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Abstract

The main contribution of this work is the fusion of scientific visualization algorithms
and a scene graph resulting in a dynamic creation of the data flow model being used.
The most important flow visualization techniques will be introduced in this thesis. The
current state of the art was analyzed by comparing the most important software pack-
ages with a special focus on data flow models being used.

CashFlow is based on an object–oriented, dynamic data flow model, which is con-
figurable by an XML-similar file. This proposed dynamic data flow model is based on
in direct and indirect linking on nodes inside a scene graph. Thus two loosely coupled
corresponding data flow networks are available in addition. The conventional possibil-
ity of linking nodes inside the scene graph using their data–fields is also on–hand. In
the context of this thesis the CashFlow prototype was implemented1 demonstrating the
proposed concepts. In order to be able to focus on essential aspects the implementation
of CashFlow is based on Coin3D, an open source OpenInventor library published by
Systems–In–Motion.

The number of numerical simulation evolved rapidly since the early 80th, espe-
cially in the field of computer assisted engineering (CAE) sponsored by the automobile
industry. The two separate worlds of numerical simulation and real–time graphics ap-
proach each other. CashFlow shall be one small contribution establishing ties between
these two worlds.

Keywords: Open Inventor, scene graph, data flow network, data flow model,
visualization, flow visualization, computational flow dynamics (CFD),

1CashFlow framework available at: http://www.kalkusch.at/CashFlow/
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Kurzfassung

Die Fusionierung von Visualisierungsalgorithmen mit einem Szene Graphen und dem
daraus resultierenden dynamischen Aufbau des Datenflussmodells stellt die Grund-
lage dieser Arbeit dar. Im Rahmen dieser Arbeit werden die wichtigsten Strömungs-
visualisierungsmethoden vorgestellt. Es wurde der aktuelle Stand der Technik anhand
der wichtigsten Softwarepakete analysiert. Dabei wurde besonders Augenmerk auf die
dabei verwendeten Datenfluss Konzepte gelegt.

CashFlow baut auf einem objekt–orientierten dynamischen Datenflussmodell auf,
welches über XML–ähnliche Skriptdateien konfigurierbar ist. Dieses dynamische
Datenflussmodell basiert erstmalig auf direkter und indirekter Referenzierung
von Knoten im Szene Graph. Dadurch können nun zwei lose gekoppelte,
korrespondierende Datenfluss Netzwerke zusätzlich verwendet werden. Die
herkömmliche Möglichkeit der direkte Verbindung der Datenfeldern von Knoten im
Szene Graphen bleibt erhalten. Im Rahmen dieser Arbeit wurde ebenfalls ein Prototyp
implementiert, der die vorgestellten Konzepte veranschaulicht. Um sich auf die
wesentlichen Aspekte konzentrieren zu können, baut die Implementierung auf
Coin3D, einer OpenInventor–Bibliothek von Systems–In–Motion auf.

Wie die Entwicklung im Bereich Computer Assisted Engineering (CAE) seit Be-
gin der 80er Jahre gezeigt hat, nimmt der Anteil der numerischer Simulationsverfahren
stetig zu, und die beiden Welten der Simulation und Echtzeit–Graphik nähern sich im-
mer weiter an. In diesem Sinn soll auch CashFlow einen kleinen Beitrag zum Brück-
enschlag leisten.

Schlagworte: Open Inventor, Szene Graph, DatenFluss Netzwerk, Datenflussmodel,
Visualisierung, Strömungsvisualisierung, CFD
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Chapter 1

Introduction

Scientific visualization is a useful tool in many areas, such as manufacturing, finite
elements analysis, computational fluid dynamics simulations, telecommunications or
geographic information systems. The key idea is to turn massive amounts of raw
data into useful images for visual inspection, or visual data mining. Several soft-
ware toolkits exists for this purpose such as VTK[VTK96], IBM OpenDX[DX91] or
AVS Express[AVS92]. These toolkits generally follow a data flow paradigm, i. e.
raw data is sent through a series of transformations until finally mapped to geometric
primitives and turned into images or animations.

The new approach in this thesis1 is the link between OpenInventor, a scene graph
library and a variety of scientific visualization algorithms. Although scientific visu-
alization toolkits like AVS and VTK already addressed rapid prototyping, until now it
was not possible to write an application by scripting an OpenInventor file only. Not
a single line of code is necessary to create visualizations from generated data files.
Our approach is a fusion of the visual programming paradigm, promoted by AVS and
OpenDX, and the concept VTK is based on. In VTK software modules are linked
together using various programming languages.

To master the complexity of general purpose visualization, an object–oriented ap-
proach is advisable. For example, the white paper of one of the most recognized toolk-
its, VTK, mentions a number of design requirements such as modularity, extensibility,
portability and simple interfaces. VTK’s implementation uses concepts such as refer-
ence counting and separation of data set and action objects.

We observe that a scene graph library such as Coin3D[Coi00] satisfies all of the
above requirements. Coin3D is an OpenInventor clone by System In Motion[Motay]
based on [Aki92b][Aki92a] It provides a complete runtime system for managing col-
lections of visualization objects as well as a general environment for graphical output.
In fact, many trivial "visualization techniques", such as rendering of textures or, colored
polygon meshes, as well as combining several images are readily supported. Coin3D
also has mechanisms well suited to implement a general data flow paradigm. In a nut-
shell, the scene graph structure can be used to construct the data flow network, which

1this document is available at: http://www.kalkusch.at/CashFlow/kalkusch_thesis_CashFlow.pdf

1

http://www.kalkusch.at/CashFlow/kalkusch_thesis_CashFlow.pdf


Introduction

is then executed using Coin3D’s native traversal mechanism. These traversal mecha-
nism provides a scene graph traversal as a primary data flow network and the ability to
build a secondary data flow network using field connections, that create a network of
linked nodes. Finally, the Studierstube extensions[Sch96b][Sch97a] to Coin3D make
any software based on Coin3D, including the proposed visualization toolkit readily
suitable for immersive virtual reality scenarios, in case such a solution is desired.

In summary, implementing a scientific visualization toolkit on top of Coin3D can
be done by concentrating purely on the visualization aspects. The result is a set of
complementary toolkits that together can address more complex applications than a
scene graph library or visualization toolkit alone.

To understand the proposed design called "CashFlow", we will introduce several vi-
sualization algorithms suitable for flow visualization. The most important visualization
toolkits will be compared with respect to the used data flow networks. The software
design of CashFlow is explained in detail. The necessary components for a flow visu-
alization system using a flexible data flow framework are introduced. Especially the
linking between the scene graph concept and the data flow model is addressed in this
thesis. Our objective is to provide raw data to the system, then let it flow through a
series of transformations, and finally pass the data to a rendering method. Of course
we want the maximum flexibility and extensibility for all these components.

2



Chapter 2

Related Work

In this chapter various data flow models of several visualization frameworks are in-
troduced and analyses in section 2.1. The second half of this chapter gives an intro-
duction to scientific visualization algorithms suitable for 2D and 3D flow visualization
(section 2.2, page 19). The first thing to start with when designing a new framework
is to take a close look at the existing available applications. Scientific visualization is
covered by several Open Source[GPL85] frameworks like:

• VTK, the Visualization ToolKit [VTK96] ,

• OpenDX, Open Visualization Data Explorer [DX91] c© IBM

• SCIRun [SCI02]

• Scalable Visualization [Too00]

• and others

A large number of commercial products for scientific visualization and flow visu-
alization are available. Some of them are also of scientific interest, because a lot of
research was done by some companies. Important commercial visualization systems
are:

• AVS Express [AVS92] , the application visualization system

• TechPlot [Tec81], CFD post–processing software

• MatLab R©[Mat05]

• EnSight by Computational Engineering International, Inc.[CEI94]

• FieldView by Intelligent Light [Fie97]

• IRIX Explorer [Exp71] R© SGI

• and others

3



Related Work

All of these frameworks and systems suite very special needs. VTK for instance
has a large set of volume rendering algorithms and can be used and extended using
programming languages like C++, JAVA, Python, PERL and TCL.

Evaluating these software packages lets one question arise. How can these software
frameworks be compared in a suitable way. Since all visualization frameworks use a
data flow model, it was the most obvious thing to compare. Figure 2.1 shows a general
process flow diagram used in scientific visualization.

Figure 2.1: Visualization Pipeline

Scientific visualization receives input from a wide variety of data sources, both
from sensors, such as medical scanners (CT, MRI, UltraSound, PET, SPECT ) as well
as numerical simulation (FEM, CFD).

• Data Generation
Data can be obtained from real fluid flows or via numerical simulation. For
computation of simulation data the two most important methods are:

– Finite Element Method (FEM)
to simulate a propagation of forces.

– Computational Fluid Dynamic (CFD) systems
that solve differential equations like the navier–stokes equation.

• Data Enrichment / Enhancement
are techniques where parts of the data are selected or filtered. Due to the large

4
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amount of data, especially when dealing with unsteady flow, the selection and
filtering of data is very important. Other possibilities of generating data are the
resampling of grids or fusion of different grids to name some.

• Visualization Mapping
These are the visualization algorithms generating geometric primitives or new
derived data. To enable an effective way of rendering, additional spatial data like
for instance stream lines or iso–contours are created.

Ordered by complexity there are three kinds of visualizations:

– Direct Visualization
The mapping is done without the creation of temporal objects. Examples
are color maps (see section 2.2.1) on any surface and direct volume render-
ing (see section 2.2.8).

– Visualization based on Interpolation
has become a larger group of algorithms. These techniques generate new
data based on the raw data like particle traces (see section 2.2.2) and 2D/3D
contour lines (see section 2.2.3).

– High Level Visualization
These techniques are often based on particle traces generated either at the
interpolation stage or directly for the high level visualization. They can be
divided into Texture Advection methods (see section 2.2.4 ) and Flow Field
Topology (see section 2.2.7) algorithms.

• Rendering
Rendering is often executed via OpenGL,in our case through OpenInventor.

2.1 Data Flow Models
Using a scientific visualization toolkit always arises the question how to combine com-
ponents of the system. The data flow model is well known in the field of mechanical
engineering as well as electrical engineering and was adapted to computer science.
Data flow networks normally are built from nodes and directed edges. Most networks
are either required to be acyclic or use token. In general, edges indicate transport of
data and nodes process that data. A wide spread technique to provide a high level of
flexibility is to relay on visual programming as introduced by Hils[Hil91]. A visual
editor is used for combining several modules or components of the scientific visualiza-
tion toolkit. The following chapter compares several visualization toolkits, their data
flow models and if available their visual programming concepts. Several books lead
into the area of scientific visualization taking data flow models into account [HP97]
[SM00] [AH02b].

5
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2.1.1 Visualization Pipeline

Figure 2.2: Traditional visualization pipeline: Raw data is processed by a Filter generating derived data
that is mapped to geometric primitives by the Mapper. The Render unit generates the final image.

One important concept of scientific visualization is the traditional
visualization pipeline1 shown in figure 2.2 proposed in many papers like
[IWC+88][CUL89][WJSL96]. The stages and elements of the visualization pipeline
are:

• DATA
Each stage reads data, processes it and generates new data. Also a stage may
create intermediate data like gradient information per vertex as part of the al-
gorithm, that could also be used by other algorithms as well. Using the visual-
ization pipeline allows to standardize this intermediate data which either can be
computed on–the–fly or be part of a preprocessing step.

This concept also allows optimizing only the parts of the pipeline without affect-
ing other algorithms. When it comes to real–time computation some sections of
the pipeline may be skipped or the algorithm feeds only parts of the pipeline. An
example for skipping part’s of the pipeline is direct volume rendering, were the
hole data set is processed and rendered directly using a transfer–function.

Most rendering algorithms can be mapped to this visualization pipeline in a
proper way.

• FILTER
The raw–data is processed by the Filter object either selecting parts of the data
or resampling the input data to another grid. The Filter object generates inter-
mediate data which is processed by Mapper or Render objects.

• MAPPER
The Mapper object creates new data by applying a certain visualization algo-
rithm to the data. Examples for mapping algorithms are applying color to geo-
metric primitives, creation of textures based on values as well as generation of
Glyphs.

• RENDER
The Render object finally creates the geometric representation and combines all
rendered images. Filter and Mapper objects feed the Render object. The Render
object produces OpenGL calls only and does not produce other output data.

1details on CashFlow visualization pipeline in section 3.1, figure 3.1 on page 38.
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• Final Image
It is either created on the fly using OpenGL–commands or the Render object
creates a texture. In figure 2.2 the screen icon represents the final image.

� User Interaction
One important aspect is missing in the traditional visualization pipeline which
is the user and his needs to interact with the system. Due to that lack Jock
MacKinley[SKCM99] proposed a user centered visualization pipeline. This is
addressed in section 3.12 on page 64.

The visualization pipeline is widely used in visualization systems like
VTK[VTK96], Open Visualization Data Explorer[DX91] (see figure 2.11
page 15) and other packages. In the field of information visualization extension
to the traditional pipeline are very popular like the one proposed by Jock
MacKinlay[SKCM99]. In 1996 the data flow model was adapted to computer science
first in SketchPad by Sutherland[Sut63] and ThingPad in 1979 by Bornig
[Bor79][Bor81][AHB87]. In 1989 Upson et al [CUL89] published their work on AVS,
the Application Visualization System. Since they intended to include several different
visualization algorithms in one framework they analyzed the structure and needs of
different systems and algorithms. They came up with an analysis cycle shown in
figure 2.3, that is similar to the visualization pipeline shown in figure 2.2 page 6.

Figure 2.3: AVS analysis cycle[CUL89]. For details on the advanced visualization system (AVS) see
section 2.1.4 on page 14.

The data flow model for scientific visualization by Dyer[Dye90] was extended for
regular and irregular grids by Haber et al [RBHC91]. The software architecture for
a scientific visualization system was analyzed and improved by Lucas et al. [BL92].
Visualization of multi–variable data using object–oriented design was published by
[FH94][RAEM94]. The data flow model was also applied to the multi–media compo-
nent kit by Demay et al [dMG93] and extensions to the data flow architecture were

7
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published by Abram [AT95] and Wright [HWB96]. The application of visual pro-
gramming via a visual editor is also used in the field of multimedia like for instance in
DirectShow 9.0 GraphEdit by Microsoft.

The Visualization Toolkit (VTK) system paper by Schröder, Martin and
Lorensen [WJSL96] published in 1996 absorbed these concepts. VTK is open source
project[VTK96] and has evolved until now with a focus on volumetric rendering (see
section 2.2.8 page 36).

The following list shows a collection of visualization systems whose data flow mod-
els will be observed in detail:

1. SketchPad [1963]
The first object–oriented visualization system with light pen interaction by Ivan
Sutherland [Sut63].

2. ThingLab [1979]
Editor suitable of constraints[Bor79][Bor81]. Successor of SketchPad.

3. AVS [1989]
The Application Visualization System [CUL89][AVS92]. Its successor, AVS
Express evolved and is a very successful commercial product.

4. Open DX [1991] c©by IBM

Visualization system using visual programming for rapid prototyping [DX91].
OpenDX is the short form for Open Visualization Data Explorer initially The
initial project was named IRIX Explorer and it was renamed to Open Visualiza-
tion Data Explorer (OpenDX) when IBM decided to release it as Open Source
project.

5. OPEN INVENTOR [1993]
An object–oriented scene graph system [Inv92]

6. VTK [1996]
The Visualization Toolkit [VTK96] [Sch97b] [WJSL97]

7. VISAGE [1999]
An object–oriented scientific visualization system [WJSV92]

8. VISSION [1999]
An object–oriented data flow system for simulation and visualization
[Tv99][TvW99]

Since our implementation of the CashFlow framework is based on a scene graph,
it is important to introduce the concept of a scene graph. Scene graphs are object–
orientated library and applications. In May 1994 Mark Pesce and Tony Parisi proposed
VRML (Virtual Reality Markup Language) as a description language for static virtual
environments. The name was soon altered to "Virtual Reality Modeling Language".
On 24th October 1994 the first draft on VRML 1.0 was released based on SGI2 Open

2SGI, http://www.sgi.com/ [SGI]
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Inventor 3D3 metafile format. VRML was rarely used since Flash[Gay96] developed
by Jonathan Gay was published in December 1996 by Macromedia[Mac]. One of the
main problems of VRML was, that the content creation was rather difficult at the time
it was released. Nowadays 3D content creation is much easier since common tools are
wide spread in the community. Since Alias[Ali] reduced the price for MAYA[MAY]
and 3DStudio Max[dM] from AutoDesk[Aut] is comparable inexpensive also a large
group of artists have access to these tool.

When JAVA3D[3D] was published in May 27th, 1997 by Sun4 this was another
introduction of scene graphs to a wide audience. Sun held a course on Java3D at
Siggraph19975. Recently NVidea presented the NVidea scene graph in August 9th,
2004 at Siggraph2004. One advantage of scene graphs is, that they are easy to script.

In the following section these visualization systems will be introduced. Some of
these systems evolved and are still used (3)(4)(5)(6) while others are of scientific
importance (7)(8) only or have historical importance (1)(2). Also the concept of visual
programming and the scene graph concept are introduced in the following section. A
general overview on data flow models was published by Ed H. Chi [Chi02a][Chi02b].

Notions

In the following sections several visualization systems and their data flow models will
be introduced in detail. Regrettably each system names its components and modules
similar even though the functionality may differ. To avoid misunderstanding as far as
possible Table 2.1 summarize the notions used in the following.

signal processing source filter sink
AVS source filter & map render & output 1989
OpenDX bottom of node special node top of node 1991
OpenInventor node field engine node field 1993
VTK source filter mapper 1996
CashFlow data node mapper render 2005

Table 2.1: Comparison of notations from data flow models used in visualization systems.

3OpenInventor [Inv92]
4Sun Java3D version 0.95 specification released
5SIGGRAPH97 course 35: "Introduction to Java3D"

9
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2.1.2 Constraint Based Visual Programming [1979]
SketchPad[Sut63] and ThingPad[Bor79][Bor81][AHB87] were programmed using
Smalltalk[Ing78] and are examples for object–oriented design in computer graphics.
SketchPad[Sut63] was implemented on a TX–2 mainframe at MIT’s Lincoln Labs and
is also an early example for advanced user interaction. A light pen was used as input
device to create drawings by pointing to the monitor.

Figure 2.4: ThingLab constraint & object–oriented design[Bor79]: The right vertex of the outer rectangle
is selected. The constraint of the inner rectangle is, that its vertices are in the middle of the outer rectangle.
While moving the outer vertex the constraint is met and the inner rectangle is updated [Bor79][Bor81].

Figure 2.5: ThingLab anchor constraint[Bor79]: The right vertex of the outer rectangle is selected. The
constraint of the inner rectangle is, that its vertices are at a fixed position symbolized by the anchor icon.
While moving the outer vertex the constraint is met and the outer rectangle is distorted [Bor79][Bor81].

