
Business Process Modelling -
Languages, Goals, and Variabilities

Conducted for the purpose of receiving the academic title
‘Doktorin der Sozial- und Wirtschaftswissenschaften’

Supervisors

o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel
Institute of Software Technology and Interactive Systems

Vienna University of Technology

Ao. Univ.-Prof. Mag. Dr. Christian Huemer
Institute of Software Technology and Interactive Systems

Vienna University of Technology

Submitted to the
Vienna University of Technology

Faculty of Informatics
by

Birgit Korherr
9925559

Viktor Kaplanstrasse 10
3151 St. Georgen

Vienna, January 9th, 2008

PhD Thesis

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contribution . 2

1.2.1 Generic Metamodel for Evaluating BPMLs 2
1.2.2 Capturing Software Requirements for Software Engineering

Purposes . 3
1.2.3 Variabilities in Business processes 3
1.2.4 Goals and Performance Measures in BPML 4
1.2.5 Extension Mechanisms used for BPMLs 4

1.3 Structure of the Thesis . 5

2 Evaluation of Conceptual Business Process Modelling Languages 8
2.1 Introduction . 8
2.2 The Metamodel . 10

2.2.1 Functional Perspective . 10
2.2.2 Organisational Perspective . 10
2.2.3 Behavioural Perspective . 12
2.2.4 Informational Perspective . 13
2.2.5 Business Process Context Perspective 13

2.3 The Business Process Modelling Languages - An Overview 14
2.3.1 UML 2.0 Activity Diagram (AD) 14
2.3.2 Event Driven Process Chain (EPC) 16
2.3.3 Business Process Modelling Notation (BPMN) 21
2.3.4 Integrated DEFinition Method 3 (IDEF3) 24
2.3.5 Petri Net . 28
2.3.6 Role Activity Diagram (RAD) 30

2.4 Evaluation . 32

i

2.4.1 Evaluation Method . 33
2.4.2 Results of Evaluation . 33

3 Extending Business Process Modelling Languages with Performance Mea-
sures and Goals 38
3.1 Introduction . 38
3.2 The Role of Goals and Measures in the Business Process 41
3.3 UML 2 Profile . 43

3.3.1 Constraints . 46
3.3.2 Applying the UML 2 Profile to an Example Business Process . 47

3.4 The extended EPC Metamodel . 50
3.4.1 Example Business Process of an EPC 51

3.5 The extended BPMN Metamodel . 53
3.5.1 Example Business Process of a BPMN 54

4 Mapping the UML 2 Activity Diagram to BPEL 58
4.1 Introduction to WSDL and BPEL . 59

4.1.1 Business Process Execution Language (BPEL) 59
4.1.2 Web Service Description Language (WSDL) 61

4.2 Describing an example business process with WSDL and BPEL . . . 62
4.3 Mapping the UML 2 Activity Diagrams with time measures to BPEL 68
4.4 Designing a UML Profile for BPEL with Eclipse 72

4.4.1 A UML 2 Activity Diagram designed with Eclipse 72
4.4.2 Applying the UML Profile onto a UML 2 Activity Diagram . . 74

4.5 Conceptually desribed Transformation of a BPML to BPEL code . . . 74

5 Linking Business Processes with Software Elements and Variabilities 78
5.1 Introduction . 78
5.2 Linking Business Processes with Software Elements 80

5.2.1 Example business processes with software requirements and
components . 81

5.3 UML Profile for Variability Models and their Interdependencies with
Business Processes . 84
5.3.1 Variability Modelling . 84
5.3.2 UML Profile for Variability Models 85

ii

5.3.2.1 Extended metamodel with variabilities 86
5.3.2.2 Description of stereotypes 86

5.3.3 Constraints . 89
5.3.4 Showing the dependency between Variability Models and UML

2 Activity Diagrams . 90
5.3.5 Applying the UML Profile to an Example Business Process . . 93

6 Related Work 96
6.1 Introduction . 96
6.2 Evaluation . 97
6.3 Performance Measures in Business Processes 100
6.4 Mapping BPMLs to BPEL . 102
6.5 Linking Software Systems with Business Processes 103

7 Conclusion 107

Bibliography 110

iii

List of Figures

1.1 Relationships between BPMLs and their metamodels 5

2.1 Generic Metamodel of a Business Process 11
2.2 Elements of the UML 2 Activity Diagram 15
2.3 Section of the UML 2 Metamodel for the Activity Diagram 16
2.4 Example business process of an Activity Diagram 17
2.5 Notation of EPC Elements . 18
2.6 ARIS Views . 19
2.7 EPC metamodel . 20
2.8 Example business process of an EPC 22
2.9 Elements of BPMN . 23
2.10 BPMN metamodel . 24
2.11 Example business process of a BPMN 25
2.12 Symbols Used for IDEF3 Process Description Schematics 26
2.13 Symbols Used for IDEF3 Object Description Schematics 27
2.14 Example business process of an IDEF3 28
2.15 Small example of a Petri Net . 30
2.16 Example business process of a Petri Net 31
2.17 Elements of RAD . 31
2.18 Example business process of a RAD 32

3.1 Generic metamodel of goals and performance measures 43
3.2 Extended metamodel of the activity diagram for the UML 2 profile

with business process goals and performance measures 46
3.3 Example business process based on the UML 2 profile for business

process goals and performance measures 50
3.4 Extended EPC metamodel with performance measures 51

iv

3.5 Goal Measure Tree . 52
3.6 First hierarchy level of the example business process 52
3.7 Second hierarchy level of the example business process 53
3.8 Third hierarchy level of the example business process 54
3.9 Extended BPMN metamodel with performance measures 55
3.10 First hierarchy level of the example business process 56
3.11 Second hierarchy level of the example business process 56
3.12 Third hierarchy level of the example business process 57

4.1 Process metamodel of BPEL . 60
4.2 Activity metamodel of BPEL . 61
4.3 Example business process based on the UML 2 profile for business

process goals and performance measures and the mapping to BPEL . 71
4.4 Stereotypes of the UML profile shown with eclipse 73
4.5 Screenshot of the eclipse views . 73
4.6 Example UML 2 Activity Diagram, left a graphical representation,

right designed in eclipse . 75
4.7 Applying the UML Profile onto a UML 2 Model 76
4.8 Transforming a BPML to BPEL code 77

5.1 Dependency Relationship with a Use Case and a Component 82
5.2 Processing of Automobile Insurance Claims 83
5.3 Variability metamodel . 84
5.4 MOF-compliant metamodel of the variability metamodel 85
5.5 Extended UML Class Metamodel with Variabilities 86
5.6 Example of a UML Profile for Variability Models and the Mapping to

Business Processes . 95

v

List of Tables

2.1 Meta-Model and Notation of BPMLs 33
2.2 Functional Perspective . 34
2.3 Behavioural Perspective . 35
2.4 Organisational Perspective . 35
2.5 Informational Perspective . 36
2.6 Business Process Context Perspective 37

3.1 OCL Constraints of!Measure" . 47
3.2 OCL Constraints of!Alert" . 48

4.1 Mapping relations between the UML 2 profile and BPEL 70

5.1 variability dependency and generalisation set 88
5.2 Stereotype Definitions for!Variation Point" and!Variant" 90
5.3 Stereotype Definition for!Mandatory" 90
5.4 Stereotype Definition for!Optional" 91
5.5 Stereotype Definition for!Alternative Choice" 92
5.6 Stereotype Definitions for!Requires", and!Excludes" 93
5.7 Dependencies between Variability Models and UML 2 Activity Dia-

grams . 93

vi

Acknowledgement

I would like to thank Prof. Christian Huemer for the excellent mentoring/supervi-
sion throughout the entire PhD thesis. I also would like to thank Prof. Gerti Kappel
and Dr. Beate List for supporting me.

Moreover, I would like to thank Matthias and my parents for their patience dur-
ing this work.

But their are a lot of other people I would like to thank for their interest, friend-
ship, and ideas and criticism:

Andrea Schauerhuber, Veronika Stefanov, Martina Umlauft, Sabine Graf, Nevena
Stolba, Marion Murzek, Elke Michlmayr, Stefanie Scherzinger, Ulrike Pastner, Doris
Kastner, Sonja Willinger, Gerhard Kramler, Horst Kargl, Michael Strommer, Manuel
Wimmer, Martina Seidl, Michael Schadler, Daniela Knitel, Christian Breiteneder,
Christiane Floyd, Ute Riedler, and many more.

vii

Abstract

Over the last decade more and more companies started to optimize their business
processes in a way to meet its business goals. They develop business process mod-
els defining which activities have to be executed in which order under which con-
ditions by whom and by using which resources. For this purpose a lot of different
approaches to business process modelling have been developed, which resulted in
many different Business Process Modelling Languages (BPMLs).

The definition of a business process has to cover many different aspects (e.g. con-
trol flow, organizational view, data view, etc.). A perfect business process modelling
approach would address all the different aspects. Unfortunately, none of the exist-
ing approaches provides concepts for addressing all of these aspects. Each of them
concentrates on some aspects. The focus on certain aspects is mainly due to the
different applications areas, e.g. business engineering or software engineering etc.

Although BPMLs are well established in industry and science, a comprehensive
evaluation or a framework for an evaluation to compare the different BPMLs is still
missing. Thus, it is the goal of this thesis to provide an evaluation framework for
the comparison of BPMLs and to apply this framework in the evaluation of the
currently most popular BPMLs. The resulting framework is based on a generic
metamodel that captures all of the concepts appearing in any of the state-of-the-art
BPMLs. On a high level this framework addresses the following views: Business
Process Context Perspective, Behavioural Perspective, Functional Perspective, In-
formational Perspective, and Organisational Perspective. An evaluation based on
this framework checks whether the certain aspects in each of these perspectives is
supported by the concepts of each of the considered BPMLs. In the evaluation of
this thesis, we used the following languages: UML 2 Activity Diagram, Business
Process Modelling Notation, Event Driven Process Chain, IDEF3, Petri Net, Role
Activity Diagram.

According to the evaluation we were able to identify three main problems in

viii

current BPMLs. The first problem is that the definition of the dependency be-
tween business processes and their supporting software systems is inadequately
supported. In our approach we support the elicitation of requirements from busi-
ness process models for the software systems to be developed by extending current
BPMLs with software requirements and components to ensure a business-goal ori-
ented software development.

The second problem concerns the variability of similar, but well-distinguished
software products within a software product line. These software products not only
differ in its structural definition, but also in the process to create them. Today, vari-
ability modelling is a domain specific modelling technique that is limited to the
structural definition of similar software products. In our approach we extend the
concepts of variability modeling to integrate the dynamical aspects into the UML.
The resulting approach is based on a well defined dependency between UML class
diagrams and UML activity diagrams.

The third problem is that current conceptual BPMLs do not provide explicit mod-
elling means for process goals and their measures. The modelling of goals and its
monitoring is a critical step in business process modeling. Hence, we extend the
metamodels of UML 2 AD, EPC and BPMN with business process goals and per-
formance measures. These concepts become explicitly visible in the corresponding
models. Furthermore, a mapping of the performance measures onto the Business
Process Execution Language (BPEL) enables their monitoring in an execution envi-
ronment.

ix

Kurzfassung

Seit dem letzten Jahrzehnt begannen Unternehmen ihre Geschäftsprozesse im Hin-
blick auf ihre Geschäftsziele zu optimieren. Geschäftsprozessmodelle wurden defi-
niert, die zeigen welche Aktivitäten unter bestimmten Bedingungen und in einer
bestimmten Reihenfolge unter der Verwendung von Ressourcen in einem Prozess
durchgeführt werden. Für diesen Zweck sind eine hohe Anzahl von Geschäftspro-
zessmodellen entwickelt worden, aus denen viele unterschiedliche Geschäftspro-
zesssprachen hervor kamen.

Die Definition eines Geschäftsprozesses muss viele unterschiedliche Aspekte (Kon-
trollfluss, Organisationssicht, Datensicht, usw.) beinhalten. Ein perfekter Ansatz für
die Geschäftsprozessmodellierung würde all diese Konzepte umfassen. Momentan
erfüllt aber kein existierender Ansatz für die Modellierung von Geschäftsprozessen
all jene Aspekte, da sich eine jede dieser Sprachen nur auf bestimmte Aspekte
konzentriert, die sich auf ihr bestimmtes Anwendungsgebiet beziehen, wie z.B.
Software Engineering oder Business Engineering.

