_CONNECTION_BROKEN = -33;
public const int ERR_CONSUME = -3;
public const int ERR_CREATE_ACCEPTOR = -84;
public const int ERR_CREATE_NAMED_OBJECT = -60;
public const int ERR_CREATE_NOTIFICATION = -50;
public const int ERR_CREATE_OBJECT = -1;
public const int ERR_CREATE_TX = -10;
public const int ERR_DELETE_NOTIFICATION_ITEMS = -52;
public const int ERR_DELETE_SERVICE = -43;
public const int ERR_DELETE_SERVICE_TYPE = -41;
public const int ERR_DEP_PROCESS = -5;
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public const int ERR_DISCONNECT_FROM_PARTNER_SITE = -82;
public const int ERR_EXPORT_OBJECT = -23;
public const int ERR_FREE_OBJECT = -24;
public const int ERR_GET_ACCEPTOR = -85;
public const int ERR_GET_DISTRIBUTION_TOPOLOGY = -28;
public const int ERR_GET_NAME = -27;
public const int ERR_GET_NAMED_OBJECT = -61;
public const int ERR_GET_STRATEGY = -26;
public const int ERR_INDEP_PROCESS = -6;
public const int ERR_INTERRUPTED = -95;
public const int ERR_INVALID_PARAMETER = -89;
public const int ERR_LAST_MSG_FROM_CORSO = -81;
public const int ERR_NO_CORSO_CONNECTION = -80;
public const int ERR_NOT_CONNECTED = -31;
public const int ERR_NOTIFICATION_STOPPED = -59;
public const int ERR_OBJECT_DESTROY = -25;
public const int ERR_OK = 0;
public const int ERR_ON_ABORT_PROCESS = -9;
public const int ERR_ON_COMMIT_PROCESS = -8;
public const int ERR_PAUSE_NOTIFICATION = -55;
public const int ERR_PREPARE_TX = -14;
public const int ERR_PROCESS_END = -20;
public const int ERR_PROCESS_SIGNAL = -21;
public const int ERR_PROCESS_STATE = -22;
public const int ERR_QUERY_INVALID_NOTIFICATION_ITEMS = -58;
public const int ERR_QUERY_NOTIFICATION_ITEMS = -57;
public const int ERR_READ = -2;
public const int ERR_REGISTER_NAMED_OBJECT = -62;
public const int ERR_RESET_NOTIFICATION = -54;
public const int ERR_SET_COMM_TYPE = -83;
public const int ERR_SHUTDOWN = -71;
public const int ERR_START_NOTIFICATION = -53;
public const int ERR_STRATEGY = -44;
public const int ERR_TEST_CONST = -72;
public const int ERR_TEST_VAR = -73;
public const int ERR_TRANSACTION_FAIL_INFO = -45;
public const int ERR_TRY_C_COMMIT_TX = -16;
public const int ERR_TRY_COMMIT_TX = -15;
public const int ERR_TRY_PREPARE_TX = -17;
public const int ERR_UNREGISTER_NAMED_OBJECT = -63;
public const int ERR_USER = -19;
public const int ERR_USER_AID_INCOMPATIBILITY = -14;
public const int ERR_USER_AID_NOT_SUPPORTET = -27;
public const int ERR_USER_CANT_SEND_SIGNAL = -15;
public const int ERR_USER_CANT_START_COMPENSATE_ACTION = -16;
public const int ERR_USER_CANT_START_ON_COMMIT_ACTION = -17;
public const int ERR_USER_DUPLICATE_NOTIFY_OBJECT = -69;
public const int ERR_USER_DUPLICATE_WRITE_REQUEST = -24;
public const int ERR_USER_EMPTY_VALUE = -25;
public const int ERR_USER_FOREIGN_PID = -56;
public const int ERR_USER_ILLEGAL_BOOT_TYPE = -29;
public const int ERR_USER_ILLEGAL_CANCEL_REQUEST_NUMBER = -30;
