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Abstract 
 

This thesis deals with the design and implementation from scratch of a biologically inspired 

modular autonomous mobile robot platform or MAMoRo (acronym for: Modular Autonomous 

Mobile Robot) and demonstrating its functionality with some practical applications. The 

emphasis is on the hardware of the robot platform.  
 

MAMoRo possess the processing power to be used in intensive-processing applications such 

as graphic processing, and is at the same time low-cost. The main functions of MAMoRo are 

distributed into three modules: Power & Motion module, Control module, and Intelligence 

module. The decision-making functions of MAMoRo are distributed according to their 

complexity into two modules: the Control module, which is equipped with a low-cost 

microcontroller, and is responsible for handling low-level hardware functions; and the 

Intelligence module, which is equipped with a low-cost Field Programmable Gate Array 

(FPGA), and handles high-level and processing-intensive functions. This model of 

distribution of functions according to their complexity, and particularly using an FPGA – a 

volatile programmable hardware unit – for handling high-level functions was inspired from 

the anatomy of the human brain, and brings with it many advantages. In addition, the 

combination of a microcontroller and an FPGA in the same system enhances considerably the 

flexibility and makes hardware re-configuration at run-time possible. Furthermore, the whole 

system is programmable through a single USB interface. 
 

After implementing MAMoRo, its hardware basic functions were tested. Afterwards, the 

overall functionality of MAMoRo was demonstrated with some practical applications. The 

project was successfully completed, and all objectives stated at the beginning of the thesis 

were accomplished. 

 

 

Keywords: Robot Platforms, Evaluation Platforms, Autonomous Robots, Mobile Robots, 

Robots in Education, Robots in Entertainment, Reconfigurable Hardware, Biologically 

Inspired Robots 
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Kurzfassung 

 

Diese Arbeit beschäftigt sich mit dem Entwurf und der Implementierung einer biologisch 

inspirierten, modularen, autonomen, mobilen Roboterplattform oder MAMoRo (engl. Abk.: 

Modular Autonomous Mobile Robot) und der Demonstration seiner Funktionalität anhand 

einiger praktischer Anwendungen, wobei der Schwerpunkt auf der Hardware der 

Roboterplattform liegt. 
 

MAMoRo besitzt die Rechenleistung um in rechenintensiven Anwendungen genutzt zu 

werden, wie zum Beispiel in der Bildverarbeitung, und ist gleichzeitig kostengünstig. Die 

Hauptfunktionen von MAMoRo werden in drei Module unterteilt: Power & Motion Modul, 

Control Modul, und Intelligence Modul. Die Entscheidungsfunktionen von MAMoRo wurden 

abhängig von ihrer Komplexität in zwei Module unterteilt: das Control Modul, ausgestattet 

mit einem kostengünstigen Mikrocontroller, ist für die Abhandlungen systemnaher 

Funktionen verantwortlich; und das Intelligence Modul, ausgestattet mit einem 

kostengünstigen Field Programmable Gate Array (FPGA), ist für die Abhandlungen von 

höhere und rechenintensiven Funktionen verantwortlich. Das Modell der Aufteilung der 

Funktionen anhand ihrer Komplexität und die Benutzung eines FPGA – ein flüchtiger 

programmierbarer Baustein – für die Abhandlungen von höhere Funktionen, ähnelt die 

Anatomie des menschlichen Gehirnes nach und bringt viele Vorteile mit sich. Des Weiteren 

steigert die Zusammenführung von einem Mikrocontroller und eines FPGA in einem System 

die Flexibilität erheblich und ermöglicht die Rekonfiguration von Hardware während der 

Laufzeit. Das ganze System ist über eine einzelne USB Schnittstelle programmierbar. 
 

Nach der Implementierung von MAMoRo wurden seine Hardware Hauptfunktionen 

überprüft. Anschließend wurde die allgemeine Funktionalität von MAMoRo anhand einiger 

praktischer Anwendungen demonstriert. Das Projekt wurde erfolgreich abgeschlossen und 

alle am Anfang dieses Projekt genannten Ziele wurden erreicht. 

 

 

Stichwörter: Roboterplattformen, Testplattformen, autonome Roboter, mobile Roboter, 

Roboter in der Lehre, Roboter in der Unterhaltung, Reconfigurable Hardware, biologisch 

inspirierte Roboter. 
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1 Introduction 
 

 

Robots have been slowly conquering our daily life since they were first invented. Their use 

has increased over the last years due to the fast progress of technology, and will even increase 

more in the future [IFR06]. Robots are used in a wide variety of fields.  
 

They are widely used in the industry sector, e.g. automotive industry, due their accuracy, 

productivity, and endurance. In medicine, medical robots are being developed that can 

perform very accurate surgery where the hand shaking of surgeons is a problem, or to allow a 

surgeon to perform an operation on a patient who is remotely located. Robots can also be used 

to do too dangerous work for humans such as removing landmines and defusing bombs, or 

accomplish work in environments too dangerous for humans such as in space, or even got to 

unreachable or far distant places to humans such as planet Mars. Domestically, robots can be 

used for simple but unwanted tasks such as vacuum and floor cleaning, or lawn mowing. 

There are also robot enthusiasts who have fun building and programming robots and using 

them for entertainment purposes.  
 

A hot field where there is currently a lot of research going on is the development of 

biologically inspired robots. This is a field in which the nature is studied and tried to be 

copied to solve or improve solutions to problems, and develop efficient robots. Another field 

where there is there currently a lot of research going on is the development of humanoid 

robots. Besides wanting them to do what we humans can do and even better, they are also 

used in many research fields such as understanding human body movements, artificial 

intelligence, or for developing models for various topics in cognitive science (the science of 

acquisition and use of knowledge). 
 

Due to the wide range of applications where robots can be used and their potential for the 

future, many universities and research institutions are investing a lot of money and time on 

research in the field of robotics. Most of the universities have recognized the importance of 

teaching and preparing their students for this field, and are trying to attract many students to 

this field through interesting courses in their curriculum.  
 

For teaching and research, general-purpose robot platforms, commercially purchased or 

developed internally, are generally used for conducting a wide range of experiments on 
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robotics, and for rapid prototyping. They are also used for conducting experiments in many 

other fields such as in electrical engineering, computer science. Therefore, having an optimal 

robot platform that is flexible, cost effective, and most importantly has sufficient processing 

power is very essential. The objective of this thesis is to develop such a robot platform. 

 

1.1 Problem Description 
 

Most universities and other academic institutions use low-cost and commercially available 

robot platforms to introduce their students to robotics and to perform on them simple robot 

applications [ZBZ06] [GHW03]. These robot platforms are also the type usually purchased by 

private robot enthusiasts due to their low cost, ease of use, and availability. The main problem 

with these robot platforms is that they cannot be used for advanced robot applications, 

because they do not fulfil requirements such as [GHW03] [BHL04]: 
 

• Processing power – needed for processing-intensive applications such as running 

algorithms in the field of machine learning, and image recognition. 

• Flexibility 

• Extendibility 

• Power consumption – important for mobile robots, since they usually get their power 

supply from batteries. 
 

Because of these restrictions, low-cost robot platforms are mostly only used for robotic 

introductory courses and in simple robotic applications by the academia, and by robotic 

enthusiasts who can afford them because of their low cost. A popular low-cost and 

commercially available robot platform that is widely used in the academia, including TU-

Vienna (Vienna University of Technology) is the LEGO™ Mindstorms [ZBZ06] [GHW03]. 

For more advanced robotics applications, a different class of robot platforms are used. There 

are not many types of these platforms available commercially, or at least they are not easily 

available. This is probably due to the high cost connected with purchasing them, they often do 

not fulfil the specific requirements wanted, and because universities and other academic 

institutions usually want to gain new experiences and knowledge by designing and building 

their own robot platform. However, developing a new robot platform costs a lot of time and 

money, and besides the actual designing and implementing, the documentation has to be 

created , bugs and upgrades have to be continuously be made to it. Therefore, developing your 
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own robot platform is an interesting choice when it is going to be reproduced in a large 

quantity, or if new experiences and know-how should be gained. 

 

1.2 Thesis Objectives 
 

The aim of this thesis is the design and implementation from scratch of a biologically inspired 

modular autonomous mobile robot platform or MAMoRo (acronym for: Modular Autonomous 

Mobile Robot), and then evaluating its hardware and demonstrating its functionality with 

some practical applications. The following requirements are to be fulfilled by MAMoRo: 
 

• Low-cost – in the same price range as other low-cost robot platforms, and should not 

exceed a lot the price of the popular robot platform LEGO Mindstorms. This will 

make it affordable by private robot enthusiasts, while in the academia it would be 

more affordable to provide it in large numbers to their students. 

• Processing power – enough for running algorithms in the field of machine learning, 

and image processing. 

• Ease of use – makes it also ideal for newcomers to robotics and robotics introductory 

courses in the academia. 

• Flexibility and versatility – use in a wide range of experiments in robotics, computer 

science, and in electrical engineering in general. 

• Modularity – the robot platform main functions should be distributed into more than 

one module, which are then placed vertically over each other in a stacked-up form. 

These individual modules should also be usable as stand-alone. 

• Expandability – it should be easy to swap parts or expand the platform functionality 

by adding additional modules 

• Low power consumption – important for mobile robots that run on batteries. 
 

Achieving all these goals might seem far-fetched, but with some innovative measures, and 

with the right system design and architecture they are achievable. The sytem design and 

architecture of MAMoRo are described in chapter 3 System Design and Architecture. 
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Most commercial robot platforms (e.g. LEGO Mindstorms1, Khepera2) were actually 

developed at universities then marketed commercially. One of the far-fetched objectives of 

this thesis is to commercially market MAMoRo. 

 

1.3 Overview of Thesis 
 

Chapter 1 – Introduction

Describes the problem and the objectives of this thesis.  
 

Chapter 2 – State of the Art

  Looks at related robot platforms.  
 

Chapter 3 – System Design and Architecture

Introduces and describes the overall design concept and architecture of MAMoRo 

without going down to the technical hardware information. 
 

Chapter 4 – Power & Motion Module

 Describes in detail the hardware design of the Power & Motion module. 
 

Chapter 5 – Control Module

 Describes in detail the hardware design of the Control module. 
 

Chapter 6 – Intelligence Module

 Describes in detail the hardware design of the Intelligence module. 
 

Chapter 7 – Hardware Implementation of MAMoRo

Deals with the hardware implementation of MAMoRo 
 

Chapter 8 – Programming MAMoRo

Describes the programming steps of MAMoRo.  
 

Chapter 9 – Application Examples

Demonstrates the functionality of MAMoRo with two application examples 
 

Chapter 10 – Conclusion and Future Work

The results and future work are discussed here. 
                                                 
1 LEGO Mindstorms homepage: http://mindstorms.lego.com
2 Khepera’s homepage: http://www.k-team.com
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Appendix A - Schematics, Board Layouts, and Parts List

 Schematics, board layouts, and parts lists for all boards used in this project. 

 

Appendix B - Headers Pinouts

 Pinouts description for all headers on MAMoRo’s modules. 

 

Appendix C - CD-ROM

 Lists the contents of the CD-ROM attached with this thesis. 
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2 State of the Art 
 

 

In this chapter, four different robot platforms are going to be objectively reviewed and 

compared, then their main advantages and disadvantages will be listed. The chapter then ends 

with a conclusion of all robot platforms reviewed. The robot platforms picked for this review 

have similar or overlapping goals as the robot platform MAMoRo.  

 

2.1 LEGO Mindstorms NXT 
 

 

 
 
Figure 2.1: Mindstorms NXT kit [LEG06a] 
 

2.1.1 Overview 
 

LEGO Mindstorms NXT is a robotic kit released by LEGO™ in the late of 2006. It is a 

continuation of the previous LEGO Mindstorms series that first came out in 1998, which were 

originally developed through a partnership with the Massachusetts Institute of Technology.   

The LEGO Mindstorms NXT kit comes with theses parts: (see Figure 2.1):  
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• NXT brick: the programmable processing unit (1) 

• Sensors, consisting of: 

o Touch sensor (2) 

o Sound sensor (3) 

o Light sensor (4) 

o Ultrasonic sensor (5) 

• 3 servo motors; each with a built-in rotation sensor. (6) 
 

The sensors, actuators, and the mechanical parts are not the focus of this review, but rather the 

NXT brick – the programmable unit of this kit.  

 

NXT brick hardware specifications: 
 

• Main processor: AT91SAM7S256; Atmel™ 32-bit ARM™ 

o 256 KiByte Flash, 64 KiByte RAM 

o 48 MHz 

• Co-processor: ATmega48; Atmel™ 8-bit AVR processor 

o 4 KiByte FLASH, 512 Byte RAM 

o 8 MHz 

• Communication interfaces: 

o  USB 2.0 

o wireless Bluetooth 

• User I/O 

o 4 input ports 

o 3 output ports 

• Peripherals: 

o 26 x 40.6 mm LCD 

o Loudspeaker 

o 4 button user interface 

• Powered by 6 AA batteries (6 x 1.5 V = 9 V) 

 

2.1.2 System Architecture 
 

The hardware architecture of the NXT brick is depicted in Figure 2.2. 
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Figure 2.2: NXT brick architecture [LEG06b] 

 

Two µCs are implemented in the NXT brick:  
 

• AT91SAM7S256: this µC is the main processor of the system, and operates at 48 MHz 

(43 MIPS). Its main task is handling user-specific tasks. 

• ATmega4): this µC acts as a helper for the main processor. It has a lower performance 

then the main processor and operates at 8 MHz (8 MIPS). Its main task is to handle 

lower-level tasks such as power management, A/D conversions, and generating the 

PWM signals for the motors. 
 

The main and co-processor communicate with each other through an I²C bus. The I²C is a 

master/slave bus, and the main processor is the Master. The maximum data transfer rate 

between the two processors is 380 kbit/s. The electronics of the NXT brick is enclosed in a 

chase, and is accessed externally through three output ports and four input ports.  

 

Output Ports 
 

The NXT brick has three output ports for controlling the actuators. Each Port has six pins: 

• 2 x PWM output pins (max 700 mA for both pins) 
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• 2 x Power pins (GND; +4.3 V; max. deliverable current by this supply is 180 mA) 

• 2 x  Input pins 
 

The PWM output pins are connected to a motor driver that can supply max. 700 mA. These 

pins are used to control an actuator. The power supply connected to the power pin can supply 

max. 180 mA in total. In this output port, two pins are used as input; they are connected to the 

ARM µC through a Schmitt-trigger to filter out noise. The input pins were added to the output 

ports to allow, for example, a DC motor with two inputs for speed control and 2 outputs from 

a quadrature encoder (integrated in the motor itself) to be directly connected to this port. 

 

Input Ports 
 

The NXT brick has four input ports; each port has six pins: 

• 1 x ADC input or Power pin (for backward compatibility with some sensors) 

• 3 x Power pins (2 x GND, +4.3 V) 

• 2 x I/O pins 
 

The two I/O pins are connected to an I2C bus; one of the two I/O pins can be used as an input 

to an ADC.  

 

 

The NXT brick relies on the I2C to connect external digital sensors. LEGO offers three types 

of sensors: 
 

• Passive sensors: do not need special power/timing requirements, e.g. touch and light 

sensor. 

• Active sensors: need special power/timing requirements, e.g. rotation sensor. 

• Digital sensors: include an internal microcontroller and communicate with I²C, e.g. 

ultrasonic sensor. 
 

More can be utilized from the NXT brick (e.g. access to the JTAG) if the case was screwed 

open. However, if this is done all warranties to this product become invalid. A detailed review 

of the LEGO Mindstorms NXT can be read in [FO06]. The schematics of the NXT brick are 

open for everyone to see in [LEG06b]. 
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2.1.3 Conclusion 
 

Advantages 
 

• Easy to use 

• Commercially widely available 

• Flexible mechanical construction through the LEGO-Technic blocks. 

• Wide support through the large community using it, spanning from academia to robot 

enthusiasts. 

• Availability of documentation and software libraries (e.g. for 3D simulation, or control 

plug-ins for popular control programs such as LabView and Matlab). 

• Relative low price: € 233 (tax free,  by the toy supplier Toys "R" Us ; [24/5/2007]) 

 

Disadvantages 
 

• The Processing power (~52 MIPS [ATM06c] [ATM05c]) of the NXT is not sufficient 

for robotic applications requiring intensive processing such as vision processing. 

• Too few user I/O pins  

• Hardware is inflexible and too difficult to expand 

• The 4.3 V power supply provided to the output and input ports is not a common 

voltage level. Most electronic devices require 5 V or 3.3 V. Also, the maximum 

allowable 180 mA current draw is very small. 

• The I2C bus used for the communication between the main and co-processor is very 

slow. 

• Instability of the LEGO-Technic blocks. 
 

LEGO Mindstroms is the most widely used robot platform for academia and entertainment 

[ZBZ06]. This platform is ideal for simple robotic applications and is cheap, easy to use, and 

has a wide support of users spanning from academia to entertainment. The LEGO bricks 

allow the mechanical part of the robot to be modelled freely and easily. Nevertheless, it 

simply lacks the processing power, flexibility, and expandability to be used in advanced 

robotic experiments. 

 

 10



2.2 RCUBE 
 

 

 
 

Figure 2.3: RCUBE modules [RCU05] 
 

2.2.1 Overview 
 

RCUBE is a platform for autonomous intelligent systems, developed by the University of 

Applied Sciences in Brandenburg, Germany. It is commercially available and is intended to 

be used as a research and education platform for industrial applications and private 

developers. RCUBE is a hardware platform, and does not come with a mechanical chassis. 

The three basic modules of the platform are: 
 

• CPU board 

• VIO board – video I/O module 

• AKSEN board – actuator/sensor module 
 

All modules are designed to work as standalone and can be connected with each other via a 

CAN bus. They all have the same size and are stackable.  

 

2.2.2 System Architecture 
 

The three basic modules of the platform are going to be described. 
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CPU Board 

 
Figure 2.4: CPU board in RCUBE [RCU06] 

 

The CPU board is a slightly varied LART1 Board.  The board contains an embedded system 

capable of running Linux, and is programmable with GCC. This module contains the 

processing unit and is the brain of the system.  

 

Hardware specifications: 
 

• 220 MHz Digital SA-1100 StrongARM CPU 

• 32 MiByte EDO RAM 

• 8 MiByte Intel Fast boot block Flash memory 

• CAN Bus interface 

• JTAG interface 

• 2 x RS232 serial ports 

 

VIO Board 

 
Figure 2.5: VIO board in RCUBE [RCU06] 

 

                                                 
1 The LART (Linux Advanced Radio Terminal) was developed by Delft University of Technology 
(Netherlands). Its Schematics and documentation can be found in [LAR06]. 
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The VIA board is a standalone module for image digitizing and recognition based on the 

StrongARM processor and Linux. 

 

Hardware specifications: 
 

• CAN bus connector for connecting it with other modules. 

• 4 x Video input for connecting PAL video sources, e.g. CMOS cameras. 

• Video output for connecting a display device, e.g. TV or a PC graphic with TV-IN. 

