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Zusammenfassung

Am Paul Scherrer Institut (PSI) wurden die hadronische Verschiebung (ε1s) und Breite

(Γ1s) des Grundzustandsniveaus im pionischen Wasserstoff im Rahmen eines Präzisions-

experimentes (PSI-Experiment R-98-01) erneut gemessen. Die messbaren Größen ε1s und

Γ1s stehen in direktem Zusammenhang mit den Pion-Nukleon Isospinstreulängen. Die ex-

akte Kenntnis dieser Streulängen erlaubt eine Überprüfung der Aussagekraft von im nie-

derenergielimit der Quantenchromodynamik (QCD) definierten effektiven Feldtheorien,

wie zum Beispiel der Chiralen Störungstheorie. Darüber hinaus ist Γ1s mit der Pion-

Nukleon Kopplungskonstante fπN verknüpft. Die präzise Kenntnis von fπN erlaubt eine

genaue Bestimmung der Goldberger-Treiman-Diskrepanz, die ein Maß für die chirale Sym-

metriebrechung darstellt.

Die Verschiebung ε1s erhält man durch die Bildung der Differenz aus gemessenem Ener-

giewert und dem rein elektromagnetischen Wert. Γ1s erhält man aus der Entfaltung

des Linienprofils bestehend aus hadronischer Breite, instrumenteller Auflösungsfunktion

und Doppler-Verbreiterung. Die Doppler-Verbreiterung wird ausgelöst durch die Konver-

sion der Abregungsenergie aus Coulomb-Übergängen in kinetische Energie der pionischen

Wasserstoff-Atome (π−p).

Die Messungen wurden am hoch-intensiven Pionen-Strahl der Beschleunigeranlage des

PSI durchgeführt. Gemessen wurden Röntgenübergange in den Grundzustand von pio-

nischem Wasserstoff: π−pnp→1s mit n = 2, 3, 4. Im Gegensatz zu den Energien dieser

Strahlungsübergänge (wenige keV), liegen die Energien der hadronischen Effekte lediglich

im Bereich einiger eV. Daher ist die Verwendung eines hochauflösenden Kristallspektro-

meters unumgänglich.

Der Pionen-Strahl wurde mittels einer Zyklotronfalle in ein kryogenisches Wasserstoffgas-

Target geführt. Die von den gebildeten pionischen Wasserstoff-Atomen ausgesendeten

Röntgenstrahlen wurden an dem hochauflösenden Kristallspektrometer reflektiert und

schließlich von einem großflächigen positionsempfindlichen Detektor nachgewiesen.

Die instrumentelle Auflösungsfunktion wurde mittels schmaler Röntgenübergänge in hoch-

ionisierten Atomen in einer Elektron-Zyklotron-Resonanz-Ionenfalle gemessen.

Die kinetische Energieverteilung der π−p wurde durch ein Modell mit Box-artigen Vertei-

lungen angenähert. Die Gültigkeit dieses Modells wurde anhand des 3p→ 1s Übergangs

im nahe verwandten System des müonischen Wasserstoffs (μ−p) überprüft. Im Gegensatz

zum Pion unterliegt das Müon nicht der starken Wechselwirkung. Daher ist das Linien-

profil von Röntgenübergängen in μ−p sehr sensitiv auf die Doppler-Verbreiterung.

Zusammen mit der gemessenen instrumentellen Auflösungsfunktion wurde das Modell für

die kinetische Energieverteilung in einem Analyseverfahren zur Bestimmung von Γ1s ver-

wendet. Dieses Analyseverfahren wurde in dieser Arbeit entwickelt und erstmals auf den

4p → 1s Übergang in π−p angewendet. Man erhält Γ1s = 765± 56 meV. Dies entspricht

einer Genauigkeit von 7.3%.
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Abstract

In a new high-precision experiment at the Paul Scherrer Institute (PSI), the hadronic

shift (ε1s) and width (Γ1s) were remeasured (PSI-Experiment R-98-01). The measured

quantities ε1s and Γ1s are directly connected to the pion-nucleon isospin scattering lengths.

The precisely determined scattering lengths can be confronted with recent work of effective

field theories defined in the low-energy limit of quantum chromodynamics (QCD), such as

e. g. chiral perturbation theory (ChPT). In addition, Γ1s is connected to the pion-nucleon

coupling constant fπN . A precisely known value for fπN allows an accurate determination

of the Goldberger-Treiman discrepancy, which constitutes a measure of chiral symmetry

breaking.

The shift ε1s is given by the difference between the measured X-ray energy and the

purely electromagnetic value. Γ1s is obtained by deconvolution of the measured line-shape

consisting of the hadronic broadening, the instrumental response function and Doppler-

broadening. Doppler-broadening is caused by the conversion of the deexcitation energy

from the Coulomb deexcitation into kinetic energy of pionic atoms.

The measurements were performed using the high-intensity pion beam available at the PSI

accelerator facility. X-rays emitted during the transition into the ground state of pionic

hydrogen, i. e., the π−pnp→1s transitions with n = 2, 3, 4, were measured. In contrast to

the energy of these radiative transitions (a few keV), the hadronic effects are only of the

order of a few eV. Thus, in order to access such small effects, the use of a high-resolution

crystal spectrometer is indispensable.

With a cyclotron trap, the pions were guided into a cryogenic hydrogen gas target where

pionic hydrogen (π−p) atoms are formed. X-rays emitted from the π−p atoms were re-

flected at the high-resolution crystal spectrometer onto a large area position-sensitive

detector.

The instrumental response function was measured using narrow X-ray transitions from

highly ionised atoms produced in an electron cyclotron resonance ion trap.

The kinetic energy distribution of pionic atoms was approximated by a model using box-

like distributions. This approach was verified in a measurement of the 3p → 1s X-ray

transition in muonic hydrogen (μ−p). Unlike pions, muons do not experience the strong

interaction and thus, the line-shape of the emitted X-rays is very sensitive to Doppler-

broadening.

Together with the measured instrumental response function, this model for the kinetic

energy distribution was used in an analysis method to extract Γ1s. This analysis method

was developed in this work and first applied to the 4p→ 1s transition in pionic hydrogen.

The results reads Γ1s = 765± 56 meV and corresponds to an accuracy of 7.3%.
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1 Introduction

1.1 Exotic atoms

Exotic atoms are atoms where the electron is replaced by another negatively charged

particle, like a pion π− (Figure 1.1). The pion is captured in the Coulomb field of the

nucleus into a highly excited atomic state and deexcites to the ground state via various

processes comprising the so-called atomic cascade.

In general, the cascade is dominated by collisional processes such as for instance the Auger

effect and the Coulomb deexcitation. The Coulomb deexcitation is of special interest,

since the energy released in the deexcitation process is converted into kinetic energy of the

involved pionic atoms and therefore considerably changes their kinetic energy distribution.

Only at the final stages of the cascade, radiative deexcitation starts to become relevant.

The measurement of X-rays emitted at this stage allows a direct investigation of properties

of pionic atoms.

π− X-ray

e−

Figure 1.1: Schematic drawing of a pionic atom. After the capture of a pion in a high

lying orbit, pionic atoms deexcite to lower states by emitting electrons via the internal

Auger effect. For lower states, radiative deexcitation dominates under the emission of

X-rays.
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1 Introduction

1.1.1 Pion-nucleon interaction

Due to its hadronic nature, the pion – once arrived in the ground state – interacts with

the nucleon via the strong interaction. This causes a shift ε1s and a broadening Γ1s

of the atomic 1s state, influencing the energy and line shape of X-rays emitted during

transitions into the ground state. The strong interaction shift is usually defined as the

difference between the measured transition energy and the value calculated within quan-

tum electrodynamics (QED) ε1s := Eexp −EQED. Hence, pionic atoms allow the study of

the pion-nucleon interaction at threshold. In contrast to scattering experiments, measure-

ments directly at threshold render a difficult extrapolation to zero energy unnecessary.

A relation between the measurable quantities ε1s and Γ1s and the s-wave scattering am-

plitude of the pion-nucleon scattering was derived by Deser, Goldberger, Baumann and

Thirring (DGBT) [1] and it reads

−ε1s + iΓ1s =
2π

μ
fπ−p

0 (0) |Ψ1s (0)|2 . (1.1)

Here μ is the reduced mass of the system and |Ψ1s (0)|2 = α3μ3/π denotes the square of

the Coulomb wave function of the atom at the origin and therefore is a measure for the

probability that the pion and the nucleon are close to each other. α is fine structure con-

stant. The scattering amplitude at threshold, fπ−p
0 (0), is related to the hadronic s-wave

scattering lengths.

The comparison of precise experimental values for the scattering lengths, to precise pre-

dictions from low-energy effective field theories such as e. g. chiral perturbation theory

(ChPT), allows direct studies of the properties of the low-energy QCD. ChPT is formu-

lated in the so-called chiral limit (vanishing quark masses) and exploits the symmetry

properties of QCD.

Additionally, the values for the scattering lengths are used as input for the determination

of further important parameters of low-energy QCD such as the pion-nucleon coupling

constant, determining the strength of the coupling of a pion to a nucleon. From the accu-

rately known pion-nucleon coupling constant in turn the Goldberger-Treiman discrepancy

is determined, which is a measure of chiral symmetry breaking due to the non-vanishing

quark-masses.

Experiments with exotic atoms Pions constitute the best laboratory for testing the ap-

proach provided by ChPT, since pions are light particles including only u and d quarks.

For the pion-pion system, an experimental test will be provided by the DIRAC exper-

iment [2], which measures the lifetime of pionium (π+π−). The pion nucleon system

(π−N), subject of this work, will allow accurate tests of Heavy Baryon ChPT (HBChPT).

HBChPT is an extension of ChPT and includes nucleons.

2



1.2 Pionic hydrogen experiments

Apart from pionic systems, the DEAR collaboration measured the shift and width of the

ground state in kaonic hydrogen (K−p) at the DAΦNE accelerator facility [3]. This sys-

tem is of special interest, since kaons include strange quarks. However, this experiment

is very challenging due to the low intensity kaon beam available and the results of the

DEAR experiment are expected to be improved by the SIDDHARTA experiment [4].

1.2 Pionic hydrogen experiments

The possibility of investigating the pion-nucleon interaction directly at threshold, gave

pionic hydrogen experiments a long history. First experiments were performed already

in the 1970s at CERN [5], where a gas proportional counter was mounted directly at the

hydrogen gas target.

Following this experiment, all experiments had a similar setup: After slowing down the

pions and stopping them in a gas target, the emitted X-rays are reflected by a Bragg

spectrometer and finally they are detected at a position sensitive detector. The usage of

Bragg crystals is essential in order to obtain high energy resolution.

In 1985 an experiment to extract the strong interaction shift and width of pionic hydrogen

was started at the Paul-Scherrer-Institute [6], measuring the 3p → 1s X-ray transition.

The final value given for the shift is

ε1s = +7.108± 0.047 eV,

(using the pionic argon Kα transition as calibration) and for the width

Γ1s = 868± 78 meV.

This amounts in an error of 0.7% for the shift and 9% for the width.

To increase the accuracy of ε1s and Γ1s, a new experiment was proposed in 1998 [7]. The

goal of this new pionic hydrogen experiment is the determination of the hadronic energy

shift ε1s and width Γ1s with an accuracy of 0.2% and 2%, respectively. This requires

several improvements on both, the experimental and the analysis side.

The new pionic hydrogen experiment was set up at PSI using the high pion flux available

at the PSI accelerator facility. The main components of the experimental setup and their

main function are:

Cyclotron trap: The cyclotron trap consists of a superconducting split coil magnet, pro-

ducing a weakly focusing axial �B-field. The pion beam is moderated by built in

plastic degraders and led into the target cell. In this device the stop efficiency is

increased by a factor of 200, compared to a linear stop arrangement.

3



1 Introduction

Cryogenic target: In the target gas, pionic hydrogen atoms are formed and pionic hy-

drogen X-rays are emitted. The cryogenic target cell allowed to cover a high density

range for the hydrogen gas.

Crystal spectrometer: The emitted X-rays are energy-analysed with a high resolution

(ΔE/E = 10−4) Bragg spectrometer using large spherically bent crystals.

CCD detector: The reflected X-rays are measured at a large area CCD detector with

good quantum efficiency for X-rays in the range of 2-3 keV. Significant background

suppression is achieved from the two-dimensional pattern recognition.

The measurements were started with an engineering run end of 2000. In the years 2001

and 2002 the three different pionic hydrogen transitions, the 4p → 1s, 3p → 1s and

2p→ 1s, were measured.

In 2003, the final value for the shift was given in [8] and it reads

ε1s = +7.120± 0.008+0.008
−0.009 eV,

which amounts in an error of 0.2%. It was extracted from the 3p → 1s pionic hydrogen

transition using the pionic oxygen 6h→ 5g transition for energy calibration.

For Γ1s, only an upper constraint (Γ1s ≤ 850 meV) was given in [8]. This is mainly due to

the lack of information on the kinetic energy distribution of the atoms leading to Doppler

broadening of the spectra at the time the analysis was performed.

To increase the accuracy of the hadronic width Γ1s, special attention was turned to the

instrumental response function and to the influence of the Doppler broadening caused by

Coulomb deexcitation.

In 2002, first measurements in order to systematically determine the instrumental re-

sponse function using narrow X-ray transitions from highly ionised atoms produced in

an electron cyclotron resonance ion trap (ECRIT) were performed. These measurements

were continued and completed in 2005.

In 2004, a measurement of muonic hydrogen was performed. Unlike pions, muons do not

interact strongly and that way allow detailed studies of the influence the kinetic energy

distribution of the muonic atoms has on the line-shape of the emitted X-rays.

Data taking was completed by a measurement of pionic deuterium and a second measure-

ment of the 4p→ 1s transition in 2006.

During all measurement periods much effort was put into the improvement of the concrete

shielding between the X-ray source (cyclotron trap) and the Bragg spectrometer.

The development of the necessary analysis strategy on the basis of the 4p → 1s pionic

hydrogen X-ray transition is the main task of this work. The choice of the 4p → 1s

transition is a consequence of the fact, that it is least influenced by Doppler broadening.

4



1.2 Pionic hydrogen experiments

The document is organised as follows. Chapter 2 gives a short introduction to the atomic

cascade with emphasis on the status of the understanding of the kinetic energy distribution

of the pionic atoms. In chapter 3, the pion-nucleon interaction and important quantities

such as low-energy scattering lengths and their relation to experimentally accessible quan-

tities is outlined. Chapter 4 introduces the components of the experimental setup. The

measurement and extraction of the instrumental response function is described in chapter

5. Chapter 6 gives a comprehensive description of the analysis method for extracting the

hadronic 1s width in pionic hydrogen. Concluding remarks are given in chapter 7.
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2 Pionic hydrogen

2.1 Formation of exotic atoms

Exotic atoms are systems in which a negatively charged particle (π−, μ−, K−, p̄) is

captured by the Coulomb field of the nucleus A(Z, N) (see also Figure 1.1). Their existence

was predicted in the 1940s [9–12] and first experimental evidence was found from the

observation of Auger electrons in photographic emulsions [13].

In leading order, given by the Bohr model, the binding energy EB and the Bohr radii rB

and hence the expectation values of orbit radii 〈rn〉 of captured particles are proportional

to the reduced mass μred =
mnucl·mx−
mnucl+mx−

of the system and 1/μred, respectively:

EB =
μredc

2α2Z2

2n2
, (2.1)

rB =
�c

μredc2αZ
, (2.2)

〈rn〉 = rB ·
[
3n2 − l(l + 1)/2

]
, (2.3)

with the reduced Planck constant �, the vacuum speed of light c, the fine structure con-

stant α, nuclear charge Z, the angular momentum l and principal quantum number n.

Since the captured particles are heavier than the electron, the binding energy of the exotic

system is increased by about a factor mx−/me (me is the mass of the electron) and the

size of the exotic atom decreases by the same factor. Even for lightest particles, the muon

or the pion, the size of the formed exotic atom is rather at the nuclear than at the atomic

scale.