public const int ERR_USER_ILLEGAL_COMMIT_TYPE = -31;
public const int ERR_USER_ILLEGAL_DATA = -34;
public const int ERR_USER_ILLEGAL_ENTRY_DATA = -32;
public const int ERR_USER_ILLEGAL_EXIT_VALUE_OR_SIGNAL = -33;
public const int ERR_USER_ILLEGAL_LOGICAL_TIME_STAMP = -43;
public const int ERR_USER_ILLEGAL_NAME = -204;
public const int ERR_USER_ILLEGAL_NOTIFICATION_CONFIG = -70;
public const int ERR_USER_ILLEGAL_OID = -37;
public const int ERR_USER_ILLEGAL_PID = -38;
public const int ERR_USER_ILLEGAL_PROCESS_START_TYPE = -39;
public const int ERR_USER_ILLEGAL_REQUESTING_PROCESS = -35;
public const int ERR_USER_ILLEGAL_SERVICE = -10;
public const int ERR_USER_ILLEGAL_STRATEGY = -41;
public const int ERR_USER_ILLEGAL_TRANSACTION = -42;
public const int ERR_USER_INVALID_TRANSACTION = -22;
public const int ERR_USER_MAXIMUM_OID_NUMBER_EXCEEDED = -21;
public const int ERR_USER_NAME_ALREADY_USED = -202;
public const int ERR_USER_NAMED_OBJECT_NOT_FOUND = -205;
public const int ERR_USER_NOT_AUTHORIZED_TO_CONNECT = -12;
public const int ERR_USER_NOT_NOTIFICATION = -71;
public const int ERR_USER_NOTIFICATION_NOT_RUNNING = -74;
public const int ERR_USER_NOTIFICATION_RUNNING = -73;
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public const int ERR_USER_OBJECT_ALREADY_NAMED = -201;
public const int ERR_USER_OBJECT_CREATION_ERROR = -18;
public const int ERR_USER_OBJECT_LOST = -47;
public const int ERR_USER_OBJECT_NOT_IN_NOTIFICATION = -75;
public const int ERR_USER_PID_NOT_AVAILABLE = -48;
public const int ERR_USER_PREPARE_NAME_REQUEST = -80;
public const int ERR_USER_PREPARE_TOP_TRANSACTION = -49;
public const int ERR_USER_PROCESS_ALREADY_EXITING = -51;
public const int ERR_USER_PROCESS_CREATION_ERROR = -19;
public const int ERR_USER_PROCESS_STATE = -54;
public const int ERR_USER_PROCESS_TERMINATED = -55;
public const int ERR_USER_READ_TEST_NOTIFICATION = -68;
public const int ERR_USER_SIGNAL_REMOTE_PROCESS = -52;
public const int ERR_USER_STRATEGY_INCONSISTENCY = -53;
public const int ERR_USER_SUPERUSER = -81;
public const int ERR_USER_TRANSACTION_CREATION_ERROR = -20;
public const int ERR_USER_TRANSACTION_IS_PREPARED = -50;
public const int ERR_USER_TRANSACTION_NOT_RUNNING = -57;
public const int ERR_USER_TX_IS_ALREADY_ABORTED = -13;
public const int ERR_USER_UNAUTHORIZED_OBJECT_ACCESS = -58;
public const int ERR_USER_UNKNOWN_INTERNET_ADDRESS = -59;
public const int ERR_USER_UNSUPPORTED_DATA_TRANSLATION = -26;
public const int ERR_USER_USER_NOT_TRUSTED = -11;
public const int ERR_USER_WRITE_NOTIFICATION = -67;
public const int ERR_USER_WRITE_PID = -60;
public const int ERR_USER_WRONG_ARGUMENT = -28;
public const int ERR_USER_WRONG_DATA = -61;
public const int ERR_USER_WRONG_PROCESS_DEPENDENCY_TYPE = -62;
public const int ERR_USER_ZERO_OID = -64;
public const int ERR_USER_ZERO_PID = -63;
public const int ERR_WRITE = -4;
public const int ERR_WRONG_BOOT_PARAMETER = -70;
public const int TIMEOUT = -100;