Alan Borning wrote this PhD–thesis[Bor79] on ThingPad which was the successor
of SketchPad. Figure 2.4 shows a screen shot of the ThingPad application and the
object hierarchy used. To move a point the following objects are selected:

QTheorem → picture → move → Point

Constraints could be defined for the objects. For example in figure 2.4 the vertices of
the inner square are on the midpoints of the lines of the outer square. If a point of
the outer square is moved the constraint that the inner square is inside the outer square
touching its edges in the middle is met. This results in a relocation of the inner square
once the point of the outer square was moved.
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The left image in figure 2.5 shows the same initial positions as in figure 2.4 except
the anchor icon attached to the points of the inner square. This anchor symbols indi-
cate, that in this example another additional constraint is applied to the system. The
constraint is that the points emphasized by the anchor icons of the inner square are at a
fixed location in space. Again the right point of the outer square is moved. This results
in a relocation of the outer square while the inner square keeps its position. Both con-
straints are met. The constraint that the inner square is inside the outer square touching
its edges in the middle and the fixed position of the vertices of the inner square.

Figure 2.6: ThingLab user interaction example[Bor79]: The two thermometers are linked and show
degrees Fahrenheit and degrees Celsius. While changing the value of the right thermometer using mouse
pointer the value of the left thermometer changes also [Bor79][Bor81].

ThingLab also linked several objects together. Figure 2.6 shows two
thermometers. The right one is selected by the user using the mouse pointer. The
objects "picture" and "values" as labeled in figure 2.6 are linked. Once the user moves
the bar of the right thermometer the values of the left thermometer are recalculated
and the left bar is updated accordingly.

ThingLab is a good example for object–oriented design in early computer graph-
ics. Constraints can be defined easily and are fulfilled by the framework. ThingLab
uses variables and values to define constraints. A constraint satisfier keeps the system
balanced if values change. The data flow model used in SketchPad and ThingPad is not
visible and accessible directly by the user. The data flow is a result of the constraint
and linked objects. In some cases like in figure 2.6 the user can perceive the data flow
from the linking of objects quite well, but the data flow is not abstracted and visualized
as a graph.

Borning extended his work on ThingPad and included constraint hierarchies
[AHB87]. Constraint hierarchies are still used nowadays for instance in inverse
kinematics. Today all established visualization software toolkits no matter whether
open source or not rely on object-oriented design.
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2.1.3 Object Oriented Visual Programming [1988]
A development towards an abstract view of the data flow model was the Fabrik frame-
work [IWC+88]. Figure 2.7 shows a screen shot of that framework which is similar
to ThingPad. The data flow model used in the Fabrik framework was however more
obvious to the user. The visual components and the paradigms used were lent from
electrical engineering.

Figure 2.7: Data flow of Fabrik framework [IWC+88]: Components are linked to form a bar chart. Top left
item provide values for bar chart. Middle item labeled "15" is a zero–shift. Lowest item labeled "250" is
used to translate the bars.

The Fabrik framework is also an example for object–oriented visual programming.
An introduction to object-oriented visual programming was published by
Burnett [Bur94]. Several components are combined using a visual interface. The
components are symbolized by icons of fields. Several icons are connected to form a
directed acyclic graph inside a visual editor An example of such a directed acyclic
graph is shown in figure 2.8 on page 13. The graph represents the data flow model.

Object–oriented visual programming mainly consists of two linked levels:

• Verbal programming object
A programming object is a created in a verbal programming language.

• Application & visual editor
Applications are created by linking together programming objects using a visual
editor.

It is also common to visualize relations of applications or source code using a va-
riety of diagrams and tools. For example Borland’s Together R© [Tog02]6 is capable to

6Borland R©Together R© details at http://www.borland.com/together/
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either extract data from existing source code or to create new source-code by dragging
and inserting icons inside a visual editor. A general introduction to visual program-
ming in given in [Sch98] and [RP99]. An overview of advantages and disadvantages
of visual programming in general was summarized by Schiffer [Sch96a].

Data Flow Networks

After the Fabrik framework next logical step in the evolution of data flow models was
to introduce a higher level of abstraction and make extensive use of the object–oriented
paradigms using hierarchies of objects. Such a high–level top–down approach as used
in today’s software frameworks consists of the following components:

• Source
This object provides data labeled "S" in figure 2.8.

• Filter
The transformation of data is done in the filter node. Filter modify the data or
create new derived data. In figure 2.8 it is referred to as transformer "T".

• Sink
This kind of node has only incoming edges and no outgoing edges. In figure 2.8
the sink nodes are called Render nodes "R". The VTK data flow model denotes
sinks as Mapper as shown in figure 2.8.

Figure 2.8: Data flow model shows directed acyclic graph (DAG). Sources "S" provide data and have
outgoing edges only. Filters are defined as Transformer "T" and have incoming and outgoing connections.
Sinks are referred as Renderer "R" and have incoming edges only.

Components are represented as icons that are connected by the user to form a
directed acyclic graph (DAG). An example for such a directed acyclic graph including
the components mentioned is shown in figure 2.8. Source nodes "S" have outgoing
edges only, filter nodes are called Transformer nodes "T" and sink nodes are called
Render nodes "R". Note that some Transformers use multiple inputs and multiple
outputs and one Renderer is connected to multiple inputs.
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2.1.4 AVS, the Application Visualization System [1989]
AVS introduced the analysis cycle as shown in figure 2.3 on page 7. The analysis cycle
was used to compare different needs of algorithms from different fields. The analysis
cycle is similar to the visualization pipeline in figure 2.2 page 6.

The initial work on AVS was published by Upson et al [CUL89] and many other
publications on AVS followed [Vro94][CC91][PL90][Cal91]. The design of the AVS
system evolved and was extended in 1995 to AVS Express [Vro95] which is available
as a commercial product and AVS Express is still a market leader. The AVS framework
uses a hierarchy to categorize 3D scalar fields (see figure 2.9).

Figure 2.9: AVS Data flow[CUL89]: AVS mapping 3D scalar fields.

On the first level the dimension of the data is taken into account in the range of
0D to 3D (circular icons). On the second level the dimension primitives are mapped
to possible geometric representations which is indicated by the rounded boxes. On
the third level indicated by rectangles the geometric representations are combined to
form surfaces or to define volumes. This hierarchy, consisting of the three levels shown
in figure 2.9, forms a fundamental representation in computer graphics. The concept
of AVS[CUL89] is similar to the work of Floriani et al[FF88] and to the Field Model
library[Mor03]7. The Field Model library, published by Patrick Moran [Mor01], is
implemented as a C++ template library using partial template specialization.

AVS also introduced a computational flow network showing the linkage of software
components. In figure 2.10 the main blocks correspond to the analysis cycle form
figure 2.3 (page 7) which are:

Source → Filter & Map → Render → Output

7Field Model library available at http://field-model.sourceforge.net/
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Figure 2.10: AVS computational flow network[CUL89]: Linking of software components in AVS. Direction
of process flow from left to right. PHIGS+ is substituted by OpenGL & DirectX nowadays. Subdivision in
source, filter & map, render and output correspond to figure 2.3 on page 7.

The Render block in figure 2.10 includes the StellarPHIGS+ renderer which was
replaced by DirectX and OpenGL.

Nowadays AVS Express c© added several components to the framework but the de-
sign in general is still the same. AVS Express c© also uses visual programming to
quickly assemble the visualization pipeline. Unfortunately AVS Express c© is a com-
mercial product of Advanced Visual Systems Inc. c© and not open source although a
research license is available.

2.1.5 Open DX, Open Visualization Data Explorer [1991]

Figure 2.11: IBM OpenDX data flow model[DX91]: (left)OpenDX supports visual programming. Nodes
are connected by edges. Edges are annotated and imply defined events. (right) Resulting image from shown
pipeline.
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This visualization system was one of the first systems having a visual programming
editor in combination with several modules. Figure 2.11 shows an example of Open
Visualization Data Explorer c© IBM (OpenDX) with the visual programming editor on the
left side and the created image on the right side.

Let’s take a closer look at the data flow in figure 2.11. Modules consist of inputs,
displayed as boxes on the upper side of the icon, and outputs, shown as boxes on the
lower side of the icon. The importer loads data into the system and is connected to
the RubberSheet object. The RubberSheet object creates a 3D height field from the 2D
data. The output of the RubberSheet object is branched to the AutoColor and the Iso–
Surface object. The AutoColor object calculates a color map. The Iso–Surface object
generates the white contour lines. The output of AutoColor object and the Iso–Surface
object are merged by the Collect object that is linked to the Image object.

One disadvantage of the visual programming approach is, that it is difficult to keep
the general view in larger projects, because of the huge number of icons and
conjunctions between them.

Although OpenDX is a Open Source project not much progress was made in the
recent years, especially in comparison to VTK (see section 2.1.7 on page 18), which is
Open Source project too.

2.1.6 Open Inventor [1992]

Figure 2.12: OpenInventor example scene graph

Open Inventor 8 is an object–oriented rendering toolkit based in IRIX Inventor 9 by
SGI. Open Inventor uses a scene graph data flow model. A simple scene graph consists
of a directed acyclic graph with nodes connected by edges. The scene graph is traversed
from the root node using a depth–first–search order and a left–to–right convention on
the same level.

8Open InventorTM by SGI c© [SGI]
9The IRIX InventorTM file format was first released in July 1992 by SGI c©
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Open Inventor comprised different data flow networks based on the following con-
cepts:

• actions & elements

• field connection

• engines

• sensors

A so called Action traverses the scene graph storing parameters for keeping infor-
mation on the traversal state. The objects for these parameters are called Elements.
Actions and Elements implement the visitor design pattern [Gam95]. The ordering of
nodes in the scene graph defines the rendering. Rendering nodes that are visited be-
fore others render their content first. Some nodes only change values of the elements
(property nodes) while others read the data from the elements generating 3D content
(shape nodes). Special separator nodes group all sub-nodes and store the traversal state
before processing the sub-nodes. After all sub-nodes are processed the prior traversal
state is restored by the separator node. An example of a simple scene graph is shown
in figure 2.12 on page 16.

Open Inventor is ideal for rapid prototyping and it comes with a file format that is an
enhancement of VRML[VRM]. The Open Inventor files can be used to script an appli-
cation. For further information and documentation see the Inventor Toolmaker[Wer94]
and the Inventor Mentor[Wer93].

A second update mechanism is also available in OpenInventor. Each node can
use several fields storing different kind of data. Two nodes at least can be linked by
connecting the fields of the nodes. Using the field connection nodes can form a field
network graph, because every time a field changes its value all nodes connected to
that field via field connection receive the update. Each node receiving the update can
implement a response that may include an update of other fields of the node leading to
a recursion. Problems arising from that concept are discussed in section 3.3 on page 43.
A reasonable overview on different strategies used for processing data flow networks
and scene graphs was published in [ACT98].

Fields can also be connected to nodes outside the scene graph called Engines. En-
gines are only part of the field network graph and its concept is similar to the chain–of–
responsibility design pattern[Gam95]. Engines are used to create complex connections
between fields.

Finally Sensors can perform scheduling of tasks triggered by specific events.
Events may be an update of parts of the scene graph, like fields, nodes or sub-graphs
or a certain time passed. The sensor notifies a callback function.

Recently a visual programming editor was introduced for OpenInventor called Coin
Designer [Des].
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2.1.7 VTK, the Visualization ToolKit [1996]

Figure 2.13: Data flow model of VTK [WJSL96]: Source "S", filter "F" and mapper "M" nodes. Node "*"
marks any node that may be connected to other node. Each node may have multiple connections to other
nodes also known as fan–in & fan–out.

The data flow model of VTK [WJSL96] (see figure 2.13) consists of Source, Filter
and Mapper. Source nodes store data and are able to serve multiple output links. Filter
nodes can handle multiple input and output sources. VTK puts the focus onto the data
and therefore a Filter node transforms data. Mapper nodes may be linked to various
input streams and create images, but do not produce any data output. VTK uses lazy
evaluation to avoid unnecessary re–computation. The lazy evaluation concept was
introduced by Henderson [HM76][Wad84]. There are two possible ways Filter nodes
can handle data:

1. A filter node operates on the existing data and all nodes linked to the output of
the filter node reference this data as sketched in figure 2.14a) .

2. The filter duplicates the input data (blue) leaving it unchanged (sketched in fig-
ure 2.14b) ). The filter operates on the duplicated data (red) display on the right
hand side of the filter. In that case nodes linked to the output of the filter, which
are colored red and labeled "*" use the reference to the duplicated data (red).

Each node defines which kind of input or output is requested and which is optional.
In other words each node defines a semantic for the link. Additional documentation
on VTK is available at [VTK96][WJSL97][Sch97b]. A visual programming editor for
VTK called DVA[DVA96] is also available as a commercial product.

Figure 2.14: VTK Filters Data flow model [WJSL96]: Filters "F" offer two possibilities in VTK: (left) a)
filter operates on input data passing references to linked nodes "*". (right) b) filter duplicates input
data(blue). Linked output nodes "*" (red) receive reference to duplicated or altered data (red).
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2.2 Flow Visualization Algorithms

Figure 2.15: Combination of 3 different streamline techniques, color mapping of energy and iso–surfaces
representing the hull of the car [MSE99].

A specific focus of this thesis are flow–visualization techniques. There are several
well known techniques for visualizing flow fields. They can be divided in the following
major groups:

1. Basic Techniques

2. Particle Trace
(section 2.2.2 page 22)

3. Contour Lines and Surfaces
(section 2.2.3 page 27 )

4. Texture Advection
(section 2.2.4 page 29 )

5. Flow Field Topology
(section 2.2.7 page 33 )

6. Volume Rendering
(section 2.2.8 page 36)

Figure 2.15 shows a useful combination of several visualization techniques
combined in one image. Three different kinds of streamlines are used in this image.
The red ribbons in front of the car are stream ribbons showing direction and vorticity
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of the flow. Behind that stream ribbons an arrow plot, which is bound to a stream line,
emphasize the change of direction. In the back simple stream lines point out the
increasing density of the flow towards the roof. Finally the color map generated from
the scalar value total energy is applied to the cutting plane in the back. The hull of the
car is an iso–surface, where velocity magnitude is equal zero. This image proves, that
a combination of simple visualization techniques results in an image easy to perceive.

Classification of Visualization Algorithms

These algorithms can be grouped by their complexity:

• Low complexity
These simple algorithms do not generate intermediate data but render directly.

– Basic techniques

– Glyph, Arrows and Hedgehogs

– Color mapping onto surfaces

• Medium complexity
This group of algorithms generate intermediate data, which can be used by other
algorithms also. Best examples are stream lines and iso–contours. These tech-
niques have medium complexity.

– Particle Trace

– Contour Lines and Surfaces

– Texture Advection

– Volume Rendering

• High complexity
These algorithms are based on results from medium complexity techniques.
These techniques have high complexity.

– Flow Field Topology

– Interactive Data Generation

– Streamline Seed point Strategies

2.2.1 Basic Techniques
• Glyphs, Arrows and Hedgehogs

Using arrows or hedgehog’s to show the direction and the magnitude of the flow
is an old concept. The extension to that is the use of glyphs. Glyphs do not only
show the direction and magnitude of the flow, but they also could be bound to
other attributes. Figure 2.19b) on page 23 shows a Glyph visualization of a tor-
nado. This visualization is very intuitive as long as each arrow can be perceived
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and only a few arrows overlap. Due to that, arrow and glyph representations are
very powerful when combined with focus and context methods. Different glyph
representations were compared by [DHL01] shown in figure 2.16. Vector plot
on irregular grids were addressed by [Dov95].

Figure 2.16: Example for different 2D flow field visualizations[DHL01].

• Cutting planes
In order to be able to use the large number of algorithms for 2D, a cutting plane
in 3D is a very important tool. There are several visualization techniques that
can not be extended from 2D to 3D like LIC and spot noise.

Figure 2.17: Enriched contour maps[vWT01]: Cubic color mapping to emphasize regions and simulate
contour lines.

• Color lookup table
Using a cutting plane is an easy powerful way to emphasis features and regions
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in a flow field (see figure 2.15 on page 19). This is done by mapping one scalar
value to a color by using a color lookup table. Color mapping on surfaces can be
extended to surfaces embedded in 3D also.

A new kind of color map was published in 2001 by [vWT01]. Enriched con-
tour maps use a cubic interpolation scheme to fade colors shown in figure 2.17
on page 21. Applying the contour maps to geographical 2D maps results in a
common way of color coding and simulates height fields.

Another important technique suited for multi–valued data in 2D flow fields was
introduced by [RMKL99]. Several transparent objects are mapped to different
scalar data and vector data. In figure 2.18 black glyphs visualize the velocity of
the flow. Underneath ellipses indicate pressure and its orientation is perpendic-
ular to the flow. The third parameter used in the image is vorticity indicating
regions of high rotational energy. If rotation due to vorticity is clockwise it is
mapped to cyan. If rotation is counter–clockwise vorticity is mapped to yellow
and if vorticity is very small or zero no additional color is used.

Figure 2.18: Multi–valued data visualized using concepts from painting [RMKL99]. Combination of
transparent glyphs over ellipsoids mapped to pressure. Colors blue and yellow indicate vorticity of the flow.

2.2.2 Particle Trace
This is a very important group of algorithms, because a lot of other high level algo-
rithms like texture advection (see section 2.2.4 on page 29) and flow topology extrac-
tion (see section 2.2.7 on page 33) rely on particle traces. Several types of particle
traces exist in dynamics of fluids which are stream lines(1), potential liens(2), streak
lines(3), time lines(4) and vortex lines(5).

Steady Flow and Unsteady Flow

Once a source or a sink is introduced into the system, we have an unsteady flow field.
It can be described mathematical by: div(F (x, y, z)) 6= 0 where F (x, y, z) defines the
flow field at position P (x, y, z) in space. The visualization of unsteady flow is very
challenging, because the amount of data is huge and the problem of flickering anima-
tions have to be solved caused by aliasing. This problem was addressed by Bruckschen
et al [RBJ01] shown in figure 2.22 on page 26.

When dealing with steady flow only one kind of particle traces does exist by defin-
ition, which are stream lines.
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Figure 2.19: Different streamline visualizations for tornado data set[GSLS03]: Used techniques are (a)line
bundles (b) Glyphs (c) depth cuing by lighting and (d) depth cuing by tone shading

Types of Particle Traces

A particle placed in the flow field creates a trajectory called the particle trace. Several
kinds of trajectories and lines with special properties are defined in the dynamics of
fluids.

1. Stream line
Trajectory from a position P (x, y, z) in the flow field with

∂v

∂φ
= 0

ψ = ∂v
∂y ... direction perpendicular to the flow

φ = ∂v
∂x ... direction of the flow

This is the case, if the velocity perpendicular to the streamline is zero. Due to
that constraint all points on the streamlines are tangent to all velocity vector at a
point in time (see [HD90] chapter B6, page B47). Several stream lines passing
through a simple closed curve in space form a stream tube.

In unsteady flow fields the particle trace is not identic with the streamline, since
the orientation of the flow field changes. Thus the streamline shows the proper-
ties of the flow field at a certain time, while the particle trace shows the "history"
of the particle in the flow field.

• Potential line
The potential lines are perpendicular to the stream lines (see [HD90] chapter B,
figure 23, page B57).

• Streak line
Is a connection of adjacent points during trimester t0. The points are traced
over time and so is the streak line. In experiments this was done by repeatedly
inserting an edge with ink on it into the flow.

Defined for unsteady flow only.
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• Time Line
A time line is a connection of particle inserted into the flow field at a particular
time. This is very intuitive way to visualize the acceleration of a flow.

Defined for unsteady flow only.

• Vortex Line
A vortex line is a closed line which has the same direction as the vorticity vector
at a particular time. Thus it is the equivalent to a streamline and its velocity
vector.