For capture, the particle has to be slowed down to kinetic energies of a few tens of eV. This

deceleration allows the particle to be captured in a highly excited state with a principal

quantum number n ∼
√

μred/me and statistically distributed initial angular momentum

l. For the distribution of l mostly the modified statistical distribution (2l + 1)αl is used,

where α is fitted to the data and is usually |α| < 0.2. After capture, the formed exotic

atoms deexcite to lower lying states by a number of processes (external Auger effect, ra-

diative transitions, Coulomb deexcitation etc.). These processes constitute the so-called

atomic cascade (see Figure 2.1 for a schematic view). Finally, the cascade is terminated

by nuclear capture or weak decay of the particle x−.

7



2 Pionic hydrogen

Figure 2.1: Scheme of the atomic cascade in pionic hydrogen. Pionic hydrogen is formed

with the capture of pions in highly excited states. In the upper part of the cascade

the dominant deexcitation process is the Coulomb deexcitation. In the intermediate

stage n ∼ 8 the Auger deexcitation with Δn = 1 is dominant. The final part of the

cascade n < 6 is characterised by a competition between Auger, Coulomb, and radiative

deexcitation and nuclear reactions from the s states.

The investigation of strong interaction was the main motivation for studying exotic atoms,

since exotic atoms have binding energies in the keV range and therefore allow experiments

equivalent to scattering at vanishing relative energy. This offers the possibility for study-

ing the hadron-nucleon interaction at threshold, without the need of extrapolation, as

necessary for the low-energy scattering data.

The strong interaction influences the atomic s-levels throughout the cascade. However,

at the final stage of the cascade, where the captured particle closely approaches the nu-

cleus, this influence becomes observable. The caused shift ε1s (compared to the purely

electromagnetic case) and the decrease of the life time of the ground-state, which leads

to a broadening Γ1s of X-ray transitions into the 1s-state, are experimentally accessible

8



2.2 Atomic cascade of pionic hydrogen

Process Example

Radiative transitions: (x−p)nl → (x−p)n′,l−1 + γ

Stark transitions: (x−p)nl + H2 → (x−p)nl′ + H∗
2

External Auger effect: (x−p)nl + H→ (x−p)n′l′ + p + e−

Coulomb transitions: (x−p)nl + H2 → (x−p)n′l′ + H + H, n′ < n

Elastic scattering: (x−p)nl + H2 → (x−p)nl + H∗
2

Nuclear reaction: (π−p)nl=0 + H→ π0 + n, γ + n

Weak decay: π− → μ− + ν̄μ

Molecular states: (π−p) + H2 →
(
{π−pp}∗ pee

)∗
Table 2.1: Summary of different cascade processes – with examples – in exotic hydrogen.

and allow a direct investigation of the effects of the strong interaction.

2.2 Atomic cascade of pionic hydrogen

For atoms with Z > 2, the atomic cascade is mainly comprised of the Auger emission of

electrons (internal Auger effect) and the radiative decay. For pionic hydrogen, however,

additional effects, such as Stark mixing and Coulomb deexcitation play an important role.

Since exotic hydrogen is electrically neutral, it is able to approach closely the nuclei of the

surrounding atoms and experiences their Coulomb field. These collisions, have a substan-

tial effect on the further development of the atomic cascade. In Table 2.1 a summary of

the processes comprising the atomic cascade in exotic hydrogen is given. In general, the

whole atomic cascade is characterised by a competition between the different processes

listed in Table 2.1.

The cascade is dominated by collisional processes. The main collisional processes impor-

tant for the understanding of the atomic cascade are the Stark mixing, the external Auger

effect and the Coulomb deexcitation. The cross-sections of non-radiative transitions are

of geometrical order, i. e. σcoll ≈ 〈rn〉2, thus collisional processes are proportional to the

target gas density. Even at low densities, the collisional deexcitation dominates over the

radiative transitions through the whole cascade, except for the lowest part with n = 2, 3.

At low n, radiative deexcitation is the dominant process.

Stark mixing is characterised by transitions among the l–sub-levels with the same n and

is a very fast process. In the external Auger effect, the transition energy is mainly carried

away by the emitted electron. The dominating process in the initial stage of the atomic

cascade is the Coulomb deexcitation. The transition energy gained from this process is

9



2 Pionic hydrogen

Figure 2.2: Transition rates for pionic hydrogen with the lab kinetic energy T = 1 eV

as function of the principal quantum number in a gaseous H-target at 3 bar. The figure

is taken from [14].

shared among the colliding particles, which results in a substantial acceleration. A decel-

eration, however, is caused by elastic, inelastic and Stark collisions. Figure 2.2 displays

an example of the n-dependence of the atomic cascade for pionic hydrogen.

Since collisional processes significantly change the velocity of exotic atoms during the

deexcitation, it is very important to include these effects in theoretical calculations of

cascade effects. The standard cascade model (SCM) for exotic hydrogen atoms [15, 16]

developed in the 60–80th was able to describe the basic features of the atomic cascade.

However, the cascade rates are calculated for a fixed value of the kinetic energy T only,

with T being treated as a fit parameter.

A recently developed cascade model, the so-called extended standard cascade model (ESCM)

[17–19] was developed in order to overcome this limitation. It includes all processes from

the SCM and, in addition, takes into account the evolution of the kinetic energy distri-

bution during the cascade.

Presently, the understanding of the life history of a π−p atom (which is the exotic system

of interest throughout this paper) can be divided into three parts, see reference [19]:

Upper part (n > 8): The pionic atoms are formed by atomic capture in high orbits

with a broad distribution of the principal quantum number around n = 15, see

reference [20]. A realistic median initial kinetic energy of the π−p is 0.5 eV, as

suggested in [17]. For n > 8 the deexcitation mainly takes place via Coulomb and

10



2.2 Atomic cascade of pionic hydrogen

Stark collisions:

(π−p)nl + H2 →
{

(π−p)n′l′ + H∗
2

(π−p)n′l′ + H + H
(2.4)

(π−p)nl + H → (π−p)n′l′ + H, (2.5)

with n′ < n for Coulomb and n′ = n in Stark collisions.

Cascade calculations for muonic hydrogen have shown, that with increasing n the

cross-section for Coulomb deexcitation increases and that the cross-section for the

molecular target H2 is larger by a factor of about 2–3, compared with the one of

atomic hydrogen. Moreover, Δn = 1 transitions dominate for atomic hydrogen,

whereas transitions with Δn > 1 are dominant for the molecular case.

Considering the Stark collisions, the cross-sections with molecular hydrogen are

less than twice the atomic ones. This is due to two reasons. First, the molecular

screening effect in H2 (the electrical fields of the two hydrogen atoms cancel each

other). Second, the Coulomb cross-section makes up a large fraction of the total

cross-section, which leads to a decrease for the Stark cross-section. After completing

this stage, most π−p atoms are accelerated to kinetic energies of a few eV. For a

detailed discussion the reader is referred to [18].

Intermediate part (7 ≤ n ≤ 8): The intermediate part of the cascade is dominated by

external Auger transitions:

(π−p)nl + H→ (π−p)n′l′ + p + e−, n′ < n. (2.6)

Auger deexcitation occurs via the ionisation of an encountered hydrogen atom. In

this process the increase of the binding energy of the pionic hydrogen system is

converted into kinetic energy of the emitted e−. Transitions with Δn = 1 and

Δl = −1, i. e., transitions with minimal possible energy difference, are favoured

(ΓAug ∝ 1/
√

ΔE), see reference [15]. The cross-sections for Auger transitions

strongly increase with n, until a critical level nc is reached. nc is the largest n

for which a Δn = 1 transition can ionise an encountered hydrogen atom. For

n > nc only transitions with Δn > 1 are energetically possible and hence the Auger

cross-section decreases with higher n (Figure 2.2).

Lower part (2 ≤ n ≤ 6): The radiative E1 transition with Δl = ±1

(π−p)nl → (π−p)n′,l−1 + γ (2.7)

is the main process for low n. However, since Stark transitions are very important

as well at this stage of the cascade [17–19], the population of the nl sub-states at
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2 Pionic hydrogen

3s

2s

1s

Stark

Radiative+Auger

Abs.

Figure 2.3: Cascade model for the

final part of the cascade [21]. The

(π−p) atoms deexcite radiatively and

via the external Auger effect, while the

Stark effect leads to a mixing of the l-

sub-states, where an s-state admixture

causes nuclear reaction. Figure taken

from [21].

a given level n is modified (see also Figure 2.2). This leads to an increase of the

relative importance of the charge exchange reaction

(π−p)n,l=0 → π0 + n (2.8)

and the radiative capture

(π−p)n,l=0 → n + γ, (2.9)

which occurs in s-states where the pion wave function significantly overlaps with the

nuclear region. These reactions reduce the yield of the radiative transitions [21].

Although the rate for Coulomb deexcitation is lower than the one for Auger de-

excitation at this stage of the cascade, its effect on the kinetic energy distribution

of the pionic hydrogen atoms, is far more pronounced because of the large recoil

momentum. In fact, good understanding of the Coulomb deexcitation and its effect

on the line shape is of crucial importance for the determination of the width of the

ground state in pionic hydrogen.

Molecular states It is known from muon catalysed fusion (μCF), see e. g. [22], that

during collisions of a muonic hydrogen atom and a H2 molecule a metastable hybrid

molecule can be formed. The same is expected for pions:(
π−p

)
+ H2 →

({
π−pp

}∗
pee

)∗
. (2.10)

The complex
(
{π−pp}∗ pee

)∗
can decay through several channels (see for instance [23]):

� back to the initial channel({
π−pp

}∗
pee

)∗ → (
π−p

)
+ H2, (2.11)

� Auger decay, by emitting an electron({
π−pp

}∗
pee

)∗ → ({
π−pp

}∗
pe
)∗

+ e−, (2.12)

12



2.2 Atomic cascade of pionic hydrogen

� radiative decay, by emitting a photon({
π−pp

}∗
pee

)∗ → ({
π−pp

}∗
pee

)∗
+ γ, (2.13)

� Coulomb decay, by emitting one of the protons(
π−pp

)∗ → (
π−p

)
+ p (2.14)

� and nuclear absorption (
π−pp

)∗ → p + n + π0. (2.15)

The Coulomb decay can take place either directly, or via an intermediate Auger decay,

or radiative decay. The binding energies of these various molecular states have been

calculated in [20]. They were found to be slightly different, compared to the ones in the

atomic case. Hence the energy of X-ray transitions from such a molecular state is shifted,

compared to the same X-ray transition in an isolated π−p atom and must be considered

when extracting the hadronic shift ε1s.

Pressure dependence of the atomic cascade The molecular formation as well as the

Coulomb deexcitation are scattering processes, thus they depend on collisions, i. e., on the

density. Therefore an important task of the current experiment was to check, whether or

not a pressure dependence of the measured X-ray transitions can be observed.

A possible effect of molecular formation was studied in detail by measuring the pressure

dependence of the 3p → 1s pionic hydrogen line energy [8]. The main goal in [8] was

the determination of the strong interaction shift ε1s of the ground state in π−p. If there

was a pressure dependence of the atomic cascade and X-ray transitions would occur from

molecular states, this would affect the value for the shift.

The measurements were performed over a large range of hydrogen gas densities (from

3.5 bar – very low rate expected – up to ∼ 700 bar – liquid hydrogen). However, no

pressure dependence of the πH(3p → 1s) energy was found within the experimental

accuracy and therefore it was concluded, that molecular states once formed, deexcite via

other mechanisms than radiative deexcitation.

The final value for the strong interaction shift ε1s determined in [8] is

ε1s = +7.120± 0.008+0.008
−0.009 eV. (2.16)

2.2.1 Coulomb deexcitation

Coulomb deexcitation (see (2.4) and (2.5)) has been first directly observed by a Doppler

broadening of time-of-flight distributions of neutrons from the charge-exchange reaction
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2 Pionic hydrogen

π−p→ π0n [24–26]. Doppler contributions from several radiation-less transitions n→ n′

(n′ < n) up to 209 eV (corresponding to 3→ 2 Coulomb transitions) have been identified.

The influence of Coulomb deexcitation on the line shape of radiative transitions into the

ground state in pionic hydrogen will be similar to the ones observed in the neutron time-

of-flight, but the kinetic energy distribution could be very different. Neutron time-of-flight

experiments such as those described in [24,25] are only sensitive to atomic ns-states. The

radiative transitions into the ground state occur from np-states, which can be populated

via l 
 1 momentum states only.

In an n→ n′ Coulomb transition the energy release is given by

ΔEn→n′ =
μred

2

(
1

n′2 −
1

n2

)
, (2.17)

where μred is the reduced mass of the π−p atom. At low n only Δn = 1 transitions are

expected to be important. Thus the characteristic kinetic energies of the highly energetic

π−p atoms are given by

Tn =
mH

mH + mπ−p

ΔEn+1→n, (2.18)

with mH being the mass of the hydrogen atom and mπ−p the mass of the π−p atom.

Equation (2.18) yields the energies of 18 eV, 34 eV, 73 eV and 209 eV for n = 5, 4, 3 and

2, respectively.

State dependence of the line shape In the year 2002 X-ray spectra from the 4p→ 1s,

3p→ 1s and 2p→ 1s transitions in pionic hydrogen were measured at PSI. The effect of

the Doppler broadening on the three transitions is expected to be different, because the

kinetic energy distributions are not the same for the different n levels. For instance, the

3→ 2 Coulomb transition gives rise to a 209 eV component, which is only important for

the 2p → 1s line. However, atoms that go through the 4 → 3 Coulomb transition and

thereby gain 73 eV, affect the 3p → 1s transition as well as the 2p → 1s, because they

can reach the 2p state via the 3d→ 2p radiative transition without loosing kinetic energy.

The same is true for the 5→ 4 Coulomb transition, which is supposed to affect all three

measured spectra.

2.2.2 Prediction for the kinetic energy distribution

As mentioned earlier, the extended standard cascade model (ESCM) [19] takes into ac-

count for the first time, the evolution of the kinetic energy distribution of the pionic

atoms during the cascade.

The ambitious goal of the ESCM is a full ab initio calculation of the kinetic energy dis-

tribution of the π−p atoms at the instant of the emission of an X-ray. This kinetic energy
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2.2 Atomic cascade of pionic hydrogen

Figure 2.4: The kinetic energy distribution of the π−p atoms at the instant of the

3p→ 1s transitions, as is predicted by the ESCM. Figure taken from [21].

distribution could then be used in the extraction of the strong interaction width from the

measured pionic hydrogen data. In order to reach that goal, the cross sections for the

collisional processes must be known reliably, which is a very challenging task. For exam-

ple, a quantitative understanding of the molecular formation process and the subsequent

break-up is necessary, in order to make predictions for the relative rates of absorption,

Coulomb, radiative and Auger transitions.

Instead, a method was proposed in [19], which distinguishes between a low and high energy

component, i. e., high n and low n part, respectively, of the kinetic energy distribution of

the π−p atoms. The low energy component is treated as a ”black box”, since the present

understanding of the processes involved is not yet sufficient for accurate cascade calcula-

tions. Hence, the calculations are only performed for the high energy / low n fraction of

the π−p atoms. The energy chosen to separate the low from the high energy component

is set to 10 eV [19].

The method in principle follows the life history of a π−p atom, starting from an initial

distribution of the quantum numbers n and l and kinetic energy. The quantum states of

the π−p atoms are changed by both, collisional processes (i. e, Stark collisions, external

Auger effect) and non-collisional processes (i. e., radiative deexcitation and nuclear ab-

sorption from the ns-states), which also leads to a broadening of the characteristic kinetic
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2 Pionic hydrogen

energy values, calculated in (2.18). Coulomb deexcitation, which is expected to take place

from the low energy component, is not included in the cascade calculation.

Finally, with the cascade program briefly discussed here, the kinetic energy distribution

at the instant of an np→ 1s transition in pionic hydrogen can be calculated. Figure 2.4

shows the kinetic energy distribution at the pressure 10 bar at the instant of the 3p→ 1s

transition originating from the 34 eV Coulomb component with n = 4.

In principle such a kinetic energy distribution could be used in the analysis of measured

π−p spectra, by folding it with the response function of the setup and performing a χ2

analysis and that way extracting the Lorentz width. However, as will become clear below

(section 2.2.4), it turned out, that this is not yet possible. Therefore, a model describing

the kinetic energy distribution independently from cascade calculations is necessary.

2.2.3 Approximative model for the kinetic energy distribution

The kinetic energy distribution of the π−p atoms can be approximated by a model using

so-called Doppler-boxes.

