
Applying Aspect-Orientation to the Model-Driven
Development of Ubiquitous Web Applications

Conducted for the purpose of receiving the academic title
‘Doktorin der Sozial- und Wirtschaftswissenschaften’

Supervisors

Co-Supervisor

o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel
Institute of Software Technology and Interactive Systems

Vienna University of Technology

Mag. Dr. Wieland Schwinger, MSc
Department of Telecooperation
Johannes Kepler University Linz

a.Univ.-Prof. Mag. Dr. Werner Retschitzegger
Institute of Bioinformatics

Johannes Kepler University Linz

Submitted to the
Vienna University of Technology

Faculty of Informatics
by

Andrea Schauerhuber
0026186

Pfarrgasse 13
3462 Absdorf

Vienna, October 22nd, 2007

PhD Thesis

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

To all that are dear to me.

ii

Danksagung

An dieser Stelle möchte ich mich ganz herzlich bei jenen bedanken, die zum Gelingen dieser
Arbeit beigetragen haben.
Allen voran ein besonderes Danke an meine BetreuerInnen Gerti Kappel, Werner Retschitzegger
und Wieland Schwinger. Ohne ihre Führung, den Ansporn durch intensive Diskussionen & kri-
tische Anmerkungen, und ihren Zuspruch während so mancher Durststrecke wäre diese Arbeit
wohl nicht zustande gekommen.
Ich möchte mich auch besonders bei meinem Kollegen Manuel Wimmer bedanken, der mir jed-
erzeit als aktiver und kritischer Diskussionspartner zur Verfügung stand und mit dem ich eine
spannende Zusammenarbeit bei gemeinsamen Publikationen aber auch in der Lehre erfahren
konnte.
Vielen Dank auch an Cornelia Tomasek und Gerhard Preisinger, die im Rahmen ihrer Diplomar-
beiten mit der Implementierung des aspectWebML Modeling Environments zu dieser Arbeit beige-
tragen haben.
Für ein nettes Arbeitsklima und für ihre Freundschaft bedanke ich mich bei allen KollegInnen des
Wissenschafterinnenkollegs Internettechnologien und der Business Informatics Group.
Ganz besonders möchte ich mich auch bei meinen Eltern Julius und Brigitte, und bei meinen
Geschwistern Julia, Olivia, Lukas, Nora und Laura, für ihre Unterstützung und ihren Zuspruch
in schwierigen Zeiten bedanken.
Nicht zuletzt ein liebevolles Dankeschön an Jürgen Flandofer für seine Geduld, sein Verständnis
und für seine unglaubliche Unterstützung, die es mir erlaubt hat besonders in der letzten Phase
mich voll und ganz meiner Dissertation widmen zu können.

iii

iv

Eidestattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation selbständig verfasst, an-
dere als die angegebenen Quellen und Hilfsmittel nicht benutzt und die aus anderen Quellen
entnommenen Stellen als solche gekennzeichnet habe. Diese Dissertation habe ich bisher weder
im Inland noch im Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt.

Wien, 22. Oktober 2007

v

vi

Abstract

Ubiquitous web applications (UWA) are a new type of web applications which are accessed in
various contexts, i.e., through different devices, by users with various interests, at anytime from
anyplace around the globe. In this respect, customization functionality exploits information on this
context of use in order to adapt the application’s services accordingly. In web application develop-
ment, customization is considered a new dimension which increases complexity by ”crosscutting”
the content, hypertext, and presentation levels of a web application. Hence, from a software en-
gineering point of view, a systematic development of UWAs on the basis of models is crucial. In
model-driven engineering (MDE), models are employed ”as programs” to (semi-) automatically
generate applications, which results in more efficient development processes as well as better
maintainability and evolution of software. Customization functionality, however, is typically in-
termingled with the core functionality in a web application model, having a negative effect on
understandability, reuse, maintenance and evolution. The aspect-orientation paradigm provides a
new way of modularizing crosscutting concerns such as customization within so-called aspects, as
well as the necessary means for composing the previously separated concerns in order to obtain the
complete application model. There are already some web modeling approaches dealing with the
ubiquitous nature of web applications, amongst them, first proposals to use aspect-orientation.
Nevertheless, these approaches suffer from the following problems: First, they don’t consider the
crosscutting nature of customization comprehensively, but for the hypertext level, only. Second,
just very basic aspect-oriented modeling (AOM) concepts are used, resulting in less powerful
mechanisms for separating customization. Third, composition of concerns is not regarded for the
modeling level. And fourth, model-driven development of UWAs in the sense of MDE is still
limited due to missing metamodel specifications and lack of tool support.

The overall aim of this thesis is the exhaustive use of aspect-orientation as driving paradigm
for comprehensively modeling customization aspect separately from all web application levels as
well as providing means for composing the aspect with the web application model. Therefore,
this thesis proposes the aspectUWA approach, which suggests a generic framework for extending
existing web modeling languages with AOM concepts within the realms of MDE. In the context
of this thesis, aspectUWA is applied to the web modeling language WebML, which doesn’t allow to
separately model customization. The major contributions of this thesis are as follows: (i) A Con-
ceptual Reference Model (CRM) for AOM has been developed to form the aforementioned general
framework. (ii) A metamodel for WebML has been semi-automatically generated from an existing
DTD-based language specification in order to allow for MDE. (iii) The aspectWebML language has
been desiged on basis of the CRM and represents WebML’s port to AOM allowing for model-
ing customization separately as well as for composing the customization aspect with the rest of
the web application model. (iv) An initial set of guidelines to be used for modeling customization
within aspectWebML is proposed. And (v), the aspectWebML Modeling Environment provides the
often missing tool support for modeling crosscutting concerns as well as their composition.

vii

viii

Kurzfassung

Ubiquitäre Web-Anwendungen (UWA) stellen speziell auf die aktuelle Situation angepasste In-
formationen und Dienste zur Verfügung. Diese Anpassung an den aktuellen Kontext, z.B. an
verschiedene Endgeräte, Benutzer mit diversen Interessen, deren Aufenthaltsort sowie zeitliche
Aspekte, wird als Customization Funktionalität bezeichnet. Die Entwicklung einer UWA unter
Berücksichtigung von Customization, die sich quer durch die Kontent-, Hypertext- und Präsenta-
tions-Ebenen einer Web-Anwendung zieht, gestaltet sich jedoch äußerst komplex und bedarf
einer systematischen Entwicklung auf Basis von Modellen im Sinne des Model-driven Engineer-
ings (MDE). Dabei verspricht MDE effizientere Entwicklungsprozesse sowie bessere Wartbarkeit
und Weiterentwicklung von Software durch die semi-automatische Generierung von Software
aus Modellen. Im Modell einer Web-Anwendung ist Customization jedoch inhärent mit der Kern-
funktionalität vermischt und behindert dadurch die Verständlichkeit, Wiederverwendbarkeit, Wa-
rtbarkeit und Weiterentwicklung. Die Aspekt-Orientierung bietet dafür einerseits neue Konzepte
um Querschnittsfunktionalität wie Customization in sogenannten Aspekten zu modularisieren und
andererseits die notwendigen Mechanismen für die Integration dieser separierten Funktionalitäten,
um ein verwendbares Gesamtmodell zu erhalten. Einige wenige Web Modellierungssprachen un-
terstützen bereits die aspekt-orientierte Modellierung (AOM) von Customization jedoch mit fol-
genden Restriktionen: Erstens wird Customization nur für die Hypertext-Ebene, getrennt von der
Kernfunktionalität der Web-Anwendung behandelt. Zweitens werden nur wenige grundlegende
Konzepte der AOM eingesetzt, was in limitierten Mechanismen zur Trennung von Customization
resultiert. Drittens, wird die spätere Integration der Aspekte in Modelle nicht unterstützt. Und
viertens ist die model-getriebene Entwicklung einer UWA im Sinne von MDE aufgrund fehlender
Metamodell-Spezifikationen und Werkzeugunterstützung oft nicht möglich.

Das Ziel der vorliegenden Dissertation ist der umfassende Einsatz von AOM Konzepten, um
einerseits den Customization Aspekt auf allen Ebenen einer Web-Anwendung getrennt model-
lieren und andererseits den Aspekt auch wieder mit der Kernfunktionalität integrieren zu können.
Als Lösung wird der aspectUWA Ansatz vorgestellt, welcher die Erweiterung existierender Web
Modellierungssprachen um AOM Konzepte auf Basis eines generischen Rahmenwerks disku-
tiert. Die Anwendung des aspectUWA Ansatz wir anhand der Web Modellierungssprache WebML
gezeigt. Dabei sind die wesentlichen Beiträge dieser Dissertation: (i) Das sogenannte Conceptual
Reference Model als generisches Rahmenwerk für die Erweiterung von Web Modellierungsprachen
um aspekt-orientierte Modellierungskonzepte. (ii) Eine Metamodell-Spezifikation für WebML, welche
semi-automatisch aus einer existierenden Sprachspezifikation auf Basis von DTDs entwickelt wu-
rde. (iii) Die aspectWebML Sprache, die auf dem konzeptuellen Referenzmodell und dem WebML
Metamodell aufbauend entwickelt wurde und die Modellierung von Aspekten als auch deren In-
tegration unterstützt. (iv) Richtlinien für die Modellierung von Customization mit aspectWebML.
Und (v) die aspectWebML Entwicklungsumgebung als Werkzeugunterstützung für die Modellierung
und Integration von Aspekten mit aspectWebML.

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Ubiquitous Web Applications . 1
1.1.2 Model-driven Development of Ubiquitous Web Applications 3

1.1.2.1 Dimensions of Ubiquitous Web Application Development 3
1.1.2.2 Role of Models in Model-Driven Web Engineering 4
1.1.2.3 Customization Modeling . 4

1.2 Addressing Crosscutting Concerns With Aspect-Orientation 7
1.3 The aspectUWA Solution at a Glance . 9

1.3.1 Goals of This Thesis . 9
1.3.2 Methodology - A Roadmap to aspectWebML 9

1.4 Contributions of This Thesis . 11
1.5 Thesis Outline . 12

2 On Model-driven Development of Ubiquitous Web Applications 15
2.1 Evaluation Set-Up . 16

2.1.1 Selection of Approaches . 16
2.1.2 Catalogue of Evaluation Criteria . 16

2.1.2.1 Maturity . 17
2.1.2.2 Web Modeling . 18
2.1.2.3 Customization Modeling . 18
2.1.2.4 Model-Driven Engineering . 20
2.1.2.5 Tool Support . 20

2.1.3 Modeling Example: A Tourism Information Web Application 21
2.1.3.1 Motivation . 21
2.1.3.2 Core Functionalities . 22
2.1.3.3 Customization Scenarios . 24

2.2 Comparison of Approaches . 24
2.2.1 The Web Modeling Language (WebML), Ceri et al. 24
2.2.2 The Hera Design Methodology, Houben et al. 30
2.2.3 The Web Site Design Method (WSDM), De Troyer et al. 35
2.2.4 The Object-Oriented Hypermedia Design Model (OOHDM), Rossi et al. . . 39
2.2.5 The UML-based Web Engineering Approach (UWE), Koch et al. 43
2.2.6 The Object-Oriented Hypermedia Method (OO-H), Gomez et al. 46
2.2.7 The Object-Oriented Web Solution Approach (OOWS), Pastor et al. 53

2.3 Lessons Learned . 56
2.3.1 Maturity . 57

xi

2.3.2 Web Modeling . 58
2.3.3 Customization Modeling . 59
2.3.4 Model-driven Engineering Criteria . 61
2.3.5 Tool Support . 61

2.4 Related Surveys . 63
2.4.1 Customization Modeling Surveys . 63
2.4.2 Web Modeling Surveys . 64

2.5 Summary . 65

3 State-of-the-art in Aspect-oriented Modeling 67
3.1 The Conceptual Reference Model for Aspect-Oriented Modeling 68

3.1.1 ConcernComposition . 69
3.1.2 AsymmetricConcernComposition . 72

3.1.2.1 AspectualSubject . 72
3.1.2.2 AspectualKind. 74

3.1.3 SymmetricConcernComposition . 75
3.1.4 Language . 76

3.2 Evaluation Set-Up . 76
3.2.1 Selection of Approaches . 76
3.2.2 Catalogue of Evaluation Criteria . 77

3.2.2.1 Language . 79
3.2.2.2 ConcernComposition . 81
3.2.2.3 AsymmetricConcernComposition 82
3.2.2.4 SymmetricConcernComposition . 84
3.2.2.5 Maturity . 85
3.2.2.6 Tool Support . 86

3.2.3 Modeling Example: The Observer Pattern Applied to a Library Manage-
ment System . 86
3.2.3.1 Motivation . 86
3.2.3.2 An Example Library Management System 86
3.2.3.3 The Observer Pattern . 87
3.2.3.4 Limitations of the Running Example 88

3.3 Comparison of Approaches . 88
3.3.1 The Aspect-Oriented Design Model, Stein et al. 89
3.3.2 The JAC Design Notation, Pawlak et al. 92
3.3.3 Aspect-Oriented Software Development with Use Cases, Jacobson et al. . . 94
3.3.4 Behavioral Aspect Weaving with the Approach, Klein et al. 96
3.3.5 The Motorola Weavr Approach, Cottenier et al. 99
3.3.6 The AOSD Profile, Aldawud et al. 101
3.3.7 The Theme/UML Approach, Clarke et al. 103
3.3.8 Aspect-Oriented Architecture Models, France et al. 106

3.4 Lessons Learned . 111
3.4.1 Language . 111
3.4.2 ConcernComposition . 113
3.4.3 AsymmetricConcernComposition . 114

3.4.3.1 AspectualSubject . 114

xii

3.4.3.2 AspectualKind . 116
3.4.4 SymmetricConcernComposition . 117
3.4.5 Maturity . 118
3.4.6 Tool Support . 118
3.4.7 General Findings . 119

3.5 Related Surveys . 120
3.5.1 Aspect-Oriented Modeling Surveys . 121
3.5.2 Aspect-Oriented Programming Surveys . 122

3.6 Summary . 123

4 Bridging WebML to Model-driven Engineering 125
4.1 Motivation . 126
4.2 DTDs and Ecore at a Glance . 127

4.2.1 Document Type Definition (DTD) Concepts 128
4.2.2 MOF Concepts in Terms of Ecore . 129
4.2.3 DTD Deficiencies . 130

4.2.3.1 Limited Set of Data Types . 130
4.2.3.2 Unknown Referenced Element Type(s) 130
4.2.3.3 No Bi-directional Associations . 131
4.2.3.4 Awkward Cardinalities . 131
4.2.3.5 Missing Role Concept . 131
4.2.3.6 Missing Inheritance Concept . 131
4.2.3.7 No Explicit Grouping Mechanism 131
4.2.3.8 Missing Constraint Mechanism . 131

4.3 A DTD to Ecore Transformation Framework . 132
4.3.1 Transformation Rules . 132

4.3.1.1 Rule 1 - Element Type . 134
4.3.1.2 Rule 1.1 - Content Particle Cardinality 134
4.3.1.3 Rule 2 - Attribute . 134
4.3.1.4 Rule 2.1 - Attribute Cardinality . 135
4.3.1.5 Rule 3 - XOR Containment References 135

4.3.2 Heuristics . 135
4.3.2.1 Heuristic 1 - IDREF(S) Resolution. 136
4.3.2.2 Heuristic 2 - Boolean Identification 137
4.3.2.3 Heuristic 3 - Grouping Mechanism 137
4.3.2.4 Heuristic 4 - Cardinalities Identification 138
4.3.2.5 Heuristic 5 - XOR Constraints Identification 138
4.3.2.6 Heuristic 6 - Inheritance Identification 139

4.3.3 Manual Validation and Refactoring of the Generated Metamodel 140
4.3.4 Implementation Architecture of the MetaModelGenerator 140

4.4 The Resulting WebML Metamodel . 141
4.4.1 Overall Package Structure . 142
4.4.2 Structure Package . 143
4.4.3 HypertextOrganization Package . 144
4.4.4 Hypertext Package . 145
4.4.5 ContentManagement Package . 148

xiii

4.4.6 AccessControl Package . 149
4.4.7 Basic Package . 149

4.5 Discussion of the Generated WebML Metamodel . 150
4.5.1 Completeness Criteria . 150
4.5.2 Quality Metrics . 151

4.6 Introducing Customization into the WebML Metamodel 153
4.6.1 Designing Ubiquitous Web Applications with WebML in a Nutshell 153
4.6.2 The Final WebML Metamodel . 155

4.7 Related Work . 157
4.7.1 Defining Meta-models for Web Modeling Languages 157
4.7.2 Transforming between DTDs and Meta-Models 158

4.8 Summary . 159

5 aspectWebML - Applying aspectUWA to WebML 161
5.1 On Using the Conceptual Reference Model for Bridging WebML to AOM 161
5.2 The aspectWebML Metamodel . 164

5.2.1 The ConcernComposition Package . 164
5.2.1.1 aspectWebMLModel . 165
5.2.1.2 ConcernModule . 166
5.2.1.3 ConcernCompositionRule . 166
5.2.1.4 CompositionPlan . 167
5.2.1.5 ConcernCompositionRuleSequence 167
5.2.1.6 ConcernModuleSequence . 168
5.2.1.7 ModuleRepository . 169
5.2.1.8 RuleRepository . 170

5.2.2 The AsymmetricConcernComposition Package 170
5.2.2.1 AsymmetricCompositionRule . 171
5.2.2.2 Aspect . 172
5.2.2.3 PointcutRepository . 172

5.2.3 The AspectualSubject Package . 173
5.2.3.1 JoinPoint . 173
5.2.3.2 Pointcut . 174
5.2.3.3 SimplePointcut . 174
5.2.3.4 CompositePointcut . 177

5.2.4 The AspectualKind Package . 178
5.2.4.1 Advice . 178
5.2.4.2 SimpleAdvice . 178
5.2.4.3 CompositeAdvice . 180

5.2.5 The SymmetricConcernComposition Package 181
5.3 Modeling and Composing Crosscutting Concerns with aspectWebML 182

5.3.1 An aspectWebML Primer . 182
5.3.1.1 Modeling Concerns with aspectWebML 182
5.3.1.2 Composing Concerns with the aspectWebML Composition Algo-

rithm . 185
5.3.2 The aspectWebML Composition Semantics in Detail 187

5.3.2.1 Enhancement AsymmetricCompositionRules 188

xiv

5.3.2.2 Replacement AsymmetricCompositionRules 193
5.3.2.3 Deletion AsymmetricCompositionRules 195
5.3.2.4 Processing AsymmetricCompositionRules 196

5.3.3 Supporting the Pointcut-Advice Composition Mechanism in aspectWebML 198
5.4 Summary . 200

6 The Context-Aware Museum Case Study 201
6.1 Introducing the Context-Aware Museum . 201

6.1.1 Motivation . 201
6.1.2 Overview . 203
6.1.3 The Context-Aware Museum Web Application’s Functional Requirements . 204

6.2 Designing the Context-Aware Museum with WebML 209
6.2.1 Content Model . 209
6.2.2 Public Siteview . 211

6.2.2.1 Customization Scenario Multi-Delivery 212
6.2.2.2 Customization Scenario Season’s Style 213
6.2.2.3 Customization Scenario Current News & Upcoming Events 214
6.2.2.4 Customization Scenario Location-Aware Tour 214
6.2.2.5 Customization Scenario Context-Dependent Access to Information 216
6.2.2.6 Customization Scenario Special Exhibits Recommendation 218
6.2.2.7 Customization Scenario Exhibits in Vicinity 219

6.2.3 Curator Siteview . 219
6.2.3.1 Customization Scenario Context-Aware Exhibit Management . . . 220

6.3 Designing the Context-Aware Museum with aspectWebML 221
6.3.1 The Content Model and the Context Model 221
6.3.2 The Public Siteview . 223

6.3.2.1 Customization Scenario Multi-Delivery 223
6.3.2.2 Customization Scenario Season’s Style 225
6.3.2.3 Customization Scenario Current News & Upcoming Events 226
6.3.2.4 Customization Scenario Location-Aware Tour 227
6.3.2.5 Customization Scenario Context-Dependent Access to Information 228
6.3.2.6 Customization Scenario Special Exhibits Recommendation 230
6.3.2.7 Customization Scenario Exhibits in Vicinity 232

6.3.3 The Curator Siteview . 234
6.3.3.1 Customization Scenario Context-Aware Exhibit Management . . . 234

6.3.4 The Customization Aspect . 236
6.4 Comparative Discussion . 239
6.5 Summary . 242

7 The aspectWebML Modeling Environment 243
7.1 Tailoring an EMF-based Editor to Support AOM . 243

7.1.1 Aspect-Oriented Modeling with the Cross References View 245
7.1.1.1 The ModelElement View Point . 246
7.1.1.2 The Aspect View Point . 247
7.1.1.3 The Advice View Point . 248
7.1.1.4 The Pointcut View Point . 248

xv

7.1.2 Defining OCL-based Pointcuts with the Console 249
7.1.3 Composing Concerns in the aspectWebML Modeling Environment 251

7.2 Towards Advanced Modeling Support for aspectWebML 252
7.2.1 The aspectWebML Workbench . 252
7.2.2 The Aspect Editor . 253
7.2.3 The Module Sequence Editor . 253
7.2.4 The Rule Sequence Editor . 254
7.2.5 The Advice Editor . 254

7.3 Towards Integrating the aspectWebML Modeling Environment with WebRatio . . 255
7.4 Summary . 255

8 Related Work to aspectWebML 257
8.1 UWE - ”Modelling Adaptivity with Aspects” . 257
8.2 Hera - ”A Semantics-based Aspect-Oriented Approach to Adaptation in Web Engi-

neering” . 260
8.3 General Approaches to AOM in the Web Modeling Domain 262

8.3.1 UWE - Modeling Access Control with Aspects 262
8.3.2 OOHDM - Modeling Volatile Functionality 263

8.4 Summary . 263

9 Conclusion 265
9.1 Summary of the Major Contributions of This Thesis 265
9.2 Current Limitations and Outlook . 268

9.2.1 Supporting Aspect Dependencies and Interactions 268
9.2.2 Providing for Asymmetric as well as Symmetric Composition 268
9.2.3 Designing an aspectWebML Development Process 269
9.2.4 Evaluating the Notation of aspectWebML . 270
9.2.5 A Graphical Integrated Development Environment for aspectWebML . . . 270
9.2.6 Model-Driven Engineering with aspectWebML 271
9.2.7 Integration of the aspectWebML Modeling Environment with WebRatio . . 271
9.2.8 Modeling Arbitrary Aspects in aspectWebML 272
9.2.9 Applying aspectUWA to Other Web Modeling Approaches 272

Bibliography 273

xvi

List of Figures

1.1 Categories of Web Applications in History [KPRR06] 2
1.2 Dimensions of Web Application Development [Sch01] 3
1.3 Customization Issues [Sch01] . 5
1.4 Customization as a Crosscutting Concern [Sch06a] 7

2.1 Overview on Web Modeling Approaches . 17
2.2 Use Cases of the Tourism Information Web Application 22
2.3 The Tiscover Start Page . 23
2.4 WebML: (a) Content Level, (b) Hypertext Level . 27
2.5 WebML: Customized Activities Scenario . 28
2.6 WebML: (a) Special Offers Scenario, (b) Administrator Links Scenario 29
2.7 WebML: (a) Multi-Delivery Scenario, (b) Season’s Style Scenario 30
2.8 Hera: (a) Conceptual Model, (b) Application Model 33
2.9 Hera: Presentation Model . 34
2.10 WSDM: The Booking Task CTT . 36
2.11 WSDM: Object Chunks at Content Level . 37
2.12 WSDM: The Navigation Model and the User Navigation Track 38
2.13 OOHDM: The Conceptual Model . 41
2.14 OOHDM: Customized Activities Scenario . 41
2.15 OOHDM: Administrator Links Scenario . 42
2.16 OOHDM: Navigational Class Schema . 43
2.17 UWE: (a) Conceptual Model, (b) User Model . 45
2.18 UWE: (a) Navigation Structure Model, (b) Administrator Links Scenario 46
2.19 OO-H: Conceptual Model and Context model . 48
2.20 OO-H: Navigation Access Diagram . 49
2.21 OO-H: Personalization Rules . 50
2.22 OOWS: The Structural Model . 54
2.23 OOWS: (a) Activity Diagram Show Activities, (b) Navigation Context Show Activities 55
2.24 OOWS: (a) Activity Diagram Book Hotel, (b) Navigation Context Book Hotel . . . 56

3.1 The Conceptual Reference Model for Aspect-Oriented Modeling 70
3.2 Categorization of Criteria . 78
3.3 The Library Management System with Observer Aspect. 87
3.4 The Observer Aspect, Stein et al. 90
3.5 Structural Advice, Stein et al. 92
3.6 The Observer Aspect, Pawlak et al. 93
3.7 The Observer Aspect, Jacobson et al. 95

xvii

3.8 The Observer Aspect, Klein et al. 97
3.9 The Composed Model, Klein et al. 98
3.10 The Observer Aspect, Cottenier et al. 100
3.11 The Observer Aspect, Aldawud et al. 102
3.12 The Observer’s Crosscutting Behavior, Aldawud et al. 103
3.13 The Observer Aspect, Clarke et al. 104
3.14 The Composed Model, Clarke et al. 106
3.15 The Observer Aspect Model, France et al. 107
3.16 The Context-Specific Aspect Model, France et al. 108
3.17 The Composed Model, France et al. 109
3.18 Weaving Aspectual Behavior With Sequence Diagrams, France et al. 110

4.1 Process of Designing the WebML Metamodel . 127
4.2 Interrelationships Between the Language Layers of DTD and MOF 127
4.3 Overview of Relevant DTD Language Concepts . 128
4.4 Overview of Relevant Ecore Language Concepts . 129
4.5 Two Phase Semi-Automatic Transformation Approach 132
4.6 Example of Applying the Transformation Rules (Step 1) 134
4.7 Rule 3 - XOR Containment References . 135
4.8 Example of Applying the Heuristics (Step 2) . 137
4.9 Heuristic 3 - Grouping Mechanism . 138
4.10 Heuristic 4 - Cardinalities Identification . 138
4.11 Heuristic 5 - XOR Constraints Identification . 139
4.12 Heuristic 6 - Inheritance Identification . 139
4.13 Example of Applying Manual Refactoring (Step 3) 140
4.14 Architecture and Mode of Operation of the MMG 141
4.15 WebML Packages View . 142
4.16 Structure Package . 143
4.17 HypertextOrganization Package . 144
4.18 Hypertext Package . 146
4.19 ContentManagement Package . 148
4.20 AccessControl Package . 149
4.21 Basic Package . 150
4.22 A Location-aware Museum Web Application . 153
4.23 WebML Packages View . 155
4.24 The Final WebML Metamodel (1) . 156
4.25 The Final WebML Metamodel (2) . 157

5.1 aspectWebML: An Overview . 163
5.2 aspectWebML: The ConcernComposition Package 164
5.3 aspectWebML: The AsymmetricConcernComposition Package 170
5.4 aspectWebML: The AspectualSubject Package . 173
5.5 aspectWebML: The AspectualKind Package . 178
5.6 aspectWebML: The SymmetricConcernComposition Package 182
5.7 The NewsAndEvents Aspect . 183
5.8 The Open Class Composition Mechanism in aspectWebML 183

xviii

5.9 The Pages2Siteview AsymmetricCompositionRule . 184
5.10 Configuration of the ArbitraryWebApplication CompositionPlan 185
5.11 Overview on the aspectWebML Composition Algorithm 186
5.12 AsymmetricCompositionRule: Case 1 . 188
5.13 AsymmetricCompositionRule: Case 2 . 189
5.14 AsymmetricCompositionRule: Case 3 . 190
5.15 AsymmetricCompositionRule: Case 4 . 191
5.16 AsymmetricCompositionRule: Case 5 . 191
5.17 AsymmetricCompositionRule: Case 6 . 192
5.18 AsymmetricCompositionRule: Case 7-10 . 194
5.19 AsymmetricCompositionRule: Case 11-13 . 196
5.20 Processing Rules in the aspectWebML Composition Algorithm 197
5.21 The Pointcut-Advice Composition Mechanism in aspectWebML 199

6.1 The Context-Aware Museum User Groups . 205
6.2 The Context-Aware Museum Content Model . 210
6.3 The Public Siteview: An Overview . 212
6.4 Customization Scenario Multi-Delivery . 213
6.5 Customization Scenario Season’s Style . 214
6.6 Customization Scenario Current News & Upcoming Events 215
6.7 Customization Scenario Location-Aware Tour . 216
6.8 Customization Scenario Context-Dependent Access to Information 217
6.9 Customization Scenario Special Exhibits Recommendation 218
6.10 Customization Scenario Exhibits in Vicinity . 219
6.11 Customization Scenario Context-Aware Exhibit Management 220
6.12 The Context-Aware Museum Context Model . 222
6.13 Customization Scenario Multi-Delivery in aspectWebML (1) 223
6.14 Customization Scenario Multi-Delivery in aspectWebML (2) 224
6.15 Customization Scenario Season’s Style in aspectWebML 225
6.16 Customization Scenario Current News & Upcoming Events in aspectWebML 226
6.17 Customization Scenario Location-Aware Tour in aspectWebML 228
6.18 Customization Scenario Context-Dependent Access to Information in aspectWebML . 229
6.19 Customization Scenario Special Exhibits Recommendation in aspectWebML 231
6.20 Customization Scenario Exhibits in Vicinity in aspectWebML 233
6.21 Customization Scenario Context-Aware Exhibit Management in aspectWebML 235
6.22 Scenario Aspects for the Context-Aware Museum Web Application 237
6.23 Context Aspects for the Context-Aware Museum Web Application 238
6.24 Reusable Aspects for the Context-Aware Museum Web Application 239

7.1 The aspectWebML Modeling Environment: An Overview 245
7.2 The ModelElement View Point . 246
7.3 The Aspect View Point . 247
7.4 The Advice View Point . 248
7.5 The Pointcut View Point . 249
7.6 Definition of the User Entity Pointcut . 250
7.7 A Composed Model . 251

xix

7.8 Graphical Modeling in the aspectWebML Modeling Environment 252
7.9 Aspect Editor (a), Module Sequence Editor (b), Rule Sequence Editor (c) 253
7.10 The Advice Editor . 254

8.1 Extension of the UWE metamodel with AOM Concepts [BKKZ05] 258

xx

List of Tables

2.1 Maturity . 57
2.2 Web Modeling . 58
2.3 Customization Modeling . 60
2.4 Model-driven Engineering . 61
2.5 Tool Support . 62

3.1 Language . 112
3.2 ConcernComposition . 114
3.3 AspectualSubject . 115
3.4 AspectualKind . 116
3.5 SymmetricConcernComposition . 117
3.6 Maturity . 118
3.7 Tool Support . 119

4.1 Transformation Rules from DTD to Ecore . 133
4.2 Heuristics from DTD to Ecore . 136
4.3 Linking Possibilities in WebML . 147
4.4 Metamodel Metrics . 152
4.5 WebML’s Customization Concepts . 154

5.1 The 13 Kinds of AsymmetricCompositionRules in aspectWebML 187

xxi

xxii

Listings

2.1 WebML: Textual Representation of the IndexUnit HotelList 25
2.2 Hera: User Profile Instance . 33
2.3 Hera: Separating Appearance Conditions with Aspects 34
2.4 WSDM: Special Offers Scenario . 39
2.5 OO-H: Context Aquisition Rule . 50
2.6 OO-H: Customized Activities Scenario . 51
2.7 OO-H: Special Offers Scenario . 51
2.8 OO-H: Administrator Links Scenario (1) . 51
2.9 OO-H: Administrator Links Scenario (2) . 51
2.10 OO-H: Multi-Delivery Scenario (1) . 52
2.11 OO-H: Multi-Delivery Scenario (2) . 52
2.12 OO-H: Season’s Style Scenario (1) . 52
2.13 OO-H: Season’s Style Scenario (2) . 52
4.1 WebML’s Concepts Grouped With External DTDs 142
4.2 Alternative has two or More Sub-Pages . 144
4.3 Page is Either Placed Within a Siteview or an Area 145
4.4 Area has either a defaultPage or a defaultArea . 145
4.5 Page Contains Different Kinds of ContentUnits . 145
4.6 Link Targets are not Specified . 147
4.7 Roles of the Selector Concept . 148

xxiii

xxiv

1 Introduction

Contents
1.1 Motivation . 1
1.2 Addressing Crosscutting Concerns With Aspect-Orientation 7
1.3 The aspectUWA Solution at a Glance . 9
1.4 Contributions of This Thesis . 11
1.5 Thesis Outline . 12

1.1 Motivation

1.1.1 Ubiquitous Web Applications

Looking back in history, the World Wide Web is characterized by different categories of web ap-
plications. At the very beginning of the World Wide Web in 1989, document-centric web sites were
employed providing read-only access to static information. Over time, web applications, includ-
ing interactive and workflow-based web applications as well as portals, have increased in complexity
offering users support in accomplishing various tasks. According to this evolution of web appli-
cations, in this thesis, the following definition of a web application is adopted:

A Web application is a software system based on technologies and standards of the
World Wide Web Consortium (W3C) that provides Web specific resources such as con-
tent and services through a user interfaces, the Web browser [KPRR06].

In Figure 1.1, the previously mentioned categories of web applications including examples are
depicted depending on their development history and their degree of complexity [KPRR06]. In the past
few years, the increase of complexity of web applications has also been driven by the emergence of
mobile devices as new access channels to the Internet offering new possibilities & challenges and
creating a new category of web applications, called ubiquitous web applications (UWA). UWAs are
characterized by the anytime/anywhere/anymedia paradigm, taking into account that services
are not exclusively accessed through traditional desktop PCs but also through mobile devices with
different capabilities, by users with various interests at anytime from anyplace around the globe.
One typical example for UWAs, are tourism guides which support users during their vacation
by providing them with appropriate information and services. Users of such a tourism guide
should be offered points of interests, e.g., restaurants and sights, according to the current context
in which the web application is accessed. For example, a list of nearby restaurants should be
presented considering the user’s current location. The UWA should also consider the time context,

∗ This research has been funded by the Austrian Federal Ministry for Education, Science, and Culture, and the European
Social Fund (ESF) under grant 31.963/46-VII/9/2002.

Andrea
Textfeld
*

1 Introduction

DOCUMENT-CENTRIC

Static Homepage
Web Radio
Company Web Site

INTERACTIVE

Virtual Exhibition
News Site
Travel Planning

TRANSACTIONAL

Online Banking
Online Shopping
Booking System

WORKFLOW-BASED

E-Government
B2B Solution
Patient Workflow

Chatroom
E-Learning Platform
P2P-Services

SOCIAL WEB

Weblogs
Collaborative Filtering
Virtual Shared WorkspaceCOLLABORATIVE

Chatroom
E-Learning Platform
P2P-Services

UBIQUITOUS

Customized Services
Location-Aware Services
Multi-Delivery

SEMANTIC WEB

Recommender Systems
Syndication
Knowledge Management

PORTAL-ORIENTED

Community-Portal
Online Shopping Mall
Business Portal

DEVELOPMENT HISTORY

C
O

M
P

LE
X

IT
Y

Figure 1.1: Categories of Web Applications in History [KPRR06]

by only displaying restaurants that are currently open. Furthermore, the restaurants should be
ordered according to the user’s preferences by first listing those that are of more interest to the
user. And finally, the list of restaurants should be presented in a way that is suitable for the current
device used to access the web application, such as the user’s own PDA or a normal desktop PC
in an Internet cafe. In any situation, the user should be able to efficiently interact with the web
application which reacts accordingly in order to preserve the semantic equivalence of its services
in the current situation of use or benefits from additional information on the current situation in
order to achieve semantic enhancement of its services for the user [KPRS03]. Consequently, knowing
the context in which a web application’s services are requested, e.g., information on the user, the
location, the device, the network, as well as the time, is the prerequisite for a web application to
react with appropriate adaptations of its services, e.g., filtering information according to the user’s
interests and selecting images according to the device’s display resolution. In this thesis, we adopt
the term customization [Sch01] to denote the mapping between the required adaptation of a web
application’s services towards its context of use.

Considering the notion of customization from a historical point of view, personalization and mo-
bile computing represent two areas of research posing a major influence on customization [KPRS03].
It has to be emphasized, that customization is considered more comprehensive than traditional
personalization which rather focuses on the user context and usage data [Kob01], only. Beyond
this, customization as well encompasses context properties that have already been considered

2

1.1 Motivation

in various sub-branches of mobile computing, including location-based services [WS01], multi-
channel delivery [EVP01], and network adaptation [BFK+00].

1.1.2 Model-driven Development of Ubiquitous Web Applications

When considering the development of UWAs, the original ”one-size-fits-all” approach in the de-
velopment of web applications needs to be abandoned for the sake of UWAs’ objective of com-
municating the right information and services at the right moment. As a consequence, in the
following sub-sections, the different dimensions relevant in the realms of developing UWAs are
presented. In this respect, the role of models when developing UWAs as well as the need to deal
with customization in models is discussed. Finally, the motivation of this thesis is concluded with
a discussion of the current challenges in customization modeling.

1.1.2.1 Dimensions of Ubiquitous Web Application Development

In the realms of general web application development, three different orthogonal dimensions can
be distinguished [SK06] (cf. Figure 1.2). The levels dimension breaks down a web application into
three different levels: The content level’s purpose is similar to that of a non-web application, i.e.,
capturing the underlying information and application logic. Still, the hypertext level is particular
to web applications which is due to the document-centric character of web applications and the
non-linearity in using them. The hypertext level comprises all kinds of navigation possibilities
on the basis of the content level. Finally, the presentation level represents the user interface or
page layout. At each of the three levels, structure and behavior are regarded as is indicated by the
second dimension, i.e., features. Analogous to the software engineering domain, web applications
are built during several phases, though there is not yet a consensus on a certain development
process.

In addition to these three general dimensions, UWAs demand for a further dimension. Cus-
tomization as a fourth orthogonal dimension influences all of the other three dimensions, i.e., the
structure and behavior at the content, hypertext, and presentation levels and should be taken into
account during all phases of the development process.

Feature

Behavior

Structure
Analysis

Content

Hypertext

Presentation
Levels

Design Implementation

Customization

Phases

Figure 1.2: Dimensions of Web Application Development [Sch01]

Considering today’s UWAs and their degree of complexity through the introduction of cus-
tomization, from a software engineering point of view, the importance of their model-driven de-
velopment following a sound development process as well as sound techniques is crucial.

3

1 Introduction

1.1.2.2 Role of Models in Model-Driven Web Engineering

In software engineering, Model-Driven Engineering (MDE) [Sch06b] has received considerable
attention during the last years and is well on its way to becoming a promising paradigm. In
MDE, models replace code as the primary artifacts in software development processes. This
means that in MDE, the purpose of models goes beyond using models as sketches for merely com-
municating ideas and alternatives in the application as well as using model as blueprints where
all design decisions are already laid out and implementation is straightforward. Instead, MDE
propagates the employment of models as programs allowing to automatically generate the final ap-
plication for several programming platforms. More specifically, developers are forced to focus
on modeling the problem domain and not on programming one possible platform-specific solu-
tion. This abstraction from specific programming platforms decouples the business functionality
from the technology-specific code, while the definition of model transformations allows generat-
ing several platform-specific implementations. This kind of automation in software development
promises more efficient development of software, higher quality of software products as well as
better maintainability and evolution of software. In this respect, the key prerequisite for MDE
is the employment of a modeling language definition standard such as the Object Management
Group’s (OMG) Meta Object Facility (MOF) [OMG04], allowing for standardized storage (e.g.,
Eclipse Modeling Framework - EMF [BSM+04]), exchange (e.g., XML Metadata Interchange For-
mat - XMI [OMG05b]), and transformation of models (e.g., Query/View/Transformation - QVT
[OMG05a]).

Recently, MDE’s pendant in the web engineering community, i.e., Model-Driven Web Engi-
neering (MDWE) [KRV05] gains more and more attention as well. Considering MDE in the area
of web application development in general, various modeling approaches have been proposed
in the past [CFB+03], [FHB06], [GCP01], [RS06], [PFPA06], [Koc07], [CPT06], [ISB95], [GPS93],
[BM02], [Con02], [MG06] each of them aiming at counteracting a technology-driven and ad hoc
development of web applications. These web modeling approaches originally have emerged as
proprietary languages rather focused on notational aspects using models as sketches. Moreover,
some of them already provide techniques and tools for modeling web applications in a platform-
independent way. If existent, the tool’s code generation facilities mostly support only one specific
platform, however, yielding transformations from models directly to code. In the past few years,
these approaches have started to more and more support model-driven development of web
applications in the sense of MDE by providing language specifications in terms of metamodels
[KK03], [SWK+07], [BM02] or UML Profiles [MFV07] and by considering model transformations
[Koc07]. Considering UWAs and the model-driven development thereof in particular, modeling
customization needs specific attention.

1.1.2.3 Customization Modeling

Customization specializes a web application called core web application towards the situation of use
[Sch01], as indicated in Figure 1.3. For capturing customization at modeling level this means, the
description of different situations of use have to be captured in the web application model, e.g.,
in terms of a so-called context model. As proposed in [Sch01], such a context model captures in-
formation on the context in which a web application is accessed over time, including information
on the user, device, time, location, and network. On the other hand, the changes to a web appli-
cation in terms of adaptations need to be described as well. Finally, a model for a UWA needs
to capture which situation requires which adaptation, i.e., the mapping between a certain context

4

1.1 Motivation

and the required adaptation. Such a mapping is often modeled using as a modeling formalism
Event-Condition Action rules [CDF06], [GCG05], [Sch01] originally stemming from the area of ac-
tive database systems [PD99]. This way, customization modeling allows incorporating variability
into a web application.

Customization

Core Web Application

Ubiquitous Web Application

Customization

Context

Adaptation

Mapping

Figure 1.3: Customization Issues [Sch01]

Concerning appropriate means for modeling customization, we find that there are already some
web modeling approaches [CFB+03], [FHB06], [TL98], [RS06], [KK02a], [GCP01], [PFPA06] deal-
ing with the ubiquitous nature of web applications. They often focus on certain facets of cus-
tomization such as personalization (by exploiting the context information of the user), multi-
delivery (by considering the user’s device), or location-awareness (by regarding the user’s cur-
rent location). Context information is typically captured at the content level. Some approaches
even propose ways to indicated what parts of the content level represent contextual information.
Furthermore, some have introduced new modeling concepts allowing developers to specify adap-
tations at one or several web application’s levels.

Still, means for customization modeling currently neither cover all relevant context factors in an
explicit, self-contained, and extensible way, e.g., within a dedicated context model, nor allow for
a wide spectrum of extensible adaptation operations. Furthermore, the provided customization
mechanisms frequently do not allow dealing with all different parts of a web application in terms
of its content, hypertext, and presentation levels as well as their structural and behavioral features.

While the expressiveness of a web modeling language’s customization mechanism is undoubt-
edly important, this work’s focus will be on the equally pressing challenge of customization’s cross-
cutting nature. As pointed out before, customization is considered a new orthogonal dimension
in web application development, influencing all web application levels. With respect to modeling
customization this means that customization needs to be considered when modeling the content,
hypertext, and presentation levels in a web application model. Disregarding its crosscutting na-
ture, in current web modeling approaches, customization is inherently tangled with and scattered
across all levels of a web application model:

• For example, a modeler might want to specify that for some pages of the web application
additional information might be provided to the user, e.g., if the location of the user is avail-
able, the user might be presented with nearby points of interests. This customization sce-

5

1 Introduction

nario crosscuts all levels of a the web application: In order to specify this kind of customiza-
tion in a model, the developer will need to model the necessary context information, i.e., the
location of the user, at the content level. Furthermore, at the hypertext level, the necessary
adaptations to filter the points of interest according to the user’s location need to be mod-
eled as well. Finally, at presentation level, the developer might specify with appropriate
adaptations to particularly highlight the three nearest points of interests by presenting them
in a special way (e.g., by using a larger font or small pictures). This way, customization takes
up a large part in a web application model and requires specific attention.

• More specifically, customization is tangled with the structure and behavior for each web
application level, i.e., content, hypertext and presentation. As an example, contextual infor-
mation, e.g., on the user, the device, and the location, is often modeled at the content level. It
is intermingled with the application data instead of being modeled separately within a ded-
icated context model. Likewise, adaptations are typically intermingled with the rest of the
web application model. As a consequence, it is not always clear which modeling elements in
a model are part of a customization scenario and which contribute to the core functionality
of a web application. In this respect, this intermingled representation of customization con-
tributes to the complexity of web application models and hampers their readability as well
as their understandability. Furthermore, it is not possible to reuse parts of the customization
functionality within other web application models. For example, a separate context model
could be reused in web applications requiring similar context information.

• Furthermore, customization is scattered across the structure and behavior of each web appli-
cation level. Similar to the previous customization scenario for presenting nearby points of
interest at several pages to the user, a modeler might want to restrict the display of pictures,
e.g., on pages displaying more than one picture. On all these pages the pictures shall be
resized to smaller ones. For both scenarios this means that, certain adaptations need to be
considered in several places of the model. They are redundantly modeled in the web appli-
cation model requiring the modeler to visit all these places in case a change to the adapta-
tion is necessary. In this respect, customization has a negative effect on the web application
model’s maintainability and evolution.

In the sense of Separation of Concerns (SoC) [Dij76], [Par72], the fact that current web model-
ing approaches currently do not provide means to fully separate the customization concern from
the rest of the web application model has a negative effect on the models’ understandability and
leads to inefficient development processes, high maintenance overheads as well as a low potential
for reuse of context and adaptation specifications. In this respect, aspect-orientation seems to be a
promising paradigm providing a new way of separating crosscutting concerns, such as customiza-
tion, from non-crosscutting ones, meaning the core functionality of a web application in this case.
In the following, the ideas of the aspect-orientation paradigm and their relevance for modeling
customization shall be explained.

6

1.2 Addressing Crosscutting Concerns With Aspect-Orientation

1.2 Addressing Crosscutting Concerns With Aspect-Orientation

Aspect-Oriented Software Development (AOSD)1 is an equally young research field as the area of
web modeling languages. It is an emerging area of research that aims at promoting Advanced
Separation of Concerns (ASoC) throughout the whole software development lifecycle. Aspect-
orientation originally emerged at the programming level [KLM+97] and has proven to be a promis-
ing mechanism providing a new way of modularization by clearly separating crosscutting con-
cerns, so-called aspects, from non-crosscutting ones (cf. Chapter 3). Still, being able to specify the
different concerns of an application within separate modules, appropriate means for composing
them to obtain a working system are necessary as well. Such a mechanism is often called a weaver
which is responsible for weaving the aspects ”back” into the application.

Past experience has shown that the evolution of a new programming style often propagates the
new concepts from the programming level to earlier phases in the software development lifecy-
cle. Meanwhile, aspect-orientation also stretches over earlier development phases. For the de-
sign phase, there already exist several general-purpose approaches to aspect-oriented modeling
(AOM) of which some representatives have been investigated in Chapter 3.

Considering UWAs, customization can be seen as a crosscutting concern in the sense of aspect-
orientation. The left-hand side of Figure 1.4 shows how, or rather where, customization affects a
web application model, i.e., typically the structural and behavioral parts of all the content, hyper-
text, and presentation levels.

fun
ctio

n1

Web-Application

Features

Behavior
Structure

Content Hypertext Presentation

Customization
(as aspect)

fun
ctio

n2

fun
ctio

n3

fun
ctio

n4

fun
ctio

nN...

Personalization

Location-Awarness

...

Multi-Delivery

Functional
Decomposition

Behavior
Structure

Figure 1.4: Customization as a Crosscutting Concern [Sch06a]

Consequently, customization can be encapsulated within one or more aspects as is illustrated
on the right-hand side of Figure 1.4. Being able to modularize customization functionality at the
modeling level within aspects implies the typical positive effects attributed to the SoC principle,
e.g., reduction of complexity, higher maintainability due to better locality of change, as well as
reusability. Similar to the programming level, to obtain a ”working model”, e.g., one that can be
fed to code generation facilities, the previously separated concerns need to be integrated into a
composed model. The left-hand side of Figure 1.4 therefore also indicates the composed model

1www.aosd.net

7

1 Introduction

of a web application, where the customization aspect(s) again is (are) tangled with and scattered
across the rest of the web application model.

Currently, two web modeling approaches [BKKZ05], [CWH07] have already proposed the use
of concepts from the aspect-orientation paradigm to separately capture customization at modeling
level. Still, these approaches suffer from the following problems2:

• They do not consider the crosscutting nature of customization comprehensively for all lev-
els of the web application and thus, do not provide the means for fully separating the cus-
tomization concern. More specifically, they allow for separately modeling adaptations from
the hypertext level, only.

• They have been extended with a minimal set of aspect-oriented modeling (AOM) concepts,
only, i.e., aspect, pointcut, advice. This results in less powerful AOM languages for separately
modeling crosscutting concerns such as customization.

• They do not consider the composition of concerns at the modeling level which allows for
exploiting existing tool support available for composed models, e.g., code generation facili-
ties. Concerning related approaches, the composition semantics are either not specified at all
[BKKZ05], or not considered at the modeling level but for a specific programming platform
[CWH07].

In contrast to these approaches, the overall aim of this thesis is the exhaustive use of aspect-
orientation as driving paradigm for comprehensively modeling the customization aspect sepa-
rately from all levels as well as providing means for composing the aspect with the web applica-
tion model.

Furthermore, web modeling languages in general often lack a proper MDE foundation and tool
support:

• The majority of existing web modeling approaches are not yet defined using a language
definition standard in the sense of MDE, although first proposals for a transition to the
MDE paradigm in web engineering have been made as has already been pointed out before.
As a consequence, MDE techniques and tools cannot be deployed for such languages which
prevents exploiting the full potential of MDE in terms of standardized storage, exchange,
and transformation of models as well as profiting from MDE’s benefits.

• There is also a lack in appropriate tool support for modeling web applications in general
and for modeling customization in particular. Currently, four web modeling approaches
are accompanied with tool support which is either publicly available [KK02a], [GCP01] or
can be obtained under a commercial license [CFB+03], [FHB06]. Besides this general sup-
port for modeling web applications, concerning UWAs, some approaches that have devel-
oped concepts for modeling customization have also reported on corresponding tool sup-
port [CDMF07], [GCG07]. Nevertheless, in all cases, this tool support has not yet left the
status of prototypes and has not been made publicly available.

Concerning these problems, in this thesis, metamodels shall be employed as a language spec-
ification formalism using current MDE technologies, developed under the hood of the Eclipse
Modeling Framework (EMF) [BSM+04]. In this respect, EMF’s code generation facilities shall be
exploited for tool support purposes.

2For a detailed discussion see Chapter 8.

8

1.3 The aspectUWA Solution at a Glance

1.3 The aspectUWA Solution at a Glance

1.3.1 Goals of This Thesis

This thesis proposes aspectUWA - Applying Aspect-Orientation to the Model-Driven Development
of Ubiquitous Web Applications. The aspectUWA approach aims at the exhaustive use of aspect-
orientation as driving paradigm for comprehensively capturing customization separately from all
levels of a web application model. In the sense of the aspect-oriented paradigm, the aspectUWA
approach also proposes to provide means for composing the customization aspect with the web
application model. Furthermore, in order to benefit from MDE’s advantages, the aspectUWA ap-
proach advocates its realization within the realms of MDE.

aspectUWA suggests the general idea of extending any existing web modeling language with
concepts from the aspect-orientation paradigm in order to separate customization functionality
from the rest of the web application model. To do so, a kind of framework called the Conceptual
Reference Model (CRM) for AOM is developed, allowing the extension of any web modeling lan-
guage with AOM concepts through a set of extension points. To demonstrate the applicability,
the aspectUWA idea shall be applied to a representative web modeling language that supports
customization modeling but does not allow modeling customization separately. In this respect,
the web modeling language WebML [CFB+03] is one of the most prominent representatives of
current web modeling languages, being already supported by the commercial tool WebRatio3, and
recently has been extended with concepts for modeling customization [CDMF07]. In order to bet-
ter support the development of UWAs within the WebML approach, a further goal of this thesis is
the design of the aspectWebML web modeling language as a result of bridging WebML to aspect-
orientation according to the CRM provided by aspectUWA. In particular, this also includes the
specification of the language’s composition semantics required to integrate previously separated
concerns into a composed model. Furthermore, the aspectWebML language shall be accompanied
by a tool allowing to model UWAs in terms of several concerns as well as their composition. On
the basis of a case study, the original WebML approach to modeling UWAs shall be compared to
the aspectWebML approach in order to point out aspectWebML’s strengths and weaknesses.

1.3.2 Methodology - A Roadmap to aspectWebML

In order to achieve these goals, the following methodology will be employed, which also resem-
bles the subsequent structure of the thesis:

Investigation of the State-of-the-Art in Modeling Ubiquitous Web Applications. As already st-
ated before, current web modeling languages are limited with respect to developing UWAs.
To provide a proper foundation for this thesis, the state-of-the-art in modeling customization
with current web modeling approaches is investigated and the approaches’ strengths and
weaknesses are identified. Moreover, in the context of this thesis, the survey shall provide
the foundation for selecting a web modeling language to be extended with AOM concepts
in order to capture customization functionality separately from the rest of a web application
model. In this respect, the selected web modeling language shall provide proper support
for modeling customization through appropriate means of modeling but fail to model cus-
tomization separate from the rest of a web application model (cf. Chapter 2). As already

3www.webratio.com

9

1 Introduction

mentioned before, the WebML approach matches these requirements and has been selected
accordingly in order to be bridged to AOM.

Design of a Conceptual Reference Model for Aspect-Oriented Modeling. Before a web model-
ing language can be extended with AOM concepts, the basic ingredients of AOM need to
be identified. The domain of AOM is still a young research field, however. Having di-
verse origins, current general-purpose AOM languages differ in terminology and concepts,
including different composition mechanisms, i.e., the way previously separated concerns
are to be integrated into a composed model. In order to tackle the problem of different
terminologies and a broad variety of aspect-oriented concepts, the aspectUWA approach
proposes the Conceptual Reference Model for Aspect-Oriented Modeling (CRM). The CRM will
be defined in terms of a UML class diagram and identify the basic ingredients of AOM, ab-
stracted from specific modeling languages as well as from specific composition mechanisms.
In this respect, it represents the basis of the aspectUWA approach by capturing the important
AOM concepts, their interrelationships, and even more importantly, their relationships to an
arbitrary modeling language representing the extension points of the framework (cf. Chap-
ter 3). Thus, the CRM serves as an important input to the design of new AOM languages
or for the extension of existing (domain-specific) modeling languages with concepts of the
aspect-oriented paradigm like it is done for WebML in this thesis.

Design of a Metamodel for WebML. The aspectUWA approach advocates its realization within
the realms of MDE, in order to profit from MDE’s proclaimed advantages. As a conse-
quence, a language specification of the web modeling language to be bridged to AOM needs
to be available in terms of a metamodel based on the Meta Object Facility (MOF) [OMG04].
The WebML language, however, has been partly specified in terms of XML Document Type
Definitions (DTD) [W3C06] and partly hard-coded within the tool accompanying the lan-
guage. Consequently, in order to support model-driven development of web applications
in the sense of MDE, a MOF-based metamodel needs to be designed for the WebML lan-
guage. In this respect, the existing DTD-based language specification as well as constraints
hard-coded within the language’s modeling tool WebRatio shall be reused within a semi-
automatic process for metamodel generation from DTDs (cf. Chapter 4).

Design of the aspectWebML Language. The artifacts produced in the previous two steps serve
as input to this step, i.e., the extension of the WebML language with concepts from the aspect-
orientation paradigm. More specifically, the CRM will serve as a blueprint for designing
aspectWebML on top of the WebML language. The design of the aspectWebML language will
not only include the language’s metamodel but also a proposal for a concrete modeling
notation for the aspect-oriented concepts introduced in aspectWebML (cf. Chapter 5).

Specification of the aspectWebML Composition Semantics. In order to be able to compose the
different concerns that can be modeled separately from each other on the basis of aspect-
WebML’s modeling concepts, the composition semantics of the aspectWebML language need
to be specified. The composition semantics will be explained by means of small and il-
lustrative modeling examples and an overview of the implementation of the aspectWebML
composition algorithm will be given in terms of UML activity diagrams (cf. Chapter 5).

Evaluation of the Proposed Solution Through a Case Study. For demonstrating aspectWebML’s
applicability and advantages, the original WebML approach to modeling UWAs will be com-
pared with the aspectWebML approach in a case study. In the case study, the Context-Aware

10

1.4 Contributions of This Thesis

Museum web application previously defined for illustrating WebML’s customization model-
ing concepts [CDMF07] will serve as the example UWA. In order to compare the approaches
in the context of a UWA with complex customization functionality, the example will be con-
siderably extended in the case study (cf. Chapter 6).

Development of Modeling and Composition Tool Support. The aspectWebML Modeling Environ-
ment will be developed and provide modelers with tool support for modeling aspectWebML
models and compose separate concerns defined therein. The aspectWebML Modeling Envi-
ronment will be built on top of current MDE technologies, developed under the hood of the
Eclipse Modeling Framework (EMF) [BSM+04] (cf. Chapter 7).

1.4 Contributions of This Thesis

Having elaborated on the steps required to achieve the proclaimed goals, this thesis’ contributions
can be summarized as follows:

The Conceptual Reference Model for Aspect-Oriented Modeling. As already mentioned before,
the problem of different terminologies and a broad variety of aspect-oriented concepts is re-
flected by a still missing generally acknowledged understanding of AOM concepts. In this
respect, the CRM represents a contribution to the AOM community by providing a taxon-
omy as well as a conceptual model for AOM. More specifically, the CRM abstracts from
different composition mechanisms known in literature while providing their refinement in
specialized packages of the CRM as well (cf. Chapter 3). In this thesis the CRM’s applicabil-
ity has been shown in two ways:

• The aspectWebML web modeling language has been designed on top of the WebML
language using the CRM as a blueprint (cf. Chapter 5).

• For the structured evaluation of a set of AOM approaches, a catalogue of criteria has
been derived from the CRM (cf. Chapter 3).

The WebML Metamodel. The design of a MOF-based WebML metamodel represents an impor-
tant prerequisite and thus, an initial step towards the employment MDE techniques within
the WebML approach. It also enables interoperability with other MDE tools and is another
step towards a common reference metamodel for web modeling languages (cf. Chapter 4).

The DTD2MOF Framework. The existing DTD-based language specification of WebML as well
as constraints hard-coded within the language’s modeling tool have been reused within a
semi-automatic process for metamodel generation from DTDs. The DTD2MOF framework
is a generic framework for semi-automatically generating MOF-based metamodels from ar-
bitrary DTD-based language specifications. Though its design has been motivated by the
necessity of developing a metamodel for the DTD-based WebML language, it has been de-
signed for generality. The work on the DTD2MOF framework includes the elaboration on
the deficiencies of DTDs when used as means for specifying a modeling language instead of
using metamodels. Moreover, a set of rules and heuristics for transforming arbitrary DTDs
into MOF-based metamodels is provided and appropriate tool support for a semi-automatic
transformation process from DTD to MOF has been developed. In this respect, the transfor-
mation approach enables the ”visual” representation of any DTD-based language in terms
of MOF-based metamodels and thus, enhances their understandability (cf. Chapter 4).

11

1 Introduction

The aspectWebML Web Modeling Language. The specification of the aspectWebML language in
terms of a MOF-based metamodel is the major contribution of this thesis. It has been designed
in order to improve the development of UWAs by allowing to model customization sep-
arately from the remaining concerns of a web application (cf. Chapter 5). The design of
the aspectWebML language also includes a proposal for a concrete modeling notation for the
aspect-oriented concepts introduced in aspectWebML. Furthermore, in order to be able to
compose the different concerns that can be modeled separately from each other on the basis
of aspectWebML’s modeling concepts, the composition semantics of aspectWebML have been
specified by means of small and illustrative modeling examples. Moreover, an overview
of the implementation of the aspectWebML composition algorithm, which has been imple-
mented in Java and is integrated within the modeling environment for aspectWebML, has
been given in terms of UML activity diagrams.

An Initial Set of Guidelines for Modeling Customization in aspectWebML. On the basis of the
case study used to compare WebML and aspectWebML, modelers are provided with an initial
set of guidelines to be used in aspect-oriented modeling of customization with the aspect-
WebML approach. Moreover, first extensions to the original WebML development process
in order to better support the development of UWAs have been proposed (cf. Chapter 6).

The aspectWebML Modeling Environment. Tool support is typically rare, both in the web mod-
eling field as well as in the AOM field. Thus, initial modeling support is provided on the
basis of a tree-based editor for which a preliminary version has been automatically gen-
erated using EMF’s code generation facilities. This preliminary tool support has been ex-
tended with special features for a better support of developing UWAs with aspectWebML
(cf. Chapter 7):

• The composition semantics have been implemented in Java and have been integrated
within the editor. In this respect, aspectWebML is one of those few languages that pro-
vides modelers not only with means for decomposing concerns but also with means
for their composition.

• Inspired by the AspectJ Development Tools4 a so-called Cross Reference View has been
implemented and is intended to ease aspect-oriented modeling by visualizing interre-
lationships, e.g., between aspects and the web application model.

• Though based on a tree-editor, the aspectWebML Modeling Environment provides first
modeling support for WebML’s customization modeling concepts, which are not yet
considered within the WebRatio tool.

1.5 Thesis Outline

As already mentioned before, the structure of this thesis follows the methodology and contribtu-
ions described previously. Following, an overview on the structure of this thesis is given.

Chapter 2: On Model-driven Development of Ubiquitous Web Applications
This chapter presents a survey of seven web modeling approaches supporting the model-driven
development of UWAs as well as summarizes the lessons learned with respect to the approaches’

4www.eclipse.org/ajdt/

12

1.5 Thesis Outline

strengths and weaknesses. Furthermore, it serves as the foundation for selecting the WebML ap-
proach as the web modeling language which shall be extended with AOM concepts following the
aspectUWA approach.

Chapter 3: State-of-the-art in Aspect-oriented Modeling
In this chapter, the Conceptual Reference Model for AOM is proposed. Furthermore, a survey of eight
representative AOM approaches is presented. Again, the lessons learned report on the state-of-
the-art in AOM.

Chapter 4: Bridging WebML to Model-driven Engineering
The WebML metamodel is proposed in this chapter. Moreover, the generic DTD2MOF framework
is presented, which has been designed to semi-automatically generate the MOF-based metamodel
for WebML from the existing DTD-based language specification.

Chapter 5: aspectWebML - Applying aspectUWA to WebML
This chapter proposes the aspectWebML metamodel as a result of applying the CRM of aspectUWA
to the WebML metamodel. In addition, a first proposal for a modeling notation for the aspect-
oriented concepts of the aspectWebML language is provided. Furthermore, the composition se-
mantics of the language are detailed.

Chapter 6: The Context-Aware Museum Case Study
In this chapter, the focus is on a case study used to compare the WebML approach with the as-
pectWebML approach on the basis of a modeling example. This involves complex customization
functionality in terms of eight customization scenarios and provides initial guidelines for model-
ing customization aspect(s) with aspectWebML.

Chapter 7: The aspectWebML Modeling Environment
The chapter introduces the initial tool support accompanying the aspectWebML language in terms
of a tree-based modeling editor that also implements the language’s composition semantics and
allows for composing separately modeled concerns of a web application.

Chapter 8: Related Work to aspectWebML
This chapter is dedicated to a discussion of related work, i.e., on three web modeling approaches
that have recently started to incorporate concepts from the aspect-orientation paradigm.

Chapter 9: Conclusion
Finally, in this last chapter, the contributions of the thesis are summarized and a discussion of
current limitations to be addressed in future research is provided.

13

1 Introduction

14

2 On Model-driven Development of
Ubiquitous Web Applications

Contents
2.1 Evaluation Set-Up . 16
2.2 Comparison of Approaches . 24
2.3 Lessons Learned . 56
2.4 Related Surveys . 63
2.5 Summary . 65

Today’s web applications are full-fledged, complex software systems for which a methodolog-
ically sound engineering approach is crucial. Web engineering has emerged as an independent
branch of software engineering and ”comprises the use of systematic and quantifiable approaches
in order to accomplish the specification, implementation, operation, and maintenance of high
quality web applications” [KPRR06]. During the past 10 years, academia has provided various
web modeling approaches, each aiming at counteracting a technology-driven and ad hoc de-
velopment of web applications. These web modeling approaches originally have emerged as
proprietary languages rather focused on notational aspects. Some of them are supported with
a modeling tool and possibly code generation facilities. As the types of web applications have
evolved over time so have the web modeling approaches have come up with appropriate con-
cepts for them. Thus, increasingly more web modeling approaches are supporting the develop-
ment of UWAs by providing new modeling concepts that capture customization functionality.
Additional, the rise of Model-Driven Engineering (MDE) already has had impact on current web
modeling languages. Consequently, at the same time, some of the approaches are supported with
a modeling tool and possibly code generation facilities and have also aimed at providing for a
model-driven development in the sense of MDE, i.e., on the basis of MDE techniques and tech-
nologies including metamodels and model transformations.

Based on previous work [SSW+07], this chapter is dedicated to present the state-of-the-art in
model-driven development of UWAs and to throw some light on the current limitations with re-
spect to developing web applications in the sense of MDE, as well as the identified problems of
missing tool support, limited customization mechanisms, and disregarded crosscutting nature of
customization. Furthermore, the results of the evaluation shall serve as a foundation for choos-
ing a web modeling language to be extended with aspect-oriented modeling concepts according
to the aspectUWA approach. More specifically, an in-depth comparison of seven web modeling
approaches currently supporting the development of UWAs has been provided. In Section 2.1,
the evaluation set-up is presented, i.e., the selection of web modeling approaches as well as a de-
tailed and well-defined catalogue of evaluation criteria used for the structured comparison of the
approaches in Section 2.2. Moreover, the actual evaluation by means of a catalogue of criteria is

2 On Model-driven Development of Ubiquitous Web Applications

supported by a modeling example, i.e., a tourism information web application, used to provide
an initial insight into the concepts for modeling customization of each approach as well as to facil-
itate their comparability. A set of five customization scenarios has been defined, to be tested with
each web modeling approach. This per-approach evaluation is furthermore complemented with
an extensive report on lessons learned (cf. Section 2.3), pointing out the approaches’ strengths and
shortcomings. Thereafter, in Section 2.4 existing related work and the contributions of this survey
are discussed. Finally, in Section 2.5, the chapter is closed with a brief summary.

2.1 Evaluation Set-Up

This survey’s goal is primarily to provide a literature study of existing web modeling languages
having as specific focus the model-driven development of UWAs. In particular, the focus is on
design level concepts for modeling customization as well as on tool support for the model-driven
development of UWAs. As a consequence of this focus, there will be no report on other pos-
sible strengths of the investigated approaches that lie beyond customization, e.g., support for
workflow-based web applications.

In the following, this section is dedicated to providing a motivation of the selection of web
modeling approaches to be investigated, an introduction of the criteria catalogue to be used as
well as a presentation of the modeling example supporting the evaluation of each approach.

2.1.1 Selection of Approaches

With respect to the selection of evaluation candidates, in literature, several well-established and
well-published web modeling languages having different origins and pursuing different goals can
be found. In Schwinger et al. [SK06], a categorization of fourteen approaches into data-oriented,
hypertext-oriented, object-oriented, and software-oriented web modeling approaches has been
proposed (cf. Figure 2.1).

Still, since focused on customization modeling, in this survey, only web modeling approaches
that also provide concepts for customization modeling will be considered. In the following, seven
different out of the fourteen approaches will be investigated. From the data-oriented category, the
WebML [CFB+03] and the Hera [FHB06] approaches, from the hypertext-oriented category, the
WSDM [TL98] approach, and from the object-oriented category the OOHDM [RS06], the UWE
[KK02a], the OO-H [GCP01], and the OOWS [PFPA06] approaches are evaluated. All of them can
be considered to be well-established since published in about 25 up to 50 publications including
reviewed papers, books, and manuals.

2.1.2 Catalogue of Evaluation Criteria

In the following, a catalogue of criteria for the structured evaluation of web modeling approaches
is proposed, having a particular focus on criteria for evaluating the support for customization
modeling and for model-driven development. The criteria are, on the one hand, the result of a top-
down approach considering the four dimensions of web application development (cf. Chapter
1.1, Figure 1.2) and on the other hand the result of a bottom-up approach taking into account
interesting issues from related surveys as well as from previous work [KPR+01], [KPRS03], [SK06].

The overall emphasis of the catalog of criteria is on functional criteria. Since this survey is based
on a literature study, the inclusion of non-functional criteria in terms of several ”-ilities” such as

16

2.1 Evaluation Set-Up

Underlying
Modeling
Language

HDM1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

RMM

OOHDM

WSDM

WAE

WebML
UWEW2000

2003
OO-H

OOWS

HDM-Lite

2004

Hera WAE2

2005

ER OMT UML

2006

Data-oriented
Hypertext-oriented
Object-oriented
Software-oriented

Data-oriented
Hypertext-oriented
Object-oriented
Software-oriented

WebSACustomization
Modeling
Support

Figure 2.1: Overview on Web Modeling Approaches

evolvability, scalability, traceability, reusability, understandability, maintainability, or flexibility
is not considered within the scope of this evaluation. Still, this survey paves the ground for a
later evaluation in real-world projects allowing to investigate the web modeling approaches with
respect to the aforementioned ”-ilities”. Nevertheless, this would also raise currently unaddressed
questions associated with empirical evaluations in web engineering, e.g., how to get an unbiased
set-up for the evaluation including control groups.

Aiming at a solid definition of criteria, for each criterion its name and a definition along with the
appropriate measures are given. The abbreviation of the criterion allows for referencing it during
evaluation of the approaches in Section 2.2.

Furthermore, these criteria are grouped into five categories with three out of them being in-
ferred from corresponding functional requirements depicted in Figure 1.2 and two additional cat-
egories, one providing general criteria on the Maturity of an approach and the other one providing
criteria related to the Tool Support of an approach. The catalogue of criteria is presented along with
its categories in the following.

2.1.2.1 Maturity

As already indicated by the category’s name, the Maturity criteria basically serve for providing
general information on the approaches’ level of maturity.

Topicality (G.T). This criterion provides for each approach the year of introduction as well as when
the most recent piece of work has been published in order to indicate whether the approach is
still under development or not.

17

2 On Model-driven Development of Ubiquitous Web Applications

Modeling Examples (G.ME). One indication for the maturity of an approach is the number of
different modeling examples discussed. Admittedly, besides evaluating the number of existing
examples, their depth would also be of interest. Such a depth measure could be composed
of the number of modeling concepts used, i.e., the number of content classes, nodes, links,
etc. Still, this is not feasible, since often only parts of the examples are shown in available
literature, or the examples have been simplified for readability purposes.

Application in Real-World Projects (G.A). Another indication for a high level of maturity of an
approach is its employment in designing real-world applications. This criterion evaluates
whether real-world applications exist or do not exist.

2.1.2.2 Web Modeling

The Web Modeling category covers criteria for evaluating the dimensions of web application de-
velopment, namely levels, features, and phases (cf. Figure 1.2 in Chapter 1).

Web Application Levels (W.L). This criterion indicates which web application levels (i.e., con-
tent, hypertext, and presentation) are considered by an approach and which formalisms/types
of diagrams are employed.

Interfaces (W.I). How the interrelationships between the web application levels are modeled,
is indicated by the Interfaces criterion. In case the interface specification is defined sepa-
rately from the levels, this criterion names the mechanism used for content-hypertext and
hypertext-presentation interfaces in terms of graphical notations, natural language, or text-based
query languages. If an interface specification is not defined separately but as part of one of
the two levels in question, this criterion additionally evaluates to intermingled.

Feature Modeling (W.F). For each web application level, this criterion investigates if modeling of
structural and/or behavioral features of web applications are supported by the web modeling
approach or not.

Development Phases (W.Ph). This criterion checks which phases of web application develop-
ment, i.e., requirements elicitation, analysis, design, and implementation, are supported by the
evaluated approaches.

Development Process (W.Pr). To which extent a developer is supported by a development pro-
cess is covered by the Development Process criterion. Specifically, it distinguishes whether a
well-defined development process is a proprietary one or is based on a standard development
process, e.g., the Rational Unified Process (RUP) [Kru00]. Furthermore, it lists the detailed
steps, output artifacts, and involved actors.

2.1.2.3 Customization Modeling

The Customization Modeling category explicitly deals with characteristics of the customization di-
mension in web application development. This includes criteria investigating support for model-
ing context information as well as the necessary adaptations. The following criteria are based on
previous work [KPRS03] but specifically focus on the modeling level.

18

2.1 Evaluation Set-Up

Context Properties (C.P). Although the relevant kind of context is specific to each UWA, a web
modeling approach should support a set of common context properties including user, loca-
tion, device, time, and network. Consequently, this criterion evaluates if the approach supports
explicit concepts for modeling context and context properties, and what context properties
have been used in modeling examples illustrating the approach.

Context Extensibility (C.CE). It is required that built-in modeling concepts for context properties
can be easily extended by additional ones in case a UWA needs further context information
(e.g., temperature). This criterion, thus evaluates to supported or not supported.

Chronology (C.C). This criterion tells if the approach offers (or does not offer) concepts that allow
modeling how contextual information changes over time. For example, considering video
streaming, information on how the bandwidth changed in the past can be used to infer how
the bandwidth will develop or how stable it can be considered in the future in order to be
able to tune the resolution of the video accordingly.

Complex Context (C.CC). Complex context information is aggregated using different context pro-
perties, e.g., ”Vienna at night”. In this respect, this criterion evaluates if an approach supports
or does not support appropriate modeling concepts to specify complex context.

Separation of Context (C.SC). Customization modeling should ensure the separation of context
information and not just intermingle context with adaptation or the web application itself,
i.e., usually the content model. This criterion tests whether an explicit representation, e.g.,
in terms of a separate context model, would allow for reusability of already defined context
information across several UWAs.

Adaptation Operations(C.O). This criterion evaluates if the approach supports predefined model-
ing concepts for adaptation operations, e.g., filter some content, add links, change resolution of
an image, change hypertext, etc.

Adaptation Extensibility (C.AE). Similar to the required extensibility of modeling concepts for
context properties, this criterion evaluates whether adaptation operations can be extended
by user-defined adaptation operations. The criterion evaluates to supported or not supported.

Complex Adaptations (C.CA). Complex adaptations define multiple adaptation operations per-
formed on the same or on different subjects, e.g., change color and resize an image. This
criterion evaluates if an approach provides or does not provide appropriate means of modeling
complex adaptations.

Adaptation of Levels (C.L). Customization influences all levels of web applications. Content
adaptation changes the information that is presented to the user by adding or removing con-
tent (e.g., filtering), hypertext adaptation changes the navigation structure (e.g., disabling a
link), and presentation adaptation changes the way information is presented to the user
(e.g., changing colors or modality). This criterion investigates at which web application levels
an approach offers concepts to model adaptations.

Adaptation of Interfaces (C.I). Customization may also influence the interfaces between levels,
e.g., queries to underlying web application levels may need to change due to a certain con-
text. Consequently, this criterion evaluates if modeling of adaptations with respect to inter-
faces is supported or not supported.

19

2 On Model-driven Development of Ubiquitous Web Applications

Granularity (C.G). The granularity of adaptation indicates the number of modeling concepts af-
fected by a certain adaptation. While micro adaptation is concerned with fine-grained adap-
tations by affecting a single application element only (e.g., disabling a certain link on a cer-
tain page), macro adaptation means that rather large parts of a model are adapted, thus af-
fecting multiple modeling concepts (e.g., changing the language or changing the prevailing
access structures).

Separation of Adaptation (C.SA). Customization modeling should ensure the separation of ad-
aptation modeling and thus, prevent an intermingled representation of adaptations within
the content, hypertext, and presentation levels. This criterion tests whether separation of
adaptation is supported and thus, allows for reusability of already defined adaptations within
the same or across several UWAs, or if it is not supported.

Customization Phases (C.CP). This criterion evaluates during which development phases an ap-
proach considers customization modeling. Ideally, customization is considered during all
development phases.

2.1.2.4 Model-Driven Engineering

The Model-Driven Engineering criteria focus on modeling language definitions, model transforma-
tions, and platform descriptions as a prerequisite for successfully employing MDE.

Language Definition (M.L). This criterion evaluates if a web modeling language has been de-
fined explicitly in terms of a metamodel (including UML profiles), a grammar, a semantic de-
scription in terms of semantic web technologies, or if such a definition is missing.

Model Transformation Types (M.T). The investigated approaches might support or not support
various types of model transformations such as transformations between platform-indepen-
dent models (PIM2PIM), transformations between platform-independent and platform-spe-
cific models (PIM2PSM), transformations between platform-specific models and code (PSM2-
Code), and transformation from platform-independent models to code directly (PIM2Code).

Platform Description Model (M.P). This criterion evaluates if the information about a platform
is represented separately within a platform description model, or if this information is implicitly
captured within the transformation rules.

2.1.2.5 Tool Support

For those approaches offering tool support, this category of Tool Support Criteria provides detailed
information about the tool.

Tool Base (T.B). This criterion checks if the tool is developed as a stand-alone application or as a
plug-in/extension to an existing tool.

Open Tool (T.O) Whether the offered tool support can be tailored to the developer’s needs or not,
is tested by this criterion. Either the tool explicitly foresees extension possibilities or the tool’s
source code is publicly available under an open-source license and thus can be changed.

Version (T.V). In order to know how far the tool has developed, this criterion records the current
version of the tool at the time of evaluation.

20

2.1 Evaluation Set-Up

Costs (T.C). A tool might be free of charge or it might require a license fee to be paid. This crite-
rion evaluates to either freeware or commercial.

Modeling Support (T.M). A tool supporting a specific approach further can be evaluated if web
modeling and/or customization modeling is supported or not supported.

Model Pre-Generation Support (T.MG). Furthermore, a tool might also assist a developer in
modeling by pre-generating (parts of) models to be refined later on. This criterion evalu-
ates to true or false.

Consistency Check (T.CC). The criterion tests if a tool has a built-in consistency check to verify the
correctness of the models or not.

Code Generation (T.CG). Tools may generate code from the models the developer has defined.
The criterion evaluates to true, if a code generation facility is available, otherwise it evaluates
to false.

Process Support (T.P). The kind of guidance through the development process within the tool
is evaluated by this criterion. Firstly, it indicates whether the process supported by the
tool is realized for the approach as described in literature. Secondly, this criterion details if
the developer is bound to a step-wise procedure, or has the possibility to go back and forth
between the development steps without loss of information (i.e., wizard-like), or can freely
choose where to start and what to model as long as all phases are processed.

Collaboration (T.Co). The evaluated tool might support or might not support version control and
thus, allow collaboratively working on a project in a team.

2.1.3 Modeling Example: A Tourism Information Web Application

2.1.3.1 Motivation

In order to support the textual comparison on the basis of a structured set of criteria, an example
is provided, which is modeled by means of the concepts of each web modeling approach. The ex-
ample further enhances the evaluation in that it first, provides an initial insight into each approach
and second, facilitates the comparison of the approaches’ modeling means in terms of their nota-
tion, especially with respect to modeling customization. It has to be emphasized, however, that
the role of the modeling example in this survey is of a supportive nature, only. It is not intended to
give a comprehensive introduction to all of a web modeling language’s features. In particular, the
example shall provide insight to the approaches’ means for modeling customization functionality.

The web modeling field, however, generally lacks reference modeling examples, which can
be used to ”assess” individual approaches, and in particular lacks modeling examples including
comprehensive customization. Nevertheless, there have already been some attempts proposing
some kind of reference modeling example. A first attempt has been conducted at the International
Workshop on Web-Oriented Software Technologies (IWWOST 2001)1 by introducing a Conference Man-
agement System modeling example. The second attempt initiated at the Workshop on Model-driven
Web Engineering (MDWE 2005)2 is based on a Travel Agency modeling example. Furthermore, while
surveying the different web modeling approaches presented in the following, it became obvious

1www.dsic.upv.es/˜west/iwwost01
2http://www.lcc.uma.es/˜av/mdwe2005

21

2 On Model-driven Development of Ubiquitous Web Applications

that some modeling examples have been used particularly often across several web modeling
approaches, amongst them library systems, e-stores, and art galleries.

The main reason for not adopting one of these running examples is that the modeled web ap-
plications typically are limited with respect to the ubiquitous nature of those examples. If at all,
customization functionality is very simple, e.g., encompassing content adaptations with respect
to an isolated context factor such as the user, the device, or the location, only. Instead, the aim
of this survey was to choose an example from a domain that possibly does not create any bi-
ases, e.g., due to reusing existing examples in some of the investigated approaches. The domain
of tourism information systems is able to provide such examples requiring customization, espe-
cially, when considering mobile devices. Consequently, a hypothetical Tourism Information Web
Application (TIWA) has been chosen, which has been inspired by www.tiscover.at, the official Aus-
trian tourism platform,. In the following, a reduced description of the example system is given,
which includes the core functionalities of a typical tourism information system. Most importantly,
the system’s required customization functionality are described in terms of five customization sce-
narios, which have been designed to support the respective criteria of the catalogue of criteria.

2.1.3.2 Core Functionalities

A typical TIWA is supposed to allow guest users, i.e., unauthenticated users, to browse and search
for hotels, regions, activities as well as information about the weather. Registered users will be
allowed to book rooms and to browse their prior bookings. Administrators are responsible for
the web application’s content and therefore have to execute typical CRUD operations for hotels,
regions, users, activities, and bookings. The essential use cases are illustrated in Figure 2.2.

Guest

User

Admin

SHOW bookings

SEARCH hotel /
region / activity

BOOK room

BROWSE hotel /
region / activity

SHOW weather

LOGIN

EDIT hotel / region /
activity / user /

booking

SEARCH hotel / region /
activity / user /

booking

CREATE hotel / region /
activity / user /

booking

BROWSE user /
booking

Tourism Information Web Application

DELETE hotel / region /
activity / user /

booking

Figure 2.2: Use Cases of the Tourism Information Web Application

22

2.1 Evaluation Set-Up

1
2

3

4 5

Figure 2.3: The Tiscover Start Page

How such a web application could look like, is indicated with the following screenshot mock-
up. Figure 2.3 shows the home page of the TIWA with dedicated areas for (1) login, (2) search, and
(3) weather information. Furthermore, the menu allows navigating to, e.g., (4) hotels as well as
more detailed (5) weather information. The TIWA allows users to browse the offer of hotels either
for special regions or as the result of the user’s search. These lists of hotels will provide essential
information, e.g., the hotel’s name, a picture, a short description, a quick link for booking, etc.
Whichever hotel the user picks leads to an according detail page, allowing the user to obtain all
the information available for the chosen hotel as well as the possibility to start a booking process.
Likewise, the user will be able to browse regions as well as activities and request more information
on either subject by following links to the according detail pages. Furthermore, if already logged
in to the TIWA, the user is able to book a room and will be able to browse all prior bookings.
Administrators have a special interface to create, edit or delete hotels, regions, activities, as well
as bookings and users. Consequently, the content of the web application encompasses information
on users, bookings, hotels and their special features, rooms, regions as well as activities.

23

2 On Model-driven Development of Ubiquitous Web Applications

2.1.3.3 Customization Scenarios

TIWAs naturally give space for a series of customization possibilities to better support user expe-
rience. For this survey five exemplary customization scenarios likely to be found in real TIWAs
have been chosen such that the customization criteria of the catalogue are covered including dif-
ferent context factors.

(1) Customized Activities: Users will have the possibility to view activities that are relevant to
them (C.L). The activities shall be filtered according to the user’s age, location, the current time,
and the weather at the user’s location (C.P), (C.CE). From all activities, only those that match these
criteria will be displayed. Similar scenarios could filter content according to the user’s preferences,
only, e.g., list all hotels according to the user’s interest.

(2) Special Offers: For some users, there shall be special offers based on their navigational
behavior (C.P). Users shall be presented a special offer, if they have visited several pages of a spe-
cific region (C.CC). This scenario describes adaptation of the hypertext level (C.L). Alternatively,
a user that has already booked three times will get 3% off the price for the next reservation, which
represents a content level adaptation (C.L).

(3) Administrator Links: Administrators (C.P) shall be provided with ”edit” links for every
concept of the content they are allowed to edit (C.L), allowing for an additional and possibly
easier way of content management. For normal users or visitors these links will not be available
requiring fine-grained hypertext adaptation (C.G).

(4) Multi-Delivery: In order to consider users equipped with small devices (C.P), an appropri-
ate adaptation of the system shall be chosen. If a small-screen device is used, pictures and detailed
descriptions shall not be shown. This can be achieved by creating a dedicated hypertext model
for each device type which represents a coarse-grained hypertext adaptation (C.G) or by hiding
content for devices with small displays, which represents a fine-grained content adaptation (C.L).

(5) Current Season’s Style: The Look & Feel of the web application shall be different according
to the season. Different styles can be chosen during spring, summer, autumn, and winter. The
Look & Feel might also be subject to customization for supporting users having certain disabilities,
e.g., visually impaired users (C.L).

2.2 Comparison of Approaches

In the following the seven selected web modeling approaches will be compared applying the cata-
logue of criteria presented in Section 2.1.2 and exemplified using the modeling example described
above (cf. Section 2.1.3). Each of the following sections is dedicated to one approach which will be
ordered along with the categories they belong to, starting with the category of data-oriented web
modeling approaches.

2.2.1 The Web Modeling Language (WebML), Ceri et al.

MATURITY

WebML3 [CFB+03] is one of the most elaborated web modeling languages stemming from acad-
emia and is supported already over several years by the commercial tool WebRatio4. Furthermore,
WebML and WebRatio have already been successfully employed in several real-world projects

3www.webml.org
4www.webratio.com

24

2.2 Comparison of Approaches

(G.A). WebML is explained by a large number of different modeling examples including various
forms of e-Stores selling different kinds of products, a conference management system, an online
travel agency, a loan brokering web application, a museum guided tour, a campus tour, and an e-
learning application (G.ME). Since its introduction in 1999, WebML has continuously evolved and
recently has been extended by additional concepts addressing context-aware [CDMF07], service-
enabled [MBC+05], workflow-based [BCFM06], and semantic [BCC+06] web applications as well
as rich internet applications [BCFC06] (G.T).
WEB MODELING

The WebML language as presented in [CFB+03] provides modeling concepts for content mod-
eling and hypertext modeling, only. While the content level resembles the well-known ER-model
[Che76] (cf. Figure 2.4(a)), at the hypertext level a proprietary graphical notation is provided (cf.
Figure 2.4(b)) (W.L). Available within the WebRatio tool there are additional means for config-
uring the presentation level (e.g., for defining the web page’s style sheet and the positioning of
information on a web page) which, however, are not part of the WebML language [CFB+03]. The
interface between content and hypertext level is specified graphically by denoting the entity of the
content level (e.g., Hotel in Figure 2.4(a)) to be displayed in a so-called content unit (e.g., Hotels in
Figure 2.4(b)) as well as in a textual representation to specify additional properties. In Listing 2.1,
the textual representation of the IndexUnit HotelList of the Hotels page in Figure 2.4(b) is given.

Listing 2.1: WebML: Textual Representation of the IndexUnit HotelList

IndexUnit H o t e l L i s t
(source Hotel ;
a t t r i b u t e s Name, Pic ture , Descr ip t ion ;
orderby Name)

Since specified at the hypertext level, however, the interface cannot be modeled separately (W.I).
The approach allows behavioral modeling to a limited extent, only. While UML activity diagrams
are used during the requirements specification phase, some behavioral features are represented in
the hypertext model by the control-flow-like semantics of WebML’s operation units (cf. ModifyU-
nit and ConnectUnit in Figure 2.5). Recently, the introduction of process modeling concepts into
WebML [BCFM06], as well as the introduction of customization modeling concepts [CDMF07],
allows further modeling of behavioral aspects at the hypertext level (W.F). The WebML approach
comes with its own 7-phase, iterative, and incremental development process based on Boehm’s
Spiral model [CFB+03] (W.Pr) and comprises all development phases from requirements to im-
plementation (W.Ph).
CUSTOMIZATION MODELING The WebML approach provides two proposals for modeling cus-
tomization [CDMF07], [CDFM07] for which it is not clear how they are related and how they
can be used together, according to available literature. Neither of the proposals provides an ex-
plicit context model. Instead, context is modeled within the content model. In the first proposal
[CDMF07], however, the modeler is supported in designing the context information with guide-
lines proposing to imagine the content level as a set of overlapping sub-schemas (C.SC). For illus-
tration purposes, these sub-schemas can be indicated in the content model (cf. Figure 2.4(a)). The
entities of the Basic User Sub-Schema are always available in a WebML model and consists of the
User, Group, and Module entities. The Personalization Sub-Schema associates the User entity with
other entities, e.g., to denote user preferences. The Context Model Sub-Schema contains entities
relating the User entity with context information, e.g., the user’s location, the device used, etc.
(C.CE). As a form of static adaptation, WebML siteviews, i.e., several hypertext models defined
upon the content level, on the one hand, may be used to personalize a web application accord-

25

2 On Model-driven Development of Ubiquitous Web Applications

ing to users and user groups and, on the other hand, serve the purpose of expressing alternative
forms of content presentation for different devices [CDM03] (C.P). Modeling complex context is
not explicitly supported within WebML (C.CC). For modeling adaptations, the idea of a context-
aware web page (cf. Activities Page in 2.5) and concepts for retrieving context information have
been introduced. For example, for retrieving context information from the content level, the Get-
DataUnit concept is employed (cf. GetRegion GetDataUnit Figure 2.5), while the GetClientParUnit
concept is used to obtain context information from the client (cf. GetLatitude GetClientParUnit
Figure 2.5), e.g., information on the user’s location or on wireless connectivity [CDFM07] (C.P).
Furthermore two predefined adaptation operations are available, namely ChangeSiteview (cf. Fig-
ure 2.7(a)) and ChangeStyle (cf. Figure 2.7(b)) (C.O), which allow for a coarse-grained adaptation of
the hypertext and the presentation level, respectively (C.L), (C.G). The possibility of changing the
navigation flow, e.g., through WebML’s IfUnit (cf. Figure 2.6(b)), enables more fine-grained adap-
tations. There is no way to explicitly adapt the interface between the content and the hypertext
level (C.I), since adaptations are defined for a page rather than for a content unit. It is not pos-
sible to extend the predefined set of adaptation operations (C.AE), neither is there a concept for
defining complex adaptations (C.CA). In WebML, UWAs are modeled as refinements of the mod-
els of a non-ubiquitous web application, i.e., the development process has not yet been adapted
to guide developers in considering customization functionality throughout the development life-
cylce (C.CP). Since adaptations are modeled as an extension of the hypertext model, WebML does
not provide a separation of adaptations from the rest of the web application model (C.SA). In the
second proposals for modeling UWAs with WebML, the focus is on personalization purposes and
allows defining adaptive behavior of a web application based on event-condition-action (ECA)
rules [CDF06]. The approach relies on adaptive pages that specify the action part of the rule and
are similar to context-aware pages. Conditions are described on the basis of a so-called web be-
havior model (WBM) script, which is a timed state-transition automaton for representing classes of
user behaviors on the web, i.e., navigation patterns. Thus, some form of context chronology is
supported (C.C).
MODEL-DRIVEN ENGINEERING

WebML’s language concepts are partly defined in terms of XML document type definitions
(DTDs) (M.L) and partly hard-coded within the approach’s accompanying tool, WebRatio. Con-
sequently, the WebML approach currently cannot profit from the benefits of MDE. Nevertheless,
some efforts have recently been made to port WebML to MDE by two proposals, i.e., one for a
metamodel based on the Meta Object Facility (MOF) [SWK+07] (see also Chapter 4) and another
one for a UML profile [MFV07]. While the WebRatio tool provides code generation support (i.e.,
J2EE and Jakarta Struts) from the platform-independent WebML models, the WebML approach
does not provide for model transformations to different platforms prior to generating code (M.T)
As a consequence, the approach does neither provide platform description models for the above
mentioned platforms (M.P).
TOOL SUPPORT

WebRatio is a commercial, proprietary tool developed as a standalone application (T.C), (T.O),
(T.B). WebRatio 4.3 has been evaluated with an academic license (T.V) which is free of charge (T.C).
Currently, WebRatio does not include the concepts for modeling customization, except for requir-
ing the User, Group, and Module entities in every web application model. Still, it is reported that,
the concepts proposed in [CDMF07], [CDFM07] have been realized in prototype implementations
(T.M). The tool allows extending the WebML language via specialized content units and operation
units (T.O). This way the WebML language and tool support have already been extended e.g. to

26

2.2 Comparison of Approaches

support service-enabled web applications. WebRatio allows the to generate a web application
model into a running application. No additional coding is needed and the web application can
be automatically deployed to an integrated Tomcat Servlet Container (T.CG). Moreover, the tool
offers a so called pattern wizard that allows building automatically common parts of the hypertext
model like a login mechanism or content management functionality for selected entities from the
content level (T.MG). WebRatio models can be subject to a consistency check that is executed on-
demand (T.CC). The process of the method is only partly supported by the tool, e.g., requirements
engineering is not considered, and the user can start wherever s/he chooses (T.P). According to
the included documentation of WebRatio the tool is also capable of shared editing via a concurrent
versions system (CVS) (T.Co).
MODELING EXAMPLE

In Figure 2.4(a) the content level, i.e., an ER-diagram, of the TIWA example is shown for WebML.
In WebRatio, the entities User, Group, and Module are predefined and enable basic personaliza-
tion of the hypertext level to user and user groups (cf. the Basic Sub-Schema indicated in Figure
2.4(a)). The other entities are representing the application data of the running example: Hotels
have Rooms, which in turn can have multiple Bookings, whereby each Booking belongs to a User
(cf. the Personalization Sub-Schema indicated in Figure 2.4(a)). Hotels have additional Features such
as a swimming pool, an animation team or the like. Every Hotel is situated in a Region which in
turn has neighboring regions. In every Region there will be an offer of Activities, e.g., in terms
of events. Further context information has been incorporated to the content level as follows: The
User is directly related to the device s/he is using. Additionally, the User is also directly associated
with the Region s/he is currently located as well as indirectly to the Weather entity that has been
introduced to allow for customization according to the current weather situation (cf. the Context
Model Sub-Schema indicated in Figure 2.4(a)).

Hotel
Name
Address
Description
OpenFrom
OpenTo
Picture
Prizeclass
Stars

Hotel
Name
Address
Description
OpenFrom
OpenTo
Picture
Prizeclass
Stars

Region
Name
Description
xLongitude
xLatitude
yLongitude
yLatitude

Region
Name
Description
xLongitude
xLatitude
yLongitude
yLatitude

Name
Description
StartingDate
EndingDate
StartTime
EndTime
Prerequisites
Picture
Prize
RecAgeFrom
RecAgeTo
Type

Activity
Name
Description
StartingDate
EndingDate
StartTime
EndTime
Prerequisites
Picture
Prize
RecAgeFrom
RecAgeTo
Type

Activity

Booking
From
To
Payed

Booking
From
To
Payed

Feature
Description
Type

Feature
Description
Type

Room
Beds
Prize
Description

Room
Beds
Prize
Description

1:1

0:N

0:N

1:1

0:N

1:1

1:1 0:N
0:N

0:1

User
Address
Age
Email
Name
Password
UserName
Longitude
Latitude

User
Address
Age
Email
Name
Password
UserName
Longitude
Latitude

1:1 0:N

0:N

1:1

Device
Type
Siteview

Device
Type
Siteview

1:1

1:1

Weather
Description
Weather
Description

1* *1
reqWeather

0:N 1:N

Group
GroupName

Group
GroupName

Module
ModuleID
ModuleName

Module
ModuleID
ModuleName

0:N 0:N

0:N 0:N

0:1 0:N0:1 0:N

Basic User Sub-Schema
Personalization Sub-Schema
Context Model Sub-Schema

HotelsHotels

HotelList

Hotel

HotelList

Hotel

RegionsRegions

RegionList

Region

RegionList

Region

Home HHomeHome H

ActivitiesActivities

ActivitiesList

Activity

ActivitiesList

ActivityLL L

Hotel
Details

Hotel

Hotel

Hotel

Hotel

RegionDetails

Region

Region

Region

Region

Activity
Details

Activity

Activity

Region‘s
Hotels

Hotel

Region‘s
Hotels

Hotel

Region‘s
Activities

Activity

Region‘s
Activities

Activity

(a) (b)

Figure 2.4: WebML: (a) Content Level, (b) Hypertext Level

Part of the hypertext level of the TIWA is shown in Figure 2.4(b). This particular view shows
that users can browse hotels, regions, and activities via three dedicated landmark pages (cf. ’L’
label). The specific subjects can then be selected via WebML’s IndexUnits to be displayed in detail

27

2 On Model-driven Development of Ubiquitous Web Applications

on separate pages, i.e., HotelDetails, RegionDetails, and ActivityDetails. Each of these pages uses a
DataUnit for presenting the selected item. In addition, the RegionDetails page presents an index of
the region’s activities and hotels, respectively.

Customization Scenario Customized Activities. The Activities page can be made context-aware
in order to show only activities of the region the user is currently located in and are employed
to filter them according to the user’s age and the current date. A GetUnit GetUser acquires the
current user and two GetClientParUnits provide the user’s longitude and latitude (cf. Figure
2.5). The location information then can be stored for the current user in the content model with a
ModifyUnit. The location information is also used to select the region the user is currently located
with the GetRegion GetDataUnit. The ConnectUnit is used to relate the user with the current
region, i.e., the user’s location. A TimeUnit which has been implemented in WebRatio, can be
used to obtain the current date so that only those activities are shown that have not yet started.
The current weather situation for the user’s region is assumed to be updated in the data source
by some external service so that it can be queried by the GetDataUnit GetWeather. In order to
correctly filter the information on activities for the user, all this context information is then used
in a set of so-called SelectorConditions (cf. square brackets) for the ActivitiesList IndexUnit in the
page Activities.

GetRegion

Region
[xlongitude<User.Longitude]
[ylongitude>User.Longitude]

[xlatitude<User.Latitude]
[ylatitude>User.Latitude]

Activities

ActivitiesList

Activity
[FromAge<=User.Age]

[ToAge>=User.Age]
[Region IN Region2Activity]

[StartingDate>=curDate]
[Weather IN Weather2Activity]

L

C

Get
Longitude

Longitude

@

Get
Latitude

Latitude

@

GetUser

CurrentUser

+
Connect

User2Region

curUser

lat

lon

User, Region

Modify

User
[User=curUser]

<Longitude=lon>
<Latitude=lat>

_+

User
OK

GetWeather

Weather
[Region IN

Region2Weather]

Weather

User,
Region

OK

curDate

GetDate

Figure 2.5: WebML: Customized Activities Scenario

Customization Scenario Special Offers. For modeling the Special Offers customization scenario
the second proposal for modeling UWAs with WebML is used, i.e., WebML’s rule-based approach
which allows reacting to user navigation. In the following example, the TIWA will monitor the
user navigation to find out what region a user is particularly interested in. As soon as this infor-
mation is available, the user shall be redirected from the HotelDetails as well as from the Activi-
tyDetails page to a page presenting special offers for hotels and activities. As depicted in Figure
2.6(a), the condition of this rule is specified by a WBM script, i.e., a timed finite state automaton,
stating that a user needs to visit three arbitrary pages (denoted with ’*’), having in common that
each displays information about the same region. In a WBM script, a state (denoted with a circle)
represents the user’s inspection of a page. The three pages do not necessarily have to be visited in

28

2.2 Comparison of Approaches

sequence, i.e., the user can navigate to other pages in between. Still, the transition constraint states
that after 180 seconds the next page displaying the same region information has to be navigated
otherwise the script will be discarded. In case the third page is visited the automaton reaches its
accepting state, triggering the action of the rule. In the action part of the rule, the HotelDetails
and the ActivityDetails pages become adaptive pages (A), having a link to the Special Offers page,
which will be navigated in case the rule’s condition is true.

Customization Scenario Administrator Links. In WebML, siteviews can be used for modeling
different hypertexts for different user groups, e.g., external users and administrators. In the fol-
lowing, to enable editing from the public siteview, fine-grained adaptation can depend on the
user’s group links shall be allowed in the Activity Details page of the public siteview, however. In
Figure 2.6(b), depending on the current user’s group, the ActivityDetails page will present different
navigation possibilities. The Alternative concept is employed to indicate that the normal Activity
DataUnit is displayed in the default case (cf. ’D’ label). Alternatively, an Activity DataUnit that
has a link to an EditActivity page can be displayed. An IfUnit is employed to redirect navigation
to the respective alternative on the basis of the context retrieved by the GetUser GetUnit and the
GetGroup GetDataUnit.

