
DISSERTATION

Failure Detection in Sparse Networks

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften
unter der Leitung von

Univ.Prof. Dr.techn. Ulrich Schmid

Inst.-Nr. E182/2

Institut für technische Informatik
Embedded Computing Systems Group

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.Ing. Martin Hutle

Matr.-Nr. 9626133

Leystraße 110/1/14

1200 Wien

Wien, im August 2005

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

2

Kurzfassung

Einer der meist erforschten Ansätze um die Unlösbarkeit des Consensus Problems in
vollständig asynchronen Systemen zu umgehen, ist das 1996 von Chandra und Toueg in
einem wegweisenden Artikel vorgestellte Konzept der Fehlerdetektoren. Seither haben sich
Fehlerdetektoren nicht nur als theoretische Abstraktion der notwendigen Synchronität für
Consensus bewährt, sondern sie bilden auch nützliche Bausteine für viele Algorithmen im
Bereich der Fehlertoleranten Verteilten Systeme.

Daher findet sich auch in der Literatur eine Menge an Ansätzen, Fehlerdetektoren
möglichst effizient zu implementieren. Allerdings basieren praktisch alle bisherigen Lös-
ungen auf der Annahme eines vollverbundenen Netzwerks zwischen den einzelnen Prozes-
soren des Systems.

Diese Arbeit beschäftigt sich mit der Implementierung verschiedener Fehlerdetektoren
in Sparse Networks. Unvollständige Graphen modellieren die Gegebenheiten von vielen
Low-Level Netzwerken, wie etwa von Wireless Ad-Hoc Networks, Sensor Networks und
auch des Internets. Dieser Ansatz erweist sich als sehr nützlich, da—wie diese Arbeit
zeigt—Algorithmen nicht nur effizienter werden, sondern auch direkt von dieser Netz-
werkstruktur profitieren können. Andererseits sind Beweise in solchen Graphen meist
aufwändiger und unübersichtlicher als für vollverbundene Netze. Durch die Einführung
von lokalen Fehlerdetektoren und entsprechenden Transformationsalgorithmen zu glob-
alen Fehlerdetektoren können die Beweise einfacher und eleganter werden.

Diese Arbeit beleuchtet verschiedene Aspekte von Fehlerdetektorimplementierungen
in Sparse Networks: Konstante Nachrichtengröße trotz beliebig großer Netze, geringe
Synchronitätsannahmen und die Kombination mit Selbststabilisierung. Gerade letzteres
scheint eine sehr interessante Zusammenführung zweier verschiedener Ansätze der Fehler-
toleranz zu sein, die bisher noch nicht ausreichend betrachtet wurde.

3

4

Abstract

One of the most explored approaches to overcome the impossibility of distributed consen-
sus in fully asynchronous systems was the introduction of the concept of unreliable failure
detectors by Chandra and Toueg in 1996. Failure detectors emerged not only as theo-
retical encapsulation of the synchrony needed for consensus, but also as useful building
blocks for many distributed algorithms.

Therefore, in literature a lot of effort has been spent to implement such failure detectors
efficiently. However, almost all currently known solutions are based on the assumption of
a fully connected network between the processors of the system.

This thesis focuses on the implementation of various failure detectors in sparsely con-
nected networks. Sparse networks model the nature of many non-broadcast networks on a
low-level basis, namely wireless ad-hoc networks, sensor networks, and even the Internet.
From such an approach, an implementation can profit regarding message complexity and
accuracy. However, proving the correctness of a failure detector algorithm in sparse net-
works showed up to be an elaborating task. The introduction of a local failure detector
as a new class of failure detectors with appropriate transformation algorithms to global
failure detectors simplifies these things.

The failure detector implementations in this work cover several system models that
head at distinct goals, including constant message size in arbitrary large networks, weak
timing, and self-stabilization. Especially the latter seems to be a very interesting combi-
nation of two flavors of fault tolerance—robustness and self-stabilization—which has not
been addressed sufficiently in literature.

5

6

Acknowledgment

I am grateful to my advisor, Prof. Ulrich Schmid. He inspired my interest in distributed
computing and supported me in many ways during the becoming of this thesis. I thank
my second assessor, Prof. Felix Freiling. He helped me a lot with his detailed and precious
comments.

Many thanks go to Josef Widder. The discussions with him were always enlightening
and I enjoyed the joint work with him a lot. Parts of this thesis originates also from this
joint work. I like to thank Martin Biely and Bettina Weiss for proofreading and comments
on parts of this thesis.

I am grateful to my family and to my friends, who provided the right environment for
my studies and my work. Thanks go also to all other people that contributed in any way
to the success of this thesis.

7

8

Contents

1 Introduction 11

1.1 The Fault-tolerant Consensus Problem . 11

1.2 Failure Detectors . 13

1.3 Sparse Networks . 14

1.4 Self-stabilization . 15

1.5 Message-driven Algorithms . 15

1.6 Related Work . 16

1.7 Motivation . 17

1.8 Structure of this Thesis . 17

2 System Model 19

2.1 Time and Clocks . 19

2.2 Network Model . 20

2.3 Failure Model . 20

2.4 Execution Model . 21

2.5 Timing Models . 23

2.6 Models used in this Thesis . 26

3 Failure Detectors 27

3.1 Failure Detector Histories . 28

3.2 Classes and Reducibility . 28

3.3 Classical Failure Detectors . 29

3.4 The Weakest Failure Detector for Consensus 31

3.5 Failure Detectors for Partitionable Networks 32

3.6 Local Failure Detectors . 33

3.7 Other Classes of Failure Detectors . 34

3.8 Applications of Failure Detectors . 40

3.9 The Quality of Service of Failure Detection 43

3.10 Implementation Principles . 45

3.11 Failure Detectors Implemented in this Thesis 45

9

10 CONTENTS

4 Weak Synchrony 47
4.1 Problem Specification . 47
4.2 Related Work . 48
4.3 The Sparse Network Algorithm . 48
4.4 Complexity Analysis . 52
4.5 Discussion . 53

5 Localized Services 55
5.1 Problem Specification . 56
5.2 Related Work . 56
5.3 The Algorithm . 57
5.4 Proof of Correctness . 59
5.5 Complexity Analysis . 61
5.6 Summary and Discussion . 62

6 Fault-tolerant Self-stabilization 63
6.1 System Model . 63
6.2 Self-stabilization and Failure Detection . 64
6.3 The Need for Bounded Memory . 65
6.4 Simple Local Self-stabilizing Failure Detectors 66
6.5 Stable Failure Detector Transformation . 67
6.6 Summary . 69

7 Message-driven Self-stabilizing Failure Detection 71
7.1 System Model . 73
7.2 On Deadlock Prevention Events . 74
7.3 Impossibility Result . 77
7.4 Unbounded Link Capacity . 82
7.5 Bounded Link Capacity . 85
7.6 Randomization . 90
7.7 No Timing Uncertainty . 92
7.8 From Local to Global Failure Detection . 93
7.9 Discussion . 95

8 Conclusion 97

List of Notations 99

Bibliography 109

Chapter 1

Introduction

A distributed system comprises a set of autonomous computing entities, connected by a
network, that perform a common task. Such a system is fault-tolerant, if this common
task is also achieved even if parts of the system fail.

In our abstraction, we use the term process for a computational entity. In literature,
sometimes processors are considered instead of processes. Since such an approach makes
only a difference if we consider processes and processors (meaning, if a processor crashes,
also all processes located at this processor crash), we use processes as computational
entities for our model.

The network is also considered as an abstract device, via which processes can commu-
nicate by sending messages to other processes. Most work in the context of fault-tolerant
distributed systems considers fully connected networks fully connected, i.e., networks,
where every process can communicate with every other process in the system in a direct
way. In real systems, this is no natural property: processing entities are physically con-
nected only with a small number of neighbors. To ensure point-to-point communication,
networks layers (e.g. routing, packet assembly and disassembly, load balancing, etc.) have
to be implemented. As we will see, using such an approach for our problems has serious
drawbacks. Thus, this thesis is devoted to the implementation of algorithms directly on
the underlying sparse network.

1.1 The Fault-tolerant Consensus Problem

The consensus problem is a fundamental problem in fault-tolerant distributed computing.
Intuitively speaking, it requires the processes of the system to agree on a common decision
value.

The consensus problem is defined as follows: We consider a network of processes where
some of these processes may fail by crashing. Every process has a single input value from
a fixed alphabet, and at the end of the execution it outputs a single output value from

11

12 CHAPTER 1. INTRODUCTION

the same alphabet, fulfilling the following properties:

Termination In every execution, every nonfaulty process eventually decides.

Agreement In every execution, no two nonfaulty processes decide on different values.

Validity In every execution, if all the processes have the same input, then any value
decided upon must be that common input.

The simplest form of consensus, binary consensus considers only the values 0 and 1.
Note that there is also a stronger variant of consensus called uniform consensus, that
prohibits also faulty processes to decide on conflicting values. There exist many solutions
for the consensus problem in literature. However, due to the impossibility shown by Fis-
cher, Lynch and Patterson in 1985, none of these solution works in a purely asynchronous
system if there is only a single process that may crash:

Theorem 1.1. [FLP85] No [deterministic] consensus protocol is totally correct in spite
of one fault [in an asynchronous system]

This impossibility stems from the following fact: In a purely asynchronous system
there is no bound on the transmission delay, i.e., a message may be arbitrarily long in
transit from a process p to another process q. On the other hand, processes may fail
by crashing. Now, if p waits for a message from q, it can be never sure, whether this
process has crashed or if just the communication is slow. Whatever p does may be the
wrong decision: If it waits without bound it may wait forever, since q may have crashed—
violating the termination property. If it stops waiting for the message and continues
without this message, the message might have been just slow, and p decides without the
information from q, which may lead to a violation either of the agreement or the validity
property.

Due to the FLP impossibility, a lot of research [DDS87, DLS88, PS92, ADLS94] has
been made for answering the question: How much synchrony is needed for solving con-
sensus? In [DDS87], this ended up in 32 (!) different system models constructed from 5
binary assumptions regarding synchrony:

• asynchronous/synchronous processes

• asynchronous/synchronous communication

• asynchronous/synchronous message order

• point-to-point/broadcast transmission

• atomic/separate receive and send.

For each combination of these, an analysis whether consensus is solvable or not was made.

1.2. FAILURE DETECTORS 13

One of the most popular approaches for circumventing the FLP impossibility is the
concept of partial synchrony [DLS88]. It extends the FLP model by adding an absolute
upper bound on message transmission delays (not end-to-end) and an upper bound on
the relative computational speeds of any two processes

These bounds need not necessarily be known a priori to the processes: In [DLS88],
these bounds can either be unknown, or known but hold only after some unknown global
stabilization time GST. A generalized partially synchronous model integrating those
two models has been introduced in [CT96]: It assumes that relative speeds, delays and
message losses are arbitrary up to GST; after GST, no message may be lost and all relative
speeds and all communication delays must be smaller than the (possibly) unknown upper
bounds. This model allows to solve consensus while the synchrony assumption has a
high assumption coverage. In fact, the model is violated only if transmission times are
increasing forever, which is very unlikely in real systems. Partial synchrony is addressed
in more detail in Section 2.5.3.

Note that the FLP impossibility holds only for deterministic algorithms: With the
help of randomization, it is possible to implement an algorithm that reaches agreement
and terminates with probability 1 [BO83, Völ04] in a crash prone asynchronous system.
Note that when using such an approach the agreement property is still guaranteed and
not associated with a probability.

1.2 Failure Detectors

In their seminal paper [CT96], Chandra and Toueg presented a way to solve consensus
in an asynchronous system by introducing the concept of a failure detector . Intuitively
speaking, a failure detector is a module located at every process that gives this process
a “hint”, whether another process may have crashed or not. To solve consensus, this
information needs not to be reliable, i.e., the failure detector is allowed to make mistakes.
Thus such a failure detector is called an unreliable failure detector.

However, the use of a failure detector does not invalidate the FLP impossibility. Thus,
every failure detector implementation requires some synchrony from the system it is im-
plemented in. Nevertheless, the algorithm that uses the failure detector can be written
totally asynchronous. Therefore, a failure detector can be seen as an encapsulation of the
synchrony of the system.

Later research showed that bounds on message transmission delays are not the only
way to implement a failure detector [BKM97]. However, for an application it is of no
concern, how the failure detector is implemented. This is one of the main advantages of
the use of failure detectors: They provide an abstraction of the required synchrony and
allow application algorithms to forget about time. Further, if there are several processes
on a processor and the major failure source is a crash of the whole processor, a single
failure detector module may be used by all processes located at at that processor.

14 CHAPTER 1. INTRODUCTION

Encapsulating synchrony in failure detectors has also a theoretical advantage: It allows
to compare problems regarding the required synchrony (cf. e.g. the weakest failure
detector for consensus, Section 3.4,[CHT96]).

1.3 Sparse Networks

As indicated above, all existing implementations of failure detectors rely on a fully con-
nected network. Although this is a convenient assumption when writing the failure de-
tector implementation, this is not a very attractive choice:

• Most real networks are not fully connected a priori: Processes are physically capa-
ble to communicate only with a certain subset of other processes, their neighbors.
Wireless ad-hoc networks, sensor networks and also the Internet are good examples
for systems with a non-fully connected structure of the communication network.
But even in distributed systems that use a shared broadcast medium like a bus, the
whole network is often composed of subnetworks via gateways, thus also resulting
in a non-complete topology of the communication graph.

• In such networks, point-to-point communication is implemented using routing al-
gorithms. First of all, if routing is not needed except for the failure detector this
is an overkill, especially if the network is composed of a lot of tiny nodes, like in a
sensor network. If routing is needed anyway, in a fault-prone network the routing
algorithm needs information if other nodes in the system may have crashed—exactly
the information a failure detector provides. But the routing algorithm can not use
the failure detector if the correctness of the failure detector depends on the routing
itself. At least we get a circular relationship of routing and failure detection that is
difficult to prove correct and violates the principle of modularity.

• Finally, as we have seen above, at least some knowledge about the transmission
delays of messages is vital for failure detection. Most of the uncertainty about
these delays is not due to the physical transmission time but due to transmission
buffers and scheduling issues at the processes. Using a routing protocol increases
the uncertainty about timing: additional buffer and processing steps at several
processes are inserted, retransmissions and heuristics make the transmission time
almost unpredictable.

On the other hand, if failure detectors are located close to the low-level network and
failure detector messages are equipped with sufficient high priorities, communication takes
place only with physical neighbors and retransmissions of lost messages are not necessary,
most of the effects denoted above can be canceled. Since timeouts are smaller in such a
system the failure detector also provides a faster service and thus application algorithms
will terminate faster. This fits also to the fast failure detector approach [ALLT02].

1.4. SELF-STABILIZATION 15

1.4 Self-stabilization

Until now we considered only one kind of fault-tolerance, which is also called robustness
[Tel94]: Faults are bounded in the space dimension but may be unbounded in time.
A common assumption is e.g. that f out of n processes may permanently fail. Self-
stabilization is fault-tolerance against faults that are bounded in time but unbounded
otherwise: Up to some unknown time the system may behave arbitrarily and end up in
an arbitrary state. After that, the system behaves normally forever and the algorithm has
to converge from such a possibly erroneous state to a legitimate state in finite time and
remain in a legitimate state forever. No further failures are allowed after the stabilization
time.

Self-stabilization was introduced by Dijkstra [Dij74] and has since then become well
studied topic of distributed computing—as has robustness. The combination of both
types of fault tolerance, however, does not appear often in literature. This is all the more
surprising, since there are serious reasons to consider this approach:

• Self-stabilization increases the fault-tolerance of robust algorithms: Consider a situ-
ation where the failure model for the robust algorithm is violated. A non-stabilizing
algorithm might get stuck in some incorrect state forever. With self-stabilization,
the service can recover automatically after the system assumptions continue being
true.

• Robustness increases the fault-tolerance of self-stabilizing algorithms: If a process
fails permanently, self-stabilization cannot recover, since the system will never sta-
bilize.

• For long living applications, reintegration of formerly crashed processes is necessary
to always keep a sufficient number of correct processes in the system. Although
there are approaches in the robustness domain [ACT00], they are very complex. If
self-stabilization is employed, processes can simply be added to the system and will
be automatically integrated.

In fact, there are only a few publications that consider the combination of failure detection
and self-stabilization and many important topics are still not addressed in this field.

1.5 Message-driven Algorithms

Generally, the discipline of distributed computing considers sets of distributed processes
that execute algorithms where each execution consists of a sequence of events. In the
context of reliable agreement problems, much work [CT96, DDS87, DLS88] focuses on
timing constraints of these events; e.g. upper bounds between send and reception events
of messages between processes (see Section 2.5). Another issue is event generation. We

16 CHAPTER 1. INTRODUCTION

distinguish here two kinds of models, i.e., time-driven and message-driven. In time-driven
algorithms, events occur due to passage of time and are triggered by clocks or timers. In
contrast, when considering message-driven algorithms, after the algorithm was started,
all events happen as immediate reaction to a received message while clocks are either not
part of the model or are just not employed by the algorithms.

Note, however, that the issues of timing constraints and event generation are orthogo-
nal. Consider, e.g., the well known failure detector based consensus algorithms of [CT96]
which work in an asynchronous model of computation (often referred to as “time-free”
model, reflecting the absence of timing bounds). These algorithms must be attributed as
time-driven as steps can be taken—independently of the presence or absence of messages
in input buffers—just by the passage of time respectively the progress of the program
counter. It seems obvious that solutions to the same problem can be achieved with
message-driven algorithms if

1. messages are immediately processed upon reception,

2. the failure detector module triggers the consensus algorithm if new suspicions have
been added and

3. the failure detector implementation itself is message-driven.

Most existing failure detector implementation in the literature [CT96, ADGFT03a,
BKM97] are not message-driven as they periodically send messages (e.g. heartbeats). Ex-
ceptions are the message-driven failure detector implementations of [LLS03, WLLS05]
which show that failure detectors can be implemented without autonomous event gener-
ation (i.e., timers or clocks).

A self-stabilizing algorithm cannot be purely message-driven: if all messages get lost
during the instable period, the algorithm is not able to make any progress and thus cannot
perform any useful task. However, if we enhance such a system with a weak module that
unlocks the algorithm from time to time, failure detector implementations are possible.
We discuss the topic of such deadlock prevention events in Section 7.2.

1.6 Related Work

The topic of implementing a failure detector on a sparse network is relatively unexplored.
In the self-stabilization literature, local failure detectors have been introduced [BKM97]
to solve classical self-stabilizing problems in sparse networks with crashing processes,
which would otherwise remain unsolvable [AH93]. Closely related to sparse networks
is the problem of partitionable environments. Most literature on this topic comes from
work on the group membership problem [BDM01]. Failure detection in partitionable sys-
tems is addressed in [FKM+95] and [ACT99]. Systems with omission failures are investi-

1.7. MOTIVATION 17

gated in [DFKM97] and more recently in [DGFF05]. Recovering processes are considered
in [ACT00], but are not in the context of this thesis.

Another aspect that has been considered is the question how more severe faults, like
byzantine process behavior, can be integrated into the failure detector approach [DS98,
DGG02, DGGS99, KMMS03]. Although this is a very demanding topic and not suffi-
ciently solved in the literature it is out of the scope of this thesis.

The whole work on sparse network failure detector implementation blends nicely with
the fast failure detector approach of [ALLT02]. Implementing failure detectors directly on
the sparse network and not using point-to-point application messages allows the system to
implement a fast and timely service for failure detector messages nearly independent of the
load produced by application messages. By doing so, we get not only a gain in assumption
coverage of the timing model for failure detector messages, but also applications that use
a fast failure detector terminate earlier.

1.7 Motivation

In this thesis, we show how the implementation of a failure detector can profit from a
sparse network model. We do so by heading at distinct goals: We show that such a sparse
network graph model,

• does not require higher assumption on synchrony.

• can be used to reduce the message complexity of algorithms.

• does not impair the achievable fault-tolerance properties. If combined with the
self-stabilization paradigm, fault-tolerance can be even improved.

1.8 Structure of this Thesis

In Chapter 2, a detailed system model for all following chapters is given. Since the sys-
tem assumptions in these chapters differ, the overall system model is chosen such that it
covers all these system model. Chapter 3 gives an overview of existing failure detector
specifications and defines the new class of local failure detectors. Synchrony is considered
in Chapter 4. We adapt an algorithm from Aguilera et al. [ADGFT03b] to work in a
sparse network. The original algorithm works in the weakest model we know of where
consensus can be solved. Thus we show that when choosing a sparse network as commu-
nication system, no additional synchrony assumptions are needed. Moreover, we even get
some gain in efficiency and in accuracy. On the other hand, the resilience is not reduced.
In Chapter 5 we focus on message efficiency: We show how it is possible to profit from

18 CHAPTER 1. INTRODUCTION

the sparse topology. Self-stabilization is introduced in Chapter 6. In Chapter 7 we dis-
cuss the conditions for message-driven self-stabilizing algorithms and provide appropriate
algorithms. The thesis concludes with a summary of results in Chapter 8.

Chapter 2

System Model

In this chapter we describe a general model for a timed distributed message-passing system
based on a network with arbitrary topology.

This model is chosen such that it covers all cases in the following chapters. The
models used in the these chapters are special cases of the global model. For instance, in
the Chapters 4 and 5 no self-stabilization is needed whereas in Chapter 7 we use the full
self-stabilization properties of the system model.

2.1 Time and Clocks

We assume the existence of a discrete global clock with values from a set T = IR, which
is used only for analysis and is not available to the processes.

Some algorithms, however, require a local clock, such that processes can measure time
intervals. For simplicity we assume perfect clocks, but our results can be easily adapted
to systems with bounded drift clocks. Algorithms that need such a device are called
time-driven, else they are time-free. An algorithm that does not use any clock or clock-
like device can only react to the message pattern it perceives. Thus such algorithms are
message-driven.

We are aware of the possibility of counting steps to derive some sort of clock-like
device. Although such an implementation is not bound to a specific hardware device, we
consider this just as another form of a clock implementation, and classify therefore an
algorithm that uses such a technique as time-driven. Further, as our results in Chapter 7
show, a local clock implementation obtained by sending messages to itself is not equivalent
to a real local clock: in the self-stabilizing case, these messages can get lost or may be
corrupted and thus do not guarantee clock progress.

19

20 CHAPTER 2. SYSTEM MODEL

2.2 Network Model

Our system comprises a set Π = {1 . . . n} of processes, where each process is a state
machine. Processes communicate by message-passing over links. An edge λ = (p, q) ∈ Λ
of the communication graph G = (Π, Λ), stands for an unidirectional link from p to q. We
say a graph is fully connected if Λ = Π × Π, otherwise it is sparse. Generally, processes
and links may fail by crashing, i.e., they stop executing their state machine permanently.
In order to capture this fact, we consider the communication graph to be time dependent,
i.e., the graph G(t) = (Π, Λ(t)) changes with time t ∈ T . Λ(t) contains an edge λ = (p, q)
if and only if there is a direct link from p to q which has not crashed by t. For some cases
we will restrict our model to process crashes resp. link crashes only. We say a link (p, q)
is bidirectional if (p, q) ∈ Λ(t)⇒ (q, p) ∈ Λ(t) holds.

For an arbitrary but fixed time t, the distance D(p, q, t) of two nodes p and q denotes
the length of the shortest path from p to q in G(t). If no such path exists, we say the
nodes are not connected and write D(p, q, t) = ∞. The longest distance in the network
is called the diameter d(t) = maxp,q∈Π D(p, q, t). Two nodes connected directly by a
link are called neighbors, the set of all neighbors of a process p at time t is denoted by
nb(p, t) = {q|(q, p) ∈ Λ(t)}, the size of this set is called the (outgoing) degree of the
node and denoted by deg(p, t) = |nb(p, t)|. Note that for a system where every link is
bidirectional D(p, q, t) = D(q, p, t) and q ∈ nb(p, t) ⇒ p ∈ nb(q, t) holds. The maximum
resp. minimum degree of the whole graph is denoted as ∆(t) = maxp∈Π deg(p, t) resp.
δ(t) = minp∈Π deg(p, t).

2.3 Failure Model

Process crashes need not be clean, i.e., they may occur during a step, and thus it is possible
that some but not all messages of this step are put onto the links. After a process has
crashed it does not take any steps, i.e., messages sent to such a process are lost. We do
not consider other types of process failures than crashes.

We define C(t) to be the set of processes that have not crashed until t, and C =
⋂

t∈T C(t) to be the set of correct processes, i.e., processes that never crash. Conversely,
let F (t) = Π − C(t) to be the set of processes that have crashed by time t. F (t) is also
called the failure pattern. Finally, F =

⋃

t∈T F (t) = Π − C is the set of faulty processes,
i.e., processes that eventually crash.