Obwohl Geschäftsprozessmodellierungssprachen (GPMS) ihren Platz in Wirtschaft
und Wissenschaft gefunden haben, gibt es weder eine umfassende Evaluierung
noch ein Framework für eine Evaluierung, um die unterschiedlichen Sprachen zu
vergleichen.

Deshalb ist es das Ziel dieser Arbeit, ein Evaluierungsframework für einen Ver-
gleich der verschiedenen Sprachen zu entwickeln. Das resultierende Framework
basiert auf einem generischen Metamodell, das jene Konzepte beinhaltet, die auch
in gängigen Modellierungssprachen vorkommen. Das Framework besteht aus fol-
genden fünf Sichten: Geschäftsprozess-Kontext-Sicht, Verhaltenssicht, funktionale
Sicht, Informationssicht und Organisationssicht.

Eine Evaluierung basierend auf diesem Framework macht Aussagen darüber,
ob die untersuchten Sprachen die Konzepte der unterschiedlichen Sichten erfüllen
oder nicht. In dieser Evaluierung wurden folgende Sprachen untersucht:

x

UML 2 Activity Diagramm (UML 2 AD), Business Process Modelling Notation
(BPMN), Event Driven Process Chain (EPC), IDEF3, Petri Net, Role Activity Dia-
gramm (RAD).

Anhand dieser Evaluierung war es nun möglich, drei grundlegende Probleme in
den verschiedenen Sprachen zu identifizieren.

Das erste Problem behandelt den Umstand, dass die Abhängigkeiten zwischen
Geschäftsprozessen und ihren unterstützenden Softwaresystemen nur unzureichend
dargestellt werden können. In unserem Ansatz werden die Anforderungen, die
Geschäftsprozessmodelle an Softwaresysteme stellen, unterstützt, in dem eine ex-
istierende GPMS um Softwareanforderungen und -komponenten erweitert wurde.

Das zweite Problem adressiert die unterschiedlichen Variabilitäten von Software-
produkten innerhalb einer Softwareproduktlinie. Diese Softwareprodukte unter-
scheiden sich nicht nur in ihrer strukturellen Definition, sondern auch im Prozess,
um diese zu kreieren. Variabilitätsmodellierung ist ein domänenspezifischer Ansatz,
der aber auf die strukturelle Definition von ähnlichen Softwareprodukten beschränkt
ist. In dieser Arbeit werden die Konzepte der Variabilitätsmodellierung erweitert,
um deren dynamischen Aspekt in UML integrieren zu können. Der resultierende
Ansatz basiert auf einer definierten Abhängigkeitsbeziehung zwischen UML Klassen-
und Aktivitätsdiagrammen.

Das dritte Problem behandelt das Thema, dass jetzige Geschäftsprozessmodell-
ierungssprachen keine Konzepte beinhalten, um Prozessziele und deren Kennzahlen
zu modellieren. Das Modellieren von Zielen und deren Überwachen ist ein wichtiger
Schritt in der Geschäftsprozessmodellierung. Deshalb wurden im Rahmen dieser
Arbeit die Metamodelle von UML 2 AD, EPC und BPMN um Ziele und die Kenn-
zahlen Zeit, Kosten und Qualität erweitert, um diese auch grafisch sichtbar zu
machen. Weiters ermöglicht ein Mapping der Kennzahlen Zeit zur Business Process
Execution Language (BPEL) die Überwachung in einer Ausführungsumgebung.

xi

1 Introduction

1.1 Problem Statement

Conceptual Business Process Modelling Languages express different aspects of pro-
cesses (e.g., activities, roles, interactions, data, etc.) and address various application
areas. To adequately describe a business process, a process model must integrate
different aspects. Today, there are many conceptual Business Process Modelling
Languages (BPMLs) available. BPMLs differ in the extent to which they support
the various aspects of business process modelling. Some languages were devel-
oped from a software engineering background, and other languages have a process
engineering background. This leads to the following problems:

Problem 1. Today, there are a lot of Conceptual Business Process Modelling Lan-
guages available. To adequately describe a business process, many types of
information must be integrated into a process model. Information that people
want to extract from process models includes what is going to be done, who is
going to do it, when and where will it be done, how and why will it be done,
and who is dependent on its being done [CKO92]. BPMLs also differ in the
extent to which their constructs highlight the information that answers these
different questions. Although BPMLs have been widely used in research and
industry, a comprehensive comparison is missing. For evaluating BPMLs, a
general framework is required, but such a framework is not available.

Problem 2. Business processes are often the starting point for software develop-
ment. They define requirements for software systems to be developed. How-
ever, the connection between business processes and software development is
inadequately supported in conceptual modelling. It is not possible to show
the software requirements of a process or the software components that are
used to successfully implement a process.

1 Introduction

Problem 3. A variability model defines the variability of a software product line
and can be used during different life cycle stages of software product lines
[PBvdL05]. Variability modelling is a domain specific modelling technique
which is becoming more and more integrated into traditional software en-
gineering. Variability models also have an impact on processes, because vari-
abilities can change the process flow. Unfortunately they are not part of a well-
known modelling framework, like the Unified Modelling Language, which
would increase their visibility and their usability. Furthermore, it is also not
possible to show variabilities in a business process model.

Problem 4. A business process is defined as a ”group of tasks that together create a
result of value to a customer” [Ham96]. Its purpose is to offer each customer
the right product or service, i.e., the right deliverable, with a high degree of
performance measured against cost, longevity, service and quality [JEJ94]. Al-
though business process performance measurement is an important topic in
research and industry [Cas05], current conceptual BPMLs do not provide ex-
plicit modelling means for process goals and their measures. Already in 1997,
Kueng and Kawalek argued that little attention is paid to the value of making
goals explicit [KK97]. Furthermore, the measures need to be integrated into
the process execution and require continuous monitoring. Although process
goals and performance measures are available in process theory, they lack the
visibility in conceptual BPMLs.

1.2 Contribution

The contribution of this thesis is to provide solutions to the above mentioned prob-
lems:

1.2.1 Generic Metamodel for Evaluating BPMLs

We have developed a generic metamodel that captures a wide range of business pro-
cess concepts, and is structured into four perspectives according to the framework
of Curtis et al. [CKO92], namely the organisational, functional, behavioural, and
informational perspectives. Furthermore we have added a further perspective, the

2

1 Introduction

business process context perspective to capture important business process context
information like process goals or process type.

We have evaluated six BPMLs according to this metamodel (UML 2 Activity Di-
agram, Business Process Definition Metamodel, Business Process Modelling Nota-
tion, Event Driven Process Chain, IDEF3, Petri Net, Role Activity Diagram). Based
on the comprehensive evaluation of the BPMLs we recognized which languages
have a high potential to become successful in the future. These languages are the
Activity Diagram, the Business Process Modelling Notation, and the Event Driven
Process Chain. They support most concepts of the functional and behavioural per-
spectives, and some concepts of the organisational and information perspective.
Furthermore it can be shown that the business process context perspective is not
explicitly supported by all evaluated languages.

1.2.2 Capturing Software Requirements for Software Engineering
Purposes

Business process models can be utilised to identify requirements for a new software
system, and also for checking whether the features of an existing software system
match the requirements of a new business process.

We support these issues by extending current BPMLs with elements that repre-
sent software requirements and components, in order to ensure a business-goal ori-
ented software development. A linking between business processes and software is
a further step towards bridging the gap between business process engineering and
software engineering.

1.2.3 Variabilities in Business processes

Variability models are related to business process models, because variabilities can
change the process flow. For example, in a car engine manufacturing process the
decision between the variability manufacture a diesel engine or manufacture a petrol
engine changes the process flow. We have provided a UML 2 profile for variability
models, which can be applied to activity diagrams to make the relationship between
variability models and process models visible.

3

1 Introduction

1.2.4 Goals and Performance Measures in BPML

The modelling of goals is a critical step in the creation of useful process models.
Goal are used for structuring and evaluating the process design, and allow for a
better understanding of the broader implication of the process design, and can also
be used for evaluating the operating process [KK97].

Unfortunately, process goals and performance measures are only available in pro-
cess theory. We have addressed this limitation by extending conceptual BPMLs
with business process goals and performance measures to make them conceptually
visible. Furthermore, a mapping of the performance measures onto the Business
Process Execution Language (BPEL) makes them available for execution and moni-
toring. The performance measure time was exemplary made available for execution
and monitoring by mapping it to the Business Process Execution Language (BPEL).

1.2.5 Extension Mechanisms used for BPMLs

For implementing business process goals and performance measures in the BPMLs
Activity Diagram, BPMN, and EPC, an adequate mechanism is needed.

The Activity Diagram is part of the Unified Modeling Language (UML). UML of-
fers a mechanism for extending its metamodel to a specific application area. Through
the creation of profiles it is possible to build UML models for particular domains or
purposes [OMG05c]. A profile can extend a metamodel or another profile [OMG05c]
while preserving the syntax and semantic of existing UML elements. It adds el-
ements which extend existing metaclasses. UML profiles consist of stereotypes,
constraints and tagged values. UML profiles are UML packages with the stereo-
type “profile”. The activity diagram can be easily enhanced with new concepts
by extending its metamodel and creating a UML profile. Figure 1.1 (based on the
language architecture of UML shown in [HKRK05]) describes the relation between
UML and its meta-metamodel Infrastructure of which UML is an instance.

BPMN provides a graphical notation to express business processes. The Business
Process Definition Metamodel (BPDM) [OMG07a], which is an XML-based proposal
for modeling business processes, offers a mapping to BPMN. Furthermore BPDM
provides a general process modeling metamodel that supports the BPMN notation.
We have deduced a simple MOF-based metamodel of BPDM, which includes all
metaclasses which are used to describe a business process with BPMN.

4

1 Introduction

Figure 1.1: Relationships between BPMLs and their metamodels

The EPC consists of different views, and each view has its own metamodel. The
problem is that EPC only provides metamodels for its views, but not an integrated
metamodel that contains all views in one model. We have derived a metamodel for
the EPC which shows all views in one metamodel.

The metamodels of BPMN and EPC are MOF-based, as figure 1.1 shows. The
Meta-Object Facility (MOF) is a language for specifying metamodels, and is itself a
meta-metamodel. MOF defines a modelling language that is identical to a subset
of UML [OMG05a]. Figure 1.1 shows the relationship between BPMN, EPC and
UML 2 AD compared to MOF. From the statements above we conclude that every
language that has a metamodel which is based on MOF can be extended is the same
way. We have adapted and extended the derived metamodels to integrate goals and
performance measures as well as software concepts.

1.3 Structure of the Thesis

Section 2 gives an overview of the basic concepts of a conceptual Business Process
Modelling Language (BPML). It discusses the evaluation of six well-known
BPMLs. In order to adequately describe a business process, many types of
process concepts must be integrated into a business process model. It shows
which aspects of processes (e.g., activities, roles, interactions, data, etc.) are
expressed in the different BPMLs and which concepts are not supported. The
section also presents a generic generic metamodel that captures a wide range
of business process concepts.

5

1 Introduction

Section 3 provides the extension of the UML 2 Activity Diagram (UML 2 AD), the
Event-Driven Process Chain (EPC), and the Business Process Modeling No-
tation (BPMN) with goals and performance measures. UML 2 AD, EPC and
BPMN are designed for modelling business processes, but do not yet include
any means for modelling process goals and their measures. To fill this gap,
section 3 presents an extension of these BPMLs with business process goals
and performance measures. This includes both the derived metamodels for
the EPC and BPMN languages, and also the extensions of the metamodels of
UML 2 AD, EPC and BPMN with business process goals and performance
measures to make them conceptually visible.

Section 4 describes the mapping of the UML 2 Profile for Business Process Goals
and Performance Measures (introduced in section 3) to BPEL, which makes
it available for automatic execution and monitoring. Measures need to be in-
tegrated into the process execution and require continuous monitoring. The
UML 2 profile and its mapping onto BPEL enable the transformation of the
business processes models developed in a UML modelling tool into BPEL.
Thus, the performance measures conceptually described in the business pro-
cess model can be directly transformed into the execution language and can
be used to monitor the process instances continuously.