}

A.14 CorsoDataException Class
public class CorsoDataException : CorsoException
{
// Methods
public CorsoDataException();
public override string ToString();

}

A.15 CorsoReadException Class
public class CorsoReadException : CorsoException
{
// Methods
public CorsoReadException();

}

A.16 CorsoWriteException Class
public class CorsoWriteException : CorsoException
{
// Methods
public CorsoWriteException();

}
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A.17 CorsoTimeoutException Class
public class CorsoTimeoutException : CorsoException
{

// Methods
public CorsoTimeoutException(int msg, bool convertFromMsgTag);
public int MessageCode();
public override string ToString();

// Fields
public const int C_COMMIT_TX = -9;
public const int COMMIT_TX = -7;
public const int CONSUME = -17;
public const int GET_NAMED_CONST_OID = -16;
public const int GET_NAMED_VAR_OID = -15;
public const int NOTIFICATION_ADD = -4;
public const int NOTIFICATION_REMOVE = -5;
public const int NOTIFICATION_START = -6;
public const int PREPARE_TX = -11;
public const int PROCESS_END = -3;
public const int READ = -1;
public const int TEST_CONST = -13;
public const int TEST_VAR = -14;
public const int TRY_C_COMMIT_TX = -10;
public const int TRY_COMMIT_TX = -8;
public const int TRY_PREPARE_TX = -12;
public const int WRITE = -2;

}

A.18 CorsoTransactionException Class
public class CorsoTransactionException : CorsoException
{

// Methods
public CorsoTransactionException();

}

A.19 CorsoTransFailInfo Class
public class CorsoTransFailInfo
{

// Methods
public int FailureType();
public string FailureTypeToString();
public int RequestCommandTag();
public string RequestCommandTagToString();
public CorsoConstOid RequestConstOid();
public int RequestNr();
public int RequestOidType();
public CorsoConstOid RequestPid();
public CorsoTransaction RequestTx();
public CorsoVarOid RequestVarOid();
public override string ToString();

// Fields
public const int DEPENDENT_SUBPROCESS_ABORTED = -4;
public const int DUPLICATE_WRITE = -15;
public const int DUPLICATE_WRITE_IN_SUBTRANSACTION = -11;
public const int ILLEGAL_TRANSACTION_STATE = -14;
public const int MAIN_COPY_OF_OBJECT_NOT_AVAILABLE = -17;
public const int NO_DIAGNOSIS = -1;
public const int OBJECT_LOST = -16;
public const int OBJECT_REQUEST_FAILED = -7;
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public const int OPEN_SUBTRANSACTION = -18;
public const int READ_VAR_FAILED = 5;
public const int READ_VAR_WITHOUT_TIMEOUT_FAILED = 6;
public const int REGISTER_FAILED = -20;
public const int REQUEST_NOT_AVAILABLE = 0;
public const int STRATEGY_INCONSISTENCY = -8;
public const int SUBTRANSACTION_ABORTED = -2;
public const int SUBTRANSACTION_START_FAILED = 7;
public const int TEST_CONST_FAILED = 1;
public const int TEST_VAR_FAILED = 2;
public const int TRANS_TIMEOUT = -19;
public const int TTR_STRATEGY_INCONSISTENCY = -9;
public const int UNREGISTER_FAILED = -21;
public const int WRITE_CONST_FAILED = 3;
public const int WRITE_VAR_FAILED = 4;

}
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Appendix B

SpaceMap Data Structure

In the course of XVSM's development and conception, a complete distributed
hash-based key-value container (a hash map) was created in C# as a proto-
type for XVSM's advanced core-supported coordination types. This so-called
SpaceMap was implemented on top of the CORSO space-based middleware and
its .NET &Co language binding.

Figure B.1 shows a diagram illustrating the structure of the SpaceMap imple-
mentation and its most important classes in a simpli�ed form. Programmers use
instances of the SpaceMap via the static factory class SpaceMapFactory, which
allows maps to be newly created, looked up, and looked up or created (cf. the
SpaceObjectFactory class from chapter 5). The factory provides the caller with
an instance of the generic SpaceMap<TKey, TValue> class, which constitutes
the public interface of SpaceMap.