Several vortex lines passing through a simple closed curve in space form a vortex
tube. Figure 2.20 shows several deformed vertex tubes. Note, that vortex lines
are created only by a starting turbulence and thus vorticity can only be created in
unsteady flow fields.

Figure 2.20: Vorticity Skeleton Visualization in 3D. Color denotes velocity magnitude. [SE04].

Aside of fluid mechanical definitions rendering a particle trace can be divided into
the following steps:

• seed point placement
This is very important if many streamlines are rendered especially in 3D. A com-
mon solution is a user guided seed point placement[RBJ01] like it was done in
the virtual wind tunnel[KSK01] or the virtual workbench[OWD+96]. Several
strategies for seed point placement[VVP00][TB96] and interactive seed point
placement[RBJ01] have been published.
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Figure 2.21: Evenly spaced streamlines: Streamlines are created using a special seed point strategy
[BJ97]. The right image shows the same number of streamlines as in the left image. The evenly spaced
streamlines algorithm was used to create the right image.

* evenly spaced streamlines One other important concept for streamlines
are evenly spaced streamlines [BJ97] (see figure 2.21). This algorithm cre-
ates a set of streamlines by a simple and effective combination of seed point
placement and streamline integration. The seed points for streamline inte-
gration are set in dependence to the distance to existing streamlines. Evenly
spaced streamlines were also extended to 3D [MTHG03].

• forward and/or backward integration
Integration of streamlines can either be done in a pre–processing step or on–the–
fly using Euler integration or higher–order Runge-Kutter integration. Streamline
integration can be very difficult and time–consuming on curvilinear and non–
regular grids. Most of the time optimized data structures like quadtree and octree
for instance are used to speed up the integration step. The integration step is
critical for the numerical stability of the visualization system.

The first visual plausible and numerical stable simulation of fluids relayed on
a simplified navier–stokes equation was published by Stam[Sta99]. It was also
extended to surfaces of arbitrary topology[Sta03]. Stam’s "stable fluids" were
extended to animate fire by Nguyen et al [DQNJ02] and was adapted to the GPU
by Harris et al[MJHL02].

• streamline rendering
Many rendering techniques are common for visualizing the streamlines like for
example StreamTubes, StreamRibbons, StreamBoxes and illuminated stream-
lines (see figure 2.23 next page). Out–of–core rendering of particle traces in
real–time was published by [RBJ01] (see figure 2.22 next page). An extraordi-
nary visualization from 1995 using StreamTubes shows a magnetic dipole rever-
sal 2.24 by Glatzmaier and Roberts published in Nature.
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Figure 2.22: Real–time out–of–core Particle Traces[RBJ01]. The user can set particle seed points
interactive using the red cube.

Figure 2.23: Illuminated streamlines passing a wing[MZH96]. Illumination improves depth perception.

Figure 2.24: Magnetic Field of the Earth. (left) 500 years before magnetic dipole reversal. (right) 500 years
after magnetic dipole reversal [GR95b][GR95a][TCCG99]. The color of the StreamTubes denotes
magnetic North Pole and South Pole.
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2.2.3 Contour Lines and Surfaces

Figure 2.25: Iso–line showing velocity magnitude from a VTK example[VTK96] .

This visualization method is very old. Contour lines are also well known as con-
tour lines in road maps. Since this concept was so intuitive, it has been adapted by
mechanical engineers and extended to several data attributes like:

• Isobar
Line of constant pressure. Is shown in most weather forecast maps circular
around the high and low fields. Figure 2.26 on page 28 shows a visualization
of a three–dimensional Isobar.

• Isotherm
Line of constant temperature. Also frequently shown on weather forecast maps.

• Isentropic
Line of constant entropy. Entropy describes the level of disorder in a thermody-
namic system. Its opposite is Enthalpy, which is the available thermic working
ability of a medium.

• constant velocity
Line showing same amount of velocity magnitude (see figure 2.25 on page 27)

Marching cubes [LC87] is the most popular approach for iso–surfaces extraction
and was extended by many others. The principle of Marching cubes was also applied
for iso–surface extraction from irregular volume data [CMPS96]. Also Marching Tetra-
hedron [GS01] is quite fast and more simple to implement since there are not so many
different cases to distinguish as in Marching cubes. The visualization pipeline was bro-
ken into pieces and iso–surface extraction was even done via the internet as web–based
volume visualization by Klaus Engel[KEE99].

Iso–surface extraction still is an important research topic [LB02][Nie03]. For in-
stance a speedup by using hierarchical iso–surfaces allows the user a quick change of
the iso–value [VBL+03][HLS03]. Even out–of–core iso–surface extraction has been
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Figure 2.26: Iso–surface of oxygen post dataset[BLC01].

done [Chi03]. An extraordinary work on improving the quality of marching cubes was
done by [TJW02]. Tao and Losasso[TJW02] included vector data on orientation of the
iso–surface per iso–surface intersection point and calculated new rendering points that
are not on the planes of the cells. For details see figure 2 on page 340 of Siggraph pro-
ceedings [TJW02]. Recently an astonishing paper on GPU–based isosurface rendering
was published by Pascucci [Pas04].
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2.2.4 Texture Advection: Spot Noise

Spot Noise [vW91]

Figure 2.27: Spot noise [vW91]: Direction of flow is from left to right. The box cause swirl and vorticity.

Spot noise was the first texture method [vW91][dv95] (see figure 2.27). This
method is used in 2D and is applied to surfaces embedded in 3D. A large problem
of self occlusion occurs if this approach is applied in 3D (see figure 2.28). Since the
new graphics cards are capable of handling large textures, this method is not used any
more and was replaced by the PLIC rendering algorithm (see figure 2.29) and direct
volume rendering (see figure 2.38).

Figure 2.28: Spot Noise extended to 3D[vW91].
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Figure 2.29: PLIC on a surface: Pseudo-LIC was an improvement of LIC including color[VVP99].

2.2.5 Texture Advection: LIC

Line Integral Convolution (LIC) [CL93]
Accumulating grey values from a white noise picture [Per85] along a stream line (see
figure 2.16 on page 21). An example of LIC on a plane embedded in 3D shows fig-
ure 2.31 on page 31. To explain why LIC is so successful and why so many papers have
been published on LIC is, that it generates images easy to perceive and very similar to
the images from physics classes at school.

• Pseudo – LIC (PLIC) [VVP99]
One of the most important extension to LIC [CL93] is PLIC [VVP99]. The au-
thor closed the gap between LIC and stream line drawing algorithms. The results
from PLIC mapped onto 4 wheels of an aeroplane landing gear are also shown in
figure 2.31. This algorithm uses one unique 1D texture for each streamline and
speeds up LIC.

Figure 2.30: LIC in 3D with cutting planes and regions of interest [CRE99].
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• Unsteady Flow LIC (UFLIC)
This extension to LIC is also capable of visualizing unsteady flow fields. In
combination with motion maps, which is a focus and context method, UFLIC
is a reasonable method to visualize 2D unsteady flow [SK97][mSK98][WG97].
In figure 2.35 on page 34 UFLIC is combined with the results of a flow field
topology algorithm by [XTH00].

• LIC in 3D
Since LIC gained great results in 2D the next step was to extend it to 3D [IG97].
Unfortunately LIC in 3D suffers from one major disadvantage which is occlu-
sion. This was one of the reasons why one of the first papers on LIC in 3D
also focused on interactive exploration[CRE99] (see figure 2.30). That is just an
elegant description for solving the problem of occlusion by forcing the user to
explore the data interactively. Rezk et al[CRE99] also used cutting planes and
regions of interest to emphasize the usefulness of LIC in 3D.

Even volume rendering the 3D LIC texture as shown in the outer right image of
figure 2.30 was one of their approaches.

Future proved however something different. 3D–LIC is not really in use but
never the less LIC on arbitrary surfaces is very successful. Since graphics
hardware was extended by shaders new applications creating animated LIC
images [GL05][RSLH05] like in figure 2.32 (page 32) will be the future of LIC
in 3D.

Figure 2.31: Fusion of colored LIC on landing gear with LIC in a plane. [KSK01].

2.2.6 Texture Advection in 3D
• Image based flow visualization

New method based on animation of images [vW02] and the extension to curved
surfaces [vW03].
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Figure 2.32: Image Space Advection on GPU [GL05]: This is a water jacket of a 4 cylinder 4 values
combustion engine. Color is mapped to velocity magnitude.

• Texture Advection for Unsteady Flow
One of the first papers on hardware accelerated texture advection [BJH00] was
just the staring point for many papers on that very topic.

• Texture Advection in 3D
Since vertex shaders and pixel shaders got so powerful animated textures similar
to LIC are now rendered on the GPU [RSL04] [GL05]. Even arbitrary surface
topology is no limit to that algorithm (see figure 2.32). Also texture advec-
tion creating visual plausible animated textures were ported to the GPU using
shaders [PN01].

Figure 2.33: LIC on cylinder head of combustion engine (top view)[GL05]. Blue circular regions mark
borehole of valves.
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2.2.7 Flow Field Topology
All former techniques address the structure of the flow based on features like particle
path finding in section 2.2.2. The next step is to divide the flow field into areas with
similar properties. This was also done creating 2D & 3D contours in section 2.2.3,
where a single scalar value was used to define regions. Due to the nature of a flow
field some points are of special interest, namely the critical points. Critical points are
classified as center, sources, sinks or saddle as shown in figure 2.35.

Figure 2.34: Different flow field topologies [VVP00].

Flow topology features can be compared to a sphere in 3D moving on a 2D surface.
Using this analogy a particle of the flow behaves equal to the sphere moving on the
surface. The flow topology features in 2D shown in figure 2.34 are:

1. center is a closed path of a particle with constant circulation. It is equivalent to
an ideal horizontal plane with a sphere on it. A center describes an indifferent
state.

2. source is a point generating new particles spreading in all directions.

3. sink is a point consuming particles from all directions.

4. repelling–spiral is a special case of a source with streamlines having a radial
velocity component.

5. attracting–spiral is a special case of a sink with streamlines having a radial ve-
locity component. Repelling–spirals and attracting–spirals can be observed fre-
quently in nature, for example the flow of water exiting a washbasin.

6. saddle is a special case were all particles left of the north–south axis stay on
the left side and vice versa all particles from the right side also stay on the right
side. Further more the east–west axis also separates the flow. This leads to four
separated regions.

The connection of critical points via particle traces generates a common visualiza-
tion of the flow field topology. Figure 2.35 shows such a visualization in 2D amplified
with a UFLIC[SK97] underdrawing. Red dots indicate critical points while blue lines
are particle traces between the critical points. The blue lines delimitate regions of equal
flow topology. This technique was also extended to 3D by [XTDS+04] shown in fig-
ure 2.37 on page 35. The color coding used is matchable to figure 2.35. Red points
indicate critical points connected by stream lines. Volume rendering is used to visualize
the regions in 3D generating the sets of green and pink torus.
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Figure 2.35: Colored Flow field topology extraction in 2D[XTH00]. Red and green dots mark critical
points.

Vorticity & Turbulence

One of the important flow features are vortical phenomena. In most flow field analysis
it is very important to locate turbulence and centers of vorticity. Either these regions
are desired in specific locations or they have to be avoided strictly. For example, on
the one hand vorticity and turbulence at the rear spoiler of a car are very important for
good aerodynamics. On the other hand vorticity in the front part of an aeroplane wing
has to be avoided. The detection of vortical phenomena was addressed by [HGPR99]
and [Sad99]. Recently Stegmaier ported vortex detection to the GPU [SE04] as shown
in figure 2.20.

Another concept for flow topology detection was also published by [dv99]. The
creation of vector field hierarchies [BHH99] was one of the low level. The pure vi-
sualization of flow field topologies was addressed by [XTH00] and by [TTS03] in an
artistic way similar to [Löf98][HLG98]. Most recent work on vortex visualization was
published by Garth et al.[CG04].

Figure 2.36: Topological Skeleton Visualization in 3D [HTS03].
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Flow Field Topologies in 3D

Due to the difficulties of detecting critical points in 3D, as described by [Sad99] and
[HGPR99], just a few papers have been published on field topologies in 3D. A lot
of methods in 2D have been published like [XTH01]. Also hierarchical approaches
for flow field analysis were published [TvW99]. A recently published paper on flow
field topologies visualization in 3D by [XTDS+04] was already mentioned above (see
figure 2.37 page 35).

A somehow different approach was published by [HTS03]. The focus of their work
was the visualization of molecular structures. Their solution shown in figure 2.36 looks
convincing when applied to molecular structures, while their results on regular flow
fields appear similar to the work of [Löf98][HLG98].

Figure 2.37: Example for Flow field topology in 3D combined with direct volume rendering [XTDS+04]
For details see section 2.2.7 on page 33.
(http://www.sci.utah.edu/stories/2004/fall_vortex-flow.html c© by SCI Institute,University of Utah)

35



Related Work 2.2. Flow Visualization Algorithms

2.2.8 Volume Rendering
Direct volume rendering is a slightly different approach compared with the previous
ones mentioned. While all other techniques take input data, process them and generate
polygonal data from it, which is rendered afterwards, direct volume rendering works
different. The volumetric data is processed directly using transfer functions and
composed into one image [Lev90] (see figure 2.38 on page 36). Several optical models
[Max95][Max86] are in use and some cause long computations. Special algorithms
for volume rendering 3D vector fields were introduced by [CM92][EYSK94][Dov95].
The results are impressive and a large number of algorithms are available.
SIM[Motay], the makers of Coin3D[Coi00], released a volume renderer called SIM
Voleon[Vol10], which is not part of this implementation. An interface for passing data
from CashFlow to the SIM Voleon can be one useful extension.

Figure 2.38: Volume rendering of blunt fin dataset. [BLC01] sec 2.2.8 c© ACM Press

Volume rendering can be subdivided into five main algorithms:

• Ray Casting [Lev88]
For each pixel in the final image one ray is cast through the data–cube from the
image plane. By using front to back composite in combination with early ray
termination, ray–casting can be a quiet fast algorithm[JD92].

This is a high quality algorithm running at medium speed.

• Splatting
Splatting can be described as an inverse raycasting algorithm
[Wes90][KMC99][ZC02][WR00]. Each cell from the data cube is splattered
onto the image plane. The accumulation of the splats is done using different
filter kernels.

This is a slow high quality algorithm.

• 3D Texture Mapping [CCF94]
The hole dataset is stored in 2D texture slices, which can be trilinear interpolated
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in hardware on modern graphics cards. The disadvantage of this approach is that
the dataset has to be small, in order to fit into texture memory.

This is a fast and medium quality algorithm.

• Shear Warp [LL94]
This algorithm is the fastest volume software renderer. By processing the hole
data–cube one by one in cache order and compositing the voxels onto an inter-
mediate plane this algorithm is really fast. The intermediate plane is warped in a
postprocessing step using OpenGL.

This is a fast and low quality algorithm.

• Fourier volume rendering [Lev92] [Mal93]
This is a very fast algorithm but it has the big disadvantage, that only maximum
intensity projection (MIP) images in grayscaling looking like X–ray images can
be produced. The big advantage is the very good resampling abilities of this
algorithm. Because no color images can be created this is a medium quality al-
gorithm. Fourier volume rendering was recently applied to body–centered cubic
lattices [Dor03].

Volume rendering uses transfer functions for mapping scalar values to color and
opacity. Volumetric flow visualization using transfer functions was recently addressed
by [Mle03][HM03]. Regions of interest are selected in several linked 2D scatter–plots
using smooth brushing. Selected volumes are rendered using the shear–warp algorithm
in combination with user defined transfer functions. A great comparison of traditional
volume rendering and implicit stream volumes is given in [XZC04].

For more details on visualization and a wide introduction to scientific visualization
see [HP97] and [SM00]. Details on real–time rendering is given in [AH02b].
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Chapter 3

Software Design

3.1 CashFlow Visualization Pipeline
One thing most scientific visualization toolkits have in common is the traditional visu-
alization pipeline from figure 2.2 on page 6 in section 2.1.1. It is independent from the
rendering pipeline and consists of the the following elements:

Data→ Filter →Mapper → Render → Image (3.1)

Due to the scripting approach the CashFlow visualization pipeline from figure 3.1
differs from the classic visualization pipeline sketched in (3.1). The major change is
the possibility to apply the Filter and Mapper several times as well as the option, that
the Render object can be used repeatedly.

Figure 3.1: Process flow diagram of CashFlow. Raw data is imported by the Loader. Data can be processed
afterwards by Filters and Mappers producing derived data. Derived data may be altered several times
before it is passed to the Render unit. Class hierarchy shown in fig 2.2 on page 6

Recall that a data flow network is composed of nodes as well as arcs connecting

38



Software Design 3.1. CashFlow Visualization Pipeline

the nodes as shown in figure 2.8 on page 13. A naive approach towards implement-
ing the arcs in a data flow network would be to rely on Coin3D’s SoEngine network
mechanism (3.2), which is in fact already a kind of data flow mechanism.

[input] Node→ SoEngine→ Node [output] (3.2)

A Node stores data that is used as input for the Engine. The Engine implements an
algorithm and the generated new data is stored in another Node as sketched in (3.2).
However, it is not suitable for implementing the desired kind of data flow, because

1. engines are not first class objects in the scene graph, due to the fact that they are
not effected each time the scene graph is traversed.

2. there is limited control over the execution order of an SoEngine network.

3. the store–and–forward architecture of engines is not easily compatible with de-
sired behaviors such as filtering.

The first CashFlow prototype was based on such a "Node & SoEngine" data flow
network. Soon the limitations of that approach got obvious and we changed the soft-
ware design, which is now based on "Elements & Actions" and will be described in the
following chapter. Therefore, we choose to model the objects of the data flow as nodes
in CashFlow, which allows convenient handling and scripting. The data flow network
is built implicitly by the traversal order of the scene graph. Specialized elements are
used to communicate between the nodes during the traversal. In that way, the scene
graph traversal is used to dynamically build a data flow, similar to the dynamic way in
which property nodes affect shape nodes (e. g., SoMaterial affects SoCone).

The CashFlow visualization pipeline in figure 3.1 consists of the following objects:

• RAW–DATA
is generated mostly by numerical simulations (CFD,FEM)1 or is created based
on sensor data like CT,MRI,PET and SPECT2 scans.

• LOADER
The Loader node imports the raw data into CashFlow. Regrettably most data
formats are binary and each type of grid has its own data format. This causes a
large number of proprietary binary loaders.

• FILTER
The Filter node selects a subset of the data. The result is a new (virtual) data
object which is described by an additional node called DataAccess node (not
shown in figure 3.1). No actual copying of data happens. The new data node is
subsequently used as input for a Mapper node or Render node.

1CFD.... computational fluid dynamics, FEM.... finite element method
2CT.... computer tomography, MRI.... magnetic resonance imaging, PET.... positron emissions tomogra-

phy, SPECT... single–photon emissions computer tomography
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• DATA
The obvious purpose of this node is to store data, but also meta–information
like the type of grid and the topology information is stored in this node. Mapper
nodes and Render nodes can process the data stored in the Data node. Sometimes
Mapper nodes also generate intermediate data, that is used by other Mapper
nodes or Render nodes. An example for useful intermediate data is the gradient
information per vertex.