(a) (b)

*
x:=Display(

Region,OID)

*
y:=Display(

Region,OID)
x=y

*
z:=Display(

Region,OID)
y=z

[0,180] [0,180]

Condition

Action

HotelDetails

A

ActivityDetails

A

Special Offers

Hotels

Hotel
[z IN Region2Hotel]

Activities

Activity
[z IN Region2Hotel]

z

z

z

ActivityDetails

Alternative
Details

Activity

Activity

Details

Activity

ActivityD

C

GetUser

CurrentUser

If

[Group.GroupName=‘admin‘]

GetGroup

Group
[curUser IN User2Group]

curUser

Edit Activity

[result=true]

OK

OK
[result=false]

Group.GroupName

Figure 2.6: WebML: (a) Special Offers Scenario, (b) Administrator Links Scenario

Customization Scenario Multi-Delivery. WebML also suggests modeling dedicated siteviews
for special navigation purposes as is the case for adapting the hypertext level according to the
user’s device. The ChangeSiteViewUnit, used in this scenario, has been recently introduced to
the WebML language to allow for changing the hypertext model to better suit the current context
of the user. In Figure 2.7(a), the Public Siteview has been made context-aware. Thus, if a user
requests any page located in this siteview, the GetClientParUnit GetDevice will provide the neces-
sary information to find a device specification in the database via the GetDataUnit GetDeviceSpec.
The user will then be redirected to an appropriate siteview that has been associated to the device
in the database by the ChangeSiteviewUnit. In case no such specification can be found, the user
will be redirected to a page where the device can be chosen from a predefined list.

Customization Scenario Season’s Style. Finally, WebML does also allow customizing the pre-
sentation level with the recently introduced ChangeStyleUnit. This coarse-grained adaptation

29

2 On Model-driven Development of Ubiquitous Web Applications

operation changes the Look & Feel of the web application by changing the Cascading Style Sheet5

(CSS) used according to the current context. Figure 2.7(b), shows how the time context is obtained
with a TimeUnit GetDate. An IfUnit is used to decide if the presentation of the home page shall be
based on the summer style or the winter style by using the respective stylesheet.

(a) (b)

Home Page H
C

A AA
Change
Style

If

[21.06<Date<21.12]

OK

OK

css=summer

css=winter

Date

[result=true]

[result=false]

GetDate

Public Siteview

Get
Device

Device

@

If

[Device.OID!=NULL]

C

GetDevice
Spec

Device
[Device = dev]

dev

Device

OK

sv=Device.Siteview

[result=true]

Change
SV

[result=false]

Choose Device

OK

Figure 2.7: WebML: (a) Multi-Delivery Scenario, (b) Season’s Style Scenario

2.2.2 The Hera Design Methodology, Houben et al.

MATURITY

The Hera6 approach [FHB06], first introduced in 2000, has been heavily influenced by the hy-
permedia design method RMM [ISB95] and originally concentrated on web applications that,
depending on a user query, automatically generate complete, static hypermedia presentations
[BFH02]. Recently, a revision of the Hera approach has been introduced with Hera-S [vdSHBC06],
which considers dynamic web applications (G.T). The prevailing modeling example used in al-
most all publications is a virtual art gallery. Besides, a conference management system, a digital
photo library, a movie library, and e-store applications are used as modeling examples (G.ME).
While it seems that real-world applications of Hera do not exist yet, four demo web applica-
tions have been developed including the museum application where real-world content has been
reused (G.A).
WEB MODELING

The Hera approach, in principle proposes models for the content, hypertext, and presentation
levels (W.L). Since RMM has been a major influence to Hera [FHV01], the content level (i.e. Hera’s
conceptual model or alternatively domain model) first has been based on the ER-model [Che76]. To-
day, Hera is based on the Resource Description Framework (Schema) - RDF(S) [W3C04c] thus,
supporting the engineering of semantic web information systems. It provides a proprietary graph-
ical notation for modeling the content level [FHB06]. As is depicted in Figure 2.8(a), at content
level the domain model of Hera is based on concepts (e.g. Hotel and Region), attributes (e.g.
Name and Picture), concept relationships, (e.g. provided by and provides) and media types (e.g.
String and Image). The hypertext level (i.e., the application model) and the presentation level (i.e.,
the presentation model) still resemble RMM’s graphical notation as is shown in Figure 2.8(b) and
Figure 2.9, respectively. More specifically, the Hera application model is mainly based on slices

5http://www.w3.org/Style/CSS/
6http://wwwis.win.tue.nl/h̃era/

30

2.2 Comparison of Approaches

and slice relationships, which can be either compositional or navigational. In the upper part of
Figure 2.8(b), the HotelDetail slice has Hotel as the owning concept from the content level (cf. the
rounded rectangular) and presents the details of the hotel, including its name, picture, prize-
class, stars, description and address. Furthermore, the set of rooms it contains and the features
it provides are part of the slice. From the HotelDetail slice, a navigational relationship leads to
the HotelEdit slice. The presentation level is based on a hierarchy of regions allowing to position
slices from the hypertext level for their presentation [FFH+04]. A region represents a rectangu-
lar part of the display area and has associated with it a layout manager for positioning elements
and a specific style. Figure 2.9 describes how the HotelDetail slice and its parts are placed within
different regions. For example, the HotelDetail slice is placed within a Box Layout. The figures
show that the interfaces between levels are specified graphically. For example, at hypertext level,
a slice always denotes its owning concept from the content level in terms of a rounded rectangu-
lar (Figure 2.8(b)). Moreover, the interfaces between the levels are as well specified textually on
the basis of queries [vdSHBC06]. Still, the interface is always intermingled with the upper level
(W.I). The recent introduction of concepts for modeling workflow-based web applications (e.g., a
task model and a workflow model) [BFH06] allow for modeling behavioral aspects at the hyper-
text level (W.F). Hera proposes a development process that includes development phases from
requirements engineering to implementation [VH02] (W.Pr), however, this process has not been
detailed beyond a set of guidelines. Recent elaborations on the approach focus particularly on
design and implementation but omit the requirements engineering phase (W.Ph).
CUSTOMIZATION MODELING

In the Hera approach customization is focused on the user and device context, only (C.P). The
approach strives for encapsulating context information separately (C.SC): On the one hand, static
adaptations are based on context information obtained from a user profile [FBHF04], [FFH+04]. In
fact, Hera uses a CC/PP vocabulary [W3C04a] to model user preferences and device capabilities.
For example, in the profile instance presented Listing 2.2) the hardware platform is characterized
by the property client which identifies the device used, while the group property characterizes
the user preferences in terms of providing information on the user’s group. On the other hand,
dynamic adaptations, that are based on a user model storing the users’ navigational behavior,
have been proposed but not further explained [FH02]. Moreover, further concepts are needed
for supporting extensibility of context explicitly (C.CE), for capturing context history (C.C), and
for modeling complex context information (C.CC). Adaptation is realized by means of so-called
appearance conditions attached to different design artifacts, i.e., to the content, hypertext, and pre-
sentation models (C.L), (C.I). If such conditions evaluate to true or false, the presence of their
associated artifacts, e.g., content information or links (C.G), is enabled or inhibited, respectively
[FBHF04]. In this respect, appearance conditions can be seen as a from of adaptation operation
(C.O). As a consequence, the approach does not allow for extensibility of adaptation operations
nor for complex adaptations. (C.AE), (C.CA), Since adaptations are only annotations to differ-
ent design models (C.CP), they cannot be modeled separately either (C.SA). Still, in the Hera-S
approach the recent introduction of concepts from the aspect-orientation paradigm is intended
to solve this problem [CWH07]. This way, appearance conditions can be modeled separately and
be ”woven” into the models before generating the web application. Another proposal for cus-
tomization presents how a high-level personalization rule language [GGBH05], can be mapped
onto modeling concepts from Hera and OO-H (cf. Section 2.2.6).

31

2 On Model-driven Development of Ubiquitous Web Applications

MODEL-DRIVEN ENGINEERING

As already mentioned before, the Hera modeling language is defined in terms of in RDF(S) and
CC/PP, respectively (M.L). Currently, the approach focuses on the generation of static hyperme-
dia presentations, i.e., static web sites, in a specific output format, e.g., in terms of HTML and
WML. These hypermedia presentations then will be deployable on any web server. The approach
suggests the subsequent transformation or rather the integration of the different design model
artifacts, i.e., Hera’s conceptual model, application model, presentation model, and user profile
model. In a last step, the output can be generated (M.T). The approach does not support a separate
platform model (M.P).
TOOL SUPPORT

Hera is supported by the Hera Presentation Generator (HPG) tool, which has been evaluated in its
1.3 version (T.V). HPG is a proprietary tool, not extensible, available as freeware (T.B), (T.O), (T.C).
Support for a concrete notation for modeling the content and the hypertext as well as presenta-
tion level has been realized by three Microsoft Visio7 templates called the Conceptual Model Builder,
Application Model Builder, and the Presentation Model Builder, respectively [FHB06]. A load/export
feature provides the RDF(S) serialization of the models for the HPG tool. Apart from that, model-
ing of the user profile, i.e., the CC/PP code, is supported through appropriate ”textual” wizards
of HPG (T.M). Since HPG 1.3 generates static hypermedia presentations, it does not allow for
modeling dynamic adaptations that consider e.g. the user’s inputs or the user’s browsing history
[FH02]. Today, transforming the models into a suitable static presentation (HTML, WML, etc.) is
possible on the basis of XSL transformations using either HPG itself or the external AMACONT
engine developed at the Dresden University of Technology [FHHF04] (T.MG), (T.CG). The HPG
tool follows the guidelines for developing a web application with Hera by starting with the con-
tent level, i.e., Hera’s domain model. A wizard guides the user through the design and generation
process (T.P). In every step the models can be viewed using a text editor or Microsoft Visio, where
the model builders enforce some constraints while the user is designing a model in order to pro-
duce correct models. Moreover, the models’ consistency can also be checked by HPG (T.CC). Up
to now, there is no shared editing or versioning support (T.Co). Recently, modeling support for
user input and tool support for generating dynamic web applications, which are able to react to
user input, has been proposed in [HFBV04] and [FHB06], respectively. This new tool support is
currently implemented in Java and provides a runtime environment for the generated applica-
tions on the basis of the Java-Servlet platform.
MODELING EXAMPLE

In the Hera approach, not all customization scenarios can be realized: Since the approach is
limited to user and device context information as well as to appearance conditions which do not
allow filtering of content, it is possible to present the Multi-Delivery and the Administrator Links
scenarios, only.

Customization Scenario Multi-Delivery. The content level as well as the other levels can be
customized with annotations, i.e., appearance conditions such as prf:imageCapable = true in Figure
2.8(a).

7http://office.microsoft.com/en-us/visio/

32

2.2 Comparison of Approaches

N
am

e

Address Pi
ctu

re

Pay
ed

Nam
e

D
es

cr
ip

tio
n

Size

NameDes
cri

pti
on

Prerequisites
PicturePrize

RecAgeFrom

R
ecAgeTo

Ty
pe

Age

(a) (b)

Figure 2.8: Hera: (a) Conceptual Model, (b) Application Model

This appearance condition is specified on the basis of the user profile instance of Listing 2.2
and means that the conceptual model is to provide a picture of the hotel only if the device used
is capable of presenting images. Since according to the client property in the profile instance, the
imageCapable property is set to true, the hotel picture will remain in the domain model and thus in
the generated hypermedia presentation.

Listing 2.2: Hera: User Profile Instance

<Descripion rdf : about= ” P r o f i l e ” >

<ccpp : component>
<HardwarePlatform>

<imageCapable>true</imageCapable>
<c l i e n t >Desktop</c l i e n t >

</HardwarePlatform>

</ccpp : component>
<ccpp : component>

<UserPreferences>

<group>admin</group>

. . .
</UserPreferences >

</ccpp : component>

With respect to the presentation level, appearance conditions can also be used to choose one
of a set alternative regions according to the current device. In Figure 2.9, the set of rooms of the
HotelDetail slice are placed at the bottom part of the display (cf. the regions RegionBottomRooms).
More specifically, two alternatives for presenting the hotel’s set of rooms are provided depending
on the device used. The appearance conditions associated with the two alternative regions Re-
gionBottomRooms state, that in case of a PDA the rooms also shall be displayed according to a Box
Layout, while when using a PC users shall be presented with a Table Layout.

33

2 On Model-driven Development of Ubiquitous Web Applications

Figure 2.9: Hera: Presentation Model

Customization Scenario Administrator Links. Similarly, appearance conditions can be used to
customize the hypertext level, e.g. a link in the Hera application model can be adapted according
to the user profile. Figure 2.8(b) presents a small excerpt from the application model showing how
the Administrator Links scenario can be realized. The link from the HotelDetail slice to the HotelEdit
slice is annotated with the appearance condition prf:group = admin stating that only users
of the group ’admin’ will be able to see this link. According to the group property in the profile
instance presented in Listing 2.2, the user is part of the admin group and thus, the edit link will
be available. Another way of hypertext adaptation is the possibility to define multiple application
models for the content level. In this respect the application models or rather the RDF(S) specifi-
cations just need to be exchanged and the web application can then be re-generated. Please note
that appearance conditions also can be associated with a whole slice or one of its shown attributes,
e.g., the hotel’s description.

Following, Listing 2.3 indicates how such an appearance condition can be modeled separately
as is proposed in [CWH07] using the textual Semantics-based Aspect-oriented Adaptation Lan-
guage (SEAL) of Hera-S . In the example below, the ADVICE specifies that an appearance condition
needs to be added to the hypertext level, while the POINTCUT specifies the exact place(s). Please
note, that in Hera-S the modeling concepts of the language partly have been renamed, e.g., unit
corresponds to a slice and the reference to the user profile ’prf’ has been changed to ’cm’. Con-
sequently, the POINTCUT specifies the link from the HotelDetail slice to the HotelEdit slice. The
advantage of this approach is that within the POINTCUT several links of the hypertext level can
be specified in one place and extended with an appearance condition.

Listing 2.3: Hera: Separating Appearance Conditions with Aspects

POINTCUT type r e l a t i o n s h i p and from (type uni t and hasName
” Hote lDeta i l ”) and to (type uni t and hasName ” HotelEdit ”)
ADVICE ADD CONDITION cm : group = ”admin”

34

2.2 Comparison of Approaches

2.2.3 The Web Site Design Method (WSDM), De Troyer et al.

OVERVIEW

The Web Site Design Method8 (WSDM) has been first proposed in 1998 [TL98] and thus, is one
of the earliest web modeling approaches. Recently, WSDM is evolving towards the semantic web
[CPT06] (G.T). There seem to be no applications of the approach in real-world projects (G.A).
Modeling examples used are a conference management system, an e-store, and a department
website (G.ME).

Web Modeling. WSDM provides its own five-phase, audience-driven development process
(W.Pr) and specifies all its modeling concepts within the WSDM Ontology9 which is based on the
Web Ontology Language (OWL) [W3C04b]. The process starts from a mission statement, specify-
ing purpose, subject and targeted users, followed by a user-driven requirements engineering and
analysis phase, which results in the audience model, i.e., a set of audience classes, having specific
requirements and characteristics. During the design phase, structural modeling of all web appli-
cation levels is supported (W.L). The content level is represented as the integration of object chunks
to the so-called business information model. Each object chunk, represents a tiny conceptual schema,
which is derived from the tasks each audience class needs to perform. In turn, these tasks are
identified in a task modeling activity based on the Concurrent Task Tree (CTT) technique [Pat00],
whereby a task is decomposed into elementary tasks arranged in a temporal order (W.F) (cf. Fig-
ure 2.10). Then for each elementary task an object chunk is created, which (formally) models the
necessary information and functionality needed to complete the task (cf. Figure 2.11). Moreover,
an object chunk can have associated object chunk functions, which allow to model system function-
ality (e.g., instance creation and select functions) [CPT06], [PCT05] (W.F). Formerly, object chunks
have been based on the Object Role Modeling (ORM) method10 [Hal01]. Today, they are specified
within the WSDM Ontology, while the graphical notation still follows ORM (cf. 2.11). At the hy-
pertext level, WSDM’s navigational model (W.L) consists of navigation tracks, one for each audience
class, and models the conceptual structure of the web application in terms of nodes and links (cf.
2.12). A navigation track can be considered as a ”sub-site” dedicated to the information and navi-
gation needs of the audience class. Nodes can comprise several object chunks from the content level,
which is specified with the OWL object property hasChunk. This relationship is also graphically
represented in the navigation track (cf. rounded rectangles in Figure 2.12) (W.I). At presentation
level, the site structure model (W.L) maps the concepts modeled at hypertext level onto pages, i.e.,
the OWL object property hasNode decides which nodes and links will be grouped onto web pages.
Nodes to be presented on one page are surrounded with a rectangle shape (indicated for the Show
Bookings node in Figure 2.12) (W.I). In addition, WSDM proposes page models defined for each sep-
arate page in the site structure model, which allows for positioning of page elements. The mapping
of object chunks onto the actual data source is performed in a data source mapping step. Finally, the
development process ends with the implementation of the web application (W.Ph).
CUSTOMIZATION MODELING

In WSDM’s history, two independent proposals for dealing with customization modeling have
been published. The first one [CGT05], [CTB03] focuses on modeling adaptive navigation based
on rules specified at design time and triggered due to the browsing behavior of users (C.P). The
second [TC04], basically extends each of WSDM’s development phases (except implementation)
in order to model localization. To do so, the concept of ”locality” has been introduced describing

8http://wsdm.vub.ac.be/Research/publications.php
9http://wise.vub.ac.be/ontologies/WSDMOntology.owl

10http://www.orm.net

35

2 On Model-driven Development of Ubiquitous Web Applications

>>

>>|=| []>> []>>

[]>>

[]

Book a Room

Provide
Keywords

Compute
Results

Make Reservation

Browse Hotels Search Hotels

Find Hotel Select Room Provide Date Check
Availability

BookLogin

Find Room

>> Sequential tasks
|=| Parallel tasks

[] Alternative tasks
[] >> Sequential tasks with parameters

Abstract task to be refined
Interaction task between user and system
Application task executed by system

LEGEND:

Figure 2.10: WSDM: The Booking Task CTT

a particular place, situation, or location (C.P). In particular, the audience modeling phase has been
extended to model localities, i.e., their specifications, characteristics, and their mappings to audi-
ence classes. In further design models, localization is considered by annotation-like extensions
to the models, which implies no separation of adaptations (C.SA). Context information actually
is not modeled at the content level. Consequently, there is no separation of context from the
rest of the application (C.SC). Context cannot be extended to support further context properties
(C.CE), and neither chronology (C.C) nor complex context can be modeled (C.CC). In [CTB03],
the Adaptation Specification Language (ASL) has been defined, allowing designers (C.CP) to express
rules specifying when and how the hypertext level (C.L), needs to be adapted according to the
monitored user behavior. In this respect, the approach offers an implicit context model providing
several functions to query data on user behavior, e.g., numberOfVisits of a node and numberOfTra-
versings of a link. This way, some form of context chronology can be realized (C.C). The approach
offers a fixed set of primitive adaptation operations (C.O), (C.AE) on nodes (i.e., deleteNode and
addNode), connections between nodes and object chunks (i.e., connectChunk and disconnectChunk)
(C.I), and links (i.e., deleteLink and addLink). More complex adaptations based on the primitive
ones are amongst others promoteNode / demoteNode, which moves a node closer to / further away
from the root of a web site thus making it easier / harder to find (C.CA). Rules in ASL can be
applied to single elements but also to groups of elements (C.G) and represent a mechanism to
specify adaptations separately from the rest of the web application (C.SA). The approach suggests
that these design time rules can be used to generate rules for an adaptation engine within the web
application but does not explain possible effects of navigation model rules on the presentation
level.
MODEL-DRIVEN ENGINEERING

As already mentioned before, all modeling concepts of WSDM have been defined within the
WSDM Ontology. WSDM models thus, represent instances of this ontology (M.L). The WSDM
approach does foresee an implementation phase with a four-step transformation process, respec-
tively a five-step process when considering semantic annotations [CPT06]. In this process, the
previously defined models are supposed to be subsequently transformed to the selected output

36

2.2 Comparison of Approaches

platform, e.g., (X)HTML and WML (PIM2Code). During this process, the different models are in-
tegrated into one, thus realizing a PIM2PIM transformation (M.T). The approach, however, does
not provide platform description models for the above mentioned platforms (M.P). A prototype
for generating code and particularly semantic annotations from WSDM’s design model has re-
cently been described in [CPT06]. This prototype currently is able to generated HTML code based
on XSLT.
MODELING EXAMPLE

On the basis of WSDM’s current customization mechanisms, it is possible to model the Cus-
tomized Activities scenario, the Administrator Links scenario, and a variant of the Special Offers sce-
nario. The customization scenarios Multi-Delivery and Season’s Style could possibly be realized
by defining different variants of the hypertext and presentation levels for supporting different de-
vices as well as for different seasons. Still, how the different variants are selected in the web appli-
cation at runtime is assumedly left to implementation issues. Consequently, these customization
scenarios have not been realized.

Select Room in: *h Hotel
out: *r Room

Hotel
*h

has / is of

has / is of

Name

Picture

Room
!{*r}

has / is of

has / is of

Beds

Prize

has / is of

Book Room in: *u User, *r Room, *f Date, *t Date
out: *b Booking

Room
*r

has / is of

Booking
*b=NEW

has / is of

has / is of

From

To

User
*u

has / is of
*f

*t

+

++

G
US

Browse (Customized) Activities in: *u User
out {*a} Activity

Region
*r

User
*u

has / is of

Age

has / is of

Activity
{*a}

has / is of

is of/ has

StartDate
*d>TODAY …

has / is of

has / is of

Name

PriceG
US

Figure 2.11: WSDM: Object Chunks at Content Level

Customization Scenario Customized Activities. In WSDM, the activities can be filtered accord-
ing to the current context at the content level. The content level, i.e., the object chunks, is derived
from a CTT specifying the details of an audience class’s task. The task of browsing activities is
rather simple. Consequently, for illustration purposes, an example for the more complex booking

37

2 On Model-driven Development of Ubiquitous Web Applications

task of the user audience class is specified by the CTT in Figure 2.10: To book a room, a room has
to be found and after that a reservation has to be made. To find a room, a hotel must be found
first. Either before or after that the user has to login and can then select a room that s/he likes, etc.

Some of the object chunks capturing the information and functional requirements of an ele-
mentary task are depicted in Figure 2.11. The Select Room object chunk shows the information
requirements for the Select Room task of the CTT shown in Figure 2.10. The input to the object
chunk is an instance *h of the hotel object type for which name and picture are shown as the only
value types. From the set of rooms of the hotel which is denoted with brackets {*r}, one can be
selected as is indicated with ’!’. The price value type of the room is tagged with locality labels to
indicate information that is dependent on the locality, i.e. the price is different for localities ’G’
for Germany and ’US’ for United States. The object chunk Book Room creates a new instance (an-
notated by the keyword ’NEW’) of booking for a specified room and date, which are inputs from
prior tasks, namely Select Room and Provide Date. The relationships are established with the ’+’ no-
tation. The object chunk Browse (Customized) Activities of Figure 2.11, shall present customization
scenario Customized Activities. In the example, the location of the user is assumed to be resolved to
a region and to be stored in the data source. Thus, having the user *u as input to the object chunk,
the region for the user as well as the region’s activities can be selected. Furthermore, the activ-
ities are selected according to the current date with the keyword ’TODAY’. Please note that, the
WSDM specification actually does only allow for testing the equality of values with ’==’, thus the
example is not fully compatible with WSDM. Furthermore, the notation does not allow selecting
the activities according to the user’s age.

User Track

Browse Hotels

Hotel Details
Search Hotels

Search Regions

Search Activities

Browse Activities

Browse Regions
Activity Details

Region Details

Show Weather

Book Room

Show Bookings

Guest TrackH

Book Room
in *r

Browse
(Customized)

Activities
in *u, out {*a}

Select Room
in *h, out *r

*u

{*a}

Admin Track

C: if *u user is administrator

*h

*r

Edit Activity
C

n0

n2

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

Figure 2.12: WSDM: The Navigation Model and the User Navigation Track

Customization Scenario Administrator Links. In Figure 2.12, the structure of the hypertext
level is depicted in terms of the specific tracks for the audience classes. The User Track is pre-
sented in detail: nodes are connected with the necessary object chunks and links have attached
parameters to be transported. Note that, only the object chunks previously presented in Figure
2.11 are depicted. With respect to the customization scenario Administrator Links, the WSDM no-
tation allows specifying conditional links (cf. link to Edit Activity node), which is only available if

38

2.2 Comparison of Approaches

the associated condition formulated in natural language turns out to be true (cf. the bottom-right
corner in Figure 2.12).

Customization Scenario Special Offers. The Special Offers scenario can be realized on the basis
of ASL. The users shall be provided with a link to the Region Details node, if their browsing be-
havior indicates a certain interest in the region. The ASL rule of Listing 2.4 specifies to provide a
link from the Activity Details (n12) to the Region Details node (n11) if in more than 90% of the cases,
the Region Details node is accessed by starting navigation through the hypertext from the Activity
Details node and if the Region Details node is visited in 5% of all node accesses of the web site.

Listing 2.4: WSDM: Special Offers Scenario

i f numberOfVisits (n12 , ((n11 , n2) , (n2 , n3) , (n3 , n12))) / numberOfVisits (n12) > 0 ,9 and
numberOfVisits (n12 , ((n11 , n2) , (n2 , n3) , (n3 , n12))) / totalNumberOfVisits > 0 . 0 5
then addLink ((n11 , n12))

2.2.4 The Object-Oriented Hypermedia Design Model (OOHDM), Rossi et al.

MATURITY

The Object-Oriented Hypermedia Design Method (OOHDM) [RS06] is amongst the earliest ap-
proaches to web application modeling and - dating back to 1994 [SR94] - the oldest approach
included in this survey (G.T). The approach has been demonstrated by different modeling ex-
amples, such as an online catalogue for architecture, an online magazine, a CD store, a university
department site, and a conference management system (G.ME). Apparently, two real-world appli-
cations of OOHDM exist: first, the portinari project (www.portinari.org.br), a web site presenting
information on the painter Candido Portinari [SRB96], and second, an enterprise knowledge por-
tal in the Brazilian subsidiary of the Xerox Corporation [SS02] (G.A).
WEB MODELING

The approach specifies a development process comprising five steps [RS06], namely require-
ments gathering on the basis of user interaction diagrams (UID) a refinement of the well known
use cases technique [VSdS00], conceptual design, navigational design, abstract interface design, and im-
plementation where the OOHDM-Java2 software architecture is proposed [JSR02] (W.Pr), (W.Ph).
OOHDM supports all web application levels. The content level, in terms of the conceptual model, is
represented as a UML-like class diagram (cf. Figure 2.13). It has to be noted, however, that due to
the use of multi-typed attributes, the OOHDM approach is not fully conform to the UML [SR98]
(W.L). At hypertext level, the navigational class schema (cf. Figure 2.16) is derived from the concep-
tual model and at the same time integrated from the navigational contexts11. The navigational contexts
indicate possible navigation sequences to help users complete a task (cf. Figure 2.14). At the end,
the navigational class schema represents a view on the content level in the form of a proprietary
text-based query language - similar to view-definition approaches in object-oriented databases -
is used to specify the mapping between content level and hypertext level concepts [SR98] (W.I). In
the navigational class schema presented in Figure 2.16, the Hotel node encompasses the original
Hotel class as well as the Feature class from the conceptual model. In the node Person, the attributes
of the Customer and Admin classes have been integrated. An example of the textual specification
for the Hotel node is given on the bottom of Figure 2.16. The navigational class schema again is rep-
resented as a UML class diagram, while the navigational context schema uses a proprietary notation

11Please note that OOHDM’s notion of context is different to the notion of context in the realm of customization used in this
thesis.

39

2 On Model-driven Development of Ubiquitous Web Applications

(W.L). For the presentation level OOHDM originally proposed the concept of Abstract Data Views
(ADV) [CdL95] which represent abstract interfaces for navigational objects such as nodes, links,
and access structures [RSdLC95] (W.L). More specifically, the approach made use of so-called
Configuration Diagrams for specifying interface objects, their structural relationships, and the rela-
tionships among interface objects (ADVs) and navigational objects, e.g. nodes [RSdLC95] (W.I).
Furthermore, the approach made also use of Abstract Data View-Charts (a statechart derivative) for
expressing the behavior of an ADV, thus being the only way of behavioral modeling in OOHDM
(W.F). Recently, however, the ADV approach seems to have been abandoned in favor of the Ab-
stract Widget Ontology (AWO) [RS06] (W.L). The entire interface is specified by several ontologies
using RDF and OWL as a formalism. The AWO proposes a set of concepts whose instances will
comprise a given interface: SimpleActivators react to external events such as mouse clicks, Ele-
mentExhibitors exhibit a type of content such as text or images, etc. For lack of an explanation, the
interface between hypertext and presentation level is assumed to be specified in natural language,
only (W.I).
CUSTOMIZATION MODELING

Customization in OOHDM is considered during the design phase, only [RSG01], [SGR02].
OOHDM supposes that different users might have different tasks, access rights, and information
needs. Thus, on the one hand, it is suggested to reuse the conceptual model by building different
navigational views for different user profiles (C.G). Likewise, it is suggested to build different
interfaces for different devices, though this possibility has never been exemplified (C.P). On the
other hand, the approach proposes more fine-grained adaptation of content and hypertext levels
according to the current user (C.G). In this respect, a ”user” variable is introduced to be employed
in the text-based query language for defining nodes and links from the navigational class schema,
i.e., constraining them, as well as for defining context classes in the navigational context schema.
This user variable is then ”mapped” to an appropriate class in the conceptual model, e.g., a class
’Customer’. Consequently, the OOHDM approach does not provide for a separate context model
(C.SC) and neither suggests ways for supporting further possibly complex context factors as well
as context chronology (C.CE), (C.CC), (C.C). With respect to adaptation, the approach does not
define adaptation operations (C.O), (C.AE), (C.CA) as already stated before, adaptations are ex-
pressed using OOHDM’s query language (C.SA). This language can be used to specify nodes
and links (cf. Figure 2.16) as well as context classes (cf. Figure 2.14(c)) and thus, supports content
adaptation as well as hypertext adaptation (C.L). Since the query language is used for defining the
interface between content and hypertext, OOHDM also supports adaptation of the interface (C.I).
Though support of presentation level adaptation is claimed [RSG01], [SGR02], a corresponding
demonstration in terms of a modeling example seems to be missing (C.L).
MODEL-DRIVEN ENGINEERING

OOHDM is described as a set of models, which are built using object-oriented primitives with
syntax close to UML [RSG01]. A language specification of OOHDM in terms of a metamodel,
a grammar, or a semantic specification, however, is missing. Nevertheless, as already explained
above, the interface model has recently been replaced by the Abstract Widget Ontology making
use of RDF and OWL (M.L). There is no way of specifying model transformations in the OOHDM
approach (M.T), neither are platform description models available (M.P). Still, OOHDM-Web
[SdAPM99] is a web-based environment for OOHDM, which allows to specify an OOHDM de-
sign in XML. Given this specification, and a template page, it generates web pages for the CGILua
environment [HBI98], thus implementing the specified application.

40

2.2 Comparison of Approaches

MODELING EXAMPLE

Following, the OOHDM solutions to the customization scenarios Customized Activities, Adminis-
trator Links, and Special Offers are presented. Although, the approach suggests modeling different
hypertext models for enabling device-independence, it is not clear, how the corresponding hy-
pertext can be associated to the current user. Furthermore, the approach offers no mechanism for
customizing the presentation level of web applications. Consequently, customization scenarios
Multi-Delivery and Season’s Style could not have been realized in OOHDM.

*

1

11..*1*
* 1

*

0..1
1..*

*

Hotel
Name: String
Address: String
Description: String
OpenFrom: Date
OpenTo: Date
Picture: Image
Prizeclass: String
Stars: String Name

Description
StartingDate
EndingDate
StartTime
EndTime
Prerequisites
Picture
Prize
RecAgeFrom
RecAgeTo

Activity

Region
Name
Description
Size

Booking
From
To
Payed

Room
Beds: Integer
Prize: Real
Description: String

Feature
Description
Type

Person
Name
Password
UserName
Email

*

1

Customer
Address
Age
Discount

Admin
Phone

hasFeature

contains

madeBy

Figure 2.13: OOHDM: The Conceptual Model

The conceptual model of OOHDM is described with a UML class diagram (cf. Figure 2.13).
Although possible in OOHDM, in this example we refrain from using multi-typed attributes.
Please note the specialization of the Person class to the Customer and Admin classes, which will be
used in the following customization scenarios for personalization purposes.

Customization Scenario Customized Activities. Figure 2.14 presents some of the navigation
context schemata for the different tasks of different user types.

Main Menu Activity
Index

Region
Index

Activity

by Region

Alphabetical

Region

Alphabetical

MyActivity
IndexMain Menu

Activity

User‘s Activities

(a) Guest
(b) Customer

readPermission

Activity: a WHERE a.RecAgeFrom >= user.Age AND
a.RecAgeTo <= user.Age AND user.login =
customer.login

Elements

ActivityUser‘sActivitiesInContext Class

CustomerAccess Restriction

sequential, order by a.NameNavigation

userParameters

User‘s ActivitiesContext

(c)

Figure 2.14: OOHDM: Customized Activities Scenario

41

2 On Model-driven Development of Ubiquitous Web Applications

For example, a guest user will be able to navigate from a Main Menu to both an Activity Index
and a Region Index (cf. Figure 2.14(a)). From these indices, s/he will be able to access the Activity
and Region node (depicted as grey rectangles) in different contexts, e.g., alphabetically or sorted
according to some criteria. Navigating from the Region Index, all regions will be displayed in
alphabetical order. Having selected a region, the user can navigate to the by Region context of
the Activity node and visit the activities of the region. With respect to the customization scenario
Customized Activities, customers of the web application have an additional index, which requires
the user to login (see the black circle for MyActivityIndex in Figure 2.14(b)). The Activity node then
can be visited in the User’s Activities context, which will display only activities that are appropriate
for the current user’s age. This filter condition as well as the access restriction is defined within the
Elements section of the context specification card User’s Activities in Figure 2.14(c), where it is also
tested if the user is of type Customer. Unfortunately, an explanation of OOHDM’s user variable
and a possible user model is missing. This example thus has been directly derived from examples
given in [RSG01], [SGR02].

Customization Scenario Administrator Links.

OOHDM’s solution to the Administrator Links scenario is shown in Figure 2.15(a). The admin-
istrator will be able to navigate from the context showing the activities in an alphabetic order to
the context for editing. Obviously, this time similar access restrictions to this context are needed,
which are specified in the context specification card Edit Activity in Figure 2.15(b). How a user is
identified as administrator, however, cannot be expressed in OOHDM.

Main Menu Activity
Index

Activity

Alphabetical

Edit

(a) Admin

updatePermission

user.login = admin.loginElements

ActivityEditInContext Class

AdminAccess Restriction

sequential, order by a.NameNavigation

userParameters

Edit ActivityContext

(b)

Figure 2.15: OOHDM: Administrator Links Scenario

Customization Scenario Special Offers.

For realizing the Special Offers scenario, the node SpecialOffer is introduced to the navigational
class schema in Figure 2.16 and realizes a content adaptation, since the prize of a room is adapted
according to the user’s discount. Nevertheless, it is not possible to model that this discount shall
be given according to the user’s booking history and thus it is not possible to fully model cus-
tomization scenario Special Offers. On the bottom of Figure 2.16, the full specification of the Spe-
cialOffer node is presented in terms of OOHDM’s textual query language. This mechanism can
also be used to define several navigational class schemata for different types of users with differ-
ent access rights. For example, for guest users there will be no need for information on booking
or special offers. Furthermore, the query language allows for link personalization. For example,
on the bottom of Figure 2.16, the specification of the link yourBookings can be found. This link will
be displayed on the homepage and will include the bookings of the current user, only. To do so,
the user variable is used, which is mapped to the Customer class.

42

2.2 Comparison of Approaches

11..*1*
* 1

*

0..1
1..*
*

Hotel
Name: String
Address: String
Description: String
OpenFrom: Date
OpenTo: Date
Picture: Image
Prizeclass: String
Stars: String
Features: Set SELECT
Description, Type FROM
Feature: f WHERE h has
Feature f

Name
Description
StartingDate
EndingDate
StartTime
EndTime
Prerequisites
Picture
Prize
RecAgeFrom
RecAgeTo

Activity

Region
Name
Description
Size

Booking
From
To
Payed

Room
Beds: Integer
Prize: Real
Description: String

Person
Name
Password
UserName
Email
Age: Integer SELECT
Age FROM Customer:
c WHERE c isTypeOf p
…

*

1

NODE Hotel FROM Hotel: h INHERITS FROM Feature
Name
Address
…
Features: Set SELECT Description, Type FROM
Feature: f WHERE h has Feature f

SpecialOffer
Hotel: String SELECT
Name FROM Hotel: h
WHERE h contains r
Beds: Integer
Prize: Real [r.Prize –
user.Discount]
Description: String

1*
1

*

NODE Customer.SpecialOffer FROM Room: r, user:Customer
Hotel: String SELECT Name FROM Hotel: h WHERE h
constains r
Beds: Integer
Prize: Real [r.Prize – user.Discount]
Description: String

LINK yourBookings, user:Customer
SOURCE Homepage
TARGET Booking: b WHERE b madeBy user

has

has

makes

offers

offers_
Special

offers_
Activities

offers_
Hotels

Customer
Address
Age
Discount

Admin
Phone

Figure 2.16: OOHDM: Navigational Class Schema

2.2.5 The UML-based Web Engineering Approach (UWE), Koch et al.

MATURITY

The UML-based Web Engineering12 (UWE) approach [Koc01], [KK02a] has been continuously de-
veloped since 1998/2000. Recent work heads towards model-driven development of web applica-
tions [KZC06],[Koc07] based on model transformation techniques and MDA [OMG03] standards
(G.T). The approach has been illustrated using several modeling examples, amongst them a music
portal, an online library, a conference management system, and an e-store (G.ME). Nevertheless,
its application in real-world projects has not yet been reported (G.A).
WEB MODELING

The approach supports UML models for content (conceptual model), hypertext (navigation space
model and navigation structure model), and presentation levels (presentation model) (W.L). Structural
modeling is based on class diagrams at all levels, i.e., special stereotypes for the specific web
concepts are introduced. While at hypertext level, state chart diagrams are used to model naviga-
tion scenarios, at presentation level, sequence diagrams can be employed to depict presentation
flows (W.F). The interface between content and hypertext levels is described in terms of OCL.
This means each attribute of a �navigation class�, i.e., a hypertext node, in the navigation space
model is derived from information stored in the conceptual model (W.I). The navigation structure
model is an ”extension” of the navigation space model and describes how navigation is supported
by access elements such as menus, indices, guided tour, etc. For each navigational class of the nav-
igation space model, at the presentation level a separate model is created, describing where and
how the navigation primitives will be presented to the user. The UML composition notation for
classes is used together with a set of stereotypes for the nested elements [KK02a], e.g., �text�,
�form�, �button�, and �image� [BKM99]. Furthermore, UWE provides natural language
guidelines to infer the navigation space model from the conceptual model and to infer the pre-

12http://www.pst.ifi.lmu.de/projekte/uwe/

43

2 On Model-driven Development of Ubiquitous Web Applications

sentation model from the navigation space model. These guidelines also form the basis for model
transformation within the tool ArgoUWE. UWE has a well-defined development process based on
RUP [Kru00] (W.Pr) and provides explicit support for RUP’s 5 phases including for each phase the
workflows requirements engineering (use-case diagram), analysis (conceptual model, navigation
space model), and design (presentation model and refinement of all models) (W.Ph) [Koc01].
CUSTOMIZATION MODELING

Customization modeling support within UWE is mainly considered during analysis and de-
sign phases (C.CP) and has its origins in the Munich Reference Model [KW02]. At content level,
Koch et al. distinguish between a domain model and a user model capturing contextual information
about the user. Nevertheless, relationships between classes from both models allow for partial
separation of context, only (C.SC). Besides the user model, an adaptation model is suggested, which
is realized by means of a UML communication diagram and describes of a set of condition-action
rules (i.e., construction rules, adaptation rules, and acquisition rules), the rules’ temporal relation-
ships as well as when they are triggered. Still, the rules themselves are described in natural lan-
guage, only. More recently, the UWE approach suggests concepts for modeling context which are
separated into a User package and an Environment package in the UWE metamodel presented in
[KK03] (C.P). The details of those packages, however, have not been illuminated yet and corre-
sponding modeling examples do not seem to be available either. No indication of either UWE’s
extensibility with respect to further context properties (C.CE), nor the support of complex context
(C.C) and context chronology (C.CC) is given. Furthermore, another proposal for customization
modeling at navigation level has been made (C.L), (C.I), which supports link annotation, link
hiding, and link generation (C.O) [BKKZ05]. The proposal extends the UWE metamodel with
concepts from aspect-oriented modeling (cf. Chapter 3) and adaptations are provided in terms of
aspects. The LinkAspect, LinkAnnotationAspect, LinkTraversalAspect and LinkTransformationAspect are
modeled as sub-classes of UML packages. Thus, further adaptations could only be supported by
extending the UWE language itself, i.e. through sub-classing within the UWE metamodel. (C.AE).
The adaptations can be separate with aspects from the rest of the application (C.SA). The granu-
larity of adaptations - depending on the aspects’ pointcuts - ranges from micro to macro (C.G). A
mechanism for specifying complex adaptations is not available, however (C.CA).
MODEL-DRIVEN ENGINEERING

The UWE language is defined as an extension of the UML metamodel [KK03] and additionally
provides a UML profile for interoperability purposes (M.L). The guidelines for generating prelim-
inary models, e.g., the navigation space model, from models created during earlier development
phases have been automated within the tool support. Furthermore, transformation of require-
ments specified in terms of use case diagrams and activity diagrams into UWE models at content
and hypertext level based on MOF [OMG02] and QVT [OMG05a] has been recently proposed
in [KZC06]. This approach, however, has not yet been automated (M.T). UWEXML represents
the proprietary code generation framework prototype and describes PIM2Code transformations
based on XSLT to J2EE and Cocoon platforms [KK02b]. Separate platform description models do
not exist (M.P).
TOOL SUPPORT

ArgoUWE is the free tool support for UWE (T.C). It is a proprietary extension of the UML mod-
eling tool ArgoUML13 (T.B), (T.O). ArgoUWE 0.16 provides general modeling support (T.V) but
customization modeling has not yet been realized within the tool (T.M). During modeling, the
tool checks the artifacts for errors as well as offers help to resolve the identified problems with a

13http://argouml.tigris.org/

44

2.2 Comparison of Approaches

wizard (T.CC). Moreover, the tool allows for semi-automatically generating the navigation space
model from the conceptual model, as well as the presentation model from the navigation space
model (T.T). With respect to the presentation model, ArgoUWE does not yet support the compo-
sition notation of classes but uses composition associations to connect the attributes of the naviga-
tion class to the owning presentation class. UWE’S development process, however, is not realized
within the tool, since the typical iterations are not supported without loosing information, e.g.,
changing the conceptual model without loosing information from the hypertext level is not pos-
sible (T.P). Code generation (T.CG) is currently not supported, neither is there versioning support
to allowing for shared editing (T.Co).
MODELING EXAMPLE

In the following, UWE’s customization approach as described in [BKKZ05] is presented. Cur-
rently, the approach is restricted to hypertext level adaptations. Thus, it is only possible to model
the customization scenario Administrator Links.

Hotel
Name
Address
Description
OpenFrom
OpenTo
Picture
Prizeclass
Stars

Region
Name
Description
Size

Name
Description
StartingDate
EndingDate
StartTime
EndTime
Prerequisites
Picture
Prize
RecAgeFrom
RecAgeTo

Activity

Booking
From
To
Payed

Feature
Description
Type

Room
Beds
Prize
Description

*

1

1 1..*

1
*

* 1
*

0..1

1..* *
(a) (b)

Session

Region
(from conceptual model)
Name
Description
Size

User
Address
Age
Email
Name
Password
UserName
isAdmin

1

*

1
currentUser

Weather
Description

1*
Name
Description
StartingDate
EndingDate
StartTime
EndTime
Prerequisites
Picture
Prize
RecAgeFrom
RecAgeTo

Activity
(from conceptual model)*1

reqWeather

userLocation

Figure 2.17: UWE: (a) Conceptual Model, (b) User Model

Customization Scenario Administrator Links. The content level is depicted in Figure 2.17 in
terms of the conceptual model and the user model. In the user model, context information about
the user is captured. Users belonging to the administrator group are indicated with the isAdmin
attribute set to true. As can be seen in Figure 2.17(b), the user model is connected to the conceptual
model via associations to its concepts, i.e., Region and Activity. It is assumed that the application
will be able to detect the user’s location and resolve it to a certain region, i.e., the user model will
have the necessary data. Furthermore, the user model captures the current weather of a region
and activities can be selected according to their required weather situation. Part of the navigation
structure diagram is depicted in Figure 2.18(a), which shows that indices of hotels, regions, and
activities can be reached from the main menu of the TIWA. From the indices the hotels, regions
and activities can be viewed in detail. In particular, the RegionDetails navigation class offers to
browse the region’s hotels and activities via two further dedicated indices HotelsByRegion and Ac-
tivitiesByRegion, respectively. Customization functionality can then be introduced to the hypertext
level using aspects. Each aspect has exactly one pointcut and one advice. According to customiza-
tion scenario Administrator Links, edit links shall be provided from the ActivityDetails navigation
class to the EditActivity navigation class if the user is an administrator.

45

2 On Model-driven Development of Ubiquitous Web Applications

The �link transformation aspect� of Figure 2.18(b) specifies that some link transformation
needs to be performed. More specifically, the �pointcut� section defines where the adaptation
takes place, i.e., the participating navigation classes ActivityDetails and EditActivity are identified.
Within the aspect, any information of the current session can be queried using OCL via ’thisSes-
sion’, which is supposed to be able to identify the current session the TIWA is responding to.
Thus, an additional OCL constraint specifies that the adaptation can only take place for a certain
context. It constrains the adaptation to users that are administrators. In the�advice� section the
necessary adaptation is depicted, i.e., a link is introduced from the ActivityDetails navigation class
to the EditActivity navigation class. Additionally, UWE supports link traversal aspects, which allow
executing an action when a link is traversed (e.g., updating the user model), and link annotation
aspects, which allow adding information to a link (e.g., how many times it is traversed).

Main Menu

Hotels Regions Activities

0..* 0..* 0..*

HotelsByRegion ActivitiesByRegion

<<navigation class>>
ActivityDetail

<<navigation class>>
RegionDetail

<<navigation class>>
HotelDetail

<<navigation class>>
Homepage

(a) (b)

<<navigation class>>
ActivityDetail

<<link transformation aspect>>
<<pointcut>>

<<advice>>
<<navigation class>>
ActivityDetail

<<navigation class>>
EditActivity

{thisSession.currentUser.isAdmin}

<<navigation class>>
EditActivity

Figure 2.18: UWE: (a) Navigation Structure Model, (b) Administrator Links Scenario

2.2.6 The Object-Oriented Hypermedia Method (OO-H), Gomez et al.

MATURITY

The Object Oriented Hypermedia (OO-H) Method [GCP01], [GCP00] first emerged in 2000, for-
merly as an extension of the OO-Method [PIP+97], a design method for object-oriented systems.
The most recent publications deal with personalization of web sites [GCG05], [GCG07] (G.T). The
approach is demonstrated using multiple examples including amongst others a conference man-
agement system, a library system, a forum application, an e-store application, a hotel reservation
system, and an e-mail system. (G.ME). Moreover the OO-H method and its tool support in terms
of the VisualWade CASE tool14 have been applied in the development of several real-world appli-
cations as is reported in [GBP05] (G.A).
WEB MODELING

The OO-H method is based on UML. It defines its own process for the design phase, while
other phases in the development lifecycle are described with guidelines, only (W.Pr) [GCP01].

14http://www.visualwade.com

46

2.2 Comparison of Approaches

The approach supports all phases from requirements engineering with use-case diagrams to im-
plementation with the methods tool support [CGPP01] (W.Ph). The approach comprises different
models for the content, hypertext and presentation level (W.L): Standard UML class diagrams
are used for content modeling. With the introduction of UML activity diagrams for modeling
processes [KKCM04], the OO-H method also supports behavioral modeling at the content level
(W.F). At hypertext level, so called navigation access diagrams (NAD) are associated with each user
type, capturing the navigation paths and the services (from the content level) the users can acti-
vate (cf. Figure 2.20). They consist of navigation classes which represent views on the conceptual
classes from the content level. The interface is specified graphically, i.e., the ”label” of a naviga-
tion class consists of its name separated with a colon from the name of the underlying conceptual
class (cf. Figure 2.20) (W.I). Navigation classes are associated with each other through different
types of navigation links, which may have both a navigation pattern from the OO-H pattern cata-
logue [GCP01] (e.g., Index, GuidedTour) and a set of OCL-like navigation filters, associated. Different
types of collections represent (possibly hierarchical) access structures defined on navigation classes
or navigation targets and may also have both a navigation pattern and a set of navigation filters as-
sociated. Additionally, these concepts can be grouped within navigation targets in order to cover
a certain user navigation requirement. Mapping rules allow inferring default navigation access
diagrams from activity diagrams, which are used for modeling processes [KKCM04]. At presen-
tation level, starting from a NAD, a default abstract presentation diagram (APD) [CGP00] can be
generated, by using so called NAD2APD mapping rules [GCP01] (W.I). An APD can be interpreted
as the sitemap of the web application consisting of a set of ”abstract pages” associated with links
and its modeling concepts are defined in several DTDs. The default APD can be refined through
patterns, defined as transformation rules [GCP01], which are implemented in Python. Furthermore,
the OO-H CASE tool also includes the composite layout diagram (CDL), which allows further refine-
ment of the user interface (i.e., the XML specification of the APD) in the manner of a WYSIWYG
editor [CGP01].

CUSTOMIZATION MODELING

The OO-H method suggests a personalization framework in the form of a UML class diagram
[GGC03b], [GCG05] comprising a user model and a personalization model: The user model actually
extends the content level (C.SC) and allows capturing context information with respect to user,
location, device, time, and network (C.P). Further context properties can be introduced through
inheritance from a generic Context class [GCG05] (C.CE). The framework currently does not fore-
see complex contexts or a concrete mechanism for modeling a change in context over time (C.CC)
(C.C). The personalization model consists of a set of ECA rules, which realize different person-
alization strategies: First, acquisition rules define how context information is acquired. Second,
personalization rules, which belong to a certain profile, define the adaptation that is to be made. A
profile encompasses a set of personalization rules supporting a group of users with similar needs,
e.g., users with small screen devices. And third, profile rules associate a user to a profile. Person-
alization rules are further distinguished into rules manipulating the content, the hypertext, and
the presentation level (C.L), (C.I). The existing set of concrete rules (C.O) includes fine-grained
adaptations such as Show [GGBH05] (used to show attributes in the Customized Activities scenario
in Listing 2.6 and to show a link in the Special Offers scenario in Listing 2.7) but also coarse-grained
adaptations (cf. SetCSSTemplate [GGC03b] used in the Season’s Style scenario in Listing 2.13) (C.G)
The set of rules can be extended again through inheritance from the generic rule classes (i.e., Con-
tentRule, NavigationRule, and PresentationRule) [GGC03b] (C.AE). Currently, the combination of
adaptations to form complex adaptations is not considered (C.CA), however. The ECA rules are

47

2 On Model-driven Development of Ubiquitous Web Applications

specified separate from the other models (C.SA) following the syntax of the EBNF-based Person-
alization Rule Modelling Language (PRML), which can be interpreted by a rule engine at runtime
[GGC03a]. The use of this rule language, however, means that any extension of existing adapta-
tion operations has to be done to this language (C.AE). Customization is considered in the design
and the implementation phase of the development process (C.CP).
MODEL-DRIVEN ENGINEERING

The OO-H language definition for the content and hypertext level is realized as an extension of
UML and OCL [CGP01]. Still, the concepts of the presentation level, i.e., the APD, are defined as
a set of DTDs and a separate language for the specification of customization is provided with the
EBNF-based PRML (M.L). The OO-H approach provides mapping rules from activity diagrams to
NADs and from NADs to APDs. As mentioned before there is tool support for the OO-H method,
which implements the NAD to APD transformations (PIM2PIM) as well as modeling PIM2Code
transformations (M.T). The approach, however, does not describe platform models (M.P).

*
1

11..*

1
*

* 1
*

0..1

1..* *Hotel
Name
Address
Description
OpenFrom
OpenTo
Picture
Prizeclass
Stars
New()
Detsroy()
Edit()

Name
Description
StartingDate
EndingDate
StartTime
EndTime
Prerequisites
Picture
Prize
RecAgeFrom
RecAgeTo

Activity

New()
Detsroy()
Edit()

Region
Name
Description
Size
New()
Detsroy()
Edit()

Booking
From
To
Payed
New()
Detsroy()
Edit()

Room
Beds
Prize
Description
New()
Detsroy()
Edit()

Feature
Description
Type
New()
Detsroy()
Edit()

User
Address
Age
Email
Name
Password
UserName
Usergroup

Session
ID
IPAddress
Name
Host

Context LocationContext
getLocationContext()

NetworkContext
getNetworkContext()

WeatherContext
getWeatherContext()

DeviceContext
getDeviceContext()

TimeContext
getDate()
getTime()

Weather
Description

1

*

*1
reqWeather

1 *

1

*

*

*

*

1

Conceputal model Context model

Figure 2.19: OO-H: Conceptual Model and Context model

TOOL SUPPORT

The current version of the VisualWade tool is 1.2 (T.V). VisualWade is a commercial tool, but
offers a trial version (T.B), (T.O), (T.C).It allows modeling in general but does not support cus-
tomization modeling. Apart from VisualWade, the generation of UWAs on the basis of the PRML
language is recently provided by a prototype described in [GCG07]. In this work, the OO-H ap-
proach has evolved to the distinct Adaptive OO-H approach, (T.M). The OO-H method’s process is
supported only partly within VisualWade, e.g., no use-cases for the requirements definition phase
are available. Apart from that, the conceptual model, the NAD as well as the CLD are supported,
as mentioned before. The APD actually is not used explicitly but indirectly via the CDL. The user
will start from a conceptual model, via the NAD to the CLD, but can go back to previous models
for changes. Changing the NAD, however, means loosing the presentation model which has to be
generated anew (T.P). VisualWade supports PIM2PIM and PIM2Code transformations (T.MG) as
well as provides an OCL-based action language for transformations and code generation capabili-

48

2.2 Comparison of Approaches

ties [GBP05]. With respect to code generation, VisualWade currently supports one model compiler
that generates code for the PHP target platform. The application can be generated in several in-
dependent steps such that the application logic and the database, for example, can be created in
random order (T.CG). The modeled artifacts can be statically checked on demand and the user
is provided with hints indicating how to solve the detected problems (T.CC). With respect to col-
laborative development of web applications, VisualWade currently provides no specific support
(T.Co).
MODELING EXAMPLE

OO-H’s PRML allows for modeling all customization scenarios. Before presenting the individ-
ual customization scenarios in terms of PRML rules, however, the content and hypertext level as
well as the context model of the web application are presented.

The content level of the TIWA is extended with the context model (cf. Figure 2.19). More specif-
ically, the given context framework has been extended with a WeatherContext class in order to
be able to consider the weather context factor. Furthermore, the conceptual classes of the con-
tent level have been extended with operations for creating, updating, and deleting objects of the
specific types.

Home
page

Entry Point (Guest) User

User:User

Login [filter: dst.UserName=? and dst. Password=?]

Error

Error [precond: Login.dst->size<>1]To Homepage [precond: Login.dst->size==1
and Login.dst.usergroup==‘user‘]

AdminView

To AdminView [precond: Login.dst->size==1
and Login.dst.usergroup==‘admin‘]

Name(V)
Picture(V)
Stars(V)

Hotels:Hotel
Name(V)
Regions:Regions

Name(V)
Picture(V)
Prize(V)

Activities:Activity

Name(V)
Picture(V)
Stars(V)
Address(V)
Description(V)
OpenFrom(V)
OpenTo(V)
Prizeclass(V)

Hotel:Hotel

Name(V)
Description(V)

Region:Regions

Name(V)
Description(V)
StartingDate(V)
StartTime(V)
Prerequisites(V)
Picture(V)
Prize(V)
RecAgeFrom(V)
RecAgeTo(V)

Activity:Activity

Region Details

Activity Details
Hotel Details

Beds(V)
Price(V)
Description(V)

Room:Room
From(V)
To(V)

Booking:Booking

New()S
Create Booking

Booking

Room

Region‘s
Hotels

From(V)
To(V)

Bookings:Booking
Your BookingsActivitiesRegionsHotels

Region‘s
Activities

Special
Offer

Special
Offer

S
Edit Activity

Figure 2.20: OO-H: Navigation Access Diagram

Figure 2.20 presents part of the hypertext level. In this case, one NAD has been designed for
guests and registered users of the TIWA. From the homepage user will have to login to the TIWA
and will be redirected to the Homepage menu if they belong to the user group ’user’ (cf. To Home-
page link). The links supporting the login process have attached OCL-like preconditions and nav-
igation filters, which will be ignored for the remaining links for readability purposes. A separate
view for administrators is indicated with the navigational target AdminView but not further de-

49

2 On Model-driven Development of Ubiquitous Web Applications

#INIT SECTION
When init do
AttachRuleToGroup ("acquireContext", "OOH:all")
AttachRuleToGroup ("defSmallScreen", "OOH:all")
AttachRuleToGroup ("defSeason", "OOH:all")
AttachRuleToGroup ("defUserGroup", "OOH:all")
AttachRuleToGroup ("customizedActivities", "user")
AttachRuleToGroup ("specialOffers", " OOH:all ")
AttachRuleToGroup („editLink", „admin")
AttachRuleToGroup ("ignoreImages", "smallScreen")
AttachRuleToGroup ("summerStyle", "summer")
AttachRuleToGroup ("winterStyle", "winter")

endWhen

#AQUISITION SECTION
#RULE: "aquireContext" priority="high"

#PROFILE SECTION
#RULE: "defSmallScreen" priority="medium" //CustomizationScenario (4)
#RULE: "defSeason" priority="medium" //CustomizationScenario (5)
#RULE: "defUserGroup" priority="medium" //CustomizationScenario (3)

#PERSONALIZATION SECTION
#RULE: "customizedActivities" priority="medium" //CustomizationScenario (1)
#RULE: "specialOffers" priority="medium" //CustomizationScenario (2)
#RULE: „editLink" priority="medium" //CustomizationScenario (3)
#RULE: "ignoreImages" priority="medium" //CustomizationScenario (4)
#RULE: "summerStyle" priority="medium" //CustomizationScenario (5)
#RULE: "winterStyle" priority="medium“ //CustomizationScenario (5)

Figure 2.21: OO-H: Personalization Rules

tailed. If the user belongs to the usergroup ’admin’, s/he will be redirected to the AdminView (cf.
To AdminView link). In case the input retrieves no dataset, i.e., no user account can be found, the
user is redirected to an error page (cf. Error link). From the Homepage menu the user can navigate,
for example, to the Hotels navigation class which will present an index of hotels, as is indicated
by the second part of the navigation class label which denotes the corresponding conceptual class
from the content level. Likewise, the user can browse regions and activities and visit the navi-
gational classes presenting an object of interest, e.g., the Hotel navigation class provides detailed
information on one hotel. For those links that are not accessible for guests, e.g., Create Booking,
Your Bookings, and Edit Activity special rules need to be designed in PRML such as has been done
for the Edit Activity link in the customization scenario Administrator Links. The Edit Activity link
and the Create Booking link are service links that call the Edit() and New() operations of the Activity
and Booking conceptual class when the user books a room or the administrator edits an activity,
respectively.

As already stated above all customization scenarios can be realized with PRML. Figure 2.21 out-
lines the realization of the customization scenarios on the basis of ten PRML rules: one acquisition
rule, three profile rules, and six personalization rules. All of them need to be initialized (cf. init
section in Figure 2.21) meaning that all rules will be associated to a profile group and thus, to the
users of that group. The default group ’OOH:all’ applies to all users.

In the acquisition section of Figure 2.21, when a new session starts the aquireContext rule will
collect the necessary context information to be available in other rules, i.e., the device used to
access the TIWA as well as the current date:

Listing 2.5: OO-H: Context Aquisition Rule

#RULE: ” aquireContext ” p r i o r i t y =”high ”
When S e s s i o n S t a r t do

deviceContext=UM. DeviceContext . getDeviceContext ()
date=UM. TimeContext . getDate ()

endWhen

Also at session start, the user will be attached to one or more profile groups (cf. profile section
in Figure 2.21). In the personalization section, the actual rules for adapting content, hypertext, and
presentation of the TIWA are specified. Following, the profile rules as well as the personalization
rules will be explained for the individual customization scenarios.

50

2.2 Comparison of Approaches

Customization Scenario Customized Activities. Rule customizedActivities (cf. Listing 2.6) is
applied if the user navigates from the Homepage to the Activities node. Depending on the user’s
age, location, the current date and time, as well as the current weather, the user will be presented
a customized selection of activities. In this respect, the adaptation functionality is encapsulated in
Show.

Listing 2.6: OO-H: Customized Activities Scenario

#RULE: ” c u s t o m i z e d A c t i v i t i e s ” p r i o r i t y =”medium”
When Navigation (A c t i v i t i e s (A c t i v i t y)) do

I f (UM. User . Age >= NM. A c t i v i t y . RecAgeFrom and
UM. User . Age <= NM. A c t i v i t y . RecAgeTo and
UM. LocationContext . getLocat ionContext = NM. A c t i v i t y . region and
UM. WeatherContext . getWeatherContext = NM. A c t i v i t y . reqWeather and
date < NM. A c t i v i t y . S tar t ingDate and

UM. TimeContext . getTime () < NM. A c t i v i t y . StartTime)
then

Show(A c t i v i t y . Name, A c t i v i t y . Descr ipt ion , A c t i v i t y . Pr ize)
endIf

endWhen

Customization Scenario Special Offers. If the user views 3 hotels of the same region for at
least 60 second (cf. LoadSet event [GG06]), the user will be presented the link Special Offers to
the Hotels node. In this node, special offers for the specific region will be presented (cf. Listing
lst:ch2:OOHSpecialOffers). This is specified with rule specialOffers:

Listing 2.7: OO-H: Special Offers Scenario

#RULE: ” s p e c i a l O f f e r s ” p r i o r i t y =”medium”
When LoadSet [Hotel (NM. Region reg , 3 , 6 0)] do

Show(S p e c i a l Of fers)
endWhen

Customization Scenario Administrator Links. The profile rule defUserGroup (cf. Listing 2.8)
identifies the user type of the current user, i.e., if the user has logged in s/he will be associated to
either the user or the admin profile group defined in the init section in Figure 2.21 with AttachUser-
ToPGroup [GCG05]. The OO-H approach assumes that the current user group can be queried from
the user model [GG06].

Listing 2.8: OO-H: Administrator Links Scenario (1)

#RULE: ”defUserGroup” p r i o r i t y =”medium”
When S e s s i o n S t a r t do

I f (UM. User . Usergroup=”admin” then AttachUserToPGroup (” admin ”)
endIf
I f (UM. User . Usergroup=” user ” then AttachUserToPGroup (” user ”)
endIf

endWhen

The editLink personalization rule specified in Listing 2.9 is associated to the admin profile group
(cf. init section Figure 2.21) and ensures that the service link Edit Activity will be available to
administrators but not to registered users or guests of the TIWA:

Listing 2.9: OO-H: Administrator Links Scenario (2)

#RULE: ” edi tLink ” p r i o r i t y =”medium”
When LoadElement (A c t i v i t y) do

Show(Edit A c t i v i t y)
endWhen

51

2 On Model-driven Development of Ubiquitous Web Applications

Customization Scenario Multi-Delivery. The defSmallScreen profile rule in Listing 2.10 asso-
ciates the user with the smallScreen group defined in the init section in Figure 2.21, if the device
used to access the TIWA is either a PDA or a mobile phone (cf. deviceContext defined in the contex-
tAquisition rule of Listing 2.5).

Listing 2.10: OO-H: Multi-Delivery Scenario (1)

#RULE: ” defSmallScreen ” p r i o r i t y =”medium”
When S e s s i o n S t a r t do

I f (deviceContext =”PDA” or deviceContext =”Mobile ”) then AttachUserToPGroup (” smallScreen ”)
endIf

endWhen

Multi-delivery can be realized also at a fine-grained level. If a PDA or a mobile phone is used
to access the TIWA, pictures shall be omitted. The rule ignoreImages (cf. Listing 2.11)applies to
the Hotel and Activity nodes. As is defined by the above profile rule, it is attached to smallScreen
group.

Listing 2.11: OO-H: Multi-Delivery Scenario (2)

#RULE: ” ignoreImages ” p r i o r i t y =”medium”
When LoadSet [Hotel (NM. Hotel h) | | A c t i v i t y (NM. A c t i v i t y a)]
do

h . p i c t u r e . V i s i b l e = f a l s e
a . p i c t u r e . V i s i b l e = f a l s e

endWhen

Customization Scenario Season’s Style. Finally, the summerStyle and winterStyle personaliza-
tion rules change the CSS used to the ones specified. The rules are attached to the summer and
winter profile groups, respectively (cf. init section Figure 2.21) and will cause the presentation to
be adapted depending on the current season. According to the defSeason profile rule, the user will
either be attached to the summer or the winter group depending on the current date:

Listing 2.12: OO-H: Season’s Style Scenario (1)

#RULE: ” defSeason ” p r i o r i t y =”medium”
When S e s s i o n S t a r t do

I f (date > 2 1 . 0 6 . and date < 2 1 . 1 2) then AttachUserToPGroup (”summer”)
endIf
I f (date > 2 1 . 1 2 . and date < 2 1 . 0 6) then AttachUserToPGroup (” winter ”)
endIf

endWhen

Depending on the group the user is associated with, one of the summerStyle and winterStyle
personalization rules will be triggered and define an appropriate CSS style sheet to be used.

Listing 2.13: OO-H: Season’s Style Scenario (2)

#RULE: ”summerStyle” p r i o r i t y =”medium”
When S e s s i o n S t a r t do

SetCSSTemplate (”summer . c s s ”)
endWhen

#RULE: ” w i n t e r S t y l e ” p r i o r i t y =”medium”
When S e s s i o n S t a r t do

SetCSSTemplate (” winter . c s s ”)
endWhen

52

2.2 Comparison of Approaches

2.2.7 The Object-Oriented Web Solution Approach (OOWS), Pastor et al.

MATURITY

Object Oriented Web Solutions (OOWS) [PFPA06] is an approach that was first proposed in 2000
[PAF00] by extending OO-Method [PIP+97] to support web modeling. Unlike the OO-H ap-
proach, OOWS is still based on the OO-Method. Recently, first results of the implementation
of tool support for the OOWS approach have been published (G.T). The approach is presented
with modeling examples like a university department site, a ticket ordering system, a book store,
a travel agency system, and a university research group management system (G.ME). The univer-
sity department site has been realized and can be visited at www.dsic.upv.es (G.A).
WEB MODELING

The OOWS method supports all software development phases including a so-called solution de-
velopment phase in which models are translated into code (W.Ph). Developers are provided with
appropriate modeling means in each of OOWS’s proprietary 4-step development process (W.Pr).
For the requirements engineering phase use-case diagrams, scenarios, and task descriptions are
used [VFP05], [TPRV05]. Task descriptions comprise task taxonomies, whereby each elementary
task is described with an UML activity diagram, as well as information templates which are based
on Class-Responsibility-Collaboration (CRC) cards. Thereafter a conceptual schema is built in the
analysis phase. Since the approach is based on OO-Method, only the models of the hypertext and
presentation level are special to OOWS. In the design phase different kinds of models are used (cf.
[FPAP03]) (W.Ph): On the content level the information is captured using the structural model, i.e., a
UML-like class diagram, just like in OO-Method. In addition, UML state and sequence diagrams
can be used to describe behavioral aspects and represent the dynamic model in OOWS (W.L). A
functional model describes service effects in a textual formal specification language which is based
on the OASIS formal language15 as is described in [PFPA06]. A navigational model comprises navi-
gational maps which are used to define the global and structural aspects of the navigation, i.e., how
so-called navigation contexts are related via navigational links with each other. Apart from that, the
navigation contexts can be modeled using the navigation context diagram which allows designing
the white-box view of a navigation context (cf. Figure 2.24(b)). The navigational contexts comprise
navigational classes which are views on the content level. The interface between content and hyper-
text level is graphically specified. The hypertext level and the presentation level are intermingled
though: A presentation model only enriches the ”in-the-small” model of the navigational context
with presentational patterns concerning aspects such as scrolling or ordering of information (W.I).
As already mentioned, only the content and the hypertext level can be enriched with behavioral
diagrams while on all three levels structural modeling is supported (W.F).
CUSTOMIZATION MODELING

The only context properties addressed in OOWS literature seems to be the user property. In
[AFGP02], more possible context properties are mentioned but they would have to be intro-
duced by means of the standard OOWS models (C.P), (C.CE). Apart from that, no mechanisms for
chronology (C.C) or complex context (C.CC) are available and since the context properties have to
be included in the content level, there is neither separation of context (C.SC). Nevertheless, OOWS
allows the definition of adaptations very early in the design process, namely during requirements
specification [RVP06], i.e., within activity diagrams, until the design phase, i.e., within navigational
contexts (C.CP). In particular, the different user types can be incorporated into the content model
by merging the base content model with a user stereotype model. Furthermore, when specifying

15http://www.oasis-open.org/specs/index.php

53

2 On Model-driven Development of Ubiquitous Web Applications

tasks by means of activity diagrams, the modeler can define adaptation rules such as link or con-
tent hiding as well as sorting of information according to previous user behavior (C.O). These
adaptation operations are based on OCL conditions and are limited to fine-grained adaptations
such as accessibility, filter, or sorting conditions (C.AE), (C.G). Complex adaptations cannot be re-
alized (C.CA). The adaptation operations can be used to influence the hypertext level, only (C.L),
(C.I). Moreover, customization in the OOWS approach requires the adaptations to be integrated
into the models, allowing no separation of adaptation (C.SA).
MODEL-DRIVEN ENGINEERING

Recently, the OOWS language has been defined as a MOF-based metamodel and tool support on
the basis of the Eclipse Graphical Modeling Framework (GMF)16 is under development [VVFP07].
Also a definition of the language in OWL has been proposed [TFPP04] (M.L). OOWS supports an
MDA-based approach including the transformation of platform-independent models. The possi-
bility to generate code for the front-end of a web application is also currently under development
within the above mentioned tool support (M.T). In order to generate the back-end of a web appli-
cation the commercial tool OlivaNova is used. In the future, the integration of the code generation
for the back-end and the front-end is planned. A platform description model does not seem to be
used, however (M.P).
MODELING EXAMPLE

In the following, three customization scenarios are presented, namely Customized Activities, Ad-
ministrator Links, and Special Offers. Concerning the customization scenarios Multi-Delivery and
Season’s Style, it is not possible to cope with them in OOWS due to the fact that only the user
context can be exploited for adaptation purposes.

Hotel
Name
Address
Description
OpenFrom
OpenTo
Picture
Prizeclass
Stars

Region
Name
Description
Size

Name
Description
StartingDate
EndingDate
StartTime
EndTime
Prerequisites
Picture
Prize
RecAgeFrom
RecAgeTo

Activity

Booking
From
To
Payed

Feature
Description
Type

Room
Beds
Prize
Description

*

1

1 1..*

1
*

* 1
*

0..1

1..* *
1*

Weather
Description

1* *1
reqWeather

userLocation

User
Name
Password
UserName
Email

Customer
Address
Age
PreviousBookings

Admin
Phone

*

*

1

Figure 2.22: OOWS: The Structural Model

Figure 2.22 shows the example’s underlying class diagram, in which the different user stereo-
types (i.e., Customer and Admin classes) are already integrated with the structural model of the
TIWA. The User class and its sub-classes represent a hierarchy of possible user stereotypes of the
TIWA. Following, for each scenario, the diagrams which are most relevant for customization in
the OOWS approach are shown. These are, on the one hand, the activity diagrams from the re-

16www.eclipse.org/gmf

54

2.2 Comparison of Approaches

quirements phase and, on the other hand, the resulting navigational models, in particular the
navigational contexts, to present how the adaptation rules are incorporated into the hypertext.

Customization Scenario Customized Activities. This scenario is about adaptations filtering
information from the content level meaning, that a user currently logged in, should only see activ-
ities which are appropriate for her/him. The scenario is explained starting from the requirements
specification, in particular from the activity diagram shown in Figure 2.23(a). In the first action the
user has to select one region from an index of regions. After selection, it must be verified by the
system if the user is logged in or if s/he is an anonymous user. If the user is logged in (cf. action
2:Activity), the following precondition can ensure that only appropriate activities are shown:
self.recAgeFrom > #user#.age and self.recAgeTo < #user#.age

Using the keyword self, it is possible to access objects which should be displayed in this UML
action (in this case, objects of the Activity class). With an OCL-like point-notation one can navigate
through the structural model and retrieve attribute values of them to be compared with values
from the current context. One can access attribute values of the user with the #user# variable
representing the current context. If the user is not logged in (cf. action 3:Activity), all activities of
the selected region are shown, i.e., no personalized content is provided to the user. Finally, the
user can select one of the activities to navigate to a detailed view of the selected activity.

«context»
Activity

«view»
Activity

- Edit_Activity()
[#user#.isTypeOf(Admin)]

- Name
- Description
- StartingDate
- EndingDate
- StartTime
- EndTime
- Prerequisites
- Picture
- Prize
- RecAgeFrom
- RecAgeTo

if #user#.isTypeof(Customer)
then self.recAgeFrom > #user#.age

and self.recAgeTo < #user#.age
endif

(a) (b)

«localPreCondition»
{self.recAgeFrom > #user#.age
and self.recAgeTo < #user#.age}

1:Region

2:Activity

3:Activity

[#user# ∈ Customer]

[not #user# ∈
Customer]

4:Activity 4:Edit_Activity
[#user# ∈ Admin]11**

**

**

Figure 2.23: OOWS: (a) Activity Diagram Show Activities, (b) Navigation Context Show Activities

In Figure 2.23(b), the resulting navigational context can be seen. In particular, the third com-
partment of the Activity view is important for the required adaptation. The filter for presenting
the user with activities according to his/her age is only applied if the user is logged in (cf. if

#user# isTypeOf(Customer)), otherwise no filtering is done.
Customization Scenario Administrator Links. For editing activities, administrators need to

log in to the web application and navigate to the list of activities for a certain region as is spec-
ified in Figure 2.23(a). Having selected on activity, administrators are presented with a special
link allowing them to edit the activity, as opposed to other normal users. This is ensured by the
following condition associated with the control flow of the activity diagram:
#user# ∈ Admin

55

2 On Model-driven Development of Ubiquitous Web Applications

Furthermore, in the third compartment of the Activity view in Figure 2.23(b), the Edit Activity()
operation is shown which corresponds to the previous condition and is only executable if the user
is logged in as administrator.

Customization Scenario Special Offers. For the OOWS approach, this scenario is explained
with special offers in the context of booking a hotel room. The activity diagram for this scenario
is shown in Figure 2.24(a).

«context»
Hotel
«view»
Hotel

- Name
- Address
- Description
- OpenFrom
- OpenTo
- Picture
- Prizeclass
- Stars
- Book()

[#user#.isTypeOf(Customer)]
-Get_Discount()

[#user#.previousBookings > 3]

(a) (b)

1:Hotel

2:Hotel

3:Book

4:Get_Discount

[#user#previousBookings > 3]

[#user#previousBookings <= 3]
[#user# ∈ Customer]

[not #user# ∈ Customer]11

**

Figure 2.24: OOWS: (a) Activity Diagram Book Hotel, (b) Navigation Context Book Hotel

It is depicted that, in the first step, a hotel has to be selected from an index of hotels (cf. action
1:Hotel). The index is denoted with the ’*’ label associated to the action, while the ’1’ label indicates
one instance to be displayed. Subsequently, the user can book a hotel, whereby the adaptation
comes into play (cf. action 3:Book). If the user has made more then three bookings in the past s/he
gets a discount provided by the action 4:Get Discount. However, if the condition is not fulfilled,
no discount is allowed. The required adaptation rule to realize this functionality is incorporated
into the activity diagram by annotating the transitions with conditions. For example, with the
#user# variable it is possible to retrieve the actual user object and its attribute values - in this case
#user#.previousBookings retrieves the value of the previousBookings attribute of the class User or
rather of Customer. In Figure 2.24(b), the corresponding navigation context is illustrated for action
2:Hotel of the activity diagram shown in Figure 2.24(a). Each navigation context must have exactly
one so-called manager class which defines a view on the content level, i.e. the Hotel class in this
case. Concerning the adaptation rule in the activity diagram, the resulting specification is an
operation Get Discount() which is only executable under the condition which was specified in the
activity diagram, namely the user must have made more than three bookings in the past.

2.3 Lessons Learned

In this section, the experiences acquired during the evaluation of the selected approaches as well
as during modeling of the running example shall be summarized. The results of the evaluation
have revealed interesting peculiarities of current web modeling approaches. The following sub-
sections sum up the findings of the evaluation from Section 2.2 and in particular illustrate the
results at a glance with tables according to the five categories of criteria from the criteria catalogue

56

2.3 Lessons Learned

as well as point out what needs to be done in terms of further development of web modeling
approaches.

2.3.1 Maturity

Small Set of Similar Modeling Examples. A first overview on the web modeling field showed
that the individual approaches often made use of similar modeling examples. Since stemming
from academia, it is not surprising that a conference management system as well as some kind of
department web site have been used particularly often to demonstrate a web modeling approach
in terms of modeling examples. Beyond this, different kinds of e-stores, e.g., selling books and
CD’s, as well as art gallery web applications have been used several times. The current set of
modeling examples used in the web modeling field, however, raises some important questions:
Are those examples complex enough to show the approaches’ applicability? Do they cover all
different kinds of web applications, e.g., ubiquitous web applications, workflow-based web ap-
plications? Consequently, what the web modeling field needs is a set of generally acknowledged
modeling examples in a public catalogue. Moreover, reference implementations for those exam-
ples can serve as ”testbeds”, i.e., to show if it is possible to produce such web applications with
existing web modeling approaches.

Legend:
supported
not supported

~ partly supported
n number of examples

YYYY year of introduction/
most recent publication

Topicality
(T)

Modeling
Examples

(ME)

Applications
(A)

WebML 1999-2007 7

Hera 2000-2007 5 ~

hy
pe

rt
ex

t-
or

ie
nt

ed

WSDM 1998-2006 3

OOHDM 1994-2006 5

UWE 1998-2007 4

OO-H 2000-2007 6

OOWS 2000-2007 5

da
ta

-
or

ie
nt

ed
ob

je
ct

-o
rie

nt
ed

Table 2.1: Maturity

Rare Application in Real-World Projects. Web modeling approaches have already a 10 year
old history. Nevertheless, their application in real-world projects in particular in the context of
a commercial setting is still rare. According to the survey of Barry et al. [BL03], in practice the
awareness of academic methods is still rather low and consequently, they are rarely used by prac-
titioners. In this respect, there is an urgent need for more reference applications which are built
with academic methods in order to prove their maturity. First, possible application areas are aca-
demic web sites such as a department web site. In a second step, cooperation with industry is
necessary. Furthermore, besides existing scientific publications, web modeling approaches will
need to be presented in a way that is more suitable for practitioners.

Approaches are Continuously Evolving. All of the surveyed web modeling approaches have
been presented in numerous publications including refereed papers, articles, books as well as
manuals. Over the time, each of the approaches has been subject to extensions, e.g., for support-
ing business process modeling and customization modeling, as well as to major evolutions, e.g.,
the introduction of ontologies as a new formalism to specify models and the use of standards en-

57

2 On Model-driven Development of Ubiquitous Web Applications

abling model-driven web engineering. From a practitioner’s point of view, these developments
might communicate that current web modeling methodologies are not yet mature enough to be
used in practice. For example, some approaches provide alternative proposals for modeling cus-
tomization for which it is not clear how they are related to each other and if they can be used
in parallel. The more, a distinction between documentation of the web modeling approaches
specifically dedicated to practitioners and ongoing scientific work is needed. In this respect, a
comprehensive description of the already matured parts of a web modeling approach in terms of
a manual for designers need to be provided.

2.3.2 Web Modeling

UML for Content Modeling - Proprietary Solutions for Hypertext Modeling. UML is quite
popular for modeling the content level as well as the hypertext level of a web application. While
UWE and OO-H are based on UML 1.x, OOHDM uses a UML-like notation. At hypertext level,
however, UWE and OOHDM are the only approaches that continue using (stereotyped) UML
class diagrams. Indeed, at hypertext level, one can find very different languages and notations for
each individual approach.

Presentation Level Seldomly Addressed. When it comes to the supported levels of web ap-
plications it becomes obvious that the presentation level is often only a marginal concern [WS00].
Although nearly every method does provide presentation level support, it is typically omitted
in modeling examples. Interestingly, WebML is the only method not providing a presentation
model. Still, presentation issues are dealt within WebML’s tool support, where information from
the hypertext level can be placed on a grid and style information can be associated. With respect
to the other approaches, nodes of the hypertext level often are mapped one-to-one to pages from
the presentation level

C H P

gr
ap

hi
ca

l

te
xt

-b
as

ed

na
tu

ra
l l

an
gu

ag
e

se
pa

ra
te

d

gr
ap

hi
ca

l

te
xt

-b
as

ed

na
tu

ra
l l

an
gu

ag
e

se
pa

ra
te

d C H P R A D I

O
rig

in

St
ep

s

A
rt

ifa
ct

s

A
ct

or
s

WebML ER own s s/b s Boehm's
Spiral model 7

Hera RDFS own own s s/b s own ~6

hy
pe

rt
ex

t-
or

ie
nt

ed

WSDM ORM own own s/b s s own 5

OOHDM UML-like own,
UML-like own s s s/b own 5

UWE UML CD
UML CD
& OCL,

UML SM

UML CD
UML SD s s/b s/b RUP 5

OO-H UML CD UML CD
& OCL own n/a s/b s s own 1

OOWS CD, SD,
SM own own s/b s/b s own 4

Development Process (Pr)Features (F) Phases (Ph)
Supported Levels (L)

ob
je

ct
-o

rie
nt

ed

Levels

da
ta

-
or

ie
nt

ed

H⇔PC⇔H

Interfaces (I)

n/a

n/a

Legend:
supported
not supported

n/a not applicable
s/b structure / behavior
n number of phases

RUP Rational Unified Process
ER Entity Relationship Diagram

UML Unified Modeling Language
CD Class Diagram
SD Sequence Diagram
SM State Machine Diagram

OCL Object Constraint Language
ORM Object Role Modeling

RDFS Resource Description
Framework Schema

Table 2.2: Web Modeling

Behavioral Modeling Not Comprehensively Considered. Behavioral modeling is typically
not supported comprehensively for all levels. There is, however, a tendency for using behav-

58

2.3 Lessons Learned

ioral diagrams, including use cases, activity diagrams, concurrent task trees, in the requirements
engineering and analysis phases, as well as for describing scenarios of user behavior with e.g. se-
quence diagrams. Some form of behavioral modeling is also introduced by approaches providing
support for business process modeling or workflow-based web applications.

Strong Processes. Almost all of the surveyed approaches support the developer with appropri-
ate guidance to developing a web application from requirements engineering to implementation
on the basis of their modeling techniques, i.e., the necessary steps, artifacts to be produced within
each step, and actors are explained. While most of the approaches propose their own develop-
ment process, WebML and UWE do base their process on existing work, i.e. Boehm’s Spiral model
and RUP, respectively. Interestingly enough, all approaches start modeling the web application’s
content level. Still, the applicability and usability of these processes need to be investigated in
real-world projects.

2.3.3 Customization Modeling

Set of Context Properties Limited and Not-Extensible. All web modeling approaches do support
customization with respect to the user context property thus laying the path to personalization,
while other context properties are often not taken into account. The investigation revealed that
context properties typically are considered in isolation and that complex adaptations regarding
several context properties are rare. Furthermore, the extension of the supported set of context
properties is typically not discussed in current web modeling approaches. In this respect, the con-
text model of OO-H represents the only exception considering user, location, device, time, and
network context as well as allowing for their extension. Furthermore, except for the WebML and
OO-H approaches, there is no support for explicit modeling concepts capturing context informa-
tion. Typically, it is assumed that context information is updated by some external service.

Context Chronology and Complex Context not Addressed. Currently, none of the investigated
web modeling approaches considers complex contexts as well as basing adaptations on historical
context information. Consequently, adaptations have to be specified as a reaction to the sum of
simple contexts. Concerning context chronology, some approaches allow for adaptations accord-
ing to the user’s navigation behavior. This historical information about the user is often implicitly
available in terms of predicates of a rule language such as in WebML and OO-H. Still, other his-
torical context information, such as the user’s location over time, cannot be stored.

Set of Adaptation Operations Limited and Not-Extensible. The set of adaptation operations
that some web modeling approaches provide is limited to operations that can be performed upon
typical concepts of a web application, including add/remove a link, change the style, add/remove
a node, sort some information. Currently, there seems to be no web modeling approach that
supports operations on media types such as ”resize image” or ”shorten text”.

Complex Adaptation Operations not Considered. Complex adaptations currently have been
realized in the WSDM approach only. The promoteNode and demoteNode operations have been built
upon primitive ones such as add/remove link. Nevertheless, none of the approach provides the
necessary modeling means that allow specifying complex adaptation operations on the basis of
primitive ones.

Limited Support for Content, Presentation, and Interface Adaptations. Adaptations at the
hypertext level are considered within all of the investigated approaches. With respect to content
and presentation level only half of the approaches provide necessary adaptation operations, while
interface adaptation is supported by WSDM and OOHDM, only. More interestingly, approaches

59

2 On Model-driven Development of Ubiquitous Web Applications

supporting presentation adaptations rather operate at a coarse-grained level, e.g., by providing
adaptation operations that change the complete style of the web applications presentation. In
contrast, the Hera approach allows defining alternative layout managers for parts of the presen-
tation model, thus realizing adaptation at a more fine-grained level.

Legend:
supported
not supported

~ partly supported
mi micro
ma macro

U
se

r

Lo
ca

tio
n

D
ev

ic
e

Ti
m

e

N
et

w
or

k C H P C⇔H H⇔P R A D I

WebML ~ ~ ~ mi/ma

Hera ~ mi

hy
pe

rt
ex

t-
or

ie
nt

ed

WSDM ~ mi/ma

OOHDM mi/ma

UWE ~ mi/ma

OO-H ~ ~ ~ mi/ma

OOWS miob
je

ct
-o

rie
nt

ed

Properties (P)

G
ra

nu
la

rit
y

(G
)

Adaptation

da
ta

-
or

ie
nt

ed

Se
pa

ra
tio

n
of

A

da
pt

at
io

n
(S

A
)Interfaces (I) Phases (CP)

Context

Levels (L)

C
om

pl
ex

A

da
pt

at
io

n
(C

A
)

Ex
te

ns
ib

ili
ty

 (C
E)

Se
pa

ra
tio

n
of

C

on
te

xt
 (S

C
)

C
hr

on
ol

og
y

(C
)

C
om

pl
ex

 C
on

te
xt

(C

C
)

O
pe

ra
tio

ns
 (O

)

Ex
te

ns
ib

ili
ty

 (A
E)

Table 2.3: Customization Modeling

Customization not Comprehensively Considered in all Development Phases. Customization
modeling is predominantly considered during design, the exceptions being the OOHDM and the
WSDM approaches. It seems, that customization is treated as a separate step in the design phase in
which an existing web application is extended with customization issues. Instead, customization
needs to be considered during all phases in the software development lifecycle. Consequently,
web modeling approaches will need to adapt their current development processes in order to
appropriately include customization concerns in all phases.

Disregarded Crosscutting Nature of Customization. Current web modeling languages do not
allow for modeling customization separate from the rest of a web application model. More specif-
ically, this is due to the missing separation of context and adaptation.
Considering separation of context, in general, all web modeling approaches do acknowledge the
need for defining context information in a separated model. Still, guidelines supporting a devel-
oper in constructing a context model are often not available. Some guidance can be found in the
WebML approach as well as in the OO-H framework for modeling context information. Never-
theless, none of the approaches is able to achieve full separation of context from the rest of the
web application models, i.e., typically, concepts from the context model are connected to concepts
from the content model in some way or the other, e.g., via associations. As another example, it is
often not decidable if a certain concept shall be modeled within the content or the context model,
such as the user concept of which some attributes might contribute to the core functionality of the
web application and some others contribute to customization.
With respect to separation of adaptation, developers typically are required to define adaptations
as annotations to existing models. In the UWE, OO-H, and Hera approaches, adaptations at the
hypertext level can be captured separately from the rest of the web application models, how-
ever. Thus, customization functionality is not intermingled with the rest of the web application.
Nevertheless, there is a need for comprehensively capturing customization from all levels of a
web application. Furthermore, it is important to know where adaptations do take effect in mod-

60

2.3 Lessons Learned

els, meaning a modeling language needs to specify these subjects of adaptations. While this is
supported by UWE’s and Hera’s aspect-oriented approaches to modeling customization for the
hypertext level, in OO-H the same information is captured within the Event and Condition parts
of its rule language. Concluding, aspect-orientation represents an suitable mechanism for sepa-
rately capturing customization but up to now has not been used comprehensively for all levels
in a web application model. For example, at the content level aspect-orientation can be used to
capture the parts (e.g. attributes) of the user concept the represent context information within a
separate aspect, while the application-specific parts remain in the content model.

2.3.4 Model-driven Engineering Criteria

From Notations to Languages. Most web modeling approaches have emerged rather focusing on
notations than on using standards for specifying their language. Today, with the rise of model-
driven engineering, the semantic web and the general need to produce a running system from the
web application models, more and more web modeling approaches do provide formal specifica-
tions of their languages in terms of either metamodels, UML-profiles, or ontologies.

Model Transformations not Based on MDE Standards. Model transformations are supported
by almost all approaches in one way or another. Still, only the UWE web modeling language has
recently been extended to better support model transformations in the sense of MDE, i.e., through
providing QVT transformations.

Lack of Platform Description Models. None of the approaches does provide platform descrip-
tion models and consequently no model transformations from platform-independent to platform-
specific models are supported.

Legend:
supported
not supported

M
et

am
od

el

G
ra

m
m

ar

Se
m

an
tic

D

es
cr

ip
tio

n

PI
M

2P
IM

PI
M

2P
SM

PI
M

2C
od

e

PS
M

2C
od

e

WebML DTD Struts

Hera RDFS CC/PP HTML, WML

hy
pe

rt
ex

t-
or

ie
nt

ed

WSDM OWL XSLT

OOHDM ~ RDFS, OWL

UWE MOF J2EE/ Cocoon

OO-H MOF DTD, BNF PHP

OOWS MOF OWL J2EE/ .Net

Model Transformation Type
(M.T)

Pl
at

fo
rm

 D
es

cr
ip

tio
n

M
od

el
 (M

.P
)

ob
je

ct
-o

rie
nt

ed

Language Definition (M.L)

da
ta

-
or

ie
nt

ed

Table 2.4: Model-driven Engineering

2.3.5 Tool Support

Lack of (Extensible) Tool Support. One of the most problematic issues in web modeling is the
lack of tool support for the individual approaches. From the set of surveyed approaches only
four provide tool support that has been made available to the public community. Without proper
tool support, however, web modeling methods will not gain acceptance in practice but possibly

61

2 On Model-driven Development of Ubiquitous Web Applications

will remain a playground for academic ideas. Out of the four tools, WebRatio and VisualWade
represent the only commercial tools and thus have left the status of a prototype implementation.
Furthermore, WebML offers an academic license program which has already been installed at
several universities. None of the available tools is offered under an open-source license, which
would attract developers of open-source web frameworks and technologies. Although ArgoUWE,
the tool accompanying the UWE method, has been built upon the open-source tool ArgoUML, the
extensions made are not open-source. WebRatio is the only tool offering some built-in extension
mechanism for the WebML language, i.e., a plug-in mechanism for so-called custom units.

Customization Modeling not Supported by Tools. Currently, all tools provide support for
basic web modeling (with some deviations from the original notation) and thus allow for model-
ing support. Still, modeling support for dealing with customization modeling is only provided by
Hera’s tool which allows modeling context information within user profiles used to statically gen-
erate adapted hypermedia presentations. For the customization modeling extensions of WebML
and OO-H, prototype implementations have been reported on in literature but are not made avail-
able yet.

W
eb

 M
od

el
in

g
Su

pp
or

t

C
us

to
m

iz
at

io
n

M
od

el
in

g

Pr
oc

es
s

of
 M

et
ho

d

Pr
oc

es
s

Ty
pe

WebML: WebRatio 4.3 (acad.) com od ~ phases

Hera: Hera Presentation Generator 1.3 free ~ wm/ od wizard

UWE: ArgoUWE 0.16 free wm ~ step-wise

OO-H: VisualWade 1.2 rev 163 com od ~ step-wise

St
an

da
lo

ne
 A

pp
lic

at
io

n
(T

.B
)

Ve
rs

io
n

(T
.V

)

Process Support (T.P)

C
ol

la
bo

ra
tio

n
(T

.C
o)

Modeling
Support (T.M)

C
os

ts
 (T

.C
)

O
pe

n
To

ol
 (T

.O
)

C
od

e
G

en
er

at
io

n
(T

.C
G

)

C
on

si
st

en
cy

 C
he

ck
 (T

.C
C

)

M
od

el
 P

re
-G

en
er

at
io

n
(T

.M
G

)

Legend:
supported
not supported

~ partly supported
n/a not applicable

free freeware
com commercial
od on demand
wm while modeling

Table 2.5: Tool Support

Support for Model Transformations Provided. Although not based on MDE standards, all
tools offer some form of model transformation, e.g., for generating a hypertext model from the
content model, or a presentation model from a hypertext model (ArgoUWE, WebRatio, and Visu-
alWade), or for integrating different models as a prerequisite for code generation (HPG).

Code Generation for One Platform Only. Except for the ArgoUWE tool, all approaches provide
code generation support. Still, code generation is limited to specific platforms, only. While Visu-
alWade generates PHP code, WebRatio targets J2EE platforms by producing code for the Struts
framework. WebRatio is shipped with a Tomcat Servlet Container and provides for simple de-
ployment of the web application. The HPG of Hera, however, does support generating static hy-
permedia presentations in several formats, including HTML as well as WML. As a consequence,
the employment of web modeling tool also determines the runtime platform.

Limited Process Support. Remarkably, only the HPG tool of Hera in combination with its
Model Builders implements the process as described by the supported method. All other ap-
proaches have only partial tool support for their defined processes. Typically, the tools do not
offer means for supporting developers in producing artifacts (e.g., use cases) from earlier devel-

62

2.4 Related Surveys

opment phases but start with designing the content model. WebRatio allows going back and forth
between different models as well as making several changes to either of them without loss of pre-
viously modeled artifacts. Instead, ArgoUWE as well as OO-H require the user to follow the web
applications levels dimension in first designing the content, hypertext, and finally the presenta-
tion level. This is of course a limitation with respect to the iterative development as required for
web application development projects.

Lack of Collaboration in Tools. Collaborative work on web application development currently
not supported, should be addressed by tools, since web applications are not built single-handed
but by a project team. WebRatio, however, represents an exception already supporting CVS.

2.4 Related Surveys

In an effort to shed light on the different approaches to web application development, some sur-
veys have already been published. Following, these surveys are distinguished according to their
specific goals and foci into closely related work representing customization modeling surveys and
more widely related work representing web modeling surveys focusing on general web modeling
criteria, development processes, requirements engineering, and support for modeling rich inter-
net applications.

2.4.1 Customization Modeling Surveys

Barna et al. [BFHV03] provide a comparison of four approaches, amongst them Hera, OOHDM,
and UWE also investigated in the present survey. The approaches are investigated according
to their specific design models for content, hypertext, and presentation levels as well as their
support for customization design, though the focus is rather on personalization. The discussion
is supported using a simple running example of a virtual art gallery.

In a further evaluation but already some time ago, Kappel et al. [KPR+01] compare the cus-
tomization modeling capabilities of OOHDM and WebML with respect to supported context,
granularity of adaptations, and the degree of customizability.

Similar to the above mentioned evaluations, this survey’s focus is on investigating the sup-
port of modeling customization in current web modeling languages but in contrast, specifically
considers also the model-driven development of UWAs including tool support. Besides this dif-
ference in goals, this survey is also different in terms of comprehensiveness by surveying seven
recent web modeling approaches which provide means for customization modeling and if avail-
able their tool support. The evaluation is based on a well-defined as well as fine-grained catalogue
of more than 30 criteria, which allows a detailed investigation of each approach with respect to
general web modeling characteristics, customization modeling characteristics, as well as model-
driven engineering and tool support. In contrast, related works provide less than 5 criteria or no
explicit description in terms of a catalogue at all. Furthermore, the evaluation is supported with
a running example consisting of five different customization scenarios which is used to better ex-
plain the general modeling concepts of each approach and in particular the provided means for
customization modeling.

63

2 On Model-driven Development of Ubiquitous Web Applications

2.4.2 Web Modeling Surveys

General Web Modeling. In Schwinger et al. [SK06], an introduction into modeling web appli-
cations is given, including a brief overview of eleven web modeling approaches based on a set
of twelve criteria, amongst them one criterion evaluating support for customization modeling as
well as code generation.

In contrast, this survey focuses on web modeling approaches providing support for modeling
customization. It also differs in that this survey applies a more detailed criteria catalogue as well
as a running example while it includes the relevant approaches also surveyed in [SK06].

Development Processes.Nora Koch [Koc99] has evaluated eleven approaches, amongst those
only OOHDM and WSDM that are still evolving. That survey specifically focuses on the ap-
proaches’ development process, supported development phases, modeling techniques and nota-
tions used, as well as tool support. In the end, the characteristics of the Rational Unified Process
(RUP) [Kru00] are presented as well as a discussion on how some approaches support parts of
RUP. Customization, however, is not a focus as in the survey of this thesis.

In Woukeu et al. [WCWH03] eight approaches are investigated, having in common with this
survey the WebML, OOHDM, and WSDM web modeling approaches. The evaluation is focused
on the supported development process, i.e., their phases, as well as the modeling techniques
used. Furthermore, each approach’s concepts from the hypertext level are listed, e.g., ’navigation
classes’ in OOHDM as well as ’pages’ and ’content units’ in WebML. Finally, each approach is
evaluated if it allows to model read-only or read-write web applications so that the survey differs
considerably in terms of focus.

Additionally, aiming at a fine grained set of criteria, the criteria used in the works of Nora Koch
and Woukeu et al. have been adopted in the catalogue of criteria proposed in this survey (cf.
Section 2.1.2). Furthermore, where appropriate they have been endowed with a clear definition
including a measurement scale or they have been refined. Such a refinement generally means the
decomposition of a criterion into several criteria.

Requirements Engineering. In Escalona et al. [EK04], the scope is requirements engineering for
web applications. A comparison of ten web modeling approaches is provided including WSDM,
OOHMD, UWE, and WebML, which are also investigated within this survey. In particular, the
types of requirements, the activities and techniques employed during requirements elicitation,
specification and validation, and the methodologies’s focus on the requirements process, tech-
niques, or artifacts have been evaluated.

In contrast to the work of Escalona et al, this survey is rather concerned with the design level
means of today’s web modeling languages. Nevertheless, the surveyed approaches are investi-
gated with respect to their support of a requirements engineering phase and more particularly, if
customization modeling is already considered during requirements engineering. Consequently,
this evaluation is complementary to the one of Escalona et al.

Support for Rich Internet Applications. Preciado et al. [PTSC05] compare fifteen representa-
tives from web modeling, multimedia and hypermedia methodologies according to their applica-
bility to model rich internet applications. Again, five of the approaches are also evaluated within
this survey, namely, UWE, OO-H, WebML, WSDM, and OOHMD. The set of ten evaluation crite-
ria include multimedia modeling, personalization modeling, and tool support, and are evaluated
to a weighted measurement scale consisting of four degrees of coverage.

Again this survey’s focus is different to the one of Preciado et al. which investigate their se-
lection of approaches concerning their applicability to model RIAs. Customization modeling,

64

2.5 Summary

however, is only a marginal concern supported in the work of Preciado et al. with one criterion,
only, which in this survey is evaluated in much more detail.