Section 5 is focused on the connection of business processes with software. On
the on hand side it is not possible to show software requirements or compo-
nents which have an influence on a business process directly with a BPML.
On the other hand, it is also not possible to show the variabilities of a business
process. To integrate software requirements and components into a BPML,
section 5 describes how the UML 2 profile for EPCs we had developed previ-
ously [KL06] can be linked with software. The profile is connected to UML 2
elements, to describe the software requirements of a process as well as soft-
ware components that are needed to successfully realise a process. Variability
models are designed for modelling variabilities of software, but they are not
part of a well-known modelling framework like the Unified Modelling Lan-
guage, which would give them higher usability. To address this limitation,
section 5 introduces the UML 2 profile for variability models. Furthermore,
the dependencies between this UML profile and activity diagrams are shown

6

1 Introduction

to make the relationship between variability models and process models visi-
ble.

Section 6 discusses related work in both the area of evaluation frameworks as well
as business process model extensions.

There exist many frameworks with different perspectives for evaluating lan-
guages, like pattern frameworks of metamodels, which are described in sec-
tion 6.

The main focus of conceptual BPMLs is organizing the flow of tasks of a busi-
ness process, but not the explicit modeling of process goals and their mea-
sures. The section gives overview of approaches for integrating business pro-
cess goals and their measures in a BPMLs.

Although business processes are often the starting point for software devel-
opment and define requirements for software systems, linking business pro-
cesses with software systems is inadequately supported in conceptual mod-
elling. It is not possible to show software requirements or components which
have an influence on a business process, or to show the variabilities involved.
A section of relevant approaches to solve these gaps is presented in section 6.

7

2 Evaluation of Conceptual Business
Process Modelling Languages

Contents
2.1 Introduction . 8
2.2 The Metamodel . 10
2.3 The Business Process Modelling Languages - An Overview 14
2.4 Evaluation . 32

2.1 Introduction

Today, there are a lot of conceptual Business Process Modelling Languages (BPMLs)
available. This section discusses the evaluation of six well-known conceptual BPMLs.
It shows which aspects of processes (e.g. activities, roles, interactions, data, etc.) are
expressed in the different BPMLs and which are not supported. In order to ade-
quately describe a business process, many forms of process concepts must be inte-
grated into a business process model. Information that people want to extract from
process models are [CKO92]:

• what is going to be done,
• who is going to do it,
• when and where will it be done,
• how and why will it be done,
• and who is dependent on its being done.

BPMLs differ in the extent to which their constructs address these questions. The
differences result from the various source domains (e.g. process or software engi-
neering etc.), as well as from the application areas targeted. Although BPMLs have
been widely used in research and industry, a comprehensive comparison is missing.

2 Evaluation of Conceptual Business Process Modelling Languages

Also, a general framework for an evaluation of BPMLs is not available. In order to
overcome these gaps, we address these limitations by:

• Developing a generic metamodel that captures a wide range of business pro-
cess concepts, because metamodels represent the core concepts of BPMLs and
are a good foundation for an evaluation.

• Evaluating six well-established BPMLs according to the generic metamodel.

Our generic metamodel (Section 2.2) is categorised according the framework of
Curtis et al. [CKO92]. This metamodel is derived from business process theory
[Ham96] [Har91] [JEJ94] [Mar95] and well-established industry and research con-
cepts.We have evaluated six BPMLs according to the meta-model and additional cri-
teria: UML 2 Activity Diagram, Business Process Modelling Notation, Event Driven
Process Chain, IDEF3, Petri Net, Role Activity Diagram. The contribution of this
evaluation of conceptual BPMLs is:

• It provides a comprehensive evaluation of the most well-established and widely-
used BPMLs, and those which have a high potential to become successful in
the future.

• It stresses strengths and limitations of BPMLs.
• The evaluation facilitates selecting the BPML, which is adequate for a certain

purpose.
• The metamodel provides a common foundation for evaluating BPMLs. This

ensures an objective evaluation that covers basic process concepts and their
relationships.

• The comparison between the BPMLs illustrates the differences and the simi-
larities of the languages.

• The evaluation of six BPMLs provides a foundation that can be extended with
further BPMLs.

In particular, the remainder of this section comprises the following sections:
• Subsection 2.2 describes the generic metamodel we have developed to com-

pare different BPMLs.
• Subsection 2.3 characterises the different BPMLs which have been chosen for

evaluation.
• Subsection 2.4 defines the evaluation method and presents the results of the

evaluation.

9

2 Evaluation of Conceptual Business Process Modelling Languages

2.2 The Metamodel

In this section, the generic metamodel in figure 2.1 that serves as the basis for the
evaluation of the BPMLs is described with examples for a better understanding.
We apply the conceptual framework of Curtis et al. [CKO92] in order to receive a
comprehensive metamodel and to ensure that the basic building blocks of business
processes are covered. The framework consists of four perspectives: organisational,
functional, behavioural, and informational. As these perspectives do not capture
important information like process goals or measures, we extend the framework
with a further perspective, namely the business process context perspective. The
generic metamodel is inspired by business process theory [Ham96] [Har91] [JEJ94]
[Mar95], workflow patterns [RtHEvdA05], [vdAtHKB03], and the Workflow Man-
agement Coalition (WfMC) [Wor98]. In the following subsections, we describe the
different perspectives in general and the generic metamodel elements in particular.

2.2.1 Functional Perspective

The functional perspective represents the process elements which are performed
during a business process [CKO92]. The basic elements of a business process are
Activities. They can be either Atomic Activities or Sub-Processes, which are recursively
refined by activities. For instance a business process in an insurance company is
Processing of Automobile Insurance Claims.

The main activity consists of the sub-processes Assertion of the Claim and Compen-
sation of the Claim. Furthermore the sub-process Assertion of the Claim consists of the
atomic activities Record the Claim and Calculate the Insurance Sum.

2.2.2 Organisational Perspective

The organisational perspective represents where and by whom (which agents) pro-
cess elements are performed [CKO92]. The metamodel elements of this perspective
are inspired by the 4 types of workflow participants of the WfMC [Wor98]: the or-
ganisational unit, the role, the (individual) human, and the (automatic) resource.
In the metamodel in figure 2.1, we use the term Process Participant. If the process
participant is a member of the organisation, then it is called an Internal. For instance

10

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.1: Generic Metamodel of a Business Process

a customer or a supplier, that is not part of an organisation, is called External. We
identified 3 types of participants that perform a process: the Organisational Unit, the

11

2 Evaluation of Conceptual Business Process Modelling Languages

Role, and the Software. If an organisational unit is addressed, its members may per-
form the activity. If a role is addressed, an activity is performed by a role or skill set.
In this context a role is a function of a human in an organisation. In the metamodel
a Human is represented as a role or an organisational unit. More and more activ-
ities are performed automatically by software. It should be possible to make this
transparent in a process model; Software can be either an Application or a Service.

The process participants of the business process Processing of Automobile Insurance
Claims are the organisational roles Financial Claim Specialist and Claim Administrator.
The Financial Claim Specialist is responsible for the sub-process Assertion of the Claim
and the organisational role Claim Administrator for Compensation of the Claim.

2.2.3 Behavioural Perspective

The behavioural perspective represents when process elements are performed (e.g.,
sequencing), as well as aspects of how they are performed through feedback loops,
iteration, complex decision-making conditions, entry and exit criteria, and so forth
[CKO92]. The Data Flow connects atomic activities with information resources. The
other metamodel elements of this perspective are adopted from the workflow con-
trol patterns [vdAtHKB03]. These patterns capture elementary aspects of process
control. All basic control workflow patterns are integrated in the behavioural per-
spective, since they focus on the flow of the business process. These patterns are: Se-
quence, AND Split, AND Join, XOR Split, XOR Join. All these elements are not work-
flow specific and are also required for modelling business processes. They are also
available in a lot of BPMLs. In this thesis, the sequence is called Control Flow, and
the operators are called Control Nodes. Furthermore, we integrated the advanced
branching and synchronisation patterns [vdAtHKB03] for business processes. The
patterns cover three types of merge operations addressing three different types of
synchronisation. As synchronisation is not an issue for business processes, we in-
tegrate an OR Join representing all three merges as well as the corresponding OR
Split. Further, we integrate the N-out-of-M Join that merges many execution paths.
For example, a paper needs to be sent to three external reviewers. Upon receiving
two reviews on time the paper can be processed, the third one can be ignored.

12

2 Evaluation of Conceptual Business Process Modelling Languages

2.2.4 Informational Perspective

The informational perspective represents the informational entities produced or
manipulated by a process; these entities include data, artefacts, products (inter-
mediate and end), and objects [CKO92]. The metamodel of the informational per-
spective is inspired by the workflow data patterns [RtHEvdA05] as well as by the
input / output view of the Architecture of Integrated Information Systems (ARIS)
[Sch99]. The basic elements of the informational perspective shown in figure 2.1
are resources and events. An Event may trigger an activity. A Resource is an entity
to be produced or consumed by an atomic activity. We distinguish between tradi-
tional and information resources. Traditional Resources have been inspired by ARIS
[Sch99] and can be either Tangible (e.g. a product) or Non-Tangible (e.g. service).
Information Resources are inspired by the workflow data patterns [RtHEvdA05],
which propose three types of environment data: data repositories, applications and
services. We created a Data Repository Resource and distinguish between a Database
Table and a Data Object, which contains persistent data, e.g. data in a document or a
form. Applications and Services are both Software Resources. They are modelled in the
informational perspective as well as in the organisational perspective.

The atomic activity Calculate the Insurance Sum needs for further processing the
application Claim Management System to save, delete, destroy files of the insurance
claim. If processing Calculate the Insurance Sum is successful, then the service Insur-
ance Sum Calculated is produced.

2.2.5 Business Process Context Perspective

In a previous work [LK05] we have developed the business process context perspec-
tive, which shown in figure 2.1. The perspective presents a business process from
a wide angle. It provides an overview perspective of the process and describes
major business process characteristics, such as goals and their measures, the deliv-
erables, the process owner, the process type and the customer at a glance. We have
integrated the process characteristics into the metamodel, because they represent
essential process theory that should be transparent in a process model. People who
do not know or do not need to know the process in detail will get a high level un-
derstanding of the process without working through the complex process logic. All
other perspectives cover the detailed sequence of the process and do not address

13

2 Evaluation of Conceptual Business Process Modelling Languages

theses important process characteristics. The metamodel in figure 2.1 presents all
characteristics of a business process. A Business Process has a certain process type
that can be either a Core Process, a Support Process or a Management Process [Mar95].
A core process is either independent from support processes or supported by one
or more support processes. A business process satisfies one or more Customers.
Activities describe a business process in detail. A Process Owner [Ham96] is respon-
sible for one or more business processes. Each business process generates one or
more Deliverables [JEJ94], which are either Services or Products. Each business pro-
cess must achieve one or more Process Goals [KK97], which in turn support one or
more Enterprise Goals. Concrete Measures describe the achievement of goals [Har91],
both process and enterprise goals. Each measure is assigned to a To Be Value, which
should be reached by the corresponding process instance. Furthermore a Unit is
connected with one or more measures.

The core process Processing of Automobile Insurance Claims has to fulfill the pro-
cess goal Fast Processing of Claims, which supports the enterprise goal High Customer
Satisfaction. The core process produces the service Payment of Compensation for a cus-
tomer, that is an insured person or organisation. The process owner Deputy CEO is
responsible for Processing of Automobile Insurance Claims.

2.3 The Business Process Modelling Languages - An
Overview

In this section, we describe the BPMLs which have been chosen for evaluation. The
languages have either a future potential or are well-established in research or in-
dustry. Furthermore, each language is described with an example business process
of an insurance claim.

2.3.1 UML 2.0 Activity Diagram (AD)

The origin of UML lies in the development of software. It consists of six structural
diagrams, and seven behavioural diagram. The AD [OMG05c] belongs to the be-
havioural diagrams, and is designed for modelling business processes and flows in
software systems. The diagram is approximated on Petri Nets, and uses also the
notion of token. The main concepts of the AD are actions and activity partions. An

14

2 Evaluation of Conceptual Business Process Modelling Languages

activity partition used to group actions, that are executed by a certain role. Figure
2.3 shows the abstract syntax of UML 2 AD, and figure 2.2 the concrete syntax of the
main elements.