The Data node is simplified in figure 3.1 as one node, but in CashFlow it consists
of the following three nodes (not shown in figure 3.1):

1. MultiData node: Is a container for data and consists of several multi–
valued arrays for various forms of raw data like i.e. floating point values
(coordinates, pressure, density etc.).

2. DataAccess node: allows the user to define virtual arrays as described in
section 3.4 on page 46. The DataAccess nodes link to MultiData nodes.
DataAccess nodes provide a basis for Filters executed at runtime.

3. Grid node: provides topological information on the data. Raw data does
not have any associated topology. We need to know if the data describes
a height field, a regular quad mesh, or an irregular tetrahedral grid. Grid
node has a large number of subclasses that provide such topological in-
formation. We distinguish 2D/3D, irregular/regular, rectangular/spherical
and so forth. While the regular grids need only a few parameters (such
as width and height) for characterization, the irregular grids have an index
field (comparable to SoIndexedFaceSet). The Grid node does not perform
any rendering, it merely defines topology and is requested by Mapper nodes
and Render nodes.

The Data node is a semantic construction to keep the software design as indepen-
dent for the implementation as possible. Note, that a Data node does not exists
in our implementation of CashFlow. Nevertheless one Data node serving all
mentioned needs may also be a solution as the Field Model library proves. Our
experience shows that separating the data in MultiData, DataAccess and Grid
node enables the widest variety possible in combination with the scene graph.

• MAPPER The Mapper node serves as a base class for all nodes that transform
input data into output data, involving creation or copying of data. Also most
visualization algorithms are implemented as Mapper node’s. The Mapper node
therefore refers to an input data node as well as an output data node, which is
fed with computed data. This is necessary if any new data is synthesized or com-
puted, such as in the creation of streamlines from seed–points or the computation
of an iso–surface from iso–values, to name some.

Recomputation of the Mapper can be slow, so the circumstances for triggering
recalculation can be configured and are not necessarily managed by the traversal
order.
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• RENDER The Render node creates images using OpenGL calls, based on
the input received from current DataAccess node and Grid node (simplified in
figure 4.20 as "Data"). Together, these two nodes define an arbitrary mesh and
its topology, while Render nodes define the rendering style for visualizing the
mesh. Rendering styles (see section 3.1 page 38) are generated by rendering
algorithms like for example point cloud rendering, wire–frame mesh rendering,
3D vector plot rendering and polygonal rendering to name some. It does not
produce other output data.

• IMAGE
The final image is created without explicitly combining visualizations, like in
OpenDX. The order of rendering nodes during traversal directly affects the ren-
dering. It can consist of several visualizations generated by different Render
nodes. The user can interact with the resulting visualization by manipulating it.
Also the user may want to change attributes to effect the visualization algorithms
at different stages of the data flow. the final image. This will be discussed in de-
tail in section 3.12 on page 64.

� DATA CONSUMER
On a syntactic level Loader, Mapper and Render nodes are Data Consumer
nodes, because they either read data from the Data nodes or write data to the
Data nodes. All derived nodes can be classified easily by read and write ac-
cess to Data nodes. Loader nodes use either write access only when loading
data or read access only when storing data. Render nodes generate images only
and therefore have read access only. Mapper nodes process data and generate
new data which is a read–write access. This concept is addressed in detail in
section 3.5 on page 49.

The data flow pipeline from figure 3.1 page 38) shows that data can be accessed in
many different ways. It can be rendered directly without passing any filter or mapper.
This is useful if only a point cloud should be visualized. On the other hand filter and
mapper nodes can subsequently alter the data. Intermediate data can be stored using the
loader. This is especially useful when costly algorithms like particle trace algorithms
create streamlines. Various rendering methods can be applied to the same dataset.
Another advantage using a visualization pipeline combined with a scene graph is, that
complex variations of visualization algorithms can be created easily.
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3.2 Using the Scene Graph
In this section we want to take a closer look at the data flow inside CashFlow and how
the scene graph is used. As mentioned in the previous section 3.1 CashFlow uses a
visualization pipeline (see figure 3.1 on page 38). The three basic components Data,
Mapper and Render are used in a scene graph.

A simple example is shown in figure 3.2. Artificial data is mapped to four different
grids. On the bottom left a polar grid with a color map created from the artificial data.
On the top left the same polar grid mapped on a height field generated from the artificial
data. On the bottom right a Cartesian grid with the same color map. And on the top
right a Cartesian grid with a height field also generated from the same artificial data.
The same artificial data is used to generate these four visualizations. Note, that the data
itself is not defined on one of those grids, which makes no visual representation more
appropriate than the other.

Figure 3.2: CashFlow: Abstract data mapped onto Cartesian and polar grid. Data values are used to
create color map and height field. Corresponding CashFlow scene graph shown in figure 3.10 on page 51.

A simplified scene graph of the visualization in figure 3.2 is shown in figure 3.3 on
page 43. The scene graph is traversed from root node R. Node A and node C stored
data and are empty in the beginning. Node B is a loader loading data from storage to
node A. Node D is a mapper mapping the data from node A to a color map stored in
node C. During the first traversal node B insert new data into the scene graph. Node D
also create new data in the form of a color map. In the following traversals node B and
node D are inactive since the data is already loaded and has not changed.

The recursion of the depth–first–search scene graph traversal including node A-D
is resolved and nodes E-H et cetera are traversed. After traversing node A up to node
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D the nodes on the right hand side are traversed. The mapper node E creates a polar
grid taking the data values from node A as elevations per grid point. The render node
F uses the grid from the mapper node E and the color map from node C. Node G is
also a mapper node creating the Cartesian grid shown on the top right in figure 3.2.
Node G also uses the data from node A to create the height field and the render node
H visualize the grid. The last two mappers generate a flat polar and Cartesian surface
that is rendered by the two render nodes.

Note, that this is just a simplified scene graph that differs from the actual scene
graph used in CashFlow. The final CashFlow scene graph is shown in figure 3.10 on
page 51.

Figure 3.3: CashFlow: Simplified Scene Graph: Loader B loads data from disk to data node A. Mapper D
maps data from node A and creates a color map in node C. Mapper E reads data from node C and creates a
height field on a polar grid. Render node F visualize the height field from node E using the color map from
node C. The result from node F is the top left grid in figure 3.2 on page 42.

3.3 Indirect References & Linking of Nodes
Using a scene graph allows two ways to exchange data between nodes.

• Direct linking of nodes 3

• Implicit linking of nodes 4

Two nodes in the scene graph can exchange data via a direct link between the
nodes. This is also known as field connection, because the data is stored in fields
inside the node. The field from one node is connected to the field of the other node.
The disadvantage of this approach is, that each node holding data has to be explicitly
connected to each other node in order to share data among nodes. This is inflexible and
if the script file gets big it is quite confusing too.

The second strategy is the implicit linking of nodes. The concept is simple and
powerful. The position of one node with respect to another node during the traversal
of the scene graph should effect the linking of these nodes. If the order of the nodes

3for implementation details on direct linking of nodes see Implementation Field connection
4for implementation details on Implicit linking of nodes see Implementation Action and Elements
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during the scene graph traversal is changed the linking of nodes should change in the
same way.

For example in figure 3.4 node A and node B are data storage nodes. Let us assume,
that the nodes R, S and T are three different kinds of visualization algorithms that are
able to render the data from node A and node B. While traversing the scene graph node
A is passed first. Afterwards Node R renders the data from node A. The next node in
traversal order is the second rendering node S processing the same data from node A.
Node B holds different data which is rendered by node T. Using implicit linking enables
the user to simply exchange node A with node B and obtain a plausible behavior of the
visual result. Now the nodes R and S will render the data from node B and node T
will render the data from node A. The assumption made in this example is, that node A
and node B use the same type of data. The unique key used for that is called a relative
address key. The opposite to the relative address key is the absolute address key which
is a unique string.

These short example emphasize the possibilities and advantages of a scene graph
used for data flow modeling.

Figure 3.4: CashFlow: Implicit Linking on Nodes: Node A stores data. Node R visualize the data from node
A. Node S also renders the data from node A, because no new data node is used in between. Node T finally
renders the data stored in node B.

Figure 3.4 illustrates such a scene graph traversal dependent data flow model. Note,
that the traversal order used is depth first search and left before right node order.

Each time the scene graph is traversed a traversal state is maintained. The nodes in
the scene graph are visited using a depth first search order and a left before right order.
The traversal state stores parameters and references that can be modified by the nodes.
These transient parameters only exist during one traversal of the scene graph and are
referred as traversal state elements.

While processing the scene graph each node can get access to the traversal state
elements 5. These elements store all kind of data used for rendering as for example the
current color. This is especially useful, because nodes can refer to other nodes holding
certain pieces of information without being explicitly linked to these nodes. These

5for details on elements see Implementation SoElements.
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concepts provide a linking of different nodes depending on the scene graph traversal.
Thus the data flow model can be altered at runtime by simply changing the scene graph
or even by only altering the traversal order of nodes as mentioned in the previous
example.

Indirect Reference Strategies

In the last example some assumptions were made on the traversal state element, which
need to be discussed in detail. In general there are two kinds of elements namely

• Replaced elements
Each new value replaces the old value of the element.

• Accumulated elements
New values are stored, while old values are kept. The best example is a number
of affine transformations stored in an element. At each stage the new transfor-
mation is accumulated with the existing transformation while the original data is
also stored.

This design is used in OpenInventor[Inv92]. One other important classification when
talking about traversal state elements is whether an element refers to one other node
or to many other nodes. In CashFlow elements are needed that are able to provide a
many–to–many connection between data sets and visualization algorithms.

• Reference to one node
The element stores only one reference to another node at a time. It is a replaced
element. Once a new data node registers itself to the element the reference to the
first node is overwritten.

For example the left image in figure 3.5 shows node A setting its reference to the
element E. The right image in figure 3.5 shows node B replacing the reference to
node A with its own reference.

Figure 3.5: CashFlow: Implicit Linking of Nodes using an Element: (Left) Node A stores data. It registers
itself to the state traversal element E (set). Node R renders the data from node A by requesting data from
element E (get). Node S also renders the data from node A using object P (get). Right: Node B stores
different data. Registering itself to element E (set) also removes the link to node A (dashed line). Node T
now renders data from node B (get).
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• Reference to many nodes
This element stores many reference to other nodes at a time. Assuming such a
multi–reference element node B in the right image of figure 3.5 could add its
reference without erasing the reference to node A.

Once the traversal state element stores multiple reference it is an accumulated
element. The difference between an accumulated element and the element we
require is, that we need an element which grants access to all its references at all
times. A new question arises which is: "Who to query for a certain reference in
such an element?"

To solve this problem two pieces of information are used per reference:

– Unique name
Each reference is bound to a unique name.

– Order of insertion
When inserting a new reference its sequence is stored too.

Using both unique name and order of insertion enables us to provide direct and
implicit linking simultaneously.

– Unique name for direct linking
A node can query the persistent object using the unique name in order to
receive the reference to a certain data node. This can be thought of as a
field connection between nodes.

– Order of insertion for implicit linking
When inserting a new reference the sequence is stored too. Another node
can query for the last inserted object or for the last but one inserted object
etcetera.

Using such a customized accumulated element makes it possible to link different
data sets with several visualization algorithms. We are also able to use such an element
as a buffer for data sets. Several visualization algorithms require multiple input data.
By swapping references inside the element we can easily change the visual results.

3.4 Using Virtual Arrays as a Filter
The minimal visualization pipeline in CashFlow consists of three components Loader,
Data and Render. Raw data is imported from storage using the loader. The render node
accesses the Data node and creates a visualization. Such a minimal pipeline is used in
figure 3.6 page 47 visualizing the space shuttle data6 directly with a point render node.
The data set consists of 9 different curvilinear grids. Three grids are visualized namely
the space shuttle using green dots the external tank in red and two solid rocket boosters
in blue. Only the most inner layers of each grid are visualized.

The whole dataset is stored in one large array. It is important that each grid being
inside that large array can be easily addressed and accessed. Our approach was to create

6dataset from NASA at: http://www.nas.nasa.gov/Research/Datasets/data_sets.html [NAS05]
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Figure 3.6: CashFlow: Space shuttle visualized with PointRenderer: 3 different curvilinear grids visualized
with PointRender node. Space shuttle in green, external tank in red and solid rocket boosters in blue.

virtual arrays inside the real array in memory to define the grids and access them via
an interface. All nodes handling data inside CashFlow use that interface. These nodes
that access the data are DataConsumer nodes and the interface is the DataAccess node.
Using three different types of virtual array provides even more flexibility. The other
important argument for a virtual array defined inside a node is, that we are able to
manipulate the DataAccess nodes inside the scene graph. The virtual array can even be
defined in the OpenInventor script files.

Now we are able to set virtual arrays in a script files defining the data flow. Also we
can change the data flow during runtime by altering the scene graph without changing
the visualization. The basic components of the visualization pipeline

• filtering data,

• mapping and

• rendering

can be changed independently by manipulating nodes in the scene graph. The process
flow of the virtual array is visualized in figure 3.7 on page 47. Raw data is loaded from
storage to memory. The DataAccess node defines a virtual array by defining a filter
that is evaluated at runtime. The Render node accesses the virtual array and generates
the visualization.

Figure 3.7: CashFlow: Virtual array process flow

Even selected parts of the grid can be rendered, once we apply a virtual array only
by altering the DataAccess node as shown in figure 3.8 on page 48. The lower image
shows the same dataset with selected regions of the upper visualization. A small band
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of green points along the side of the shuttle in one principle direction. A selection of
red points of the external tank equally spaced as in the original image. A wide selection
of blue points to visualize the solid rocket booster and its dense parts of the grid.

Figure 3.8: CashFlow: Space shuttle visualized with PointRender node and a selection of the data.

When handling a virtual array several strategies are useful which are:

• Single Block Array
where one contiguous block in the real array is the virtual array.

• Multiple Block Array
using several contiguous blocks in the real array to form the virtual array. Each
block consists of a certain number of successive fields and a number of succes-
sive skipped fields.

• Random Access Array
combining random fields of the real array to build the virtual array.

The three types of virtual arrays will be discussed in detail in section 3.7.1 on page 54
For ease of use iterators are also introduced to access the virtual array.

48



Software Design 3.5. General CashFlow UML Diagram

3.5 General CashFlow UML Diagram

Figure 3.9: Simplified CashFlow UML diagram showing data access. All nodes accessing data are derived
from Data Consumer. A DataConsumer uses a virtual array provided by the DataAccess node to access the
actual data inside the MultiData node. Topology and connectivity information is offered by the Grid node.
The Loader inserts data from files into the MultiData node (write access). The Mapper nodes create new
data by processing existing data (read/write access). Render nodes read data only and create images.
Complete CashFlow UML diagram in figure 4.5 page 71.

When looking at the CashFlow framework using a top–down approach all nodes
can be separated in Data nodes and Data Consumer nodes. These nodes are sketched
in an UML diagram in figure 3.9.

• Data nodes
are used to store and access data.

– MultiData nodes are used to store any type of data.

– DataAccess nodes define the virtual array and provide virtual array iter-
ators. These nodes always link to a MultiData node the virtual array is
defined on.

– Grid nodes specify the type of grid the data is defined on. Grid nodes also
provide grid iterators used for accessing several different grids using one
interface. A Grid node always links to a DataAccess node.

The DataConsumer nodes can either handle grids or access data without refer-
ring to a grid structure. If grids are processed a reference to a grid node and a
reference to a DataAccess node is required. The DataAccess node itself links to
a MultiData node. On the other hand if only data is manipulated one reference
to a DataAccess node is sufficient. As already mentioned the DataAccess node
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refers to the MultiData node. A sample scene graph is shown in figure 3.10 on
page 51 containing all three data nodes.

• Data Consumer nodes
are nodes handling data. The Data Consumer node is an abstract interface only.

Data Consumer nodes can be subdivided into:

– Loader nodes inserting data into a data node and therefore have write ac-
cess only.

– Mapper nodes accessing data which is processed by algorithms generating
new data. Accordingly these nodes have read and write access.

– Render nodes are defined as nodes reading data only and generating im-
ages. In general no other data output is created.

All Data Consumer nodes link either to a DataAccess node only or to a DataAc-
cess node and a Grid node, if topology of the grid is also requested by the algo-
rithm.

• Traversal state objects
are the third group of objects handling traversal state changes while processing
the scene graph.

Note, that traversal state objects are not part of the scene graph but store at-
tributes during the scene graph traversal.

– Data node elements
used for implicit linking of nodes and for dynamic linking between Multi-
Data nodes, DataAccess nodes and Grid nodes.

– Refinement elements
keeping parameters for grid resampling and interpolation refinement like
for instance used by streamline integration algorithms.

– Update Action
to specify, when a loader node should reload the data or an asynchronous
mapper node should process the data.

In the following sections all nodes will be described in detail.

3.5.1 Example for CashFlow Scene Graph
In the previous section the scene graph was simplified, because not all nodes and con-
cepts had been introduced at that time. In section 3.2 on page 42 a simplified scene
graph was used in combination with the visualization of abstract data mapped onto a
polar and a Cartesian grid (see figure 3.2 page 42 ).

Figure 3.10 on page 51 shows the correct CashFlow scene graph to figure 3.2
page 42. Node (1) is a MultiData node charged by a Loader node (4). The Loader
also sets new values in the DataAccess nodes labeled (2) and the defines the type of

50



Software Design 3.6. MultiData Node

Figure 3.10: CashFlow: Scene graph for figure 3.2 on page 42. (color of node correspond to fig 3.9)

grid in the Grid node (3). Since the visualization uses a color map generated from the
original data the color mapper node (6) requests the data from MultiData node (1) via
the DataAccess node (2). The ColorMapper node also creates new color data stored in
a new virtual array. The new virtual array is parameterized by the DataAccess node (5)
storing its data in MultiData node (1).

The traversal of the right half of the scene graph is very similar to the scene graph
in figure 3.3 page 43. The four mapper nodes labeled M generate polar and Cartesian
height fields defining new virtual arrays in DataAccess node (2) and also store the data
in MultiData node (1). Finally each of the four grids is visualized by one render node.
The Render node requests the vertex data via DataAccess node (2) and the color map
via DataAccess node (5). Note, that both DataAccess nodes link to the same MultiData
node in this example. One render node is able to create all four different visualizations
shown in figure 3.2 page 42, because all grids are so called structured grids.

3.6 MultiData Node
The MultiData node acts as an attribute supplier. Inside the MultiData node the current
data is stored. The MultiData node is a container for several different arrays, each
specified for a single data type. The supported data types are:

• integer

• string

• float

• vec2f
consisting of two float values.

• vec3f
consisting of three float values.
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The MultiData node is accessed by the DataConsumer node using the DataAccess
node as described in figure 3.9 on page 49. The DataConsumer node receives the
necessary information on the virtual array from the DataAccess node. Using that
information the DataConsumer node can read and write data to the virtual array.

In order to be able to render the grids properly and be able to use mapping algo-
rithms on different grids, the type of grid must be taken into account also. The naive
approach would be to implement the same mapping algorithm for different grids, which
would result in a large number of classes doing basically the same thing. To avoid such
a bad design we separate the topology data from the vertex data. The information on
topology is stored in the grid node.

3.6.1 Scripting, Unique Key Concept
Using a scene graph also carries some inconvenience. Well known concepts like shared
memory are not so easy to port to scene graphs, because the scene graph should remain
scriptable. To provide this some conditions have to be met.