Starting from the calculated values for the kinetic energy, a discrete kinetic energy distri-

bution of the atoms at the instant of the emission of an X-ray can be constructed. In this

model, each transition corresponds to a δ-like peak, i. e., δ(T −T0), where T0 is one of the

values calculated with (2.18). The relation between the velocity and the kinetic energy is

given by

v0 =

√
2T0

mπ−p

. (2.19)

From this (discrete) kinetic energy distribution and, assuming an isotropic velocity distri-

bution, a ”box-like” velocity distribution is obtained for each Coulomb transition (Figure

2.5). For details see also [27].

The influence of collisions on the π−p atoms prior to the occurrence of a radiative deexci-

tation is modelled by changing the form of the kinetic energy distribution from a δ-like to

a box-like, reaching up to a maximal kinetic energy as given by (2.18). Figure 2.6 illus-

trates the relation between a box-like kinetic energy distribution and the corresponding

velocity distribution. The broad kinetic energy region can be regarded as several discrete

(δ-like) peaks, where each of these kinetic energy peaks corresponds to a ”box-like” veloc-

ity distribution. Finally this leads to a ”trapezoid-like” velocity distribution also shown

in Figure 2.6. Summing up, for each transition considered, the kinetic energy distribution

of the π−p atoms at the instant of the radiative deexcitation can be approximated.
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Figure 2.6: Illustration of the relation between a box-like kinetic energy region and the

resulting velocity distribution.

2.2.4 Muonic hydrogen

A crucial check of the predictions for the kinetic energy distribution from the cascade

model, was the measurement of the 3p → 1s transition in muonic hydrogen (μ−p). A

detailed description of the measurement and the subsequent analysis can be found in [28].

Unlike pions, muons do not experience the strong interaction and hence, the instrumental

response function given, the broadening of the measured X-ray lines is only due to cascade

processes, in particular due to the Coulomb deexcitation. Thus μ−p constitutes an ideal

system to verify the prediction of the cascade model for the velocity distribution. In

addition, the measurement of muonic hydrogen constitutes the first direct measurement

of the splitting and relative population of the hyperfine levels of the ground state in μ−p.

The main result from the analysis of the 3p→ 1s transition in μ−p is, that, by using the

theoretically predicted weights for the different energy components in the kinetic energy

distribution, the theoretical prediction for the hyperfine splitting and for the triplet to

singlet population in muonic hydrogen can not be reproduced. This is especially true for
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2 Pionic hydrogen

the low energy component, if the approach with broad distributions, presented in section

2.2.3, concentrated around the characteristic energies for the Coulomb transitions is used.

In fact, in order to be able to reproduce the theoretical prediction for the hyperfine

splitting and population of the hyperfine levels of the ground state in μ−p, the relative

weight of the low energy component must be of the order of 60% of the total kinetic

energy distribution. This clearly contradicts the prediction from the cascade code, which

at present gives 30% (up to 2 eV) and hence reveals the importance of the low energy

component of the atomic cascade. In conclusion, the prediction of the cascade calculations,

performed within the framework of the ESCM, at present cannot reproduce the μ−p (or

π−p [29]) kinematics. Especially, for the high n part of the cascade with n > 8, which

represents the low energy component, the prediction is far off. In future this may be

overcome by including molecular formation into the cascade code.

Presently, the approach with box-like kinetic energy distributions extending up to the

characteristic kinetic energy values, given by (2.18) and schematically shown in Figure

2.6 must be used [28] to extract the hadronic broadening.
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3 Pion nucleon interaction

Quantum chromodynamics (QCD) is the theory describing the strong interaction of

coloured quarks and gluons. QCD is, like quantum electrodynamics (QED), a gauge

theory and is part of the SU(3)⊗ SU(2)⊗U(1) standard model. Due to the huge success

and the predictive power of QED, QCD is also constructed by demanding a local gauge

invariance.

The main difference of these two theories is, that QCD is behaving differently at low

and large distances. Only at small distances, i. e., high momentum transfer, the QCD

(running) coupling constant αs becomes small and gives rise to the so called asymptotical

freedom of QCD and hence conventional perturbation theory (expansion in the coupling

constant) is possible.

For low energies, however, this perturbation expansion does not converge, because here

αs is of the order 1. Hence other tools are necessary in order to describe QCD at low

energy. Chiral perturbation theory (ChPT) [30, 31] is such a tool. ChPT is an effective

field theory, exploiting the symmetry properties of QCD in the limit of vanishing quark

masses (the so called chiral limit).

The QCD Lagrangian is constructed on the basis of the symmetry group SU(3) and it

contains a gluonic part and a fermionic part:

LQCD = LQCD
fermion + LQCD

gluon, (3.1)

with

LQCD
fermion =

nf∑
f=1

q̄f (iγμD
μ −mf )qf , (3.2)

LQCD
gluon = −1

4
Gμν,aG

μν
a . (3.3)

Where nf is the number of flavours, mf are the quark masses, qf are Dirac-spinors, Dμ

is the covariant derivative and Gμν
a is the field strength tensor of QCD. μ = 1 . . . 4 is the

Lorentz-index, a = 1 . . . 8 is the gluon-colour index and γμ are the Dirac matrices. Dμ

and Gμν
a are given by

Dμ = ∂μ + igsA
μ
aGa, (3.4)

Gμν
a = ∂μAμ

a − ∂νAμ
a − gsfabcA

μ
b Aν

c . (3.5)
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3 Pion nucleon interaction

With gs being the colour gauge coupling constant of QCD, Aμ
a the eight gauge fields of

QCD, Ga the generators of SU(3) and fabc is the totally asymmetric tensor of the structure

constants of the SU(3) algebra. Ga can be written in terms of the Gell-Mann-matrices λa

Ga =
λa

2
. (3.6)

For the generators the following commutation relation holds

[Ga, Gb] = ifabcGc. (3.7)

3.1 QCD at low energy

As long as there is no nonperturbative (analytical) solution, another small expansion

parameter must be found. Chiral perturbation theory does exactly this by exploiting the

symmetry properties in the chiral limit (mf → 0).

Limiting the discussion to the three lightest quarks (up (u), down (d) and strange (s)) and

considering that the mass of the proton mp = 938 MeV, then mp 
 2mu +md holds, with

mu = 5 MeV and md = 9 MeV. This implies, that for the generation of hadron masses a

complex mechanism must be responsible.

Let us now consider mu, md, ms → 0 (chiral limit). Then, by inserting (3.2) and (3.3) into

(3.1), equation (3.1) reduces to

LQCD
0 =

nf∑
f=1

iq̄f �Dqf −
1

4
Gμν,aG

μν
a with γμDμ = �D. (3.8)

The covariant derivative �D acts on colour and Dirac indices but not on flavour indices.

LQCD
0 has an extra symmetry related to right- or left-handedness (chirality) of zero mass

and spin 1/2 particles. To see this q is written as

q =

[
1

2
(1 + γ5) +

1

2
(1− γ5)

]
q = [PR + PL] q ≡ qR + qL, (3.9)

with the indices R and L meaning right and left, respectively and γ5 = iγ0γ1γ2γ3. The

4× 4 matrices PR and PL have the properties

PR + PL = 1, P 2
R,L = PR,L, PRPL = PLPR = 0 (3.10)

and project on the right- and left-handed quark states. Now the QCD-Lagrangian in the

chiral limit can be written as

LQCD
0 =

∑
f=u,d,s

(q̄R,f i�Dq̄R,f + q̄L,f i�Dq̄L,f)−
1

4
Gμν,aG

μν
a . (3.11)
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The Lagrangian in (3.11) exhibits a U(3)L ⊗ UR(3) symmetry, i. e., it is invariant under

transformations

qR → e−i
P8

a=1 ΘR
a

λa
2 qR, qL → e−i

P8
a=1 ΘL

a
λa
2 qL. (3.12)

Applying Noether’s theorem to the Lagrangian in (3.11) one obtains the following con-

served quantities (Noether currents)

V μ
a = q̄γμ λa

2
q, (3.13)

Aμ
a = q̄γμγ5

λa

2
q. (3.14)

With V μ
a being the vector current and Aμ

a the axial vector current. The properties of the

vector and axial vector current under parity transformations P are

PV μ
a (t, �x) → V μ

a (t,−�x), (3.15)

PAμ
a(t, �x) → −Aμ

a(t,−�x). (3.16)

In the massless case these currents are conserved and fulfil

∂μV μ
a = 0 and ∂μAμ

a = 0 (3.17)

and the corresponding Noether charges are conserved.

Considering non vanishing quark masses in the mass-term in (3.2)

Lmass =

nf∑
f=1

q̄fmfqf (3.18)

and taking into account only the three light flavours, with nf = 3 and

q =

⎛⎝ u

d

s

⎞⎠ , mf =

⎛⎝ mu 0 0

0 md 0

0 0 ms

⎞⎠ , (3.19)

then the masses can be treated as a perturbation and the vector and the axial currents

are no longer conserved

∂μV μ
a = iq̄[mf ,

λa

2
]q, (3.20)

∂μAμ
a = iq̄{λa

2
, mf}γ5q, (3.21)

with the commutation relation [A, B] := AB − BA and the anti-commutation relation

{A, B} := AB + BA. Finally, the following statements can be made:
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3 Pion nucleon interaction

� For equal quark masses , mu = md = ms �= 0 (isospin symmetry), the eight vector

currents V μ
a are conserved, since [λa, 1] = 0, see (3.20). In contrast, the axial vector

currents Aμ
a are not conserved quantities. In the case of three quark flavours, this

limit is usually referred to as the SU(3) limit.

� For mu = md = ms = 0, both – vector and axial-vector – currents are conserved

and the Lagrangian in (3.11) exhibits the global chiral symmetry SU(3)L⊗ SU(3)R.

This is called the chiral limit.

Partially conserved axial current – PCAC After the general discussion of symmetry

properties of QCD for vanishing quark masses (chiral limit), the special role of pions

should be pointed out. At a hadronic scale, compared to the nucleon mass, the pion mass

is very small: (
mπ

mN

)2

≈
(

140 MeV

940 MeV

)2

≈ 0.02� 1. (3.22)

Considering the decay of a pion into a muon and a neutrino

π → μ + ν, (3.23)

the matrix element of this decay has a leptonic and a hadronic part. Due to parity con-

siderations (the pion is a pseudoscalar particle), the decay is a pure axial vector transition

and is described by the matrix element

〈0|Aμ
a(x)|πb(q)〉 = −iFπqμe−iqxδab, (3.24)

where a, b are isospin indices and qμ is the four momentum of the pion. Fπ is referred to

as the pion decay constant. By forming the divergence of the axial current ∂μAμ in (3.24),

〈0|∂μAμ
a(x)|πb(q)〉 = −iFπq2e−iqxδab = −iFπm2

πe−iqxδab, (3.25)

is obtained, where q2 = qμqμ = m2
π was used. If the axial vector current was exactly

conserved, this would imply

Fπm2
π = 0, (3.26)

which is not observed in reality, since the pion has finite mass and Fπ �= 0 (the pion

decays). However, the pion mass is small on the hadronic scale (mπ → 0, see (3.22))

and hence, the hypothesis of partial conservation of the axial vector current (PCAC) is

justified.

A microscopic basis of PCAC can be obtained by considering the components Aμ
1,2,3 in
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3.1 QCD at low energy

(3.21) operating in the sector of u and d quarks. Using the combinations Aμ
± = Aμ

1 ± iAμ
2

one finds

∂μAμ
+ = (mu + md) q̄uiγ5qd, (3.27)

∂μAμ
− = (mu + md) q̄diγ5qu, (3.28)

∂μAμ
3 = muq̄uiγ5qu + mdq̄diγ5qd. (3.29)

The divergence of the axial current thus produces sources of the pseudoscalar quark-

antiquark pairs. In the chiral limit, the axial current is conserved again by setting

mu, md → 0 in (3.27), (3.28) and (3.29).

Goldberger-Treiman relation A relation of quantities from weak interaction to quan-

tities from strong interaction is given by the Goldberger-Treiman (GT) relation [32, 33].

For its derivation the assumption of vanishing pion mass (PCAC) is used and it reads:(
gπNN

mN

)2

=

(
gA

Fπ

)2

= 0.072, (3.30)

where

gπNN =
2mN

mπ

√
4πfπN . (3.31)

Here fπN is the pion nucleon coupling constant (see section 3.4), mN and mπ are the

masses of the proton and the charged pion, respectively, and gA is the axial coupling

constant, which stems from the axial form factor of the nucleon.

The GT relation is satisfied at the percent level (2-4%). Its violation is expressed in the

so-called Goldberger-Treiman discrepancy

ΔπN = 1− mNgA

FπgπNN

, (3.32)

which constitutes a measure of chiral symmetry breaking.

Chiral perturbation theory – ChPT ChPT is formulated in the chiral limit, i. e., it is

based on massless QCD, with quark masses introduced only as perturbation. It is an

effective field theory (EFT). The basic idea of effective field theories is, that it is not

necessary to know everything in order to make useful statements on a particular part

of physics. Generally speaking, effective field theories are low energy approximations of

more fundamental theories. EFTs can be used to calculate physical quantities up to an

energy scale which is defined by p/Λ, where p can stand for momenta or masses that are

smaller than the scale of Λ.

The foundation of ChPT was laid by Weinberg [34] and in [30, 31] Gasser and Leutwyler
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3 Pion nucleon interaction

performed first calculations within the framework of ChPT. Principally, ChPT is an ex-

pansion of the effective Lagrangian in powers of (small) momenta and the chiral symmetry

breaking terms (light quark masses and the fine structure constant α), in which the consec-

utive terms in the chiral expansion are suppressed by the inverse powers of the symmetry

breaking scale (Λ ∼ 1 GeV):

Leff =
∑

n

Ln = L0 + L2 + L4 + L6 + . . . . (3.33)

Here n denotes the low energy dimension, also known as chiral dimension (number of

derivatives and/or quark masses); the term of order 0 is a constant. The restriction to

even terms in the development is due to Lorentz invariance.

By this chiral expansion, low energy constants (LECs) are introduced, which can not be

determined by symmetry considerations alone. In the ideal case, the LECs should be cal-

culated from the fundamental underlying theory. Alternatively, LECs can be determined

with the help of experiments.

A detailed discussion of the formulation of ChPT is beyond the scope of this work and

the interested reader is referred to various reviews, such as for instance [35] and references

therein. Detailed discussion on PCAC and topics connected to chiral symmetry can be

found in, e. g., [32, 36].

In the following section the connection between experimentally accessible (strong interac-

tion shift ε1s and width Γ1s in π−p) and in the framework of ChPT important quantities

(low energy scattering lengths and LECs) will be established.

3.2 πN scattering lengths

A very important concept in strong interaction is isospin symmetry, where the proton

and the nucleon are regarded as two states of the same particle, the nucleon. Proton and

neutron are defined as two components of an isospin 1
2

doublet:

|p〉 =

(
1

0

)
, |n〉 =

(
0

1

)
. (3.34)

Similarly, a pion can be represented as a three vector in isospin space, such that the three

charge states of a pion are summarised in a vector �Φ = (Φ1, Φ2, Φ3) = (π+, π0, π−). This

three states form an isospin triplet and the three charge states can be written as

π− =
1√
2

⎛⎝ 1

−i

0

⎞⎠ , π0 =

⎛⎝ 0

0

1

⎞⎠ , π+ = − 1√
2

⎛⎝ 1

i

0

⎞⎠ . (3.35)
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3.2 πN scattering lengths

Pions form an isospin triplet with isospin Iπ = 1 and with π−, π0, π+ being the eigenstates

of the third component of the isospin Iπ
3 , where Iπ

3 = −1, 0, +1, respectively. Accordingly,

the neutron and the proton form an isospin doublet with IN = 1
2

and IN
3 = −1

2
, +1

2
,

respectively.

In terms of |I, I3〉 one can write the nucleon states as

|p〉 =

∣∣∣∣12 ,
1

2

〉
, |n〉 =

∣∣∣∣12 ,−1

2

〉
(3.36)

and the pion states as∣∣π+
〉

= |1, 1〉 ,
∣∣π0

〉
= |1, 0〉 ,

∣∣π−〉 = |1,−1〉 , (3.37)

where I is the isospin quantum number and I3 its projection onto the third component,

see [37].