 

AKSEN Board 

 

 
Figure 2.6: AKSEN board in RCUBE [BHL04] 

 

The AKSEN board provides connections for sensors and actuators. It acts as standalone 

module and is directly programmable by GCC.  

 

Hardware specifications: 
 

• 15 analogue inputs and 16 digital I/O 

• 4 motor drivers for DC-motors up to 1A 

• 4 power drivers (e.g. for bulbs infrared senders) 

• 3 servo outputs 

• 1 output for modulated infrared 

• 3 encoder inputs for odometry 

• 4 dipswitches 

• RS232 interface 

• CAN interface (optional) 

• LCD display (optional) 

• Bluetooth interface (optional) 
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More about RCUBE can be read in the homepage of RCUBE [RCU06].  

 

2.2.3 Conclusion 
 

Advantages 
 

• High processing power 

• Integrated operating system allows easy programming and debugging of complex 

algorithms 

 

Disadvantages 
 

• System is too complex 

• Not power efficient 

• Cost1: VIO: €1848; CPU: €1428; AKSEN: €200–250 (all prices are tax free; 

8/1/2007) 

 

This platform has the processing power and expandability to be used in many advanced 

applications requiring intensive processing. The Linux operating environment makes the 

programming of high-level abstract algorithms and debugging more comfortable.  

Downside is the complexity of the system that makes it not suitable for simple robotic 

applications. The overall system is not power efficient, which makes it not suitable to be used 

in mobile robots. The major drawback, however, is its high cost. 

 

 

 

 

 

 

 

 

 

                                                 
1 These prices were sent to me through E-Mail by Ingo Boersch, one of the developers of RCUBE. 
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2.3 Tinyphoon 
 

 
Figure 2.7: Tinyphoon [NM05] 
 

2.3.1 Overview 
 

Tinyphoon is an autonomous mobile robot, developed (and still being developed) by the 

Institute for Computer Technology (ICT) at TU-Vienna [NM05]. The robot is used currently 

for teaching and research in ICT. The whole robot fits into a 7.5 cm³ cube and was designed 

to play in the FIRA (Federation of International Robot-soccer Association) MiroSot1 league. 

The developers of Tinyphoon claim that Tinyphoon is: “The worlds most powerful and 

smallest soccer playing robot” [TiP06]. Tinyphoon is a complete robot platform consisting of 

a mechanical chassis and its electronics. The electronic part consists of a motion board, and a 

vision board 

. 

2.3.2 System Architecture 
 

Motion Board 

 
The main components of the motion board are a power supply, microcontroller module, DSP 

module; the module is also equipped with various sensors. 

                                                 
1 Micro Robot World Cup Soccer Tournament (MiroSot): is a category in robot soccer, where two teams, each 
consisting of three robots, play against each other. Each robot must fit into a 7.5 cm³ cube, and shall be able to 
communicate wirelessly to a host computer for vision and location processing. More details can be found in 
FIRA's website: http://www.fira.net. 
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Figure 2.8: Motion board architecture in Tinyphoon [NM05] 

  

The microcontroller module is based on a XC167 microcontroller from Infineon™. Its main 

function is to control the motor drivers, read sensors, and communicate with other modules 

including Bluetooth wireless communication with the host computer or other robots. The DSP 

module is based on a BF533 or BF561 Blackfin family DSP from Analog Devices™, and 

functions as a coprocessor. This module contains the main computational power of the robot. 

Its basic functions are path planning, vision processing, and reasoning. An SPI bus connects 

the microcontroller module with the DSP module. 

 

 
Figure 2.9: Motion board: (e) Infineon XC, (f) Analog Devices Blackfin DSP, (g) Motor Driver 
Unit, (h) Gyro Sensor, (i) 2x Acceleration Sensors, (i) Magnetic Field Sensor, (k) 2.4 GHz Radio 
Module [NRB06] 
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Vision Unit 

 

The vision board enhances the robot with stereo vision capabilities. The board is equipped 

two Blackfin DSPs modules. Two 320 x 240 pixels CMOS cameras are connected to the 

board. All modules are can be connected by a CAN or TTP bus to support real-time 

communications. 

 

2.3.3 Conclusion 
 

Advantages 
 

• Sufficient processing power 

• Small size 

 

Disadvantages 
 

• Not general-purpose robot platform; it is more specialized for robot soccer 

• Cost: not available1; alone the DSP module with BF533 core costs 165 €, while with 

the better BF561 core it costs € 195 (all prices are tax free). 

• Expensive and difficult to upgrade and expand 
 

Tinyphoon is more a specialized robot for soccer than a general-purpose one. Its small size 

makes it expensive, and very difficult to expand and upgrade. 

 

2.4 Khepera-III 
 

                                                 
1 After many E-Mails and weeks of waiting, no response was received regarding the price from [TiP06]. 
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 Figure 2.10: Khepera-III as seen from different view angles [KTm07a] 
 

2.4.1 Overview 
 
 
Khepera III is a robot platform used in many universities for teaching and research, including 

the Institute of Handling Devices and Robotics (IHRT). The first version was developed in 

1991 at the Swiss Federal Institute of Technology of Lausanne (EPFL). The newest version in 

this series, which will review here, is the Khepera-III, which is developed and produced 

commercially by K-Team™.  

 

2.4.2 System Architecture 
 
 
Unfortunately, the circuit schematics for Khepera-III and all its extension modules are not 

open. Considering the high cost of this robot, this is a big drawback. 

 

Khepera-III hardware specification: 
 

• Processor:  DsPIC 30F5011, 60MHz; 4 KiByte RAM, 66 KiByte Flash 

• 2 x DC brushed servo motors with incremental encoders 

• Sensors: 

o 8 x Infra-red  sensors 
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o 2 x Infra-red sensors placed at the bottom of the chassis for line following 

applications 

o 5 x Ultrasonic sensors 

• Battery pack: Lithium-Polymer battery pack (1400 mAh) 

• Communication: standard serial port 

• Size: diameter: 130 mm, height: 70 mm 

• Weight: 690 g 

Figure 2.10 illustrates the Khepera-III robot platform from different view angles. The robot 

with its current hardware specifications is not sufficient for applications requiring intensive 

processing.  K-Team recognized this and provided an expansion module:  KoreBot. There is 

also a light version for this expansion module: KoreBot LE (Figure 2.11), which is cheaper 

and differs little from the full version.  

 

 
 
Figure 2.11: KoreBot LE expansion module for Khepera-III [KTm07b] 

 

KoreBot LE hardware specification: 
 

• Processor: Intel XSCALE PXA-255 400MHz 

• RAM: 64 MiByte 

• Flash: 32 MiByte 

• Interfaces: 

o 3x Serial RS332 (including Bluetooth compatible port) 

o 1x USB Client port 

o 3x USB Master port (to connect USB camera) 

o 1x MMC controller (MutiMedia Card) 

o 1x LCD controller 

o 1x I2C bus (400kb/s) 

o 1x SSP/SPI bus (1.8Mb/s) 
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o 1x AC97 sound controller 

o 2 x PWM pins 

o 53 x user-I/O pins (if not used for above features) 

• OS support: Linux 
 

The KoreBot is plugged into the Khepera-III as illustrated in Figure 2.12.  

 

 

  
Figure 2.12: Khepera-III and KoreBot (on top) placed in the chassis [KTm07a] 

Optionally, the following expansion modules can also be purchased: 
 

• KoreMotor (drive up 4 DC motors) 

• KoreConnect (easier connection to RS232 ports and USB Client). 

• KoreJTAG (JTAG to USB interface) 

• KoreSound (audio input and output). 

• KoreIO (Analog I/O, digtal out, servo control) 

 

The robot can be simulated in a PC with the 3D simulator Webots™1. Furthermore, K-Team 

offers control plug-ins for popular programs such as Matlab and LabView 

                                                 
1 Webots homepage: http://www.cyberbotics.com/
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2.4.3 Conclusion 
 

Khepera-III is worth considering if it is going to be used with the expansion module KoreBot. 

The hardware performance of Khepera-III alone can be matched by many other commercial 

robots with much lower cost. Furthmore, Khepera-III is programmable through the obsolete 

standard serial interface not found in many of today’s PC’s and especially Notebooks.  

The listed advantages and disadvantages below are true when Khepera-III and KoreBot LE 

are used. 

 

Advantages: (Khepera-III + KoreBot LE) 

 

• Sufficient processing power for image processing 

• Wide community in teaching and research 

• Availability  of optional expansion modules 

• Embedded Linux 

• Stable chassis 

• Availability of software library to allow 3D simulation of this robot, and control plug-

ins for popular control programs such as LabView and Matlab. 

 

Disadvantages: (Khepera-III + KoreBot LE) 

 

• Schematics are not open 

• Cost1:  Khepera-III: ~ €1820 (2450 USD); KorBotLE: ~ €220 (299 USD) (all prices 

are tax free, ) 

 

Khepera-III combined with KoreBot LE make a nice robot platform for teaching and research. 

Nevertheless, its price is too high compared to what it offers. 

 

2.5 Final Conclusion 
 

Although, only four robot platforms were reviewed in this chapter, in reality many other robot 

platforms were reviewed from the internet and research papers before coming with the idea to 

                                                 
1 These prices were sent to me through E-Mail by Laurence Schneider from K-Team 
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develop MAMoRo. None of the available robot platforms could fulfil the major requirements 

such as having sufficient processing power, low-cost, and be easy to handle. 
 

From all the robot platforms reviewed, LEGO Mindstorms and Khepera-III+KoreBot were 

the nearest to achieving the needed goals. LEGO Mindstorms has the best price/performance 

ratio, and thus, it is not a surprise that it is the most widely used robot in academia and 

entertainment [ZBZ06]. Nevertheless, its insufficient processor power, inflexibility and 

difficult expandability makes it not good enough for advanced robotics applications. Khepera-

III+KoreBot, on the other hand, although with a much higher processing power than the 

LEGO Mindstorms, the high cost and worse price/performance ratio are a major drawback.  
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3 System Design and Architecture  
 

 

In this chapter, the design, specification, and architecture of MAMoRo are going to be laid 

down, and how it will manages to solve the problems mentioned in 1.1 Problem Description, 

and meets the requirements listed in 1.2 Thesis Objectives. Since MAMoRo is not going be 

restricted to certain components from certain vendors, only the requirements for the hardware 

components and the functions they are supposed to do are described, but not their hardware 

realization. The detailed hardware realization and implementation of MAMoRo are described 

in later chapters. 

 

 
 Figure 3.1: MAMoRo - The modular autonomous mobile robot platform after its implementation 

3.1 System Overview 
 

An autonomous mobile robot (AMR) consists principally of four basic function units (Figure 

3.2):  
 

• Power unit: provides power to the robot. 

• Motion unit: drives the actuators of the robot. 
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• Sensor unit: pre-processes the raw signals from sensors before they are send to the 

decision unit. 

• Decision unit: is the “brain” of the robot; it makes decisions from the data read from 

the sensor unit, and accordingly sends control signals to the motion unit to drive the 

actuators. 

 

Power Unit

Motion Unit Decision Unit Sensor Unit

Sensors: 
optical sensor, 
touch sensor, 

rotary encoder, 
camera, etc...

Actuators: DC-
motor, stepper 

motor, etc...

 
  

Figure 3.2: Basic functions of an autonomous mobile robot 
 

To enhance flexibility and expandability, many robot platforms implement each of the units 

listed above in one or more hardware modules. This, however, increases the cost and 

complexity of the whole platform system, and makes it harder to manage. Some of the 

requirements stated at the beginning of this project for the robot platform MAMoRo were 

low-cost and ease-of-use, while at the same time be flexible, expandable, and possessing 

enough processing power to be used in processing-intensive applications. These requirements 

may sound far-fetched, but with the right design and architecture, they are achievable.  
 

In MAMoRo, the AMR four basic functional units have been distributed into three hardware 

modules: (The reasons for these distributions of functions are described in detail in section 

3.2 The Architecture of MAMoRo) 
 

• Power & Motion module – containing the power unit and motion unit 

• Control module – containing the sensor unit and part of the decision unit; this module 

will handle all low-level hardware tasks 

• Intelligence module – containing part of the decision unit; this module will handle 

high-level processing-intensive tasks 
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The three modules altogether make the basic skeleton of the robot platform. The three 

modules are placed in a stacked-up form (Figure 3.1).  The platform can also be optionally 

expanded to more than those modules to perform additional functions, or even increase the 

processing power of MAMoRo. Figure 3.10 illustrates clearly the three modules of MAMoRo 

and their connections.  

 

3.2 The Architecture of MAMoRo 
 

 

 

 

 
Figure 3.3: The AMR basic functional units in MAMoRo are distributed into three hardware 
modules 

 

To fulfil the requirements stated at the beginning of this project for MAMoRo, the 

distribution of the AMR functions into MAMoRo’s hardware modules were done as depicted 

in Figure 3.3. As can be seen from Figure 3.3, some of the AMR functional units have been 

merged, while others have been further partitioned. The merging of units reduces the number 

of modules in the system, consequently this reduces cost and complexity of the system, and 

makes the system easer to manage and handle. In the following sub-sections, the architecture 

of MAMoRo and general functions of the modules in MAMoRo are going to be described. 

The functions of the modules are described in more detail in section 3.3 The Modules of 

MAMoRo. 
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3.2.1 Power and Motion Unit 
 

The power and motion units were merged into a single module: Power & Motion module. 

The power and motion units are the least complex units, and contain few components; 

therefore, they were merged to reduce the number of modules in the system.  
 

The power unit is responsible for providing a stabile power supply to the whole system and 

monitoring its voltage level. The motion unit drives the robot actuators according to the 

signals it reads from the Control module, and sends back to it odometry information, which 

are used for the navigation and path planning of the robot.  

 

3.2.2 Decision unit 
 

The decision unit can be considered the “brain” of the robot. All actions that the robot makes 

are decided here. Some decisions require more processing time than others, e.g. calculating 

the square root of a number requires more processing time than sending a command to the 

motion unit to tell the motor to move forward. The decisions a robot makes can be classified 

into two categories:  
 

• Low-level functions: such as motor control, A/D conversion, read/write memory. 

• High-level functions: such as path planning, artificial intelligence.  
 

In MAMoRo, the decision unit functions are distributed into two modules according to this 

schema. The modules are:  
 

• Control module:  handles hardware low-level functions and provides these functions 

to the intelligence module through an interface independent from the underlying 

hardware. The main component is a low-cost, low power µC. 

• Intelligence module: handles high-level, processing-intensive functions. The main 

component is a low-cost FPGA. The advantages gained by using a µC and an FPGA in 

a single system are explained further in this chapter. 
 

This model of distribution of functions according to their complexity was inspired from the 

anatomy of the human brain. A part of our brain is responsible for critical low-level functions 

such as digestion, heart beating, respiration, which are done involuntary and without any of us 

“thinking” about it. Another part of the brain is responsible for the higher and more complex 
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functions such as learning, reasoning, and self-consciousness. When a baby is born, the 

critical low-level functions are already “implemented” in his brain. That is, he does not have 

to learn such functions as breathing, or controlling heart rate. On the other hand, the part of 

the brain which is responsible for high-level functions such as taste, emotions, or language, 

are at birth “empty” and will be programmed during the life time of the baby. This resembles 

the FPGA – a volatile programmable hardware –, which is at first empty and is programmed 

at run-time during the operation of the system. 

 

 
  

 Figure 3.4: Comparison of high- and low-level functions in the human brain and the Control and 
Intelligence module. Note: the positions of the functions in the human brain depicted above are not 
anatomically correct. 

 

The advantages gained in MAMoRo by this type of distribution are listed in the following 

page. 
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Advantages gained by using a Control module that handles low-level hardware task, and 

an Intelligence module that handles high-level and processing-intensive functions: 
 

• A simple robot, which does not need intensive processing, can be implemented with 

just the Power & Motion module and the Control module, i.e. no need to use the 

Intelligence module. This reduces the complexity of the system and especially the 

power consumption; because when it comes to power saving, µCs (used in the 

Control module) have the edge over FPGAs. If later on it was decided that the robot 

should indeed do some intensive processing, e.g. graphic processing, complex 

algorithms, then the available robot platform can be upgraded by just plugging the 

Intelligence module to the Control module.  

• The Control module can handle hardware low level tasks like driving actuators, 

reading raw data from sensors, converting analogue signals to digital, connecting to 

a PC for data downloading or uploading, etc.. The Control module can then provide 

these functions to the Intelligence module through an interface. Hence, the Control 

module can hide the complexity of the underlying hardware from the Intelligence 

module. This has great advantages:  

o The Intelligence module is revealed from handling low-level tasks and can 

use high-level language and abstract functions. 

o Programs written for the Intelligence module are independent from the 

underlying hardware and remains unchanged if an electronic component is 

swapped, e.g. a bigger Flash memory, a different motor driver; therefore, 

increasing flexibility and extendibility. 

• For learning purposes, e.g. in introductory courses, the students can first be 

introduced to hardware programming by letting them first use the Control module. 

When they master this module, they can move on to the Intelligence module with the 

on-board FPGA, since using and programming an FPGA is more demanding then 

using and programming a µC. 

• Both modules can be modified, upgraded and replaced independently from each 

other, as long as the interface connection between both modules stay the same.  
 

The reason for implementing two different types of programmable units in MAMoRo, i.e. a 

µC in the Control module and an FPGA in the Intelligence module, is to exploit the 

advantages of each type of programmable unit; these advantages are listed below. 
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The advantages of microcontrollers over FPGAs: 
 

• Lower power consumption 

• Cheaper to purchase  and cheaper developing tools 

• Easier to program, modify, and handle 

• On-chip peripherals, e.g. ADC, Timers, USART, SPI, etc. 

• Predictable time behaviour – The microcontroller circuit is integrated in silicon and 

is unchangeable; unlike the FPGA which has variable timing performances. 

 

The advantages of FPGAs over microcontrollers: 
 

• An FPGA is a programmable hardware device; a specific application implemented in 

hardware will run a lot more efficient than if it was written in software. 

• Flexibility – any logic circuit can be programmed on it 

• Faster real-time response – required for interactive Robots 

• Parallelism – FPGAs can execute commands in parallel; microcontrollers do this in 

sequence. Digital signal functions implemented in FPGAs can run orders of magnitude 

faster then most DSP (Digital signal processing) processors. 
 

Apart from the advantages listed above, the combination of a µC and an FPGA in a system 

allows that a part of MAMoRo’s hardware to be reconfigured at run-time. So, for example, 

multiple hardware codes can be stored in a flash memory and then uploaded to the FPGA 

whenever needed. An example of an application where hardware re-configurability might be 

useful is, for example, in an application where MAMoRo must achieve different tasks 

efficiently and fast. The algorithms code for each of these tasks can be stored in a flash 

memory and uploaded to the FPGA when they are needed. Implementing these various tasks 

in software would not be as much efficient.  