Due to changes in the communication graph, the network may dynamically partition
into components. In a system with only bidirectional links we make the following defini-
tions: For a process p, the component C (p, t) is defined as the subgraph of G(t) that is
induced by all nodes connected to p. If p has crashed by time t, we define C (p, t) = {p}.
The final component of p, i.e., the component of p after the last crash in the system is
denoted C(p,∞). Further, we group all processes in p’s component by their distance

2.4. EXECUTION MODEL 21

from p: Pk(p, t) = {q ∈ C (p, t) | D(p, q, t) = k}, and write nk(p, t) = |Pk(p, t)|. Note that
P1(p, t) = nb(p, t).

By definition, a link only connects two non-crashed processes; thus we have ∀t ∈ T :
Λ(t) ⊆ C(t) × C(t). Further, if we assume only bidirectional links, the crash of a link
from p to q induces obviously the crash of the link from q to p. A link can either be

• lossy : A message that is sent over this link may be lost

• fair lossy : Messages are classified into types. For every type, if infinitely many
messages are sent over a fair lossy link, infinitely many of them are received.

• reliable: All messages that are sent are eventually received.

• timely : All messages that are sent are received according to some timing condition
(see Section 2.5).

We have the following relations:

lossy ⊇ fair lossy ⊇ reliable ⊇ timely,

where ⊇ denotes inclusion in the sense that a timely link fulfills the properties of a reliable
link, a reliable link fulfills also the properties of a fair lossy link, etc.

A link could also be Byzantine faulty: There is no restriction on the behavior of such a
link. A message sent over such a link may get correctly transmitted, lost, duplicated, and
altered; the link may produce sporadic messages and does not fulfill any timing condition.
Byzantine links are not considered in this thesis.

2.4 Execution Model

For p ∈ Π denote by Sp the set of states of p. Let m = |Λ| be the number of (unidirectional)
links in the system. A configuration of the system is a vector of states of all processes
together with m sets—one set for every link—of messages in transit on that link. A
configuration is denoted by C = (s1, s2, · · · , sn, Lλ1

, Lλ2
, · · · , Lλm

) where Lλj
is the set of

messages on λj and si ∈ Si.
Processes and the network operate by performing steps. A step can be one of the

following:

multi message reception step (mmr): A multi message reception step includes recep-
tion of a non-empty set of messages, the computational step of the state machine
and (optional) sending of messages. Formally, a multi message reception step is
defined by a tuple a = (p, sp, R, S, s′p), where R = {(msgr

1, λ
r
1), . . . , (msgr

k, λ
r
k)} and

S = {(msgs
1, λ

s
1), . . . , (msgs

` , λ
s
`)}, meaning p is in state sp, p receives messages msgr

i

from links λr
i and sends messages msgs

j over links λs
j, and s′p is the state of p after

22 CHAPTER 2. SYSTEM MODEL

execution of this atomic step. We assume that processes are able to receive several
messages from incoming links concurrently, thus the λr

i are not necessarily disjoint.
The λs

j are defined to be disjoint, however. S may be empty.

A multi message reception step a is applicable to a configuration C, if p is in state
sp, and for all (msgr

i , λ
r
i), msgr

i ∈ Lλr
i
. The configuration C ′ after a multi message

reception step is the same as C, except that p is now in s′p, for 1 ≤ i ≤ k, msgr
i is no

more in Lλr
i
, and every Lλs

j
also contains a message msgs

j , for 1 ≤ j ≤ `. This means,

C ′ = (s1, · · · , s
′
p, · · · , sn, L′

λ1
, · · · , L′

λm
) with L′

λ = Lλ ∪
⋃

λs
i =λ msgs

i −
⋃

λr
i =λ msgr

i .

message reception step (mr) : A message reception step includes reception of a sin-
gle message, the computational step of the state machine and (optional) send-
ing of messages. Formally, a message reception step is defined by a tuple a =
(p, sp, (msgr, λr), S, s′p), with S = {(msgs

1, λ
s
1), . . . , (msgs

` , λ
s
`)}, meaning p is in state

sp, p receives message msgr from link λr and sends messages msgs
j over links λs

j,
and s′p is the state of p after execution of this atomic step. The λs

j must be disjoint.
S may be empty. A message reception step a is applicable to a configuration C, if p
is in state sp, and msgr ∈ Lλr . The configuration C ′ after a message reception step
is the same as C, except that p is now in s′p, msgr is no more in Lλr , and every Lλs

i

also contains a message msgs
i . This means, C ′ = (s1, · · · , s

′
p, · · · , sn, L

′
λ1

, · · · , L′
λm

)
with with L′

λ = Lλ∪
⋃

λs
i =λ msgs

i −
⋃

λr=λ msgr. Note that this step is a special case

of the multi message reception step with |R| = 1.

message loss step (ml): A message loss step models the situation when a lossy or fair
lossy link drops a message sent over this link. Formally, a message loss step is a tuple
a = (λ, msg) where λ ∈ Λ is a link and msg ∈ L is a message. A message loss step
a = (msg, λ) is applicable to a configuration C, if msg ∈ Lλ and λ is a lossy link.
The configuration C ′ after a message loss step is the same as C, except that Lλ does
no more contain msg. That is, C ′ = (s1, · · · , sn, Lλ1

, · · · , Lλ − {msg}, · · · , Lλm
).

local clock step (lc): A local clock step occurs if the local clock at a process takes a
step and communicates this to the process. Formally, a local clock step is a tuple
a = (p, sp, S, s′p), where S = set(msgs

1, λ
s
1), . . . , (msgs

` , λ
s
`), meaning p is in state sp,

sends messages msgs
j over links λs

j and is in state s′p after the clock event. S may
be empty. A local clock step a is applicable to a configuration C, if p is in sp. For
every state sp there exists a local clock step that is applicable. The configuration
C ′ after a local clock step is the same as C, except that p is now in s′p and every
Lλs

i
also contains a message msgs

i . That is, C ′ = (s1, · · · , s
′
p, · · · , sn, L

′
λ1

, · · · , L′
λm

)
with L′

λ = Lλ ∪
⋃

λs
i =λ msgi

s.

deadlock prevention step (dp): A deadlock prevention step at a process p is defined
as a tuple a = (p, sp, S, s′p), where S = set(msgs

1, λ
s
1), . . . , (msgs

` , λ
s
`), meaning p is in

2.5. TIMING MODELS 23

state sp, sends messages msgs
j over links λs

j and is in state s′p after the spontaneous
deadlock prevention event. S may be empty. A deadlock prevention step a is
applicable to a configuration C, if p is in sp. For every state sp there exists a
deadlock prevention step that is applicable. The configuration C ′ after a message
reception step is the same as C, except that p is now in s′p and every Lλs

i
also

contains a message msgs
i . That is, C ′ = (s1, · · · , s

′
p, · · · , sn, L

′
λ1

, · · · , L′
λm

) with
L′

λ = Lλ ∪
⋃

λs
i =λ msgs

i .

We denote the fact that a configuration C ′ results by applying a step a to a configuration
C by C

a
→ C ′.

An execution σ = (C0, a1, C1, a2, . . .) is a (finite or infinite) sequence, which starts with
some configuration C0 and where, for every i > 0, ai is applicable to Ci−1 and results in
Ci. An execution σ1 is applicable to a finite execution σ0, if the last configuration of σ0

is equal to the first of σ1. A timed execution is a sequence σ = (C0, a1, t1, C1, a2, t2, . . .),
where (C0, a1, C1, a2, . . .) is an execution and ti ∈ IR is the real-time the step ai occurs,
with ti ≤ ti+1 holds for all i. Let tGST denote the time where our timing becomes correct
in the following way: A timed execution is timely, if there is a global stabilization time
tGST , so that for every message msg that is sent by a step ai there is some step aj where
msg is received, and τ− ≤ tj − ti ≤ τ+ if ti ≥ tGST and tj < tGST + τ+ if ti < tGST . That
means, every message that is in transit at time tGST is received before tGST + τ+. How
the bounds τ+ and τ− are fixed is described in Section 2.5.

Additionally, for the analysis of our algorithms, we define vp(t) to be the value of
variable v at process p at time t before the step at time t, and if there is a step at t, we
define v′

p(t) to be the value of variable v at process p at time t after the step at time t.

We say a message msg is in transit from p to q at time t, if msg is in L(p,q) in the
last configuration before t (note that this does not include messages sent at t). In other
words, msg is in transit in the interval (ts, tr], if it is sent in a step at ts and received in a
step at tr. Further, we denote with Q(p, q, t) the set of messages which are in transit from
p to q or vice versa at time t, and with Q(p, t) =

⋃

q∈Π Q(p, q, t) all messages in transit
from or to p. Consequently, Q′(p, q, t) denotes the set of all messages from p to q or vice
versa after a step at time t.

2.5 Timing Models

The definition of a timely execution requires only that every message that is sent at time
t is received in the interval [t + τ−, t + τ+]. If there is synchrony in the system, which is
the subject of this section, these parameters have to fulfill some condition. We are aware
that there are some forms of synchrony that cannot be modeled by conditions on τ+ and
τ− (e.g. ordering properties [MMR03]). However, for this work our approach is sufficient.
Note that the overview of the timing models in this section is not a comprehensive one.

24 CHAPTER 2. SYSTEM MODEL

Some papers in literature [DLS88] distinguish between the time bounds of the network
and the time bounds on the processing speeds of processes. In this work, we will consider
the duration of the communication + transmission end-to-end delays which incorporates
both, computing step times and transmission delays. Doing so not only simplifies analysis,
but has also a higher assumption coverage1.

To see this, assume Tc is the stochastic variable that describes the duration of a com-
putational step (including message preparation and reception) and Tm is the stochastic
variable that describes the duration of the transmission of a certain message. Let p(tc, tm)
be their joint probability density function and Tm resp. Tc the assumed bounds on Tm

resp. Tc, T = Tc + Tm be the stochastic variable that describes the total delay, and
T = Tm + Tc be the bound on T. Then,

P [T ≤ T] = P [Tm + Tc ≤ T] =

∫∫

tc+tm<T

p(tm, tc) dtc dtm =

=

Tm∫

0

Tc∫

0

p(tm, tc) dtc dtm +

T∫

Tm

T−tm∫

0

p(tm, tc) dtc dtm

︸ ︷︷ ︸

≥0

+

T∫

Tc

T−tc∫

0

p(tm, tc) dtm dtc

︸ ︷︷ ︸

≥0

≥

≥

Tm∫

0

Tc∫

0

p(tm, tc) dtc dtm = P [Tm ≤ Tm ∧Tc ≤ Tc],

which clearly shows that the assumption coverage is higher with our approach.

2.5.1 Pure Asynchronous Model

This model makes no assumption on the transmission delay of a message and on the
relative speeds of processes. Thus, τ− = 0 and τ+ = ∞2. Although this model has
an assumption coverage of 1 regarding timing, it has the major drawback that many
important agreement problems in distributed computing are not solvable in this model.
For consensus in the presence of crashes this was shown in the seminal paper of Fischer,
Lynch and Paterson in 1985 [FLP85], later for group membership [CHTCB96] and atomic
commitment. However, if an asynchronous network is equipped with an appropriate

1All system models suffer from the fact, that their assumptions e.g. on timing or failure modes
hold only with a certain probability in practice. The assumption coverage is the probability, that the
assumptions hold also in a real system. Obviously, the assumption coverage depends on the model and
the real implementation.

2Note that this does not imply that a message transmission can take infinitely long: τ+ = ∞ just
means that there is no bound on the transmission delay. If the link is reliable, every message is received
after finite time.

2.5. TIMING MODELS 25

failure detector, these problems become solvable. From this it follows that these failure
detectors are not implementable in the pure asynchronous model.

2.5.2 Synchronous Model

In the synchronous model τ+ <∞ is known a priori by the algorithm. Further, tGST = 0.
This requires synchronous links and bounded relative process speeds as well. On the
other hand, many problems are solvable in a simple and efficient way in this model. τ−

is usually assumed to be 0.

Another form of the synchronous model is that there is an a priori known bound on
the jitter ε = τ+ − τ−. This variant is used in Chapter 5. Note that the measurement of
absolute time values requires bounded drift clocks.

2.5.3 Partially Synchronous Models

Partial synchrony lies between pure asynchrony and pure synchrony. The partial syn-
chronous model assumes τ+ < ∞, but this value is not known to the processes. Further
tGST may differ from 0 and is also unknown.

The original work [DLS88] distinguishes between an absolute upper bound ∆ on mes-
sage transmission delays (not end-to-end) and an upper bound Φ on the relative com-
putational speeds of any two processes (which would not fit in our system model), and
assumes either a known ∆ or tGST > 0. In later work [CT96] this is dropped.

An even weaker partial synchronous assumption is the existence of a finite average on
the communication delay [FS04a, FS04b] (which also does not fit in our system model).

In [ADGFT03a] a model where only some links are eventually timely (�-timely) is
presented. A link is �-timely if there is an unknown bound on the transmission delay
that holds eventually, i.e., tGST > 0 and τ+ < ∞ but unknown. All classical partial
synchronous models require some sort of bounded drift clock.

2.5.4 The Θ-Model

The Θ-Model [LLS03] allows to define synchrony using time free semantics. No local
clocks are needed in this model. It assumes that there is some bound Θ = τ+/τ− < ∞,
whereas τ+ and τ− need not to be known. Θ can either be known or unknown to the
algorithms, and also tGST = 0 and tGST > 0 are variants of this model. The algorithms
in Chapter 7 use the Θ-Model with unknown Θ.

26 CHAPTER 2. SYSTEM MODEL

2.6 Models used in this Thesis

Without going in detail, the models in the following chapters are classified using the terms
defined in this Chapter.

Chapter 4 Chapter 5 Chapter 6 Chapter 7
message-driven no no no yes
process crashes yes yes yes yes
link crashes no yes yes no
self-stabilizing no no yes yes
partitionable no yes yes yes
timing part. synchronous synchronous part. synchronous Θ
links fair lossy reliable reliable reliable

unidirectional bidirectional bidirectional bidirectional
events mr, lc, ml mr,lc mmr, lc mmr,dp
tGST unknown 0 unknown unknown

All models are assuming a sparsely connected network.

Chapter 3

Failure Detectors

A failure detector is a module located at each process in the distributed system that
provides information about other processes. Although the original definition of Chandra
and Toueg [CT96] does not restrict the output of a failure detector, we assume a failure
detector outputs a list of processes. Despite their name, failure detectors in fact somehow
encapsulate the synchrony of a network. Thus in an asynchronous system enhanced with
a failure detector it is possible to solve problems that are otherwise unsolvable in a purely
asynchronous system without a failure detector. However, there is still a gap between the
synchrony of the system and the failure detector information: In [CBGS00] it is shown
that an synchronous system is still stronger than an asynchronous system with a perpetual
perfect failure detector P.

The computational power of a failure detector depends also on the system it is used
in: Failure detectors that may be reducible to each other in one system—like �P and
�Q in a fully connected asynchronous system with reliable links—may exhibit a different
relationship in another system—like a partitionable network. In the literature, most con-
siderations about the computational power of a failure detector are made in the context
of the reducibility by an asynchronous algorithm in the sense of FLP in a fully con-
nected system with reliable links and crashing processes. We give a formal definition in
Section 3.2.

This chapter gives an overview of failure detector definitions in literature and shows
some of the relationships between them. It also introduces local failure detectors, which
are a new class of failure detectors that can be employed in sparse networks. The chapter
concludes with an outline of the applications of failure detectors, some considerations
about the quality of service of a failure detector module and finally sketches some imple-
mentation principles. Applications of failure detectors are presented in Section 3.8.

27

28 CHAPTER 3. FAILURE DETECTORS

3.1 Failure Detector Histories

In order to generalize the common failure detector definitions to partitionable networks
of unknown size, we distinguish two types of failure detectors: If the output of the failure
detector contains processes that are suspected to have crashed, we call the failure detector
suspicion based. On the other hand, if it contains processes the failure detector does not
suspect, we call it trust based.

As we just consider failure detectors that output lists of processes, we formally define
a failure detector history to be a function H(p, t) : Π × T → 2Π. Additionally we define

the inverse failure detector history H̃(p, t)
∆

= Π−H(p, t). If a process q is in H(p, t) (and
thus not in H̃(p, t)) at some time t, we say p suspects q, else p trusts q.

A suspicion based failure detector outputs H(p, t) at time t and process p, whereas a
trust based failure detector outputs H̃(p, t). The latter allows the failure detector to run
in systems where it does not know all other processes in the system or even n a priori. For
an application that communicates with a known subset of Π this information is equivalent
to the one of a suspicion based failure detector.

3.2 Classes and Reducibility

To compare the distinct classes of failure detectors, in this section we define some relations.
A lot of work in literature uses very sloppy terminology when comparing failure detectors.
In most cases, with saying failure detector D is weaker than D′ they mean reducibility in
a fully connected network with asynchronous reliable links and crashing processes only.
But they do not say this.

Let E be an environment1 that is characterized by a certain model from Chapter 2.
An environment comprises:

• a topology model (e.g. fully connected, or sparse with given maximum degree ∆)

• an execution model, including the set of communication primitives and their seman-
tics

• the source of event generation (time-driven or message-driven)

• a timing model (e.g. synchronous, partial synchronous, asynchronous)

• a failure model (e.g. f process crashes only, lossy links, allowed failure patterns,
period of total state corruption)

1In [CHT96], an environment is defined as the set of all possible failure patterns. Note that we use a
more general definition here.

3.3. CLASSICAL FAILURE DETECTORS 29

Note that these items are not necessarily independent of each other. Consider further two
failure detectors D and D′. We say D′ is reducible in environment E to D if there is a
distributed transformation algorithm TD→D′ in E , such that TD→D′ uses D and simulates
D′. We denote this fact by D′ �E D.

If D′ �E D but not the inverse holds we write D′ ≺E D. If D �E D
′ and D′ �E D holds

we say D and D′ are equivalent in E and denote this by D ∼=E D
′. If neither D �E D

′ nor
D′ �E D holds, they are incomparable, denoted D′ ≺�E D

A stronger relationship is proper inclusion. We say D includes D′ if the properties of
D are fulfilled by the properties of D′, or can be obtained by a local function2. We denote
this by D′ ⊆ D, resp. D ⊇ D′. If D′ ⊆ D but D′ 6⊆ D we write D′ ⊂ D; if D′ ⊆ D and
D′ ⊆ D we write D′ = D. Note that inclusion implies reducibility in any environment,
but in general the inverse does not hold:

D ⊇ D′ ⇒ D � D′ (3.1)

In particular, we consider the environment EA, which is the time-driven system with
asynchronous, reliable links in a fully connected network as described in [FLP85]. Most
work in the literature uses this environment for reduction, thus we omit the index in EA and
mean this environment, if not mentioned otherwise. Some other environments considered
in this thesis are the partitionable asynchronous model EP and the asynchronous message-
driven self-stabilizing model ES.

3.3 Classical Failure Detectors

Chandra and Toueg have defined some classes of failure detectors that have been shown
to be very useful for solving several fundamental problems in fault-tolerant distributed
computing. All of their classes of failure detectors are defined via a completeness property
and an accuracy property. Intuitively, the completeness property requires the failure
detector to suspect faulty processes whereas the accuracy property prevents it from the
trivial solution of suspecting all (correct) processes by requiring that some processes are
not suspected. In the following we review the failure detector definitions by Chandra and
Toueg [CT96]:

Strong Completeness. Eventually every process that crashes is permanently suspected
by every correct process. Formally,

∃t0, ∀p ∈ F , ∀q ∈ C, ∀t ≥ t0 : p ∈ H(q, t)

Weak Completeness. Eventually every process that crashes is permanently suspected
by some correct process. Formally,

∃t0, ∀p ∈ F , ∃q ∈ C, ∀t ≥ t0 : p ∈ H(q, t)

2Note that by such a function no messages are exchanged.

30 CHAPTER 3. FAILURE DETECTORS

The completeness properties both require things to be eventually done. A failure detector
that would know all faulty processes from the beginning would be able to predict the
future and is thus not implementable in real systems. However, for theoretical analysis
such a failure detector called Marabout (M) has indeed been defined (see Section 3.7.1
for details). Accuracy properties, however, may hold either right from the beginning
(perpetually) or eventually:

Strong Accuracy. No process is suspected before it crashes. Formally,

∀t, ∀p, q ∈ C(t) : p /∈ H(q, t)

Weak Accuracy. Some correct process is never suspected. Formally,

∃p ∈ C, ∀t, ∀q ∈ C(t) : p /∈ H(q, t)

Eventually Strong Accuracy. There is a time after which correct processes are not
suspected by any correct process. Formally,

∃t0, ∀t ≥ t0, ∀p, q ∈ C(t) : p /∈ H(q, t)

Eventually Weak Accuracy. There is a time after which some correct process is never
suspected by any correct process. Formally,

∃t0, ∃p ∈ C, ∀t ≥ t0, ∀q ∈ C : p /∈ H(q, t)

From these properties, Chandra and Toueg derived the following classes of failure
detectors:

Strong Completeness Weak Completeness
Strong Accuracy P (perfect) Q
Weak Accuracy S (strong) W (weak)

Eventual Strong Accuracy �P (eventually perfect) �Q
Eventual Weak Accuracy �S (eventually strong) �W (eventually weak)

By definition, we have the following hierarchy of relations:

W ⊃ Q W ⊃ S Q ⊃ P S ⊃ P (3.2)

�W ⊃ �Q �W ⊃ �S �Q ⊃ �P �S ⊃ �P (3.3)

�W ⊃ W �Q ⊃ Q �S ⊃ S �P ⊃ P (3.4)

In [CT96] it has been shown that weak completeness can be reduced to strong complete-
ness by an asynchronous algorithm in a fully connected network with reliable links. Thus

3.4. THE WEAKEST FAILURE DETECTOR FOR CONSENSUS 31

W ∼= S

P ∼= Q

�W ∼= �S ∼= Ω

�P ∼= �Q

Figure 3.1: The hierarchy of classical failure detectors including Ω. An arrow from A to
B means A is purely weaker than B.

in a non-partitionable network and if no self-stabilization is required, the classes P and
Q (resp. S and W and their eventual variants) are equivalent:

P ∼= Q S ∼=W �P ∼= �Q �S ∼= �W (3.5)

Among these, all eventual failure detector classes (�W, �S, �Q, �P) are implementable
in a classical partial synchronous system [DLS88, CT96], whereas this is not possible for
perpetual failure detectors (W, S, Q, P) [LFA02]. They require a system that allows
reliable detections, i.e., timing assumptions that hold from the beginning and are known
to the processes. Most implementation of these classes thus require a synchronous system.

3.4 The Weakest Failure Detector for Consensus

In [CHT96] a failure detector called Ω is presented. It is a trust based failure detector
that outputs exactly one process at every point in time. An Ω failure detector fulfills the
following property:

Eventual Leadership There is a time after which all the correct processes always trust
the same correct process. Formally,

∃t0, ∃p ∈ C, ∀q ∈ C, ∀t ≥ t0 : H̃(q, t) = {p}

Obviously every Ω failure detector is a special case of an eventually weak failure
detector. Moreover, �W is reducible to Ω in EA, which has also been shown to be the
weakest failure detector that solves consensus [CHT96]:

Ω ∼= �W ∼= �S (3.6)

32 CHAPTER 3. FAILURE DETECTORS

More recently [ADGFT03a, ADGFT03b], a system has been identified that allows the
implementation of Ω but not �S: It comprises fair lossy links and only some links of
the system have to be eventually timely. We use this model also for our algorithms in
Chapter 4. This shows that although Ω is strong enough to solve consensus, it can be
implemented with very weak synchrony and reliability assumptions of the network.

Another issue raised in [ADGFT01] is stability. The eventual leadership property of
Ω requires only eventual stabilization. This still allows an implementation to change the
leader even if the current leader is correct and has been selected by all processes for a
long time. In practice, for a badly designed failure detector algorithm this could be the
consequence of a change of the timing of the network. Obviously such a behavior is not
desirable, since it often causes overhead at application processes that have to react to
such changes. Therefore, a previously agreed leader should only be replaced if it crashes.
A failure detector with such a property is called stable. Formally, a k-stable algorithm
guarantees that in every run, if p is leader at time t and p does not crash during [t−kτ+, t]
then p is leader at least until it crashes.3

3.5 Failure Detectors for Partitionable Networks

We can extend the strong properties of classical failure detectors to partitionable net-
works [DFKM97, ACT99, FKM+95] in a natural way:

Strong Completeness. For any two processes that become disconnected (this includes
the case that one of them crashed), there is a time after which they permanently
suspect each other. Formally,

∃t0∀t ≥ t0 : q /∈ C (p, t)⇒ ∃t1∀t ≥ t1 : q /∈ H̃(p, t)

Strong Accuracy. No two processes that are permanently connected suspect each other.
Formally,

∀t : q ∈ C (p, t)⇒ ∀t′ : q ∈ H̃(p, t′)

Eventual Strong Accuracy. For any two processes that are permanently connected,
there is a time after which they permanently do not suspect each other. Formally,

∃t0∀t ≥ t0 : q ∈ C (p, t)⇒ ∃t1∀t ≥ t1 : q ∈ H̃(p, t)

Note that such a natural generalization is not possible for weak properties, since the
connectedness condition is defined pairwise between processes. It is possible, however, to

3The original definition “a k-stable algorithm guarantees that in every run, if p is leader at time t and
p does not crash during [t− kτ+, t+1] then p is leader at time t+1” has been adapted to our continuous
time model

3.6. LOCAL FAILURE DETECTORS 33

use a phrase like “in every component there is a process that is not suspected by all other
processes in the component”. We abstain from a formal definition for such properties.