Considering pion-nucleon scattering, the initial state consists of a pion with isospin 1 and

a nucleon with isospin 1
2
. Therefore the initial state can be expressed as a superposition

of the total isospin 1
2

and 1, depending on the orientation of the isospin of the nucleon

and the pion. The states are

I =
1

2

⎧⎨⎩I3 = +1
2

:
√

1
3
|pπ0〉 −

√
2
3
|nπ+〉

I3 = −1
2

:
√

2
3
|pπ−〉 −

√
1
3
|nπ0〉,

(3.38)

I =
3

2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

I3 = +3
2

: |pπ+〉
I3 = +1

2
:

√
2
3
|pπ0〉+

√
1
3
|nπ+〉

I3 = −1
2

:
√

1
3
|pπ−〉+

√
2
3
|nπ0〉

I3 = −3
2

: |nπ−〉.

(3.39)

Let us now consider the three experimentally accessible elastic scattering processes in-

volving pions and nucleons

π+ + p → π+ + p, (3.40)

π− + p → π− + p, (3.41)

π− + p → π0 + n. (3.42)

Where (3.42) describes the charge exchange reaction.

With the total isospin �I = �Iπ + �IN of the pion-nucleon system and its third component

I3 = Iπ
3 + IN

3 , the properties of this system can be written in terms of a state vector

|I, I3〉 containing only the total isospin and its third component. The possible values of
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3 Pion nucleon interaction

the total isospin I are 1
2

and 3
2
. With the appropriate Clebsch-Gordan coefficients, the

state vectors of the physical channels can be written in terms of |I, I3〉 as

|π+p〉 =
∑

I

C1,1/2

(
I,

3

2
; 1,

1

2

)
|I, I3〉 =

∣∣∣∣32 ,
3

2

〉
(3.43)

|π−p〉 =
∑

I

C1,1/2

(
I,−1

2
;−1,

1

2

)
|I, I3〉 =

√
1

3

∣∣∣∣32 ,−1

2

〉
−
√

2

3

∣∣∣∣12 ,−1

2

〉
(3.44)

|π0n〉 =
∑

I

C1,1/2

(
I,−1

2
; 0,−1

2

)
|I, I3〉 =

√
2

3

∣∣∣∣32 ,−1

2

〉
+

√
1

3

∣∣∣∣12 ,−1

2

〉
(3.45)

with the Clebsch-Gordan coefficient CIπ,IN

(
I, I3; I

π
3 , IN

3

)
(the sign convention is that of

Wigner used in [38]).

If charge independence is assumed, i. e., that the matrix elements of the transition matrix

depend only on I, but not on I3, and the masses of the quarks are considered to be equal,

then the scattering matrix – the T-matrix – can be decomposed as

〈I ′I3|T |I ′I3〉 = TIδI,I′δI3,I′ (3.46)

and hence, using (3.43), (3.44) and (3.45) it can be written〈
π+p

∣∣T ∣∣π+p
〉

= T 3
2
, (3.47)〈

π−p
∣∣T ∣∣π−p

〉
=

1

3
T 3

2
+

2

3
T 1

2
, (3.48)〈

π−p
∣∣T ∣∣π0n

〉
=

√
2

3

(
T 3

2
− T 1

2

)
. (3.49)

This calculation is only valid, if Coulomb scattering of the charged particles and the mass

differences between the three charged states of the pion is neglected.

From scattering theory it is known that the elements of the T-matrix are related to the

scattering amplitude f(E, θ) (the isospin index I is suppressed for convenience)

T ∝ −f(E, θ). (3.50)

f(E, θ) can be written in terms of a partial-wave expansion

f(E, θ) =

∞∑
l=0

(2l + 1) fl(E)Pl (cos θ) , (3.51)

where Pl(cos θ) are the Legendre-polynomials and

fl(E) =
e2iδl(E) − 1

2ip
=

eiδl(E) sin δl

p
(3.52)
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3.2 πN scattering lengths

denotes the partial-wave amplitude, where δl is the scattering phase and p is the momen-

tum. For low energy with p→ 0 the amplitude becomes

lim
p→0

fl = lim
p→0

eiδl(E) sin δl

p
→ −alp

2l, (3.53)

where al is known as the scattering lengths for l = 0 and scattering volume for l ≥ 1. For

s-wave scattering with l = 0 one finds, that fl=0 → −a0.

Finally, using (3.53) with l = 0 equations (3.47), (3.48) and (3.49) can be rewritten as

lim
p→0

〈
π+p

∣∣T ∣∣π+p
〉

= a 3
2

lim
p→0

〈
π−p

∣∣T ∣∣π−p
〉

=
1

3
a 3

2
+

2

3
a 1

2
(3.54)

lim
p→0

〈
π−p

∣∣T ∣∣π0n
〉

=

√
2

3

(
a 3

2
− a 1

2

)
,

or

aπ+p→π+p = a3/2

aπ−p→π−p =
1

3

(
2a1/2 + a3/2

)
(3.55)

aπ−p→π0n =

√
2

3

(
a3/2 − a1/2

)
.

A detailed discussion of non-relativistic scattering theory may be found in [39, 40] and

thorough discussion of the pion-nucleon system is given in [32, 41].

The hadronic scattering lengths in (3.55) are connected to each other by the so-called

isospin triangle

aπ−p→π−p − aπ+p→π+p =
√

2aπ−p→π0n. (3.56)

Introducing the isoscalar (isospin-even) and isovector (isospin-odd) scattering lengths a+

and a−

a± =
1

2
(aπ−p→π−p ± aπ+p→π+p) , (3.57)

and isospin conservation given, one can write

aπ−p→π−p = a+ + a− and aπ−p→π0n = −
√

2a−, (3.58)

or

a+ =
a1/2 + 2a3/2

3
, (3.59)

a− =
a1/2 − a3/2

3
. (3.60)
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3 Pion nucleon interaction

The scattering lengths a+ and a− were already calculated by Weinberg in the framework

of current algebra using PCAC [42] and yielded a+ = 0 and a− = 0.08m−1
π , representing

the leading order of ChPT. Therefore, deviations from these values are a measure of chiral

symmetry breaking.

3.3 Relation of scattering lengths to ε1s and Γ1s

The measurable quantities ε1s and Γ1s are related to the low energy scattering lengths a+

and a− using Deser-type formulae [1, 43]

ε1s

E1s
= −4

1

rB
aπ−p→π−p (1 + δε) (3.61)

Γ1s

E1s
= 8

Q0

rB

(
1 +

1

P

)
(aπ−p→π0n (1 + δΓ))2 . (3.62)

Here E1s = 3238 eV is the el.mag. binding energy of the ground-state, rB = 222.56 fm is

the Bohr radius in π−p, Q0 = 0.142 fm−1 is the cms momentum of the π0, P = 1.546±0.009

is the Panofsky ratio between π−p→ π0n and π−p→ γn [44], δε,Γ are corrections. Their

relevance will be discussed separately.

Using (3.58) this leads to

ε1s ∝ a+ + a− and Γ1s ∝ (a−)2. (3.63)

3.3.1 Corrections δε,Γ

The level of accuracy for the measured values of the strong interaction width and shift

in the experiment discussed in this work is desired to be at the percent level. From

these accurate values, the s-wave pion-nucleon scattering lengths in ”pure” QCD will be

extracted. In order to achieve this goal, the corrections δε,Γ stated in (3.61) and (3.62)

have to be known accurately as well.

For the calculation of δε,Γ various approaches are available [45–51]. The predecessor

π−p experiment of the ETHZ-PSI collaboration [6] used corrections based on a potential

model [45], where δε = (2.1±0.5) ·10−2 and δΓ = (1.3±0.5) ·10−2. However, it turned out

that the potential model is incomplete. In [50,51] δε,Γ are calculated within a quantum field

theoretic, relativistic covariant and model-independent approach. Below a brief survey of

the calculations within the models described in [46–49] is given.

Correction for the shift – δε In [46] a new calculation of δε was performed in the

framework of effective field theories at next-to-leading order in the low energy expansion.
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3.3 Relation of scattering lengths to ε1s and Γ1s

Whereas, in [47] the correction was calculated in leading order. The relation between

the strong energy-level shift ε1s of the ground state in pionic hydrogen and the threshold

scattering amplitude for the process π−p→ π−p, TπN , was calculated in [47] and reads

ε1s = −α3μ3
cTπN

2πmπ

{
1− α (ln α− 1) μ2

cTπN

2πmπ

}
+ · · · . (3.64)

With μc = mpmπ

mp+mπ
being the reduced mass of the pion-nucleon system, mp and mπ standing

for the mass of the proton and the mass of the charged pion, respectively and α is the

fine structure constant.

The scattering amplitude TπN can be written as TπN = T 0
πN + δT . Here T 0

πN is the isospin

symmetric part, referring to ”pure” QCD and δT accounts for isospin-breaking effects.

Now the correction δε takes the form [46]

δε =
δT

4π (1 + mπ/mp) (a+ + a−)
− 2α (ln α− 1)μc

(
a+ + a−)+ δvac

ε , (3.65)

where δvac
ε is the correction due to the interference of vacuum polarisation and strong in-

teractions. The calculation of δvac
ε within a non-relativistic effective Lagrangian approach

gave δvac
ε = 0.48% [52].

The leading term of the chiral expansion δT = δT2 + δT3 +O(p4) was calculated in [47]

and gave

δT2 =
mp

8π (mp + mπ+) F 2
π

{
8c1

(
m2

π+ −m2
π0 − 4e2f1 − e2f2

)}
, (3.66)

with the pion decay constant F 2
π , the electron charge e and the low-energy constants

(LECs) c1, f1 and f2. The term δT3 was evaluated in [46] and thus the final result for δε

in this context reads

δε = (−7.2± 2.9) · 10−2. (3.67)

Since the LECs are constants in the theory, they have to be determined experimentally.

Up to now only c1 and f2 are known with some accuracy. c1 was determined from πN

phase shift data [53] and f2 is related to the electromagnetic part of the proton-neutron

mass difference by −e2F 2
πf2 = (mp −mn)

em. Fπ is the pion decay constant in the chiral

limit.

The determination of f1, however, is problematic and can presently be approximated only.

See [46] for a detailed discussion of this issue. The error ±2.9 ·10−2 of the correction from

(3.67) is dominated by the poorly known value for the LEC f1, which has an uncertainty

of ±2.8 ·10−2. Taking into account δT3 doesn’t help, since only more LEC are introduced,

though they are suppressed by one power of the pion mass mπ and their effect on the

shift is thus expected to be small, compared to the ones from the leading order.
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3 Pion nucleon interaction

Correction for the width – δΓ A recent calculation of the isospin correction δΓ in

leading-order in ChPT was performed in [48]. In leading order it does not depend on the

unknown LEC f1, which decreases the uncertainty of the calculation significantly. In fact,

in leading order it only depends on the LECs f2 and c1. The result presented in [48, 49]

yields

δΓ = (0.6± 0.2) · 10−2. (3.68)

3.4 πN coupling constant

Another important motivation to improve the accuracy of Γ1s and thereby improving

a−, is the pion-nucleon coupling constant f 2
π−N . Via the Goldberger-Miyazawa-Oehme

(GMO) sum rule [54], the isovector scattering lengths a− is related to f 2
π−N as

f 2
π−N =

1

2

[
1−

(
mπ

2mN

)2
] [(

1 +
mπ

mN

)
mπa− −m2

π · J
]

, (3.69)

where J is the difference between the total cross sections σ of π+p and π−p scattering,

integrated over the momentum q:

J =
1

4π2

∫ ∞

0

σπ−p − σπ+p√
q2 + m2

π

dq. (3.70)

A recent evaluation of J gave [55]

J = −1.083± 0.009± 0.031 mb. (3.71)

An improved value of the pion nucleon coupling constant allows a more accurate deter-

mination of the Goldberger-Treiman discrepancy (3.32).

3.5 πN sigma term

A measure of the contribution of the non-vanishing quark masses to the nucleon mass and

the strangeness content of the nucleon is provided by the so-called pion-nucleon sigma term

σN

σN =
1

2MN
(mu + md)

〈
N
∣∣ūu + d̄d

∣∣N〉
, (3.72)

where MN is the nucleon mass, mu and md are the masses of the up and down quark,

respectively and N denotes the nucleon state. The connection of the πN sigma term to

pion-nucleon scattering is provided by the isoscalar scattering length a+ at the unphysical
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3.6 Pionic deuterium

Cheng-Dashen point (ν = (s− u) = 0, t = 2m2
π).

σN can not be obtained from pion-nucleon scattering lengths only, but also scattering

volumes are needed. Therefore it can not be determined fully from s-wave scattering

alone. For detailed discussion of the pion nucleon sigma term the reader is referred

to [56–58].

3.6 Pionic deuterium

Additional constraints for the isoscalar a+ and the isovector a− scattering lengths and

the LEC f1 can be provided by a measurement of the strong interaction shift and width

in pionic deuterium. Schematically, ε1s and Γ1s in π−p and π−d are functions of a+, a−

and f1 (higher order terms are neglected):

π−p ⇒ επ−p
1s (a+, a−, f1),

π−p ⇒ Γπ−p
1s (a−), (3.73)

π−d ⇒ επ−d
1s (a+, a−, f1),

which, coarsely spoken, leads to three equations with three variables.

Similarly to pionic hydrogen, the relation between the measurable quantity ε1s and the

real part of the scattering length in π−d Re aπd is given by

ε1s = −2α3μ2
d Re aπd. (3.74)

In [59] an expression for Reaπd within ChPT was derived under the assumption of exact

isospin symmetry. Until recently, using the values for ε1s, Γ1s, δε, δΓ and the value for

the scattering length for π−d from [60] this led to a coherent picture. The values for a+

and a− which emerge from the three different measurements had a common intersection

region. This case is schematically shown in Figure 3.1.

Preliminary analysis of the new pionic hydrogen experiment, together with new calcula-

tions of the corrections δε and δΓ (see section 3.3.1), however, resulted in slightly shifted

bands for a+ and a− which do no longer have a common intersection region.

A theoretical investigation up to next-to-leading order in [61] points out, that isospin sym-

metry corrections are significant in pionic deuterium and hence, the theoretical treatment

of the πd scattering length must be adapted accordingly. Thus Re aπd is written as

Re aπd = Re āπd + Δaπd,

where Re āπd refers to the isospin limit and Δaπd takes into account isospin breaking

terms. That way values for a+ and a− can be obtained, such, that the three bands have a
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a+

a−

← επ−H
1s

← επ−d
1s

← Γπ−H
1s

Figure 3.1: Schematic view of the bands for a+ and a−, resulting from measurements of

επ−H
1s , Γπ−H

1s and εd
1s. The scale on the axes is arbitrary.

common intersection area again. For a detailed theoretical discussion of this issue see [61]

and [62].

From the above discussion it is clear, that this matter needs clarification. Therefore,

pionic deuterium X-rays from the 3p→ 1s transition were measured in 2006 at PSI. The

analysis is still in progress and will be published elsewhere.
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4 Experimental setup and data

processing

Accuracy at the level of a few per mill for the ground-state shift and a few percent for

the width requires a highly sophisticated and well understood experimental setup and an

efficient formation of pionic hydrogen.

In the next sections the main parts of the experimental setup will be described. The

starting point is the pion production at the accelerator at PSI, and finally the X-ray signal

as measured by the CCD detectors completes the description. Following the description

of the setup, the processing of the data will be explained.

In the beginning a general sketch of the experimental approach is given, followed by a

detailed description of the respective components of the apparatus.

4.1 The experimental approach

For the production of pionic hydrogen, the high intensity low energy pion beam at PSI

was used. Therefore the experimental apparatus was set up in the πE5 area of the

experimental hall at PSI (see Figure 4.1). The principle of the experiment is depicted in

Figure 4.2.

After passing the beamline leading to the πE5 area, pions are stopped in a cryogenic target

using a cyclotron trap. The target is filled with hydrogen gas. A small fraction of the pions

is captured by the hydrogen atoms in the target gas and pionic hydrogen is formed. After

undergoing cascade processes, as described in chapter 2, amongst others, pionic hydrogen

X-rays originating from the 4p→ 1s, 3p→ 1s and 2p→ 1s transitions, are emitted. The

X-rays are diffracted by a spherically bent Bragg-crystal and are finally measured at a

position sensitive large-area detector comprised of an array of six charge-coupled devices

(CCDs).