 

3.2.3 Sensor Unit 
 
The primary function of the sensor unit in the AMR model (Figure 3.2) is to pre-process the 

raw data received from sensors, e.g. convert analogue signals to digital, filter noises, etc. In 

MAMoRo, these functions are done by the µC in the Control module. The µC implemented in 

the Control module must have an on-chip A/D converter and sufficient processing power to 
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handle these tasks. By merging the sensor unit to the Control module, we have further 

reduced the number of modules in MAMoRo 

3.3 The Modules of MAMoRo 
 

As have been previously mentioned, MAMoRo’s modules are placed in a stacked-up form 

(Figure 3.1). The modules are connected with each other using headers; sockets on the 

bottom-side of the upper module plug into pin headers on module beneath it. Therefore, there 

should be no need for any wires for the connection of modules. All modules are designed to 

be usable in stand-alone mode. That is, each module can be used separately and perform its 

main functions without the presence of other modules. This feature is one of the requirements 

stated at the beginning of this project. 
 

After giving an overview of MAMoRo’s architecture in the previous sections, the individual 

modules are going to be described in more detail in the following sub-sections. The hardware 

design of the modules is dealt with in Chapters 4 to 6, while the implementation of these 

modules are dealt with in Chapter 7. 

 

3.3.1 Power & Motion Module 
 

 c
on

tro
l  

3.3 V

5 V

 
  

Figure 3.5: Power & Motion module block diagram 
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This Power & Motion module, as the name already tells, contains the power and motion unit. 

They are placed on the same module to reduce the overall number of modules in MAMoRo. 
 

The power unit provides all modules with a regulated voltage supply and has a voltage 

monitor that monitors the external power source if it drops low. The power unit should 

provide through headers three voltage supplies: 
 

• 3.3 V 

• 5 V 

• External power source (e.g. from battery) 
 

Particularly the 5 V and 3.3 V voltage supplies because these are the voltage levels used by 

most of today’s electronic components. The external power source should also be made 

accessible through headers, so that when needed instead of connecting wires directly to this 

external power source, it can be connected to the header on the Power & Motion module 

instead. 
 

The low voltage monitor is especially important in battery-powered robots. If the power 

source drops below a certain voltage, it should warn the user by turning on a LED; the user 

then knows its time to recharge or change the batteries. If it drops further below a second 

certain voltage, the voltage monitor shuts the power source to the whole system; this is done 

to keep the system’s behaviour predictable and avoid damages happening to the system itself. 

The voltage level at which the LED is turned on to warn the user that the battery is low and at 

which the system is turned off, should be separately adjustable with two potentiometers. 
 

The motion unit reads the control signals from the Control module and drives accordingly the 

actuators, e.g. DC motors. It also sends back odometry data to the Control module from either 

a sensor integrated in the actuator itself such as a rotary encoder, or from the circuitry of the 

motion unit itself. The motion unit circuitry can detect changes in the current usage and 

transforms these changes into voltage changes, which are then send to the ADC of the µC in 

the Control module. However, a rotary sensor integrated in the motors will give more accurate 

results. From the odometry data, information such as speed and direction can be calculated, 

which are essential for navigation, and path planning in mobile robots. 
 

The hardware design for the Power & Motion module is dealt with in chapter 4 Power & 

Motion Module. 
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3.3.2 Control Module  
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 Figure 3.6: Control module block diagram 
 

The Control module handles all low-level hardware tasks, and hides the complexity of the 

underlying hardware from the Intelligence module; it then provides the latter with these 

functions to through an interface. The Control and Power & Motion module make a complete 

robot, which can be used to do simple tasks (e.g. Line follower), but it is still unsuitable for 

applications requiring high processing power. The main units of the Control module are 

(Figure 3.6): 
 

• Microcontroller (µC) 

• USB interface  

• Flash memory – used to save non-volatile data. The FPGA configuration file is stored 

here, and is uploaded to the FPGA whenever needed. 
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• Simple power unit – although already implemented in the Power & Motion module, 

this simple power unit makes the Control module usable in stand-alone mode. 
 

The µC is the main component, and the only processing and programmable unit in the Control 

module. It handles many system tasks such as: 
 

• Communication between MAMoRo and the PC for downloading and uploading of 

data. 

• Interaction with the motion unit in the Power & Motion module, e.g. generation of 

PWM signals for motor speed control. 

• Handles data transfer to and from the flash memory. 

• Configuration of the FPGA in the Intelligence module; afterwards, handling the 

communication with it. 

• Converting analogue signals from the external world to digital for later processing. 
 

In general, the µC handles all low-level tasks and relieves the Intelligence module from the 

underlying hardware. The µC will be responsible for all system critical tasks; to perform them 

efficiently, the µC has to fulfil some requirements. The requirements for the µC are: 
 

• Low-cost 

• Low-power consumption 

• A rich variety of integrated peripherals; peripherals that are particularly essential for 

the overall operation of MAMoRo: 

o Serial Peripheral Interface (SPI): a simple and fast serial communication bus 

integrated in many of today’s µCs; it needs only four wires. It is also used for 

data transfer with SPI-enabled flash memories, and is the preferred 

communication method between the µC and the FPGA in the Intelligence 

module. 

o Analogue/Digital converters (ADCs):  needed for conversion of analogue 

signals from the external world to digital for further processing. 

o Timers/Counters: needed for time measuring and generation of PWM signals, 

which are used, for example, to control the robot actuators connected to the 

Power & Motion module. 

o External interrupts: used to interrupt the execution of the main program when 

the voltage level on certain pins changes. External interrupts are important in 
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robots, because they decrease the response time to an external event without 

taking much processing time from the µC. 

o I2C (Inter-Integrated Circuit) bus: is a widely used bus for connecting low-

speed devices; needs only two lines. 

o USB (Universal Serial Bus) or UART (Universal Asynchronous Receiver / 

Transmitter) port: the preferred communication method between the µC and 

PC is the USB bus, since it is widely available in most of today’s PCs and 

notebooks. If the µC used does not have a USB port (the cheapest µC’s do 

not), an additional USART-USB converter IC can be used to convert the 

USART signals into USB and vice versa (see Figure 3.7). Nevertheless, in the 

end, the method with the USB communication through the UART-USB 

converter was chosen for this project; the reasons for this choice are listed in 

5.8 USB Interface. 

• Sufficient processing power: 8 MHz operating frequency (at 1 MIPS per MHZ) would 

be adequate for hardware control functions and simple robot applications. 

• Availability of open source development tools 

 

 
 Figure 3.7: USB-µC communication through an UART-USB converter 
 

The hardware design for the Control module is dealt with in chapter 5 Control Module. 

 

 

 

 

 

 34



3.3.3 Intelligence Module 
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 Figure 3.8: Intelligence module block diagram 
 

The Intelligence module is the seat of the most powerful processing unit in MAMoRo. While 

the Control module is busy with low-level hardware tasks, this module does the real 

“thinking”. With this module, advanced robotic applications requiring processing power such 

as image recognition and artificial intelligence are possible. The main components of the 

intelligence module are: 
 

• FPGA 

• SRAM 

• Power unit – although already implemented in the Power & Motion module, this 

power unit makes the Intelligence module usable in stand-alone mode. 
 

The FPGA is a programmable hardware unit. It is programmed through a hardware 

description language such as VHDL or Verilog, unlike the µC is programmed through a 

software programming language such as C. The FPGA can be seen as a programmable RAM 
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(Random access memory), because just like RAM, before it is programmed it is empty and 

cannot do anything. An FPGA is also volatile, meaning that each time the power is shut-off, 

all data in it is lost. The hardware inside the FPGA can be modelled to do anything, unlike the 

µC with its fixed hardware. For example, a soft core processor can be implemented in the 

FPGA for processing-intensive applications, and the SRAM (Static Random Access Memory) 

in the Intelligence module can be used then with this processor as a fast data buffer. 

Since the FPGA is volatile, the configuration has to be done each time the power is turned on. 

The configuration of the FPGA is done by the Control module. The µC in the Control module 

takes the configuration file from the flash memory and uploads it to the FPGA, but before 

that, the FPGA configuration file has to be downloaded from the PC to the flash memory (see 

Figure 3.9); this is also the responsibility of the Control module. The FPGA can also be 

configured directly from the PC through the JTAG interface. After the configuration of the 

FPGA is done, the FPGA can communicate with the µC in the Control module through 

general I/O pins, or through the serial bus SPI (Figure 3.9). The SPI Bus is the preferred way 

for the µC-FPGA communication, because: 
 

• The SPI is already integrated on the µC’s hardware, so it does not have to be extra 

programmed ,and hence processing time wasted. 

• SPI is simple and fast  

• It is a serial bus and requires only four pins. 
 

The FPGA used in MAMoRo has to fulfil some requirements such as: 
 

• Low cost 

• A minimum of 100 MHz operating frequency should be possible 

• Big enough to store popular property soft processors, such MicroBlaze1 by Xilinx™, 

and open source ones like JOP2, OpenRISC3, or LEON4, while still having space for 

more hardware logic. 

 

The hardware design for the Intelligence module is dealt with in chapter 6 Intelligence 

Module. 

 

                                                 
1 http://www.xilinx.com 
2 http://www.jopdesign.com/ 
3 http://www.opencores.org 
4 http://www.gaisler.com 
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Figure 3.9: Connections between microcontroller, FPGA, and PC 
 

3.4 Stand-Alone Mode 
 

One of the requirements stated at the beginning of this project was that the modules of 

MAMoRo should also be usable as stand-alone, i.e. the modules can be operated without the 

presence of other modules 

 

3.4.1 Power & Motion module 
 

The power unit in the Power & Motion module can be used to provide stable 5 V and 3.3 V 

voltage supplies, and monitor the input power source voltage level. The motion unit, however, 

can not control the actuators without the control signals, which it usually gets from the 

Control module. 

 

3.4.2 Control Module 
 

The needed 3.3 V power supply for all components in the Control module is generated by a 

simple power unit in the module itself. Although, the 3.3 V supply from the Power & Motion 

module could have been used directly, the reason for implementing an additional power unit 

in the Control module is so that this module can be used in stand-alone mode without the 
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presence of the Power & Motion module. The Control module has also no dependency from 

the Intelligence module.  
 

The Control module with its on-board µC and peripherals can be used as an evaluation 

platform for various electrical engineering experiments.   

 

3.4.3 Intelligence Module 
 

The Intelligence module requires three different power supplies: 3.3 V, 2.5 V, and 1.2 V. 

Instead of implementing these power supplies here, they could have been implemented in the 

Power & Motion module, and then provided to the whole system whenever needed. However, 

that would have made the Intelligence module not operable in stand-alone mode, therefore, it 

was not done. 
 

When the Intelligence module is used with the Control module, the latter handles the 

configuration of the FPGA. When the Intelligence module is used alone, the FPGA is 

configured by connecting the JTAG header on this module to a PC through a programmer 

cable (see section 8.1.1 The Parallel Programmer Cable). The main problem with using the 

Intelligence module in stand-alone mode is that the FPGA configuration data is lost whenever 

the power supply is turned off; if that happens, the module has to be reprogrammed again 

from the PC. This problem does not exist if the Control module is attached, because the 

Control module will always configure the FPGA automatically when the system is powering 

on, or when the FPGA needs to be reconfigured again by signalling it to the Control module 

through one of its pins. 
 

The Intelligence module with its on-board FPGA and other peripherals can be used as an 

evaluation platform for various electrical engineering experiments.   
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3.5 The Physical Implementation 
  

 

 
Figure 3.10: MAMoRo’s modules. The arrows represent the electrical connections between the 

modules. The grey blocks are headers used to connect the modules together. 

 

All modules are going to be placed vertically over each other in a stacked-up form as depicted 

in Figure 3.10, to save area. All modules should have the same area size. The electrical 

connection between each module is achieved by plugging a female header placed on the 

bottom-side of the upper module, with a male header placed on the top-side of the module 

below it (as in Figure 3.10); because of this, there is no need for additional cables to connect 

the modules together, therefore, avoiding a cable salad. The male headers (pin connectors) on 

all MAMoRo modules should be placed on the top-side, while the female headers (sockets) 

are placed on the bottom-side. 
 

The order of the modules starting from the bottom should be (Figure 3.10): 
 

1. Power & Motion module – placed at the bottom of the stack to make the I/O pins of 

the Control and Intelligence module easier to access. 

2. Control module – placed here because it needs a direct connection to the motion unit 

in the Power & Motion module. 
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3. Intelligence module – placed at the top, because it has the highest number of user-I/O 

pins, hence they need to be easily accessible, and because it does not need a direct 

connection to the Power & Motion module. 
 

Expandability was also stated as one of the requirements that MAMoRo should fulfil, that is, 

it should be easy to expand the functionality (or processing performance) of MAMoRo by 

adding new modules to the stack. To make the addition of new modules easier and more 

flexible, the headers on the Control and Intelligence module (the Power & Motion module 

does not have any user-I/O pins) have to be so placed, that as many as possible of the headers 

on the Control module lay exactly below the headers of the Intelligence module (Figure 3.11). 

The advantage of this placement of headers is that a new added module can be fitted above 

either the Control module or the Intelligence module with no physical change on the module 

itself; Figure 3.11 illustrated this. 
 

P

P

Female H

Control Module

Male H

P

New Module

P Intelligence
Module

Male H

P

 
 

Figure 3.11: The new added expansion module can be fitted above the Control or Intelligence 
module, since the headers on both modules lay on the same position. 

 

One could also use cables to connect the new added module with the other MAMoRo 

modules, instead of using headers as depicted in Figure 3.11. However, if the cables get too 

many we may get then a cable salad, and besides it looking messy and loosing the oversight 

of the connections, some EMI issues might pop up. This cable salad can be avoided if instead 

headers were used to connect the modules together. 
 

Another consideration for the physical implementation is the area size of MAMoRo’s 

modules. Although in many applications having modules with small area size is wanted, in 

some applications it is not; therefore, there will be no requirements regarding the area size of 
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the modules, and the area can be varied according to where MAMoRo is going to be used. For 

example, if MAMoRo is going to be used by students in introductory courses, then probably a 

relative large module area size is favourably, because then the students will get a feeling of 

what components are used and perhaps even be allowed to solder the components on the 

modules themselves. This will be difficult if the modules are small. The modules of 

MAMoRo allow the implementation of very small-sized modules, because: the Power & 

Motion module is simple and contains few components; and most of the functions of the 

Control and Intelligence module are packed on only one IC in each module, i.e. the µC and 

FPGA, respectively. 
 

Finally, headers with specialized functions, e.g. JTAG or ISP, should be shrouded to avoid 

plugging connectors the wrong way, and hence reducing the probability of causing damage. 

 

3.6 Programming MAMoRo 
 

A major disadvantage with distributed systems composed of many modules is the 

manageability of the overall system. If a system consists of multiple modules with on-board 

programmable units, then obviously each one of these programmable units have to be 

programmed sooner or later. 

MAMoRo has two programmable units: the µC in the Control module, and the FPGA in the 

Intelligence module. There could be even more if expansion modules with on-board 

programmable units are added. To make the programming of the system as simple as possible, 

and reduce the time needed for it, only one single programming unit has to be programmed, 

and that is the µC in the Control module. The µC should then take care of programming all 

other programmable units in the system including the FPGA in the Intelligence module. It 

should be possible to program, debug, and hence manage the whole system through a single 

popular interface: the USB interface.  
 

The drawback in using two different types of programmable units in a single system like a µC 

and an FPGA is that they have to be programmed using two different families of 

programming languages. While the µC is programmed using a software programming 

language such as C, the FPGA is programmed through a hardware description language such 

as VHDL. However, there has been progress recently in developing programming languages 
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that can be used for both programming software and hardware. An example of such a 

programming language is SystemC1. 
 

Finally, the software tools used for programming and interacting with MAMoRo should be 

open source whenever possible, because of transparency, flexibility, and cost. 

                                                 
1   SystemC homepage: http://www.systemc.org/ 
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4 Power & Motion Module 
 

 

The specifications for the Power & Motion module were laid down in 3.2.1 Power and 

Motion Unit and 3.3.1 Power & Motion Module. In this chapter, the actual hardware 

realization is described.  
 

The Power & Motion module contains the power and motion unit. The power unit supplies 

and monitors the power supply for the whole system. The motion unit drives the actuators 

according to the control signals it gets from the Control module, and sends back odometry 

information. Each unit will be described in detail in the following sections.  
 

The complete schematics, board layout, and parts list for this module are in Appendix A - 

Schematics, Board Layouts, and Parts List. While the description for the header pinouts of 

this module are in Appendix B - Headers Pinouts. 

 

4.1 Power Unit  
 

For the electronic components to function properly in a system, a stabile and regulated voltage 

supply must be provided. This is basically the function of the power unit. Another task of this 

unit is monitoring the external voltage source if it gets low.  

 

4.1.1 Power Supplies 
 

The power unit will supply two regulated voltage supplies: 3.3 V and 5 V. The first stage of 

stepping down the external power source to 5V is done by a switching regulator. A switching 

regulator is used in this stage because of its high power efficiency in stepping down the input 

voltage. The next stage in stepping down the 5V voltage supply to 3.3 V is done by a cheaper, 

but less power efficient linear type voltage regulator. The linear type voltage regulator has the 

advantage that its output voltage is cleaner (i.e. less ripples) than the switching regulator. This 

is because the switching regulator regulates the output voltage by switching it periodically on 

and off at a specified rate, and although there is a capacitor placed at the output to filter out 
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the ripples generated by this process, not all ripples are filtered out. These ripples generate 

electromagnetic interference (EMI) and might cause problems with low voltage devices 

because of their sensitivity to voltage instability. The main advantages and disadvantages of 

linear regulators compared to switching regulators are listed below. 

 

Advantages 
 

• Low noise: Little or no electrical noise is generated at their outputs, whereas switching 

regulators generate a considerable undesirable electromagnetic interference due to the 

continues switching of the output current [RAS01]. 

• Linear regulators are more suitable for low power application because of  their clean 

output. Low-voltage devices are usually more sensitive to voltage instability than 

devices operating at a higher voltage. 

• Compact and simple. They need only decoupling capacitors to operate optimally. 

• Cheaper 

 

Disadvantages 
 

• Poor efficiency. Their conversion power efficiency ranges from 20 to 60%, whereas 

switching regulators can have efficiency from 70 to 95% [RAS01]. 

 

 

5 V supply 

 

 
Figure 4.1: 5 V supply: generated by a step-down switching regulator 

 

 44



The 5V supply voltage is generated by a step-down (buck) switching regulator. The IC used 

in this project is a LM2596S-5.0 from National Semiconductor™. The LM2596S-5.0 main 

features are: 
 

• Voltage regulation (at 7V ≤ VIN ≤ 40V, 0.2A ≤ IOUT ≤ 3A):  4.8V ≤ VOUT ≤ 5.2V 

• Efficiency (at VIN = 12V, ILOAD = 3A):   80 % 

• Thermal shutdown and current limit protection 

• Shut-down capability 

• 150 kHz fixed frequency internal oscillator 
 

The Thermal shutdown and current limit protection feature comes useful in hand when, for 

example, a short-circuit occurs, or if the system needs more current than the regulator can 

provide. The shut-down capability of this voltage regulator is used to shut off the power 

supply to the whole system if the external voltage supply drops below a certain level to keep 

the system’s behaviour predictable and avoid damages happening to the system itself. To 

calculate the values of external components needed for the optimal operation of this regulator, 

the manufacturer offers on its website an online simulation tool WEBENCH 

(http://webench.national.com) for most switching regulators.  