We call a failure detector for a partitionable system eventually perfect if it fulfills
strong completeness and eventual strong accuracy. The class of eventually perfect failure
detectors for partitionable networks is denoted by �Pp. Note that this definition is a
true generalization of failure detectors for non-partitionable systems: If the network does
not partition, then the definitions are equivalent. With such a failure detector, some
a priori known subset of processes can solve consensus if a majority of them remains
connected and there is a communication module that implements reliable point to point
connections between them [ACT99]. It can also be used to solve partitionable group
membership [BDM01].

A failure detector for a partitionable system is called perfect, if it fulfills strong com-
pleteness and strong accuracy. The class of perfect failure detectors for partitionable
networks is denoted by Pp.

Strong Completeness
Strong Accuracy Pp (partitional perfect)

Eventual Strong Accuracy �Pp (partitional eventually perfect)

3.6 Local Failure Detectors

For sparse networks, we now define properties that lie between the strong and weak
properties of classical failure detectors:

Local Completeness. Eventually every process that crashes is permanently suspected
by every correct neighbor. Formally,

∀p ∈ F ∀q ∈ nb(p) ∩ C : ∃t0∀t ≥ t0 p ∈ H(q, t)

Local Accuracy. No correct processes is ever suspected by any neighbor. Formally,

∀p ∈ C ∀q ∈ nb(p) ∩ C : ∃t0∀t ≥ t0 p /∈ H(q, t)

Eventually Local Accuracy. There is a time, after which correct processes are not
suspected by any correct neighbor. Formally,

∀p ∈ C ∀q ∈ nb(p) ∩ C : ∃t0∀t ≥ t0 p /∈ H(q, t)

From these properties the following classes of failure detectors result:

34 CHAPTER 3. FAILURE DETECTORS

Local Completeness
Local Accuracy P` (local perfect)

Eventual Local Accuracy �P` (eventually local perfect)

We give self-stabilizing implementations for �P` in Section 7.4 and Section 7.5. The
following relations follow directly from the definitions:

P` ⊇ P �P` ⊇ �P (3.7)

Remarks:

• The definition of local failure detectors for partitionable and non-partitionable net-
works are equivalent, since if two processes get partitioned from another, they also
loose their neighborhood relation.

• For non-partitionable networks, a failure detector from �P` can easily be transformed
to a global eventually perfect failure detector �P by an asynchronous algorithm. For
a partitionable network �Pp can be reduced to �P`. Transformation from local to
global failure detectors is addressed in Sections 6.5 and 7.8 .

3.7 Other Classes of Failure Detectors

3.7.1 The Future Predicting Marabout

A failure detector of only theoretical interest has been introduced by Guerraoui [Gue01].
The Marabout failure detector M fulfills the properties:

Perpetual Completeness. Every faulty process is permanently suspected by every cor-
rect process. Formally,

∀p ∈ F ∀q ∈ C : ∀t p ∈ H(q, t)

Perpetual Accuracy.
∀p, q ∈ C : ∀t p /∈ H(q, t)

In contrast to P, which provides perfect failure detection, this failure detector provides
perfect failure prediction. Since no real failure detector can predict the future, this failure
detector is not implementable in realistic settings.

Guerraoui showed that P andM are incomparable, although both can be used to solve
terminating reliable broadcast, non-blocking atomic commitment and leader election4.

4This may not be confused with the eventual leader election, as provided by Ω. Leader election in
this sense may not make any mistake [SM95]

3.7. OTHER CLASSES OF FAILURE DETECTORS 35

3.7.2 Perfect Failure Detectors of Larrea

Larrea [Lar02] relatesM and P by introducing a whole family of perfect failure detectors
via four different accuracy properties.

Strong Accuracy 1. No process is suspected before it crashes. Formally,

∀t, ∀p, q ∈ C(t) : p /∈ H(q, t)

Strong Accuracy 2. No process is suspected by any correct process before it crashes.
Formally,

∀t, ∀p ∈ C(t), ∀q ∈ C : p /∈ H(q, t)

Strong Accuracy 3. No correct process is ever suspected. Formally,

∀t, ∀p ∈ C ∀q ∈ Π : p /∈ H(q, t)

Strong Accuracy 4. No correct process is ever suspected by any correct process. For-
mally,

∀t, ∀p, q ∈ C : p /∈ H(q, t)

Strong accuracy 1 equals the classical strong accuracy property of Section 3.3. By com-
bining each of these accuracy properties with strong completeness, we obtain four classes
P1, P2, P3, and P4. By definition P1 = P. Larrea shows the following relationships:

P2 ≺ P1 P3 ≺ P1 P4 ≺ P2 P4 ≺ P3 (3.8)

P3 ≺� P2 P3 ≺M �S ≺ P4 (3.9)

All failure detectors P1, P2, P3, and P4 can be implemented in a synchronous system.
Since �S ≺ P4, we can use P4 to solve uniform consensus. Further, P4 suffices to solve
non-blocking atomic commitment and P3 suffices to solve terminating reliable broadcast.

3.7.3 Heartbeat Failure Detector

The heartbeat failure detector [ACT99] differs from all other previously described failure
detectors in that it outputs not a list of processes but a list of non-negative integers, one
for each other process in the system. We denote with H(p, t)[q] the integer for process
q in the failure detector history of p. It is defined for a partitionable system with link
crashes.

HB-Completeness. At each correct process p, the heartbeat sequence of every process
not in the partition of p is bounded. Formally,

∀p ∈ C, ∀q ∈ C(p,∞), ∃K ∈ N, ∀t : H(p, t)[q] ≤ K

36 CHAPTER 3. FAILURE DETECTORS

HB-Accuracy. Comprises the two subproperties:

• At each process p, the heartbeat sequence of every process is nondecreasing.
Formally,

∀p, q ∈ Π, ∀t1 ≤ t2 : H(p, t1)[q] ≤ H(p, t2)[q]

• At each correct process p, the heartbeat sequence of every process in the par-
tition of p is unbounded. Formally,

∀p ∈ C, ∀q ∈ C(p,∞), ∀K ∈ N, ∃t : H(p, t)[q] > K

The heartbeat failure detector can be implemented in a purely asynchronous system
and is thus not sufficient to solve consensus or any stronger agreement problem. However,
it can be used for quiescent5 reliable communication.

It is important not to confuse this class of failure detectors with heartbeat-style fail-
ure detectors, i.e., failure detectors that use heartbeats as implementation principle (see
Section 3.10).

3.7.4 The Θ Failure Detector

In [ATD99] a failure detector called Θ6 has been formalized. It is shown to be the weakest
failure detector for uniform reliable broadcast in a system with process crashes and fair
lossy links.

Θ-Completeness. There is a time after which correct processes do not trust any process
that crashes. Formally,

∃t0, ∀p ∈ C, ∀q ∈ F , ∀t ≥ t0 : q /∈ H̃(p, t)

Θ-Accuracy. If there is a correct process then, at every time, every process trusts at
least one correct process. Formally,

F 6= Π⇒ ∀t, ∀p ∈ Π, ∃q ∈ C : q ∈ H̃(p, t)

Note that the correct process trusted by a process p may change infinitely often, and
it is not necessarily the same as the correct process trusted by another process q.

5A reliable broadcast algorithm is quiescent, if it sends only a finite number of messages when broadcast

is invoked a finite number of times [ACT99].
6Not to be confused with the homonymous timing model of [LLS03, SW05]

3.7. OTHER CLASSES OF FAILURE DETECTORS 37

3.7.5 Failure Detectors for the Crash-Recovery Model

In [ACT00] and [HMR98] a system model that allows processes to recover after a crash
is considered. Here we have to distinguish not only between correct and faulty processes
but also between those that crash and recover an infinite number of times and others that
do not. Thus, a process p can be classified as follows:

Always-up: Process p never crashes.

Eventually-up: Process p crashes at least once, but there is a time after which p is
permanently up.

Eventually-down: There is a time after which process p is permanently down.

Unstable: Process p crashes and recovers infinitely many times.

A process is said to be good if it is either always-up or eventually-up, else it is bad.
The failure detector in [HMR98] outputs a list of processes and has the property:

Strong Completeness. Eventually every bad process is permanently suspected by all
good processes.7

As the authors of [ACT00] show, such a completeness definition is not very useful, since
every implementation inevitably has runs where all processes are good and nevertheless
some processes are suspected forever, even in synchronous systems. As a solution they
propose a new class of failure detectors that can informally been seen as a combination
of �S and the heartbeat failure detector. At each process p, the output of such a failure
detector consists of a list of trusted processes and an epoch counter for each process in
this list. Intuitively, a process q is in the list of trusted processes if p believes that q
is currently up, and the epoch counter is p’s estimate of how often q has crashed and
recovered so far.
�Se is the class of failure detectors that satisfies the following properties:

Monotonicity. At every good process, eventually the epoch numbers are nondecreasing.

Completeness. For every bad process b and for every good process g, either eventually
g permanently suspects b or b’s epoch number at g is unbounded.

Accuracy. For some good process p and for every good process g, eventually g perma-
nently trusts p and p’s epoch number at g stops changing.

The authors also define a stronger accuracy property:

7We abstain from a formal definition here since the crash-recovery model is not covered by our prior
formal considerations.

38 CHAPTER 3. FAILURE DETECTORS

Strong Accuracy. For some good process p: (a) for every good process g, eventually g
permanently trusts p and p’s epoch number at g stops changing; and (b) for every
unstable process u, eventually whenever u is up, u trusts p and p’s epoch number
at u stops changing.

Intuitively this property requires also the failure detector at unstable processes to behave
correctly whenever they are up. The class of failure detectors that fulfill monotonicity,
completeness and strong accuracy is denoted by �Su. Obviously, �Su is stronger than �Se.
In systems where a majority of processes are good, �Se can be transformed into �Su.

If the number of always-up processes is larger than the number of bad processes
consensus can be solved using �Se even without stable storage. If a majority of processes
is good, consensus can be solved with stable storage and �Su.

3.7.6 Γ-Accurate failure detectors

The classical failure detectors of Chandra and Toueg monitor all processes in the system:
The completeness properties require to eventually suspect every crashed process and the
accuracy properties restrict the failures that can be made by all processes in the system.

A Γ-accurate failure detector [GS96] restricts the accuracy property to a subset Γ of
processes. In more detail, for a given set Γ ⊆ Π they guarantee:

Γ-Strong Accuracy. No process in Γ is suspected by any process in Γ before it crashes.
Formally,

∀t, ∀p, q ∈ C(t) ∩ Γ : p /∈ H(q, t)

Γ-Weak Accuracy. Some correct process (not necessarily in Γ) is never suspected by
any process in Γ. Formally,

∃p ∈ C, ∀t, ∀q ∈ C(t) ∩ Γ : p /∈ H(q, t)

Together with similar extensions for the eventual accuracy properties, we obtain classes
P(Γ), S(Γ),W(Γ), �P(Γ), �S(Γ), and �W(Γ). They relate to the classical failure detector
classes as follows:

• If |Γ| > n/2 and f < n/2, then �S(Γ) can be transformed into �S in a system with
eventually reliable channels.

• If Γ ⊂ Π, even with reliable channels �W(Γ) cannot be transformed into �W. Since
�W is the weakest failure detector for consensus, �W(Γ) does not suffice to solve
consensus.

• If Γ ⊂ Π, even with reliable channels P(Γ) cannot be transformed into P.

3.7. OTHER CLASSES OF FAILURE DETECTORS 39

Thus we have:

�S ∼=EMaj
�S(Γ) �W(Γ) ≺ �W P(Γ) ≺ P (3.10)

where EMaj is the environment with a majority of correct processes and eventual reliable
links as described above.

3.7.7 Limited Accuracy Failure Detectors

A slightly weaker accuracy property than the Γ-accuracy is given in [MR00, MR99b]: The
set of processes for which the accuracy property needs to hold is not given a priori but
only the size is known.

x-Accuracy. There is a set Q ⊆ Π of size x, such that no process in Q is suspected by
any process in Q before it crashes. Formally,

∃Q ⊆ Π, ∀t, ∀p, q ∈ C(t) ∩Q : p /∈ H(q, t) ∧ |Q| = x

Eventually x-Accuracy. There is a set Q ⊆ Π of size x, such that there is a time,
after which correct processes from Q are not suspected by any correct process in Q.
Formally,

∃Q ⊆ Π, ∃t0, ∀t ≥ t0, ∀p, q ∈ C(t) ∩Q : p /∈ H(q, t) ∧ |Q| = x

By combining these accuracy properties with the strong completeness of Chandra and
Toueg, we obtain the classes Sx and �Sx. By definition, Sn is S, whereas S1 does not
provide any information about other processes and does not enhance an asynchronous
system. A failure detector of class Sx (resp. �Sx) can be used to solve the k-set agreement
problem [Cha90], if f < k + x− 1 resp. f < min(n− kbn/(k + 1)c, k + x− 1).

3.7.8 Eventual Consistent Failure Detector

Larrea et al. [LFA01] introduce a failure detector called eventually consistent failure de-
tector �C which fulfills strong completeness and the following accuracy property:

Eventually Consistency Accuracy. There is a deterministic function leader : 2Π →
Π, a time t and a correct process p such that for all times t′ > t, for every correct
process q, p /∈ H(q, t′) and leader(Π−H(q, t′)) = p.

The authors show that

�C ∼= Ω (3.11)

40 CHAPTER 3. FAILURE DETECTORS

whereas

�S ⊆ �C ⊆ �P (3.12)

holds by definition. A failure detector from �C can be implemented as efficient as a failure
detector from �S, but allows a more efficient consensus algorithm that does not use the
rotating coordinator paradigm and reaches consensus in one round after stabilization.

3.7.9 Failure Detectors for Byzantine Faults

A natural generalization of the concept of failure detectors to Byzantine faults is not
easy if we want to keep such a definition implementable: First of all, there are Byzantine
faults that are undetectable for a single process for various reasons. Secondly, such an
implementation of a failure detector for Byzantine faults must always depend on the
algorithm that uses the failure detector, since the message pattern and the expected
content is obviously not the same for all algorithms.

Thus, all approaches regarding Byzantine failure detectors use the concept of moni-
toring the messages the application process sends and receives. The first approach, called
muteness failure detectors [DS98, DGGS99, DGG02] assumes a round based message pat-
tern and requires the application process to feed the failure detector with all information
it needs. Further, this failure detector is not a distributed oracle but a local module that
communicates only with the application process. The second approach, called Byzantine
fault detector [KMMS03] is restricted to a certain consensus algorithm and is also only a
local module. Both approaches use timeouts on the perceived message pattern to calculate
a list of suspects.

Every implementation of a failure detector for Byzantine faults inherently depends on
a certain application and thus cannot be independently used by more than one application
process. Further, only detectable faults can be encapsulated by the failure detector, the
application process still has to deal with undetectable value faults. For these reasons, using
the concept of failure detectors for Byzantine faults seems not to be very auspicious.

3.8 Applications of Failure Detectors

Many problems that are unsolvable in a purely asynchronous system are solvable if the
system is augmented with an appropriate failure detector. Without aiming for complete-
ness, we show the most popular problems that can be solved in asynchronous systems
with a failure detector.

Note that there are still problems that require a synchronous system, like clock synchro-
nization [Wid03, Wid04]. Further, there are problem that require information that is not
only depending on the failure pattern: The problem of predicate detection [GP01, GP02]
requires additional information about the state of the channel, and is thus unsolvable by

3.8. APPLICATIONS OF FAILURE DETECTORS 41

any failure detector. A failure detector sequencer is a pure generalization of a failure de-
tector and provides sufficient and necessary information to the processes to solve predicate
detection [GP02].

Consensus. The consensus problem has already been introduced as a motivation for
failure detectors in Section 1.1. The work of Chandra and Toueg [CT96] has spawned a
considerable amount of research [AT03, vR03, MR99a, MR01] on how consensus can be
implemented using failure detectors.

Consensus algorithms atop of the eventual strong failure detector �S are often built
using the rotating coordinator paradigm [CM84, DLS88]. Such an algorithm proceeds in
asynchronous rounds. In every round r process c = (r mod n)+1 is the coordinator. All
processes send their estimate to the current coordinator and wait either for the answer
or that the failure detector suspects the coordinator. The coordinator waits for (n + 1)/2
estimates, carefully selects one of them and broadcasts this value back to all processes.
In a second acknowledgment phase the coordinator detects whether agreement has been
achieved or not and in case, reliably broadcasts the decision value. Ω based consensus
algorithms work similarly, here the coordinator does not rotate but is always the current
leader. In both cases, eventually every process trusts a coordinator and thus agreement
can be achieved. To solve consensus with an eventual failure detector (�P, �Q, �S, �W,
Ω) a majority of correct processes is needed (f < n/2).

Consensus using a perpetual failure detector can be solved for f < n. The algorithm
proposed by Chandra and Toueg proceeds in asynchronous rounds, where the failure
detector is used to avoid that a process waits infinitely long for a faulty processes. Like
for a synchronous algorithms [AW98], the algorithm exchanges a vector of estimates of
the initial values of the processes for f + 1 rounds.

Group Membership. Group membership is the base for many group communication
systems [CKV01]. A group communication system comprises services like virtual syn-
chrony, atomic broadcast, total order broadcast, etc. The definitions for such services
differ very much, and so do the definitions of group membership.

Informally, a group membership service provides the processes with an agreed set of
correct processes. In some specifications, processes may voluntarily leave a group, and new
processes may join a group. Group communication systems often consider partitionable
systems, so there are definitions for partitionable group membership as well as for primary
component group membership.

Failure detectors serve two purposes in group membership: First they provide infor-
mation which processes are correct—here we need a perfect or eventually perfect failure
detector—and are needed to solve the inherent agreement problem in group membership—
here an Ω failure detector suffices.

42 CHAPTER 3. FAILURE DETECTORS

Atomic Broadcast. Informally speaking, atomic broadcast requires all correct pro-
cesses to deliver all messages in the same order. This requirement corresponds to agree-
ment on the delivery order and thus —not surprisingly—consensus and atomic broadcast
are reducible to each other in an asynchronous system [CT96].

More formally, atomic broadcast comprises two primitives, broadcast and deliver. The
properties of atomic broadcast [HT93, CT96] are the ones of reliable broadcast8

(Validity.) If a correct process broadcasts a message m, then it eventually delivers m.

(Agreement.) If some correct process delivers a message m, then all correct processes
eventually deliver m.

(Uniform Integrity.) For every message m, every process delivers m at most once, and
only if m was previously broadcast by the sender of m.

together with the property

(Total Order.) If correct processes p and q both deliver messages m and m′, then p
delivers m before m′ if and only if q delivers m before m′.

Because of its relation to consensus, the weakest failure detector for atomic broadcast
is Ω.

Uniform Reliable Broadcast. Uniform reliable broadcast [HT93, ATD99] is a com-
munication primitive that requires that if a process delivers a message then all correct
processes also deliver this message. In contrast to reliable broadcast, the agreement prop-
erty also includes messages delivered at faulty processes. Thus for the two communication
primitives broadcast and deliver we have the following properties:

(Validity.) If a correct process broadcasts a message m, then it eventually delivers m.

(Uniform Agreement.) If some process delivers a message m, then all correct processes
eventually deliver m.

(Uniform Integrity.) For every message m, every process delivers m at most once, and
only if m was previously broadcast by the sender of m.

The weakest failure detector for uniform reliable broadcast is the failure detector Θ, cf.
Section 3.7.4, [ATD99].

8Note that reliable broadcast itself can be solved without any failure detector in an asynchronous
system.

3.9. THE QUALITY OF SERVICE OF FAILURE DETECTION 43

Terminating Reliable Broadcast. Terminating reliable broadcast is reliable broad-
cast with an additional property, which requires that correct processes always deliver a
message. Also, the integrity property is slightly weakened, to allow processes to deliver
sf, which is a special message that indicates that the sender was faulty. Thus we have
the following properties for terminating reliable broadcast [HT93]:

(Termination.) Every correct process eventually delivers some message.

(Validity.) If the sender is correct and broadcasts a message m, then all correct processes
eventually deliver m.

(Agreement.) If a correct process delivers a message m, then all correct processes even-
tually deliver m.

(Integrity.) Every correct process delivers at most one message, and if it delivers m 6= sf

then the sender must have broadcast m.

Terminating reliable broadcast can be solved in asynchronous systems using P, but not
with S, �P or �S [CT96].

Non-blocking Atomic Commitment. The non-blocking atomic commitment prob-
lem [Gue02, Ske81] requires all processes to reach a common decision, commit or abort,
according to some initial votes, yes or no, such that the following properties hold:

(Agreement.) No two processes decide differently.

(Termination.) Every correct process eventually decides.

(Abort-Validity.) Abort is the only possible decision if some process votes no.

(Commit-Validity.) Commit is the only possible decision if every process is correct and
votes yes.

Non-blocking atomic commitment can be solved in asynchronous systems using P, but
not with S, �P or �S [CT96]. However, this does not imply that non-blocking atomic
commitment is harder to solve than consensus, since [Gue02] showed that Consensus and
non-blocking atomic commitment are incomparable.

3.9 The Quality of Service of Failure Detection

In [CTA00] a comprehensive list of metrics is defined that characterize the quality of
service of a failure detector. These metrics are defined for systems with probabilistic
behavior and thus only partially apply to our system model. Their system model assumes

44 CHAPTER 3. FAILURE DETECTORS

that messages get lost on a link with a given message loss probability and the message
delay is given by a random variable T with finite expected value E{T} and variance
var{T}.

They define three primary metrics based on a two processes system comprising pro-
cesses p and q:

Detection time TD: Assume p crashes. Then TD is the random variable that repre-
sents the time that elapses from p’s crash to the time when q starts suspecting p
permanently. This time is closely related to the completeness property of the failure
detector which requires such a suspicion eventually.

Mistake recurrence time TMR: Assuming a run without crashes, this random vari-
able measures the time between two consecutive mistakes. A mistake occurs every
time the failure detector was correct (i.e., no suspicion) and then erroneously starts
suspecting another (correct) process.

Mistake duration TM : Again assuming a run without crashes, this random variable
measures the time it takes the failure detector to correct a mistake.

Based on the latter two primary metrics, the following additional derived metrics are
defined:

Good period duration TG: This random variable measures the length of a good pe-
riod. For an ergodic probability distribution of failure detector histories, we have
TG = TMR −TM .

Forward good period duration TFG: This is the random variable representing the
time that elapses from a random time at which q trusts p to the next suspicion. The
calculation of TFG can be found in [CTA00].

Average mistake rate λM : This measures the rate at which a failure detector makes
mistakes. For an ergodic probability distribution of failure detector histories, we
have λM = 1/E{TMR}.

Query accuracy probability PA: This is the probability that the failure detector’s out-
put is correct at a random time. For an ergodic probability distribution of failure
detector histories, we have PA = E{TG}/E{TMR}.

For non-ergodic failure detector histories, the relations between primary and derived met-
rics are more complex [Che00].

Since the system in this thesis and almost all other literature on failure detectors is not
described by a probabilistic behavior but by bounds on stabilization time and transmission
delays these parameters cannot be calculated. However, sometimes we can derive a bound
on the detection time and/or the time until the failure detector stops making mistakes
forever.

3.10. IMPLEMENTATION PRINCIPLES 45

3.10 Implementation Principles

In general, there are two basic methods for implementing failure detectors. In the first
approach the monitored process is responsible for sending messages and the monitoring
process only listens. In the second case, the monitoring process queries a response from
the monitored process.

Heartbeat based failure detectors. Here, the monitored process sends periodic mes-
sages (“heartbeats”) to all monitoring processes. The monitoring process waits a certain
time for the heartbeat and if not received, suspects the process. The waiting time is
mostly determined by some local clock and a timeout value. The timeout value for the
heartbeats can be calculated and adapted in various ways (e.g. [BMS02], cf. also Chap-
ter 5). It is also possible to use order properties [BKM97] to detect a process that has
stopped sending heartbeats.

Query based failure detectors. Such a failure detector uses a ping-pong principle
in the sense that the monitoring process sends a request to the monitored process and
waits for the answer of this process. If this answer is not received in time, the process is
suspected. This approach is chosen either for efficiency reasons [LFA99] or for message-
driven algorithms, where no local source of event generation exists (cf. Chapters 2 and 7).

3.11 Failure Detectors Implemented in this Thesis

We give a short overview of the failure detector implementations in the following chapters.
We indicate either if a global (cf. Sections 3.3 and 3.4), local (cf. Section 3.6) or a
transformation from a local to a global failure detector is presented in the respective
chapters. Further the table shows the exact failure detector class and the implementation
principle (cf. Section 3.10).