2.5 Summary

This chapter has presented the state-of-the-art in model-driven development of ubiquitous web
applications. More specifically, an in-depth comparison of seven web modeling approaches cur-
rently supporting the development of ubiquitous web applications has been provided. An evalu-
ation framework has been designed on the basis of a detailed and well-defined catalogue of eval-
uation criteria. Moreover, the actual evaluation by means of this criteria catalogue is supported by
a modeling example, i.e., a tourism information web application, used to provide an initial insight
into each approaches’ concepts for modeling customization as well as to facilitate their compara-
bility. More specifically, a set of five customization scenarios has been defined, to be tested with
each web modeling approach. The per-approach evaluation is furthermore complemented with
an extensive report on lessons learned, summarizing the approaches’ strengths and shortcomings.
In this respect, limitations of current web modeling languages with respect to the model-driven
development of ubiquitous web applications are the lack of a proper MDE foundation in terms
of metamodels as well as missing tools allowing to model customization. Furthermore, the pro-
posed customization mechanisms are often limited, since they neither cover all relevant context
factors in an explicit, self-contained, and extensible way, e.g., within a dedicated context model,
nor allow for a wide spectrum of extensible adaptation operations. Furthermore, the provided
customization mechanisms frequently do not allow dealing with all different parts of a web ap-
plication in terms of its content, hypertext, and presentation levels as well as their structural and
behavioral features. Finally, current web modeling approaches insufficiently consider the cross-
cutting nature of customization by not providing the necessary means to comprehensively capture
customization separately from all levels of a web application model. Nevertheless, the evaluation
has revealed that, the WebML approach provides one of the more powerful customization mech-
anisms, besides the OO-H approach, but fails to tackle the crosscutting nature of customization.
Consequently, on the basis of this evaluation, the WebML approach has been chosen to be bridged
to the aspect-orientation paradigm in the context of this thesis.

65

2 On Model-driven Development of Ubiquitous Web Applications

66

3 State-of-the-art in Aspect-oriented
Modeling

Contents
3.1 The Conceptual Reference Model for Aspect-Oriented Modeling 68
3.2 Evaluation Set-Up . 76
3.3 Comparison of Approaches . 88
3.4 Lessons Learned . 111
3.5 Related Surveys . 120
3.6 Summary . 123

The concept of Separation of Concerns (SoC) can be traced back to Dijkstra [Dij76] and Par-
nas [Par72]. Its key idea is the identification of different concerns in software development and
their separation by encapsulating them in appropriate modules or parts of the software. Aspect-
Oriented Software Development (AOSD), formerly also called Advanced Separation of Concerns
(ASoC), adopts this idea and further aims at providing new ways of modularization in order to
separate crosscutting concerns from traditional units of decomposition during software devel-
opment. In particular, AOSD represents the convergence of different ASoC approaches, such as
Adaptive Programming (AP) [Lie96], Composition Filters (CF) [ABV92], Subject-Oriented Pro-
gramming (SOP) [HO93], Multi-Dimensional Separation of Concerns (MDSoC) [TOHS99], and
Aspect-Oriented Programming (AOP) [KLM+97]. Nevertheless, it is a fairly young but rapidly
advancing research field. From a software development point of view, aspect-orientation has
originally emerged at the programming level with AspectJ1 being the most prominent protag-
onist. Meanwhile, the application of the aspect-oriented paradigm is no longer restricted to the
programming level but more and more stretches over phases prior to the implementation phase of
the software development life cycle such as requirements engineering, analysis, and design. This
development is also driven by the simultaneous rise of Model-Driven Engineering (MDE) which
employs models as the primary artifact in software development [Sch06b]. As a result, there has
already been a considerable number of aspect-oriented modeling (AOM) languages proposed in
literature, whereof only a few in the meanwhile have come of age. Each of those AOM approaches
has different origins, e.g., AOP and SOP, and pursues different goals. This entails not only the
problem of different terminologies but also leads to a broad variety of aspect-oriented concepts,
including different composition mechanisms used [KL06], as well as diverse notations.

On the basis of previous work [SSK+07], this chapter provides an introduction into AOM as well
as a detailed discussion of the state-of-the art in the domain. Section 3.1 presents the Conceptual
Reference Model (CRM) for AOM in order to centrally capture the basic concepts of AOM and
there interrelationships in terms of a UML class diagram. On this basis, an evaluation framework

1http://www.eclipse.org/aspectj/

3 State-of-the-art in Aspect-oriented Modeling

is set up by deriving a detailed and well-defined catalogue of evaluation criteria in Section 3.2.
Section 3.3 is dedicated to the actual evaluation of eight selected AOM approaches by means of
this criteria catalogue. To better illustrate the notational peculiarities of the AOM approaches,
this evaluation is accompanied with a running example. The lessons learned are presented, in
Section 3.4. In Section 3.5, the contributions of this survey with respect to other existing surveys
are discussed, before the chapter is closed with a brief summary in Section 3.6.

3.1 The Conceptual Reference Model for Aspect-Oriented
Modeling

The major difficulty in comparing AOM approaches is the lack of a common understanding for
the basic ingredients of aspect-oriented modeling. This is on the one hand due to different con-
cepts introduced by related AOSD approaches (e.g., AP, CF, SOP, and MDSoC) and on the other
hand due to the very specific meaning of AOP level concepts, particularly those coined by AspectJ
[SKK04]. An example for the first issue is the concept of ”aspect”, where similar though different
concepts have been introduced by related AOSD approaches, e.g., ”hyperslice” in Hyper/J, ”fil-
ter” in CF, and ”adaptive method” in Demeter/DJ [vFGCdL03]. An example for the second issue
are AspectJ’s join points which are defined as ”points in the execution of the program” including
field accesses, method, and constructor calls [Tea05]. This definition is not comprehensive enough
for the modeling level, however. First, modeling languages unify specific programming language
concepts into more abstract modeling elements to be able to serve several different programming
languages. And second, modeling languages typically are richer in terms of concepts, i.e., mod-
eling elements, that could serve as join points. This is also due to different views available at
modeling level, e.g., structural views and behavioral views.

In the light of different terminologies and a broad variety of aspect-oriented concepts, for an
evaluation of AOM approaches it is essential to first establish such a common understanding by
means of a so-called Conceptual Reference Model for AOM. The CRM enables to explain the basic
ingredients of aspect-oriented modeling and their interrelationships both in terms of a graphical
representation as a UML class diagram and in terms of a glossary comprising a textual definition
for each concept introduced in the class diagram. The conceptual reference model, for which a
previous version has already been proposed in [SSK+06], represents an intermediate step and
forms the basis for setting up an evaluation framework, i.e., inferring concrete criteria as it is done
in Section 3.2.

In AOSD literature, one can already find some proposals for reconciliating the currently pre-
vailing diversity in the understanding of concepts from the aspect-orientation paradigm each
pursuing a specific focus [KL06], [vdBCC05], [vFGCdL03]. In this thesis, they have been used
as a basis for establishing the CRM for AOM. Their particular influence on the CRM is discussed
as follows:

• Considering the broader research area of ASoC, one can distinguish between four compo-
sition mechanisms, namely, pointcut-advice, open class, compositor, and traversal [MK03]. In
the CRX model of Kojarski et al. [KL06] pointcut-advice, open class, and compositor mech-
anisms are supported, only, because the traversal mechanism does not necessarily share
properties with the other mechanisms that can be reasonably generalized [KL06]. For the
CRM, in this thesis, the authors’ idea of first abstracting over the three aspect-oriented com-
position mechanisms, which later allows to compare AOM languages at a higher level, is

68

3.1 The Conceptual Reference Model for Aspect-Oriented Modeling

adopted. Beyond, the CRM shall capture in detail the corresponding AOM language con-
cepts for each composition mechanism separately. In Section 3.2, this allows to set up a
fine-grained set of criteria for each composition mechanism and consequently allows AOM
languages realizing the same composition mechanism(s) to be compared in greater detail.

• In van den Berg et al. [vdBCC05] an attempt towards establishing a common set of concepts
for AOSD has been made. The proposed definitions are intended to be appropriate for all
phases in the software development life cycle. The AOSD Ontology of van den Berg et al.
discusses high level concepts such as ”concern” and ”composition”, which allow abstracting
over different composition mechanisms such as proposed by Kojarski et al. When looking at
the concepts describing the specifics of the different composition mechanisms, however, one
can see that the focus is rather on the pointcut-advice and open class mechanisms. Concepts
for supporting the compositor mechanism such as ”merge” and ”match method” (cf. Section
3.1.3) are not discussed in the proposed glossary. Beyond, a visualization of the glossary and
the concepts’ interrelationships in terms of a conceptual model is missing. The CRM is based
on the AOSD Ontology in that the proposed definitions of concepts are adopted, i.e., if such
definitions are available.

• The ”theory of aspects” of Chavez et al. [vFGCdL03] describes a ”conceptual framework
for AOP” in terms of Entity-Relationship diagrams and a textual description of each entity.
The framework, however, explicitly supports aspect-oriented approaches that follow the
pointcut-advice and open class mechanisms, only. The framework, e.g., explicitly demands
the aspect-base dichotomy, meaning the clear distinction between ”aspects” and ”base”.
Consequently the ”theory of aspects” does not describe concepts supporting the compositor
mechanism. Nevertheless, the Entity-Relationship diagrams have served as an input for de-
signing the CRM. The definitions of concepts proposed in the AOSD Ontology [vdBCC05]
have been preferred over those of Chavez et al. [vFGCdL03], however, since the AOSD On-
tology’s terminology is closer to the original terminology of the pointcut-advice mechanism
(e.g., ”enhancement” in [vFGCdL03] corresponds to ”advice” in [vdBCC05]).

For those concepts where no definition is available in the discussed literature, a bottom-up
approach is followed, taking into consideration the surveyed approaches.

In the following, the concepts of the CRM are described along with its four major building
blocks as depicted in Figure 3.1. The ConcernComposition package provides a high level view on
the concepts of AOM abstracting over different composition mechanism, while the Language pack-
age describes the means underlying the specification of concerns. The specific composition mech-
anisms are specialized in separate packages, i.e., the pointcut-advice and open class mechanisms
are specialized into the AsymmetricConcernComposition package, and the compositor mechanism
is specialized in the SymmetricConcernComposition package. The concepts’ descriptions possibly
contain a reference to the source definition and an optional discussion in case the definition of a
concept has been refined.

3.1.1 ConcernComposition

The ConcernComposition package abstracts over the different composition mechanisms. It deals
first, with the modularization and thus with the separation of a system’s concerns into appropriate
units and second, with their interrelationships, and consequently their composition by means of
appropriate rules.

69

3 State-of-the-art in Aspect-oriented Modeling

Asymmetric
ConcernComposition

Symmetric
ConcernComposition

AdaptationSubject AdaptationKind

Language

ConcernComposition

2..*

*

CompositionPlan
isDynamic

Asymmetric
CompositionRule

«enumeration»
RelativePositionKind
before
around
after

Advice

Simple
Advice

Structural
Element

Behavioral
Element

Element
1..*

0..1

1

*

1

1

ownedElement
1..*

*

consistsOf consistsOf

ownedJP

realizedBy

Simple
Pointcut

Pointcut

*

*

relPos:RelativePositionKind
RelativePosition

concernElement

*

* owner

1..*

owner

owner

Composite
Pointcut

1..*
children

Composite
Advice

JoinPoint
dynamicity

Behavioral
Advice

Structural
Advice

JoinPoint
Model

Language

1..*
children

*

*

1..*

realizedBy
**

Concern
Module

operator
Composition

**

1
consistsOf

selectedJP

Structural
JoinPoint

Behavioral
JoinPoint

1

1

Quantification
Method 1 *

1

Effect
eff:EffectKind

«enumeration»
EffectKind

enhancement
replacement
deletion

1

0..1

0..1 0..1

Concern
CompositionRule

Symmetric
CompositionRule

Match
Method

Integration
Strategy

*

Composable
Element

2..*

*

Merge

Override

Bind

implementedBy

Composable
Behavioral

Element

Composable
Structural
Element

implementedBy
**

0..*
RuleInteraction

ModuleInteraction

concernElement

owner 1..*
0..*

1 1

*

Concern
isCrosscutting

1
0..*

1

1
representedAs

consistsOf
consistsOf

Figure 3.1: The Conceptual Reference Model for Aspect-Oriented Modeling

Concern. Along with [vdBCC05] a concern is defined as an interest which pertains to the system’s
development, its operation or any other matters that are critical or otherwise important to
one or more stakeholders. A concern is called a crosscutting concern if it cannot be modularly
represented within a language’s decomposition technique, e.g., classes and methods in the
object-oriented paradigm (cf. Figure 3.1 attribute isCrosscutting). In AOSD literature, this
restriction is called the tyranny of the dominant decomposition [TOHS99]. The elements of
a crosscutting concern are then said to be scattered over other concerns and tangled within
other concerns of a specific system [vdBCC05]. In AOSD, logging is often seen as the prime
example for a crosscutting concern.

ConcernModule. One concern typically is realized by one or more concern modules. The term
concern module is reused from Kojarski et al. [KL06] and encompasses a set of concern ele-
ments that together realize a concern or part of a concern (cf. role concernElement in Figure
3.1). Thus, it forms a representation of concerns in a formalized language (e.g., a package
in UML or in Java). Some approaches have introduced the concept ”aspect” [vdBCC05]

70

3.1 The Conceptual Reference Model for Aspect-Oriented Modeling

for modularizing otherwise crosscutting concerns, while existing units of modularization
formalizing non-crosscutting concerns have been called ”base” [HOT02]. This distinction
has been used to categorize aspect-oriented approaches into asymmetric approaches to con-
cern composition that support this aspect-base dichotomy and symmetric ones that do not
[HOT02]. Today, this distinction has begun to diminish and is being replaced by the more
general understanding that the difference between concern modules is in how they are used
during composition (cf. ConcernCompositionRule) [KL06]. In this thesis, this view is adopted
and consequently in the CRM only the concern module concept, which subsumes the notions
of aspect and base, is considered.

CompositionPlan. The integration of concern modules is specified by a composition plan [KL06],
which consists of a set of rules. The weaving plan concept of Kojarski et al. [KL06] has
been renamed in favor of the more general term composition, which yields the integra-
tion of multiple modular artifacts into a coherent whole [vdBCC05]. The ”execution” of a
composition plan results in a composed model of the overall system. During this process
one distinguishes two phases, namely detection and composition. While detection is nec-
essary to identify the concern elements that have to be integrated in the composed model,
composition means the actual integration of them. For the purposes of this survey, further-
more a distinction between two ways of composing concern modules is made, namely static
and dynamic (cf. attribute isDynamic). Thereby static indicates that the composed model is
produced and thus is available to the modeler at design time analogously to compile-time
weaving at programming level. Dynamic composition integrates the concern modules vir-
tually during run-time, i.e., while executing the models. At the modeling level this requires
the run-time semantics of the language’s metamodel to be specified [FRGG04] (which, con-
sidering, e.g., UML, is only the case for parts of the language like state machines). This is
similar to a run-time weaving that happens at programming level.

ConcernCompositionRule. The composition plan consists of a set of concern composition rules
whereby one rule defines in detail how the various concern elements are to be composed.
The general concept of concern composition rule is specialized into sub-classes according
to the composition mechanism used. Following Kojarski et al. [KL06], the CRM foresees
three composition mechanisms. Two asymmetric composition mechanisms exist in the form
of pointcut-advice for introducing aspectual behavioral (e.g., intercepting method calls) and
open class for introducing aspectual structure (e.g., introducing additional attributes to a
class) [KL06]. At the modeling level, in any case augmentations or constraints need to be in-
troduced with respect to model elements, whether they are behavioral elements or structural
elements. Consequently, the asymmetric composition rule serves to realize both composition
mechanisms. The compositor mechanism is provided by the sub-class SymmetricComposi-
tionRule.

Module Interaction. Concern modules might be defined in a way such that they interact with
each other. Kienzle et al. [KYX03] present a classification of interaction into ”orthogo-
nal” concern modules, ”uni-directional preserving” concern modules based on other con-
cern modules without modifying them, and ”uni-directional modifying” concern modules
that change other concern modules. Another classification of Sanen et al. [STW+06] dis-
tinguishes between ”mutual exclusive” concern modules, concern modules ”depending”
on each other, concern modules positively ”reinforcing” each other, and concern modules

71

3 State-of-the-art in Aspect-oriented Modeling

”conflicting” with each other. Accordingly, the abstract class ModuleInteraction can be spe-
cialized to represent the specific interaction types. In case of a conflict, additional resolution
strategies may need to be employed.

RuleInteraction. Analogously to module interaction, also concern composition rules may interact
with each other. Again a rule interaction can be refined accordingly to support different kinds
of rule interactions. For example, concern composition rules on the one hand may reinforce
each other but on the other hand may also conflict with each other. Consequently, conflict
resolution strategies need to be employed. In the context of UML, e.g., a relative or absolute
ordering of rules could by realized with dependencies.

Effect. The effect specified with the concern composition rule describes what effect the integration
of concern elements have. A concern composition rule may have an enhancement effect, a
replacement effect, or a deletion effect (cf. EffectKind in Figure 3.1). This distinction resembles a
differentiation proposed by Hanenberg [Han05] in terms of constructive (cf. enhancement),
and destructive (cf. replacement and deletion) effects. There exists, however, an inherent
relationship between the effect and the respective concern elements used in a particular rule.
For example in case of a pointcut-advice rule, the relative positions before, and after may lead
to an enhancement, whereas in case of around the effect may resemble an enhancement, a
replacement (i.e., deleting the join point with the advice), or a deletion (i.e., deleting the join
point with an empty advice).

3.1.2 AsymmetricConcernComposition

In the asymmetric concern composition the concern composition rule is specialized for covering the
pointcut-advice and open class composition mechanisms [KL06]. The package is organized into
two sub-packages, namely AspectualSubject and AspectualKind, due to the two distinct roles con-
cern elements play in asymmetric composition.

AsymmetricCompositionRule. Asymmetric composition rules are part of a particular composition
plan and provide support for the pointcut-advice and the open class composition mecha-
nisms. An asymmetric composition rule consists of a pointcut (cf. Pointcut) together with
an optional relative position (cf. RelativePosition) describing where to augment or constrain
other concern modules as well as the advice (cf. Advice) describing how to augment or con-
strain other concern modules. The consists-of relationships have been modeled using weak
aggregations, since advice, pointcut, and relative position might be reused in other asym-
metric composition rules as well.

3.1.2.1 AspectualSubject

The aspectual subject describes the concepts required for identifying where to augment or constrain
other concern modules.

JoinPoint. According to [FECA05] a join point is a well-defined place in the structure or execution
flow of a program where additional behavior can be attached. In contrast, at modeling level
the join point represents a well-defined place in a model represented by a concern module,
which specifies where an advice (cf. Advice) can be introduced. Thus, a join point represents
a concern element, i.e., an identifiable element of the language used to capture a concern. It

72

3.1 The Conceptual Reference Model for Aspect-Oriented Modeling

has to be noted that in recent works [KL06], [MK03] the notion of join point has changed.
It has been described as being a concept of the result domain, meaning it represents the
composed element through which two or more concerns may be integrated. Nevertheless,
the original concept of join point is essential to the pointcut-advice composition mechanism
and may also be used in the open class composition mechanism [KL06]. Consequently, the
CRM adheres to the original notion of join point for describing the concepts participating in
asymmetric concern composition.
According to Hanenberg [Han05], join points can be distinguished along two orthogonal
dimensions, namely abstraction and dynamicity. In this thesis, this categorization is applied
to the modeling level while adhering to UML terminology [OMG05d] through the use of
the term ”feature” instead of ”abstraction”. Consequently, join points can be structural (cf.
StructuralJoinPoint) or behavioral (cf. BehavioralJoinPoint), while at the same time, they are
also modeling level representations of static or dynamic elements (cf. attribute isDynamic) in
a software system. While static join points are elements of a language that can be identified
based on information available at design time (e.g., class and method call), dynamic join
points are elements of a language that cannot be identified before run-time (e.g., object and
method execution).

StructuralJoinPoint. Structural join points represent structural elements of a language where an
advice can be introduced. In addition, structural join points can be either static or dynamic
(cf. isDynamic attribute). Exemplifying those two categories by means of UML modeling el-
ements, structural-static join points would be classes and structural-dynamic join points would
be objects.

BehavioralJoinPoint. Analogous, behavioral join points represent behavioral elements of a lan-
guage where an advice can be introduced. Additionally, a distinction is made between
behavioral-static join points (e.g., activity) and behavioral-dynamic join points (e.g., method ex-
ecution). Admittedly, not all languages may offer elements which allow for dynamic join
points as is the case with UML together with OCL.

JoinPointModel. The join point model defines the kinds of join points available [vdBCC05]. It
comprises all elements of a certain language where it is allowed to introduce an advice (cf.
Advice), i.e., where the representedAs association connects the element with JoinPoint. For
example, some approaches might want to restrict their join point model to a specific set of
language elements, e.g., classifiers in UML.

Pointcut. A pointcut describes a set of join points [vdBCC05], i.e., the concern elements selected
for the purpose of introducing certain augmentations or constraints (cf. Advice). The selec-
tion of join points can be done by means of quantified statements over concern modules and
their concern elements (cf. SimplePointcut and QuantificationMethod). A pointcut specifica-
tion is implemented by either a SimplePointcut or a CompositePointcut.

SimplePointcut. A simple pointcut represents a set of join points of a certain kind (e.g., structural-
static), which are selected according to a certain quantification method (cf. Quantification-
Method). It thus, represents a means for selecting several concern elements as join points.
For this survey, the combination of simple pointcut and quantification method correspond
to the definition of pointcut in [vdBCC05].

73

3 State-of-the-art in Aspect-oriented Modeling

CompositePointcut. For reuse purposes, pointcuts can be composed of other pointcuts by means
of logical Operators, e.g., AND, OR, NOT, to form composite pointcuts. Thereby, all children
of a composite pointcut, i.e., all selected join points, refer to the same join point model.

QuantificationMethod. The quantification method concept describes a mechanism, e.g., a predicate
for selecting from the potential join points of the join point model those that should be
available for introducing an advice (cf. Advice). The quantification method corresponds to
what is termed a pointcut designator in AspectJ, i.e., its quantification mechanism according
to [FECA05].

RelativePosition. A relative position may provide further information as to where aspectual fea-
tures (cf. Advice) are to be introduced. It represents some kind of location specification. This
additional information is necessary in some cases when selecting join points by pointcuts
only is not enough. Such aspectual features can be introduced for example before or after a
certain join point. Still, in some other cases such as for the open class composition mech-
anism a relative positioning is not necessary, e.g., when a new attribute is introduced into
a class the order of the attributes is insignificant (cf. multiplicity 0..1). While the relative
position typically is specified with the advice such as in AspectJ, in the CRM it is modeled
separately from the advice. The ”wrapping” technique presented in [FECA05] corresponds
to the definition of relative position but in contrast is described for behavioral join points
only.

3.1.2.2 AspectualKind.

The AspectualKind package comprises the concepts necessary to describe how to augment or con-
strain other concern modules.

Advice. An advice specifies how to augment or constrain other concerns at join points matched
by a pointcut [vdBCC05]. An advice is realized by either a structural advice (cf. Structural-
Advice), a behavioral advice (cf.BehavioralAdvice), or both, i.e., by a composite advice (cf.
CompositeAdvice). Historically, structural advice has been called ”introduction”, while be-
havioral advice has been termed ”advice”. Recently, the advice concept is more and more
used as an inclusive term for both and consequently has been employed herein.

StructuralAdvice. A structural advice comprises a language’s structural elements for advising
other concerns. For example, adding a new attribute to a class’s structure represents a struc-
tural advice.

BehavioralAdvice. Likewise, a behavioral advice comprises a language’s behavioral elements for
advising other concerns. In the context of UML, adding a method call, i.e., a message in a
sequence diagram represents a behavioral advice.

CompositeAdvice. For reuse purposes, an advice can be composed of a coherent set of both,
structural and/or behavioral advice, to form a composite advice, i.e., the composite needs
to be free of conflicts. For example, an attribute and an operation represent two simple
advice. If composed, the composite advice includes the attribute as well as the operation.
In this respect, the advice concept extends the general understanding of the advice concept
described in [vdBCC05].

74

3.1 The Conceptual Reference Model for Aspect-Oriented Modeling

3.1.3 SymmetricConcernComposition

In the symmetric concern composition the concern composition rule is specialized according the
compositor composition mechanism [KL06].

SymmetricCompositionRule. A symmetric composition rule comprises first, a specification of the
elements to be composed (cf. ComposableElement), second, the match method to apply upon
them describing which elements to compose (cf. MatchMethod), and third, the integration
strategy to be applied describing how to proceed on those matched elements (cf. Integra-
tionStrategy). For example in the context of UML such a symmetric composition rule could
specify that classes of two packages having identical names shall be matched and their class
bodies shall be combined, similarly to the UML ”package-merge” operator. Again, for reuse
purposes the consists-of relationships have been modeled using weak aggregations.

ComposableElement. Composable elements of a symmetric composition rule refer to the elements
allowed to be composed [Cla02]. Composable elements can be made up by any element of
the underlying language. Therefore, a distinction is made also between composable struc-
tural elements (cf. ComposableStructuralElement) and composable behavioral elements (cf.
ComposableBehavioralElement). In the course of a symmetric composition rule more than two
of such elements can be integrated.

ComposableStructuralElement. A composable structural element comprises a language’s structural
elements (cf. StructualElement) and can be composed with other composable elements iden-
tified in a symmetric composition rule. Examples for composable structural elements with
respect to UML are Components, Classes, but also more fine-grained concepts such as Prop-
erties.

ComposableBehavioralElement. Likewise, a composable behavioral element comprises a language’s
behavioral elements (cf. BehavioralElement) and can be composed with other composable
elements identified in a symmetric composition rule. With respect to UML, examples for
composable behavioral elements are Activities and Actions as well as State machines and
States.

MatchMethod. The match method applied in the detection phase of a composition identifies which
concrete elements to match given as input the composable elements for the composition. It
supports the specification of match criteria for composable elements and their components,
e.g., a class’s attributes. Examples for match methods found in literature [Cla02], [RGR+06]
comprise match-by-name, match-by-signature, no-match.

IntegrationStrategy. The integration strategy details how to proceed during composition with the
matched elements. The general concept of integration strategy is specialized into the sub-
classes merge, bind, and override [Cla02], [RGR+06].

Merge. With the merge integration strategy two or more corresponding composable elements are
merged. This set of corresponding composable elements has been identified by the applied
match method.

Override. In contrast to the merge integration strategy, for applying the override integration strat-
egy the overriding as well as the overridden elements have to be specified from the set of
corresponding composable elements identified by the applied match method.

75

3 State-of-the-art in Aspect-oriented Modeling

Bind. The bind integration strategy typically represents a strategy where some composable el-
ements are treated as template parameters that need to be bound to concrete values, i.e.,
other composable elements. It is applied in the context of parameterizable concern modules
which are often used to realize crosscutting concerns.

3.1.4 Language

Finally, the concepts which are part of the Language package describe the means underlying the
specification of concerns.

Language. Concern modules are formalized using the language elements of a certain language,
i.e., a modeling language like UML. Depending on the composition mechanism used, some
aspect-oriented approaches have distinguished between different languages for formalizing
crosscutting and non-crosscutting concerns [KL06].

Element. A language comprises a set of elements, like e.g., class, relation, package which allow the
modeler to express certain concepts. Typically a language’s elements can be distinguished
into structural (cf. StructuralElement) and behavioral elements (cf. BehavioralElement). De-
pending on the composition mechanism, the elements of a language are used differently.
With respect to asymmetric approaches, elements serve two distinct purposes. First, they
may represent join points and thus in the role of join points specify where to introduce an
advice. Second, elements of a language are used for formulating the advice itself. In the case
of symmetric approaches such a distinction is not made.

StructuralElement. Structural elements of a language are used to specify a system’s structure. Nat-
ural examples for such elements in the case of UML are classes, packages, and components.

BehavioralElement. Likewise to structural elements, behavioral elements of a language are used to
specify a system’s behavior. Behavior is expressed in UML through behavioral elements like
actions, states, and messages.

3.2 Evaluation Set-Up

3.2.1 Selection of Approaches

There already exists a considerable amount of proposals for AOM languages each of them having
different origins and pursuing different goals dealing with the unique characteristics of aspect-
orientation. Only few of them have come of age and have been presented at acknowledged
conferences and journals, however. Since aspect-orientation is often considered an extension to
object-orientation, it seems almost natural to use and/or extend the standard for object-oriented
modeling, i.e., the Unified Modeling Language (UML), for AOM. To the best of our knowledge,
there are only a few AOM proposals that do not base their concepts on UML [SR05], [SVWJ05]
compared to the amount of approaches that do. Thus, this survey focuses on UML-based ap-
proaches to aspect-oriented modeling, only.

In literature, fourteen such well-published, UML-based, design-level AOM approaches have
been identified, namely: [CB05], [CM06], [CvdBE07], [EAB05], [FPT07], [Gru00], [HJPP02], [JN05],
[KK06], [KHJ06], [PSD+05], [RGR+06], [SHU02a], and [vFGC04]. In this survey, the results of eval-
uating a representative set of eight AOM approaches are presented, including in the set first of all

76

3.2 Evaluation Set-Up

those two approaches that have not been investigated in existing surveys, namely: [CvdBE07] and
[KHJ06]. As indicated before, the rationale behind choosing the remaining six [CB05], [EAB05],
[JN05], [PSD+05], [RGR+06], [SHU02a] out of the identified, is to assort a representative mix of
approaches. In this respect, the goal has been to maintain the ratio between approaches based on
metamodel extensions and those relying on UML Profiles as well as the ratio between symmetric
and asymmetric approaches.

3.2.2 Catalogue of Evaluation Criteria

In the following, a catalogue of criteria for a structured evaluation of AOM approaches is pro-
posed. The focus in designing this catalogue of criteria was to provide a fine-grained catalogue
of criteria which constitutes the prerequisite for an in-depth evaluation of existing approaches
and thus allows to compare different AOM approaches in greater detail than in previous surveys
[BBR+05], [CRS+05], [dbTB+06], [RTT04]. The criteria of the evaluation framework have been
derived in a top-down manner from the CRM (cf. Section 3.1) as well as in a bottom-up manner
considering related AOM surveys:

Deriving Criteria from the Conceptual Reference Model. The CRM presented in the previous
section sketches the concepts that have been identified to be important for the AOM domain. This
has been done both at an abstract level, i.e., abstracting from different composition mechanisms,
and at a detailed level, i.e., looking at the specific characteristics of each composition mechanism.
Corresponding criteria in the catalogue operationalize the CRM with respect to allowing a com-
parison of approaches. In particular, for each concept of the CRM one or more criteria have been
derived. This implies that either a concept of the CRM maps onto one-to-many criteria in the
catalogue or one-to-many concepts of the CRM map onto one criterion in the catalogue. A con-
cept that is represented as an abstract class, however, does not necessarily need a corresponding
criterion in the catalogue, since it is implicitly evaluated by its sub-concepts and their criteria.

Collecting Criteria from other Surveys. Following a bottom-up approach, the goal was to com-
plement the set of criteria by those used in related AOM surveys [BBR+05], [CRS+05], [dbTB+06],
[RTT04]. More specifically, criteria definitions found in other surveys have been adopted or re-
fined. In this respect, a refinement for instance has been the provision of a measurement scale,
e.g., the UML version used for the Language criterion (cf. Section 3.2.2.1), or the decomposition of
a criterion into several sub-criteria, e.g., the composability criterion of [CRS+05] has been refined
for each composition mechanism in this survey.

Excluding Non-Measurable Criteria. From the catalogue of criteria a few criteria proposed
in related surveys have been explicitly excluded, since they cannot be measured without user
studies or extensive case studies. These include the following criteria of the survey of Blair et
al. [BBR+05], i.e., reusability, comprehensibility, flexibility, ease of learning/use, parallel develop-
ment, as well as change propagation, which corresponds to the evolvability criterion of Chitchyan
et al. [CRS+05].

Establishing a Schema for Criteria Definition. Furthermore, the goal was to avoid blurred
criteria by working out, as far as possible, unambiguous definitions and the criteria’s values that
are also measurable. Thus, each criterion is described by a set of properties:

1. a name along with an abbreviation allowing to reference the criteria during evaluation of the
approaches in Section 3.3,

2. a reference to the source in case a criterion has been adopted or refined from another survey as

77

3 State-of-the-art in Aspect-oriented Modeling

well as an explanation of how such a refinement has been accomplished,

3. a definition specifying the criterion as unambiguously as possible along with an optional
discussion on difficulties in defining the criterion,

4. an appropriate means of measurement, such as a list of possible values or a measurement scale,
including not applicable as a default value for each criterion.

Categorizing the Selected Criteria. The criteria of the catalogue have been grouped into six
categories (see Figure 3.2) with four out of them being specifically inferred from corresponding
parts in the conceptual reference model (cf. Section 3.1) and the general categories Maturity and
Tool Support providing mainly descriptive criteria.

• Modeling Examples
• Application in

Real-World
• Topicality
• Available

Information

Maturity

Asymmetric
Concern Composition

• Struct. Join Point
• Behav. Join Point
• Join Point Model
• Pointcut
• Simple Pointcut

Aspectual Subject
• Composite Pointcut
• Quantification

Method
• Relative Position
• Abstraction

• Struct. Join Point
• Behav. Join Point
• Join Point Model
• Pointcut
• Simple Pointcut

Aspectual Subject
• Composite Pointcut
• Quantification

Method
• Relative Position
• Abstraction

• Structural Advice
• Behavioral Advice
• Composite Advice
• Abstraction

Aspectual Kind
• Structural Advice
• Behavioral Advice
• Composite Advice
• Abstraction

Aspectual Kind

Symmetric
ConcernComposition

• Struct. Composable Element
• Behav. Composable Element
• Match Method

• Merge
• Override
• Bind
• Abstraction

• Modeling Support
• Composition Support
• Code Generation

Tool Support

• Design Process
• Traceability
• Scalability
• Refinement Mapping
• Alignment to Phase

• Aspect Generality
• Modeling Language
• Extension Mechanism
• Influences
• Diagrams

Language

• Composition Mechanism
• Concern Module
• Element Symmetry
• Rule Symmetry
• Composition Symmetry
• Effect

Concern Composition
• Composition
• Composition Semantics
• Composed Module
• Interaction
• Conflict Resolution

Aspect
Oriented
Modeling

Figure 3.2: Categorization of Criteria

The Language category provides criteria for evaluating some basic characteristics of AOM lan-
guages (e.g., the modeling language, the extension mechanism used, and traceability). Beyond, it
also provides a criterion for checking the availability of a design process. In the ConcernComposi-
tion category, the representation of the concern module concept and the composition mechanisms
used is considered amongst others. With respect to symmetric concern composition in the Symmet-
ricConcernComposition category, the kind of composable elements and provided integration strategies
are investigated. In contrast, the AsymmetricConcernComposition category subsumes criteria for the
join point and its sub-concepts (cf. AspectualSubject sub-category) as well as criteria evaluating the
modeling support of advice (cf. AspectualKind sub-category). The Maturity of an approach is dis-
cussed along the criteria of provided modeling examples, real-world applications, and available
information. And finally, in the Tool Support category the availability of tools for modeling and
composing concern modules as well es for code generation is evaluated. Since a thorough evalua-
tion of Tool Support for AOM would go beyond the scope of this survey, tool support is evaluated
on the basis of the available literature, only. Following, each categories’ criteria are presented.

78

3.2 Evaluation Set-Up

3.2.2.1 Language

This category contains general criteria describing the modeling language and design process. A
separate criteria for evaluating the element concept described in the CRM (cf. Section 3.1) is not
considered, since it is implicitly evaluated with several other criteria that investigate the corre-
sponding CRM’s AO concepts with respect to their modeling representation.

Aspect Generality (M.AG) Besides being a general-purpose modeling language with respect to
the application domain, an AOM approach also may be general-purpose with respect to as-
pects. The following two forms of aspect generality can be distinguished: A general-purpose
AOM language supports modeling of all kinds of aspects, whereas an aspect-specific mod-
eling language considers one specific aspect, only. Theoretically, there could be modeling
languages that support two, three or more specific aspects. Still, these are not considered to
be aspect-specific, since in that case, the definition for general-purpose modeling languages
gets blurred. The aspect generality criterion has been adopted from the ”purpose” criterion
in Reina et al. [RTT04]. In this survey, the focus is on general-purpose AOM languages, thus,
also the aspect generality criterion is used for selection purposes, only.

Modeling Language (M.L) With respect to the modeling language used, UML-based AOM ap-
proaches are considered, only. Therefore, a distinction between the underlying UML ver-
sion, i.e., version 1.x2, and version 2.0 [OMG05d] is made.

Extension Mechanism (M.E) Although UML is very expressive, its modeling mechanisms do not
provide for aspect-oriented concepts. Thus, AOM proposals tend to use one out of two UML
extension mechanisms to cater for the necessary modeling mechanisms. First, by what is
called heavy-weight extension, the UML metamodel itself is extended through inheritance
and redefinition of metamodel elements. Second, UML profiles, grouping user-defined ex-
tensions to metamodel elements in terms of stereotypes [RJB05], represent UML’s built-in
light-weight extension mechanism, which permits only extensions that do not change the meta-
model. This way a new dialect of UML can be defined in order to better support specific
platforms or domains [OMG05d]. The light-weight extension mechanism fosters tool inter-
operability [RJB05], since they are designed in a way that tools can store and manipulate the
extensions without understanding their full semantics. This criterion has been inspired by
Chitchyan et al. [CRS+05], where this kind of information has been provided but an explicit
criterion has not been defined therein.

Influences (M.I) Originally, the intention was to use ”platform dependency” as a criterion for this
catalogue. Still, in literature, no clear definitions of platform or platform (in)dependence,
e.g., in the context of OMG’s Model Driven Architecture (MDA) [OMG03], have been avail-
able. For example, there may be many abstraction levels between MDA’s Platform Inde-
pendent Models (PIM) and Platform Specific Models (PSM). Consequently, what defines
platform and platform-independence is a matter of objectives and has to be determined in
the context of one’s own work. In this survey, a common definition of platform for the
evaluated approaches is not attempted. Instead, the ”inspired by” criterion of Reina et al.
[RTT04] is resumed, according to which many of the AOM approaches have been inspired
by concepts expressed in a specific aspect-oriented programming language. In contrast to
[RTT04], this criterion is not restricted to AOP platforms but lists research areas (e.g., SOP,

2http://www.omg.org/technology/documents/vault.htm#modeling

79

3 State-of-the-art in Aspect-oriented Modeling

MDSoC, and CF) and platforms in general that have ”influenced” a particular approach. In
addition, platforms are also listed if models can be mapped onto them, provided that proof
is given through a mapping definition or at least appropriate examples.

Diagrams (M.D) The emphasis in modeling concern modules can be its structure and/or its be-
havior. In this respect, the kinds of supported structural and/or behavioral diagrams to
specify aspect-orientation are evaluated. Hence, this property lists all UML diagram types and
possibly proprietary diagram types that have been used to support on the one hand structural
and on the other hand behavioral modeling of concern modules. This criterion also has been
inspired by Chitchyan et al. [CRS+05], where this kind of information has been provided but
an explicit criterion has not been defined.

Design Process (M.DP) A design process describes a well-defined, step-wise approach to mod-
eling. This criterion has been adopted from Op de beeck et al. [dbTB+06] and evaluates if the
surveyed AOM approach provides explicit support for a design process or if some implicit
design process support is available, e.g., in terms of guidelines, only.

Traceability (M.T) The traceability criterion is defined as a property of a relationship between
two models where one model is a refinement of another, and has been adopted from the
work of Chitchyan et al. [CRS+05]. More specifically, the criterion distinguishes between ex-
ternal and internal traceability. The external traceability measure focuses at aspect-oriented
design models in relation to the full software development life cycle, i.e., requirements (R),
analysis (A), design (D), and implementation (I). Possible values are combinations such as R
→ D → I, which means traceability from a requirements specification over design to the im-
plementation level. The internal traceability measure deals with traceability between mod-
els belonging to one phase in the software development life cycle. In this survey, AOM
approaches are investigated if during design more abstract design models are refined into
more detailed design models. This sub-criterion evaluates to supported or not supported, re-
spectively.

Scalability (M.S) Scalability, which is defined as the ability to cope with small as well as large
modeling projects, is investigated with respect to first, which high-level modeling elements of
an approach support scalability, e.g., UML packages, and/or high-level diagram types, and
second, if scalability has been proven or not proven in real-world projects or by modeling
examples that go beyond the composition of two concern modules. This definition of scala-
bility has been refined from Chitchyan et al. [CRS+05] with respect to its measurement scales.

Refinement Mapping (M.R) The refinement mapping criterion is adopted from Op de beeck et al.
[dbTB+06]. It describes how the refinement of an initial abstract design model into a more
detailed one is achieved. One can distinguish the extending step-wise refinement from the
creating step-wise refinement. The difference between these two possibilities is that for the
latter a new instance of the model is created with every step in the refinement process.

Alignment to Phase (M.A) Design is just a phase embedded in the overall software development
life cycle. An AOM approach therefore may be more aligned to certain phases in the soft-
ware development than to others. Ideally, an approach is balanced between the abstraction
available from the requirements phase and the abstraction needed for the implementation
phase. An AOM approach can thus be aligned to requirements and/or the implementation

80

3.2 Evaluation Set-Up

phases but also to none of the phases. This criterion has been adopted from Op de beeck et al.
[dbTB+06].

3.2.2.2 ConcernComposition

This category considers criteria derived from the corresponding package in the CRM, amongst
others, the representation of the concern module concept, the composition mechanisms used as
well as the approaches symmetry.

Composition Mechanism (CC.M) The concepts described in the CRM support the pointcut-ad-
vice (PA), open class (OC), and compositor (CMP) composition mechanisms. This criterion
therefore allows to evaluate which of the three composition mechanism is realized by the
AOM approaches. It is also possible to support more than one composition mechanism.

Concern Module (CC.CM) This criterion investigates the concern modules’s representation in
the modeling language in terms of a UML meta-class or a stereotype definition and, if pro-
vided, the notational element used.

Element Symmetry (CC.ES) Two possible ways of concern decomposition can be distinguished,
namely, symmetric and asymmetric concern decomposition. In the asymmetric paradigm one
distinguishes between concern modules of different structure, i.e., between ”aspects” and
”base”. As an example some AOM approaches, introduce a new stereotype �aspect� de-
rived from UML meta-class Class to distinguish ”aspects” from normal ”base” classes. In the
symmetric paradigm no such distinction is made. In fact, the symmetric paradigm treats all
concerns, both crosscutting and non-crosscutting, as ”first-class, co-equal building-blocks of
identical structure” [HOT02].

Rule Symmetry (CC.RS) The rules for composing concern modules can be specified in a sym-
metric or in an asymmetric way [HOT02]. In particular, the symmetry is determined by the
placement of the concern composition rules. Rule asymmetry defines the concern composi-
tion rules within one of the concern modules that are to be composed (e.g., in AspectJ the
rules are captured within the aspect in terms of pointcut-advice combinations), whereas rule
symmetry defines them in neither of the concern modules. Please note, that rule symmetry
corresponds to relationship symmetry in [HOT02].

Composition Symmetry (CC.CS) This criterion has been adopted from the work of Op de beeck
et al. [dbTB+06] and investigates which concern modules are allowed to be composed
with each other. While in the asymmetric case composition happens between ”aspects” and
”bases” only, i.e., ”aspects” are woven into ”bases”, in the symmetric case all concern mod-
ules can be composed with each other. For those approaches supporting element asymme-
try and thus distinguishing between ”aspects” and ”bases”, symmetric composition is only
supported if the following combinations are allowed: aspect-base, aspect-aspect, base-base.
Approaches supporting element symmetry accordingly also support composition symme-
try.

Effect (CC.E) This criterion evaluates if the approaches provide means for modeling the effect of
the integration of concern elements via concern composition rules. The criterion’s possible
values are supported or not supported.

81

3 State-of-the-art in Aspect-oriented Modeling

Composition Semantics (CC.S) The composition semantics criterion has partly been inspired by
the survey of Chitchyan et al. [CRS+05], though not explicitly defined therein. This criterion
evaluates if the composition semantics have been defined or not defined for both the detection
of the elements to be composed as well as for their actual composition into a composed
element.

Composition (CC.C) A distinction between composing concern modules statically or dynamically,
i.e., by executing the models, is made. Nonetheless, a specific approach might neither sup-
port static nor dynamic composition at modeling level but defer weaving to later phases in
the software development process, e.g., by separately generating code from concern mod-
ules, which are finally composed by a dedicated mechanism of the underlying AOP lan-
guage. The advantages of approaches that support model composition are first, at code
level non aspect-oriented platforms can be used and second, the composite results can be
validated prior to implementation. However, once composed, the concern modules cannot
be recovered at later stages thus causing traceability problems.

Composed Module (CC.CP) This criterion evaluates the resulting composed module in terms of
its modeling representation. In particular, this criterion distinguishes between composed
modules represented with standard UML and composed modules represented based on the
extensions made to the UML. The composed module criterion has been adopted from the
”composability” criterion of Chitchyan et al. [CRS+05].

Interaction (CC.I) An AOM approach may offer ways to specify interactions between concern mod-
ules on the one hand but also between concern composition rules on the other hand. This cri-
terion evaluates for both concepts, what kind of interactions can be modeled and the modeling
representations thereof, e.g., UML meta-class or stereotype.

Conflict Resolution (CC.CR) In accordance with [BBR+05], conflict resolution may be based on
a mechanism to avoid conflicts in advance or to detect conflicts and then resolve them manu-
ally. While conflict avoidance might be a possible solution to cope with conflicting aspects,
one still might need ways to detect and resolve conflicts that could not be captured by con-
flict avoidance in advance. In case no conflict resolution has been specified, this criterion
evaluates to not supported.

3.2.2.3 AsymmetricConcernComposition

This category subsumes criteria for evaluating approaches following an asymmetric way to con-
cern composition which are categorized into two sub-categories AspectualSubject and Aspectu-
alKind.
ASPECTUALSUBJECT. The AspectualSubject sub-category provides criteria for evaluating concepts
used to describe where to augment or constrain other concern modules, e.g., the join point and its
sub-concepts.

Structural Join Point (AS.SJP) This criterion evaluates if structural join points are supported. More
specifically, the focus is on what kind - with respect to dynamicity - of structural join point
are considered in the approaches, i.e., structural-static join points like classes or structural-
dynamic join points like objects.

82

3.2 Evaluation Set-Up

Behavioral Join Point (AS.BJP) Likewise, the behavioral join point criterion evaluates if behav-
ioral join points are supported by the surveyed AOM approaches. In this respect, examples
for a behavioral-static join point are UML activities and messages. Behavioral-dynamic join
points typically depend on certain conditions evaluated at run-time. Specifying such condi-
tions can be done for example with OCL.

Join Point Model (AS.JPM) This criterion distinguishes between two possible ways of specify-
ing a join point model. First, the join point model can be made explicit by identifying a
language’s model elements as join points. This can be achieved for example by enhancing
the language’s metamodel in a way that certain model elements inherit from a join point
meta-class or by at least identifying and declaring the join points of a language in ”natural
language” such as in [SHU02c] or [Tea05]. Second, the join point model can be defined
implicitly by the AOM language’s join point selection mechanism, thus, comprising all join
points that the join point selection mechanism is able to select.

Pointcut (AS.P) Although the pointcut concept is represented as an abstract class in the CRM
(cf. Section 3.1), a separate criterion is foreseen for evaluating the commonalities of the
concrete pointcut sub-classes. In particular, the criterion evaluates if the pointcut mechanism
has been realized based on a standard (e.g., AspectJ code, UML, OCL) or on a proprietary
language.

Simple Pointcut (AS.SP) This criterion evaluates how simple pointcuts are represented by con-
cepts of the modeling language or extensions thereof and particularly distinguishes between
graphical and textual representations of simple pointcuts.

Composite Pointcut (AS.CP) Furthermore, the composite pointcut criterion evaluates if at all
and how composite pointcuts are represented in the modeling approach. Again, a distinc-
tion is made between graphical and textual representations of composite pointcuts.

Quantification Method (AS.SM) This criterion evaluates which quantification methods are em-
ployed to select join points in a certain approach. The selection of join points can be specified
declaratively, imperatively, or simply by enumeration.

Relative Position(AS.RP) This criterion investigates the general support of specifying a relative
position with respect to join points and, if provided, lists the different possibilities of relative
position specification, i.e., after, before, and around, supported by the approaches.

Abstraction (AS.A) This criterion is refined from the definition given in Chitchyan et al. [CRS+05].
In contrast, in the context of asymmetric concern composition, two dimensions of abstrac-
tion are considered, namely abstraction with respect to the aspectual subjects (AS.A) and abstrac-
tion concerning the aspectual kind (AK.A) (cf. Section 3.2.2.3). With respect to the aspectual
subjects, a high level of abstraction means that the join points might not have been identified
yet, i.e., the model only specifies the fact that a certain concern module affects others, but
not exactly where. On the contrary, modeling languages providing a low level of abstraction
allow specifying the exact points where advice take effect.

ASPECTUALKIND. The AspectualKind sub-category subsumes criteria for evaluating concepts
used to describe how to augment or constrain other concern modules, e.g., the advice, as well
as the abstraction level at which modeling of the advice is possible.

83

3 State-of-the-art in Aspect-oriented Modeling

Structural Advice (AK.SA) This criterion evaluates if AOM approaches provide ways of specify-
ing structural augmentations and/or constraints. Furthermore, the concepts or extensions of
the modeling language as well as the notational elements used for representation are investi-
gated.

Behavioral Advice (AK.BA) Likewise to structural advice, this criterion evaluates if AOM ap-
proaches provide ways of specifying behavioral advice and in particular what concepts or
extensions of the modeling language and what notational elements have been used for repre-
sentation.

Composite Advice (AK.CA) In addition to evaluating structural and behavioral advice support,
the focus is on how the approaches provide ways of composing multiple pieces of advice to
form a more complex advice in terms of concepts or extensions of the modeling language and
appropriate notational elements.

Abstraction (AK.A) This criterion has been refined from the definition given in [CRS+05] for the
asymmetric concern composition. It is decomposed into the criteria abstraction with respect
to the aspectual subjects (AS.A) (cf. Section 3.2.2.3) and abstraction concerning the aspectual kind
(AK.A). Analogously to (AS.A), it specializes the criterion given in [CRS+05] for the aspec-
tual kind and, as already mentioned, contributes to the overall evaluation of the abstraction
of an approach. Since models at a high level of abstraction might be incomplete with respect
to providing a specification for code generation, a high level of abstraction with respect to
the aspectual kind means that it might not yet be clear how the specific concern module(s)
should be advised, i.e., the model only specifies that a certain concern module exists, but
not the actual advice it provides. In contrast, low-level models of aspectual kind refer to
models that provide detailed information on how the concern module’s internals (i.e., the
actual advice and auxiliary functionality) look like.

3.2.2.4 SymmetricConcernComposition

This category subsumes criteria for evaluating approaches following a symmetric way to concern
composition, i.e., the necessary concepts identified in the CRM as well as the level of abstraction
at which modeling is supported.

Structural Composable Element (S.SCE) This criterion evaluates if and what structural compos-
able elements are supported by an AOM approach. It lists the UML meta-classes representing
structural concepts that in a symmetric concern composition approach can be composed.

Behavioral Composable Element (S.BCE) Likewise, the behavioral composable element crite-
rion evaluates if and what behavioral composable elements are supported by an AOM ap-
proach. This criterion therefore lists the UML meta-classes representing behavioral concepts that
in a symmetric concern composition approach can be composed.

Match Method (S.MM) This criterion evaluates which method(s) to identify the matching ele-
ments out of the set of composable elements are foreseen by an approach. It distinguishes
between three possible methods, namely match-by-name, match-by-signature, and no-match.

Merge (S.M) This criterion investigates if AOM approaches supporting the symmetric concern
composition provide ways of defining the specific integration strategy merge. In particular,

84

3.2 Evaluation Set-Up

it investigates what concepts or extensions of the modeling language as well as what notational
elements have been used for representation.

Override (S.O) Similarly, this criterion checks if an AOM approach allows for modeling symmet-
ric concern composition rules with an override integration strategy. Again, it also investigates
what concepts or extensions of the modeling language as well as what notational elements have
been used for representation.

Bind (S.B) Like the previous two, the bind criterion evaluates possible extensions of the modeling
language to support such a binding and provides information on the notational elements used.

Abstraction (S.A) Analogous to the abstraction criteria for the asymmetric concern composition,
this criterion has been refined from the definition given in [CRS+05]. In this context, how-
ever, the level of abstraction is defined with respect to the composable elements used in a
symmetric composition rule. A high level of abstraction is supported if the symmetric com-
position rule is used to compose two or more higher-level or composite modeling elements,
such as UML packages, of which their internals have not been specified. A low level of
abstraction is provided, if these composite modeling elements can be detailed, e.g., a class
diagram for a UML package, and if symmetric composition rules can also be specified for
more fine-grained modeling elements such as UML attributes.

3.2.2.5 Maturity

The criteria in this section intend to evaluate the approaches’ maturity in general. It has to be
noted that in [BBR+05] the criterion maturity was used to evaluate whether an approach has been
used in real world examples, only, whereas in this survey maturity is evaluated with a set of
sub-criteria described in the following.

Modeling Examples (Ma.E) Besides evaluating the breadth of modeling examples, it is also inter-
esting to investigate the modeling examples’ depth in terms of how many different concern
modules are integrated within the examples. Thus, the criterion is supported by two values,
namely, the number of provided modeling examples by each approach as well as the maximum
number of concern modules integrated in one example.

Application in Real-World Projects (Ma.A) The successful deployment of the AOM approach in
the design of a real-world application proves its applicability and consequently indicates a high
level of maturity of the modeling concepts. Possible values are yes, and no.

Topicality (Ma.T) The topicality criterion presents for each approach when the most recent piece
of work in terms of the year of publication has been published to indicate the approach’s
topicality and thus, gives an indication whether the approach might still evolve or not. This
criterion has been refined from the ”year” criterion of Reina et al. [RTT04]

Available Information (Ma.I) Another measure of the approaches’ maturity is the available am-
ount of manuals, papers and books. Although, admittedly, the amount of publications does not
necessarily correlate with an approach’s quality. The values for this criterion provide the
number of different resources of information.

85

3 State-of-the-art in Aspect-oriented Modeling

3.2.2.6 Tool Support

Tool Support improves the adoption of an approach an developer productivity as well as ensures
syntactical correctness of the model. While the criterion distinguishes between support for mod-
eling, composition and code generation, the latter are both dependent on modeling support.

Modeling Support (T.M) Modeling support is defined as providing the means to use the mod-
eling language’s notation and furthermore of validating the created aspect-oriented models
for syntactical and semantical correctness. If the modeling language is realized in terms of
a UML profile, modeling support should be portable to any UML modeling tool. This crite-
rion evaluates to supported, possibly providing further information on modeling support, or
not supported.

Composition Support (T.C) This criterion specifies if composition of concern modules is also sup-
ported or not supported by a tool an thus allows to view and/or simulate the composed model.

Code Generation (T.G) In line with the concepts of MDE, code generation facilities should be
provided, thus requiring a mapping between the notation and the supported implementa-
tion language. This criterion evaluates if code generation, in principle, is possible. Beyond,
this criterion also evaluates if there is a more sophisticated mechanism to code generation
such as the OMG’s MDA [OMG03] (i.e., existence of platform-independent models, plat-
form definition models and their transformation into platform-specific models by using a
mapping mechanism). Thus, possible values for this criterion are supported or not supported.
Additional information is provided in case of a more sophisticated code generation mecha-
nism.

3.2.3 Modeling Example: The Observer Pattern Applied to a Library
Management System

3.2.3.1 Motivation

As an appropriate running example of a crosscutting concern to be applied to a system, in this
evaluation, the well-known observer pattern [GHHV04] is adopted, a prominent example not
only in AOSD literature (cf. [CW05], [PZ03], [SHU02a]) but also in software engineering litera-
ture. In the running example, the observer pattern is applied as a crosscutting concern to a library
management system, of which an overview along with the underlying model is given in the fol-
lowing. It has to be emphasized that on the basis of this rather simple example it is not (and
cannot be) the intention to illustrate each and every concept of the approaches but rather to foster
their overall understandability and comparability.

3.2.3.2 An Example Library Management System

In Figure 3.3, the Library package models the structure for managing books of a library in a library
management system based on [CW05]. Of course, it only depicts a small excerpt of such a system,
primarily containing those parts of the system that are crosscut by the observer concern.

A BookManager manages a list of Books (cf. addBook(Book) and removeBook(Book)) allowing users
to search (cf. searchBook(Book)) the list and access provided information for each book (e.g., au-
thors). A library may offer several copies of each Book, i.e., the physical entities (cf. BookCopy),

86

3.2 Evaluation Set-Up

Book

Location
roomNumber
shelfNumber
addBook(BookCopy)
removeBook(BookCopy)

Author

*

1..*1..*

1..*

BookCopy
id
available
getId()
setId()
getAvailability()
borrow(Customer)
return(Customer)
getState()

BookManager

1
*

title
ISBN
getTitle()
getISBN()
addCopy(BookCopy)
removeCopy(BookCopy)

addBook(Book)
removeBook(Book)
searchBook(Book)
buyBook(BookCopy)
discardBook(BookCopy)
update(Subject)

name
getName()
setName()

Library

LibraryManagement

1

Observer
Subject

add(Observer)
remove(Observer)
notify()
getState()

Observer
start(Subject)
stop(Subject)
update(Subject)

observers
**

Customer
name
address
getName()
setName()
getAddress()
setAddress()

0..1 *

*

Figure 3.3: The Library Management System with Observer Aspect.

which need to be managed accordingly. BookCopies might get lost or be stolen. Still, a Book does
not have to be removed from the BookManager’s list until new BookCopies are obtained. The Book-
Manager associates BookCopies with their Books as they are bought (cf. buyBook(BookCopy) and add-
Copy(BookCopy)) and likewise, disassociates them as they are discarded (cf. discardBook(BookCopy)
and removeCopy(BookCopy)). Books, in particular their copies, have a Location on a certain shelf in a
certain room of the library. The status of each BookCopy, i.e., its availability, should be kept up-to-
date. Thus, each time a BookCopy is borrowed or returned by a Customer (cf. borrow(Customer) and
return(Customer)), the BookManager has to be notified. This notification functionality is not pro-
vided by the library management system, but is applied using the observer pattern as depicted in
Figure 3.3.

3.2.3.3 The Observer Pattern

The observer pattern [GHHV04] as depicted in the Observer package in Figure 3.3 defines a one-to-
many dependency between objects in a way that whenever a Subject (i.e., a BookCopy) changes its
state, all its dependent Observers (i.e., instances of BookManager) are notified (cf. notify()) by using
their provided update interface (cf. update(Subject)). While Observers can register and unregister
with their Subjects of interest using the methods start(Subject) and stop(Subject), a Subject keeps a
list of Observers (cf. add(Observer) and remove(Observer)), which are interested in changes of the
Subject’s state.

In Figure 3.3, thus, the Subject and Observer roles are adopted by BookCopy and BookManager,
respectively. Applying the observer pattern, however, affects the library management system’s
modularity. In particular, the abstract methods getState() and update(Subject) have to be imple-
mented by BookCopy and BookManager, respectively. Additional code modifications are neces-

87

3 State-of-the-art in Aspect-oriented Modeling

sary to call start(Subject)/stop(Subject) whenever a BookCopy is bought/discarded and to call no-
tify() whenever a BookCopy is borrowed or returned. Therefore, the observer functionality can
be regarded as crosscutting concern and, thus, be realized with the concepts of various AOM
approaches.

3.2.3.4 Limitations of the Running Example

The observer pattern is a well-known example for a crosscutting concern and actually has been
used in three of the surveyed approaches (cf. [Cla02], [FKGS04], [SHU02a]). One might argue that
the use of an example which has already been used by some of the analyzed approaches might
lead to a bias in the evaluation. Since the running example is used to only visualize the respec-
tive approach to the reader and to have a side by side comparison of the approaches, any biased
influence on the survey itself is negligible. Still, some approaches do not allow for fully opera-
tionalizing the running example, which is due to their particular focus. For instance, the approach
of Klein et al. [KHJ06] does not allow to model crosscutting structure, since the approach’s focus
is rather on a weaving algorithm for (non-)crosscutting behavior. Nevertheless, the application of
one running example for all approaches generated some insight into the differences of each indi-
vidual approach. Of course all AOM approaches should be tested in a real world setting or at least
in a non-trivial example, which encompasses more than two concerns as well as all concepts de-
scribed in the conceptual reference model, e.g., the AO Challenge [KG06]. Such an example would
allow for testing the approaches’ means for capturing interactions and resolving conflicts, which
in this survey, can only be described textually. Still, the obvious advantages of a small and easy to
understand running example would be lost.

3.3 Comparison of Approaches

This survey is based on a literature study, including modeling examples, provided by the indi-
vidual AOM approaches. For each surveyed approach, additional information and discussion is
provided in the following. The evaluation of each approach follows the order of categories of the
criteria catalogue presented in Section 3.2. Moreover, a running example (cf. Section 3.2.3) that
is modeled by means of the concepts of each AOM approach is provided. This further enhances
the evaluation in that it first, provides an insight into each approach and second, allows to easier
compare the modeling means of the approaches.

In the following, the modeling means of each surveyed AOM approach is presented by means
of this running example. Basically, the approaches realizing the pointcut-advice and open class
composition mechanisms are presented first and then those realizing the compositor composition
mechanism are elaborate on. In particular, the first two approaches of Stein et al. (cf. Section
3.3.1), Pawlak et al. (cf. Section 3.3.2), are similar, since they have been specifically designed as
modeling languages for two aspect-oriented programming platforms, i.e., AspectJ and the JAC
Framework3 respectively. The commonalities of the third approach of Jacobson et al. (cf. Section
3.3.3) and the approach of Pawlak et al. are that they do not envisage composition of concerns
at modeling level but defer composition to the implementation phase. The next two approaches,
are both very recent proposals to AOM focusing on composing behavioral diagrams. In this re-
spect, the approach of Klein et al. (cf. Section 3.3.4) presents an algorithm for first, detecting

3http://jac.objectweb.org/

88

3.3 Comparison of Approaches

the model elements to be composed and second, composing them. The approach of Cottenier et
al. (cf. Section 3.3.5) also supports composition of models and, in contrast to all others, already
comes with tool support for modeling, composition and code generation. The last group of three
approaches supports the compositor composition mechanism. While the approach of Aldawud et
al. (cf. Section 3.3.6) focuses on the composition of state machines, the approaches of Clarke et al.
(cf. Section 3.3.7) and France et al. (cf. Section 3.3.8) originally have considered the composition of
class diagrams. Lately, the approach of France et al. also realizes the pointcut-advice composition
mechanism through the composition of sequence diagrams. The results of the comparison are
discussed and illustrated in Section 3.4 Lessons Learned at a glance (cf. Table 3.1 to 3.7).

3.3.1 The Aspect-Oriented Design Model, Stein et al.

LANGUAGE

The Aspect-Oriented Design Model (AODM) of Stein et al. [SHU02a], [SHU02b], [SHU02c] has
been developed as a design notation for AspectJ (L.I) and thus is aligned to implementation (L.A)
as well as allows for external traceability from design to implementation (L.T). Internal traceabil-
ity is not applicable (L.T), since a refinement of models models is not forseen in AODM (L.R). For
this approach, both AspectJ and UML have been studied in order to find corresponding parts for
AspectJ’s concepts in UML and extend it to support AspectJ’s concepts if necessary as well as iden-
tify where UML’s concepts used in AODM are more expressive than actually necessary, e.g., the
destruction of an instance is not part of AspectJ’s join point model [SHU02a]. AODM is basically
specified using the UML 1.x light-weight extension mechanism (L.L), (L.E), though extensions of
the metamodel have also been necessary. For example, the UML extend relationship from which
the �crosscut� stereotype has been derived originally can be specified between use cases, only
[SHU02b]. Structural and behavioral modeling is achieved by employing class diagrams, UML
1.x collaborations, and sequence diagrams. In addition, sequence diagrams are used for visualiz-
ing join points, e.g., messages, while use case diagrams and collaborations demonstrate AspectJ’s
composition semantics (L.D). In the AODM thus, UML is used such that scalability in terms of
high-level modeling elements is not supported and no other proof in terms of non-trivial mod-
eling examples is available (L.S). The approach furthermore does not outline a design process or
provide guidelines (L.DP).
CONCERNCOMPOSITION

AODM represents a notation designed for AspectJ and consequently supports the pointcut-
advice and open class composition mechanisms (CC.M) as well as follows the asymmetric school
of thought (CC.ES), (CC.CS), (CC.RS). A distinct concern module for crosscutting concerns has
been introduced in AODM and is represented by a stereotype �aspect� (cf. SubjectObserver-
ProtcolImpl in Figure 3.44), which is derived from the UML meta-class Class (CC.CM). In addition,
several meta-attributes capture the peculiarities of AspectJ’s aspects, e.g., the instantiation clause.
The composition actually is deferred until the implementation phase (CC.C). Nevertheless the
composition semantics of AspectJ have been redefined for the modeling level to a limited extent,
e.g., in terms of UML use case diagrams and collaborations (CC.S), (CC.CP) [SHU02a]. The only
way for modeling interactions (CC.I) is to manually specify the order for composing �aspects�
in terms of a stereotyped dependency relationship between �aspects�, i.e., �dominates� for
conflict resolution (CC.CR) [SHU02b]. A means for explicitly specifying the effects of the concern
composition rules or rather of the advice in models, however, is not addressed in AODM (CC.E).

4Please note that, in AspectJ the Observer functionality is realized using interfaces instead of abstract classes.

89

3 State-of-the-art in Aspect-oriented Modeling

«aspect»
SubjectObserverProtocol

{instantiation=perJVM}
{base=undefined}

{privileged=true}

«pointcut» pointcut stateChanges(Subject s)
«pointcut» pointcut startObserver(Observer o, Subject s)
«pointcut» pointcut stopObserver(Observer o, Subject s)

«advice» advice_id01
after(Subject s) {base stateChanges(s)}

«advice» advice_id02
after(Observer o, Subject s) {base startObserver(o, s)}

«advice» advice_id03
after(Observer o, Subject s) {base stopObserver(o, s)}

«introduction»
Subject

«containsWeavingInstructions»
BaseType {base=Subject}

«introduction»
Observer

«containsWeavingInstructions»
BaseType {base=Observer}

«crosscut»

«crosscut»

«aspect»
SubjectObserverProtocolImpl

«pointcut» pointcut stateChanges(Subject s)
{base = target(s) && (

call(void BookCopy.return(..)) ||
call(void BookCopy.borrow(..)));}

«pointcut» pointcut startObserver(Observer o, Subject s)
{base = target(o) && args(s) &&

call(void BookManager.buyBook(BookCopy));}

«introduction»
BookCopy

«containsWeavingInstructions»
BaseType {base=BookCopy}

«introduction»
BookManager

«containsWeavingInstructions»
BaseType {base=BookManager}

«crosscut»

«crosscut»

«pointcut» pointcut stopObserver(Observer o, Subject s)
{base = target(o) && args(s) &&

call(void BookManager.discardBook(BookCopy));}

BookCopy
+id
+available
+getId()
+setId()
+getAvailability()
+borrow(Customer)
+return(Customer)

BookManager
+addBook(Book)
+removeBook(Book)
+searchBook(Book)
+buyBook(BookCopy)
+discardBook(BookCopy)

«interface»
Subject

«interface»
Observer

Figure 3.4: The Observer Aspect, Stein et al.

ASYMMETRICCONCERNCOMPOSITION

AspectualSubject. Though AODM has been specifically designed as a modeling language for
AspectJ, Stein et al. [SHU02c] extend their notion of a join point model (AS.JPM): UML Classifiers
are identified as structural-static hooks (AS.SJP). Besides, UML 1.x Links represent behavioral-
static join points. Behavioral-static join points are depicted by highlighted messages in sequence
diagrams (see [SHU02a]) (AS.BJP). For those join points where no such messages exist (e.g., field
reference, field assignment, initialization, execution) pseudo operations and special stereotypes
have been provided. Using a �crosscut� dependency relationship, the subjects of structural
advice are specified at a high level of abstraction (AS.A). The pointcuts in AODM are similar
to AspectJ’s pointcuts (AS.P). Selections of behavioral-static join points and behavioral-dynamic
join points (AS.BJP) are represented by �pointcut� stereotyped UML Operations that are im-

90

3.3 Comparison of Approaches

plemented by special �ContainsWeavingInstructions� stereotyped UML Methods. A meta-
attribute ”base” introduced for this �ContainsWeavingInstructions� stereotype then holds the
pointcut in the form of AspectJ code (AS.P), (AS.QM). This allows first, the specification of com-
posite pointcuts (AS.SP), (AS.CP), and second, the specification of the aspectual subjects at a low
level of abstraction (AS.A). In addition, a second stereotype �ContainsWeavingInstructions�
at this time derived from the UML meta-class TemplateParameter5 is used to specify the point-
cuts for structural advice (e.g., �introduction� Subject in Figure 3.4). The new meta-attribute
”base” introduced for the �ContainsWeavingInstructions� stereotype specifies the pointcut in
the form of AspectJ’s type patterns. AspectJ’s - and consequently AODM’s - means for specifying
a pointcut is following a specific conceptual model. Recently, the authors have been working on
a more expressive pointcut mechanism supporting different conceptual models [SHU06], which
is independent from the AODM approach, however. Concerning the declaration of a relative po-
sition, AODM supports the relative positions before, after, and around for behavioral-dynamic
join points, only, and depicts them in an AspectJ-like manner as a keyword in the signature of
behavioral advice (AS.RP).

AspectualKind. In a class diagram, behavioral advice are depicted in the operation compart-
ment of a class consisting of the operation’s signature as well as a base tag containing the point-
cut’s signature. Behavioral advice in AODM are represented by stereotyped UML Operations,
i.e., �advice�. These are implemented by special �ContainsWeavingInstructions� Methods,
which contain the actual behavior in the method’s ”body” meta-attribute and reference a pointcut
in the introduced ”base” meta-attribute (AK.BA). Additionally, behavioral advice are specified in
terms of sequence diagrams. Thus, behavioral advice are modeled at a high as well as a low level
of abstraction (AK.A) likewise structural advice are modeled at a high and low level of abstrac-
tion: Structural advice are realized as parameterized collaboration templates with the stereotype
�introduction�. The parameters are of type �ContainsWeavingInstructions�, which specify
the subjects of advice in the form of AspectJ’s type patterns (AK.SA). The details of the collabora-
tion templates are shown in Figure 3.5. Composite advice, since not a concept available in AspectJ,
are not addressed by AODM (AK.CA).
MATURITY

AODM has been described in some publications (M.I). While the approach has not been tested
in a real-world application (M.A), some modeling examples have been provided, e.g., timing and
billing aspects for a system in the area of telecommunication [Tea05] and the realization of the
observer pattern (M.E). Today, the authors have moved on and specifically focus on research to-
wards graphical ways to select join points in UML . For this they have introduced join point
designation diagrams (JPDD) [SHU06], which basically are UML diagrams (i.e., class and ob-
ject diagrams, as well as, state charts, sequence, and activity diagrams) enriched with e.g., name
and signature patterns, and wildcards. They represent an independent pointcut mechanism that
can be applied to any UML-based AOM language, allows to select all kinds of join points (i.e.,
structural-static, structural-dynamic, behavioral-static, and behavioral-dynamic) as well as sup-
ports composite pointcuts (M.T).
TOOL SUPPORT

The approach claims rapid modeling support by a wide variety of CASE tools [SHU02b], which
is due to using UML’s light-weight extension mechanism. This is, however, questionable, since the
authors also extended UML’s metamodel (T.M). Both composition support and code generation
support are currently not considered (T.C), (T.G).

5Stein et al. apparently have used the same name for two different stereotypes.

91

3 State-of-the-art in Aspect-oriented Modeling

«interface»
Subject

BaseType
+getState()

«realize»

«introduction»
BookCopy

BaseType

getState()

String

«interface»
Observer

BaseType
+update(Subject)

«realize»

«introduction»
BookManager

BaseType

update(Subject)

String

«interface»
Subject

getState()
String

«containsWeavingInstructions»
BaseType {base=BookCopy}

«containsWeavingInstructions»
BaseType {base=BookManager}

Figure 3.5: Structural Advice, Stein et al.

3.3.2 The JAC Design Notation, Pawlak et al.

LANGUAGE

The JAC Design Notation proposed by Pawlak et al. [PDF+02], [PSD+05] is mainly designed
for the JAC Framework, i.e., an open source framework which includes a complete IDE with
modeling support and serves as a middleware layer for aspectual components (L.I). Thus similar
to the AODM approach of Stein et al., the JAC Design Notation represents an approach aligned to
implementation as well as supporting external traceability from design to implementation (L.A),
(L.T). Internal traceability is not applicable, since models typically are not refined in the approach
(L.R), (L.T). The approach is based on light-weight UML extensions. Since it has been developed
out of a pragmatic need to express crosscutting concerns in the JAC Framework, the authors do
not claim full compliance with UML but aim at keeping it intuitive and simple (L.E). The authors
provide no information on the UML version used. The extended UML metamodel in [PSD+05],
however, indicates the usage of a UML version prior to version 2.0 (L.L). The approach relies on
class diagrams, only (L.D). Consequently, scalability is not supported by the JAC Design Notation
(L.S). Beyond, the approach provides neither a description of a design process nor guidelines
(L.DP).
CONCERNCOMPOSITION

The JAC Design Notation realizes the pointcut-advice composition mechanism (CC.M). The stereo-
type�aspect�which is derived from the UML meta-class Class is used to represent crosscutting
concern modules (CC.CM) (cf. Observer in Figure 3.6). Consequently, the approach follows the
asymmetric approach with respect to elements (CC.ES). Since �aspects� are composed with
normal classes only, the JAC Design Notation also supports composition asymmetry (CC.CS). With
respect to concern composition rules (CC.RS), the design notation represents a symmetric ap-
proach using a UML Association stereotyped with�pointcut� (cf. AspectualSubject). Composi-
tion is not available at modeling level but deferred until implementation (CC.C) and therefore no

92

3.3 Comparison of Approaches

composed model is available either (CC.CP). Consequently, the composition semantics are those
of the JAC framework (CC.S). Both modeling of interactions (CC.I) as well as conflict resolution
(CC.CR) are not addressed at all by the approach. There are five stereotypes derived from the
UML meta-class Operation (cf. AspectualKind) which specify advice. The specification of effects
is partly considered by one of them, i.e., the stereotype �replace� which provides for either a
replacement or a deletion. All other stereotypes are considered to have an enhancement effect
(CC.E).

ASYMMETRICCONCERNCOMPOSITION

AspectualSubject. A join point model is explicitly defined in natural language, only [PSD+05]
(AS.JPM) and join points are limited to method calls thus supporting behavioral-static join points,
only (AS.BJP). Nevertheless, structural-dynamic join points are also supported via the �role�
stereotype (cf. AspectualKind) (AS.SJP). The additional concept of ”pointcut relation” corre-
sponds to the asymmetric composition rule concept defined in the CRM (cf. Section 3.1). It is an as-
sociation stereotyped with �pointcut�. The association has a name and an optional tag to allow
for adding extra semantics (cf. stateChanged in Figure 3.6). The rule connects the actual pointcut
definition with the advice, i.e., the association ends contain information about the pointcut defini-
tion and the advice, respectively. Pointcuts are defined using a proprietary, textual language based
on regular expressions and/or keywords (AS.P), (AS.QM), e.g., !BookCopy.MODIFIERS in Figure
3.6 selects as join points all method invocations (denoted with ’!’) of methods from class BookCopy
that modify the object state (AS.BJP). Thus, the notation provides a low level of abstraction, while
a high level of abstraction is not addressed (AS.A). The provided pointcut mechanism also allows
composing simple pointcuts using operators, e.g., AND, OR, etc. (AS.SP), (AS.CP). Furthermore,
the approach introduces the ”group” concept supporting the design of distributed applications.
�group� is depicted as a stereotyped class but is derived from UML meta-class ModelElement
and subsumes arbitrary and probably distributed classes that might need the same set of advice.
It is, thus, part of the pointcut mechanism. For example in the observer aspect, subjects, i.e., arbi-
trary ”base” classes that have to be observed, might be distributed and can be abstracted within
a �group� named Subject. In the library management system such subjects might represent
other resources than books such as journals, CDs, etc. The relative position is specified for behav-
ioral advice, only, by three out of the five stereotypes for advice, i.e., �before�, �after�, and
�around� (S.RP).

«aspect»
Subject

«role» add(Observer)
«role» remove(Observer)
«after» notify()
«role» getState()

«pointcut»
stateChanged

Library

notify

«pointcut»
startObserving

«pointcut»
stopObserving

!BookManager.buyBook(BookCopy)

!BookManager.discardBook(BookCopy)

start

stop
1

1

1

*

*

BookCopy
id
available
getId()
setId()
getAvailability()
borrow(Customer)
return(Customer)

BookManager
addBook(Book)
removeBook(Book)
searchBook(Book)
buyBook(BookCopy)
discardBook(BookCopy)

*
!BookCopy.MODIFIERS

«after» start(Subject)
«after» stop(Subject)
«role» update(Subject)

«aspect»
Observer

Figure 3.6: The Observer Aspect, Pawlak et al.

93

3 State-of-the-art in Aspect-oriented Modeling

AspectualKind. Both behavioral and structural advice are represented as methods of�aspect�
classes. The kind of advice is indicated by the stereotype of the advice operation. The stereotypes
�before�, �after�, �around�, and �replace� indicate behavioral advice, e.g., �after� up-
date() in Figure 3.6 (AK.BA), whereas �role�, i.e., the fifth stereotype for advice, represents a
structural one (AK.SA). In the JAC Design Notation, structural advice which are implemented by
�role� methods are not really added to the structure of the base class but can be invoked on the
objects that are extended by the aspect, e.g.,�role� addObserver(BookManager) can be invoked on
BookCopy (cf. Figure 3.6). Moreover, these methods can access the extended class attributes and the
attributes of the �aspect�. Role methods therefore are similar to the ”introduction” concept of
AspectJ. Composite advice, in principle are possible within the JAC Framework through method
composition. The JAC Design Notation, however, provides no means for explicitly modeling such
composite advice (AK.CA). With respect to abstraction, the notation of Pawlak et al. represents
predominantly a low level modeling approach, also with respect to advice, i.e., it shows aspect
internals (AK.A).
MATURITY

The JAC Design Notation has already been well described (M.T), (M.I) and has been applied to
several well-known aspects like caching, authentication, tracing, and session in the context of a
simple client-server application but not in combination with each other. These examples generally
do not greatly differ from each other and follow the same simple principals but show the applica-
bility of the notation to any aspect in general (M.E). It has been tested in real industrial projects
like an online courses intranet site, an incident reporting web site, and a business management
intranet tool (M.A).
TOOL SUPPORT

The JAC Framework includes a complete IDE with modeling support. The provided modeling
tools allow for designing base and aspect classes as well as their relations using the proposed
UML notation (T.M). The IDE also supports code generation (i.e., Java) for the JAC framework
(T.G). Weaving is supported at runtime (T.C) but not at design time.

3.3.3 Aspect-Oriented Software Development with Use Cases, Jacobson et al.

LANGUAGE

The approach of Jacobson et al. [JN05] represents a use case driven software development
method that has been realized by extending the UML 2.0 metamodel (L.L), (L.E). Aspect-Oriented
Software Development with Use Cases (AOSD/UC) comes with a systematic process that focuses on
the separation of concerns throughout the software development life cycle, i.e., from requirements
engineering with use cases down to the implementation phase (L.DP). Since the approach covers
the whole software development life cycle, it is aligned to both the requirements and the imple-
mentation phase (L.A). Furthermore, the approach fosters external traceability between all phases
through explicit�trace� dependencies between models (L.T). During the whole software devel-
opment life cycle the approach makes use of different UML diagrams including use case diagrams
in the requirements phase as well as class diagrams and communication diagrams in the analysis
phase. For the design phase, component diagrams can be refined into class diagrams (L.T), (L.R),
while sequence diagrams are used to model behavioral features (L.D). The language extensions
reflect the influence by the Hyper/J and AspectJ languages (L.I). Scalability of the approach is
supported with high-level modeling elements (i.e.,�use case slice�) and has been demonstrated
with a non-trivial example (L.S).

94

3.3 Comparison of Approaches

CONCERNCOMPOSITION

Concerns are modeled with the �use case slice� stereotype, which is derived from the UML
meta-class Package (CC.CM). At this level, the approach of Jacobson et al. supports element sym-
metry (CC.ES). Taking a closer look, however, the �use case slice� - inspired by the Hyper/J
language - encapsulates modeling artifacts of one phase in the software development life cycle,
i.e., concerns are kept separately until the implementation phase. In this evaluation, the focus
is on slices produced during design, where the artifacts include classes, sequence diagrams and
�aspect� classifiers as depicted in Figure 3.7. Consequently, at this level of abstraction the ap-
proach follows element asymmetry (CC.ES). Although, at first sight it seems that AOSD/UC sup-
ports the compositor composition mechanism on the basis of UML package merge, the internals
of �use case slice� are such that they actually support the pointcut-advice and open class mech-
anisms (CC.M). In fact, composition is deferred until implementation (CC.C) thus, a composed
module is not available at modeling level (CC.CP). Furthermore, the composition semantics seem
to be those of AspectJ (CC.S), (CC.RS), (CC.CS). Since concerns are modeled as �use case slice�,
which represent use cases in the design phase, they inherit the relationships of use cases, i.e.,
inheritance, �extend� and �include� (CC.I). With respect to conflicting interactions, the ap-
proach follows a strategy that avoids conflicts through refactoring actions performed on models
(CC.CR). The effects of composition are not modeled in AOSD/UC (CC.E).

«interface»
Subject

«interface»
Observer

«aspect»
ConcreteObserver

sd Observer

update(<Subject>)
getState()

notify()

:<Observer>:<Subject>:Customer
borrow(..)

{after (<stateChange>) notify}

pointcuts
Subject=BookCopy
Observer=BookManager
stateChange=call(Subject.borrow(..)) ||

call(Subject.return(..))
startObserving=call(Observer.buyBook(..))
stopObserving=call(Observer.discardBook(..))

«aspect»
Observer

pointcuts
Subject
Observer
stateChange
startObserving
stopObserving

class extensions

<Subject>

operations
{after(call(<stateChange>)) notify}
attributes
observers

<Observer>

operations
{after(call(<startObserving>)) start}
{after(call(<stopObserving>)) stop}

«use case slice»
Observer

Figure 3.7: The Observer Aspect, Jacobson et al.

95

3 State-of-the-art in Aspect-oriented Modeling

ASYMMETRICCONCERNCOMPOSITION

AspectualSubject. The join point model of the approach is similar to that of AspectJ and is im-
plicitly defined by the pointcut mechanism used (AS.JPM). UML Classifiers are used as structural-
static join points (AS.SJP), while behavioral-static and behavioral-dynamic join points are identi-
fied with the AspectJ pointcut language (AS.BJP), (AS.P). Consequently, the approach supports
simple as well as complex pointcuts (AS.SP), (AS.CP). Pointcuts are specified in a separate ”point-
cuts” compartment of an�aspect� classifier. If specified as abstract, pointcuts need to be defined
in a concrete aspect such as depicted in Figure 3.7 with �aspect� ConcreteAspect. The pointcut
then is specified with AspectJ code allowing for usage of name patterns, type patterns and wild-
cards (AS.QM), e.g., pointcut stateChange represents a complex pointcut quantifying behavioral-
static join points and the pointcut Subject represents a simple pointcut quantifying a structural-
static join point. The aspectual subject is thus modeled at a detailed level but also can be modeled
at a higher level of abstraction, i.e., with component interfaces in component diagrams (AS.A). As
an alternative, placeholders such as <Subject> and <stateChange> can be used for parameterizing
the use case slice, similarly to the template-based approaches of Clarke et al. (cf. Section 3.3.7)
and France et al. (cf. Section 3.3.8). As it is done in AspectJ, the relative position (i.e., before, after,
or around) is specified with the advice. In Figure 3.7 the <Subject> classifier is extended with an
operation which is to be executed after the pointcut <stateChange> matches a join point (AS.RP).

AspectualKind. Advice are modeled at a low level of abstraction, only (AK.A) and are de-
tailed as ”class extensions” in a separate compartment of the �aspect� stereotype (cf. Figure
3.7 �aspect� Observer). As an example, for structural advice, the <Subject> classifier is ex-
tended with an attribute observers and an operation declaring the aspectual advice (cf. Figure
3.7). The fact, that the <Subject> classifier needs to implement the �interface� Subject is rep-
resented with a UML realization dependency (AK.SA). The behavioral advice is further detailed
within sequence diagrams. So called ”frames” are used to insert aspectual behavior and are la-
belled with the signature of corresponding operations, such as {after (<stateChange>) notify} in
Figure 3.7 (AK.BA). There is no way for modeling composite aspectual features (AK.CA).
MATURITY

The approach of Jacobson et al. has been recently elaborated in detail in three publications
[JN05], although some of the ideas can be traced back to earlier works of the authors (M.I), (M.T).
A hotel management system has been used as a comprehensive example encompassing several
different concerns. The example is used to illustrate each phase in the software development life
cycle (M.E). Still, no information of applications in real-world projects could be identified (M.A).
TOOL SUPPORT

The AOSD/UC approach does not come with tool support. Since composition is deferred to the
implementation phase, composition support within a tool is not the authors’ focus (T.C). Never-
theless, modeling the extensions made to the UML metamodel currently are not supported within
a tool (T.M), neither is it possible to generate code for a specific AO platform (T.G).

3.3.4 Behavioral Aspect Weaving with the Approach, Klein et al.

LANGUAGE

The approach of Klein et al. [KHJ06] is originally based on Message Sequence Charts (MSC)
a scenario language standardized by the ITU [Sec04]. UML 2.0 sequence diagrams have been
largely inspired by MSCs. Thus, the approach can be applied to sequence diagrams as is shown in
the KerTheme proposal [JKBC06] (L.L). No extensions to the UML sequence diagrams (or MSCs)

96

3.3 Comparison of Approaches

have been made in this respect (L.E). Klein et al. have designed a ”weaving algorithm” for com-
posing behaviors, i.e., scenarios modeled with UML sequence diagrams (or MSCs) (L.D). The
composition is specified at modeling level regardless of any implementation platform (L.I). The
approach does neither outline a design process nor guidelines (L.DP), since the goal is rather on
complementing existing AOM approaches with a weaving mechanism for aspect behavior. The
approach is thus not aligned to other phases in the software development life cycle either (L.A),
nor are sequence diagrams further refined in the process of modeling (L.R). Consequently, the
approach does neither provide means for supporting traceability (L.T) nor scalability (L.S)

sd Advice

borrow(customer)

sd BaseBehavior

b2:BookCopyb1:BookCopy:Customer

return(customer)

update(bookCopy)
getState()

notify()

borrow(customer)

sd Pointcut

:BookCopy:Customer

:BookManager:BookCopy

Aspect Observer

:Customer
borrow(customer)

Figure 3.8: The Observer Aspect, Klein et al.

CONCERNCOMPOSITION

The approach of Klein et al. supports the pointcut-advice composition mechanism (CC.M).
Modeling all behavior is achieved by means of sequence diagrams (CC.ES). Nevertheless, an as-
pect consists of two scenarios having distinct roles when used in a composition (CC.CM): one
defines a part of behavior, i.e., the pointcut, that should be replaced by another, i.e., the advice
(cf. Figure 3.8). This replacement is done every time the behavior defined by the pointcut ap-
pears in the semantics of the base scenario. In this respect the approach follows rule asymmetry
(CC.RS). Concerning composition symmetry, however, the approach is symmetric, since behav-
ior that once has served as advice or pointcut could serve as base behavior some other time or
vice versa (CC.CS). The composition semantics are clearly defined by the two-phase weaving al-
gorithm. In the first phase, join points are detected in the base behavior according to the pattern
specified in the pointcut. In the second phase, the base behavior then is composed with the behav-
ior specified in the advice (CC.S). Currently, models are composed statically, the implementation
of the algorithm is, however, subject to future work (CC.C) The composition results again in a
sequence diagram (CC.CP) as depicted in Figure 3.9. The effect in the approach is always replace-
ment by definition, since the behavior detected via pointcuts is replaced by the advice behavior.
Consequently, with the current weaving algorithm there is no need for specifying an effect (CC.E).

97

3 State-of-the-art in Aspect-oriented Modeling

A means for specifying interactions (CC.I) and/or handling conflicts currently is not addressed
but stated to be subject to future work (CC.CR).
ASYMMETRICCONCERNCOMPOSITION

AspectualSubject. Join points in the approach of Klein et al. are sub-MSCs or a sequence
of messages in a sequence diagram (AS.JPM) that match the sub-MSC or sequence diagram de-
fined by the pointcut as is depicted in Figure 3.8 (AS.P), (AS.QM). Consequently, the approach’s
join point model supports behavioral-static join points, only (AS.BJP), (AS.SJP). The pointcuts are
modeled at a detailed level, only (AS.A) and in principle can be composed using the sequential
composition operator of basic MSCs [KHJ06], although no explicit concept for composite pointcut
is available (AS.SP), (AS.CP). There is no need for specifying a relative position, since the behav-
ior detected via pointcuts is always replaced by the advice behavior and this basically simulates
the around relative position kind (AS.RP). It has to be noted that the pointcut used in the running
example cannot fully illustrate the expressiveness of the weaving algorithm’s join point detection
mechanism. The algorithm allows to detect much more complex patterns [KHJ06]. For instance,
it is easy to express a pointcut as a sequence of messages.

AspectualKind. Like pointcuts, aspectual behavior is modeled as MSCs thus only supporting
behavioral advice (AK.BA), (AK.SA). In principle, they also can be composed using the sequential
composition operator of basic MSCs, although no explicit concept for composite advice is avail-
able (AK.CA). Aspectual features in the approach are modeled at a detailed level, only (AK.A).
The advice illustrated in Figure 3.8, shows the observer behavior being inserted after the Book-
Copy b1 is borrowed by the Customer. As already pointed out above, the behavior specified by the
pointcut, i.e., the borrow(customer) message, has to be modeled within the advice if it is to appear
in the composed behavior (cf. Figure 3.9).

borrow(customer)

sd ComposedBehavior

:Customer

update(bookCopy)
getState()

notify()

:BookManager:BookCopy

Figure 3.9: The Composed Model, Klein et al.

MATURITY

The approach of Klein et al. has been described in several applications (M.I), where similar
examples have been used, i.e., a login process. The focus has been on demonstrating the weaving
algorithm’s join point detection mechanism on the basis of complex behaviors, i.e., pointcuts, to
be detected in the base behavior (M.E). In order to allow for testing aspect-oriented models, the
approach recently has been combined with the Theme/UML approach of Clark et al. [JKBC06]
(M.T). So far, the approach has not been employed in a real-world application (M.A).

98

3.3 Comparison of Approaches

TOOL SUPPORT

Modeling of scenarios is possible with tools either supporting MSC or UML 2.0 sequence dia-
grams (T.M). The authors are currently working on an implementation of the weaving algorithm
within KerMeta [MFJ05] (T.C). Still, code generation currently seems not to be the authors’ focus.
Since weaving is supported at modeling level, existing code generation facilities could be reused
(T.G).

3.3.5 The Motorola Weavr Approach, Cottenier et al.

LANGUAGE

The Motorola Weavr approach [CvdBE07], [CAE07] and tool has been developed in an indus-
trial setting, i.e., the telecom infrastructure software industry. The modeling language of choice
in this domain is the Specification and Decription Language (SDL) ITU recommendation [Sec02]
of which features such as composite structure diagrams and transition-oriented state machines
have been adopted in UML 2.0. The Motorola Weavr approach consequently is based on UML
2.0 and a light-weight profile that completes the UML specification towards the SDL and AOM
concepts (L.L), (L.E). Besides class diagrams the approach makes heavily use of composite struc-
ture diagrams as a refinement of class diagrams (L.R), (L.T). The behavioral features of concerns
are modeled using transition-oriented state machines (cf. Figure 3.10 (c), (e), (f)) and the SDL
action language as well as sequence diagrams which are used as test cases. A special ”deploy-
ment diagram” is used to direct the composition of concern modules (L.D), (L.S). Although tar-
geted at telecommunications domain, the approach is platform-independent. Indeed, platform-
specific details are encapsulated within several code generators and code optimizers that prohibit
round-trip engineering (L.T). Consequently, the approach rather aims at composing concerns at
the modeling level than drawing mappings onto platform-specific models (L.I). Nevertheless, the
approach is aligned to the implementation phase (L.A). Furthermore, since Motorola uses the ap-
proach in production, one can infer that the approach supports scalability, which has already been
proven with appropriate modeling examples (L.S). A design process for the approach has not yet
been described, however. Likewise no guidelines are given (L.DP).
CONCERNCOMPOSITION

The Motorola Weavr approach supports the pointcut-advice composition mechanism (CC.M).
Aspects are represented by the stereotype �Aspect� which is derived from the UML meta-class
Class (CC.CM), (CC.ES). The approach puts forward rule asymmetry (CC.RS), since pointcuts
and the binding to advices are modeled as parts of the aspect (cf. Figure 3.10 (d)). Furthermore,
the approach also supports composition asymmetry, i.e., aspects can be woven into the base but
not the other way round (CC.CS). The deployment of aspects to multiple base models as well
as aspects can be modeled using the �crosscuts� stereotype derived from the UML meta-class
Dependency. In order to resolve possible conflicts, the approach allows to define precedence rela-
tionships between aspects using a stereotype �follows�, also derived from the UML meta-class
Dependency. It has to be further noted, that precedence can also be defined at the level of concern
composition rules again using the stereotype �follows� (CC.CR). Beyond, the approach defines
two further dependency stereotypes for specifying interactions at concern module level, namely
�hidden by� and�dependent on� [ZCVG06] (CC.I). These relationships are usually depicted
in a separate diagram called ”deployment diagram” (cf. Figure 3.10 (a)). The approach, how-
ever, does not offer a way to specify effects (CC.E). The Motorola Weavr tool supports the static
weaving of aspects into base models. The composition semantics consequently is clearly defined.

99

3 State-of-the-art in Aspect-oriented Modeling

More specifically, the approach distinguishes between a phase of detection (i.e., ”connector in-
stantiation”) and of composition (i.e., ”connector instance binding”) (CC.S). The approach/tool,
however, does not show the results of composition which are internally available in standard
UML in a composed model (CC.CP). Instead, the modeler can simulate the composed model and
view the specific base or aspect parts during execution (CC.C).

«Aspect» class Observer

«operation,Pointcut»
stateChange

s:Subject

«operation,Pointcut»
startObserver

o:Observer
s:Subject

«operation,Pointcut»
stopObserver

o:Observer
s:Subject

«interface»
Subject

«interface»
Observer

add(o:Observer)
remove(o:Observer)
notify()
getObservers()
getState()

start(s:Subject)
stop(s:Subject)
update(s:Subject)

«binds»

«binds»

«binds»

«operation,Connector»
notify

s:Subject

«operation, Connector»
addObserver

o:Observer
s:Subject

«operation,Connector»
removeObserver

o:Observer
s:Subject

«binds»

«binds»

«binds»

«Aspect»
Observer

BookCopy

BookManager

«crosscuts»

«crosscuts»

«Deployment» class ObserverScope
*

*

‘*‘(s)

«Pointcut» void
stateChange(

Subject s)

«Connector»
void notify(

Subject s)proceed(s);

notify()

return()borrow()

notAvailable

available
kill()

kill()

Statechart BookCopy Statechart BookCopy

available

available

notAvailable

notAavailable

available

borrow(customer) return(customer)

*

kill()

(a) (b) (c)

(d)

(f)(e)

Figure 3.10: The Observer Aspect, Cottenier et al.

ASYMMETRICCONCERNCOMPOSITION

AspectualSubject. The join point model consists of action join points including call expression
actions, output actions, create expression actions, and timer (re)set actions as well as transition join
points including start transitions, initialization transitions, termination transitions, and triggered
transitions (AS.JPM). Consequently, the approach’s join point model supports behavioral-static
join points (AS.BJP). Object instances represent structural-dynamic join points (AS.SJP). Point-
cuts are defined using a stereotype which is derived from the UML meta-class Operation (AS.P),
e.g., the pointcut �operation,Pointcut� stateChange in Figure 3.10 (d). The implementation of a
pointcut is modeled as a transition-oriented state machine, which can be specified using wildcards
(AS.QM) (cf. Figure 3.10 (b)). Consequently, the approach’s pointcuts are modeled at a high level
of abstraction where only the pointcuts’ parameters are known and at a detailed level using state
machines (AS.A). Beyond, pointcuts can be composed to form more complex pointcuts by means
of AND and OR logical composition operators [CvdBE07] (AS.SP), (AS.CP). The relative position
kind cannot be modeled but the approach supports the around relative position kind: Join points
are always replaced by the advice behavior but can be called using an AspectJ-like proceed() action
such as is depicted in Figure 3.10 (c) (AS.RP).

AspectualKind. Like pointcuts, behavioral advice are modeled using a stereotype derived from
the UML meta-class Operation, e.g., the�Connector� notify() in Figure 3.10(d). A connector cor-

100

3.3 Comparison of Approaches

responds to AspectJ’s advice and like pointcuts in the Motorola Weavr approach is implemented
as a transition-oriented state machine (cf. Figure 3.10 (c))(AK.BA). Thus, advice in the approach
are modeled both at a high and a low level of abstraction (AK.A). The connectors are bound to
the pointcuts to which they shall be applied using a �bind� stereotype which is derived from
the UML meta-class Dependency (cf. Figure 3.10 (d)). It has to be further noted that precedence
can also be defined for connectors again using the stereotype �follows�. Structural advice are
modeled via interfaces, only (AK.SA). In the running example, the �Aspect� Observer intro-
duces two interfaces Subject and Observer, which are bound to pointcuts of the aspect using the
�bind� dependency (cf. Figure 3.10 (d)). The semantics of this relationship is that the interfaces
are bound to the object instances that contain joinpoints for the specified pointcuts [CvdBE07],
which is similar to the approach of Pawlak et al. (cf. Section 3.3.2). Consequently, the Subject
interface is bound to the stateChange pointcut, while the Observer interface is bound to the other
pointcuts. To the best of our knowledge, there exists no means for modeling composite advice
(AK.CA).
MATURITY

The approach of Cottenier et al. represents one of the most recent approaches to AOM and
has already been illustrated in several publications (M.I), (M.T). Besides a set of simple model-
ing examples, aspects covering exception handling, recovery, atomicity, and a two-phase commit
protocol have been applied to a server-based communication system [CvdBE07] (M.E). The Mo-
torola Weavr approach and tool is already being used in production (M.A) and is made available
to academia under a free of charge license.
TOOL SUPPORT

The Motorola Weavr is designed as an add-in for the Telelogic TAU MDA tool6 (T.M) and allows
composing aspect models with base models as well as verification of the composed model via
simulation (T.C). Starting from the composed model, existing code generation facilities such as
the Motorola Mousetrap code generator [BLW05] can be used (T.G). The Motorola Weavr tool is
already being deployed in production at Motorola, in the network infrastructure business unit
[CvdBE07].