The SpaceMap<> class provides typical collection-like methods for adding new
items, checking whether the map contains a certain item, getting the value
associated with a key, etc. In order to be synchronized with the space (in a
space transaction), the class supports methods for refreshing and persisting the
SpaceMap from and to the space, and it also has two noti�cation events that get
�red when the SpaceMap or its elements change, no matter whether the change
occurred locally or somewhere else on the network.

Internally, SpaceMap<> indirectly delegates to a low-level class called Hashta-
bleStructure<>, which represents the shareable data dictionary actually stored
within the space, providing space serialization methods and functionality op-
erating on one local deserialized instance of the SpaceMap. It is is wrapped
by a HashtableStructureWrapper<> class, which implements higher-level func-
tionality the actual SpaceMap<> class can build upon, such as �nding the key
or value space objects for given key data. In addition, the wrapper holds the
CORSO OID object identifying the SpaceMap object in the space and is con-
�gured with the replication strategies to be used for map key and value data.
By wrapping the map manipulation methods of the structure class with calls
to Refresh and Persist, it implements higher-level operations and causes the
structure to always be synchronized with the space.

221
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To implement the noti�cation events, the wrapper holds a reference to a Not-
�cationListener class (cf. chapter 5), which handles threading and CORSO
noti�cation management.

«property» +Count() : int
«property» +Keys() : ICollection<TKey>
«property» +Values() : ICollection<TValue>
«property» +Item(in key : TKey) : TValue
+Add(in key : TKey, in value : TValue)
+Remove(in key : TKey)
+Clear()
+Contains() : bool
+Refresh(in tx : Transaction)
+Persist(in tx : Transaction)

«event» +ElementChanged
«event» +SpaceMapChanged

SpaceMap

TKey, TValue

+FindKeyOid(in key : TKey) : CorsoVarOid
+FindValueOid(in key : TKey) : CorsoVarOid
+Add(in key : TKey, in value : TValue)
+Remove(in key : TKey)
+Clear()
+Contains() : bool
+GetCount() : int
+GetKeys() : ICollection<TKey>
+GetValues() : ICollection<TValue>
+Refresh(in tx : Transaction)
+Persist(in tx : Transaction)

«event» +ElementChanged
«event» +HashtableChanged

HashtableStructureWrapper

TKey, TValue

-internalStructure

1

+Read(in data : CorsoData)
+Write(in data : CorsoData)
+LocalAdd(in key : TKey, in value : TValue)
+LocalRemove(in key : TKey)
+LocalClear()
+LocalContains() : bool
+LocalGetCount() : int
+LocalGetKeys() : ICollection<TKey>
+LocalGetValues() : ICollection<TValue>

-map : Dictionary<TKey, TValue>

HashtableStructure

TKey, TValue

+Read(in data : CorsoData)
+Write(in data : CorsoData)

«interface»
CorsoShareable

+ReadShareable(in shareable : CorsoShareable, in timeout : int, in tx : Transaction)
+WriteShareable(in shareable : CorsoShareable, in tx : Transaction)

CorsoVarOid

-internalStructure1

-structureOid1

+Start()
+Stop()
+AddItem(in oid : CorsoVarOid)
+RemoveItem(in oid : CorsoVarOid)

«event» +Notified

NotificationListener

-listener1

+Create<TKey, TValue>(in name : string) : SpaceMap<TKey, TValue>
+Lookup<TKey, TValue>(in name : string) : SpaceMap<TKey, TValue>
+CreateOrLookup<TKey, TValue>(in name : string) : SpaceMap<TKey, TValue>

SpaceMapFactory

creates

Figure B.1: SpaceMap class diagram

The following section contains the public API of the SpaceMap, automatically
generated with the free Re�ector .NET tool. The SpaceMap's full source code
is too long to be included in this thesis, but it can be obtained from the author
on request.
public class SpaceMap<TKey, TValue> : IDictionary<TKey, TValue>,
ICollection<KeyValuePair<TKey, TValue>>, IEnumerable<KeyValuePair<TKey,
TValue>>, IEnumerable