Figure 2.2: Elements of the UML 2 Activity Diagram

Figure 2.3 shows the main metaclasses in a section of the UML 2 metamodel of
the Activity Diagram. The main elements of an Activity Diagram is the Activity
and its different ActivityNodes. Action, ObjectNode, ControlNode are a specialisation
of an ActivityNode. Action describe the atomic task of an AD. The abstract metaclass
ObjectNode represents the instance of a specific classifier. The Control Nodes define
the behaviour of an activity diagram. The InitialNode starts the Activity. If an Ac-
tivity contains more InitialNodes, then the different flows execute concurrently. The
FinalNode is split up into ActivityFinalNode and FlowFinalNode. While the Activityfi-
nalNode terminates all flows within an Activity, the FlowFinalNode only terminates
one flow, and the Activity is unaffected. The ForkNode splits the flow into concur-
rent pathes. A ForkNode has one incoming flow and several outgoing flows. A
JoinNode has serveral incoming flows and one outgoing flow. The JoinNode merges
the concurrent pathes into one outgoing flow. Furthermore a condition may be
placed at the incoming edges of the JoinNode. A DecisionNode has one incoming
flow and several outgoing flows. A DecisionNode splits up into several alternative
flows. Only one outgoing flow will be chosen for further processing. The MergeN-
ode merges the outgoing flows of the DecisionNode. A merge node brings together
multiple alternate flows and it is not used to synchronize concurrent flows. In an
activity the flow of control from one node to another is modeled using ControlFlow
edges and DataFlow edges. The ControlFlow models the flow between Actions, and
the DataFlow between ObjectNodes and Actions. An ActivityPartition groups set of
actions that have something in common.

Example 2.1 The example business process of an UML 2 AD is presented in figure
2.4. The business process starts with an initial node, to activate the first action,
Record the Claim. Record the claim passes the token to the next action to Calculate

15

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.3: Section of the UML 2 Metamodel for the Activity Diagram

the Insurance Sum. These two actions are part of the activity partition Financial Claim
Specialist. After calculating the insurance sum the path is split up by a decision node
into two alternative flows, depending if the insurance sum has a minor amount or a
major amount. If the insurance sum has a minor amount, then the action Contacting
the Garage starts. If the insurance sum has a major amount, then the flow is split
up into parallel pathes by a fork node. That means that the actions Contacting the
Garage and Checking History of the Customer are executed concurrently. A merge node
combines the different flows, and accepts the token as well as of one path or of both
pathes. The action Examination of Results decides that the claim is handled either
positive or negative. Therefore a decision node splits up the path in two alternative
flows, with the actions Pay for the Damage or Do Not Pay for the Damage. After that
decision the business process ends with an flow final node.

2.3.2 Event Driven Process Chain (EPC)

The EPC [Sch99] has been developed within the framework of ARIS (see fig. 2.6)
and is used by many companies for modelling, analysing, and redesigning business
processes. EPCs were developed in 1992 at the Institute for Information Systems
of the University of Saarland, Germany, in collaboration with SAP AG. It is the key
component of SAP R/3s modelling concepts for business engineering and customis-
ing. The EPC is based on the concepts of stochastic networks and Petri nets. EPCs
are a graphical business process description language. They describe processes on
the level of their business logic, and are targeted to be easy understood and used by

16

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.4: Example business process of an Activity Diagram

business people. The name represents the control flow structure of the process as a
chain of events and functions. The different notation elements of EPC are shown in
2.5. A basic EPC consists of the following elements:

• Functions are active elements and model the activities within the company.
• Events are created by processing functions or by actors outside of the model.

An event acts as a pre-condition of one function, or correspond to the post-
condition of another one.

• Logical operators connect functions and events. There are three types of logi-
cal operators: AND, XOR (exclusive or) and OR.

17

2 Evaluation of Conceptual Business Process Modelling Languages

The extended EPC consists of the following elements:

• The Organisation Unit or Role is responsible for performing an activity or a
function.

• The Information Objects portray input data serving as the basis for a func-
tion, or output data produced by a function. They correspond to entities or
attributes of the ER model.

• The Deliverables represent results (services or products) functions produce or
input functions require.

Figure 2.5: Notation of EPC Elements

The Architecture of Integrated Information System (ARIS) concept [Sch99] in-
volves dividing complex business processes models into separate views, in order
to reduce the complexity. Three views focus on functions, data, and the organisa-
tion. The forth view, the control view, focus on the integration of the other three
views. The different ARIS views are shown in figure 2.6. On the one hand side the
views can be handled independently, for instance to show with the oranisation view
an organigram,. On the other hand side the views can operate together, for example
to describe a business process with its function, event and organisation view.

The Data View contains events and statuses. Events such as ”customer order re-
ceived”, or ”invoice written” are objects that represent data. Statuses such as ”cus-
tomer status” and ”article status” are also represented by data.

Since the entity-relationship (ER) model of Chen et al. was the most widespread
designing method in the area of data modelling, for providing the data view with
a description method. Today, the UML class diagram is in use for data modelling..
The Function View contains the description of the activities to be performed, the indi-
vidual sub-functions, and relationships that exist between the functions. The Organ-
isation View represents the organisational structure. This includes the relationships

18

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.6: ARIS Views

between organisational units, between employees and organisational units, and be-
tween employees and their roles. The Control View links functions, organisation and
data. It integrates the design results, which were initially developed separately for
reasons of simplification. The functions, events, information resources, and organi-
sation units are connected into a common context by the control flow. The resulting
model is the EPC.

We have developed a metamodel for EPC which contains all views. The meta-
model is shown in figure 2.7. An EPC consists of functions, events, control flow con-
nectors, logical operators, and additional process objects. Each EPC consists of one or
more Functions and two or more Events. An EPC starts and ends with an event and
requires at least one function for describing a process. That means that a function
has at least one successor and one predecessor. Both, functions and events can be
(re)used in several EPCs. An event has four attributes: start, intermediate, end and
trigger. Start, intermediate and end shows whether the event is at the beginning,
middle or end of a process. Trigger demonstrates when an event triggers a logical
operator.

A function can be either an Elementary Function or a Complex Function, and the lat-
ter is refined by at least one function. A function is connected with two Control Flow
Connectors and has to fulfil at least one Process Goal. Furthermore a function may
be connected with one or more Additional Process Objects. An event is connected
with one or two control flow connectors, as an event starts and terminates the EPC.
Control flows link events with functions, but also events or functions with Logical

19

2 Evaluation of Conceptual Business Process Modelling Languages

Operators. A logical operator can be either an XOR, OR or AND. It is connected
at least with three control flows, one or more incoming as well as outgoing con-
nectors. An Additional Process Object may be assigned to one or more functions. A
Deliverable, an Information Object and an Organisational Structure are called additional
process objects. All three types of additional process objects may be assigned to one
or more functions. The organisational structure can be an Organisational Role or an
Organisational Unit, the latter is refined by one or more organisational roles. The
organisational structure is connected with one or more Organisational Flow Con-
nectors. The information object is connected with one or more Data Flow Connectors
and the deliverable is connected with one or more Input/Output Flow Connectors.

Figure 2.7: EPC metamodel

Example 2.2 Figure 2.8 shows the example business process of an EPC. As every
EPC, the example starts and ends with an event. The EPC starts with the event New
Claim submitted. The function Record the Claim starts after the first event. After the
event Claim recorded the function Calculate the Insurance Sum begins. The organi-
sational role Financial Expert is responsible for the functions Record the Claim and
Calculate the Insurance Sum. After Calcualting the Insurance Sum, the path of the
business process is split up into two alternative flows, depending if the insurance
sum has a Minor Amount or a Major Amount. If the insurance sum has a minor

20

2 Evaluation of Conceptual Business Process Modelling Languages

amount, then the function Contacting the Garage starts. If the insurance sum has a
major amount, then the functions Contacting the Garage and Checking History of the
Customer starts concurrently. These two functions are connected with the next event
Results Collected by an OR-Join. At that time the organisational role Claim Admin-
istrator is responsible for the business process. Due to the fact that either Checking
History of the Customer or Contacting the Garage is executed, or that both functions
are processed, the OR-Join is needed. If the results are collected, then the function
Examination of Results starts processing, to decide if the claim is handled Positive or
Negative. If the claim is handled positive, then the insurance company Pays for the
Damage, otherwise not. In both situations the Case is Closed.

2.3.3 Business Process Modelling Notation (BPMN)

The BPMN was developed by the Business Process Management Initiative (BPMI)
with the goal to provide a notation that is easily readable and understandable for
all business users [OMG06a], who design, implement or monitor business processes
including a transformation into an execution language, namely the Business Process
Execution Language, (BPEL) [IBM03]. 2005 BPMI and OMG merged together, and
BPMN is now maintained by the OMG.Thus the BPMN aims to bridge the gap
between business process design and its implementation. The main concepts of
BPMN are similar to UML 2 Activity Diagrams (AD) [OMG05c]. Also BPMN uses
the concept of token. But in contrast to ADs, the BPMN has no specific metamodel,
just a mapping to the Business Process Definition Metamodel [OMG07a]. BPDM
provides a general process modeling metamodel that supports the BPMN notation.

We derived a simple MOF-based metamodel of BPMN based on the specifica-
tion of BPMN [OMG06a] which is shown in figure 2.10. The metamodel shows all
core elements [OMG06a] that are used to describe a business process with BPMN.
The metamodel was developed according to the specification of BPMN. The BPMN
metamodel consists of four different categories: Flow Objects, Connecting Objects,
Swimlanes, and Artifacts. Figure 2.9 shows the graphical notation of the elements
of BPMN.

The elements Activity, Process, Sub-Process, Task as well as Events and Gateways are
Flow Objects, which define the behaviour of a business process. A process consists
of one or more activities. The activity is the main part of a BPMN, and is specialised
through sub-processes that consist of at least one task. An event is something that

21

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.8: Example business process of an EPC

”happens” during the execution of a business process. There are three types of
events, based on when they affect the flow: Start, Intermediate, and End. Also the
Time Event, which can be a start or an intermediate event, is part of the metamodel
because it is required for presenting the measure of time. It belongs to the com-
plete set of elements, which displays a more extensive list of the business process
concepts that could be depicted through BPMN. A gateway is used to control the

22

2 Evaluation of Conceptual Business Process Modelling Languages

divergence and convergence of a sequence flow. Markers within a gateway show
the type of that flow object, it will determine between the logical operators XOR,
OR, and AND, which stand for the Exclusive (XOR), Inclusive (OR) and Parallel
(AND) gateway. Furthermore the type Complex indicates complex conditions and
situations, e.g. that three paths out of five have to be chosen.

Figure 2.9: Elements of BPMN

The connecting objects Sequence Flow, Message Flow and Association describe the
ways of connecting the flow objects to each other. A message flow can be connected
to at most two activities, or occur between an activity and a pool, or between two
pools to illustrate the exchange of messages. A sequence flow shows the order in
which activities are performed in a process, and relates activities, gateways and
events to each other. An association is used to associate information to activities,
and associates a Data Object to a flow or connects it to an activity.

A Pool represents a participant in a process and belongs to the category of swim-
lanes, and it groups a set of activities for identifying activities that have some char-
acteristic in common. A pool can be connected with other pools or activities by a
message flow. A Lane is a sub-partition within a pool.

Example 2.3 Figure 2.11 describes the example business process with BPMN. The
business process begins with a start event to execute the first task Record the Claim.
Calculate the Insurance Sum and Record the Claim are part of the pool Financial Claim
Specialist. After the task Record the Claim the pool Claim Administrator is responsible
for the process. The exclusive gateway splits the flow, because the decision has to be
made if the insurance sum has a minor amount or a major amount. if the insurance
sum has a minor amount, then only the task Contacting the Garage is processed. But
if the insurance sum has a major amount, then Contacting the Garage concurrently
starts with the task Checking History of the Customer. An inclusive gateway combines
the different pathes. The gateway conforms to the logical operator OR. After the
task Examination of Results the decision has to be made if the insurance company
Pays for the Damage or Does Not Pay for the Damage. After that decision the case is
closed.

23

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.10: BPMN metamodel

2.3.4 Integrated DEFinition Method 3 (IDEF3)

IDEF3 [MMP+95] is designed to model business processes and sequences of a sys-
tem. It provides two views: the process-centered and the object-centered view. Figure
2.12 shows the main elements of IDEF3. The process-centered view models the
process sequence with their temporal, causal, and logical relationships. The object-
centered view describes objects and their changing states throughout a particular
process.

The process-centered strategy mainly consists of Units of Behaviour (UOB), Links and
Junctions. The main elements are shown in figure 2.12. A UOB describes the activi-
ties or operations in a business process. If a UOB describes a complex activity of a
business process, then it is possible to decompose it. It is graphically presented as
a rectangle with current numbering and a reference number. A link represents the
relationship between UOBs, and is graphically shown through an arrow. A junction
illustrates the logical operators AND, OR, XOR. It is displayed as a little rectangle
with with its boolean operator.