3.3.6 The AOSD Profile, Aldawud et al.

LANGUAGE

The AOSD Profile (L.E) of Aldawud et al. [AEB03], [EAB05] is based on UML version 1.x (L.L)
and is aimed at being independent of any particular AOP language (L.I). While class diagrams are
used to express the structural dependencies, state machines model the behavioral dependencies of
concerns (L.D). The models are continuously refined from class diagrams to state machines (L.R).
In order to do so, a set of guidelines for using the concepts provided by the AOSD Profile is offered
(L.DP), which allows for external traceability from the requirements phase but not specifically for
internal traceability (L.T), (L.A). The specific usage of state machines and their event propagation
mechanism indicates that the approach does not support scalability and we are not aware of a
modeling example proving the opposite (L.S).
CONCERNCOMPOSITION

In the AOSD Profile, crosscutting concerns have a separate representation in the form of the
stereotype �aspect� (CC.CM), (CC.ES), which is derived from the UML meta-class Class (cf.
Figure 3.11). Although, it is allowed to relate aspects to other aspects, each aspect has to be

6http://www.telelogic.com/products/tau/g2/

101

3 State-of-the-art in Aspect-oriented Modeling

«aspect»
Subject

{synchronous}
observers

add(Observer)
remove(Observer)
notify()
getState()
Preactivation()
Postactivation()

Library

«aspect»
Observer

{synchronous}
start(Subject)
stop(Subject)
update(Subject)
Preactivation()
Postactivation()

«crosscut»

«crosscut»

BookCopy
id
available
getId()
setId()
getAvailability()
borrow(Customer)
return(Customer)

BookManager
addBook(Book)
removeBook(Book)
searchBook(Book)
buyBook(BookCopy)
discardBook(BookCopy)

Figure 3.11: The Observer Aspect, Aldawud et al.

woven into at least one base class and, hence, this actually constitutes an asymmetric view of
composing concerns (CC.CS). An integrated model view where aspects would already be woven
into the base classes is not provided (CC.CP). Composition is rather deferred to implementation
[MBAE04] (CC.C). At a more detailed level, one can see that the approach supports the composi-
tor composition mechanism (CC.M): in the AOSD Profile approach concurrent state machines are
used to model both non-crosscutting and crosscutting behavior in orthogonal regions, meaning el-
ement symmetry at the level of state machines (cf. Figure 3.12). More specifically, the composition
semantics (CC.S) are ”specified” by the event mechanism used to indicate the flow of crosscutting
behavior in state charts (CC.RS). The state machines thus implicitly express the composition se-
mantics. The �crosscut� dependencies7 between aspects and base classes as well as aspects and
aspects dictate the ordering of events propagated in the orthogonal regions of statecharts (CC.I)
(cf. Figure 3.11). Since the state charts allow for specifying the temporal sequence in the control
flow of crosscutting behavior, i.e., an ordering of aspects, further conflict resolution is implicitly
available (CC.CR). The effect of adaptations, however, cannot be modeled (CC.E).
SYMMETRICCONCERNCOMPOSITION

Composable elements in the approach of Aldawud et al. are elements of UML state machine di-
agrams, in particular events (S.BCE), whereas structural composable elements are not supported
(S.SCE). Events trigger transitions from one state to another. The approach of Aldawud et al.
makes use of broadcasting events to cause transitions in orthogonal regions of the same or other
state machines, i.e., to activate other concerns. For example, the observingBookManager state ma-
chine in Figure 3.12 describes the behavior of the BookManager class. If a new BookCopy is bought
(cf. buyBook()) the transition from state IDLE to state observing is triggered. This transition, how-
ever, triggers the transition from IDLE to the startObservingSubject state in the observing region.
For the observedBookCopy state machine of the BookCopy class, this means a transition from state
notObserved to state observed, given that the BookCopy has been in the state notObserved. The event
mechanism of state machines allow to ”compose” the behavior of different concerns represented
in orthogonal regions of state machines following a merge integration strategy (S.M). The corre-
sponding elements, or rather events, are explicitly defined by using naming patterns. The ap-

7Please note, that the reading direction of the�crosscut� dependencies is different to the other approaches, e.g., BookCopy
is crosscut by the aspect Subject.

102

3.3 Comparison of Approaches

observingBookManager

observed

managingBookCopies

return()/
s.notify()

borrow()/
s.notify()

notify()

removeObserver(o:Observer)
[hasMoreObservers==false]

addObserver
(o:Observer)

addObserver
(o:Observer)

removeObserver(o:Observer)
[hasMoreObservers==false]

observed

notObserved

notAvailable

available

/do [for all observers o]
o.update(s:Subject)

notifying

observing

update(s:Subject)/
s.getState()

start(s:Subject)/
s.addObserver(this)

stop(s:Subject)/
s.removeObserver(this)

IDLE

startObservingSubject

updating

stopObservingSubject

managingBooks

buyBook(b:BookCopy)/
start(s:Subject)

discardBook(b:BookCopy)/
stop(s:Subject)

buying

discarding

IDLE

observedBookCopy

Figure 3.12: The Observer’s Crosscutting Behavior, Aldawud et al.

proach thus supports a name-based match method, only (S.MM). With respect to the level of
abstraction, the details captured by the state machines suggest a low level but not a high level of
abstraction. Indeed, recently the use of the State pattern [GHHV04] has been used to translate the
behavior captured within state machines to code [MBAE04] (S.A).
MATURITY

Although the approach is described in several recent publications (M.I), (M.T), it is illustrated
using a single example, the bounded buffer system, only. Still, it covers various aspects, namely,
synchronization, scheduling, and error handling (M.E). A real-world application of the approach,
however, is not available (M.A).
TOOL SUPPORT

Due to using the UML profile extension mechanism, modeling support within the approach
is available through existing UML modeling tools (T.M). Nevertheless, neither composition (T.C)
nor code generation support have yet been addressed (T.G).

3.3.7 The Theme/UML Approach, Clarke et al.

LANGUAGE

The Theme approach of Clarke et al. [CB05] provides means for AOSD in the analysis phase with
Theme/Doc, which assists in identifying crosscutting concerns in requirements documents, and in
the design phase with Theme/UML. In this survey, the focus is on Theme/UML, which is used in
producing separate design models for each ”theme” from the requirements phase (L.T), (L.A),
i.e., the encapsulation of a concern representing some kind of functionality in a system [CB05].
Theme/UML is based on a heavy-weight extension of the UML metamodel version 1.3 (L.L), (L.E).
It is designed as a platform-independent AOM approach, which originated from SOP [CHOT99],
and evolved from the composition patterns approach of Clarke [Cla01], [Cla02] as well as provides
mappings to AspectJ, AspectWerkz, and Hyper/J (L.I), (L.T), (L.A). Basically, Theme/UML poses
no restrictions on what UML diagrams might be used for modeling. Nevertheless, particularly

103

3 State-of-the-art in Aspect-oriented Modeling

package and class diagrams are used for modeling structure and sequence diagrams are used for
behavioral modeling (L.D). Theme/UML allows every concern to be refined separately and then
to be composed into a new model (L.R). Scalability of the approach is supported by using UML
packages for modeling concerns and has been demonstrated with non-trivial examples [CB05]
(L.S). Beyond, the authors outline a design process for their modeling approach (L.DP).

«theme»
Observer

Subject
+add(Observer)
+remove(Observer)
+notify()
+getState()
+aStateChange(..)
-_aStateChange(..)

Observer
+start(Subject)
-_start(..,Subject,..)
+stop(Subject)
-_stop(..,Subject,..)
+update(Subject)

observers
**

<Subject, _aStateChange(..)>
<Observer, _start(..,Subject,..), _stop(..,Subject,..)>

:Subject :Observer
aStateChange(..)

_aStateChange(..)

notify()
update(Subject)

Collab_ObserverPattern_StateChange

«theme»
Library Bind[<BookCopy, {borrow(..), return(..)}>,

<BookManager, buyBook(BookCopy),
discardBook(BookCopy)>]

getState()

action: BookCopy::notify()
post all observers in :BookCopy.obervers are sent update() event

Figure 3.13: The Observer Aspect, Clarke et al.

CONCERNCOMPOSITION

Theme/UML realizes the compositor composition mechanism (CC.M). Concerns are encapsu-
lated in UML packages denoted with a stereotype �theme� (cf. Observer and Library in Fig-
ure 3.13). Concern modules generally are modeled using standard UML notation. Crosscutting
concerns, however, are realized using UML’s modified template mechanism, which allows in-
stantiating template parameters more than once, thus supporting multiple bindings (CC.CM),
(CC.ES), (CC.CS). The composition semantics are clearly stated in [Cla01] for both how to detect
the corresponding elements to be composed as well as for the actual composition itself (CC.S).
A set of themes is composed statically into a composed �theme� (CC.C) as is shown in Figure
3.14, i.e., the ObserverLibrary theme is composed of the Observer and Library themes from Figure
3.13 (CC.CP). Besides relating two or more themes through Theme/UML’s ”composition relation-
ships”, i.e., specialization from UML meta-class Relationship (CC.RS), there is no other way to
model interactions between concern modules (CC.I). The composition relationships can also be
used at a more fine-grained level, e.g., for specifying composition at the level of classes and at-
tributes. Special attachments or ”tags” to the Theme/UML composition relationships represent the
conflict resolution mechanism. First, the ”prec” tags define an ordering for theme precedence,
with 1 indicating the highest precedence. Second, in case of a conflict the ”resolve” tag allows

104

3.3 Comparison of Approaches

specifying default values for elements of a certain type (e.g., visibility of attributes is private).
And third, for a specific conflict the ”resolve” tag allows defining explicit composition output val-
ues. Theme/UML wants developers to first compose all non-crosscutting themes and then weave
crosscutting themes one after the other into the composed model, thus forcing the developer to
consider the ordering of crosscutting themes (CC.CR). The approach, however, does not provide
modeling means for specifying the effects of composition (CC.E).
SYMMETRICCONCERNCOMPOSITION

Composable elements in Theme/UML are identified with the introduction of the new meta-
class ComposableElements [Cla02]. More specifically, the UML meta-classes Attribute, Interac-
tion, Collaboration (S.BCE), Operation, Association, Classifier, and Package (S.SCE) all inherit
from the new meta-class and thus are allowed to be composed. For identifying the correspond-
ing elements of two or more themes, the approach allows to tag the composition relationships
with the ”match” tag. Theme/UML, currently supports two ways of matching composable ele-
ments, namely match-by-name and no-match. The latter states that the composeable elements
participating in the composition relationship do not match (S.MM). Composition is catered for
through three different integration strategies (specialization of UML meta-class Relationship),
”merge” (S.M) and ”override” (S.O), and ”bind” (S.B), which is a specialization of merge and
allows composing crosscutting themes with non-crosscutting ones. This binding can be done for
several themes. In Figure 3.13, the crosscutting �theme� Observer is composed with the Library
�theme� using the bind integration strategy. The template parameters of the crosscutting theme
(i.e., classes, operations, and attributes) placed on the theme package template within a dotted
box need to be bound to concrete modeling elements of a non-crosscutting theme. The sequence
diagram templates in a crosscutting theme (cf. ObserverPattern StateChange in Figure 3.13) allow
modeling crosscutting behavior and when it shall be triggered, e.g., within the control flow of
other operations. In contrast, the class diagram templates of a crosscutting theme allow mod-
eling crosscutting structure. The concrete binding is specified by the ”bind” tag placed on the
composition relationship between the crosscutting theme and other themes. It binds the template
parameters to actual classes, operations, and attributes possibly using wildcards. This way, the
Subject class is bound to BookCopy, and the stateChange() operation is bound to borrow() and re-
turn() (S.B). Since, Theme/UML’s composition relationships can relate composite elements such as
package as well as fine-grained ones such as attributes, the approach supports both modeling at
a high level of abstraction as well as at a low level (S.A).
MATURITY

The Theme/UML approach represents one of the most mature, and still evolving approaches
to AOM (M.I). Lately, first results on the approach’s extension with the join point designation dia-
grams of Stein et al. [SHU06] has been presented [JC06] as well as an extension with the weaving
algorithm of Klein et al. [KHJ06] has been published [JKBC06] (M.T). Theme/UML comes with
a plethora of literature and modeling examples such as the synchronization and observer aspects
in a digital library example [CW05], the logging aspect in an expression evaluation system exam-
ple and a course management system example. The crystal game application presented in [CB05]
consists of more than 15 concern modules amongst them two crosscutting ones. The composition
of some of them is demonstrated. Furthermore, two similarly sized case studies are presented,
i.e., phone features and usage licensing (M.E). It is not clear, however, if the approach has been
applied in a real world project (M.A).

105

3 State-of-the-art in Aspect-oriented Modeling

«theme»
ObserverLibrary

Book

Location
+roomNumber
+shelfNumber

+addBook(BookCopy)
+removeBook(BookCopy)

Author
+name
+getName()
+setName()

*

1..*1..*

1

1..*

BookCopy
+id
+available
+getId()
+setId()
+getAvailability()
+add(BookManager)
+remove(BookManager)
+notify()
+getState()
+borrow(Customer)
-Library_borrow(Customer)
+return(Customer)
-Library_return(Customer)

BookManager
+addBook(Book)
+removeBook(Book)
+searchBook(Book)
+buyBook(BookCopy)
-Library_buyBook(BookCopy)
+discardBook(BookCopy)
-Library_discardBook(BookCopy)
+update(BookCopy)1

1..*

+title
+isbn
+getTitle()
+getISBN()
+addCopy(BookCopy)
+removeCopy(BookCopy)

:Subject :Observer
return(Customer)

Library_return(Customer)

notify()
update(Subject)

getState()

action: BookCopy::notify()
post all observers in :BookCopy.obervers are sent update() event

observers
**

sd ObserverPattern_StateChange - return()

Figure 3.14: The Composed Model, Clarke et al.

TOOL SUPPORT

Besides first proposals in [JKBC06] with respect to composition, no information on a tool for The-
me/UML supporting either modeling, composition or code generation has been provided (T.M),
(T.C), (T.G).

3.3.8 Aspect-Oriented Architecture Models, France et al.

LANGUAGE

The Aspect-Oriented Architecture Models (AAM) approach of France et al. [FRGG04], [RGR+06]
is based on UML 2.0 (L.L). The language is designed as a platform-independent approach with no
particular platform in mind (L.I). Concerns are modeled using template diagrams, i.e., package
diagram templates, class diagram templates and communication diagram templates [FRGG04]
as well as recently sequence diagram templates [RSFG06], [SSR+05] (L.D). With respect to using
UML templates, the approach is similar to Theme/UML (cf. Section 3.3.7). For readability pur-
poses, however, the authors prefer to provide a notation different to standard UML templates and
in contrast denote template model elements using ’|’. This notation is based on the Role-Based

106

3.3 Comparison of Approaches

«classtemplate»
|Subject

add(o:|Observer)
remove(o:|Observer)
notify()
getState():{Object}
|stateChange()

«classtemplate»
|Observer

start(s:|Subject)
stop(s:|Subject)
update(s:|Subject)
|doStart(s:|Subject)
|doStart(s:|Subject)

|observers
**

o:|Observer
|n: |stateChange()

|n.1: |notify()

|n.1.1: *[for all observers o]:
o.update(s:|Subject)

|n.1.1.1: s.getState()

|m: |doStart(s:|Subject)

|m.1: |start(s:|Subject)

s:|Subject

o:|Observer

|m: |doStop(s:|Subject)

|m.1: |stop(s:|Subject)

o:|Observer

(b)

(c) (d)

(a)

Figure 3.15: The Observer Aspect Model, France et al.

Metamodeling Language [FKGS04], [KFG04], which is a UML-based pattern language designed
as an extension to the UML (L.E). The use of packages for capturing concerns caters for scalability,
although this has not yet been demonstrated within an example encompassing several concerns
(L.S). The approach is not specifically aligned to the requirements or implementation phases (L.A)
and does not support external traceability (L.T). Nevertheless, similar to Theme/UML, the differ-
ent models are continuously refined and at some point composed (L.T), (L.R). A design process is
briefly outlined in terms of guidelines (L.DP).
CONCERNCOMPOSITION

The approach of France et al. originally is based on the compositor composition mechanism
similar to the Theme/UML approach. Recently, specific attention has been paid, however, to the
composition of sequence diagrams [RSFG06], [SSR+05], which realizes the pointcut-advice com-
position mechanism (CC.M). France et al. support element symmetry in that all concerns are
modeled as UML packages (CC.CM), (CC.ES). The authors distinguish, however, between ”pri-
mary models” and ”aspect models”, which model crosscutting concerns. Aspect models are based
on template diagrams, which are described by parameterized packages. These packages include
class diagram templates as in Figure 3.15 (a), communication diagram templates as in Figure 3.15
(b)-(d), and recently sequence diagram templates (cf. Figure 3.18 (a)). A textual ”binding” to a
certain application instantiates a ”context-specific” aspect model from the UML template. In the
context of the library management system, the following binding instantiates the aspect model for
the observer pattern from Figure 3.15 and results in the context-specific aspect shown in Figure
3.16:

(|Subject,BookCopy); (|Observer, BookManager);

(|stateChange(),borrowCopy()); (|doStart(s:|Subject),buyBook());

(|stateChange(),returnCopy()); (|doStop(s:|Subject),discardBook());

(|observers, bookManagers);

The context-specific aspect models are finally used for composition with the base model, sug-
gesting rule and composition symmetry (CC.RS), (CC.CS). However, the composition of sequence

107

3 State-of-the-art in Aspect-oriented Modeling

diagrams is somewhat different. The locations of where to introduce a behavioral advice defined
within an aspect sequence diagram template (cf. Figure 3.18 (a)) are specified using ”tags” in the
primary model (cf. Figure 3.18 (b)). The aspect sequence diagram template can be composed
with the primary model, only (CC.CS), and the rule information is placed within the primary
model (CC.RS), meaning asymmetric composition and asymmetric placement of rules. Recently,
the approaches composition semantics (CC.S) in terms of a composition metamodel have been
operationalized in KerMeta, a metamodeling language that extends the Essential Meta-Object Fa-
cility (EMOF 2.0) with an action language. Thereby, the semantics of detection have also been
operationalized (i.e., the getMatchingElements() operation), which allows for detecting (syntacti-
cal) conflicts (CC.CR). The composition is done statically yielding standard UML diagrams, i.e.,
class diagrams, communication diagrams and sequence diagrams (CC.CP). The composed model
is shown in Figure 3.17 and Figure 3.18 (c), respectively (CC.CP) in terms of standard UML. Since
KerMeta allows specifying operations with its action language, dynamic composition of models
is subject to future work (CC.C). The approach also proposes so called ”composition directives”
which are intended to refine the concern composition rules used to compose models. The use
of so called ”model composition directives”, allows specifying the order in which aspect models
are composed with the primary model. These ”precedes” and ”follows” model composition di-
rectives are depicted as stereotyped UML dependencies between aspect models and represent a
conflict resolution mechanism. Other forms of interactions between modules, however, cannot
be modeled (CC.I). So called ”element composition directives” amongst others allow to add, re-
move, and replace model elements. The element composition directives, consequently, also serve
as a conflict resolution mechanism (CC.CR). The approach does not describe ways to specify ef-
fects (CC.E).

«Subject»
BookCopy

add(o:BookManager)
remove(o:BookManager)
notify()
getState():{Object}
borrowCopy()
returnCopy()

«Observer»
BookManager

start(s:BookCopy)
stop(s:BookCopy)
update(s:BookCopy)
buyBook(s:BookCopy)
discardBook(s:BookCopy)

bookManagers
**

o:BookManager
1: borrowCopy()

1.1: |notify()

1.1.1: *[for all bookManagers o]:
o.update(s:BookCopy)

1.1.1.1: s.getState()

1: buyBook(s:BookCopy)

1.1: |start(s:BookCopy)

s:BookCopy

o:BookManager

1: discardBook(s:BookCopy)

1.1: |stop(s:BookCopy)

o:BookManager

(b)

(c) (d)

(a)

Figure 3.16: The Context-Specific Aspect Model, France et al.

SYMMETRICCONCERNCOMPOSITION

The composition of class diagrams is specified with the composition metamodel defined in
[RGR+06]. Composable elements in the composition metamodel are realized with the meta-

108

3.3 Comparison of Approaches

class Mergeable. Currently, the composition metamodel has been operationalized for class di-
agrams only. In this respect, mergeable elements are Operation, Association, Classifier, and
Model (S.SCE), (S.BCE). Originally, the approach used only name-based matching method in or-
der to identify the corresponding elements in different models. In [RGR+06], this mechanism has
been extended. The authors introduce a signature-based method, which means that elements are
matched according to their syntactic properties, i.e., an attribute or an association end defined in
the element’s meta-class. This match method is realized with the getMatchingElements() opera-
tion of the composition metamodel (S.MM). The approach basically, supports a merge integration
strategy, only (S.M). Support for the bind integration strategy is realized through the instantiation
of aspect models to context-specific aspect models. The template parameters of the aspect models
denoted using ’|’ need to be bound to concrete modeling elements of the primary model. For ex-
ample, the class |Subject (cf. Figure 3.15 (a)) is bound to BookCopy and the operation |stateChange()
is bound to borrow() and return() (cf. Figure 3.15 (b)-(d)). This is done with the textual binding as
specified before and the resulting context-specific aspect model is shown in Figure 3.16 . While
the class diagram templates model crosscutting structure, the communication diagram templates
model crosscutting behavior. The context-specific aspect models then can be composed with the
primary model using the original merge integration strategy (S.B). Lately, the possibility of over-
riding model elements has been introduced with the introduction of composition directives. The
”override” element composition directive defines an override relationship between two poten-
tially conflicting model elements [RGR+06] (S.O). Consequently, with respect to symmetric con-
cern composition the approach supports both modeling at a high level of abstraction (e.g., with
a high-level model view and model composition directives) as well as at a low level (e.g., with
detailed class and communication diagrams as well as element composition directives) (S.A)

BookCopy

id
available
getId()
setId()
getAvailability()
add(o:BookManager)
remove(o:BookManager)
notify()
getState():{Object}
borrow(Customer)
return(Customer)

BookManager

start(s:BookCopy)
stop(s:BookCopy)
update(s:BookCopy)
buyBook(s:BookCopy)
discardBook(s:BookCopy)
addBook(Book)
removeBook(Book)
searchBook(Book)

**
bookManagers

ObserverLibrary

Book

Location

Author

*

1..*1..*

1

1..*1
1..*

Figure 3.17: The Composed Model, France et al.

ASYMMETRICCONCERNCOMPOSITION

The composition of sequence diagrams realizes the pointcut-advice composition mechanism.
AspectualSubject. The join point model is implicitly defined (AS.JPM) as the set of primary se-

quence model elements, e.g., lifelines and messages to which the aspect sequence model elements
need to be composed, thus supporting solely behavioral-static join points. (AS.SJP), (AS.BJP)
[RSFG06]. The locations of where to apply the advice in the primary sequence diagram are

109

3 State-of-the-art in Aspect-oriented Modeling

sd Borrow :BookCopy[1..*]:Customer

borrow(customer)

:BookManager[1..*]

sd ComposedBorrow

:BookCopy[1..*]:Customer
borrow(customer)

:BookManager[1..*]

loop
[hasMoreObservers]

notify()

update(bookCopy)

getState()

sd Observer :|Observer [1..*]:|Subject

«after»

loop
[hasMoreObservers]

notify()

update(|s:|Subject)

getState()

(a)

(b)

(c)

«compositeAspect» Observer <BookCopy:|Subject>
<BookManager:|Observer>

Figure 3.18: Weaving Aspectual Behavior With Sequence Diagrams, France et al.

”tagged” with special stereotypes (AS.P). Thereby, two stereotypes can be distinguished: A�sim-
pleAspect� is a stereotyped UML message originating from and targeting the same lifeline,
which is used when the aspectual behavior just needs to be inserted. A �compositeAspect�
is a stereotype for UML’s Combined fragment, that captures a message or a sequence of messages
in the primary model as join point (AS.SP), (AS.QM). In the running example, the �composite-
Aspect� Observer is used to tag the primary sequence diagram Borrow (cf Figure 3.18 (b)). The
�compositeAspect� also includes the binding of the BookCopy and BookManager classes to the
corresponding template lifelines of the aspect sequence diagram template. This pointcut mech-
anism in terms of tagging a model does not allow for composed pointcuts (AS.CP). Concerning
the aspectual subjects, thus, models provide information at a detailed level (AS.A). The relative
position is modeled within the aspect sequence diagram template using stereotyped combined
fragments. Besides the typical before, after, and around relative position kinds, the approach pro-
vides two special stereotypes, namely, �begin� and �end�. The begin/end combined frag-
ment captures the aspectual behavior that should preced/follow the messages encompassed in
the �compositeAspect� of the primary model. In contrast, the �after� combined fragment
shown in Figure 3.18 (a) defines the aspectual behavior that will appear after each message en-
compassed in the �compositeAspect� of the primary model.

AspectualKind. On the basis of sequence diagram templates, the approach of France et al.
provides for behavioral advice, only (AK.BA), (AK.SA). The approach does not forsee possibilities
of combining two or more behavioral advice to form a more complex one (AK.CA). The running
example shows that a behavioral advice is modeled at a detailed level within the approach (AK.A).

110

3.4 Lessons Learned

MATURITY

The approach of France et al. is among the most mature AOM approaches and has been elab-
orated on in numerous publications (M.I) providing examples such as a simple banking system
including the authorization aspect, the replicated repository aspect, the redundant controller as-
pect, and the transaction aspect for controlling money transfers, as well as the buffer aspect which
decouples output producers from the writing device in a system (M.E) Currently, the approach is
further developed with respect to its composition mechanism and tool support thereof (M.T). Yet,
it has not been applied in a real-world project (M.A).
TOOL SUPPORT

Currently, a prototype implementation of an integrated toolset is under development. This
toolset provides modeling support (T.M), i.e., for modeling aspect model diagram templates built
on top of the Eclipse Modeling Framework8 and for instantiating context-specific aspect mod-
els from these templates built on top of Rational Rose. Support for composition (T.C), i.e., for
composing structural base and context-specific aspect models [RFG05] is built on top of KerMeta.
A tool supporting composition of behavioral models, i.e., sequence diagrams is currently under
development [RSFG06], while a tool for code generation currently is not planned (T.C).

3.4 Lessons Learned

The results of the evaluation have revealed interesting peculiarities of current AOM approaches.
In the following, the findings are summarized and the results are illustrated at a glance with tables
according to the six categories of criteria from the criteria catalogue within Sections 3.4.1 to 3.4.6.
Finally, Section 3.4.7 presents the general findings and conclusions concerning the AOM research
field and specifically points out what needs to be done in terms of further development of AOM
approaches.

3.4.1 Language

The summary of the evaluation with respect to the Language category can be found in Table 3.1.
Popularity of UML Profiles and UML 2.0. For the design phase, one can observe that UML is

the choice for designing an aspect-oriented design language with two exceptions [SR05], [SVWJ05],
only. With respect to the UML version used, there is quite a balance between UML 1.x and UML
2.0. Typically, recent approaches already are based on the new UML 2.0 specification. Further-
more, it is advisable that existing UML 1.x approaches are updated to also support UML 2.0. For
extending UML with aspect-oriented concepts, UML’s inherent extension mechanism, i.e., pro-
files, is popular. In terms of tool support this is beneficial, since UML profiles are supported by
almost any UML tool. Nevertheless, it has to be noted, that the profile-based approaches of Stein
et al. and Aldawud et al. do not provide a reference implementation of their profiles within a UML
tool. Consequently, designers first are required to manually redefine the profile specification in
their UML tool of choice. With respect to those approaches that are based on metamodel exten-
sions, i.e., Clark et al., Jacobson et al., and France et al., almost no modeling support is available.
Only France et al. are currently developing an integrated toolset providing modeling support
upon the EMF.

8http://www.eclipse.org/emf/

111

3 State-of-the-art in Aspect-oriented Modeling

Legend:
supported CD Class Diagram SD Sequence Diagram R Requirements

not supported CompD Component Diagram UCD Use Case Diagram A Analysis

n/a not applicable CSD Composite Structure
Diagram

ComD Communication Diagram D Design

c creating PD Package Diagram SMD State Machine Diagram I Implementation

e extending ColD Collaboration Diagram
(UML 1.x)

DD Deployment Diagram

U
M

L
1.

x

U
M

L
2.

0

M
et

am
od

el

U
M

L
P

ro
fil

e

S
tru

ct
ur

al

D
ia

gr
am

s
(L

.D
)

S
tru

ct
ur

al

D
ia

gr
am

s
(L

.D
)

pr
oc

es
s

de
sc

rip
tio

n

gu
id

el
in

es

hi
gh

-le
ve

l
m

od
el

in
g

el
em

en
ts

pr
ov

en
 w

ith

ex
am

pl
es

in
te

rn
al

ex
te

rn
al

Stein AspectJ CD, ColD SD,
UCD

I n/a D->I

Pawlak JAC CD I n/a D->I

Jacobson AspectJ,
Hyper/J

CD,
CompD

UCD,
SD,

ComD
c,e R,I R->A->D->I

Klein SD n/a n/a

Cottenier CD,
CSD, DD

SD,
SMD c,e I

Aldawud CD SMD e R n/a R->D

Clarke
SOP,

AspectJ,
Hyper/J

PD, CD SD c,e R,I R->D->I

France PD, CD ComD,
SD

c,e n/a
D

es
ig

n
Pr

oc
es

s
(L

.D
P)

D
ia

gr
am

s
(L

.D
)

Pl
at

fo
rm

 In
flu

en
ce

s(
L.

I)

M
od

el
in

g
La

ng
ua

ge

(L
.L

)
Ex

te
ns

io
n

M
ec

ha
ni

sm

(L
.E

)

Tr
ac

ea
bi

lit
y

(L
.T

)

R
ef

in
em

en
t M

ap
pi

ng
 (L

.R
)

A
lig

nm
en

t t
o

Ph
as

e
(L

.A
)

Sc
al

ab
ili

ty

(L
.S

)

Table 3.1: Language

Behavioral Diagrams are Catching up. Except for the approach of Klein et al. all approaches
make extensive use of structural diagrams, i.e., class diagrams and package diagrams as well as
component diagrams and composite structure diagrams. The use of behavioral diagrams in order
to describe crosscutting behavior is more and more emphasized by also composing behavioral
diagrams such as in the approaches of Klein et al., Cottenier et al., and France et al.

Missing Guidance in the Design Process. Since AOM is still a quite young research field, the
support of design processes has often been disregarded and thus is rather underdeveloped. Only
two surveyed approaches, i.e., Clarke et al. and Jacobson et al., provide a detailed design process
description. Additionally, two approaches have some guidance in designing aspect-oriented mod-
els in terms of guidelines, namely France et al. and Aldawud et al. It is not surprising, that the
two approaches offering a design process have been chosen by the AOSD Europe Network of
Excellence to form the basis for defining a generic aspect-oriented design process [CJ06].

Missing Full External Traceability. The majority of approaches does not support external trace-
ability at all or with respect to either prior or later development phases, only. The approaches of
Jacobson et al. and Clarke et al. are the only ones that do support external traceability from the
requirements engineering phase until implementation. Since traceability is a crucial issue in any
kind of software development, AOM approaches need to take care to support for traceability.

Moderate Scalability. Half of the approaches provides for scalability by supporting modeling
concepts that allow hiding details from the modeler and thus, modeling at a high level of abstrac-
tion. The modeling examples used, however, are seldom of a size that justifies scalability. Only,

112

3.4 Lessons Learned

the approaches of Jacobson et al., Cottenier et al., and Clarke et al. have provided proof that their
approaches can cope with the composition of three or more concerns. Due to this limited interest
in proving the applicability of the AOM approaches in large-scale applications, it will be required
in the future to evaluate how scalable those approaches are in real large-scale applications by
means of quantitative studies.

3.4.2 ConcernComposition

For the ConcernComposition category, the lessons learned are drawn from Table 3.2.
Popularity of Asymmetric Concern Composition. The majority of AOM approaches follows

the pointcut-advice mechanism or a combination of the pointcut-advice and open class mecha-
nisms. The approach of France et al. seems to be the first that combines the compositor mechanism
and the pointcut-advice mechanism. It is however interesting to note that up to now little inter-
est has been shown in evaluating when asymmetric and symmetric approaches have prevailing
advantages and shall be employed.

Influence of Composition Mechanism on Element, Composition, and Rule Symmetry. Gener-
ally, one can observe that asymmetric composition mechanisms usually imply element asymme-
try, composition asymmetry as well as rule asymmetry, although this is not an inherent character-
istic of asymmetric approaches. On the opposite, a symmetric composition continuously achieves
symmetric values. The approach of Klein et al. is one exception to the rule supporting element
and composition symmetry, since the modeling concepts used for modeling the base behavior, the
crosscutting behavior as well as the pointcuts is done using sequence diagrams, which in differ-
ent contexts can play different roles. Other examples are the approaches of Jacobson et al. and
Aldawud et al. which at a higher level do support element symmetry (�use case slice�) and
element asymmetry (�aspect�), respectively. At a lower level, however, one can observe the re-
verse: Jacobson et al. model and compose �aspect� classes with normal classes while Aldawud
et al. uses state machine regions to model (non-)crosscutting concerns. The approach of France et
al. that combines the compositor mechanism and the pointcut-advice mechanism results in rule
symmetry for the compositor mechanism and rule asymmetry for the pointcut-advice mechanism.

Composition often Deferred to Implementation. Composition at modeling level is only sup-
ported by half of the surveyed approaches. The composition always yields a composed model
conforming to standard UML except for the approach of Clarke et al., where the outcome is repre-
sented by a composite �theme�. The composition semantics of Cottenier et al. and France et al.
have already been implemented within (prototype) tools, while Klein et al. have defined a weav-
ing algorithm. In contrast to Clarke et al., this operationalization enables dynamic composition at
modeling level. Well-defined semantics already at the modeling level is a necessary prerequisite
for achieving more than models-as-blue-print. If, as intended in MDE, models shall replace code
appropriate semantics along with composed models to assist the designer will be required.

Moderate Support for Modeling Interactions. Modeling of interactions both at the level of
modules and the level of rules is still considered rather moderately. Typically the means for speci-
fying interactions at the same time are modeling concepts for resolving conflicts, e.g., an ordering
for composing concern modules or concern composition rules. The approach of Cottenier et al.
represents an exception by proposing �hidden by� and �dependent on� dependencies be-
tween aspects. Since it is natural to expect that large-scale systems might put forward interaction
of modules, for an unambiguous specification of the system it will be necessary to make module
interaction explicit.

113

3 State-of-the-art in Aspect-oriented Modeling

de
te

ct
io

n

co
m

po
si

tio
n

st
at

ic

dy
na

m
ic

M
od

ul
e

R
ul

e

av
oi

d

de
te

ct

re
so

lv
e

Stein <<aspect>> Class PA,
OC

n/a

Pawlak <<aspect>> Class PA n/a

Jacobson
<<use case slice>>

Package;
<<aspect>> Classifier

PA,
OC ~ n/a

Klein
Pair of basic SDs

representing Pointcut
& Advice

PA ~ Stand.
UML

Cottenier <<Aspect>> Class PA Stand.
UML

Aldawud
<<aspect>> Class;

State machine
regions

CMP ~ n/a

Clarke <<theme>> Package
(Template) CMP Themes

France Package (Template) CMP,
PA ~ ~ Stand.

UML

C
om

po
se

d
M

od
ul

e
(C

C
.C

P)

C
om

po
si

tio
n

Se
m

an
tic

s
(C

C
.S

)

In
te

ra
ct

io
n

(C
C

.I)

C
on

fli
ct

R

es
ol

ut
io

n
(C

C
.C

R
)

Ef
fe

ct
 (C

C
.E

)

C
om

po
si

tio
n

M
ec

ha
ni

sm
 (C

C
.M

)

C
om

po
si

tio
n

(C

C
.C

)

C
on

ce
rn

M
od

ul
e

(C
C

.C
M

)

R
ul

e
Sy

m
m

et
ry

 (C
C

.R
S)

El
em

en
t S

ym
m

et
ry

 (C
C

.E
S)

C
om

po
si

tio
n

Sy
m

m
et

ry
 (C

C
.C

S)

Legend:
supported PA Pointcut-Advice

not supported OC Open Class

~ partly supported CMP Compositor

n/a not applicable

Table 3.2: ConcernComposition

Conflict Resolution Based on an Ordering for Composition, Only. A conflict resolution is
provided by half of the approaches focusing on resolving conflicts. The conflict resolution mech-
anisms in most cases comprise means for specifying an ordering of how concern modules are
composed, some provide further means, e.g., to resolve naming conflicts. Only one approach’s
composition semantics (France et al.) allows to detect (syntactical) conflicts. The approach of Ja-
cobson et al. is the only one that explicitly avoids conflicts by continuously refactoring models.
Consequently, the provision of more sophisticated conflict resolution mechanisms including the
detection of conflicts should be focussed in future.

Effect Not Considered. Modeling the effect of composition is not considered at all. Only the
JAC design notation of Pawlak et al. provides a stereotype�replace� for advice which indicates
an effect of either a replacement or a deletion. The possibility of modeling the effect, however,
would enhance the explicitness of models and thus allow for providing better conflict identifica-
tion.

3.4.3 AsymmetricConcernComposition

This part of the lessons learned specifically summarizes the results for the approaches adhering
to the pointcut-advice and/or open class composition mechanism, i.e., Stein et al., Pawlak et al.,
Jacobson et al., Klein et al., Cottenier et al., and France et al.

3.4.3.1 AspectualSubject

The results of evaluating the approaches according to the criteria encompassed by the Aspectual-
Subject sub-category are shown in Table 3.3.

114

3.4 Lessons Learned

Missing Formal Definition of Join Point Models. Half of the surveyed approaches made the
Join Point Model not explicit but defined it ”implicitly” via their pointcut mechanism. The re-
maining did provide a Join Point Model but mostly in terms of a natural language description,
only. Consequently, formal definitions of join point models are missing and shall be considered in
future development of AOM approaches.

st
at

ic

dy
na

m
ic

st
at

ic

dy
na

m
ic

gr
ap

hi
ca

l

te
xt

ua
l

gr
ap

hi
ca

l

te
xt

ua
l

de
cl

ar
at

iv
e

im
pe

ra
tiv

e

en
um

er
at

io
n

be
fo

re

ar
ou

nd

af
te

r

hi
gh

lo
w

Stein
Pawlak
Jacobson Legend:
Klein ~ supported
Cottenier not supported
France ~ partly supported

A
bs

tr
ac

tio
n

(A
S.

A
)

St
ru

ct
ur

al
 J

oi
n

Po
in

t
(A

S.
SJ

P)

B
eh

av
io

ra
l J

oi
n

Po
in

t
(A

S.
B

JP
)

Ex
pl

ic
it

Jo
in

Po
in

tM
od

el
 (A

S.
JP

M
)

St
an

da
rd

iz
ed

 P
oi

nt
cu

t (
A

S.
P)

C
om

po
si

te
Po

in
tc

ut

(A
S.

C
P)

Si
m

pl
eP

oi
nt

cu
t

(A
S.

SP
)

Q
ua

nt
ifi

ca
tio

n
M

et
ho

d
(A

S.
Q

M
)

R
el

at
iv

e
Po

si
tio

n
(A

S.
R

P)
Table 3.3: AspectualSubject

Limited Support for Structural Join Points. Supporting the full spectrum of join points in
AOM approaches would be beneficial with respect to possible enhancement, replacements, and
deletions made in the form of advice. The approaches realizing the open class composition mech-
anism support structural-static join points. The approaches of Pawlak et al. and Cottenier et al.
allow for structural advice which are introduced at run-time, however, thus requiring structural-
dynamic join points (e.g., object instances). The approaches of Klein et al. and France et al. do
not provide structural join points at all. Nevertheless, it has to be noted, that the approach of
France et al. compensates the lack of at least structural-static join points due to also support-
ing the compositor composition mechanism. All approaches consider either behavioral-static or
behavioral-dynamic join points or both.

Standards-Based Pointcut Mechanism Preferred. All but one of the approaches provide a
standards-based pointcut mechanism. Pawlak et al. proposes the only proprietary pointcut lan-
guage based on regular expressions and/or keywords as well as on UML associations. The ap-
proaches of Jacobson et al. and Stein et al. reuse AspectJ’s pointcut language. The rest relies on
UML behavioral diagrams to specify pointcuts, e.g., sequence diagrams (Klein et al.) and com-
bined fragments in sequence diagrams (France et al.), as well as state machines (Cottenier et al.)

Good Support of Composite Pointcuts. The reuse of simple pointcuts is fostered by the use
of composite pointcuts, for which good support is provided in almost all the approaches. The
textual pointcut mechanism of Stein et al., Pawlak et al., and Jacobson et al. provide textual mech-
anisms that allow for composing simple pointcuts using logical operators. Cottenier et al. allow
composing pointcuts with special logical composition operators. While France et al. provides no
support for modeling composite pointcuts, the approach of Klein et al. in principle could support
composition of sequence diagrams on the basis of the sequential composition operator.

115

3 State-of-the-art in Aspect-oriented Modeling

No Imperative Pointcuts. The approaches exclusively allow to select join points declaratively
and/or by enumeration but not in the form of imperative pointcuts, which could serve as a more
verbose pointcut definition.

Good Support of Relative Position Kinds. Except for the approaches of Klein et al. and Cotte-
nier et al., which only cater for the around relative position kind and therefore subsume the before
and after kinds, the other approaches provide full support of relative position kinds. Interest-
ingly, France et al. support two uncommon positions, namely ”begin” and ”end”. Furthermore, it
might be interesting to discuss how the relative positions shall be interpreted in the light of model
elements, since finally the composition in any case will do concrete insertions and deletions of
metamodel instances.

Modeling Aspectual Subjects at Different Levels of Abstraction. All approaches allow to ap-
ply advices to the base at a low level of abstraction, but half of the approaches also allows model-
ing the subjects of adaptation at a higher level of abstraction. For the applicability of AOM, a high
level of abstraction is beneficial, whereas for code generation purposes as well as an automated
execution of the model a detailed specification at a low level of abstraction is necessary.

3.4.3.2 AspectualKind

In Table 3.4, the results for the AspectualKind sub-category are provided.

Composite Advice Not Considered. While most approaches provide modeling means for both
behavioral and structural advice, composing advice to form more complex ones and to foster
reuse is not considered by any of the approaches. Nevertheless, the approach of Klein et al. in
principle could support composition of sequence diagrams, i.e., behavioral advice, on the basis of
the sequential composition operator.

hi
gh

lo
w

Stein
Pawlak
Jacobson Legend:
Klein ~ supported
Cottenier not supported
France ~ partly supported

B
eh

av
io

ra
l A

dv
ic

e
(A

K
.B

A
)

St
ru

ct
ur

al
 A

dv
ic

e
(A

K
.S

B
)

C
om

po
si

te
 A

dv
ic

e
(A

K
.C

A
) A
bs

tr
ac

tio
n

(A
K

.A
)

Table 3.4: AspectualKind

Modeling Aspectual Kinds at a Low Level of Abstraction. Again, as for abstraction with re-
spect to the aspectual subjects all approaches allow modeling advice at a low level of abstraction.
The approach of Cottenier et al. is the only one supporting modeling also at a high level of ab-
straction. It would be beneficial, however, if approaches would provide for high as well as low
level of abstraction.

116

3.4 Lessons Learned

3.4.4 SymmetricConcernComposition

This part of the lessons learned specifically summarizes the results for those approaches support-
ing the compositor composition mechanism, i.e., Aldawud et al., Theme et al., and France et al (cf.
Table 3.5).

Equal Support of Structural and Behavioral Composable Elements. While the approach of
Aldawud et al. is based on state machines, the approach of France et al. allows composing class
diagrams. Thus, the supported composable elements are for the first case behavioral and in the
second case structural. Ideally, composition is possible for both kinds, such as in the composition
metamodel of Clarke et al. Nevertheless, for the approach of France et al., it has to be noted
that the lacking support for behavioral composable elements can be seen as compensated due to
supporting the pointcut-advice composition mechanism for composing sequence diagrams.

S
tru

ct
ur

al

C
om

po
se

ab
le

E

le
m

en
ts

 (S
.S

C
E

)
B

eh
av

io
ra

l
C

om
po

se
ab

le

E
le

m
en

ts
 (S

.B
C

E
)

m
at

ch
-b

y-
na

m
e

m
at

ch
-b

y-
si

gn
at

ur
e

no
-m

at
ch

M
er

ge
 (S

.M
)

O
ve

rri
de

 (S
.O

)

B
in

d
(S

.B
)

hi
gh

lo
w

Aldawud Legend:
Clarke supported
France not supported

In
te

gr
at

io
n

St
ra

te
gy

M
at

ch

M
et

ho
d

(S
.M

M
)

A
bs

tr
ac

tio
n

(S
.A

)

C
om

p.

El
em

en
ts

Table 3.5: SymmetricConcernComposition

Predominance of Matching with Names. Finding corresponding elements on the basis of a
name-based match method represents an easy-to-implement method and in many cases quite an
effective way, which is consequently supported by all three approaches. Clarke et al. addition-
ally allow to explicitly model which elements shall not match by supporting a no-match method.
Recently, France et al. have proposed a more expressive match method based on the elements sig-
natures. The advantage of such a matching method lies in the possibility of finding corresponding
elements with more fine-grained matching criteria other than the element name, e.g., the values of
meta-class properties such as the ”isAbstract” meta-attribute of classes, as well as in the possibility
of detecting and resolving conflicts.

Merge Integration as a Default Strategy. With respect to supporting different integration
strategies, merge is supported by all surveyed approaches. The override and bind strategies are
also supported by all approaches but Aldawud et al. In terms of expressivity, ideally all integra-
tion strategies are supported by an approach.

Modeling at Different Abstraction Levels. The approaches generally provide good support
for modeling at a high and a low level of abstraction. In particular, the approaches of Clarke et al.
and France et al. offer high level views on the concern modules to be composed in terms of UML
packages, while Aldawud et al. model at a detailed level by means of state machines. A high
level of abstraction is beneficial in terms of an approach’s scalability, whereas for code generation
purposes as well as an automated execution of the model a low level view such as the one of

117

3 State-of-the-art in Aspect-oriented Modeling

Aldawud et al. is required. In this respect, state machines probably represent the most elaborate
mechanism for describing an objects life cycle, and are supported by code generation tools such
as Raphsody and StateMate9.

3.4.5 Maturity

In Table 3.6, the measures for the Maturity category are depicted for all surveyed approaches.

C
on

ce
rn

s

E
xa

m
pl

es

Legend:
Stein 2 2 4 `02 supported
Pawlak 1 1 3 `05 not supported
Jacobson >3 1 3 `05
Klein 1 1 9 `06
Cottenier >4 2 9 `06
Aldawud >2 1 5 `05
Clarke >15 >5 >15 `06
France 1 3 >10 `06

year of most recent
publication`YY

number of concerns,
examples, publicationsn

M
od

el
in

g
Ex

am
pl

es

(M
.E

)

A
pp

lic
at

io
ns

 (M
.A

)

Pu
bl

ic
at

io
ns

 (M
.I)

To
pi

ca
lit

y
(M

.T
)

Table 3.6: Maturity

Missing Complex Examples. The majority of the approaches, have demonstrated their ap-
proaches on the basis of rather trivial examples in which not more than two concerns are com-
posed. In this respect, Jacobson et al., Cottenier et al., and Clarke et al. set a good example
by demonstrating their approaches with non-trivial modeling problems. It would therefore be
beneficial if all AOM approaches would document their capabilities on bases of more complex
examples.

Lack of Application in Real-World Projects. The applicability of AOM languages has rarely
been tested in real-world projects. An exception is the approach of Pawlak et al., which has al-
ready been applied to real industrial projects like an online courses intranet site, an incident re-
porting web site, and a business management intranet tool. Another exception is the approach
of Cottenier et al., since their Motorola Weavr tool is already being deployed in production at
Motorola.

3.4.6 Tool Support

Finally, the results concerning the approaches’ Tool Support are summarized in Table 3.7.
Missing Tool Support for Composition and Code Generation. While modeling support in

many approaches is implicitly available due to the use of UML’s profile mechanism, support for
code generation and composition is rare. The approach of Cottenier et al. is the only one that al-
lows for modeling, composition, and code generation. On the one hand, for those approaches that
defer composition to the implementation phase, code generation facilities that produce code for
the target AOP platform would be beneficial. For example, the approach of Pawlak et al. allows

9http://www.ilogix.com/

118

3.4 Lessons Learned

for code generation for the JAC Framework. On the other hand, composition tool support is essen-
tial for those approaches, that have specified the composition semantics for model composition.
The acceptance of an AOM approach will be minimal, if it requires the designers to first model
each concern separately and then to manually compose them. In this respect, the approaches of
France et al. and Cottenier et al. provide appropriate tool support, while the ”weaving algorithm”
of Klein et al. is currently being implemented.

M
od

el
in

g
Su

pp
or

t
(T

.M
)

C
om

po
si

tio
n

Su
pp

or
t (

T.
C

)
C

od
e

G
en

er
at

io
n

(T
.G

)

Stein
Pawlak
Jacobson
Klein ~
Cottenier Legend:
Aldawud supported
Clarke not supported
France ~ partly supported

Table 3.7: Tool Support

3.4.7 General Findings

This section sums up the most important conclusions that are valid for the academic community
as well as for practitioners.

No Explicit Winner. From the results obtained in the evaluation, it is not possible to nominate a
winner. The selection of an AOM approach thus has to be made in the context of a specific project.
For instance, if the requirement is enabling documentation and communication between partners
of an AspectJ-based project, a design notation for AspectJ programs is needed and the approach of
Stein et al. would be a good solution. On the other hand, one might wish for separating concerns
in different class diagrams at design time and then before implementation compose the different
views. In this respect, both approaches of Clark et al. as well as France et al. would be possible
options. Depending on when the current prototype implementation of their integrated toolset is
made available, the approach of France et al. might even be preferred for its tool support. Staying
with tool support, the approaches of Pawlak et al. and Cottenier et al. might be of interest. In con-
trast to the approach of Stein et al., the JAC Design Notation of Pawlak et al. has been specifically
designed for the JAC Framework but comes with modeling support as well as a code generation
facility. What might argue in favor of the AODM of Stein et al. is AspectJ’s maturity. The unique
selling point of the Motorola Weavr of Cottenier et al. is its comprehensive tool support and in
particular its composition mechanism for state machines, for which an academic license can be
obtained. Nevertheless, the approach does not allow composing structural diagrams.

Full Spectrum of UML not Exploited. Interestingly enough, apart of the approaches of Palawak
et al. and Klein et al. the surveyed approaches support structural as well as behavioral diagrams.
Thus, in principle, the approaches allow the modeler to consider both structure and behavior
through their approach. Nevertheless, currently no approach addresses the full spectrum of UML

119

3 State-of-the-art in Aspect-oriented Modeling

in terms of UML’s structural and behavioral diagrams as well as their composition. It is com-
forting that the presumably most often employed UML diagrams have been addressed by AOM
approaches. As can be seen in Table 3.1, the most important structural diagram, i.e., class diagram,
is supported by all approaches addressing structural modeling some of them also allowing their
composition. Likewise for modeling behavior the sequence diagram is covered by all approaches
addressing behavior, some of them also supporting their composition. It would therefore be in-
teresting to investigate how to compose diagram types for which composition has not yet been
specified, e.g., composite structure diagrams. As a consequence, it would also be interesting how
the approaches can be combined in order to gain from best practises in AOM. In this respect, a
first promising attempt has recently been conducted by Clarke et al. and Klein et al. by proposing
KerTheme [JKBC06], a combination of their approaches. Furthermore, the Theme/UML approach of
Clarke et al. has also been extended with join point designation [JC06] diagrams of Stein et al.

Missing Guidance on When to use Asymmetric vs. Symmetric Approaches. It might be a
natural pre-assumption that approaches either follow the asymmetric school of thought or the
symmetric school of thought. France et al. is interesting in this respect since it provides for both.
The recent extension made to Theme/UML in the KerTheme proposal also follow this direction of
combining different composition mechanisms. In terms of expressivity, the advantages of using
different composition mechanisms are obvious. Nevertheless, the question when to best apply an
asymmetric or a symmetric approach has not yet been answered sufficiently.

Missing Tool Support. Certainly, one of the most vital factors for the adoption of AOM in prac-
tise but also in academia is the provision of appropriate tools. Basic modeling support is provided
for some approaches, i.e., for those approaches which rely on UML profiles and consequently can
rely on existing UML modeling tools. AOM, however, is also about the composition of various
concerns that have been carefully separated beforehand. This is a complex task to be understood
by the modeler hence, support for model composition is vital. Still, this is not commonly provided
by the AOM approaches and is also hampered by the fact that not all AOM approaches provide
for a well-defined composition semantics. Finally, code generation, which is an important require-
ment for MDE, is least supported by tools. Only the approaches of Pawlak et al. and Cottenier et
al. provide such facilities.

Adoption of Approaches Requires Scalability. For the adoption of AOM, it would be beneficial
if its applicability would be better evaluated with respect to large scale applications and real-
world scenarios. This is currently only sufficiently addressed by very few approaches, namely,
Clarke et al., Jacobson et al., and Cottenier et al. Nevertheless, scalability is a feature important to
practitioners and has a great impact on the chances of AOM approaches to be adopted.

3.5 Related Surveys

In an effort to shed light on different approaches to aspect-orientation, some surveys comparing
aspect-oriented approaches at different levels in the software development life cycle have already
been presented. In the following, such related surveys can be distinguished into ”closely related”
surveys particularly emphasizing on AOM (cf. Section 3.5.1) and more ”widely related” ones
focusing on AOP (cf. Section 3.5.2), which are nevertheless of interest in the context of this survey.
Furthermore, there exists some work aiming at ”unifying” the currently prevailing diversity of
concepts in the aspect-orientation paradigm. The influence of those on this survey in terms of the
CRM is discussed in detail in the Section 3.1.

120

3.5 Related Surveys

3.5.1 Aspect-Oriented Modeling Surveys

With respect to closely-related surveys on AOM approaches, the most extensive work is provided
by Chitchyan et al. [CRS+05]. This survey’s goal is to ”elicit initial insights into the roadmap
for developing integrated aspect-oriented requirements engineering, architecture, and design ap-
proaches”. Therefore, for each phase of the software development process a review of prominent
contemporary AOSD as well as non-AOSD approaches is provided. For the design phase, the
survey presents the evaluation results of 22 aspect-oriented design approaches along with UML
as the only non-AOSD approach on the basis of a set of 6 evaluation criteria.

Similar, but less extensive AOM surveys with respect to both the set of criteria and the amount
of surveyed approaches have been provided by Reina et al. [RTT04], Blair et al. [BBR+05], and
Op de beeck et al. [dbTB+06]. Reina et al. have evaluated 13 approaches with respect to a set of 4
criteria, only. More specifically, the goal of Reina et al. has been to investigate each approach with
respect to its dependency on particular platforms as well as its dependency on specific concerns,
i.e., if the approach is general-purpose or not.

The major goal in Op de beeck et al. is to investigate 13 existing AOM approaches within the
realm of product-line engineering of large-scale systems and to position them within the full life
cycle of a software development process. In this respect, the authors have evaluated a subset of
approaches already presented by Chitchyan et al., as well as refined a set of six criteria, which
partly have been presented in Chitchyan et al. In addition, the authors provide a discussion of the
criteria’s impact on certain software quality factors.

Blair et al. provide separate sets of criteria for the phases of aspect-oriented requirements en-
gineering, specification, and design. Concerning the design phase, the authors evaluate 5 ap-
proaches according to a set of 8 criteria.

With respect to these existing surveys the present one differs in several ways:

Evaluation Granularity. One major difference between this survey and others concerns the brea-
dth and depth of the evaluation. In particular, the survey investigating most approaches,
i.e., the survey of Chitchyan et al., aims at providing a broad overview by including all
existing aspect-oriented design approaches as well as not so well-elaborated proposals for
such design approaches. In contrast, this survey tries to provide an in-depth investigation
of selected approaches that have already gained a certain level of maturity in terms of pub-
lications at acknowledged conferences and/or journals as well as are based on the Unified
Modeling Language (UML) [OMG05d] as the prevailing standard in object-oriented model-
ing. For an in-depth evaluation a catalogue of criteria is provided which encompasses more
than 40 criteria. In contrast, the other sets of criteria [BBR+05], [CRS+05], [dbTB+06], and
[RTT04], do not include more than 8 criteria. In literature, 14 mature, UML-based AOM ap-
proaches have been identified, including the approaches already investigated in related sur-
veys. In this survey, a representative set of 8 UML-based aspect-oriented design approaches
is evaluated, which has been carefully selected from the above mentioned 14 approaches
with respect to maintaining the ratio between the extension mechanisms used (metamodel
vs. profile) as well as the ratio between symmetric and asymmetric approaches (cf. Section
3.3).

Methodology. Another important difference of this survey to the aforementioned ones lies in the
applied methodology, which bases on a carefully established catalogue of criteria. Great
emphasis has been put on the selection of criteria and their definition in a top-down as well

121

3 State-of-the-art in Aspect-oriented Modeling

as a bottom-up manner. A so-called Conceptual Reference Model for AOM (cf. Section 3.1) has
been proposed, which identifies the basic AOM concepts as well as their interrelationships
and thus, forms the basis for deriving the set of criteria in a top-down manner. Furthermore,
for all criteria used, a clear definition along with the specification of the measurement scale
is given. At the same time, this survey aims at complementing the set of criteria in a bottom-
up manner by those criteria used in related AOM surveys [BBR+05], [CRS+05], [dbTB+06],
[RTT04]. More specifically, criteria found in other surveys have been adopted where appro-
priate or they have been refined where necessary, e.g., with respect to their definition or in
terms of a decomposition into sub-criteria. In the catalogue of criteria (cf. Section 3.2), it
is indicated which criteria have been adopted and which have been refined. Nevertheless,
6 criteria proposed in related surveys have been explicitly excluded from the evaluation
framework due to methodological issues. Specifically, these criteria encompass reusability,
comprehensibility, flexibility, ease of learning/use, parallel development, as well as change
propagation [BBR+05], which corresponds to the evolvability criterion [CRS+05] and can-
not reasonably be measured without empirical studies, e.g., user studies and extensive case
studies. Thus, the catalogue of criteria subsumes the criteria derived from the CRM and the
criteria provided by other surveys.

Inclusion of Recent Approaches. Furthermore, this survey also considers recently published ap-
proaches, namely [CvdBE07], [KHJ06], not included in the other surveys. In this way, this
survey is complementary to the aforementioned surveys by considering also very recent
developments.

Running Example. Finally, in contrast to all other surveys, the evaluation is supported by a run-
ning example that is realized with each of the surveyed approaches. This further supports
the evaluation in that it first, illustrates each approach and second, allows to better compare
the modeling means of the approaches and understand their strengths and shortcomings. If
at all, other surveys rely on diverse examples sometimes taken directly from the respective
approach’s publications (cf. [dbTB+06]).

3.5.2 Aspect-Oriented Programming Surveys

Less closely related, since focusing on AOP, is the survey of Hanenberg [Han05] which presents a
set of criteria used to evaluate four AOP languages. Kersten [Ker05] also provides a comparison
of four leading AOP languages having only AspectJ in common with Hanenberg. In addition,
Kersten also investigates the development environments of these AOP languages.

Although focused on AOP, the evaluation criteria defined in those surveys are also of inter-
est, since some of the surveyed AOM approaches are aligned to a certain aspect-oriented pro-
gramming language. Nevertheless, some of them are not applicable in the context of this survey,
since they are specifically related programming level issues, only. For example, Hanenberg distin-
guishes between ”code instrumentation” and ”interpretation weaving techniques” in the context
of AOP weavers. In this survey, some of their criteria have been adopted and refined such that
they can be applied at the modeling level, too. For example, the idea of evaluating tool support for
AOM approaches has been inspired by Kersten’s criteria on IDE support (e.g., editor, debugger).

122

3.6 Summary

3.6 Summary

This chapter presents an in-depth evaluation of eight aspect-oriented modeling approaches. Since
the research field of aspect-oriented modeling is quite young and a common understanding of
concepts has not yet been established, prior to evaluating the set of aspect-oriented modeling
approaches, the important concepts of aspect-oriented modeling have been identified the form of
a Conceptual Reference Model for aspect-oriented modeling, i.e., a UML class diagram representing
aspect-oriented concepts and their interrelationships.

In a domain, where a generally acknowledged terminology is missing, this Conceptual Refer-
ence Model is an intermediate but essential step towards defining an evaluation framework, i.e., it
forms the basis for inferring a set of concrete criteria. In the context of this thesis, the Conceptual
Reference Model furthermore represents an important step towards extending an existing web
modeling language with aspect-oriented modeling concepts (cf. Chapter 5).

The actual evaluation according to the presented catalogue of criteria is supported by a running
example, which has proven to be helpful, on the one hand, to explore the applicability of each in-
dividual approach and, on the other hand, to allow for a direct comparison of the approaches.
The evaluation results reveal that currently, there is no decidedly superior aspect-oriented mod-
eling approach but that each individual approach has it specific strengths and shortcomings. For
applying aspect-oriented modeling in a project, this means selecting an aspect-oriented modeling
approach by matching the projects requirements with the approach’s features. In this respect, the
evaluation’s results and lessons learned represent the basis for a well-founded decision.

123

3 State-of-the-art in Aspect-oriented Modeling

124

4 Bridging WebML to Model-driven
Engineering

Contents
4.1 Motivation . 126
4.2 DTDs and Ecore at a Glance . 127
4.3 A DTD to Ecore Transformation Framework . 132
4.4 The Resulting WebML Metamodel . 141
4.5 Discussion of the Generated WebML Metamodel 150
4.6 Introducing Customization into the WebML Metamodel 153
4.7 Related Work . 157
4.8 Summary . 159

This chapter presents the fundamental prerequisites for extending the WebML language with
concepts from the aspect-orientation paradigm (cf. Chapter 5). The WebML language has been
partly specified in terms of XML Document Type Definitions (DTD) and partly hard-coded within
the tool accompanying the language. Consequently, in order to support model-driven develop-
ment of web applications in the sense of Model-Driven Engineering (MDE), the WebML language
needs to be specified in a MDE-suitable way, e.g., in terms of a metamodel. Considering the
language’s size, however, we refrain from manually re-modeling WebML from scratch, since this
would be a cumbersome and error-prone process. Instead, the existing DTD-based language spec-
ification shall be reused in a semi-automatic process for metamodel generation from DTDs. In this
respect, constraints hard-coded within the language’s modeling tool WebRatio shall be extracted
as well. After an introduction to this chapter’s particular motivation in Section 4.1, Section 4.2
is dedicated to the explanation of the concepts of DTDs and metamodels as well as certain defi-
ciencies of DTDs when used as a mechanism for defining modeling languages. Section 4.3 then
describes the transformation process, including a set of transformation rules, and a set of heuris-
tics giving indication for a manual refactoring, as well as a presentation of the implementation
of the semi-automatic transformation approach in the form of the so-called MetaModelGenerator
(MMG). In Section 4.4, the transformation framework is applied to the WebML DTD and the re-
sulting WebML metamodel is presented. A discussion of the metamodel’s completeness with
respect to the WebML DTD and the metamodel’s quality is given in Section 4.51. Besides this,
over the years, WebML has been subject to several extensions which have not been captured in
the aforementioned DTD but are discussed in literature, only. In the context of this thesis, the re-
cent extension of WebML with concepts allowing to model customization functionality of UWAs
is particularly vital. Hence, Section 4.6, is dedicated to the introduction of WebML’s new concepts

1The results of semi-automatically generating a MOF-based metamodel for the core WebML language have already been
published in [SWK+07]

4 Bridging WebML to Model-driven Engineering

for addressing customization as well as a discussion of their incorporation into the metamodel.
The final WebML metamodel including concepts for customization modeling is available online2.
While in Section 4.7 an overview of related work is given, a summary of this chapter is provided
in Section 4.8.

4.1 Motivation

Metamodels are a prerequisite for MDE in general and consequently for Model-Driven Web En-
gineering (MDWE) in particular. As already stated in previous chapters, various modeling lan-
guages, just as in the web engineering field, however, are not based on metamodels and standards,
like OMG’s prominent Meta Object Facility (MOF) [OMG04]. While web modeling approaches
originally were based on proprietary languages and rather focused on notational aspects, today
more and more approaches do provide language specifications based on standards though not
always from the model technical space (cf. Chapter 2). Consequently, MDE techniques and tools
cannot be deployed for such languages, which prevents exploiting the full potential of MDE in
terms of standardized storage, exchange, and transformation of models.

Amongst the approaches not yet in line with MDE, WebML [CFB+03] is one of the most elab-
orated web modeling languages stemming from academia and is supported already over several
years by the commercial tool WebRatio as already explained in Chapter 2. WebML’s language
concepts are partly defined in terms of XML document type definitions (DTDs) [W3C06], i.e., a
grammar-like textual definition, specifying an XML document’s structure, and partly hard-coded
within the corresponding modeling tool. In contrast to MOF, DTDs represent a rather restricted
mechanism for describing modeling languages, e.g., with respect to expressiveness, extensibility
as well as readability and understandability for humans. Furthermore, since WebRatio internally
represents models in XML [W3C06], it uses XSLT for generating code directly from WebML mod-
els. In contrast to dedicated MDE code generation technologies, e.g., MOFScript3, writing XSLT
programs for code generation, however, is difficult and error-prone. Concerning these problems, a
metamodel-based approach allows expressing transformation rules in a more compact and read-
able way by using existing MDE-conform code generation techniques or model transformation
languages such as QVT [OMG05a] and ATL [JK06] in order to produce platform-specific models
in an additional step before generating code.

Furthermore, over the years WebML has been subject to several extensions which have not been
captured in the WebML DTD, e.g., additional concepts addressing context-awareness [CDMF07],
service-enabled [MBC+05], and workflow-based [BCFM06] web applications. These extensions
have partly been implemented in WebRatio via the tool’s plugin mechanism. With respect to the
extensions for modeling UWA’s, a prototype extension to the WebRatio tool has been described in
literature [CDMF07].

In order to define WebML’s language concepts in an MDE-suitable way and thus to bridge
WebML to MDE, a MOF-based metamodel for WebML is a fundamental prerequisite. Consid-
ering the language’s size, however, we refrain from re-modeling WebML from scratch, since this
would be a cumbersome and error-prone process. Instead, the existing DTD-based language spec-
ification as well as constraints hard-coded within WebRatio shall be reused in a semi-automatic
process for MOF-based metamodel generation from DTDs. This process is illustrated in Figure

2www.wit.at/people/schauerhuber/aspectUWA
3www.eclipse.org/gmt/mofscript/

126

4.2 DTDs and Ecore at a Glance

4.1 and encompasses three phases, whereby the first two phases concern the semi-automatic gen-
eration of the basic WebML language concepts defined within the WebML DTD. During the first
phase a preliminary version of the metamodel is automatically generated from the available DTD,
while in the second phase this preliminary version is manually validated and refactored accord-
ing to constraints captured within the WebRatio tool support. Moreover, in the context of this
thesis, the recently introduced concepts for supporting customization need to be considered be-
sides WebML’s original modeling concepts. Hence, in a third phase, they need to be included into
the MOF-based metamodel as well. In this respect, the literature concerning WebML’s concepts
for context-awareness [CDMF07] serves as the only input for a manual extension of WebML’s
metamodel towards customization.

3Automatic
Transformation1 Validation &

Refactoring2 Customization
Extension

<!ELEMENT A>
<!ATTLIST A>
<!ELEMENT B>
<!ATTLIST B>
<!ELEMENT C>
<!ATTLIST C>

The WebML Metamodel

Figure 4.1: Process of Designing the WebML Metamodel

The following section explains the concepts of DTDs and MOF and points out the aforemen-
tioned DTD deficiencies.

4.2 DTDs and Ecore at a Glance

As a first step towards bridging WebML to MDE, this section elaborates on the expressiveness
of DTDs, i.e., the concepts used to describe the WebML language, with respect to MOF. In the
context of OMG’s meta-level architecture [OMG05d], this means that a WebML model, which is
represented by an XML document, relates to the instance level (M1) (cf. Figure 4.2).

M2

M1

WebML Metamodel

WebML Model

WebML DTD

M3

conformsTo

MOFDTD-Grammar

WebML XML Doc

Correspondences

conformsTo

conformsTo

conformsTo

Meta-Model
Transformation

Model
Transformation

implies

implies

Figure 4.2: Interrelationships Between the Language Layers of DTD and MOF

Such a model has to conform to the WebML DTD describing the WebML language concepts at
the meta-level (M2). The WebML DTD in turn is based on the DTD-grammar [W3C06] defined at

127

4 Bridging WebML to Model-driven Engineering

the meta-meta-level (M3). Note that, while in case of WebML, a DTD is used to define a modeling
language and therefore can be assigned to the M2 level, DTDs typically are used at M1 in order
to describe the structure of data stored in XML documents. Analogously, MOF concepts defined
at M3 are used to describe metamodels in the sense of MDE at M2. In the present case, this is the
targeted WebML metamodel of which instances in terms of WebML models can be formulated at
M1. This discussion shows that the two M3 level formalisms, in terms of the DTD-grammar and
MOF respectively, represent the concepts on which to identify correspondences. In turn, these
correspondences serve as a basis for M2-level done by the framework presented in Section 4.3.

In the following, UML class diagrams [OMG05d] are used as a common formalism to explain
and to illustrate the major concepts of the DTD-grammar (cf. Section 4.2.1) and MOF (cf. Section
4.2.2). This explanation serves as the basis for identifying differences in the expressiveness of the
two meta-meta-languages (cf. Section 4.2.3).

4.2.1 Document Type Definition (DTD) Concepts

The UML class diagram given in Figure 4.3 is based on previous work [KKR04] and depicts those
DTD concepts present in the WebML DTD. These concepts need to be considered for finding
correspondences to MOF concepts and consequently are reviewed briefly in the following.

DTD

XMLCompositeET

XMLElemType

XMLAtomicET XMLEmptyET

XMLAttribute

*XMLCompositeET
MixedContent

XMLCompositeET
ElemContent

1..*

1

1..*

1

XMLDTD

*

XMLElemType

XMLContentParticle

XMLSequence XMLChoice

2..*

1..*

• ID
• IDREF
• IDREFS
• NMTOKEN
• NMTOKENS

XMLEnumAtt

XMLTokenAtt

XMLStringAtt

XMLEnumLiteral

name:String kind:TokenKind

1

1..*

name:String
declaration:AttDec

cardinality:ContCard [0..1]
nested:Boolean

«enumeration»
TokenKind

• default_value
• #REQUIRED
• #IMPLIED
• #FIXED

«enumeration»
AttDec

• zero-or-one
• zero-or-many
• one-or-many

«enumeration»
ContCard

XMLAnyET

ParameterEntityDec
*1 name:String

value:String

1 *

value:String

Figure 4.3: Overview of Relevant DTD Language Concepts

In general, DTD’s contain markup declarations comprising element types (XMLElemType) and
attributes (XMLAttributes) for defining the logical structure as well as primarily entity dec-
larations (e.g., ParameterEntityDec), as a reuse mechanism for certain re-occurring markup
declarations, for defining the physical structure.

Element types, being first-class citizens in DTDs, have a name and are specialized into XML-

AtomicET (contains no other element types but character data), XMLEmptyET (no content is al-
lowed), XMLAnyET (the content is not constrained), XMLCompositeETMixedContent (a mix
of character data and child element types), and XMLCompositeETElemContent (consists of
an XMLContentParticle). An XMLContentParticle either is an XMLSequence, an XML-

Choice, or an XMLElemType. An XMLChoice or an XMLSequence can be enclosed in paren-

128

4.2 DTDs and Ecore at a Glance

theses for grouping purposes and suffixed with a ’?’ (zero or one occurrences), ’*’ (zero or more
occurrences), or ’+’ (one or more occurrences), whereas the absence of a particular symbol denotes
a cardinality of exactly one.

Attribute declarations define one or multiple XMLAttributes (i.e., name-value pairs) for a
single element type. Each XMLAttribute has a name, a data type, and a default declaration.
The most commonly used data types for attributes are: CDATA (XMLStringAtt), ID, IDREF
(refers to one ID-typed element), IDREFS (refers to multiple ID-typed elements), and Enumera-
tion (XMLEnumAtt). For default declarations there are four possibilities: #IMPLIED (zero or one),
#REQUIRED (exactly one), #FIXED (the attribute value is constant and immutable), and Literal

(the default value is a quoted string).
Please note that, the order constraints imposed by DTDs and the majority of physical structures

of the DTD-grammar (i.e., general entity declarations, notation declarations as well as XMLAttri-
butes of type ENTITY, ENTITIES, and NOTATION) are ignored, since they are actually relevant
to XML documents than to DTDs and the purpose of finding correspondences to MOF concepts
is rather questionable [LM05].

4.2.2 MOF Concepts in Terms of Ecore

In the following, a brief overview of the most important concepts of MOF with respect to finding
correspondences to DTD concepts is given. Note that, by the time of writing there is no standard-
ized implementation of MOF 2.0 available. Therefore, in this thesis, Ecore - a slightly modified
Essential MOF (EMOF) implementation in Java - which is provided by the widespread Eclipse
Modeling Framework (EMF) [BSM+04], is used. In Figure 4.4, the most important concepts of
Ecore with respect to finding correspondences to DTD concepts are summarized.

Ecore

EModelElement

EAnnotation ENamedElement

ETypedElement EClassifier EPackage

EClass EDataTypeEStructuralFeature

EAttribute EReference

changeable : boolean
defaultValue : String

EEnum

EEnumLiteral

name : String

ordered : boolean
lowerBound : int
upperBound : int

containment : booleanid : boolean

abstract : boolean

0..*

0..*

0..*0..*

0..*

0..*

source : String

eSuperTypes

eOpposite

0..1

1

eReferenceType 1

eSuperPackage
eSubPackages

1

1 1

1

1

0..1

eAttributeType

ePackage

eClassifiers

eStructuralFeatures

eContainingClass

eType eLiterals

eEnum

eAnnotations

eReferences0..*

Figure 4.4: Overview of Relevant Ecore Language Concepts

In Ecore there is a single root concept (EModelElement) being the base class for all modeling
elements. Its sub-class EAnnotation is used for describing additional information which cannot

129

4 Bridging WebML to Model-driven Engineering

be presented directly in Ecore-based metamodels. ENamedElement is the base for the remaining
Ecore modeling elements, because it provides for a ’name’ meta-attribute. An EClassifier rep-
resents a type in a model and as such, is the base class for EClass and EDataType, whereas an
ETypedElement serves as the base for other modeling concepts having a type such as EStru-
cturalFeature, which in turn represents a structural feature of an EClass. EClasses are the
first-class citizens in Ecore-based metamodels. An EClass may have multiple EReferences

and EAttributes for defining its structural features as well as multiple super-EClasses. An
EAttribute is part of a specific EClass and can have, as any ETypedElement, a lower and
an upper bound multiplicity. Additionally, it can be specified as being able to uniquely iden-
tify the instance of its containing EClass (cf. ’id’ meta-attribute) and as being ordered. The
type of an EAttribute is either a simple EDataType or an enumeration. EString, EBoolean,
EInt, and EFloat are part of Ecore’s default data type set. EEnum allows to model enumera-
tions defined by an explicit list of possible values, i.e., its literals (cf. EEnumLiterals). Anal-
ogous to EAttribute, an EReference is part of a specific EClass and can have a lower and
an upper bound multiplicity. An EReference refers to an EClass and optionally to an oppo-
site EReference for expressing bi-directional associations. Besides, an EReference can be de-
clared as a being ordered and as a containment reference. EPackages group related EClasses,
EEnums, as well as related EPackages. Each element is directly owned by an EPackage and
each EPackage can contain multiple model elements.

4.2.3 DTD Deficiencies

When comparing a language specified in Ecore to one specified on the basis of DTDs, it is obvi-
ous that DTDs considerably lack extensibility, readability, and understandability for humans, and
above all expressiveness [LM05]. In the following, the major deficiencies of DTDs when used as a
mechanism for defining modeling languages are described. Note that some of these deficiencies
have been resolved with the introduction of XMLSchema [W3C04d], such as limited set of data
types (cf. Section 4.2.3.1), awkward cardinalities (cf. Section 4.2.3.4), missing inheritance concept
(cf. Section 4.2.3.6), and lack of an explicit grouping mechanism (cf. Section 4.2.3.7). A profound
comparison between DTD and XMLSchema can be found in Lee et al. [LC00]. Nevertheless, in the
context of WebML, which is based on DTDs, the following shortcomings need to be addressed:

4.2.3.1 Limited Set of Data Types

In contrast to Ecore, DTDs have a limited set of data types that cannot be extended to support,
e.g., Integer or Float data types. While the provided data types generally are based on Strings,
some other data type may be simulated by defining an enumeration with specific literals. In this
way, a Boolean attribute can be simulated by an attribute of type Enumeration having two literals,
e.g., ’true’ and ’false’. Enumerations, however, cannot capture numeric data types such as Integer
or Float, which are naturally infinite.

4.2.3.2 Unknown Referenced Element Type(s)

DTDs referencing mechanism is based on IDREF(S)-typed attributes, which are able to reference
any element type having an ID-typed attribute. Unlike Ecore, which provides typed references,
it is not possible to identify the element type that may be referenced from an IDREF(S)-typed
attribute based on the information given in DTDs. DTDs even allow to reference different element

130

4.2 DTDs and Ecore at a Glance

types. These referenced element types potentially have a common super-type, which, however,
cannot be specified in the DTD. Due to this peculiarity of DTDs, it is neither possible to determine
which element type(s) may be referenced based on the information given in the DTD nor if a
certain set of element types may be referenced, only.

4.2.3.3 No Bi-directional Associations

While Ecore offers bi-directional associations, in DTDs only uni-directional references can be spec-
ified. There is no way to specify that two uni-directional references in combination form a bi-
directional association either.

4.2.3.4 Awkward Cardinalities

DTDs offer a restricted mechanism to specify cardinalities. More specifically, in contrast to Ecore
there are no explicit concepts for defining cardinalities having a lower bound greater than ’1’ and
for defining cardinalities having an upper bound other than ’1’ or ’*’. This can only be simu-
lated in an awkward way by redundantly specifying a certain element type within the content
specification of its related (parent) element type according to the required cardinality.

4.2.3.5 Missing Role Concept

In DTDs, there is no explicit concept to express that an element type can be deployed in different
contexts, i.e., a role concept such as in Ecore is missing. Thus, in DTDs this is sometimes bypassed
by defining each role as a separate element type each named after the specific role they represent,
and redundantly defining the same content and attribute specifications.

4.2.3.6 Missing Inheritance Concept

DTDs are not able to express inheritance relationships between element types as naturally pro-
vided for Ecore. Hence, DTDs cannot profit from the typical benefits of inheritance such as reuse.

4.2.3.7 No Explicit Grouping Mechanism

There is no explicit mechanism to group parts of a DTD that semantically belong together as it
is supported in Ecore. Nevertheless, this deficiency can be bypassed by encapsulating parts of
a DTD in separate files and employing parameter entities to import these separated definitions
where appropriate.

4.2.3.8 Missing Constraint Mechanism

A mechanism for defining complex constraints, as it is supported in Ecore by using the OCL stan-
dard [OMG05c], is not provided for DTDs. Thus, even simple XOR constraints, which are often
required in metamodels, cannot be specified. This deficiency is specifically problematic, since
possible ambiguities in DTDs cannot be resolved and XML documents, while valid according to
their DTD, might still not represent the domain data correctly.

131

4 Bridging WebML to Model-driven Engineering

4.3 A DTD to Ecore Transformation Framework

On the basis of the discussion of DTD and Ecore concepts as done in the previous section, it is now
possible to give more insight into the semi-automatic transformation approach, which is based on
previous work [SWK06]. Generally, the transformation approach consists of an automatic phase
and a manual phase (cf. Figure 4.5). The first phase is responsible for automatically generating
a first version of the WebML metamodel and is performed by a component called MetaModel-
Generator (MMG). The metamodel generator employs, in a first step, a set of transformation rules
expressing all identified non-ambiguous correspondences between DTD concepts and Ecore con-
cepts (cf. Section 4.3.1). In a second step of that phase, a set of heuristics is applied, dealing
mainly with the aforementioned deficiencies by proposing possible correspondences (cf. Section
4.3.2). On the basis of these suggestions, in the second phase, the user needs to manually vali-
date the generated metamodel and refactor it accordingly (cf. Section 4.3.3). The implementation
architecture of the transformation framework is presented in Section 4.3.4.

M2 WebML MetamodelWebML DTD

M3

conformsTo

MOFDTD-Grammar Correspondences

conformsToimplies

Validation &
Refactoring

Rules &
Heuristics1 2

Figure 4.5: Two Phase Semi-Automatic Transformation Approach

To illustrate the transformation approach, a small sub-set of the WebML DTD is used to show
the effects of applying transformation rules, heuristics and refactoring steps in terms of the re-
sulting WebML metamodel (M2). In particular, this small sub-set consists of part of the concepts
provided by WebML to represent a web application’s content layer which in fact resembles the
well-known ER-model [Che76]. It has to be emphasized that the focus in this section is on the
illustration of the transformation approach, i.e., the consecutive application of (some) transfor-
mation rules, heuristics, and refactoring steps. As a consequence, using an example requiring
concepts for modeling a web application’s hypertext has been avoided, since the concepts are too
numerous and often relate to concepts defined for the content layer. In this respect, the WebML
content layer serves as a self-contained and small example. For those rules and heuristics that
cannot be illustrated in the context of WebML’s content model, an abstract example is provided in
this section as well as a reference to an illustration of their concrete application in the context of
WebML’s hypertext model in Section 4.4.

4.3.1 Transformation Rules

A couple of rules for transforming concepts of DTDs into Ecore concepts have been designed.
Table 4.1 summarizes these rules by differentiating between rules for XMLElementTypes, XML-
Attributes and XOR-Constraints, denoting DTD concepts on the left-hand side and their Ecore
counterparts on the right-hand side. Rules are marked using a decimal numbering schema and
may contain sub-rules, further specializing the correspondences between DTD concepts and Ecore
concepts. Finally, alternative correspondences depending on the concrete DTD concept are de-

132

4.3 A DTD to Ecore Transformation Framework

picted by a distinction of cases. Following, the application of some of these rules are illustrated
using the running example introduced above.

 Rule DTD Concept Ecore Concept

R 1 XMLElemType (ET) EClass
 XMLElemType. Name EClass.name

(1) XMLEmptyET no additional elements required
(2) XMLAnyET no additional elements required
(3) XMLAtomicET add EAttribute

 EAttribute.name=”PCDATA”, EAttribute.eAttributeType=EString,
 EAttribute.defaultValue=XMLAtomicET.value

If XMLSequence with
cardinality=1 and nested=false

add EReference for each XMLElementType in XMLSequence
 EReference.name=XMLElementType.name, EReference.containment=true

If XMLChoice with cardinality=1
and nested=false

add EReference for each XMLElementType in XMLChoice
 EReference.name=XMLElementType.name, EReference.containment=true
add OCL constraints restricting the alternative EReferences

(4) XMLCompositeET
ElemContent

If XMLContentParticle with
cardinality>1 or nested=true

add helper EClasses for each XMLSequence or XMLChoice serving as containers
for nested XMLContentParticles

(5) XMLCompositeETMixedContent add EReference for each XMLElementType
 EReference.name=XMLElementType.name, EReference.containment=true
add EAttribute
 EAttribute.name=”PCDATA”, EAttribute.eAttributeType=EString,
 EAttribute.defaultValue= XMLCompositeETMixedContent.value

R1.1 XMLContentParticle.cardinality EReference.multiplicity
(1) ? (Zero-or-one) EReference.lowerBound=0, EReference.upperBound=1
(2) * (Zero-or-more) EReference.lowerBound=0, EReference.upperBound=-1
(3) + (One-or-more) EReference.lowerBound=1, EReference.upperBound=-1

XM
L

El
em

en
t T

yp
e

(4) no symbol EReference.lowerBound=1, EReference.upperBound=1
R2 XMLAttribute EAttribute

 XMLAttribute.name EAttribute.name
(1) XMLStringAtt, NMTOKEN(S), IDREF(S) EAttribute.eAttributeType=EString
(2) ID EAttribute.eAttributeType=EString, EAttribute.id=true
(3) XMLEnumAtt add EEnum

 EEnum.name= XMLEnumAtt.name+”_ENUM”
 for each XMLEnumLiteral add EEnumLiteral
EAttribute.eAttributeType=EEnum

R2.1 XMLAttribute.cardinality EAttribute.multiplicity

Single-valued
EAttribute.lowerBound=1, EAttribute.upperBound=1,
EAttribute.defaultValue=XMLAttribute.default_value

(1) default_value

Multi-valued
EAttribute.lowerBound=1, EAttribute.upperBound=-1,
EAttribute.defaultValue=XMLAttribute.default_value

Single-valued
EAttribute.lowerBound=1, EAttribute.upperBound=1,
EAttribute.defaultValue=default_value, EAttribute.unchangeable=true

(2) #FIXED

Multi-valued
EAttribute.lowerBound=1, EAttribute.upperBound=-1,
EAttribute.defaultValue=default_value, EAttribute.unchangeable=true

Single-valued EAttribute.lowerBound=1, EAttribute.upperBound=1
(3) #REQUIRED

Multi-valued EAttribute.lowerBound=1, EAttribute.upperBound=-1
Single-valued EAttribute.lowerBound=0, EAttribute.upperBound=1

XM
L

At
tr

ib
ut

e

(4) #IMPLIED
Multi-valued EAttribute.lowerBound=0, EAttribute.upperBound=1

XO
R R3 If XMLElemType is part of several

XMLCompositeETElemContent
then add OCL constraint to contained EClass specifying that the produced
EReferences are exclusive

Table 4.1: Transformation Rules from DTD to Ecore

133

4 Bridging WebML to Model-driven Engineering

4.3.1.1 Rule 1 - Element Type

For each XMLElemType an EClass is created and the name of the EClass is set to the element
type’s name. Depending on the particular sub-class of XMLElemType, additional metamodel
elements have to be created in the transformation process, which is outlined in Table 4.1.

Example. In Figure 4.6(a), the WebML DTD specifies amongst others element types for ENTITY
and RELATIONSHIP, since WebML’s content model is based on the ER-model. According to Rule
1, two EClasses are generated and named after the element types (cf. Figure 4.6(b)). In addition,
the ENTITY XMLCompositeETElemContent contains the RELATIONSHIP XMLEmptyET, and
with respect to case (4) in Table 4.1 an EReference is produced, specifying RELATIONSHIP as
the contained EClass.

<!ELEMENT RELATIONSHIP EMPTY>

<!ELEMENT ENTITY (RELATIONSHIP*)>

0..*

RELATIONSHIP
relationship

ENTITY

<!ATTLIST RELATIONSHIP
id ID #REQUIRED
name CDATA #IMPLIED
entity IDREF #REQUIRED
minCard CDATA #REQUIRED
maxCard CDATA #REQUIRED
…>

<!ATTLIST ENTITY
id ID #REQUIRED
name CDATA #IMPLIED
superEntity IDREF #IMPLIED
persistent (true|false) ‘true’
…>

id:EString
name:EString[0..1]
superEntity:EString[0..1]
persistent:persistenceENUM=“true“

persistence
ENUM

-true
-false

id:EString
name:EString[0..1]
entity:EString
minCard:EString
maxCard:EString(a) (b)

Step 1: Application of Transformation Rules

Figure 4.6: Example of Applying the Transformation Rules (Step 1)

4.3.1.2 Rule 1.1 - Content Particle Cardinality

Each XMLContentParticle may have a certain cardinality, which is represented in metamodels
through the EReference’s multiplicity in terms of lower and upper bound.

Example. Considering the running example in Figure 4.6(b), according to this rule the cardinal-
ity of the relationship from ENTITY to RELATIONSHIP is set to ’0..*’.

4.3.1.3 Rule 2 - Attribute

For each XMLAttribute an EAttribute is created and attached to the EClass representing
the XMLElemType, which in turn owns the XMLAttribute. The name of the EAttribute is
set to the name of the XMLAttribute. The data type of XMLAttribute is one of the following:
CDATA, NMTOKEN, NMTOKENS, ID, IDREF, IDREFS, and Enumeration. Each of these possibilities
requires an appropriate transformation as is outlined in Table 4.1.

Example. The example in Figure 4.6(b), shows that all XMLAttributes of type ID, CDATA,
and IDREF have been transformed into EAttributes of type EString, while the XMLEnumAtt
persistent has been transformed to an EEnum having two EEnumLiterals.

134

4.3 A DTD to Ecore Transformation Framework

4.3.1.4 Rule 2.1 - Attribute Cardinality

Attributes in both, DTDs and Ecore have a certain kind of cardinality. In DTDs, the cardinal-
ity of an XMLAttribute is determined on the one hand by the differentiation between single-
valued (e.g., ID, CDATA, IDREF, NMTOKEN, and XMLEnumAtt) and multi-valued (e.g., IDREFS,
NMTOKENS) attributes and on the other hand by the XMLAttribute declaration (#REQUIRED,
#IMPLIED, #FIXED, and Literal). Table 4.1 illustrates how XMLAttribute cardinalities are
transformed into EAttribute multiplicities.

Example. In Figure 4.6(b), all XMLAttributes are single-valued meaning that the upper
bound is set to one. Only, the EAttributes name and superEntity of EClass ENTITY as well
as name of EClass RELATIONSHIP have a multiplicity of ’0..1’ since their corresponding XML-

Attributes have been defined #IMPLIED. The default value of the EAttribute persistent is
set to one of the EEnumLiterals, i.e., ’true’.

4.3.1.5 Rule 3 - XOR Containment References

An XMLElemType can be part of an XMLContentParticle of different instances of XMLCompo-
siteETElemContent. In the corresponding Ecore-based metamodel an EClass can participate
as the contained element in an arbitrary number of containment references. At instance level, the
contained object, however, can be contained by an instance of only one of the container EClasses
at the same time. Hence, this rule adds an OCL constraint to the contained EClass specifying
this restriction.

Example. In the abstract example in Figure 4.7(a), the XMLElemType C is an XMLContent-

Particle of XMLElemType A and XMLElemType B. The corresponding metamodel in Figure
4.7(b) must ensure that an instance of EClass C is contained either by an instance of EClass A or
by an instance of EClass B. Therefore, an XOR constraint is introduced between the relationship c
from A to C and the relationship c from B to C. For an example application of Rule 3 in the context
of WebML the reader is referred to Listing 4.3 in Section 4.4.3.

<!ELEMENT B (… C* …)>

<!ELEMENT A (… C* …)>

0..*
C

c

A

<!ELEMENT C (…)>

B

0..* c

{xor}

(a) (b)

Figure 4.7: Rule 3 - XOR Containment References

4.3.2 Heuristics

As mentioned before, transformation rules are not enough to obtain an Ecore-based metamodel
from a specific DTD, due to the deficiencies of DTDs described in Section 4.2.3. Thus, for resolv-
ing most of these deficiencies, a set of six heuristics (cf. Table 4.2) is proposed, exploiting the
assumption that design patterns and naming conventions have been used by DTD designers that
have also been found when analyzing the WebML DTDs. This means that the effectiveness of the
heuristics, however, is strongly correlated with the quality of the design of the DTDs. For exam-
ple, the heuristics operate more effectively if naming conventions are used, e.g., for IDREF(S)-

135

4 Bridging WebML to Model-driven Engineering

typed XMLAttributes, (cf. Heuristic 1 - IDREF(S) Resolution) or a common DTD design pattern
[VIG05] for grouping related element types by splitting up a DTD into several external DTDs (cf.
Heuristic 3 - Grouping Mechanism).

In any case, these heuristics propose possible correspondences along with annotations guiding
the validation and refactoring step in phase 2. In this way, semantically rich language concepts
of Ecore such as typed references, data types, and packages can be used to equalize the DTD
deficiencies. Following, the application of some of the heuristics is shown in using the running
example in Figure 4.8.

Heuristic DTD Concept Ecore Concept DTD Deficiency
Resolved

If (XMLTokenAtt.kind=IDREF)
AND (XMLElemType.name=XMLAttribute.name)

then
 add EReference to EClass with name=
 XMLElemType.name,
 EReference.name=XMLAttribute.name
 annotate with «Validate IDREF(S)»

H1

else then
annotate EAttribute with «Resolve IDREF(S) manually»

Unknown Referenced
Element Type(s)

If XMLEnumAtt has two XMLEnumLiterals
and XMLEnumAtt is one of {true, false}, {1, 0},
{on, off}, {yes, no}

then
 EAttribute.eAttributeType=EBoolean
 annotate with «Validate Boolean»
 H2

else if XMLEnumAtt has two XMLEnumLiterals
then
 annotate EEnum with two EEnumLiterals with «Resolve
 possible Boolean type manually»

Limited Set Of Data Types

H3 If DTD imports external DTDs
then
 add EPackages for each external DTDs to the root
 EPackage

No Explicit Grouping
Mechanism)

H4 If the name of two or more XMLElemTypes in a
XMLSequence are equal

then
 annotate container EClass with «Resolve multiplicity
 manually»

Awkward Cardinalities

H5
If XMLElemType has two or more XMLTokenAtts
with declaration=#IMPLIED and (kind=IDREF or
kind=IDREFS)

then
 annotate each EAttribute or EReference (cf. Heuristic 1)
 with «Resolve XOR constraint manually»

Missing Constraint
Mechanism

H6 If XMLElemType is of type XMLAnyET
then
 annotate EClass with «Resolve XMLAnyET manually» Missing Inheritance Concept

Table 4.2: Heuristics from DTD to Ecore

4.3.2.1 Heuristic 1 - IDREF(S) Resolution.

The first heuristic is based on the assumption that an IDREF(S)-typed XMLAttribute might be
named after the XMLElemType it is intended to reference. Thus, although DTDs lack the possi-
bility to explicitly specify the referenced element types (cf. Section 4.2.3.2 Unknown referenced
element type(s)), it is possible to find them relying on naming conventions of element types and
attributes. Heuristic 1 is intended to find such name matches in DTDs. If a match is found, an
EReference is generated pointing to the identified EClass. In addition, the EReference is
annotated with �Validate IDREF(S)�. Furthermore, the multiplicity of the EReference is set to
the multiplicity of the XMLAttribute.

It has to be emphasized that, since this heuristic is based on name matches, two problematic
cases can occur. On the one hand, it may falsely resolve references in case IDREF(S) attributes
are incidentally named like XMLElemTypes but in fact do not reference them. On the other hand,
it may not be possible to resolve a reference in case IDREF(S) attributes are not named according

136

4.3 A DTD to Ecore Transformation Framework

to the XMLElemType they shall refer to. Consequently, the user has to validate if the resolution of
the IDREF(S) is correct or if another EClass should be referenced.

Example. In the running example the XMLAttribute entity in Figure 4.8(a) is resolved to an
EReference in Figure 4.8(b). In case no name match is found, the IDREF(S)-typed XMLAttri-

bute is transformed into an EAttribute of type EString annotated with �Resolve IDREF(S)
manually�, such as the superEntity EAttribute in Figure 4.8(b).

0..*
RELATIONSHIP

relationship

ENTITY
id:EString
name:EString[0..1]
superEntity:EString[0..1] «Resolve IDREF manually»
persistent:EBoolean=“true“«Validate Boolean»

id:EString
name:EString[0..1]
minCard:EString
maxCard:EString

entity1
«Validate IDREF»

(b)

Step 2: Application of Heuristics

<!ELEMENT RELATIONSHIP EMPTY>

<!ELEMENT ENTITY (RELATIONSHIP*)>

<!ATTLIST RELATIONSHIP
id ID #REQUIRED
name CDATA #IMPLIED
entity IDREF #REQUIRED
minCard CDATA #REQUIRED
maxCard CDATA #REQUIRED
…>

<!ATTLIST ENTITY
id ID #REQUIRED
name CDATA #IMPLIED
superEntity IDREF #IMPLIED
persistent (true|false) ‘true’
…>

(a)

Figure 4.8: Example of Applying the Heuristics (Step 2)

4.3.2.2 Heuristic 2 - Boolean Identification

Heuristic 2 is based on the assumption that an XMLEnumAtt consisting of two XMLEnumLit-

erals might represent an attribute of type Boolean (cf. 4.2.3.1 Limited set of data types).
It recognizes such optimization possibilities and, instead of generating an EEnum, produces an
EAttribute of type EBoolean for the following sets of enumeration literals: {true, false}, {1,
0}, {on, off}, and {yes, no}. Furthermore, an annotation �Validate EBoolean� is added to the at-
tribute. In case the two XMLEnumLiterals are not one of the aforementioned sets, the produced
EEnum is annotated with �Resolve possible EBoolean type manually�, indicating the possibility of
replacing the EEnum by the EBoolean data type.

Example. In the running example the XMLEnumAtt persistent is identified to be of type Boo-
lean (cf. Figure 4.8(a)). Thus, in the metamodel, the EAttribute persistent is of type EBoolean
and no EEnum is generated (cf. Figure 4.8(b)).

4.3.2.3 Heuristic 3 - Grouping Mechanism

In Heuristic 3, a parameter entity declaration that points to a further DTD file is interpreted as
representing a group of related markup declarations (cf. 4.2.3.7 No explicit grouping mechanism),
that can be referenced from within a so called root DTD. A root DTD is equivalent to a root pack-
age in a metamodel and external DTDs are equivalent to sub-packages of the root package. Thus,
a package for each external DTD and one root package for the root DTD needs to be generated.

Example. In the abstract example of Figure 4.9(a) a DTD named Root is shown which defines
two ParameterEntityDec PartA and PartB, both referencing an external DTD, A.dtd and B.dtd.
The DTD Root is transformed into the EPackage Root which contains an EPackage A and B for

137

4 Bridging WebML to Model-driven Engineering

the external DTDs (cf. Figure 4.9 (b)). An example application of Heuristic 3 in the context of
WebML may be found in Listing 4.1 in Section 4.4.1.

<!ENTITY %PartA SYSTEM “A.dtd”>

Root.dtd

<!ENTITY %PartB SYSTEM “B.dtd”>

%PartA

%PartB
A B

Root

(a) (b)

Figure 4.9: Heuristic 3 - Grouping Mechanism

4.3.2.4 Heuristic 4 - Cardinalities Identification

This heuristic is based on the assumption that an XMLSequence containing element types of the
same name has to be interpreted as ”one piece of information” (cf. 4.2.3.4 Awkward cardinalities).
This means that instead of producing an EReference for each single element type, only one
EReference should be generated and the cardinality has to be inferred from all element type
cardinalities within the sequence. Heuristic 4 adds an annotation �Resolve cardinality manually�
to the EClass containing the EReferences to indicate that a specific sequence of element types
transformed into a set of EReferences possibly has to be remodeled into one EReference and
the appropriate multiplicity has to be assigned.

<!ELEMENT B (…)>

<!ELEMENT A (… B, B+ …)> b1

A B
1

(a) (b)b21..*

«Resolve multiplicity
manually»

Figure 4.10: Heuristic 4 - Cardinalities Identification

Example. In Figure 4.10(a), an example for the awkward cardinality deficiency of DTDs can be
found. The problem is that the first and the second XMLContentParticle B of XMLElemType
A together maybe represent one set of elements with a cardinality restriction of ’2..*’ instead of
representing two separate sets of elements. Consequently, in the corresponding metamodel (cf.
Figure 4.10(b)), this ambiguity is marked by the annotation �Resolve cardinality manually�. This
annotation indicates that in the validation and refactoring step the user has to decide, if b1 and b2
are two separate sets or if b1 and b2 should be merged into one set with a cardinality of ’2..*’. This
heuristic has been applied for example in the context of WebML’s hypertext model (cf. Listing 4.2
in Section 4.4.3).

4.3.2.5 Heuristic 5 - XOR Constraints Identification

If two XMLAttributes within an attribute list declaration of an element type are both of type
IDREF(S) and have been declared as #IMPLIED they might represent two excluding ERefer-

ences in the metamodel and hence require an XOR constraint. Heuristic 5 annotates these ERef-
erences (or EAttributes if the reference could not be resolved automatically by Heuristic 1)
with �Resolve XOR constraint manually� to indicate the possible need for an XOR constraint.

138

4.3 A DTD to Ecore Transformation Framework

<!ELEMENT A (…)>

0..1

C
b

A

B
0..1 c

<!ATTLIST A
…
b IDREF #IMPLIED
c IDREF #IMPLIED
…> (a) (b)

«Resolve XOR constraint manually»

Figure 4.11: Heuristic 5 - XOR Constraints Identification

Example. In Figure 4.11(a) an excerpt of a DTD is shown which defines an XMLElemType

A containing two attributes, namely b and c. Both attributes are IDREF-typed and defined as
#IMPLIED which means both attributes are optional. In this example, Heuristic 1 is used to re-
solve the IDREF attributes as EReferences. In some cases, however, two optional IDREF-typed
attributes are mutually exclusive. Therefore, EReferences b and c are annotated with the anno-
tation�Resolve XOR constraint manually� indicating that the user must decide if actually an XOR
constraint exists between these two relationships or not. For an example application of Heuristic
5 in the context of WebML see Listing 4.4 in Section 4.4.3.

4.3.2.6 Heuristic 6 - Inheritance Identification

This heuristic is based on the assumption that the element type XMLAnyET sometimes is used as
a container element for other concepts in the described language, i.e., concepts that have similar
properties and in this way may represent sub-types of the XMLAnyET element. Hence, Heuristic 6
annotates EClasses resulting from an XMLAnyET with�Resolve XMLAnyET manually� in order
to propose a possible candidate for inheritance.

Example. In Figure 4.12(a), the abstract example shows a DTD, in which XMLElemType A con-
tains an XMLElemParticle B. XMLElemType B, in turn, is defined as XMLAnyET stating that
element B can be any XMLElemType or any text. In Figure 4.12(b), an example XML document is
shown, where element A contains element B which in turn contains elements of type C and D. In
Figure 4.12(c) the corresponding metamodel from the DTD definition contains amongst others an
EClass B which is annotated with �Resolve XMLAnyET manually�. This annotation indicates
that the user has to decide, how to express the possibility that an instance of EClass B can contain
instances of EClass C and D. In general, this possibility can be expressed as an inheritance rela-
tionship, defining EClass B as the super-class of EClasses C and D. In the context of WebML’s
hypertext model, an example application of Heuristic 6 is provided in Listing 4.5 in Section 4.4.4.