• Insert generated data into existing node
Nodes creating new data, that needs to be inserted into the scene graph must use
existing storage nodes. Otherwise it is not possible to refer to that data, which
is generated during runtime in a script. For example let’s assume that node G
generates new data and node A is traversed after node G. If another node D is
inserted into the scene graph and node G stores the generated data into node D it
is trivial to link node A to node D.

Thus the condition is, that each node generating data is not allowed to create a
new node inside the scene graph. Each node generating data must use an existing
MultiData node to store the data.

• Bind DataAccess node to MultiData node
Data stored in a MultiData node is always associated with a corresponding
DataAccess node. The DataAccess node holds information on the virtual array
defined on top of the real memory. Instead of addressing a MultiData node
directly the DataAccess node is accessed.

• Define a unique key per node
Each MultiData node and each DataAccess node have a unique key. Each
DataAccess node stores the key to the MultiData node it is bound to. The
DataConsumer node or rather its derived classes, stores the key to the
DataAccess node. This level of indirection allows to use the DataAccess node
as a filter executed during runtime.
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3.7 DataAccess Node
The functions of the DataAccess node are:

� providing information on how to access the virtual array

� dispatching the reference to the MultiData node, where the raw data is stored.

� supplying suitable iterators for accessing the virtual array.

It is a level of indirection between the MultiData node holding the data and the
DataConsumer node accessing the data. The DataAccess node is a filter evaluated at
runtime. This node enables the user to select parts of the data and change the selection
on the fly.

It consists of the following components:

• unique key
used to identify this node. All DataConsumer nodes use this unique key to get
access to this node.

• key to MultiData node
define the MultiData node this node is bound to. The definition of the virtual
array is based on the real data stored in the MultiData node.

• offset
form the first element of the real array to the first element of the virtual array.

• length
number of values in the virtual array.

• type of virtual array
The information is needed to define the corresponding type of virtual array iter-
ator. Based on the type of virtual array special attributes are required like:

* increment
used for Multiple Block Virtual Array

* repeat
used for Multiple Block Virtual Array

* random access lookup table
used for Random Virtual Array
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3.7.1 Virtual Array Types in CashFlow
For more flexibility three different kinds of virtual arrays are available. Since they act
as data filters evaluated at runtime it is important to keep their abilities and weaknesses
in mind. Table 3.1 on page 58 gives an overview on the memory consumption and CPU
load of each virtual array type. The three different kinds of virtual arrays encapsulate
in the DataAccess node are:

� Single Block Virtual Array

� Multiple Block Virtual Array

� Random Virtual Array

Each of the three types has its own iterator. All iterators use the same interface.
The following attributes are used for all virtual arrays:

• length
Number of items inside the virtual array.

• offset
Number of items from the first item in the real array to the first item in the virtual
array. Possible values are in the range [0..(real array length-1)].

• key
A unique string used to refer to the real data array, which is stored in a MultiData
node.

Additional attributes at runtime used by iterators:

– index
Position in the virtual array used by iterators at runtime.
Possible values are in the range [0..(length-1)].

– real index
The index in the real array is computed either from the index in the virtual array
or is returned from the iterator.

Single Block Virtual Array

This iterator is very simple. It defines a block of successive values as a new virtual
array shown in figure 3.11. The length of the virtual array is equal to the length of
the block of the real array. The real index can be computed by adding the offset to
the virtual index. The range of the virtual index is [0..5]. The difference between the
virtual index and the real index is constant while the virtual index increases.
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Figure 3.11 shows an example of a single block virtual array. The attributes for
figure 3.11 are:

• offset = 3

• length = 6

• unique key

The blue colored boxes in figure 3.11 indicate the virtual array array items in the
real memory array. The lower part of the sketch shows the virtual array.

Figure 3.11: CashFlow: Single Block Virtual Array: One continuous block in the real memory is used as
virtual array. Attributes are the offset and the length of the virtual array.

Multiple Block Virtual Array

This iterator requires two additional values which are:

• increment
Is the number of items from the beginning of one block to the beginning of the
next block. In figure 3.11 increment = 3, because on block consists of 3 items.

• repeat
Is the number of successive items inside a block being part of the virtual array.
For example repeat = 2 in figure 3.11.

Figure 3.12 shows a multiple block virtual array with the following attributes used:

• offset = 2

• length = 6

• unique key

additional attributes:

* increment = 3

* repeat = 2
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The parameter length defines the number of items inside the virtual array. Fig-
ure 3.12 sketches a real array of length 12 and a virtual array of length 6. The multiple
block virtual array defines several successive block were each block has a constant size.
The constant size of the blocks is addressed as increment. The range of the virtual in-
dex is [0..5]. Inside of each block a constant number of successive items are accessed
and the corresponding attribute is repeat. In figure 3.12 these items are colored blue.

Figure 3.12: CashFlow: Multiple Block Virtual Array: Several successive blocks are reorganized as a
virtual array. Attributes are the offset the number of blocks, the size per block and the number of values
read per block.

To compute the real index from the virtual index a division or modulo operation is
needed. Thus iterators are useful and random access to a virtual index is more expen-
sive to compute compared with the single block virtual array. The difference between
the virtual index and the real index increases while the virtual index increases. If the
parameters increment and repeat are the same, the multiple block degenerates to a sin-
gle block virtual array. This should be avoided and the single block virtual array should
be used, because of its better performance.

Random Virtual Array

Figure 3.13: CashFlow: Random Virtual Array: Random fields of the original array create the virtual
array. Attributes are a list of indices providing information on the random mapping.

The random virtual array requires one additional array of attributes.

• look–up table
Each virtual index is mapped to one real index. Even more than one virtual index
may point to the same real index. Accordingly the number of items in the lookup
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table must be equal to the length of the virtual index.
Note: The index in the real array is computed by adding offset to the values from
the look–up table.

Attributes used for figure 3.13 are:

• offset = 2

• length = 6

• unique key

additional attributes:

* look–up table
Size of the lookup table is equal to the length of the virtual array.

The virtual index is mapped to the real index by using the index stored in the look–
up table. See figure 3.13 showing an example for a random virtual array. The offset
attribute is used to suite the virtual array interface.

The range of the virtual index is [0..5].

Virtual Array & DataAccess Map

The detailed information on the virtual array is encapsulated inside an object called
DataAccess Map. The DataAccess Map is used in the interface of the virtual array.
All nodes requesting data, like the DataConsumer nodes, query a DataAccess node
and receive a DataAccess Map. Based on the information provided by the DataAccess
Map the DataConsumer nodes can instantiate the appropriate virtual array iterator and
finally access the data inside the MultiData node. Thus the DataAccess node provides
an interface to the data for the DataConsumer node.
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3.7.2 Drawback of the Virtual Array
The overhead using the virtual array consists of:

• Managing the DataAccess and MultiData nodes and the necessary DataAccess
Element and MultiData Element. During each scene graph traversal each
DataAccess node and each MultiData node has to register itself to its Element
(details in section 4.1 on page 68).

• Each DataConsumer needs to query for the DataAccess nodes before being able
to access the data itself. This is a small overhead, as long as the number of
DataAccess nodes is comparable small to the size of the data. In case of a large
number of DataAccess nodes addressing just very little amount of data, this could
cause a significant overhead.

• Additional computation using the iterators

depending on the type of virtual array being in use (see table 3.1 page 58).

type of virtual array size in attributes
memory stored

Single Block Virtual Array O( 1 ) 3
Multiple Block Virtual Array O( 1 ) 5
Random Virtual Array O( n ) n+3

Table 3.1: Virtual array strategies: Comparisons of memory overhead and CPU load for three different
strategies.

Table 3.1 gives an overview on the overhead using the virtual array. Each type of
virtual array has certain memory requirements. While single block and multiple block
virtual arrays only require constant complexity per allocated virtual memory the size
of memory needed for a random virtual array depends on the size of the virtual array
which is linear complexity. All virtual arrays store two integers, offset and length, and
a string used as key for linking to the real data array. A single block virtual array
uses only the three previously mentioned attributes. A multiple block virtual array
additionally uses two integers, increment and repeat, to define the size of a block and
how many successive items per block should be used inside the virtual memory. Finally
the random virtual array uses the three default attributes and a look–up table of the size
length to store one real index for each virtual index.
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3.8 Grid Node
The Grids node is a geometry and topology supplier. The Grid node provides an uni-
versal interface together with special iterators to access different grids in a standard
way.

Type of Grids

Using grids to handle scientific data allows three types of grids:

• Structured grid
defined as a n–dimensional array. The index in the array also implies neighbor-
hood information. Adjacent vertices can be calculated directly based on their
index. One of the basic examples in 2D is a regular 2D Cartesian grid. One
example in 3D is a 3D curvilinear grid.

• Unstructured grid
consisting of vertex information and lists defining geometric primitives by in-
dexing the vertices. Neighborhood information has to be either calculated as a
pre–processing step or it has to be stored additionally. Well known examples are:

– polygonal triangle grids generating a 2D surface in 2D or 3D and

– tetrahedral grids in 3D.

• Hybrid grid as a combination of the above mentioned grids. One common
way to avoid hybrid grids is to split grids into parts and separate structured grids
from unstructured grids. The big disadvantage of hybrid grids is, that combining
structured grids with unstructured grids erases the advantage of structured grids.
On the other hand hybrid grids have the advantage, that they are a very universal
definition.

Hybrid grids are not supported by CashFlow.

3.8.1 Support Several Different Grids
One main problem is, that there is a large amount of grids available and in use. If each
algorithm has to be implemented on each grid or be adapted to the grid, the number
of classes implemented, derived from the general algorithms would be huge. One
other disadvantage of this approach gets obvious, if a new grid is introduced to the
framework. In order to be able to render and process the grid, all existing algorithms
have to be derived to be able to access this new grid. This approach was used in
MeshVis [Mes] by TGS [TGS] former known as DataMaster.

Our approach is to abstract the pieces of information from the grids needed by the
visualization algorithm to access the grids. Information provided by the grid include
topology data(1) and grid iterators(2) for accessing the geometric primitives of the
grid. The visualization algorithm only communicates with the grid via this interface.
Once a new grid is introduced to the system, the new grid only has to provide the
topology data and overload the iterators defined by the interface. Also if a new
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algorithm is implemented it can access all grids via this abstraction layer. Specialized
algorithms optimized for speed defined on one specific grid can also be implemented.
This concept is similar to the approach introduced by Patrick Moran [Mor01], who
created the FIELD MODEL library [Mor03] at NAS[NAS] which is a C++ template
library. It was also published at IEEE Vis2001 in Tutorial 1 [Tut01].

Interface for accessing grids:

• Geometric primitives
embedded in 3D

– Vertex zero dimensional; Point in 3D

– Edge one dimensional; Line.

– Face two dimensional

– Cell three dimensional

• Connectivity information
contains adjacency of Edge, Face and Cell. Each connectivity information can
be queried using the interface.

• Grid iterators
Grant access to each cell, each face and each edge for the algorithms.

For most pairs of grids and visualizations special ways of fast rendering algorithms
have been published.

3.8.2 Decoupling of Visualization Algorithm and Type of Grid
In order to decouple the visualization method from the grid type we use the Design
Pattern [Gam95] "Strategy" (page 373 in [Gam96] ) . Not all combinations of grid
types and visualization techniques may be useful and possible, but never the less a
separation is very important.

The design pattern is applied for the visualization techniques (see section 2.2
page 19) and for the grid types.

Figure 3.14: Design Pattern: Strategy [Gam95] [Gam96]
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3.9 Mapper Nodes
Mapper nodes are used to transform given data into new data. The Mapper node have
read and write access to the MultiData node and DataAccess node.

Executing a Mapper node can be triggered by:

• Update field
Some Mappers are only used for pre–processing and will be triggered by a field
connection.

• Update action
Some Mappers implement costly algorithms like streamline integration of iso–
surface creation and thus are triggered by update actions.

• Listener on virtual array
Since it may be useful only to update a Mapper if certain data has changed, it is
useful to trigger the Mapper as soon as the data in the virtual array has changed.

• On–the–fly
Other Mappers may be executed every time the scene graph is traversed. This
could be reasonable for the generation of a color–map for instance.

Mapper nodes are very important, because they implement a large number of visu-
alization algorithms. The complexity of Mapper nodes can be categorized in 3 levels:

• Low complexity
All algorithms operating directly on the raw data without support of grid topol-
ogy. Examples are color mapping and parameterization of data.

• Medium complexity
All algorithms operating on the raw data with support of grid topology. Examples
are iso–surface extraction.

• High complexity
Algorithms requesting grid topology data and results form the medium com-
plexity level as input. Examples are vortex detection and flow field topology
calculation, which are not supported by CashFlow yet.

After this introduction to the four kinds of update mechanism and the subdivision
based on the complexity of the algorithm we want to describe the different types of
Mapper nodes used in the CashFlow framework.

• Color Mapper
Scalar or vector data is mapped to color. These are low complexity algorithms.

• Data Mapper
Data is used to create new data without respect to the type of grid and its topol-
ogy. These are also low complexity algorithms.

61



Software Design 3.10. Render Nodes

– Parameterization Mapper
Data is reparameterized with a set of constant, linear and cubic intervals.

• Geometry Mapper
This large group of mappers include algorithms operating on grids.

– Iso–value Mapper
Creation of polygonal surfaces using 2D & 3D cells. A scalar value called
iso–value is defined as a parameter. At each vertex in each cell a scalar
value has to be defined, which is used to create the polygonal surface or the
iso–line in 2D.

– Carpet Plot Mapper
A field of scalar values or a vector field is used to distort a surface.

– Streamline Mapper
This mapper is responsible for all kinds of particle tracers and streamlines
integration using seed points.

– Cutting Mapper
Cutting planes and surfaces are used to segment data.

Only one group of algorithms are not implemented as mappers namely the render-
ing algorithms.

3.10 Render Nodes
This group of nodes implement rendering algorithms. The render nodes request data
from the DataAccess nodes and from a Grid node. Per definition Render nodes create
images only and do not create new data, that is stored in a MultiData node. If a Render
node also creates data, that is stored in a MultiData node it has to be derived from
Mapper node.

The Render algorithms can be subdivided as follows:

• Point Cloud Renderer
The most basic Render node draws a point where a vertex is. The point can also
be color coded. This visualization can be useful for example to investigate the
density of a grid.

• Glyph Renderer
This is the complement of the point renderer in vector fields. At each selected
point a glyph shows the direction of the flow. Glyphs can be also used to visualize
multidimensional data.

• Cell Renderer
The grid is divided into cells and each cell is rendered. One traditional cell
renderer is the cuberille renderer [LC85].

• Wireframe Renderer
The grid or parts of the grid are visualized using a wire–frame.
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• Surface Renderer
This renderer is similar to the wire–frame renderer. The grid is rendered using
surfaces.

• Streamline Renderer
Rendering of streamlines in different ways. In extension to the default streamline
renderer an up–vector per each interpolation point can be taken into account to
visualize vorticity.

• Polygonal Renderer
Simply renders polygonal data.

• Volume Renderer
CashFlow does not use its own volume renderer, because a volume renderer
called SimVoleon[Vol10] is already available in Coin3D[Coi00].

3.11 Loader Nodes
Unfortunately there are several binary data formats for CFD data sets and medical data
sets. Due to the large dissemination of some packages a set of data formats became
more important. This is far away from a standardization of data formats, but it also
reduces the number of loaders needed.

Since it is not useful to implement several loaders to proof that a visualization
algorithm works correct we decided to use only two loaders at the moment:

• CFD Plot3D
for computational fluid dynamics (CFD) data sets

• CT data set
for medical data sets.
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3.12 User Interaction
When using the scene graph library a wide variety of input and output devices is offered
to the user. Subject to the data source in general the user can alter the attributes of
the data generation or data simulation. When using a CFD – systems7 the change of
parameters is a highly non–trivial task. Thus a user friendly interface is essential for
quick results. In terms of the visualization pipeline the user can change the raw data. If
this should be not possible he can still adjust the parameters used inside the CashFlow
framework, which are the attributes for the Filter, Mapper and Render nodes.

Figure 3.15: CashFlow: Boxes and grey arrows show process flow. Round boxes and tailed arrows indicate
user interaction (UI) process. (compare to fig 3.1)

The process flow of external data generation in combination with CashFlow is
shown in figure 3.15. In this figure the blue boxes show components of CashFlow
while the green rounded boxes in the lower part of the figure indicate components al-
tered by the user while interacting. The Loader node imports the raw data into the
CashFlow framework. The data may be processed now by a Mapper node before it
is converted into the final image by Render node’s. Now the user can either alter the
attributes for CashFlow to generate a new image or the user may even be able to change
the attributes of the data generation producing new raw data.

Note, that this process flow is an extension to figure 3.1 on page 38, where the blue
boxes were used only.

7CFD...computational fluid dynamics, numerical simulation of fluids
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3.13 Conclusion
In this chapter the following concepts have been introduced:

• The CashFlow visualization pipeline
This visualization pipeline is an adaption of the traditional visualization pipeline.
It is designed to suite the special needs of a dynamic data flow model crafted
into a scene graph with respect to scripting. The main components LOADER –
DATA – MAPPER – RENDER used in CashFlow were introduced. Each of these
components are defined in order to make scripting the OpenInventor files easier.

• Virtual Array
The virtual array is implemented in the DataAccess node. It is a filtering at run-
time with small overhead depending on the type of virtual array. The virtual array
can be accessed and handled easily using one of three virtual array iterators.

• Indirect References
To be able to use absolute and relative linking between nodes a special traversal
state object is needed. On the one hand this traversal state object allows absolute
linking of nodes similar to field connections. On the other hand it also provides
relative or implicit linking of nodes.

While the scene graph is traversed the ordering of nodes have an effect on which
nodes are linked together. This concept is only possible by applying implicit
linking in addition to absolute linking.

• Unique keys
To be able to address nodes in the script file unique keys are used. The unique
key is a simple string, which has to be unique during the scene graph traversal.
Two concepts are used:

Absolute address key
creating a direct node–to–node connection. The data source is addressed
by its unique name comparable to a field connection.

Relative address keys
taking traversal order of nodes into account.

• Decoupling of algorithm and type of grid
By separating the topology information of a grid from the other data of the grid
algorithms can be defined to access several different types of grids instead of
only one type of grid. The disadvantage of that approach is, that this additional
layer slows down the algorithms.

• Dynamic Data Flow Model The components of CashFlow can be used to create
a dynamic data flow model. These data flow models can be scripted and actually
be altered at runtime.
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Figure 4.1: CashFlow Data flow model

The general class hierarchy of CashFlow is shown in figure 4.1 and will be intro-
duced in the following chapters. A full collection of all CashFlow classes is listed in
section 4.7 on page 97. The concept of filter, mapper and render nodes used on the fol-
lowing pages were introduced in section 2 page 3 and section 3 page 38. This is a brief
summery of nodes used in figure 4.1, while the details were introduced in chapter 3 on
page 38 .

• SoCfDataConsumer (fig 4.1: Dataconsumer)
This abstract class provides an interface for all nodes processing data. Any out-
put data can only be stored in existing nodes. No SoCfDataConsumer node may
create new SoMultiDataNodes, SoDataAccessNodes or SoBaseGrid nodes and
insert them into the scene graph. The reason for that policy is, that otherwise
scripting would be difficult or even impossible.