 

3.3 V supply 

 

 
Figure 4.2: 3.3V supply: generated by a linear regulator 

 

The 3.3V linear regulator used in this project is a LM1085IS-3.3 by National 

Semiconductor™. It needs one bypass capacitor each at the input and output to operate 

optimally. The LM1085IS-3.3 main features are: 
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• Voltage regulation ( at 4.8V ≤ VIN ≤15V, 0 ≤ IOUT ≤ 3A ):  3.235 ≤ VOUT ≤ 3.365 

• Thermal shutdown and current limit protection 

 

Power Input 

 

 
Figure 4.3: Power input of the Power & Motion module 

 

The power can be applied to the system either through the DC-Jack or PWR IN Header (see 

Figure 4.3). The input is protected against accidental reverse-polarity by a low forward-

voltage drop Schottky power diode. 

 

Voltage Headers and Power Indicator 

 

The power supplies from this module are provided through four headers. Each power source 

has its own header with the exception of the Modules PWR header. The Modules PWR 

contains all three voltage supplies: the external power source (V+, e.g. from a battery), and 

the both regulated voltage supplies 3.3 V (+3V3) and 5 V (+5V). All modules of MAMoRo 

get their power supply from this header. The power indicator is a simple LED which signals 

that an external power source is connected to this module. 
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 Figure 4.4: Voltage headers and the power indicator (far right) 

 

4.1.2 Low Voltage Monitor 
 

 
Figure 4.5: Low voltage monitor 
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In addition to providing a regulated voltage supply, the power unit has also a low voltage 

monitor that monitors the external power supply when it drops below specified voltage levels. 

The voltage monitor used in this project is a MC33161 Universal Voltage Monitor from ON 

Semiconductor™. The voltage monitor consists of two comparators, each with a hysteresis, a 

mode select input for configuring it as non-inverting or inverting, and an internal 2.54 V 

reference voltage independent from the voltage supply applied externally to the IC. The 

outputs of the comparators consists each of an open collector circuit capable of sinking up to 

10 mA. The voltage monitor is configured with two voltage thresholds: VLOW and VOFF. They 

are each individually adjustable by a potentiometer (R7 and R8 in Figure 4.5). If the voltage 

gets below VLOW, OUT1 on the IC goes low, turning the LED on.  This can be especially 

useful if the external voltage supply is a battery, thus when the LED goes on, it means its time 

to charge or change the battery. Additionally, the OUT1 signal is made available through the 

header PWR LOW (JP5). This could be used, for example, to connect OUT1 to the µC in the 

Control module, so that when the voltage goes low, the µC recognizes this and changes to 

power-saving mode. If the external power source drops further lower than VOFF, OUT2 goes 

high, and if a jumper is placed on the header PWR OFF (JP4), this will shut off the 5 V 

voltage regulator, which is the main power supply to the whole system, hence the system will 

be shut down. This action is very important, because a state can occur where the input voltage 

drops low, but not low enough to shut off some of the IC’s. The system will continue to work, 

but might be unpredictable and may corrupt data stored in non-volatile memory.  If this option 

is not wanted, header JP4 can be left unconnected. 

 

4.2 Motion Unit 
 

The motion unit main reads control signals from the Control module and drives accordingly 

inductive actuators such as DC motors and stepping motors. It also sends back odometry data 

to the Control module. 

 

4.2.1 Motor Driver 
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Figure 4.6: Dual full-bridge motor driver  

 

The main component of the motion unit is the motor driver L298 by STMicroelectronics™. 

The L298 is a high voltage, high current dual full-bridge driver which can drive up to two 

motors in both directions. The L298 main features are: 
 

• Dual full-bridge driver 

• Max. current per channel: 2 A (DC)  

• Internal thermal protection circuit: Shuts down the IC when it gets too hot, e.g. when 

drawing too much current 

• Max. load voltage Vs: 46V 

• Logic supply voltage Vss: 5V 

• Low voltage logic circuit is isolated from the high voltage motor circuit. This has the 

advantage that the high power noise caused by the motors is not transferred back to the 

digital circuit.  

• Total Power Dissipation: 25 W 
 

Each of the two bridge drivers, bridge A and B, are independent from each other. Each bridge 

driver has three inputs: Enable A, Input 1, and Input 2 (Enable B, Input 3, and Input 4 for 

bridge B), which drive two output pins separately (see Table 4.1).  
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Table 4.1: L298 control signals  
 
Input Output 

Enable A(B*) Input 1(3) Input 2(4) Function 

0 0 0 Fast motor stop 

0 1 0 Forward 

0 0 1 Reverse 

0 1 1 Fast motor stop 

1 X X Free running motor stop 
* The Letters and numbers in brackets correspond to the second bridge-driver control signals. 
 

The L298 has also for each bridge a sense pin (Sense A and Sense B). The current flowing 

through one load has to flow back to GND through this pin. By connecting a low ohm resistor 

(R1 and R2 in Figure 4.6) from the sense pin to GND, the current flowing through the load 

flows also through these resistors. By measuring the voltage drop in these resistors (e.g. 

through the on-chip µC ADC in the Control module) one can calculate the velocity of the 

motors rotation, and hence the distance travelled by the robot. If this is not needed because, 

for example, there is already an encoder integrated in the motors, then jumpers can be placed 

on header JP1(Figure 4.6) to conduct the sense lines directly to GND. The bridge of 

suppression diodes are there to protect the IC from voltage spikes. High current Schottky 

diodes were used here. 

 

4.2.2 Motion Unit Headers 
 

Motor Headers 

 

The motors are connected to the motion unit through two 2x3 pin headers: Motor1-2 (JP3 and 

JP2; see Figure 4.7). Two lines (OUT1-2 and OUT3-4) drive the motors, while the other four 

pins are reserved for a quadrature encoder. Quadrature encoders are widely used in mobile 

robots to provide precise odometry data. In this project, two DC motors were used with each 

an integrated quadrature magnetic encoder. 
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Figure 4.7: Motor Headers   

 

 

Motion Module I/O Header 

 

 
 Figure 4.8: Motion module I/O header 
 

The motion unit is connected to the Control module through a 2x6 pin header: Motion I/O 

(JP7; see Figure 4.8). The motion unit drives the motors according to the input it gets from the 

Control module, while the signals generated by the motor encoders are sent to the Control 

module for odometry calculations. 
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4.3 Specifications 
 

Power & Motion module main hardware specifications: 
 

• Provides three different power supplies: 

o 3.3 V 

o 5 V 

o External power source 

• Voltage Monitor: monitors the external powers source for two voltage thresholds, 

which can be set individually by a potentiometer. 

• Motor driver: 

o Drives up to two inductive actuators (e.g. DC motor) 

o Max. current 4 A; Max. voltage: 46 V 

o Sense pins to measure rotation speed of motors 
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5 Control Module 
 

 

The specifications for the Control module were laid down in 3.2.2 Decision unit and 3.3.2 

Control Module. In this chapter, the actual hardware realization is described.  
 

The Control module has following basic functions (see 3.3.2 Control Module): 
 

• Handling the communication between the system and PC for downloading and 

uploading of data 

• Controlling the motion unit 

• Handling the data transfer to and from the flash memory 

• Configuring the FPGA in the Intelligence module 

• In general, handling all low level tasks and relieving the Intelligence module from the 

underlying hardware 
 

When used as stand-alone, the Control module can be used as an evaluation platform to 

conduct a wide variety of experiments in electrical engineering and computer science. The 

Control module is functionally divided into: 
 

• Processing Unit 

• USB Interface 

• Flash Memory 

• Power Unit 
 

The complete schematics, board layout, and parts list for this module are in Appendix A - 

Schematics, Board Layouts, and Parts List. While the description for the header pinouts of 

this module are in Appendix B - Headers Pinouts. 
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5.1 Power Unit  
 

 
Figure 5.1: The power unit in the Control module 

 

The 5 V input voltage of this module comes from the Power & Motion module through the 

header Modules PWR (Figure 5.1). The 3.3 V supply needed by all IC’s in this module is 

generated on-board by a linear regulator: LM1085IS-3.3 by National Semiconductor™. 

Although, the Control module could have drawn the 3.3 V supply directly from the Power & 

Motion module, it was not done, so that the Control module can also function as stand-alone. 

A simple LED connected to the 3.3 V supply indicates that a power source is plugged in. 
 

When the Control module is used without the Power & Motion module, the input power 

source should be applied through the DC jack. The DC jack input is protected from reveres-

polarity by a diode. The input voltage at the DC jack can be anything from 4.5 V to 27 V. 

However, if there are devices that need 5 V while the Control module is used in stand-alone 

mode, the input voltage applied at the DC jack has to be approximately 5 V. 
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5.2 Microcontroller Unit 
 

The microcontroller unit, as the name already tells, contains the µC – the programmable 

processing unit of this module. 

 

5.2.1 Microcontroller 
 

 
 Figure 5.2: The Microcontroller 
 

The µC is the main component of the Control module. Choosing a suitable µC was one of the 

hardest decisions during this project, because the alternatives are simply too many. In the end, 

the decision falls at an 8-bit RISC ATmega128L by Atmel™.  
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The main features of the ATmega128L are: 
 

• 8-bit RISC architecture 

• Operating Voltages: 2.7 - 5.5V 

• Operating frequencies: 0 - 8 MHz 

• 133 instructions - most of them need one cycle to finish executing 

• Program and Data Memories 

o 128 KiByte flash memory,  

o 4 KiByte EEPROM 

o 4 KiByte SRAM 

• Peripherals 

o 2 x 8-bit Timer/Counters; 2 x 16-bit Timer/Counters 

o 2 x 8-bit PWM channels and 6 x PWM channels with programmable resolution 

from 2 to 16 bits 

o Real time counter (RTC), by using a 32.768 kHz quartz crystal  

o 8 x 10-bit ADC with optional differential input stage with programmable gain 

o Two-wire Serial Interface (TWI), equivalent to I2C 

o 2 x USART 

o SPI 

o JTAG  

• 53 programmable I/O pins 
 

The reasons for choosing the ATmega128L as the µC in the Control module: 
 

• It fulfils the requirements listed in 3.3.2.Control Module, and more, but not by too 

much. 

• It has eight external interrupts; this is more than most low-cost µCs. External 

interrupts are important in robots, because they decrease the response time to an 

external event without taking much processing time from the µC. 

• It has 48 free programmable I/O pins; more than enough. 

• Easy to program and use. 

• Many documentations, and support by the large community using it 
 

The ATmega128L is operated at the maximal allowable operating frequency – 8 MHz. 
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5.2.2 Supervisory Circuit 
 

 
 Figure 5.3: Supervisory IC  
 

The function of the supervisory circuit is to reset the µC when the main supply voltage drops 

below a specific voltage. This is to make sure, that the µC stops executing code when the 

voltage drops low, as this may cause errors. Although, the µC has an on-chip internal power 

brown-out detection, it is not as reliable as adding an external supervisory IC. The supervisory 

IC used here is a MAX812 by Maxim-IC™. The reset pin goes low when the µC supply power 

goes below 2.93 V. The µC can also be manually reset by the RESET push button. The 

resistor R26 (Figure 5.3: Supervisory IC) was added to avoid line contention if more 

than one device tries to drive the reset line. 

5.2.3 ADC 
 

 
 Figure 5.4: ADC input stage 
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The µC’s on-chip ADC requires a stable supply voltage, AVCC (3.3 V), for the precise 

conversion of analogue signals to digital. To reduce the noise generated by the digital circuit 

from passing to the analogue circuit, a low-pass filter consisting of a ferrite bead and a 

capacitor was added (Figure 5.4). The µC converts the analogue signals by comparing them to 

a reference voltage, VRef. To increase the resolution of the A/D conversion, the µC allows 

VRef to be set by the user, though VRef should not exceed AVCC. VRef can be selected through 

software as:  
 

• AVCC 

• On-chip 2.56V reference voltage 

• Through the AREF header (JP1 in Figure 5.4) 

o By applying an external voltage to this header. The VREF potentiometer’s 

resistance between the slider and GND has to be set to zero, so that the full 

voltage is applied. 

o By placing a jumper on the AREF header and then adjusting the VRef using the 

VREF potentiometer. VRef can then be set between AVCC(3.3 V) and GND. 

5.2.4 Microcontroller Headers 
 

 
 Figure 5.5: The Control module headers 
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The 48 free programmable I/O pins (from 53 I/O pins in total) of the µC are accessible 

through the headers in this module. The peripheral I/O pins of the µC are shared with the 

general-purpose I/O pins, and can be activated/deactivated through software. The pins of the 

µC are grouped into Ports. The ATmega128L has seven Ports: PortA..G. 
 

All headers have four power pins (3.3 V, 5 V, and two GND), so that expansion modules 

sensors, etc., are provided with power. All headers have a reset pin with the exception of 

Header 4 and ISP. Headers 2 and 3 are used for connecting this module with the other 

modules of MAMoRo; header 2 is used for connecting this module with the motion unit in the 

Power & Motion module, while header 3 is used for connecting it with the Intelligence 

module. Header 2 consists of a male header on the top-side and a female header on the 

bottom-side of the module to allow the Control module to be plugged on the top of the Power 

& Motion module (see Figure 3.9). 
 

A brief description of the headers on the Control module will follow. A more detailed 

description of the header pinouts is found in Appendix B - Headers Pinouts. An even more 

detailed description can be found on the µC’s datasheet ([ATM06a]).  

 

Header 1 

 

 
Figure 5.6: Header 1 in the Control module  

 

This header contains all PortA pins and three of PortG pins (PG0..2). The other two pins of 

PortG (PG3..4) are connected to a 32.768 quartz crystal used for the real-time clock.  
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Header 2  

 

 
Figure 5.7: Header 2 in the Control module  

 

This header contains all PortB pins with the exception of one pin (PB0), which is used for the 

flash memory chip select line; and all Port E pins with the exception of two pins (PE0 and 

PE1), which are used for USB and ISP. Pins 1 to 12 in this header make the interface to the 

Power & Motion module.  

 
Table 5.1: Interface between the Motion unit and Control module (see also 4.2.1 Motor Driver) 

 

Motion Unit Control Module 

GND GND 

NC* 5 V 

Motor 1, Input 1 (M1_IN1) PE2 

Motor 1, Input 2 (M1_IN2) PE3 

Motor 1, Encoder Channel A (M1_A) PE4 (INT4) - Interrupt on level change 

Motor 1, Encoder Channel B  (M1_B) PE5 (INT5) - Interrupt on level change 

Motor 2, Encoder Channel A (M2_A) PE6 (INT6) - Interrupt on level change 

Motor 2, Encoder Channel B (M2_B) PE7 (INT7) - Interrupt on level change 

Motor 2, Input 3 (M2_IN3) PB5 

Motor 2, Input 4 (M2_IN4) PB4 

Motor 1, Enable (M1_EN) PB7 (OC1C/OC2) - PWM 

Motor 2, Enable (M2_EN) PB6 (OC1B) - PWM 
*NC: Not Connected 
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These pins were specifically picked and placed in their actual arrangement to create an 

optimal interface to the motion unit in the Power & Motion module (see Table 5.1). So, for 

example, external interrupts and timer/counter pins were placed in certain positions in the 

header, while pins with special functions which are not needed in this interface were moved 

away to be used for something else.  
 

In this interface, PE2–3 and PB4–5 are used as general I/O pins. The pins PE4..7 are used as 

external level-edged interrupts to detect the logic level changes of the signals coming from the 

quadrature encoder in the motion unit, which are used to calculate speed and direction of the 

robot. PB6–7 are used for the generation of PWM pulses to control the speed of the motors. 

By using the dedicated hardware in the µC to generate the interrupts and PWM pulses instead 

of implementing it in software, processing time is saved, and the µC has more time to do 

other tasks. 
 

The pins PE2 and PE3 are also used for USB handshaking if a jumper is placed on the header 

USB HS (Figure 5.14). If the USB handshaking is enabled, controlling the motion unit will 

not be possible. However, this is not a problem. First, because the USB-USART converter IC 

(Figure 5.14) is only enabled if a USB cable is plugged and connected to another device, and 

that usually means the robot has to remain still, hence, no need for the motion unit. Second, 

the handshaking signals are rarely needed and were never used in this project. Lastly, 

handshaking can also be implemented in software, therefore sparing these two pins. 

There are also three SPI bus pins connected to this header. 

 

Header 3 

 
  

Figure 5.8: Header 3 in the control module 
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Header 3 contains all PortC pins, the SPI bus pins, and a reset pin. This header is also used as 

the interface to the Intelligence module (see Table 4.1). 

 
Table 5.2: Interface between the Control and Intelligence module (see also 6.2.3 Fehler! 
Verweisquelle konnte nicht gefunden werden.). 

 

Control Module Intelligence Module 

GND NC 

5 V NC 

PB1/SPI (SCK) B3_IO6 

PB2/SPI (MOSI) B3_IO7 

PB3/SPI (MISO) B3_IO4 

Reset B3_IO5 

PC7 B3_IO2 

PC6 B3_IO3 

PC5 IO/ CONFIG_INIT_B 

PC4 B3_IO1 

PC3 CONFIG_PROG_B 

PC2 CONFIG_CCLK 

PC1 CONFIG_DIN 

PC0 CONFIG_DONE 

GND GND 

3.3 V NC 

 

Although, any header can be used as the interface to the intelligence module, header 3 is best 

suited for this, because PortC pins are not shared by any important peripheral in the µC.  
 

In this interface, pins PC0..3 and PC5 are used for the configuration of the FPGA in the 

Intelligence module, while the other pins are user-I/O pins. The SPI bus is used for the 

communication between the µC in the Control module and the FPGA in the Intelligence 

module. The SPI bus is an optimal and effective choice for the communication between both 

modules; the reasons are: 
 

• SPI is already integrated in the µC’s hardware, so the µC is not burdened with it.  
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• SPI is fast – it can transfer data with up to the half operating frequency of the µC, i.e. 

4 MHz. 

• It is a serial bus and needs only 4 lines (MOSI, MISO, SCK, and SS). 

 

Header 4 

 

 
Figure 5.9: Header 4 in the Control module  

 

Header 4 contains all PortD pins (PD0..7). PortD pins are shared with some useful peripherals 

such as I2C bus and USART.  

 

Header 5 

 

 
Figure 5.10: Header 5 in the control module  

  

Header 5 contains all PortF pins (PF0..7), the ADC voltage reference pin AREF, and a reset 

pin. The eight ADC channels are accessed through the pins of PortF. The pins PF0 and PF1 

are shared with two user push buttons; they are protected from accidental short-cuts by a 

resistor (Figure 5.11). 
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Figure 5.11: User push buttons in the Control Module 

 

A voltage can be applied at the AREF pin to act as the reference voltage, VRef, for the ADC 

(see 5.2.3ADC) 

Besides the ADC, pins PF4-7 are also shared with the JTAG pins (TDI, TDO, TMS, TCK). 