<!ELEMENT B ANY>
<!ELEMENT A (B*)>

<!ELEMENT C (…)>
<!ELEMENT D (…)>

<A>

<C …/>
<D …/>

B

b 0..*

C D

«Resolve XMLAnyET manually»
(a)

(b) (c)

A

Figure 4.12: Heuristic 6 - Inheritance Identification

139

4 Bridging WebML to Model-driven Engineering

4.3.3 Manual Validation and Refactoring of the Generated Metamodel

The second, manual phase of the transformation framework requires user interaction for vali-
dating and refactoring the automatically produced metamodel on the basis of domain-knowledge
and specifically on the basis of the suggestions annotated by the applied heuristics. In the example
shown in Figure 4.13(a), two annotations with respect to Heuristic 1 were introduced indicating
that the user should validate, on the one hand, the directed reference introduced between EN-
TITY and RELATIONSHIP (�Validate IDREF�) and, on the other hand, the introduced attribute
superEntity which was marked with �Resolve IDREF(S) manually�. While the directed reference
appears to be a correct transformation, the introduced attribute superEntity is, in fact, a reference
to the ENTITY in its role as super-entity used to model inheritance in WebML and therefore shall
be manually refactored accordingly by replacing the EAttribute with an EReference from
ENTITY to itself with the role name superEntity (cf. Figure 4.13(b)). Furthermore, according to
Heuristic 2, in the given example the EAttribute persistent has been annotated with �Resolve
possible EBoolean type manually� to indicate the need of manual validation. In this case no manual
refactoring is necessary and the annotation can be deleted.

0..*
RELATIONSHIP

relationship

ENTITY
id:EString
name:EString[0..1]
superEntity:EString[0..1] «Resolve IDREF manually»
persistent:EBoolean=“true“«Validate Boolean»

id:EString
name:EString[0..1]
minCard:EString
maxCard:EString

entity1
«Validate IDREF»

(a)

Step 2: Application of Heuristics

0..*
RELATIONSHIP

relationship

ENTITY
id:EString
name:EString[0..1]
persistent:EBoolean=“true“

id:EString
name:EString[0..1]
minCard:EString
maxCard:EString

entity1

superEntity
0..1

(b)

Step 3: Validation and Refactoring

Figure 4.13: Example of Applying Manual Refactoring (Step 3)

4.3.4 Implementation Architecture of the MetaModelGenerator

As already mentioned, the core component of the transformation framework is represented by
the MetaModelGenerator. Figure 4.14 shows the details of its implementation architecture. The
MMG is based on the EMF and on an open source DTD parser4. In a first step a specific DTD, in
this case, the WebML DTD, serves as input to the DTD parser, which builds a Java object graph
of DTD markup declarations in memory. Then each element type in the object graph is visited
and transformed according to the transformation rules and heuristics described in Section 4.3.1
and Section 4.3.2 respectively. Each transformation rule is implemented as a separate Java method
which takes DTD element type objects as input and generates the objects for the corresponding
Ecore elements. If a transformation rule uses a heuristic, then the corresponding method calls a
helper method which implements that heuristic. As soon as the complete element object graph
of the Ecore-based metamodel has been generated, the default XMI serializer of EMF is activated

4www.wutka.com/dtdparser.html

140

4.4 The Resulting WebML Metamodel

in order to serialize the metamodel as an XMI file. This XMI file can be loaded into OMONDO5,
a graphical editor for Ecore-based metamodels available as an Eclipse plug-in. In a last step, the
annotations created to indicate that a heuristic has been applied, should be validated by the user
and the metamodel should be refactored accordingly.

M2 WebML MetamodelWebML DTD

M3

«conformsTo»«conformsTo»

MOFDTD-Grammar

«parses» «generates»

XMI-Serializer
<ecore class>

<ecore>
<ecore class>

<ecore att>

Preliminary
Metamodel

MetaModelGenerator
(MMG)

DTD element
type object graph

Metamodel
element object graph

DTD-Parser Transformer

«uses» «uses»

TransformationRules Heuristics

Correspondences

Class

Class Class Class

Class

Class Class

Omondo

User

Ph
as

e
1

Ph
as

e
2

Semantic
enrichment

<!ELEMENT A>
<!ATTLIST A>

<!ELEMENT B>
<!ATTLIST B>

<!ELEMENT C>
<!ATTLIST C>

Figure 4.14: Architecture and Mode of Operation of the MMG

4.4 The Resulting WebML Metamodel

The Ecore-based metamodel for WebML resulting from the application of the DTD2MOF trans-
formation framework to the WebML DTD is subject of this section. In particular, the rationale
behind some of the manual refactoring decisions shall be explained. Additionally, the WebML
metamodel shall be illustrated by relating it to a concrete modeling example, i.e., a demo WebML
model that is shipped with WebRatio. This way, the intention is to briefly explain the language
and notation to those unfamiliar with WebML and at the same time indicate the relationship be-
tween the model and the metamodel specification as well as informally show the equivalence
of the metamodel with the original WebML DTD. A more profound evaluation of the WebML
metamodel is provided in Section 4.5.

Please note that the following figures depicting some of the metamodel’s packages have been
simplified for readability purposes. For the same reason, XOR constraints are illustrated in UML
syntax. For an in-depth description of each modeling concept the reader is referred to [CFB+03].
Before describing some of the packages in more detail and explaining some of the refactoring
actions (cf. Section 4.4.2 - 4.4.7), an overview on the overall package structure is given.

5www.omondo.com

141

4 Bridging WebML to Model-driven Engineering

4.4.1 Overall Package Structure

The WebML designers have used parameter entities as a mechanism to structure the WebML’s
language specification. Thus, the WebML language definition consists of several DTDs with
WebML.dtd being the root DTD that imports the others, which is expressed in Listing 4.1.

Listing 4.1: WebML’s Concepts Grouped With External DTDs

<!−− WebML. dtd −−>

<!ENTITY % StructureDTD SYSTEM ” S t r u c t u r e . dtd”>
%StructureDTD ;
<!ENTITY % NavigationDTD SYSTEM ” Navigation . dtd”>
%NavigationDTD ;
<!ENTITY % PresentationDTD SYSTEM ” P r e s e n t a t i o n . dtd”>
%PresentationDTD ;
. . .

While Structure.dtd and Navigation.dtd define the main language concepts that have been intro-
duced in [CFB+03], other rather tool-related DTDs have been introduced in the WebRatio tool.
In contrast to previous work [SWK06], where the main focus has been WebML’s main language
concepts, in this thesis all of WebML’s DTDs are considered. This allows for migrating existing
WebML models that have been generated using WebRatio into models conforming to the meta-
model specification without loosing any information (cf. Section 4.5.1) and thus profiting from
further MDE techniques such as model transformation.

WebML

Structure

Hypertext Content
Management

Access
ControlHypertext

Organization

Navigation

Localization

Presentation Auxiliary

Basic

RDBMS
Mapping

Mapping

Figure 4.15: WebML Packages View

Figure 4.15 presents a bird’s eye view of the resulting WebML metamodel, i.e., its packages and
their interrelationships. This structural organization of the WebML concepts has been automati-
cally generated on the basis of Heuristic 3. While Structure.dtd corresponds to the Structure pack-
age in Figure 4.15 and contains concepts for modeling the content level of a web application, the
Navigation package contains modeling concepts for the hypertext level and has been automatically
generated from the Navigation.dtd. The rather large Navigation package has been manually reorga-
nized into four sub-packages, namely HypertextOrganization, Hypertext, ContentManagement, and

142

4.4 The Resulting WebML Metamodel

AccessControl. In addition, the package Basic has been introduced, which includes typical abstract
concepts, e.g., ModelElement and NamedElement, from which all other WebML concepts are de-
rived. The additional gray-shaded packages have been generated from the tool-related DTDs:
First, the Mapping package imports the RDBMSMapping package which provides concepts for
specifying the mapping of WebML’s content model to a relational database, second, the Localiza-
tion package offers modeling concepts for multilingual web applications, third the Presentation
package defines concepts for modeling the Look & Feel of web applications, and fourth, the graph-
ical illustration and positioning of WebML’s notational elements within the WebRatio modeling
editor is determined by concepts defined in the Auxiliary package.

In the following, a detailed description of the tool-related packages is omitted in favor of pre-
senting the actual WebML language, i.e., the Structure, Navigation, and Basic packages, as well
as some of the applied refactoring actions. In order to better illustrate the semantics of the meta-
model, the corresponding part of a concrete WebML modeling example will be provided for each
package. For this reason, the ACME (A Company Manufacturing Everything) example model,
which is a demo WebML model shipped with WebRatio, shall be used. It represents a company’s
website where users can browse and search products as well as special combinations of products.
These products and combinations can be edited, extended, and deleted by administrators of the
web application.

4.4.2 Structure Package

The Structure package (cf. Figure 4.16(a)) contains modeling concepts that allow modeling the
content layer of a web application, which regards the specification of the data used by the appli-
cation. Since, as already mentioned, WebML’s content model is based on the ER-model, it basically
supports ER modeling concepts: An Entity represents a description of common features, i.e., At-
tributes, of a set of objects. Note, that unlike UML class diagrams, ER diagrams model structural
features, only.

0:NCategory
OID:OID
category:String

Product
OID:OID
code:String
description:Text
highlighted:Boolean
name:String
price:Float
thumbnail:BLOB

TechRecord
OID:OID
colors:BLOB
dimensions:String

BigImage
OID:OID
description:Text
picture:BLOB

Combination
OID:OID
code:Text
description:Text
endDate:Date
highlighted:Boolean
name:String
photo:BLOB
price:Float
startDate:Date

0:1

User
OID:OID
Email:String
Password:Password
UserName:String

Group
OID:OID
GroupName:String

Module
OID:OID
ModuleD:String

0:N

0:N

0:N 1:1

1:1 1:1

1:1 1:N

1:N 1:N

Store
OID:OID
address:String
http:URL
map:BLOB
photo:BLOB

Structure

minCard:EInt
maxCard:EInt

Entity

Relationship Domain

superentity0..1

inverse
1

attribute
*

* domainValue

relationship*

1 to

DomainValue

Attribute
type:WebMLTypes

userType0..1

{xor}• String
• Text
• Password
• Number
• Integer
• Float
• Date
• Time
• TimeStamp
• Boolean
• URL
• BLOB
• OID

«enumeration»
WebMLTypes

1:1 1:N

(a) (b)

Figure 4.16: Structure Package

With respect to manual refactoring actions, an XOR constraint has been added to the meta-
model in order to specify that Attributes can have either a predefined type, e.g., String, Integer,
Float, Date, Time, and Boolean, or a userType, i.e., an enumeration type represented by Domain
and DomainValue, respectively. Entities that are associated with each other are connected by Re-

143

4 Bridging WebML to Model-driven Engineering

lationships whereby the type of the meta-attributes minCard and maxCard of Relationship have
been changed from EString to EInt.

In Figure 4.16(b)6, the WebML content model of the ACME web application is depicted. Products
belong to one Category and can be described by a TechnicalRecord and several BigImages. Further-
more, Products can be offered within several Combinations with other Products. In addition, the
web application provides information of available Stores. The User, Group, and Module entities are
used for user management (e.g., normal users and administrators) and access control purposes.

4.4.3 HypertextOrganization Package

The HypertextOrganization package includes concepts for structuring the hypertext, i.e., it offers
concepts for organizing modeling concept from the Hypertext package (cf. Section 4.4.4). More
specifically, the Page concept is used to organize and structure information from the content level,
e.g., ContentUnits from the Hypertext package. Siteviews and Areas in turn group Pages as well
as operations on data from the content level, e.g., OperationUnits from the ContentManagement
package (cf. Section 4.4.5). More specifically, Siteviews represent groups of areas and/or pages
devoted to fulfilling the requirements of one or more user groups, while Areas are containers
of Pages or nested sub-areas related to a homogeneous subject and are used to hierarchically
organize the web application. These concepts are encapsulated within the HypertextOrganization
package (cf. Figure 4.17(a)).

ProductsProducts

Offers

Stores
LL

Stores
LL

ByCategory
D

ByPrice Product
Search

ProductPageProductPage ImagesPage

Search
Combinations
D

Search
Combinations
D

Combination
Page

LLLL

Home HH
LL

Home HHHome HH
LLLL

LLLL

LLLL

HypertextOrganization

landmark:EBoolean landmark:EBoolean
Page

Hypertext::
ContentUnit

Hypertext::
LinkableElement

AlternativeArea

SiteView ContentManagement::
GlobalParameter

ContentManagement::
Transaction

ContentManagement::
OperationUnit

defaultPage
0..1

*
page

0..1
defaultArea

homepage*page 0..1

*area

area *

transaction
*

operationunit
*

transaction*

operationunit*

contentUnit
*

defaultPage

0..1

alternative*
2..*
page

*

{xor} {xor}

{xor}

LLLL LLLL

(a) (b)

{xor}

Figure 4.17: HypertextOrganization Package

With respect to refactoring actions, it was possible to identify an example of the awkward car-
dinalities problem (cf. Section 4.2.3.4) based on EAnnotations created by Heuristic 4. The defi-
nition of the Alternative concept requires the Alternative to have at least two sub-pages, which is
expressed in the WebML DTD as is depicted in Listing 4.2.

Listing 4.2: Alternative has two or More Sub-Pages

<!ELEMENT A l t e r n a t i v e (Page , Page+)>

Yet, this definition found in the DTD might be interpreted differently in a metamodel. One pos-
sible interpretation is that the first XMLContentParticle represents a special page, e.g., a de-

6For readability reasons, we do not incorporate ”instance-of” relationships from the modeling example part to the meta-
model part of the figure.

144

4.4 The Resulting WebML Metamodel

fault page. The correct interpretation in the context of WebML [CFB+03] is, however, that the first
and the second XMLContentParticle together represent one set of alternative Pages, i.e., one
containment EReference, but with special restrictions on their cardinalities, i.e., 2..*. In meta-
models, this constraint can be expressed unambiguously, which is shown by the Alternative.page
reference in Figure 4.17(a).

While Rule 3 already detected, that Pages and Transactions can be contained by either a Siteview
or an Area (cf. Listing 4.3), Heuristic 5 identified further possible candidates for XOR constraints
in the HypertextOrganization package.

Listing 4.3: Page is Either Placed Within a Siteview or an Area

<!ELEMENT Siteview (. . . Page∗ . . .) >

<!ELEMENT Area (. . . Page∗ . . .) >

In Listing 4.4, an Area can have either a defaultArea or a defaultPage, but not both at the same
time.

Listing 4.4: Area has either a defaultPage or a defaultArea

<!ELEMENT Area (. . .) >

<!ATTLIST Area
defaultPage IDREF #IMPLIED
defaultArea IDREF #IMPLIED
. . . >

In the DTD the attribute list declaration of Area is not able to ensure this constraint at the
instance level. Therefore, an XOR constraint has been introduced to specify that either the default-
Page EReference or the defaultArea EReferences occurs at the instance layer:

context Area inv:

defaultArea.oclIsUndefined()<>defaultPage.oclIsUndefined()

In the ACME WebML model, separate Siteviews for users and administrators have been de-
signed. The first one, the Web Siteview, is depicted in Figure 4.17(b). The Products Area groups all
Pages presenting some information about products and the Home Page (H) acts as the entry point
of the Siteview. The default page of an Area (D) such as the ByCategory Page of the Products Area
is the one displayed when the Area is entered. Furthermore, Pages and Areas declared as land-
mark (L) are reachable from all other Pages or Areas within their enclosing Siteview or enclosing
Area. In this respect, the landmark represents a compact way of specifying a set of links to a Page
or Area, respectively.

4.4.4 Hypertext Package

The hypertext layer represents a view on the content layer of a web application, only, and thus,
the Hypertext package reuses concepts from the Structure package, namely, Entity, Relationship,
and Attribute. The Hypertext package (cf. Figure 4.18(a)) summarizes ContentUnits used, for
example, to display information from the content layer, which may be connected by Links in
a certain way. Based on Heuristic 6, a candidate EClass for introducing inheritance has been
identified. In WebML, Pages contain different kinds of ContentUnits (cf. Listing 4.5).

Listing 4.5: Page Contains Different Kinds of ContentUnits

<!ELEMENT Page (ContentUnits , . . .) >

<!ELEMENT ContentUnits ANY >

145

4 Bridging WebML to Model-driven Engineering

The XMLAnyET, however, does not restrict which element types are allowed, i.e., only Content-
Units, and which are not allowed at the instance layer. Again, these constraints have to be ensured
by the WebRatio tool. In the metamodel, this problem could be resolved by manually introducing
a generalization hierarchy, which includes the additional abstract classes ContentUnit, Display-
Unit, and SortableUnit. This way, it can be ensured that Pages contain sub-classes of ContentUnit,
only, and handle the large amount of different kinds of ContentUnits more easily by reducing
redundant structural feature definitions.

Products

ByPrice

LLLL

AllProducts

Product

ByCategory

LLLL

Categories

LDLD Category

ProductSearch

LLLL

SearchProducts ProductsFound

Product
[name description contains ?]

Product

ProductDetails
TechnicalRecord

Combinations
of product

Product
Combination

[Product_2_Combination]
TechRecord

[Product_2_TechRecord]

Images

EnlargedImages

Product
BigImage

[Product_2_BigImage]

Product

sourceLinkParameter
0..1

linkParameter
*

to
1

link *

relationship0..1

relationship1

0..1attribute 1

1
attribute

attribute

selector
preselector

0..1
0..1

*

*

0..1entity

*
*

1..*

selector
0..1

*

*

LinkableElement

ContentUnit

LinkLinkParameter

EntryUnitDisplayUnit

Structure::Entity

SortableUnit DataUnit

Hierarchical
IndexUnit

MultiChoice
IndexUnit IndexUnit MultiDataUnit ScrollerUnit

Selector

Content::
Attribute

Structure::
Relationship

SelectorCondition

Hierarchical
IndexLevel

Structure::Attribute

SortAttribute

Hypertext

• normal
• transport
• automatic

«enumeration»
LinkType

type:LinkType

(a)

(b)

selectionField

field

validationrule validationrule

validationrule

slot

slot

*

* *

*

*

*
ValidationRule

SelectionField

Field

Slot
*

{xor}
{xor}

Figure 4.18: Hypertext Package

The abstract class LinkableElement has been manually introduced in order to cope with other
language concepts that can also be connected by Links. This was necessary, since the IDREF-typed
XMLAttribute to of the Link XMLElemType declaration does not restrict the referenced elements
to those that the designer originally intended to reference (cf. Listing 4.6).

146

4.4 The Resulting WebML Metamodel

Listing 4.6: Link Targets are not Specified

<!ELEMENT Link (. . .) >

<!ATTLIST Link
to IDREF #REQUIRED
type (normal | automatic | t r a n s p o r t) ’ normal ’
. . . >

Furthermore, besides ContentUnits, there are other LinkableElements in the HypertextOrga-
nization package (cf. Section 4.4.3), namely Page and Area, as well as in the ContentManagement
package (cf. Section 4.4.5), namely OperationUnits. More specifically, three disjoint LinkTypes
are available in WebML, i.e., normal, automatic, and transport (cf. Figure 4.18(a)). Besides this Link
concept, there are also the OKLink and KOLink modeling concepts from the ContentManagement
package, which are specifically used to define Links from OperationUnits to other LinkableEle-
ments. Consequently, there are multiple sourceElement-link-targetElement tuples of which some
are allowed in WebML, only (cf. Table 4.3).

From\To Content
Unit

Operation
Unit Page Area

Content
Unit

normal
automatic
transport

normal
transport

Operation
Unit

transport
OK
KO

transport
OK
KO

transport
OK
KO

transport
OK
KO

Page normal
transport

normal
transport

normal

Table 4.3: Linking Possibilities in WebML

These sourceElement-link-target Element tuples, however, are not restricted by the WebML
DTD but are implicitly ensured within the WebRatio tool. Aiming at a precise definition of
sourceElement-link-targetElement tuples, in the WebML metamodel, the introduction of the Link-
ableElement concept, which acts as a super-class for all possible sources and targets, is not enough.
Consequently, a set of appropriate OCL constraints restricting the tuples to those that are allowed
in WebRatio have been introduced (cf. Table 4.3). For example, a Page cannot link ContentUnits,
which can be specified with the following OCL constraint:

context Page inv:

self.link->forAll(l | not l.to.oclIsTypeOf(ContentUnit))

Figure 4.18(b) shows a refined view of the Web Siteview presented in Figure 4.17(b) depicting
in detail the Products Area: While the ByPrice Page uses the IndexUnit AllProducts for listing links
to all products in ascending order according to their price, the ByCategory Page displays a linked
list of all products organized according to their categories using a HierarchicalIndexUnit. The
ProductSearch Page provides an EntryUnit SearchProducts with one Field where the user can enter
a keyword and displays the found products as an IndexUnit. A single SelectorCondition of the In-
dexUnit’s Selector defines that only those products are to be retrieved, where the keyword is part
of the name or the description of the product. A specific product is shown by the Product Page,
which is linked by all other Pages via Links of type normal. The ProductDetails DataUnit represents
one product from the content model and displays the specified Attributes, only. Furthermore, an

147

4 Bridging WebML to Model-driven Engineering

additional DataUnit retrieves the technical record of the product and an additional IndexUnit dis-
plays a linked list of combinations where the specific product is part of. The information about
what technical records and what combinations to retrieve is transported via LinkParameters of
Links of type transport (dashed arrows), which are neither navigable by nor visible to users. Fi-
nally, the Images Page again shows some details of a product using a DataUnit and a set of images
of the product using a MultiDataUnit.

4.4.5 ContentManagement Package

The ContentManagement package contains modeling concepts that allow the modification of data
from the content layer. Similar to the generalization hierarchy in the Hypertext package, addi-
tional abstract classes have been introduced to the ContentManagement package on the basis of
EAnnotations created by Heuristic 6 (cf. Figure 4.19(a)), i.e., OperationUnit, ContentManagement-
Unit, EntityManagementUnit, and RelationshipManagementUnit. In particular, the introduction of
the OperationUnit EClass ensures that Areas and Siteviews from the HypertextOrganization
package contain sub-classes of OperationUnit, only. Since the specific ContentManagementUnits
are able to create, modify, and delete Entities as well as establish or delete Relationships between
Entities from the content layer, the ContentManagement package reuses concepts from the Struc-
ture package, namely Entity and Relationship.

Images

ExistingImages ProductDetails NewImage

DeleteImage AddImage

Product_2_BigImage BigImage BigImage_2_Product BigImage

BigImage
[Product_2_BigImage]

Product

Disconnect
Image

DeleteImage Connect
Image

CreateImage

ContentManagement

1 relationship
1
entity

1
globalparameter

1..*

operationunit

selector
0..1

0..1
0..1

0..1
targetselector

sourceselector
selector

0..1 entity

to

to

* *

0..1

0..1
okLink

koLink
OperationUnit

SetUnit ContentManagementUnit

EntityManagementUnit RelationshipManagementUnit

ConnectUnit DisconnectUnit

Structure::Relationship

CreateUnitModifyUnitDeleteUnit

Structure::Entity

GlobalParameter

Transaction

Hypertext::
Selector

OKLink
KOLink

Hypertext::
LinkableElement

(a) (b)

OK
OK

OK

OKKO KO KOKO

GetUnit1

Figure 4.19: ContentManagement Package

Furthermore, redundant definitions of the same concept have been identified, namely Selector.
As an example, a RelationshipManagementUnit may have two Selectors, with one being used in
the role of a sourceselector and the other one being used as a targetselector. In the WebML DTD,
this is expressed as follows (cf. Listing 4.7).

Listing 4.7: Roles of the Selector Concept

<!ELEMENT DisconnectUnit (S o u r c e s e l e c t o r ? , T a r g e t s e l e c t o r ? , . . .) >

<!ELEMENT S e l e c t o r (Se lec torCondi t ion+)>
<!ELEMENT S o u r c e s e l e c t o r (Se lec torCondi t ion+)>
<!ELEMENT T a r g e t s e l e c t o r (Se lec torCondi t ion+)>

Since the Targetselector and Sourceselector XMLElemType declarations are identical to the Selector
XMLElemType declaration, one can conclude that they represent the same concept as the Selector

148

4.4 The Resulting WebML Metamodel

but are used in a special context. In contrast, in metamodels this context information can be de-
fined as roles, i.e., incorporated by the EReferences’ names. Therefore, the WebML metamodel
only contains the Selector EClass, which is referenced by the RelationshipManagementUnit as a
sourceselector and targetselector, respectively (cf. the EReferences role names in Figure 4.19(a)).
A similar example can be found in the Hypertext package, where a Selector can act as preselector
for MultiChoiceIndexUnits (cf. Figure 4.18(a)).

In the Administrator Siteview of the ACME web application, administrators can add, edit, and
delete products, combinations, and stores. The Images Page in Figure 4.19(b) is part of the Pro-
ductEditing Area and allows adding and deleting images of a specific product. The Page displays
product details in a DataUnit, an IndexUnit of existing images for the product, and an Entry-
Unit allowing the upload of further images. Selecting an image from the IndexUnit activates
the Transaction DeleteImage, which has similar semantics as typical database transactions. First a
DisconnectUnit disconnects the image and the products by deleting the specific instance of the
relationship, then the OKLink is followed, the image is deleted using a DeleteUnit, and via a sec-
ond OKLink the Images Page is reached again. In case of an error, the KOLinks are followed to
the Images Page. The AddImage Transaction is activated when the user uploads a new image. It
first creates a new image with a CreateUnit and then connects it to the specific product with a
ConnectUnit.

4.4.6 AccessControl Package

In Figure 4.20(a), the AccessControl package groups concepts for controlling the access to Site-
views, namely LoginUnit, LogoutUnit, and ChangeGroupUnit.

Home HH

LL

Login

Get User

Home HH

LLuseruserParam

AccessControl

siteview*

ContentManagement::
OperationUnit

LoginUnitLogoutUnit ChangeGroupUnit

HypertextOrganisation::
Siteview

User

(a) (b)

KO

KO

Figure 4.20: AccessControl Package

The example shows the Web Siteview, i.e., the Home Page of normal users (cf. Figure 4.20(b)).
Administrators have to log in via the EntryUnit Login. The LoginUnit verifies username and
password and switches to the user’s default Siteview, i.e., the Administrator Siteview. In the Home
Page of the Administrator Siteview, user information is displayed with the User DataUnit. The
respective user is obtained from the session with a GetUnit (cf. Section 4.4.4). A user logs out via
LogoutUnit, which forwards the user back to the Web Siteview for normal users

4.4.7 Basic Package

The Basic package consists of three abstract concepts, which encompass some features needed by
the majority of WebML’s modeling constructs. The ModelElement meta-class represents the root
element of the WebML language from which all others inherit, either directly or indirectly. The

149

4 Bridging WebML to Model-driven Engineering

IdentifiedElement concept encompasses an EAttribute id as well as containment EReferences
to the Comment and Property concepts of WebML. Finally NamedElement represents modeling
concepts having a name EAttribute. Since almost consisting of abstract concepts only, no ex-
cerpt of the ACME modeling example will be provided for the Basic package.

Basic
ModelElement

NamedElement

IdentifiedElement Comment

Property

comment
0..1

property
*

body:EStringid:EString

name:EString

value:EString

Figure 4.21: Basic Package

4.5 Discussion of the Generated WebML Metamodel

In the following, a discussion on the evaluation of the generated WebML metamodel is provided
and shall give an indication on the applicability of the semi-automatic transformation approach.
This evaluation is conducted, first, with respect to the metamodel’s completeness compared to
the language concepts defined in the original WebML DTD (cf. Section 4.5.1) and, second, on the
basis of certain quality metrics (cf. Section 4.5.2).

4.5.1 Completeness Criteria

The completeness criteria is fulfilled at the meta-level M2 if the generated WebML metamodel con-
tains all concepts defined within WebML’s DTD and the WebRatio tool. At the model level M1 this
means that the WebML models can be exchanged in a lossless way, i.e., instances of the WebML
metamodel can be exchanged transformed to XML documents conforming to the WebML’s DTD
and vice versa.

Although WebML does provide a formal definition of the semantics of its concepts [CF01],
[BCF02], a formal verification of the completeness criteria is not an option. This is due to the
fact that currently within EMF the definition of semantics is not provided without executing the
model itself. Nevertheless, a first prerequisite for completeness at the M2 level is provided by the
fact that each WebML concept present in the DTD is dealt with by at least one transformation rule
of the framework, which in turn assures for each WebML concept that there exists at least one
counterpart in the metamodel.

In addition, completeness at the M2 level can be further underpinned by considering the M1
level. Taking a first step towards evaluating completeness at the M1 level, an ”example-based”
strategy has been followed, i.e., an existing WebML reference example has been remodeled on
the basis of the generated metamodel. To do so, a tree-based modeling editor for the metamodel
has been generated using EMF in order to completely remodel WebRatio’s demo example, the

150

4.5 Discussion of the Generated WebML Metamodel

ACME E-Store. In addition, the example has been extended by those WebML language concepts
not covered in the original example7.

In a second step, the tree-based modeling editor was enhanced with an import/export facility
to demonstrate whether models could be exchanged with the WebRatio tool in a lossless way8.
With that facility it is possible to import the extended ACME example from WebRatio into the
modeling editor and subsequently to export the model back into a WebRatio XML document. A
comparison of the original XML document defined by WebRatio and the exported XML document
from the modeling editor with the XML Differencing facility of StylusStudio9 demonstrated that
both were equivalent.

Admittedly, it has to be noted that this is only a first step towards justifying the semantic equiv-
alence of the WebML metamodel and the original language specification not least since the eval-
uation shall comprise a larger set of more complex examples.

4.5.2 Quality Metrics

The WebML metamodel and its quality characteristics in terms of expressiveness, accuracy, and
understandability have evolved considerably during the three-step transformation process. In
order to illustrate this evolution, a set of metrics inspired by [MSZJ04] have been applied to the
metamodel versions resulting from each step of the transformation process, i.e., the application
of transformation rules, the employment of heuristics, and the manual validation and refactoring.
The results of applying these metrics are summarized in Table 4.4.

Interpreting these metrics, one can observe that the introduction of a package structure, in-
heritance, and roles as well as the resolution of the awkward cardinalities deficiency has had a
great impact on the understandability and readability of the metamodel. For the manual refac-
toring phase, the specific impact of introducing the Basic package shall be pointed out. The
left-hand side of the manual refactoring phase column in Table 4.4 depicts the metrics of the
refactoring actions without considering the introduction of the Basic package. The metrics
on the right-hand side then depict the numbers for the final metamodel and illustrate the pos-
itive effect of the introduction of the Basic package. In particular, the introduction of inher-
itance through 17 abstract EClasses has helped to decrease complexity by reducing redun-
dant EAttributes and EReferences. In this respect, the introduction of the three abstract
EClasses from the Basic package played an important role. The identification of 3 roles has di-
minished the number of EClasses, while the resolution of awkward cardinalities has diminished
the number of EReferences. All in all, the number of 707 modeling elements in the WebML DTD
could be reduced to 487 modeling concepts in Ecore (i.e., counting EClasses, EAttributes,
EReferences, and EEnums). The application of grouping mechanisms according to Heuristic 3
and further manual refactorings also had a positive effect on the language’s readability in terms of
an introduced package structure and a reduced ratio of EClasses per EPackage. After manual
refactoring, the maximum number of EClasses per EPackage decreased from 53 to 26.

Concerning accuracy, the resolution of IDREF(S)-typed XMLAttributes into EReferences,
the introduction of EBoolean-typed EAttributes instead of enumerations and the definition
of constraints have considerably contributed to a more precise language. E.g., Heuristic 1 already
correctly resolved 39, that is 41% IDREF-typed XMLAttributes into EReferences making the

7The modeling editor and the ACME example are available at http://big.tuwien.ac.at/projects/webml/
8Note that currently, the import/export facility supports the WebML content model only.
9www.stylusstudio.com

151

4 Bridging WebML to Model-driven Engineering

5

Phase 1
Automatic Transformation

Phase 2
Manual Refactoring Metrics

Step 1 Step 2 Step 3
All Modeling Concepts (EClass, EEnum, EAttribute, EReference) 707 707 580 487
EPackage 1 7 11 12

nested EPackage depth (Heuristic 3) 1 3 3
EClass 96 96 104 107

abstract 0 0 14 17
inheriting from multiple EClasses 0 0 6 20
maximum inheritance depth 0 0 5 7
average inheritance depth 0 0 1.22115 1.66355
annotated with
«Resolve XMLAnyET manually» (Heuristic 6)

- 3 -

annotated with «Resolve Multiplicity manually» (Heuristic 4) - 1 -
MIN 96 1 1
MAX 96 53 26 EClasses/EPackage
AVG 96 13 9 8

EAttribute 338 338 241 191
EString 278 278 180 150

annotated with «Resolve IDREF manually» (Heuristic 1) - 51 -
annotated with «Resolve IDREFS manually» (Heuristic 1) - 5 -
annotated with «Resolve XOR manually » (Heuristic 5) - 17 -

EBoolean (Heuristic 2) 0 46 41
EEnum 50 14 16
EInteger 0 0 4

annotated with «Validate IDREF» (Heuristic 1) - 39
annotated with «Validate IDREFS» (Heuristic 1) - 0

65 EReference

annotated with «Resolve XOR manually » (Heuristic 5) - 5 -
Containment EReference 234 234 159 113
EEnum 12 12 11

annotated with «Resolve possible Boolean type manually » (Heuristic 2) - 6 -
XOR constraint 5 5 10 OCL constraints
other constraints - - 27

Identified Roles - - 3

Table 4.4: Metamodel Metrics

relationship between EClasses explicit. Further 56 EStrings had to be resolved manually into
EReferences. From 50 enumeration-typed XMLAttributes, 36 could be resolved correctly
by Heuristic 2 as EBooleans. Moreover, further 4 EEnums could be eliminated reducing their
number to 8, the respective EAttributes could be refactored to EBooleans. Nevertheless, 3
more EEnums were introduced due to domain knowledge obtained from the WebRatio tool. This
results in the final number of 11 EEnums, a reduction of EStrings in favor of an increase of
EEnum attributes. And finally 32 additional constraints could be defined, thus, achieving a more
precise WebML metamodel.

152

4.6 Introducing Customization into the WebML Metamodel

4.6 Introducing Customization into the WebML Metamodel

As already mentioned before, WebML’s recently introduced concepts for modeling customization
have not been part of WebML’s DTD. This section describes how to manually incorporate them
into the semi-automatically generated WebML metamodel presented in Section 4.4.

4.6.1 Designing Ubiquitous Web Applications with WebML in a Nutshell

Customization in WebML is based on context-aware Pages, Areas, and Siteviews [CDMF07].
These are tagged with a C-label (cf. Figure 4.22), i.e., a ContextUnit, which indicates that some
adaptivity actions are associated with the Page, Area, and Siteview, respectively. These adaptivity
actions must be evaluated prior to page computation, since they might cause the page content
or the predefined navigation flow to be adapted to a certain context. Adaptivity actions defined
for container elements such as Areas and Siteviews apply to all context-aware Pages within the
container. Computed parameters then can be passed from containers to contained elements via
ContextUnits. Furthermore, in the ContextUnit modelers can specify a time interval which trig-
gers the adaptivity actions periodically after the first page access.

ArtworkArea

RoomDetails ArtworkDetails

Room
Details

Room
[RoomArea2Room]

Artwork
Details

Artwork

Room
Details

Room
[Artwork2Area]
[Area2Room]

C C
C

GetUser

CurrentUser

GetArea

RoomArea
[User2RoomArea]

RoomArea.OID

Get
Artwork

Artwork
[RoomArea2Artwork]

IF

Artwork.OID!=NULL

Artwork.OID
RoomArea.OID

[result=false] [result=true]

RoomArea.OID Artwork.OID

RoomArea.OIDRoomArea.OID

(a) (b)

RoomArea
name
number
description
dimensions

RoomArea
name
number
description
dimensions

Room
name
number
description

Room
name
number
description

ArtMovement
name

ArtMovement
name

Artwork
title
date
description
photo

Artwork
title
date
description
photo

Artist
name
surname
birthday
dayOfDeath
description
photo

Artist
name
surname
birthday
dayOfDeath
description
photo

1..*
1

0..1 *

*

*

*

1

1..*

1

User
personalRFID

User
personalRFID

0..1

*

Figure 4.22: A Location-aware Museum Web Application

In general, the WebML extension for customization encompasses five new concepts, namely
ContextUnit, GetClientParUnit, GetDataUnit, ChangeSiteviewUnit, and ChangeStyleUnit (cf. Table
4.5). In addition, two further concepts, i.e., IfUnit and SwitchUnit, that have already been intro-
duced for supporting workflow-based web applications [BCC+03] are reused for customization
purposes. The new concepts’ notation is provided in Table 4.5.

In Figure 4.22(b), part of the hypertext model for a location-aware museum web application
is shown. The corresponding content model is depicted in Figure 4.22(a). It is assumed that
the application relies on an RFID infrastructure and that sensing as well as storing of the users
locations is done at server-side. In the example, the context-aware Area ArtworkArea computes

153

4 Bridging WebML to Model-driven Engineering

the location, i.e., the room area, of the current user, which is to be passed to the contained context-
aware Pages.

C

ChangeStyleUnit

ChangeSiteViewUnit

GetClientParUnit

GetDataUnit

SwitchUnit

IfUnit

ContextUnit

Switch

KO

[1]

[2]

[3]

OK

OK

OK

result

result

result

Parameter 1
Change
SVParameters

OK

A AA
Change
Style

Parameters OK

OK

Get CientPar

Client Parameter

@

Get Data

Entity
[Selector(Parameters)]

Parameters {Entity.Attribute}

If OK

OK

{true}

{false}

Parameter N

Parameter 1

Parameter N

Table 4.5: WebML’s Customization Concepts

In the example given in Figure 4.22(b), the location of the user is obtained by the GetData-
Unit GetArea and is passed to the context-aware Pages contained by the Area ArtworkArea. The
GetDataUnit retrieves context data stored in the content model according to a SelectorCondition,
which then can be passed on for further computations. If a user accesses the Page ArtworkDetails,
his/her location, i.e., the room area, is used to get the artwork currently exhibited in that location
with the GetDataUnit GetArtwork. In case no artwork can be found for the room area, the navi-
gation flow will be adapted by an IfUnit and the user will be redirected to the Page RoomDetails.
Still, if a user accesses the context-aware Page RoomDetails first, and the GetDataUnit GetArtwork
retrieves an artwork for the area of the room the user is currently located, then the user will be
redirected to the Page ArtworkDetails.

Among the new concepts not shown in the example, the GetClientParUnit retrieves context
information sensed at the client side, e.g., longitude and latitude sensed by a GPS module at-
tached to the client, the ChangeSiteviewUnit allows changing the currently displayed Siteview,
and the ChangeStyleUnit represents an adaptation operation for adapting the presentation layer
by changing the CSS style sheet. Finally, the IfUnit and SwitchUnit have the semantics of typical
programming language conditional operators. For more details on those concepts the reader is re-
ferred to [CDMF07]. Moreover, the reader will find detailed information on how to model UWAs
with WebML in the case study presented in Chapter 6.

154

4.6 Introducing Customization into the WebML Metamodel

4.6.2 The Final WebML Metamodel

The extension of the semi-automatically generated WebML metamodel with concepts for cus-
tomization modeling has been straight-forward. It was possible to integrated all of the new con-
cept into the WebML metamodel through inheritance in a constructive way. In the following, a
discussion of the extensions made to the metamodel as well as the required refactoring actions is
provided.10

WebML

Structure

Hypertext Content
Management

Access
Control

Hypertext
Organization

Navigation

Basic

Workflow

Hypertext
Management

Session
Management

Presentation

Presentation
Management

Context
Unit

Change
Style
Unit

Change
SiteView

Unit

GetClientPar
Unit

IfUnit,
SwitchUnit

GetData
Unit

Figure 4.23: WebML Packages View

Figure 4.23 presents an overview of WebML’s package structure after having introduced the
new concepts, this time ignoring tool related packages. The ContextUnit and the GetDataUnit
concepts have been integrated into existing packages. With respect to the rest, four additional
packages, i.e., SessionManagement, PresentationManagement, HypertextManagement, and Workflow,
have been introduced in order to better group concepts that semantically belong together.

The ContextUnit has been introduced into the Hypertext package as sub-class of the Linkable-
Element meta-class. As depicted in Figure 4.24, the HypertextOrganization package has been
extended with appropriate containment EReferences in order to allow the ContextUnit to be
part of Pages, Areas, and Siteviews.

In the ContentManagement package, the GetDataUnit has been specialized from the Entity-
ManagementUnit in order to inherit the necessary EReference to the Entity meta-class from
the Structure package. Additionally, a containment EReference is established to the Selector
meta-class.

Incorporating the GetClientParUnit into the metamodel has been somewhat tricky. It has been
put into a separate package together with similar already existing WebML concepts, e.g., GetU-
nit, SetUnit, GlobalParameter, and ParameterTypes (cf. Figure 4.25). More specifically, a new
abstract concept SessionManagementUnit has been introduced, from which GetUnit, SetUnit, as
well as the new GetClientParUnit inherit. The SessionManagementUnit itself has been derived
from the LinkableElement meta-class of the Hypertext package. As a consequence, some refactor-

10Please not that the final WebML metamodel including concepts for customization modeling is also available at to
www.wit.at/people/schauerhuber/aspectUWA.

155

4 Bridging WebML to Model-driven Engineering

ing actions where necessary in the HypertextOrganization as well as in the ContentManagement
package in order to allow the SessionManagmentUnits to be contained by the correct container
elements, i.e., Page, Area, and Siteview.

For both, the ChangeSiteviewUnit and the ChangeStyleUnit, two separate packages have been
defined, namely HypertextManagement and PresentationManagement, respectively (cf. Figure
4.25). In both cases, an abstract meta-class has been introduced from which the new concepts shall
inherit. More specifically, concerning the HypertextManagement package the HypertextManage-
mentUnit has been designed to inherit from the OperationUnit concept from the ContentManage-
ment package. Likewise the PresentationManagementUnit in the PresentationManagement pack-
age inherits from OperationUnit. This way, the WebML metamodel can be be easily extended
with further adaptation operations, both for the hypertext and the presentation level. The Chan-
geSiteviewUnit then is specialized from the HypertextManagementUnit. It receives as an input
parameter the target Siteview. Likewise, the ChangeStyleUnit is specialized from the Presenta-
tionManagementUnit and receives as input parameter the CSS style sheet to be used.

ContentManagement

1
entity

0..1

selector

ContentManagementUnit

EntityManagementUnit

DeleteUnit

Structure::Entity

Hypertext::
Selector

GetDataUnit

…

LinkableElement

ContentUnit

DisplayUnit

Hypertext

ContextUnit

…

1..*

operationunit
OperationUnitTransaction

SessionManagement::
SessionManagementUnit

sessionmgmt*

HypertextOrganization

landmark:EBoolean landmark:EBoolean
PageHypertext::

ContextUnit
Area

SiteView

ContentManagement::
Transaction

SessionManagement::
SessionManagementUnit

area

transaction
*

sessionmgmt
*

transaction*

sessionmgmt*

contextUnit

0..1

SessionManagement::
GetUnit

0..1

contextUnit

sessionmgmt*

0..1 contextUnit

…

* getUnit

Figure 4.24: The Final WebML Metamodel (1)

Finally, the last two concepts from the domain of workflow-based web applications have been
grouped within the new Workflow package (cf. Figure 4.25). The abstract concept Conditional-
Unit inherits from the OperationUnit meta-class and provides the Expression to be evaluated to
its sub-classes IfUnit and SwitchUnit. Depending on the ConditionalUnit there maybe several
Cases to which the Expression can be resolved. Each case, however, has an EReference to the
corresponding OKLink of the ConditionalUnit to be followed.

156

4.7 Related Work

HypertextManagement

ChangeSiteViewUnit

HypertextManagementUnit

ContentManagement::
OperationUnit

1

siteView

Workflow

IfUnit

ConditionalUnit

ContentManagement::
OperationUnit

SwitchUnit

1

expr

Case

Expression
value:EString

value:EString

ContentManagement::
InParameter

1..*
in

falseCase

trueCase defaultCase1

1 1..*

1

case

SessionManagement

GetUnit

SessionManagementUnit

Hypertext::
LinkableElement

SetUnit

clientParameter
1

1

GetClientParUnit

GlobalParameter

ContentManagement::
OutParameter

Structure::
Entity

globalParameter 1

globalParametertype:ParameterTypes

• String
• Text
• Number
• Integer
• Float
• Date
• Time
• TimeStamp
• Boolean
• URL
• BLOB

«enumeration»
ParameterTypes

entity
0..1

PresentationManagement

ChangeStyleUnit

PresentationManagementUnit

ContentManagement::
OperationUnit

1

style

ContentManagement::
OKLink

1 okLink
ContentManagement::

InParameter

ContentManagement::
InParameter

Figure 4.25: The Final WebML Metamodel (2)

4.7 Related Work

With respect to the presented approach of a semi-automatic generation of a MOF-based meta-
model for WebML, two areas of related work can be distinguished: First, approaches aiming at
the design of metamodels for web modeling languages, and second, approaches dealing with the
transformation of DTDs to MOF-based meta-models.

4.7.1 Defining Meta-models for Web Modeling Languages

To the best of or knowledge, there is currently just one closely related approach focusing on the
definition of a UML 2.0 Profile for WebML [MFV06]. The motivation of this approach is to facili-
tate the interoperability of the WebRatio tool with existing UML modeling tools. More specifically,
WebML has been manually remodeled using MOF and in a second step a UML profile has been
inferred from it. The approach followed in this thesis differs from the approach of Moreno et al.
[MFV06] in three ways. First, we strive for a domain-specific language, for which today tool sup-
port can easily be provided, e.g., based on the EMF. Second, the presented WebML metamodel
has been semi-automatically generated from WebML’s DTD-based language specification. Third,
since also tool related concepts have been considered in the transformation, this approach pro-
vides the prerequisite of migrating existing WebML models to MOF, while the WebML profile
requires developers to re-model existing WebML models from scratch. And finally, WebML’s new

157

4 Bridging WebML to Model-driven Engineering

concepts for addressing context-awareness in web applications have also been incorporated.
Besides this closely related work, in the context of WebML, three other web modeling ap-

proaches which are currently defined on top of a metamodel need to be mentioned, namely W2000
[BCMM06], UWE [KK03], and Muller et al. [MSFB05]. W2000 [BCMM06], originally has been
defined as an extension to UML. In [BM02], the provision of a metamodel based on MOF 1.4
[OMG02] has been motivated and adopted as a necessity for providing tool support for an evolv-
ing language definition. The metamodel of UWE [KK03] has been designed as a conservative
extension to the UML 1.4 metamodel [OMG01], and thus is implicitly based on MOF 1.4. It is
intended as a step towards a future common metamodel for the web application domain, which
envisions supporting the concepts of all existing web modeling methods. Similar to W2000, a lan-
guage definition already exists as UML Profile. Muller et al. [MSFB05] present a model-driven web
application design and development approach through the Netsilon tool. The tool is based on a
metamodel specified with MOF 1.4 and the Xion action language. The decision for a metamodel-
based approach has been motivated by the fact that in the web application domain the semantic
distance between existing modeling elements (e.g., UML) and newly defined modeling elements
is becoming too large.

This work is complementary to W2000 and UWE in that a metamodel is proposed for another
prominent web modeling language, i.e., WebML. Furthermore, in contrast to these approaches,
the WebML metamodel presented in this thesis has been semi-automatically, instead of manu-
ally deriving it from an existing language definition. Finally, the resulting WebML metamodel is
based on Ecore and thus, basically corresponds to MOF 2.0, while the meta-models of the other
approaches are based on MOF 1.4.

4.7.2 Transforming between DTDs and Meta-Models

There have already been several approaches focusing on the transformation between XML and
meta-models [WSKK06]. Summarizing these results, the approaches can be classified according
to the direction of the transformation and the concrete formalisms used as source/target of the
transformation. Considering the direction, one can distinguish between forward and backward
approaches, regarding the used formalisms the approaches focus on the XML side either on DTDs
or XML Schema and on the model side either on MOF, UML or ER, respectively. In the context
of this approach, especially those approaches conducting a forward transformation from DTD
to MOF are closely relevant. To the best of our knowledge, currently there is no such approach
but there are two approaches [BCFK99] and [Sof00] transforming DTDs into UML models which
are also closely related, not least since UML is based on MOF. There are, however, two differ-
ences with respect to the presented approach. First, a straight-forward transformation on basis
of the correspondences between the two formalisms is extended by employing a set of heuristics
dealing with potential ambiguous correspondences, thus facilitating a manual refactoring of the
resulting metamodel. Second, the approach is based on a higher level of abstraction, meaning
that the WebML DTDs are considered at the meta-level M2 whereas the other approaches relate
domain DTDs to the model-level M1. Because of this higher level of abstraction, it is possible
to transform WebML models in terms of XML documents conforming to the WebML DTD into
instances of the corresponding WebML Ecore metamodel (representing in fact a so called ”lin-
guistic instantiation” according to [AK03] and to validate if these models indeed fully conform
to the WebML Ecore metamodel which is not facilitated by the other approaches. Note that, with
respect to UML models, an XML document could in principle be mapped onto an object model,

158

4.8 Summary

which represents an ”ontological instantiation” [AK03] at M1. However, the problem is that the
object model must not fulfil the constraints given by the UML model and thus, the ”conforms
to”-relationship between the XML document and the DTD is lost.

4.8 Summary

In this chapter, the prominent web modeling language WebML has been bridged to MDE for ex-
ploiting MDE benefits such as standardized storage, exchange, and transformation of models. To
do so, the WebML language specifications partly available in the form of a DTD and partly hard-
coded in WebML’s modeling tool has been reused to generated a MOF-based WebML metamodel
in terms of EMF’s Ecore through a semi-automatic transformation process. As a consequence, this
chapter’s contributions are as follows:

First, when comparing a language specified in MOF to one specified on the basis of DTDs, it is
obvious that DTDs considerably lack extensibility, readability, and understandability for humans,
and above all expressiveness. In this respect, a set of eight deficiencies of DTDs when used as a
language specification mechanism has been identified.

Second, having elaborated on the concepts of DTDs and MOF as well as their correspondences,
a set of rules and heuristics for transforming arbitrary DTDs into MOF-based metamodels has
been provided.

Third, a tool, i.e., the MetamodelGenerator for supporting a semi-automatic transformation
process from DTD to MOF has been developed. As a consequence, the transformation approach
enables the ”visual” representation of any DTD-based language in terms of MOF-based meta-
models and thus, enhances the understandability of those languages.

Fourth, the resulting metamodel for WebML represents an important prerequisite and thus,
an initial step towards a transition to employ model-driven engineering techniques (e.g., model
transformations or language extensions through profiles) within the WebML approach. It also
enables interoperability with other MDE tools and furthermore represents another step towards a
a common reference metamodel for Web modeling languages.

The resulting WebML metamodel has been evaluated concerning its completeness and quality
giving in particular indication on the applicability of the semi-automatic transformation approach.
For evaluating completeness, an ”example-based” strategy has been followed in that a WebML
reference example has been remodeled on the basis of a tree-based modeling editor supporting
the generated metamodel. A prototype of an import/export facility of that editor was used to
demonstrate that models could be exchanged with the WebML’s modeling tool in a lossless way.
For evaluating the quality of the metamodel, a set of quality metrics was applied to show the
improvement of the metamodel during the semi-automatic transformation process. In the con-
text of this thesis, it was also necessary to incorporate WebML’s recently introduced concepts for
modeling customization into the semi-automatically generated metamodel. These concepts have
not been part of WebML’s DTD and thus, had to be included manually according to the available
literature.

159

4 Bridging WebML to Model-driven Engineering

160

5 aspectWebML - Applying aspectUWA to
WebML

Contents
5.1 On Using the Conceptual Reference Model for Bridging WebML to AOM 161
5.2 The aspectWebML Metamodel . 164
5.3 Modeling and Composing Crosscutting Concerns with aspectWebML 182
5.4 Summary . 200

This chapter describes how the web modeling language WebML has been extended with model-
ing concepts from the aspect-orientation paradigm. aspectWebML is the result of bridging WebML
to aspect-orientation and has been designed in order to better support the development of ubiq-
uitous web applications (UWA). As input to the extension process, two previously presented ar-
tifacts have been used, i.e., the Conceptual Reference Model (CRM) for aspect-oriented modeling
(AOM) presented in Chapter 3 and the WebML metamodel presented in Chapter 4. More specifi-
cally, the CRM has served as a blueprint for designing aspectWebML on top of the WebML meta-
model, as is outlined in Section 5.1. The subsequent sections are dedicated to the presentation of
the metamodel of aspectWebML focusing particularly on the aspect-oriented extensions made as
well as on the discussion of how aspectWebML can be used to model and compose (crosscutting)
concerns. In this respect, Section 5.2 explains how exactly the CRM has been applied, i.e., which
of its concepts have been adopted and what further extensions have been necessary1. While the
aspect-oriented concepts introduced in aspectWebML allow for separating (crosscutting) concerns
such as customization from the rest of the web application model, a mechanism for integrating the
previously decomposed parts is necessary. Only integration allows achieving a ”working” model
of the web application that can be fed to code generation facilities. Therefore, in Section 5.3, an
explanation of how (crosscutting) concerns can be modeled with aspectWebML is given and the
composition semantics of aspectWebML are explained on the basis of a set of examples. Further-
more, the section reports on the composition algorithm implemented to realize these semantics.
Finally, a summary of the chapter is given in Section 5.4

5.1 On Using the Conceptual Reference Model for Bridging
WebML to AOM

This section is dedicated to a description of how the web modeling language WebML has been
bridged to AOM on the basis of the CRM. The primary goal in designing the CRM in Chapter 3
was to establish a common understanding of aspect-oriented concepts in the field of AOM. At the

1A previous version of the aspectWebML language has already been published in [SWS+07]

5 aspectWebML - Applying aspectUWA to WebML

same time the CRM has been designed to provide a general framework allowing the extension of
modeling languages with AOM concepts through a set of extension points.

In Chapter 3, the CRM has been defined in terms of a UML class diagram and identifies the
basic ingredients of AOM, abstracted from specific modeling languages as well as from specific
composition mechanisms. It captures the important AOM concepts, their interrelationships, and
even more importantly, their relationships to an arbitrary modeling language, e.g., a general-
purpose modeling language such as UML or any other domain-specific modeling language such
as WebML. These relationships to an arbitrary modeling language represent the aforementioned
extension points.

Before providing an overview on how these extension points can be used, it has to be noted that
the CRM has not been realized as is in the aspectWebML language for the following reasons:

• As already mentioned before, the CRM has been defined in terms of a UML class diagram. In
contrast, for designing the WebML language and consequently the aspectWebML language,
MDE technologies developed under the hood of the Eclipse Modeling Framework (EMF)
have been used, i.e., the aspectWebML metamodel is based on the Ecore language. As a
consequence, concepts such as association classes which are available in UML, only, have to
be captured differently in the Ecore-based aspectWebML metamodel.

• Having already in mind modeling tool support based on the EMF, some further meta-classes
have been introduced, including concepts for modeling repositories for ConcernModules
and ConcernCompositionRules. In this respect, the aspectWebML metamodel has been ex-
tended with appropriate meta-classes.

• Some concepts of the CRM are not incorporated into aspectWebML, which is due to the
WebML language’s peculiarities. For example, the WebML language does not distinguish
between structural and behavioral modeling elements. Consequently, in the resulting as-
pectWebML language a refinement of the meta-classes JoinPoint, ComposableElement, and
SimpleAdvice in order to distinguish between structural and behavioral modeling elements
has not been considered. In the aspectWebML metamodel, therefore, the meta-classes Join-
Point, ComposableElement, and SimpleAdvice adopt the role of an extension point instead
of their sub-classes in the CRM.

Figure 5.1 outlines how the WebML language is bridged to AOM. The figure shows the as-
pectWebML package representing the aspectWebML metamodel. From the CRM, the packages
ConcernComposition, AsymmetricConcernComposition, and SymmetricConcernComposition are
reused, while the Language package is replaced by the WebML package representing the WebML
metamodel. As is outlined in Figure 5.1, the extension of the WebML metamodel with AOM con-
cepts of the CRM is achieved via the extension points JoinPoint, SimpleAdvice, ComposableEle-
ment, and ConcernModule. More specifically, the root element of the WebML language, i.e., the
ModelElement meta-class, is specialized from the JoinPoint meta-class. In the aspectWebML lan-
guage, this means any element of a WebML model can serve as a JoinPoint, or put in other words,
the join point model of aspectWebML comprises all modeling concepts of the WebML language. In
the same way, the ModelElement meta-class is specified as a sub-class of ComposableElement, al-
lowing any modeling concept of WebML to participate in a symmetric composition. Furthermore,
the SimpleAdvice meta-class is required to have ModelElements allowing any WebML modeling
concept to be used in a SimpleAdvice. Finally, the WebML meta-class which represents a whole

162

5.1 On Using the Conceptual Reference Model for Bridging WebML to AOM

aspectWebML

WebML

Aspectual
Kind

Aspectual
Subject

Concern
Composition

SymmetricConcern
Composition

AsymmetricConcern
Composition

ModelElement

JoinPoint ComposableElementSimpleAdvice

WebML

ConcernModule

Figure 5.1: aspectWebML: An Overview

WebML model, needs to be specialized from the ConcernModule meta-class so that it can be com-
posed in a CompositionPlan.

As already pointed out before, in Chapter 3 the CRM has been designed such that it abstracts
from several composition mechanisms and at the same time specializes the aspect-oriented con-
cepts in order to support the pointcut-advice and open class asymmetric composition mechanisms
as well as the compositor symmetric composition mechanism. This particular design allows lan-
guage designers to decide on implementing both kinds of composition mechanisms or only one
of them while being able to easily complete the language with the other one later on. Due to the
specific goal of separately modeling customization in UWAs, in this thesis, the focus will be on
asymmetric composition mechanisms. In most web modeling languages, modeling customization
is treated as a separate step to be performed on top of previous output artifacts in the develop-
ment process, i.e., the content model, the hypertext model, and the presentation model. Moreover,
customization functionality inherently is a crosscutting concern that needs to be defined on top
of existing models. In this respect, it represents a concern that cannot exist on its own, meaning
that it has to be applied to the functionality of a web application. As a consequence, asymmetric
composition mechanisms which distinguish between core concerns and crosscutting concerns are
more suitable to support customization modeling in the development of UWAs than symmetric
composition mechanisms. Nevertheless, supporting both asymmetric as well as symmetric com-
position mechanisms allows for a powerful language. Therefore, the technical support for both
kinds of composition mechanisms is given in terms of extending the WebML metamodel with
aspect-oriented concepts for both mechanism. This allows for modeling (crosscutting) concerns
in aspectWebML in either a symmetric or an asymmetric way. Considering the composition se-

163

5 aspectWebML - Applying aspectUWA to WebML

mantics of aspectWebML, the focus will be on a discussion of the semantics of asymmetric compo-
sition, which is due to the specific goal of this thesis. The discussion of the composition semantics
of the symmetric composition mechanism supported in aspectWebML is out of scope and will be
subject to future work as well as further research on how both kinds of composition mechanisms
can be successfully used in parallel.

5.2 The aspectWebML Metamodel

In the following sub-sections, the aspectWebML metamodel will be described. This description
follows a schema similar to the one used in the specification of the UML standard [OMG05d],
thus, providing to modelers a well-structured reference. The aspectWebML metamodel will be
presented along with its packages. For each package, a brief overview in terms of a class diagram
depicting the package’s meta-classes as well as a textual description is given. Thereafter, each
meta-class is presented along with its purpose, possible generalizations and specializations, attributes,
references, constraints, and notation in a tabular form. Please note, that the notation has been partly
adopted and inspired by the AspectJ’s IDE, i.e. the AspectJ Development Tools2.

5.2.1 The ConcernComposition Package

The ConcernComposition package abstracts over different composition mechanisms.

<<Enumeration>>

EffectKind
-enhancement
-replacement
-deletion

asymmetricConcernComposition
::PointcutRepository

Module
Repository

ConcernModule
name:EString

ConcernModule
Sequence

name:EString

aspectWebML
Model

name:EString

CompositionPlan
name:EString
checkConsistency()
executeCompositionPlan()

Rule
Repository

aspectualSubject
::Pointcut

name:EString

Concern
CompositionRule
name:EString
effect:EffectKind

ConcernComposition
RuleSequence

name:EString

webML::WebML
siteName:EString

asymmetricConcern
Composition

::Aspect

pointcutRepository1
pointcuts
*

rule
Repository

1

rules *

rules *

sequences *

subSequence *

concernComposition
RuleSequence

1

1

concernModule
Sequence 1..* compositionPlans

module
Repository

1

sequences *modules * modules

2..*

composedModel 1

Figure 5.2: aspectWebML: The ConcernComposition Package

It has to be noted that the interaction issue, which is supported by the CRM through the
ModuleInteraction and RuleInteraction concepts, is currently not (fully) considered within as-
pectWebML. This means, that modelers are not able to explicitly indicate interactions between
ConcernModules, in their models. Indeed, the issue of aspect dependencies and interactions is con-
sidered an own sub-research field in the area of aspect-oriented software development. It will be

2www.eclipse.org/ajdt/

164

5.2 The aspectWebML Metamodel

subject to future work, to find out what kinds of interactions (e.g., dependency, conflict, mutual
exclusion) are relevant for the aspectWebML language and thus need to be supported. Neverthe-
less, within the implementation of the composition semantics in the aspectWebML tool support
(cf. Chapter 7), dependencies between Advice as well as between Aspects can be computed and
modelers are provided with appropriate warnings if necessary. Furthermore, some form of con-
flict resolution is provided through the introduction of the meta-classes ConcernModuleSequence
(cf. Section 5.2.1.6) and ConcernCompositionRuleSequence (cf. Section 5.2.1.5), which allow for
explicitly specifying the execution order of ConcernModules and ConcernCompositionRules, re-
spectively. Having in mind modeling tool support based on the EMF, some further meta-classes
have been introduced to the ConcernComposition package, including aspectWebMLModel as the
the root modeling concept of the aspectWebML language as well as concepts for modeling repos-
itories for ConcernModules and ConcernCompositionRules. An overview of the package is given
in Figure 5.2, whereby the concepts specifically introduced for the aspectWebML language have
been highlighted in grey.

5.2.1.1 aspectWebMLModel

The aspectWebMLModel meta-class has been introduced for tool support purposes. It represents
the root modeling element in an aspectWebML project and encompasses a ModuleRepository, a
RuleRepository, a PointcutRepository as well as a set of CompositionPlans.

Generalization. None.
Specialization. None.
Attributes.
name This attribute specifies the name of the aspectWebML project.
References.
moduleRepository The moduleRepository containment reference specifies the repository for

storing the ConcernModules of the project, i.e., WebML models and As-
pects, as well as ConcernModuleSequences to be used in a Composition-
Plan.

ruleRepository The ruleRepository containment reference designates the repository for
storing the ConcernCompositionRules of the project, i.e., Asymmetric-
CompositionRules and SymmetricCompositionRules, as well as Con-
cernCompositionRuleSequences to be used in a CompositionPlan.

pointcutRepository The pointcutRepository containment reference specifies the repository for
storing the Pointcuts of the project to be used in AsymmetricComposi-
tionRules.

compositionPlans The compositionPlans containment reference represents a set of Composi-
tionPlans denoting different configurations for composing the project’s
ConcernModules.

Constraints. None.
Notation. There is no separate notational element necessary. Nevertheless, within

the aspectWebML tool support (cf. Chapter 7) a special icon representing
the aspectWebML language is used:

165

5 aspectWebML - Applying aspectUWA to WebML

5.2.1.2 ConcernModule

As is pointed out in Chapter 3, the ConcernModule concept encompasses a set of concern elements
that together realize a concern or part of a concern. In the aspectWebML language, the Concern
concept of the CRM has not been incorporated as a separate meta-class, since it is rather a the-
oretical concept than something modelers need to model explicitly within aspectWebML model.
Furthermore, in Chapter 3, the ConcernModule concept has been defined to subsume the notion
of aspect and base. In order to support asymmetric and symmetric composition mechanisms in
the aspectWebML language, the ConcernModule concept needs to be specialized, however. Thus,
the ConcernModule meta-class is declared to be abstract. The meta-class Aspect is specialized from
ConcernModule and introduced to the AsymmetricConcernComposition package. Moreover, the
WebML meta-class from the WebML language, which represents a WebML model inherits from
ConcernModule as well. For the asymmetric composition mechanism a ConcernModule of type
WebML then serves as the base.

Generalization. None.
Specialization. WebML::WebML, AsymmetricConcernComposition::Aspect.
Attributes.
name This attribute specifies the name of the ConcernModule.
References. None.
Constraints. None.
Notation. There is no separate notational element necessary, since the ConcernMod-

ule meta-class is declared abstract.

5.2.1.3 ConcernCompositionRule

A ConcernCompositionRule defines in detail how the various concern elements are to be composed.
According to the CRM, the general concept of concern composition rule is specialized into sub-
classes supporting different composition mechanisms, i.e., the AsymmetricCompositionRule and
the SymmetricCompositionRule.

Generalization. None.
Specialization. AsymmetricConcernComposition::AsymmetricCompositionRule, Sym-

metricConcernComposition::SymmetricCompositionRule.
Attributes.
name This attribute specifies the name of the ConcernCompositionRule.
effectKind The effectKind attribute declares the kind of the effect a rule has in the

composed model, i.e., an enhancement effect, a replacement effect, or a
deletion effect (cf. Enumeration EffectKind in Figure 5.2).

References. None.
Constraints. None.
Notation. There is no separate notational element necessary, since the ConcernCom-

positionRule meta-class is declared abstract. Instead, there are notational
elements for its concrete sub-classes.

Please note, that the Effect concept from the CRM has been incorporated into the ConcernCom-
positionRule meta-class as an attribute instead of being modeled as a separate one. While the
focus of the CRM has been to make explicit each aspect-oriented concept as a first-class citizen in
the CRM class diagram, the goal in the aspectWebML language is to not impose too many new
modeling elements on the modeler.

166

5.2 The aspectWebML Metamodel

5.2.1.4 CompositionPlan

The CompositionPlan specifies how to integrate a set of ConcernModules according to a set of Con-
cernCompositionRules. The execution of a composition plan results in a composed model i.e., a
WebML Model. As can be seen in Figure 5.2 the CompositionPlan meta-class has an appropriate
operation executeCompositionPlan() which is responsible for executing the plan. Since the opera-
tional semantics of WebML are not defined in such a way that WebML models can be executed
and simulated, static composition of concern modules is currently considered in the aspectWebML
language, only. Therefore, the isDynamic attribute of the CompositionPlan concept in the CRM has
not been adopted in aspectWebML.

Generalization. None.
Specialization. None.
Attributes.
name The name attribute declares the name of the CompositionPlan.
References.
concernModule-
Sequence

The concernModuleSequence reference specifies the integration order of the
ConcernModules to be used in the CompositionPlan by referencing an
instance of ConcernModuleSequence.

concern-
Composition-
RuleSequence

The concernCompositionRuleSequence specifies the order of the Concern-
CompositionRules by referencing an instance of ConcernComposition-
RuleSequence.

composedModel The result of executing the CompositionPlan is stored in the composed-
Model containment reference. In the modeling environment (cf. Chapter
7), modelers shall be able to export the resulting WebML model to the
ModuleRepository, where it can be reused in further CompositionPlans.

Operations.
execute-
CompositionPlan()

The operation executeCompositionPlan() executes the CompositionPlan
and results in the composedModel.

checkConsistency() The operation checkConsistency() is to be executed before executeComposi-
tionPlan() and provides the modeler with warnings if the Composition-
Plan cannot be executed due to errors in the aspectWebML project.

Constraints. None.
Notation. Again, there is no separate notational element necessary, since the Com-

positionPlan modeling element will not be part of a diagram. Neverthe-
less, within the aspectWebML tool support (cf. Chapter 7) a special icon
representing a CompositionPlan is provided:

5.2.1.5 ConcernCompositionRuleSequence

The ConcernCompositionRuleSequence meta-class has been introduced to the aspectWebML lan-
guage in order to specify reusable sequences of ConcernCompositionRules to be used in Compo-
sitionPlans. A ConcernCompositionRule defines the order of a set of ConcernCompositionRules.
Moreover, a ConcernCompositionRuleSequence can be specified to have sub-sequences in order
to further improve reuse of existing sequences.

167

5 aspectWebML - Applying aspectUWA to WebML

Generalization. None.
Specialization. None.
Attributes.
name The name of the ConcernCompositionRuleSequence.
References.
rules The rules reference declares an ordered set of ConcernCompositionRules.
subSequence The subSequence reference specifies an ordered set of ConcernComposi-

tionRuleSequences.
Constraints.

At least one of the references rules and subSequence has to be set:

context ConcernCompositionRuleSequence
inv : s e l f . ru les−>notEmpty ()

xor s e l f . subSequence−>notEmpty ()

SymmetricCompositionRules contained in the ConcernComposition-
RuleSequence need to specify via the compElem reference Symmetric-
ConcernComposition::ComposableElements of type WebML::WebML:

context ConcernCompositionRuleSequence
inv : s e l f . ru les−>

s e l e c t (e | e . oclIsTypeOf (SymmetricCompositionRule)) .
oclAsType (SymmetricCompositionRule)−>

f o r A l l (e1 | e1 . compElem−>f o r A l l (e2 | e2 . oclIsTypeOf (WebML)))

Notation. For the ConcernCompositionRuleSequence an icon is used, which is com-
posed of the icons for AsymmetricCompositionRules and Symmetric-
CompositionRules together depicting a sequence of rules:

Diagram. The Rule Sequence Diagram is used to graphically visualize the parts of
a ConcernCompositionRuleSequence, i.e. its concrete ConcernComposi-
tionRules and/or its sub-sequences:

Context
Model

Multi
Delivery

Season
Style

In case the rules and subSequence references are both set, the ConcernCompositionRules from
the rules reference (e.g. MultiDelivery and SeasonStyle) are to be considered after the subSequence
reference (e.g. ContextModel) in a CompositionPlan.

5.2.1.6 ConcernModuleSequence

The purpose of the ConcernModuleSequence meta-class is similar to that of the ConcernComposi-
tionRuleSequence. It has been introduced to the aspectWebML language in order to specify the
order of ConcernModules in a CompositionPlan. During composition, the ConcernModules will
be composed one after the other into a composed model.

168

5.2 The aspectWebML Metamodel

Generalization. None.
Specialization. None.
Attributes.
name The name attribute specifies the name of the ConcernModuleSequence.
References.
modules The modules reference declares an ordered set of ConcernModules.
Constraints. The first ConcernModule needs to be of type WebML::WebML:

context ConcernModuleSequence
inv : s e l f . modules−>f i r s t () . oclIsTypeOf (WebML)

Notation. For the ConcernModuleSequence an icon is used, which is com-
posed of the icons for AsymmetricConcernComposition::Aspects and
WebML::WebML models together depicting a sequence of modules.

Diagram. The Module Sequence Diagram is used to graphically visualize the parts of
a ConcernModuleSequence, i.e., its concrete modules in terms of WebML
models and/or Aspects:

Device
Awareness

Context
Model

Location
Awareness

5.2.1.7 ModuleRepository

As already indicated above, some meta-classes have been introduced in order to allow for better
modeling tool support. In this respect, the ModuleRepository meta-class has been included and
subsumes all ConcernModules as well as ConcernModuleSequences defined in an aspectWebML
project.

Generalization. None.
Specialization. None.
Attributes. None.
References.
modules This containment reference specifies the set of ConcernModules that can

be used in the aspectWebML project.
sequences The sequences reference denotes the set of ConcernModuleSequences

available in the aspectWebML project.
Constraints. None.
Notation. There is no need for a separate notational element, since the Mod-

uleRepository meta-class is not used in the sense of a modeling element
in aspectWebML. Within the aspectWebML tool support (cf. Chapter 7),
a typical ”folder” icon is used to denote the ModuleRepository:

169

5 aspectWebML - Applying aspectUWA to WebML

5.2.1.8 RuleRepository

Analogous to the ModuleRepository meta-class, the RuleRepository meta-class which subsumes
all ConcernCompositionRules as well as ConcernCompositionRuleSequences defined in an as-
pectWebML project, has been included.

Generalization. None.
Specialization. None.
Attributes. None.
References.
rules This containment reference specifies the set of ConcernCompositionRules

that can be used in the aspectWebML project.
sequences The sequences reference declares the set of ConcernCompositionRuleSe-

quences available in the aspectWebML project.
Constraints. None.
Notation. Analogous to the ModuleRepository meta-class, a typical ”folder” icon

is used to denote the ModuleRepository within the aspectWebML tool
support (cf. Chapter 7):

5.2.2 The AsymmetricConcernComposition Package

In the AsymmetricConcernComposition package, the ConcernCompositionRule is specialized for
covering asymmetric composition mechanisms. Analogous to the CRM, the package is organized
into two sub-packages, namely AspectualSubject and AspectualKind. Besides the Aspect meta-class
the PointcutRepository meta-class has been introduced. An overview of the package is given in
Figure 5.3. Deviations from the CRM are highlighted in grey and are explained with the corre-
sponding meta-class description.

Pointcut
Repository

concernComposition::
ConcernModule

name:EString

aspectualSubject
::Pointcut

name:EString

concernComposition::
ConcernCompositionRule

name:EString
effect:EffectKind

Aspect

pointcuts *

Asymmetric
CompositionRule

relativePosition:RelativePositionKind

pointcut 1aspectualKind::
Advice

name:EString
expression:EString

advice1..*

advice

0..1

Figure 5.3: aspectWebML: The AsymmetricConcernComposition Package

170

5.2 The aspectWebML Metamodel

5.2.2.1 AsymmetricCompositionRule

The AsymmetricCompositionRule is a specialization of the ConcernCompositionRule for asymmet-
ric composition mechanisms. The AsymmetricCompositionRule meta-class has a reference to a
Pointcut (cf. AspectualSubject::Pointcut) and an Advice (cf. AspectualKind::Advice). In contrast
to the CRM, a separate meta-class for the CRM’s RelativePosition concept is not provided. Again,
the goal is not to impose on the modeler too many new modeling concepts. Therefore, the relPos
attribute of type RelativePositionKind is directly incorporated into the AsymmetricComposition-
Rule meta-class.

Generalization. ConcernComposition::ConcernCompositionRule.
Specialization. None.
Attributes.
relPos This attribute denotes the relative position with respect to the JoinPoints

where the Advice shall be introduced. Besides, before, after, and around,
the into RelativePositionKind (cf. Enumeration RelativePositionKind in
Figure 5.4) is supported.

References.
pointcut The pointcut reference declares the Pointcut where the Advice of the rule

shall be applied.
advice The advice reference designates the Advice to be used in the rule.
Constraints.

In case the modeler specifies the rule to have deletion effect, the Advice
must not be set:

context AsymmetricCompositionRule
inv : s e l f . e f f e c t = Effec tKind : : d e l e t i o n implies

s e l f . advice . ocl IsUndefined ()

In case the modeler specifies the rule to have an enhancement or replace-
ment effect, the Advice is mandatory:

context AsymmetricCompositionRule
inv : s e l f . e f f e c t <> EffectKind : : d e l e t i o n implies

not s e l f . advice . ocl IsUndefined ()

Notation. Depending on the EffectKind and the RelativePositionKind, different
icons for the AsymmetricCompositionRule are available. The default case
assumes an enhancement EffectKind and an into RelativePositionKind:

n/an/aAround

n/an/aAfter

n/an/aBefore

Into

DeletionReplacementEnhancement

EffectKind

R
el

at
iv

eP
os

iti
on

Ki
nd

171

5 aspectWebML - Applying aspectUWA to WebML

Diagram. The notational element for AsymmetricCompositionRules to be used in
the Rule Sequence Diagram is as follows:

Multi
Delivery

Furthermore, in order to illustrate the details of AsymmetricCompo-
sitionRules, the AsymmetricCompositionRule Diagram depicts the rule’s
Pointcut and Advice in separate compartments and the rule’s Relative-
PositionKind and EffectKind with one of the above icons.

Advice NewsIndexUnit Pointcut HighlightsPage
AsymmetricCompositionRule IndexUnit2Page

HighlightsNews

News

5.2.2.2 Aspect

The Aspect meta-class has been introduced as a sub-class of ConcernModule in order to support
asymmetric composition mechanisms. Aspects are used to encapsulate a set of Advice that to-
gether contribute to a certain concern.

Generalization. ConcernComposition::ConcernModule.
Specialization. None.
Attributes. None.
References.
advice This containment reference specifies the set of Advice that belongs to the

Aspect.
Constraints. None.
Notation. The notational element for Aspect to be used in the Module Sequence Dia-

gram is as follows:
Device

Awareness

Diagram. In addition, Aspects are visualized within the so-called Aspect Diagram,
which contains one or more Aspects together with their Advice.

DeviceAwareness
DeviceContext
DeviceContextRelationships
MultiDeliveryContextCloud

5.2.2.3 PointcutRepository

In order to be able to reuse Pointcuts within an aspectWebML project, they are not defined as parts
of Aspects but as parts of a general PointcutRepository in the project. This even allows some kinds
of Pointcuts to be exported to repositories within other aspectWebML projects.

172

5.2 The aspectWebML Metamodel

Generalization. None.
Specialization. None.
Attributes. None.
References.
pointcuts This containment reference specifies the set of Pointcuts that can be used

in the aspectWebML project.
Constraints. None.
Notation. There is no need for a separate notational element, since the

PointcutRepository meta-class is not used in the sense of a modeling ele-
ment in aspectWebML. Again within the aspectWebML tool support the
PointcutRepository is illustrated with a typical ”folder” icon:

5.2.3 The AspectualSubject Package

The AspectualSubject package encompasses the concepts required for identifying where to apply
an Advice. As already explained before, during the application of the CRM to the WebML lan-
guage, some of the package’s concepts have not been incorporated into the aspectWebML lan-
guage including StructuralJoinPoint and BehavioralJoinPoint. Further deviations from the CRM
can be found in the following class descriptions. An overview on the AspectualSubject package
is given in Figure 5.4, whereby deviations from the CRM are again highlighted in grey.

<<Enumeration>>

OperatorKind
-and
-or
-not

<<Enumeration>>

Relative
PositionKind
-into
-before
-after
-around

SimplePointcut
expression:EString
joinPointFeature:EString

Pointcut
name:EString

Composite
Pointcut

operator:OperatorKind

JoinPoint

webML::basic::
ModelElement

* joinPoint

1..*

children

Figure 5.4: aspectWebML: The AspectualSubject Package

5.2.3.1 JoinPoint

In aspectWebML, a JoinPoint is a well-defined place in a ConcernModule, or rather an instance of
a modeling concept belonging to the WebML language. This means, that any instance of a mod-
eling element from the WebML language, whether it is defined in a WebML model or an Advice,
can serve as a JoinPoint at some point in the CompositionPlan. In contrast, an Advice or any other
aspect-oriented concept from the CRM cannot serve as JoinPoint. This is ensured in aspectWebML
by letting the WebML’s root modeling element (cf. WebML::Basic::ModelElement) inherit from
the JoinPoint meta-class. Please note that the CRM’s JoinPointModel concept has not been in-
cluded into the aspectWebML language, since it is rather a theoretical concept than something

173

5 aspectWebML - Applying aspectUWA to WebML

to be modeled in UWAs. Furthermore, the isDynamic attribute of the CRM’s JoinPoint concept
is not incorporated into the aspectWebML language, since the operational semantics of WebML
have not been specified and thus WebML models currently cannot be executed and simulated.
Consequently, a distinction between dynamic JoinPoints and static JoinPoints is not required.

Generalization. None.
Specialization. WebML::Basic::ModelElement.
Attributes. None.
References. None.
Constraints. None.
Notation. Since the JoinPoint meta-class is defined to be abstract, there is no sepa-

rate notational element required.

5.2.3.2 Pointcut

The Pointcut describes a set of JoinPoints selected for the purpose of introducing certain augmen-
tations or constraints (cf. AspectualKind::Advice). The Pointcut meta-class is defined abstract
and is specialized into the SimplePointcut meta-class and the CompositePointcut meta-class. It is
important, that modelers define Pointcuts in a way such that they can be used together with an
Advice in an AsymmetricCompositionRule. This means, that the Pointcut needs to specify a set
of JoinPoints so that an Advice can be applied to all of them. The set of JoinPoints selected by the
Pointcut has to be of the same type or there must be some model element type that can be intro-
duced to all of them via an Advice. For example,it is not possible to define a Pointcut referencing
instances of Entity and Page, since according to WebML’s metamodel no Advice can be specified
which is applicable to both of them.

Generalization. None.
Specialization. SimplePointcut, CompositePointcut.
Attributes.
name The name of the Pointcut.
References.
Constraints. None.
Notation. There is no separate notational element necessary, since the Pointcut

meta-class is declared abstract. Instead, there are notational elements for
its concrete sub-classes.

5.2.3.3 SimplePointcut

In the CRM, the SimplePointcut concept has been defined to represent a set of JoinPoints which
are selected according to a certain quantification method (cf. Chapter 3). Please note, that the
quantification method concept has been incorporated as a meta-attribute into the SimplePoint-
cut meta-class instead of imposing to the modeler a separate QuantificationMethod meta-class
as is suggested in the CRM. While the goal of the CRM has been explicitness by modeling all
aspect-oriented concepts as first-class citizens, this is not necessary in the aspectWebML meta-
model. Currently, the aspectWebML language allows for an enumeration-based way of explicitly
selecting the JoinPoints (cf. joinPoints reference) and a declarative way of specifying JoinPoints
by using OCL queries (cf. expression attribute). When modeling a SimplePointcut the modeler
can choose one way or the other. While the enumeration-based way of specifying a SimplePoint-
cut is straightforward and can be used in case the modeler is not acquainted with OCL, the use

174

5.2 The aspectWebML Metamodel

of OCL-based SimplePointcuts has two advantages: First, it allows for reusing Pointcuts within
other aspectWebML projects. And second, pointcuts are more robust to changes of the web ap-
plication model. This means that new model elements that match the query are automatically
selected by the Pointcut. In an enumeration-based Pointcut, each new model element would have
to be specified explicitly. Following, a description is given on how enumeration-based as well as
OCL-based Pointcuts can be specified.

Defining Enumeration-based SimplePointcuts. In order to specify SimplePointcuts as an enu-
meration, the modeler simply defines the references to existing modeling elements in the join-
Points reference. In some of these cases, however, the modeler is required to provide more infor-
mation on where an Advice needs to be applied. This information can be provided within the
joinPointFeature attribute, where the modeler specifies the name of the JoinPoint’s meta-attribute
or meta-reference. For example, a modeler might wish to change the name attribute of an Entity in
the content model. Let’s say the Entity User shall be renamed to ’Person’. In this case, the modeler
needs to specify the User Entity instance in the joinPoints reference of the Pointcut. In addition,
the name of the meta-class feature, i.e., the Entity.name attribute, needs to be defined in the Sim-
plePointcut.joinPointFeature attribute. Likewise, a modeler might want to set the Entity.superentity
reference of the User Entity to point to some other entity (cf. Section 4.4.2).
Another reason for specifying a JoinPoint’s feature in SimplePointcut.joinPointFeature, is the pos-
sibility of a meta-class having more than one (containment) reference to one and the same type
in the metamodel. Imagine the content model would capture persistent and transient entities
in separate references named persistentEntity and transientEntity. In this case, modelers need to
explicitly specify the intended reference, since during composition a default can be chosen, only.

Defining OCL-based SimplePointcuts. Allowing for OCL-based SimplePointcuts, modelers
are able to define a repository of reusable Pointcuts which can be imported into other aspectWebML
projects. Two levels of reusability can be distinguished: First-level Pointcuts are defined indepen-
dently from a WebML model meaning they are defined according to properties from the WebML
language. As an example consider a Pointcut selecting all home pages of a web application.
This SimplePointcut is specified on the basis of metamodel information, only. Consequently, it
is reusable for all aspectWebML projects:
context WebML

inv: self.webModel.siteview.homepage

Second-level Pointcuts are defined on the basis of information from a WebML model and can be
reused in another aspectWebML project if its WebML model possesses the same information. As
an example consider a SimplePointcut selecting an Entity with name User:
context WebML

inv: self.dataModel.entity->select(e|e.name=’User’)

When compared to an enumeration-based SimplePointcut, which specifies the User Entity as a ref-
erence within SimplePointcut.joinPoints, the advantage of the OCL-based SimplePointcut is that it
is reusable in other aspectWebML projects, given that the content model also has an entity named
’User’. The actual JoinPoint of the SimplePointcut is not computed until executing the Composi-
tionPlan.
Unfortunately, the modeler is required to have a good understanding of the WebML language in
order to define OCL-based Pointcuts. Still, this problem can be sufficiently solved with appropri-
ate tool support, e.g., in terms of an OCL console including code completion functionality on the
basis of the WebML metamodel (cf. Section 7.1.2). Unlike the above examples, please note that in
the aspectWebML tool support, the OCL queries need to be specified starting navigation from the

175

5 aspectWebML - Applying aspectUWA to WebML

the aspectWebMLModel element.

Generalization. Pointcut.
Specialization. None.
Attributes.
expression The expression attribute represents the modeler’s OCL query used to de-

termine the set of JoinPoints.
joinPointFeature The joinPointFeature attribute specifies the name of the structural feature

of the selected JoinPoints.
References.
joinPoints The joinPoints reference specifies the enumeration-based selection of Join-

Points.
Constraints. Either the expression attribute or the joinPoints reference (possibly in

combination with the joinPointFeature attribute) is set:

context SimplePointcut
inv1 : not (s e l f . express ion . ocl IsUndefined () or s e l f . express ion= ’ ’) xor

j o i n P o i n t−>notEmpty ()
inv2 : not (s e l f . express ion . ocl IsUndefined () or s e l f . express ion= ’ ’)

implies j o i n P o i n t F e a t u r e . ocl IsUndefined ()
inv3 : not (s e l f . j o i n P o i n t F e a t u r e . ocl IsUndefined () or

s e l f . j o i n P o i n t F e a t u r e = ’ ’) implies s e l f . j o i n P o i n t−>notEmpty ()

If joinPointFeature is set, then all JoinPoints specified in joinPoint need to
have the feature specified in joinPointFeature:

context SimplePointcut
inv : i f (not s e l f . j o i n P o i n t F e a t u r e . ocl IsUndefined () or

not s e l f . j o i n P o i n t F e a t u r e = ’ ’)
then s e l f . j o i n P o i n t−>f o r A l l (j | j . e S t r u c t u r a l F e a t u r e s−>e x i s t s (f1 |

f1 . oclAsType (EReference) . name = s e l f . j o i n P o i n t F e a t u r e)) or
s e l f . j o i n P o i n t−>f o r A l l (j | j . e S t r u c t u r a l F e a t u r e s−>e x i s t s (f2 |
f2 . oclAsType (EAttr ibute) . name = s e l f . j o i n P o i n t F e a t u r e))

e lse t rue
endif

Please note that this invariant can actually not be realized in OCL, since
OCL does not allow to reflexively work on the meta-level, e.g., using
the eStructuralFeatures reference from the Ecore language is not possible.
Such a constraint consequently needs to be realized within the tool sup-
port.

Notation. SimplePointcuts are depicted with the following icon:

Diagram. Furthermore, they can be visualized in the Pointcut Diagram. Depend-
ing on how the SimplePointcut is defined, three variants for the Pointcut
Diagram can be distinguished.

Pointcut HighlightsPage

Highlights

Pointcut HighlightsPage

joinPointFeature=“contentUnit”

context WebML
inv: self.webModel.siteview.page->select(p|
p.oclAsType(Page).name=‘Highlihgts’)

Pointcut HighlightsPage

Highlights

176

5.2 The aspectWebML Metamodel

5.2.3.4 CompositePointcut

For reuse purposes, modelers are allowed to define CompositePointcuts which are composed of
other SimplePointcuts and/or CompositePointcuts by means of logical operators, e.g., AND, OR,
NOT. Since Ecore does not support association classes, the operator used is now defined as an
attribute within the CompositePointcut meta-class instead of the CRM’s Composition association
class.

Generalization. Pointcut.
Specialization. None.
Attributes.
operator This attribute specifies the kind of the operator used to compose the Com-

positePointcuts children, i.e., AND, OR, and NOT (cf. Enumeration Op-
eratorKind in Figure 5.4).

References.
children The children reference specifies the Pointcuts, i.e., SimplePointcuts and

CompositePointcuts, to make up the CompositePointcut.
Constraints. A CompositePointcut cannot be composed of itself:

context CompositePointcut
inv : not s e l f . ge tAl lS implePointcuts ()−> inc ludes (s e l f)

The getAllSimplePointcuts() operation is defined in order to be able to re-
flexively compute all SimplePointcuts of a CompositePointcut. The oper-
ation is used for the previous constraint:

context CompositePointcut def :
ge tAl lS implePointcuts () : Bag (SimplePointcut)=

s e l f . chi ldren−>i t e r a t e (
pc : Pointcut ;
al lSimplePCs : Bag (SimplePointcut) = Bag{} |
i f pc . oclIsTypeOf (SimplePointcut)

then allSimplePCs . inc luding (pc)
e lse allSimplePCs . union (pc . getAl lS implePointcut ())

endif)

Notation. Like SimplePointcuts, CompositePointcuts are supported with an icon:

Diagram. The Pointcut Diagram visualizes CompositePointcuts in separate com-
partments, whereby the contents of the compartments can be hidden.

Pointcut HighlightsPage

Highlights

Pointcut NewsPage

Highlights

Pointcut Pages

177

5 aspectWebML - Applying aspectUWA to WebML

5.2.4 The AspectualKind Package

The AspectualKind package comprises the concepts necessary to describe how to augment or con-
strain other ConcernModules. In contrast to the CRM, in aspectWebML, the SimpleAdvice is not
further specialized into StructuralAdvice and BehavioralAdvice, since such a distinction is not sup-
ported by the underlying WebML language (cf. Figure 5.5). Again, further deviations from the
CRM are explained in the following meta-class descriptions.

webML::basic::
ModelElement

SimpleAdvice
expression:EString
joinPointFeature:EString

Advice
name:EString

Composite
Advice

1..*

children

aspectElement

*
aspectElementReference

*

Figure 5.5: aspectWebML: The AspectualKind Package

5.2.4.1 Advice

The Advice specifies how to augment or constrain other ConcernModules at JoinPoints matched
by a Pointcut. Similar to the Pointcut of the AspectualSubject package, the Advice is specialized
into SimpleAdvice and CompositeAdvice.

Generalization. None.
Specialization. SimpleAdvice, CompositeAdvice.
Attributes.
name The name of the Advice.
References. None.
Constraints. None.
Notation. The Advice meta-class is declared as abstract. Notational elements are

available for its concrete sub-classes, only.

5.2.4.2 SimpleAdvice

Depending on what the modeler wishes to do, there are three different ways of specifying a Sim-
pleAdvice, namely to ”change” modeling elements, their attributes, or their references:

• In case, the web application model shall be extended with a set of modeling elements, the
modeler will need to specify them with the aspectElement containment reference of the Sim-
pleAdvice. These modeling elements together have to be modeled such that they can be
introduced to the same types of JoinPoints. For example, the SimpleAdvice may contain an
Entity Product and a Domain AgeClass (cf. Section 4.4.2). According to the WebML meta-
model, both have the same container, i.e., the content model. In the Diagram section below
the graphical representation of this kind of SimpleAdvice is indicated with the NewsIndexU-
nit SimpleAdvice containing an IndexUnit.

• If the modeler wishes to change a modeling element’s property, the expression attribute of
the SimpleAdvice meta-class needs to be used. For example, the name of the Entity User

178

5.2 The aspectWebML Metamodel

shall be changed into ’Person’. The expression attribute of the SimpleAdvice meta-class al-
lows modelers to specify the new value of the property to be changed in terms of a String.
For composition purposes, it has to be noted, that in the Pointcut.joinPointFeature attribute,
additional information is needed in order to select the right property of the modeling ele-
ment. Furthermore, in case the meta-attribute specified in the Pointcut.joinPointFeature is of
type Integer, this has to be considered during the execution of the CompositionPlan as well,
meaning that the value of SimpleAdvice.expression needs to be casted accordingly. In the Di-
agram section below the graphical representation of this kind of SimpleAdvice is indicated
with the NameValue SimpleAdvice.

• Finally, it might be necessary to change a modeling element’s references. For example, the
super-entity of an entity is specified in the WebML metamodel with a reflexive reference of
the Entity meta-class. If set, the Entity.superentity reference points to an entity’s super-entity.
In order to set the reference to another entity instance, this instance needs to be captured
in the aspectWebMLReference reference. In the Diagram section below the graphical represen-
tation of this kind of Advice is indicated with the NewsIndexUnit2 Advice, referencing an
existing IndexUnit (highlighted in grey).

Generalization. Advice.
Specialization. None.
Attributes.
expression This attribute represents the value used to set a modeling element’s at-

tribute.
References.
aspectElement This containment reference specifies the set of WebML modeling ele-

ments that make up the Advice.
aspectElement-
Reference

The aspectElementReference reference captures the references to a set of ex-
isting WebML modeling elements, which is used to (re)set the references
selected by a Pointcut.

Constraints. Either aspectElement, aspectElementReference, or expression is needs to be
set.

context SimpleAdvice
inv : s e l f . aspectElement−>notEmpty () xor

s e l f . aspectElementReference−>notEmpty () xor
not (s e l f . express ion . ocl IsUndefined () or s e l f . express ion= ’ ’)

Notation. A SimpleAdvice is represented with the following icon:

A SimpleAdvice can be visualized within the so-called Advice Diagram.
Depending on how the SimpleAdvice has been defined, three variants of
the Advice Diagram are distinguished:

Advice NewsIndexUnit

News

News

Advice NameValue

expression=“Person”

Advice NewsIndexUnit2

News

News

179

5 aspectWebML - Applying aspectUWA to WebML

Diagram. In addition, a SimpleAdvice can be visualized within the so-called Aspect
Diagram, which contains one or more Aspects together with their Advice:

DeviceAwareness
DeviceContext
DeviceContextRelationships
MultiDeliveryContextCloud

5.2.4.3 CompositeAdvice

For reuse purposes, an Advice can be composed of a coherent set of SimpleAdvice, to form a Com-
positeAdvice. In aspectWebML a CompositeAdvice will be interpreted as the sum of the modeling
elements specified by its children. Consequently, a coherent set of SimpleAdvice means, that to-
gether they have to be applicable to one Pointcut. For example, it is not possible to compose a
SimpleAdvice specifying Entities with another one specifying Pages.

Generalization. Advice.
Specialization. None.
Attributes. None.
References.
children The children reference specifies the Advice, i.e., SimpleAdvice and Com-

positeAdvice, to make up the CompositeAdvice.
Constraints. All children have either aspectElement or aspectElementReference set. Sim-

pleAdvice with the expression attribute set are not allowed to be children
of a CompositeAdvice:

context CompositeAdvice
inv : not s e l f . getAl lChi ldren()−> f o r a l l (e | e . aspectElement−>notEmpty ())
or f o r a l l (e | e . aspectElementReference−>notEmpty ())

context CompositeAdvice
inv : s e l f . getAl lChi ldren −> f o r A l l (e | e . express ion . ocl IsUndefined
or e . express ion = ’ ’)

The getAllSimpleAdvice() operation is defined in order to be able to reflex-
ively compute all SimpleAdvice of a CompositeAdvice. The operation is
used for the previous constraints:

context CompositeAdvice def : getAllSimpleAdvice () : Set (SimpleAdvice)=
s e l f . chi ldren−>i t e r a t e (
a : Advice ;
al lSimpleAdvice : Set (SimpleAdvice) = Set{} |
i f pc . oclIsTypeOf (SimpleAdvice)

then al lSimpleAdvice . inc luding (a)
e lse al lSimpleAdvice . union (a . getAllSimpleAdvice ())

endif)

Notation. A CompositeAdvice is represented with the following icon:

Diagram. Similar to the Pointcut Diagram, a CompositeAdvice is visualized within
the Advice Diagram using a compartment for each of the CompositeAd-
vice’s children:

180

5.2 The aspectWebML Metamodel

IndexUnits

Advice NewsIndexUnit

News

News
Advice EventsIndexUnit

Events

Events

Again, a CompositeAdvice is also visualized within the so-called Aspect
Diagram using its special icon.

5.2.5 The SymmetricConcernComposition Package

As already explained before, the symmetric concern composition is not the focus of this thesis.
Nevertheless, full support of symmetric concern composition is planned for aspectWebML in the
future. Consequently, in this thesis, the concepts specified in the CRM to support symmetric
composition mechanisms are incorporated into the aspectWebML metamodel as far as it is neces-
sary to guarantee an easy extension with symmetric composition semantics at a later date. This
means, symmetric concern composition is also considered within the composition algorithm but
still needs to be implemented. Following, a brief overview on the symmetric concern composi-
tion’s current support within aspectWebML will be provided.

In the SymmetricConcernComposition package, the concern composition rule is specialized ac-
cording to the compositor composition mechanism. The concepts specified in the CRM have been
included as is into the aspectWebML language with two exceptions (cf. Figure 5.6): A distinc-
tion of the ComposableElement into ComposableStructuralElement and ComposableBehavioralElement
is not made. For the asymmetric concern composition mechanism, the ModelElement meta-class
of WebML (cf. WebML::Basic::ModelElement) has been specialized from JoinPoint, thus allowing
all of WebML’s modeling elements to become the subject of an Advice. Likewise, in the symmet-
ric composition mechanism all of WebML’s modeling elements are composable by specifying an
inheritance relationship between ModelElement and ComposableElement.

For the ConcernCompositionRuleSequence, only those rules are allowed that reference Com-
posableElements of type WebML (cf. the previously specified OCL constraints). If more Symmet-
ricCompositionRules are necessary to specify the composition of two WebML models, they need
to be defined as sub-rules of this SymmetricCompositionRule. As an example for an extra rule,
imagine the content models of the two WebML models need to be merged but the Entity User in
one content model needs to be overridden by the Entity Person of the other content model. Conse-
quently, in the aspectWebML metamodel, the SymmetricCompositionRule meta-class is specified
to have subRules.

It is obvious, that the aspectWebML metamodel will need to be refined to fully support the
symmetric composition mechanism. We intend to base this refinement on the work of Clarke’s
Theme/UML approach [Cla02]. Furthermore, we are currently also investigating the suitability of
the compositor composition mechanism in the case of the WebML language. Compared to Clark’s
work which is based on UML class diagrams, in aspectWebML the compositor mechanism is
currently applied to the whole WebML language, i.e., the content model and the hypertext model,
which is richer in terms of modeling concepts. Thus, merging two WebML models can involve a
lot of rules. Again appropriate means for visualization and tool support have to be designed as it

181

5 aspectWebML - Applying aspectUWA to WebML

Match
Method

integrationStrategy

webML::basic::
ModelElement

Integration
Strategy

Name
Match

Signature
Match

NoMatchBindOverrideMerge

Composable
Element

Symmetric
CompositionRule

1 1 matchMethod

compElem

2

subRule*

Figure 5.6: aspectWebML: The SymmetricConcernComposition Package

is done for the asymmetric composition mechanisms in this thesis (cf. Chapter 5 to 7). In future
work, the compositor composition mechanism for aspectWebML shall be fully realized as well.

5.3 Modeling and Composing Crosscutting Concerns with
aspectWebML

”Having divided to conquer, we must reunite to rule” [Jac90]. Or put in other words, decomposi-
tion requires corresponding composition support. In this section, the focus is on the (asymmetric)
composition semantics of the aspectWebML language, which heavily rely on the WebML lan-
guage, i.e., its metamodel. The section will start with an introduction into how aspectWebML is to
be used considering WebML’s peculiarities in Section 5.3.1. More specifically, a simple example is
provided in order to illustrate, how Aspects can be defined as well as how they can be composed
within a CompositionPlan. Thereby, an overview on the main parts of the composition algorithm
- as it has been implemented - is given. What follows next is a detailed, examples-based discus-
sion of aspectWebML’s composition semantics in Section 5.3.2 in terms of an explanation of how
the composition algorithm deals with different kinds of AsymmetricCompositionRules.

The last part of this section is dedicated to a discussion on the limitations of the aspectWebML
language with respect to supporting the asymmetric pointcut-advice composition mechanism (cf.
Section 5.3.3).

5.3.1 An aspectWebML Primer

5.3.1.1 Modeling Concerns with aspectWebML

In the following example, an arbitrary web application is extended in order to provide the user
with information on news and events. Therefore, the content model and the hypertext model shall
be extended with appropriate Entities and Pages, respectively.