4.1.1 Pion production

For pion production at PSI, a high intensity ring cyclotron is used. From this cyclotron

a proton beam with an energy of 590 MeV is extracted. During the experimental periods
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4 Experimental setup and data processing

Figure 4.1: Overview of the accelerator complex and the experimental hall at PSI.

the current was up to 1.6 mA and thus it is ideally suited for a high rate production of

pions. After extraction (efficiency = 99.7%), the protons are guided to the production

target ”E”, made out of carbon with diameter of 40 mm. The secondary πE5 beam line

conducts the produced pions into the experimental area.
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4.1 The experimental approach

Figure 4.2: Basic setup principle of the pionic hydrogen experiment, for details see text.

Since pions decay within τπ− = 2.6 · 10−8 s, the shortness of the πE5 beam line (10.4 m)

is ideally suited for guiding low energy pions (and muons) with momenta in the range

of 10 − 120 MeV/c. The momentum acceptance of the πE5 beam line is 10% and its

momentum resolution amounts to 2%. The dimension of the spot size in the focus is

15 mm horizontal and 20 mm vertical, with an angular divergence of 450 mrad horizontal

and 120 mrad vertical. A graphic overview of the experimental hall and the accelerator is

given in Figure 4.1.

For the π−p experiment a pion beam with momentum of 112 MeV/c was used and injected

into the cyclotron trap. At this setting, a pion rate of 4 · 109π−/s is achieved. In Figure

4.3 the setup of the experiment in the area πE5 can be seen.

4.1.2 Cyclotron trap

In order to form a large number of pionic hydrogen atoms in the target gas, pions, coming

from the beam line, have to be slowed down from the MeV range to a few eV. Pions

exhibit a short lifetime, therefore the deceleration has to be accomplished very quickly.

Additionally, to increase the number of formed pionic hydrogen atoms, a high stop density

of pions in the target gas has to be achieved.
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4 Experimental setup and data processing

Figure 4.3: Setup of the experiment at PSI. A fraction of the incoming pions is stopped

in the target cell inside the cyclotron trap. X-rays from pionic hydrogen are emitted to

a crystal, where they are Bragg-reflected onto the CCD detector. The concrete shielding

indicated in the figure is essential for an efficient background reduction.

The cyclotron trap described in [63] fulfils both purposes. It consists of a split coil su-

perconducting magnet, with a weakly focusing axial �B-field (Figure 4.4). Once the pions

arrive at the cyclotron trap, the strong magnetic field forces the pions onto spiral orbits.

The magnetic field alone, however, would not be sufficient to guide the pions into the

target in time. Therefore, plastic degraders mounted in the path of the pions are used.

With the help of these degraders, the pion momenta are reduced and that way pions are

guided into the target cell after approximately 2 turns.

To have conditions as ideal as possible, i. e., a high stop density of pions in the target, the

thickness of the degraders was optimised. That way, approximately 1% of pions entering

the cyclotron trap are stopped in the target at 1 bar (equivalent to room temperature)

and increase approximately linearly with density.

Of course, at such high pion rates like they occur at PSI, a high neutron background (by

absorption of pions in matter) is produced in the experimental area. Therefore, back-

ground and its suppression is an important issue of the new pionic hydrogen experiment,

as will become more clear as soon as the analysis of the data will be discussed in detail

in chapter 6.
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Figure 4.4: Cyclotron trap with target cell in the centre. A high flux of pions is entering

on top left of the cyclotron trap. After entering the trap, the pions are forced onto

spiral orbits using the trap’s magnetic field and degraders mounted in their path. After

approximately two turns a fraction of the pions stops in the central target cell.

4.1.3 Cryogenic target

As outlined in chapter 2, the pressure dependence of the energy of the emitted X-rays has

to be verified. This can not be achieved by simply increasing and decreasing the pressure in

an arbitrary gas cell, as the low energy pionic hydrogen X-rays (∼ 3 keV) considered here,

would be absorbed in any thick enough material to withhold high pressures. Therefore

a cryogenic target (Figure 4.5), which could be cooled down to 20 K, was used. With

it a large pressure range (equivalent to room temperature) could be reached. It was

placed in the axis of the magnetic field produced by the cyclotron trap (see also Figure

4.4). Cooling was achieved by an external copper cold finger onto which the target was

mounted. Furthermore, the axial target position could be changed without breaking the

vacuum (Figure 4.10).

The most important requirement for the window of the target cell was to absorb as few

as possible of the produced pionic hydrogen X-rays. Therefore it was made out of a

very thin Kapton foil (7.5μm), stabilised by an aluminium support structure containing a
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4 Experimental setup and data processing

Figure 4.5: Three dimensional view of the cryogenic target cell used in the pionic

hydrogen experiment.

horizontal grating. The walls of the cylinder were made out of 50 μm Kapton, supported

by two aluminium rings and three connecting aluminium rods. A detailed description of

the target cell can be found in [64].

4.1.4 Crystal spectrometer

Bragg’s law The pionic hydrogen X-rays are emitted from the pionic hydrogen atoms

formed in the target cell and are then reflected by the crystal spectrometer if Bragg’s law

nλ = 2d sinΘB (4.1)

is fulfilled. Here n is the order of reflection, λ is the wavelength of an incident X-ray, d

is the crystal lattice spacing and ΘB is the Bragg angle (Figure 4.6). Using E = hc
λ

, with

h as the Planck constant and c the speed of light, a direct relation of energy and Bragg

angle can be established in (4.1).

Crystals Due to the requirement of high resolution for X-rays in the keV range, the

only possible choice is quartz or silicon crystals. They exhibit a relative resolution of

ΔE/E ≈ 10−4 in the few keV energy region. In Figure 4.7 an example of the theoretical

diffraction patterns (rocking curves) for plane crystals is shown.

The plots in Figure 4.7 suggest, that quartz crystals should be used during measurements,

since they offer a higher (theoretical) reflectivity while having a resolution similar to silicon

crystals. During the measurements of pionic X-ray transitions, however, it turned out,
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4.1 The experimental approach

Figure 4.6: Illustration of Bragg’s law. Reflected X-rays interfere constructively, if the

Bragg condition (4.1) is fulfilled. ΔΘind is the necessary correction to the Bragg angle

due to the index of refraction shift; for details see text.

Figure 4.7: Rocking curves for flat silicon and quartz crystals produced by the X-ray

Oriented Programs XOP [65]. The solid lines consist of the sum of σ- and π-polarisation.

The dashed lines indicate the σ-polarisation only and nicely illustrate the effect of π-

polarisation on the shape of the rocking curves.

that in reality this is not the case and the silicon crystals exhibit better reflectivity.

Therefore, silicon crystals were used during all measurements of pionic hydrogen X-ray

transitions described here.
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4 Experimental setup and data processing

Figure 4.8: Schematic view of a crystal spectrometer in Johann setup.

Index of refraction correction An important correction to Bragg’s law is caused by the

so-called index of refraction shift. It is due to a change of the wavelength of X-rays after

entering a crystal and hence causes a change of the Bragg angle of circa 1% for silicon

and quartz crystals at low X-ray energies (Figure 4.6).

Johann setup For flat crystals, only a small region of the crystal surface fulfils the Bragg

condition, which leads to a low rate of the reflected X-rays. In order to increase the rate

of reflected X-rays, crystals are bent to an appropriate curvature. Bending the crystals

changes the crystal lattice spacing d and therefore gives rise to another correction. d is

also influenced by variations of the temperature which also has to be considered.

Already in the early times of X-ray spectroscopy the use of bent crystals in order to

improve the efficiency of Bragg spectrometers was investigated. However, the development

of a working method was hindered by the conclusion of a report by E. Wagner [66], which

claimed that the fulfilment of both, the Bragg condition and the ordinary law of reflection,

where the emission angle is equal to the incidence angle, is impossible to accomplish. It

was found by Johann [67] that, by using a cylindrically bent crystal and an extended

source, it is possible to simultaneously fulfil both constraints up to a small error which

can be quantified. Using an extended (large area) detector, it is also possible to measure

two lines with similar energy at the same time (see also Figure 4.2).

In the so-called Johann setup the bent crystal has a radius (RC) twice the radius of the
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Rowland circle (R), which is defined by the focusing condition

R = RC · sin ΘB. (4.2)

Furthermore, the source and the detector are placed on the Rowland circle, see Figure

4.8 for a sketch. Since the crystal is bent, it only touches the Rowland circle in one point

where both conditions hold. X-rays deflected elsewhere on the crystal, will be reflected

(”shifted”) to the high energy side, leading to a broadening of the X-ray line on the

detector (Figure 4.8). The farther away from the Rowland circle the crystal is, the larger

the shift is. The maximal shift at the edge of the crystal reads

ΔΘJ =
1

8

(
b

RC

)2

cot2 ΘB, (4.3)

where b is the full horizontal width of the crystal and RC is the bending radius of the

crystal. By integrating over the whole crystal surface, the average shift is given in second

order

ΔΘJohann =
1

3
ΔΘJ =

1

24

(
b

RC

)2

cot2 ΘB, (4.4)

which describes the so-called Johann-broadening. This purely geometric effect can be

tolerated as long as it is small, compared to the resolution of the crystals. For crystals

with large RC, as used in this experiment, this is the case.

To increase the efficiency of a Bragg spectrometer even more, the Johann setup can be im-

proved by bending the crystal spherically for partial vertical focusing, as described in [68].

For the sake of completeness the Johansson setup [69] shall be mentioned here, where the

crystals are ground with a radius RC = 2 · R. Such, the crystal surface is tangent to the

Rowland circle and the broadening introduced by the Johann setup is avoided. However,

the grinding of such crystals is highly sophisticated.

The crystals used in the experiment and described herein have a diameter of 100 mm

and are bent with a radius of approximately 3 m (Figure 4.9). By using adhesion forces,

they are attached onto a glass lens with a diameter of 120 mm by the Carl Zeiss com-

pany [70]. The thickness of the crystals is approximately 0.2 mm for quartz and 0.3 mm

for silicon.

The crystal surface available for Bragg reflection can be changed by placing apertures in

front of it. Throughout the experiment a rectangular aperture of 60 mm width was used,

which represents a compromise between rate and the extent of Johann broadening. As it

is clear from equation (4.4), only horizontal limitation is needed in order to decrease the

effect of the Johann broadening ΔΘJohann.
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4 Experimental setup and data processing

Figure 4.9: Picture of the crystal holder with a mounted silicon crystal.

4.1.5 Geometry of the spectrometer setup

In Figure 4.2 the principle of the measurement with schematics of the main parts is shown.

In Figures 4.10 and 4.11 the different parts of the spectrometer attached to the crystal

are shown in detail. On the target side, i. e., the side of the cyclotron trap, the crystal

housing is connected to the target arm, which is fixed in its position (Figure 4.10). On

the side of the detector, it is attached to the detector arm, which can be rotated by a

stepper motor that controls the arm angle ΘARM (Figure 4.11). The crystal is controlled

by another stepper motor, which rotates the crystal by the angle ΘCRY. For the definition

of ΘARM and ΘCRY see Figure 4.12. Once ΘCRY is set, it is stabilised by a ceramic piezo

element, controlled by an angular encoder with an accuracy of ±0.14 seconds of arc.

The possibility of changing ΘARM and ΘCRY individually has the advantage that by vary-

ing only ΘARM, a different region in the target can be chosen, without changing the

position of the reflection on the detector. This is a very important feature of the setup,

since it provides the possibility to ”scan” the target. In a ”target scan”, the arm angle

ΘARM is varied and is plotted versus the X-ray rate (Figure 4.13). For the measurement

of a specific X-ray transition in pionic hydrogen, ΘARM is set to a value where the rate is

maximal. A detailed investigation of the features of a crystal spectrometer is performed

in [71].
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Figure 4.10: Drawing of the cyclotron trap attached to the crystal. On top of the

cyclotron trap, the two helium tanks providing the cooling of the superconducting coils

of the magnet are indicated. On the right, the construction allowing the axial movement

of the target can bee seen. For the measurement the space between the Bragg crystal and

the cyclotron trap is completely filled with concrete, see Figure 4.3.

4.1.6 CCD detectors

The main energy region of interest in the pionic hydrogen experiment is of the order of

2-3 keV. Since the countrate is also expected to be very low (< 100 X-rays/h), a detector

with good quantum efficiency in this region is needed. Additionally, due to the high

background expected in the experimental area, background reduction capabilities are also

desired. Therefore an array of charge coupled devices (CCDs) was chosen as detector. A

detailed description of the CCD22 used in this experiment can be found in [72]. Here a

short summary of the main features of the used CCD detector will be given.

The whole detector is comprised of 6 CCD devices. Each device has 600 × 600 40 μm

square pixels. This makes an active area of 24 mm× 24 mm for each device. The CCD22

has a depletion depth of ∼ 30 μm and the quantum efficiency in the region of interest is

about 80-90%.

The CCD22 is able to operate in frame-transfer mode, which allows the image region to

be shifted to a storage area within less then 20 ms. That way, provided the integration
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4 Experimental setup and data processing

Figure 4.11: Drawing of the crystal and the housing containing the CCD detector.

period is larger than the read-out period, losses are eliminated.

The 6 CCDs are mounted in a 2 column by 3 row array, which gives a imaging area

of 48 mm× 72 mm with a gap of about 500μm between the individual CCDs (Figure

4.14). Ideally, the six CCDs would be mounted perfectly aligned to each other. In reality,

however, there are gaps between the CCDs and the individual devices are slightly askew,

with relative rotations of about 1-6 mrad. The relative rotations of the individual CCDs

have been measured and were determined with a precision of about 50 μrad in [73].

In order to minimise the thermally induced dark current, the CCDs are mounted on a

cold-finger and are cooled using liquid nitrogen. A closed loop control maintains the CCD

temperature at −100± 0.5◦C.

The cold-finger (with the CCD array attached to it) is mounted on a high-precision

translation table (called ”LinTab”), which allows the detector to be moved (over a range

of 86 mm), in order to position it at the calculated focal position of the crystal in use

without breaking the vacuum.
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4.1 The experimental approach

Figure 4.12: Illustration of the setup geometry with the angular degrees of freedom

indicated by arrows. For details see text.
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Figure 4.13: Examples of target scans performed prior to data taking. For the target

scan on the right, an additional rectangular aperture was attached on the target window.

The sharp edges allow a quick determination of the optimal setting of ΘARM. Figure taken

from [8].
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Figure 4.14: Picture of the CCD array comprising the large area detector used in the

experiment.
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Figure 4.15: The cluster analysis separates pionic hydrogen X-rays (single or paired

events) from background events (multipixel events).

4.2 Data processing

4.2.1 Cluster analysis

As already mentioned earlier, pions stopping in matter produce a high neutron background

by absorption: π− + A → A′ + nn. The neutrons interact with the surrounding matter

and finally high energy γ-rays are produced via the reaction n + A → A′	 → A′γ. The

detector can be shielded from neutrons with concrete by moderation of the neutrons in

its water content. Especially, it is important, that the region between the crystal and the

source (cyclotron trap) is well shielded (about 1 m of concrete), see Figure 4.3.

The γ-rays can reach the detector and produce multi-pixel events by charge splitting.

In order to suppress such events from being taken into account in the production of the

final spectrum, a cluster analysis has to be performed. The cluster analysis makes use of

the different structure of background events and events originating from pionic hydrogen

X-rays. Since X-rays from transitions in pionic hydrogen are in the order of a few keV

only, they result in one activated pixel or two adjacent activated pixels. Whereas the high

energy γ-rays form large clusters (Figure 4.15).

4.2.2 ADC-cuts

A further reduction of the background is achieved by applying energy cuts (ADC-cuts) to

the cluster analysed data. With energy cuts, a region around the X-ray line of interest is

selected (Figure 4.16). In order to be able to identify the line, a suitable energy calibration

has to be performed. Once the line is identified, it is fitted using a Gaussian profile to

determine its position and width. Afterwards, regions with widths from 1 σ up to 3 σ

around the peak are selected and taken for further analysis.
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Figure 4.16: ADC-spectrum before cluster analysis (left) and after cluster analysis

(right). The ADC-cut is indicated by dashed vertical lines.