Chapter 4 Chapter 5 Chapter 6 Chapter 7
type global global local, transformation local
class Ω �Pp �P`,�P �P`

impl. principle heartbeat heartbeat heartbeat query

46 CHAPTER 3. FAILURE DETECTORS

Chapter 4

Weak Synchrony

Failure detectors should only be based on minimal assumptions on the amount of syn-
chrony of the system in order to achieve high assumption coverage when implemented
in real systems. When implementing a failure detector directly on a sparse network, it
would be desirable if there is no need for more synchrony as in the fully connected case. In
this chapter we provide evidence that indeed implementing a failure detector for a sparse
network does not require stronger synchrony assumptions than implementing a failure
detector for the fully connected case.

For this purpose we consider the model recently proposed by Aguilera et al. [ADGFT04].
They provided an implementation for Ω that works with very weak reliability and syn-
chrony assumptions for links. In more detail, they need only f eventually timely links, to
implement Ω, whereas all other links may be fair lossy. In such a model, as the authors
show, it is not possible to implement �P. It is thus the first published model in which �S
resp. Ω is implementable but �P is not.

In this chapter, we are generalizing their algorithm for sparse networks and show that
in the sparse network case we

• need only the same synchrony assumptions as for the fully connected case,

• have no loss in fault-tolerance, and

• are even better in terms of message complexity.

4.1 Problem Specification

We describe the model of [ADGFT03b] in terms of our definitions in Chapter 2.

• Processes can fail by crashing, and the number of processes that may crash is
bounded by the minimal degree of the network, i.e., f < δ. We assume the com-

47

48 CHAPTER 4. WEAK SYNCHRONY

munication graph does not partition due to these failures. This can be ensured by
choosing f < κ, where κ is the node connectivity1 of the network graph.

• Links need not to be bidirectional. Links never crash and can be either fair lossy or
eventually timely (�-timely), i.e., we have tGST and τ+ finite but unknown. We call
a node with j �-timely outgoing links a �j-source. We assume there is at least one
correct �f -source in the system.

• The algorithms are timed, i.e., we need local clocks with neglectable drift.

4.2 Related Work

The original algorithm of [ADGFT03b] is shown in Figure 4.1. It works in a fully con-
nected network with at least one �f -source while all other links may be fair lossy. Intu-
itively the algorithm works as follows: Every process p keeps a non-decreasing variable
counterp[q] for every other process q in the system. Process p chooses as its leader the pro-
cess q with smallest counterp[q], breaking ties using the process id. A counter counterp[q]
is increased every time n − f processes report that they suspect q. Every process pe-
riodically sends an (Alive, counter) message to all other processes, which itself use an
adaptive timeout to build an estimate of all crashed processes. If the timeout at p for a
process q runs out, p sends a (Suspect, q) message to all other processes. The key idea
is that at every process p, for every �f -source q, counterp[q] eventually stops increasing,
while for all faulty processes this counter increases forever. Thus eventually a unique
leader can be elected.

Variants of the same (weak) model together with appropriate algorithms appear in
[ADGFT03a] and [ADGFT04]. With higher synchrony and reliability assumptions (e.g.
there is a process with timely links to all other processes) also communication efficient
implementations are possible.

4.3 The Sparse Network Algorithm

The algorithm presented in Figure 4.2 has been derived from the fully connected one
of [ADGFT03b]. In fact, there are only a few changes to reflect the nature of sparse
networks:

• In contrast to the original algorithm, the Counter and the Alive message are sent
separately. The rationale behind this is that only constant size Alive messages have
to be �-timely, whereas the counter message, which is of unbounded size, needs not

1A graph G is κ-node connected if the removal of any set of κ− 1 nodes leaves the graph connected,
whereas there is a set of κ nodes whose removal partitions the graph in at least two components.

4.3. THE SPARSE NETWORK ALGORITHM 49

1 initially

2 ∀q 6= p : T imeout[q]← T + 1
3 ∀q : counter[q]← 0
4 ∀q : suspect[q]← 0
5 ∀q 6= p : reset timer(q) to T imeout[q]
6

7 repeat forever

8 leader ← ` such that (counter[`], `) = min{(counter[q], q) : q ∈ Π}
9

10 repeat forever

11 every T time steps do:
12 send (Alive, counter) to all processes except p
13

14 upon receive (Alive, c) from q do

15 for each r ∈ Π do counter[r]← max{counter[r], c[r]}
16 reset timer(q) to T imeout[q]
17

18 upon expiration of timer(q) do

19 T imeout[q]← T imeout[q] + 1
20 send (Suspect, q) to all
21 reset timer(q) to T imeout[q]
22

23 upon receive (Suspect, q) from r do

24 suspect[q]← suspect[q] ∪ {r}
25 if |suspect[q]| > n− f then

26 suspect[q]← ∅
27 counter[q]← counter[q] + 1

Figure 4.1: The original algorithm from Aguilera et al. Code for a process p. The constant
T is an arbitrary time value.

50 CHAPTER 4. WEAK SYNCHRONY

1 initially

2 ∀q ∈ nb(p) : T imeout[q]← T + 1
3 ∀q : counter[q]← 0
4 ∀q, r : suspect[q][r]← 0
5 ∀q : lastseq[q]← 0
6 ∀q : sequencer[q]← 0
7 ∀q ∈ nb(p) : reset timer(q) to T imeout[q]
8

9 repeat forever

10 leader ← ` such that (counter[`], `) = min{(counter[q], q) : q ∈ Π}
11

12 repeat forever

13 every T time steps do:
14 send (Alive) to all neighbors
15 send (Counter, counter) to all neighbors
16

17 upon receive (Alive) from q do

18 reset timer(q) to T imeout[q]
19

20 upon receive (Counter, c) from q do

21 for each r ∈ Π do counter[r]← max{counter[r], c[r]}
22

23 upon expiration of timer(q) do

24 T imeout[q]← T imeout[q] + 1
25 sequencer[q]← sequencer[q] + 1
26 send (Suspect, q, p, sequencer) to all neighbors and p
27 reset timer(q) to T imeout[q]
28

29 upon receive (Suspect, q, r, seq) do

30 if suspect[q][r] < seq then

31 suspect[q][r]← seq
32 send (Suspect, q, r, seq) to all neighbors
33 if |{r|suspect[q][r] > lastseq[q]}| > deg(q)− f then

34 lastseq[q]← maxs(suspect[q][s]) + 1
35 counter[q]← counter[q] + 1

Figure 4.2: The modified version of the algorithm from Figure 4.1. Code for a process p.

4.3. THE SPARSE NETWORK ALGORITHM 51

to be timely. We believe that it is more realistic to timely transmit a constant size
message between neighbors than a message of arbitrary size to any process in the
system, if such messages are equipped with a higher priority.

• Suspect messages are forwarded to non-neighbors. Each suspect message carries
a sequence number and the identifier of the origin, so that each suspect is counted
only once, even if it received multiple times by a process.

• Since Alive messages are exchanged only with neighbors, the quorum for increasing
counter[q] is deg(q)−f (instead of n−f as in [ADGFT03b]). If not a priori available,
the information about the node degrees of the system can easily be distributed by
an asynchronous algorithm.

The proof of correctness closely follows the original one, but has to consider the changes
of the algorithm due to the sparse topology:

Lemma 4.1. If p is a correct �f -source, then for every q, counterq[p] is bounded.

Proof. Since p is correct there are f neighbors of p that eventually do not timeout on
p and therefore stop sending (Suspect, p, , seq) messages. This implies that there is a
seqmax such that sequencer[p] < seqmax for f neighbors of p. Therefore no process will
receive more than deg(p)−f Suspect messages with unbounded sequencer and therefore
at every process the condition in line 33 becomes true only a finite number of times. Thus
also by line 10, at process q the counter counterq[p] is bounded.

Lemma 4.2. If p and r are correct processes then for every time t and every process q,
there exists a time after which counterr[q] ≥ counterp[q](t).

Proof. Let x = counterp[q](t). If x = 0 or p = r then the lemma holds because counterp[q]
is nondecreasing. So assume x > 0 and p 6= r. After p sets counterp[q] = x, it sends
infinitely many Counter messages to its neighbors, where counter[q] of these messages
is at least x. Since links are fair lossy, eventually every neighbor receives one of these
messages and sets its counter to a value greater or equal to x. By an inductive argument,
every correct process in the network finally has counter[q] ≥ x.

Lemma 4.3. If p is correct and q is faulty, then counterp[q] is unbounded.

Proof. If q is faulty, at least deg(q)−f+1 neighbors of q will suspect q forever and will send
infinitely many Suspect messages with ever increasing sequence counters. Therefore, at
every correct process p, the condition in lines 30 and 33 will become true infinitely often
and therefore counterp[q] will increase infinitely often.

Theorem 4.1. The algorithm in Figure 4.2 implements Ω in a non-partitionable sparse
network with fair lossy links and at least one correct �f -source.

52 CHAPTER 4. WEAK SYNCHRONY

Proof. By Lemma 4.1 and Lemma 4.3, and the fact that there is a correct �f -source, it
follows that for every correct process p, there is a time after which leaderp is correct and
stops changing. By Lemma 4.2, for every correct processes p and q, there is a time after
which leaderp = leaderq.

4.4 Complexity Analysis

In this section we compare the message complexity of the sparse network algorithm with
the original one. The original algorithm assumes a fully connected network, which has
in practice to be simulated atop of the sparse network. A message in the fully connected
network has thus to be routed over multiple hops in the underlying sparse network. Since
we have no information about the overhead due to routing we assume perfect routing along
the shortest path. Typically, ∆ is a constant for sparse networks, i.e., O(∆) = O(1), which
implies O(d) = O(n). Note that that the separation of Alive and Counter messages is
not relevant for the comparison, thus we consider them as a single message in both cases.

First consider the Alive messages. In both algorithms, they are broadcast every
T time steps. However, in the original algorithm they are sent to every other process
in the system, resulting in n(n − 1) messages in T time steps. On the other hand, a
process running the sparse network algorithm sends the Alive messages to neighbors
only, resulting in an overall message load of

∑

p∈Π deg(p) = |Λ| ≤ n∆ ≤ n(n− 1). Since
in a sparse network we often have ∆ << n, there is a substantial reduction of message
load. Moreover, the original algorithm has to send messages over several hops whereas
in our algorithm all messages are sent between neighbors. Assuming an average distance
of d/2 and perfect routing for the fully connected case, we have |Λ| versus n(n − 1)d/2
messages.

The message complexity of the Suspect messages is more difficult to calculate, since
some timeouts might be increasing forever while others stop increasing. For simplicity
of analysis, we assume all processes increase the timeouts forever and at the same time,
and we calculate the message load for one such timeout interval, independent of its size.
Since these simplifications affect both algorithms in the same way, this still allows a good
comparison of the message complexity.

Once a process timeouts on another process, the original algorithm sends a suspect
message to all other n− 1 processes. Since every process monitors n− 1 other processes
we have n(n−1)2 suspect messages that are routed independently over the network in the
worst case. In contrast, the sparse network algorithm sends only

∑n

1 deg(p) · |Λ| = |Λ|2

messages. Again, assuming an average distance of d/2 and a perfect routing for the fully
connected case, we have |Λ|2 versus n(n− 1)2d/2 messages.

Putting everything together, in the low level sparse network, the original algorithm
requires O(n3) Alive messages in T time steps and O(n4) Suspect messages in a timeout
interval. The sparse network algorithm requires only O(n) Alive messages and O(n2)

4.5. DISCUSSION 53

suspect messages in a timeout interval. This does still not include the fact that employing
a perfect routing in a fault prone network is very hard and thus additional overhead has
to be expected for the original algorithm.

We are aware that the authors of the original algorithm already stated that the simple
algorithm is inefficient and provided an efficient solution, where only f links of the fully-
connected network carry messages forever. But this algorithm requires reliable links,
which is not as weak as the model we are considering here.

4.5 Discussion

At a first glance, the Ω-implementation for sparse graphs seems to be the same as for
the fully connected case. After all, we just made the communication with non-neighbors
explicit, instead of simulating a fully connected point-to-point network. However, there
are some more intricate differences.

The complexity analysis showed a significant reduction in message load in sparse net-
works, when we consider a sparse network model for the algorithm, instead of simulating
a fully connected network. One may argue that this impairs fault-tolerance and hence the
achievable assumption coverage. However, if a neighbor is not timely, the messages of a
non-neighbor routed over this process must in general be considered non-timely as well.
Therefore, restricting the f �-timely links to links between neighbors is no loss of assump-
tion coverage. Assuming δ > f does not reduce the assumption coverage either, since
if this requirement was violated, the fully connected overlay graph could also partition
and therefore violate the system model. Moreover, a bound on the transmission delays
of constant size messages between neighbors (without routing layer) can be established
with very high coverage. This yields an increase of assumption coverage compared to the
original solution.

54 CHAPTER 4. WEAK SYNCHRONY

Chapter 5

Localized Services

In this chapter we present an implementation of a failure detector for a network, where
processes are connected by a partitionable, sparse network with bounded number of neigh-
bors. In wireless ad-hoc networks, where hardware limitations (e.g., receiver channels or
buffers) allow processes to keep connections only to a certain number of other processes,
this is a natural property of the underlying network. The total number of processes needs
not to be known. Links and processes can fail by crashing, and due to these failures
the network may partition into components. Processes can communicate only with their
neighbors via a local broadcast primitive, which can also be implemented efficiently in
wireless ad-hoc networks.

Processes do not need to know a bound on the communication delay between arbitrary
processes but only a bound on the jitter of the communication between neighbors. This
implies synchronous communication and may appear to be a severe restriction. Synchrony
is required only between direct neighbors, however, which makes communication with
non-neighbors at least partially synchronous [DLS88, LFA02] in case of unknown network
size. In fact, in a wireless ad-hoc network, bounded communication delays can easily be
achieved if a fixed part of the communication bandwidth is reserved for the failure detector,
and the number of neighbors and the message size can be bounded. The algorithm of this
chapter fulfills these conditions.

The algorithm uses heartbeats and timeouts to determine whether there is a connec-
tion between two processes. In contrast to systems where a fully connected network is
assumed (and therefore the information is routed over the partially connected network
when simulating the fully connected one), every process reuses the information of its
neighbors, so unnecessary traffic can be avoided: Periodically, every process increments
its own heartbeat counter and exchanges heartbeats with its neighbors. Consider a sim-
ple algorithm first, where every process forwards the heartbeats from itself and all other
processes in the system to its neighbors in every round. Every process receives a new
heartbeat from every connected process in each round here. If a process does not receive
a heartbeat from another process, it suspects it. Still, this algorithm would require every

55

56 CHAPTER 5. LOCALIZED SERVICES

process to send O(n) messages in every round.

By contrast, our algorithm forwards heartbeats of processes that are far away less
frequently than those of nearer ones. The failure detector provides therefore more accurate
information about nearer processes. This blends nicely with real systems, where, due to
localization, processes that work together are often situated in the same region of the
network. When choosing the parameters appropriately, we can reduce the traffic of each
process so that every process sends in a time interval only a constant number of messages
of logarithmic size, and yet calculate a precise timeout value.

5.1 Problem Specification

To achieve the network properties described above, we specialize the system model of
Chapter 2. We assume persistent crashes of processes and links only. Further, we assume
that there is a bound ∆ on ∆(t) that is known to the processes. All links are bidirectional
and reliable.

Processes can communicate with their neighbors using a local broadcast service. Such
a service can be easily built from the send and receive primitives of the message passing
model. In many architectures, however, such a primitive can naturally arise, if commu-
nication takes place via a shared medium of bounded extent. Consider, e.g., a wireless
network, where all nodes in the communication range might be able to listen to a message.
The service consists of two primitives, broadcast and deliver. When a process p invokes
broadcast(msg) at time t, then deliver(msg) is triggered in the interval [t + τ−, t + τ+] at
all processes that are in nb(p, t + τ+). All links are therefore reliable until they crash.
Note that a bound on the jitter ε = τ+ − τ− needs to be known by the processes, which
implies a synchronous communication.

We implement an eventually perfect failure detector �Pp for partitionable systems that
fulfills the properties strong completeness and eventual strong accuracy (cf. Section 3.5).

5.2 Related Work

Failure detectors for partitionable systems were defined in a similar way as in Section 3.5
by various authors [ACT99, BDM01, DFKM97]. In [ACT99], a sparsely connected com-
munication graph is used, but the failure detector named “heartbeat” is used for quiescent
reliable communication and is weaker than �W.

Many failure detector implementations of �P use heartbeats [GCG01, BMS02, BMS03].
To our knowledge, none of them operates in sparsely connected networks, however. They
could be used in conjunction with routing or other mechanisms to implement a reliable
point-to-point network on top of a sparse network, but this typically creates excessive
traffic.

5.3. THE ALGORITHM 57

To reduce communication traffic, methods like gossiping [vRMH98, WK03] are used,
but these algorithms provide no deterministic solution and also require a fully connected
communication graph.

Efficient failure detector implementations are given by Larrea et al. [LFA99]. Their
efficieny criteria differs from ours since they consider an algorithm to be efficient if even-
tually the algorithm keeps sending messages over only O(n) links. However, the number
of messages on these links is not bounded. In constrast, our algorithm always sends only
O(1) messages of size O(log n + log t) in a time inverval of T on every sparse network
link. We believe this is a more interesting property, since this allows the implementation
of links with known timing properties, as required by our algorithm.

5.3 The Algorithm

Every process p has, for every other process q it knows of, a heartbeat table consisting of:

• a heartbeat counter hbcp[q] which contains the most recent heartbeat of q

• a distance counter distancep[q] that contains p’s estimate about the current distance
to q

• a time-stamp lastp[q] that holds the last round when p received a new heartbeat
from q.

These arrays grow dynamically with each new process p learns of. For reasons of simplicity
they are used in the algorithm as if they were statically allocated. The set trustedp

contains all processes that the failure detector does not suspect, i.e., the failure detector’s
output H̃(p, t).

The algorithm for process p is presented in Figure 5.1. It comprises a periodical task,
which sends some part of its local heartbeat table to its current neighbors, and a receiver
task, which updates the local table when it receives new heartbeats from neighbors.

Initially, p knows and trusts only itself. Every T time steps, p increases its own
heartbeat counter, which is also used as the local round number. Every ∆k rounds, all
known processes with distance k are put into the set unsentp. Since only messages from
this set are sent, this ensures that every heartbeat of a process with distance k is broadcast
at most every ∆k rounds. From this set, the process id, heartbeat, and distance of the
∆ + 1 processes with lowest distance to p are sent and removed from unsentp in every
round. If p does not receive a new update from another process it has previously trusted
for a sufficiently long time, it suspects it.

The receiver task of p increases the distance counter of each message it receives by
one. If this distance counter is shorter than its own estimate, it adopts the new distance.
Once it receives a heartbeat newer than its own, it adopts this heartbeat and—if this is
not already the case—trusts the heartbeat’s origin.

58 CHAPTER 5. LOCALIZED SERVICES

1 variables

2 ∀q ∈ Π : hbcp[q], distancep[q], lastp[q] ∈ N /* heartbeat table */
3 unsentp ⊆ Π
4 trustedp ⊆ Π /* failure detector output */
5

6 initially

7 ∀q : hbcq[p] = 0
8 distancep[p] = 0, ∀q 6= p : distancep[q] =∞
9 trustedp = {p}
10 unsentp = ∅
11

12 every T time steps do:

13 hbcp[p] = lastp[p] = hbcp[p] + 1 /* the local round number */
14 for each k ≥ 0, such that ∆k divides hbcp[p] do:

15 add all q with distancep[q] = k to unsentp
16 for 1 to ∆ + 1 do:

17 q = an item from unsentp for which distancep[q] is minimal
18 remove q from unsentp
19 broadcastp(q, hbcp[q], distancep[q])
20 for each q ∈ trustedp do:

21 if (hbcp[p]− lastp[q])T > Timeout(distancep[q]) then

22 remove q from trustedp /* suspect q */
23 distancep[q] =∞
24

25 on deliverp(q, new hbc, new dist) do:

26 if distancep[q] > new dist + 1 then

27 distancep[q] = new dist + 1
28 if new hbc > hbcp[q] then /* more recent heartbeat */
29 hbcp[q] = new hbc /* adopt heartbeat */
30 lastp[q] = hbcp[p] /* set reception timestamp */
31 if q /∈ trustedp then

32 add q to trustedp /* trust q */
33

34 function T imeout(k) = 2T
∆−1∆k + kε

Figure 5.1: Failure detector algorithm for any process p. It comprises a periodical task
and a message handler.

5.4. PROOF OF CORRECTNESS 59

5.4 Proof of Correctness

Theorem 5.1. The algorithm in Figure 5.1 implements strong completeness.

Proof. If p and q become disconnected, eventually hbcp[q] will not grow anymore, since
only q can increase hbcq[q], and only connected processes can learn this value. Either
p already suspects q, in which case we are done, or distancep[q] is bounded by the last
distance between p and q. Thus, eventually p will time out q and therefore suspect it.

To show eventual strong accuracy, we need some technical lemmata. First, we derive
a bound on the number of processes that are at a certain distance to a process:

Lemma 5.1. Let p be any process in a network with maximal degree ∆. Then n0(p, t) = 1
and for k > 0, nk(p, t) ≤ ∆(∆− 1)k−1.

Proof. Obviously, p is the only process with distance 0 to p. For k = 1, since p can
have at most ∆ neighbors, the lemma also holds. Assume that the lemma is valid for
k − 1 > 0. Then nk−1(p, t) ≤ ∆(∆ − 1)k−2. Each of these processes must have a link to
some process in Pk−2. Therefore at most ∆− 1 links can lead to processes in Pk, yielding
nk = |Pk| ≤ ∆(∆− 1)k−1

The variable distancep[q] at time t is p’s estimate of D(p, q, t). If a longer path is
faster than a shorter one, this estimate may not be exact, but it is never smaller than the
initial real distance:

Lemma 5.2. For any q ∈ Pk(p, 0), distancep[q] ≥ k.

Proof. The variable distancep[q] is only set when p receives a heartbeat of q. At q,
distanceq[q] = 0, and with every hop along the path from q to p this hop counter is
increased. Therefore distancep[q] contains the length of the path the heartbeat took.
By definition every process in Pk(p, 0) is initially at distance k to p, and the distance is
monotonically increasing. Therefore the length of this path must be greater or equal than
k.

Lemma 5.3. A heartbeat of a process q ∈ Pk(p, 0) is sent by p at most once every ∆k

rounds.

Proof. A process q’s heartbeat is sent by p only if it is previously put into unsentp.
This happens only every ∆distancep[q] rounds (lines 14+15). According to Lemma 5.2,
distancep[q] ≥ k and therefore ∆distancep[q] ≥ ∆k.

The following lemma shows that, although our algorithm sends constant size messages
at every process, our scheduling function ensures that the heartbeat counter of every
process is forwarded periodically by every process. In the following, we will call the value
of hbcp[p] also the current round number. Note that no global rounds exist, round numbers
are only local.

60 CHAPTER 5. LOCALIZED SERVICES

Lemma 5.4. If k = distancep[q] at some time t, the heartbeat of q is broadcast by p at
most 2∆k rounds after t.

Proof. Let Q = {q′|distancep[q
′] ≤ k} the set of processes with an estimated distance to p

less or equal than q. We first show that the maximum number m of messages containing
heartbeats from processes in Q and sent in ∆k rounds is less or equal to ∆k(∆ + 1). Let
q′ be a process from Q and let i = D(p, q′, 0) be the initial distance of p and q′ (that is,
q′ ∈ Pi(p, 0)). According to Lemma 5.3, q′ causes at most ∆k/∆i messages in ∆k rounds.
Therefore, the sum m of all messages from Q is less or equal than

k∑

i=0

ni(p, 0)
∆k

∆i
,

and using Lemma 5.1,

m ≤ ∆k

(

1 +

k∑

i=1

∆(∆− 1)i−1

∆i

)

≤ ∆k(∆ + 1)

Since ∆k(∆ + 1) messages can be sent in ∆k rounds according to lines 16-19, and since
less or equal than ∆k(∆ + 1) heartbeats (including q) can have a higher or equal priority
than q, q is broadcast in each period of ∆k rounds at least once.1 Since the position of t in
the ∆k period can be arbitrary, the heartbeat is broadcast at most after 2∆k rounds.

The guarantee that a heartbeat is forwarded after some well defined time allows us
to compute a precise bound on the time after which a process learns the current round
number of another process in the system:

Lemma 5.5. If two processes p and q remain connected with distance k after some time
t0 and p increases hbcp[p] at time t ≥ t0 to a value v, then q sets hbcq[p] = v and

distanceq[p] ≤ k by time t + kτ+ + 2(
∑k−1

i=1 ∆i)T .