The web application is represented by the ArbitraryWebApplication WebML model (cf. Figure
5.7(a)) and the required extensions will be captured in the NewsAndEvents Aspect. The NewsAndE-
vents Aspect encapsulates all Advice needed to extend the ArbitraryWebApplication WebML model
as is illustrated in the Aspect Diagram of Figure 5.7(b). In order to extend the content model and

182

5.3 Modeling and Composing Crosscutting Concerns with aspectWebML

the hypertext model with appropriate Entities and Pages, two Advice need to be specified. First, a
News Entity and an Event Entity are modeled in the Advice NewEntities. The corresponding Advice
Diagram is shown in Figure 5.7(c). Users of the web application shall be provided with two further
pages which are accessible from anywhere in the web application. One will present a list of news
and the other will provide a list of events. In the Advice NewLandmarkPages, this is realized with
two landmark Pages, each having an IndexUnit to display instances of either the News Entity or
the Events Entity (cf. Figure 5.7(c)).

NewsAndEvents
NewEntities
NewLandmarkPages

(a)

Events
OID:OID
Title:String
Date:Date
Body:Text

News
OID:OID
Title:String
Date:Timestamp
Body:Text

Advice NewEntities Advice NewLandmarkPages
News

News

News L

Events

Events

Events L

(c)

Arbitrary
Web

Application

(b)

Figure 5.7: The NewsAndEvents Aspect

Having specified all necessary Advice, the next thing to do is to define the Pointcuts where the
Advice shall be applied in the ArbitraryWebApplication WebML model and then to combine the
Advice with an appropriate Pointcut in an AsymmetricCompositionRule. As will be explained in
detail in Section 5.3.2, an AsymmetricCompositionRule is a combination of an Advice a Pointcut
as well as a RelativePositionKind and an EffectKind. As a result there will be alternatives for
specifying the same thing with different configurations of an AsymmetricCompositionRule.

Events
OID:OID
Title:String
Date:Date
Body:Text

News
OID:OID
Title:String
Date:Timestamp
Body:Text

Advice NewEntities Pointcut ContentModel

:Structure

AsymmetricCompositionRule Entities2ContentModel

Advice NewEntities Pointcut User
AsymmetricCompositionRule EntitiesBeforeUser

User

(a)

(b)

Structure

minCard:EInt
maxCard:EInt

Entity

Relationship Domain

superentity0..1

inverse
1

attribute
*

* domainValue

relationship*

1to

DomainValue

Attribute
type:WebMLTypes

userType0..1

{xor}

Structure

entitiy
0..*

domain
0..*

(c)

Events
OID:OID
Title:String
Date:Date
Body:Text

News
OID:OID
Title:String
Date:Timestamp
Body:Text

Figure 5.8: The Open Class Composition Mechanism in aspectWebML

In the following, two different ways of how the NewEntities Advice can be applied to the Ar-
bitraryWebApplication WebML model will be discussed. These two examples shall illustrated that
the WebML language mainly focuses on the structural features of a web application. Thus, with
respect to using asymmetric composition mechanisms, in aspectWebML, modelers will actually
use the open class composition mechanism in order to compose Aspects with a WebML model (cf.

183

5 aspectWebML - Applying aspectUWA to WebML

Chapter 3). A discussion on using the pointcut-advice composition mechanism in aspectWebML
is provided in Section 5.3.3.

1. The first way of extending the ArbitraryWebApplication WebML model with the new Entities
is illustrated in Figure 5.8(a) with the AsymmetricCompositionRule Entities2ContentModel.
The rule has an enhancement EffectKind on the WebML model as is denoted by the icon of
the rule. This means, that the modeling elements specified in the Advice NewEntities are
added to the JoinPoints defined by the Pointcut ContentModel. Per default, the RelativePosi-
tionKind is into, meaning that the elements of the Advice are added into the container spec-
ified in the Pointcut. More specifically, the Entities are inserted into the entity containment
reference of the WebML meta-class Structure (cf. the corresponding WebML metamodel ex-
cerpt in Figure 5.8(c)). Please note that, in the absence of a notational element in the WebML
language, the abstract syntax in the style of UML object diagrams is used, as is shown with
the Pointcut ContentModel.

2. The second way of extending the ArbitraryWebApplication WebML model with the new En-
tities is illustrated in Figure 5.8(b) with the AsymmetricCompositionRule EntitiesBeforeUser.
In some cases, where the order of elements in a reference is important, the modeler might
want to insert the modeling elements specified in the Advice at a specific point within a
reference. For example, the modeler might want to insert an additional SortAttribute to an
IndexUnit so that the entity instances displayed are sorted according to this specification. In
this context, the order in which the attributes shall be considered during the sorting process
is important (cf. Section 5.3.2.1). While the order of entities typically is not significant for a
web application, the previous example shall be reused for illustration purposes and show
how to model these requirements in Figure 5.8(b). The Entities News and Events specified
within the Advice NewEntities need to be inserted into the content model. More specifically,
they need to be inserted into the entity containment reference before the Entity User of the
content model (cf. Pointcut User). The RelativePositionKind before of the AsymmetricCom-
positionRule is again indicated by the icon of the rule.

Finally, in the AsymmetricCompositionRule Pages2Siteview, the landmark Pages defined in the
Advice NewLandmarkPages are to be added to the Public Siteview of the WebML model, i.e., the
Siteview which is available for all users of the web application. The rule is illustrated in Figure
5.9.

Advice NewLandmarkPages Pointcut PublicSiteview
AsymmetricCompositionRule Pages2Siteview

News

News

News L

Events

Events

Events L

Public

Figure 5.9: The Pages2Siteview AsymmetricCompositionRule

184

5.3 Modeling and Composing Crosscutting Concerns with aspectWebML

5.3.1.2 Composing Concerns with the aspectWebML Composition Algorithm

The aspectWebML composition semantics have been implemented within the aspectWebML tool
support. Since the aspectWebML language has been defined in Ecore, it is possible to profit from
EMF’s code generation facilities to automatically produce a Java-based API for the aspectWebML
language and furthermore to automatically produce modeling support on the basis of a tree-based
modeling editor. The aspectWebML composition algorithm thus has been implemented in Java
and is integrated within the modeling environment of aspectWebML (cf. Chapter 7), which is
available for downloaded3. More importantly, EMF comes with a full-fledged reflection mecha-
nism which is vital when it comes to operating at different meta-levels as was specifically neces-
sary within the composition algorithm when processing AsymmetricCompositionRules (cf. Sec-
tion 5.3.2). What follows is an explanation of how the previously separated concerns available in
terms of ConcernModules can be composed with the composition algorithm.

The prerequisite for composition in aspectWebML is a CompositionPlan, which specifies how
the concerns shall be composed. As already indicated in Section 5.2, the composition algorithm
is implemented within the executeCompositionPlan() operation. Consequently, having defined all
ConcernModules, i.e., the WebML model and all Aspects to be applied to the WebML model, as
well as the required AsymmetricCompositionRules, the CompositionPlan can be configured. The
CompositionPlan requires a ConcernModuleSequence and a ConcernCompositionRuleSequence
to be defined. The first specifies the order of how the ConcernModules shall be composed. The
second, allows to specify the order of the ConcernCompositionRules, allowing to fine-tune the
order of an Aspect’s Advice.

RuleSequence News&Events

Entities2
Content
Model

Pages2
Siteview

ModuleSequence News&Events

News
And

Events

Arbitrary
Web

Application

Figure 5.10: Configuration of the ArbitraryWebApplication CompositionPlan

With respect to the example, both sequences are depicted in Figure 5.10: The Aspect NewsAndE-
vents is applied to the ArbitraryWebApplication WebML model, while the Advice Entities2Content-
Model is to be processed before the Advice Pages2Siteview.

In specifying both sequences, the modeler needs to pay particular attention to possible interac-
tions between the ConcernModules. In case of dependencies between Aspects, the Aspect being
dependent on another needs to be composed after the one it depends on. Furthermore, the mod-
eler needs to pay particular attention to the order of the AsymmetricCompositionRules in case
one of the rule has an EffectKind other than enhancement. For example, the modeler might specify
an AsymmetricCompositionRule which causes a modeling element to be deleted. It is crucial, that
this modeling element is not used in the Pointcut of another AsymmetricCompositionRule which
follows the previous rule. In the consistencyCheck() operation of the CompositionPlan these kind
of situations are detected and the modeler is warned.

The actual composition is carried out in two separate steps as is outlined within the UML activ-
ity diagram of Figure 5.11(a):

3www.wit.at/people/schauerhuber/aspectUWA

185

5 aspectWebML - Applying aspectUWA to WebML

1. Consistency Check

2. Composition of ConcernModules

In the first step, the CompositionPlan is validated. The algorithm checks for possible interactions,
i.e., dependencies between ConcernModules and between ConcernCompositionRules. In case,
the CheckConsistency action detects errors in the CompositionPlan, the algorithm produces appro-
priate warnings (cf. ProduceWarnings action) and terminates. For example, the algorithm might
detect that an Aspect of the ConcernModuleSequence is dependent on another Aspect which is
not part of the ConcernModuleSequence. Accordingly, the algorithm produces an appropriate
warning requesting the user to include the missing Aspect.

Check
Consistency

[Errors found] Produce
Warnings

ComposeConcern
Module

[Another Module Available]

[else]

[else]

FindRulesFor
ConcernModule

Execute
Rule

[Another Rule Available]

[else]

(a)

(b)

ExecuteCompositionPlan

ComposeConcernModule

Figure 5.11: Overview on the aspectWebML Composition Algorithm

Given there are no errors, in the second step, the composition algorithm starts with the actual
composition. The algorithm iterates over the ConcernModules in order to compose them one
after the other (cf. ComposeConcernModule action). The composition algorithm starts composing
the first two ConcernModules. The result of their composition is considered when composing the
third ConcernModule in the sequence, etc.

As is specified by the activity ComposeConcernModule in Figure 5.11(b), when composing a Con-
cernModule, the composition algorithm finds the corresponding ConcernCompositionRules in
the given sequence (cf. action FindRulesForConcernModule). At this point, the composition al-
gorithm will provide a separate control flow for asymmetric concern composition as well as for
symmetric concern composition, which is not shown due to the focus on asymmetric concern
composition. After that, the composition algorithm will continue with processing each rule one
after the other. The details of the ExecuteRule action will be discussed in the following section.

Considering existing composition algorithms supporting asymmetric composition, two imple-
mentations are currently available, i.e., the weaving algorithm of Klein et al. and the Motorola
Weavr of Cottenier et al. already discussed in Section 3.3.4 and Section 3.3.5, respectively. Similar
to these implementations, one can distinguish between a detection and a composition phase as will
be explained in Section 5.3.2.4. Since based on the UML for composing sequence diagrams and
state machines, respectively, these two approaches obviously are not reusable within this thesis.

186

5.3 Modeling and Composing Crosscutting Concerns with aspectWebML

5.3.2 The aspectWebML Composition Semantics in Detail

When introducing the aspectWebML metamodel in Section 5.2, several ways of specifying Point-
cuts and Advice have been pointed out. Furthermore, when modeling AsymmetricComposition-
Rules, modelers need to specify the EffectKind as well as the RelativePositionKind. In Table 5.1, an
overview on the possible combinations of EffectKind, RelativePositionKind, Pointcut, and Advice
is provided, resulting in thirteen different kinds of AsymmetricCompositionRules to be consid-
ered in the composition algorithm. What follows next is a description of each of the thirteen cases
grouped according to their EffectKind (cf. Section 5.3.2.1 to 5.3.2.3). For each case, a modeling
example as well as discussion on the issues to be considered in the composition algorithm is pro-
vided. Finally, an outline of how the composition algorithm processes these different kinds of
AsymmetricCompositionRules is given in Section 5.3.2.4. For a discussion of the implementation
details of the composition algorithm, the interested reader is referred to [Tom07].

Not Applicable Optional Part of RulePart of Rule ConfigurationLegend: Alternative to joinPoint

joinPoint joinPointFeature expression aspectElement aspectElementReference expression

ModelElement(s)
Optional Name of
Containment
Reference

Contained
ModelElement

 e.g. ENTITYs e.g. attribute e.g. ATTRIBUTEs

ModelElement(s)
ModelElement(s) of
same Type as
joinPoint

e.g. SORTATTRIBUTE e.g. SORTATTRIBUTE

ModelElement(s)
Container
ModelElement of
joinPoint

e.g. PAGE e.g. AREA

ModelElement(s) Optional Name of
Reference

Reference to existing
ModelElement(s)

 e.g. AREA e.g. defaultPage e.g. PAGE
ModelElement(s) Name of Attribute String value
e.g. ATTRITBUE Price e.g. value e.g. "Self.WholesalePrice*1,2"

ModelElement(s) Name of Reference
plus Index

Reference to existing
ModelElement

e.g. INDEXUNIT e.g. displayattribute[i] e.g. ATTRIBUTE

ModelElement(s) to be
replaced

ModelElement(s) used
for Replacement

e.g. ENTITY e.g. ENTITY
ModelElement(s) to be
replaced

Optional Name of
Reference

Reference to existing
ModelElement(s)

 e.g. AREA e.g. defaultPage e.g. PAGE
ModelElement(s) to be
replaced Name of Attribute String value

e.g. ENTITY User e.g. name e.g. "Person"
ModelElement(s) to be
replaced

Name of Reference
plus Index

Reference to existing
ModelElement(s)

e.g. INDEXUNIT e.g. displayattribute[i] e.g. ATTRIBUTE
ModelElement(s) to be
deleted
e.g. ENTITY
ModelElement(s) to be
deleted Name of Feature

e.g. ENTITY E.g., name, superEntity

ModelElement(s) to be
deleted

Name of Reference
plus Index

e.g. INDEXUNIT e.g. displayattribute[i]

Case
AdvicePointcut

AsymmetricCompositionRule

relative
Positioneffect

Before/
After

(1)

(2)

Around

(3)

(4)

Enhancement

(6)

Before/
After

(5)

Replacement

Deletion

(7)

(8)

(9)

(10)

(11)

(12)

(13)

Table 5.1: The 13 Kinds of AsymmetricCompositionRules in aspectWebML

187

5 aspectWebML - Applying aspectUWA to WebML

5.3.2.1 Enhancement AsymmetricCompositionRules

CASE 1 - EXTENDING A WEB APPLICATION MODEL WITH FURTHER MODELELEMENTS

The majority of AsymmetricCompositionRules will be of this kind. The developer might want
to extend a model with some further modeling elements. Depending on the modeling elements
s/he will group them within several Advice, i.e., the modeling elements are grouped according
to their container so that they can be applied to the WebML model within different Asymmetric-
CompositionRules having appropriate Pointcuts.

UserAddress
OID:OID
Street:String
City:String

1:N

UserAddress 1:N User

Advice Address Pointcut ContentModel

:Structure

Advice AddressRelationship Pointcut User

AsymmetricCompositionRule Address2ContentModel

AsymmetricCompositionRule AddressRelationship2User
joinPointFeature=“entity”

joinPointFeature=“relationship”

Figure 5.12: AsymmetricCompositionRule: Case 1

In Figure 5.12, the content model needs to be extended with an Entity Address, having a Re-
lationship to the existing Entity User in the content model. In the AsymmetricCompositionRule
Address2ContentModel, the Advice Address specifies the Entity to be inserted together with its At-
tributes and its Relationship to the Entity User (cf. Advice.aspectElement containment reference).
The Pointcut ContentModel specifies the Structure meta-class of WebML to be the JoinPoint (cf.
SimplePointcut.joinPoint reference). The modeler can optionally specify the containment reference
of the Pointcut (cf. joinPointFeature attribute) to which the elements in the Advice are to be added,
i.e., entity in the example (cf. Section 4.4.2). Please note, that modeling elements are highlighted
in grey if they are defined either in the WebML model or within another Advice. This notation
shall indicate that modeling elements in the Advice have pointers to modeling elements outside
the Advice. Again, in the absence of a notational element in the WebML language, UML object
diagrams shall be used, as is shown with the Pointcut ContentModel. A second AsymmetricCom-
positionRule AddressRelationship2User is required to model the inverse relationship from the User
Entity to the Address Entity. This time, the Pointcut specifies the User Entity to be the JoinPoint
and the Advice consists of the Relationship pointing to the Address Entity (highlighted in grey)
previously defined within the Advice Address.

When processing this kind of rule during composition, the modeling elements of the Advice (cf.
Advice.aspectElement containment reference) need to be added to the correct containment reference
of the specified Pointcut. This containment reference is either provided by the user or needs to
be computed at runtime. With this particular example, two peculiarities of the aspectWebML
language shall be pointed out:

• Due to the structure of the WebML metamodel, one has to define the extension of the content
model within two separate Advice to be applied to two different Pointcuts. For the human
eye, such an extension is often considered as a whole, while for the composition algorithm
it has to be disassembled into several parts, i.e., several Advice.

188

5.3 Modeling and Composing Crosscutting Concerns with aspectWebML

• Typically, these Advice are coupled in terms of having modeling elements pointing to mod-
eling elements within other Advice. For the above example, the Advice are applied only
once to the WebML model, i.e., each Advice is applied in one AsymmetricCompositionRule
having one JoinPoint, only. Still, the more common case for a crosscutting concern is that
coupled Advice are to be applied to several JoinPoints. For example, an IndexUnit pro-
viding recommendations to the user of web application might be inserted to a large set of
Pages. Some similar examples can be found in the case study of Chapter 6. In order to
support these cases the composition algorithm gets quite complex, since all the couplings
between Advice need to be traced during composition. For an in-depth discussion of the
required trace model in the composition algorithm’s implementation the reader is referred
to [Tom07].

CASE 2 - EXTENDING A WEB APPLICATION MODEL WITH FURTHER MODELELEMENTS IN A

SPECIFIC ORDER.
At some time, it might be necessary to introduce modeling elements to the web application

model while considering a specific order. For example, a SortAttribute needs to be introduced
before/after another one in order to influence how the entity instances of an IndexUnit shall be
sorted. Consequently, this kind of AsymmetricCompositionRule configuration is to be used where
the order of modeling elements is important.

Address

Address

IndexUnit Address
(source Address;
attributes Street, City;
orderby Street)

Advice CitySortAttribute Pointcut StreetSortAttribute

:SortAttribute
ascending=true

AsymmetricCompositionRule CitySortBEFOREStreetSort

Address.Street:
Attribute

:SortAttribute
ascending=true

Address.City:
Attribute

(a)

(b)

Figure 5.13: AsymmetricCompositionRule: Case 2

The example given in Figure 5.13(a) shows an IndexUnit displaying instances of Entity Address.
WebML’s textual representation furthermore reveals, that the Street and City Attributes are to be
displayed and that the instances are sorted by the Street Attribute. Figure 5.13(b) presents the
AsymmetricCompositionRule CitySortBEFOREStreetSort which shall introduce to the IndexUnit
another SortAttribute, i.e., the instances of the Entity Address shall be sorted in ascending order
according to the City Attribute and then according to the Street Attribute. Thus, in the Advice
CitySortAttribute, a new SortAttribute is specified having a reference to the City Attribute of Entity
Address. In the rule, this Advice is added before the existing SortAttribute, which is identified by
the Pointcut StreetSortAttribute.

When processing this kind of rule, the modeling elements defined in SimpleAdvice.aspectElement
need to be added to the container of the Pointcut, i.e., to the sortattribute containment reference
of the IndexUnit in the example (cf. Section 4.4.4). More specifically, the modeling elements are
added to the containment reference before or after the specified Pointcut. Consequently, it is
important that they have the same type or super-type as the JoinPoints specified in the Pointcut.

189

5 aspectWebML - Applying aspectUWA to WebML

CASE 3 - EXTENDING A WEB APPLICATION MODEL WITH A MODELELEMENT PLACED

AROUND A SET OF OTHERS.
Case 3 represents the only kind of AsymmetricCompositionRule that uses the RelativePosi-

tionKind around. This kind of rule is used, if the modeler wants to place a model element around
a set of other model elements, e.g., the modeler might want to draw a Transaction around a set of
OperationUnits. Please note, that in the open class composition mechanism (originally for intro-
ducing aspectual structure at programming level such as additional attributes to a class) the Rel-
ativePositionKind is interpreted differently than in the pointcut-advice composition mechanism
(originally for introducing aspectual behavior at programming level such as intercepting method
calls). In the example, the modeling element defined in the SimpleAdvice is placed around the
JoinPoints specified in the Pointcut. This requires, that the JoinPoints can be contained by the
modeling element of the Advice.

In the example given in Figure 5.14, the WebML model has a landmark page named News and
a Page News Details as is specified in the Pointcut of the AsymmetricCompositionRule NewsArea-
AROUNDNewsPages. In the composed WebML model, there shall be a landmark Area News,
which contains the existing News Page and News Details Page as well as a default Page Highlights.
Thus, in the Advice NewsArea, the Area News is modeled having as default page the Highlights
Page. After composition, all three pages will be contained by the Area News.

Advice NewsArea Pointcut NewsPages

News Details

Details

News

News

News

News L

News

Highlights

News

News LD L

AsymmetricCompositionRule NewsAreaAROUNDNewsPages

Figure 5.14: AsymmetricCompositionRule: Case 3

When processing this kind of rule, the modeling element of the SimpleAdvice (cf. containment
reference SimpleAdvice.aspectElement) needs to be added to the container of the Pointcut in a first
step. In the example, this container is the home Siteview of the WebML model which contains the
pages specified in the Pointcut NewsPages. Consequently, the Area News including the Highlights
Page needs to be added to the area containment reference of the Siteview (cf. Section 4.4.3). In a
second step, the JoinPoints defined within the Pointcut need to be moved to the modeling element
of the SimpleAdvice. In the example, this means that the News Page and the News Details Page
will be moved from the home Siteview to the News Area.

CASE 4 - SETTING A MODELELEMENT’S REFERENCE.
This AsymmetricCompositionRule kind is used in case a modeler wishes to set a modeling ele-

ment’s reference to an existing modeling element. This means in the Advice, no new modeling el-
ement needs to be specified within the SimpleAdvice.aspectElement containment reference. Instead,
the Advice needs to capture the reference to the existing modeling element within SimpleAdvice.as-
pectElementReference. In the example, the News Area has no default page set. Thus, the Asym-

190

5.3 Modeling and Composing Crosscutting Concerns with aspectWebML

metricCompositionRule AddDefaultPage2Area in Figure 5.15 provides the reference to the existing
Page Highlights of the News Area in the Advice HighlightsPage. In the rule’s Pointcut NewsAreaD-
efaultPage the News Area is specified as well as optionally the Pointcut.joinPointFeature of the Area
meta-class, i.e., defaultPage, to which the Advice shall be applied.

Advice HighlightsPage Pointcut NewsAreaDefaultPage

Highlights

News

News L

News

L

AsymmetricCompositionRule AddDefaultPage2Area

joinPointFeature=“defaultPage”

Figure 5.15: AsymmetricCompositionRule: Case 4

During composition, the SimpleAdvice.aspectElementReference needs to be added to the given
Pointcut.joinPointFeature. In the example, the defaultPage of the News Area will point to the High-
lights Page after composition.

CASE 5 - SETTING A MODELELEMENT’S ATTRIBUTE.
If the modeler needs to set an attribute of a modeling element, s/he will use the Asymmetric-

CompositionRule of Case 5. For example, the modeler might want to define a derived Attribute,
i.e., to set the value meta-attribute of the Attribute meta-class. In this case, the modeler needs
to provide the new value of the attribute to be set within the Advice (cf. SimpleAdvice.expression
attribute). In addition, in the Pointcut.joinPointFeature of the Pointcut, the modeler has to spec-
ify which attribute needs to be set. In the example given in Figure 5.16, the Entity Product is
assumed to have two Attributes, namely Price and WholesalePrice. In the AsymmetricComposi-
tionRule AddValue2PriceAttribute.Value, the Price Attribute shall be defined to be derived from the
WholesalePrice Attribute, i.e., the value of the Price Attribute needs to be set. More specifically, the
Price is equal to the WholesalePrice plus 20% tax. Consequently, in the Advice Value, the SimpleAd-
vice.expression needs to be set to the required derivation String Self.WholesalePrice*1,2 (cf. WebML’s
derivation language [CFB+03]). The Pointcut PriceAttributeValue specifies the modeling element,
i.e., the Price Attribute, and in the joinPointFeature the modeling element’s meta-attribute that
needs to be set, i.e., the value.

Advice Value Pointcut PriceAttributeValue
AsymmetricCompositionRule AddValue2PriceAttribute.Value

joinPointFeature=“value”

expression=“Self.WholesalePrice*1,2” Product.Price:
Attribute

Figure 5.16: AsymmetricCompositionRule: Case 5

During composition, the expression of the Advice needs to be set to the given joinPointFeature of
the Pointcut. In the example, the value of the Price Attribute will be set to Self.WholesalePrice*1,2
after composition.

191

5 aspectWebML - Applying aspectUWA to WebML

CASE 6 - EXTENDING A MODELELEMENT’S REFERENCE IN A SPECIFIC ORDER.

At some time, it might be necessary to introduce a reference instance to a modeling element
while considering a specific order. For example, the IndexUnit meta-class has a reference point-
ing to the Attributes of the IndexUnit’s Entity (cf. IndexUnit.displayAttribute). In a web application
model, the order of the reference instances to the Attribute will determine their display order
in the web application. For example, a reference instance to an Attribute might be inserted be-
fore/after an existing reference instance in order to change the display order. Consequently, this
kind of AsymmetricCompositionRule configuration is to be used where the order of references to
modeling elements is important. In contrast to Case 2, this kind of AsymmetricCompositionRule
does not operate on a containment reference but on a normal reference. This means in the Ad-
vice, references to existing modeling elements (cf. SimpleAdvice.aspectElementReference reference)
are provided instead of modeling new elements.

The example given in Figure 5.17(a) again shows an IndexUnit displaying instances of Entity
Address. WebML’s textual representation furthermore reveals, that the City Attribute is to be dis-
played. In this case, the IndexUnit shall also display the Street Attribute before the City Attribute.
This is realized in Figure 5.17(b) with the AsymmetricCompositionRule DisplayStreetBEFORECity:
In the rule’s Advice StreetAttribute, the reference to the Street Attribute of Entity Address is pro-
vided and needs to be inserted. The rule’s Pointcut CityDisplayAttribute specifies the IndexUnit
Address. Furthermore the Pointcut’s joinPointFeature denotes the reference where the Street At-
tribute reference needs to be inserted. Please note that, the modeler furthermore needs to specify
the index of the City Attribute reference. This is necessary, in order to be able to insert the reference
to the Street Attribute reference before the one of the City Attribute.

Address

Address

IndexUnit Address
(source Album;
attributes City)

Advice StreetAttribute Pointcut CityDisplayAttribute
AsymmetricCompositionRule DisplayStreetBEFORECity

(a)

(b)

Address.Street:
Attribute

Address

Address

joinPointFeature=“displayattribute[1]”

Figure 5.17: AsymmetricCompositionRule: Case 6

When processing this kind of rule, the references specified in SimpleAdvice.aspectElementReference
need to be added to the joinPointFeature of the Pointcut, i.e., to the displayattribute reference of the
IndexUnit in the example (cf. Section 4.4.4). More specifically, the references are added to the
displayattribute reference before or after the specified index in the joinPointFeature. Consequently,
it is important that the references specified in SimpleAdvice.aspectElementReference have the same
type or super-type as the reference specified in the Pointcut’s joinPointFeature.

192

5.3 Modeling and Composing Crosscutting Concerns with aspectWebML

5.3.2.2 Replacement AsymmetricCompositionRules

CASE 7 - REPLACING MODELELEMENTS OF THE WEB APPLICATION MODEL WITH NEW ONES.
Sometimes, the modeler needs to replace previously defined modeling elements with new ones.

The AsymmetricCompositionRule kind of Case 7 represents the necessary configurations of the
rule. Figure 5.18(a) provides an example, where the User Entity specified in the Pointcut User
of the AsymmetricCompositionRule ReplaceUserWITHPerson needs to be replaced with a Person
Entity specified in the Advice Person.

While processing this rule, the modeling element specified by the Pointcut is deleted and in-
stead, the modeling element specified within the Advice is inserted into the container of the
Pointcut, i.e., the entity containment reference of the Structure meta-class in the example (cf.
Section 4.4.2). Consequently, it is important that the modeling element defined in SimpleAd-
vice.aspectElement has the same type or super-type as the JoinPoint specified in the Pointcut.

Furthermore, the following issues need to be considered:

• Since the replaced modeling element actually is deleted, all pointers to it as well as to its
children (e.g., the User Entity’s Attributes and Relationships to other Entities) are lost. The
current implementation of the composition algorithm, keeps track of the pointers to the
modeling element of the Pointcut and lets them point to the modeling element of the Ad-
vice after composition. Thus, in the example, DataUnits defined for the User Entity will
point to the Person Entity after composition. Still, the User Entity’s Attributes and Relation-
ships have been deleted as well, meaning that pointers to them are now dangling. Conse-
quently, all these pointers need to be unset. For example, after composition, the DataUnits
that will then be defined for the Person Entity will have dangling pointers to the User Entity’s
Attributes in their displayattribute reference. The composition algorithm will unset the dan-
gling references and the modeler will have to set the Attributes to be displayed in a separate
AsymmetricCompositionRule.

• Keeping track of pointers is always done for the first aspectElement of an Advice and the first
JoinPoint of the Pointcut, only. Thus, in case the modeler replaces the User Entity with a
Person Entity and a Student Entity, all pointers will be resolved to the Person Entity instead
of the Student Entity.

The example shows, that replacing an Entity possibly causes some problems in the composed
model. This is due to possible dependencies between the Entity and modeling elements within
the content model and the hypertext model. In this case, the modeler needs to balance the trade
off between defining a replacement rule or just renaming the Entity User and defining some more
rules for changing Attributes and Relationship of the previous Entity User.

CASE 8 - RE-SETTING A MODELELEMENT’S REFERENCE.
This AsymmetricCompositionRule kind is similar to Case 4, with the difference that it is used

to re-set a modeling element’s reference to an existing modeling element instead of initializing
it. This means in the Advice, the reference to the existing modeling element(s) within aspectEle-
mentReference is captured. In the example, the News Area is assumed to have its defaultPage set to
the News page (not shown). Thus, the AsymmetricCompositionRule ReplaceDefaultPageOFArea in
Figure 5.18(b) provides the reference to the existing Page Highlights of the News Area in the Advice
HighlightsPage. In the rule’s Pointcut NewsAreaDefaultPage, the News Area is specified as well as

193

5 aspectWebML - Applying aspectUWA to WebML

User
Advice Person Pointcut User
AsymmetricCompositionRule ReplaceUserWITHPerson

Person

User
Advice NameValue Pointcut UserName
AsymmetricCompositionRule ReplaceValueOFUser.Name

joinPointFeature=“name”

expression=“Person”

Pointcut NewsAreaDefaultPage

Highlights

News

News L

News

L

AsymmetricCompositionRule ReplaceDefaultPageOFArea

joinPointFeature=“defaultPage”

Advice StreetAttribute Pointcut CityDisplayAttribute
AsymmetricCompositionRule DisplayStreetREPLACEDisplayCity

Address.Street:
Attribute

Address

Address

joinPointFeature=“displayattribute[1]”

(a)

(b)

(c)

(d)

Advice HighlightsPage

Figure 5.18: AsymmetricCompositionRule: Case 7-10

optionally the joinPointFeature of the Area meta-class, i.e., defaultPage, to which the Advice shall
be applied.

During composition, the aspectElementReference of the Advice needs to replace the previous ref-
erence given by joinPointFeature of the Pointcut. In the example, the defaultPage of the News Area
will point to the Highlights Page instead of to the News Page after composition.

CASE 9 - RE-SETTING A MODELELEMENT’S ATTRIBUTE.
If the modeler needs to change an attribute of a modeling element, s/he will use the Asym-

metricCompositionRule of Case 9. This is similar to Case 5, which is used to initialize a model
element’s attribute. For example, the modeler might want change the name of an Entity. In this
case, the modeler needs to provide the new value of the attribute to be set within the Advice (cf.
SimpleAdvice.expression attribute). In addition, in the joinPointFeature of the Pointcut, the modeler
has to specify which attribute needs to be set. In the example given in Figure 5.18(c), the Entity
User shall be renamed to Person. Consequently, in the Advice NameValue, the expression is set to
the required String ’Person’. In the Pointcut UserName, the modeling element is specified, i.e., the
User Entity. Furthermore, the joinPointFeature specifies the modeling element’s meta-attribute that
needs to be changed, i.e., the name.

During composition, the expression of the Advice needs to replace the value of the given join-
PointFeature of the Pointcut. In the example, the name of the User Entity will have changed to
Person after composition.

194

5.3 Modeling and Composing Crosscutting Concerns with aspectWebML

CASE 10 - REPLACING A MODELELEMENT’S REFERENCE INSTANCE

This kind of AsymmetricCompositionRule is to be used where a specific instance of a model
element’s reference needs to be replaced. Consider an IndexUnit and the sub-set of its Entity’s
Attributes that shall be displayed. A modeler might want to replace one of the Attributes with
another one, e.g., a ShortDescription Attribute with a LongDescription Attribute. In the metamodel,
the relationship to the Attributes is specified as a reference of the IndexUnit’s meta-class (cf. dis-
playattribute). Consequently, similar to the previously explained Case 6, this kind of rule operates
on a the instances of a model element’s reference.

In the example of Figure 5.18(d), the IndexUnit Address is assumed to have one Attribute to be
displayed, i.e., the City Attribute of Entity Address. In the composed model, however, the Street
Attribute of Entity Address shall be displayed instead, as is specified in the AsymmetricComposi-
tionRule DisplayStreetREPLACEDisplayCity: In the Advice StreetAttribute the reference to the Street
Attribute is specified. The Pointcut specifies the IndexUnit Address as well as its joinPointFeature,
denoting the reference where the Street Attribute reference needs to be inserted. Again, the mod-
eler furthermore needs to specify the index of the City Attribute reference. This is necessary, in
order to be able to replace the reference to the City Attribute with the one of the Street Attribute.

When processing this kind of rule, the aspectElementReference of the Advice needs to be inserted
into the joinPointFeature of the Pointcut, i.e., to the displayattribute reference of the IndexUnit in
the example (cf. Section 4.4.4). More specifically, the aspectElementReference is inserted into the
displayattribute reference at the specified index instead of the previous reference. Consequently,
it is important that the aspectElementReferences of the Advice have the same type or super-type as
the reference specified in the Pointcut’s joinPointFeature.

5.3.2.3 Deletion AsymmetricCompositionRules

For AsymmetricCompositionRules having a deletion effect, modelers need to specify a Pointcut,
only. The Pointcut identifies the JoinPoints in the WebML model to be deleted. Following, three
kinds of AsymmetricCompositionRules having a deletion effect can be distinguished.

CASE 11 - DELETING MODELELEMENTS FROM THE WEB APPLICATION MODEL.
In order to delete modeling elements from a WebML model, the modeler specifies in the Point-

cut all JoinPoints to be deleted. In Figure 5.19(a), the Pointcut User of the AsymmetricComposi-
tionRule DeleteUser specifies the User Entity to be deleted from the content model.

When processing the rule, the modeling elements are simply deleted from the WebML model.
Still, the modeler needs to consider dependencies between the deleted modeling elements and
others. After deletion, pointers to the deleted modeling elements will be dangling and need to be
dealt with in other rules.

CASE 12 - UNSETTING A MODELELEMENT’S ATTRIBUTE OR REFERENCE .
Likewise, modelers might need to delete the value of a modeling element’s attribute or ref-

erence. The AsymmetricCompositionRule DeletePriceAttribute.Value in Figure 5.19(b) illustrates
how a meta-attribute of Price Attribute of the Product Entity shall be deleted. The derivation
string stored in the value attribute of the Attribute meta-class shall be deleted. Consequently, in
the Pointcut, the Price Attribute as well as the joinPointFeature value needs to be specified. During
composition, the value of the meta-attribute, i.e., the value of Attribute.value, needs to be unset.

195

5 aspectWebML - Applying aspectUWA to WebML

In Figure 5.19(c), an example for deleting a modeling element’s reference is shown. In the
example, the inheritance relationship of the User Entity to its super-entity shall be deleted. Thus,
in the AsymmetricCompositionRule DeleteUser.superentity, the Pointcut specifies the User Entity
as JoinPoint as well as the the superentity reference that needs to be deleted in the joinPointFeature.
During composition, the meta-reference, i.e., Entity.superentity, needs to be unset.

Pointcut StreetDisplayAttribute
AsymmetricCompositionRule DeleteDisplayStreet

Address

Address

joinPointFeature=“displayattribute[1]”

User
Pointcut User

AsymmetricCompositionRule DeleteUser

Pointcut PriceAttributeValue

joinPointFeature=“value”

User
Pointcut User

joinPointFeature=“superentity”

AsymmetricCompositionRule DeletePriceAttribute.Value

AsymmetricCompositionRule DeleteUser.superentity

(a)

(b)

(c)

(d)

Product.Price:
Attribute

Figure 5.19: AsymmetricCompositionRule: Case 11-13

CASE 13 - DELETING A MODELELEMENT’S REFERENCE INSTANCE.
Finally, modelers might wish to delete one specific reference instance of a ModelElement. In

the example, the IndexUnit Address displays two Attributes of the Entity Address, namely Street
and City. The AsymmetricCompositionRule DeleteDisplayStreet specifies how the Street Attribute
reference shall be deleted. In the Pointcut, the IndexUnit Address is specified as the JoinPoint.
Furthermore, the joinPointFeature of IndexUnit is given, i.e., the displayattribute reference which
stores the reference instances to the Entity’s Attributes that shall be displayed. The actual reference
to be deleted from the displayattribute sequence is specified via an index in the joinPointFeature.
After composition, the IndexUnit Address will display the Street Attribute, only.

5.3.2.4 Processing AsymmetricCompositionRules

This section outlines how the composition algorithm processes the previously identified kinds of
AsymmetricCompositionRules. Consequently, the ExecuteRule Action of Figure 5.11 of the com-
position algorithm will be refined in a separate activity diagram which is depicted in Figure 5.20.

196

5.3 Modeling and Composing Crosscutting Concerns with aspectWebML

Resolve
JoinPoints

[Around RelativePosition] ApplyAdvice
AroundAllJoinPoints

[else]

[else]

Delete

SetAttribute

AddAspect
Elements

AddAspect
Element

References

ReplaceAspect
Elements

ReplaceAspect
Element

References

[Another JoinPoint Available]

[Deletion Effect]

[Advice Expression]
[else]

[else]
[Enhancement
Effect]

[else]

[Replacement
Effect]

[AspectElement
set]

[AspectElement
Reference set]

[AspectElement
Reference set]

[AspectElement
set]

CASE 3

CASE 11-13

CASE 5 & 9

CASE 1 & 2

CASE 4 & 6

CASE 7

CASE 8 & 10

ExecuteRule

Figure 5.20: Processing Rules in the aspectWebML Composition Algorithm

In the figure, the parts of the activity realizing one or more of the previously defined cases are
indicated.

In a first step, in the activity ExecuteRule, the JoinPoints of the rule’s Pointcut need to be re-
solved. The ResolveJoinPoints action is responsible for establishing a list of JoinPoints specified in
terms of an OCL query or an enumeration within a SimplePointcut or a CompositePointcut. This
step corresponds to the previously mentioned detection phase of a composition algorithm. After
that, the different kinds of AsymmetricCompositionRules are processed in separate control flows,
representing the composition phase.

First of all, the algorithm deals with rules specified in Case 3. Rules having an around Relative-
PositionKind are applied to all JoinPoints at once in that the aspectElement of the Advice is placed
around the JoinPoints (cf. ApplyAdviceAroundAllJoinPoints action). For all other rules, the list of
JoinPoints is iterated and the Advice is applied to each JoinPoint separately.

Then the rules having a deletion EffectKind are considered. The Delete action in the activity cov-
ers Case 11 to Case 13 and is not further refined. Depending on the specific rule, the composition
semantics defined in the previous sections have to be ensured.

Case 5 and 9 are captured by the SetAttribute action. Independent from the EffectKind, the
attribute specified in the Pointcut’s joinPointFeature can be set to the expression of the Advice.

Last but not least, the last major decision distinguishes between rules having an enhancement
EffectKind and rules having a replacement EffectKind. In both cases, a further distinction with re-

197

5 aspectWebML - Applying aspectUWA to WebML

spect to how the Advice is defined is required, i.e., either through the aspectElement containment
reference or the aspectElementReference reference. The AddAspectElement action thus is executed in
case of an enhancement effect and in case the aspectElement reference is set. Within the action, a
further distinction according to the rule’s RelativePositionKind is necessary in order to support
Case 1 (RelativePositionKind into) and Case 2 (RelativePositionKind before/after). If the aspectEle-
mentReference reference is set instead, the AddAspectElementReferences action is executed. Again a
further distinction according to the rule’s RelativePositionKind is necessary in order to support
both Case 4 (RelativePositionKind into) and Case 6 (RelativePositionKind before/after).

Considering a replacement effect, the action ReplaceAspectElements is executed, if the aspect-
Element reference of the Advice is set thereby realizing Case 7. Finally, if no other action applies
beforehand, the ReplaceAspectElementReferences action is executed. The action realizes Case 8 or
Case 10 depending on the possibility of specifying an index within the Pointcut’s joinPointFeature.

After the Advice has been applied to the JoinPoint, either the Advice is again applied to the
next JoinPoint specified by the Pointcut or the rule has fully been applied to all JoinPoints and the
composition algorithm proceeds to the next rule.

5.3.3 Supporting the Pointcut-Advice Composition Mechanism in
aspectWebML

While the WebML language mainly supports modeling the structural features of a web applica-
tion, some kind of behavior can be modeled by introducing content management functionality
e.g., in terms of CreateUnits, ModifyUnits, and DeleteUnits, to a WebML model or can be found
in the context clouds of context-aware Pages, Areas and Siteviews. In these cases, some flow of
actions in terms of OperationUnits is available. Consequently, applying an Advice to such a flow
of actions, e.g., before or after an OperationUnit, corresponds to using the pointcut-advice asym-
metric composition mechanism. In aspectWebML, allowing for such composition semantics is not
considered, since they would cause some problems which are explained in the following.

Imagine the context cloud of the context-aware Page A in Figure 5.21(a) needs to be extended.
Currently, the context cloud ensures that the page is accessible for users only if they have already
successfully logged in to the web application. The IfUnit of the context cloud checks if the user is
known in the session by querying the UserCtxParam Parameter with a GetUnit. In case the user
has not yet logged in to the web application, s/he is redirected to the Page Login. In the example,
the context cloud shall be extended so that after composition, the context cloud resembles the one
depicted in Figure 5.21(c). This context cloud ensures that the user is able to visit Page A only if
the user’s location is known, or the user has already successfully logged in to the web application.
The Location.OID is assumed to have been calculated by some outer context cloud in the web
application and thus is available in the ContextUnit of Page A. The extension of the context cloud
would require the IfUnit that checks the Location.OID to be inserted before the existing IfUnit of the
context cloud. ’Before’ means, that an OKLink of the inserted IfUnit needs to point to the existing
IfUnit. The existing IfUnit will serve as the Pointcut. In case the condition of the inserted IfUnit
evaluates to true, an OKLink to the ContextUnit shall be followed, else an OKLink to the existing
IfUnit shall be followed. The outgoing Link from the ContextUnit needs to be redirected to the
just inserted IfUnit and a LinkParameter needs to transport the Location.OID to the IfUnit.

This extension seems to be quite easy at first sight. In a composition algorithm, this use case
has to be generalized, however, in order to be applicable to other OperationUnits such as Modify-
Units, a ChangeSiteviewUnit, and a SwitchUnit. The issues to be considered in a composition

198

5.3 Modeling and Composing Crosscutting Concerns with aspectWebML

algorithm are the following:

• Identification of the Outgoing Links’ Targets. The outgoing links, i.e., the OKLinks of the
IfUnit or any OperationUnit, need to be specified in the Advice. Still, the link’s targets must
not be specified. These are to be computed by the composition algorithm which needs to de-
cide which link will point to the Pointcut, i.e., the existing IfUnit in the example. The targets
of the remaining outgoing links will have to be specified by the modeler after composition.

• Identification of the Incoming Links’ Targets. The incoming links of the Pointcut, i.e., the
existing IfUnit in the example, have to be redirected to the OperationUnit that is inserted.
However, such a redirection might have unexpected side-effects on the flow of actions and
might change the semantics of the context cloud.

A

B Index

B

C

If

[Location.OID!=NULL]

GetUser

UserCtxParam

Location.OID

If

[User.OID!=NULL]

OK
[result=false]

OK

[result=true]

OK
[result=true]

Login

OK[result=false]

User.OID

A

B Index

B

C

If

[Location.OID!=NULL]
Location.OID

OK
[result=false]

OK

[result=true]

Login

A

B Index

B

C

GetUser

UserCtxParam

If

[User.OID!=NULL]

OK
[result=true]

Login

OK[result=false]

User.OID

(a)

(b) (c)

First Example

Second Example

Composed Model

Figure 5.21: The Pointcut-Advice Composition Mechanism in aspectWebML

Now let’s consider a second example, in Figure 5.21(b), where the same context-aware Page A is
depicted. In this case, however, the context cloud ensures that the page is accessible for users only
if their location is available. Similar to the previous example, the context cloud shall be extended
with a further check with respect to the login-status of the user. The extension of the context
cloud would require the IfUnit that checks the User.OID to be inserted after the existing IfUnit of
the context cloud, i.e., again the existing IfUnit will serve as the Pointcut. More specifically, the
OKLink, which is followed if the condition Location.OID!=NULL resolves to false, shall point to
the inserted IfUnit instead of the Login Page. The outgoing OKLinks of the inserted IfUnit shall
point to the Login Page and the A Page, respectively as is depicted in Figure 5.21(c).

In the composition algorithm, the major problem to resolve is how the IfUnit of the Advice can
be inserted after the Pointcut, i.e., an existing OperationUnit. It is not clear if it shall be inserted

199

5 aspectWebML - Applying aspectUWA to WebML

for one outgoing link of the Pointcut or if it shall be inserted for all of them. In case the Advice
shall be applied to one of the outgoing links, i.e., one of the OKLinks in the example, it is neither
clear which of them shall be chosen.

For these reasons, behavioral flows in WebML are ignored and the WebML language is con-
sidered from a structural view point, only. This means in the specification of aspectWebML’s
composition semantics, the RelativePositionKind of an AsymmetricCompositionRule will always
be interpreted as a relative position in the structure of a WebML model. Consequently, in order to
realize the above extensions, the modeler will need to specify them with the open class composi-
tion mechanism as already explained before.

5.4 Summary

This chapter has been dedicated to the design of the aspectWebML web modeling language, i.e., an
extension of the existing WebML language with concepts from the aspect-orientation paradigm in
order to better support modeling of crosscutting concerns, i.e., in particular customization. The
major contributions of this chapter are as follows:

First, the aspectWebML metamodel has been designed on the basis of the Conceptual Refer-
ence Model for aspect-oriented modeling of Chapter 3. In this respect, the Conceptual Reference
Model has been used as a blueprint for bridging an existing web modeling language to the aspect-
orientation paradigm.

Second, several ways of manipulating WebML models with Aspects have been provided going
beyond their enhancement with modeling elements and the replacement as well as the deletion
of existing modeling elements. More specifically, modelers are also provided with the possibility
of changing existing modeling elements’ attributes and references.

Third, allowing for OCL-based Pointcuts, modelers are enabled to define a repository of reusable
Pointcuts which can be imported into other aspectWebML projects.

Fourth, the composition semantics of the aspectWebML language have been specified in detail.
On the basis of examples, all possible ways of defining AsymmetricCompositionRules have been
discussed as well as the issues to be considered during composition. Furthermore, an explanation
of the mode of operation of the composition algorithm, which has been implemented in Java and
is integrated within the modeling environment for aspectWebML, has been given

Due to the focus on supporting the development of UWAs, this thesis specializes in supporting
asymmetric composition mechanisms which are more suitable to support customization modeling
than symmetric composition mechanisms. Nevertheless, the concepts specified in the CRM to
support symmetric composition mechanisms are incorporated into the aspectWebML metamodel
as far as it is necessary to guarantee an easy extension with symmetric composition semantics at
a later date. In future work, the compositor composition mechanism for aspectWebML shall be
fully realized as well.

200

6 The Context-Aware Museum Case Study

Contents
6.1 Introducing the Context-Aware Museum . 201
6.2 Designing the Context-Aware Museum with WebML 209
6.3 Designing the Context-Aware Museum with aspectWebML 221
6.4 Comparative Discussion . 239
6.5 Summary . 242

This chapter presents the case study used to compare the WebML approach for modeling UWAs
with the aspectWebML approach presented in this thesis. The Context-Aware Museum (CAM) web
application represents a UWA that provides visitors of the museum with a customized access
to general information as well as information on its indoor and outdoor exhibits, considering
the user’s context, his/her current location, and the device used. In the particular example, a
non-ubiquitous museum web application shall be made context-aware by extending it with cus-
tomization functionality. This kind of extension is of a constructive nature. As a consequence,
for the aspectWebML part in the case study, the focus will be on defining AsymmetricComposi-
tionRules having an enhancement effect on the museum web application. Following, the CAM
web application and its (customization) functionalities is presented in Section 6.1. To allow for a
comparison, the UWA is first developed with WebML’s modeling means. Thus, the relevant parts
of the resulting WebML model are presented in Section 6.2. In a second step, the CAM web appli-
cation or rather its customization functionality is re-modeled using the aspectWebML approach
(cf. Section 6.3). In doing so, the customization functionality extensions made to the museum
web application will be extracted from the WebML model presented in Section 6.2 and encapsu-
lated within a separate Customization Aspect. The Customization Aspect shall be designed in such
a way, that after weaving it ”back” into the museum web application model, the composed model
is equivalent to the WebML solution. In this respect, the goal is to show that aspectWebML can
be used to model the same CAM web application, while keeping all customization functionality
separate from the rest of the web application. Thereafter, Section 6.4 is dedicated to a comparative
discussion on aspectWebML’s strengths and shortcomings. Finally, the chapter is closed with a
summary in Section 6.5. The case study is available online together with the aspectWebML Mod-
eling Environment (cf. Chapter 7), which allows testing the aspectWebML solution by composing
the Customization Aspect with the core museum web application model.

6.1 Introducing the Context-Aware Museum

6.1.1 Motivation

As already discussed in Chapter 2, there are no generally acknowledged modeling examples for
specific types of web applications including UWAs. In order to ”assess” several web modeling

6 The Context-Aware Museum Case Study

approaches and their applicability to model customization functionality, in Chapter 2 a Tourism
Information Web Application example has been introduced. This example has been chosen in order
to not create biases in the evaluation, since it has not yet been presented in any of the investigated
approaches. In contrast, for the case study in this chapter, the Context-Aware Museum modeling
example has been chosen, which has already been used for introducing WebML’s new modeling
concepts for supporting customization modeling [CDMF07] including a demo1. The motivation
in not reusing the running example of Chapter 2 is based on the assumption that WebML’s de-
velopers will have chosen a modeling example which particulary points out WebML’s strengths
with respect to its new customization modeling concepts. The goal of this chapter is to compare
the WebML approach to modeling UWAs with the aspectWebML approach and specifically point
out aspectWebML’s strengths with respect to the WebML approach. Consequently, the CAM web
application example can be considered as a kind of ”benchmark” and thus, represents the ideal
modeling example candidate for the case study.

Nevertheless, for a better demonstration of aspectWebML’s strengths, the original CAM web
application presented in [CDMF07], has been considerably extended. More specifically, the set of
user groups considered by the CAM web application has been extended in order to serve not only
museum visitors with customized services, but also external users of the web site, registered gen-
eral users, academic users, as well as curators of the museum. In contrast to the original CAM web
application example, in this case study the set of supported context properties goes beyond loca-
tion, including also information on the user, the device, the time as well as the weather context. As
a consequence, the original customization scenario of the CAM web application already presented
in Section 4.6 for introducing WebML’s customization concepts, has been extended with seven fur-
ther customization scenarios. With respect to the core functionality of the CAM web application,
the example has been inspired by the MAK Austrian Museum of Applied Arts / Contemporary Art2.

The example, i.e., the core and customization functionalities of the CAM web application, will
be described in terms of a subset of artifacts produced in the requirements specification phase of
WebML’s development process [CFB+03], as well as the output of the subsequent data design and
hypertext design phases (cf. Section 6.2). It has to be noted, that the CAM web application pre-
sented in the following has not been implemented. In the context of this case study, the goal is to
demonstrate two properties of the aspectWebML approach: First, the aspectWebML approach al-
lows modeling customization functionality separately from the rest of the web application model.
And second, after composition of the Customization Aspect with the core web application model,
the composed model is equivalent to the WebML solution of the CAM web application model.
Since the aspectWebML approach provides composition of concerns at modeling level, the model
to be used to automatically generate a running web application, will be a WebML model without
Aspects. As already mentioned before, WebRatio currently does not support developing UWAs,
since the extensions to the WebML language proposed in [CDMF07] have not yet been incorpo-
rated into the tool support. Consequently, it was not possible to implement the application on the
basis of WebRatio’s code generation facilities.

In the following sub-sections, an overview on the CAM web application as well as a discussion
on its functional requirements is provided.

1http://dblambs.elet.polimi.it/Demos/Museo/device.html
2http://www.mak.at/e/

202

6.1 Introducing the Context-Aware Museum

6.1.2 Overview

In the case study, the fictitious Museum of Applied and Contemporary Arts requires a relaunch of
its current website. More specifically, the functionality of the existing web application shall be
extended with customization functionality. Users of the future CAM web application shall be
able to access its services tailored according to their context of use, e.g., tailored to their age, their
interests, their specific user role and access rights, their location, their device, as well as the current
time and weather situation (due to the museum’s outdoor areas).

The museum will be equipped with a wireless network infrastructure which will allow geopo-
sitioning users accessing the CAM web application with their laptops and PDAs using current
wireless network standards. Geopositioning will be realized with a browser plugin based on ex-
isting geopositioning software such as Placelab3, which users need to install in their Web browsers.
Furthermore, the museum will set up information terminals - hiding ordinary PCs - across the
museum’s premises allowing museum visitors to access the CAM web application and gain more
information on certain exhibits. Geopositioning of these users will be realized via IP resolution of
the information terminals.

The target users of the CAM web application can be categorized into non-registered users and
registered users. Non-registered users are able to access general information on the museum and
its services as well as some general information on the museum’s collections and exhibitions.
Registered users will have access to more details and services. Depending on their role they will
have different access rights. The group of registered users can be further specialized into the
following categories:

• Registered general users will be able to browse the exhibits of the museum’s collections and
exhibitions instead of receiving general information, only.

• Academic users like teachers and students can obtain even more information on the mu-
seum’s exhibits for research purposes. They will be provided with dedicated materials and
links to further information on the web, the museum’s library, etc. They will also be allowed
to contribute content in terms of making comments.

• Curators are in charge of managing collections, exhibitions, and exhibits.

• Organizational managers will use the application to administer marketing and communica-
tion materials like news, events, etc.

• Administrators are in general responsible for user management tasks and for maintaining the
geopositioning infrastructure.

Moreover, the group of Museum visitors can be distinguished, which possibly overlaps with the
other groups. For example, an academic user is considered a museum visitor when accessing the
web application while visiting the museum.

3www.placelab.org

203

6 The Context-Aware Museum Case Study

For designing UWAs, knowing the context properties to which the services of the UWA shall
adapt is essential. The CAM web application will cover the following context properties:

• User. Customization will be done on the basis of the user’s interest, the user’s age as well
as the user’s role.

• Location. The web application will provide users with different contents and services ac-
cording to the location from which it is accessed, e.g., inside or outside the museum.

• Device. Depending on the device used to access the CAM web application, users will be
presented with a different interface.

• Time. The contents as well as their presentation will be delivered depending on the current
time.

• Weather. Since the museum encompasses indoor as well as outdoor areas, the weather is
considered in providing the user with customized content and services as well.

6.1.3 The Context-Aware Museum Web Application’s Functional
Requirements

Having provided a brief overview on the CAM web application, this section shall present the
web application’s functional requirements in detail. The WebML development process [CFB+03]
follows a user-driven approach of requirements elicitation. Consequently, the core as well as the
customization functionality of the CAM web application shall be described on the basis of the
different user groups, their use cases and the customization scenarios they participate in.

When identifying the user groups of a web application in the WebML development process,
users are typically clustered according to their goals and behaviors and will be associated to dis-
tinct siteviews or areas which allow fulfilling the group’s requirements. Amongst others, it is
suggested to start by distinguishing between internal and external users and an administrative
role. Thus, the main discriminator used is the user groups access rights to content and services
of the web application. Concerning UWAs, however, the mere consideration of access rights is
not enough, since they might depend on the context in which the user is accessing the web ap-
plication. For instance, users might be provided with different content and services because of
their current location, i.e., access rights may change because of the current context. Consequently,
during the identification of user groups and their possible hierarchical relationships, the different
contexts in which the UWA will be used need to be considered as well.

For the CAM web application, particular attention needs to be payed to the location from which
the user requests the web application’s services. As already mentioned, it will be accessible from
different locations, i.e., from outside the museum boundaries as well as from the inside, via the
new information terminals and wireless network infrastructure. The location context has an ef-
fect on the user groups, since the specific role of the user as well as her/his location has to be
considered with respect to what information is to be made accessible. Figure 6.1, depicts the spe-
cialization hierarchy of the CAM user groups. The non-registered Website User is distinguished
from all other user groups as being the only one exclusively accessing the web application from
outside the museum boundaries. Thus, the Website User will have access to general information
on the museum, its collections, exhibitions, events, opening hours, etc. Due to the possibility of
accessing the CAM web application via the given infrastructure from within the museum, the

204

6.1 Introducing the Context-Aware Museum

Website User

Registered User Museum Visitor

CuratorAcademic User AdministratorOrganizational Manager

{overlapping}

Figure 6.1: The Context-Aware Museum User Groups

Museum Visitors group is introduced and will be able to access more information on the exhibits.
If using their own devices (i.e., a Laptop or PDA), they will be able to access the web application
via the wireless network. Customization for Museum Visitors mainly will be based on their lo-
cation context as information on the user is not available. Registered Users and their sub-groups
need credentials for authentication. They will have access to the museums details also from out-
side the museum boundaries. The CAM web applications services will be additionally adapted
according to their user profile, their interests etc. The Registered User and Museum Visitor groups
are defined to be overlapping in order to denote that users at the same time can have the role of a
Registered User and a Museum Visitor. Consequently, also the sub-types of Registered User will
be able to have the role of a Museum Visitor. Academic Users such as teachers and students will
have access to even more details on the exhibits for research purposes and the possibility to con-
tribute comments. Finally, compared to the others, internal users such as Curators, Organizational
managers, and Administrators will have content management access rights for their specific respon-
sibilities and tasks. Thus, internal users typically are not provided with a customized view of the
web application. In the CAM web application, however, Curators are provided with a context-
aware exhibit management and thus, are allowed to maintain the information on exhibits on site
with their laptops or PDAs.

The different user groups and their access rights are summarized in the following group de-
scription sheets. We have altered the schema of WebML’s group description sheets [CFB+03] to
explicitly capture customization scenarios of the CAM web application that support a specific
user group. Therefore, besides relevant use cases, the customization scenarios in which the given
user group is involved are listed and the usual context in which the user group is accessing the
web application are described.

205

6 The Context-Aware Museum Case Study

Group name Website User
Description External visitor interested in accessing general content published on the

website.
Profile data No profile required. Users do not need credentials for authentication.
Relevant use cases Browse News, Browse Collections, Browse Collection’s Highlights,

Browse Exhibitions, Browse Exhibition’s Highlights, Browse Events,
Browse Buildings, Browse Rooms, Browse Outdoor Areas, Browse
Guided Tours, Access Museum Information

Context Website users access the museum web application from outside the mu-
seum boundaries.

Customization
scenarios

Season’s Style: The presentation style of the web application changes
due to the current season.
Multi-Delivery: Depending on the device used to access the web ap-
plication, the user is redirected to an appropriate siteview.
Current News and Upcoming Events: At the home page, users will be
informed about the museum’s current news and upcoming events.

Objects accessed Collections, Events, Exhibitions, News, Exhibits (Highlights), Build-
in read-only mode ings, Rooms, Museum Areas (Outdoor)
Objects accessed None.
in content man-
agement mode

Group name Museum Visitor inherits from Website User
Description Museum visitors are actually visiting the museum and potentially ac-

cessing the web application for further information on the exhibits via
the museum’s information terminals or via their proprietary devices
(laptop, PDA). If using their own devices, they will receive a tempo-
rary account to access the museum’s wireless network.

Profile data from Website User
Relevant use cases from Website User
Context Museum visitors access the web application from within the museum

boundaries. Their location, i.e., the museum area, needs to be temporar-
ily stored.

Customization
scenarios

Context-Dependent Access to Information: When browsing a collec-
tion or exhibition, the users will have access to all exhibits being part
of the collection or exhibition, respectively, instead of having access to
a selection of the highlights, only. Likewise, when browsing the mu-
seum’s outdoor areas, buildings, and rooms, users will also have access
to the room’s areas and exhibits.
Special Exhibits Recommendation: Depending on the time and
weather, users are recommended special indoor and outdoor exhibits.
Exhibits in Vicinity: Depending on the user’s location, the exhibits in
the user’s vicinity will be displayed.
Location-Aware Tour: The Location-Aware Tour is a separate area ded-
icated to present information of the current location, only. E.g., if the

206

6.1 Introducing the Context-Aware Museum

user is located near an exhibit, information on the exhibit will be dis-
played. Otherwise, the user will be presented information on the cur-
rent room.

Objects accessed Collections, Events, Exhibitions, News, Exhibits, Buildings, Rooms,
in read-only mode Museum Areas
Objects accessed None.
in content man-
agement mode

Group name Registered User inherits from Website User
Description Registered users are regular customers of the museum having acquired

an account allowing them to gain access to exhibits of the museum’s
collections and exhibitions.

Profile data Title, First Name, Last Name, E-Mail, Phone, Fax, Street, Number, Zip
Code, City, Country, Login, Password, Birthday, Age Class.

Relevant use cases Login, Logout, Manage Profile
Context Registered Users access the CAM web application from outside the mu-

seum’s boundaries as well as from inside taking the role of a Museum
Visitor.

Customization
scenarios

In the role of a Museum Visitor: Special Exhibits Recommendation,
Exhibits in Vicinity, and Location-Aware Tour
Context-Dependent Access to Information: If successfully logged in to
the web application and browsing a collection or exhibition, the users
will have access to all exhibits being part of the collection or exhibition,
respectively, instead of having access to a selection of the highlights,
only. Likewise, when browsing the museum’s outdoor areas, buildings,
and rooms, users will also have access to the room’s areas and exhibits.

Objects accessed Collections, Events, Exhibitions, Exhibits, News, Buildings, Rooms,
in read-only mode Museum Areas
Objects accessed Profile data.
in content man-
agement mode

Group name Academic User inherits from Registered User
Description Academic users such as teachers and students will have full access to

all scientific information on collections, exhibitions, and exhibits.
Profile data Institution Name, Logo, URL.
Relevant use cases Access Collection Research Material, Access Exhibition Research Mate-

rial, Access Exhibit Research Material, Add Collection Comment, Add
Exhibition Comment, Add Exhibit Comment

Context from Registered User
Customization
scenarios

from Registered User

Objects accessed Collections, Events, Exhibitions, Exhibits, News
in read-only mode

207

6 The Context-Aware Museum Case Study

Objects accessed Comments
in content man-
agement mode

Group name Curator inherits from Registered User
Description Personnel in charge of maintaining the information on collections, ex-

hibitions, and exhibits.
Profile data from Registered User
Relevant use cases Collection Management (Add, Modify, Delete Collection, Add Re-

search Material to Collection), Exhibition Management (Add, Mod-
ify, Delete Exhibition, Add Research Material to Exhibition), Exhibit
Management (Add, Modify, Delete Exhibit, Add Research Material to
Exhibit, Add Artist to Exhibit), Category Management (Add, Modify,
Delete Category)

Context Users will typically access the web application from desktop PC’s in
their offices. For managing exhibits, however, users shall also be able
to update information on an exhibit using a mobile device, e.g., when
re-arranging some exhibits in a room.

Customization
scenarios

Context-Aware Exhibition Management: Users will be displayed the
nearby exhibits for which the content needs to be maintained. Depend-
ing on the device, the web application provides the user with an appro-
priate interface.

Objects accessed Access Events related to Category, Access Prices related to Collections
in read-only mode and Exhibitions
Objects accessed Categories, Collections, Exhibitions, Exhibits, Artist, Material, Profile
in content man- data
agement mode

Group name Organizational Manager inherits from Registered User
Description Internal personnel that will manage information related to new collec-

tions, exhibitions, and events as well as organizational information includ-
ing opening hours, etc.

Profile data from Registered User
Relevant use cases Event Management (Add, Modify, Delete Events, Add Price), News Man-

agement (Add Modify, Delete News, Add Price) Add Price to Collection,
Add Price to Exhibition

Context Users will typically access the web application from desktop PC’s in their
offices.

Customization
scenarios

None.

Objects accessed Collections, Exhibitions, Exhibits
in read-only mode
Objects accessed Events, News, Prices
in content man-
agement mode

208

6.2 Designing the Context-Aware Museum with WebML

Group name Administrator inherits from Registered User
Description Technical personnel in charge of managing application users and user

groups as well as maintaining the museum’s information terminals and
wireless network infrastructure

Profile data from Registered User
Relevant use cases Typical content management tasks related to the below listed objects.
Context Users will typically access the web application from desktop PC’s in their

offices.
Customization
scenarios

None.

Objects accessed Categories, Events, and Exhibits associated to Museum Areas
in read-only mode
Objects accessed User, Groups, Modules, Building, Room, Museum Area, InfoTerminals,
in content man- Museum IPs, User Agent, Device Type, User Location, Weather
agement mode

6.2 Designing the Context-Aware Museum with WebML

In this section, parts of the CAM web application design models will be discussed, i.e., the content
model and the hypertext model consisting of five siteviews. The Public siteview serves the Web-
site User group, the Museum Visitor group, the Registered User group, and the Academic User
group. The Public PDA siteview basically represents the same content and services to the user but
is specifically designed for PDA devices. And finally, the Curator User group the Organizational
Manager group as well as the Administrator group will each be supported with a dedicated site-
view to fulfill their specific content management tasks, i.e., Curator siteview, Organization siteview,
and Administrator siteview.

In the following, the focus will be on presenting eight different customization scenarios, most
of them affecting the Public siteview as well as the Curator siteview. In this respect, the subsequent
sub-sections will present the content model, provide an overview on the Public siteview and the
Curator siteview by graphically discussing the parts relevant to the set of customization scenarios.

6.2.1 Content Model

For modeling UWAs, the WebML approach suggests modeling context information in a context
model [CDMF07]. The context model is not a separate model in the WebML language but can be
seen as a sub-schema of the content model. More specifically, the approach provides developers
with guidelines to modeling context information on the basis of several sub-schemata. Besides
the Context Sub-Schema, the Entities of the content model can be grouped into the Basic User Sub-
Schema and the Personalization Sub-Schema, which are typically overlapping. It is important to note,
that the proposed sub-schemata are not modeling concepts of the WebML language but guidelines
intended to help modelers in finding appropriate entities for modeling context information and
how they should be connected with the application data [CDMF07]. These guidelines will be
presented in the following before, a concrete example in terms of the CAM web application’s
content model together with its sub-schemata is given.

The Basic User Sub-Schema consists of the User, Group, and Module Entities. It is part of every
WebML model and allows to associate users to user groups which have access to certain modules

209

6 The Context-Aware Museum Case Study

of the web application, i.e., Pages, Areas, and Siteviews. The Entities of this sub-schema allow for
adaptation of a web application’s services according to the user, the user’s role and access rights.
The User Entity furthermore represents a basic profile of a web application’s users.

The Personalization Sub-Schema is used to specify relationships between the User entity and en-
tities from the web application in order to express that the user ”owns” or ”prefers” instances of
these entities. Possibly, new entities are introduced into the sub-schema to better express such
relationships, e.g., an entity named ’Interest’ could be introduced and store the interest level of
the user with respect to other entities. This kind of relationship allows personalizing the content
and services of a web application according to the user’s identity.

The Context Model Sub-Schema stores information on the context in which the web application
is accessed. For instance, it could include entities such as Device and Location. The entities of the
context model are directly or indirectly connected to the User entity via relationships in order to
associate the user with his/her current context.

News
OID:OID
Title:String
Subtitle:String
Body:Text
Image:BLOB
Date:TimeStamp
OnlineDate:Date
CutoffDate:Date

News
OID:OID
Title:String
Subtitle:String
Body:Text
Image:BLOB
Date:TimeStamp
OnlineDate:Date
CutoffDate:Date

Event
OID:OID
Title:String
Subtitle:String
Body:Text
Image:BLOB
Date:Date
StartTime:Time
EndTime:Time
BookingRequired:Boolean
Repeating:Boolean
Cycle:String
OnlineDate:Date
PromotionTime:Time
AgeClass:AgeClass

Event
OID:OID
Title:String
Subtitle:String
Body:Text
Image:BLOB
Date:Date
StartTime:Time
EndTime:Time
BookingRequired:Boolean
Repeating:Boolean
Cycle:String
OnlineDate:Date
PromotionTime:Time
AgeClass:AgeClass

Building
OID:OID
Name:String
Description:Text
Map:BLOB

Building
OID:OID
Name:String
Description:Text
Map:BLOB

Room
OID:OID
Name:String
Description:Text
Map:BLOB
Storage:Boolean

Room
OID:OID
Name:String
Description:Text
Map:BLOB
Storage:Boolean

Price
OID:OID
AgeClass:AgeClass
Description:Text
Price:Float

Price
OID:OID
AgeClass:AgeClass
Description:Text
Price:Float

AgeClass
-Children
-Adults
-Seniors

AgeClass
-Children
-Adults
-Seniors

Artist
OID:OID
FirstName:String
LastName:String
BirthDate:Date
DeathDate:Date
Photo:BLOB

Artist
OID:OID
FirstName:String
LastName:String
BirthDate:Date
DeathDate:Date
Photo:BLOB

Material
OID:OID
Description:Text
File:BLOB
Image:BLOB
URL:URL

Material
OID:OID
Description:Text
File:BLOB
Image:BLOB
URL:URL

Exhibit
OID:OID
Title:String
Year:Number
InventoryNumber:String
Description:Text
Photo:BLOB
SmallPhoto:BLOB
Highlight:Boolean
Indoor:Boolean
StartTime:Time
EndTime:Time
PromotionTime:Time
RequiredWeather:Weather

Exhibit
OID:OID
Title:String
Year:Number
InventoryNumber:String
Description:Text
Photo:BLOB
SmallPhoto:BLOB
Highlight:Boolean
Indoor:Boolean
StartTime:Time
EndTime:Time
PromotionTime:Time
RequiredWeather:Weather

Weather
Condition
-Sun
-Rain
-Clouds
-Snow

Weather
Condition
-Sun
-Rain
-Clouds
-Snow

Collection
OID:OID
Title:String
Description:Text
Image:BLOB
Curator:String
Permanent:Boolean

Collection
OID:OID
Title:String
Description:Text
Image:BLOB
Curator:String
Permanent:Boolean

Exhibition
OID:OID
Title:String
Subtitle:String
Description:Text
Photo:BLOB
Curator:String
StartDate:Date
EndDate:Date

Exhibition
OID:OID
Title:String
Subtitle:String
Description:Text
Photo:BLOB
Curator:String
StartDate:Date
EndDate:Date

Module
OID:OID
ModuleID:String
ModuleName:String

Module
OID:OID
ModuleID:String
ModuleName:String

Group
OID:OID
ModuleName:String

Group
OID:OID
ModuleName:String

User
OID:OID
UserName:String
Password:Password
Email:String
FirstName:String
LastName:String
Title:String
Phone:Number
Fax:Number
Street:String
StreetNumber:Number
City:String
ZipCode:Number
Country:String
AgeClass:AgeClass

User
OID:OID
UserName:String
Password:Password
Email:String
FirstName:String
LastName:String
Title:String
Phone:Number
Fax:Number
Street:String
StreetNumber:Number
City:String
ZipCode:Number
Country:String
AgeClass:AgeClass

0:N

0:N

0:N

0:N

0:N

0:N

0:N 0:N

0:N

0:N0:N

0:1

1:N
1:N

0:N

0:N

0:N

1:N

1:1

0:1
0:1

0:N

0:N0:N0:N 0:N

0:N

Category
OID:OID
Name:String

Category
OID:OID
Name:String

Comment
OID:OID
Description:Text
File:BLOB
Image:BLOB
URL:URL

Comment
OID:OID
Description:Text
File:BLOB
Image:BLOB
URL:URL

Institution
OID:OID
Name:String
Logo:Image
URL:URL

Institution
OID:OID
Name:String
Logo:Image
URL:URL

0:N

0:N

0:N
0:N

0:N

0:N

0:N

0:N

1:11:1

0:N

0:N

0:N

0:N

0:N

0:N

0:N

UserAgent
OID:OID
Name:String
Version:String

UserAgent
OID:OID
Name:String
Version:String

DeviceType
OID:OID
Name:String
Siteview:String

DeviceType
OID:OID
Name:String
Siteview:String

1:1 0:N 0:N1:1

UserLocation
OID:OID
x:Float
y:Float

UserLocation
OID:OID
x:Float
y:Float

InfoTerminal
OID:OID
Name:String
IP:String
x:Float
y:Float

InfoTerminal
OID:OID
Name:String
IP:String
x:Float
y:Float

1:1

1:1

MuseumIP
OID:OID
IP:String

MuseumIP
OID:OID
IP:String

MuseumArea
OID:OID
Name:String
Description:Text
Indoor:Boolean

MuseumArea
OID:OID
Name:String
Description:Text
Indoor:Boolean

1:1

Coordinates
OID:OID
x:Float
y:Float

Coordinates
OID:OID
x:Float
y:Float

2:N 0:N

1:1

O:1 0:N
1:1

0:N

0:N

0:N

0:1

0:1
0:1

1:1

0:1

1:N 0:N0:N

0:N
0:N

0:N

1:1

Weather
OID:OID
Condition:WeatherCondition
Current:Boolean

Weather
OID:OID
Condition:WeatherCondition
Current:Boolean

Basic User Sub-Schema
Personalization Sub-Schema
Context Model Sub-Schema

Figure 6.2: The Context-Aware Museum Content Model

In Figure 6.2, the content model of the CAM web application together with the three sub-
schemata is presented. As can be seen, the core entities of the museum web application comprise
Exhibits which are part of a Collection as well as can be part of a special Exhibition. All of these
entities can be associated with Comments from academic users (cf. User entity) as well as with the
Material entity, which allows storing additional information in terms of files, images, and links to
external web sites. Furthermore, Exhibits can be associated with their Artists. The News entity

210

6.2 Designing the Context-Aware Museum with WebML

typically is used to store the museum’s news. For storing information on guided tours, work-
shops, and other events the Event entity is used. Events, Exhibitions, and Collections are also
associated with the Price entity, allowing to define the prices for tickets of different price classes.
Furthermore, information on the museum’s Buildings and Rooms are stored.

The Basic User Sub-Schema including the User, Group, and Module entities also includes the Insti-
tution entity in order to be able to store information on the institution of academic users.

In the Personalization Sub-Schema, the entity Category is introduced and represents the categories
a user is interested in. The necessary relationships from Category to Events, Exhibition, Exhibit,
and Collection are included in order to be able to provide the user with a personalized view.
Furthermore, the relationship to the Comments entity is declared to be part of the sub-schema,
since it expresses that a user ”owns” comments.

Finally, in the Context Model Sub-Schema information on the weather context, the device context,
and the location context is stored. With respect to the Weather, general information on the current
weather condition is of interest, only. The condition attribute’s type is of the domain WeatherCon-
dition. For the CAM web application it is assumed that the current weather (see current attribute)
is updated by some external service. The DeviceType used will be derived from the UserAgent,
i.e., the Web browser used to access the CAM web application. The UserAgent entity will store a
list of browsers which are associated to a specific device type. For example, the Minimo or Pocket
Internet Explorer browsers will be associated to a PDA device type, while Firefox or Internet Ex-
plorer browsers will be associated to a PC device type. Furthermore, in the DeviceType entity,
the siteview to be used for the specific device type is stored. With respect to location context,
several entities are relevant. Exhibits are to be displayed in certain places in the museum, i.e., in
a MuseumArea. The MuseumArea entity is used to declare indoor as well as outdoor areas of the
museum (see attribute indoor). Indoor areas typically are part of a Room. Moreover, the Coordi-
nates entity is used to specify the size of the MuseumAreas, Rooms, and Buildings, and enables
locating users in any of the museum’s places. Users accessing the CAM web application from
within the museum boundaries will need to install a browser plugin. This will allow determining
their location based on the museum’s wireless network infrastructure. At the server side, a user’s
location (cf. UserLocation) in terms of GPS coordinates will be calculated and the corresponding
MuseumArea will be derived. The MuseumIP entity stores the IP range of the wireless network
infrastructure and is used to find out if a user is accessing the CAM web application from outside
the museum boundaries or is using the museum’s wireless infrastructure. Users can also access
the CAM web application from one of the museum’s information terminals. The InfoTerminal en-
tity holds the static IP address of the information terminal and is associated to the MuseumArea
entity to denote the terminals location.

6.2.2 Public Siteview

The Public siteview is dedicated to all external user groups, i.e., Website User, Museum Visitor,
Registered User, and Academic User. In Figure 6.3, an overview of the siteview is given. Users
will find three public landmark pages in the Public siteview, while protected pages are indicated
by the key icon. Public pages are accessible from the main menu of the CAM web application
to all users. Amongst them, the Home page provides the user with general information and the
possibility to log in to the application. The News page is specifically dedicated to the museum’s
news and will show a news list as well as a link to show the details for a news entry. On the Info
& Contact page, information on opening hours, services, staff, etc. is displayed. The Logout page

211

6 The Context-Aware Museum Case Study

Public

Home

L

News

L

Info & Contact

L

Logout

L

Events & Guided Tours

L

Museum Map

L

Location-Aware Tour

L

Academic Services

L

Exhibitions

L
Academic Services

Collections

L
Academic Services

Public Siteview: Overview

Figure 6.3: The Public Siteview: An Overview

is declared to be protected and will be shown to registered users that have successfully logged in
to the web application, only.
Besides, the Public siteview is organized into five public landmark areas. The Collections area
provides the user with access pages to the museums Permanent Collections and Study Collections.
Details on a collection such as its exhibits highlights is given in the Collection Details page. The
area also contains the sub-area Academic Services, which is accessible for the Academic User group,
only, and provides more information on a collection and its exhibits for research purposes as
well as allows users to post comments on the collection and exhibits, respectively. The Exhibition
area is organized in the same way as the Collections area but provides users with information on
exhibitions and their exhibits and also includes a sub-area dedicated to Academic Users. The Events
area contains pages that give information on the museum’s events, workshops, and guided tours,
while the Museum Map area allows users browsing the museum’s buildings, rooms and their areas,
as well as outdoor areas. In the Location-Aware Tour area the respective customization scenario is
realized, i.e., users will be presented information on rooms or exhibits depending on their current
location. Finally, Academic Users will have a dedicated area to manage their profile as well as
their comments in the Academic Services area. Following, this siteview’s customization scenarios
are presented.

6.2.2.1 Customization Scenario Multi-Delivery

The Multi-Delivery customization scenario allows users to be provided with a customized siteview
according to the device they are using to access the CAM web application. Currently, users shall
be supported with a separate siteview, i.e., the Public siteview, when accessing the application via
a PC or laptop and be presented another siteview when accessing the application via a PDA, i.e.,
the Public PDA siteview.

In order to provide the correct siteview, the web application needs to compute the current user’s
device type on the first page access. Therefore, this computation needs to be done for every pos-
sible page from the Public siteview the user might access. In WebML this is realized by defining
the Public siteview to be context-aware (cf. C-label in Figure 6.4, denoting that a ContextUnit has
been added to the siteview) and provide in the context cloud appropriate means for computing
the user’s device type. As depicted in Figure 6.4, in the context cloud, the user agent string iden-
tifying the browser is received via the GetClientParameterUnit GetUserAgent. According to this

212

6.2 Designing the Context-Aware Museum with WebML

Public

Get
UserAgent

UserAgent

@

Get
UserAgent

UserAgent
[Name=ua]

ua UserAgent.OID

OK Change
SV

Choose Device

Switch

Get
DeviceType

DeviceType
[UserAgent2DeviceType]

DeviceType.Siteview

Device
Type

DeviceType

[Public]

sv=Public

OK

KO

siteview

C

OK
[Public_PDA]

sv=Public_PDA

Figure 6.4: Customization Scenario Multi-Delivery

string, the corresponding user agent as well as the device type can be extracted from the appli-
cation data with the GetDataUnit GetUserAgent and the GetDataUnit GetDeviceType, respectively.
From the GetDataUnit GetDeviceType the corresponding siteview is sent to a SwitchUnit. In case
the transported parameter DeviceType.Siteview resolves to Public PDA, the ChangeSiteviewUnit is
called in order to switch to the more suitable siteview for PDAs (cf. sv=Public PDA). In case the
parameter resolves to Public, the OKLink leads back to the ContextUnit of the Public siteview as
no further adaptation is needed. Still, in the default case and on errors, the user is redirected to the
Choose Device page in the siteview, which allows users to explicitly select an appropriate siteview.

6.2.2.2 Customization Scenario Season’s Style

Similar to the Multi-Delivery scenario, the Season’s Style scenario is to be applied to all pages of
the Public siteview. The Season’s Style scenario allows the presentation of the CAM web applica-
tion to be adapted according to the time context, i.e., the current season. More specifically, the
CAM web application shall have a different style in the summer season than in the winter season.
Figure 6.5 depicts how this customization functionality can be modeled in WebML. Again, the
Public siteview is declared to be context-aware having a link from the siteview’s ContextUnit to
the context-cloud, i.e., starting with the IfUnit in this case. In the example, it is assumed that the
current date is received from the client. Consequently, a GetClientParameterUnit GetDate is used
to feed an IfUnit with the current date. The IfUnit then evaluates the current date and computes
which OKLink shall be followed to the ChangeStyleUnit. If the IfUnit’s SelectorConditions eval-
uate to true, then the summer style is needed and the name of the CSS style sheet is transported
via the OKLink as input to the ChangeStyleUnit (cf. css=summer). Otherwise the winter style is
required. Furthermore, the Season’s Style scenario shall also be applied to the Public PDA siteview.

It has to be noted that in literature on customization with WebML [CDMF07] it has not explicitly
been stated if a ContextUnit for a siteview, an area, or a page can have more than one outgoing
link to separate context clouds being processed one after the other. Nevertheless, the computa-
tion algorithm for context-aware pages can be easily adapted to iterate over the outgoing links
and perform the computations sequentially. Otherwise, the two customization scenarios Multi-
Delivery and Season’s Style would have to be merged - in contrast to the separation of concerns
principle - into one context cloud. Still, the modeler needs to carefully design the order of the

213

6 The Context-Aware Museum Case Study

Public

A AA
Change
Style

If

[21.06<Date]
[Date<21.12]

OK

OK

css=summer

css=winter

Date

[result=true]

[result=false]

GetDate

Date

@
C

KO

Figure 6.5: Customization Scenario Season’s Style

ContextUnit’s outgoing links. If the customization scenario changes the navigation flow, such as
in the Multi-Delivery scenario, this might bypass important computations. Still, for the current
scenarios the order is not important, since both apply to all pages of the Public siteview. This
means, having specified the Season’s Style scenario after the Multi-Delivery scenario, the outgoing
link to determine the user’s device type will be followed first in the computation of the context
cloud. In case of a redirect of the user to the Choose Device page, the computation of the required
style will be omitted for the accessed page but be performed for Choose Device page at last.

6.2.2.3 Customization Scenario Current News & Upcoming Events

In the Current News & Upcoming Events customization scenario, the Home page shall provide the
user with a customized view on the museum news and events (cf. Figure 6.6). In the exam-
ple, the current date and time are assumed to be provided by the client-side via the GetClient-
ParameterUnits GetDate and GetTime. In the context cloud, the current date and time are used
to set two GlobalParameters CurrentDate and CurrentTime, specifically introduced for this sce-
nario. These GlobalParameters then can be used in the Home Page to select news and events
according to the time context. A news item will be displayed if the current date is between the
date when the news item shall go online (OnlineDate <= curDate) and the date when the
news item shall go offline (CutoffDate >= curDate). Likewise, only today’s events (Date
<= curDate) are displayed if the current time is in between the time when the event shall be pro-
moted (PromotionTime <= curTime) and the time when the event actually starts (StartTime
<= curTime). In addition, if the current user is known, the events will be filtered according to
the user’s age class (AgeClass <= User.AgeClass). This last SelectorCondition is declared to
be ’implied’ and will be ignored if the age class of the user is not available.

6.2.2.4 Customization Scenario Location-Aware Tour

In the CAM web application, the Location-Aware Tour scenario is realized as a separate landmark
area dedicated to present the user information on the current location, only. Thus if available, the
exhibits of the current location are displayed. Otherwise, the user is presented with information
on the room s/he is currently visiting or general information on the museum’s buildings and
outdoor areas in case the user is visiting an outdoor area.

Figure 6.7 illustrates how this scenario can be realized in WebML. Note that KOLinks have
been omitted for readability purposes. First, the location of the user needs to be gathered, which

214

6.2 Designing the Context-Aware Museum with WebML

Home

Upcoming
Events

Event
[PromotionTime<=curTime]

[StartTime>=curTime]
[Date=curDate]

[AgeClass=User.AgeClass]

GetDate

Date

@

C

Current
News

News
[OnlineDate<=curDate]
[CutoffDate>=curDate]

Login Login

KO

OK

GetTime

Time

@

GetDate

CurrentDate

SetTime

CurrentTime

SetDate

CurrentDate

GetTime

CurrentTime

GetUser

User

User

User

User.AgeClass

curDate

curDate

curTime

Figure 6.6: Customization Scenario Current News & Upcoming Events

is done in the context cloud of the area Location-Aware Tour. The IP of the user is gathered using a
GetClientParameterUnit in order to find out if the user is accessing the CAM web application from
one of the museum’s information terminals (cf. GetInfoTerminal GetDataUnit) or from her/his
own mobile device (cf. GetMuseumIP GetDataUnit). The location of the user can be determined
by getting the corresponding museum area with the GetDataUnit GetMuseumArea for either an
InfoTerminal or a MuseumIP (cf. SelectorConditions of GetMuseumArea). The museum area then
is stored in the ContextUnit to be available for the area’s contained context-aware pages. If the
IP is neither contained in the set of information terminal IPs nor in the set of IPs for accessing
the museum’s wireless network, no museum area can be obtained for the user and stored in the
ContextUnit. The contained context-aware pages will have to handle this case appropriately, as is
explained next.

When a user accesses the Location-Aware Tour area, s/he will be displayed the Default page.
More specifically, the Default page is context-aware and its context cloud checks if the location of
the user is known, i.e., the MuseumArea.OID must not be NULL. If the user location is not known,
the Default page is displayed and will inform the user, that the location-aware tour is not available
due to missing location information. If the location is known, the exhibits for the current museum
area are computed (cf. GetExhibit GetDataUnit). In case exhibits are available for the current
museum area, the user is forwarded to the Exhibit Details page. Otherwise, it has to be determined
if the current museum area is an outdoor area or an area of a room (cf. GetRoom GetDataUnit) in
order to forward the user to the Museum Map page or the Room Details Page, respectively. As the
user walks trough the museum, the current page will update itself according to the specified time
interval for the ContextUnit and possibly redirect the user to another of the Location-Aware Tour
area’s pages.

215

6 The Context-Aware Museum Case Study

Location-Aware Tour
Room Details

Exhibit Details

Room
Details

Room
[MuseumArea2Room]

Exhibit
Details

Exhibit

Collection

Collection
[Exhibit2

Collection]

Get
Exhibit

Exhibit
[MuseumArea2

Exhibit]
Exhibit.OID
MuseumArea.OID

[result=false] [result=true]

MuseumArea.OID Exhibit.OID

MuseumArea.OID

C

C

MuseumArea.OIDC

Exhibits Per
Area

MuseumArea
[Room2MuseumArea]

Exhibition

Exhibition
[Exhibit2

Exhibition]

If

[Exhibit.OID!=NULL]

If

[Room.OID!=NULL]

GetRoom

MuseumArea
[MuseumArea2

Room]

[result=true]

MuseumArea.OID

MuseumArea.OID

[result=false]

Museum Map
Rooms Per

Building

Building

Outdoor
Areas

Area
[Indoor = false]

C
MuseumArea.OID

Room.OID

L

GetIP

IP

@

GetInfo
Terminal

InfoTerminal
[IP=ip]

ip
If

[InfoTerminal.OID!=NULL]

InfoTerminal.OID

[result=true]

[result=false]

InfoTerminal.OID

MuseumArea.OID

OK
[result=false]

If

[MuseumIP.OID
!=NULL]

MuseumIP.OID

MuseumIP.OID

OK

[result=true]

OK

ip Get
MuseumIP

MuseumIP
[IP=ip]

GetMuseum
Area

MuseumArea
[InfoTerminal2MuseumArea]

OR [MuseumIP2MuseumArea]

OK

To Collection Page in Collection Area

To Exhibition Page in Exhibition Area

OKOK

OK

OK

Default
D

C

If

[MuseumArea.OID!=NULL]

MuseumArea.OID

OK
[result=false]

OK
[result=true]

MuseumArea.OID

Figure 6.7: Customization Scenario Location-Aware Tour

6.2.2.5 Customization Scenario Context-Dependent Access to Information

In this scenario some information of the CAM web application is available to users either if they
are located in the museum, i.e., the museum area they are currently in is known, or if they have
successfully logged in to the web application. When viewing a collection or exhibition, these users
will have access to all exhibits being part of the collection or exhibition, respectively, instead of
having access to a selection of the highlights, only. Likewise, when browsing the museum’s out-
door areas, buildings, and rooms, users will also have access to the room’s details and its exhibits.
Information on collections, exhibitions, as well as the museum’s buildings, rooms, and areas is
provided by three separate areas, namely the Collections area, the Exhibitions area, and the Mu-
seum Map area. Since according to the customization scenario, the location of the user needs to be
available within each of the three areas, the areas need to be context-aware and gather the respec-
tive information for their contained pages. Analogous to the Location-Aware Tour customization
scenario (cf. Section 6.2.2.4), each of the areas has to be extended with the functionality for com-
puting the current museum area of the user via the user’s IP. The context cloud to be attached to
the Collections area (and others) is illustrated in Figure 6.8. The MuseumArea.OID then is available
for the areas’ contained context-aware pages via their ContextUnits. In the following, the scenario
shall be discussed for the Collections area, only.

216

6.2 Designing the Context-Aware Museum with WebML

Collections

Collection

Collection

Collection

Highlights

Exhibit
[Collection2

ExhibitHighlights]

L

Study Collections

Collection

Collection

Collections

Collection
[Permanent=false] L

Permanent Collections
Collection

Collection

Collections

Collection
[Permanent=true] LD

Exhibits

Exhibits

Exhibit

Exhibit Details

Exhibit
Details

Exhibit

Artists

Artist
[Exhibit2Artist]

C

C

If

[MuseumArea.OID!=NULL]

GetUser

CurrentUser

MuseumArea.OID

If

[User.OID!=NULL]

OK
[result=false]

OK
[result=true]

OK
[result=true]

Login

OK[result=false]

Alternative Exhibits

Default
D

Exhibit Details
Exhibit Details

Exhibit

Artists

Artist
[Exhibit2Artist]

C

GetIP

IP

@

GetInfo
Terminal

InfoTerminal
[IP=ip]

ip
If

[InfoTerminal.OID!=NULL]

InfoTerminal.OID

[result=true]

[result=false]

InfoTerminal.OID

MuseumArea.OID

OK
[result=false] If

[MuseumIP.OID
!=NULL]

MuseumIP.OID

MuseumIP.OID

OK

[result=true]

OK

ip Get
MuseumIP

MuseumIP
[IP=ip]

GetMuseum
Area

MuseumArea
[InfoTerminal2MuseumArea]

OR [MuseumIP2MuseumArea]

OK

Context
Cloud

User.OID

Figure 6.8: Customization Scenario Context-Dependent Access to Information

The Collection area contains information to be displayed to registered users and/or users ac-
cessing the CAM web application from within the museum. In Figure 6.8, parts of the Collections
area are shown. When accessing the area, users are displayed per default the Permanent Collections
page (cf. D-label). On the Collection page, the user gets information on the selected collection. In
particular the user will be able to view the details of some of the collection’s highlights but not
for all of its exhibits (cf. IndexUnit Highlights and Alternative Alternative Exhibits). A separate link
leads the user to the Exhibits page presenting an index to all exhibits and further to the Exhibits
Details page. These two pages, however, are only accessible if the user has successfully logged in
to the web application and/or accesses the application from within the museum. Consequently,
both pages are designed to be context-aware. Figure 6.8 only shows the context cloud ensuring
the above stated conditions for one of the pages, i.e., the Exhibits page. The MuseumArea.OID
is provided to the IfUnit in the context cloud to find out if the user is currently located in the
museum. If true, the user is allowed to view the page and the OKLink leads back to the page’s
ContextUnit. Otherwise, the next IfUnit checks if the current user is known. If true, the user is
allowed to view the page and again the OKLink leads back to the page’s ContextUnit. In case
the current museum area and the current user are unknown, the user is redirected to the page
Login, where s/he is able to log in to the application and is provided with information on how to
download the browser plugin for geopositioning.

217

6 The Context-Aware Museum Case Study

6.2.2.6 Customization Scenario Special Exhibits Recommendation

In the customization scenario Special Exhibits Recommendation, users are recommended special in-
door and outdoor exhibits depending on the current time and weather, given that they access
the CAM web application from within the museum boundaries, i.e., they are actually visiting the
museum. For example some outdoor exhibits might be of interest at a certain time of day and/or
under certain weather conditions, only. The CAM web application shall call the users’ attention to
these exhibits accordingly in a separate part of certain web pages. For the CAM web application,
this information shall be added to the entry pages of the Collections and Exhibitions areas, i.e., the
Permanent Collections page, the Study Collections page, and the Exhibitions page. Figure 6.9 shows
how this customization scenario is added to the Permanent Collections page. For other pages the
customization scenario can be attached likewise.

Permanent Collections

Alternative Recommendations

Special
Exhibits

Exhibit
[PromotionTime<=curTime] OR

[StartTime>=curTime] OR
[RequiredWeather=Weather.Condition]

C

KO

OK

GetTime

CurrentTime

Default
D

Visit Now Special Exhibits

Get
Weather

Weather
[current=true]

Weather.Condition

If

[MuseumArea.OID!=NULL]

OK

[result=true]

[result=false]

Collections

Collection
[Permanent=true]

MuseumArea.OID

curTime

Figure 6.9: Customization Scenario Special Exhibits Recommendation

To the Permanent Collections page, which shows an index of all the museum’s permanent col-
lections, an Alternative Recommendations is added. The Alternative contains the Visit New Special
Exhibits page and the Default page, the latter being displayed by default. The Visit Now Special
Exhibits page shall be displayed, only, if the user accesses the CAM web application from within
the museum boundaries. Therefore, the Permanent Collections page is made context-aware and
in the context cloud the location of the user is checked. If the user’s museum area is known (cf.
IfUnit), the current weather information is collected with the GetDataUnit GetWeather and the
Weather.Condition is transported to the SelectorConditions of the Special Exhibits IndexUnit. This
will activate the Visit Now Special Exhibits page. Please note, that for this customization scenario
to work, the museum area transported to the context cloud (cf. MuseumArea.OID) has to be avail-
able for the ContextUnit. This means, that the museum area has to be determined by some other
context cloud of one of the page’s container. In this case, the Collections area has already been
made context-aware in the Context-Dependent Access to Information scenario in order to compute
the current museum area (cf Section 6.2.2.5).

218

6.2 Designing the Context-Aware Museum with WebML

6.2.2.7 Customization Scenario Exhibits in Vicinity

The customization scenario Exhibits in Vicinity is similar to the Special Exhibits Recommendation sce-
nario (cf. Section 6.2.2.6). Depending on the user’s location, s/he will be provided with a list of
nearby exhibits. The CAM web application shall call the users’ attention to these exhibits accord-
ingly in a separate part of certain web pages. For the CAM web application, this information shall
be added to the pages providing details of a certain exhibit, i.e., the Exhibit Details pages in the Col-
lections area and the Exhibitions area. Figure 6.10 shows how this customization scenario is added
to the Exhibit Details page in the Collections Area. For other pages the customization scenario can
be attached likewise.

Exhibit Details

Exhibit Details

Exhibit

Artists

Artist
[Exhibit2Artist]

Exhibits In
Vicinity

Exhibit
[MuseumArea2Exhibit] OR

[MuseumArea2Exhibit]

C

If

[MuseumArea.OID!=NULL]

[result=true]

[result=false]

KO

MuseumArea.OIDOK

OK
MuseumArea.OID

GetNeighbor
Areas

MuseumArea
[MuseumArea2

NeighborMuseumArea]

Set:MuseumArea.OID

MuseumArea.OID

Figure 6.10: Customization Scenario Exhibits in Vicinity

To the Exhibit Details page, which shows information on the exhibit and its artists, an IndexUnit
Exhibits In Vicinity is added. The IndexUnit shall display all exhibits of the current museum area
as well as those of neighboring museum areas. Thus, the IndexUnit has two SelectorConditions,
whereby one needs to be filled with the current museum area provided by the ContextUnit of the
page and the other one with the set of neighboring museum areas provided by the context cloud
using the GetNeighborAreas GetDataUnit. In case the museum area is not known, the neighboring
museum areas cannot be calculated either (cf. IfUnit) and no exhibits will be displayed, since
both SelectorConditions fail. Again, the museum area needs to be made available to the page’s
ContextUnit through some context-aware container of the Exhibit Details page. In this case, the
Collections area has already been made context-aware in the Context-Dependent Access to Information
scenario in order to compute the current museum area (cf Section 6.2.2.5). Please note, that in the
customization scenario Special Exhibits Recommendation, the use of an Alternative was necessary,
since some exhibits fulfilling the time constraints might have been displayed independently from
the user’s location. In contrast to this scenario, the GetUnits and IndexUnit could not be added to
the page directly.

6.2.3 Curator Siteview

The Curator siteview is dedicated to the Curator User group. According to the group’s use cases,
the siteview provides the user with separate areas for the different content management tasks
including the Collection Management area, the Exhibition Management area, the Exhibit Management

219

6 The Context-Aware Museum Case Study

area, and the Category Management area. In the following scenario, the Exhibit Management area
shall be made context-aware with respect to the location and device context. Figure 6.11(a) shows
a simplified version of the original Exhibit Management area.

6.2.3.1 Customization Scenario Context-Aware Exhibit Management

In the Context-Aware Exhibit Management customization scenario, users will be displayed the nearby
exhibits for which the content needs to be maintained. Furthermore, depending on the device, the
web application provides the user with an appropriate interface, i.e., for PDAs the Exhibits page
(cf. Figure 6.11(a)) shall be split into two pages, whereby in the first one, the index of exhibits and
in the second one, the actual form for modifying a single exhibit shall be displayed.

In Figure 6.11(b) the Exhibits page is made context-aware. In the context cloud, the device type
used to access the web application is determined in a similar way as in the Multi-Delivery cus-
tomization scenario (cf. Section 6.2.2.1). The GetUserAgent GetDataUnit retrieves the UserAgent
using as input the information provided by the GetClientParameterUnit, then the device type is
computed using the GetDeviceType GetDataUnit. In case the device used is a PDA (cf. IfUnit), the
user is redirected to the Exhibits page of the Alternative Device-Independence. The Exhibits page
contains the IndexUnit Exhibits, only, allowing the user to select one exhibit to be modified on an
extra page, i.e., the Modify Exhibits page. If the user accesses the application using a laptop, per
default the Modify Exhibits page of the Alternative Device-Independence is displayed, which shows
a list of exhibits and a form for modifying one of them on the same page. This page actually
represents the original Exhibits page in Figure 6.11(a).