Furthermore it is possible to integrate Referents and Notes in an IDEF3 model. In
IDEF3 a reference either refers to a previously defined UOB, or establish links be-
tween the process schematics and object schematics. A referent is either a Call-and-
Continue referent or a Call-and-Wait referent. On the one hand side the IDEF3 element
that makes the reference has to be initiated before a Call-and-Continue referent can
progress to completion. On the other hand side a Call-and-Wait referent cannot start

24

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.11: Example business process of a BPMN

until the IDEF3 element that references to that Call-and-Wait referent initiates and
completes its tasks. A note allows to annotate additional information to a business
process.

The three types of a link are the Simple Precedence Link, the Constrained Precedence
Link, and the Relational Link. Precedence links express temporal precedence relations
between UOBs. They are the most widely used link and are denoted by a solid
arrow. Constrained precendence links add additional activation semantics to simply
precedence links, that any instance of the source UOB must be followed by an instance
of the destination UOB.

A junction splits or joins the pathes of an IDEF3 diagram. Multiple parallel sub-
processes are indicated by the use of an AND junction. If a synchronous AND junc-

25

2 Evaluation of Conceptual Business Process Modelling Languages

tion is used, then in the case of a fan-out AND junction the instances must all start
simultaneously. In the case of a fan-in AND junction, the instances have to end
simultaneously.

A fan-out OR junction indicates that there will be an instance of at least one of the
UOBs. Similarly, a fan-out XOR junction indicates that there will be an instance of
exactly one of the UOBs. If a synchronous OR junction is used, then those instances
must all must start simultaneously. In the case of a non-synchronous OR junction
an instance has not to wait for other instances to continue with further processing.

Figure 2.12: Symbols Used for IDEF3 Process Description Schematics

There are four different types of referents, namely ”UOB”, ”Scenario”, ”TS” and
”Go-To”. The type of a referent is labeled as a prefix, followed by the name of the
referent. Referents also include a field to note a locator for declaring the referent
type obviously.

The referent type ”UOB” indicates that another instance of a previously defined
UOB occurs at a specific point in the process. If this referent type is attached to an
object state in an object schematic, it indicates that the referenced UOB sustains the
object in the state.

The referent type ”Scenario” specifies that the next happening in the process flow
is an occurrence of an activation of the referenced Scenario. In that case all decom-
positions of the named Scenario are activated. If this referent type is attached to a
transition arc in an object schematic, an activation of the referenced Scenario must
start before the state transition is allowed.

The referent type ”TS” has to be initiated during an activation of its associated
UOB. They are connected through a simple connecting link. A Call-and-Continue
”TS” referent attached to a transition arc between states indicates that the object
must initiate a transition through the states of the referenced Transition Schematic
before the state transition is allowed.

A ”Go-To” referent type references another UOB. If a ”Go-To” referent type is acti-
vated, then the business process continues with the referenced UOB. Go-to referents
are always Call-and-Continue type referents.

26

2 Evaluation of Conceptual Business Process Modelling Languages

The object-centered strategy consists of Object States, Links, Relations and Junctions,
which are shown in figure 2.13. An object is of a certain kind, and is represented
simply by a circle. The state of an object can be additionally annotated too. Rela-
tions describe the taxonomic relationship between objects. A Transition describes
the change from an Object A to an Object B, which are connected through Links. A
stronger connection between two objects are shown with a double headed arrow.
Links and junctions have the same functionality like the process-centered strategy.
Furthermore it is also possible to use for modelling referents and notes, like at the
process-centered strategy. Referents are attached to transition links and objects at
the object-centered strategy.

IDEF3 distinguishes between firstorder objects and second orderobjects. Individuals
are referred as first-order objects. Properties and relations that hold among individ-
uals are identifiable objects themselves. They are one level of abstraction above ordi-
nary firstorder objects, because they are said to be of a higher logical type. Therefore
they are classified as secondorder objects.

Figure 2.13: Symbols Used for IDEF3 Object Description Schematics

Example 2.4 Figure 2.14 describes the example business process in IDEF3 notation.
Compared to BPMN or UML 2 AD, in IDEF3 it is not possible to show the organi-
sational structure of a business process. The business process starts with the UOB
Record the Claim. Afterwards the UOB Calculate the Insurance Sum begins. Now the
flow is split up into several pathes. If the first path is chosen, then only the UOB
Contacting the Garage is executed. If the other path is chosen, then Contacting the
Garage as well as Checking History of the Customer are concurrently executed. An
synchronous OR-join merges the pathes. The next UOB Examination of Results de-
cides if the insurance company Pays the Insurance Sum or Does Not Pay the Insurance
Sum. After that decision the case is closed.

27

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.14: Example business process of an IDEF3

2.3.5 Petri Net

A Petri Net [Pet62] is designed for modelling, analysis and simulation of dynamic
systems with concurrent and non-deterministic procedures. Petri Nets are utilised
for modelling workflows.

Carl Adam Petri developed Petri Nets in his Ph.D. thesis ”Kommunikation mit

28

2 Evaluation of Conceptual Business Process Modelling Languages

Automaten” [Pet62]. Originally, the work of Carl Adam Petri did not deal with
business processes, but with deterministic distributed systems. Today many mod-
elling techniques are based on Petri Nets, like the UML 2 AD. The petri nets were
continously modified and adapted. Today three different forms of petri nets are
distinguished: condition/event net, place/transition net, and predicate/transition net. Be-
sides these three forms for example the colored Petri Nets [Jen92] and relation Petri
Nets [Bau90] were developed. Every form of a Petri Net has its own rules for firing
token. Furthermore we explain the condition/event net.

A Petri Net is a directed graph that mainly consists of four elements, namely
Places, Transition, Tokens and directed Arcs. Transitions are interpreted as activities,
actions or events which cause the change of state. Places represent possible states
of the system. Transitions are graphically shown as rectangles, and states as circles.
Tokens are placed within states, which is called marking. The state of a system is
recorded through the positions of the different tokens in Petri Net. The directed arcs
connect a transition with a place, or a place with a transition. It is not possible to
connect places and transitions among each other. On the one hand side the places
from which an arc runs to a transition are called the input places of the transition.
On the other hand side the places to which arcs run from a transition are called the
output places of the transition.

Every place has a specific weight, which symbolizes its capacity. If no weight
is denoted, then the weight has the value one or unlimited. Every arc is assigned
to a weight, which defines the consumption of tokens of an arc. If no weight is
annotated to an arc, then the value of the weight is one. At the condition/event net
the weight of places and arcs is always one.

A transition is enabled to fire, if two conditions are fulfilled. First, every input
place must contain at least the value of tokens which are needed for a transition.
Second, output arcs have to have at least enough capacity to accept all incoming to-
kens. When a transition fires, it uses the tokens from its input places, and performs
processing tasks. Afterwards it places a specified number of tokens into each of its
output places. Furthermore multiple transitions can be enabled at the same time.

Figure 2.15 shows a small example of the main elements of Petri Nets. The Petri
Net consists of two places, and one transistion. When the first place fires, the token
moves to the second place.

Example 2.5 Figure 2.16 describes an example petri net. For a better understand-

29

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.15: Small example of a Petri Net

ing textual labels are annotated to each place. Since Petri Nets are not able to show
OR-Nodes, the business process is a little bit different then in the other languages.
When the first transition fires, the token moves from Record the Claim to Calculate
the Insurance Sum. The next transition T2 splits up the token either directly to Con-
tacting the Garage or first to Checking History of the Customer and then to Contacting
the Garage. Afterwards transition T4 fires the token to Examination fo Results. When
transition T5 fires, the token moves to transition T6 either through the place Pay the
Insurance Sum or Do not Pay the Insurance Sum. After that decision the case is closed
in the last place.

2.3.6 Role Activity Diagram (RAD)

Role Activity Diagrams (RAD) were first described by Holt et al. [HRG83]. They
are based on Petri Nets. The origin of the RAD [HRG83] lies in the modelling of
coordination. Today, the RAD is used for modelling business processes [Mar95].
Figure 2.17 describes the graphical representation of the main elements of RAD.

RAD shows Roles, their Activities and Interactions, together with External Events.
In RAD an external event, also called a trigger, initialises the begin of a business
process. It is denoted as an arrow. A role is responsible for the performance of its
activities. Roles are drawn as sets of boxes. If a role does not exist at the begin of
a process, it has to be initiated. Cardinalities show the numerical relationship be-
tween role types. Interactions between roles are shown by a horizontal line linking
two white boxes. An activity represents the task of a business process. It is shown
as black boxes within a role. Activities are linked through vertical lines, which de-
scribe the different states of the role. A token shows the actual state of the process
in RAD. Inverted triangles show the alternative choices in RAD. Parallel flows be-
tween activities are represented through normal triangles. For finishing a business
process in RAD, the initiated role has to be terminated by the graphic representation
of an ellipse.

30

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.16: Example business process of a Petri Net

Figure 2.17: Elements of RAD

Example 2.6 The example business process is shown in figure 2.18. The business
process consists of two roles, the Financial Claim Specialist and the Claim Administra-
tor. The Financial Claim Specialist is initiated by the trigger New Claim Received. After
the trigger the action Record the Claim starts processing. The Financial Claim Special-
ist starts by Calculating the Insurance Sum an interaction with the Claim Administrator
to decide if the insurance sum has an minor amount or a major amount. If the
insurance sum has a minor amount then the Claim Administrator starts the action

31

2 Evaluation of Conceptual Business Process Modelling Languages

Figure 2.18: Example business process of a RAD

Contacting the Garage. If the insurance sum has a major amount, then the Claim Ad-
ministrator concurrently initiates Checking History of the Customer and Contacting the
Garage. After the action Examination of Results the Claim Administrator has to judge
the claim positive or negative. If the decision is positive, then the Claim Administra-
tor Pays the Insurance Sum to the customer. If the decision is negative, then the Claim
Administrator does not Pay the Insurance Sum to the customer. After that decision in
both cases the case is closed.

2.4 Evaluation

In this section, we evaluate six BPMLs based on the metamodel developed in section
2.2. The evaluation method is described in subsection 2.4.1, and the results are
shown in subsection 2.4.2 in the tables 2.2, 2.3, 2.4 , 2.5, and 2.6. The rows represent
the elements of the metamodel. The columns represent the different BPMLs.

32

2 Evaluation of Conceptual Business Process Modelling Languages

Table 2.1: Meta-Model and Notation of BPMLs

BPML AD BPMN EPC IDEF3 Petri Nets RAD
Metamodel + Mapping to BPDM + - - -

Notation + + + + + +

2.4.1 Evaluation Method

Because the majority of the BPMLs do not offer an explicit metamodel, we have not
focused on the comparison of metamodel elements, but rather on notation elements
and on concepts. Table 2.1 shows the BPMLs, which provide a metamodel and their
own notation. The evaluation shows one assessment criterion with two possible
symbols addressing one element of a BPML. The assessment criterion consists of
two positions, seperated by a slash. The first position signals if a certain BPML offers
a specific graphical notation element to explicitly symbolise a certain element of the
generic meta-model. The second position shows, if the BPML provides a concept
that somehow allows describing this meta-model element with a workaround.

The symbol ”+” characterises a success, otherwise it is denoted with a ”-”. In
addition to the two symbols, the name of the concept representing the element is
shown in table 2.1. For example, the UML AD does not offer a specific graphical
notation element for a database table, but a DataStore Node could be utilised. The
result of this evaluation is therefore ”-/+”.

2.4.2 Results of Evaluation

Since an accurate description is very often missing, it was difficult to evaluate the
BPMLs. UML 2 AD, BPMN,BPDM and IDEF3 offer an official specification. On the
one hand side sometimes elements have ambiguous meanings. For instance RAD
describes the organisational as well as the informational perspective with one ele-
ment. On the other hand side some BPMLs have complex definitions, while others
are inaccurate and leave the usage of elements up to the interpretation of the user.
For example it is impossible to show elements of the organisational perspective with
Petri Nets.

At the beginning of the evaluation it was our original goal to compare the dif-
ferent BPMLs based on their metamodels with our generic metamodel. This was

33

2 Evaluation of Conceptual Business Process Modelling Languages

impossible because metamodels are not available for four out of six BPMLs like
table 2.1 shows. Therefore we compared the BPMLs with our generic metamodel
based on their elements and notation (see section 2.4.1).