Proof. By induction on k. For k = 1, p broadcasts p immediately and therefore q receives
hbcp[p] at least after τ+ time steps. For k > 1, assume the lemma holds for k − 1. Let
q′ be a neighbor of q with distance k − 1 from p (since ∀t′ ≥ t : D(p, q, t′) = k, such a
process exists). Then by the induction hypothesis, q′ sets hbcq′ [p] = v and distanceq′ [p] ≤

k − 1 by time t + (k − 1)τ+ + 2(
∑k−2

i=1 ∆i)T . Therefore, according to Lemma 5.4, q′

forwards the heartbeat and distance of p at most after 2∆distanceq′ [p]T ≤ 2∆k−1T time
steps. In consequence, including the maximum communication delay τ+, q receives v at
t + kτ+ + 2(

∑k−1
i=1 ∆i)T . According to line 26+27 of the algorithm, after the reception of

this message, distanceq[p] ≤ k.

1In fact, q it is broadcast exactly once in ∆k rounds.

5.5. COMPLEXITY ANALYSIS 61

With that result, we can compute a timeout on the time difference between two updates
of a heartbeat counter. This timeout does not depend on any other parameter than the
maximum degree ∆ and the jitter ε:

Lemma 5.6. If any two processes p and q remain connected at distance k, the time
difference between two updates of hbcq[p] at q is less or equal than µ∆k + kε, where
µ = 2T

∆−1
.

Proof. W.L.O.G., assume that p sets hbcp[p] = v at time 0 and hbcp[p] = v + 1 at time T .
Obviously, the earliest time q can set hbcq[p] = v is kτ−. By Lemma 5.5, the latest time

q can set hbcq[p] = v + 1 (or a higher value) is T + kτ+ + 2(
∑k−1

i=1 ∆i)T . Hence, the time
difference is

2
k−1∑

i=1

∆i · T + T + kε ≤ T ·

(

2
∆k − 1

∆− 1
− 1

)

+ kε ≤ µ∆k + kε

With these lemmata we can prove the second failure detector property:

Theorem 5.2. The algorithm in Figure 5.1 implements eventual strong accuracy.

Proof. Let p and q be two processes that remain connected. After some time, D(p, q, t)
does not change anymore. Then either p never suspects q—in which case we are done—or
there is a time where p suspects q. In this case, distancep[q] =∞. Then eventually p will
learn k, i.e., distancep[q] = k. According to Lemma 5.6, p receives a new heartbeat from
q at least every µ∆k + kε time steps. Therefore the condition in line 21 is never satisfied
and the processes never suspect each other.

Corollary 5.1. The algorithm in Figure 5.1 implements an eventually perfect failure
detector �Pp for partitionable systems.

5.5 Complexity Analysis

In this section we analyze the message complexity and the failure detection time of the
algorithm. As the following theorems show, we get the logarithmic message complexity
in exchange for a failure detection time exponential in the distance between the nodes.

Theorem 5.3. In every round of T time steps, every process

• sends at most ∆ + 1 messages

• receives at most ∆(∆ + 1) messages

where each message is of size O(log n + log t).

62 CHAPTER 5. LOCALIZED SERVICES

Proof. That the number of messages a process sends per round is ∆+1 follows immediately
from lines 16 and 19 of the algorithm. Every node has at most ∆ neighbors, so the number
of received messages is ∆(∆+1). The message size follows from the fact that every message
is a tuple (p, hbc, distance), where p is of size O(log n), hbc of size O(log t) and distance
of size O(log n).

In practice, the message size can be regarded as constant. Since ∆ is also a constant, the
communication traffic at each process is of constant size.

Finally, we compute the time until two processes that become disconnected suspect
each other. In [CTA00] (cf. Section 3.9), this is called the failure detection time TD.

Theorem 5.4. If two processes p and q become disconnected at time t, they suspect each
other by time t + 2µ∆k + k(2τ+ − τ−), where k is the distance just before the partition.

Proof. According to Lemma 5.5, p receives the last heartbeat of q by time t + kτ+ +
2(
∑k−1

i=1 ∆i)T . According to line 21, p suspects q exactly µ∆k + kε time steps later. Since

t + kτ+ + T ·

(

2
∆k − 1

∆− 1
− 1

)

+ µ∆k + kε ≤ t + 2µ∆k + k(2τ+ − τ−)

the theorem follows.

5.6 Summary and Discussion

We presented an implementation of an eventually perfect failure detector for a partition-
able network with sparse topology. Between neighbors, an upper bound on the commu-
nication jitter is assumed. The number of neighbors is assumed to be bounded by ∆,
which is an adequate model for wireless ad-hoc networks. The algorithm requires nei-
ther a priori knowledge of the number of processes in the system nor an upper bound
on the communication delay between arbitrary processes. Every process broadcasts just
∆ + 1 messages per round to its neighbors, and under the assumption of a constant size
name-space and time domain, these messages are of constant size. Processes at shorter
distances get more accurate information about each other than farther ones.

It is possible to adapt our algorithm to systems where links can also recover. However,
in such a system the definition of reachability is not obvious, since an application of the
failure detector may use e.g. a routing algorithm for communication. The application-level
reachability relation would hence also depend on the behavior of this routing algorithm.

Chapter 6

Fault-tolerant Self-stabilization

As many applications rely upon failure detectors, failure detector implementations should
keep providing their service even in adversarial operating environments. We aim at two
approaches here: Firstly, we weaken the system timing models as far as possible. Much
recent work focuses on this topic—see [ADGFT03a] and [LLS03, Wid03, SW05]. We
addressed this topic already in Chapter 4. And secondly, improve the availability of the
failure detector by referring to the self-stabilization paradigm [Dij74]. This requires algo-
rithms that stabilize (and remain in legitimate states) even in the presence of permanent
faults [BKM97, Gär02, AH93, DDP03].

In this chapter we consider self-stabilizing implementations of failure detectors using
time-driven approaches. Message-driven self-stabilizing failure detector algorithms are
addressed in Chapter 7.

6.1 System Model

Self-stabilization requires an algorithm to recover from any (invalid) state in finite time.
More formally, a self-stabilizing algorithm has to converge to a set of states—called legit-
imate states—from any state (convergence) and then has to remain in legitimate states
(closure) [AG93]. We assume that our system stabilizes at some unknown time tGST , after
which the timing assumptions hold, the number of permanent faults is bounded and no
further state corruption at correct processes occurs. On the other hand, at tGST , processes
may be in an arbitrary state and arbitrary messages may be in transit.

Before tGST , arbitrarily changes of the network topology are possible, after that, only
link and process crashes are allowed. In this chapter we consider time-driven solutions,
i.e., the processes are equipped with local clocks that contribute to the progress of the
algorithm. We drop this assumption in Chapter 7.

Due to faults, the network may partition into several components. Thus we aim for
the failure detector classes �P` and �Pp.

63

64 CHAPTER 6. FAULT-TOLERANT SELF-STABILIZATION

6.2 Self-stabilization and Failure Detection

Like Tel [Tel94] we distinguish two approaches for how to deal with faults: Self-stabilization
and robustness. Robust algorithms provide their functionality even in the presence of
faults. However, the severity and number of faults usually have to be limited in order to
guarantee the required properties. Self-stabilization, on the other hand, is able to recover
from an arbitrary system wide error state in finite time. However, the desired services
are only ensured during stable periods, where no new state corruption occur. Failure
detectors are modules typical for robust algorithms, thus a self-stabilizing failure detector
combines these two approaches to fault-tolerance.

When trying to formally define self-stabilization for failure detector implementations,
a limitation in the original definition of self-stabilization become obvious: Dijkstra [Dij74]
defined self-stabilization as follows: Starting from an arbitrary state, the algorithm al-
ways converges within finite time into a legal state and remains in legal states forever.
However, the properties of a failure detector are not defined for states: Even if we con-
sider a perpetual failure detector, which provides perpetual accuracy, every implementable
completeness property can only require that a crash is detected eventually, resp., within
bounded time. Consider a failure detector output that is accurate and complete at time
t. Later, at time t′ > t some process crashes. At t′ the failure detector output cannot be
complete. It follows that the definition of legitimate states via the failure detector output
would inevitably lead to a violation of closure. The correct behavior is thus not given by
the current failure detector output, but on the whole execution of the failure detector.
Nevertheless, it is possible to define the legal states for a failure detector by looking at
all possible executions applicable to a distinct configuration. Since every failure detector
that has stabilized will not suffer from any further failures, the set of all applicable and
timely executions define the set of possible executions from that configurations. We thus
have a definition that is equivalent to the one in [Tel94]:

Definition 6.1 (Legitimate configuration). Let A be an algorithm that implements a
problem defined by properties P1(σ) . . .Pk(σ) on the execution σ of A. Then a configura-
tion C is a legitimate configuration, if every timely execution σ ′ that is applicable to C
satisfies P1(σ

′) ∧ . . . ∧ Pk(σ
′).

Definition 6.2 (Self-stabilizing Algorithm). We say an algorithm A of a problem
(P1, . . . ,Pk) is self-stabilizing, if in every execution a legitimate configuration is reached
after finite time, disregarding the initial state.

When looking at an implementation of an eventually perfect failure detector �P, we
observe at tGST that neither strong completeness nor eventual strong accuracy is violated
since they consist of requirements that have to hold only eventually. Thus from a formal
viewpoint, every correct algorithm (in particular a self-stabilizing one) will fulfill the
completeness property and the accuracy property at tGST , resulting in a stabilization

6.3. THE NEED FOR BOUNDED MEMORY 65

time of zero. However, from an intuitive point of view, the algorithm has not stabilized.
Thus, looking at a perpetual perfect failure detector P is more intuitive, since now the
failure detector has stabilized if no further false suspicions will be made.

Now, from a formal viewpoint, the legitimate states of our algorithms are defined by
the properties of a perpetual perfect local failure detector P`. It is obvious, however,
that any self-stabilizing implementation of P` can only be used as �P` by upper layer
applications. Thus we will show for our algorithms the properties of �P`.

6.3 The Need for Bounded Memory

Many algorithms in distributed computing assume unbounded local memory. In most
cases, this requirement stems from the fact that such an algorithm uses a variable that
may grow arbitrarily. For non-stabilizing systems, this is not really a problem, since in
most cases, such a variable can be safely approximated by a sufficiently large bounded
memory variable.

This is not reasonable for self-stabilizing systems. Consider e.g. an integer variable
that is approximated by a fixed size integer in a real system. Since we require self-
stabilization we have to deal with the case where this variable stabilizes just “before” the
wrap-around. Thus, if there is no self-stabilizing bounded memory solution that solves a
certain problem, a solution that uses approximated integers will never work. Therefore we
require all our self-stabilizing algorithms to be bounded in the size of the local memory.

However, there are some cases where the approximation seems to work well: Assume
an algorithm that estimates the a priori unknown number of nodes n in a system. Since n
is unbounded, from a theoretical viewpoint it is not possible to have an algorithm that uses
bounded local memory and that can store that information. By choosing a sufficiently
large bound N on n we can cope with every real network of realistic size. However, in fact
this algorithm assumes another network model, namely one with a known upper bound
on the network size. Thus in the following we model this explicitly by assuming such a
bound N .

The major impact of this bounded memory requirement is the fact that we cannot
store the values for adaptive learning of unknown timeouts locally, thus all algorithms
that use this technique do not work. Consequently, we do not know whether there is a
bounded memory solution of even a weak failure detector in partial synchronous systems
with unknown bounds. Here we have yet another problem when approximating the size
of the domain of the timeout values: If we assume an implicit bound that will work
in practice, the performance of such algorithms would be prohibitive, since an overly
pessimistic timeout might emanate from the unstable period, while decreasing timeout
values may violate failure detector properties.

66 CHAPTER 6. FAULT-TOLERANT SELF-STABILIZATION

1 state variables

2 suspectp ⊆ nb(p)
3 ∀q ∈ nbp : timeoutp[q] ∈ {0 . . . ,Ξ}
4

5 every T time steps do

6 send (ALIVE) to all neighbors
7 ∀q ∈ nbp : timeoutp[q]← timeoutp[q]	 1
8 suspectp ← {q ∈ Π | timeoutp[q] = 0}
9

10 on receive (ALIVE) from some neighbor q
11 timeoutp[q]← Ξ

Figure 6.1: A simple self-stabilizing algorithm implementing a self-stabilizing P`. The
variable suspect contains the failure detector output

6.4 Simple Local Self-stabilizing Failure Detectors

We first provide a self-stabilizing solution for a local failure detector. This algorithm—
shown in Figure 6.1 is really simple, in fact, it is presumably the most simple failure
detector algorithm that is possible: Each process sends heartbeats every T time steps
to each of its neighbors, each neighbor waits at most Ξ · T time steps before it suspects
another process. Obviously, the algorithm works, if Ξ is a bound on ε/T . Except for
the fact that these timing conditions need to hold only after tGST (which matches one of
the partially synchronous settings in [DLS88]), this model is very demanding in terms of
synchrony.

However, weaker types of synchrony that consider the existence of unknown bounds,
e.g. on the transmission delay [DLS88, CT96, ADGFT03b] or on the ratio between the
minimal or maximal transmission delay conflict with the bounded memory requirement:
All algorithms that we are aware of which use such a synchrony assumption require
unbounded local memory and are thus not suitable for self-stabilizing systems.

We first prove the algorithm in Figure 6.1 to be correct:

Theorem 6.1. The algorithm in Figure 6.1 is a self-stabilizing implementation of �P`.

Proof. We show the properties of an eventually local failure detector. Note that they hold
independent of the initial state of the system.

Local Completeness: Assume process q crashes at time t. Let t′ = max(t, tGST).
Then every correct neighbor p does not receive any messages from q after t′ + τ+, thus
line 11 at process p is never executed for neighbor q after that. Hence, timeoutp[q] is
never increased anymore, but decreases by 1 every T time steps. Since timeoutp[q] is at
most Ξ, by time t′ + τ+ + ΞT ≤ t′ + τ+ + ε = t′ + 2τ+ − τ−, q is suspected by p (line 8)
and remains suspected forever.

6.5. STABLE FAILURE DETECTOR TRANSFORMATION 67

1 state variables

2 suspectp ⊆ nb(p)
3 ∀r, s ∈ nbp : countp[r][s] ∈ {0 . . . ,m + 1}
4

5 every T time steps do

6 send (ALIVE) to all neighbors
7

8 on receive (ALIVE) from some neighbor q
9 suspectp ← suspectp − {q}
10 for all r ∈ nb− {q} do

11 if r /∈ suspectp
12 countp[q][r]← countp[q][r] + 1
13 if countp[q][r] > m
14 suspectp ← suspectp ∪ {r}
15 countp[r][q]← 0

Figure 6.2: The self-stabilizing failure detector of [BKM97].

Eventual Local Accuracy: If a neighbor q of p is correct, after tGST it sends messages
every T time steps. Thus by time tGST + T + τ+, p receives a message from q, and sets
timeoutp[q] = Ξ. After that, timeoutp[q] will never become 0, because this would require
TΞ = ε time, but by that time line 11 has already been executed again. So from time
tGST + 2T + τ+, q remains not suspected forever.

A more relaxed synchrony assumption is described in [BKM97]: It assumes that there
is a bound m on the reception rate of messages. This synchrony assumption is strictly
weaker than the one considered above, if we assume only non-zero transmission delays.
In particular it is time-free in the sense that the transmission delays need not satisfy any
timing condition but only have to establish an order property. The algorithm for this
system is shown in Figure 6.2. Note that in contrast to the Θ assumption (cf. Section
2.5.4) this model is time-driven. Furthermore, here the system model is not independent
of the algorithm: The bound m can only hold if all processes send messages periodically
at a given rate 1/T .

6.5 Stable Failure Detector Transformation

In this section we provide a transformation from a local failure detector of class �P` to
a global failure detector of class �Pp. The self-stabilizing transformation algorithm is
asynchronous but time-driven and shown in Figure 6.3. In a nutshell, the algorithm uses
flooding to distribute the local view of each process to every other process. Each process

68 CHAPTER 6. FAULT-TOLERANT SELF-STABILIZATION

1 input localsuspectp ⊆ nb(p)
2 output globalsuspectp ⊆ Π
3

4 state variables

5 ∀r, s ∈ Π : netviewp[r][s] ∈ {true, false} /* true if link (r, s) is trusted */
6

7 every T time steps do

8 ∀q ∈ Π : netviewp[p][q]← (q /∈ localsuspectp)
9 send (p, localsuspectp, N) to all neighbors
10

11 on receive (q, S, hopcounter)
12 ∀r ∈ Π : netviewp[q][r]← (r /∈ S)
13 if hopcounter > 0
14 send (q, S, hopcounter − 1) to all neighbors
15 globalsuspectp = {q | there is no path from p to q in netviewp}

Figure 6.3: Self-stabilizing transformation from �P` to �P. N is a bound on n and T an
arbitrary time value.

holds a matrix with the information of the local suspicions of all other processes, which
provides an eventually correct view of all links to every process. A process p globally
suspects another process q only if there is no path from p to q in p’s matrix.

By not only exchanging process information but link information, the algorithm pro-
vides a nice stability property: 2Nτ+ + T time after all local failure detectors have
stabilized, i.e., stopped making any incorrect suspicion, also the global failure detector
given by the composition of all local failure detectors and the transformation algorithm
stops making mistakes.

Before going into more detail w.r.t. the stabilization time we show the correctness of
the transformation algorithm:

Theorem 6.2. The algorithm in Figure 6.3 is a self-stabilizing transformation from �P`

to �P.

Proof. We show the properties of an eventually perfect failure detector �P, under the
assumption that localsuspectp fulfills the properties of �P`. Note that the values of the
state variables can be initially arbitrary.

Strong Completeness: Assume by contradiction that q crashes or becomes partitioned
from p at time t but there is no time t′ such that process p suspects q for all times after
t′. This is only the case if there is a path from q to p in netviewp for all times after some
time t′′. Let π = p1 . . . pk, with q = p1 and p = pk, be such a path that is in netviewp for
all times t′′′ > t′′. Either all processes pi for 1 ≤ i < k and all links (pi, pi+1) are correct,

6.6. SUMMARY 69

or there is at least one crashed process or link in this path. In the first case we are done,
since this contradicts the assumption that p and q are not connected. In the second case,
let pj be the process in π with maximal j such that pj is correct and either (pj−1, pj) or
pj−1 has crashed. Then localsuspectpj

will eventually contain pj−1. Since the path from
pj to p is correct by assumption, p will eventually learn that pj locally suspects pj−1 and
thus remove the link from netviewp. Contradiction to the fact that netviewp contains π
for all times after t′′.

Eventual Strong Accuracy: Assume by contradiction that p and q never crash or get
partitioned but p never stops suspecting q forever. A process q is suspected by p if there
is no path q to p in netviewp. However, since links can only crash, after tGST there is at
least one permanent path π = p1p2 . . . pk with p1 = q and pk = p in G(t) from q to p,
where all processes and all links on the path are correct. Thus, eventually every process
pi+1 on this path will stop suspecting pi forever. Further all messages from these processes
will arrive at p, since the path is not longer than N and all links are correct. Since every
process pi now periodically broadcasts that it does not suspect pi+1, eventually p has set
netviewp[pi][pi+1] to true for every link (pi, pi+1) in π forever. Contradiction.

To see why the global failure detector stabilizes in O(Nτ+ + T) time after the local
failure detectors have stabilized, consider the case where all local failure detectors stabilize
at time t. After that no incorrect suspicion occurs, but messages that do not reflect this
situation may be in transit. After t + Nτ+, none of these messages can be in transit
anymore due to the hopcounter. By time t + Nτ+ + T , all processes broadcast their new
view which is received by all connected processes by time Nτ+ after that, which is at time
t + 2Nτ+ + T .

6.6 Summary

In this chapter we introduced the concept of self-stabilization and how it can be applied
to failure detectors. We argued for the need of bounded memory algorithms and showed
simple solutions to that problem. In contrast to the following chapter, we considered
time-driven solutions. We further showed how the simple local failure detectors can be
transformed into a global failure detector in a self-stabilizing way.

In the next chapter considers message-driven failure detector implementations, and we
will see that under these circumstances the problem is not as easy as in the time-driven
case.

70 CHAPTER 6. FAULT-TOLERANT SELF-STABILIZATION

Chapter 7

Message-driven Self-stabilizing
Failure Detection

Generally, the discipline of distributed computing considers sets of distributed processes
that execute algorithms where each execution consists of a sequence of events. In the
context of reliable agreement problems, much work [CT96, DDS87, DLS88] focuses on
timing constraints on these events; e.g. upper bounds between send and reception events
of messages between processes (see Section 2.5). Another issue is event generation. We
distinguish here two kinds of models, i.e., time-driven and message-driven. In time-driven
algorithms, events occur due to passage of time and are triggered by clocks or timers. In
contrast, when considering message-driven algorithms, after the algorithm was started,
all events happen as immediate reaction to a received message while clocks are either not
part of the model or are just not employed by the algorithms.

Note, however, that the issues of timing constraints and event generation are orthogo-
nal. Consider, e.g., the well known failure detector based consensus algorithms of [CT96]
which work in an asynchronous model of computation (often referred to as “time-free”
model, reflecting the absence of timing bounds). These algorithms must be attributed as
time-driven as steps can be taken—independently of the presence or absence of messages
in input buffers—just by the passage of time respectively the progress of the program
counter. It seems obvious that solutions to the same problem can be achieved with
message-driven algorithms if

1. messages are immediately processed upon reception,

2. the failure detector module triggers the consensus algorithm if new suspicions have
been added and

3. the failure detector implementation itself is message-driven.

Most existing failure detector implementation in the literature [CT96, ADGFT03a,
BKM97] are not message-driven as they periodically send messages (e.g. heartbeats). Ex-

71

72 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

ceptions are the message-driven failure detector implementations of [LLS03, WLLS05]
which show that failure detectors can be implemented without autonomous event gener-
ation (i.e., timers or clocks).

In this chapter, the problem of a message-driven self-stabilizing [Dij74, Dol00] imple-
mentation of failure detectors is investigated. The first self-stabilizing failure detector
implementations were introduced by Beauquier and Kekkonen-Moneta [BKM97]. We
showed them in Chapter 6. Their implementations send messages with every clock tick,
in other words, they are time-driven. These algorithms satisfy the failure detector seman-
tics and stabilize within finite time, i.e., they recover from an arbitrary state in systems
that obey a fair ordering property, which is in fact an abstract synchrony assumption: If
a process receives m messages from a process it must receive at least one message by any
other correct process.

Obviously, self-stabilizing failure detector implementations cannot be purely message-
driven as inaccurate failure detector information can never be corrected after a state was
reached where no messages are in transit such that no process will ever make a step after-
wards. To overcome such situations, several approaches can be taken. We could augment
the system model with the requirement that at least one message must always be in tran-
sit. Since for the states where no messages are in transit convergence cannot be ensured
we could not argue that recovery from all states is guaranteed. Moreover, when consid-
ering practical solutions this does not seem reasonable (e.g. this does not cover system
booting [Wid03, WLLS05] where no messages are in transit initially). Therefore we add a
local deadlock prevention event, which however has no timing constraints except that in
every infinite run it happens an infinite number of times, where the duration between two
events is finite. In other words this event cannot be used as a—even weak [FS04a]—clock.
Strictly speaking, using this approach, our algorithms are not message-driven anymore.
Our proofs, however, reveal that they do not rely on the deadlock prevention event if
messages are in transit. In this chapter we show that under certain circumstances it
is impossible to implement failure detectors in message-driven models even with such a
deadlock prevention event. Trivially, this result also holds for purely message-driven sys-
tems. Therefore, having this deadlock prevention event in the system model makes the
impossibility result even stronger as it holds not only for message-driven systems but also
for message-driven systems with deadlock prevention.

Because of the considerations in Section 6.3, we focus on bounded memory failure
detector algorithms under quite conservative synchrony assumptions, i.e., there exists
some upper bound on message end-to-end delays that is different from the lower bound.
For our implementations—but not for the impossibility result—we require the lower bound
on message end-to-end delays to be greater than 0.

Under these assumptions it turns out that the number of messages that can be in
transit at any given time becomes an important factor. Messages from the unstable period
could produce message patterns which look identical to correct ones but which are much
denser in the sense that the elapsed time of such a faulty pattern is just a fraction of the

7.1. SYSTEM MODEL 73

duration of a corresponding correct pattern. We show in Section 7.3 that this behavior
leads to the impossibility of implementing even the weakest failure detector [CHT96]
that allows solving consensus, i.e., the eventually strong failure detector �S (as defined
in [CT96]) in fully connected networks if the number of messages that are simultaneously
in transit is unknown.

By devising two failure detector implementations that work in sparse networks we
show how to circumvent this impossibility result.1 The first algorithm—discussed in
Section 7.4—copes with an unbounded number of messages but requires unbounded space.
Since we also want to give a practical solution, we devise a second algorithm in Section 7.5
which requires just bounded space. This algorithm, however, requires knowledge of M , an
a priori upper bound on the number of messages that may be in transit simultaneously.
Since real networks are finite, we consider this upper bound as not very restrictive. For
many networks, M can be analytically derived as the capacity of links (determined by
memory allocated to queues at the network layers) is bounded as well. However, this
bound has no influence on the detection time of our algorithm and the space requirements
are just logarithmic in M . So even in networks where it is difficult to find a tight upper
bound, one can still use an extremely conservative one. The second approach is therefore
of greater practical relevance.