Exhibit Management

L

Exhibits

Alternative Device-Independence

Modify Exhibits

Exhibits

Exhibit
[MuseumArea2

Exhibit]

Exhibits

Exhibit
[MuseumArea2

Exhibit]

Exhibit

Exhibit

Exhibit

Exhibit

L

D

Exhibits

Exhibits

Exhibit
[MuseumArea2

Exhibit]

Exhibits

Exhibit
[MuseumArea2

Exhibit]

Modify Exhibits

Get
UserAgent

UserAgent

@

Get
UserAgent

UserAgent

@

Get
UserAgent

UserAgent
[Name=ua]

Get
UserAgent

UserAgent
[Name=ua]

ua

DeviceType.Name

Get
DeviceType

DeviceType
[UserAgent2
DeviceType]

If

[DeviceType.Name=PDA]

IfIf

[DeviceType.Name=PDA]

C

KO

OK

UserAgent.OID

OK

[result=true] [result=false]

ModifyExhibit
OK

CC

MuseumArea.OID

MuseumArea.OID

Categories

Category
[PRE:Exhibit2

Category]

Categories

Category
[PRE:Exhibit2

Category]

Modify
Exhibit
Modify
Exhibit

Exhibit

Exhibit

Exhibit

Exhibit

Categories

Category
[PRE:Exhibit2

Category]

Categories

Category
[PRE:Exhibit2

Category]

Modify
Exhibit
Modify
Exhibit

New Exhibit

L

CExhibit Management

Exhibits

Exhibits

Exhibit

Exhibits

Exhibit

KO
OK

Exhibit

Exhibit

Exhibit

Exhibit

Categories

Category
[PRE:Exhibit2

Category]

Categories

Category
[PRE:Exhibit2

Category]

Modify
Exhibit
Modify
Exhibit

+

Connect
Category

Exhibit2Category

++

Connect
Category

Exhibit2Category

Modify
Exhibit

Exhibit

_+

Modify
Exhibit

Exhibit

++

Delete

Exhibit

_
Delete

Exhibit

__

_

DisCon
Category

Exhibit2Category
[TARGET:

Exhibit2Category]

__

DisCon
Category

Exhibit2Category
[TARGET:

Exhibit2Category]

OK

OK

OK

ModifyExhibit

New Exhibit

L

L

L

D

(a) (b)
C

GetIP

IP

@
GetIP

IP

@

GetInfo
Terminal

InfoTerminal
[IP=ip]

GetInfo
Terminal

InfoTerminal
[IP=ip]

ip
If

[InfoTerminal.OID!=NULL]

IfIf

[InfoTerminal.OID!=NULL]

InfoTerminal.OID

[result=true]

[result=false]

InfoTerminal.OID

MuseumArea.OID

OK
[result=false]

If

[MuseumIP.OID
!=NULL]

IfIf

[MuseumIP.OID
!=NULL]

MuseumIP.OID

MuseumIP.OID

OK

[result=true]

OK

ip Get
MuseumIP

MuseumIP
[IP=ip]

Get
MuseumIP

MuseumIP
[IP=ip]

GetMuseum
Area

MuseumArea
[InfoTerminal2MuseumArea]

OR [MuseumIP2MuseumArea]

GetMuseum
Area

MuseumArea
[InfoTerminal2MuseumArea]

OR [MuseumIP2MuseumArea]

OK

Figure 6.11: Customization Scenario Context-Aware Exhibit Management

220

6.3 Designing the Context-Aware Museum with aspectWebML

In order to allow for location-awareness, the ModifyExhibits page and the Exhibits page in the
Alternative are declared context-aware and a SelectorCondition, which filters the exhibits accord-
ing to the current museum area, is added to both Exhibits IndexUnits. The SelectorConditions are
filled with the MuseumArea.OID from the pages ContextUnits. Furthermore, they are defined to
be implied in case the current museum area is not known.

Again, the museum area needs to be made available to the page’s ContextUnit through some
context-aware container of the pages. Consequently, the Exhibit Management area is declared to
be context-aware by adding a ContextUnit. In the context cloud the user’s current museum area
is determined in the same way as for the Context-Dependent Access to Information customization
scenario (cf Section 6.2.2.5) so that it is available for its contained context-aware pages.

6.3 Designing the Context-Aware Museum with aspectWebML

While the previous sections were dedicated to WebML and how the set of customization sce-
narios can be realized, this section will explain how the customization functionality, which is
scattered across the whole CAM web application, can be encapsulated within Aspects using the
aspectWebML approach.

Following the aspectWebML guidelines to be presented in Section 6.3.4, instead of having one
huge Customization Aspect, each customization scenario will be discussed independent from the
others in a first step. This means that each scenario will be treated as a separate Aspect to be com-
posed with the core museum web application without considering the other scenarios’ Aspects.
For each scenario, the composition of the Aspect with the core museum web application will be
specified in terms of a set of AsymmetricCompositionRules. An explanation of what modeling el-
ements of the scenario represent the core functionality of the museum web application and what
modeling elements represent the customization functionality will be provided. This explanation
will be given when extracting the customization functionality from the models presented for the
WebML solution in Section 6.2 into several Advice of the Aspect. Moreover, besides the advan-
tage of having separated the customization functionality with an Aspect, further advantages of
the aspectWebML approach shall be pointed out for each scenario.

The configuration of the Aspects in order to be used in combination will be done in a second
step, as will be explained in Section 6.3.4. After having fully specified the scenarios, the modeler
is able to identify redundancies in multiple pieces of Advice across the Aspects and reflect on
reorganizing these Advice within meaningful, independent, and possibly reusable Aspects.

Before, the content model of the museum web application is presented in Section 6.3.1, the parts
representing the core functionality and customization functionality, respectively, are pointed out
as well as the advantage of using aspectWebML to designing a context model. Subsequently,
the discussion of the aspectWebML version of the customization scenarios located in the Public
siteview (cf. Section 6.3.2) and the Curator siteview (cf. Section 6.3.3) is given.

6.3.1 The Content Model and the Context Model

As already mentioned before, customization requires the extension of the content model to store
context information, meaning that for each customization scenario, the necessary extensions to
the content model for storing context information have to be considered. In Figure 6.12, the con-
tent model of the CAM web application is presented again. This time, however, the presentation

221

6 The Context-Aware Museum Case Study

News
OID:OID
Title:String
Subtitle:String
Body:Text
Image:BLOB
Date:TimeStamp
OnlineDate:Date
CutoffDate:Date

Event
OID:OID
Title:String
Subtitle:String
Body:Text
Image:BLOB
Date:Date
StartTime:Time
EndTime:Time
BookingRequired:Boolean
Repeating:Boolean
Cycle:String
OnlineDate:Date
PromotionTime:Time
AgeClass:AgeClass

Building
OID:OID
Name:String
Description:Text
Map:BLOB

Room
OID:OID
Name:String
Description:Text
Map:BLOB
Storage:Boolean

Price
OID:OID
AgeClass:AgeClass
Description:Text
Price:Float

AgeClass
-Children
-Adults
-Seniors

Artist
OID:OID
FirstName:String
LastName:String
BirthDate:Date
DeathDate:Date
Photo:BLOB

Material
OID:OID
Description:Text
File:BLOB
Image:BLOB
URL:URL

Exhibit
OID:OID
Title:String
Year:Number
InventoryNumber:String
Description:Text
Photo:BLOB
SmallPhoto:BLOB
Highlight:Boolean
Indoor:Boolean
StartTime:Time
EndTime:Time
PromotionTime:Time
RequiredWeather:Weather

Weather
Condition
-Sun
-Rain
-Clouds
-Snow

Collection
OID:OID
Title:String
Description:Text
Image:BLOB
Curator:String
Permanent:Boolean

Exhibition
OID:OID
Title:String
Subtitle:String
Description:Text
Photo:BLOB
Curator:String
StartDate:Date
EndDate:Date

Module
OID:OID
ModuleID:String
ModuleName:String

Group
OID:OID
ModuleName:String

User
OID:OID
UserName:String
Password:Password
Email:String
FirstName:String
LastName:String
Title:String
Phone:Number
Fax:Number
Street:String
StreetNumber:Number
City:String
ZipCode:Number
Country:String
AgeClass:AgeClass

Content Model
0:N

0:N

0:N

0:N

0:N

0:N

0:N 0:N

0:N

0:N0:N

0:1

1:N
1:N

0:N

0:N

0:N

1:N

1:1

0:1
0:1

0:N

0:N0:N0:N 0:N

0:N

Category
OID:OID
Name:String

Comment
OID:OID
Description:Text
File:BLOB
Image:BLOB
URL:URL

Institution
OID:OID
Name:String
Logo:Image
URL:URL

0:N

0:N

0:N
0:N

0:N

0:N

0:N

0:N

1:11:1

0:N

0:N

0:N

0:N

0:N

0:N

0:N

UserAgent
OID:OID
Name:String
Version:String

DeviceType
OID:OID
Name:String
Siteview:String

1:1 0:N 0:N1:1

UserLocation
OID:OID
x:Float
y:Float

InfoTerminal
OID:OID
Name:String
IP:String
x:Float
y:Float

1:1

1:1

MuseumIP
OID:OID
IP:String

MuseumArea
OID:OID
Name:String
Description:Text
Indoor:Boolean

1:1

Coordinates
OID:OID
x:Float
y:Float

2:N 0:N

1:1

O:1 0:N
1:1

0:N

0:N

0:N

0:1

0:1
0:1

1:1

0:1

1:N 0:N0:N

0:N
0:N

0:N

1:1

Weather
OID:OID
Condition:WeatherCondition
Current:Boolean

Figure 6.12: The Context-Aware Museum Context Model

of the core content model, i.e., the content model of the original museum web application be-
fore its extension with customization functionality, is alleviated in light-grey, while the Entities,
Relationships, as well as Attributes contributing to customization are emphasized in bold.

Unlike WebML’s way of only visualizing context information in terms of sub-schemata in the
content model, with the aspectWebML approach it is possible to really separate the context in-
formation from the content model. For example, the Entities, the Relationships as well as the
Attributes can be extracted from the content model and encapsulated within several pieces of
Advice of a Context Model Aspect. In this respect it has to be emphasized that, in contrast to the
WebML approach, aspectWebML even allows to keep separate Attributes that need to be intro-
duced to Entities of the content model. For example, the Exhibit Entity, needs to be extended
with the RequiredWeather Attribute so that the Weather information of the context model can be
exploited.

Furthermore, in the aspectWebML approach, the User, Group, and Module Entities are consid-
ered part of the core web application, since they are the starting entities in every WebML model.
The core museum web application, will support non-registered as well as registered users, in-
cluding academic users, curators, etc. with their respective tasks but without considering context
information. Consequently, the Entities Category, Comment, and Institution are also considered
part of the core museum web application, unlike in the WebML approach.

222

6.3 Designing the Context-Aware Museum with aspectWebML

In the following descriptions of the customization scenarios, the context information to be in-
troduced to the core museum web application will be considered for each customization scenario
separately.

6.3.2 The Public Siteview

Using the aspectWebML language, each customization scenario presented in Section 6.2 can be
modeled separately from the core museum web application. As already discussed in Chapter 5,
each scenario typically requires several pieces of Advice. For composition they are subsequently
associated with an appropriate Pointcut in an AsymmetricCompositionRule. According to the
language’s metamodel, the different modeling elements to be introduced to the WebML model in
a customization scenario have different containers. Consequently, for extracting the customization
functionality from the WebML models presented in the previous Section 6.2, each customization
scenarios will be analyzed and modeling elements having the same container will be collected
within separate pieces of Advice. The Advice of one scenario will be grouped within one Aspect.

For composition purposes, the Advice will need to be applied to appropriate Pointcuts which is
specified within a set of AsymmetricCompositionRules. Therefore, each customization scenario
will be explained as a sequence of AsymmetricCompositionRules each consisting of an Advice
and a Pointcut following the notation introduced in Section 5.2.

6.3.2.1 Customization Scenario Multi-Delivery

In order to realize this customization scenario, the necessary context information needs to be
stored in the content model. This means that the UserAgent and DeviceType entities need to be
added to the content model first. Second, when considering the hypertext level for the customiza-
tion scenario Multi-Delivery in Figure 6.13(a), everything but the Public siteview (highlighted in
grey) represents customization functionality. Thus, besides making the Public siteview context-
aware by extending it with a ContextUnit and an appropriate context cloud for retrieving the
current device type used, the Choose Device page is added to the Public siteview.

Public

Get
UserAgent

UserAgent

@

Get
UserAgent

UserAgent

@

Get
UserAgent

UserAgent
[Name=ua]

Get
UserAgent

UserAgent
[Name=ua]

ua UserAgent.OID

OK Change
SV
Change
SV

Choose DeviceChoose Device

SwitchSwitch

Get
DeviceType

DeviceType
[UserAgent2DeviceType]

Get
DeviceType

DeviceType
[UserAgent2DeviceType]

DeviceType.Siteview

Device
Type

DeviceType

Device
Type

DeviceType

[Public]

sv=Public

OK

KO

siteview

C

OK
[Public_PDA]

sv=Public_PDA

ModuleSequence MultiDelivery

Multi-DeliveryMuseum

ModuleSequence MultiDelivery

Multi-DeliveryMuseum

Multi-Delivery
DeviceContext
DeviceContextRelationships
MultiDeliveryContextCloud

Multi-Delivery
DeviceContext
DeviceContextRelationships
MultiDeliveryContextCloud

(b) (c)

RuleSequence MultiDeliveryRules

DeviceContext2
ContentModel

DeviceContext2
ContentModel

DeviceContext
Relationships

2User

DeviceContext
Relationships

2User

MultiDelivery
ContextCloud

2Siteview

MultiDelivery
ContextCloud

2Siteview

(d)

(a)

Figure 6.13: Customization Scenario Multi-Delivery in aspectWebML (1)

The Multi-Delivery Aspect for the scenario is shown in Figure 6.13(b) in terms of the Aspect
Diagram notation introduced in Chapter 5.2. Figure 6.13(c) illustrates the necessary Concern-
ModuleSequence for composing the Aspect with the core Museum WebML model, while in Figure

223

6 The Context-Aware Museum Case Study

6.13(d), the ConcernCompositionRuleSequence is depicted. For the following scenarios, the As-
pect Diagram, the Module Sequence Diagram, and the Rule Sequence Diagram will be omitted
for readability reasons. Instead, all information will be captured with the detailed notation for
AsymmetricCompositionRules, where the necessary AsymmetricCompositionRules combining
an Advice of the scenario’s Aspect with an appropriate Pointcut are listed in the order of their
application during composition (cf Figure 6.14). Again please note that, in the absence of a no-
tational element for a WebML modeling element, the abstract syntax in the style of UML object
diagrams is used.

In the Advice DeviceContext of the first rule, the DeviceType and UserAgent entities as well as
the Relationship from the UserAgent entity to the User entity are added to the content model (cf.
Pointcut ContentModel). The User entity is highlighted in grey to indicate that the target of the
Relationship is located in the core content model and is not part of the Advice. In the second
AsymmetricCompositionRule DeviceContextRelationships2User the Advice DeviceContextRelation-
ships contains the inverse Relationship to be introduced to the User entity (cf. Pointcut User). Fi-
nally, the third rule MultiDeliveryContextCloud2Siteview adds the Choose Device page, the ContextU-
nit and elements from the context cloud, i.e., GetClientParameterUnit, GetDataUnits, SwitchUnit,
and ChangeSiteviewUnit, to the Public siteview.

Figure 6.14: Customization Scenario Multi-Delivery in aspectWebML (2)

The advantages of the aspectWebML solution compared to the WebML solution of the cus-
tomization scenario Multi-Delivery can be summarized as follows:

• Modeling elements contributing to customization are made explicite, since they are sepa-
rated from the rest of the web application model and captured within an Aspect.

224

6.3 Designing the Context-Aware Museum with aspectWebML

• The aspectWebML solution requires less modeling effort, in that the same extension of a
siteview can be realized by changing a pointcut. For example, imagine the CAM web ap-
plication shall be extended to also support mobile phones. This means, that a dedicated
siteview for mobile phones will have to be extended with the customization functionality
defined in Advice MultiDeliveryContextCloud as well. This can be done by changing the
ExternalUserSiteviews Pointcut to also include a Public Mobile siteview.

• In order to support a Public Mobile siteview, the context cloud will also need to be changed,
i.e., a further OKLink pointing to the ChangeSiteviewUnit will need to be inserted to the
SwitchUnit. In the WebML solution, this change needs to be performed for every context
cloud, i.e., for those of the Public siteview as well as the Public PDA siteview. In contrast, in
aspectWebML the change needs to be performed only once in the Aspect, or more specifi-
cally, in the MultiDeliveryContextCloud Advice.

• In case user acceptability of a device type is too low, aspectWebML allows for removing the
respective customization functionality from the CAM web application in an easy way.

6.3.2.2 Customization Scenario Season’s Style

When considering the WebML solution for the customization scenario Season’s Style in Figure 6.5,
everything but the Public siteview represents customization functionality.

The Season’s Style customization scenario can be realized in aspectWebML within a single Asym-
metricCompositionRule. Figure 6.15 shows that the Advice SeasonsStyleContextCloud contains the
ContextUnit together with the context cloud specifying the necessary logic to decide on which
stylesheet to use. The Advice can be easily applied to any siteview. As is specified in the Pointcut
ExternalUserSiteviews, for the CAM web application the Season’s Style scenario shall be applied
to the siteviews designed for external users, i.e., the Public siteview as well as the Public PDA
siteview designed to support small device types.

Public

Advice SeasonsStyleContextCloud Pointcut ExternalUserSiteviews

A AA
Change
Style

If

[21.06<Date]
[Date<21.12]

OK

OK

css=summer

css=winter

Date

[result=true]

[result=false]

GetDate

Date

@

C

Public_PDA

AsymmetricCompositionRule SeasonsStyle2Siteviews

KO

Figure 6.15: Customization Scenario Season’s Style in aspectWebML

Again, the advantages of the aspectWebML solution lie in the separation of the customization
functionality. The Advice can be easily reused for other siteviews by changing the Pointcut of
the AsymmetricCompositionRule accordingly. Furthermore, changes to the customization func-
tionality are localized within the Aspect, i.e., the Advice, allowing for better maintainability. For
example, the Advice might be changed in order to also support special style sheets for the spring
season and the fall seasons as well as for certain holidays.

225

6 The Context-Aware Museum Case Study

6.3.2.3 Customization Scenario Current News & Upcoming Events

In the WebML solution, the original Home page contained an EntryUnit allowing users to log in
to the web application. The remaining modeling elements depicted in Figure 6.6 represent cus-
tomization functionality including the context cloud as well as the IndexUnits providing infor-
mation on the current news and events. In the following, an explanation of how these modeling
elements can be captured within an Aspect is given.

Advice TimeContextParametersAdvice TimeContextParameters Pointcut HypertextModelPointcut HypertextModel

:Navigation

Advice GetTimeContextCloudAdvice GetTimeContextCloud

CurrentDate:
Parameter

type=Date

CurrentDate:
Parameter

type=Date

CurrentTime:
Parameter

type=Time

CurrentTime:
Parameter

type=Time

C

SetTime

CurrentTime

SetTime

CurrentTime

SetDate

CurrentDate

SetDate

CurrentDate

GetDate

Date

@
GetDate

Date

@
GetTime

Time

@
GetTime

Time

@
SetTime

CurrentTime

SetTime

CurrentTime

SetDate

CurrentDate

SetDate

CurrentDate

Advice CurrentNewsAndUpcomingEventsAdvice CurrentNewsAndUpcomingEvents

Upcoming
Events

Event
[PromotionTime<=curTime]

[StartTime>=curTime]
[Date=curDate]

[AgeClass=ageClass]

Upcoming
Events

Event
[PromotionTime<=curTime]

[StartTime>=curTime]
[Date=curDate]

[AgeClass=ageClass]
Current
News

News
[OnlineDate<=curDate]
[CutoffDate>=curDate]

Current
News

News
[OnlineDate<=curDate]
[CutoffDate>=curDate]

GetDate

CurrentDate

GetDate

CurrentDate

GetTime

CurrentTime

GetTime

CurrentTime

GetUser

User

GetUser

User

User

User

User

User

Pointcut ExternalUserHomepagesPointcut ExternalUserHomepages

Home
Home

Public

Pointcut ExternalUserSiteviewsPointcut ExternalUserSiteviews

Public_PDA

AsymmetricCompositionRule TimeContextParameters2HypertextModel

AsymmetricCompositionRule GetTimeContextCloud2Siteviews

AsymmetricCompositionRule CurrentNews2HomePages

Advice OnlineCutoffDateAdvice OnlineCutoffDate Pointcut NewsPointcut News

OnlineDate:
Attribute

type=Date

OnlineDate:
Attribute

type=Date

AsymmetricCompositionRule OnlineCutoffDate2News

NewsNews

Advice AgeClassAdvice AgeClass Pointcut UserPointcut User
AsymmetricCompositionRule AgeClass2User

UserUser

CutoffDate:
Attribute

type=Date

CutoffDate:
Attribute

type=Date

Advice PromitionTimeAgeClassAdvice PromitionTimeAgeClass Pointcut EventPointcut Event

PromotionTime:
Attribute

type=Time

PromotionTime:
Attribute

type=Time

AsymmetricCompositionRule Attributes2Event

EventEvent

User.AgeClasscurDate

curTime

curDate

AgeClass:
Attribute

AgeClass:
Attribute

AgeClass:
Attribute

AgeClass:
Attribute

Figure 6.16: Customization Scenario Current News & Upcoming Events in aspectWebML

For the Current News & Upcoming Events customization scenario, some extensions to the content
model are required before being able to model customization functionality at the hypertext level.
As illustrated in Figure 6.16, the User, News, and Event entities need to be extended with some
Attributes: The Attributes2Event AsymmetricCompositionRule adds the Attributes PromotionTime
and AgeClass to the Entity Event. An AgeClass Attribute is furthermore added to the User Entity

226

6.3 Designing the Context-Aware Museum with aspectWebML

by means of the AgeClass2User rule. And the OnlineDate and CutoffDate Attributes are added to
the News entity in rule OnlineCutoffDate2News.

Furthermore, two global Parameters have to be created prior to using them in SetUnits and
GetUnits. In the TimeContextParameters2HypertextModel AsymmetricCompositionRule, Parame-
ters for storing the current time and the current date are added to the WebML hypertext model
which serves as the container for all siteviews. In the following rule CurrentNews2HomePages, the
IndexUnits displaying the news items and events, the GetUnits for retrieving the current date,
time, and user, as well as the ContextUnit are part of the rule’s Advice and shall be added to
the home pages specified in the Pointcut ExternalUserHomepages. The transport Links of the Con-
textUnit point to the ”existing” SetUnits of the context cloud to be introduced next, which con-
sequently are highlighted in grey. Finally, from the context cloud, the GetClientParameterUnits
and the SetUnits for storing the current date and time are added next, which is specified in the
GetTimeContextCloud2Siteviews AsymmetricCompositionRule. More specifically, they need to be
added to the container of the Home page. Since the Current News & Upcoming Events scenario
shall be applied to the Home pages of the Public and the Public PDA siteviews, the Pointcut Exter-
nalUserHomepages references them as join points. Please note, that for a correct composition the
current implementation of the composition algorithm requires a ContextUnit always to be applied
before its corresponding context cloud.

6.3.2.4 Customization Scenario Location-Aware Tour

The Location-Aware Tour scenario is designed as a new functionality of the museum web applica-
tion and modeled as a whole new area. More specifically, the Location-Aware Tour Area is a new
landmark area to be available to users from every point in the web application (cf. Figure 6.7).
This new functionality shall be available no matter what kind of device is used to access the web
application. Consequently, the Location-Aware Tour Area shall be introduced to both the Public and
the Public PDA siteviews. Thereby, the pages of the Location-Aware Tour area are designed such
that they are suitable for both, PCs and PDAs.

In this scenario, location context information is required. Consequently, the core content model
needs to be extended with the required entities (cf. Figure 6.17). Five new entities, i.e., Mu-
seumArea, Coordinates, MuseumIP, InfoTerminal, and UserLocation, are introduced in the Advice
LocationContext, their purpose having already been explained in Section 6.2.1. For some of the
entities’ relationships pointing to entities from the core content model (highlighted in grey) the
inverse relationships need to be introduced to the respective entities in the core content model as
well (cf. rules LocationContextRelationships2User, LocationContextRelationships2Room, LocationCon-
textRelationships2Exhibit). As for the Location-Aware Tour Area, it can be directly introduced to the
siteviews defined in the Pointcut ExternalUserSiteviews together with its contained pages and its
context cloud. Nevertheless, for reusability purposes, the ContextUnit and the context cloud are
specified in two separate pieces of Advice which are then used in the AsymmetricComposition-
Rules LocationContextUnit2Area and GetLocationContextCloud2Siteviews.

Again, the customization scenario can be modeled separately and composed with the rest of the
museum web application model at the respective places defined within the Pointcuts. If required,
the Location-Aware Tour Aspect allows the functionality to be ”turned on and off”. For example,
the Location-Aware Tour Area can be composed with the Admin siteview and the Curator siteview
instead of the public siteviews. This way, administrators and curators are able to test the web
application in case changes to the (wireless) network infrastructure have been made.

227

6 The Context-Aware Museum Case Study

Advice LocationContextAdvice LocationContext Pointcut ContentModelPointcut ContentModel

UserUser
UserLocation
OID:OID
x:Float
y:Float

UserLocation
OID:OID
x:Float
y:Float

InfoTerminal
OID:OID
Name:String
IP:String
x:Float
y:Float

InfoTerminal
OID:OID
Name:String
IP:String
x:Float
y:Float

1:1

0:N1:1

0:1MuseumIP
OID:OID
IP:String

MuseumIP
OID:OID
IP:String

MuseumArea
OID:OID
Name:String
Description:Text
Indoor:Boolean

MuseumArea
OID:OID
Name:String
Description:Text
Indoor:Boolean

1:1

Coordinates
OID:OID
x:Float
y:Float

Coordinates
OID:OID
x:Float
y:Float

2:N 0:N

1:1
O:1

0:N
1:1

0:N

RoomRoom

ExhibitExhibit

1:1
0:N

:Structure

UserUser MuseumAreaMuseumArea
0:1

Advice RelationshipUser2MuseumAreaAdvice RelationshipUser2MuseumArea Pointcut UserPointcut User
UserUser

Advice RelationshipRoom2MuseumAreaAdvice RelationshipRoom2MuseumArea Pointcut RoomPointcut Room

RoomRoomRoomRoom MuseumAreaMuseumArea1:N

Advice RelationshipExhibit2MuseumAreaAdvice RelationshipExhibit2MuseumArea Pointcut ExhibitPointcut Exhibit

ExhibitExhibit MuseumAreaMuseumArea1:1
ExhibitExhibit

AsymmetricCompositionRule LocationContext2ContentModel

AsymmetricCompositionRule LocationContextRelationships2User

AsymmetricCompositionRule LocationContextRelationships2Exhibit

AsymmetricCompositionRule LocationContextRelationships2Room

UserLocationUserLocation
0:1

Advice LocationAwareTourAdvice LocationAwareTour Pointcut ExternalUserSiteviewsPointcut ExternalUserSiteviews

Advice GetLocationContextCloudAdvice GetLocationContextCloud Pointcut ExternalUserSiteviewsPointcut ExternalUserSiteviews

Advice LocationContextUnitAdvice LocationContextUnit Pointcut LocationAwareTourPointcut LocationAwareTour

C

CGetIP

IP

@
GetIP

IP

@

GetInfo
Terminal

InfoTerminal
[IP=ip]

GetInfo
Terminal

InfoTerminal
[IP=ip]

ip

If

[InfoTerminal.OID!=NULL]

IfIf

[InfoTerminal.OID!=NULL]

InfoTerminal.OID

[result=true]

[result=false]

InfoTerminal.OID

MuseumArea.OID

OK
[result=false] If

[MuseumIP.OID
!=NULL]

IfIf

[MuseumIP.OID
!=NULL]

MuseumIP.OID

MuseumIP.OID

OK

[result=true]

OK

ip

Get
MuseumIP

MuseumIP
[IP=ip]

Get
MuseumIP

MuseumIP
[IP=ip]

GetMuseum
Area

MuseumArea
[InfoTerminal2MuseumArea]

OR [MuseumIP2MuseumArea]

GetMuseum
Area

MuseumArea
[InfoTerminal2MuseumArea]

OR [MuseumIP2MuseumArea]

OK

KO
KO

Location-Aware Tour

L

Location-Aware Tour

L

Public Public_PDA

GetInfo
Terminal

InfoTerminal
[IP=ip]

GetInfo
Terminal

InfoTerminal
[IP=ip]

Location-Aware Tour

L

Location-Aware Tour

L

Public Public_PDA

AsymmetricCompositionRule LocationAwareTour2Siteviews

AsymmetricCompositionRule LocationContextUnit2Area

AsymmetricCompositionRule GetLocationContextCloud2Siteviews

0:N0:N

Figure 6.17: Customization Scenario Location-Aware Tour in aspectWebML

6.3.2.5 Customization Scenario Context-Dependent Access to Information

In the Context-Dependent Access to Information scenario the users are able to access certain pages if
either their location is known or they are registered users and have successfully logged in to the
web application. Similar to the Location-Aware Tour scenario, the necessary context information
needs to be stored in the content model. Since each scenario is currently considered independent
from the others, in this scenario the previously defined rules LocationContext2ContentModel, Loca-
tionContextRelationships2User, LocationContextRelationships2Room, and LocationContextRelationships-
2Exhibit also need to be modeled. This means that the rules’ Advice are modeled as part of the

228

6.3 Designing the Context-Aware Museum with aspectWebML

scenario’s Aspect (cf. customization scenario Location-Aware Tour in Section 6.3.2.4). In Figure 6.18,
however, the Advice and Pointcut of these rules will not be depicted for brevity reasons.

The customization functionality in this scenario is represented by the two types of context
clouds depicted in Figure 6.8, i.e., one for the Collections Area to calculate the current museum area
as well as another one for the Exhibits Page ensuring the access restrictions. In the aspectWebML
solution, these context clouds shall be modeled separately within an Aspect and be applied to
several Areas and pages, respectively, as will be specified by means of a set of AsymmetricCom-
positionRules in Figure 6.18.

Public

Advice GetLocationContextCloudAdvice GetLocationContextCloud Pointcut PublicSiteviewPointcut PublicSiteview

Advice LocationContextUnitAdvice LocationContextUnit Pointcut LocationAwareAreasPointcut LocationAwareAreas
GetInfo

Terminal

InfoTerminal
[IP=ip]

GetInfo
Terminal

InfoTerminal
[IP=ip]

CGetIP

IP

@
GetIP

IP

@

GetInfo
Terminal

InfoTerminal
[IP=ip]

GetInfo
Terminal

InfoTerminal
[IP=ip]

ip

If

[InfoTerminal.OID!=NULL]

IfIf

[InfoTerminal.OID!=NULL]

InfoTerminal.OID

[result=true]

[result=false]

InfoTerminal.OID

MuseumArea.OID

OK
[result=false] If

[MuseumIP.OID
!=NULL]

IfIf

[MuseumIP.OID
!=NULL]

MuseumIP.OID

MuseumIP.OID

OK

[result=true]

OK

ip

Get
MuseumIP

MuseumIP
[IP=ip]

Get
MuseumIP

MuseumIP
[IP=ip]

GetMuseum
Area

MuseumArea
[InfoTerminal2MuseumArea]

OR [MuseumIP2MuseumArea]

GetMuseum
Area

MuseumArea
[InfoTerminal2MuseumArea]

OR [MuseumIP2MuseumArea]

OK

KO
KO

AsymmetricCompositionRule GetLocationContextCloud2Siteview

Collections

L

Collections

L

Exhibitions

L

Exhibitions

L

MuseumMap

L

MuseumMap

L

AsymmetricCompositionRule LocationContextUnit2Areas

C

Advice LocationUserContextUnitAdvice LocationUserContextUnit Pointcut LocationUserAwarePagesPointcut LocationUserAwarePages
AsymmetricCompositionRule LocationUserContextUnit2Pages

C
If

[MuseumArea.OID!=NULL]

IfIf

[MuseumArea.OID!=NULL]

MuseumArea.OID

Advice LocationUserContextCloudAdvice LocationUserContextCloud
AsymmetricCompositionRule LocationUserContextCloud2Areas

If

[MuseumArea.OID!=NULL]

IfIf

[MuseumArea.OID!=NULL]

GetUser

CurrentUser

GetUser

CurrentUserMuseumArea.OID

If

[User.OID!=NULL]

IfIf

[User.OID!=NULL]

OK
[result=false]

OK
[result=true]

OK
[result=true]

Login

OK
[result=false]

User.OID

C

Collections

L

Collections

L

Exhibitions

L

Exhibitions

L

MuseumMap

L

MuseumMap

L

Pointcut LocationAwareAreasPointcut LocationAwareAreas

AsymmetricCompositionRule LocationContext2ContentModel
AsymmetricCompositionRule LocationContextRelationships2User
AsymmetricCompositionRule LocationContextRelationships2Room
AsymmetricCompositionRule LocationContextRelationships2Exhibit

Collection:Exhibits
Collection:Exhibit Details

Exhibition:Exhibits
Exhibition:Exhibit Details

MuseumMap:Room Details
MuseumMap:Exhibit Details

Figure 6.18: Customization Scenario Context-Dependent Access to Information in aspectWebML

In order to allow the context clouds of the ”advised” pages to know the current museum area,
an extension of the areas which contain the pages to be context-aware is necessary. These ar-

229

6 The Context-Aware Museum Case Study

eas will be extended with a context cloud that calculates the required information. Therefore,
the AsymmetricCompositionRule LocationContextUnit2Areas adds a ContextUnit to the Collections,
Exhibitions, as well as Museum Map areas, and the AsymmetricCompositionRule GetLocationCon-
textCloud2Siteview adds the necessary context clouds to the Public siteview. Then the pages to be
”protected” in the three areas need to be made context-aware as well. Therefore, a ContextUnit is
also added to the pages defined in the Pointcut LocationUserAwarePages of rule LocationUserCon-
textUnit2Pages. Furthermore, for each page the context cloud, which checks if either the current
museum area or the current user is known, needs to be included in the Collections, Exhibitions, as
well as Museum Map areas (cf. AsymmetricCompositionRule LocationUserContextCloud2Areas).

For this scenario, a peculiarity of the composition algorithm supporting the aspectWebML lan-
guage needs to be mentioned. In the Context-Dependent Access to Information scenario, presented
in the previous section in Figure 6.8, the WebML solution suggests, that pages of the same con-
tainer, need to have their own context cloud. If we allowed the ContextUnit of page Exhibit Details
to point to the context cloud of the page Exhibits then, every time the user accesses the Exhibits
Details page s/he would be redirected to the Exhibits page. Instead, the Exhibits Details page is
required to have a context cloud on its own. Having a look at the corresponding Asymmetric-
CompositionRule LocationUserContextCloud2Areas in the aspectWebML solution, it seems that the
context cloud is added to the areas defined in the Pointcut LocationAwareAreas only once. The
composition semantics of the aspectWebML language, or rather the implementation of the com-
position algorithm, ensures that indeed a separate context cloud is introduced for each context
unit. Details on implementation issues can be found in [Tom07].

Concerning maintenance, this example particularly points out the necessity of separating the
customization functionality from the rest of the web application model. The context cloud for
restricting the access to a page already needs to be introduced to six different pages as is specified
in the Pointcut LocationAwareUserPages. Imagine the case where the context cloud needs to be
extended for further restricting the access to a page according to the current time. For example,
access to all exhibits and their details might be given for a short period of time before a new exhi-
bitions starts. Having separated the context cloud within an Aspect, such extensions can be easily
made in aspectWebML in one place, while they are automatically propagated to all necessary
places in the web application model through composition.

6.3.2.6 Customization Scenario Special Exhibits Recommendation

Considering the WebML solution of the Special Exhibits Recommendation customization scenario
depicted in Figure 6.9. The customization functionality is represented by the Alternative Rec-
ommendations as well as the context cloud associated with the Permanent Collections Page. The
aspectWebML way of modeling the customization scenario Special Exhibits Recommendation is de-
picted in Figure 6.19. The scenario requires a global Parameter to be introduced in order to store
the current time (cf. AsymmetricCompositionRule TimeContextParameter2HypertextModel) as well
as the content model to be extended with the Weather entity and the Domain WeatherCondition
(cf. AsymmetricCompositionRule WeatherContext2ContentModel). Furthermore, in the rule At-
tributes2Exhibit, the Exhibit entity needs to be extended with four Attributes allowing to filter
Exhibits according to the current time and weather context, namely StartTime, PromotionTime, End-
Time, and RequiredWeather.

230

6.3 Designing the Context-Aware Museum with aspectWebML

Advice GetWeatherContextCloudAdvice GetWeatherContextCloud Pointcut Recommendation
Areas

Pointcut Recommendation
Areas

Advice RecommendationsAdvice Recommendations Pointcut Recommendation
Pages

Pointcut Recommendation
PagesAlternative Recommendations

Special
Exhibits

Exhibit
[PromotionTime<=curTime] OR

[StartTime>=curTime] OR
[RequiredWeather=Weather.Condition]

Special
Exhibits

Exhibit
[PromotionTime<=curTime] OR

[StartTime>=curTime] OR
[RequiredWeather=Weather.Condition]

GetTime

CurrentTime

GetTime

CurrentTime

Default
D
Default
D

Visit Now Special Exhibits

Weather.Condition

Collections:
Study Collections

L

Special
Exhibits

Event
[PromotionTime<=curTime] OR

[StartTime>=curTime] OR
[requiredWeather=weather]

Special
Exhibits

Event
[PromotionTime<=curTime] OR

[StartTime>=curTime] OR
[requiredWeather=weather]

KO

OK

Get
Weather

Weather
[current=true]

Get
Weather

Weather
[current=true]

If

[MuseumArea.OID!=NULL]

IfIf

[MuseumArea.OID!=NULL]

OK

[result=true]

[result=false]

C

If

[MuseumArea.OID
!=NULL]

IfIf

[MuseumArea.OID
!=NULL]

C

Collections

L

Collections

L

Exhibitions

L

Exhibitions

L

Advice TimeContextParameterAdvice TimeContextParameter Pointcut HypertextModelPointcut HypertextModel

:NavigationCurrentTime:
Parameter

Type=„Time“

CurrentTime:
Parameter

Type=„Time“

Exhibitions:
Exhibitions

LD

Collections:
Permanent Collections

LD

AsymmetricCompositionRule TimeContextParameter2HypertextModel

AsymmetricCompositionRule Recommendations2Pages

AsymmetricCompositionRule GetWeatherContextCloud2Areas

Advice ExhibitsAttributesAdvice ExhibitsAttributes Pointcut ExhibitPointcut Exhibit

StartTime:
Attribute

type=Time

StartTime:
Attribute

type=Time

AsymmetricCompositionRule Attributes2Exhibit

ExhibitExhibit

EndTime:
Attribute

type=Time

EndTime:
Attribute

type=Time

PromotionTime:
Attribute

type=Time

PromotionTime:
Attribute

type=Time
Weather

Condition
-Sun
-Rain
-Clouds
-Snow

Weather
Condition
-Sun
-Rain
-Clouds
-Snow

requiredWeather:
Attribute

requiredWeather:
Attribute

Weather
OID:OID
Condition:WeatherCondition
Current:Boolean

Weather
OID:OID
Condition:WeatherCondition
Current:Boolean

Weather
Condition
-Sun
-Rain
-Clouds
-Snow

Weather
Condition
-Sun
-Rain
-Clouds
-Snow

Advice WeatherContextAdvice WeatherContext Pointcut ContentModelPointcut ContentModel
AsymmetricCompositionRule WeatherContext2ContentModel

:Structure

curTime

MuseumArea.OID

Advice LocationContextUnitAdvice LocationContextUnit
GetInfo

Terminal

InfoTerminal
[IP=ip]

GetInfo
Terminal

InfoTerminal
[IP=ip]

AsymmetricCompositionRule GetLocationContextCloud2Siteview

Collections

L

Collections

L

Exhibitions

L

Exhibitions

L

AsymmetricCompositionRule LocationContextUnit2Areas

C

Pointcut Recommendation
Areas

Pointcut Recommendation
Areas

AsymmetricCompositionRule LocationContext2ContentModel
AsymmetricCompositionRule LocationContextRelationships2User
AsymmetricCompositionRule LocationContextRelationships2Room
AsymmetricCompositionRule LocationContextRelationships2Exhibit

Figure 6.19: Customization Scenario Special Exhibits Recommendation in aspectWebML

231

6 The Context-Aware Museum Case Study

Similar to the Location-Aware Tour scenario, the necessary location context information needs to
be stored in the content model. The scenario therefore also needs the previously defined rules Lo-
cationContext2ContentModel, LocationContextRelationships2User, LocationContextRelationships2Room,
and LocationContextRelationships2Exhibit (cf. customization scenario Location-Aware Tour in Section
6.3.2.4).

In order to present special recommendations on exhibits to be visited according to the cur-
rent time and/or weather context, the Alternative Alternative Recommendations needs to be in-
troduced to the pages Permanent Collections and Study Collections of the Collection area as well
as to the Exhibitions page of the Exhibitions area. Furthermore, the pages need to be declared
context-aware as is specified in the AsymmetricCompositionRule Recommendations2Pages. In the
GetWeatherContextCloud2Areas rule, then for each page the necessary context cloud for determin-
ing whether the user is accessing the application from within the museum as well as for query-
ing the current weather condition is inserted into the respective area of the page (cf. Advice
GetWeatherContextCloud). Again the composition algorithm ensures that each page is endowed
with its own context cloud. As in the Context-Dependent Access to Information scenario, for mak-
ing the areas of the affected pages location-aware so that the current museum area is available
for the contained context-aware pages, ContextUnits need to be added to the Collections area and
the Exhibitions area (cf. rule LocationContextUnit2RecommendationAreas). Furthermore, the con-
text clouds need to be introduced to the siteview of the areas (cf. AsymmetricCompositionRule
GetLocationContextCloud2Siteview). For brevity reasons, the Advice and Pointcut of the GetLoca-
tionContextCloud2Siteview rule are not detailed (cf. the Context-Dependent Access to Information
scenario). Please note, that since being applied to the same Pointcut RecommendationAreas, the
Advice GetWeatherContextCloud and LocationContextUnit could be merged into one Advice. For
reuse purposes they are defined separately, however. For example, the GetWeatherContextCloud
Advice could be reused in other situations, where the weather context is required.

In contrast to the given example, which considers recommendations on three distinct pages,
recommendations are often given in many places of web applications. For example, in the Ama-
zon web application, recommendations are given in a dedicated section of almost every page.
Again, having separated the recommendations functionality in a separate Aspect, is can be easily
changed in one place for the whole web application or even omitted at all.

6.3.2.7 Customization Scenario Exhibits in Vicinity

Similar to the Special Exhibits Recommendation scenario, considering the WebML solution of the
Exhibits in Vicinity scenario depicted in Figure 6.10, the customization functionality is represented
by the Exhibits in Vicinity IndexUnit as well as the context cloud associated with the Exhibit Details
Page.

The Exhibits in Vicinity scenario is based on location information. Similar to the Location-Aware
Tour scenario, the necessary location context information needs to be stored at the content level.
The scenario therefore also requires the customization functionality already defined in previ-
ous rules, i.e., LocationContext2ContentModel, LocationContextRelationships2User, LocationContextRe-
lationships2Room, and LocationContextRelationships2Exhibit, which are not detailed for reasons of
brevity (cf. customization scenario Location-Aware Tour in Section 6.3.2.4).

As illustrated in Figure 6.20, in this scenario, information on nearby exhibits shall be added to
the Exhibit Details pages of the Collections and Exhibitions areas as is described in rule ExhibitsIn-
Vicinity2Page. More specifically, the required IndexUnit as well as the ContextUnit are added to

232

6.3 Designing the Context-Aware Museum with aspectWebML

Advice GetMuseumAreasContextCloudAdvice GetMuseumAreasContextCloud Pointcut ExhibitsIn
VicinityAreas

Pointcut ExhibitsIn
VicinityAreas

Advice ExhibitsInVicinityAdvice ExhibitsInVicinity Pointcut ExhibitsIn
VicinityPages

Pointcut ExhibitsIn
VicinityPagesExhibits In

Vicinity

Exhibit
[MuseumArea2Exhibit] OR

[MuseumArea2Exhibit]

Exhibits In
Vicinity

Exhibit
[MuseumArea2Exhibit] OR

[MuseumArea2Exhibit]

C
MuseumArea.OID

Exhibits In
Vicinity

Exhibit
[MuseumArea2Exhibit] OR

[MuseumArea2Exhibit]

Exhibits In
Vicinity

Exhibit
[MuseumArea2Exhibit] OR

[MuseumArea2Exhibit]

C

If

[MuseumArea.OID
!=NULL]

IfIf

[MuseumArea.OID
!=NULL]

[result=true]

[result=false]

KO

MuseumArea.OID

OK

OK
MuseumArea.OID

GetNeighbor
Areas

MuseumArea
[MuseumArea2

NeighborMuseumArea]

GetNeighbor
Areas

MuseumArea
[MuseumArea2

NeighborMuseumArea]

Set:MuseumArea.OID

AsymmetricCompositionRule ExhibitsInVicinity2Page

AsymmetricCompositionRule GetMuseumAreasContextCloud2Areas

If

[MuseumArea.OID
!=NULL]

IfIf

[MuseumArea.OID
!=NULL]

MuseumArea.OID

If

[MuseumArea.OID
!=NULL]

IfIf

[MuseumArea.OID
!=NULL]

Collections:
Exhibit Details Exhibitions:

Exhibit Details

Collections

L

Collections

L

Exhibitions

L

Exhibitions

L

AsymmetricCompositionRule GetLocationContextCloud2Siteview

AsymmetricCompositionRule LocationContextUnit2VicinityAreas
Advice LocationContextUnitAdvice LocationContextUnit

GetInfo
Terminal

InfoTerminal
[IP=ip]

GetInfo
Terminal

InfoTerminal
[IP=ip]

Collections

L

Collections

L

Exhibitions

L

Exhibitions

L

C

Pointcut ExhibitsIn
VicinityAreas

Pointcut ExhibitsIn
VicinityAreas

AsymmetricCompositionRule LocationContext2ContentModel
AsymmetricCompositionRule LocationContextRelationships2User
AsymmetricCompositionRule LocationContextRelationships2Room
AsymmetricCompositionRule LocationContextRelationships2Exhibit

Figure 6.20: Customization Scenario Exhibits in Vicinity in aspectWebML

the specified pages. In a second step, the pages’ context clouds need to be introduced as well.
In the GetMuseumAreasContextCloud2Areas AsymmetricCompositionRule, the context clouds are
specified to be added to the Collections and Exhibitions area.

Again, as in the Context-Dependent Access to Information scenario, for making the areas of the
affected pages location-aware so that the current museum area is available for the contained
context-aware pages, ContextUnits need to be added to the Collections area and the Exhibitions
area (cf. rule LocationContextUnit2VicinityAreas). Furthermore, the context clouds need to be in-
serted to the siteview (cf. rule GetLocationContextCloud2Siteview reused from the Context-Dependent
Information scenario).

Please note, that since being applied to the same Pointcut ExhibitsInVicinityAreas, the two the
Advice GetMuseumAreasContextCloud and LocationContextUnit, could be merged into one Advice.
For reuse purposes they are defined separately, however. Currently, the scenarios are considered
independent from each other and thus, the GetMuseumAreasContextCloud Advice has already been
defined in several scenarios. When using the scenarios in combination, however, this Advice can
be reused in several AsymmetricCompositionRules.

233

6 The Context-Aware Museum Case Study

6.3.3 The Curator Siteview

6.3.3.1 Customization Scenario Context-Aware Exhibit Management

In Figure 6.11, the necessary customization functionality extensions have already been explained:
the Exhibits page needs to be extended with a context cloud for computing the current device used
as well as an Alternative presenting a page with the form for editing an exhibit together with the
list of all exhibits or a page with a list of exhibits, only. In the latter case, the editing form will be
presented on a separate page, which also needs to be introduced to the Exhibits Management Area.

In the Context-Aware Exhibit Management customization scenario, context information with re-
spect to device and location context needs to be stored in the context model. In Figure 6.21, the
previously defined rules from the Multi-Delivery scenario (DeviceContext2ContentModel, Device-
ContextRelationships2User) as well as those from the Location-Aware Tour scenario (LocationCon-
text2ContentModel, LocationContextRelationships2User, LocationContextRelationships2Room, and Lo-
cationContextRelationships2Exhibit) are not detailed.

In the SelectorCondition2Index AsymmetricCompositionRule, to the Exhibits IndexUnit a Selec-
torCondition is added, allowing to filter the exhibits according to the current museum area. Then
the ModifyExhibitsSubPage Advice is applied around the ModifyExhibitsContentUnit Pointcut, i.e.,
the units of the Exhibits Page in Figure 6.11(a). This means the Modify Exhibits Page is added
around the specified units as a sub-page of the Exhibits Page. The Modify Exhibits Page to be
used for PDAs is then introduced to the Exhibit Management area by means of the rule ModifyEx-
hibitsPage2Area.

In order to add the Alternative Device-Independence, the rule DeviceAlternativeAround2Page ap-
plies its Advice around the Modify Exhibits page previously defined in the Advice ModifyExhibitsSub-
Page. Then the Exhibits Page needs to be made context-aware, which is done in the DeviceContex-
tUnit2Page AsymmetricCompositionRule, and the necessary context cloud needs to be added. In
rule DeviceContextCloud2Area, the context cloud responsible for computing the current device and
changing the navigation flow accordingly is added to the Exhibit Management area.

Last but not least, the Exhibit Management area itself is declared context-aware in the rule Loca-
tionContextUnit2ExhibitArea. In order to gather the current museum area which shall be used by
contained context-aware pages, the necessary context cloud (already defined in previous scenar-
ios with the Advice GetLocationContextCloud Advice) has to be added to the Curator Siteview by
means of the rule GetLocationContextCloud2CuratorSiteview.

The customization functionality introduced with this scenario is specifically tailored to the ex-
hibit management area of the curator siteview. In this respect, the major advantage of the as-
pectWebML solution is the possibility of keeping the necessary changes to the core museum web
application separate within an Aspect. This allows for traceability of the evolution of the ex-
hibit management core functionality. Furthermore, if user acceptance of the context-aware exhibit
management is low, the web application model can be easily ”rolled back” to the original core
functionality. Likewise, it might turn out, that curators use their laptops for managing exhibits
in the museum rooms, only. For performance reasons, hence, the context-aware exhibit manage-
ment functionality might be changed to only support laptops and not PDAs. Again, this change
is localized within the scenario’s Aspect.

234

6.3 Designing the Context-Aware Museum with aspectWebML

Pointcut ModifyExhibitContentUnitsPointcut ModifyExhibitContentUnits

Advice Area2ExhibitsSelectorConditionAdvice Area2ExhibitsSelectorCondition Pointcut ExhibitsIndexPointcut ExhibitsIndex

AsymmetricCompositionRule ModifyExhibitSubPageAroundUnits

AsymmetricCompositionRule SelectorCondition2Index

Advice ModifyExhibitsPageAdvice ModifyExhibitsPage Pointcut ExhibitAreaPointcut ExhibitArea
AsymmetricCompositionRule ModifyExhibitsPage2Area

Exhibits

Exhibit
[MuseumArea2

Exhibit]

Exhibits

Exhibit
[MuseumArea2

Exhibit]

Exhibits

Exhibit

Exhibits

Exhibit

Exhibits

Exhibit

Exhibits

Exhibit

Categories

Category
[PRE:Exhibit2

Category]

Categories

Category
[PRE:Exhibit2

Category]

Modify
Exhibit
Modify
Exhibit

Modify Exhibits

D

C

MuseumArea.OID
Exhibit

Exhibit

Exhibit

Exhibit

Exhibit Management

L

Exhibit Management

L

Pointcut ModifyExhibitsSubPagePointcut ModifyExhibitsSubPage
AsymmetricCompositionRule DeviceAlternativeAroundPage

Modify Exhibits

D

CModify Exhibits

D

C

ExhibitsExhibits

Advice DeviceContextUnitAdvice DeviceContextUnit Pointcut ExhibitsPagePointcut ExhibitsPage
AsymmetricCompositionRule DeviceContextUnit2Page

C
Get

UserAgent

UserAgent
[Name=ua]

Get
UserAgent

UserAgent
[Name=ua]

Modify Exhibits

Exhibit

Exhibit

Exhibit

Exhibit

Categories

Category
[PRE:Exhibit2

Category]

Categories

Category
[PRE:Exhibit2

Category]

Modify
Exhibit
Modify
Exhibit

Exhibits

Exhibits

Exhibit
[MuseumArea2

Exhibit]

Exhibits

Exhibit
[MuseumArea2

Exhibit]

C

MuseumArea.OID

Alternative Device-Independence

Exhibit

Exhibit

Exhibit

Exhibit

Advice GetDeviceContextCloudAdvice GetDeviceContextCloud Pointcut ExhibitAreaPointcut ExhibitArea
AsymmetricCompositionRule DeviceContextCloud2Area

Exhibit Management

L

Exhibit Management

L

Get
UserAgent

UserAgent

@

Get
UserAgent

UserAgent

@ua

DeviceType.Name

Get
DeviceType

DeviceType
[UserAgent2DeviceType]

Get
DeviceType

DeviceType
[UserAgent2DeviceType]

If

[DeviceType.Name=PDA]

IfIf

[DeviceType.Name=PDA]
KO

OK

UserAgent.OID

OK
[result=true] [result=false]

Exhibits CExhibits C

Get
UserAgent

UserAgent
[Name=ua]

Get
UserAgent

UserAgent
[Name=ua]C

AsymmetricCompositionRule LocationContext2ContentModel
AsymmetricCompositionRule LocationContextRelationships2User
AsymmetricCompositionRule LocationContextRelationships2Room
AsymmetricCompositionRule LocationContextRelationships2Exhibit

AsymmetricCompositionRule DeviceContext2ContentModel
AsymmetricCompositionRule DeviceContextRelationships2User

AsymmetricCompositionRule GetLocationContextCloud2CuratorSiteview

AsymmetricCompositionRule LocationContextUnit2ExhibitArea
Advice LocationContextUnitAdvice LocationContextUnit Pointcut ExhibitAreaPointcut ExhibitArea

Exhibit Management

L

Exhibit Management

L

Advice ModifyExhibitsSubPageAdvice ModifyExhibitsSubPage

Advice AlternativeDeviceIndependenceAdvice AlternativeDeviceIndependence

GetInfo
Terminal

InfoTerminal
[IP=ip]

GetInfo
Terminal

InfoTerminal
[IP=ip]

C

Exhibits

Exhibit

Exhibits

Exhibit

Figure 6.21: Customization Scenario Context-Aware Exhibit Management in aspectWebML

235

6 The Context-Aware Museum Case Study

6.3.4 The Customization Aspect

The previous sections have shown how all customization scenarios can be modeled in aspect-
WebML in terms of separate Aspects which then are composed separately with the museum web
application according to a set of AsymmetricCompositionRules. In particular, the Aspects and
their Advice have been modeled such that after composing them with the museum web appli-
cation, the composed model is equivalent to the WebML solution. Each customization scenario
has been considered to be independent from the others and thus, defined some pieces of Advice
redundantly and consequently also some AsymmetricCompositionRules.

The aspectWebML solution to customization modeling requires the modeler to specify more
than one Advice in order to re-model one of the customization scenarios. Consequently, when
considering all scenarios at once, the resulting Customization Aspect will consist of a huge number
of Advice. In order to foster understandability, manageability, and reusability of Aspects the
modeler should try to split the Customization Aspect in several Aspects, for example one for each
scenario. Still, since Advice are often coupled, modelers need to consider possible dependencies
between Aspects.

For the splitting task, the following peculiarities needs to be considered:

• The hypertext model is based inherently on the content model. Consequently, an Advice
specified to provide customization functionality at the hypertext level very likely is based
on context information specified in another Advice to be applied to the content model. In the
Exhibits In Vicinity scenario, the ExhibitsInVicinity and GetMuseumAreasContextCloud Advice
are inherently coupled with the Advice used to extend the content model with location con-
text information (i.e., LocationContext2ContentModel, LocationContextRelationships2User, Loca-
tionContextRelationships2Room, and LocationContextRelationships2Exhibit). Furthermore, the
location context information is required by several other Advice defined for other cus-
tomization scenarios depending on location context information.

• Advice realizing customization functionality at the hypertext level are often coupled. In
the Exhibits In Vicinity scenario, the ExhibitsInVicinity Advice is coupled with the GetMuseu-
mAreasContextCloud Advice, because the ContextUnit’s Link in the ExhibitsInVicinity Advice
points to a model element defined in the GetMuseumAreasContextCloud Advice.

Consequently, when designing Aspects, the modeler needs to ensure that coupled Advice are
encapsulated within one Aspect and that dependencies between Aspects are considered during
composition. Moreover, there are several ways in how a big Customization Aspect can be split.
For example, it can be split along with the customization scenarios or using different context
properties as discriminators.

The following guidelines for designing Aspects are suggested:

1. Start with Customization Scenarios. A first step towards splitting the Customization As-
pect is to design an Aspect for each customization scenario including all Advice necessary
to realize the scenario. As can be seen in Section 6.3, this results in some Advice being re-
dundantly defined in several Aspects, such as the Advice for extending the content model
with location context information. Nevertheless, this allows for individually testing the
customization scenarios or rather the Aspects before starting to use them in combination.
The modeler will have to create a CompositionPlan for each scenario including the config-
uration of the ConcernModuleSequence as well as the ConcernCompositionRuleSequence.
After composition, the composedModel can be tested.

236

6.3 Designing the Context-Aware Museum with aspectWebML

Figure 6.22 presents the customization scenarios of the case study in terms of separate As-
pects modeled in terms of the Aspect Diagram notation. As can be seen in the figure, some
Advice are redundantly defined in several Aspects. When combining the Aspects, the mod-
eler will have to provide appropriate AsymmetricCompositionRules in order to not weave
something already specified in another rule. In this respect, the order of the Aspects might
as well need to be considered.

MultiDelivery
DeviceContext
DeviceContextRelationships
MultiDeliveryContextCloud

SeasonsStyle
SeasonsStyleContextCloud

LocationAwareTour
LocationContext
LocationContextRelationship2User
LocationContextRelationship2Room
LocationContextRelationship2Exhibit
LocationAwareTourArea
LocationContextUnit
GetLocationContextCloud

ContextDependent
Information

LocationContext
LocationContextRelationship2User
LocationContextRelationship2Room
LocationContextRelationship2Exhibit
LocationContextUnit
GetLocationContextCloud
LocationUserContextUnit
LocationUserContextCloudCurrentNewsAnd

UpcomingEvents
TimeContextParameters
AgeClass
PromotionTime
OnlineCutOffDate
CurrentNewsAndUpcomingEvents
TimeContext
GetTimeContextCloud

SpecialExhibits
Recommendation

LocationContext
LocationContextRelationship2User
LocationContextRelationship2Room
LocationContextRelationship2Exhibit
LocationContextUnit
GetLocationContextCloud
TimeContextParameters
WheaterContext
Attributes2Exhibit
Recommendations
GetWeatherContextCloud

ContextAware
ExhibitManagement

LocationContext
LocationContextRelationship2User
LocationContextRelationship2Room
LocationContextRelationship2Exhibit
LocationContextUnit
GetLocationContextCloud
DeviceContext
DeviceContextRelationships
Area2ExhibitsSelectorCondition
ModifyExhibitsSubPage
ModifyExhibitsPage
AlternativeDeviceIndependence
DeviceContextUnit
GetDeviceContextCloud

ExhibitsInVicinity
LocationContext
LocationContextRelationship2User
LocationContextRelationship2Room
LocationContextRelationship2Exhibit
LocationContextUnit
GetLocationContextCloud
ExhibitsInVicinity
GetMuseumAreasContextCloud

Figure 6.22: Scenario Aspects for the Context-Aware Museum Web Application

2. Group Scenarios According to Context Information. When starting to use customization
scenarios in combination, modelers need to identify redundant Advice in the scenarios. Typ-
ically, several customization scenarios will introduce the same context information to the
content model. Thus, it is good practice to group scenarios according to their required con-
text information and specify them within one Aspect, e.g., a Location-Awareness Aspect.
Ideally, this division creates no dependencies between Aspects. Still, it is very likely that
customization scenarios will be based on several different context properties, such as the
Context-Aware Exhibition Management scenario which relies on location and device context
information. In this case, the modeler will have to put up with dependencies between As-
pects: The scenario in question will have to be put into one of the Aspects or remain a
separate Aspect.
In order to weave the Aspects, the modeler will have to identify which rules in the Concern-
CompositionRuleSequences of the scenario Aspects can be reused. Typically, the rules intro-
ducing extensions to the content model can be reused from one of the scenario Aspects. Still,
some rules extending the hypertext model (e.g., GetLocationContextCloud2CuratorSiteview
from the Context-Aware Exhibit Management scenario and GetLocationContextCloud2Siteview
from the Exhibits In Vicinity scenario) will use the same Advice but possibly different Point-
cuts. In this respect, the modeler shall define a new AsymmetricCompositionRule for the
Advice and provide an appropriate Pointcut that includes all JoinPoints of the other rules.
In Figure 6.23(a) the set of Advice has been reorganized into the DeviceAwareness Aspect, the

237

6 The Context-Aware Museum Case Study

LocationAwareness Aspect, the TimeAwareness Aspect, and the WeatherAwareness Aspect and
redundant Advice have been eliminated. Due to the dependencies between the Aspects,
they have to be applied to the Museum WebML model as specified by the ConcernModule-
Sequence in Figure 6.23(b).

DeviceAwareness
DeviceContext
DeviceContextRelationships
MultiDeliveryContextCloud

WeatherAwareness
WeatherContext
Attributes2Exhibit
Recommendations
GetWeatherContextCloud

Multi-Delivery

Location-Aware Tour

Context-Dependent
Access to Information
Exhibits In Vicinity

Context-Aware
Exhibit Management

Season‘s Style

Special Exhibits
Recommendation

Current News And
Upcoming Events

TimeAwareness
SeasonsStyleContextCloud
TimeContextParameters
AgeClass
PromotionTime
OnlineCutOffDate
CurrentNewsAndUpcomingEvents
TimeContext
GetTimeContextCloud

LocationAwareness
LocationContext
LocationContextRelationship2User
LocationContextRelationship2Room
LocationContextRelationship2Exhibit
LocationContextUnit
GetLocationContextCloud
LocationAwareTourArea
LocationUserContextUnit
LocationUserContextCloud
ExhibitsInVicinity
GetMuseumAreasContextCloud
Area2ExhibitsSelectorCondition
ModifyExhibitsSubPage
ModifyExhibitsPage
AlternativeDeviceIndependence
DeviceContextUnit
GetDeviceContextCloud

Device
Awareness

Museum Location
Awareness

Time
Awareness

Weather
Awareness

(a)

(b)

Figure 6.23: Context Aspects for the Context-Aware Museum Web Application

3. Extract ContextModel Aspect(s). In the worst case, every scenario is based on all context
properties. In this case, the better solution is to extract all Advice to be applied on the content
model from the scenario Aspects into a separate Aspect ContextInformation. Of course, this
creates dependencies between the ContextInformation Aspect and the remaining Aspects.

4. Designing Reusable Aspects. Some parts of the museum’s customization scenarios might
be reused in other UWAs. Typically, these parts need to be quite independent from the mu-
seum application. For example, the device context information as well as the location con-
text information can be reused in other applications. The Multi-Delivery scenario as a whole
is reusable, since it is independent from the purpose of the web application. Of course, in
order to reuse the location context model, the application will need to provide a similar
geopositioning infrastructure as the CAM museum web application. Such an infrastructure
very likely is available by default in a university campus environment. In this respect, also
the context cloud for calculating the current museum area can be reused.
In Figure 6.24 some Advice of the previous Aspects have been reorganized within two
Aspects, namely the DeviceContext and the LocationContext, to be reused in other applica-
tions. Please note that the Advice DeviceContextUnit and GetDeviceContextCloud used in the
Context-Aware Exhibit Management scenario are not fully reusable, since the context cloud
contains a redirect of the user to a page of the CAM web application, i.e., one OKLink from
the context cloud points to a page of the CAM web application. Nevertheless, the Advice is
reusable to a large extent. The modeler merely needs to set the ’to’ property of the OKLink
to a target in the application in which the Aspect is used.

238

6.4 Comparative Discussion

LocationAwareness
LocationContext
LocationContextRelationship2User
LocationContextRelationship2Room
LocationContextRelationship2Exhibit
LocationContextUnit
GetLocationContextCloud

DeviceAwareness
DeviceContext
DeviceContextRelationships
MultiDeliveryContextCloud
DeviceContextUnit
GetDeviceContextCloud

Figure 6.24: Reusable Aspects for the Context-Aware Museum Web Application

It is obvious that the design of several Aspects in order to capture customization functionality of
a UWA is a difficult task and designing reusable Aspects is even more difficult. All the more, the
modeler needs to be supported in designing Aspects and CompositionPlans within a modeling
tool. Amongst others such a tool will be required to visualize coupling between Advice and
dependencies between Aspects as well as debugging support when composing ConcernModules.
The aspectWebML language is currently supported by the aspectWebML Modeling Environment
presented in Chapter 7.

6.4 Comparative Discussion

The aspectWebML language is an extension to the WebML language trying to resolve WebML’s
weaknesses in modeling UWAs. Following, a comparative discussion of the differences of the
two approaches is provided. In particular, aspectWebML’s strengths with respect to WebML shall
be pointed out. Nevertheless, aspectWebML is not for free. The extensions made to the WebML
language require modelers not only to learn new modeling concepts but to learn a new modeling
paradigm, i.e., the aspect-oriented modeling paradigm. Consequently, the following discussion
will also reflect on the price to pay when using aspectWebML and answer the most obvious ques-
tions:

Why put up with the additional indirection via Aspects if it is possible to model customiza-
tion functionality with WebML anyway? Why modeling with Aspects if weaving produces the
same solution as in WebML?

Managing Complexity, Understandability, and Traceability. In contrast to WebML, aspect-
WebML allows keeping separate all customization functionality from the rest of the web appli-
cation, i.e., from the content model and the hypertext model. Nevertheless, after composing the
customization funtionality with the core models, indeed, the original WebML solution for the
context-aware museum web application can be obtained which could be used as input to code
generation facilities. Still, aspectWebML is not about modeling the customization functionality it-
self differently than the WebML approach, i.e., in a more elegant or better way. Instead, it is about
modelers explicitly dealing with customization as a separate concern. Customization functional-
ity typically is tangled with and scattered across the whole web application model. The WebML
approach, however, provides no means for providing the user with a possibility of keeping sepa-
rate customization or at least of identifying which parts of the models contribute to customization.
In this respect, by achieving separation of concerns, aspectWebML allows for better managing
complexity, understandability, and traceability:

239

6 The Context-Aware Museum Case Study

As already explained in Section 6.2.1, with respect to the content model, the WebML approach
suggests pointing out contextual information in the content model with sub-schemata. These
sub-schemata, however, only serve as guidelines for designing context information. They are not
part of the model itself but rather part of the model’s documentation. Furthermore, sub-schemata
operate on a more coarse-grained level considering Entities and Relationships, only. They do
not allow for associating a single Attribute of an Entity to a sub-schema, as can be done with
aspectWebML. For example, for allowing to filter the set of recommended exhibits according to
the current weather situation, in the scenario Special Exhibits Recommendation, the Entity Weather
and the Domain WeatherCondition have been introduced to the content model. Furthermore, the
Entity Exhibit has been extended with the Attribute RequiredWeather. In the WebML approach,
however, this single Attribute cannot be defined as a part of the context sub-schema.

As for the hypertext model, the WebML approach requires the modeler to introduce necessary
customization functionality directly into the hypertext model by making siteviews, areas, and
pages context-aware. Furthermore, customization functionality might be introduced for a page
without making it context-aware. For example, in the customized version of the web application,
a separate section of the pages shall present the current weather situation. In case this weather
situation has been stored in a GlobalParameter, the information just needs to be queried with a
GetUnit instead of making the page context-aware. Again, customization functionality is mixed
with the core functionality of the web application. Except for ContextUnits, there are no modeling
means to explicitly mark customization functionality.

Generally speaking, in extending the existing web application with customization functionality
by enhancing, replacing, and deleting modeling elements of the core web application model, the
original model is lost in the WebML approach. In aspectWebML, these extension can be traced,
however, by modeling customization separately with Aspects. In this respect, customization func-
tionality can be defined as an add-on feature of the web application.

As a consequence, in aspectWebML, being able to explicitly talk about data design (i.e., the
content model), hypertext design (i.e., the hypertext model), and customization design (i.e., the
Customization Aspect) in the development process of a UWA, will improve the modelers’ under-
standing of what is customization for the specific web application and will have a positive effect
on the complexity of the models as well as on the traceability of customization functionality ex-
tensions.

Achieving Less Modeling Effort. While at first sight, aspectWebML might seem to impose a
greater modeling effort on the modeler when modeling customization functionality with Aspects,
e.g., through modeling Advice, Pointcuts, and AsymmetricCompositionRules, this additional ef-
fort pays off in case a customization scenario shall be applied in several places of the web applica-
tion. As already said before, customization functionality is typically scattered across many places
in the web application model. For example, consider the Special Exhibits Recommendation scenario,
where recommendations about special exhibits to be visited because of the current location and
weather situation need to be presented to the user on nearly every page. In the WebML approach,
this means the modeler is required to visit every place of the web application model where this
customization functionality shall be introduced and each time model the same set of extensions.
In constrast, in the aspectWebML approach, the customization functionality needs to be modeled
only once in the Aspect, while all the places where to apply the particular Advice are specified
within one Pointcut. When composing the Aspect with the core web application on the basis of
a CompositionPlan, the modeler only needs to associate the Advice and the Pointcut within an
AsymmetricCompositionRule.

240

6.4 Comparative Discussion

Moreover, appropriate tool support can help reducing the modeling effort imposed by separat-
ing customization with Aspects. For example, when defining an Advice used to add an Entity
to the content model having a Relationship to an existing Entity, the inverse Relationship usually
needs to be defined in a separate Advice. This Advice typically could be generated automatically
by the tool support.

Better Maintenance Through Locality of Change Using aspectWebML has a great impact on
locality of change and as a consequence also on maintainability. Keeping customization function-
ality separate within Aspects allows modelers perform changes to the customization functionality
in one place. In contrast, in the WebML approach, modelers need to visit all places in the web ap-
plication model where a certain customization functionality needs to be changed. Scenarios sim-
ilar to the Special Exhibits Recommendation scenario require the modeler to model the same set of
extensions to a number of pages. While the mere extension typically can be supported in a mod-
eling tool via a Copy & Paste functionality, the maintainability of such a customization scenario is
difficult. Imagine the Exhibits IndexUnit, used to present the recommended exhibits, shall display
a further attribute of the exhibit, such as a small photo. In the WebML approach the modeler is
required to visit all the pages participating in the scenario in order to perform the same change
over and over again. For a real world web application, this manual update of a possibly very large
number of pages obviously is prone to errors.

Reusability of Customization. In the WebML approach, all customization functionality is mod-
eled such that it is intermingled with the core functionality of the web application model. As a
consequence, there is no way of reusing parts of the customization functionality in other web ap-
plications other than performing a Copy & Paste between the different projects. Still, the mere
copying of customization functionality has a bad effect on the models’ maintainability. As out-
lined in Section 6.3.4, in aspectWebML, some parts of the customization functionality can be de-
fined such that they can be easily reused within other UWAs. For example, the context informa-
tion can be stored in a ContextModel Aspect and reused in a similar web application. As a second
example, the Multi-Delivery customization scenario of the case study is actually independent of
the museum domain and therefore the corresponding Aspect can be reused in other applications.
The Aspects just need to be imported to the project’s Module Repository and appropriate Asym-
metricCompositionRules specifying where to weave the customization functionality via Pointcuts
need to be defined.

Considering the price to pay of introducing a new paradigm such as the aspect-orientation, in-
deed, such a shift in paradigm requires modelers not only to learn new modeling concepts but to
learn new guidelines for properly designing customization functionality within Aspects. Never-
theless, developing ubiquitous web applications requires dealing with customization functional-
ity as a separate concern and aspectWebML provides the necessary means to do so. Being able
to explicitly talk about customization design (i.e., the Customization Aspect) in the development
process of a UWA, improves the modelers’ understanding of what parts in the web application
model represent customization, inherently guides WebML modelers in developing UWAs, and
comes with the above listed advantages concerning complexity, understandability, traceability,
maintenance, and reusability.

241

6 The Context-Aware Museum Case Study

6.5 Summary

In this chapter, the WebML approach to modeling UWAs has been compared with the aspect-
WebML approach presented in this thesis using as an example a context-aware museum web
application. More specifically, the customization functionality of the museum web application
has first been explained and modeled in WebML. In a second step, the same functionality has
been modeled with aspectWebML. The major lessons learned of the case study are four-fold.

First, in contrast to WebML, aspectWebML allows to model all customization functionality sep-
arately from the rest of the web application model. This separation of concerns allows for manag-
ing complexity in the models, for better understandability of what makes up customization, and
as a consequence for better traceability of the changes made to the core web application in order
to achieve customization. Nevertheless, after composing the customization functionality mod-
eled in terms of Aspects with the core models, the original WebML solution for the context-aware
museum web application can be obtained to be used as input to existing code generation facilities.

Second, aspectWebML reduces the modeling effort when designing customization functionality.
This means, customization functionality is modeled once within Aspects and then composed with
the core web application where it is introduced at all places as is specified by the Pointcuts. Since
customization scenarios typically shall be applied to several parts of a web application, the ad-
ditional modeling effort when modeling customization functionality with Aspects, e.g., through
modeling Advice, Pointcuts, and AsymmetricCompositionRules, pays off.

Third, aspectWebML provides for better maintainability of models through locality of change.
On the one hand, whenever changes to the customization functionality, i.e., to a specific cus-
tomization scenario, are required, the modeler will be able to perform these changes once in the
Aspect. On the other hand, if a customization scenario shall be applied to further parts in the web
application model, the modeler just needs to change the corresponding Pointcut in order to also
introduce respective customization functionality to these additional parts.

Fourth, customization functionality defined in terms of Aspects can be reused in (similar) web
applications, by importing the Aspect into the ModuleRepository and by specifying the necessary
Pointcuts and AsymmetricCompositionRules that allow for composition with the respective web
application model.

242

7 The aspectWebML Modeling Environment

Contents
7.1 Tailoring an EMF-based Editor to Support AOM 243
7.2 Towards Advanced Modeling Support for aspectWebML 252
7.3 Towards Integrating the aspectWebML Modeling Environment with WebRatio . 255
7.4 Summary . 255

This chapter is dedicated to the aspectWebML tool support. In Section 7.1, a report is given on
modeling and composition support within the aspectWebML Modeling Environment (aspectWebML
ME), which is currently provided by a tree-based modeling editor built upon the Eclipse Modeling
Framework (EMF). In this respect, the focus will be on some features of the editor which have
been implemented to provide for better usability when modeling and composing concerns in
aspectWebML, including the so-called Cross References View as well as the Console View. In Section
7.2, an outlook on more advanced modeling support is provided. The existing modeling support
is planned to be extended with further ways of graphically visualizing Aspects that go beyond a
simple tree-based editor. Therefore, some graphical views and/or editors dedicated to visualizing
the aspect-oriented concepts in an aspectWebMLModel are proposed in terms of screenshot mock-
ups. Moreover, the long-term goal is the integration of the aspectWebML ME with the WebML
tool support, in order to profit from existing code generation facilities. Section 7.3 provides a
discussion on possible ways to achieve this integration. Finally, a summary of the chapter is given
in Section 7.4.

7.1 Tailoring an EMF-based Editor to Support AOM

Having specified a modeling language in Ecore, tool support in terms of a basic tree editor is
just a few clicks away. By allowing to generate Java code from the Ecore model, EMF provides
the means for easily testing one’s language within a simple modeling editor. This tree editor
can subsequently also serve as the basis for the modeling language’s tool support. In this case, the
editor will need to be adapted, however. To name just a few of such adaptations, the automatically
generated icons which are used for the modeling elements in the tree should be replaced with
dedicated icons for the modeling language in question. Furthermore, the automatically generated
labels of modeling elements in the tree might be changed in order to be more informative. Finally,
when modeling a reference to another modeling element in the properties view, the standard
selection typically offers all modeling elements of the required type but not the set of allowed
elements. Again, this needs to be changed for better supporting developers during modeling.

In the context of this thesis, further extensions were necessary. The automatically generated
EMF editor should not only serve as a proof-of-concept prototype allowing to model separate
concerns in aspectWebML but should also provide for the concerns’ composition according to

7 The aspectWebML Modeling Environment

the aspectWebML composition semantics. Consequently, besides the typical adaptations of the
standard tree editor the following extensions have been made:

• The implementation of the composition algorithm and its integration within the editor al-
lowing to execute a selected CompositionPlan and thus, to compose separate concerns in an
aspectWebMLModel.

• The realization of a so-called Cross References View - inspired by the AspectJ Development
Tools (AJDT)1 - supporting modelers in designing Aspects, Advice, and Pointcuts by vi-
sualizing how they are related to each other and how they apply to other parts of the as-
pectWebMLModel.

• The integration of an Console View, i.e., an OCL console allowing to test OCL queries on the
model prior to defining an OCL-based Pointcut.

• The extension of the editor with a Problem View intended to display errors and warnings.

In order to give an overview on the tool support, the workbench of the aspectWebML ME is
depicted in Figure 7.12. The main parts of the workbench are introduced in the following:

(1) Main Menu Bar. The Main Menu Bar provides actions like create new aspectWebMLModel,
save, copy & paste, undo, redo, etc.

(2) Navigation View. The Navigation View represents the heart of the modeling editor in that it
allows fast navigation through the aspectWebMLModel, i.e., its CompositionPlans and its repos-
itories for ConcernModules, ConcernCompositionRules and Pointcuts, as well as modeling sup-
port by allowing the creation of elements in a context-based manner, i.e., via the context menu of
a selected modeling element. Next to that, the Navigation View also provides input to the Prop-
erties View and the Cross References View. In the course of this chapter, the Navigation View’s
role as a kind of ”selection provider” will be explained. As a selection provider the Navigation
view enables some other views to stay synchronized according to the currently selected modeling
element. This means, some views such as the Properties View depend on and will be updated
according to the selection of a modeling element in the Navigation View.

(3) Properties View. The Properties View simply displays all properties of the currently selected
modeling element in the Navigation View, which can be modified immediately. Depending on
the type of the specific property, either a simple textfield, a check-box, a dropdown field or some
custom window is provided for changing the current settings.

(4) Cross References View. The Cross References View has been designed for situations if one
does not like to navigate the model in a hierarchical but rather in an ”aspect-oriented” way. Due
to their crosscutting nature, Aspects and their impact on the rest of the model cannot easily be
visualized by standard navigation components, i.e., the Navigation View in combination with the
Properties View. The Cross References View has been inspired by AJDT and provides similar func-
tionality in terms of showing the places where an Advice is applied in the aspectWebMLModel as
well as if a modeling element of the model is advised. Beyond this, the Cross References View in
the aspectWebML ME also visualizes dependencies between Advice and between Aspects. As the
Cross References View refreshes its content depending on the object selected in the Navigation
View, several so-called View Points on the model are possible (cf. Section 7.1.1).

1www.eclipse.org/ajdt/
2I want to thank Piero Fraternali and www.webratio.com for allowing the reuse of the WebML icons for the WebML con-
cepts in the aspectWebML language within the aspectWebML ME.

244

7.1 Tailoring an EMF-based Editor to Support AOM

1

2
3

5
6

4

Figure 7.1: The aspectWebML Modeling Environment: An Overview

(5) Console View. The Console View is used as an interactive OCL console allowing to query
the aspectWebMLModel. This way, the modeler is able to test an OCL query prior to defining a
Pointcut on the basis of the OCL query (cf. 7.1.2).

(6) Problems View. The Problems View’s sole duty is to collect and display problems, e.g.,
errors in terms of model constraint violations, and warnings in terms of unresolved dependencies
in a CompositionPlan.

What follows next is an introduction to the aspectWebML ME focusing on the extensions made to
the standard tree editor, i.e., on how aspect-oriented modeling is supported within the modeling
editor by means of the Cross References View and the Console View as well as on how concerns
can be composed on the basis of a CompositionPlan.

7.1.1 Aspect-Oriented Modeling with the Cross References View

The Cross References View extension has been developed as a plug-in to the editor (cf. [Pre07] for
information on implementation issues). As already outlined before, the Cross References View
is the first choice for navigating between aspect-oriented modeling concepts provided by the as-
pectWebML language. It supports modelers in designing separate concerns and Composition-

245

7 The aspectWebML Modeling Environment

Plans by visualizing how Aspects, Advice, and Pointcuts are related to each other and how they
apply to other parts of the aspectWebMLModel. Depending on the currently selected modeling
element in the Navigation View, it provides different so-called View Points, tailored to give the
modeler the exact amount of information needed to quickly absorb all interdependencies related
to the object of interest. For example, if the modeler selects an Advice in the Navigation View, the
Cross References View shall provide the modeler with information on where the Advice applies
in a WebML model. More specifically, one can distinguish four different View Points of the Cross
References View, namely the ModelElement View Point in case any element from the WebML lan-
guage is selected, the Aspect View Point if an Aspect is selected, the Advice View Point if an Advice
is selected, and the Pointcut View Point in case a Pointcut is selected in the Navigation View. In the
following, the Cross References View shall be presented along with its View Points on the basis of
examples.

7.1.1.1 The ModelElement View Point

The ModelElement View Point allows visualizing the effects of Advice, and Pointcuts on ModelEle-
ments of the aspectWebML language, i.e., any sub-class of the ModelElement meta-class whether
it is defined as part of a WebML model or part of an Advice.

Figure 7.2: The ModelElement View Point

246

7.1 Tailoring an EMF-based Editor to Support AOM

In Figure 7.2, the ModelElement View Point is depicted for the User Entity, which is selected
in the Navigation View. In the Cross References View, the View Point contains three sections:
First, in the is Advised by section all Advice of the project are listed that are applied to the selected
ModelElement by one of the project’s Pointcuts. The User Entity is advised by the DeviceContext-
Relationships SimpleAdvice of the Aspect MultiDelivery, i.e., it is extended with a Relationship to
the UserAgent Entity. Second, the Pointcuts that reference the selected ModelElement as one of
their JoinPoints are listed in the used in Pointcuts section. The SimplePointcut User, which selects
the User Entity as JoinPoint is shown. Finally, in the part of Rules section, the AsymmetricCompo-
sitionRules are listed in which the ModelElement is advised. In fact, the listed rule DeviceContext-
Relationships2ContentModel combines the SimpleAdvice DeviceContextRelationships with the Sim-
plePointcut User.

The Cross References View furthermore allows navigating to the listed elements. This means, in
case the developer clicks on one of the Advice listed in the Cross References View, the Navigation
View is updated and the selected Advice is also highlighted in the Navigation View. This way
developers can inspect in detail the selected element along with its properties and child elements.
Moreover, in large projects, where it is difficult to maintain an overview, this feature is particularly
useful.

7.1.1.2 The Aspect View Point

In the Aspect View Point, an Aspect’s dependencies with other Aspects shall be visualized and
thus, allows the modeler to identify what further Aspects possibly need to be part of a Compo-
sitionPlan. More specifically, an Aspect is dependent on another Aspect, if one of its Advice is
dependent on one of the other Aspect’s Advice (see also the Advice View Point). The Aspects,
on which the selected Aspect depends, are listed in the depends on Aspects section of the Cross
References View. In Figure 7.3, the Aspect SeasonsStyle is selected in the Navigation View. Since,
the Aspect does not depend on any other Aspect in the project, the Cross References View informs
the modeler that no dependencies have been found.

Figure 7.3: The Aspect View Point

247

7 The aspectWebML Modeling Environment

7.1.1.3 The Advice View Point

The Advice View Point allows visualizing the interrelationships of an Advice with the Pointcuts
and AsymmetricCompositionRules it is used with. The advises section lists the Pointcuts which
are affected by the Advice. In Figure 7.4, the SimpleAdvice DeviceContextRelationships is selected
in the Navigation View, and consequently, in the Cross References View, the SimplePointcut User
is listed. In the section part of Rules, similarly to the ModelElement View Point, those Asymmet-
ricCompositionRules are listed in which the selected Advice is used. Furthermore, an Advice’s
dependencies on pieces of other Advice, possibly defined in other Aspects, is visualized. All
Advice, on which the selected Advice depends, are listed in the depends on Advice section of the
Cross References View. In Figure 7.4, the SimpleAdvice DeviceContextRelationships depends on the
SimpleAdvice DeviceContext, since the Relationship UserAgent User points to the Entity UserAgent
defined in the SimpleAdvice DeviceContext.

Figure 7.4: The Advice View Point

7.1.1.4 The Pointcut View Point

Last but not least, the Pointcut View Point visualizes the JoinPoints of the Pointcut selected in the
Navigation View no matter how the Pointcut has been defined, i.e., either as an enumeration of
JoinPoints or on the basis of an OCL query. In the used JoinPoints section, the JoinPoints are listed
and can be used to navigate to the respective places in the model using the Navigation View.
For example, in Figure 7.5, the ExternalUserSiteviews SimplePointcut selects the Public Siteview
as well as the Public PDA Siteview of the Museum WebML model. In the part of Rules section
the AsymmetricCompositionRules are listed in which the Pointcut has been used, e.g., in the
SeasonsStyleScenario rule in Figure 7.5.

248

7.1 Tailoring an EMF-based Editor to Support AOM

Figure 7.5: The Pointcut View Point

7.1.2 Defining OCL-based Pointcuts with the Console

As already indicated before, the Console View is used to perform OCL queries on the aspectWebML-
Model. This way, the modeler is able to test an OCL query prior to defining a Pointcut on the basis
of the OCL query. To do so, the interactive OCL console released under the Eclipse Model De-
velopment Tools3 (MDT) project has been integrated into the model editor (for implementation
details see [Pre07]). The bottom field of the console accepts OCL queries and supports the mod-
eler with a so-called content-assist menu, which is similar to typical code-completion features in a
programming IDE. As is illustrated in Figure 7.6(a), during the specification of an OCL query, the
content-assist menu helps navigating through the aspectWebML metamodel. In this example, the
User Entity shall be selected by the OCL query. In the Navigation view, the context of the OCL
query is specified by the selected model element, i.e., the Museum WebML model. Consequently,
in the OCL query one needs to navigate from the WebML model to the Entity via the references
specified in the aspectWebML metamodel, i.e., to the Data Model and then to its Entities. In Fig-
ure 7.6(a), the content-assist menu proposes the entity reference. From the collection of Entities,
then the Entity with the name ’User’ needs to be selected with the OCL select operation. The full
OCL query is already given in the top field which is intended to show the output of a query and
errors. As can be seen, the OCL query has been successfully evaluated and the Entity User has
been returned as a result.

In Figure 7.6(b), a second example describing a first-level Pointcut, i.e., a Pointcut defined on
the basis of properties of the aspectWebML language rather than on information from the Museum
Web Application aspectWebMLModel. The OCL query depicted in the bottom field of the OCL

3www.eclipse.org/modeling/mdt/

249

7 The aspectWebML Modeling Environment

(a)

(b)

Figure 7.6: Definition of the User Entity Pointcut

console selects all pages that are defined to be the home pages of the web application’s siteviews.
In the top field of the console the output for the query is depicted. Since the Museum WebML
model contains three siteviews of which each needs to specify a home page, the query results in a
list of three pages all having the same name ’Home’.

Please note that, in Figure 7.6(b), the context of the query is the Museum Web Application as-
pectWebMLModel, i.e., the root element of the project. In contrast to the previous example, in
order to specify OCL-based Pointcuts, modelers currently are required to specify the OCL query
starting navigation from this root element. This is necessary, in order to allow the Cross Refer-
ences View to correctly calculate the JoinPoints. Furthermore, two peculiarities of the example
query of Figure 7.6(b) need to be pointed out: First, since the ModuleRepository possibly contains
more than one WebML model, in the example query, it is explicitly stated to select home pages
from the Museum WebML model, only. And second, it is necessary, to cast the selection of Con-
cernModules obtained with select(m|m.name=’Museum’) to a concrete type, i.e., either to an
Aspect or to a WebML model. In this case, the selection needs to be casted to the WebML type,
which is done by correctly specifying the namespace according to the aspectWebML metamodel
package structure, i.e., webML::WebML. Again, the modeler is supported with the content-assist
feature of the interactive OCL console. Finally, if the OCL query provides the expected results, the
modeler can copy it in order to specify an OCL-based Pointcut.

250

7.1 Tailoring an EMF-based Editor to Support AOM

7.1.3 Composing Concerns in the aspectWebML Modeling Environment

Composition of concerns in aspectWebML is supported on the basis of the composition semantics
specified in Chapter 5. In the aspectWebML ME, composition of concerns into a composed model
can be achieved by executing a CompositionPlan. To do so, the CompositionPlan needs to be
fully configured. This includes the definition of the ConcernModuleSequence specifying in which
order the concerns (e.g., a WebML model and some Aspects) need to be composed as well as as
the definition of the ConcernCompositionRuleSequence allowing to fine-tune the composition.

(a)

(b)

Figure 7.7: A Composed Model

In case the CompositionPlan has been fully configured, the modeler can compose the selected
concerns by calling the Execute Composition Plan action of the context menu. For example, in Fig-
ure 7.7(a), the CompositionPlan Multi-Delivery Museum shall be executed, which will weave the
Multi-Delivery Aspect into the Museum WebML model. A successful composition of the Com-
positionPlan will yield a composed model, i.e., a WebML model where the Aspects have been
integrated. In Figure 7.7(b), the execution of the Multi-Delivery Museum CompositionPlan has re-
sulted in the Composed Museum WebML model. In case of errors during composition or during the
consistency check, the execution of the Composition Plan will abort and the user will be provided
with information on the occurred errors in the editor’s Problem View. The consistency check is
automatically performed prior to composition and will detect errors in the CompositionPlan and
the Concerns it shall compose. For example, the user will be pointed to unresolved dependencies
between Advice or between Aspects.

251

7 The aspectWebML Modeling Environment

7.2 Towards Advanced Modeling Support for aspectWebML

While EMF editors have proved their usefulness for providing proof-of-concept prototypes, their
cumbersome handling certainly does hamper the design of large scale models. Consequently,
the plan is to extend the existing modeling support with further ways of graphically visualiz-
ing aspect-oriented concepts in aspectWebML that go beyond a simple tree-based editor. This
advanced modeling support shall be realized on the basis of the Eclipse Graphical Modeling
Framework4. Following, some graphical views and/or editors dedicated to visualizing the aspect-
oriented concepts in an aspectWebML model are proposed in terms of screenshot mock-ups.

7.2.1 The aspectWebML Workbench

In the future, users shall be able to model aspectWebMLModels in a graph-based editor. In partic-
ular, the editing functionality shall resemble that for the WebRatio tool, meaning that the modeling
environment shall provide an editor for modeling a WebML data model as well as WebML siteviews.

12

Figure 7.8: Graphical Modeling in the aspectWebML Modeling Environment

The major parts of the aspectWebML ME workbench depicted in Figure 7.8, basically will have
the same purpose as in the already existing tree-based editor described in Section 7.1. The ad-
vanced tool support, shall extend the aspectWebML workbench with two further views, which
are explained in the following.

(1) Outline View. The Outline View simply provides the user with the set of child elements for
the current selected object of the Navigation View. Hence it takes away some of the complexity

4www.eclipse.org/gmf

252

7.2 Towards Advanced Modeling Support for aspectWebML

of the standard Navigation View, which always displays the complete aspectWebMLModel. Like
the Navigation View, it also acts as selection provider to other views.

(2) Graphical Editor Area. The Graphical Editor Area is placed at the very center of the work-
bench, which mirrors its significance to the aspectWebML ME. The Editor Area will be occupied by
various graphical editors, each contributing additional modeling capabilities. At the bottom of the
Editor Area in Figure 7.8, several tabs indicate that some of these graphical editors are opened.
Currently, the Data Model Editor is activated allowing to edit a WebML data model. Similar to
WebML’s modeling tool WebRatio, a separate editor is available for modeling the hypertext. At
the bottom of the Editor Area, two tabs are indicating two siteviews of the hypertext level, namely
the Public siteview and the Curator siteview. In addition to these editors, the intention is to imple-
ment four further editors that shall facilitate modeling aspectWebMLModels. In this respect, the
notation and icons proposed for the aspectWebML language are reused (cf. Chapter 5).

7.2.2 The Aspect Editor

The Aspect Editor’s main task is to visualize a single Aspect and its children in terms of a set of
Advice using a notation similar to UML class diagrams. In Figure 7.9(a), the Aspect MultiDelivery
is visualized in the Aspect Editor. By issuing a double click on a specific Advice, a user can
open the Advice Editor allowing to visualize the selected Advice (cf. Section 7.2.5). Moreover, an
additional Advice can be added to the Aspect and the Advice Editor will be opened allowing for
modeling the Advice.

Figure 7.9: Aspect Editor (a), Module Sequence Editor (b), Rule Sequence Editor (c)

7.2.3 The Module Sequence Editor

The Module Sequence Editor presents the order of ConcernModules in a CompositionPlan. The
diagram depicted in Figure 7.9(b) is to be read from left to right, meaning that the Museum WebML
model is composed with the MultiDelivery Aspect before any other ConcernModule is composed.

253

7 The aspectWebML Modeling Environment

7.2.4 The Rule Sequence Editor

The Rule Sequence Editor displays a sequence of ConcernCompositionRules and possibly its sub-
sequences (cf. Figure 7.9(c)). Again, this diagram is read from left to right, meaning that the
AsymmetricCompositionRule DeviceContext2ContentModel is applied before the DeviceContextRe-
lationships2ContentModel rule and the MultiDeliveryContextCloud2SiteView rule.

7.2.5 The Advice Editor

Finally, the Advice Editor provides the user with modeling support for Advice. Within an Advice,
parts of the content or the hypertext are modeled which later can be composed with the core web
application. Modeling elements specified in an Advice can have references to modeling elements
defined within the core web application or within other Advice. Consequently, the Advice Editor
will have to deal with this peculiarity in order to correctly visualize an Advice.

Step 3

Step 2

Step 1

Figure 7.10: The Advice Editor

To explain the Advice Editor in more detail, a trivial example from the case study presented in
Chapter 6 is used. Figure 7.10 presents an Advice named DeviceContext, which is part of the Multi-
Delivery customization scenario taken from the case study in Section 6.3.2.1. The Advice shall
extend the data model of the Museum WebML model with two entities, namely Entity DeviceType
and Entity UserAgent. In addition, the UserAgent Entity shall have a Relationship to the User Entity
of the Museum application.

As is indicated in Figure 7.10, in a first step, the user models these two entities along with
their attributes and the relationship in between them. To do so, the user selects the necessary
modeling elements from the Palette placed on the right-hand side of of the Advice Editor. In
a second step, the user is required to model the relationship between the UserAgent Entity and
the existing User Entity of the Museum WebML model. The User Entity, however, is not part of
the diagram visualized by the Advice Editor. Therefore, the user cannot draw the relationship
between the entities in the modeling area of the Advice Editor. In such situations, the user has to
model the necessary relationship on the basis of the Navigation View as it is outlined in Step 2 of

254

7.3 Towards Integrating the aspectWebML Modeling Environment with WebRatio

Figure 7.10. The Relationship UserAgent User is added to the Advice by using the context menu,
while its properties including the reference to the User Entity are set in the Properties View. As
a result, in the Advice Editor the Relationship to the User Entity is visualized. The User Entity
is highlighted in grey to indicate that it is not part of the Advice and cannot be manipulated or
deleted in the Advice Editor.

7.3 Towards Integrating the aspectWebML Modeling
Environment with WebRatio

With respect to providing comprehensive tool support for aspectWebML, the integration with the
WebRatio tool for exploiting existing code generation facilities is envisaged. Still, a full integration
is difficult to achieve for the following reasons:

First, since WebRatio is a commercial tool for which the source code is not available, a direct
integration of the aspectWebML language within the WebRatio tool currently is not possible. Fur-
thermore, the WebML models created with WebRatio are still serialized in XML according to the
WebML DTD (cf. Chapter 4). As a consequence, a possible solution for integration is to provide
import/export facilities in the aspectWebML tool support, which allows for exchanging WebML
models between WebRatio and the aspectWebML ME. This way, modelers may (i) develop their
web application models in WebRatio, (ii) import the WebML model into the ModuleRepository
of the aspectWebML project in the aspectWebML ME, (iii) specify and compose crosscutting con-
cerns in the aspectWebML ME, and (iv) export the composed model to the WebRatio tool for code
generation purposes.

Second, the WebML extensions allowing for customization modeling have been recently de-
fined, only. As a consequence, the necessary tool support for modeling customization has not yet
been integrated within WebRatio . This means that, WebRatio neither allows for modeling cus-
tomization nor for generating code for ubiquitous web applications as suggested in [CDMF07].
It is therefore not possibly to export WebML models from the aspectWebML ME that contain in-
stances of WebML’s customization modeling concepts. Nevertheless, the aspectWebML approach
allows modelers to generally model other concerns than customization, although they are re-
stricted to using WebML concepts originally defined in the WebML DTD (cf. Chapter 4).

7.4 Summary

In this chapter, a report has been given on modeling and composition support within the as-
pectWebML Modeling Environment, the tool support for the aspectWebML language. The aspect-
WebML Modeling Environment is currently realized on the basis of a tree-based modeling editor
built upon the Eclipse Modeling Framework. In order to better support developers in model-
ing separate concerns with aspectWebML, the aspectWebML Modeling Environment offers a so-
called Cross References View visualizing how Aspects, Advice, and Pointcuts are related to each
other and how they apply to other parts of the aspectWebMLModel. Moreover, a Console View,
i.e., an OCL console allowing to test OCL queries on the model prior to defining an OCL-based
Pointcut, has been integrated. This tool support is made available for download5 including some
sample models as well as further documentation. Moreover, an outlook on advanced modeling

5www.wit.at/people/schauerhuber/aspectUWA

255

7 The aspectWebML Modeling Environment

support to be realized on the basis of the Eclipse Graphical Modeling Framework for developing
graphical modeling editors is given. This includes the graphical modeling means for designing
WebML models just as in WebML’s own tool support as well as four editors, i.e., Aspect Editor,
Advice Editor, Module Sequence Editor, and Rule Sequence Editor, dedicated to designing the
aspect-oriented parts in an aspectWebML project. Finally, a discussion on how to integrate the
aspectWebML Modeling Environment with the WebRatio tool is given, specifically pointing out
the limitations of such an integrated modeling environment due to the fact that WebRatio does
not yet provide modeling support for customization.

256

8 Related Work to aspectWebML

Contents
8.1 UWE - ”Modelling Adaptivity with Aspects” . 257
8.2 Hera - ”A Semantics-based Aspect-Oriented Approach to Adaptation in Web

Engineering” . 260
8.3 General Approaches to AOM in the Web Modeling Domain 262
8.4 Summary . 263

The aspect-orientation paradigm has often been considered as an extension to the object-orien-
tation paradigm. Consequently, it is not surprising that first aspect-oriented languages have been
designed as an extension to a general-purpose object-oriented language. At modeling level, it
seems almost natural to use and/or extend the standard for object-oriented modeling, i.e., the
Unified Modeling Language (UML), for AOM (cf. Chapter 3). In the past years, however, one
can observe the propagation of the aspect-orientation paradigm to several other domains such
as the web modeling field. This chapter is dedicated to a discussion of approaches related to as-
pectWebML, i.e., approaches to extend a web modeling language with AOM modeling concepts
or more specifically, to employ aspect-orientation for modeling UWAs. In this respect, the benefits
of the aspectWebML approach shall be pointed out with respect to two closely related approaches
as well as to other more widely related ones. Following, UWE’s approach to modeling adaptivity
with aspects is presented, in Section 8.1, while Hera’s semantics-based aspect-oriented approach to adap-
tation in web engineering is discussed in Section 8.2. Thereafter, the focus is on more widely related
work, i.e., web modeling approaches that also provide for AOM but which have been designed
for supporting (crosscutting) concerns other than customization (cf. Section 8.3).

8.1 UWE - ”Modelling Adaptivity with Aspects”

In the field of web modeling, the work of Baumeister et al. [BKKZ05] was the first to acknowledge
the crosscutting nature of customization and to propose the employment of aspect-orientation for
modeling customization at the hypertext level. In particular, an extension of UWE’s metamodel
with aspect-oriented modeling techniques has been proposed and allows making navigation in
web applications adaptive (cf. Section 2.2.5). In the UWE metamodel, the Aspect concept has
been introduced as a sub-class of the UML meta-class Package. Furthermore an Aspect is defined
to have one Pointcut and one Advice each likewise specialized from the UML meta-class Package
(cf. Figure 8.1). Moreover, the approach distinguishes between ModelAspects that are statically
woven and RuntimeAspects which are dynamically woven, whereby the latter rely on information
which is available at runtime, only.

8 Related Work to aspectWebML

pointcut
ModelAspect

LinkAspect

RuntimeAspect

LinkAnnotationAspect

LinkTraversalAspect

LinkTransformationAspect

Package

Package

Package

Aspect

1

advice

1

Fig. 2.Extension of UML metamodel

oriented paradigm followed by the UML, ranging from representing the programming
language features of AspectJ in the UML [16] to integrating aspects in UML 2.0 as
components [3], for an overview see, e.g., [9].