– Filter
A Filter selects part of the raw data at runtime using a virtual array. The
filter is implemented as SoDataAccessNode and SbDataAccessMap.

– SoCfMapperNode (fig 4.1: Mapper)
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Most visualization algorithms are derived from SoCfMapperNode. A Map-
per can handel several data input and data output streams.

– SoCfRenderNode (fig 4.1: Render)
This node creates images and implements rendering algorithms. A Render
node may have several data inputs. The only output of a Render node are
OpenGL calls.

• Data
Figure 4.1 shows the software design of CashFlow in general. Due to our pro-
posed demand the implementation differs. Our demand was, that the data flow
model creating the visualization network shall be scripted easily. To provide the
user with maximum flexibility the data is stored in three nodes, each with its very
special purpose.

– SoMultiDataNode (fig 4.1: Data)
All types of data are stored in SoMultiDataNodes. DataConsumer
nodes process the data stored in the SoMultiDataNode using the
SbDataAccessMap from the SoDataAccessNode.

– SoDataAccessNode (fig 4.1: Filter)
The SoDataAccessNode creates a virtual array on top of the real array
stored in the SoMultiDataNode. This node is the interface to all raw data
and derived data. All DataConsumers access data via this interface using
a DataAccessMap. The DataAccessMap stores information on the kind of
data, their location in the SoMultiDataNode and the type of virtual array
used. (see section 4.4.1 on page 77)

– SoBaseGrid
The Grid node stores topology information for the grid as well as the lo-
cation of the vertex data and additional data, if available. The Grid node
also defines geometric primitives and grid iterators in order to abstract the
topology data of a grid. This approach provides a general interface for
accessing several grids.

∗ Geometric Primitives
In order to be able to use visualization algorithms on many different
girds an interface for geometric properties is used. This allows to im-
plement a certain algorithm only once and let it access all kinds of
known grids. The grids also need to implement this interface.
(see section 4.5.1 page 83)

∗ Grid Iterator
Due to the nature of many algorithms a list of iterators are introduced
to access the grids via geometric primitives. Naturally not all grids can
provide all iterators. Thus the number of grids used by one algorithm
is limited. (see section 4.5.2 page 83)
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4.1 Accessing Data
Using scene graphs allows two ways to access data in general. Either one node is linked
directly to the other node (1), in case these nodes want to exchange or share data, or
a dispatcher is used (2). The dispatcher collects requests and connects the the nodes
indirectly. In OpenInventor these two concepts are called:

1. Field connection

2. Action & Element

Two nodes can exchange data via field connections. Each node stores information
in a container referred to as field1 In order to share that information the field of one node
is to connected the other node. In the Open Inventor script file this is done by directly
connecting the fields of the nodes. The first prototype of the CashFlow framework was
based on this concept shown in figure 4.2. In order to create data based on existing
data so called SoEngine’s2 were used. The main disadvantage of SoEngine’s in general
is, that they are not part of the scene graph traversal. Thus SoEngine’s can not be
triggered like other SoNode’s can. The disadvantage of the field connection approach
is, that each node holding data has to be explicitly connected to each Data Consumer
node.

Figure 4.2: CashFlow old design: Mapper implemented as Engine. Replaced by "Action &
Element"–concept, because of the encountered limitations.

Relying on field connection only makes it very difficult to script the scene graph.
Due to the encountered limitations of the field connection approach (using SoNodes
& SoEngines) we decided to implement a second prototype. The second prototype of
CashFlow and therefore CashFlow release R1 is based on the Action & Element concept.

1for details on fields see [Wer93] and [Wer94] chapter 3
2see Coin3D SoEngine and [Wer94] chapter 6
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4.1.1 Action & Element
While the scene graph is traversed special attributes and parameters for the traversal
state are needed. These attributes are stored in so called Elements3. The traversal of
the scene graph itself is called an Action4. Actions are either triggered by events or
created repeatedly like the GLRender action responsible for rendering. Once an Action
is initialized, it creates the necessary Elements needed. These Elements can be accessed
by all Nodes5, that are touched during the scene graph traversal.

Using this design pattern Nodes can exchange data without an explicit field con-
nection. Nodes can either alter properties inside the Elements or use the Elements to
exchange data. One important thing to know is, that once the action is terminated it de-
stroys all created elements. Thus all CashFlow nodes have to register to their Elements
each time the scene graph is traversed.

Figure 4.3: CashFlow: Accessing data. Left – to – right traversal order. Used nodes are:
Separator node(S), MultiData node(D), DataAccess node(A), Grid node(G), Loader node(L) and Render
node(R).

Figure 4.3 shows how data is inserted from a Loader node and accessed by a Render
node. The Loader node (4) inserts data from storage into the MultiData node (1),
creates a suitable DataAccessMap inside the DataAccess node (2) and updates the grid
information in the GridNode (3). Afterwards the Render node (5) reads data from the
MultiData node (1) using the DataAccess node (2) and uses the Grid node (3) to render
the data. This image also shows one general assumption being made for scene graphs,
which is the left–to–right order of nodes. The node being most left is traversed first
and the node being most right is visited at last in the traversal.

3see Coin3d SoElement
4see Coin3d SoAction, SoGLRenderAction
5see Coin3d SoNode
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4.1.2 SoElements in CashFlow
One of the core concepts of the CashFlow framework is the use of Elements to ex-
change data between nodes using direct and indirect linking of nodes. The Elements
created for the CashFlow framework are:

• SoMultiDataElement Used to access SoMultiDataNodes.

• SoDataAccessElement Used to access SoDataAccessNodes.

• SoGridElement Used to access SoBaseGrid node.

The scene graph in figure 4.4 shows how nodes and Elements interact. Let us
assume, that the traversal passed nodes (1)–(4) and that the RenderNode "R" is now
active. Note, that all Elements in figure 4.4 b) are sketched as round boxes in the upper
region of the image and all nodes are sketched as circles in the lower part. The Ren-
derNode accesses the GridElement (a) requesting the reference to the GridNode(3).
Using this reference from the GridElement(b) the RenderNode reads the data from
the GridNode (see figure 4.4a) ). The GridNode stores a unique key pointing to the
DataAccessNode(2). In order to get the reference to the DataAccessNode the Ren-
derNode uses the unique key (c) and connects to the DataAccessElement (D). The
DataAccessElement returns the reference to the DataAccessNode (d). The parame-
ters for the virtual array stored in the DataAccessMap also contain another unique
key (e) pointing to the actual data inside the MultiDataNode (f). Finally the RenderN-
ode connects to the MultiData Element*(D) and receives the desired reference to the
MultiDataNode (1).

The RenderNode accesses the MultiDataNode (1) via the DataAccessNode (2) and
renders the image using the topology information from the GridNode (3). This scene
graph in figure 4.4a) is the same as in figure 4.3.

Figure 4.4: Process flow diagram: Use of DataAccess Element (1) and Grid Element (2) to exchange data
between nodes. Render Node (3) reads information from Elements and access data (4) to create an
image (5). Based on visualization pipeline from fig 3.1. For UML sequence diagram see fig. 4.6.
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Details on CashFlow Elements

The demand for CashFlow Elements is, that they should be able to provide direct and
indirect linking. This problem was solved using unique keys for key–value pairs on
the one hand and a list storing the order of insertion for each nodes on the other hand.
Once a Node registers to its Element using a unique key it is easy to store the order of
insertion. The gain of that concept is, that a large number of nodes can be registered to
an Element at the same time and each Node can be addressed in two ways.

Using this new concept provides the basis for a dynamic data flow network.

4.2 UML Inheritance Diagram
The UML inheritance diagram in figure 4.5 shows the core classes of the CashFlow
visualization framework. A light–weight version of this figure was introduced in sec-
tion 3.5 on page 49 without the SoElements and the derived classes.

Figure 4.5: CashFlow UML Inheritance Diagram: based on the visualization pipeline from figure 3.1 on
page 38.
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4.2.1 UML Sequence Diagram of Data Access
The concept of SoAction & SoElement from OpenInventor [Coi00] is very important
to understand, because the dynamic data flow model of the CashFlow framework is
based on this concept. SoActions6 can either be created by events or being generated
repeatedly like the SoGLRender action. SoActions traverse the scene graph and use
SoElements7 to carry information from one node to another nodes. SoActions and
SoElements have a life cycle including a repeated creation and destruction. Once an
SoAction is initialized, it creates the utilized SoElements. The SoElements only exist
while the SoAction is not terminated. As soon as the SoAction is terminated it deletes
all its SoElements in a post–mortem step. All nodes touched by the traversal can access
the SoElements (see figure 4.4 on page 70).

The UML sequence diagram in figure 4.6 on page 73 shows the interaction between
scene graph nodes, one SoAction and three SoElements. The UML sequence diagram
can be divided into four phases:

1. Initialization Phase for SoElements

2. Register Phase where nodes register to their corresponding SoElements

3. Access Phase where nodes exchange data using the SoElements as dispatchers.

4. Deallocation Phase where the SoElements are destroyed during the post–mortem
step of the SoAction.

When using a larger scene graph like on page 51 in figure 3.10 phase 2) and phase 3)
are passed through several times. The scene graph used for the UML sequence diagram
in figure 4.6 consists of the following nodes.

GridNode → DataAccess Node → MultiData Node → Render Node

The SoAction creates [ init ] the three new Elements Grid Element, DataAccess Ele-
ment and MultiData Element. The initialization phase is now finished. The next step
is traversing the scene graph. The Action calls the method [ doAction ] for each node
that is touched by the traversal. In our simple example all nodes are effected by the
traversal, since no SoSwitch nodes are used in the scene graph.

The three nodes GridNode, DataAccessNode and MultiDataNode register them-
selves to their corresponding Elements [ register(this) ]. The GridNode stores a unique
key pointing to at least one DataAccessNode. The DataAccessNode holds several
DataAccessMaps , which define virtual arrays in the MultiDataNodes. Last node in tra-
versal order is the RenderNode. It queries the Grid Element for the current GridNode
[ getGrid ] and reads the information from the GridNode [ getGrid ]. Based on that in-
formation from the GridNode the RenderNode requests the required DataAccessNode
from the DataAccess Element [ getGrid ]. The DataAccessNode links to a Multi-
DataNode via the MultiData Element [ getData ]. Finally the RenderNode is able to
generate the image [ render ]. In the last phase the Action is terminated and removes
its Elements [ destroy ], while all nodes await the next scene graph traversal.

6for details on SoAction see Coin3D[Coi00]
7for details on SoElements see Coin3D[Coi00]
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Figure 4.6: CashFlow UML Sequence Diagram: Collection of virtual array types.
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4.3 SoMultiDataNode

Figure 4.7: CashFlow Data Flow Model - MultiData node: Accessing virtual array using the attributes
offset, inc, length, label and data type (not shown)

The purpose of the MultiData node was already mentioned in section 3.6 on
page 51. This section focuses on the kind of data stored in this node.

• Raw Data
This is data on permanent storage created by numerical simulations like

– computational fluid dynamics (CFD) systems or

– finite element methods (FEM).

Also a lot of medical units produce reasonable data like

– computer tomography (CT) or

– magnetic resonance imaging – tomography (MRI)(MRT)(MR) and

– positron emission tomography (PET). PET data is very similar to FEM
data, because both create 3x3 tensors as output.

• Intermediate / Process / Derived Data
Derived or intermediate data is generated by most algorithms. Often it is useful
to store that data before it is processed or rendered directly. The most frequently
derived data in scientific visualization are:

– gradient, often used instead of the normal vector

– stream lines

– iso surfaces

The reason for storing that information is:

– reuse instead of recalculate
Some information like gradient would otherwise be calculated again by
different algorithms.
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– expensive to compute
Most derived data are expensive to compute, like stream lines for instance,
especially on curvilinear–linear and unstructured grids. The placement of
new seed points using existing streamlines is one own field.

– base for other algorithms
Especially iso–surfaces can create new geometry as input for a large set of
algorithms.

• Render Data
When dealing with huge data sets a lot of techniques are used to speed up ren-
dering.

– View frustum culling
In large scenes only a small visible part is selected and rendered.

– Portals and cells
Scenes can sometimes be divided into cells connected by portals. Only
visible cells are rendered.

– Level of Details (LOD)
Objects can be rendered with different amount of details depending on their
size in screen space and on the distance between the object and the camera.
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4.3.1 SoMultiDataNode – File Format
SoMultiDataNode iv–file

#Inventor V2.0 ascii

SoMultiDataNode {
fields [SoSFEnum mode,

SoSFString keyData,
SoSFString label,
SoMFInt32 int32Data,
SoMFString stringData,
SoMFFloat floatData,
SoMFVec2f vec2fData,
SoMFVec3f vec3fData,
SoMFColor colorData ]

mode ADD
# values (NONE, ADD, SET, CLEAR, LIST)

keyData "my_unique_MultiDataKey"
# value: unique absolute key ( any string )

label "myRaw_data"
int32Data [ ]
stringData [ ]
floatData [ ]
vec2fData [ ]
vec3fData [ ]
colorData [ ]

}

CashFlow iv–file

4.4 SoDataAccessNode
This node enables the user to define virtual arrays and link them to any Data Consumer
node without copying the data in memory. It is essential for scripting to be able to
define the virtual arrays in the script file. The functionality can be compared to a
filter selecting parts of the data at runtime. This class is used to separate the raw data,
stored in arrays, forming an interface to data. This separation allows the user to crunch
different values stored in memory in various ways. The three different types of virtual
arrays in CashFlow are Single Block Array (1), Multiple Block Array (2) and Random
Block Array (3) as shown in figure 4.9 below. The virtual arrays were introduced in
detail in section 3.4 on page 46.
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Figure 4.8: SoDataAccessNode Virtual Array Types: Collection of virtual array types.

All pieces of information, that are required to handle the virtual array properly, are
stored in a data structure named SbDataAccessMap. Data Consumer nodes access
the raw data stored in the SoMultiDataNode via a virtual array iterator, which was
constructed from the SbDataAccessMap. One SoDataAccessNode can store several
SbDataAccessMap.

4.4.1 SbDataAccessMap

Figure 4.9: SoDataAccessNode Virtual Multiple Block Array: Accessing virtual array using the attributes
offset, length, inc and repeat.

The SbDataAccessMap consists of the following attributes, which are also shown
in figure 4.8 on page 77

• mode
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This attribute handles how this SbDataAccessMap is registered to the SoDataAc-
cessElement. The possible values are:

NONE (default)
this SbDataAccessMap is not registered to the SoDataAccessElement.

ADD
The SbDataAccessMap is added to the SoDataAccessElement. If the key
already exists the SoDataAccessElement throws a warning and ignores this
SbDataAccessMap.

SET
The SbDataAccessMap is added to the SoDataAccessElement. If the key
already exists it is replaced.

CLEAR
This attribute removes the key from the SoDataAccessElement, if the key
exists. Note, that all other parameters of this SbDataAccessMap are ig-
nored.

CLEAR_ALL
This attribute removes all entries from the SoDataAccessElement. Note,
that all other parameters of this SbDataAccessMap are ignored.

LIST
This attribute prints all SbDataAccessMap’s from the SoDataAccessEle-
ment. Note, that all other parameters of this SbDataAccessMap are ig-
nored.

• type
Type of data from a list containing int,float,double,string

• arrayType
Defines which type of virtual array the DataAccessMap defines. The three pos-
sible values are:

SINGLE (default) Single block virtual array

MULTI Multiple block virtual array

RANDOM Random block virtual array

• key
name of this data access map. Should be unique during traversal otherwise the
SoDataAccessElement will report this as an error.

• keyData
name of target MultiData node.

• label
This field is optional and can be used for visual programming and debugging.
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• offset
from the start of the array to the point of the first item.

• length
number of items, that can be accessed from the first until the last item in the
virtual array (see figure 4.8). Note, that the length does not show the amount of
memory used.

� repeat
Attribute of Multiple Block array only. Number of items read per block (see
figure 4.8 and figure 4.10).

� inc
Attribute of Multiple Block array only. Number of item per block.

⊗
lookupTable
Attribute of Random Block array only. Defines the mapping of real array index
to virtual array index (see Random Block in figure 4.8).

Figure 4.10: SbDataAccessMap Multiple Block Details: comparison of two virtual multiple block arrays.

Figure 4.10 on page 79 shows a comparison of two DataAccessMap’s interpreting
the same data in two ways. The upper DataAccessMap labeled "Zone 0" reads X,Y,Z
and a scalar value s in a row and repeats that n–times. The lower DataAccessMap
labeled "Zone A" reads n–times value X followed by n–times value Y, value Z and the
scalar value s. Note, that the data is not duplicated only the virtual arrays are defined
differently.
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4.4.2 Virtual Array Iterator using SoDataAccessNode
To simplify the use of SoDataAccessNode an iterator enclosures the
SoDataAccessNode. The iterator calculates the real index in the array based on the
index of the virtual array. The iterator provides the following methods for easy use.

• void begin()
Resets the iterator to the first element in the virtual array.

• void end()
Resets the iterator to the last accessible element in the virtual array.

• bool isOngoing()
Returns TRUE as long as the end or the begin of the virtual array is not reached.

• void copy( Iterator )
Duplicates all values of the passed iterator (see Table 4.1).

• int getVirtualIndex()
Returns the current virtual index.

• void setVirtualIndex(int virtualIndex)
Set the current virtual index and forces to recomputed the real index.

• int idx()
Returns the current index in the real array based on the current virtual index.

• ++ operator
Increases the current virtual index.

Table 4.1 shows which combinations of virtual arrays can be handled by the
void copy ( Iterator ).

from SINGLE MULTI RANDOM
to SINGLE √ √

to MULTI √
*)

√

to RANDOM √

Table 4.1: CashFlow Virtual Array Iterator: possible mapping of Iterator’s. *) SINGLE to MULTI should
be avoided because of low performance.

80



Implementation 4.4. SoDataAccessNode

4.4.3 SoDataAccessNode – File Format
SoDataAccessNode iv–file

#Inventor V2.0 ascii

SoDataAccessNode {
fields [SoMFEnum mode,

SoMFEnum type,
SoMFEnum arrayType,
SoMFString key,
SoMFString keyData,
SoMFString label,
SoMFInt32 offset,
SoMFInt32 length,
SoMFInt32 repeat,
SoMFInt32 inc,
SoMFInt32 lookupTable ]

mode [ ADD ]
# values (NONE, ADD, SET, CLEAR,
# CLEAR_ALL, LIST)

type [ T_FLOAT ]
# values (T_NONE, T_STRING, T_INT32,
# T_FLOAT, T_COLOR, T_VEC2F,
# T_VEC3F, T_VEC4F, T_VEC9F)

arrayType [ SINGLE ]
# values (SINGLE, MULTI, RANDOM)

key [ "my_unique_DataAccessKey" ]
# unique key

keyData [ "my_MultiDataKey" ]
# points to SoMultiDataNode
# value: absolute key (any string)
# or relative key @(integer)

label [ "my_label" ] # optional
offset [ 0 ]
length [ 0 ]

inc [ ] # for MultiBlock array
repeat [ ] # for MultiBlock array
lookupTable [ ] # for RandomBlock array

}

CashFlow iv–file
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4.5 Implementation of SoBaseGrid
One challenge in scientific visualization is, that there is a large amount of grids avail-
able and in use (see section 3.8 on page 59). If each algorithm has to be implemented
on each grid or be adapted to the grid, the number of classes needed derived from the
general algorithms would be huge. One other disadvantage of this approach gets ob-
vious, if a new grid is introduced to the framework. In order to be able to render and
process the grid, all existing algorithms have to be derived to be able to access this new
grid. This approach was used in MeshVis [Mes] by TGS [TGS] and is discussed in
detail in appendix A on page 120.