Our impossibility result for implementing failure detectors is based on six assumptions:
Self-stabilization, message-driven semantics, unknown bound on link capacity, bounded
memory of the failure detector algorithm, determinism, and timing uncertainty. If any
requirement is dropped the problem becomes solvable (cf. also Sections 7.6 and 7.7). This
shows how much clocks/timers help when invalid message patterns must be tolerated. This
is also the answer to the question whether time-driven and message-driven semantics are
equivalent regarding expressiveness; in other words whether the same set of problems have
solutions in both models. We answer the question in the negative.

7.1 System Model

We consider a sparse network with reliable, bidirectional links. Links and processes may
fail by crashing. Due to this, the system may partition. However, we assume that every
process has at least one correct neighbor.

All algorithms in this chapter are message-driven and self-stabilizing. The impossibil-
ity result is not restricted to any synchrony assumptions. For our algorithms we assume
a bound Θ on the ratio between the minimum and maximum end-to-end communication
delay (see Section 2.5, [LLS03]).

1Obviously, these algorithms work in fully connected networks as well.

74 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

7.2 On Deadlock Prevention Events

To our knowledge, there are three types of deadlock prevention mechanisms for message-
driven algorithms:

1. the assumption that there is always at least one message in transit [DIM97],

2. the existence of an abstract deadlock detection mechanism [DIM97], which reacts
either on local or global deadlocks; and

3. the use of a deadlock prevention event mechanism, that unlocks the algorithm from
time to time.

The first possibility is no good choice for algorithms: They would not work if during the
instable period all messages in the system get lost. However, for our impossibility result
we consider an alive execution, which only strengthens our result. For our algorithms we
assume the existence of a deadlock prevention event generation mechanism. In this section
we formalize the latter two deadlock prevention mechanisms in an abstract module, and
show that they can be transformed into each other.

A deadlock detector is a module located at each process, which outputs events called
deadlock prevention events (DPE). The deadlock detector fulfills one of the following
properties:

Global Liveness If on all links no application message is in transit, the DPE is triggered
eventually at some process.

Local Liveness If on the links from and to a process no message is in transit, the DPE
is triggered eventually at this process.

Permanent Liveness The DPE is triggered infinitely often at every process, and the
times between two events is finite.

Note that by these definitions the DPE may also be triggered more often than neces-
sary. Obviously, permanent liveness guarantees local liveness and local liveness guaran-
tees global liveness. We denote the deadlock detectors defined by each of the properties
with DDG, DDL, and DDP . A module that fulfills local (resp. global) liveness in the
sense that an event is triggered only if there is no message is in transit is a much stronger
device, however, and not covered by the considerations in this section. Such a property
leads to the problem of termination detection [MFVP05].

As for failure detectors (cf. Section 3.2) we say a deadlock detector DD′ is reducible
to DD if there is a self-stabilizing asynchronous message-driven transformation algorithm
TDD→DD′, such that TDD→DD′ uses DD and simulates DD′. We denote this fact by DD′ �
DD. By definition we have DDG � DDL � DDP . We now show that in a non-partitional

7.2. ON DEADLOCK PREVENTION EVENTS 75

1 on receive msg from communication module
2 deliver msg to application
3 send (DpeMsg) to all via communication module
4 trigger DPE
5

6 on receive msg from application
7 send msg via communication module
8

9 on receive DPE from DDG

10 send (DpeMsg) to all
11 trigger DPE
12

13 on receive (DpeMsg) from communication module
14 trigger DPE

Figure 7.1: The transformation from DDG to DDP

system, a deadlock detector fulfilling global liveness can be transformed into a deadlock
detector with permanent liveness, rendering the three properties equivalent regarding
computational power. For simplicity, in this case we assume a fully connected network.

Theorem 7.1. DDP � DDG in a system that does not partition.

Proof. We use the transformation algorithm of Figure 7.1. For simplicity this algorithm
assumes a fully connected network. Since the algorithm has no local states only messages
can be corrupted. All these messages are delivered by time tGST + τ+, the algorithm
has stabilized due to that. Thus we have to show the properties under process and link
crashes only.

We show that for every time t there is a time t′ > t at which a DPE is triggered at
process p, with |t′ − t| <∞. We distinguish two cases:

1. After t, there are always application messages in transit. Then on every reception
of such a message at a process q, a DPE is triggered at p and by line 3, (DpeMsg)
is sent to all other processes, and by line 13–14 a DPE is triggered at every other
process too, including p. Since all message transmission delays are finite, |t′−t| <∞.

2. There is a time after which no application message is in transit anymore. Then at
some process p, by the properties of DDG a DPE from DDG is triggered. By lines
10 and 13–14 also all other processes trigger a DPE. Since all message transmission
delays are finite, and because of the properties of DDG, |t′ − t| <∞.

76 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

1 on receive msg from communication module
2 deliver msg to application
3 trigger DPE
4

5 on receive msg from application
6 send msg via communication module
7

8 on receive DPE from DDL

9 trigger DPE

Figure 7.2: The transformation from DDL to DDP

To adapt the transformation algorithm to sparse networks that do not partition is
straightforward. For partitionable systems a deadlock detector that fulfills only global
liveness cannot be used to obtain a local or permanent deadlock detector. Thus we only
have the reducibility of local and permanent liveness in the partitionable case:

Theorem 7.2. DDP � DDL in partitionable systems.

Proof. We use the transformation algorithm in Figure 7.2. Assume by contradiction, that
there is a time t and a process p, after which no DPE is triggered at p. If there is a time
t′ > t, after which no message is in transit from or to p, by local liveness of the DDL,
the DPE is triggered by DDL, and by line 8-9, the DPE is triggered at p, which is a
contradiction. Thus there is a time after t, at which a message is in transit from or to p.
If the message is in transit to p, it is eventually received, and by lines 1-3, the DPE is
triggered. If the message is in transit from p, it must have been sent by p, which can be
the case only if p either received a message or received a DPE. In both cases (lines 1-3,
8-9) we get a contradiction to the assumption that no DPE is triggered after t.

Note that for both algorithms we do not aim at an efficient solution, since the trans-
formation is only of theoretical interest: In practice a permanent deadlock detector is not
more difficult to implement than a global or local deadlock detector.

For timing analysis of our algorithms we assume that the permanent deadlock preven-
tion event is triggered at process p by time tGST + η, where η is not known to processes.
Note that the actual value of η has no influence on the correctness of our algorithms. Prac-
tically one could implement this e.g. with timers or clocks although any local mechanisms
which gives some (even inaccurate) notion of elapsed time can be employed.

7.3. IMPOSSIBILITY RESULT 77

7.3 Impossibility Result

In this section we show the impossibility of implementing message-driven failure detectors
with bounded memory. The intuitive argument is as follows: Due to the bounded memory
assumption, every algorithm has to reuse messages and to run in cycles. Since they have
no notion of real-time, they are not able to distinguish messages from a previous cycle
from new ones. Initiated by a sufficiently large number of messages from the unstable
period, it is hence possible that processes perceive a compressed notion of time. Since
the failure detector is message-driven, this will trigger the generation of new messages
according to this compressed time, which may go on perpetually. Obviously, since the
failure detectors run much faster than they should, incorrect suspicions will occur. Due to
self-stabilization and the bounded memory assumption they are not able to recover from
this and thus suspect all processes forever.

The formal argument assumes by way of contradiction, that such a correct failure
detector algorithm exists and constructs a cyclic execution of this algorithm. Such an
execution must exist because of the bounded memory assumption. By excessively delaying
messages, the failure detector can be forced to suspect every process at least once. By
showing indistinguishability from a timely execution with messages from the unstable
period we get the required contradiction.

Before tGST , messages sent by some alive process p can be arbitrarily delayed by
the adversary. The requirement of a failure detector implementation as well as self-
stabilization and bounded memory requires that this process will be suspected within
bounded time—since the other processes do not know that this happens before tGST . If,
after the suspicion, all of p’s messages are immediately received, and p’s messages are
timely from then on, it must be deleted from the list of suspected processes, again within
bounded time. Then the adversary may delay messages from some other process q.

We show in the proof of Theorem 7.3 that for any failure detector algorithm there
exists a set of messages which are in transit at tGST and received by processes adversarial
such that the resulting execution is cyclic—due to the bounded memory requirement—
and indistinguishable from the behavior described in the previous paragraph although all
message delays are timely. This is possible, since processes do not have a sense of time and
hence cannot distinguish this “compressed” execution from the former one. Thus, every
correct processes is suspected infinitely often and eventually weak accuracy is violated;
from this our impossibility result follows.

Theorem 7.3. There is no deterministic message-driven self-stabilizing implementation
of the eventually strong failure detector in a system with ε > 0, unknown channel capacity,
and bounded memory of the failure detector, even assuming a deadlock detector that fulfills
permanent liveness.

Proof. Assume by contradiction that such an algorithm A exists. We first construct the
following timed (but not timely; cf. Section 2.5) execution σ0 ofA. Note that the adversary

78 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

can control the receive times of messages and the times of the deadlock prevention events
in such a run.

1. No process ever crashes. We start in a configuration C
(1)
1 . Our run proceeds in

lock-step, i.e., the algorithm receives and sends messages only at times tk = kτ0,
with τ− ≤ τ0 ≤ τ+. All timely messages are sent at times tk and received at times
tk+1. Note that at all times tk no messages are in transit—except those received
at time tk—such that the configuration following tk is just determined by the local
states. We call the time between tk and tk+1 a round.

2. For every p ∈ {1, . . . , n}: Starting from a configuration C
(1)
2p−1, the adversary fires the

deadlock prevention event at p, and all messages from and to process p are delayed
(at least for one round), until some process suspects p. Such a configuration is
reached eventually, since such a behavior is indistinguishable from a situation where
p has crashed, and thus by strong completeness, p must eventually be suspected
by some process. After that, the adversary delivers all delayed messages and we
end up in a configuration C

(1)
2p . Between C

(1)
2p−1 and C

(1)
2p , p is suspected at least

once. After C
(1)
2p , timing becomes correct for one round, resulting in configuration

C
(1)
2p+1 = C

(1)
2(p+1)−1.

Finally, every process was suspected at least once by another process, and we end
up in a configuration C

(2)
1

∆

= C
(1)
2n+1.

3. Starting repeatedly again from (2), we get chains of configurations C
(1)
1 . . . C

(1)
2n . . .

C
(i)
1 . . . C

(i)
2n . We call the run from C

(j)
i to C

(j)
i+1 a phase and the run from C

(i)
1 to

C
(i)
2n+1 an epoch.

4. Since every configuration C
(j)
1 depends only on the (finite) local states and the

messages sent in C
(j−1)
2n (which depend on the finite local states of C

(j−1)
2n), there

are only a finite number of configurations C
(j)
1 . Thus, there are numbers u and v

(u < v), such that C
(u)
1 = C

(v)
1 . Let E = u − v be the number of epochs. Every

epoch has obviously 2n phases, where the number of rounds in phase φ of epoch e
is R(e, φ), with 0 ≤ φ < 2n, 0 ≤ e < E. The execution from C

(u)
1 to C

(v)
1 we refer

to as cycle.

5. Since C
(u)
1 and C

(v)
1 are identical, the execution from C

(u)
1 to C

(v)
1 is applicable to

itself. σ0 is the execution that comprises Z cycles of the execution from C
(u)
1 to

C
(v)
1 , where Z has to be determined yet. The times tk which have not been assigned

yet are assumed such that σ0 starts at time t0 = tGST = 0. σ0,∞ = σ0σ0 . . . is the
infinite run composed by infinitely many iterations of σ0. Note that in σ0,∞, for
every process and every time t there is a time t′ > t, where it is suspected by some
other process.

7.3. IMPOSSIBILITY RESULT 79

To summarize, we have the following notation for our execution σ0:

name symbol number
cycle z Z
epoch e E
phase φ 2n
round r R(e, φ)

We define k to be a unique round number in σ0 by the following function

k(z, e, φ, r) = z

E−1∑

e′=0

2n−1∑

φ′=0

R(e′, φ′) +

e∑

e′=0

2n−1∑

φ′=0

R(e′, φ′) +

φ−1
∑

φ′=0

R(e, φ′) + r. (7.1)

It can easily be seen that k(z, e, φ, r) maps every tuple (z, e, φ, r) one-to-one to a value
k, thus we can define the inverse functions z(k), e(k), φ(k) and r(k). The times the
algorithms start round r in phase φ of epoch e and cycle z is given by

t(z, e, φ, r) = tk(z,e,φ,r) = k(z, e, φ, r)τ0. (7.2)

The total number of rounds in σ0 is thus

Rtotal = Z
E−1∑

e=0

2n−1∑

φ=0

R(e, φ). (7.3)

Now we introduce a compressed run σ1 that is indistinguishable from σ0 for all pro-
cesses. To that end, we define a function that maps all times tk to times t′k, such that
t′Rtotal

− t′0 = τ−, whereas the temporal order of the messages are preserved. Since the pro-
cesses perceive only the message pattern and have no other time information, processes in
the compressed execution σ1 behave in the same way as in σ0. The time transformation
function is given by:

t′k
∆

= f(t(z, e, φ, r),A) =

(

2nEz + 2ne + φ +
r

R(e, φ)

)

γ, (7.4)

where γ
∆

= τ−

2nEZ
gives the compressed length of a phase. Additionally, we chose Z ≥ τ−

2nEε
,

which implies γ ≤ ε. The temporal order of the message delivery times is preserved, if
f(tk,A) is a monotonically increasing function in tk:

Lemma 7.1. Function f(tk,A) = (2nEz+2ne+φ+ r
R(e,φ)

)γ is monotonically
increasing in tk.

80 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

Proof. We first note that tk is monotonically increasing in k, thus is suf-
fices to show that f(tk) increases monotonically with k, i.e., f(tk(z,e,φ,r)) <
f(tk(z,e,φ,r)+1). We distinguish four cases (recall that r < R(e, φ), φ < 2n, and
e < E):

• r < R(e, φ)− 1. Then k + 1 = k(z, e, φ, r + 1) and the lemma is true.

• r = R(e, φ) − 1 and φ < 2n − 1. Then k + 1 = k(z, e, φ + 1, 0) and,
because of r < R(e, φ) the lemma is true again.

• r = R(e, φ)−1, φ = 2n−1, and e < E−1. Then k +1 = k(z, e+1, 0, 0),
because of φ + r/R(e, φ) < 2n the lemma holds.

• r = R(e, φ)−1, φ = 2n−1, and e = E−1. Then k +1 = k(z +1, 0, 0, 0).
Since 2n(E − 1)φ + r/R(e, φ) < 2nE, the lemma holds.

Thus f(tk) is monotonically increasing.

We now show that σ1,∞ = σ1σ1 . . . is indistinguishable from an infinite and timely execu-
tion σ2,∞ = σ2,0σ2,1 . . ., if the system stabilizes at time tGST = 0 with sufficiently many
messages in the links at tGST . The argument is as follows. During a single execution
σ1 all messages sent in σ1 are received in σ1. The following lemma constructs identical
executions σ2,i where messages from σ2,i−1 are received in σ2,i while the new messages are
received in σ2,i+1. Locally, temporal order of message receptions is maintained; thus σ1

and σ2,i are indistinguishable.

Lemma 7.2. For all processes, σ1 is indistinguishable from an execution σ2,i

that runs from iτ− to (i + 1)τ−, for any i ≥ 0. At the end of σ2,i+2 no
messages from σ2,i are in transit. For i > 0, every message that is received in
σ2,i satisfies τ− ≤ tr − ts ≤ τ+.

Proof. By induction on i. For i = 0, recall that σ0 has 2nEZ phases, and the
duration of each phase is γ; thus t′Rtotal

= τ−. Hence, for every time t′k a process
receives a message in σ1, the adversary delivers an identical message from the
instable period in σ2,0 at t′k. Since all messages sent in σ2,0 are delivered after
τ− and thus not within σ2,0, σ2,0 is indistinguishable from σ1.

For the induction step i > 0, we assume that the lemma holds for i−1. For
every message that is sent at t′k in σ1 and received at t′` in σ1, by the induction
hypothesis there is a send event at time ts = (i − 1)τ− + t′k. The adversary
delivers this message at time tr = iτ− + t′`. To see that this message is indeed
timely, recall that—by the construction of σ0—every message is delivered in
the same phase in which it was sent, and by our compression function, the
length of each phase in σ1 is of length γ ≤ ε. Thus, t′` − t′k ≤ ε, and therefore

7.3. IMPOSSIBILITY RESULT 81

r

...

...

...

...

... ...

...

...

φ

0 1 2 3 0 1 0 1 3

0

0 1 2 0 2

0 1 0 10

e

z 0

1

1

2

Z times

φ

γ

0 0 11 2 2

0

σ1,∞

σ0,∞

msg

msg

t

t

0

τ− τ+

τ

σ2,∞

t

Figure 7.3: The construction of the executions σ0,∞, σ1,∞ and σ2,∞.

tr−ts = (iτ−+t′`)−((i−1)τ−+t′k) ≤ τ+. Since both, t′k and t′` are nonnegative,
tr − ts = (iτ− + t′`)− ((i− 1)τ− + t′k) ≥ τ− follows trivially.

Since there are obviously no messages in transit from σ2,i−2, and all mes-
sages from σ2,i−1 are delivered in σ2,i on times iτ− + t′k, the algorithm indeed
behaves as in σ1.

Note that in σ2,0 only messages from the unstable period are received, and all other
messages fulfill τ− ≤ tr−ts ≤ τ+. Thus, the execution σ2,∞ is timely and indistinguishable
from σ1,∞, which is indistinguishable from σ0,∞. In σ0,∞, however, no correct process ever
stops from being suspected. The maximum number of messages (per process) from the
unstable period is M = n · Rtotal and thus only depends on the algorithm, i.e., for any
algorithm there is a channel capacity where there is a run where no correct process stops
being suspected forever, although all processes are correct, which contradicts eventual
weak accuracy.

In the remainder of this chapter we show ways to circumvent our impossibility result.

82 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

1 state variables

2 ∀q ∈ Π : lastmsgp[q] ∈ N
3

4 if received (p, k) from q
5 if k > lastmsgp[q]
6 lastmsgp[q]← k
7 if k = maxr∈Π{lastmsgp[r]} and @s, s 6= q : lastmsgp[s] = lastmsgp[q]
8 suspect {r ∈ Π | k − lastmsgp[r] ≥ Ξ}
9 send (p, k + 1) to all neighbors
10

11 if received (q, k) from q
12 send (q, k) to q
13

14 on deadlock-prevention-event do

15 send (p,maxq∈Π{lastmsgp[q]}+ 1) to all neighbors

Figure 7.4: Algorithm for process p with no bounds on number of messages on a link.

7.4 Unbounded Link Capacity

In this section we describe a novel implementation of �P` which handles an unbounded
number of messages on the links, i.e., works also in systems where there is no known
bound on |Q(p, tGST)| for all processes p. This algorithm, however, requires unbounded
memory.

The algorithm for a process p is given in Figure 7.4. With every neighbor of p,
(p, k) messages are exchanged, where k is an integer. When a neighbor q receives such a
message, q just returns it to p (lines 11-12) and no further processing is done. For every
neighbor q, p holds a variable lastmsgp[q], where it stores the highest integer k received
in a (p, k) reply from q. We also use lastmsgp,q for lastmsgp[q]. The highest value among
all lastmsgp,q determines the round for process p. Thus we define

roundp(t)
∆

= max
q∈Π
{lastmsgp,q(t)}

and
round′

p(t)
∆

= max
q∈Π
{lastmsg′

p,q(t)}

respectively.2 Every time a new round is reached (by receiving a message (p, k) such that
k > roundp), p sends a (p, roundp + 1) message to all neighbors.

Note that the “fastest neighbor” determines the round progress, i.e., roundp + 1 is
started when the first neighbor returns the (p, roundp) message to p. By our timing

2Remember from Section 2.4 that v′(t) denotes the value of a variable v after the step at time t.

7.4. UNBOUNDED LINK CAPACITY 83

model, this requires at least 2τ− time. The reply of the slowest neighbor requires at most
2τ+. At this time, roundp has reached at most 2τ+/2τ− < Ξ additional rounds. Thus,
for every correct neighbor the difference roundp − lastmsgp,q is less than Ξ, whereas for
every faulty neighbor p eventually stops updating lastmsgp,q. So, we set H(p, t) to the
set of processes with roundp − lastmsgp,q ≥ Ξ (line 8).

From time to time the last message is resent to every neighbor by line 14 in order to
prevent a deadlock when messages are lost during the unstable period. Note that this has
no influence on the operation of the algorithm, since all messages with k ≤ lastmsgp,q are
dropped, therefore only the first message that is received has an influence on the behavior
of p. We assume that line 14 is activated at least once every η time steps. Note that this
assumption is not required by the algorithm but just for the timing analysis. We start
our analysis with some preliminary lemmata.

Lemma 7.3 (Monotonicity). After tGST , roundp(t) is monotonically increasing with
time t, i.e., tGST ≤ t1 ≤ t⇒ roundp(t1) ≤ roundp(t) ≤ round′

p(t).

Proof. Obvious, since roundp is the maximum of all lastmsgp,q, and by lines 5 and 6

lastmsgp,q is monotonically increasing.

Lemma 7.4 (Progress). There is a time t, tGST ≤ t < tGST + max{2τ+, η}, such that
p broadcasts (p, round′

p(t) + 1) at time t.

Proof. At time tGST we have to distinguish two cases:

1. There is at least one neighbor q of p, such that at least one message (p, `), with
` > roundp(tGST) is in Q(p, q, t). Let (p, k) be the first of them to be received by p
at some time t ≥ tGST . Obviously, t < tGST + 2τ+. Since by assumption this is the
first message after tGST that changes roundp, we have roundp(t) = roundp(tGST).
Thus, lastmsgp,q(t) ≤ roundp(t) < k, p executes lines 6 and 9 and hence broadcasts
(p, round′

p(t) + 1), with round′
p(t) = k.

2. No such message exists. Then by time t = tGST + η, line 15 is executed, and also
(p, roundp(t) + 1) is broadcast.

Thus by time tGST + max(2τ+, η) the required message is broadcast in both cases.

Lemma 7.5 (Stabilization). For every message (p, k), which is received by p at some
time t ≥ tGST + 2τ+, it holds that k ≤ roundp(t) + 1.

Proof. Since sending a message to a neighbor and receiving the answer takes at most 2τ +,
there is a time t1 ≥ tGST when p has broadcast (p, k). However, since we are after tGST , k
must be equal to round′

p(t1) + 1, since p can broadcast only (p, round′
p(t1) + 1) messages

(lines 9,15). By Lemma 7.3, roundp is monotonically increasing with time. Therefore
from t ≥ t1 follows round′

p(t) + 1 ≥ roundp(t) + 1 ≥ roundp(t1) + 1 = k.

84 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

Let tstable
∆

= tGST +max(2τ+, η) denote the time by which we have progress (Lemma 7.4)
and correct message pattern (Lemma 7.5).

Lemma 7.6 (Fastest Progress). Let correct process p broadcast (p, k) at some time
t ≥ tstable for the first time. Then p does not broadcast (p, k + `) before time t + 2`τ−.

Proof. By induction on `. For ` = 1 assume by contradiction that p broadcasts (p, k + 1)
before time t + 2τ−. If (p, k + 1) is sent by line 15 it was sent also by line 9 before (since
after tstable by Lemma 7.4 at least one message was sent by line 9), which would not be
the first time. Since (p, k +1) is sent by line 9, p received a (p, k) message which was sent
before time t+τ− by some q (as response – line 11) and before time t by p. Contradiction.

Now assume p broadcasts (p, k + ` − 1) not before t + 2(` − 1)τ− the first time. By
the same argument, p does not broadcast (p, k + `) before time t + 2`τ−.

Lemma 7.7 (Slowest Progress). Let correct process p broadcast (p, k) at some time
t > tstable for the first time. p broadcasts (p, k + `) by t + 2`τ+.

Proof. By induction on `. Since p broadcasts (p, k) at time t, all neighbors of p receive
this message by time t+τ+ and every correct neighbor (by our system model, there exists
at least one) returns it. These messages are received by p by time t + 2τ+. Consider the
time of the reception of the first of these messages. Because of Lemma 7.5 (note that
k = round′

p(t)+1), p receives no message (p, k′) with k′ > k by t+2τ+, thus p broadcasts
(p, k + 1).

For ` > 1, assume p broadcasts (p, k) by time t + 2(`− 1)τ+. By the same argument,
p does broadcasts (p, k + `) by time t + 2`τ+.

Lemma 7.8. For every time t > tstable + 2τ+Ξ and every correct neighbor q of correct
process p, it holds that round′

p(t)− lastmsg′
p,q(t) < Ξ.