 

ISP 

 

 
Figure 5.12: ISP header in the Control module 
 

The In-System Programmable (ISP) header is used for the first programming of the µC. 

Through the ISP, basic configuration fuses of µC are set and a bootloader software is 

downloaded to the µC (see Chapter 8), which allows the µC to be programmed later through 

USB. 
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5.3 Flash Memory 
 

 
Figure 5.13: Flash memory in the Control module 

 

The flash memory used in this project is a 512 KiByte AT45DB041B DataFlash™ by 

Atmel™. The flash memory is used for saving non-volatile data such as the FPGA 

configuration file. 512 KiByte is big enough to store two configurations files for the FPGA 

implemented in the Intelligence module, thus making reconfigurable hardware experiments 

possible, while still having 100 KiByte to store other things. The µC communicates with the 

flash memory through the SPI bus. This is very convenient, because:  
 

• Only one pin is wasted for the flash memory—the chip select line. 

• The SPI is already integrated on the µC’s hardware, so the µC is not burdened with it  

• Expandability – The flash memory interface and pins always stays the same no matter 

what the memory size is. So, if in the future a bigger flash memory is needed (e.g. to 

store more than two FPGA configuration files), then the current one can be de-

soldered (or unplugged if an IC socket is used) and simply be replaced by a bigger 

flash memory. 
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5.4 USB Interface 
 

 

 
 Figure 5.14: USB interface in the Control module 
 

The ATmega128L has an USART port (same thing as UART but can communicate also 

synchronously), and by adding a RS-232 driver IC (e.g. MAX3221 from Maxim™), the µC 

will be able to communicate with the PC through the standard serial port (RS-232 standard 

complaint). However, the problem is that the serial port is not found on most of today’s PC’s, 

and especially not on notebooks. The USB interface, on the other hand, is widely used. The 

µC we picked, the ATmega128L, does not have an on-chip USB port. This was overcome by 

using a USART-USB converter IC which converts USART signals to USB and vice versa; 

hence, the communication of the µC through the widely used USB interface is possible now. 

The USART-USB converter IC used in this project is FT232RL by FTDI™.  
 

A question would arise: why not use instead a µC with an on-chip USB port instead of using 

an additional UART-USB converter IC? This would save cost and PCB area. The reason is 

that programming the USB interface is too complex compared to the standard serial port. The 

UART-USB converter FT232RL comes with device drivers that can emulate the USB 

interface in the PC as a serial port. So, although the USB bus is physically used, logically the 

communication is done as though the µC is connected to a serial port, and the simpler serial 

port commands can be used. 
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 The FT232RL acts basically as a gateway between the µC and the USB bus (see Figure 3.7 

and Figure 5.14). The USART unit in the µC sends the data to the FT232RL through the TXD 

(transmit data) pin, and receives the converted data through the RXD (Receive Data) pin. 
 

The header USB HS (Figure 5.14) sets whether handshaking should be used or not. When a 

jumper is placed on USB HS, handshaking is activated. Handshaking is rarely need and was 

never used during this project. The lines PE2 and PE3 are also shared by header 2 (see 

5.2.4 Microcontroller Headers). Therefore, before using it for handshaking, it must be made 

sure that it is not used somewhere else. 
 

The µC lines that are used for the USB interface are PE0 and PE1. These pins are also used 

for ISP, which is also used for the first programming of the µC (see Chapter 8). To avoid line 

driving conflicts between USB and ISP, a 3-state buffer was used (Figure 5.15). 

 

 
Figure 5.15: A 3-state buffer used between the µC and the FT232RL 

 

It works because the reset line goes low (active-low) when the µC enters the programming 

mode in ISP. The reset line is also connected to the high-active enable pin for both buffers. 

Therefore, when the µC enters the programming mode in ISP, the reset goes low, making the 

buffers behave like a high-impedance, thus the FT232RL is effectively disconnected from the 

µC. 
 

To communicate with the Control module from the PC, the device drivers found on the 

manufactures website1 have to be downloaded, installed, and configured. These drivers 

                                                 
1 www.ftdichip.com 
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emulate the USB interface as a serial port on the PC, and any software can access it as if it 

was a serial port.  
 

The LED USB RX\TX in Figure 5.14 blinks when the FT232RL receives or sends data. But 

before it does that, this function has to be programmed in the IC using the device drivers 

installed in the PC. 

 

5.5 Specifications 
 

Control module main hardware specifications: 
 

• Microcontroller: low-power,  8-bit RISC ATmega128L by Atmel™; 8 MHz with 

1 MIPS/MHz. Main features: 

o Program and Data Memories 

 128 KiByte In-System Programmable (ISP) flash memory 

 4 KiByte EEPROM 

 4 KiByte SRAM 

o 4 x Timer/Counters 

o Real time counter (RTC) 

o 2 x 8-bit PWM channels and 6 x PWM channels with programmable resolution 

from 2 to 16 bits 

o 8 x 10-bit ADC with optional differential input stage with programmable gain 

o Two-wire Serial Interface (TWI), equivalent to I2C 

o 2 x USART 

o SPI 

o JTAG  

• 48 free user-I/O pins; accessible through  6 headers. 

• On-board power supply; enables the Control module to operate in stand-alone as an 

evaluation platform to conduct a wide variety of experiments in electrical engineering 

and computer science. 

• External 512 KiByte flash memory 

• USB interface 

• 2 x user push buttons 
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6 Intelligence Module 
 

 

The specifications for the Intelligence module were laid down in 3.2.2 Decision unit and 

3.3.3 Intelligence Module. In this chapter, the actual hardware realization is described.  
 

The Intelligence module is the seat of the most powerful processing unit in MAMoRo. While 

the Control module is busy with low-level hardware tasks, this module does the “real” 

thinking. With this module, advanced robotic applications requiring intensive processing such 

as image recognition, and machine learning are possible. The programmable processing unit 

in this module is an FPGA. 
 

When used as stand-alone, the Intelligence module can be used as an evaluation platform to 

conduct a wide variety of experiments in electrical engineering and computer science. 
 

The complete schematics, board layout, and parts list for this module are in Appendix A - 

Schematics, Board Layouts, and Parts List. While description for the header pinouts of this 

module are in Appendix B - Headers Pinouts. 

 

6.1 Power Unit 
 

The 5 V input voltage of this module comes from the Power & Motion module through the 

header Modules PWR (Figure 6.1). If the Intelligence module is used without the Power & 

Motion module, the input power source should be applied through the DC jack (see Figure 

6.1). The DC jack input is protected from reveres-polarity by a diode. The input voltage at the 

DC jack can be anything from 4.5 V to 27 V. However, if there are devices that need 5 V 

while the Intelligence module is used in stand-alone mode, the input voltage applied at the DC 

jack has to be approximately 5 V. A power indicator LED was implemented that glows when 

ever a power supply is applied at the input. 
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Figure 6.1: Power input in the Intelligence module   

 

The FPGA needs three different power supplies: 3.3 V, 2.5 V, and a 1.2 V. These power 

supplies are provided by three linear regulators (Figure 6.2).   

 

 
 Figure 6.2: 3.3 V, 2.5 V, and 1.2 V power supplies in the Intelligence module 
 

These power supplies were implemented in the Intelligence module rather than the Power & 

Motion module, so that the intelligence module can be used as stand-alone. In stand-alone 
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mode, the Intelligence module can be used as an evaluation platform to conduct a wide 

variety of experiments in electrical engineering and computer science. 

 

6.2 FPGA Unit 
 

 
Figure 6.3: Spartan-3 XC3S400-TQ144 

 

The FPGA is the main component of the Intelligence module and the programmable unit with 

the highest processing performance in MAMoRo. The FPGA chosen in this project is a low-

cost Spartan-3 XC3S400 by FPGA Xilinx™. This FPGA has 8064 logic cells. That is enough 
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to store five times (area optimized) MicroBlaze™ 32-bit soft processor by Xilinx™ [XIL07c] 

or two times (area optimized) the open source soft processors OpenRISC or LEON2 

[MAC04]. There are ten different packages for this FPGA. The package TQ144 was 

particularly chosen, because it can be soldered by hand and has sufficient I/O pins.  

 

6.2.1 FPGA Overview 
 

 
Figure 6.4: The five basic elements of the FPGA: CLB, Block RAM, Multiplier, DCM, and IOB 

[XIL06a]. 
 

The FPGA’s architecture consists basically of five programmable elements (Figure 6.4) 

[XIL06a]: 

• Configurable Logic Blocks (CLB): contains RAM-based Look-Up Tables (LUT) to 

implement logic and storage elements that can be used as flip-flops or latches. CLBs 

can be programmed to perform a wide variety of logical functions as well as to store 

data. 

• Input/Output Blocks (IOB): control the flow of data between the I/O pins and the 

internal logic of the device. Each IOB supports bidirectional data flow plus 3-state 

operation. The Digitally Controlled Impedance (DCI) block, allows the on-chip 

addition of termination resistors to prevent reflections on the signal. 

• Block RAM: provides data storage in the form of 18-kbit dual-port blocks. 

• Multiplier blocks: can calculate the product of two 18-bit binary numbers. 
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• Digital Clock Manager (DCM): provides self-calibrating, fully digital solutions for 

distributing, delaying, multiplying, dividing, and phase shifting of clock signals. 
 

The IOBs of the FPGA are distributed into eight I/O banks (Figure 6.5); two banks on each 

side of the FPGA. Each I/O bank has it own power supply pins, VCCIO. In the TQ144 

package, the two banks on each side of the FPGA share the same VCCIO power line. 

 

 
Figure 6.5: Spartan-3 I/O banks (top view) [XIL06a] 

 

The FPGA has different types of pins. Some are specialized and have a specific function, 

therefore, can not be used as user I/O pins. Nevertheless, most of the pins are general purpose 

user I/O pins, though some have a dual purpose. 

 

The specialized pins are: 
 

• CONFIG: these pins are used for the configuration of the FPGA in some configuration 

modes (see 6.2.3 FPGA Configuration). 

• JTAG: used for the JTAG interface. JTAG can be used for configuration and 

debugging of the FPGA. 

• Power pins: 

o VCCO 

o CCAUX 

o VCCINT 

o GND 
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User I/O pins, most of them are dual purpose: 
 

• General-purpose user-I/O: these pins have no dual purpose and are solely used as user-

I/O. 

• DCI: dual-purpose pins that can either be user-I/O pins, or be used to calibrate the 

output buffer impedance using the on-chip digital controlled impedance (DCI) block.  

• VREF: dual-purpose pins that can either be user-I/O pin, or voltage reference input 

pins used as a reference voltage for a specific I/O standard in that particular bank. If 

this alternate function of the pin was used, all VREF banks within a bank must be 

connected together. 

• GCLK: dual-purpose pins that can either be user-I/O pin, or an input to a specific 

global clock buffer input.  

• DUAL: dual-purpose pins that are used in some configuration modes for the 

configuration of the FPGA. After the configuration is finished, they are become user-

I/O pins. 

 

6.2.2 FPGA Power 
 

 
 Figure 6.6: FPGA power pins 
 

The FPGA needs three different powers supplies (1.2 V, 2.5 V, and 3.3 V) and has 36 power 

pins. The number and value of bypass/decoupling capacitors added to the power pins was 
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according to the application note [XIL05]. The function of these capacitors is to offer 

transient current demands, which the main power supply is to slow for, and filter noise in the 

power supply line. 

 

6.2.3 FPGA Configuration 
 

 
Figure 6.7: FPGA configuration pins 
 

The FPGA can be configured through five different configuration modes: 
 

• Master/Slave Serial 

• Master/Slave Parallel 

• JTAG 
 

The pins responsible for setting the configuration mode are M0, M1, and M2. The 

configuration mode is set by placing jumpers on the header Config Mode (see Figure 6.7 and 

Table 6.1). The HSWAP_EN pin in the Config Mode header enables/disables the internal pull-

up resistors on all unused I/O pins during the configuration process. If HSWAP_EN is 

connected to GND by a jumper, the pull-up resistors are enabled. After the configuration of 

the FPGA is done, this pin has no function.  
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Table 6.1: FPGA configuration mode settings 

 
Configuration Mode M2 M1 M0 

Master Serial 0 0 0 

Slave Serial 1 1 1 

Master Parallel 0 1 1 

Slave Parallel 1 1 0 

JTAG 1 0 1 

X X X X 

 

When the Intelligence module is used as stand-alone, using the JTAG interface for 

configuration is a good choice, because it can then be used for configuration and debugging at 

the same time. 
 

In MAMoRo, the FPGA in the Intelligence module is configured by the Control module. 

First, the configuration file is downloaded from the PC and stored in the flash memory located 

in the Control module. Then, the µC the Control module reads the data from the flash memory 

and configures the FPGA. Thus, the µC acts as the Master and generates the configuration 

clock (CCLK), and controls the configuration process. The Control module interface with the 

Intelligence module is the header Bank 3 (Config)-BOT, placed on the bottom-side of the  

Intelligence module (Figure 6.8).  

 
Figure 6.8: The header: Bank 3(Config) – the Intelligence module interface to the Control 
module. 

 

The resistor B3-3V3_EN in Figure 6.8 is in fact not a resistor, and pin 13 is not connected to 

anything. The resistor was drawn, so that if the 3.3 V supply needed to be connected to pin 

13, a wire can be soldered between the pads of the resistor.  
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The connections between the Intelligence module and the Control module are shown in Table 

6.2. 

 
Table 6.2: The interface between the Control and Intelligence module (see also 5.2.4 

Microcontroller Headers) 
 

Control Module Intelligence Module 

GND NC 

5 V NC 

PB1/SPI (SCK) B3_IO6 

PB2/SPI (MOSI) B3_IO7 

PB3/SPI (MISO) B3_IO4 

Reset B3_IO5 

PC7 B3_IO2 

PC6 B3_IO3 

PC5 IO/ CONFIG_INIT_B 

PC4 B3_IO1 

PC3 CONFIG_PROG_B 

PC2 CONFIG_CCLK 

PC1 CONFIG_DIN 

PC0 CONFIG_DONE 

GND GND 

3.3 V NC 

 

The FPGA is configured in slave serial mode, although other configuration modes are also 

possible. Slave serial mode was chosen because it is simple and requires only two user-I/O 

pins (INIT_B and DIN; see Figure 6.3) in addition to the control configuration pins 

(PROG_B, DONE, and INIT_B). Slave parallel mode, on the other hand, requires 11 pins 

(Din[0:7], Busy, CS_B, RDWR_B). However, the advantage of parallel mode is that it is 

faster, since the data is shifted out byte-wise, rather than bit-wise in serial mode. Particularly 

in reconfigurable hardware applications, where the time it takes for an FPGA to get 

configured is crucial, parallel mode can be used instead in MAMoRo. 
 

After the configuration of the FPGA is successfully completed, this will be indicated visually 

by turning the DONE LED on (Figure 6.7). The configuration process of the FPGA can be 
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restarted all over again by pushing the ReConfig push button (Figure 6.7). After the 

configuration process is done, the µC in the Control module could communicate with the 

FPGA through the serial bus SPI (see 5.2.4 Microcontroller Headers). But before that, the 

FPGA has to be loaded with an SPI core, which can be downloaded, for example, from the 

popular hardware open source website: www.opencores.org.  
 

Detailed information regarding the configuration of Spartan-3 FPGA’s can be read in 

[XIL07a]. 

 

6.3 Oscillator 
 

 
 Figure 6.9: Oscillator IC in the Intelligence module 
 

The Oscillator IC has the function of generating the input clock signal for the FPGA. The 

Oscillator output is connected to a global clock dedicated pin (GCLK4), which is connected to 

a Digital Clock Manager (DCM) integrated in the FPGA. The on-chip DCM has three main 

functions: Clock-skew elimination, phase shifting, and frequency synthesis. Provided with a 

clock signal on any of the eight global clock dedicated pins (GCLK0-7), the DCM can 

generate a wide range of clock frequencies by multiplying or dividing the input clock signal 

by definite factors. The possible clock frequencies range are 18 MHz to 307 MHz.  
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So, if operated at the maximal allowable clock frequency (i.e. 307 MHz), the FPGA runs 

approximately 38 times faster than the µC in the Control module. 

 

6.4 SRAM 
 

 
Figure 6.10: 256K x 16 SRAM in the Intelligence module 

 

The Intelligence module has a 256K x 16 SRAM with a high speed access time of 10ns. The 

SRAM used here is IS61LV25616AL by ISSI™. The SRAM data and address pins are 

connected to the FPGA. The SRAM is used in combination with the FPGA for data storage in 

various applications. For example, a soft core processor can be implemented on the FPGA, 

and this accesses the SRAM for data storage. Another application is in graphic processing, 

where a lot of data is processed and a fast and large data buffer is crucial. 
 

The FPGA has 39 I/O pins shared between the SRAM and three headers (Bank 7,6, and 0/1; 

see Appendix A - Schematics, Board Layouts, and Parts List). If the SRAM is not needed in 

an application, the I/O pins of the SRAM can be floated by connecting a jumper on the 
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SRAM EN header (Figure 6.10). Thus, the 39 I/O pins can then be freely used as user-I/O 

pins. 

 

6.5 FPGA Headers 
 

The TQ144 package has 144 pins. Among these pins, 36 pins are for power, 7 pins for the 

FPGA configuration, and 4 pins for JTAG. The left 97 pins are general-purpose user-I/O pins. 

Further, one pin is used as clock input for the FPGA; this leaves 96 user-I/O pins that are 

accessible through the pin headers. Some of the user-I/O pins are shared with something else. 

For example, two pins on the header Bank 2 are shared with two push buttons. 

The description of the header pinouts can be read in Appendix B - Headers Pinouts. 

 

6.6 Specifications 
 

Intelligence module main hardware specifications: 
 

• Spartan-3 XC3S400-TQ144 low-cost FPGA: 

o 8064 logic cells: capable of storing five times (area optimized) the 32-bit soft 

processor MicroBlaze™ by Xilinx™ [XIL07c] 

o Possible clock frequencies range: 18 MHz to 307 MHz 

• 96 free user-I/O pins, accessible through 7 headers . 

• On-board power supply; enables the Intelligence module to operate in stand-alone as an 

evaluation platform to conduct a wide variety of experiments in electrical engineering and 

computer science. 

• External 256 KiByte SRAM 

• 2 x user push buttons 
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7 Hardware Implementation of MAMoRo 
 

 

After laying the specifications for MAMoRo’s modules in Chapter 3, and the hardware 

design in chapters 4 to 6, finally, MAMoRo prototype can be built. Using this prototype, the 

proof of concept and functionality of the architecture and hardware design of MAMoRo can 

be proven. 
 

The complete schematics and board layout for this module are in Appendix A - Schematics, 

Board Layouts, and Parts List, and in the CD attached with this thesis.  