Generally, the functional and the behavioural perspectives are very well repre-
sented in all BPMLs, while the organisational and informational perspectives are
only partly supported.

The functional perspective is very well represented in all BPMLs (table 2.2). The
languages differ by the fact, that they either describe the task of a business process
with one single element, an activity, or with two explicit elements, a subprocess and
an atomic activity.

Table 2.2: Functional Perspective

Also the behavioral perspective is very well represented (table 2.3). Moreover the
control flow as well as the control nodes are supported. The exceptions are petri
nets, which do not support an OR node. Furthermore no language is able to present
and N-out-of-M-Join, except the BPMN.

As table 2.4 demonstrates, the BPMLS partially provide the organisational per-
spective. Exceptions are IDEF 3 and Petri Nets, which have their origin in system
and software engineering. All other BPMLs of this evaluation focus much more on
the business process and include therefore a role concept. No BPML represents soft-
ware in an explicit concept and only the AD explicitly shows whether a role belongs
to the organisation or it is external. A lot of BPMLs utilise one concept to represent
all types of process participants (e.g. AD, RAD, BPMN) and do not distinguish be-
tween the different types. This differentiation could be very helpful for BPMLs with
a focus on process enactment.

The informational perspective is better developed for more recent BPMLs like
AD, BPMN, and EPC (table 2.5). Only the EPC provides an explicit notation element

34

2 Evaluation of Conceptual Business Process Modelling Languages

Table 2.3: Behavioural Perspective

Table 2.4: Organisational Perspective

for traditional resources and is therefore well suited for process analysis.
As table 2.6 shows, the main lack of the BPMLs is that the business process context

perspective is not explicitly supported at all. Of course it is possible to present
a Business Process, but it cannot be distinguished between a Core-, Support-, or
Management Process. If the BPML allows to show a process participant, then it is
also possible to present a Customer. If the BPMLs have an element to present some
kind of a resource, then the languages are able to represent a deliverable. However,

35

2 Evaluation of Conceptual Business Process Modelling Languages

Table 2.5: Informational Perspective

not any BPML is able to show the goals of a business process, or how they could be
measured.

To improve the flexibility of business processes, there is a need to reduce the time
between process modelling and the transformation into executable code. Therefore,
future BPMLs must provide execution languages and in turn, offer more explicit
notation elements on all perspectives.

36

2 Evaluation of Conceptual Business Process Modelling Languages

Table 2.6: Business Process Context Perspective

37

3 Extending Business Process Modelling
Languages with Performance Measures
and Goals

Contents
3.1 Introduction . 38
3.2 The Role of Goals and Measures in the Business Process 41
3.3 UML 2 Profile . 43
3.4 The extended EPC Metamodel . 50
3.5 The extended BPMN Metamodel 53

3.1 Introduction

Business process performance measurement is an important topic in research and
industry [Cas05]. In general the main focus of conceptual business process mod-
elling languages (BPMLs) is organizing the flow with its tasks of a business process,
but not the explicit modeling of process goals and their measures (see section 2.4)
of a language. The UML 2 Activity Diagram, the Event-Driven Process Chain (EPC)
as well as the Business Process Modeling Notation (BPMN) are designed for mod-
elling business processes, but do not yet include any means for modelling process
goals and their measures. To solve this gap, we have to extend these BPMLs with
business process goals and performance measures. On the one hand side, UML 2
offers its own mechanism, the so called light-weight extension mechanism ”UML
Profile” to extend its metamodel. On the other hand side, EPC and BPMN do not
have an extension mechanism. EPC has no metamodel which shows all views in
one model, and BPMN is mapped to a general metamodel (see section 2.3 for more
details). The goal of this section is to address these limitations by

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

• enhancing the expressiveness of EPC and BPMN by deriving metamodels for
both, and by

• extending the metamodels of UML 2 AD, EPC as well as BPMN with business
process goals and performance measures to make them conceptually visible.

Activity diagrams are a part of the behavioural models of UML 2 [OMG05c] and
are used for modelling business processes as well as control flows in software as
described before. Activity diagrams neither have quality nor quantity based ele-
ments to measure the performance of a business process. For instance, the modeller
of a process has no concepts to express a maximum time limit for processing of a
specific action - the basic element of activity diagrams - or a group of actions. UML
profiles are an extension mechanism for building UML models for particular do-
mains or purposes [OMG05c].

EPCs have become widely-used for business process modelling in continental
Europe, in countries where SAP is a leading Enterprise Resource Planning (ERP)
system. EPCs are inspired from Petri nets, incorporate role concepts and data mod-
els like ER models or UML class diagrams. The BPMN is wide spread in the US and
in countries where US companies dominate the ERP system market.

BPMN was developed by the Business Process Management Initiative (BPMI)
with the goal to provide a notation that is easily readable and understandable for all
business users [OMG06a], who design, implement or monitor business processes.
Thus the BPMN aims to bridge the gap between business process design and its
implementation. The language is now being controlled by the Object Management
Group since the two organizations merged in 2005.

Since UML 2 AD, EPC as well as BPMN are not able to represent business pro-
cess goals and their measures, we have to extend these three languages with these
concepts. For that challenge different mechanisms will be used. At UML 2 Activity
Diagrams a UML profile is created, and at the EPC we introduce a new view, as well
as at BPMN we establish a new category.

The Unified Modeling Language provides three different extension mechanisms
that maybe used in conjunction with the Activity Diagram. The heavy-weight ex-
tension offers the possibility to extend and adapt the metamodel of UML, whereas
with the light-weight extension it is only possible to extend but not to modify the
metamodel. The latter mechanism is called a profile. It is also possible to create a

39

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

new metamodel and use it within the UML-framework. We use the light weight ex-
tension to extend the UML 2 AD for providing the interoperability of tool support,
since almost all newer UML modelling tools support UML profiles.

In contrast to UML 2 AD, BPMN has no specific metamodel, just a mapping to
the Business Process Definition Metamodel [OMG07a]. BPDM provides a general
process modeling metamodel that supports the BPMN notation. As explained in
subsection 2.3 the EPC consists of different views. The EPC provides for each view
a metamodel, but not an integrated metamodel that connects the related views to-
gether.

We derive a metamodel for the EPC and the BPMN based on the Meta-Object Fa-
cility (MOF), the OMG’s meta-metamodel [OMG05a]. We extend the metamodels
of BPMN, EPC and UML Activity Diagram with business process goals and perfor-
mance measures, and thus, provide the following contributions:

• We integrate business process goals intro three well-known BPMLs. We want
to provide a concrete syntax for the different goals of a business process, since
the goals of a business process which are already available in process theory.

• Performance measures quantify business process goals, and thus help to eval-
uate the process design and the operating process. The extended UML 2 AD,
EPC and BPMN conceptually visualize the evaluation criteria for a business
process.

The remainder of this section is organized as follows:
• Subsection 3.2 describes the role of goals and performance measures in the

business process.
• Subsection 3.3 presents a UML 2 profile for integrating business process goals

and performance measures into UML 2 activity diagrams. The profile pro-
vides an explicit illustration of the performance measures time, cost, and qual-
ity. The UML profile and its mapping is tested by an example business pro-
cess.

• Subsection 3.4 and 3.5 presents the metamodels with its extension to integrate
business process goals and performance measures into EPC and BPMN. The
extension of both languages provides an explicit illustration of the goals a
business process must achieve. Furthermore the performance measures time,
cost, and quality are integrated in EPC and BPMN, because without measur-

40

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

ing the process goals it is not possible to assess wether a goal is fulfilled or not.

• The extensions of BPMN and EPC are tested with an example business process
shown in subsection 3.4 and 3.5.

3.2 The Role of Goals and Measures in the Business Process

With business process reengineering Davenport, Hammer and Champy created a
new discipline at the beginning of the 1990ies and provided the business motivation
for business process modelling. So far, in the business process modelling commu-
nity attention has only been given to the modelling of certain aspects of processes
(e.g. roles, activities, interactions). These theoretical aspects are captured in several
business process modelling languages (BPMLs), for example, in the Business Pro-
cess Modelling Notation [OMG06a], the Event-driven Process Chain [Sch99], the
UML 2 Activity Diagram [OMG05c], etc. In 1997 Kueng and Kawalek argued al-
ready that little attention is paid to the value of making goals explicit [KK97]. Today
there are currently quite a lot of conceptual BPMLs available, but they still do not
provide modelling technics for business process goals and performance measures
(see section 2.4).

A business process is defined as a ”group of tasks that together create a result
of value to a customer” [Ham96]. ”Its purpose is to offer each customer the right
product or service, e.g., the right deliverable, with a high degree of performance
measured against cost, longevity, service and quality” [JEJ94]. Thus, while they
lack the visibility in conceptual BPMLs, process goals and performance measures
are available in process theory.

According to [KK97] the modelling of goals is a critical step in the creation of
useful process models, for the following reasons:

• We need to be able to state what we want to achieve so that we are then able
to define the necessary activities which a business process should encompass
(i.e., goals are used to structure the design).

• A clear understanding of goals is essential in the management of selecting the
best design alternative (i.e., goals are used to evaluate the design).

• A clear expression of goals makes it easier to comprehend the organisational
changes that must accompany a business process redesign (i.e., goals help the

41

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

modeller to better understand the broader implication of design, beyond those
of the business process itself).

For all the reasons described above, we capture goals and represent them graph-
ically in conceptual BPMLs, namely UML 2 AD, BPMN and EPC. Furthermore,
Kueng and Kawalek in [KK97] recommend defining to which extent the process
goals are fulfilled. The achievement of goals must be measured either by qualita-
tive or quantitative measures. Measures aim at reaching a to-be-value, also called
target value. They are very important for business process improvement. Harring-
ton stated ”Measurements are the key. If you cannot measure it, you cannot control
it. If you cannot control it, you cannot manage it. If you cannot manage it, you can-
not improve it.” [Har91]. In order to support all stages of Harrington’s statement,
we need to integrate performance measures into conceptual BPMLs.

As a first step according to the missing concepts found out in the evaluation in
section 2, we capture goals as well as measures and represent them graphically in
conceptual BPMLs.

The metamodel of the UML 2 AD, EPC and the BPMN will be extended by a
small generic metamodel of goals and performance measures shown in Figure 3.1.
It contains two core concepts, namely Measure and Process Goal. While these two
concepts do not appear as notation elements in BPMN as well as UML 2 AD, the
process goal is a part of EPC. Often it does not appear in the graphical notation of
a business process modelled with EPCs, and there are no measures available for
quantifying a goal.

A process goal describes the specific intension of a business process and is quanti-
fied by at least one measure. Furthermore the goal can be refined by one or more sub
goals. A measure is an abstract metaclass, and can be classified and implemented as
Quality, Cost or Cycle Time. A measure is responsible for the concrete quantification
of different goals as well as for measuring the performance of a business process.

Quality has the aim to measure the quality of a business process, which can be
expressed e.g., by a low number of complaints or a high customer satisfaction, de-
scribed in Fig. 3.1 by the attributes maxComplaints as well as avgComplaints. The
attribute maxComplaints shows the total number of complaints, and the attribute
avgComplaints shows the average allowed number of complaints measured for in-
stance during the time period of a month.

Cost represents the expenses a business process requires for instance for its exe-

42

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

Figure 3.1: Generic metamodel of goals and performance measures

cution. Its attributes maxCost and avgCost are necessary for comparing the total and
monthly average cost of a certain process. The performance measures of quality and
cost are in contrast to the measures of the cycle time often more focused on the type
level of a process, since the required data is often not available on instance level.

The measure cycle time presents a time based measure and defines the processing
duration of a business process instance, or part of it. Cycle Time can be specialised
as Working Time or Waiting Time. Working time presents the actual time a business
process instance is being executed by a role. Waiting time shows the time the process
instance is waiting for further processing. Moreover, cycle time has two attributes
maxDuration and isDuration for representing the target value and the actual value of
the process duration or a part of it.

3.3 UML 2 Profile

In this section the extended metamodel for activity diagrams for the UML 2 profile
with business process goals and performance measures will be described. Activity
diagrams are a part of the behavioural set of UML 2 diagrams. They are used for
modelling business processes and control flows. An activity diagram specifies the
control and data flow between different tasks, called actions, which are essential for
the realisation of an activity. The activity diagram currently does not allow to rep-
resent business process goals and performance measures. Thus, it is not possible to
show, e.g., time restrictions of the business process, its cost or quality requirements.
UML offers a possibility to extend and adapt its metamodel to a specific area of ap-
plication through the creation of profiles. This mechanism is called a light-weight

43

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

extension. UML profiles are UML packages of a stereotype !profile". A profile
extend a metamodel or another profile [OMG05c] while preserving the syntax and
semantic of existing UML elements. It adds elements which extend existing meta-
classes. UML profiles consist of stereotypes, constraints and tagged values.