{
// Events
public event ElementChangedEventHandler<TKey, TValue> ElementChanged;
public event SpaceMapChangedEventHandler<TKey, TValue> SpaceMapChanged;

// Methods
public SpaceMap(Connection connection, CorsoVarOid mapOid);
public void Add(KeyValuePair<TKey, TValue> item);
public void Add(KeyValuePair<TKey, TValue> item, Transaction tx);
public void Add(TKey key, TValue value);
public void Add(TKey key, TValue value, Transaction tx);
public bool AddAndWait(TKey key, out TValue value, TimeSpan timeout);
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public void AddLink<TKey1, TValue1>(string name, SpaceMap<TKey1, TValue1>
linkedMap);

public IEnumerable<KeyValuePair<TKey, TValue>> AsEnumerable(Transaction tx);
public void Clear();
public void Clear(Transaction tx);
public bool Contains(KeyValuePair<TKey, TValue> item);
public bool Contains(KeyValuePair<TKey, TValue> item, Transaction tx);
public bool ContainsKey(TKey key);
public bool ContainsKey(TKey key, Transaction tx);
public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex);
public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex,
Transaction tx);

public void Delete();
public void ForAll(ElementAction<TKey, TValue> action, Transaction tx);
public void ForAllRead(ElementAction<TKey, TValue> readAction);
public void ForAllWrite(ElementAction<TKey, TValue> action);
public bool GetAndWait(TKey key, out TValue value, TimeSpan timeout);
public int GetCount(Transaction tx);
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator();
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator(Transaction
tx);

public ICollection<TKey> GetKeys(Transaction tx);
public SpaceMap<TKey1, TValue1> GetLink<TKey1, TValue1>(string name);
public ICollection<TValue> GetValues(Transaction tx);
private void ImmediateRefresh(CorsoData data);
private void internalStructure_ElementChanged(CorsoVarOid valueOid,
CorsoData valueData);

private void internalStructure_HashtableChanged();
private void OnElementChanged(ElementChangedEventArgs<TKey, TValue> args);
private void OnSpaceMapChanged();
public void Persist(Transaction tx);
public void Refresh();
public void Refresh(Transaction tx);
public bool Remove(KeyValuePair<TKey, TValue> item);
public bool Remove(TKey key);
public bool Remove(TKey key, Transaction tx);
public bool Remove(KeyValuePair<TKey, TValue> item, Transaction tx);
IEnumerator IEnumerable.GetEnumerator();
public bool TryGetValue(TKey key, out TValue value);
public bool TryGetValue(TKey key, out TValue value, Transaction tx);

// Properties
public Connection Connection { get; }
public int Count { get; }
public bool IsReadOnly { get; }
public TValue this[TKey key, Transaction tx] { get; set; }
public TValue this[TKey key] { get; set; }
public ICollection<TKey> Keys { get; }
public IEnumerable<string> Links { get; }
public ISynchronizeInvoke SynchronizeInvoke { get; set; }
public ICollection<TValue> Values { get; }

// Fields
private ElementChangedEventHandler<TKey, TValue> ElementChanged;
private HashtableStructureWrapper<TKey, TValue> internalStructure;
private object monitor;
private SpaceMapChangedEventHandler<TKey, TValue> SpaceMapChanged;
private ISynchronizeInvoke synchronizeInvoke;

// Nested Types
public delegate void ElementAction(TKey key, TValue value);

public class ElementChangedEventArgs
{

// Methods
internal ElementChangedEventArgs(SpaceMap<TKey, TValue> map,
CorsoVarOid valueOid, CorsoData valueData);

public TKey GetKey();
public TKey GetKey(Transaction tx);
private CorsoVarOid GetKeyOid(Transaction tx);
public TValue GetValue();
public TValue GetValue(Transaction tx);

// Fields
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private CorsoVarOid keyOid;
public readonly SpaceMap<TKey, TValue> Map;
private CorsoData valueData;
private CorsoVarOid valueOid;