 

7.1 PCB Layout 
 

The Board or PCB (Printed Circuit Board) layouts for the modules were made out of the 

schematics found in Appendix A - Schematics, Board Layouts, and Parts List. Since this is a 

prototype, making the PCB area small for this project not important. In fact a small PCB was 

not favoured, so that if there were any mistakes in the hardware design, there would be 

enough space in the board to allow for corrections, for example, adding an capacitor, or 

swapping an IC without damaging the components around it. 
 

The Schematics and PCBs were designed using the software EAGLE Layout Editor1 (the 

EAGLE files for the modules are included in the CD attached with this thesis). Afterwards, 

the PCB data files were sent to a PCB manufacturer for production. The boards worked on the 

first try as intended with no problems.  
 

The requirements listed in section 3.5 The Physical Implementation were considered in the 

PCB layout design.  
 

The following Figure 7.1 to Figure 7.6, depict the modules of MAMoRo after their 

implementation. The area size of all modules are the same: 8.5 cm x 13.5 cm; the height of the 

modules stack is 5 cm (see Figure 7.7). 

 

                                                 
1 EAGLE Layout Editor: http://www.cadsoft.de/
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Notice that four headers on the Control module lay exactly beneath four headers on the 

Intelligence module: header 2 on the Control module lies beneath Bank 5/4 header on the 

Intelligence module; header 3 beneath Bank 3(Config) header; header 1 beneath Bank 2 

header; and header 5 beneath Bank 0 header. This was done according to the requirements 

laid in section 3.5 The Physical Implementation. 
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Figure 7.1: Power & Motion module board layout. The rectangles according to their colour are: 
red for ICs; grey for headers; white for anything else. 
 

 

 
 

Figure 7.2: Power & Motion module 
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Figure 7.3: Control module board layout. The rectangles according to their colour are: red for 
ICs; grey for pin headers; grey with white strips for headers that are placed on both sides of the board 
(male header on the top, female header on the bottom); white for anything else. 

 

 

 
 Figure 7.4: Control module  
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Figure 7.5: Intelligence module board layout. The rectangles according to their colour are: red for 
ICs; grey for pin headers; grey with white strips for headers that are placed on both sides of the board 
(male header on the top, female header on the bottom); white for anything else. 

 
 

 
Figure 7.6: Intelligence module PCB  
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7.2 The Platform 
 

8.
5 

cm

 
 Figure 7.7: MAMoRo - The modular autonomous mobile robot platform after its implementation 
 

Figure 7.7 depicts the implemented robot platform, MAMoRo, with its three modules 

connected together in a stacked-up form. The order of the module, starting from the bottom, 

is: Power & Motion module, Control module, then the Intelligence module (see 3.5 The 

Physical Implementation). 
 

The electrical connections between each module is achieved by plugging a female header 

placed on the bottom-side of the upper module with a male header placed on the top-side of 

the module below it, as illustrated in Figure 7.7. Thus, there is no need for additional cables to 

connect the modules together, avoiding the cable salad and the platform looks neat. 
 

To increase the height between the modules, so that a module does not touch the components 

of the module beneath it, header height-extenders were used. These extenders were created 

during the project by soldering a male and female header together (see Figure 7.8), because 

for some reason they are very rare to find by electronic suppliers.  
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 Figure 7.8: Header height-extenders: pins on one side, on the other sockets 
 

7.3 The Mechanical Chassis 
 

Building a mechanical chassis for MAMoRo was not one of the objectives of this thesis. The 

mechanical chassis where the modules of MAMoRo are placed can be variously chosen. A 

flexible and cheap option would be to use LEGO™ Technic1 construction bricks. With these 

bricks, the mechanical chassis can be modelled with great flexibility and ease of use to many 

different forms. In this project, however, a mechanical chassis developed by IHRT for a 

soccer robot was used to hold the modules, the two motors with integrated motors, and the 

battery (see Figure 7.9). Figure 7.10 depicts MAMoRo when used in the application “Go 

Ahead” (see 9.2 Go Ahead). 

 

 

 

                                                 
1 LEGO Technic: http://technic.lego.com 
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 Figure 7.9: The Mechanical Chassis used for MAMoRo 
 

 

 

 
 Figure 7.10: MAMoRo in the “Go Ahead” application (see 9.2 Go Ahead) 
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8 Programming MAMoRo 
 

 

After completing the implementation of MAMoRo and discussing it in Chapter 7, in this 

chapter, the steps for programming MAMoRo are described. 
 

The robot platform MAMoRo with its three modules has two programmable units: the µC in 

the Control module, and the FPGA in the Intelligence module. However, as have been stated 

in 3.6 Programming MAMoRo, the overall function of the system should be programmable by 

just programming the µC in the Control module. This process is explained in section 8.3 

Programming the Overall System. Section 8.1 and 8.2 deals with programming of the Control 

and Intelligence module, respectively, when used in stand-alone.  
 

All software tools used for programming and interacting with MAMoRo are free and can be 

downloaded from the internet. 

 

8.1 Programming the Control Module 
 

The programmable unit in the Control module is the µC ATmega128L. The µC is 

programmed by connecting it to a PC and downloading the application code to its program 

flash memory. The connection from the PC to the Control module is done via USB cable.  

However, when the µC is used for the first time, it can not communicate through the USB 

interface. A bootloader has to be downloaded first to make the programming of the µC 

through the USB possible. In addition, when the µC is used for the first time, system fuse-bits 

that configure the functionality of the µC (e.g. what type of clock source is used or in what 

mode will the µC operate) have to be set. There is more than one interface to accomplish the 

initial programming of the µC. However, the cheapest and easiest is through the ISP (In-

System Programmable) interface (see Table 8.1).  The pins of the ISP are accessible through 

the ISP header in the Control module itself (Figure 8.1).  
 

A parallel programmer cable is used for connecting the Control module with the PC for the 

initial programming of the µC in the Control module. This programmer cable can also used 
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for programming the Intelligence module when used in stand-alone. The programmer cable is 

described in section 8.1.1 Programmer Cable.  

 
Table 8.1: The ATmega128L serial SPI interface  

 
Symbol Pins Direction Description 

MOSI (PDI) PE0 Input Serial data in 

MISO (PDO) PE1 Output Serial data out 

SCK PB1 Input Serial clock 

 

 

 
 Figure 8.1: ISP header in the control module 
 

The software environment used for programming the µC is WinAVR™, which is a set of open 

source development tools used for Atmel AVR µCs. WinAVR is described in section 8.1.2 

WinAVR – Development Tools for Atmel AVR Microcontrollers. The initial programming of 

the Control module is described in section 8.1.3 Initial Programming of the Control Module, 

while the programming via USB is described in section 8.1.4 Programming the Control 

Module via USB.  

 

8.1.1 Programmer Cable 
 

For the initial programming of the µC in the Control module, and for programming the FPGA 

in the Intelligence module when used in as stand-alone, the programmer cable depicted in 

Figure 8.2 is used. The programmer cable used in this project is a replica of Xilinx’s Parallel 

Download Cable [XIL00].  The schematics and board layout for it can be found in Appendix A 

- Schematics, Board Layouts, and Parts List. 
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Figure 8.2: The parallel programmer cable used for the initial programming of the µC in the 

 Control module. 
 

The reasons for using particularly this programmer are: 
 

• It can be used for programming both the µC in the Control module and the FPGA in 

the Intelligence module. 

• Cheap and easy to Assemble 

• Supported by open source programming software tools 
 

The Programmer cable is plugged at the PC side to a standard parallel DB-25 port, and at the 

other end to either the SPI header in the Control module for programming the on-board µC, or 

the JTAG header in Intelligence module for programming the on-board FPGA; both the SPI 

and JTAG header have six pins. 
 

The programmer board contains buffers that isolate the PC parallel port internal logic from 

the modules that will be programmed. This avoids damage happing to PC parallel port if the 

modules are defect, and vice versa. 
 

The data transmission rate supported by this programmer is not an issue, because this 

connection is only used for programming the modules, and particularly the initial 

programming of the Control module; later programming of MAMoRo are going to be done 

via the faster and popular USB interface.  
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During the project, it was found out that this programmer cable, which is based on the Xilinx 

Parallel Download Cable, exhibits EMI problems due to its design. Many times did the 

programming of the µC failed because of verifications errors, and only after multiple tries, did 

it finally work. These verification errors increases when the size of the program code to be 

downloaded increases. An improvement to the original Xilinx programmer would be if the 

buffers were replaced by Schmitt triggers. This issue was no further followed since the 

programmer is used only for the initial programming of the Control module. 

 

8.1.2 WinAVR – Development Tools for Atmel AVR 
Microcontrollers 

 

WinAVR1 is a suite of open source software development tools for the Atmel AVR series 

microcontrollers. WinAVR runs at the Windows environment and includes a GNU GCC 

compiler for C and C++. Most of the tools are used through the DOS command-line. An 

installer file can be downloaded from the homepage of WinAVR [WIN07] and installed on 

the host PC. After installation, the tools are ready to be used.  
 

Although any programming language can be used to program the µC, in this project the 

programming language C was used because of its flexibility (as compared to BASIC) and of 

its high-level code (as compared to Assembly). 
 

The most important tool in the WinAVR suite is the AVR-GCC complier. This complier 

converts our C code to machine code which can be downloaded directly to the µC. But before 

that, a makefile has to be created, which tells the AVR-GCC how to compile the files, i.e. 

what µC is used, what libraries and files to link, etc. The makefile can be created comfortably 

with the tool MFile through a graphical interface. This tool is also included in the WinAVR 

suite.  
 

The last step in the programming process is to download the machine code to the µC. The 

machine code file downloaded to the µC is stored in a Hex format. The tool used for 

downloading this file from the PC to the µC is called avrdude. To start the downloading 

process, this tool has to know what kind of µC it is programming, type of programmer cable, 

the PC port, the name of file to be downloaded, and other parameters.  
 

                                                 
1 WinAVR™ homepage: http://winavr.sourceforge.net/
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The user manuals for some of the tools are found in the WinAVR installation directory. To 

summarize everything, the following steps have to be done to successfully program the µC: 
 

1. Write the source code with a text editor (WinAVR suite comes also with one)  

2. Create the makefile using MFile 

3. Compile the source code by typing “make” in the command line 

4. Download the hex file to the µC using avrdude 

 

8.1.3 Initial Programming of the Control Module 
 

The initial programming of the µC in the Control module consists of the following steps:  
 

• Setting the fuse-bits of the µC 

• Downloading the bootloader to the boot program section of the flash memory in the 

µC to enable later programming to be done through the USB interface.  
 

These initial programming steps are done through the programmer cable described in 8.1.1 

Programmer Cable, and are described more in detail in the following sub sections. 

 

Setting the Fuse-bits for the Microcontroller 
 

The ATmega128L microcontroller has fuse-bits to configure some of its operational 

functions. These fuse-bits are stored in the µC internal flash memory. ATmega128L has three 

fuse bytes (i.e. 24 fuse-bits):  
 

• Extended Fuse byte 

• Fuse High Byte 

• Fuse Low Byte.  
 

What each bit does and its default mode when delivered from the manufacturer can be read in 

the µC’s own datasheet ([ATM06a]) and will be no further discussed. Only the fuse-bits 

altered for this project will be mentioned. Table 8.2 shows these changes. 
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 Table 8.2: Fuse-bits that have to be changed in the ATmega128L from their default value 
 
Fuse Byte Fuse-bit(s) altered Action 

Extended Fuse byte M103C = 1 Disable ATmega103 compatibility mode 

Fuse High Byte JTAGEN = 1 

 

BOOTSZ1=1 

BOOTSZ0=0 

 

BOOTRST=0 

Disable JTAG interface. 

 

Sets the size of the Bootloader flash section 

to 1024 words (2 KiByte). 

 

Select Reset vector 

Fuse Low Byte SUT1=1 

SUT0=1 

 

CKSEL3 = 1 

CKSEL2 = 1 

CKSEL1 = 1 

CKSEL0 = 1 

Crystal oscillator; slowly rising power (65 

ms) 

 

 

The fuse bits CKSEL3-1 set the frequency 

range of the µC. In our case it is 8 MHz.  

CKSEL0 sets the start-up time for the crystal 

oscillator.  

 

There is no need for the restricted ATmega103 compatibility mode, so it was disabled. 

The JTAG interface uses four pins (PF7..4), and to enable these pins to be used as general-

purpose I/O, the JTAG is disabled. The Bootloader code requires 1024 words in the 

bootloader flash section; this is set by the fuse-bits BOOTSZ1-0. In addition, for the 

bootloader to work, the reset vector has to be moved to the start of the boot section in the 

flash memory by setting the fuse-bit BOOTRST. The default clock source of the 

ATmega128L when shipped from the manufacturer is the internal RC oscillator running at 1 

MHz. To use instead the 8 MHz quartz crystal, the fuse-bits CKSEL3..0 are changed 

accordingly. The fuse-bits SUT1-0 were changed to tell the µC that the clock source is a 

crystal, and that the power source may rise slowly. 
 

The fuse-bits are changed using the open source tool avrdude, which is included in WinAVR 

(see the previous section). To alter the fuse-bits of the µC according Table 8.2, connect the 

Control module with the PC using the programmer cable, and enter following three 

commands at the command-line (assuming port LPT1 is used): 
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> avrdude -p atmega128 -c xil -P lpt1 -U lfuse:w:0xff:m 

 

> avrdude -p atmega128 -c xil -P lpt1 -U hfuse:w:0xdc:m 

 

> avrdude -p atmega128 -c xil -P lpt1 -U efuse:w:0xff:m 

 

 

 

Downloading the Bootloader  
 

The bootloader allows the programming of the µC through the USB interface, so there will be 

no need for the programmer cable mentioned previously. The source code for the bootloader 

is based on the application note AVR109 by Atmel [ATM06b], and was modified and 

extended for the µC used in this project. The source code for the bootloader is included in the 

CD attached with this thesis. Before the bootloader is downloaded to the µC, the source code 

has to be first compiled. The makefile is included with the source code. So, to start the 

compilation, the following command is entered at the command-line in the directory where 

the source code is: 

 

 
> make 

 

 

Afterwards, the bootloader is downloaded to the µC using the tool avrdude by entering the 

following command: 

 

 
> avrdude -p atmega128 -c xil -P lpt1 -U flash:w:bootloader.hex 

 

 

Avrdude will display the success message if the downloading was done without any 

problems. Now, we can program the µC using a simple USB cable. To protect the boot 

section in the flash memory (where the bootloader resides) from accidental future overwriting, 

the Lock fuse-bits are changed by the following command: 
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> avrdude -p atmega128 -c xil -P lpt1 -U lock:w:0xef:m 

 

 

The following sub section deals with programming the Control module via USB. 

 

8.1.4 Programming the Control Module via USB 
 

After completing the initial programming of the Control module (see previous section), and 

before starting to program the Control module via USB, the device drivers for the FT232R 

(USB-UART converter IC, see also 5.4 USB Interface), which are found on the manufactures 

website1, have to be downloaded, installed, and configured. These drivers emulate the USB 

interface as a serial port on the PC, thus any software can access it as if it was a serial port. 
 

Finally, to start programming the Control module via USB, the µC has to enter the 

programming mode by activating the bootloader in the µC. To enter the programming mode, 

the Reset and PB1 button (another button can also be chosen in the source code) on the 

Control module have to be pressed at the same time. After this is done, the following 

command starts the downloading the application program code to the µC (assuming 

myapp.hex is the compiled hex program code): 

 

 
> avrdude -p atmega128 –b 57600 -c avr109 -P com5 -U flash:w:myapp.hex 

 

 

Note that although we are using physically the USB interface, logically it is accessed as if it 

were a serial port (see 5.4 USB Interface). The number 57600 stands for the speed of the 

communication, i.e. 57600 bit/s. This is the highest possible transfer rate with no errors by the 

ATmega128L running at 8 MHz, and is more than sufficient for our programming purposes, 

e.g. downloading the application for “Go Ahead” in 9.2 Go Ahead takes less than 2 s. The 

option “-c avr109” in the command line tells avrdude what kind of bootloader is installed on 

the µC. 

                                                 
1 www.ftdichip.com 
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8.2 Programming the Intelligence Module  
 

The Intelligence module can be used as an evaluation platform to conduct a wide variety of 

experiments in electrical engineering and computer science. This module has an FPGA which 

because of its volatile nature needs to be configured1 (programmed) every time after power-

on or pressing the ReConfig button. 
 

When the Intelligence module is used with the Control module, the latter takes care of 

configuring the FPGA whenever it is signalled by the FPGA. But before that, the flash 

memory and the µC on the Control module have to be programmed to do that (see 8.3 

Programming the Overall System). However, if the Intelligence module is used as stand-

alone, the FPGA can be configured using the JTAG header on the module. The programmer 

cable (see 8.1.1 Programmer Cable) used for the initial programming of the Control module 

can also be used to connect the PC parallel port with the JTAG interface of the Intelligence 

module for configuration. The Drawback in using the Intelligence module without the Control 

module is that always when the power is turned off or the ReConfig button is pressed, the 

FPGA has to be re-configured again by the PC.  
 

The development software suit used for writing and compiling the source code and for 

configuration of the FPGA is ISE WebPACK, which is provided by Xilinx, the manufacturer 

of the FPGA itself. The software suit is available for free from Xilinx’s website2. 

Unlike the µC in the Control module where its source code is written in the C programming 

language, the FPGA has to be programmed using a hardware description language such as 

VHDL or Verilog.  
 

The JTAG configuration of the Intelligence module in stand-alone was successfully tested 

with a simple application. 

 

8.3 Programming the Overall System 
 

MAMoRo with its three modules has two programmable units, the µC in the Control and the 

FPGA in the Intelligence module which need to be programmed. Furthermore, the volatile 

                                                 
1 When talking about FPGA, the words “configured” and “programmed” mean the same thing 
2 Xilinx homepage: http://www.xilinx.com/
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FPGA has to be configured each time the power is turned on. As have been already stated 

earlier in 3.6 Programming MAMoRo, the overall system should be programmable by just 

programming the µC in the Control module. The µC should afterwards take care of 

configuring the FPGA; but before that, two things must be done: 
 

1. The FPGA configuration file has to be downloaded from the PC to the flash memory 

on-board the Control module.  

2. The µC must be programmed how to use the data bits stored in the flash memory to 

configure the FPGA. 
 

For the first problem, regarding the downloading of the configuration file from the PC to the 

flash memory, there are many ways to do this. For this project, the communication protocol 

Xmodem-CRC1 was identified as an effective way to let the PC communicate with the µC in 

the Control module for downloading the FPGA configuration file to the flash memory. 

Xmodem-CRC was chosen because it is simple and reliable enough for our task. So, the 

Xmodem-CRC protocol has to be programmed into the µC. Afterwards, on the PC side, a 

terminal program capable of understanding the Xmodem-CRC protocol is opened and used to 

communicate with the µC and download the FPGA configuration file to the flash memory. A 

terminal program capable of using the Xmodem-CRC protocol to send and receive files is, for 

example, HyperTerminal, a tool already integrated in the Windows environment. 
  