Applying the cluster analysis and energy cuts to the data has a drastic effect, as can be

seen in Figure 4.16. A detailed description of the cluster analysis used here can be found

in [8].

4.2.3 Bad pixel map

There is also the possibility of damaged pixels, which are activated without being hit by

an X-ray. To avoid that these pixels are taken into account, a bad pixel map (BPM) can

be established. With the BPM a threshold is set, which defines above what number of

hits a pixel is called defect. To find a suitable threshold, a first BPM is applied and it is

checked how this BPM influences the produced spectrum. Finally, a compromise has to

be found such, that as few interesting events as possible are ignored in the spectrum.

4.2.4 Curvature correction

After the application of cluster analysis, ADC-cuts and the BPM, a ”clean” two dimen-

sional spectrum is obtained (Figure 4.17). In this spectrum, however, all effects according

to geometry are still included: CCD alignment relative to each other (see section 4.1.6)

and curvature. The curvature is due to the fact, that a monochromatic X-ray line, re-

flected at a crystal spectrometer results in a curved reflex on a flat detector. In order to

obtain a one dimensional spectrum which can be used for the final analysis, these effects

have to be accounted for.

Here the consequences of the curvature correction will be summarised shortly. For a thor-

ough investigation the reader is referred to [8].
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Figure 4.17: Effect of the application of a curvature correction to the cluster anal-

ysed data shown in a two dimensional plot of the data (”scatter plot”). The parabola

parametrising the curvature is indicated by a solid line.

The Bragg-reflection of a point-like source results in a hyperbolic image on a flat detector.

By using an extended source, the image on the detector is a superposition of all hyperbo-

las resulting from the individual points constituting the extended source. If the reflection

surface is a curved crystal, and if the size of the crystal surface is small compared to its

bending radius, then the curvature of the reflex on a flat detector can be parametrised by

a parabola f(x) = ax2 + bx + c. Once the parameters a, b and c are obtained via a χ2

analysis, the curvature correction can be performed.

Figure 4.17 shows the effect of the curvature correction. The application of a curvature

correction is very important, since, if not applied, the one dimensional projection of the

curved spectrum leads to a distorted line shape.

Finally, a one dimensional spectrum is obtained, which can be subjected to an elabo-

rate analysis (Figure 4.18). The spectrum produced in this way, serves as a basis for a

fit routine developed separately. The analyses necessary in the following chapters will be

performed using this fit routine. The fit models used will be explained in the sections

where they are applied.
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(a) Two dimensional plots of data.

(b) One dimensional position spectrum.

Figure 4.18: Two dimensional plots of data and one dimensional position spectra of the

4p → 1s transition measured in the years 2002 and 2006. The structure seen in Figure

4.18(a) right is due to the malfunction of the CCD chip and will be cut away.
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5 The spectrometer response function

5.1 The Electron Resonance Ion Trap – ECRIT

In order to be able to extract the width of the ground state in pionic hydrogen with

sufficient accuracy, the response function of the spectrometer has to be known. The

underlying idea is to use narrow X-ray lines with the same, or very similar, energies like

the 4p→ 1s, 3p→ 1s and 2p→ 1s transitions in pionic hydrogen, which have the energies

3.043, 2.886 and 2.436 keV, respectively.

Accuracy is the outstanding requirement of this experiment. A prerequisite to compass

that requirement, is the accurate determination of the spectrometer response function. In

Figure 4.7 examples of rocking curves of quartz and silicon are plotted. They exhibit a

complicated shape and hence no simple model is applicable. Their shape is asymmetric

and, most importantly, they have Lorentz-like tails. Additionally, due to the use of a

spherically bent crystal setup, the imaging is also complicated.

Because of the shape of the tails, the measurement of the response function is of high

relevance for the extraction of the hadronic width of the ground state in pionic hydrogen,

since otherwise the influence of the Lorentz-like tails originating from the response function

may be attributed to the strong interaction, which is of the same shape.

In order to account for these circumstances accurately, the response function requires a

few 10 000 events in the line. Furthermore, this measurement has to be performed with

the whole experimental setup as it is used for the measurement of the pionic hydrogen

X-rays, since the whole geometry of the setup has to be accounted for.

There were already attempts to measure the response function using fluorescence targets,

excited by X-ray tubes. Unfortunately, due to Auger transitions, X-rays produced in such

a way possess a natural line width much broader than the resolution of the spectrometer.

In principle, narrow transitions from other exotic atoms (such as X-rays from the 5g → 4f

transition in π−C [8]) could be used to measure the response function. However, this

approach turns out not to be adequate for a precise determination, since the expected

rate of X-rays is in the order of ∼ 50/h only.

An alternative way of combining the requirement of narrow X-ray lines and high rate

is the usage of highly ionised atoms, like they can be produced in electron cyclotron

resonance (ECR) sources. For low to medium Z atoms, the hydrogen-like E1 and helium-
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Figure 5.1: Setup of the ECRIT at PSI – the main components are indicated. The

figure is taken from [78].

like M1 X-rays have natural line widths sufficiently small to satisfy the requirements of

the experiment. The M1 line in helium-like argon for instance has a lifetime of 0.2μs [74].

Another important feature of ECR sources is, that the kinetic energy of the ions is less

than 1 eV [75, 76] and hence Doppler broadening of less than 40 meV is to be expected

in the He-like argon M1 line (∼ 3 keV). In principle also EBIT (electron beam ion trap)

sources could be tuned to low kinetic energies of the captured ions, but this would result

in a drastic reduction in intensity. Therefore, an electron cyclotron ion resonance trap

(ECRIT) [77] was developed and set up at PSI.

5.1.1 Experimental setup

The setup of the PSI-ECRIT is depicted in Figure 5.1. Like in the setup for the measure-

ment of pionic hydrogen X-rays, the experimental setup to determine the spectrometer

response function consists of three parts:

� The electron cyclotron resonance ion trap – ECRIT, which is the modified cyclotron

trap as used in the π−p measurements.
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� The crystal spectrometer.

� The CCD detector.

The ECRIT consists of the existing cyclotron trap with special iron inserts, which provide

the mirror field configuration. In the axis of the cyclotron trap a permanent hexapole

magnet is mounted. The hexapole magnet is cooled by a forced flow of demineralised

water. The mirror ratio produced by this device is one of the highest achieved for ECR

sources and has a value of 4.3 over the length of the chamber.

Additionally, a 6.4 GHz power-regulated microwave emitter for the ignition of the plasma

is used. The microwave high frequency power is directly introduced into the plasma

chamber.

Without plasma, a pressure in the order of some 10−8 mbar was reached. The pumping

was done by three turbo molecular pumps and one cryo-pump. The gas for the plasma

was filled in radially via UHV precision leak valves and the gas composition was monitored

by a quadrupole mass spectrometer.

In the vacuum tubes connecting the crystal spectrometer with the ECRIT and the CCD

detector system, valves were mounted, such that the crystal and the attached apertures

could be changed while the ECRIT and the detectors were active. All details of the

experimental setup of the PSI-ECRIT can be found in [78, 79].

5.1.2 Experimental procedure

In the pionic hydrogen experiment three transitions (the 4p→ 1s, 3p→ 1s and 2p→ 1s)

were measured. Two different crystals were used: a Si(111) and a quartz (10−1). In order

to characterise the two crystals used in the experiment, X-ray lines which are close to the

one coming from pionic hydrogen have to be used. Therefore, the PSI-ECRIT was tuned

to produce narrow X-ray lines from highly charged sulphur, chlorine and argon. In Table

5.1 the energies from the pionic transitions are confronted with the helium like X-ray

energies from the three gases. Since the relative resolution of the crystal spectrometer is

of the order 10−4, the helium-like transitions overlap well with the pionic hydrogen X-rays

in question and no extrapolation is necessary.

In order to produce a high intensity spectrum, the ECRIT had to be tuned. The optimum

for the high-frequency power was found at about 450 W. The highly ionised gas in an

ECRIT is produced by collisions of electrons with atoms. Therefore, O2 gas was added

to provide additional electrons. The gas mixture had to be optimised in order to obtain

a high intensity of X-rays from highly excited ionised atoms. For argon, for instance,

the optimal mixture of Ar/O2 was 1/9. Figure 5.2 shows a picture of the plasma taken

through the inspection window at the ECRIT.
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ECRIT π−p

Crystal Gas θB [�] EX [eV] Transition θB [�] EX [eV]

Quartz

Ar 36.6814 3104.18 4p→1s 37.5443 3043.00

Cl 42.2687 2756.92 3p→1s 39.9804 2886.00

S 49.7269 2430.40 2p→1s 49.5441 2437.00

Silicon

Ar 39.5608 3104.18 4p→1s 40.5191 3043.00

Cl 45.8171 2756.92 3p→1s 43.2392 2886.00

S 54.4357 2430.40 2p→1s 54.2192 2437.00

Table 5.1: Comparison of the transition energies originating from pionic hydrogen to

the energies from the helium like lines in argon, chlorine and sulphur. For quartz(10− 1)

2d = 6.686277 Å and for silicon(111) 2d = 6.2712016 Å. d is the crystal lattice spacing.

Figure 5.2: Picture of the argon plasma inside the ECRIT at PSI. Picture taken from

the inspection window at the ECRIT.

Once the ECRIT settings are optimised, a target scan (see section 4.1.5) and a focal scan

are performed, in order to have the optimal setting of the spectrometer for the M1 X-ray

transition. In a focal scan the position of the detector is optimised such, that the width

of the line at a given position of the detector is minimised. In Figure 5.3 an example of

a spectrum for the argon M1 X-ray transition is depicted.

5.2 Determination of the spectrometer response function

The starting point of the determination of the spectrometer response function is the

rocking curve of a flat ideal crystal. This rocking curve is used as a basis for the real

response function of the spectrometer, which of course also has to incorporate the whole
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← Ar14+ (1P1 →1S0)

← Ar16+ (M1: 3S1 →1S0)
E = 3.104 keV

← Ar15+

Figure 5.3: Argon X-rays from Ar14+, Ar16+ (M1 line) and Ar15+ measured with a quartz

(10− 1) crystal. The energy value is taken from [74].

geometry of the setup.

XOP response function The rocking curve of a flat ideal crystal can be provided by a

program package such as the X-ray Oriented Programs (XOP) [65] (Figure 5.4(a)).

XOP + geometry To include geometrical effects such as source size, crystal and detec-

tor properties, and relative alignment of the setup, a Monte Carlo X-ray tracking routine

was developed, which uses the XOP response function as input and calculates the Bragg

reflection of a spherically bent crystal, including all geometrical properties of the exper-

imental setup. A major benefit from the X-ray tracking routine is, that by changing

several parameters representing the experimental setup in the tracking routine, a detailed

investigation of the effects on the X-ray spectrum, resulting from these changes is possible.

After application of the X-ray tracking routine, a two dimensional image on the detector

is obtained (Figure 5.4(b)). To this spectrum a curvature correction has to be applied

and has to be projected onto the x-axis in the same way as the measured spectra. Finally

this one dimensional spectrum can be used for the further investigation described below.

The output of the tracking routine can be considered as the ideal, theoretical response

function, which under ideal circumstances would reproduce the data.
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Figure 5.4: The evolution of the rocking curve for the argon M1 line calculated by XOP

is shown. First tracking is applied (Figure 5.4(b)), then a curvature correction and a

projection onto the x-axis is performed (Figure 5.4(c)).

XOP + geometry + Gaussian Deviations from the ideal situation, such as for instance

imperfections of the crystal, could be parametrised by a simple additional Gaussian broad-

ening. Using the tracking routine, this additional Gaussian can be folded into the ideal

response function and that way additional broadening effects can be included. In fact, by

varying the distance of the detector from the crystal, it turned out that this additional

Gaussian broadening is the same for all settings of the crystal–detector distance [78]. This

clearly indicates, that this Gaussian broadening is due to crystal properties and not due

to geometrical effects.

It is this additional Gaussian broadening which is of interest. Its determination will be

explained in section 5.2.2.
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5.2 Determination of the spectrometer response function

5.2.1 Definition of the spectrometer focus

In order to provide a systematic approach to determine the additional Gaussian broaden-

ing, at first, a few basic considerations have to be made and the term ”focus” has to be

defined. As the focal position is defined, the position of the detector for which the width

of measured line is minimal.

The so-called focal scan, that is, varying the distance crystal–detector, allows the deter-

mination of the focal position, which generally is close to the calculated focal position:

RC · sin ΘB. Usually the scan is performed in steps of ∼ 2 mm. At each detector position,

data are taken for 20 minutes. Immediately after data acquisition, a first rough analysis

of the line width is performed by means of a Voigt profile. From this evaluation a focal

position (position with minimal line width) is determined already in good approximation.

However, the shape of the rocking curve is in general too complicated to be reproduced

by a symmetric Voigt profile. This leads to an incorrect focal position and the detector

is placed at a position slightly off the ”real” focus (which has to be treated as unknown

up to now). This displacement of the detector results, of course, in an additional broad-

ening of the response function and should not be associated with the additional Gaussian

broadening, which is expected to account only for broadening caused by imperfection of

the crystal.

It follows, at first the extent of the misplacement of the detector has to be determined.

That is, the distance of the nominal focus, which was used during the measurement of

the spectrometer response function, from the ”real” focus.

Once this value is known, a spectrum with the detector shifted by this value, can be

simulated with the X-ray tracking routine. The spectrum obtained that way represents

the theoretical response function with the detector at the real focal position and thus can

be compared to the spectrum measured at (or closest to) this real focal position. Only

now the additional Gaussian broadening can be quantified.

Crystal miscut Another parameter that influences the focal position is the so called

miscut of the crystal. During the detailed investigation of all geometrical properties of

the spectrometer, it was discovered, that the crystallographic planes are not parallel to

the surface of the crystal. Therefore the simple focal condition given by

F = RC · sin ΘB (5.1)

has to be changed to

F = RC sin ΘB + RC cos ΘB sin [α cos(Φ− Φ0)] , (5.2)

where F is the focus, RC is the curvature radius of the crystal, ΘB is the Bragg angle,

α is the angle of the miscut, Φ0 is the orientation of the miscut and Φ represents the
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5 The spectrometer response function

Figure 5.5: Schematic drawing of the crystal miscut. Ideally the crystal planes are

parallel to the surface (left). Figure taken from [80].

Crystal Plane Miscut α [�] Orientation Φ [�]

Qu - Z20 (1, 0,−1) 0.034± 0.0013 −3± 21

Qu - Z21 (1, 0,−1) 0.011± 0.0011 −58± 56

Si - Z13 (1, 1, 1) 0.288± 0.006 −87.4± 1.2

Table 5.2: Miscut for some crystals.

orientation of the crystal during the measurement (Figure 5.5). A detailed investigation

of measurement and the influence of the miscut can be found in [80, 81]. In Table 5.2

examples for the miscut of the used crystals are given. Apparently the miscut of the quartz

crystals is very small and is thus negligible. For silicon, however, it can not be neglected,

since this would prevent an accurate determination of the defocusing. Therefore, the

influence of the miscut was implemented into the X-ray tracking routine as well.

5.2.2 Determination of the additional Gaussian broadening

In this section the procedure to extract the additional Gaussian broadening will be de-

scribed in detail. Even though the analysis using a Voigt profile used during the focal

scan is wrong only for ∼ 2 mm (as will be found out in the following), this displacement

has an effect on the additional Gaussian broadening, which should be attributed only to

geometrical deformations of the crystal and not to a broadening induced by a displace-

ment of the detector. The whole procedure has to be repeated for each transition energy

and each crystal.
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5.2 Determination of the spectrometer response function

Description of the procedure Starting point is the spectrum taken at the nominal focal

position determined in the focal scan, together with the simulated theoretical response

function (XOP + X-ray tracking) simulated at the nominal focus with Δx = 0 and G = 0.

Δx and G are input parameters in the Monte Carlo X-ray tracking routine. Δx is vari-

able and describes shifts of the detector in direction and away from the crystal. G is the

additional Gaussian broadening, which is set to zero at the beginning of the procedure.

Another important quantity has to be defined: ”LinTab”. It is an arbitrary quantity from

the experimental setup, representing the detector position on the linear table (see also

section 4.1.6). Therefore, the numerical value for the nominal focus is given by LinTab.