We restrict ourselves to a rather lightweight extension of the UML that merely
composes the main ingredients of aspect-oriented modelling into a subclass (stereo-
type�aspect�) of the UML metaclassPackage: pointcut and advice; see Fig. 2. The
pointcut package comprises (references to) all model elements on whose occurrence the
advice package is to be applied. Both packages may contain constraints that either detail
the application condition or the effect of an aspect. The semantics of applying an advice
on a pointcut depends on whether an aspect is to be woven statically (�model aspect�)
at the model level or dynamically (�runtime aspect�) at runtime. The different kinds
of aspects we use for modelling navigation adaptation are discussed in the subsequent
sections.

4.2 Extension of the UWE Metamodel

In order to capture adaptive link ordering, link annotation, and link hiding, we ex-
tend the UWE metamodel for designing navigation structures of Web applications by a
NavigationAnnotation metaclass, see Fig. 3. In navigation structure models, navigation
annotations thus can be attached to any navigation link. The details of how to represent
the annotation, ordering or hiding in a specific Web application can thus be deferred to
the choice of the designer.

*
NavigationAnnotationNavigationNode Link

*

+source1

1..* +target +inLinks

+outLinks *
1..*

Fig. 3.Extended UWE metamodel (fragment)

Figure 8.1: Extension of the UWE metamodel with AOM Concepts [BKKZ05]

The approach proposes four types of Aspects:

1. A LinkAspect allows adding an UWE annotation to a link in the navigation model. The an-
notation concept is similar to the UML class concept and can have attributes used to store
the actual information for a certain link, such as a recommendation level expressed with an
integer. In the Pointcut, parts of the navigation structure diagram (cf. Section 2.2.5) are mod-
eled in order to identify the links which shall serve as JoinPoints to the Advice. The Advice
specifies the annotation element to be added.

2. With a LinkAnnotationAspect, an attribute of a link’s annotation can be changed. In this
respect, a LinkAnnotationAspect can be used after a LinkAspect has inserted the annotation
to a link. Again in the Pointcut, parts of a navigation structure diagram are modeled to
identify the links for which the annotation or rather its attributes shall be updated. In the
Advice an optional condition as well as a specification of how to update the annotation can
be given in terms of an OCL invariant. For example, the recommendation level could be
updated when the link is traversed.

3. A LinkTraversalAspect allows modeling updates for the user model, i.e., on the user instance
when a link is traversed. The links are specified as usual in the Pointcut. In the Advice, the
update of the user model is specified using an OCL postcondition.

4. Finally, a LinkTransformationAspect provides for adaptive link generation (cf. the Administra-
tor Links scenario in Section 2.2.5) and removal. This time, the semantics of the navigation
structure model in the Pointcut are different. For link generation, the navigation classes are
depicted for which a link needs to be inserted. An OCL constraint specifies under which
circumstances the link shall be generated, e.g., if the user is member of the administrator
user group. In the Advice, the same navigation classes - this time including the link - are de-
picted, indicating the introduction of the link to the navigation structure diagram. Although
not explained in [BKKZ05], it can be assumed that in order to specify the removal of a link,
in the Pointcut, the navigation structure model including the link to be deleted is modeled.
In the Advice, the navigation classes are modeled without the link.

When comparing the UWE approach to modeling customization with the aspectWebML ap-
proach, several strengths of the aspectWebML approach can be identified in terms of more expres-
sivity and generality as well as the specification of the composition semantics and tool support.

258

8.1 UWE - ”Modelling Adaptivity with Aspects”

EXPRESSIVITY.
Comprehensive Join Point Model. Considering separation of concerns, in aspectWebML, every

element of the WebML language can serve as JoinPoint allowing for separation of customization
at all levels of a web application. Instead, in the UWE approach, customization can only be sepa-
rated for the hypertext level, while the user model is inherently tangled with the content level. The
join point model of UWE in this respect is quite restrictive by allowing to use links as JoinPoints
for LinkAspects, LinkAnnotationAspects, and LinkTraversalAspects, only. In case of LinkTransforma-
tionAspects, the navigation classes specified in the Pointcut serve as JoinPoints.

Several Ways of Quantifying JoinPoints. Considering quantification, UWE supports an enum-
eration-based quantification method of identifying JoinPoints, where the Pointcut comprises (ref-
erences to) all model element on whose occurrence the Advice is to be applied [BKKZ05]. In the
aspectWebML language in contrast, a Pointcut can either enumerate all model elements through
references or declaratively specify an OCL query that returns the specific model elements. In this
respect, the use of OCL in aspectWebML has two advantages: First, it allows for reusing Point-
cuts within other aspectWebML projects. And second, OCL-based Pointcuts are more robust to
changes of the web application model. This means that new model elements that match the query
are automatically selected by the Pointcut. In an enumeration-based Pointcut, each JoinPoint
would have to be specified explicitly.

Comprehensive Set of AOM concepts. The aspectWebML language has been designed accord-
ing to the aspectUWA approach, i.e., on the basis of the Conceptual Reference Model for AOM.
The CRM has been designed to capture the important concepts of AOM as well as to support
different composition mechanisms. Since based on the CRM, the aspectWebML language has been
extended with aspect-oriented concepts supporting asymmetric as well as symmetric composition
mechanisms. In the UWE approach, however, the asymmetric open class composition mechanism
is considered, only.

Furthermore, several AOM concepts available in the CRM are not supported in the UWE ap-
proach. For example, in order to foster reusability of aspect-oriented concepts, in aspectWebML,
the concepts of CompositePointcut as well as CompositeAdvice are supported. In the UWE approach,
however, it is not clear if a pointcut or an advice can be reused. Moreover, the RelativePosition as
well as the EffectKind of Advice are not explicitly considered in the language extension.

An Aspect in aspectWebML can consist of more than one Advice as opposed to the UWE ap-
proach. This allows for managing complexity through grouping Advice that together realize (part
of) a crosscutting concern. In the UWE approach, currently, there are no means of dealing with
a possible large number of Advice. Pointcuts in aspectWebML are not part of an Aspect but are
stored in a PointcutRepository to be available for reuse in the same web application model as well
as in future aspectWebML projects. Moreover, in UWE it is currently not possible to specify the
order of how Aspects shall be applied to the core web application.

GENERALITY.
Instead of introducing dedicated aspects such as a LinkAspect, the CRM provides for a general

extension of the WebML approach to AOM. This way, the AOM concepts of aspectWebML can
also be used to separately model other concerns than the customization concern. aspectWebML’s
expressiveness in terms of thirteen different kinds of AsymmetricCompositionRules which com-
bine a Pointcut, an Advice, a RelativePositionKind and an EffectKind (cf. Chapter 5), allows for
modeling, e.g., the evolution of a web application model with Aspects. As an example, consider
a web shop selling CD’s and DVD’s which is to be expanded in order to offer books as well. This

259

8 Related Work to aspectWebML

will require several changes to all levels of a web application. In case the user acceptance for the
new book section of the web shop turns out to be unprofitable, however, the books concern can be
easily removed by not composing the books concern with the web application. This is similar to
the notion of volatile concerns supported by the OOHDM approach [GRUD07] discussed in the
following Section 8.3.2.

SPECIFICATION OF COMPOSITION SEMANTICS AND TOOL SUPPORT.
Finally, it seems that the composition semantics of the UWE language have not yet been spec-

ified, although the modeling notation as well as some results of composing the different kinds
of Aspects in UWE have been outlined in [BKKZ05]. Furthermore, the UWE language currently
does not provide any tool support for modeling Aspects. In contrast, in the aspectWebML Modeling
Environment, developers are able to model UWAs and separate the customization concern within
aspect(s). Since the composition semantics of the aspectWebML language have been implemented
as well as integrated within the aspectWebML tool support, developers are also able to compose
the previously defined aspects with the rest of the web application model.

8.2 Hera - ”A Semantics-based Aspect-Oriented Approach to
Adaptation in Web Engineering”

The approach of Casteleyn et al. [CWH07] has been introduced only recently and presents the
extension of the Hera-S approach, an evolution of the Hera approach, with AOM concepts for
modeling customization (cf. Section 2.2.2). In order to separate adaptations from the hypertext
level, i.e., Hera’s application model, the textual language SEAL - Semantics-based Aspect-Oriented
Adaptation Language has been designed.

Similar to the UWE approach, a Hera Aspect consists of one Pointcut and one Advice (cf. the
Administrator Links scenario in Section 2.2.2). For specifying Pointcuts the SEAL language pro-
vides a grammar allowing to select a restricted set of 10 types from the hypertext level. This set
includes ”unit”, ”subunit”, ”attribute”, ”relationship”, ”query”, ”form”, ”label”, ”tour”, ”target”,
and ”source”. Besides, the JoinPoints can be selected according to certain conditions. For exam-
ple, types can be selected according to their name or according to their aggregation relationships
with other types. In addition, string pattern-matching is supported as well as logical operators
including conjunction and disjunction. In Hera, models are serialized in RDF(S) and Sesame RDF
Query Language1 (SeRQL) queries, e.g., to define the application model on the basis of the domain
model. Consequently, for weaving purposes, the Pointcuts defined on the basis of SEAL need to
be translated into SeRQL queries. In case the offered Pointcut language does not allow to define
the required JoinPoints, developers can always fall back on SeRQL.

Furthermore, SEAL provides a grammar for specifying the Advice of an Aspect. Currently four
kinds of Advice are distinguished [CWH07].

• A modeler can add an appearance condition to the elements specified in the Pointcut using
the ADD CONDITION condition ”command” (cf. the Administrator Links scenario in Section
2.2.2).

• New model elements can be added to the application model depending on a certain condi-
tion (e.g., IF condition ADD elements).

1http://www.openrdf.org/doc/sesame/users/

260

8.2 Hera - ”A Semantics-based Aspect-Oriented Approach to Adaptation in Web Engineering”

• Likewise, existing elements of the application model selected in the Pointcut can be deleted
depending on a certain condition (e.g., IF condition DELETE).

• Finally, existing elements of the application model can be replaced, if a certain condition is
fulfilled (e.g., IF condition REPLACE element BY element).

Again, when comparing the aspectWebML approach to the Hera approach, several benefits of
the aspectWebML approach can be identified, which are explained in the following:

EXPRESSIVITY.
Comprehensive Join Point Model. Similar to the UWE approach, separation of customization

with SEAL currently is limited to the hypertext level of web applications and does neither support
the content level nor the presentation level. The join point model of SEAL is restricted to the above
listed types of the hypertext level, while in aspectWebML every WebML model element can serve
as JoinPoint. This provides for separation of customization at all levels of a web application.

Several Ways of Quantifying JoinPoints. With respect to quantification, the Hera approach,
allows for selecting the JoinPoints in a declarative manner. Still, the modeler is required to learn a
new language, i.e., SEAL, for specifying a Pointcut. In contrast, for the declarative specification of
Pointcuts in the aspectWebML approach, a standard query language for models in terms of OCL is
used. As already mentioned before, aspectWebML additionally allows for an enumeration-based
way of Pointcut definition which can be used in case the developer is not acquainted with OCL.

Comprehensive Set of AOM concepts. As already mentioned before, the main AOM concepts
used in the Hera approach are Aspect, Pointcut, and Advice, whereby an Aspect consists of one
Pointcut and one Advice. Consequently as for the UWE approach, there is no way of managing
complexity in terms of a large number of adaptations through grouping Advice that semantically
belong together within an Aspect. Currently, it is neither possible to specify the order of SEAL
Aspects. Hera does not incorporate further concepts of the CRM including CompositePointcuts
or CompositeAdvice which would provide for further reusability in the language. In contrast, the
aspectWebML language supports the basic ingredients of AOM in terms of modeling concepts
covering asymmetric as well as symmetric composition mechanisms, since it has been designed
on the basis of the CRM for AOM.

The four kinds of Advice proposed by SEAL provide support for different effects in terms of
enhancement, replacement, and deletion of model elements. Nevertheless, reusability is limited
when compared to the aspectWebML approach, which specifies the EffectKind within the Asym-
metricCompositionRule connecting a Pointcut and an Advice. Furthermore, the aspectWebML
language is more expressive in providing thirteen kinds of AsymmetricCompositionRules, which
allow the adaptation of modeling elements but also the adaptation of a modeling element’s prop-
erties such as its name.

SPECIFICATION OF COMPOSITION SEMANTICS AT MODELING LEVEL AND TOOL SUPPORT.
The composition semantics within the Hera approach have already been specified on the basis

of Sesame - an open source Java framework for storing, querying and reasoning with RDF and RDF
Schema. To do so, the domain model and application models are stored in Sesame. In addition,
parsers have been generated using the JavaCC parser generator2 in order to translate the Pointcut
and Advice parts of Aspects into SeRQL queries. It is not clear if the composed model can be
visualized for the modeler, since the corresponding tool support is not yet publicly available. In

2https://javacc.dev.java.net/

261

8 Related Work to aspectWebML

aspectWebML, the specification of the composition semantics at modeling level is intended to
allow for verifying the composition results also at modeling level.

With respect to modeling support, the aspectWebML Modeling environment provides model-
ers with modeling and composition support as well as means for specifically supporting aspect-
oriented modeling such as the OCL console for testing Pointcuts and the Cross References View
for viewing relationships between aspect-oriented concepts. Concerning the Hera approach, for
specifying SEAL Aspects, a normal text editor basically is enough. Nevertheless, further tool sup-
port helping modelers to produce syntactically correct SEAL Aspects or to verify parts of them
such as the Pointcut definition currently does not seem to be available.

8.3 General Approaches to AOM in the Web Modeling Domain

This section’s focus is a discussion of the current research that is rather widely related to the
aspectWebML approach in the sense that AOM has been incorporated into web modeling ap-
proaches for other concerns than customization. Following, two further approaches to AOM in
the web modeling field are presented.

8.3.1 UWE - Modeling Access Control with Aspects

Besides having extended the UWE metamodel with AOM concepts in order to achieve separation
of the customization concern in models, in Zhang et al. [ZBKK05] the UWE approach has been
extended to separately model the access control aspect in web applications. More specifically, state
machines are used for specifying access control behavior. Thus, in the UWE metamodel it is
specified that each navigation class must have a state machine which specifies the detailed behavior
of the navigation class when it is accessed by a user.

In order to allow some access control rule in terms of a state machine to be applied to several
navigation classes of the hypertext level, the UWE approach is extended with aspect-oriented
modeling concepts. Similar to the previously presented extensions of UWE’s metamodel, the As-
pect concept is introduced as a sub-class of the UML meta-class Package. Still, no explicit concepts
for Pointcut and Advice are incorporated into the metamodel. Instead it is specified, that an As-
pect contains (references to) an ordered set of navigation classes, representing the JoinPoints of the
Aspect. Since specialized from the meta-class Package, an Aspect is a model element and there-
fore can have a state machine associated. In this context, the state machine basically represents the
Advice. Consequently, the Aspect’s state machine, which models access control behavior, applies
to all navigation classes specified in the Aspect.

Again, the proposed approach considers the hypertext level of a web application, only. In this
respect, navigation classes are the only possible JoinPoints of an Aspect. It is not clear if the
approach offers modeling support within the ArgoUwe tool but there is no implementation of the
composition semantics. Having presented both of UWE’s proposals for aspect-oriented modeling,
it has to be noted that, the AOM extensions applied to UWE are tailored to a specific aspect, only,
being the access control aspect in [ZBKK05] and the navigation adaptivity aspect in [BKKZ05],
respectively. In contrast, the aspectUWA approach is to use the CRM as a blueprint to extend the
metamodel of a web modeling language with AOM concepts in order to support separation of the
customization concern. Still, the CRM provides the basic ingredients of AOM independent from
a specific concern, thus, allowing to model different concerns with one coherent set of concepts.
For example, in the aspectWebML language it is also possible to model access control rules within

262

8.4 Summary

WebML context clouds of context-aware pages, which then can be separated from the rest of the
web application model with Aspects.

8.3.2 OOHDM - Modeling Volatile Functionality

Recently, the OOHDM approach has been extended in order to compose volatile concerns with
a core web application [GRUD07]. In the context of this work, a volatile concern might offer
some additional services in the web application for a short and determined period of time. As
an example, the Amazon shop offered for some products a special link to the Valentine’s sub-
store. This link was removed after St. Valentine’s day. Another example is the evolution of the
web application by the inclusion of an additional service in the web application in order to check
users’ acceptability.

For supporting such volatile concerns, the OOHDM approach proposes to model each concern
separately, i.e., to specify the content, hypertext, and presentation levels of the concern, and pro-
vides a textual language for defining the integration of the separate models. This textual notation
is similar to the OOHDM node definition syntax already discussed in Section 2.2.4. At hyper-
text level, a navigation node can be extended with links or new information or components from
the volatile concern. The integration specifications are called Affinities. At presentation level, for
each node an Abstract Data View (ADV) can be specified (cf. Section 2.2.4). Again the volatile
concern is captured in a separate ADV which needs to be integrated with the core ADV using an
integration specification. At content level, no textual integration specification is required. Instead,
inversion of control is used in order to ensure that the core functionality is oblivious of the volatile
functionality. Thus, the aforementioned integration specifications are available for the hypertext
level and the presentation level, only. Summing up, the OOHDM approach provides for the ex-
tension of nodes with information and links as well as the extension of ADVs with sub-ADVs.
In contrast, the aspectWebML approach, offers developers more expressiveness by allowing all
modeling elements of a WebML model to be extended, deleted, or replaced.

Finally, the OOHDM approach is supported by the so-called Cazon framework built on top of
Apache Struts3 in order to semi-automatically translate core and volatile OOHDM models into
an XML serialization and to compose the concerns at code level. In this respect, the concerns
as well as the specifications for their integration which are transformed into XSLT code are kept
separately until the code level. In the aspectWebML approach, modeling level composition of
concerns is advocated instead. This allows the inspection of the composed model and the subse-
quent generation of the web application through model transformations and/or code generation
reusing existing code generation facilities. Moreover, in the sense of MDE, models shall be used
as programs while the actual code shall be hidden from developers. Currently, the OOHDM tool
support, i.e., the Cazon framework, is not publicly available, and there seems to be no modeling
tool support for graphically specifying crosscutting concerns on the basis of OOHDM’s notation
either.

8.4 Summary

This chapter has provided a discussion of related work to the aspectWebML approach including
closely related approaches to modeling customization of web applications on the basis of AOM

3http://struts.apache.org/

263

8 Related Work to aspectWebML

concepts as well as widely related approaches extending a web modeling language with AOM
concepts for other concerns than customization. The major strengths of the aspectWebML ap-
proach when compared to these approaches can be summarized as follows:

First, the aspectWebML approach is more expressive than related approaches, due to a more com-
prehensive join point model allowing any model element of the WebML language to serve as a
JoinPoint and thus, for separation of concerns at all levels of the web application model. Since
based on the CRM, the aspectWebML language covers a large set of AOM concepts putting a
strong emphasis on reusability, e.g., through the inclusion of the CompositePointcut and Com-
positeAdvice concepts as well as through the specific design of AsymmetricCompositionRules as
a combination of a Pointcut, an Advice, a RelativePositionKind, and an EffectKind. aspectWebML
even provides the necessary modeling means for changing a modeling elements properties, e.g.,
its name meta-attribute. Furthermore, both, enumeration-based Pointcuts as well as a declarative
Pointcuts on the basis of the OCL standard, are supported.

Second, the aspectWebML approach is more general, since the aspect-oriented extensions made
to the WebML language are independent of the customization concern, possibly allowing to sep-
arate arbitrary concerns with Aspects.

And third, with respect to the specification of the composition semantics and tool support, aspect-
WebML advocates and offers composition support at modeling level with the aspectWebML Mod-
eling Environment (cf. Chapter 7), enabling the visualization of the composed model, e.g., for ver-
ification purposes, and as a consequence, the reuse of possibly existing code generation facilities.

264

9 Conclusion

Contents
9.1 Summary of the Major Contributions of This Thesis 265
9.2 Current Limitations and Outlook . 268

This chapter gives a brief overview of the work that has been presented in this thesis. The
aim of this thesis was to address the problem of insufficient consideration of the crosscutting nature
of customization in current web modeling languages for designing ubiquitous web applications
(UWA). The aspectUWA approach presented in this thesis, proposes the application of the ideas
of the aspect-orientation paradigm in order to allow for separately modeling customization func-
tionality for UWAs and to profit from typical advantages of separation of concerns, e.g., reduction
of complexity, higher maintainability due to better locality of change, as well as reusability. In the
following, the major contributions of this thesis are summarized in Section 9.1, while a discussion
of current limitations together with an outlook on future research is given in Section 9.2.

9.1 Summary of the Major Contributions of This Thesis

The investigation of the state-of-the-art in modeling UWAs has revealed several weaknesses of
current web modeling approaches, including the insufficient consideration of the crosscutting nature
of customization in current web modeling languages. As a solution to this problem, this thesis has
presented aspectUWA - Applying Aspect-Orientation to the Model-Driven Development of Ubiquitous
Web Applications. The aspectUWA approach proposes the exhaustive use of aspect-orientation as
driving paradigm for comprehensively capturing customization separately from all levels of the
web application model, i.e., the content level, the hypertext level, and the presentation level.
More specifically, aspectUWA proposes the general idea of extending any existing web model-
ing language with concepts from the aspect-orientation paradigm in order to separately model
customization functionality and to profit from typical advantages of separation of concerns, e.g.,
reduction of complexity, higher maintainability due to better locality of change, as well as reusabil-
ity. In this respect, the so-called Conceptual Reference Model (CRM) for Aspect-Oriented Modeling
(AOM) allowing the extension of any web modeling language with AOM concepts through a set
of extension points has been developed to serve as a generic framework. Furthermore, in or-
der to benefit from the advantages of model-driven development, e.g., higher quality of software
products through automation of software development, the aspectUWA approach advocates its
realization within the realms of model-driven engineering (MDE).

The aspectUWA idea has been applied to one web modeling language that supports customiza-
tion modeling but does not allow modeling customization separately. Being one of the web mod-
eling languages that already provides for a more powerful mechanism for modeling customiza-
tion but intermingled with the rest of the web application model, the WebML approach has been

9 Conclusion

chosen to be extended with AOM concepts according to the aspectUWA approach which has
resulted in the aspectWebML language. In this respect, the contributions of this thesis can be sum-
marized as follows:

The Conceptual Reference Model for Aspect-Oriented Modeling. The CRM represents a con-
tribution to the AOM community by providing a taxonomy as well as a conceptual model
for AOM. More specifically, the CRM, which has been designed in terms of a UML class
diagram, identifies the basic ingredients of AOM and abstracts from different composition
mechanisms known in literature while providing as well their refinement in specialized
packages of the CRM. The CRM’s applicability has been shown in two ways. On the one
hand, the CRM has been used as the basis of the aspectUWA approach by capturing the
important AOM concepts, their interrelationships, and even more importantly, their rela-
tionships to an arbitrary modeling language representing the extension points of the frame-
work. In this respect, can serve as a blueprint when designing new AOM languages or
for extending existing (domain-specific) modeling languages with concepts of the aspect-
oriented paradigm like it has been shown in this thesis. On the other hand, the CRM has
served as a basis for deriving a catalogue of criteria used for the structured evaluation of
AOM approaches.

The WebML Metamodel. Since the aspectUWA approach advocates its realization within the
realms of MDE, a language specification of the web modeling language to be bridged to
AOM needs to be available in terms of a metamodel based on the Meta Object Facility
(MOF). In this thesis, a MOF-based metamodel has been designed for the WebML language,
since is originally has been partly specified in terms of XML Document Type Definitions
(DTD) and partly hard-coded within the tool accompanying the language, i.e., WebRatio. Be-
sides its particular necessity in this thesis, a MOF-based WebML metamodel represents an
important prerequisite and thus, an initial step towards employing MDE techniques within
the WebML approach in general. It also enables interoperability with other MDE tools and
is another step towards a common reference metamodel for web modeling languages.

The DTD2MOF Framework. In order to bridge WebML to MDE, the existing DTD-based lan-
guage specification as well as constraints hard-coded within the language’s modeling tool
have been reused within a semi-automatic process for metamodel generation from DTDs.
The DTD2MOF framework represents a generic framework for semi-automatically generat-
ing MOF-based metamodels from arbitrary DTD-based language specifications. Although
its design has been motivated by the necessity of developing a metamodel for the WebML
language, it has been designed for generality. The work on the DTD2MOF framework
includes the elaboration on the deficiencies of DTDs when used as means for specifying a
modeling language instead of using metamodels. Moreover, a set of rules and heuristics
for transforming arbitrary DTDs into MOF-based metamodels is provided and appropri-
ate tool support for a semi-automatic transformation process from DTD to MOF has been
developed. In this respect, the transformation approach enables the ”visual” representation
of any DTD-based language in terms of MOF-based metamodels and thus, enhances their
understandability.

The aspectWebML Web Modeling Language. The aspectWebML web modeling language is an
extension of the existing WebML language with concepts from the aspect-orientation par-
adigm in order to better support modeling of crosscutting concerns, i.e., in particular cus-

266

9.1 Summary of the Major Contributions of This Thesis

tomization, and includes a proposal for a concrete modeling notation for the aspect-oriented
concepts introduced. In this respect, the CRM has served as a blueprint for designing the
aspectWebML metamodel on top of the WebML metamodel. Thirteen kinds of manipulat-
ing WebML models with aspects have been provided going beyond their enhancement of a
web application model with modeling elements of the aspect and beyond the replacement
as well as the deletion of existing modeling elements of the web application model. More
specifically, modelers are also provided with the possibility of changing existing model-
ing elements’ attributes and references. This way, aspectWebML provides ample ways of
manipulating web application models with aspects and is not limited to supporting the cus-
tomization concern. Allowing for OCL-based pointcuts, modelers are enabled to define a
repository of reusable pointcuts which can be imported into other aspectWebML projects.
In case, modelers are not acquainted with the OCL standard, pointcuts can also be defined
be simply enumerating the intended join points in the web application model. The compo-
sition semantics of the aspectWebML language have been specified in detail. On the basis of
examples, all thirteen ways of defining AsymmetricCompositionRules have been discussed
as well as the issues to be considered during composition. Furthermore, an explanation of
the mode of operation of the composition algorithm, which has been implemented in Java
and is integrated within the modeling environment for aspectWebML, has been given. In
this respect, the aspectWebML language is amongst those few AOM approaches already
supported with means for composing (crosscutting) concerns.

An Initial Set of Guidelines for Modeling Customization in aspectWebML. On the basis of the
case study used to compare the WebML and aspectWebML approaches, an initial set of
guidelines to be used for modeling customization in an ”aspect-oriented” way within aspect-
WebML has been presented. Moreover, first extensions to the original WebML development
process in order to better support the development of UWAs have been proposed.

The aspectWebML Modeling Environment. Initial modeling support on the basis of a tree-based
editor has been made publicly available, together with model examples from the case study
as well as further documentation1. The preliminary version of the editor has been automat-
ically generated using the Eclipse Modeling Frameworks’s (EMF) code generation facilities
and has been extended with special features for a better support of developing UWAs with
aspectWebML: First, the composition semantics have been implemented in Java and have
been integrated within the editor. In this respect, aspectWebML is one of those few AOM ap-
proaches that provides modelers not only with tool support for decomposing concerns but
also with means for their composition. Second, inspired by the AspectJ Development Tools2,
i.e., AspectJ’s development environment, a so-called Cross Reference View has been imple-
mented and is intended to ease AOM by visualizing interrelationships, e.g., between aspects
and the web application model. And third, though based on a tree-editor, the aspectWebML
Modeling Environment provides first modeling support for WebML’s customization mod-
eling concepts, which are not yet considered within the WebRatio tool.

1www.wit.at/people/schauerhuber/aspectUWA
2www.eclipse.org/ajdt/

267

9 Conclusion

9.2 Current Limitations and Outlook

In this thesis, the ground has been paved for modeling customization with WebML in an aspect-
oriented way, by providing the technical support in terms of the aspectWebML metamodel, a
proposal for the modeling elements’ notation, as well as the necessary semantics allowing to
compose previously separated concerns. Nevertheless, several limitations with respect to the
aspectWebML language need to be tackled in future work. This includes achieving full support of
aspect-oriented concepts and composition mechanisms defined in the CRM (cf. Section 9.2.1 and
Section 9.2.2) as well as the provision of a development process (cf. Section 9.2.3) and a notation
(cf. Section 9.2.4) that allow to easily cope with the shift in paradigm imposed on modelers when
introducing aspect-oriented modeling concepts. In this respect, appropriate tools are required
as well in order to support modelers when designing ubiquitous web applications in an aspect-
oriented way (cf. Section 9.2.5). Furthermore, in the sense of MDE, modelers shall be provided
with an integrated modeling environment allowing also for generating the final web applications
through model transformation and/or code generation (cf. Section 9.2.6 and Section 9.2.7).

With respect to the aspectUWA approach, an interesting direction for future work is its applica-
tion to other web modeling approaches for modeling the customization concern (cf. Section 9.2.9)
in particular as well as arbitrary concerns in general. In this respect, the aspectWebML language
can serve as a first candidate for testing the generality of the aspect-oriented concepts introduced
on the basis of the CRM (cf. Section 9.2.8).

9.2.1 Supporting Aspect Dependencies and Interactions

In the current version of the aspectWebML language, the issue of aspect dependencies and interac-
tions, which is supported by the CRM through the module interaction and rule interaction concepts,
is currently not (fully) considered. This means, that modelers are not able to explicitly indicate in-
teractions between concerns in their models. Still, in a paradigm such as aspect-orientation where
different ”components” are configured in order to form a working application (model), knowing
about possible dependencies and interactions between these components is crucial during devel-
opment. As a consequence, it will be subject to future work, to find out what kinds of interactions
(e.g., dependency, conflict, mutual exclusion) are relevant for the aspectWebML language and
thus need to be supported.

Still, some form of conflict resolution is already provided in aspectWebML by allowing model-
ers to explicitly specify the order of composing concerns. Moreover, in the implementation of the
composition semantics in the aspectWebML tool support, dependencies between Advice as well
as between Aspects can already be computed and visualized in the Cross References View of the
aspectWebML Modeling Environment.

9.2.2 Providing for Asymmetric as well as Symmetric Composition

The CRM has been designed such that it abstracts from several composition mechanisms and at
the same time specializes the aspect-oriented concepts in order to support the pointcut-advice and
open class asymmetric composition mechanisms as well as the compositor symmetric composition
mechanism. This particular design allows language designers to decide on implementing both
kinds of composition mechanisms or only one of them while being able to easily complete the
language with the other one later on.

268

9.2 Current Limitations and Outlook

Due to the special goal of separately modeling customization in UWAs, in this thesis the focus
has been on asymmetric composition. Customization functionality is a crosscutting concern that
needs to be defined on top of existing models. In this respect, it represents a concern that cannot
exist on its own, meaning that it has to be applied to the functionality of a web application. As a
consequence, asymmetric composition mechanisms which distinguish between core concerns and
crosscutting concerns are more suitable to support customization modeling in the development
of UWAs than symmetric composition mechanisms. Nevertheless, supporting both asymmetric
as well as symmetric composition mechanisms allows for a powerful language. Therefore, the
technical support for both kinds of composition mechanisms is already given in the aspectWebML
language through the extension of the WebML metamodel with aspect-oriented concepts for both
mechanisms. Still, the concepts for modeling concerns according to the symmetric composition
mechanism need to be refined and the composition semantics for symmetric composition need
to be specified. Furthermore, it is still unclear how exactly symmetric composition can be used
in aspectWebML for modeling (crosscutting) concerns. This includes an appropriate notation
in terms of dedicated diagram types as well as a new set of guidelines for designing separate
concerns and composing them. And finally, further research is required in order to find out if and
how both kinds of composition mechanisms can be successfully used in parallel.

With respect to asymmetric composition, the aspectWebML language currently provides full
support of the asymmetric open class composition mechanism, only. While the open class compo-
sition mechanism is used for enhancing, replacing, or deleting aspectual structure in a model (e.g.,
add an attribute to class), the pointcut-advice composition mechanism, is used for enhancing, re-
placing, or deleting aspectual behavior in a model (e.g., intercept a method call and do something
before the call). With respect to the WebML approach, the language mainly supports modeling
the structural features of a web application, for which the open class composition mechanism is
enough. Still, some kind of behavior can be modeled by introducing content management func-
tionality to a WebML model, e.g., in terms of model elements realizing typical CRUD operations.
In this case, some flow of actions is available through connecting these operation units with links.
Consequently, applying aspectual behavior to such a flow of actions, e.g., before or after a certain
point in the flow, corresponds to using the pointcut-advice asymmetric composition mechanism.
Since different types of operation units can have a different number of incoming and outgoing
links, using the pointcut-advice mechanism might have unexpected side-effects on the flow of ac-
tions and might change the semantics of the content management functionality. Consequently,
behavioral flows in WebML are currently ignored and the WebML language is considered from
a structural view point using the open class composition mechanism, only. Nevertheless, future
research will need to investigate the suitability of AspectJ-like pointcut designators for allowing
to better specify the join points of a pointcut used in the pointcut-advice composition mechanism.

9.2.3 Designing an aspectWebML Development Process

The WebML language does not yet provide a development process dedicated to the development
of UWAs. In this thesis, first extensions to the original development process have been proposed
including the extension of the schema of WebML’s user group description sheets which are used in
the requirements specification phase. More specifically, the schema has been extended to consider
the customization scenarios in which the given user group is involved and the usual context in which
the user group is accessing the web application. Furthermore, a set of guidelines for designing
Aspects in the aspectWebML language has been provided, e.g., to start with one Aspect per cus-

269

9 Conclusion

tomization scenario and then strive for the design of reusable Aspects.
Nevertheless, developing a customization scenario in aspectWebML from scratch is a difficult task
even for experienced aspectWebML modelers. For example, in order to design a customization
scenario often many Advice need to be defined. As a consequence, future work will include the
extension of the current set of guidelines to help modelers to quickly absorb the new modeling
paradigm as well as the integration of this set of guidelines with the original WebML development
process. Furthermore, appropriate tool support shall help modelers in using the aspectWebML
concepts (cf. Section 9.2.5). The proposed development process for the aspectWebML approach
is required to be tested within case studies and real-world applications. Still, this also raises cur-
rently unaddressed questions associated with empirical evaluations in web engineering, e.g., how
to get an unbiased set-up for an evaluation including control groups.

9.2.4 Evaluating the Notation of aspectWebML

The notation of aspectWebML resembles UML class diagrams in many ways, e.g., by using com-
partments. Furthermore, for representing WebML modeling concepts the corresponding notation
and icons of the WebML language has been reused. For the aspect-oriented concept in the as-
pectWebML language, new icons have been designed, whereby a sub-set has been inspired by the
notation for aspect-oriented concepts used in the AspectJ Development Tools. The current proposal
for a notation, however, needs to be evaluated with respect to usability and intuitiveness require-
ments. Since, the introduction of the aspect-orientation concepts to the WebML language actually
represent a shift in paradigm when modeling UWAs, usability and intuitiveness are important
factors for the success of the aspectWebML approach. For example, it is currently, not clear if the
”reuse” of the AspectJ notation, is appropriate for modelers that possibly never have come into
contact with aspect-oriented programming before. Accordingly, the notation needs to be exhaus-
tively tested and refined within case studies and subsequently within real-world applications.

9.2.5 A Graphical Integrated Development Environment for aspectWebML

Currently, the aspectWebML Modeling Environment is based on a tree-editor built on top of
the EMF. While EMF editors have proved their usefulness for providing proof-of-concept pro-
totypes, their cumbersome handling certainly does hamper the design of large scale models. Con-
sequently, it is necessary to extend the existing modeling support with further ways of graphically
visualizing aspect-oriented concepts in aspectWebML that go beyond a simple tree-based editor.
This advanced modeling support shall again be realized on the basis of the Eclipse Graphical
Modeling Framework3 [Pre07]. In this thesis, some graphical views and/or editors dedicated to
visualizing the aspect-oriented concepts in an aspectWebML model already have been proposed.

Furthermore, besides providing graphical visualization, modelers will have to be supported by
reducing the effort when modeling aspect-oriented concepts. As already pointed out before, mod-
eling a customization scenario from scratch within an Aspect is a difficult task. As a consequence,
appropriate tool support is essential for the adoption of the aspectWebML approach. For example,
the designer should be able to start modeling a scenario without using aspectWebML concepts,
i.e., intermingled with the rest of the web application model. In a second step, the modeler could
then select some model elements that realize customization functionality and encapsulate them
within an Aspect using a so-called ”Add to Aspect” feature of the tool. Likewise, modelers could

3http://www.eclipse.org/gmf/

270

9.2 Current Limitations and Outlook

be supported with a feature that automatically generates OCL-based Pointcuts from a set of se-
lected model elements.

9.2.6 Model-Driven Engineering with aspectWebML

In order to allow for a model-driven development of web applications, future work will have to
strive for providing the semi-automatic generation of ubiquitous web applications in the sense
of MDE, i.e., to provide for model transformation and/or code generation. In this respect, two
options can be distinguished, namely the integration with the existing WebRatio tool (cf. Section
9.2.7) or the extension of the aspectWebML Modeling Environment to support MDE on the ba-
sis of model transformations and/or code generation. Concerning the latter option, again MDE
techniques developed under the hood of the Eclipse project could serve as a basis. For example,
the Atlas Transformation Language (ATL), developed by the team of researchers of Jean Bézivin
at the University of Nantes, is a model transformation language for Ecore-based metamodels and
recently has been declared as part of the Eclipse model-to-model (M2M) transformation project4.
With respect to code generation, several approaches including MOFScript as well as openArchi-
tectureWare (oAW) are available within the Eclipse Generative Modeling Technologies (GMT)
project5.

Besides, an interesting direction for future work is to not compose Aspects at modeling level but
to maintain Aspects until the programming level, i.e., to use as target platform for code generation
an aspect-oriented programming language like AspectJ. In this respect, an open question is if a
mapping of modeling level Aspects of the aspectWebML language to programming level Aspects
is possible and reasonable.

9.2.7 Integration of the aspectWebML Modeling Environment with WebRatio

With respect to exploiting existing code generation facilities of WebRatio through the integration
of the aspectWebML Modeling Environment with WebRatio, it has to be noted that a full integra-
tion is difficult to achieve for the following reasons:

First, since WebRatio is a commercial tool for which the source code is not available, a direct
integration of the aspectWebML language within the WebRatio tool currently is not possible. Fur-
thermore, the WebML models created with WebRatio are still serialized in XML according to the
WebML DTD. As a consequence, a possible solution for integration is to provide import/export
facilities in the aspectWebML tool support, which allows for exchanging WebML models between
WebRatio and the aspectWebML Modeling Environment. This way, modelers may (i) develop
their web application models in WebRatio, (ii) import the WebML model into the ModuleRepos-
itory of the aspectWebML project in the aspectWebML Modeling Environment, (iii) specify and
compose crosscutting concerns in the aspectWebML Modeling Environment, and (iv) export the
composed model to the WebRatio tool for code generation purposes.

Second, the WebML extensions allowing for customization modeling have been recently de-
fined, only. As a consequence, the necessary tool support for modeling customization has not
yet been integrated within WebRatio. This means that WebRatio neither allows for modeling cus-
tomization nor for generating code for UWAs. It is therefore not possibly to export WebML models
from the aspectWebML Modeling Environment that contain instances of WebML’s customization

4http://www.eclipse.org/m2m/
5http://www.eclipse.org/gmt/

271

9 Conclusion

modeling concepts. Nevertheless, as will pointed out in the next section, the aspectWebML ap-
proach should allow modelers to generally model other concerns than customization, although
they are restricted to using WebML concepts originally defined in the WebML DTD.

9.2.8 Modeling Arbitrary Aspects in aspectWebML

In contrast, to related aspect-oriented web modeling languages, the aspectWebML language has
not been exclusively designed for the customization concern but to support generic aspect-oriented
concepts as described in the CRM, which then are used to separately model customization. As a
consequence, an interesting direction for future work is to investigate in what ways the aspect-
oriented extensions made to WebML can be used to model other concerns than customization, the
more, since customization modeling is not yet supported within the WebRatio tool. As already
pointed out in previous sections, aspectWebML could be used e.g. for the evolution of a web ap-
plication model with Aspects. For example, a web shop selling CD’s and DVD’s is to be expanded
in order to offer books as well. This will require several changes to all levels of a web application.
In case the user acceptance for the new book section of the web shop turns out to be unprofitable,
however, the books concern can be easily removed by not composing the books concern with the
web application. In this respect, aspectWebML could be used to model different features of a web
application within several Aspects.

9.2.9 Applying aspectUWA to Other Web Modeling Approaches

The aspectUWA approach proposes a generic framework for extending existing web modeling
languages with AOM concepts and has been applied to the WebML approach in this thesis. A
further direction for future research is to further prove the aspectUWA approach’s, or rather, the
CRM’s generality through its application to other web modeling languages. In this respect, the
application to the UWE approach as well as to the Hera approach would be of particular interest,
since they have already been extended with aspect-oriented concepts. In this vein, their ways
of introducing aspect-oriented modeling concepts can be better compared with the aspectUWA
way. Since based on the UML, the application of the CRM to the UWE approach is also interesting
due to UML’s ample ways of behavioral modeling. In this respect, existing ways of composing
aspectual behavior already proposed by some general-purpose, UML-based AOM approaches
investigated in this thesis could be reused or serve as valuable input. As a long term goal, the
CRM’s generality should also be investigated in other domains than the web modeling domain.

272

Bibliography

[ABV92] Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural. An Object-Oriented Language-
Database Integration Model: The Composition-Filters Approach. In Proc. of the 6th
European Conference on Object-Oriented Programming (ECOOP’92), Utrecht, The Nether-
lands, volume 615 of LNCS 615, pages 372–395, 1992.

[AEB03] Omar Aldawud, Tzilla Elrad, and Atef Bader. UML Profile for Aspect-Oriented
Software Development. In 3rd International Workshop on Aspect Oriented Modeling
(AOM’03), in conjunction with AOSD’03, Boston, Massachusetts, March 2003.

[AFGP02] Silvia Mara Abrahão, Joan Fons, Magalı́ González, and Oscar Pastor. Conceptual
Modeling of Personalized Web Applications. In Proc. of the 2nd International Confer-
ence on Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2002), Malaga, Spain,
LNCS 2347, pages 358–362, 2002.

[AK03] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 20(5):36–41, 2003.

[BBR+05] Gordon S. Blair, Lynne Blair, Awais Rashid, Ana Moreira, João Araújo, and Ruzanna
Chitchyan. Engineering Aspect-Oriented Systems. In R.E. Filman, T. Elrad, S. Clarke,
and M. Akşit, editors, Aspect-Oriented Software Development, pages 379–406. Addison-
Wesley, Boston, 2005.

[BCC+03] Marco Brambilla, Stefano Ceri, Sara Comai, Piero Fraternali, and Ioana Manolescu.
Specification and Design of Workflow-Driven Hypertexts. J. Web Eng., 1(2):163–182,
2003.

[BCC+06] Marco Brambilla, Irene Celino, Stefano Ceri, Dario Cerizza, Emanuele Della Valle, and
Federico Michele Facca. A Software Engineering Approach to Design and Develop-
ment of Semantic Web Service Applications. In Proc. of the 5th International Semantic
Web Conference (ISWC 2006), Athens, GA, USA, LNCS 4273, pages 172–186, November
2006.

[BCF02] Marco Brambilla, Sara Comai, and Piero Fraternali. Hypertext Semantics for Web Ap-
plications. In Proc. of the 10th Italian National Symposium on Advanced DataBase Systems
(SEBD), Portoferraio, Italy, pages 73–86, 2002.

[BCFC06] Alessandro Bozzon, Sara Comai, Piero Fraternali, and Giovanni Toffetti Carughi. Con-
ceptual Modeling and Code Generation for Rich Internet Applications. In Proc. of the
6th International Conference on Web Engineering (ICWE 2006), Palo Alto, CA, USA, pages
353–360. ACM, July 2006.

Bibliography

[BCFK99] Grady Booch, Magnus Christerson, Matthew Fuchs, and Jari Koistinen. UML for
XML Schema Mapping Specification. Technical report, Rational Software and Com-
merceOne, August 1999.

[BCFM06] Marco Brambilla, Stefano Ceri, Piero Fraternali, and Ioana Manolescu. Process Mod-
eling in Web Applications. ACM Trans. Softw. Eng. Methodol., 15(4):360–409, 2006.

[BCMM06] Luciano Baresi, Sebastiano Colazzo, Luca Mainetti, and Sandro Morasca. W2000:
A Modeling Notation for Complex Web Applications. In Emilia Mendes and Nile
Mosley, editors, Web Engineering: Theory and Practice of Metrics and Measurement for
Web Development, pages 335–364. Springer, 2006.

[BFH02] Peter Barna, Flavius Frasincar, and Geert-Jan Houben. Specification Framework for
Engineering Adaptive Web Applications. In Proc. of the 11th International World Wide
Web Conference, Web Engineering Track (WWW 2002), Honolulu, Hawaii, USA, May 2002.

[BFH06] Peter Barna, Flavius Frasincar, and Geert-Jan Houben. A Workflow-driven Design of
Web Information Systems. In Proc. of the 6th International Conference on Web Engineering
(ICWE 2006), Palo Alto, CA, USA, pages 321–328. ACM, July 2006.

[BFHV03] Peter Barna, Flavius Frasincar, Geert-Jan Houben, and Richard Vdovjak. Method-
ologies for Web Information System Design. In Proc. of the International Conference
on Information Technology: Computers and Communications (ITCC 2003), Las Vegas, NV,
USA, pages 420–424. IEEE Computer Society, April 2003.

[BFK+00] B. R. Badrinath, Armando Fox, Leonard Kleinrock, Gerald J. Popek, Peter L. Reiher,
and Mahadev Satyanarayanan. A conceptual framework for network and client adap-
tation. Mobile Networks and Applications, 5(4):221–231, 2000.

[BKKZ05] Hubert Baumeister, Alexander Knapp, Nora Koch, and Gefei Zhang. Modelling
Adaptivity with Aspects. In Proc. of the 5th International Conference on Web Engineering
(ICWE 2005), Sydney, Australia, LNCS 3579, pages 406–416, July 2005.

[BKM99] Hubert Baumeister, Nora Koch, and Luis Mandel. Towards a UML Extension for
Hypermedia Design. In Proc. of the 2nd International Conference on the Unified Modeling
Language (UML 1999), Fort Collins, CO, USA, LNCS 1723, pages 614–629, October 1999.

[BL03] Chris Barry and Michael Lang. A comparison of ’traditional’ and multimedia informa-
tion systems development practices. Information & Software Technology, 45(4):217–227,
2003.

[BLW05] Paul Baker, Shiou Loh, and Frank Weil. Model-Driven Engineering in a Large Indus-
trial Context - Motorola Case Study. In Proc. of the 8th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 2005), Montego Bay, Jamaica, LNCS
3713. Springer, October 2005.

[BM02] Luciano Baresi and Franca Garzotto Monica Maritati. W2000 as a MOF metamodel. In
Proc. of the 6th World Multiconference on Systemics, Cybernetics and Informatics (SCI’2002),
July 2002.

[BSM+04] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose. Eclipse Modeling Framework. Addison-Wesely, 1st edition, 2004.

274

Bibliography

[CAE07] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. The Motorola WEAVR:
Model Weaving in a Large Industrial Context. In Proc. of the 6th International Conference
on Aspect-Oriented Software Development (AOSD 2007), Vancouver, Canada, March 2007.

[CB05] Siobhán Clarke and Elisa Banaissad. Aspect-Oriented Analysis and Design The Theme
Approach. Addison-Wesley, Upper Saddle River, March 2005.

[CDF06] Stefano Ceri, Florian Daniel, and Federico Michele Facca. Modeling Web Applications
reacting to User Behaviors. Computer Networks, 50(10):1533–1546, 2006.

[CDFM07] Stefano Ceri, Florian Daniel, Federico Michele Facca, and Maristella Matera. Model-
Driven Engineering of Active Context-Awareness. World Wide Web, in print, 2007.

[CdL95] Donald D. Cowan and Carlos José Pereira de Lucena. Abstract Data Views: An In-
terface Specification Concept to Enhance Design for Reuse. IEEE Trans. Software Eng.,
21(3):229–243, 1995.

[CDM03] Stefano Ceri, Florian Daniel, and Maristella Matera. Extending WebML for Modeling
Multi-Channel Context-Aware Web Applications. In Proc. of the Workshop on Mobile
Multi-channel Information Systems, in conjuntion with WISE 2003, Rome, Italy, pages 615–
626, December 2003.

[CDMF07] Stefano Ceri, Florian Daniel, Maristella Matera, and Federico Michele Facca. Model-
driven Development of Context-Aware Web Applications. ACM Transactions on Inter-
net Technology, 7(1), 2007.

[CF01] Sara Comai and Piero Fraternali. A semantic model for specifying data-intensive
Web applications using WebML. In Proc. of the 1st Semantic Web Working Symposium
(SWWS’01), Stanford University, CA, USA, pages 566–585, July/August 2001.

[CFB+03] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and Maris-
tella Matera. Designing Data-Intensive Web Applications. Morgan Kaufmann, 1st edi-
tion, 2003.

[CGP00] Cristina Cachero, Jaime Gómez, and Oscar Pastor. Object-Oriented Conceptual Mod-
eling of Web Application Interfaces: the OO-HMethod Abstract Presentation Model.
In Proc. of the 1st International Conference on Electronic Commerce and Web Technologies
(EC-Web 2000), London, UK, LNCS 1875, pages 206–215, September 2000.

[CGP01] Cristina Cachero, Jaime Gómez, and Antonio Párraga. Migration of Legacy Systems to
the Web. In VI Jornadas de Ingenierı́a del Software y Bases de Datos (JISBD 2001), Almagro
(Ciudad Real), pages 601–614, November 2001.

[CGPP01] Cristina Cachero, Jaime Gómez, Antonio Párraga, and Oscar Pastor. Conference Re-
view System: A Case of Study. In 1st International Workshop on Web-Oriented Software
Technology (IWWOST 2001), Valencia, Spain, June 2001.

[CGT05] Sven Casteleyn, Irene Garrigós, and Olga De Troyer. Automatic Runtime Validation
and Correction of the Navigational Design of Web Sites. In 7th Asia-Pacific Web Con-
ference on Web Technologies Research and Development (APWeb 2005), Shanghai, China,
LNCS 3399, pages 453–463, March/April 2005.

275

Bibliography

[Che76] Peter P. Chen. The Entity-Relationship Model - Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.

[CHOT99] Siobhán Clarke, William Harrison, Harold Ossher, and Peri Tarr. Subject-Oriented
Design: Towards Improved Alignment of Requirements, Design and Code. In Proc. of
the 14th Conference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA 1999), Denver, Colorado, USA, pages 325–339, November 1999.

[CJ06] Siobhán Clarke and Andrew Jackson. Refined AOD Process. Technical Report D57
AOSD-Europe-TCD-D57, AOSD-Europe, August 2006.

[Cla01] Siobhán Clarke. Composition of Object-Oriented Software Design Models. PhD thesis,
Dublin City University, January 2001.

[Cla02] Siobhán Clarke. Extending Standard UML with Model Composition Semantics. Sci-
ence of Computer Programming, 44(1):71–100, July 2002.

[CM06] Wesley Coelho and Gail C. Murphy. Presenting Crosscutting Structure with Active
Models. In Proc. of the 5th International Conference on Aspect-Oriented Software Develop-
ment (AOSD 2006), Bonn, Germany, pages 158–168, March 2006.

[Con02] Jim Conallen. Building Web Applications with UML. Addison-Wesely, 2nd edition, 2002.

[CPT06] Sven Casteleyn, Peter Plessers, and Olga De Troyer. On Generating Content and Struc-
tural Annotated Websites Using Conceptual Modeling. In Proc. of the 25th International
Conference on Conceptual Modeling (ER 2006), Tucson, AZ, USA, LNCS 4215, pages 267–
280, November 2006.

[CRS+05] Ruzanna Chitchyan, Awais Rashid, Pete Sawyer, Alessandro Garcia, Mónica Pinto
Alarcon, Jethro Bakker, Bedir Tekinerdoğan, Siobhán Clarke, and Andrew Jackson.
Survey of Aspect-Oriented Analysis and Design Approaches. Technical Report D11
AOSD-Europe-ULANC-9, AOSD-Europe, May 2005.

[CTB03] Sven Casteleyn, Olga De Troyer, and Saar Brockmans. Design Time Support for Adap-
tive Behavior in Web Sites. In Proc. of the 18 th Symposium on Applied Computing (SAC
2003), Melbourne, FL, USA, pages 1222–1228, March 2003.

[CvdBE07] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Joinpoint Inference from
Behavioral Specification to Implementation. In Proc. of the 21st European Conference on
Object-Oriented Programming (ECOOP 2007), Berlin, Germany, LNCS 4609, pages 476–
500, July/August 2007.

[CW05] Siobhán Clarke and Robert J. Walker. Generic Aspect-Oriented Design with The-
me/UML. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-Oriented
Software Development, pages 425–458. Addison-Wesley, Boston, 2005.

[CWH07] Sven Casteleyn, William Van Woensel, and Geert-Jan Houben. A Semantics-based
Aspect-Oriented Approach to Adaptation in Web Engineering. In Proceedings of the
18th Conference on Hypertext and Hypermedia (HT 2007), Manchester, UK, pages 189–198,
September 2007.

276

Bibliography

[dbTB+06] Steven Op de beeck, Eddy Truyen, Nelis Boucké, Frans Sanen, Maarten Bynens, and
Wouter Joosen. A Study of Aspect-Oriented Design Approaches. Technical Report
CW435, Department of Computer Science, Katholieke Universiteit Leuven, February
2006.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[EAB05] Tzilla Elrad, Omar Aldawud, and Atef Bader. Expressing Aspects Using UML Behav-
ioral and Structural Diagrams. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit, ed-
itors, Aspect-Oriented Software Development, pages 459–478. Addison-Wesley, Boston,
2005.

[EK04] Marı́a José Escalona and Nora Koch. Requirements Engineering for Web Applications
- A Comparative Study. Journal of Web Engineering, 2(3):193–212, 2004.

[EVP01] Jacob Eisenstein, Jean Vanderdonckt, and Angel R. Puerta. Applying Model-Based
Techniques to the Development of UIs for Mobile Computers. In Proc. of the 6th Inter-
national Conference on Intelligent User Interfaces (IUI 2001), Santa Fe, New Mexico, United
States, pages 69–76, January 2001.

[FBHF04] Flavius Frasincar, Peter Barna, Geert-Jan Houben, and Zoltán Fiala. Adaptation and
Reuse in Designing Web Information Systems. In Proc. of the International Conference
on Information Technology: Coding and Computing (ITCC 2004), Las Vegas, Nevada, USA,
pages 387–291, April 2004.

[FECA05] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors. Aspect-
Oriented Software Development. Addison-Wesley, Boston, 2005.

[FFH+04] Zoltán Fiala, Flavius Frasincar, Michael Hinz, Geert-Jan Houben, Peter Barna, and
Klaus Meißner. Engineering the Presentation Layer of Adaptable Web Information
Systems. In Proc. of the 4th International Conference on Web Engineering (ICWE 2004),
Munich, Germany, volume 3140 of LNCS 3140, pages 459–472, July 2004.

[FH02] Flavius Frasincar and Geert-Jan Houben. Hypermedia Presentation Adaptation on
the Semantic Web. In Proc. of the 2nd International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems (AH 2002), Malaga, Spain, LNCS 2347, pages 133–142,
May 2002.

[FHB06] Flavius Frasincar, Geert-Jan Houben, and Peter Barna. HPG: the Hera Presentation
Generator. Journal of Web Engineering, 5(2):175–200, 2006.

[FHHF04] Zoltán Fiala, Michael Hinz, Geert-Jan Houben, and Flavius Frasincar. Design and Im-
plementation of Component-based Adaptive Web Presentations. In Proc. of the Sympo-
sium on Applied Computing (SAC 2004), Nicosia, Cyprus, 2004, pages 1698–1704, March
2004.

[FHV01] Flavius Frasincar, Geert-Jan Houben, and Richard Vdovjak. An RMM-Based Method-
ology for Hypermedia Presentation Design. In Proc. of the 5th East European Confer-
ence on Advances in Databases and Information Systems (ADBIS 2001), Vilnius, Lithuania,
LNCS 2151, pages 323–337, September 2001.

277

Bibliography

[FKGS04] Robert B. France, Dae-Kyoo Kim, Sudipto Ghosh, and Eunjee Song. A UML-Based
Pattern Specification Technique. IEEE Transactions on Software Engineering, 30(3):193–
206, 2004.

[FPAP03] Joan Fons, Vicente Pelechano, Manoli Albert, and Oscar Pastor. Development of Web
Applications from Web Enhanced Conceptual Schemas. In Proc. of the 22nd Interna-
tional Conference on Conceptual Modeling (ER 2003), Chicago, IL, USA, LNCS 2813, pages
232–245, October 2003.

[FPT07] Lidia Fuentes, Mónica Pinto, and José M. Troya. Supporting the Development of
CAM/DAOP Applications: An Integrated Development Process. Software - Practice
and Experience, 37(1):21–64, 2007.

[FRGG04] Robert France, Indrakshi Ray, Geri Georg, and Sudipto Ghosh. Aspect-oriented Ap-
proach to Early Design Modelling. IEE Proceedings Software, 151(4):173– 185, August
2004.

[GBP05] Jaime Gómez, Alejandro Bia, and Antonio Párraga. Tool Support for Model-Driven
Development of Web Applications. In 6th International Conference on Web Information
Systems Engineering (WISE 2005), New York, NY, USA, LNCS, 3806, pages 721–730,
November 2005.

[GCG05] Irene Garrigós, Sven Casteleyn, and Jaime Gómez. A Structured Approach to Per-
sonalize Websites Using the OO-H Personalization Framework. In Proc. of the 7th
Asia-Pacific Web Conference on Web Technologies Research and Development (APWeb 2005),
Shanghai, China, LNCS 3399, pages 695–706, March/April 2005.

[GCG07] Irene Garrigós, Cristian Cruz, and Jaime Gómez. A Prototype Tool for the Automatic
Generation of Adaptive Websites. In Proc. of the 2nd International Workshop on Adapta-
tion and Evolution in Web Systems Engineering (AEWSE 2007), in conjunction with ICWE
2007, Como, Italy. CEUR Workshop Proceedings, July 2007.

[GCP00] Jaime Gómez, Cristina Cachero, and Oscar Pastor. Extending a Conceptual Modelling
Approach to Web Application Design. In Proc. of the 12th International Conference on
Advanced Information Systems Engineering (CAISE 2000), Stockholm, Sweden, LNCS 1789,
pages 79–93, June 2000.

[GCP01] Jaime Gómez, Cristina Cachero, and Oscar Pastor. Conceptual Modeling of Device-
Independent Web Applications. IEEE MultiMedia, 8(2):26–39, 2001.

[GG06] Irene Garrigós and Jaime Gómez. Modeling User Behaviour Aware WebSites with
PRML. In 3rd Workshop on Web Information Systems Modelling (WISM 2006), in conjunc-
tion with ICWE 2006, Palo Alto, California, USA, July 2006.

[GGBH05] Irene Garrigós, Jaime Gómez, Peter Barna, and Geert-Jan Houben. A Reusable Per-
sonalization Model in Web Application Design. In 2nd Workshop on Web Information
Systems Modelling (WISM 2005), in conjunction with ICWE 2005, Sydney, Australia, July
2005.

[GGC03a] Irene Garrigós, Jaime Gómez, and Cristina Cachero. Modelling Adaptive Web Appli-
cations. In Proc. of the IADIS International Conference WWW/Internet, Algarve, Portugal,
pages 813–816, November 2003.

278

Bibliography

[GGC03b] Irene Garrigós, Jaime Gómez, and Cristina Cachero. Modelling Dynamic Personaliza-
tion in Web Applications. In Proc. of the 3rd International Conference on Web Engineering
(ICWE 2003), Oviedo, Spain, LNCS 2722, pages 472–475, July 2003.

[GHHV04] Erich Gamma, Richard Helm, Ralph Hohnson, and John Vlissides. Design Patterns -
Elements of Reusable Object-Oriented Software. Addison-Wesely, 2004.

[GPS93] Franca Garzotto, Paolo Paolini, and Daniel Schwabe. HDM - A Model-Based Ap-
proach to Hypertext Application Design. ACM Transactions on Information Systems,
11(1):1–26, 1993.

[Gru00] John Grundy. Multi-Perspective Specification, Design and Implementation of Soft-
ware Components Using Aspects. International Journal of Software Engineering and
Knowledge Engineering, 20(6), 2000.

[GRUD07] Jeronimo Ginzburg, Gustavo Rossi, Matias Urbieta, and Damiano Distante. Trans-
parent Interface Composition in Web Applications. In Proc. of the 7th International
Conference on Web Engineering (ICWE 2007), Como, Italy, LNCS 4607, pages 152–166,
July 2007.

[Hal01] Terry Halpin. Information Modeling and Relational Databases. Morgan Kaufmann, 2001.

[Han05] Stefan Hanenberg. Design Dimensions of Aspect-Oriented Systems. PhD thesis, Univer-
sity Duisburg-Essen, October 2005.

[HBI98] Anna Hester, Renato Borges, and Roberto Ierusalimschy. Building Flexible and Exten-
sible Web Applications with Lua. Journal of Universal Computer Science, 4(9):748–762,
1998.

[HFBV04] Geert-Jan Houben, Flavius Frasincar, Peter Barna, and Richard Vdovjak. Modeling
User Input and Hypermedia Dynamics in Hera. In Proc. of the 4th International Confer-
ence on Web Engineering, Munich, Germany, LNCS 3140, pages 60–73. Springer, 2004.

[HJPP02] Wai-Ming Ho, Jean-Marc Jézéquel, François Pennaneac’h, and Noël Plouzeau. A
Toolkit for Weaving Aspect Oriented UML Designs. In Proc. of the 1st International
Conference on Aspect-oriented Software Development (AOSD 2002), Enschede, The Nether-
lands, pages 99–105, April 2002.

[HO93] William H. Harrison and Harold L. Ossher. Subject-Oriented Programming - A Cri-
tique of Pure Objects. In Proc. of the 8th Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA 1993), Washington, DC, USA, pages 411–
428, September 1993.

[HOT02] William H. Harrison, Harold L. Ossher, and Peri L. Tarr. Asymmetrically vs. Sym-
metrically Organized Paradigms for Software Composition. Technical report, IBM
Research Division, Thomas J. Watson Research Center, December 2002.

[ISB95] Tomás Isakowitz, Edward A. Stohr, and P. Balasubramanian. RMM: A Methodology
for Structured Hypermedia Design. Communications of the ACM, 38(8):34–44, 1995.

279

Bibliography

[Jac90] Michael Jackson. Some Complexities in Computer-Based Systems and Their Implica-
tions for System Development. In Proceedings of the 1990 IEEE International Conference
on Computer Systems and Software Engineering (CompEuro 1990), pages 344–351. IEEE
computer Society Press, May 1990.

[JC06] Andrew Jackson and Siobhán Clarke. Towards the Integration of Theme/UML and
JPDDs. In Proc. of the 8th International Workshop on Aspect-Oriented Modeling (AOM), in
conjunction with AOSD 2006, Bonn, Germany, March 2006.

[JK06] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Proc. of the
Workshop on Model Tranformations in Practice (MTiP) Montego Bay, Jamaica, LNCS 3844,
pages 128–138, October 2006.

[JKBC06] Andrew Jackson, Jacques Klein, Benoit Baudry, and Siobhán Clarke. KerTheme: Test-
ing Aspect Oriented Models. In Proc. of the Workshop on Integration of Model Driven
Development and Model Driven Testing, in conjunction with ECMDA 2006, Bilbao, Spain,
July 2006.

[JN05] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use Cases.
Addison-Wesley, 2005.

[JSR02] Mark D. Jacyntho, Daniel Schwabe, and Gustavo Rossi. A Software Architecture for
Structuring Complex Web Applications. J. Web Eng., 1(1):37–60, 2002.

[Ker05] Mik Kersten. AOP Tools Comparison (Part 1 & 2). http://www-128.ibm.com/
developerworks/java/library/j-aopwork1/, March 2005.

[KFG04] Dae-Kyoo Kim, Robert B. France, and Sudipto Ghosh. A UML-based Language for
Specifying Domain-Specific Patterns. Journal of Visual Languages and Computing, 15(3-
4):265–289, 2004.

[KG06] Jörg Kienzle and Samuel Gélineau. AO Challenge - Implementing the ACID Prop-
erties for Transactional Objects. In Proc. of the 5th International Conference on Aspect-
Oriented Software Development AOSD 2006, Bonn, Germany, pages 202–213, March 2006.

[KHJ06] Jacques Klein, Loı̈c Hélouët, and Jean-Marc Jézéquel. Semantic-Based Weaving of
Scenarios. In Proc. of the 5th International Conference on Aspect-Oriented Software Devel-
opment AOSD 2006, Bonn, Germany, pages 27–38, March 2006.

[KK02a] Nora Koch and Andreas Kraus. The expressive Power of UML-based Web Engineer-
ing. In Proc of the 2nd International Workshop on Web-oriented Software Technology (IW-
WOST 2002), in conjunction with ECOOP 2002, Málaga, Spain, pages 21–32, June 2002.

[KK02b] Andreas Kraus and Nora Koch. Generation of Web Applications from UML. Models
using an XML Publishing Framework. In Proc. of the 5th World Conference on Integrated
Design and Process Technology (IDPT 2002), Pasadena, CA, USA, June 2002.

[KK03] Nora Koch and Andreas Kraus. Towards a Common Metamodell for the Develop-
ment of Web Appliactions. In Proc. of the 3rd International Conference on Web Engineering
(ICWE 2003), Oviedo, Spain, LNCS 2722, pages 497–506, July 2003.

280

Bibliography

[KK06] Mika Katara and Shmuel Katz. A Concern Architecture View for Aspect-Oriented
Software Design. Software and System Modeling, 6(3):247–265, 2006.

[KKCM04] Nora Koch, Andreas Kraus, Cristina Cachero, and Santiago Meliá. Integration of Busi-
ness Processes in Web Application Models. Journal of Web Engineering, 3(1):22–49,
2004.

[KKR04] Gerti Kappel, Elisabeth Kapsammer, and Werner Retschitzegger. Integrating XML
and Relational Database Systems. World Wide Web, 7(4):343–384, 2004.

[KL06] Sergei Kojarski and David H. Lorenz. Modeling Aspect Mechanisms: A Top-Down
Approach. In Proc. of the 28th International Conference on Software Engineering (ICSE
2006), Shanghai, China, pages 212–221, May 2006.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
Proc. of the 11th Europeen Conference on Object-Oriented Programming, Jyväskylä, Finland,
pages 220–242, June 1997.

[Kob01] Alfred Kobsa. Generic User Modeling Systems. User Modeling and User-Adapted Inter-
action, 11(1-2):49–63, 2001.

[Koc99] Nora Koch. A Comparative Study of Methods for Hypermedia Development. Tech-
nical Report 9905, Ludwig-Maximilians-University Munich, Germany, 1999.

[Koc01] Nora Koch. Software Engineering for Adaptive Hypermedia Systems: Reference Model,
Modeling Techniques and Development Process. PhD thesis, Ludwig-Maximilians-
University Munich, Germany, October 2001.

[Koc07] Nora Koch. Classification of Model Transformation Techniques used in UML-based
Web Engineering. IET Software, 1(3):98–111, 2007.

[KPR+01] Gerti Kappel, Birgit Pröll, Werner Retschitzegger, Wieland Schwinger, and Thomas
Hofer. Modeling Ubiquitous Web Applications - A Comparison of Approaches. In
Proc. of the 3rd International Conference on Information Integration and Web-based Applica-
tions & Services (IIWAS 2001), Linz, Austria, September 2001.

[KPRR06] Gerti Kappel, Birgit Pröll, Siegfried Reich, and Werner Retschitzegger. An Introduc-
tion to Web Engineering. In Gerti Kappel, Birgit Pröll, Siegfried Reich, and Werner
Retschitzegger, editors, Web Engineering - Systematic Development of Web Applications,
pages 1–21. Wiley, June 2006.

[KPRS03] Gerti Kappel, Birgit Pröll, Werner Retschitzegger, and Wieland Schwinger. Customi-
sation for Ubiquitous Web Applications a Comparison of Approaches. International
Journal of Web Engineering and Technology, 1(1):79–111, 2003.

[Kru00] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley,
2000.

[KRV05] Nora Koch, Gustavo Rossi, and Antonio Vallecillo, editors. Proc. of the 1st Workshop on
Model-Driven Web Engineering (MDWE 2005), in conjunction with ICWE 2005, Sydney,
Australia, July 2005.

281

Bibliography

[KW02] Nora Koch and Martin Wirsing. The Munich Reference Model for Adaptive Hyper-
media Applications. In Proc. of the 2nd International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems (AH 2002), Malaga, LNCS 2347, pages 213–222, May
2002.

[KYX03] Jörg Kienzle, Yang Yu, and Jie Xiong. On Composition and Reuse of Aspects. In Proc.
of the Workshop on Foundations of Aspect-Oriented Languages (FOAL 2003), in conjunction
with AOSD 2003, Boston, Massachusetts, pages 17–24, March 2003.

[KZC06] Nora Koch, Gefei Zhang, and Marı́a José Escalona Cuaresma. Model transformations
from requirements to web system design. In Proc. of the 6th International Conference on
Web Engineering (ICWE 2006), Palo Alto, CA, USA, pages 281–288. ACM, July 2006.

[LC00] Dongwon Lee and Wesley W. Chu. Comparative Analysis of Six XML Schema Lan-
guages. ACM SIGMOD Record, 29(3):76–87, 2000.

[Lie96] Karl J. Lieberherr. Adaptive Object-Oriented Software: the Demeter Method with Propaga-
tion Patterns. PWS Publishing Company, Boston, 1996.

[LM05] Ralf Lämmel and Erik Meijer. Mappings make data processing go ’round. In Pre-Proc.
the International Summer School on Generative and Transformation Techniques in Software
Engineering (GTTSE 2005), Braga, Portugal, July 2005.

[MBAE04] Mark Mahoney, Atef Bader, Omar Aldawud, and Tzilla Elrad. Using Aspects to Ab-
stract and Modularize Statecharts. In Proc. of the 5th Aspect-Oriented Modeling Workshop
(AOM), in conjunction with (UML 2004), Lisbon, Portugal, October 2004.

[MBC+05] Ioana Manolescu, Marco Brambilla, Stefano Ceri, Sara Comai, and Piero Fraternali.
Model-Driven Design and Deployment of Service-Enabled Web Applications. ACM
Transactions on Internet Technology, 5(3):439–479, 2005.

[MFJ05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Executability
into Object-Oriented Meta-languages. In Proc. of the 8th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2005), Montego Bay, Jamaica,
LNCS 3713, pages 264–278, October 2005.

[MFV06] Nathalie Moreno, Piero Fraternalli, and Antonio Vallecillo. A uml 2.0 profile for
webml modeling. In Proc. of the 2nd International Workshop on Model-Driven Web Engi-
neering (MDWE 2006), in conjunction with ICWE 2006, Palo Alto, California, USA, page 4.
ACM Press, July 2006.

[MFV07] Nathalie Moreno, Piero Fraternalli, and Antonio Vallecillo. WebML modelling in
UML. IET Software, 1(3):67–80, 2007.

[MG06] Santiago Meliá and Jaime Gómez. The WebSA Approach: Applying Model Driven
Engineering to Web Applications. Journal of Web Engineering, 5(2):121–149, 2006.

[MK03] Hidehiko Masuhara and Gregor Kiczales. Modeling Crosscutting in Aspect-Oriented
Mechanisms. In Proc. of the 17th European Conference on Object-Oriented Programming
(ECOOP’03), Darmstadt, Germany, July 2003.

282

Bibliography

[MSFB05] Pierre-Alain Muller, Philippe Studer, Frédéric Fondement, and Jean Bézivin. Platform
independent Web application modeling and development with Netsilon. Software and
System Modeling, 4(4):424–442, 2005.

[MSZJ04] Haohai Ma, Weizhong Shao, Lu Zhang, and Yanbing Jiang. Applying OO Metrics
to Assess UML Meta-models. In Proc. of the 7th International Conference on the Unified
Modelling Language: Modelling Languages and Applications (UML 2004), Lisbon, Portugal,
LNCS 3273, pages 12–26, October 2004.

[OMG01] Object Management Group OMG. UML Specification Version 1.4.
http://www.omg.org/docs/formal/01-09-67.pdf, September 2001.

[OMG02] Object Management Group OMG. Meta Object Facility (MOF) Specification 1.4.
http://www.omg.org/docs/formal/02-04-03.pdf, April 2002.

[OMG03] Object Management Group OMG. MDA Guide Version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf, June 2003.

[OMG04] Object Management Group OMG. Meta Object Facility (MOF) 2.0 Core Specification
Version 2.0. http://www.omg.org/docs/ptc/04-10-15.pdf, October 2004.

[OMG05a] Object Management Group OMG. Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification. Final Adopted Specification. ptc/05-11-01, November
2005.

[OMG05b] Object Management Group OMG. MOF 2.0/XMI Mapping Specification, v2.1.
http://www.omg.org/docs/formal/05-09-01.pdf, September 2005.

[OMG05c] Object Management Group OMG. OCL Specification Version 2.0.
http://www.omg.org/docs/ptc/05-06-06.pdf, June 2005.

[OMG05d] Object Management Group OMG. UML Specification: Superstructure Version 2.0.
http://www.omg.org/docs/formal/05-07-04.pdf, August 2005.

[PAF00] Oscar Pastor, Silvia Abrahão, and Joan Fons. OOWS: An Object-Oriented Approach
for Web-Solutions Modeling. In Proc. of the International Conference on Information Soci-
ety (ICIS 2000), Ljubljana, Slovenia, October 2000.

[Par72] David L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058, December 1972.

[Pat00] Fabio Paterno. Model-Based Design of Interactive Applications. ACM Intelligence,
11(4):26–38, 2000.

[PCT05] Peter Plessers, Sven Casteleyn, and Olga De Troyer. Semantic Web Development with
WSDM. In Proc. of the 5th International Workshop on Knowledge Markup and Semantic An-
notation (SemAnnot2005), in conjunction with ISWC 2005, November 6-10, Galway, Irland.
CEUR Workshop Proceedings, 2005.

[PD99] Norman W. Paton and Oscar Dı́az. Active database systems. ACM Computing Surveys,
31(1):63–103, 1999.

283

Bibliography

[PDF+02] Renaud Pawlak, Laurence Duchien, Gerard Florin, Fabrice Legond-Aubry, Lionel
Seinturier, and Laurent Martelli. A UML Notation for Aspect-Oriented Software De-
sign. In Proc. of the 1st Workshop on Aspect-Oriented Modeling with UML (AOSD’02),
Enschede, The Netherlands, March 2002.

[PFPA06] Oscar Pastor, Joan Fons, Vicente Pelechano, and Silvia Abrahão. Conceptual Mod-
elling of Web Applications: The OOWS Approach. In Emilia Mendes and Nile Mosley,
editors, Web Engineering: Theory and Practice of Metrics and Measurement for Web Devel-
opment, pages 277–302. Springer, 2006.

[PIP+97] Oscar Pastor, Emilio Insfrán, Vicente Pelechano, José Romero, and José Merseguer.
OO-METHOD: An OO Software Production Environment Combining Conventional
and Formal Methods. In Proc. of the 9th International Conference on Advanced Information
Systems Engineering (CAISE 1997), Barcelona, Catalonia, Spain, LNCS 1250, pages 145–
158, June 1997.

[Pre07] Gerhard Preisinger. Towards model-driven web application development with as-
pectwebml - an integrated graphical development environment. Master’s thesis, Vi-
enna University of Technology, To be finished, 2007.

[PSD+05] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Laurent Martelli, Fabrice
Legond-Aubry, and Gérard Florin. Aspect-Oriented Software Development with Java
Aspect Components. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-
Oriented Software Development, pages 343–369. Addison-Wesley, Boston, 2005.

[PTSC05] Juan Carlos Preciado, Marino Linaje Trigueros, F. Sanchez, and Sara Comai. Necessity
of methodologies to model Rich Internet Applications. In Proc. of the 7th IEEE Interna-
tional Workshop on Web Site Evolution, Budapest, Hungary, pages 7–13, September 2005.

[PZ03] Eduardo Kessler Piveta and Luiz Carlos Zancanella. Observer Pattern using Aspect-
Oriented Programming. In Proc. of the 3rd Latin American Conference on Pattern Lan-
guages of Programming (SugarLoafPLoP 2003), Porto de Galinhas, PE, Brazil, August 2003.

[RFG05] Raghu Reddy, Robert France, and Geri Georg. An Aspect Oriented Approach to An-
alyzing Dependability Features. In 6th International Workshop on Aspect-Oriented Mod-
eling (AOM), in conjunction with AOSD 2005, Chicago, Illinois, March 2005.

[RGR+06] Raghu Reddy, Sudipto Ghosh, Robert B. Rance, Greg Straw, James M. Bieman, Eunjee
Song, and Geri Georg. Directives for Composing Aspect-Oriented Design Class Mod-
els. In Transactions on Aspect-Oriented Software Development I, LNCS 3880, pages 75 –
105. Springer-Verlag, 2006.

[RJB05] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Guide. Addison-Wesley, Boston, 2nd edition, 2005.

[RS06] Gustavo Rossi and Daniel Schwabe. Model-Based Web Application Development.
In Emilia Mendes and Nile Mosley, editors, Web Engineering: Theory and Practice of
Metrics and Measurement for Web Development, pages 203–333. Springer, 2006.

284

Bibliography

[RSdLC95] Gustavo Rossi, Daniel Schwabe, Carlos José Pereira de Lucena, and Donald D. Cowan.
An Object-Oriented Model for Designing the Human-Computer Interface Of Hyper-
media Applications. In Proc. of the International Workshop on Hypermedia Design (IWHD
1995), Montpellier, France, pages 123–143, June 1995.

[RSFG06] Raghu Reddy, Arnor Solberg, Robert France, and Sudipto Ghosh. Composing Se-
quence Models using Tags. In 9th International Workshop on Aspect-Oriented Modeling
(AOM) in conjunctino with MoDELS 2006, Genova, Italy, October 2006.

[RSG01] Gustavo Rossi, Daniel Schwabe, and Robson Guimarães. Designing Personalized Web
Applications. In Proc. of the 10th International World Wide Web Conference (WWW 2001),
Hong Kong, China, pages 275–284, May 2001.

[RTT04] Antonia M. Reina, Jesus Torres, and Miguel Toro. Separating Concerns by Means
of UML-profiles and Metamodels in PIMs. In 5th Aspect-Oriented Modeling Workshop
(AOM), in conjunction with UML 2004, Lisbon, Portugal, October 2004.

[RVP06] Gonzalo Rojas, Pedro Valderas, and Vicente Pelechano. Describing Adaptive Naviga-
tion Requirements of Web Applications. In Proc. of the 4th International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2006), Dublin, Ireland, LNCS
4018, pages 318–322, June 2006.

[Sch01] Wieland Schwinger. Modelling Ubiquitous Web Applications - Requirements and Concepts.
PhD thesis, Johannes Kepler University Linz, November 2001.

[Sch06a] Andrea Schauerhuber. aspectUWA: Applying Aspect-Orientation to the Model-
Driven Development of Ubiquitous Web Applications. Student Extravaganza: Poster
Event, 5th International Conference on Aspect-Oriented Software Development
(AOSD 2006), Bonn, Germany, March 2006.

[Sch06b] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

[SdAPM99] Daniel Schwabe, Rita de Almeida Pontes, and Isbela Moura. OOHDM-Web: An
Environment for Implementation of. Hypermedia Applications in the WWW. ACM
SIGWEB Newsletter, 8(2):18–34, 1999.

[Sec02] ITU Telecommunication Standardization Sector. ITU-T Recommendation
Z.100: Specification and Description Language (SDL), Geneva, Switzerland.
http://www.itu.int/rec/T-REC-Z/en, August 2002.

[Sec04] ITU Telecommunication Standardization Sector. ITU-T Recommendation Z.120: Mes-
sage Sequence Chart (MSC), Geneva, Switzerland. http://www.itu.int/rec/T-REC-
Z/en, April 2004.

[SGR02] Daniel Schwabe, Robson Guimarães, and Gustavo Rossi. Cohesive Design of Person-
alized Web Applications. IEEE Internet Computing, 6(2):34–43, 2002.

[SHU02a] Dominik Stein, Stefan Hanenberg, and Rainer Unland. An UML-based Aspect-
Oriented Design Notation. In Proc. of the 1st International Conference on Aspect-Oriented
Software Development (AOSD 2002), Enschede, The Netherlands, pages 106–112, April
2002.

285

Bibliography

[SHU02b] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Designing Aspect-Oriented
Crosscutting in UML. In 1st Workshop on Aspect-Oriented Modeling with UML, in con-
junction with AOSD 2002, Enschede, The Netherlands, March 2002.

[SHU02c] Dominik Stein, Stefan Hanenberg, and Rainer Unland. On Representing Join Points
in the UML. In 2nd International Workshop on Aspect-Oriented Modeling with UML, in
conjunction with UML 2002, September 2002.

[SHU06] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Expressing Different Concep-
tual Models of Join Point Selections in Aspect-Oriented Design. In Proc. of the 5th
International Conference on Aspect-Oriented Software Development (AOSD 2006), Bonn,
Germany, pages 15–26, March 2006.

[SK06] Wieland Schwinger and Nora Koch. Modeling Web Applications. In Gerti Kappel,
Birgit Pröll, Siegfried Reich, and Werner Retschitzegger, editors, Web Engineering -
Systematic Development of Web Applications, pages 39–64. Wiley, June 2006.

[SKK04] Dominik Stein, Jörg Kienzle, and Mohamed Kandé. 5th International Workshop on
Aspect-Oriented Modeling. In UML Modeling Languages and Applications: 2004 Satellite
Activities, Lisbon, Portugal, pages 13–22. Springer-Verlag, October 2004.

[Sof00] Rational Software. Migrating from XML DTD to XMLSchema using UML. Rational
Software White Paper, August 2000.

[SR94] Daniel Schwabe and Gustavo Rossi. From Domain Models to Hypermedia Applica-
tions: An Object-Oriented Approach. In International Workshop on Methodologies for
Designing and Developing Hypermedia Applications, Edinburgh, September 1994.

[SR98] Daniel Schwabe and Gustavo Rossi. An Object Oriented Approach to Web-Based
Applications Design. Theory and Practice of Object Systems, 4(4):207–225, 1998.

[SR05] Stanley M. Sutton, Jr. and Isabelle Rouvellou. Concern Modeling for Aspect-Oriented
Software Development. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors,
Aspect-Oriented Software Development, pages 479–505. Addison-Wesley, Boston, 2005.

[SRB96] Daniel Schwabe, Gustavo Rossi, and Simone Diniz Junqueira Barbosa. Systematic Hy-
permedia Application Design with OOHDM. In Proc. of the 7th Conference on Hypertext
(HT 1996), Washington DC, pages 116–128, March 1996.

[SS02] Daniel Schwabe and César Simões Salim. Integrating Knowledge Management Appli-
cations in the Enterprise The Xerox Knowledge Portal Project. Knowledge and Process
Management, 9(3):190–201, 2002.

[SSK+06] Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner
Retschitzegger, and Manuel Wimmer. Towards a Common Reference Architec-
ture for Aspect-Oriented Modeling. In Proc. of the 8th International Workshop on
Aspect-Oriented Modeling (AOM) at AOSD’06, Bonn, Germany, March 2006.

[SSK+07] Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner
Retschitzegger, Manuel Wimmer, and Gerti Kappel. A Survey on Aspect-Oriented
Modeling Approaches. Technical report, Vienna University of Technology, October
2007.

286

Bibliography

[SSR+05] Arnor Solberg, Devon Simmonds, Raghu Reddy, Sudipto Ghosh, and Robert B.
France. Using Aspect Oriented Techniques to Support Separation of Concerns in
Model Driven Development. In Proc. of the 29th International Computer Software and
Applications Conference (COMPSAC 2005), Edinburgh, Scotland, UK, pages 121–126, July
2005.

[SSW+07] Andrea Schauerhuber, Wieland Schwinger, Manuel Wimmer, Werner Retschitzegger,
and Gerti Kappel. A Survey on Web Modeling Approaches for Ubiquitous Web Ap-
plications. Technical report, Vienna University of Technology, October 2007.

[STW+06] Frans Sanen, Eddy Truyen, Bart De Win, Wouter Joosen, Neil Loughran, Geoff Coul-
son, Awais Rashid, Andronikos Nedos, Andrew Jackson, and Siobhán Clarke. Study
on interaction issues. Technical Report D44 AOSD-Europe-KUL-7, AOSD-Europe,
February 2006.

[SVWJ05] Davy Suvée, Wim Vanderperren, Dennis Wagelaar, and Viviane Jonckers. There are
no Aspects. Electr. Notes Theor. Comput. Sci., 114:153–174, 2005.

[SWK06] Andrea Schauerhuber, Manuel Wimmer, and Elisabeth Kapsammer. Bridging Existing
Web Modeling Languages to Model-Driven Engineering: A Metamodel for WebML.
In Proc. of the 2nd International Workshop on Model-Driven Web Engineering (MDWE
2006), in conjunction with ICWE 2006, Palo Alto, California, USA, page 5. ACM Press,
July 2006.

[SWK+07] Andrea Schauerhuber, Manuel Wimmer, Elisabeth Kapsammer, Wieland Schwinger,
and Werner Retschitzegger. Briding WebML to model-driven engineering: from doc-
ument type definitions to meta object facility. IET Software, 1(3):81–97, 2007.

[SWS+07] Andrea Schauerhuber, Manuel Wimmer, Wieland Schwinger, Elisabeth Kapsammer,
and Werner Retschitzegger. Aspect-Oriented Modeling of Ubiquitous Web Applica-
tions: The aspectWebML Approach. In Proc. of the 14th Annual IEEE International Con-
ference and Workshops on the Engineering of Computer-Based Systems (ECBS’07), Tucson,
Arizona, USA, pages 569–576, March 2007.

[TC04] Olga De Troyer and Sven Casteleyn. Designing Localized Web Sites. In Proc. of the 5th
International Conference on Web Information Systems Engineering (WISE 2004), Brisbane,
Australia, LNCS 3306, pages 547–558, November 2004.

[Tea05] The AspectJ Team. The AspectJ (TM) Programming Guide. http://www.eclipse.org/
aspectj/, October 2005.

[TFPP04] Victoria Torres, Joan Fons, Vicente Pelechano, and Oscar Pastor. Navigational mod-
eling and the semantic web. an ontology based approach. In Proceedings of the Joint
Conference 10th Brazilian Symposium on Multimedia and the Web & 2nd Latin American
Web Congress, (WebMedia & LA-Web 2004), Ribeirao Preto-SP, Brazil, pages 94–96. IEEE
Computer Society, October 2004.

[TL98] Olga De Troyer and C. J. Leune. WSDM: A User Centered Design Method for Web
Sites. Computer Networks, 30(1-7):85–94, 1998.

287

Bibliography

[TOHS99] Peri L. Tarr, Harold L. Ossher, William H. Harrison, and Stanley M. Sutton, Jr. N De-
grees of Separation: Multi-Dimensional Separation of Concerns. In Proc. of the 21st In-
ternational Conference on Software Engineering (ICSE 1999), Los Angeles, California, pages
107–119, May 1999.

[Tom07] Cornelia Tomasek. Integration von crosscutting concerns in aspectwebml. Master’s
thesis, Vienna University of Technology, To be finished, 2007.

[TPRV05] Victoria Torres, Vicente Pelechano, Marta Ruiz, and Pedro Valderas. A Model Driven
Approach for the Integration of External Functionality in Web Applications. The
Travel Agency System. In Proc. of 1st Workshop on Model-Driven Web Engineering, in
conjunction with ICWE 2005), Sydney, Australia, pages 1–11, July 2005.

[vdBCC05] Klaas van den Berg, José M. Conejero, and Ruzanna Chitchyan. AOSD Ontology 1.0
- Public Ontology of Aspect-Orientation. Technical Report D9 AOSD-Europe-UT-01,
AOSD-Europe, May 2005.

[vdSHBC06] Kees van der Sluijs, Geert-Jan Houben, Jeen Broekstra, and Sven Casteleyn. Hera-S
- Web Design Using Sesame. In Proc. of the 6th International Conference on Web Engi-
neering (ICWE 2006), Palo Alto, CA, USA, pages 337–344, July 2006.

[vFGC04] Christina von Flach Garcia Chavez. A Model-Driven Approach for Aspect-Oriented De-
sign. PhD thesis, Pontifı́cia Universidade Católica do Rio de Janeiro, April 2004.

[vFGCdL03] Christina von Flach Garcia Chavez and Carlos J. P. de Lucena. A Theory of Aspects
for Aspect-Oriented Software Development. In 7th Brazilian Symposium on Software
Engineering (SBES 2003), October 2003.

[VFP05] Pedro Valderas, Joan Fons, and Vicente Pelechano. Using Task Descriptions for the
Specification of Web Application Requirements. In Anais do WER05 - Workshop em
Engenharia de Requisitos, Porto, Portuga, pages 257–268, June 2005.

[VH02] Richard Vdovjak and Geert-Jan Houben. Providing the Semantic Layer for WIS De-
sign. In Proc. of the 14th International Conference on Advanced Information Systems Engi-
neering (CAISE 2002), Toronto, Canada, LNCS 2348, pages 584–599, May 2002.

[VIG05] Fabio Vitali, Angelo Di Iorio, and Daniele Gubellini. Design patterns for descriptive
document substructures. In Proceedings of the Extreme Markup Languages Conference,
Montréal, Quebec, Canada, August 2005.

[VSdS00] Patricia Vilain, Daniel Schwabe, and Clarisse Sieckenius de Souza. A Diagrammatic
Tool for Representing User Interaction in UML. In Proc. of the 3rd International Confer-
ence on the Unified Modeling Language (UML 2000), York, UK, LNCS 1939, pages 133–
147, October 2000.

[VVFP07] Francisco Valverde, Pedro Valderas, Joan Fons, and Oscar Pastor. A MDA-based En-
vironment for Web Applications Development: From Conceptual Models to Code. In
International Workshop on Web-oriented Software Technology (IWWOST 2007), in conjunc-
tion with ICWE 2007, Como, Italy, July 2007.

288

[W3C04a] World Wide Web Consortium W3C. Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies 1.0. http://www.w3.org/TR/CCPP-struct-
vocab/, January 2004.

[W3C04b] World Wide Web Consortium W3C. OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/, February 2004.

[W3C04c] World Wide Web Consortium W3C. RDF Primer. (XML) 1.1 (Second Edition).
http://www.w3.org/TR/rdf-primer/, February 2004.

[W3C04d] World Wide Web Consortium W3C. XML Schema Part 0: Primer Second Edition.
http://www.w3.org/TR/XML Schema-0/, October 2004.

[W3C06] World Wide Web Consortium W3C. Extensible Markup Language (XML) 1.1 (Second
Edition). http://www.w3c/TR/xml11/, September 2006.

[WCWH03] Arouna Woukeu, Leslie Carr, Gary Wills, and Wendy Hall. Rethinking Web Design
Models: Requirements for Addressing the Content. Technical Report ECSTR-IAM03-
002, University of Southampton, 2003.

[WS00] Retschitzegger Werner and Wieland Schwinger. Towards Modeling of Data Web Ap-
plications A Requirements’ Perspective. In Proc. of Americas Conference on Information
Systems (AMCIS 2000), Long Beach, USA, August 2000.

[WS01] Roy Want and Bill N. Schilit. Guest Editors’ Introduction: Expanding the Horizons of
Location-Aware Computing. IEEE Computer, 34(8):31–34, 2001.

[WSKK06] Manuel Wimmer, Andrea Schauerhuber, Elisabeth Kapsammer, and Gerhard Kramler.
From Document Type Definitions to Metamodels: The WebML Case Study. Technical
report, Vienna University of Technology, March 2006.

[ZBKK05] Gefei Zhang, Hubert Baumeister, Nora Koch, and Alexander Knapp. Aspect-Oriented
Modeling of Access Control in Web Applications. In 6th International Workshop on
Aspect-Oriented Modeling (AOM), in conjunction with AOSD 2005, Chicago, Illinois,
March 2005.

[ZCVG06] Jing Zhang, Thomas Cottenier, Aswin Van Den Berg, and Jeff Gray. Aspect Interfer-
ence and Composition in the Motorola Aspect-Oriented Modeling Weavr. In 9th In-
ternational Workshop on Aspect-Oriented Modeling (AOM), in conjunction with MODELS
2006, Genova, Italy, October 2006.

Curriculum Vitae

Andrea Schauerhuber, MSc.
Pfarrgasse 13 Email: schauerhuber@wit.tuwien.ac.at
3462 Absdorf, Austria Web: http://www.wit.at/people/schauerhuber

Date of Birth: 15-Jan-1982
Nationality: Austria

Education

PhD Studies in Business Informatics November 2004 - December 2004
Vienna University of Technology, Austria
Supervision:
o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel, Vienna University of Technology, Austria
a.Univ.-Prof. Mag. Dr. Werner Retschitzegger, Johannes Kepler University Linz, Austria

MSc Business Informatics October 2000 - October 2004
Vienna University of Technology, Austria
Supervision: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel
Thesis: Entwicklung eines webbasierten Institutsinformationssystems - Separation of Concerns
und seine Umsetzung in LAMP.
Graduation magna cum laude.

Graduation cum laude from Secondary School June 2000

Work Experience

Project Assistant November 2004 - December 2007
Vienna University of Technology, Institute of Software Technology and Interactive Systems

Trainer for admina.at (www.wit.at/admina.at) September 2003 - November 2004
Vienna University of Technology, Institute of Software Technology and Interactive Systems
Design of the courses ”PC Hardware” and ”Programming” for female students and female pupils.

Tutor October 2001 - June 2004
Vienna University of Technology, Institute of Software Technology and Interactive Systems
Courses:
• Introduction to Programming with Java
• Business Modeling & Engineering (EPC, RAD, Petri-Nets, IDEF)

Web Application Developer July 2002 - September 2002
Interior Decorator, Christian Hein
Design & Implementation of the Company’s Website.

Internship T-Systems Austria (Sales) July 2001

Internship IBM Austria (Sales) August 2000

Internship IBM Austria (Sales) July 1999

Awards & Achievments

Award for Outstanding Academic Performance 2005
Received from the Austrian Federal Ministry for Education, Science and Culture
(In German: Würdigungspreis des bm:bwk für außerordentliche Studienleistungen)
Lower Austria Top-Scholarship 2003
(In German: Top-Stipendium des Landes Niederösterreich)

Publications

1. Manuel Wimmer, Andrea Schauerhuber, Michael Strommer, Wieland Schwinger, and Gerti
Kappel. “A Semi-automatic Approach for bridging DSLs with UML”. Proc. of the 7th OOP-
SLA Workshop on Domain-Specific Modeling, in conjunction with OOPSLA’07, Montreal,
Canada, October 2007.

2. Manuel Wimmer, Andrea Schauerhuber, Wieland Schwinger, and Horst Kargl. “On the In-
tegration of Web Modeling Languages: Preliminary Results and Future Challenges”. Proc.
of the 3rd Int. Workshop on Model-Driven Web Engineering (MDWE 2007), in conjunction
with ICWE’07, Como, Italy, July 2007.

3. A. Vallecillo, N. Koch, C. Cachero, S. Comai, P. Fraternali, I. Garrigós, J. Gómez, G. Kappel,
A. Knapp, M. Matera, S. Meliá, N. Moreno, B. Pröll, T. Reiter, W. Retschitzegger, J. E. Rivera,
A. Schauerhuber, W. Schwinger, M. Wimmer, G.Zhang: “MDWEnet: A Practical Approach
to Achieving Interoperability of Model-Driven Web Engineering Methods”. Proc. of the
3rd Int. Workshop on Model-Driven Web Engineering (MDWE 2007), in conjunction with
ICWE’07, Como, Italy, July 2007.

4. Andrea Schauerhuber, Manuel Wimmer, Elisabeth Kapsammer, Wieland Schwinger, and
Werner Retschitzegger. “Bridging WebML to Model-Driven Engineering: From DTDs to
MOF”. IET Software Journal, Vol. 1, No. 3, Institution of Engineering and Technology, June
2007.

5. Andrea Schauerhuber, Manuel Wimmer, Wieland Schwinger, Elisabeth Kapsammer, and
Werner Retschitzegger. “Aspect-Oriented Modeling of Ubiquitous Web Applications: The
aspectWebML Approach”. Proc. of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS’07), Tucson, Arizona,
USA, March 2007.

6. Gerti Kappel, Horst Kargl , Gerhard Kramler , Andrea Schauerhuber , Martina Seidl, Michael
Strommer, and Manuel Wimmer. “Matching Metamodels with Semantic Systems - An Ex-
perience Report”. 12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und
Web, Aachen, Germany, March 2007.

7. Manuel Wimmer, Andrea Schauerhuber, Michael Strommer, Jürgen Flandorfer, Wieland
Schwinger, and Gerti Kappel. “How Web 2.0 can leverage Model Engineering in Practice”.
Technical Report, Vienna University of Technology, submitted.

8. Thomas Reiter, Werner Retschitzegger, Andrea Schauerhuber, Wieland Schwinger, Elisa-
beth Kapsammer. “Enabling API-based Tool Integration through Aspect-Orientation”. 2nd
Workshop on Models and Aspects, in conjunction with ECOOP’06, Nantes, France, July
2006.

9. Andrea Schauerhuber, Manuel Wimmer, and Elisabeth Kapsammer. “Bridging existing Web
Modeling Languages to Model-Driven Engineering: A Metamodel for WebML.” Proc. of the
2nd Int. Workshop on Model-Driven Web Engineering (MDWE 2006), in conjunction with
ICWE’06, Standford Linear Accelerator Center, Palo Alto, California, USA, July 2006.

10. Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner Retschitzegger,
Manuel Wimmer. “Towards a Common Reference Architecture for Aspect-Oriented Model-
ing”. 8th International Workshop on Aspect-Oriented Modeling, in conjunction with AOSD
2006, Bonn, Germany, March 21, 2006.

11. Andrea Schauerhuber. “aspectUWA: Applying Aspect-Orientation to the Model-Driven De-
velopment of Ubiquitous Web Applications”. Student Extravaganza: Spring School, AOSD
2006, Bonn, Germany, 2006.

12. Andrea Schauerhuber. “aspectUWA: Applying Aspect-Orientation to the Model-Driven De-
velopment of Ubiquitous Web Applications”. Student Extravaganza: Poster Event, AOSD
2006, Bonn, Germany, 2006.

Technical Reports

1. Andrea Schauerhuber, Wieland Schwinger, Werner Retschitzegger, Manuel Wimmer, and
Gerti Kappel. “A Survey on Web Modeling Approaches for Ubiquitous Web Applications”.
Technical Report, Vienna University of Technology, October 2007.

2. Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner Retschitzegger,
Manuel Wimmer, and Gerti Kappel. “A Survey on Aspect-Oriented Modeling Approaches”.
Technical Report, Vienna University of Technology, October 2007.

3. Manuel Wimmer, Andrea Schauerhuber, Elisabeth Kapsammer, and Gerhard Kramler. “From
Document Type Definitions to Metamodels: The WebML Case Study”. Technical Report, Vi-
enna University of Technology, March 2006.

4. Wieland Schwinger, Christoph Grün, Birgit Pröll, Werner Retschitzegger, and Andrea Schauer-
huber. “Context-awareness in Mobile Tourism Guides - A Comprehensive Survey”. Techni-
cal Report, July 2005.

Teaching Experience

• Course on Modeling Techniques and Methods (Fall Term 2005):
ER, UML

• Course on Modeling Engineering (Fall Term 2006, 2007):
UML, MDA, EMF, ATL

• Course on Web Engineering (Summer Term 2007):
Web Application Development with WebML and WebRatio

Master Theses Co-Supervised

Mario Prinz: “Modellgetriebene Entwicklung ubiquitärer Web Anwendungen - Evaluierung ak-
tueller Ansätze und Werkzeuge”, April 2006.

Petra Brosch: “Ubiquitäre Web-Anwendungen - Realisierung von Adaptierung mit Hilfe aspek-
torientierter Programmierung”, November 2006.

Rudolf Mayer: “Ubiquitäre Web-Anwendungen - Entwicklung endgeräteunabhängiger Lösungs-
ansätze”, February 2007.

Arnold Weissensteiner: “Ubiquitäre Web-Anwendungen Modellierung und Implementierung
von Kontext Information”, February 2007.

Gerhard Preisinger: “Towards Model-driven Web Application Development with aspectWebML
- An Integrated Graphical Development Environment”, To be finished, 2007.

Cornelia Tomasek: “Integration von Crosscutting Concerns in aspectWebML ”, To be finished,
2007.