}

public delegate void ElementChangedEventHandler(SpaceMap<TKey, TValue>
sender, SpaceMap<TKey, TValue>.ElementChangedEventArgs args);

public delegate void SpaceMapChangedEventHandler(SpaceMap<TKey, TValue>
map);

}

Listing B.1: SpaceMap's public interface



Glossary

.NET Base Class Library the class library coming with the .NET plat-
form, 27

.NET platform an environment for object-oriented computer
applications which are executed (�managed�, as
opposed to �unmanaged� or �native� applica-
tions) by an execution environment as de�ned
by the Common Language Infrastructure speci-
�cation, 27

adoptability the property of a tool being easy to integrate
into an existing system or development process,
58

advice a piece of code executed by an aspect at a spe-
ci�c set of join points, 34

annotation a descriptive item declaratively attached to a
program element, 27

AO-DCL Aspect-Oriented Distributed Concern Library,
a library of declaratively applicable, cleanly
encapsulated cross-cutting concerns of space-
based computing, 111

AOP Aspect-Oriented Programming, a new software
development paradigm allowing cross-cutting
concerns to be cleanly encapsulated, 31

AOP infrastructure a platform, toolkit, or framework providing a
weaving mechanism for building an AOP tool,
37

API application programming interface, 22
aspect an entity of modularization for a cross-cutting

concern, similar as a class is an entity of modu-
larization for a functional concern, 32

aspect language the feature set of an aspect-oriented tool and the
programming mechanisms provided to make use
of this feature set, 60

AspectJ a very mature AOP tool for the Java platform,
33

augmenting weaving the act of combining aspects and classes by ex-
tending their in-memory form via re�ective ac-
cess, 37
225
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C# an object-oriented programming language cre-
ated for the .NET platform, 27

CLI Common Language Infrastructure, the speci�ca-
tion de�ning the .NET platform, 27

CLR Common Language Runtime, an implementa-
tion of the Common Language Infrastructure by
the Microsoft Corporation, 27

concern a software requirement, 25
CORSO Coordinated Shared Objects, a space-based mid-

dleware extending the original tuple spaces con-
cept, 17

CORSO constant object a CORSO data object that can be written only
once, 18

CORSO data bu�er a bu�er receiving serialized data when an object
is written to the space and holding deserialized
data when an object is read from the space, 23

CORSO shareable object an object which can be serialized to the CORSO
space because it implements the CorsoShareable
interface, 23

CORSO strategy the combination of reliability and replication
�ags for a CORSO data object, 23

CORSO variable object a CORSO data object that can be written mul-
tiple times, 18

cross-cutting concern a requirement to an application whose imple-
mentation cannot be cleanly encapsulated by
traditional (i.e. procedural or object-oriented)
modularization mechanism but instead couples
several otherwise unrelated modules, 25

custom attribute a descriptive item declaratively attached to a
program element such as a class, method, �eld,
etc., 27

custom attribute class the class de�ning a new kind of custom at-
tribute, 28

custom attributes an implementation of extensible metadata on
the .NET platform, 27

declarative programming a form of programming where the developer de-
scribes an application's goals rather than speci-
fying the exact algorithms to reach them, 5

deserialization the process of restoring an object's state from a
persistable form, 23

dynamic weaving another name for runtime weaving, 38

eager replication a �ag in the PRdeep protocol indicating that
changes committed to a space object should be
replicated to other processes as fast as possible,
21
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extensibility the property of a tool allowing new concerns to
be integrated even though they were not consid-
ered at the tool's design time, 57

extensible metadata a concept allowing to attach programmer-
de�ned descriptive information to the source
code elements of a program, 27

factory a class, object, or method used for creating (and
usually con�guring) new object instances, 58

IL (Common) Intermediate Language, a standard-
ized (virtual) machine language which computer
programs targeting the .NET platform are com-
piled to, 37

imperative programming a style of programming where the developer
gives step-by-step instructions, implementing
algorithms to solve the application's goals, 5

inter-type declaration another name for the introduction concept, 35
interception the act of stopping a program's execution at a

certain point, allowing speci�c interception han-
dling code to be executed and to decide how and
whether to go on with executing the intercepted
code, 36

intermediate code weaving the act of combining aspects and classes in an
intermediate code form, 37

introducer a nested class or �eld of an aspect implementing
an interface which is added to the static struc-
ture of a target class by means of introduction,
82

introduction the mechanism allowing an aspect to change the
static structure of a class, 35