Our approach is to abstract the pieces of information from the grids needed by the
algorithm. The algorithm communicates with the grid only via this interface. Once a
new grid is introduced to the system, the grid only has to provide the topology data and
overload the iterators. Also if a new algorithm is implemented it can access all grids
via this abstraction layer. This concept is similar to the approach of the Field Model
library [Mor03] and was also published at IEEE Vis2001 Tutorial 1 [Tut01].

The information required by the objects for accessing the grid include:

• Geometric Primitives
There are four types of geometric primitives embedded in 3D.

– Vertex zero dimensional

– Edge one dimensional

– Face two dimensional

– Cell three dimensional

This concept is similar to the one introduced in section 2.1.4 and figure 2.9 on
page 2.9 published by [CUL89] as well as B-rep lists by [Sam90].

• Topology Data
Connectivity information can be queried and is one way to provide all data
needed by an algorithm.

– per Edge: Information on the faces sharing this edge.

– per Face Information on adjacent faces.neighborhood

– per Cell Information on adjacent cells.

• Grid Iterator
These iterators grant access to each cell or each face etcetera.
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4.5.1 Geometric Primitives
In order to separate the visualization algorithms from the grid representation we have
chosen to use geometric primitives in combination with grid iterators (see
section 4.5.2). This approach was also introduced at IEEE Vis2001 tutorial 1 [Tut01]
by Patrick Moran, who created the Field Model library [Mor03] implemented as a
C++ template library using partial template specialization. Moran also published a
paper on the field model library [Mor01].

Primitives describe basic geometric properties. This concept is also known as
boundary representation (B-rep) [Sam90].

• Vertex [dim=0]
A point in 3D.

• Edge [dim=1]
An edge is a connection of two vertices.

• Face [dim=2]
A face is created by at least three Edges and three vertices.

• Cell [dim=3]
A cell is a closed volumetric object, that can be described as a set of faces.

4.5.2 Grid Iterators
A lot of algorithms traverse geometric primitives like the marching cubes
algorithm[LC87]. Another example are cutting planes removing parts of a geometry.
These algorithms can easily be implemented by traversing the grid and checking the
distance to the cutting plane. One fundamental distinction when talking about grids is
between regular grids and non-regular grids. Details will be provided in 2) and 3). To
suite the needs of a large groups of algorithms we selected the following grid iterators.

1. General Iterator
Iterators for Regular and Non-Regular Grids. Return all primitives of one kind,
that is part of the grid. These iterators base on properties that all used grids have
in common.

2. Regular Grid Iterator
The most important property all regular grids have in common is, that the hole
regular grids can be stored in one array. Information on adjacency is implicit.
Only the dimensions of the grid must be known.

3. Non–Regular Grid Iterator
This grid type provides no implicit adjacency information, but holds a separate
list of adjacent primitives. Sometimes even this list has to be computed from
the raw data. Based on that data structure and the properties of that grids useful
iterators are chosen.

Remark: There is a difference between non-regular grids and irregular grids.
For instance the so called α-grids addressed by [Sad99] are regular grids with
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missing cells. Based on the definition of regular grids 2) α-girds are non-regular
grids, but are not irregular grids.

4.5.3 Collection of SoBaseGrid Nodes
The following pages show a hierarchy of grid nodes including a brief description of
their parameters.

Figure 4.11: Polygonal Triangle grid (a) and polygonal Quad grid (b)

Figure 4.12: Rectangular 2D gird (a) and rectilinear 2D grid (b)
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Figure 4.13: Cylindric 2D wire–frame grid embedded in 3D.

Figure 4.14: Regular polar grid (a) & non–regular polar grid (b) in 2D.

Figure 4.15: Visualization of tetrahedral grid. Surface of space shuttle and a cutting plane are shown.
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Figure 4.16: Voxel grid in 3D

Figure 4.17: Cross section of cylindric grid in 3D

Figure 4.18: Cross section of spherical grid in 3D
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4.5.4 SoStructuredGrid2D – File Format

SoStructuredGrid2D iv–file

#Inventor V2.0 ascii

SoStructuredGrid {
fields [SoSFEnum mode,

SoSFString label,
SoSFString grid_Key,
SoSFString dataAccess_Key,
SoSFString gridDim_Key ]

label "myGrid" #optional
mode ADD

#values (NONE, ADD, SET, CLEAR, LIST)

grid_Key "myGrid_from_Loader"
#unique key for this grid

dataAccess_Key "myVirtualArray_from_Loader"
# points to a DataAccessNode
# with raw-data

gridDim_Key "myVirtualArray_from_Loader"
# points to DataAccessNode
# with dimension of the grid

}

CashFlow iv–file
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4.6 Implementation of Data Consumers
The Data Consumer node is an abstract class unify all nodes reading or writing data in
the CashFlow framework. The remaining part of this chapter resumes the three derived
classes of Data Consumer node and closes with a class hierarchy of CashFlow nodes
on page 97.

4.6.1 SoLoaderNode

Figure 4.19: CashFlow: Data flow model - Loader node

One minor part is to be able to load several binary data files. The SoLoaderNode
is the base class for binary loaders. It provides useful methods like conversions from
little endian to big endian and vice versa as well as methods for checking the size of a
file. This is important, because a lot of binary data files can only be loaded correctly
if the header information in the file is crosschecked with the file size. Based on this
pieces of information a assumption is made whether the binary files byte order is in big
endian8 in little endian9 byte order.

8big endian byte order: the lowest address in memory is stored in high-order byte, the highest address in
memory is stored in the low-order byte (MAC,SGI).

9little endian byte order: the lowest address in memory is stored in low-order byte, the highest address in
memory is stored in the high-order byte (intel,PC).
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SoLoader – File Format

This is an example for a binary loader for CFD – data sets. This loader was used for
figure 5.12 on page 109 and figure 3.8 on page 48. The behavior of this node was
described in section 4.1.1 on page 69. The fields

grid_AccessKey, dataAccess_AccessKey, multiData_AccessKey
point to a SoBaseGrid node, a SoDataAccessNode and a SoMultiDataNode.

SoLoaderCFD_Plot3DNode iv–file

#Inventor V2.0 ascii

SoLoaderCFD_Plot3DNode {
fields [SoSFBool enableSwapByteOrder,

SoSFBool readFile_Grid,
SoSFString fileName_Grid,
SoSFString grid_Key,
SoSFString dataAccess_Key,
SoSFString multiData_Key ]

fileName_Grid "myCFD_dataset.grid"

readFile_Grid TRUE
enableSwapByteOrder TRUE

grid_Key "myGrid_from_Loader"
dataAccess_Key "myVirtualArray_from_Loader"
multiData_Key "myData_fromLoader"

}

CashFlow iv–file
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Implementation 4.6. Implementation of Data Consumers

4.6.2 SoMapperNode

Figure 4.20: DataAccessMap: Accessing virtual array using the attributes offset, inc, length, label and data
type (not shown)

SoMapperNode is one of the core parts, containing the visualization algorithms.
Both of them can use several input streams and generate from one to many output
streams This is also known as fan–in and fan–out.

The process flow between mapper and renderer gets more obvious in figure 3.15 on
page 64.

The basic data access introduced in the UML class hierarchy (figure 4.5 on page 71)
only shows an indirect way to access data from a DataComsumer. The UML sequence
diagram in the next section 4.2.1 will provide more detailed information on that.

the most important representatives are:

• Texture Generation

• Streamline and Particle Tracer

• iso–surface extraction

SoMapperNode - File Format

This sample file generates a parameterization similar to the one shown in figure 5.9
and figure 5.10 on page 108. The field lookup_kind defines one of the three kinds of
mappings:

0 .... constant mapping

All values in the interval are mapped to one constant output value. In our exam-
ple the input interval10 is [7..9] and the constant output value is 4.

1 .... linear mapping

All values in the interval are mapped linear to the output value. In our example
the input interval is [3..7). Since the output interval [6..4) decreases while the
input interval increases an inverse linear mapping is achieve.

10 Definition of intervals: brackets [ ] define a closed interval while ( ) define an opened interval.
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2 .... cubic mapping

All values in the interval are mapped cubical to the output value using a Hermit
cubic interpolation. The slope at the begin and the slope at the end of the interval
is defined in the field lookup_value_in_spline, which is ignored if no cubic map-
ping is used. The values in field lookup_value_in_spline accord to arctan(α)
with α as the angle of the tangent.

In our example the input interval for the cubic mapping is [0..3), the output
interval is [1..6) and the slope are 0 at the first bound and −1 at the second
bound. The slope value 0 results in a horizontal tangent, while the slope value
of −1 leads to an tangent declined with is −45.

SoCubicDataMapperNode iv–file

#Inventor V2.0 ascii

SoCubicDataMapperNode {
fields [SoSFString scalarIn_Key,

SoSFString scalarOut_Key,
SoMFInt32 lookup_value_in,
SoMFInt32 lookup_value_out,
SoMFInt32 lookup_kind,
SoMFInt32 lookup_value_in_spline ]

scalarIn_Key "myVirtualArray_from_Loader"
scalarOut_Key "myVirtualArray_after_Mapping"

lookup_value_in [ 0 3 7 9 ]
lookup_value_out [ 1 6 4 4 ]
lookup_kind [ 2 1 0 ]

# 0... constant 1...linear 2...cubic

lookup_value_in_spline [ 0 -1 ]
# only used if lookup_kind is "2"

}

CashFlow iv–file
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Implementation 4.6. Implementation of Data Consumers

4.6.3 SoRenderNode

Figure 4.21: CashFlow data flow model: Render node

This node can handel several input streams. The major difference in comparison
to the SoCfMapperNode and SoCfLoaderNode is, that it creates only OpenGL calls.

SoRenderNode - File Format

This SoPointRenderNode only needs a unique key pointing to a SoDataAccessNode,
since the topology of a point cloud is not relevant in this example. In figure 3.8 on
page 48 several SoPointRenderNodes are used in combination with various
SoDataAccessNodes.

SoPointRenderNode iv–file

#Inventor V2.0 ascii

SoPointRenderNode {
fields [SoSFString dataAccess_Key ]

dataAccess_Key [ "my_unique_DataAccessKey" ]
# points to SoDataAccessNode
#
# value: absolute key ( any string )
# or relative key @( integer )

}

CashFlow iv–file
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4.7 CashFlow Class Hierarchy
This is a collection of the most important classes of CashFlow. Some classes use SoCf *
as prefix, which is an abbreviation for Scene graph Object Cashflow *.

Indention shows derived classes.

SoElement & SoAction

SoElement (Coin3D)
SoCfMultiDataElement
SoCfDataAccessElement
SoCfGridElement
SoCfUpdataElement

SoAction (Coin3D)
SoCfUpdateAction

Nodes used for data storage & data access

SoNode (Coin3D)
SoMultiDataNode
SoDataAccessNode
SoBaseGrid (see page 98)

Virtual Array Iterator

SbDataAccessIterator
SbDataAccessMultipleBlockIterator
SbDataAccessRandomBlockIterator
SbDataAccessSingleBlockIterator

SbDataAccessMap
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Implementation 4.7. CashFlow Class Hierarchy

4.7.1 SoBaseGrid Nodes
SoNode (Coin3D)

SoBaseGrid
SoStructuredGrid

SoGrid1D
SoSpacedEvenGrid1D
SoSpacedNonevenGrid1D

SoStructuredGrid2D
SoCurvilinearGrid2D
SoRectangularGrid2D

SoRegularSpacedRectangularGrid2D
SoIrregularSpacedRectangularGrid2D

SoRadialGrid2D
SoCylindricGrid2D

SoRegularSpacedCylindricalGrid2D
SoIrregularSpacedCylindricalGrid2D

SoPolarGrid2D
SoRegularSpacedPolarGrid2D
SoIrregularSpacedPolarGrid2D

SoSphericalGrid2D
SoRegularSpacedSphericalGrid2D
SoIrregularSpacedSphericalGrid2D

SoStructuredGrid3D
SoCurvilinearGrid3D
SoRectangularGrid3D

SoRegularSpacedRectangularGrid3D
SoIrregularSpacedRectangularGrid3D

SoCylindricGrid3D
SoRegularSpacedCylindricalGrid3D
SoIrregularSpacedCylindricalGrid3D

SoSphericalGrid3D
SoRegularSpacedSphericalGrid3D
SoIrregularSpacedSphericalGrid3D

SoUnstructuredGrid
SoUnstructuredGrid2D

SoTriangleGrid2D
SoQuadGrid2D

SoUnstructuredGrid3D
SoTetrahedralGrid3D
SoVoxelGrid3D
SoHybridGrid3D

Indention shows derived classes.
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4.7.2 SoCfDataConsumer Nodes
SoNode (Coin3D)

SoCfDataConsumer
SoCfMapperNode
SoCfRenderNode
SoCfLoaderNode

4.7.3 SoCfMapperNode
SoCfDataConsumer

SoCfMapperNode
SoColorMapperNode

SoColorScalarMapperNode
SoColorVectorMapperNode

SoDataMapperNode
SoCubicDataMapperNode

SoGeometryMapperNode
SoCarpetPlotMapperNode

SoCarpetPlotScalarMapperNode
SoCarpetPlotVectorMapperNode

SoCuttingMapperNode
SoCuttingPlaneMapperNode
SoCuttingSurfaceMapperNode

SoIsoValueMapperNode
SoIsoLineMapperNode
SoIsoSurfaceMapperNode

SoStreamlineMapperNode
SoStreamlineSimpleMapperNode
SoStreamlineVectorMapperNode

SoStreamlineGeneratorNode

Indention shows derived classes.
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4.7.4 SoCfRenderNode
SoCfDataConsumer

SoCfRenderNode
SoCellRenderNode
SoGlyphRenderNode

SoGlyphLineRenderNode
SoGlyphNormalizedRenderNode

SoOctreeRenderNode
SoPointRenderNode

SoAdvancedPointRenderNode
SoPolygonRenderNode
SoStreamlineRenderNode

SoIlluminatedStreamlineRenderNode
SoStreamBoxRenderNode
SoStreamGlyphRenderNode
SoStreamlineSimpleRenderNode
SoStreamRibbonRenderNode
SoStreamTubeRenderNode

SoStructuredGridRenderNode
SoWireframeRenderNode

4.7.5 SoCfLoaderNode
SoCfDataConsumer

SoCfLoaderNode
SoLoaderCFD_Plot3DNode
SoLoaderGridDatNode
SoLoaderCTNode

Indention shows derived classes.
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Chapter 5

Results

In the previous chapters the underlying concepts of CashFlow were introduced.
Our experience shows that the full power of the scene graph in combination with

scientific visualization can only be unleashed using our proposed triumvirate of Multi-
Data, DataAccess and Grid node.

5.1 Combining MultiData Node & DataAccess Node
To show the full potential of the MultiData node and the DataAccess node we want to
compare four possibilities to combine these nodes. The visual result remains the same
for all four possibilities and is shown in figure 5.1. The three images in figure 5.1 show
the same set of periodic random data mapped to three different coordinate systems. In
the left image the data is mapped to a spherical coordinate system, the middle image
shows a 2D polar coordinate system and a Cartesian coordinate system is used in the
right image. In this simple visualization each grid is stored separately, generated from
the same initial data using the same color map. The color map is also generated from
the initial data.

Figure 5.1: CashFlow basic example: A planar surface rendered using spherical (left), polar (middle) and
Cartesian coordinate system (right). The color map is generated from periodic random data (20x20 values)
and is applied to all three grids. Figures 5.3 – 5.6 show possible simplified scene graphs generating this
visualization. The complete corresponding scene graph to this image is show in figure 5.7 (page 106) and
figure 5.8 shows the corresponding process flow diagram.
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The four combinations of MultiData nodes and DataAccess nodes shown in
figure 5.3 – 5.6 on the previous page and in figure 5.2 on page 104 are:

1. Smallest scene graph: (see figure 5.3 on page 105)
The first of four scene graph consists of one MultiData node (D)[1], one DataAc-
cess node (A)[2] and three Render nodes (R)[3,4,5]. The three Render node
[3,4,5] visualize the spherical grid, the polar and Cartesian grid shown in fig-
ure 5.1 (page 101). In this simplified scene graph the traversal starts at the Sep-
arator node (S). The MultiData node [1] and the DataAccess node [2] register
themselves to the elements. The Render nodes [3,4,5] request the reference to
the data via the elements.

It is assumed, that the MultiData node [1] and the DataAccess node [2] contain
the data for the three grids. For details on how that data is inserted into the scene
graph read the next section 5.2, please.

The process flow diagram in figure 5.3 (right image) shows, how the Render
nodes [3,4,5] query for the DataAccess map’s inside the DataAccess node [2].
The DataAccess map contains detailed information on the virtual array (see sec-
tion 3.4) and a link to the MultiData node [1].

This is a simple example for a basic scene graph and its process flow diagram. It
shows that though the nodes are processed by the scene graph in order [1] to [5] the
process flow looks different. Since the render nodes request for the data is passed to
the DataAccess node first and afterwards to the MultiData node the process flow is

[3] → [2] → [1]

for the first Render node. This is a basic concept of CashFlow. A DataConsumer node
requests data from the DataAccess node receiving a DataAccess map that links to a
MultiData node. Due to the constraint, that no new nodes shall be inserted into the
scene graph during runtime by CashFlow nodes, the process flow runs reverse to the
scene graph traversal for the previous mentioned nodes.

Scene graph traversal:

[MultiData] → [DataAccess] → [DataConsumer]
or

[DataAccess] → [MultiData] → [DataConsumer]

Process flow:

[DataConsumer] → [DataAccess] → (DataAccess map) → [MultiData]

One important simplification used in this section and in figure 5.3 – 5.6 is, that no
Grid node was used. The intention to proceed like this is to keep the focus on the main
topic of that section, namely the abilities of MultiData nodes and DataAccess nodes.
The complete scene graph corresponding to the visualization in figure 5.1 (page 101)
is more complex, because it requires an additional Grid node and a Mapper node. The
Grid node will be added to the scene graph and to the process flow in the next section
(see section 5.2 on page 106).
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2. Several MultiData nodes: (see figure 5.4 on page 105)
Figure 5.4 shows the possibility, that several MultiData nodes [1][2][3] are
activated from one DataAccess node [4] via the DataAccess map’s inside the
DataAccess node. Note, that this is a very important example, because the
MultiData nodes can also be spread across the scene graph. The only constraint
is, that the nodes must be traversed before the Render node is touched. The
MultiData node and the DataAccess node register themselves to their
corresponding elements during scene graph traversal. So obviously the Render
node or any DataConsumer node has to be in traversal order after both
corresponding MultiData and DataAccess node had registered themselves.

The process flow diagram shows, that the Render nodes [5][6][7] all request
data from the same DataAccess node [4]. Even so all of them use the same
DataAccess node [4] the requested DataAccess map’s link them to three different
MultiData nodes [1][2][3].