Both spectra (the data from the ECRIT measurement and the theoretical response func-

tion produced at the nominal focus (Δx = 0)) are read into the fitting routine and a fit to

the data is executed. The result of this fit is a value for the Gaussian broadening which

is kept fixed in the further analysis.

Next, several ECRIT spectra farther off the nominal focus are chosen. For each of them

several theoretical response functions are produced, but they are slightly shifted from

the value the detector is set in the focal scan. In other words, during the focal scan the

detector is set to a position a from the nominal focus. The theoretical response functions

are produced ”around” this value, i. e., Δx = a ± Δa, where Δa ≈ 5 mm in steps of

0.5 mm. Each of these in such way produced theoretical response functions is read into

the fitting routine and a fit to the ECRIT data taken at a is performed, with the Gaussian

broadening fixed at the value obtained at the start of the procedure.

In this way, a χ2 distribution as a function of the distance from the nominal focus Δx is

obtained (Figure 5.6 displays an example). This χ2 distribution is fitted using a polyno-

mial of third order. The minimum of this distribution is identified as the distance from

the ”real” focus, the detector was set in the focal scan. As can be seen in Figure 5.6, for

spectra taken far off the focus, the method described here is more sensitive. Therefore,

the outermost points of each focal scan were taken for the determination of the focal

position.

This is repeated for several points off the nominal focus. For each of these points a ”real”

focus is found. Finally, from these values a weighted mean is calculated and thus the

focus of the spectrometer is found. The formula for the weighted mean is given by

F =

∑
i fi · 1

(Δfi)
2∑

i
1

(Δfi)
2

(5.3)

and for the error
1

(ΔF )2
=
∑

i

1

(Δfi)2
(5.4)

59



5 The spectrometer response function

Figure 5.6: χ2 distribution as function of the distance from the focus Δx.

was used (see e. g. [82]). fi are the different foci obtained for the different spectra at the

different positions of the focal scan, Δfi are the corresponding errors.

In Table 5.3 the results for the foci for two quartz (10 − 1) crystals (Z20 & Z21) and

one silicon (111) crystal (Z13) are summarised. In this work only quartz crystals were

analysed. The result for the silicon crystal was taken from [28]. In addition, since the

3p → 1s transition in pionic hydrogen was always measured with a silicon crystal, only

argon and sulphur were used for determining the response function of the quartz crystals.

5.2.3 Results for the additional Gaussian broadening

With the focal position defined for the respective crystals, the additional Gaussian can be

determined: First, a theoretical response function at the correct focal position has to be

simulated. After this, the measured spectrum with the setting of the linear table closest

to the correct focus has to be identified. And ultimately, this measured spectrum has to

be compared to the theoretical response function produced at that position.

The result from this fit is the additional Gaussian broadening, which is expected to account

for all broadening effects that are not included in the theoretical calculation of the rocking

curve in XOP. The results for the different crystals are found in Table 5.4.

Discussion of the procedure The procedure to find the additional Gaussian broadening

starts with the Monte Carlo simulation of the theoretical response function with Δx =

0 and additional Gaussian G = 0. After the ”real” focus is identified, the additional

Gaussian broadening can be determined.

The assumption is, that this additional Gaussian accounts for all additional broadening
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5.2 Determination of the spectrometer response function

Crystal Gas Fnominal [mm] Fweighted [mm] Δx [mm]

Z20

Ar 97.98± 0.20 96.86± 0.08 +1.12± 0.21

SO2(1) 94.87± 0.20 93.57± 0.21 +1.30± 0.29

SO2(2) 91.87± 0.20 92.72± 0.55 −0.85± 0.58

Z21
Ar 97.72± 0.20 97.16± 0.07 +0.56± 0.21

SO2 94.87± 0.20 93.19± 0.25 +1.68± 0.32

Z13

Ar 97.04± 0.20 97.50± 0.16 −0.46± 0.26

Cl 91.96± 0.20 90.92± 0.20 +1.04± 0.28

SO2 130.00± 0.20 129.88± 0.34 +0.12± 0.39

Table 5.3: Results for the real foci (Fweighted), confronted with the foci obtained during

the measurement (Fnominal). Δx is the difference between the nominal and the correct

focus. A negative sign for Δx corresponds to a direction away from the crystal. Z20 and

Z21 are synonyms for two quartz crystals. In the case of quartz and sulphur, two focal

scans were performed (1 + 2). The results for Z13 are taken from [28].

effects not included in the theoretical model used in the XOP. However, it could be argued,

that this additional Gaussian is only a first approximation which could be improved by

another iteration of the whole procedure. That is, to use that additional Gaussian as input

at the beginning of the procedure (instead of G = 0) and repeat the whole procedure and

that way determine an improved additional Gaussian broadening.

However, detailed investigations have shown, that this does not change the result and

therefore the additional Gaussian found after the first iteration is sufficient.

5.2.4 The spectrometer response function

With the knowledge of the additional Gaussian broadening, the response functions needed

for the analysis of the pionic hydrogen transitions can be provided. Using the X-ray

tracking routine, with the additional Gaussian broadening as input, the response function

is calculated at the position the detector is set during the measurement of the pionic

hydrogen spectra. The response function produced in this way is a convolution of three

components

RF = XOP⊗ Tracking ⊗Gauss. (5.5)

”XOP” represents here the rocking curve for a flat ideal crystal, ”Tracking” accounts

for imaging properties of the setup and ”Gauss” describes all imperfections of the used

crystals. Taken together, these components comprise the desired response function of the
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5 The spectrometer response function

Crystal Gas Gauss [μrad] Gauss [meV]

Z20

Ar 32+2
−3 131+10

−11

SO2(1) 62± 2 127± 5

SO2(2) 70± 2 144± 5

Z21
Ar 25+3

−2 104+10
−11

SO2 66± 2 137± 4

Z13

Ar 33± 2 124± 7

Cl 41± 2 110± 5

SO2 57± 3 99± 5

Table 5.4: Values for the additional Gaussian broadening. The asymmetric values for

the error result from the fact, that for their calculation the package MINOS which is part

of the CERN program library MINUIT, was used. The width of the aperture attached to

the crystal is 60 mm, as this aperture was also used during the measurements of pionic

hydrogen X-ray lines. The results for Z13 are taken from [28].

crystal spectrometer.
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6 Analysis and results

6.1 Analysis

The 4p→ 1s X-ray transition in pionic hydrogen was measured in 2002 and 2006 at PSI.

For the extraction of Γ1s, different ADC-cuts (1.0 σ – 3.0 σ) were applied to the raw data

(see Table 6.1).

In general, each measured line profile P is a convolution of three functions,

P = L⊗ R⊗
(∑

i

Di

)
. (6.1)

L represents the Lorentz-like hadronic broadening of the ground state in pionic hydrogen.

R is the instrumental response function of the used crystal, measured with an electron

cyclotron resonance ion trap (ECRIT). The measurement and the following analysis are

discussed in detail in chapter 5. Di represents the Doppler-broadening, originating from

the kinetic energy distribution due to a particular Coulomb transition. In chapter 2, the

atomic cascade and its influence on the line shape was described.

6.1.1 Free fit to the data

On the basis of the line shape given in (6.1), an analysis routine was developed. It allows

the extraction of the strong interaction width from the measured pionic hydrogen lines

by taking into account the spectrometer response function as well as the kinetic energy

distribution approximated by Doppler boxes. The strong interaction width is determined

with a least squares fitting of the data using the program package MINUIT from the

CERN program library.

6.1.1.1 Fitting parameters

In the analysis routine the following parameters are used to define the fit-model:

� position of the line,
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Data set ADC-cut [σ] Rate Qp [Cb] Rate [1/Cb]

2002

3.0 5577± 102 1461 3.82

2.5 5470± 97 1461 3.74

2.0 5277± 92 1461 3.61

1.5 4733± 84 1461 3.24

1.0 3842± 74 1461 2.63

2006

3.0 4577± 80 884 5.18

2.5 4458± 78 884 5.04

2.0 4262± 74 884 4.82

1.5 3887± 70 884 4.40

1.0 3205± 62 884 3.62

Table 6.1: Overview of the measurements from 2002 and 2006. Qp is the integrated

proton beam current from the accelerator.

� Lorentz-width of the line,

� weight of the Lorentz-peak,

� linear background,

� widths of the Doppler-boxes,

� weights of the respective Doppler-boxes.

The spectrometer response function is read in directly and the analysis routine allows the

definition of up to five kinetic energy regions. All functions used in the analysis program

are normalised to 1.

For the analysis the following widths for the ADC-cuts to the measured spectra were

taken: 3 σ, 2.5 σ, 2 σ, 1.5 σ, and 1 σ, see section 4.2.2. The wider the cut, the more

events of the Lorentz distribution are taken into account. But of course the number of

background events also increases accordingly.

These spectra were analysed with the above mentioned analysis routine. During high

statistics Monte Carlo investigations (≈ 107 MC-trials) it turned out, that for the 4p→ 1s

transition it is sufficient to use only three kinetic energy regions in order to approximate

the kinetic energy distribution of the pionic atoms. Using up to five regions does not

improve or change the result, but it increases the computing time, since more parameters

have to be fitted.

For the analyses of the 2002 and 2006 data the following kinetic energy regions were used:
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6.1 Analysis

ADC-cut [σ] ΓL [meV] BG ILorentz χ2/dof χ2
red

3.0 844+93
−79 8.25+0.16

−0.17 5577± 102 563.47
566

0.99

2.5 841+86
−75 6.83+0.15

−0.15 5470± 97 594.81
566

1.05

2.0 836+85
−73 5.50+0.14

−0.14 5277± 92 561.58
566

0.99

1.5 771+75
−66 4.14+0.12

−0.12 4733± 84 556.85
566

0.98

1.0 763+81
−70 2.82+0.10

−0.10 3842± 74 579.24
566

1.02

Table 6.2: Free fit to the 4p → 1s transition in pionic hydrogen, measured in 2002.

In order to be well away from the gap between the CCDs , [3:575] ch was used for the

fit-region (gap at channel 600, see Figure 6.1(a) and 6.1(c)).

� [0 : 2] eV,

� [28 : 35] eV,

� [49 : 55] eV.

The choice of the energy regions is based on a kinetic energy distribution calculated in

the framework of the ESCM (see chapter 2). Unlike the relative weights, the widths of

the kinetic energy regions are fixed parameters in the analysis routine.

6.1.1.2 Free fit to the 2002 and 2006 data

Spectrum Figure 6.1 displays two examples of spectra for the 4p→ 1s transition mea-

sured in 2002 and 2006. Already after a first look at the spectrum one problem becomes

evident for both spectra. At channel 600, where the gap between the two CCD columns is

located, a clear change in the background level on the left and on the right side is visible.

This circumstance renders one column of the CCD not usable for a correct background

determination.

Fit region The fit-region has to be limited to the side of the peak only, which is a

considerable drawback, as will become clear when the influence of the fit-region on Γ1s

will be discussed in section 6.1.3.2.

Results of the free fit In Tables 6.2 and 6.3 the results of the free fit to the 2002 and

2006 data are summarised. For the error calculation the subroutine MINOS, which is

part of the program package MINUIT and is able to calculate asymmetric errors, was
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Figure 6.1: 4p→ 1s transition measured in the year 2002 and 2006. The 3.0 σ ADC-cut

is displayed.

used. Figure 6.2 shows two examples of the fitted spectrum for data measured in 2002

and 2006.

Problems For the ADC-cuts 1.5 σ and 1.0 σ a considerable decrease in the intensity of

the Lorentz-peak compared to the wider cuts is visible (Tables 6.2 and 6.3). Applying

these narrow cuts, the channel content of the resulting spectrum is drastically decreased,

resulting in a spectrum with very low statistics.

6.1.2 Effect of statistics on the fit-result

As the background rate is low, i. e., the data points of the background and in the tails of

the spectrum follow a Poisson distribution, the analysis routine uses maximum likelihood
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6.1 Analysis

ADC-cut [σ] ΓL [meV] BG ILorentz χ2/dof χ2
red

3.0 815+89
−76 3.60+0.12

−0.12 4577± 80 536.68
501

1.07

2.5 787+80
−70 3.08+0.11

−0.11 4458± 78 462.67
501

0.92

2.0 780+81
−70 2.46+0.10

−0.10 4262± 74 518.63
501

1.03

1.5 761+80
−69 1.87+0.09

−0.09 3887± 70 547.28
501

1.09

1.0 774+95
−79 1.28+0.08

−0.08 3205± 62 566.26
501

1.13

Table 6.3: Free fit to the 4p → 1s transition in pionic hydrogen, measured in 2006. In

order to be well away from the gap between the CCDs and also from the distortion at the

right end of the spectrum (see Figures 6.1(b) and 6.1(d)), [603:1110] ch was used for the

fit-region. See also Figure 4.18(a) right.

estimation (MLE). Let us assume a spectrum with N channels and ni counts in channel

i. Then n = (n1, . . . , nN) is the vector of observed values. The theoretical prediction

in channel i is given by a fit function y = (y1, . . . , yN) which in turn is defined by

j parameters describing the fit-model (see section 6.1.1.1). In an MLE for a Poisson

histogram the function

L(y|n) =

N∏
i=1

yni
i

ni!
exp (−yi) (6.2)

is maximised. If the likelihood ratio

λ =
L(y|n)

L(m|n)
(6.3)

is used (which asymptotically obeys a χ2 distribution), with m being the true (though

unknown) value of n if there were no errors in the measurement and, forming −2 ln λ,

then for Poisson distributed data points, the expression

χ2
λ = 2

N∑
i

[
yi − ni + ni ln

(
ni

yi

)]
(6.4)

is minimised. In the case of maximum likelihood (as also for the least squares method) the

estimators are often biased, even if they asymptotically converge to the true value. Biased

means that the mean value of estimates obtained from repeated independent experiments

is not equal to the true value. This bias can be corrected for by means of Monte Carlo

studies. For detailed discussion on this issue see e. g. [83–85].
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Figure 6.2: The 2002 and 2006 data with fit-function is displayed for 3.0 σ ADC-cuts.

6.1.3 Monte Carlo studies

The task in this section is to gain a qualitative understanding what influence boundary

conditions such as peak to background, height of background and fit-region have on the

results of the fit. Therefore the following investigations are undertaken:

� Correlation of background and Γ1s.

� Correlation of fit-region and Γ1s.

� Correlation of fit-region and background.

All investigations are performed according to the spectra measured in 2002. The choice

of the 2002 data is due to the worse peak to background compared to the 2006 data.

Therefore a more pronounced effect is expected and the results are more instructive.
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6.1 Analysis

BG (fixed) Γ1s [meV]

8.075 898+84
−74

8.110 883+86
−69

8.145 874+82
−69

8.180 865+78
−70

8.215 856+75
−70

8.250 844+75
−67

8.285 834+74
−66

8.320 825+72
−65

8.355 815+71
−64

8.390 806+70
−63

8.425 798+69
−62

Table 6.4: Fit-results with fixed background. The central value is printed in bold.

6.1.3.1 Correlation of background and Γ1s

To check the influence of the background level on the result for Γ1s, fits to the data are

conducted by fixing the background at the central value found in the free fit (e. g. for

the 3.0 σ cut: BG = 8.25+0.16
−0.17) and values corresponding to plus and minus the error and

intermediate values in appropriate steps. The results are given in Table 6.4 and are plotted

in Figure 6.3. A clear decrease of Γ1s is seen with increasing background: a change of the

background value in the order of ± the error, gives a ΔΓ1s ≈ 100 meV. This illustrates the

strong dependence of Γ1s on the background and reveals the high importance of a good

measure of the background in order to get an accurate result for the strong interaction

width in pionic hydrogen.

To understand the strong correlation between background and Γ1s, the shape of a Lorentz

curve has to be recalled:

L(x) =
Γ

2π

1(
Γ
2

)2
+ x2

. (6.5)

Unlike in the case of a Gaussian distribution, where the decrease in the tails is exponential,

in the case of a Lorentz curve it is much less pronounced and its influence extends far off the

peak position. Therefore, also far away from the peak position still some Lorentz fraction

might be found. This fraction could in turn be wrongly attributed to the background

instead of the Lorentz curve. This clearly points out that a wide fit-region is favoured in

order to get a good fit-result for the Lorentz width. In the next section the influence of

the fit-region will be investigated in detail.
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Figure 6.3: Results for Γ1s from a fit to the 2002 data using a fixed background value

as input.