After succeeding in downloading the FPGA configuration file to the flash memory on the 

Control module, the µC has to be programmed how to handle this stored data to configure the 

FPGA. The FPGA is configured in the slave serial configuration mode. The sequence of steps 

to configure the FPGA in slave serial mode is depicted in Figure 8.3. 

 

 

                                                 
1 Xmodem-CRC protocol reference: http://pauillac.inria.fr/~doligez/zmodem/ymodem.txt 
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Figure 8.3: The FPGA configuration flow diagram in slave serial mode [XIL02]. PROGRAM, 
INT, and DONE are pins in the FPGA used for the controlling the configuration. 

 

The algorithm illustrated in Figure 8.3 was implemented in the µC and succeeded in 

configuring the FPGA from the flash memory. The FPGA configuration file which will be 

downloaded to the flash memory is a binary file generated by ISE WebPACK. More details in 

regard to the configuration process of the FPGA can be read in Xilinx application note 

[XIL02]. 
 

Finally, we have now all parts needed to make an overall bootloader for MAMoRo: 
    

• The bootloader that enables us to program the Control module via USB. 

• The Xmodem-CRC protocol for downloading or uploading data between the PC and 

the flash memory on the Control module. 

• The µC program code for configuring the FPGA from the flash memory. 
 

These single programs all combined make up the bootloader for MAMoRo. The algorithm for 

the MAMoRo bootloader is depicted in Figure 8.4.   
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Figure 8.4: MAMoRo-Bootloader  

 
 
After the power is turned on, the µC checks if push button PB1 (another button can also be 

chosen) is pressed; if this is the case, the bootloader downloaded during the initial 

programming of the Control module (see 8.1.3 Initial Programming of the Control Module) is 

activated, and the µC enters the programming mode, in which then the µC can be 

programmed. Next, the µC checks if button PB2 (another button can also be chosen) is 

pressed; if this is the case, the µC enters the Xmodem-CRC receive mode, and waits for the 

signals from the PC terminal to start downloading the data to the flash memory. After 

checking for buttons PB1 and PB2, the µC starts configuring the FPGA. The LED DONE in 

the Intelligence module glows when the FPGA is configured. Finally, when all this is done, 

the µC runs the user application program. If the ReConfig button in the Intelligence module is 

going to be used to re-configure the FPGA, then two lines of code have to be added to the 
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application program code that tells the µC to poll the PROGRAM pin, otherwise pressing the 

Reset will also do it.  
 

The source codes for the MAMoRo Bootloader are found on the CD attached with this thesis. 
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9 Application Examples 
 

 

The final phase of this project is to actually test MAMoRo in real life with example 

applications. Two classic applications for robots were picked to demonstrate the functionality 

of MAMoRo:  
 

• Line follower: MAMoRo should follow a line on the ground using two light sensors. 

Only the Control module and Power & Motion module are used to accomplish this 

task. 

• Go ahead: MAMoRo is programmed to go forward, but when it detects an obstacle, it 

goes backward, then turns randomly either right or left, then goes forward again, and 

so on. Whereby, an obstacle is detected using the light sensors and the quadrature 

encoders integrated in the motors. 

 

9.1 The Line Follower 
 

The line follower is an application in which MAMoRo is programmed to follow a black line 

on a white ground. In this application the Power & Motion module and the Control module 

are used without the Intelligence module. This application should demonstrate how MAMoRo 

can be used for simple applications that do not require the high processing power of the 

Intelligence module. The interactions between the modules for this application are illustrated 

in Figure 9.1. 

 
Figure 9.1: Modules interactions in the line follower application 
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A blank line is drawn in a white surface (see Figure 9.3), and  MAMoRo should move along 

this line using two light sensors placed near to each other and facing the ground (see Figure 

9.2). The light sensors used are cheap light dependent resistors (LDR). These sensors allow 

MAMoRo to detect when it has deviated from its specific course.  

 

 
 Figure 9.2: The course used for the line following application 
 

 
Figure 9.3: MAMoRo used as a line follower. The light sensors (LDRs) are placed near to each 
other facing the ground. 
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The light sensors are connected to the µC ADC’s in the Control module; their schematic is 

depicted in Figure 9.4. 

 

 
Figure 9.4: LDR circuit 

 

The algorithm used for the line follower application can be read from the flow diagram 

depicted in Figure 9.5. The µC reads in loops the values from these sensors and calculates the 

difference between them. If the absolute difference between the values read from each sensor 

is equal or greater than a specific constant, then that means that MAMoRo has stepped over 

the line and must turn right or left according to the sign of the difference value. So, basically 

MAMoRo tries continuously to keep the line between both sensors. By using the difference 

value between each sensor, rather than the absolute values, background noises such as light 

interferences or shadows from nearby objects are minimized. 
 

The source code for the line follower is included in the CD attached with this thesis. 

 

 

 104



 
 Figure 9.5: Line follower flow diagram 
 

9.2 Go Ahead 
 

Go Ahead is an application in which all of MAMoRo’s modules are utilized for a specific 

task. Therefore, it is a perfect demonstration of the interaction of all of MAMoRo’s three 

modules (see Figure 9.5). In this application, MAMoRo is programmed to go forward (ahead) 

and stops if it detects an obstacle. It uses two kinds of sensors: two LDRs as light sensors, and 

quadrature encoders integrated in the motors. If the obstacle is detected, MAMoRo stops and 

goes backwards, then turns randomly right or left, then goes forward again, and so on. 
 

There are two ways for MAMoRo to detect an obstacle in this application. First, is if this 

obstacle comes near to the light sensors and blocks some of the light reaching it. Second, is by 

counting the pulses from the quadrature encoder. The quadrature encoder integrated in each 
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motor generates pulses according to the speed of the motor, i.e. the faster the motor spins, the 

more pulses per second are generated. So, if the motion unit in the Power & Motion module is 

telling the motors to move, but is reading from the encoders no or few pulses, then MAMoRo 

understands that an obstacle is hindering it from moving. 
 

After an obstacle has been detected, it moves backwards and then turns randomly either right 

or left, then continues moving forward again; this procedure is repeated all the time. The 

algorithm for the Go Ahead application can be read from the flow diagram in Figure 9.6. 
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 C
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Figure 9.6: Interaction of MAMoRo’s three modules: Power & Motion module, Control module, 
and intelligence module. 

 

The main functions of each module in this application are summarized below. 

 

Power & Motion Module:  
 

• Drives the motors 

• Sends the encoders output to the Control module  
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Control Module:  
 

• Sends motor control signals to the motion unit in the Power & Motion module 

• Configures the FPGA after power-on 

• Reads the analogue signals from the light sensors, converts them to digital, and sends 

the results to the intelligence module. 

• Reads the encoders pulses and calculates the pulses generated per unit time, then sends 

the results to the Intelligence module 

 

Intelligence Module: 
 

• Reads the sensor results from the Control module, processes them, and then tells the 

Control module what action to do next. 

Program Start

Count the pulses per unit 
time (PPT) generated by 

the encoder 

Light sensors detected 
an obstacle?

Read light sensors

Manoeuvre*

Move forward

PPT is low, alhtough it 
shouldn’t ?**

Read Encoders

Yes

N
o

    Yes

N
o

*The Manoeuvre steps consist of going backward then 
turn randomly either right or left.

**The faster the motor, the higher is the PPT. So, if PPT 
is low, although the motion unit is driving the motors, 
then this means an obstacle is hindering the robot.

 
Figure 9.6: Go Ahead flow diagram 

 

The source code for the Go Ahead application is included in the CD attached with this thesis. 
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10 Conclusion and Future Work 
 

10.1 Conclusion 
 

The project was successfully completed and all objectives stated at the beginning of the thesis 

(see 1.2 Thesis Objectives) were accomplished.  
 

The combination of a µC and an FPGA in MAMoRo enhanced immensely the flexibility and 

adoptability of the system, and made it possible for MAMoRo to reconfigure its hardware at 

run-time.  
 

The distribution of the decision making functions into two modules according to their 

complexity, as it happens in the human brain, achieved that the whole system is more easy to 

manage, the processing power is more efficiently utilized, and future expandability is made a 

lot easier. 
 

The total cost1 for the components used to build MAMoRo was about €200. The PCB 

fabrication cost was about €120 (excluding the soldering of the components, which was done 

manually). This makes the total cost of the project about € 320. Note, that this is the price for 

the production of only one sample of MAMoRo. This price will drop immensely if MAMoRo 

is produced in larger numbers. For the mechanical part of MAMoRo, LEGO™ Technic2 

bricks can be used, which will allow the mechanical parts to be modelled with great flexibility 

and ease of use; the price of these kits vary from €20 and above. The software tools used for 

programming MAMoRo are open source or free, and can be downloaded from the internet; 

hence, no extra cost falls on software development tools. Consequently, one of the 

requirements of this project which stated that the robot platform should be low-cost was 

achieved. 
 

Nevertheless, there are some improvements that could be made to future MAMoRo samples. 

Since the prototype implemented in this project is the first one, making the PCB area small 

for this project was not important. In fact, a very small PCB was not favoured, so that if there 

were any mistakes in the hardware design, there would be enough space in the board to allow 

                                                 
1 All prices mentioned here are tax free 
2 LEGO Technic: http://technic.lego.com
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for corrections; for example, adding an extra capacitor, or swapping an IC without damaging 

the components besides it, etc. In future samples of MAMoRo, the PCB areas will be reduced; 

however, there might be still cases, e.g. in introductory courses (see 3.5 The Physical 

Implementation) where this is not wanted. 
 

Another concern, is that the time needed for the FPGA in the Intelligence module to get 

configured by the µC in the Control module after power-on takes about 12 seconds; this is for 

some reconfigurable hardware at run-time applications too long. This time can be reduced by 

using more effective algorithms, and by writing the code in the low-level language Assembly. 

However, the most effective solution is by using a µC that runs at higher operating frequency 

than the relatively low 8 MHz of the ATmega128L µC on-board the Control module. The low 

operating frequency of the ATmega128L limits also the maximum error-free speed of the 

communication between the PC and MAMoRo to 57600 bit/s.  These two restrictions can be 

easily solved by using a µC that operates with a higher operating frequency. An optimal 

choice would be the ARM™ AT91 Thumb-based series µCs such as the AT91SAM7S256, 

which can operate up to 55 MHz, has many peripherals on-chip, and costs a little bit more 

than the ATmega128L. 

 

10.2 Future Work 
 

The focus of this thesis was the design, implementation, and test of the robot platform 

MAMoRo. Further experimentations with MAMoRo, which would have exceeded 

considerably the length of a typical master thesis, are still needed to be done. Ideas for future 

work are listed below:  
 

• Implement a soft core processor in the FPGA on-board the Intelligence module and 

test MAMoRo with some intensive-processing applications. 

• Try practical hardware re-configuration applications at run-time with MAMoRo. 

• Develop a software development environment with an easy to use graphical interface 

for programming all aspects of MAMoRo like the µC, the FPGA, the fuse-bits of the 

µC, downloading and uploading data to MAMoRo, etc. 

• Try LEGO Technic™ construction bricks to create mechanical parts for MAMoRo. 

• Develop a simulation software environment for modelling and rapid prototyping of 

MAMoRo. 
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Appendix A - Schematics, Board Layouts, 
and Parts List 
 

A.1 Power & Motion Module 
 

Power & Motion module parts list 

Quantity Part Value Package 

1 C1 470uF C-10 
5 C2, C3, C4, C5, C11 0.1uF C1206 
3 C6, C7, C8 220uF C-8 
2 C9, C10 10uF C-PANS_B 
9 D1, D2, D3, D4, D5, D6, D7, D8, D9 1N5820 DO-201AD 
1 D10 MBRD1035CTLG DPAK 
1 IC1 L298 MULTIWATT-15 
1 IC2 LM2596S-5V TO263-5 
1 IC3 MC33161 SOIC8-0.157 
1 IC4 LM1085IS-3.3 TO-263-3 
1 J1 DC-JACK DC-JACK 
1 JP1 SENSE 2X02 
1 JP2 MOTOR2 2X03 
1 JP3 MOTOR1 2X03 
1 JP4 PWR OFF 1X02 
1 JP5 PWR LOW 1X02 
1 JP6 5V 2X06 
1 JP7 Motion I/O 2X06 
1 JP8 Modules PWR 2X03 
1 JP9 3V3 2X06 
1 JP10 Vin 2X04 
1 JP11 PWR IN 1X04 
1 L1 47uH WE-PD_L/XL/XXL 
1 LED2 PWR ON LED3MM 
1 LED3 PWR LOW LED3MM 
2 R1, R2 1 R-12X4 
1 R3 4.7k RX4-0603 
1 R4 10k RX4-0603 
2 R7, R8 47k PT10-5X2.5 
2 R10, R11 100k R1206 
1 R12 47k R1206 
1 R13 1k R1206 
1 R14 270 R1206 
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A.2 Control Module 
 

Control module parts list 

Quantity Part Value Package 

10 C3, C4, C5, C6, C7, C13, C14, C20, C25, C26 0.1uF C1206 
1 C15 0.01uF C1206 
1 C16 4.7uF C1206 
2 C17, C18 10uF C-PANS_B 
1 C19 220uF C-8 
1 D1 1N5820 DO-201AD 
1 IC1 MEGA128-A TQFP64 
1 IC2 MAX811 SOT-143 
1 IC3 AT45DB041B SOIC8-0.209 
1 IC5 FT232RL SSOP-28 
1 IC6 LM1085IS-3.3 TO-263-3 
1 IC7 MM74HC126 SO14 
1 J1 USB-TypeB USB-TYPB 
1 J2 DC-JACK DC-JACK(JSBJ4)
1 JP1 AREF 1X02 
1 JP2 Header 4 2X06 
1 JP3 Header 1 2X08 
1 JP4 Header 5 2X07 
1 JP6 ISP 2X03 
1 JP7 USB HS 2X02 
1 JP9 Modules PWR - BOT 2X3-SMT 
1 JP10 Modules PWR - TOP 2X3-SMT 
1 JP11 Header 3 2X8-SMT 
1 JP13 Header 2 - TOP 2X9-SMT 
1 JP14 Header 2 - BOT 2X9-SMT 
2 L1, L2 FB L-805 
1 LED1 USB RX\TX LED3MM 
1 LED2 PWR ON LED3MM 
1 Q1 8MHz HC49U-V 
1 Q2 32.7KHz CFPX-56 
1 R1 47k PT10-5X2.5 
3 R2, R3, R26 4.7k R1206 
2 R4, R25 220 R1206 
1 R6 10k R1206 
1 R9 620 R1206 
1 R23 270 R1206 
1 S1 RESET B3F-10XX 
1 S2 PB1 B3F-10XX 
1 S3 PB2 B3F-10XX 
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A.3 Intelligence Module 
 

Intelligence module parts list 

Quantity Part Value Package 

1 B3-3V3_EN 0 R1206 
13 C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C21, C22 0.01uF C0603 
8 C12, C13, C14, C15, C16, C17, C18, C23 0.1uF C0603 
2 C19, C20 0.1uF C0805 
6 C24, C25, C27, C28, C29, C30 10uF C-PANS_B 
1 C26 220uF C-8 
1 D1 1N5820 DO-201AD 
1 IC1 XC3S400-TQ144 TQ144 
1 IC2 SG-8002JA SG-8002JA 
1 IC3 IS61LV25616AL TSOP-44 
1 IC4 LM1085IS-3.3 TO-263-3 
2 IC5, IC6 LM1085IS-ADJ TO-263-3 
1 J1 DC-JACK DC-JACK(JSBJ4)
1 JP1 Config Mode 2X04 
1 JP2 Slave Config 2X03 
1 JP3 JTAG 2X03 
1 JP4 Bank 2 2X09 
1 JP5 Bank 3 (Config) - TOP 2X12-SMT 
1 JP6 Bank 3 (Config) - BOT 2X7-SMT 
1 JP7 Bank 7 (SRAM) 2X10 
1 JP8 Bank 6 (SRAM) 2X09 
1 JP9 Bank 0/1 (SRAM) 2X11 
1 JP10 Bank 4/5 2X11 
1 JP11 EN SRAM 1X02 
1 JP12 Modules PWR - TOP 2X3-SMT 
1 JP13 Modules PWR - BOT 2X3-SMT 
1 LED1 PWR ON LED3MM 
1 LED2 DONE LED3MM 
5 R1, R3, R7, R8, R9 68 R1206 
1 R2 330 R1206 
3 R4, R6, R11 4.7k R1206 
2 R5, R12 100 R1206 
2 R10, R18 220 R1206 
1 R20 270 R1206 
3 R21, R22, R23 120 R1206 
1 S1 ReConfig B3F-10XX 
1 S2 PB1 B3F-10XX 
1 S3 PB2 B3F-10XX 
1 T1 2N7002 SOT-23 
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A.4 Programmer Board 
 

Programmer board parts list 

Quantity Part Value Package

4 C1, C2, C3, C4 100pF C1206 
1 C5 0.01uF C1206 
2 D1, D2 1N5817 DO41-10 
2 IC1, IC2 MM74HC125 SO14 
1 JP1 ISP 2X03 
5 R1, R10, R11, R12, R13 100 M1206 
1 R2 5.1k M1206 
1 R3 1k M1206 
1 R4 56 M1206 
5 R5, R6, R7, R8, R9 300 M1206 
1 X2 DB25-M M25H 
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Appendix B - Headers Pinouts 
 

B.1 Power & Motion Module  
 

Power 
Unit Motor

Unit5 V

3.3 V

+Vin
PWR IN

Motor1 Motor2

Motion I/O

Sense

Motor Driver

5 V
Switching
Regulator

Voltage 
Monitor

PWR 
OFFPWR 

LOW

DC Jack

PWR Low

PWR OFF 
Potentiometer

PWR Low 
Potentiometer

3.3 V
Linear

Regulator

LED

PWR ON

LED

Mounting Holes

Modules
PWR

 

B.1.1 Power Unit 
 
Power Input 
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PWR IN (1x4) 

Pin Function(s) 
1 + External power source 

2 + External power source 

3 GND 

4 GND 

 

PWR LOW  

 

 
PWR LOW (1x2) 

Pin Function(s) 
1 GND 

2 Output 1 from the voltage monitor (see 4.1.2 Low Voltage Monitor) 

 
PWR OFF 

 

 

 128



PWR OFF (1x2) 

Pin Function(s) 
1 Output 2 from the voltage monitor (see 4.4.2. Low Voltage Monitor) 

2 To ON#/OFF pin on the 5 V switching regulator (see 4.1.1 Power Supplies) 

 

5 V Header 

 
5 V header (2x6) 

Pin Function(s) 
1 +5 V 

2 GND 

3 +5 V 

4 GND 

5 +5 V 

6 GND 

7 +5 V 

8 GND 

9 +5 V 

10 GND 

11 +5 V 

12 GND 

 

3.3 V Header 
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3.3 V header (2x6) 

Pin Function(s) 
1 +3.3 V 

2 GND 

3 +3.3 V 

4 GND 

5 +3.3 V 

6 GND 

7 +3.3 V 

8 GND 

9 +3.3 V 

10 GND 

11 +3.3 V 

12 GND 

 