The importance of this ability get’s more evident if you remember, that the tra-
versal order of nodes may guide their linking (see section 3.3 on page 43 for
details). This means that changing two MultiData nodes for example node [2]
and node [3] will cause the Render node [6] to visualize the data from node [3]
instead of node [2] and vice versa Render node [7] previously linked to node
[3] would be linked to node [2] instead. To accomplish this we have to rely on
indirect linking via Elements using relative address keys. A relative address key
refers to the order of insertion of MultiData and DataAccess nodes while scene
graph traversal. Using this concept we can link between the MultiData nodes
[1][2][3] and the Rendering nodes [5][6][7] taking their position in the traversal
order into account.

This concept can also be applied to DataAccess nodes as shown in figure 5.5.

3. Several DataAccess nodes: (see figure 5.5 on page 105)
This example is similar to the first one in figure 5.3, because all three Render
nodes [5][6][7] request DataAccess map’s(grey) pointing to one MultiData node
[1]. The only difference is, that each Render node accesses its own DataAccess
node.

As already mentioned in the previous section the use of indirect linking creates
new options.

4. Largest scene graph: (see figure 5.6 on page 105)
The last example shows three independent process pipelines consisting of a Ren-
der node, a DataAccess node and a MultiData node.

pipeline A: [7] → [4] → [1]
pipeline B: [8] → [5] → [2]
pipeline C: [9] → [6] → [3]

The scene graph consists of three MultiData nodes[1][2][3], three DataAccess
nodes [4][5][6] and three Render nodes. Besides the earlier mentioned concepts
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and strategies it is important to keep in mind, that only one constraint for each
Render node has to be satisfied with is:

In traversal order the DataConsumer node must be after the corresponding
MultiData and DataAccess node.

Following that rule we can change the position of the nodes [1]–[6] as long as
they are in front of the Render nodes [7][8][9]. When using absolute address
keys changing the position of nodes in the scene graph does not influence the
result, since the Render nodes link to the DataAccess nodes directly. This direct
linking of nodes is comparable to a field connection and is accomplished via
Elements and unique keys used as absolute address keys.

Otherwise when using relative address keys the ordering of nodes [1]–[6] ef-
fects the linking of Render nodes and DataAccess nodes (for details on indirect
references see section 3.3 on page 43).

Figure 5.2: CashFlow Scene Graph Example Render Node reads multiple Input (left): Three MultiData(D),
one DataAccess(A) and a Render(R) node. Process flow (right): The Render node [5] requires multiple
data input. It is linked via the DataAccess node [4] to the embedded DataAccess map(grey). Each
DataAccess map(grey) refers to a separate MultiData nodes [1][2][3]. Note, that the MultiData nodes
[1-3] and the DataAccess node [4] may be somewhere else in the scene graph.

5. Render node linked to several MultiData nodes: (see figure 5.2)
All other examples show one Render node linked to one MultiData node. This
example shows a Render node requesting three MultiData nodes. An example
for such a rendering algorithm is an StreamRibbon Renderer. The first MultiData
node stores the interpolation points of the streamline, the second node stores the
orientation per interpolation point and the third node provides a color–map for
the Ribbon mapped to a scalar value.
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Figure 5.3: Simple CashFlow Scene Graph Example (left): One MultiData(D), one DataAccess(A) and a
Render(R) node. The root node is a Separator (S). Process flow (right): Each Render node [3][4][5] uses
its own DataAccess map(grey) inside one DataAccess node [2] referring to one MultiData node [1]. Figure
5.1 shows a possible result of this scene graph were each Render node generates one of the three grids.

Figure 5.4: CashFlow Scene Graph Example with several DataAccess nodes (left): Three MultiData(D),
one DataAccess(A) and a Render(R) node. Process flow (right): Each Render node [5][6][7] uses its own
DataAccess map(grey) inside one DataAccess node [4] referring to several MultiData nodes [1][2][3].
This scene graph may produce the same output as scene graph from figure 5.3.

Figure 5.5: CashFlow Scene Graph Example with several MultiData nodes (left): One MultiData(D), three
DataAccess(A) and a Render(R) node. Process flow (right): Each Render node [5][6][7] links to a
separate DataAccess node [2][3][4] and accesses the DataAccess map(grey) inside. All DataAccess map’s
(grey) refer to the same MultiData nodes [1]. Although this process flow differs from figure 5.3 and
figure 5.4 the visual result may stay the same.

Figure 5.6: CashFlow Scene Graph Example with several MultiData nodes (left): Three MultiData(D),
three DataAccess(A) and a Render(R) node. Process flow (right): Each Render node [7][8][9] is bound to
a separate DataAccess node [4][5][6] using the embedded DataAccess map(grey). Each DataAccess
map(grey) refers to a separate MultiData nodes [1][2][3]. Although the four introduced scene graphs look
quite different, they may produce the same visual results, because of the DataAccess node interface.

105



Results 5.2. CashFlow Scene Graph Examples

5.2 CashFlow Scene Graph Examples
The complete CashFlow scene graph shown in figure 5.7 consists of (1) a loader import-
ing data (2) a mapper creating the three girds and a renderer(3). This process flow was
also introduced as the CashFlow Visualization Pipeline (see chapter 3.1 on page 38).
Note, that figure 5.1 from page 101 can be produced be this scene graph.

Figure 5.7: Complete CashFlow Scene Graph: Consists of MultiData(D), DataAccess(A), Grid(G),
Mapper(M) and Render(R) node as well as root(R) and separator(S) node.
This scene graph corresponds to the visualization in figure 5.1 on page 101 and to the process flow diagram
in figure 5.8.

Figure 5.8: CashFlow Scene Graph – Process Flow: Consists of MultiData(D), DataAccess(A), Grid(G),
Mapper(M) and Render(R) node as well as Root(R) and Separator(S) node.
This process flow diagram corresponds to the scene graph in figure 5.7 and to the visualization in figure 5.7
on page 106.

Let’s take a closer look at the scene graph. The traversal starts at the root node
(R) descending to the first MultiData node [1] passing the Separator node (S). Node
[1] and the DataAccess node [2] register themselves to their corresponding elements
(not shown in figure 5.7) and traversal proceeds to the Loader node [3]. This Loader
node [3] imports data by adding a DataAccess map to the DataAccess node [2] and
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inserts the new data into MultiData node [1]. Again the process flow points into the
opposite direction to the scene graph traversal as sketched in figure 5.8. The traversal
of the scene graph is continued passing the second Separator node (S) and descending
to MultiData node [4]. The nodes [4][5][6] are only empty space holders registering to
their elements. Let’s switch back to the process flow diagram in figure 5.8. The Mapper
node [7] accesses the DataAccess node [2] and reads the data stored in node [1]. Using
that data the Mapper node generates the a spherical grid by inserting a new DataAccess
map to DataAccess node [5]. The generated DataAccess map points to node [4] were
the data is stored. Also the type of grid is stored in the Grid node [6]. Since a Grid
node can only store information for one grid we need three Grid nodes. The two other
mapper nodes proceed the same way.

Finally the traversal reaches the Render node [8]. Each Render node first requests
the grid data from DataAccess node [5] and receives a DataAccess map pointing to
MultiData node [4]. In figure 5.7 this is symbolized by the arrow, that starts at node
[4] passes node [5] and ends to node [8]. The Render node also needs the topology
information stored in the Grid node [6]. Same goes for the other Render nodes that are
linked to the other Grid nodes. The process flow diagram in figure 5.8 emphasizes this
procedure also. The color map is generated on–the–fly by the Render nodes. This
color map could also be created only once by another Mapper node, but this was
avoided to keep figure 5.7 as simple as possible.

Applied Visualization Techniques

After resuming the base concepts of CashFlow some more evolved visualizations are
discussed now in detail. We will extend the scene graph from figure 5.7 on page 106.
First we will create the color map only once and link all render nodes to it. Second we
will generate a height field from the raw data using another Mapper node and third we
will apply the color map to the height field. Figure 5.9 shows the resulting image in
top view while in figure 5.10 the scene is rendered in side view to emphasize the height
fields.

The bottom row consists of three planes in spherical, polar and Cartesian coordi-
nates with the color map generated from the sample values. The middle row shows the
same coordinate systems without the color map but with a height field from the same
data used from the color map. In the top row both height maps and color maps are
combined. due to the used color map low values are mapped to green, medium values
are mapped to yellow and high values are mapped to red.

In the last section we used a linear color mapping for regular grids in figure 5.10
and figure 5.9.

More examples with real data are presented in figure 5.11 on page 109. This is a
2D flow field passing a block moving from left to right. The used grid is a rectilinear
grid, which is very dense around the block. In figure 5.12 color maps are applied to
planes in 3D. The used data set is the space shuttle data set from NAS NASA 1. Color
is mapped to total energy.

1dataset from NASA at: http://www.nas.nasa.gov/Research/Datasets/data_sets.html [NAS05]
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Figure 5.9: CashFlow Cartesian, polar and spherical grids I (top view)

Figure 5.10: CashFlow Cartesian, polar and spherical grids II
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Figure 5.11: CashFlow Color map for 2D flow. Fluid flow from left to right. Color is mapped to pressure.

Figure 5.12: CashFlow Color Map in space shuttle data set. Color corresponds to total energy.
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5.3 Curvilinear Grid Visualization

Figure 5.13: CashFlow Curvilinear Grid Visualization: Blue lines visualize the radial components of the
cell while red lines show the axial components and their spacing. The most inner plane of the grid is shown
in yellow.

A lot of CFD data sets are defined on curvilinear grids. Several algorithms have
been published on fast rendering of curvilinear grids. Different to equally spaced
Cartesian grids and rectilinear grids the shape of a curvilinear grid is not obvious. Thus
visualizing the grid itself is an important topic as in figure 5.13 and figure 5.14.

Figure 5.13 shows a visualization of a hemisphere defined on a curvilinear grid.
The most inner layer of this grid is rendered as yellow surface. This is the external
tank of the space shuttle (see figure 5.16 on page 112). The high density of the inner
layers is illustrated with a red point–cloud surrounding the external tank in yellow.
Finally the most outer layer is visualized using radial concentric arches in blue and
axial components of the grid in red.

Figure 5.14 focus on the space shuttle and its curvilinear grid. The red concentric
lines define two planes perpendicular to the longitudinal axis.
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Figure 5.14: CashFlow Curvilinear Grid visualization II: Red lines show two concentric layers in the X–Y
plane of the grid. Blue lines visualize radial and axial components in the X–Z plane of the grid.

5.4 Streamlines in CashFlow
Several rendering style for Streamlines are implemented in CashFlow. They can be
divided into two groups:

• Simple Streamlines
They are based on several interpolation points, which are connected to form
the stream line. Generating simple streamlines the two interpolation points are
connected using lines, tubes or illuminated lines

– Simple Streamlines
– StreamTubes (see figure 5.15)

– Illuminated Streamlines (see figure 5.16)

• Oriented Streamlines
In addition to the number of interpolation points creating the streamline each
interpolation point defines a vector, indicating the vorticity of the flow. Using
that additional information leads to two new basic rendering styles:

– StreamRibbons
Two interpolation points are connected by a rectangle. The additional vec-
tor defined at each interpolation point is used to create that rectangle.

– StreamBoxes
The additional vector defines the orientation for a box, that is extruded
along the streamline. This is an extension to the StreamTubes style allow-
ing perception of vorticity of the flow along the streamline.
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Figure 5.15: CashFlow StreamTube rendering styles: (left) constant tube diameter using one color. (middle
left) constant tube diameter, scalar value mapped to color. (middle) same color map but tube diameter
correspond to scalar value. (middle right) smooth color blending and constant tube diameter. (right)
smooth color blending and varying tube diameter.

Figure 5.16: CashFlow Illuminated Streamlines. Space shuttle data set containing solid rocket booster in
green, external tank in blue and space shuttle in red. Visualization of three different curvilinear grids.
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5.5 Grid Iterator Examples
As proposed in section 4.5.2 on page 83 Grid Iterators can decouple the visualization
algorithm from the grid representation. The advantage of that approach is, that the
algorithm can be applied to several grids without modifications. Also a new type of
grid can be accessed by several algorithms by implementing the grid interface for the
new grid only. The disadvantage of that additional software layer is, that the execution
speed of the algorithms is decreased compared to algorithms using raw access to the
grids, taking properties of the grid into account.

Two examples, figure 5.17 and figure 5.18 shows the use of grid iterators. The first
image in figure 5.17 show the space shuttle data set rendered two times. The rear
yellow part was created using two cutting planes and the from green part shows the
inverse selection visualizing the rest of the plane. Note, that the data set is defined on
a curvilinear grid. The visualization was created by iterating over the grid.

The second example in figure 5.18 shows iso–volumes below a certain iso–value
rendered in red using the cuberille rendering style [LC85]. The image in the middle of
figure 5.18 shows the inverted selection from the above image in red. The lowest image
illustrates the inverted selection again using a wire–frame visualization combined with
a point–cloud rendering of all inner cells.

As future work we plan to port the marching cubes algorithm by [LC87] to Cash-
Flow creating a marching cubes grid iterator. Figure 5.19 shows a human skull gen-
erated with marching cubes rendered as IndexedFaceSet using an Open Source imple-
mentation.

Figure 5.17: CashFlow Cutting Planes
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Figure 5.18: CashFlow Marching cube rendered with cuberille [LC85].

Figure 5.19: CashFlow Marching Cubes: A open source marching cubes implementation was used to
generate this skull rendered as IndexedFaceSet.
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5.6 Example for Parameterization
When dealing with data it is essential to be able to compare data sets. Independent of
the origin of the data frequently the need arises to scale the data or shift the neutral axis
or in general re–parameterize the data.

CashFlow supports three basic types of interpolation namely (1)constant, (2)linear
and (3) cubic interpolation [AH02a]. Several examples are combined in figure 5.20.
Note, that the elevation is used to visualize the mapping. One color map generated
from the raw data is applied to all other visualizations.

(raw) The raw data is used as input for all other renderings (a)–(e). Based on the raw
data a color map was created mapping blue and green to low regions and yellow
and red to high regions.

(a) shows the color map generated from the raw data.

(b) Inverse mapping. Low input values are mapped to high output values and vice
versa. Height field (b) is and inversion of height field (c).

(c) Combination of cubical and constant parameterization. Cubical mapping is ap-
plied to low values shown in blue and green while all high values in yellow and
red are mapped to a constant value creating a plateau. Due to the cubic interpo-
lation the slope in the blue and green regions differ from the original data labeled
[raw] in figure 5.20.

(d)(e) Cubic mapping with different parameters. In (d) the peak is exaggerated and the
slope at that point is quite steep compared to the original data [raw]. In (e) the
incline at the peak is horizontal and smooth compared to the original data.

While in figure 5.20 the same color map was used for all visualizations contrariwise
figure 5.21 shows color map’s created of each elevation set. To keep consistency the
elevation set are labeled corresponding to figure 5.20. Comparing the color distribution
of the elevation sets in figure 5.21 gives a good clue on how the original values labeled
as [raw] are redistributed. It also eases the comparison of heights, because equal heights
have equal colors in figure 5.21. Especially the distribution of blue in low regions and
red in high regions emphasize the results from the different mappings. In order to focus
on the color distribution the surrounding boxes were disabled. Figure 5.21(f) shows an
additional mapping with a steep slope for low values and a horizontal angle at the peak
for high values.
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Figure 5.20: CashFlow Constant, linear and cubic parameterization: A color map created from the raw
data was applied to all surfaces.

Figure 5.21: CashFlow Constant, linear and cubic parameterization: A color map was created for each
height field. Letters indicate corresponding data sets in this figure and figure 5.20. The color map in this
figure is bound to the actual height. This image also shows that the surrounding grey box can be disabled.
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Figure 5.22 shows an example of a 2d histogram sharing the data with the height
field on the right. Histograms are able to analyze scalar data from DataAccess node’s.

Figure 5.22: CashFlow 2D Histogram

5.7 Polygonal Surfaces & Textured Surfaces
Figure 5.23 shows polygonal rendering of curvilinear grids. The left image contains
the rocket booster in yellow with an overlayed point rendering of grid points in the next
layer. Right behind it the external Tank ins rendered in blue using flat–shading. The
green band visualizes the deformation of the curvilinear grid in axial direction enclos-
ing the space shuttle. The space shuttle is rendered twice, on one hand using Gouraud–
shading[Gou71] in combination with a point rendering of the other half of the space
shuttle. Unfortunately OpenGL still does not support Phong–shading[Pho73][BW86]
although the necessary vertex normals are available. This limitation of OpenGL is
bypassed using shaders in general.

On the other hand using flat–shading on top of the first rendered shuttle. The right
image in figure 5.23 shows the same scene from another viewing angle with different
rendering parameters. From top to bottom the first shuttle (top) is textured with a
dominant green PLIC texture. The middle rendering shows Gouraud–shading and a
grid visualization for the right side of the shuttle. The grid visualization consists of
axial lines rendered in blue and radial lines rendered in yellow. The illustration at the
bottom is similar to the left image, except for the shading style used for the space shuttle
in yellow. In the right image the space shuttle at the bottom is flat–shaded while in the
left image the lower space shuttle is rendered with Gouraud–shading. Figure 5.24 and
figure 5.25 show curvilinear grid visualizations enhancing the shape of the grids.
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Figure 5.23: CashFlow flat–shaded & Gouraud–shaded surfaces [Gou71](left) Same scene with textured
surfaces and grid visualization (right).

Figure 5.24: CashFlow Grids I: Fusion of several grids using different rendering styles.
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Figure 5.25: CashFlow Grids II: Cyan lines show the X–Z plane using concentric lines while the green
lines show the X–Y pane using radial lines. The shuttle in the center is rendered with concentric blue lines
in the X–Y plane and red lines in the X–Z plane.
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Appendix A

Field connection &
TGS MeshVis

Figure A.1: CashFlow: Virtual Array vs. TGS Meshvis

This is a brief analysis of TGS MeshVis1 in comparison to the CashFlow frame-
work2.

Each type of grid is assigned to one SoField. Each of these SoFields can be ren-
dered by at least one SoNode. The SoField contains all the information on:

• type of grid

• geometry data
1 TGS c©MeshVis R© formally know as TGS c©DataMaster R©
2 "CashFlow - A Visualization Framework for 3D Flow Data" publish in May 2005 at Vienna University

of Technology. All rights reserved.
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• topology

• additional scalar and vector data

This is the classic C++ approach using an abstract super–class and sub–classes
implementing the abstract interface.

The advantages are the following:

• classical C++ approach
Heavily uses abstract classes and derive specialized classes.

• simple tree-structure
The different types of grids are organized in a simple tree–structure.

The disadvantages are the following:

• large effort
Caused by huge number of SoField classes and SoNode classes. Each type of
grid is represented by one SoField. Each SoField has at least one rendering
node to visualize it.

• inflexible
Each time raw data should be rendered in another grid, a new copy in a new
field has to be created. For instance a carpet plot based on cartesian grid and
carpet plot based on cylindrical–polar grid showing the same scalar values must
be stored in two separated fields.

• tight coupling
of topology data and other data like scalar data and vector data per grid point.

• huge class tree
due to the reason that each grid has its own SoField and SoNode.

– Improvement: data storage should only depend on the raw type of data
like float, integer, string → much smaller amount of classes → smaller
API, which is easier to understand.
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