A stereotype is a model element defined by its name and by the base class(es)
to which it is assigned. Base classes usually are metaclasses from the UML meta-
model, for instance the metaclass Class, but can also be stereotypes from another
profile. A stereotype can have its own notation, e.g. a special icon.

Constraints are applied to stereotypes in order to indicate restrictions. They spec-
ify pre- or post conditions, invariants, etc., and must comply with the restrictions
of the base class [OMG05c]. Constraints can be expressed in any language, such as
programming languages or natural language. We use the Object Constraint Lan-
guage (OCL) [OMG05b] in our profile, as it is more precise than natural language
or pseudocode, and widely used in UML profiles.

Tagged values are additional meta-attributes assigned to a stereotype, specified as
name-value pairs. They have a name and a type and can be used to attach arbitrary
information to model elements.

Figure 3.2 illustrates a section of the UML metamodel for activity diagrams and
its extension with stereotypes for representing business process goals and their per-
formance measures. The UML profile consists of four different stereotypes, namely
!Process Goal", !Measure", !Alert" and !Organisational Structure". The
stereotype !Process Goal" describes the specific intension of a business process
and is quantified by at least one !Measure". It extends the metaclass Activity,
meaning that a!Process Goal" is described at activity level.

The stereotype !Measure" can be classified and implemented as !Quality",
!Cost" and!Cycle Time" and extends the metaclasses Activity Partition, Struc-
tured Activity Node, and Control Flow. This means that the stereotype!Measure"
can be described in three different ways. It is the modeller’s role to choose the most
suitable way to best describe a measure for a certain purpose, or for a user or user
group. The modeller has the choice to go for one, or a combination of two or all
three possibilities.

A measure positioned in an activity partition quantifies the section of the process
that is covered by the role. According to the OMG [OMG05c], an activity parti-
tion identifies actions that have some characteristics in common. For example, if

44

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

activity nodes have to be performed within a specific period of time, then they are
grouped within an activity partition labelled with the stereotype!Cycle Time". It
is also possible to nest the stereotypes. A stereotyped structured activity node la-
belled with!Working Time" can be nested in an activity partition, e.g., extending
!Cycle Time".

A structured activity node has the function to group elements of an activity, in
order to structure the activity [OMG05c]. A measure located in a structured activity
node quantifies the section of the process that is covered. For instance, a structured
activity node that is extended with the stereotype!Cycle Time" has to finish the
processing of its actions within a certain period of time.

A measure based on the control flow quantifies the cycle time, cost or quality
between two actions. The OMG [OMG05c] defines a control flow as an edge that
starts an activity node after the previous one is finished. For example, a control
flow that is extended with the stereotype!Cycle Time" and connects two activity
nodes, means that the stereotype measures a period of time the token requires from
the activity node at the beginning of the edge to the activity node at the end of the
edge.

The stereotype!Measure" is responsible for the concrete quantification of dif-
ferent goals as well as for measuring the performance of a business process. If the
process is not performed according to the!Measure", an!Alert" is triggered.

The stereotypes !Quality", !Cost" and !Cycle Time" add more detail to
the stereotype!Measure" and classify it. The stereotype!Quality" has the aim
to measure the quality of a business process, which can be expressed e.g., by a low
number of complaints or a high customer satisfaction.

The stereotype!Cost" represents the expenses associated to a business process
e.g., the cost of its execution. Its tagged values are necessary to compute e.g. average
values like the total and monthly average cost of a certain process. The performance
measures of!Quality" and!Cost" are in contrast to the measures of the!Cycle
Time" often more focused on the type level of a process, as the required data is
often not available on instance level.

The stereotype !Cycle Time" presents a time based measure and defines the
duration a business process instance, or part of it requires from the beginning until
the end. The stereotype!Cycle Time" can be specialised as!Working Time" or
!Waiting Time". !Working Time" presents the actual time a business process

45

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

Figure 3.2: Extended metamodel of the activity diagram for the UML 2 profile with business process
goals and performance measures

instance is being executed by a role. !Waiting Time" shows the time the pro-
cess instance is waiting for further processing. Moreover,!Cycle Time" has two
tagged values, for representing the target value and the actual value of the process
duration or a part of it which is computed by an operation of the stereotype.

The stereotype!Organisational Structure" describes the different roles that per-
form certain actions within an activity diagram, namely !Organisational Unit"
and !Organisational Role". If an action or a group of actions is not executed
within its performance measures, then the stereotype !Alert" will be triggered.
Furthermore an!Organisational Structure" is concerned with at least one
!Alert".

The !Alert" stereotype has two metaclasses, from which it is derived, one for
time based measures, namely AcceptTimeEventAction, and one for non-time based
measures, namely AcceptEventAction. An!Alert" belongs to exactly one
!Measure" and one!Organisational Structure".

3.3.1 Constraints

Table 3.1 and table 3.2 show the different constraints in OCL with explanations in
natural language for the stereotype!Measure" and!Alert" that are necessary
for performance measurement.

46

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

Table 3.1: OCL Constraints of!Measure"

Name Measure
Base class Activity Partition OR Structural Activity Node OR Control Flow
Description A measure is an abstract metaclass, and can be classified and imple-

mented as Quality, Cost or Cycle Time. Furthermore it is responsible
for the concrete quantification of different goals as well as for mea-
suring the performance of a business process.

Constraints When a measure is a cycle time based measure, then the possible alert
has the type of an AcceptTimeEventAction. Else the possible alert has
the type of an AcceptEventAction.
context Measure inv:
if Measure.oclIsKindOf(CycleTime) then
Alert.oclIsKindOf(AcceptTimeEventAction)
else Alert.oclIsKindOf(AcceptEventAction)
endif

The stereotype!Measure" and its restrictions is shown in table 3.1.
If !Measure" is a cycle based measure, then the metaclass of !Alert" has to
be an AcceptTimeEventAction. Otherwise the metaclass for !Alert" has to be an
AcceptEventAction.

Table 3.2 explains the stereotype !Alert". An !Alert" has to be triggered
when three different causes happen independent from each other. First, if the time
duration is higher then the given value of a process. Second, if the average cost is
higher then the maximum cost. Third, if the average number of complaints is higher
then the constant number of complaints.

3.3.2 Applying the UML 2 Profile to an Example Business Process

We demonstrate the practical applicability of the extension of UML 2 Activity Dia-
grams with business process goals and performance measures in Figure 3.3 with the
example business process of an insurance company: the Processing of Automobile
Claims business process (Fig. 3.3). At first the business process of the insurance
company will be described.

The overall goal of the processing of automobile claims business process is to fulfil
high customer satisfaction, short process duration and low processing costs. The business
process has three process participants, Financial Claim Specialist, Claim Administrator,

47

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

Table 3.2: OCL Constraints of!Alert"

Name Alert
Base class AcceptEventAction OR AcceptTimeEventAction
Description An Alert is triggered, if an action or a group of actions is not executed

within its performance measures.
Constraints If the actual value of the duration is higher then the given value of

the duration, an alert will be generated.
context Alert inv:
if cycleTime.isDuration > cycleTime.maxDuration
then)
Alert.trigger = true else Alert.trigger = false
endif

If the average cost is higher then the maximum cost, then an alert will
be generated.
context Alert inv:
if Cost.allInstances()->forAll(avgCost >
constantCost then)
Alert.trigger = true else Alert.trigger = false
endif

If the average number of complaints is higher then the constant num-
ber of compliants, an alert will be generated.
context Alert inv:
if Quality.allInstances()->forAll(avgCompliants >
constantCompliants) then
Alert.trigger=true else Alert.trigger=false
endif

and Claim Manager. At the beginning of the process the Financial Claim Specialist is
responsible for Record the Claim and Calculate the Insurance Sum. Financial Claim
Specialist has to execute these two business process tasks within one day.

After a Waiting Time of two days maximum, the Claim Administrator has to fol-
low up with the process. If the insurance sum has a major amount, then the claim
administrator has to do Check History of the Customer in the other case no action is
required. After starting to Contact the Garage for the reparation, the Examination of

48

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

Results has to begin. If the examination is positive, then the insurance has to Pay for
the Damage, and the case is closed.

The process has to fulfill three performance measures, namely Cost, Cycle Time,
and Quality. The average processing costs per month have to be 15 dollar maximum
and the number of complaints should not exceed five percent. In our example, if the
Cycle Time exceeds four days, then the Claim Manager receives an alert, and gets a
report about that specific case.

We refine the activity diagram by including a set of stereotypes, based on the
various types of actions specified in the metamodels of actions in the UML super-
structure in chapter 11 [OMG05c]. Furthermore the work of Bordbar et. al [BS04]
serves as a foundation for the creation of the stereotypes. Figure 3.3 shows that a
business process based on the UML 2 profile can be grasped at a glance. The ex-
tensions of the UML activity diagram better illustrate the requirements of a certain
business process and enhance the expressiveness of a model.

49

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

Figure 3.3: Example business process based on the UML 2 profile for business process goals and per-
formance measures

3.4 The extended EPC Metamodel

The metamodel of EPC is extended by introducing a new view, the so called per-
formance measure view. It is shown with the performance measure elements high-

50

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

lighted in grey in figure 3.4.
A Process Goal can have several Sub Goals. Each Goal has at least one Measure and

is connected with one or more Measure Flow Connectors. Measure and Process Goal are
specialisations of Additional Process Object. Furthermore a Measure is specialised by
the subclasses Cost, Quality and Cycle Time. A Function can be related to Additional
Process Objects. This means a Measure is assigned to at least one Function.

Figure 3.4: Extended EPC metamodel with performance measures

The relationship between goals and measures is illustrated in a so called goal
measure tree in figure 3.5. The goal measure tree is related to the example business
process of an insurance claim in the figures 3.6, 3.7, and 3.8. Its main process goal
is good process performance. This goal has three sub-goals: low processing costs, short
process duration, and high customer satisfaction. Furthermore each goal is refined by
measures. The goal low processing costs is fulfilled, when the average processing costs
per month are under 15 Euros. The measure cycle time indicates that the process
duration has to be less than four days. Moreover the goal high customer satisfaction
is achieved, if the average percentage of complaints per month is less than five percent.

3.4.1 Example Business Process of an EPC

We demonstrate the practical applicability of the extension of the EPC with business
process goals and performance measures in figure 3.4 with the business process
of an insurance company: the Processing of Automobile Claims business process
(figures 3.6, 3.7 and 3.8). The whole business process is explained in subsection

51

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

Figure 3.5: Goal Measure Tree

3.3.2.
The business process shown with EPC is decomposed into three hierarchical lev-

els to improve the structure and clarity. The main difference in the graphical nota-
tion of the extension of UML 2 AD, BPMN, and EPC is that EPC uses new graphical
notation elements for presenting the performance measures, while the other two
languages uses no graphical notation elements and integrates them into the exist-
ing elements.

At the first hierarchy level, the process goals and the performance measures cost,
cycle time and quality with the core business process Processing of Automobile Insur-
ance Claims are shown in figure 3.6.

Figure 3.6: First hierarchy level of the example business process

At the second hierarchy level the business process is split up into two subpro-
cesses, namely Assertion of the Claim and Compensation of the Claim. The organisa-
tional roles Financial Claim Specialist and Claim Administrator which are responsible
for the execution of the business process are presented figure 3.7. Furthermore the

52

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

cycle time of the first hierarchy level is split up into to a subset of two cycle times,
where each cycle time belong to one subprocess.

Figure 3.7: Second hierarchy level of the example business process

The third hierarchy level presents the fine granular business process of EPC. Fur-
thermore the different organisational roles as well as the maximum waiting time of
two days the organisational role of the Claim Administrator has to follow up with the
process.

3.5 The extended BPMN Metamodel

Figure 3.9 shows the metamodel of BPMN which is extended by performance mea-
sures as a new category (in grey). According to the specification [OMG06a], it is not
allowed to change the basic shape of the defined graphical elements and markers.
Therefore the extensions are marked with the term ”is presented through” in the
metamodel, to sign that an extended metaclass is graphically described through a
core element of BPMN.