Proof. Since all variables are non-decreasing, the condition could be only violated by
increasing roundp. So we consider only times t, where round′

p(t) > roundp(t). By
Lemma 7.5 we have round′

p(t) = roundp(t) + 1. By Lemmata 7.4, 7.5 and 7.6, a message
(p, round′

p(t)−Ξ+1) was broadcast by p at time ts ≤ t−2τ−Ξ, by Lemma 7.7, ts > tstable,
so this message really exists. The reply to this message is received from every correct
neighbor q by time tr ≤ ts +2τ+, thus lastmsg′

p,q(tr) ≥ round′
p(t)−Ξ+1 > round′

p(t)−Ξ.
Because of Ξ > Θ we have tr ≤ ts + 2τ+ ≤ t − 2τ−Ξ + 2τ+ ≤ t. Since by the algo-
rithm lastmsg′

p,q is monotonically increasing it follows that lastmsg ′
p,q(t) ≥ lastmsg′

p,q(tr).
Hence we get round′

p(t)− lastmsg′
p,q(t) < Ξ.

Theorem 7.4 (Local Completeness). Eventually every non-correct neighbor of p is
suspected by p.

Proof. Let tcrash be the time q crashes, and t = max{tcrash, tGST}. Then no message from
q to p is received after t + τ+. After this, lastmsgp,q ≤ roundp remains unchanged. By
Lemma 7.7, roundp reaches roundp(t) + Ξ by time max{tcrash + τ+, tstable}+ 2Ξτ+. Since
roundp is nondecreasing, q remains suspected from then on.

7.5. BOUNDED LINK CAPACITY 85

Theorem 7.5 (Eventual Local Accuracy). Eventually p stops suspecting every correct
neighbor of p.

Proof. Follows directly from Lemma 7.8 and line 8 of the algorithm.

Corollary 7.1. The algorithm in Figure 7.4 implements a self-stabilizing eventually per-
fect local failure detector in a sparse network.

After stabilization, a crashed process is suspected Ξ rounds after it crashed, i.e., the
worst case failure detection time is 2Ξτ+.

7.5 Bounded Link Capacity

In this section we give a solution to failure detection which requires that the number of
messages which can be in transit at the same time over one link is bounded, and this
bound is known in advance. In contrast to the algorithm of the previous section, this one
requires just bounded memory size. We believe that this result is of practical interest.
Real computers have bounded memory, which is not only used to store variables of our
algorithms, but also to store messages in various queues. Since, queues are the significant
parts of links, the assumptions that the number of messages are bounded seems reasonable
to us.

The algorithm is depicted in Figure 7.5. In concept, it works similar to the one in
the last section. However, since our integers are bounded, eventually we need to wrap-
around the round number. We call one such cycle a phase. To avoid that messages of the
previous phase interfere with the current one, we use phase numbers. Since also the range
of the phase numbers is bounded due to the bounded memory assumption, we have to
ensure that there are sufficiently many distinct phase numbers such that no interference
is possible. We show in our analysis, that if there are at most M messages in all links
of a process, M + 2 phases are sufficient to ensure stabilization. The idea behind this is
that there exists at least one phase which cannot be shortened by faulty messages from
the unstable period. The second difference to the algorithm in Figure 7.4 is that this
algorithm broadcasts only on a phase switch, whereas the previous one broadcasts every
round.

By our assumption, |Q(p, tGST)| ≤M <∞ for all processes p. For any phase number

ph we further define next(ph)
∆

= (ph + 1) mod (M + 2) and prev(ph)
∆

= (ph + M + 1)
mod (M + 2).

Lemma 7.9. For every process p, in any execution of our algorithm, there exists at
least one phase number ph0, such that no message (p, ph0, k) is in Q(p, tGST) and ph0 6=
phasep(tGST).

86 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

1 state variables

2 phasep ∈ {0, . . . ,M + 1}
3 ∀q ∈ Π : lastmsgp[q] ∈ {0, . . . ,Ξ}
4

5 if received (p, ph, k) from q
6 if ph = phasep and k > lastmsgp[q]
7 if k < Ξ
8 lastmsgp[q]← k
9 send (p, phasep, k + 1) to q
10 else

11 suspect {r ∈ Π | lastmsgp[r] = 0}
12 phasep ← (phasep + 1) mod (M + 2)
13 ∀r ∈ Π : lastmsgp[r]← 0
14 send (p, phasep, 1) to all neighbors
15

16 if received (q, ph, k) from q
17 send (q, ph, k) to q
18

19 on deadlock-prevention-event do

20 ∀q ∈ Π : send (p, phasep, lastmsgp[q] + 1) to q

Figure 7.5: Algorithm for process p with known upper bound on number of messages in
transit on links.

Proof. Obviously, |Q(p, tGST)| = x ≤ M . At time tGST process p can be in one phase
only. The number of phase numbers is M + 2 > x + 1 such that at least 1 phase number
remains.

We now give two properties, that define the legitimate states for process p. In more
detail, when the stability property holds, it is ensured that there are no “malicious”
messages from before tGST in transit. The progress property ensures that the system is
not deadlocked, i.e., that there are sufficiently many messages in transit to keep the failure
detector working.

Definition 7.1 (Stability). For a process p, the predicate PS(p, t) holds at time t iff
there is no next(phasep(t)) message in transit. Formally,

PS(p, t) ≡ @k : (p, next(phase′p(t)), k) ∈ Q(p, t)

Definition 7.2 (Progress). For a process p, the predicate PP(p, t) holds at time t
iff there is at least one correct neighbor q of p, from or to which a message with k >
lastmsgp,q(t) and current phase is in transit. Formally,

PP(p, t) ≡ ∃q ∈ (C ∩ nb(p)) ∃k > lastmsgp,q(t) : (p, phasep(t), k) ∈ Q(p, q, t)

7.5. BOUNDED LINK CAPACITY 87

Intuitively, if PS(p, t) holds, there are no more erroneous messages in transit. PP(p, t)
indicates whether there are any relevant messages in transit and thus we have progress.

We start by showing closure of progress, i.e., if PP holds once after tGST it holds
forever.

Lemma 7.10. If there is a time t0 ≥ tGST , where PP(p, t0) holds, then PP(p, t) holds
also for all times t > t0. Formally,

∃t0 ≥ tGST : PP(p, t0)⇒ ∀t > t0 PP(p, t)

Proof. Assume by contradiction that there is a time t > t0, where PP(p, t) does not hold
anymore for the first time. Since by assumption the predicate held before that, for some
non-faulty q, either lastmsgp,q(t) 6= lastmsg′

p,q(t) or (p, phasep(t), k) /∈ Q′(p, q, t) anymore.
In both cases, p has received a (p, phasep(t), k

′) message with k′ > lastmsgp,q(t) and
thus sends either a (p, phase′p(t), lastmsg′

p,q(t) + 1) or sends a (p, phase′p(t), round′
p(t) +

1) message and sets lastmsgp,q = 0. In both cases the property holds also at time t.
Contradiction.

Lemma 7.11. By time tGST + η, PP(p, t) holds forever.

Proof. By time tGST +η the deadlock prevention event is triggered and p sends a (p, phasep,
lastmsgp,q+1) to every neighbor q. By our system model, at least one of them is non-faulty
and thus PP holds for p at this time. By Lemma 7.10 after that PP holds forever.

We have seen that our algorithm stabilizes such that PP always holds after bounded
time after tGST . We now turn our attention to the PS property and start with some
preliminary lemmata.

Lemma 7.12 (Fastest Progress). Assume p starts phase ph = phasep(t) by broadcast-
ing (p, ph, 1) at time t, and PS(p, t) holds. Then p does not broadcast (p, next(ph), 1)
before time t + 2τ−Ξ > t + 2τ+

Proof. p broadcasts (p, next(ph), 1) only if it receives a (p, ph, Ξ) message from one of its
neighbors. We show by induction on Ξ that this is the case not before t + 2τ−Ξ. For
Ξ = 1, sending (p, ph, Ξ) to some neighbor q and receiving the answer takes at least time
2τ−, and since by PS(p, t) no other messages with phase ph are in transit at time t, p
cannot receive (p, ph, 1) before t + 2τ−. Because p is still in phase ph, no message with
other phases were broadcast, thus PS still holds. Assume p receives a Ξ− 1 message not
before t + 2τ−(Ξ − 1). By the same argumentation, this message is not received before
t + 2τ−Ξ and PS holds. Since Ξ > Θ (compare Section 2.5), t + 2τ−Ξ > t + 2τ+.

88 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

Lemma 7.13 (Slowest Progress). Assume p starts phase ph by broadcasting (p, ph, 1)
at time t. Then p broadcasts (p, next(ph), 1) by t + 2τ+Ξ.

Proof. Note that p broadcasts (p, next(ph), 1) if it receives a (p, ph, Ξ) message from one
of its neighbors and is still in phase ph. If p is no more in phase ph we are done, so we
show by induction on Ξ that p receives a (p, ph, Ξ) message by time t + 2τ+. Sending a
message to a neighbor and back requires at most time 2τ+, thus by time t + 2τ+ receives
(p, ph, 1). For the inductive step assume p receives (p, ph, Ξ− 1) by time t + 2τ+(Ξ− 1).
Then by the same argument p receives (p, ph, Ξ) by time t + 2τ+Ξ.

Lemma 7.14. Assume phasep(t) = ph. Then phasep(t1) = prev(ph) for some times
t1 > t > tGST only if p was in all other phases in the time interval [t, t1].

Proof. By line 12 of the algorithm, p changes its phase only to next(phasep(t)) and thus
has to adopt all other values before reaching prev(phasep(t)).

Lemma 7.15. PS(p, t) holds at time tGST + 2τ+.

Proof. We have to show that no messages (p, `, k) for some k and ` = next(phasep(t)) is
in transit at time t = tGST + 2τ+. Obviously, no message which is in transit at time t
was already in transit at time tGST . Moreover, no message which is in transit at time t
is a reply from one of p’s neighbors to a possibly faulty message which was in Q(p, tGST)
since all these responses must have been received by p before t. Thus, message (p, `, k)
can only be in transit at time t if p was in phase ` at some time t1, tGST ≤ t1 ≤ t. It
remains to show that this is not possible.

As p is in phase prev(`) at time t it must, by Lemma 7.14, have been in all phases
(0..M + 1) between t1 and t, thus there must be some time t2, t1 ≤ t2 ≤ t such that
phasep(t2) = prev(ph0), i.e., phase ph0 from Lemma 7.9 was started then. Thus PS(p, t2).
By Lemma 7.12 this phase cannot be terminated before some time t3 > t2+2τ+ ≥ t which
is a contradiction to p being in phase prev(`) at time t.

It remains to show closure over PS, i.e., if PS is reached once, it holds forever.

Definition 7.3. We define σ(p, t, ph) as the first time after t, where p reaches phase ph.
Formally,

σ(p, t, ph)
∆

= min{t′ > t | phasep(t
′) = ph}

Lemma 7.16. From PS(p, t) where t ≥ tGST follows that PS(p, t′) holds for all times t′,
t ≤ t′ < σ(p, t, next(phasep(t))).

Proof. Since phasep remains unchanged, no spontaneous messages are generated after
tGST and p sends phasep(t) messages only.

7.5. BOUNDED LINK CAPACITY 89

Lemma 7.17. Let PS(p, t) hold at time σ(p, t, ph) where t ≥ tGST . Then PS(p, t′) at
time t′ = σ(p, t, next(ph)).

Proof. By Lemma 7.12 p terminates phase ph after σ(p, t, ph) + 2τ+. All messages which
are in transit to p at time σ(p, t, ph) are received by time σ(p, t, ph)+τ+. All messages for
other phases than ph are ignored by p (and hence no messages are sent). All messages for
phases other than ph which are in transit from p to its neighbors are answered by them
by line 17. The answers are received by p by σ(p, t, ph) + 2τ+ and ignored as well since p
is still in phase ph. Thus, no messages for other phases than ph are in transit at time t′.
Since next(next(ph)) 6= ph the lemma holds.

Lemma 7.18. After time tstable = tGST + 2τ+, PS holds at all phase switch times.

Proof. By Lemma 7.15 PS(p, t) holds at time t = tGST + 2τ+. By Lemma 7.16 it follows
that PS(p, t′) holds for all times t′, t ≤ t′ < σ(p, t, next(phasep(t))). From an inductive
application of Lemma 7.17 it follows that PS holds at all phase switch times after that.

From these lemmata it follows that after some time, all phases are sufficiently long to
timeout processes. Thus we show local completeness and local accuracy in the following.

Theorem 7.6 (Local Completeness). Eventually every non-correct neighbor of p is
suspected by p.

Proof. Assume neighbor q of p has crashed. By Lemma 7.11, PP holds by time tGST + η.
Note that every message (p, ph, k) from a correct neighbor r, with k > lastmsgp,r and
ph = phasep causes either a message (p, ph, k + 1) (for k < Ξ) or a (p, ph + 1, 1) message.
Consequently, eventually p reaches k = Ξ and switches to the next phase (lines 11-14).
When p reaches k = Ξ in the next phase, lastmsgp,q = 0, since there was no message from
q. According to line 11, p suspects q.

Theorem 7.7 (Eventual Local Accuracy). Eventually p stops suspecting every correct
neighbor of p.

Proof. By Lemma 7.18 and Lemma 7.12 all phases that are started after tGST + 2τ+ are
longer than 2τ+. This is sufficiently long for all answers of correct process p’s correct
neighbors q to p’s (p, ph, 1) message are received by p before it executes line 11 at some
time t. It follows lastmsgpq(t) > 0 for every correct neighbor q when p executes line 11

such that no correct processes will ever be suspected by p.

Corollary 7.2. The algorithm in Figure 7.5 implements a self-stabilizing eventually per-
fect local failure detector in a sparse network.

When a process crashes in a phase (after replying at least one message) it is suspected
at the end of the next phase. A full phase takes at most 2Ξτ+ time, and a the time from
the first reply of a message to the end of a phase is (2Ξ − 1)τ+. Thus the worst case
failure detection time—once the failure detector has stabilized—is (4Ξ− 1)τ+.

90 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

7.6 Randomization

The impossibility result of Theorem 7.3 considers deterministic algorithms. In this section
we present a randomized solution for our problem. Note that this algorithm differs from
the deterministic bounded memory algorithm of Section 7.5 only in line 12 and in the
number of phases.

For both algorithms, the critical point during stabilization is that “malicious” messages
from the instable period may shorten the duration of phases and so the algorithm looses
its time base. In contrast to the deterministic bounded memory algorithm of Section 7.5
which requires one additional phase per malicious message, the randomized algorithm
achieves stabilization by choosing a random phase number every time a new phase is
started. Since messages with a wrong phase number are dropped, there is a nonzero
chance for each malicious message to be dropped. Thus the probability of stabilization
converges to 1. Note that once stabilization is reached, it is preserved, since then every
phase takes at least 2τ+ and every message with a phase number distinct to the correct
one is dropped in such a phase. In this section, the number M of messages in transit at
tGST is used for analysis only and neither bounded nor known to the algorithm.

As we just want to explore the boundaries of the impossibility result, we do not aim
at an optimal solution regarding probability of stabilization here.

For a fixed execution of our algorithm let us denote with next(phasep(t)) the value of
phasep after the next coin toss following t. Like in the last section we define the following
properties:

Definition 7.4 (Stability). For a process p, the predicate PS(p, t) holds at time t iff
there is no next(phasep(t)) message in transit. Formally,

PS(p, t) ≡ @k : (p, next(phase′p(t)), k) ∈ Q(p, t)

Definition 7.5 (Progress). For a process p, the predicate PP(p, t) holds at time t
iff there is at least one correct neighbor q of p, from or to which a message with k >
lastmsgp,q(t) and current phase is in transit. Formally,

PP(p, t) ≡ ∃q ∈ (C ∩ nb(p)) ∃k > lastmsgp,q(t) : (p, phasep(t), k) ∈ Q(p, q, t)

Since the changes in the algorithm have no impact on progress, we can adopt from
Section 7.5:

Lemma 7.19. Eventually PP(p, t) holds forever.

It remains to show that (with high probability) the algorithm stabilizes:

Lemma 7.20. By an expected time of at most (Ξ+1)τ+2M+1 after tGST , PS holds forever.

7.6. RANDOMIZATION 91

1 state variables

2 phasep ∈ {0, 1, 2}
3 ∀q ∈ Π : lastmsgp[q] ∈ {0, . . . ,Ξ}
4

5 if received (p, ph, k) from q
6 if ph = phasep and k > lastmsgp[q]
7 if k < Ξ
8 lastmsgp[q]← k
9 send (p, phasep, k + 1) to q
10 else

11 suspect {r ∈ Π | lastmsgp[r] = 0}
12 phasep ← coin({0, 1, 2} − {phasep})
13 ∀r ∈ Π : lastmsgp[r]← 0
14 send (p, phasep, 1) to all neighbors
15

16 if received (q, ph, k) from q
17 send (q, ph, k) to q
18

19 on deadlock-prevention-event do

20 ∀q ∈ Π : send (p, phasep, lastmsgp[q] + 1) to q

Figure 7.6: Randomized failure detector Implementation with Bounded Memory

Proof. We use the proof technique of a game between the adversary and luck of [Dol00].
Both players have full knowledge of the system and of the execution history. Every time
a coin toss is performed, luck can intervene and determine the result. On the other hand,
the adversary has all other choices. The bound expected time of stabilization is r/cp,
where r is the worst case time to win the game, and cp the combined probability of all
coin toss results, where luck did intervene.

Luck’s strategy is as follows: W.l.o.g. at tGST we are in phase 0. At the first coin
toss, luck does not intervene. W.l.o.g. we are now in phase 1. For every following coin
toss (until the algorithm stabilizes), luck chooses either phase 1 or 2, depending on which
one is possible. So by time 2τ+ no phase-0 messages are in transit anymore. After
this, the next time luck intervenes (which is after at most 2Ξτ+ time steps) it chooses
phase 0 and the algorithm stabilizes. Note that M malicious messages may cause at
most M coin tosses before 2τ+. The combined probability of all interventions of luck is
cp = (1/2)M−1 · 1/2 = (1/2)M and the time to win the game is r = (2Ξ + 2)τ+. Thus the
expected time for stabilization is r/cp = (Ξ + 1)τ+2M+1.

The following lemmata consider the stabilized algorithm, their proofs are thus the
same as in Section 7.5.

92 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

Lemma 7.21 (Fastest Progress). Assume p starts phase ph = phasep(t) by broadcast-
ing (p, ph, 1) at time t, and PS(p, t) holds. Then p does not broadcast (p, next(ph), 1) by
time t + 2τ−Ξ > t + 2τ+

Lemma 7.22 (Slowest Progress). Assume p starts phase ph by broadcasting (p, ph, 1)
at time t. Then p broadcasts (p, next(ph), 1) by t + 2τ+Ξ.

With these lemmata, we can show the properties of our failure detector:

Theorem 7.8 (Local Completeness). Eventually every non-correct neighbor of p is
suspected by p.

Proof. Assume neighbor q of p has crashed. By Lemma 7.19, PP eventually holds. Note
that every message (p, ph, k) from q, with k > lastmsgp,q and ph = phasep causes either
a message (p, ph, k + 1) (for k < Ξ) or a (p, ph′, 1) message with ph′ 6= ph. Consequently,
eventually p reaches k = Ξ and switches to a new phase (lines 11-14). When p reaches
k = Ξ in the new phase, lastmsgp,q = 0, since there was no message from q. According
to line 11, p suspects q.

Theorem 7.9 (Eventual Local Accuracy). Eventually p stops suspecting every correct
neighbor of p.

Proof. By Lemma 7.20 and Lemma 7.21 all phases that are started after tGST + 2τ+ are
longer than 2τ+. This is sufficiently long for all answers of correct process p’s correct
neighbors q to p’s (p, ph, 1) message to be received by p before it executes line 11 at some
time t. It follows that lastmsgpq(t) > 0 for every correct neighbor q when p executes line
11 so that no correct processes will ever be suspected by p.

Corollary 7.3. The algorithm in Figure 7.6 implements a randomized time free self-
stabilizing implementation of �P` for systems with unbounded link capacity and bounded
memory. It has an expected stabilization time of at most (Ξ + 1)τ+2M+1, where M is the
(unbounded) number of messages from the instable period.

7.7 No Timing Uncertainty

Another condition of Theorem 7.3 is ε > 0. In this Section we show that this is a necessary
condition for the impossibility by providing an algorithm for ε = 0, that is τ+ = τ− ∆

= τ .
Executing the algorithm given in Figure 7.7, process p just sends (p) messages to all its

neighbors. And these neighbors just reply (p) upon reception. Because of the extremely
strong timing assumption ε = 0, all replies must reach p simultaneously; upon reception
of a set of messages at time t, p thus suspects all processes where no messages are received
at time t.

7.8. FROM LOCAL TO GLOBAL FAILURE DETECTION 93

1 if received (p) from some set of processes S
2 suspect Π− S
3 send (p) to all neighbors
4

5 if received (q) from q
6 send (q) to q
7

8 on deadlock-prevention-event
9 send (p) to all neighbors

Figure 7.7: Failure detector implementation for no timing uncertainty

Theorem 7.10. The algorithm in Figure 7.7 is a message-driven self-stabilizing imple-
mentation of the �P` failure detector for systems where ε = 0, with unbounded link capacity
and bounded memory.

Proof. We show the properties of an eventually perfect failure detector:
Local Completeness: If a process q crashes at time t, every other correct process p does
not receive any messages from q anymore, thus every time line 2 is executed after t + τ , q
is suspected (and thus remains suspected forever). However, since eventually p executes
line 9, and at least one correct neighbor replies by lines 5-6, eventually line 2 is executed.
Eventual Local Accuracy: Eventually p executes line 9, we denote this time by t. Thus, at
time t+ τ , every other correct process q receives and answers the message by line 5-6. At
time t + 2τ , p receives message (p) from process q and therefore does not suspect q.

Note that—again—we do not aim at an optimal solution, since ε = 0 is unrealistic
and thus the result is only of theoretical interest.

7.8 From Local to Global Failure Detection

In this section we show that an eventually local failure detector can be transformed into an
eventually perfect failure detector (for partitionable systems) by an asynchronous message-
driven self-stabilizing algorithm. This shows that also for message-driven algorithms, an
eventually local failure detector is of the same power than an eventually perfect one.
Again, this algorithm needs a deadlock detector to avoid blocking of the algorithm if all
messages get lost.

This transformation differs from the one in Section 6.5 in that it is message-driven
and does not preserve stability. The transformation is simple: the local suspect lists
are exchanged between the processes, the processes build their global suspect list by
intersecting all estimates. A hop counter is used to ensure that no old message circulate
forever in the system.

94 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

1 input localsuspectp ⊆ nb(p)
2 output globalsuspectp ⊆ Π
3

4 state variables

5 ∀q ∈ Π : suspectp[q] ⊆ Π
6

7 on receive (q, S, h) from a neighbor
8 suspect[q] = S
9 globalsuspectp =

⋂

q∈Π suspect[q]

10 if h > 0 and h < N − 1
11 send (q, s, h − 1) to all neighbors
12

13 on receive DPE from DDP or if localsuspectp changes
14 suspectp[p] = localsuspectp
15 send (p, suspectp[p], n− 2) to all neighbors

Figure 7.8: The transformation from �P` to �P.
.

Theorem 7.11. The algorithm in Figure 7.8 is a self-stabilizing transformation from �P`

to �P using bounded local space.

Proof. We show the properties of an eventually local failure detector:
(Strong Completeness:) Suppose process p crashes. Then according to the properties of
�P`, there is a time t1, where every correct neighbor of p permanently suspects p. After
that, every message (q, S, n − 2) that a neighbor q of p issues, has q ∈ S. Since all
transmission delays are finite, there is a time t2 ≥ t1, where no message (q, S, h) with
q ∈ nb(p) and p 6∈ S is in transit anymore. By the properties of the permanent deadlock
detector module, at some time t3 > t2 DPE is triggered and (p, S, N − 2) is flooded over
the network. Since no other message (q, S, h) with q ∈ nb(p) and p 6∈ S is in transit and no
such message is generated anymore, eventually every correct process r has p ∈ suspectr[q]
for all q ∈ nb(p). For q 6∈ nb(p), suspectr[q] trivially contains p, thus every process r
eventually suspects p.

(Eventual Strong Accuracy:) Assume process p never crashes. Then according to the
properties of �P`, there is a time t1, after which no neighbor of p suspects p. After that, no
message (q, S, N−2) that a neighbor q of p issues, has q ∈ S. Since all transmission delays
are finite, there is a time t2 ≥ t1, where no message (q, S, h) with q ∈ nb(p) and p ∈ S
is in transit anymore. By the properties of the permanent deadlock detector module,
at some time t3 > t2 DPE is triggered and (p, S, n − 2) is flooded over the network.
Since no message (q, S, h) with q ∈ nb(p) and p ∈ S is in transit and no such message
is generated anymore, eventually every correct process r has at least one q ∈ nb(p) such

7.9. DISCUSSION 95

that p 6∈ suspectr[q]. After that, every process r eventually forever stops suspecting p.