JavaSpaces a recent implementation of the Linda concept,
16

join point a point during the dynamic execution of an ap-
plication where an aspect can in�uence the pro-
gram, 32

join point model the set of join point kinds supported by an AOP
tool, 38

language binding the API necessary to access a middleware from
a given programming language, 22

lazy replication a �ag in the PRdeep protocol indicating that
changes committed to a space object should be
replicated to other processes only on demand,
21

LCG Lightweight Code Generation, a mechanism for
generating methods at runtime and attaching
them to any existing type, 49
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light weight the property of a tool having minimal impact
on a system, 57

Linda the original formulation and implementation of
tuple spaces, 13

load-time weaving the act of combining aspects and classes just as
they are loaded into memory, 38

noti�cation a mechanism for informing processes about
changes conducted to a space object in near real-
time, 22

object-oriented programming a way of imperative programming where the de-
veloper encapsulates related data (�elds) and
functionality (methods) into distinct modules
(objects/classes), providing mechanisms such as
object referencing, subclassing, method overrid-
ing, and polymorphism for building large appli-
cations, 6

obliviousness the property of a programmer not being (or not
needing to be) aware of what cross-cutting con-
cerns a�ect a class, or the property of a class
not being speci�cally designed to allow for cross-
cutting concerns to a�ect it, 35

OID object identi�er, an opaque value referencing a
data object in the CORSO space, 18

orthogonal concern a requirement that has no side-e�ects (in con-
cept) on the functional requirements of an appli-
cation; in implementation, these often cross-cut
object-oriented designs, 25

pointcut a mechanism for selecting a subset of the join
points existing in an application, 34

PRdeep the replication protocol used by CORSO, 20
primary copy the main replica of a CORSO object in the

PRdeep protocol, 20
primary copy migration the act of transferring the status of primary copy

from one replica of a CORSO object to another
one, necessary for CORSO's transaction han-
dling mechanism, 20

quanti�cation the possibility of declaratively selecting a set
of execution points during an application's exe-
cution without needing to imperatively execute
code at these points, 35

re�ection a mechanism for inspecting the internals of any
object at runtime, without the object providing
explicit support for this, 83
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reliable0, reliable1, reliable2 the di�erent persistence levels supported by the
CORSO middleware, 22

runtime weaving the act of combining aspects and classes after
they have been loaded into memory, while the
application is executing, 38

serialization the process of extracting an object's state into
a persistable form, 23

source code annotations an implementation of extensible metadata on
the Java platform, 29

source code weaving the act of combining aspects and classes in
source code form, 37

space a virtual memory shared by di�erent processes
for communication and coordination purposes,
13

SpaceMap a distributed key-value container for the space,
221

static weaving the act of combining aspects and classes before
they are loaded into memory, 38

subclass proxy an AOP infrastructure mechanism where an in-
stance of a class is substituted by an instance of
a subclass which contains code allowing aspects
to a�ect the class, 43

target code the code a�ected by an aspect, 33
target object an object a�ected by an aspect, 33
transaction a mechanism for combining multiple operations

into a single atomic and isolated action with
consistent and durable results, 19

tuple a �nite, structured sequence of heterogeneous
data, 13

tuple space a tuple store shared by di�erent processes for
communication and coordination purposes, 13

weaving the process of combining aspects and classes into
one executable program, 32

XL-AOF Extensible Lightweight Aspect-Oriented Frame-
work, an aspect-oriented toolkit speci�cally
aimed at space-based computing and adoptabil-
ity, 57

XVSM Extensible Virtual Shared Memory, a new,
sophisticated space-based network abstraction
layer, successor to CORSO, 24

XVSM container a referenceable data object in the XVSM space
holding data values, 24
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