Vin Header 

 
 

Vin header (2x4) 

Pin Function(s) 
1 V+ (=External power source – Schottky diode forward voltage) 

2 GND 

3 V+ 

4 GND 

5 V+ 

6 GND 

7 V+ 

8 GND 
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Modules PWR 

 
Modules PWR (2x3) 

Pin Function(s) 
1 GND 

2 V+ 

3 GND 

4 3.3 V 

5 GND 

6 5 V 

 

B.1.2 Motion Unit  
 

Motion I/O 

 
Motion I/O (2x6) 

Pin Name Function(s) 
1 GND Power 

2 NC - 

3 M1_IN1 Motor 1, Input 1 (M1_IN1) 

4 M1_IN2 Motor 1, Input 2 (M1_IN2) 

5 M1_A Motor 1, Encoder Channel A (M1_A) 

6 M2_B Motor 2, Encoder Channel B (M2_B) 

7 M2_A Motor 2, Encoder Channel A (M2_A) 

8 M2_B Motor 2, Encoder Channel B (M2_B) 
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9 M2_IN3 Motor 2, Input 3 (M2_IN3) 

10 M2_IN4 Motor 2, Input 4 (M2_IN4) 

11 M1_EN Motor 1, Enable (M1_EN) 

12 M2_EN Motor 2, Enable (M2_EN) 

 

SENSE  

 
SENSE (2x2) 

Pin Function(s) 
1 SEN_B from Motor driver (see 4.2.1 Motor Driver) 

2 GND 

3 SEN_A from Motor driver (see 4.2.1 Motor Driver) 

4 GND 

 

MOTOR1 & 2 
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MOTOR1&2 (3x2) 

Pin Function(s) 
1 OUT1(3) from Motor driver (see 4.2.1 Motor Driver) 

2 OUT2(4) from Motor driver (see 4.2.1 Motor Driver) 

3 GND 

4 5 V 

5 To Actuator  (e.g. DC Motor) 

6 To Actuator 

 
 

B.2 Control Module 
 

 

 

For more detailed description of the µC pins, please see the ATmega128L datasheet 

([ATM06]). 
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Header 1 

 
Header 1 (2x8) 

Pin Port Function(s) 
1 - GND 

2 - 5 V 

3 PA0 User-I/O, 

AD0 (External memory interface address and data bit 0) 

4 PA1 User-I/O, 

AD1 (External memory interface address and data bit 1) 

5 PA2 User-I/O, 

AD2 (External memory interface address and data bit 2) 

6 PA3 User-I/O, 

AD3 (External memory interface address and data bit 3) 

7 PA4 User-I/O, 

AD4 (External memory interface address and data bit 4) 

8 PA5 User-I/O, 

AD5 (External memory interface address and data bit 5) 

9 PA6 User-I/O, 

AD6 (External memory interface address and data bit 6) 

10 PA7 User-I/O, 

AD7 (External memory interface address and data bit 7) 

11 PG2 User-I/O, 
ALE (Address Latch Enable to external memory) 

12 PG1 User-I/O, 
RD (Read strobe to external memory) 

13 PG0 User-I/O, 
WR (Write strobe to external memory) 

14 - Reset 

15 - GND 

16 - 3.3 V 
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Header 2 

 
 

Header 2 (2x9) 

Pin(Top) Port Function(s) 
1 -* GND 

2 -* 5 V 

3 PE2* / *** User-I/O, 

AIN0/XCK0 (Analogue Comparator Positive Input or USART0 external clock 

I/O) 

4 PE3* / *** User-I/O, 

AIN1/OC3A (Analogue Comparator Negative Input or Output Compare and 

PWM Output A for Timer3) 

5 PE4* User-I/O, 

INT4/OC3B (External Interrupt4 Input or Output Compare and PWM Output B 

for Timer3) 

6 PE5* User-I/O, 

INT5/OC3C (External Interrupt 5 Input or Output Compare and PWM Output C 

for Timer3) 

7 PE6* User-I/O, 

INT6/ T3 (External Interrupt 6 Input or Timer3 Clock Input) 

8 PE7* User-I/O, 

INT7/ICP3 (External Interrupt 7 Input or Timer3 Input Capture Pin) 

9 PB5* User-I/O, 

OC1A (Output Compare and PWM Output A for Timer/Counter1) 

10 PB4* User-I/O, 

OC0 (Output Compare and PWM Output for Timer/Counter0) 

11 PB7* User-I/O, 

OC2/OC1C(1) (Output Compare and PWM Output for Timer/Counter2 or 
Output 
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Compare and PWM Output C for Timer/Counter1) 
12 PB6* User-I/O, 

OC1B (Output Compare and PWM Output B for Timer/Counter1) 
13 - Reset 

14 PB1** SCK (SPI Bus Serial Clock) 

15 PB2** MOSI (SPI Bus Master Output/Slave Input) 

16 PB3** MISO (SPI Bus Master Input/Slave Output) 

17 - GND 

18 - 3.3 V 

* Interface pins to the motion unit in the Power & Motion module 

** SPI bus pins.  

*** Used for USB handshaking, if a jumper is placed on the header USB HS. 

 

Header 3 

 

 

Header 3 (2x8) 

Pin Port Function(s) 
1 -* GND 

2 -* 5 V 

3 PB1* / ** SCK (SPI Bus Serial Clock) 

4 PB2* / ** MOSI (SPI Bus Master Output/Slave Input) 

5 PB3* / ** MISO (SPI Bus Master Input/Slave Output) 

6 -* Reset 

7 PC7* User-I/O, 

A15 (Address high byte for the External Memory Interface) 

8 PC6* User-I/O, 

A14 (Address high byte for the External Memory Interface) 

9 PC5* User-I/O, 

A13 (Address high byte for the External Memory Interface) 
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10 PC4* User-I/O, 

A12 (Address high byte for the External Memory Interface) 

11 PC3* User-I/O, 

A11 (Address high byte for the External Memory Interface) 
12 PC2* User-I/O, 

A10 (Address high byte for the External Memory Interface) 
13 PC1* User-I/O, 

A9 (Address high byte for the External Memory Interface) 
14 PC0* User-I/O, 

A8 (Address high byte for the External Memory Interface) 

15 -* GND 

16 -* 3.3 V 

* Interface pins to the Intelligence module. 

** SPI bus pins.  

 

Header 4 

 

Header 4 (2x6) 

Pin Port Function(s) 
1 - GND 

2 - 5 V 

3 PD7 User-I/O, 
T2 (Timer/Counter2 Clock Input) 

4 PD6 User-I/O, 
T1 (Timer/Counter1 Clock Input) 

5 PD5 User-I/O, 
XCK1 (USART1 External Clock Input/Output) 

6 PD4 User-I/O, 
ICP1 (Timer/Counter1 Input Capture Pin) 

7 PD3 User-I/O, 
INT3/TXD1 (External Interrupt3 Input or UART1 Transmit Pin) 

8 PD2 User-I/O, 
INT2/RXD1 (External Interrupt2 Input or UART1 Receive Pin) 

9 PD1* User-I/O, 
INT1/SDA (External Interrupt1 Input or TWI(I2C) Serial Data) 

10 PD0* User-I/O, 
INT0/SCL (External Interrupt0 Input or TWI(I2C) Serial Clock) 

11 - GND 

12 - 3.3 V 
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*I2C bus pins: this bus can be used to connect slow devices such as an LCD, thereby saving pins. 

 

Header 5 

 

Header 5 (2x7) 

Pin Port Function(s) 
1 - GND 

2 - 5 V 

3 - AREF 

4 PF0* User-I/O, 

ADC0 (ADC input channel 0) 

5 PF1* User-I/O, 

ADC1 (ADC input channel 1) 

6 PF2 User-I/O, 

ADC2 (ADC input channel 2) 

7 PF3 User-I/O, 

ADC3 (ADC input channel 3) 

8 - Reset 

9 PF5 User-I/O, 

ADC5/TMS (ADC input channel 5 or JTAG Test Mode Select) 

10 PF4 User-I/O, 

ADC4/TCK (ADC input channel 4 or JTAG Test Clock) 

11 PF7 User-I/O, 

ADC7/TDI (ADC input channel 7 or JTAG Test Data Input) 
12 PF6 User-I/O, 

ADC6/TDO (ADC input channel 6 or JTAG Test Data Output) 
13 - GND 

14 - 3.3 V 

*Connected to push buttons 
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ISP 

 
ISP (2x3) 

Pin Port Function(s) 
1 -* Reset 

2 -* SCK 

3 PE0* PDI 

4 PE1* PDO 

5 -* GND 

6 -* 3.3 V 

*ISP pins: this header is used for programming the µC 
 

ADC  

 
ADC (2x1)* 

Pin Function(s) 
1 VREF 

2 AREF 

See section 5.4 USB Interface. 

 

USB HS 

 
USB HS (2x2)* 

Pin Function(s) 
1 RTS# (from USB-UART converter IC) 
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2 PE3 

3 CTS# (from USB-UART converter IC) 

4 PE2 

See section 5.4 USB Interface. 

 

Modules PWR 

 
Modules PWR (2x3) 

Pin(Top) Port Function(s) 
1 -* GND 

2 -* GND 

3  -* GND 

4 -* +Vin

5 -* 3.3 V 

6 -* 5 V 

*Power pins from the Power & Motion module; if the module is used in stand-alone, apply the power through 

the DC-Jack. 
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B.3 Intelligence Module 
 

 
 

For more detailed description of the FPGA pins, please see the Spartan-3 XC3S400 datasheet 

([XIL06a]). 

 

Bank 0/1 Header 

 
 

 

Bank 0/1 Header (2x11) 

Pin Name FPGA Pin Function 
1 - - GND 
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2 - - 3.3 V 

3 B0_IO9* 140 User-I/O, 
DCI 

4 B0_IO10* 141 User-I/O, 
DCI 

5 B0_IO7* 135 User-I/O 

6 B0_IO8* 137 User-I/O 

7 B0_IO5* 131 User-I/O 

8 B0_IO6* 132 User-I/O 

9 B0_IO3* 129 User-I/O, 
VREF 

10 B0_IO4* 130 User-I/O 

11 B0_IO1* 127 User-I/O, 
GCLK 

12 B0_IO2* 128 User-I/O, 
GCLK 

13 B1_IO7 123 User-I/O, 
VREF 

14 B1_IO9** 125 User-I/O, 
GCLK 

15 B1_IO5 119 User-I/O 

16 B1_IO6 122 User-I/O 

17 B1_IO3 116 User-I/O 

18 B1_IO4 118 User-I/O 

19 B1_IO1 112 User-I/O, 
DCI 

20 B1_IO2 113 User-I/O, 
DCI 

21 - - GND 

22 - - 3.3 V 

*Used by SRAM when a jumper is placed on the header EN SRAM.  

**Connected to the header EN SRAM. 

 

Bank 2 Header 

 

Bank 2 Header (2x9) 

Pin Name FPGA Pin Function 
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1 - - GND 

2 - - 3.3 V 

3 B2_IO13* 107 User-I/O, 
DCI 

4 B2_IO14* 108 User-I/O, 
DCI 

5 B2_IO11 104 User-I/O 

6 B2_IO12 105 User-I/O 

7 B2_IO9 102 User-I/O 

8 B2_IO10 103 User-I/O 

9 B2_IO7 99 User-I/O 

10 B2_IO8 100 User-I/O 

11 B2_IO5 97 User-I/O 

12 B2_IO6 98 User-I/O, 
VREF 

13 B2_IO3 95 User-I/O 

14 B2_IO4 96 User-I/O 

15 B2_IO1 92 User-I/O, 
VREF 

16 B2_IO2 93 User-I/O 

17 - - GND 

18 - - 3.3 V 

*Connected to push buttons. 

 

Bank 3 Header 

 

Bank 3 Header (Top:2x12, Bottom:2x7) 

Pin(Top) Name FPGA Pin Function 
1 - - GND 

2 - - 3.3 V 

3 B3_IO14 89 User-I/O 

4 B3_IO15 90 User-I/O, 
VREF 

5 B3_IO12 86 User-I/O 

6 B3_IO13 87 User-I/O 
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7 B3_IO10 84 User-I/O, 
VREF 

8 B3_IO11 85 User-I/O 

9 B3_IO8 82 User-I/O 

10 B3_IO9 83 User-I/O 

11 B3_IO6* 79 User-I/O 

12 B3_IO7* 80 User-I/O 

13 B3_IO4* 77 User-I/O 

14 B3_IO5* 78 User-I/O 

15 B3_IO2* 74 User-I/O, 
DCI 

16 B3_IO3* 76 User-I/O 

17 CONFIG_INIT_B/
IO* 

58 User-I/O, 
DUAL 

18 B3_IO1 73 User-I/O, 
DCI 

19 CONFIG_PROG_
B* 

143 CONFIG 

20 CONFIG_CCLK* 72 CONFIG 

21 CONFIG_DIN/IO* 65 User-I/O, 
DUAL 

22 CONFIG_DONE* 71 CONFIG 

23 -* - GND 

24 -* - 3.3 V 

*These pins make up the interface to the control module. 

 

Bank 4/5 Header 

 

Bank 4/5 Header (2x11) 

Pin Name FPGA Pin Function 
1 - - GND 

2 - - 3.3 V 

3 B5_IO2 41 User-I/O, 
DUAL 
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4 B5_IO1 40 User-I/O, 
DUAL 

5 B5_IO4 46 User-I/O, 
DUAL 

6 B5_IO3 44 User-I/O, 
VREF 

7 B5_IO6 50 User-I/O, 
DUAL 

8 B5_IO5 47 User-I/O, 
DUAL 

9 B5_IO8 52 User-I/O, 
GCLK 

10 B5_IO7 51 User-I/O, 
DUAL 

11 B4_IO1 55 User-I/O, 
GCLK 

12 B5_IO9 53 User-I/O, 
GCLK 

13 B4_IO3 57 User-I/O, 
DUAL 

14 B4_IO2 56 User-I/O, 
GCLK 

15 B4_IO5 60 User-I/O, 
DUAL 

16 B4_IO4 59 User-I/O, 
DUAL 

17 B4_IO7 68 User-I/O, 
DCI 

18 B4_IO6 63 User-I/O, 
DUAL 

19 B4_IO9 70 User-I/O, 
VREF 

20 B4_IO8 69 User-I/O, 
DCI 

21 - - GND 
22 - - 3.3 V 

 

Bank 6 Header 

 

Bank 6 Header (2x9) 

Pin Name FPGA Pin Function 
1 - - GND 
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2 - - 3.3 V 

3 B6_IO1* 20 User-I/O, 
VREF 

4 B6_IO2* 21 User-I/O 

5 B6_IO3* 23 User-I/O 

6 B6_IO4* 24 User-I/O, 
VREF 

7 B6_IO5* 25 User-I/O 

8 B6_IO6* 26 User-I/O 

9 B6_IO7* 27 User-I/O 

10 B6_IO8* 28 User-I/O 

11 B6_IO9* 30 User-I/O 

12 B6_IO10* 31 User-I/O 

13 B6_IO11* 32 User-I/O 

14 B6_IO12* 33 User-I/O 

15 B6_IO13* 35 User-I/O, 
DCI 

16 B6_IO14* 36 User-I/O, 
DCI 

17 - - GND 

18 - - 3.3 V 

*Used by SRAM when a jumper is placed on the header EN SRAM.  

 

Bank 7 Header 

 

Bank 7 Header (2x10) 

Pin Name FPGA Pin Function 
1 - - GND 

2 - - 3.3 V 

3 B7_IO2* 2 DCI 

4 B7_IO1* 1 DCI 

5 B7_IO4* 5 I/O 

 146



6 B7_IO3* 4 VREF 

7 B7_IO6* 7 I/O 

8 B7_IO5* 6 I/O 

9 B7_IO8* 10 I/O 

10 B7_IO7* 8 I/O 

11 B7_IO10* 12 I/O 

12 B7_IO9* 11 I/O 

13 B7_IO12* 14 I/O 

14 B7_IO11* 13 I/O 

15 B7_IO14* 17 I/O 

16 B7_IO13* 15 I/O 

17 - - GND 

18 B7_IO15* 18 VREF 

19 - - GND 

20 - - 3.3 V 

*Used by SRAM when a jumper is placed on the header EN SRAM.  

 

Slave Config 

 
Slave Config (2x3) 

Pin Name FPGA Pin Function 
1 CONFIG_PROG_B 143 CONFIG 

2 CONFIG_CCLK 72 CONFIG 

3 CONFIG_DIN/IO 65 DUAL 

4 CONFIG_DONE 71 CONFIG 

5 - - GND 

6 - - 3.3 V 

 

Config Mode 
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Config Mode* (2x4) 

Pin Name FPGA Pin Function 
1 - - GND 

2 M0 38 CONFIG 

3 - - GND 

4 M1 37 CONFIG 

5 - - GND 

6 M2 39 CONFIG 

7 - - GND 

8 HSWAP_EN 142 CONFIG 

*For the different configuration modes, see section 6.2.3 Fehler! Verweisquelle konnte nicht gefunden 

werden.. 

 

JTAG 

 
JTAG (2x3) 

Pin Name FPGA Pin Function 
1 JTAG_TMS 111 JTAG 

2 JTAG_TCK 110 JTAG 

3 JTAG_TDI 144 JTAG 

4 JTAG_TDO 109 JTAG 

5 - - GND 

6 - - 3.3 V 
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EN SRAM 

 

 
EN SRAM (2x1)* 

Pin Name FPGA Pin Function 
1 B1_IO9** 125 User-I/O, 

GCLK 

2 CE# - SRAM enable (low-active) 

*If the SRAM is needed, place a jumper on this header. 

**Shared with the header Bank 0/1 

 

Modules PWR 

 
Modules PWR (2x3) 

Pin(Top) Function(s) 
1 GND 

2 GND 

3  GND 
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4 +Vin

5 3.3 V 

6 5 V 

*Power pins from the Power & Motion module; if the module is used in stand-alone, apply the power through 

the DC-Jack. 
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Appendix C - CD-ROM 
 

 

The CD-ROM attached with this thesis contains data files related to this project. 

 

Directory structure of the CD-ROM 
 

 Thesis – this thesis in Microsoft Word and PDF format 

 Video Clips 

o MAMoRo - Line Follower.AVI 

o MAMoRo - Go Ahead.AVI 

 Pics – some pictures of MAMoRo 

 Code 

o uC Bootloader – source files for the bootloader in 8.1.3 Initial Programming of 

the Control Module 

o initprog.bat – this batch file executes the steps needed for the initial 

programming of the Control Module 

o MAMoRo Bootloader – source files for the MAMoRo bootloader in 8.3 

Programming the Overall System 

o Line Follower – source files for the application in 9.1 The Line Follower 

o Go Ahead – source files for the application in 9.2 Go Ahead 

o Misc – contains miscellaneous source files  

 Software 

o FT232R Drivers – the drivers for the UART-USB converter IC 

o WinAVR – Open Source Development Tools for Atmel AVR Microcontrollers 

 Schematics & Board Layouts 
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