Note that we do not aim for an efficient solution for this problem here.

7.9 Discussion

This chapter investigated message-driven self-stabilizing implementations of failure de-
tectors. Intuitively, the major problem stems from the requirement of message-driven
algorithms. In contrast to time-driven algorithms [BKM97, DLS88], where local clocks
can be employed to periodically send messages independently of the rate of received mes-
sages, message-driven algorithms can only react to received messages. The time between
send events thus depends just on the incoming message pattern. Due to arbitrary system
states (self-stabilization requirement), perceived time can be compressed arbitrarily such
that the message pattern provides unreliable time information. This leads to our impos-
sibility result in Section 7.3 which shows that there is no message-driven deterministic
self-stabilizing implementation of unreliable failure detectors in systems with timing un-
certainty where the link capacity is unknown and the memory of the processes is bounded.

However, there are ways to circumvent the impossibility. Section 7.4 presents a simple
solution, which requires unbounded memory—an assumption which is not reasonable
when considering self-stabilizing algorithms for implementations in real systems. We
therefore presented a practical solution in Section 7.5 which requires bounded memory.
This solution can be used in real systems, as the crucial value M—a bound on the number
of messages in the links—may be chosen in such a way that it is larger that the real number
of messages in real systems (recall the space requirement is just logarithmic in M).

Finally we presented two other algorithms which show that it is possible to solve the
problem by randomization and in system without timing uncertainty. It is thus possible
to implement �P` and thus �P:

• if we have unbounded local memory (Section 7.4, [HW04]).

• if there is a known bound on the number of messages from the instable period
(Section 7.5, [HW04]).

• if we have local clocks (Section 6, [BKM97]). Such algorithms are not message-
driven.

• if we do not require self-stabilization [LLS03].

• if we drop the requirement for deterministic algorithms (Section 7.6, [HW05]).

• if the system has no timing uncertainty (Section 7.7, [HW05]).

96 CHAPTER 7. MESSAGE-DRIVEN SELF-STABILIZING FAILURE DETECTION

Finally we showed that a local failure detector has the same computational power than
a global one, since �P` can be transformed to �P by a simple asynchronous self-stabilizing
message-driven algorithm.

Chapter 8

Conclusion

In this thesis we considered the problem of failure detection under a sparsely connected
network model. We addressed several aspects of such an approach:

By implementing the weakest failure detector for consensus under the weakest syn-
chrony assumptions where this is possible for fully connected networks we are aware of,
we showed that a sparse network is not more demanding in terms of synchrony that a
fully connected one. Moreover, the complexity analysis showed a significant reduction
in message load in sparse networks, when we consider a sparse network model for the
algorithm, instead of simulating a fully connected network. One may argue that this ap-
proach impairs fault-tolerance and hence the achievable assumption coverage. However, if
a neighbor is not timely, the messages of a non-neighbor routed over this process must in
general be considered non-timely as well. Therefore, restricting the timeliness condition to
links between neighbors is no loss of assumption coverage. Assuming a node degree larger
the maximum number of crashed does not reduce the assumption coverage either, since
if this requirement was violated, the fully connected overlay graph could also partition
and therefore violate the system model. Moreover, a bound on the transmission delays of
constant size messages between neighbors (without routing layer) can be established with
very high coverage. This even yields an increase of assumption coverage compared to the
original solution.

We also showed that a failure detector implementation can naturally profit from the
implicit given network structure by reducing the message complexity of a failure detector
algorithm when using this structure: We presented an implementation of an eventually
perfect failure detector for a partitionable network with sparse topology. Between neigh-
bors, an upper bound on the communication jitter is assumed. The number of neighbors
is assumed to be bounded by ∆, which is an adequate model for wireless ad-hoc net-
works. The algorithm requires neither a priori knowledge of the number of processes in
the system nor an upper bound on the communication delay between arbitrary processes.
Every process broadcasts just ∆ + 1 messages per round to its neighbors, and under the
assumption of a constant size name-space and time domain, these messages are of con-

97

98 CHAPTER 8. CONCLUSION

stant size. Processes at shorter distances get more accurate information about each other
than farther ones.

Finally, we considered the problem of self-stabilization. Whereas time-driven ap-
proaches are simple and can be implemented using only bounded memory, this is not the
case for message-driven algorithms. We showed that there is no deterministic message-
driven self-stabilizing implementation of �S that uses only bounded memory if there is no
bound on the channel capacity and there is a timing uncertainty. The result is tight in
the sense that there are solutions if we drop one of the assumptions of the impossibility.
We devised a simple solution, which requires unbounded memory—an assumption which
is not reasonable when considering self-stabilizing algorithms for implementations in real
systems. We therefore presented a practical solution which requires bounded memory.
This solution can be used in real systems, as the crucial value M—a bound on the num-
ber of messages in the links—may be chosen in such a way that it is larger that the real
number of messages in real systems. Further, we presented two other algorithms which
show that it is possible to solve the problem by randomization and in system without
timing uncertainty. It is thus possible to implement �P` and thus �P:

• if we have unbounded local memory,

• if there is a known bound on the number of messages from the instable period,

• if we have local clocks,

• if we do not require self-stabilization,

• if we drop the requirement for deterministic algorithms, or

• if the system has no timing uncertainty.

Further, we showed that a local failure detector has the same computational power
than a global one, since �P` can be transformed to �P by a simple asynchronous self-
stabilizing message-driven algorithm.

All together, it seems beneficial to implement failure detectors directly on the sparse
network instead of using a fully connected structure that is built atop of such a network
by, e.g., routing.

List of Notations

T set of time values . 19

Π set of processes . 20

Λ set of links . 20

G communication graph . 20

G(t) time dependent communication graph . 20

D(p, q, t) length of the shortest path from p to q in G(t) . 20

d(t) diameter of the communication graph . 20

nb(p, t) set of neighbors of a node p at time p . 20

deg(p, t) degree of process p at time t . 20

∆(t) maximum degree of the communication graph . 20

δ(t) minimum degree of the communication graph . 20

C(t) the set of processes that have not crashed until t . 20

F (t) the set of processes that have crashed until t, failure pattern 20

F set of faulty processes . 20

C (p, t) component of process p at time t . 20

C(p,∞) the component of p after the last crash . 20

Pk(p, t) all processes that are k steps from p at time t . 21

nk(p, t) number of processes that are k steps from p at time t 21

Lλ channel on link λ . 21

C configuration . 21

σ execution . 23

tGST global stabilization time . 23

τ+ maximum communication delay . 23

τ− minimum communication delay . 23

vp(t) the value of variable v at process p at time t before the step at time t . 23

v′
p(t) the value of variable v at process p at time t after the step at time t . . 23

99

100 CHAPTER 8. CONCLUSION

Q(p, q, t) set of messages which are in transit from p to q or vice versa at time t 23

Q(p, q, t)
set of messages which are in transit from p to q or vice versa after a step
at time t .

23

ε jitter, ε = τ+ − τ− . 25

Θ communication delay uncertainty ratio, Θ = τ+/τ− 25

H(p, t) failure detector history . 28

H̃(p, t) inverse failure detector history . 28

�E reducibility in environment E . 29

⊆ inclusion (relation between failure detectors) . 29

Note that failure detector classes are not listed here.

Bibliography

[AB93] Yehuda Afek and Geoffrey M. Brown. Self-stabilization over unreliable
communication media. Distributed Computing, 7:27–34, 1993.

[ACT99] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Using the heart-
beat failure detector for quiescent reliable communication and consensus in
partitionable networks. Theoretical Computer Science, 220(1):3–30, June
1999.

[ACT00] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detec-
tion and consensus in the crash-recovery model. Distributed Computing,
13(2):99–125, April 2000.

[ADGFT01] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and
Sam Toueg. Stable leader election. In DISC ’01: Proceedings of the 15th In-
ternational Conference on Distributed Computing, pages 108–122. Springer-
Verlag, 2001.

[ADGFT03a] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam
Toueg. On implementing Omega with weak reliability and synchrony as-
sumptions. In Proceeding of the 22nd Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC’03), 2003.

[ADGFT03b] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam
Toueg. Solving leader election and consensus using one timely link. Tech-
nical report, LIAFA Universite D. Diderot, 2003.

[ADGFT04] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam
Toueg. Communication-efficient leader election and consensus with lim-
ited link synchrony. In PODC ’04: Proceedings of the twenty-third annual
ACM symposium on Principles of distributed computing, pages 328–337,
St. John’s, Newfoundland, Canada, 2004. ACM Press.

101

102 BIBLIOGRAPHY

[ADLS94] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Bounds on the time to reach agreement in the presence of timing uncer-
tainty. Journal of the ACM (JACM), 41(1):122–152, 1994.

[AG93] A. Arora and M. Gouda. Closure and convergence: A foundation of
fault-tolerant computing. IEEE Transactions on Software Engineering,
19(11):1015–1027, 1993.

[AH93] Efthymios Anagnostou and Vassos Hadzilacos. Tolerating transient and
permanent failures (extended abstract). In Proceedings of the 7th Inter-
national Workshop on Distributed Algorithms (WDAG’93), volume 725 of
LNCS, pages 174–188, Lausanne,Switzerland, Sept 1993.

[ALLT02] Marcos Aguilera, Gérard Le Lann, and Sam Toueg. On the impact of
fast failure detectors on real-time fault-tolerant systems. In Proceedings of
the 16th International Symposium on Distributed Computing (DISC’02),
volume 2508 of LNCS, pages 354–369, Toulouse, France, Oct 2002. Springer
Verlag.

[AT03] Marcos Kawazoe Aguilera and Sam Toueg. Failure detection and random-
ization: A hybrid approach to solve consensus. Technical report, Cornell
University, 2003.

[ATD99] Marcos Kawazoe Aguilera, Sam Toueg, and Borislav Deianov. Revisiting
the weakest failure detector for uniform reliable broadcast. In P. Jayanti,
editor, Distributed Computing: 13th International Symposium (DISC’99),
volume 1693 of Lecture Notes in Computer Science, pages 19–34, Bratislava,
Slovak Republic, sep 1999. Springer-Verlag GmbH.

[AW98] Hagit Attiya and Jennifer Welch. Distributed Computing. McGraw-Hill,
1998.

[BDM01] Özalp Babaoğlu, Renzo Davoli, and Alberto Montresor. Group commu-
nication in partitionable systems: Specification and algorithms. Software
Engineering, 27(4):308–336, 2001.

[Bie03] Martin Biely. An optimal Byzantine agreement algorithm with arbitrary
node and link failures. In Proc. 15th Annual IASTED International Con-
ference on Parallel and Distributed Computing and Systems (PDCS’03),
pages 146–151, Marina Del Rey, California, USA, November 3–5, 2003.

[BKM97] Joffroy Beauquier and Synnöve Kekkonen-Moneta. Fault-tolerance and
self-stabilization: Impossibility results and solutions using self-stabilizing

BIBLIOGRAPHY 103

failure detectors. International Journal of Systems Science, 28(11):1177–
1187, 1997.

[BMS02] Marin Bertier, Olivier Marin, and Pierre Sens. Implementation and per-
formance evaluation of an adaptable failure detector. In Proceedings of the
International Conference on Dependable Systems and Networks (DSN’02),
pages 354–363, Washington, DC, June 23–26, 2002.

[BMS03] Marin Bertier, Olivier Marin, and Pierre Sens. Performance analysis of a
hierarchical failure detector. In DSN, pages 635–644, 2003.

[BO83] Michael Ben-Or. Another advantage of free choice: Completely asyn-
chronous agreement protocols. In Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing (PODC’83), pages 27–
30, Canada, August 1983.

[CBGS00] Bernadette Charron-Bost, Rachid Guerraoui, and André Schiper. Syn-
chronous system and perfect failure detector: solveability and efficiency
issues. In Proceedings of the International Conference on Dependable Sys-
tem and Networks (DSN’00). IEEE Computer Society Press, 2000.

[Cha90] Soma Chaudhuri. Agreement is harder than consensus: set consensus
problems in totally asynchronous systems. In PODC ’90: Proceedings of
the ninth annual ACM symposium on Principles of distributed computing,
pages 311–324, New York, NY, USA, 1990. ACM Press.

[Che00] Wei Chen. On the Quality of Service of Failure Detectors. PhD thesis,
Cornell University, May 2000.

[CHT96] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest
failure detector for solving consensus. Journal of the ACM, 43(4):685–722,
June 1996.

[CHTCB96] Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and Bernadette
Charron-Bost. On the impossibility of group membership. Technical Report
2782, Institute National de recherche en informatique et en automatique,
January 1996.

[CKV01] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group commu-
nication specifications: A comprehensive study. ACM Computing Surveys,
33(4):1–43, December 2001.

[CM84] Jo-Mei Chang and N. F. Maxemchuk. Reliable broadcast protocols. ACM
Trans. Comput. Syst., 2(3):251–273, 1984.

104 BIBLIOGRAPHY

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–267, March
1996.

[CTA00] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On the quality of
service of failure detectors. In Proceedings IEEE International Conference
on Dependable Systems and Networks (ICDSN / FTCS’30), New York City,
USA, 2000.

[DDP03] Ariel Daliot, Danny Dolev, and Hanna Parnas. Linear time byzantine self-
stabilizing clock synchronization. In Proceedings of the 7th International
Conference on Principles of Distributed Systems, Dec 2003.

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal syn-
chronism needed for distributed consensus. Journal of the ACM, 34(1):77–
97, January 1987.

[DFKM97] Danny Dolev, Roy Friedman, Idit Keidar, and Dahlia Malkhi. Failure de-
tectors in omission failure environments. In Proc. 16th ACM Symposium on
Principles of Distributed Computing, page 286, Santa Barbara, California,
1997.

[DGFF05] Carole Delporte-Gallet, Hugues Fauconnier, and Felix C. Freiling. Re-
visiting failure detection and consensus in omission failure environments.
Aachener Informatik Berichte AIB-2005-13, RWTH Aachen, Department
of Computer Science, 2005.

[DGG02] Assia Doudou, Benoit Garbinato, and Rachid Guerraoui. Encapsulating
failure detection: From crash to byzantine failures. In Reliable Software
Technologies - Ada-Europe 2002, LNCS 2361, pages 24–50, Vienna, Austria,
June 2002. Springer.

[DGGS99] Assia Doudou, Benôıt Garbinato, Rachid Guerraoui, and André Schiper.
Muteness failure detectors: Specification and implementation. In EDCC,
pages 71–87, 1999.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974.

[DIM97] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Resource bounds for
self-stabilizing message-driven protocols. SIAM Journal on Computing,
26(1):448–458, 1997.

BIBLIOGRAPHY 105

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM, 35(2):288–323, April
1988.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[DS98] Assia Doudou and André Schiper. Muteness detectors for consensus with
byzantine processes. In Proceedings of the 17th ACM Symposium on Princi-
ples of Distributed Computing (PODC-17), Puerto Vallarta, Mexico, 1998.

[FKM+95] Roy Friedman, Idit Keidar, Dalia Malki, Ken Birman, and Danny Dolev.
Deciding in partitionable networks. Technical report, Cornell University,
1995.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, April 1985.

[FS04a] Christof Fetzer and Ulrich Schmid. Brief announcement: On the possibility
of consensus in asynchronous systems with finite average response times.
In Proceedings of the 23th ACM Symposium on Principles of Distributed
Computing (PODC’04), page 402, Boston, Massachusetts, 2004.

[FS04b] Christof Fetzer and Ulrich Schmid. On the possibility of consensus in
asynchronous systems with finite average response times. Research Re-
port 14/2004, Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstraße 3, A-1040 Vienna, Austria, 2004. (Brief announcement
appeared at PODC’04).

[Gär02] Felix Gärtner. On crash failures and self-stabilization. Presentation at
Journées Internationales sur l’auto-stabilisation, CIRM, Luminy, France,
October 21-25, 2002, October 2002.

[GCG01] Indranil Gupta, Tushar D. Chandra, and Germán S. Goldszmidt. On
scalable and efficient distributed failure detectors. In Proceedings of the
20th ACM Symposium on Principles of Distributed Computing (PODC’01),
pages 170–179, Newport, RI, August 2001.

[GM91] Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communication
protocols. IEEE Transactions on Computers, 40(4):448–458, April 1991.

[GP01] Felix C. Gärtner and Stefan Pleisch. (im)possibilities of predicate detec-
tion in crash-affected systems. In A.K. Datta and T. Herman, editors,
Proc. Self-Stabilizing Systems : 5th International Workshop (WSS 2001),

106 BIBLIOGRAPHY

volume 2194/2001 of Lecture Notes in Computer Science, page 98, Lisbon,
Portugal, October 2001. Springer-Verlag.

[GP02] Felix C. Gärtner and Stefan Pleisch. Failure detection sequencers: Neces-
sary and sufficient information about failures to solve predicate detection.
In DISC ’02: Proceedings of the 16th International Conference on Dis-
tributed Computing, pages 280–294. Springer-Verlag, 2002.

[GS96] R. Guerraoui and A. Schiper. Consensus service: A modular approach for
building agreement protocols in distributed systems. In Proceedings of the
26th IEEE Symposium on Fault Tolerant Computing Systems (FTCS-26),
pages 168–177, 1996.

[Gue01] Rachid Guerraoui. On the hardness of failure-sensitive agreement problems.
Inf. Process. Lett., 79(2):99–104, 2001.

[Gue02] Rachid Guerraoui. Non-blocking atomic commit in asynchronous dis-
tributed systems with failure detectors. Distributed Computing, 15:17–25,
2002.

[HMR98] Michel Hurfin, Achour Mostefaoui, and Michel Raynal. Consensus in asyn-
chronous systems where processes can crash and recover. In Proceedings of
the 17th IEEE Symposium on Reliable Distributed Systems, pages 280–286.
IEEE, oct 1998.

[HT93] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related
problems. In Sape Mullender, editor, Distributed Systems, chapter 5, pages
97–145. Addison-Wesley, 2nd edition, 1993.

[Hut04a] Martin Hutle. An efficient failure detector for sparsely connected networks.
In Proc. IASTED International Conference on Parallel and Distributed
Computing and Networks (PDCN’04), Innsbruck, Austria, February 2004.

[Hut04b] Martin Hutle. On omega in sparse networks. In Proc. 10th Interna-
tional Symposium Pacific Rim Dependable Computing (PRDC’04), Pa-
peete, Tahiti, March 2004.

[HW04] Martin Hutle and Josef Widder. On the possibility and the impossibility of
message-driven self-stabilizing failure detection. Research Report 34/2004,
Technische Universität Wien, Institut für Technische Informatik, July 2004.
http://www.ecs.tuwien.ac.at/projects/Theta/papers/.

[HW05] Martin Hutle and Josef Widder. Self-stabilizing failure detector algorithms.
In Proc. IASTED International Conference on Parallel and Distributed

BIBLIOGRAPHY 107

Computing and Networks (PDCN’05), Innsbruck, Austria, February 2005.
Paper available at http://www.ecs.tuwien.ac.at/projects/Theta/papers/.

[KMMS03] Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melliar-Smith. Byzan-
tine fault detectors for solving consensus. Comput. J., 46(1):16–35, 2003.

[Lar02] Mikel Larrea. Brief announcement: Understanding perfect failure detec-
tors. In Proceedings of the 21st Annual ACM Symposium on Principles of
Distributed Computing (PODC), page 257, Monterey, CA, July 2002.

[LFA99] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. Efficient algorithms
to implement unreliable failure detectors in partially synchronous systems.
In Proceedings of the 13th International Symposium on Distributed Comput-
ing (DISC’99), LNCS 1693, pages 34–48, Bratislava, Slovaquia, September
1999. Springer.

[LFA01] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. Eventually consis-
tent failure detectors. In SPAA, pages 326–327, 2001.

[LFA02] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. On the impossibil-
ity of implementing perpetual failure detectors in partially synchronous
systems. In Proceedings of the 10th Euromicro Workshop on Parallel,
Distributed and Network-based Processing (PDP’02), Gran Canaria Island,
Spain, January 2002.

[LLS03] Gérard Le Lann and Ulrich Schmid. How to implement a timer-free perfect
failure detector in partially synchronous systems. Technical Report 183/1-
127, Department of Automation, Technische Universität Wien, January
2003.

[MFVP05] Neeraj Mittal, Felix Freiling, Subbarayan Venkatesan, and Lucia Draque
Penso. Efficient reductions for wait-free termination detection in crash-
prone systems. Aachener Informatik Berichte 2005-12, RWTH Aachen,
2005.

[MMR03] Anchour Mostefaoui, Eric Mourgaya, and Michel Raynal. Asynchronous
implementation of failure detectors. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN’03), San Francisco,
CA, June 22–25, 2003.

[MR99a] Achour Mostéfaoui and Michel Raynal. Solving consensus using chandra-
toueg’s unreliable failure detectors: A general quorum-based approach. In
P. Jayanti, editor, Distributed Computing: 13th International Symposium

108 BIBLIOGRAPHY

(DISC’99), volume 1693 of Lecture Notes in Computer Science, pages 49–
63, Bratislava, Slovak Republic, September 1999. Springer-Verlag GmbH.

[MR99b] Achour Mostéfaoui and Michel Raynal. Unreliable failure detectors with
limited scope accuracy and an application to consensus. In FSTTCS, pages
329–340, 1999.

[MR00] Achour Mostéfaoui and Michel Raynal. k-set agreement with limited accu-
racy failure detectors. In PODC ’00: Proceedings of the nineteenth annual
ACM symposium on Principles of distributed computing, pages 143–152.
ACM Press, 2000.

[MR01] Achour Mostéfaoui and Michel Raynal. Leader-based consensus. Parallel
Processing Letters, 11(1):95–107, 2001.

[PS92] Stephen Ponzio and Ray Strong. Semisynchrony and real time. In
Proceedings of the 6th International Workshop on Distributed Algorithms
(WDAG’92), pages 120–135, Haifa, Israel, November 1992.

[Ske81] Dale Skeen. Nonblocking commit protocols. In SIGMOD ’81: Proceedings
of the 1981 ACM SIGMOD international conference on Management of
data, pages 133–142, New York, NY, USA, 1981. ACM Press.

[SM95] Laura S. Sabel and Keith Marzullo. Election vs. consensus in asynchronous
systems. Technical report, Cornell University, Ithaca, NY, USA, 1995.

[SW05] Ulrich Schmid and Josef Widder. Achieving synchrony without clocks.
(under submission), May 2005.

[Tel94] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University
Press, 1994.

[Völ04] Hagen Völzer. On randomization versus synchronization in distributed
systems. Technical Report SIIM-TR-A-04-10, Universität zu Lübeck, June
2004.

[vR03] Jana van Greunen and Jan Rabaey. Lightweight time synchronization for
sensor networks. In Proceedings of the 2nd ACM international conference
on Wireless sensor networks and applications, pages 11–19, 2003.

[vRMH98] Robbert van Renesse, Yaron Minsky, and Mark Hayden. A gossip-style
failure detection service. In IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware 98), 1998.

BIBLIOGRAPHY 109

[Wid03] Josef Widder. Booting clock synchronization in partially synchronous sys-
tems. In Proceedings of the 17th International Symposium on Distributed
Computing (DISC’03), volume 2848 of LNCS, pages 121–135, Sorrento,
Italy, October 2003. Springer Verlag.

[Wid04] Josef Widder. Distributed Computing in the Presence of Bounded Asyn-
chrony. PhD thesis, Vienna University of Technology, Fakultät für Infor-
matik, May 2004.

[WK03] Szu-Chi Wang and Sy-Yen Kuo. Communication strategies for heartbeat-
style failure detectors in wireless ad hoc networks. In DSN, pages 361–,
2003.

[WLLS05] Josef Widder, Gérard Le Lann, and Ulrich Schmid. Failure detection with
booting in partially synchronous systems. In Proceedings of the 5th Euro-
pean Dependable Computing Conference (EDCC-5), volume 3463 of LNCS,
pages 20–37, Budapest, Hungary, April 2005. Springer Verlag.

110 BIBLIOGRAPHY

Curriculum Vitae

Personal

Name: Martin Hutle
Title: Dipl. Ing.
Born: September 18th 1977, Feldkirch, Austria
Nationality: Austrian Citizen
Familiy Status: single
Parents: Dorothea (maiden name: Schmidt) and Ditmar Hutle

Education

1983–1987 Elementary school, Volkschule Schwarzach

1987–1996 Secondary school, Bundesrealgymnasium Dornbirn. Passed the Matura with
distinction.

1996–2002 Studying computer science at the Vienna University of Technology. Master
thesis “Constraint Satisfaction Problems”, performed at the Institute of In-
formation Systems, Database and Artificial Intelligence Group. Received the
master degree with distinction.

2000– Studying Electrical Engineering at the Vienna University of Technology
(branch: Communication Engineering).

2002– Working as research assistant at the Institute for Automation and the Institute
for Computer Engineering, Embedded Computing Systems Group; both at the
Vienna University of Technology.

111