6.1.3.2 Correlation of fit-region and Γ1s

Spectra For the study of the influence of the fit-region on Γ1s, spectra are simulated

according to the statistics and the background condition of the 2002 data.

Simulation parameters In the simulation the following parameters are used as input:

Γ = 820 meV, background BG = 8.3.

Effect of fit-region In the input of the fit-routine only the fit-range is varied in steps of

68 ch, which corresponds to ∼ 5 eV. For each data point, i. e., one fit-region, 400 spectra

with 400 different Monte Carlo seeds (staring value for the Monte Carlo generator) are

simulated and fitted with all parameters describing the model kept free in the fit. From

these 400 (fitted) values for Γ and background, the mean is calculated and then plotted

versus the fit-region, see Figure 6.4.

Result The plots in Figure 6.4 clearly reveal a bias of the fit routine. Even for the

maximally available fit-region (573 channels), the input width and background are not

reproduced. In the particular case considered here (the 4p → 1s transition measured in

2002) the bias manifests itself such, that the fitted value is too high. The bias has to be

determined for each data set individually.

6.1.4 Analysis strategy

From the general considerations in the preceding sections, the strategy for the further

analysis is obvious. The overall goal is to quantify the bias of the fit routine. Once it is
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Figure 6.4: Correlation between Lorentz width and fit-region (Figure 6.4(a)) and be-

tween background and fit-region (Figure 6.4(b)). The values for the Lorentz width and

background are the mean values resulting from 400 Monte Carlo simulations and subse-

quent fits for each data point in the plots.

determined, the results obtained from the free fit to the measured data (Tables 6.2 and

6.2) must be corrected for this bias.

Given the strong correlation of background and Lorentz width (see Figure 6.3), the basic

idea to determine the bias is, to perform a high number of simulations with different

seeds such, that the mean value of the fitted background is well in agreement with the

one obtained from the free fit to the data (for each ADC-cut). In more detail:

1. Free fit to measured spectrum, yielding BGfit
data and Γfit

data.

2. Simulate N spectra (N different Monte Carlo seeds), with BGsimul and Γsimul as

input, where in general BGsimul �= BGfit
data. Γsimul should be close to the value found

in the free fit (Tables 6.2 and 6.3). In the analysis discussed here, the investigation

was performed typically for three different values of Γsimul (Tables 6.5 and 6.6).

3. Fit to simulated spectra. From each of the N fits, a background BGfit
simul and a width

Γfit
simul are obtained.

Adjust BGsimul until BGmean
simul =

PN
i (BGfit

simul)i

N
≈ BGfit

data.

4. For the adjusted set of spectra calculate the mean Lorentz width Γmean
simul =

PN
i (Γfit

simul)i

N
.

From Γmean
simul, the bias ΔΓ = Γmean

simul − Γsimul is calculated. ΔΓ represents the bias of

the fit-routine for this specific case. N is chosen large enough that the statistical

error of the simulation is in the order of 3 meV for Γmean only.
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Analysis strategy

1. Fit to measured spectrum BGfit
data, Γfit

data

2. Simulate spectra Input: BGsimul and Γsimul

N simulations with N seeds

3. Fit to simulated spectra

BGfit
simul

N fits

no Compare: BGmean
simul =

∑N

i (BGfit
simul)i

N
≈ BGfit

data

yes

4. Calculate mean Mean width: Γmean
simul =

∑N

i (Γfit
simul)i

N

Bias: ΔΓ = Γmean
simul − Γsimul

Figure 6.5: Flowchart of the analysis strategy. For details see text.

This procedure has to be repeated for each ADC-cut. Figure 6.5 illustrates the analysis

strategy by means of a flow chart.

6.1.4.1 Statistics of simulated spectra and the definition of the fit-region

A necessary requirement for the above procedure to be successful is, that the conditions

of the simulated spectra are the same as for the measured spectra. That is, the number

of counts under the Lorentz curve must be the same as for the data. Furthermore, as

was described in section 6.1.3.2, another very important requirement is the equality of

the relative widths of the fit-regions. And lastly, the background level has to be chosen

appropriately.

Statistics of simulated spectra The number of counts under the Lorentz curve for

the 3.0 σ ADC-cut for e. g., the 2002 data is 5577 ± 102. This number represents only
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the counts attributed to the Lorentz curve and is defined as ILorentz = IPeak − IBG. Thus,

spectra have to be simulated with the number of counts according to ILorentz as determined

by the free fit to the data.

Fit-region In the simulation routine the peak is positioned at channel 600, whereas it

is at a different position during the measurement (e. g. at channel ∼ 307 for the 2002

data). As already mentioned (section 6.1.3.2), the resulting value for Γ is highly sensitive

on the fit-region. It is of high importance to have the same conditions for the free fit to

the measured data and for the numerous fits to the simulated data. The fit-region used in

the free fit to the 2002 data was [3:575] which corresponds to 573 channels, 304 channels

on the left and 268 channels on the right side of the peak. Consequently, the fit-region

used in the fits to the simulated spectra has to be chosen appropriately. I. e., with the

peak being located at channel 600, the fit-region for the fit to the simulated data in the

determination of the bias for the 2002 data is set to [296:868].

6.2 Results

6.2.1 Bias for 4p → 1s 2002

In Table 6.2 the results of the free fit to the 2002 data are collected. As can be seen,

the resulting Lorentz width for the ADC-cuts between 3.0 σ and 1.0 σ is of the order of

≈ 810 meV. Therefore, in order to determine the bias for the fit-routine in this region,

the simulations are done for widths of 720, 760, 820 and 860 meV. For the number of

simulations N , 800 was chosen, since the error of the mean value for Γ after 800 fits is of

the order of 2-3 meV and negligible compared to the statistical error of the measurement.

Simulations and subsequent fits following the prescription described in section 6.1.4 were

carried out for each ADC-cut with the fit-region set to [296:868]. The results are sum-

marised in Table 6.5.

6.2.2 Bias for 4p → 1s 2006

For the analysis of the 4p→ 1s transition measured in 2006 only a few modifications have

to be made. In comparison to the results from 2002, a clear decrease in the background

level is seen. This is due to the fact, that during this beam time much effort was put in

background reduction by further improving the concrete shielding.

The fit-region used in the free fit to the 2006 data was [603:1110], which corresponds to

501 channels, with 209 channels on the left and 298 channels on the right side of the peak.
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ADC-cut [σ] Γsimul [meV] Γmean
L [meV] BGsimul BGmean ΔΓ[meV]

3.0

760 792± 2 8.280 8.240± 0.005 32± 2

820 846± 2 8.300 8.274± 0.006 26± 2

860 889± 3 8.270 8.246± 0.006 29± 3

2.5

760 783± 2 6.900 6.860± 0.005 23± 2

820 845± 2 6.900 6.862± 0.005 25± 2

860 889± 3 6.850 6.813± 0.005 29± 3

2.0

760 780± 2 5.495 5.467± 0.004 20± 2

820 842± 2 5.500 5.476± 0.004 22± 2

860 881± 2 5.500 5.479± 0.004 21± 2

1.5

720 737± 2 4.160 4.143± 0.004 17± 2

760 786± 2 4.160 4.130± 0.004 26± 2

820 848± 2 4.150 4.123± 0.004 28± 2

1.0

720 749± 2 2.850 2.827± 0.003 29± 2

760 789± 2 2.845 2.818± 0.003 29± 2

820 850± 2 2.838 2.815± 0.003 30± 2

Table 6.5: Results after 800 simulations and 800 convergent fits for the 4p→ 1s transi-

tion measured in 2002.

Hence, [391:898] was chosen for the fit-region in the fit to the simulated data.

In Table 6.3 the results of the free fit are summarised. The resulting Lorentz width for

the ADC-cuts between 3.0 σ and 1.0 σ is of the order of ≈ 780 meV, thus, in the case of

the 2006 data, the simulations are performed for widths of 720, 760, 820 and 880 meV.

The results of the simulations are found in Table 6.6.
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ADC-cut [σ] Γsimul [meV] Γmean
L [meV] BGsimul BGmean ΔΓ[meV]

3.0

760 797± 2 3.630 3.588± 0.004 37± 2

820 856± 2 3.635 3.593± 0.004 36± 2

880 926± 2 3.641 3.594± 0.004 46± 2

2.5

720 756± 2 3.115 3.080± 0.004 36± 2

760 794± 2 3.120 3.087± 0.004 34± 2

820 860± 2 3.110 3.071± 0.004 40± 2

2.0

720 756± 2 2.505 2.466± 0.003 36± 2

760 791± 2 2.505 2.471± 0.003 31± 2

820 860± 2 2.510 2.469± 0.004 40± 2

1.5

720 754± 2 1.9 1.866± 0.003 34± 2

760 796± 2 1.9 1.869± 0.003 36± 2

820 859± 2 1.895 1.862± 0.003 39± 2

1.0

720 752± 2 1.305 1.282± 0.002 32± 2

760 799± 2 1.305 1.282± 0.002 39± 2

820 859± 2 1.310 1.282± 0.003 39± 2

Table 6.6: Results after 800 simulations and 800 convergent fits for the 4p→ 1s transi-

tion measured in 2006. The values Γsimul for the 3.0σ cut are different from the others,

because the value from the free fit is also sightly higher (Table 6.3).

75



6 Analysis and results

ADC-cut [σ] Γfit
data [meV] ΔΓmean [meV] Γcorr

data [meV]

3.0 844+93
−79 29± 4 815+93

−79

2.5 841+86
−75 26± 4 815+86

−75

2.0 836+85
−73 21± 3 815+85

−73

1.5 771+75
−66 24± 3 747+75

−66

1.0 763+81
−70 29± 3 734+81

−70

Table 6.7: Results for Γ1s for data measured in 2002. Γfit
data denotes the result obtained

with a free fit to the measured data, ΔΓmean is the mean value of the bias for the appro-

priate ADC-cut and Γcorr
data represents the corrected value of the strong interaction width.

ADC-cut [σ] Γfit
data [meV] ΔΓmean [meV] Γcorr

data [meV]

3.0 815+89
−76 40± 3 775+89

−76

2.5 787+80
−70 37± 3 749+80

−70

2.0 780+81
−70 36± 3 744+81

−70

1.5 761+80
−69 36± 3 722+80

−69

1.0 774+95
−79 37± 3 737+95

−79

Table 6.8: Results for Γ1s for data measured in 2006. For explanation see Table 6.7.

6.2.3 Final value for Γ1s

With the bias determined for the different simulated spectra and ADC-cuts (Tables 6.5

and 6.6), finally the results from the free fit to the data can be corrected appropriately.

For this, the mean value of the bias for each ADC-cut has to be calculated and subtracted

from the adequate value of Γ1s obtained from the free fit to the data. The results for the

2002 and 2006 data derived this way are listed in Tables 6.7 and 6.8, respectively. For

each measurement period the mean value of all ADC-cuts is calculated (Table 6.9) and

finally, from these two mean values, the weighted mean (see (5.3) and (5.4)) is calculated:

Γ1s = 765 ± 56meV. (6.6)

(6.6) is considered to be the final result of this work.

From the final value for Γ1s given in (6.6), the following quantities are derived:
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Year Γmean [meV] Γsymm.err.
final [meV]

2002 785+84
−73 785± 84+73

2
= 785± 79

2006 745+85
−73 745± 85+73

2
= 745± 79

Table 6.9: Calculation of final value for the strong interaction ground state width in pio-

nic hydrogen. Γmean represents the mean value from all ADC-cuts for each year. Γsymm.err.
final

is the value with symmetric error as needed for the calculation of the weighted mean.

πN scattering lengths From the final result for the hadronic broadening Γ1s, the isovec-

tor scattering lengths a− can be calculated from the Deser-type formula (3.62). Using

the correction factor δΓ = (0.6± 0.2) · 10−2 (section 3.3.1), the isovector scattering length

becomes

a− = (83.35± 3.06) · 10−3m−1
π .

Using

a+ + a− = (93.20± 2.9) · 10−3m−1
π

from [8], the isoscalar scattering length reads

a+ = (9.85± 4.22) · 10−3m−1
π .

πN coupling constant The πN coupling constant is calculated from the GMO sum

rule by inserting the value for the isovector scattering length into (3.69) and with the

value for J from (3.71) it reads

f 2
πN = 0.0745± 0.0020.

Goldberger-Treiman discrepancy Using the value for fπN , the axial coupling constant

gA = 1.2695±0.0029 [38], the pion decay constant Fπ = 92.42±0.32 MeV [38] and gπNN =

13.0134±0.1754 (see also (3.31)) the value for the Goldberger-Treiman discrepancy (3.32)

is

ΔπN = 0.961± 1.397 %.
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7 Summary and Outlook

7.1 Summary

This work describes the first step of an experimental program undertaken to increase

significantly the accuracy for the strong interaction width of the ground state in pionic

hydrogen. This goal was approached by several improvements both in the experimental

realisation and the analysis strategy.

X-ray transition: The 4p → 1s transition in pionic hydrogen was measured the first

time and it was used to develop the analysis method in this work, since it is least

influenced by Doppler broadening.

Concrete shielding: A dedicated concrete shielding between X-ray source and crystal

spectrometer results in a substantial reduction of the background.

Doppler-broadening: The kinetic energy distribution of the pionic atoms leading to a

Doppler-broadening of the X-ray transitions was approximated by a model using

box-like distributions. This approach was verified by the measurement of the 3p→
1s X-ray transition in muonic hydrogen, where the strong-interaction broadening is

absent and hence the X-ray line-shape is very sensitive to Doppler-broadening.

Response function: The measurement of the instrumental response function with an

electron cyclotron resonance ion trap allowed a precise and model-independent quan-

tification of broadening effects originating from the crystal spectrometer setup.

X-ray tracking: A Monte Carlo based X-ray tracking routine was developed taking into

account crystal properties and the geometric effects of the setup. This allows to

study in detail systematic effects of the experimental conditions on the pionic hy-

drogen spectra.

Monte Carlo studies: Extensive Monte Carlo studies have been performed to determine

the bias of the analysis routine caused by the low statistics of the π−p spectra.

This is of outstanding importance because of the strong correlation between Γ1s

and background in the analysis.
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Accuracy: By analysing the 4p → 1s transition only, the accuracy of the result for Γ1s

compared to the value given in [60] could be improved already. Here, the systematic

errors owing to analysis and background have been precisely determined.

The final result for Γ1s obtained in this work reads

Γ1s = 765± 56 meV.

7.2 Outlook

The new analysis method developed in this work and first applied to the 4p→ 1s transition

in pionic hydrogen will be the basis for the evaluation of the X-ray spectra from the

3p→ 1s and 2p→ 1s transitions in hydrogen and the deuterium 3p→ 1s measurement.

In the case of the 4p → 1s transition, because of the small dispersion, a sufficiently

large region for background determination is available left and right of the line. For the

3p→ 1s and the 2p→ 1s transitions, the situation is complicated because of the increasing

influence of Coulomb deexcitation causing a further broadening of the spectral line. In

addition, the increasing dispersion leads to a decreasing region available for background

determination.

From the accumulated statistics for all transitions, finally an accuracy of about 2-3% for

the strong interaction ground state width in pionic hydrogen should be attainable. This

corresponds to 1-1.5% for the isovector scattering length a−. From the new result for the

shift in pionic deuterium, an additional constraint for the scattering lengths is obtained.

The data are currently being analysed.
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Appendix A

File lists

In the following pages the lists of data files for the 2002 and 2006 beamtimes are collected.

An explanation of the table headers is given beforehand:

date: is the date the measurement was started.

crystal aperture: gives the dimension of the aperture attached to the Bragg crystal.

target / source: is the target gas or the source in the case of fluorescence X-rays.

p: is the target pressure given in [mbar].

T : is the target temperature in [K].

Qp: is the integrated proton beam current in [C].

LEX#/ page: is the page in the beamtime logbook.

file name: is the name of the recorded data file.

comment: gives additional information, e. g., on spectrometer settings.
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[69] H. H. Johann. Über ein neuartiges, genau fokussierendes Röntgenspektrometer. Z.
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