The Organisational Structure explicitly describes Organisational Units and Roles
within a business process. F or example this could be the department or an em-
ployee of a company. They are presented through a pool, because they are a con-
crete specification of a pool and so far also part of the category swimlanes. An
organisational unit has one or more roles, and a role belongs to at most one unit.
The metamodel extended with the new introduced category of performance mea-
sures are highlighted in grey in Figure 3.9. A Measure is distinguished between a
measure on Type Level or Instance Level. Cost and Quality belong to the type level,
and cycle time to instance level. Cost and quality are in contrast to cycle time more
focused on the type level of a process, as the required data is often not available on
instance level. The instance level of BPMN can be executed with a mapping to BPEL
through a workflow engine according to the specification [OMG06a]. EPC was not

53

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

Figure 3.8: Third hierarchy level of the example business process

designed to be executable, therefore the language does not need a distinction in its
metamodel between type or instance level. A measure is represented by a pool,
because an organisational structure has to act on measures. If the measure is cycle
time, then it is represented through a time event. Furthermore an organisational
structure can be triggered by an event alert, if an action or a group of actions is not
executed within its performance measures.

3.5.1 Example Business Process of a BPMN

The example business processes in the figures 3.10, 3.11 and 3.12 show the busi-
ness process goals and performance measures graphically integrated in BPMN. The

54

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

Figure 3.9: Extended BPMN metamodel with performance measures

whole business process is explained in detail in subsection 3.3.2.
The business process shown with BPMN is decomposed into three hierarchical

levels to improve the structure and clarity. In BPMN, extensions to notation el-
ements can be made by means of new markers or indicators associated with the
current graphical elements. It is recommended to use the existing graphical nota-
tion elements, and to keep away from changing them. In the example in figure 3.10
we introduce an additional label for a pool, namely the ”Organisational Role”. It
corresponds to the homonymous metaclass in the metamodel in figure 3.9.

The overall goal of the collapsed sub-process in BPMN with the label Process of
Automobile Insurance Claims is to fulfil the process goals and the performance mea-
sures cost, cycle time and quality. Figure 3.10 shows the first hierarchy level of the
business process. Furthermore in BPMN it is possible to introduce alerts in a di-
agram with time events[OMG06a]. In our example, if the cycle time is over four
days, then the Claim Manager receives an alert, and gets a report about that specific
case.

At the second hierarchy level the business process is split up into two subpro-

55

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

Figure 3.10: First hierarchy level of the example business process

cesses, namely Assertion of the Claim and Compensation of the Claim. The organisa-
tional roles Financial Claim Specialist and Claim Administrator which are responsible
for the execution of the business process are also presented in figure 3.11. Further-
more the cycle time of the first hierarchy level is split up into to a subset of two cycle
times, where each cycle time belong to one subprocess.

Figure 3.11: Second hierarchy level of the example business process

56

3 Extending Business Process Modelling Languages with Performance Measures
and Goals

The third hierarchy level presents in figure 3.12 the fine granular business process
of BPMN. Furthermore the different organisational roles as well as the maximum
waiting time of two days the organisational role of the Claim Administrator has to
follow up with the process.

Figure 3.12: Third hierarchy level of the example business process

57

4 Mapping the UML 2 Activity Diagram
to BPEL

Contents
4.1 Introduction to WSDL and BPEL . 59
4.2 Describing an example business process with WSDL and BPEL . 62
4.3 Mapping the UML 2 Activity Diagrams with time measures to

BPEL . 68
4.4 Designing a UML Profile for BPEL with Eclipse 72
4.5 Conceptually desribed Transformation of a BPML to BPEL code . 74

The Business Process Execution Language (BPEL) is a language for specifying
business process behaviour based on Web Services. Section 4 defines a mapping
between the UML profile for performance measures and goals and BPEL for estab-
lishing a basis to transform a specific business process modelling language and its
conceptually described performance measures to an execution language as well as
to monitor the process instances continuously.

This described approach consists of two main steps. First, the UML 2 profile for
performance measures and goals is annoted with stereotyped actions, and mapped
to BPEL which is shown by a graphically described example. The performance mea-
sures cost and quality are not mapped to BPEL, because our approach focusses on
the instance level of a business process and not on the type level. Furthermore cost
and quality cannot be shown in BPEL, because their are not part of BPEL. Second,
the mapping of the UML Profile to BPEL is defined as a UML Profile in eclipse.
Thus we provide a foundation for transforming the UML profile to BPEL code with
eclipse.

4 Mapping the UML 2 Activity Diagram to BPEL

The remainder of this section is organized as follows:

• Subsection 4.1 describes the base constructs of BPEL and WSDL.

• Subsection 4.2 uses the described base constructs of BPEL and WSDL in sub-
section 4.1 for specifying an example business process with BPEL and WSDL.

• Subsection 4.3 defines the mapping of the UML 2 profile for performance mea-
sures and goals annoted with stereotyped actions to BPEL. Simply the time
measures are mapped to BPEL, because the measures cost and quality are not
part of BPEL.

• Subsection 4.4 defines the mapping of the UML 2 profile to BPEL designed
in eclipse. This is the foundation for transforming a BPML to BPEL code, as
described in subsection 4.5.

4.1 Introduction to WSDL and BPEL

4.1.1 Business Process Execution Language (BPEL)

The Business Process Execution Language (BPEL) is an XML-based language for
describing business processes. In this thesis WS-BPEL 2.0 [Oas07] is used, which
standardization process was finished in April 2007. The activities of a business pro-
cess defined with BPEL is implemented by web services.

BPEL supports the description of abstract and executable processes. The orchestra-
tion of executable processes are deployed by a workflow engine. The choreography
of abstract processes describe the behavioral interface of a process, and are used for
hiding the internal behaviour of a process, e.g. from a business partner.

BPEL is used for illustrating the orchestration of web services. An orchestration
is defined as an executable business process that describes a flow from a single per-
spective and under control of a single endpoint. This means that BPEL controls the
participating web services of a business process, for instance to order the arrival
of messages. BPEL does not support the direct interaction with humans, because
BPEL processes only communicate with web services that are described by the Web
Service Description Language (WSDL).

The Web Service Description Language (WSDL) [W3C01] defines a programming
language-, protocol-, and platform-independent XML specification for describing

59

4 Mapping the UML 2 Activity Diagram to BPEL

Figure 4.1: Process metamodel of BPEL

web services for exchanging messages. For this purpose WSDL describes the func-
tion, datatypes and protocols of a web service.

The overall structure of BPEL consists of partner/partner links, variables, cor-
relation sets, fault handlers, event handlers, compensation handlers. Figure 4.1
describes the BPEL 2.0 process metamodel. Since no official metamodel of BPEL
exist, Dubray [Jea05] created an reversed enigneered metamodel of BPEL, which
conforms to BPEL 1.1. We use the BPEL metamodel of Dubray for adapting it on
BPEL 2.0.

Partner links are parties that interact with the business process. Variables describe
data that is used by the business process. Correlation sets are set of properties shared
by messages in a correlated group. Fault handlers are activities that must be per-
formed in response to faults. Event handlers are invoked concurrently if the corre-
sponding event occurs. Compensation handlers are a wrapper for a compensation
activity.

Figure 4.2 describes the BPEL 2.0 activity metamodel. Basic activities are atomic ac-
tivities for describing a process with BPEL. <assign> updates the values of variables
or partner links with new data. An <invoke> is a synchronous (request/response)
or asynchronous (one way) call of a web service. <receive> waits for a message to
arrive. If the message requires a response, it is send back by a <reply>. <throw>

signals a fault from inside the business process, which is processed by fault han-
dlers. <exit> quits the behaviour of a business process instance. <wait> stays for
a given time period or until a certain time has passed. <empty> is a no-operation
activity, that means it is used to specify that no action is executed. This activity is

60

4 Mapping the UML 2 Activity Diagram to BPEL

Figure 4.2: Activity metamodel of BPEL

used for fault handlers that consume a fault without acting on it. Other use cases
for the empty activity include synchronization points in a flow, or placeholders for
activities that are to be added later.

Structured activities contain other activities for defining the recursive composi-
tion of complex processes. <sequence> executes the activities one after another.
<while> indicates that an activity is to be repeated until a certain stop criteria is
met. <switch> selects one branch out of serveral activity branches. <flow> executes
activities concurrently or in any different order. Dependencies between activities
are defined by <links>. <pick> blocks and waits for a suitable message to arrive
or for starting a time-out alarm. <scope> handles a set of activities for describing a
nested activity. A scope may be associated with a fault handler, an event handler or
a compensation handler.

4.1.2 Web Service Description Language (WSDL)

The Web Service Description Language (WSDL) defines a protocol and platform
independent XML specification for describing web services to exchange messages.
WSDL describes the functions, datatypes and protocols of a web service.

A web service defined by WSDL consists of six main XML elements, and distin-
guishes between abstract and concrete definitions. To the abstract definitions belong
the elements types, messages, and port types. The elements binding, ports, and

61

4 Mapping the UML 2 Activity Diagram to BPEL

services belong the concrete definitions.
Types define data types, that are needed for exchanging messages. Messages de-

fine the transmitted data. Every message defines a link to datatypes. Port types
distinguish between four different types of operations. If the web service gets an
input message from the client without sending a response, then it is called one-way
message. A request-response message consists of two steps. Firstly, the web service
receives an input message from the client. Secondly, the web service sends an out-
put message to the client. During a notification the web service sends an output
message to the client, but does not receive an input in return. When the web ser-
vice also expects an answer from the client, then it is called solicit-response. A binding
sets the concrete protocol and data format for the messages, which are declared by a
specific port type. A port specifies an address for a binding, where a certain binding
is located. This is usually done by a URI.

4.2 Describing an example business process with WSDL and
BPEL

This subsection describe the example business process of an insurance claim with
WSDL and BPEL. Listing 4.1 defines the types of the business process. The messages
of the example business process are described in listing 4.2. The types are defined
within the <types> tags. According to the XML schema definition, simple or com-
plex data types are used. For example, in listing 4.1 at line number 12 describes
“ClaimInfo” as well as its complex type with the element “ClaimInfo”. Listing 4.3
describe the port types. This subsection only describe the elements of the abstract
definitions, because the concrete definitions are not relevant for this work. Listing
4.4 describe the partner link types, which are a specific extension of WSDL. define
the schema with WSDL of the BPEL process in the listings 4.5, and 4.6.

Listing 4.1: First part of WSDL code of the insurance claim example
1 : <?xml vers ion =”1.0”?>
2 : <d e f i n i t i o n s name=” Customer F inanc ia lCla imSpec ia l i s t ”
3 : targetNamespace=” http :// e c l i p s e . org/bpel/sample”
4 : xmlns : plnk=” http :// docs . oas is−open . org/wsbpel /2.0/ plnktype ”
5 : xmlns=” http :// schemas . xmlsoap . org/wsdl/”
6 : xmlns : e c l =” http :// e c l i p s e . org/bpel/sample”>
7 : <types>
8 : <schema at t r ibuteFormDefaul t =” unqual i f i ed ”
9 : elementFormDefault=” q u a l i f i e d ”
1 0 : targetNamespace=” http :// e c l i p s e . org/bpel/sample”
1 1 : xmlns=” http ://www. w3 . org /2001/XMLSchema”>

62

4 Mapping the UML 2 Activity Diagram to BPEL

1 2 : <element name=” c la imInfo”>
1 3 : <complexType>
1 4 : <sequence>
1 5 : <element name=” sendInfo ” type=” s t r i n g ” />
1 6 : </sequence>
1 7 : </complexType>
1 8 : </element>
1 9 : <element name=” ca lcu la tedCla imInfo”>
2 0 : <complexType>
2 1 : <sequence>
2 2 : <element name=” sendCalculatedInfo ” type=” s t r i n g ” />
2 3 : </sequence>
2 4 : </complexType>
2 5 : </element>
2 6 : <element name=”ClaimInTimeInfo”>
2 7 : <complexType>
2 8 : <sequence>
2 9 : <element name=”inTime” type=” s t r i n g ” />
3 0 : </sequence>
3 1 : </complexType>
3 2 : </element>
3 3 : <element name=”RepairPropertyofCustomer”>
3 4 : <complexType>
3 5 : <sequence>
3 6 : <element name=”RepairinTime ” type=” s t r i n g ” />
3 7 : </sequence>
3 8 : </complexType>
3 9 : </element>
4 0 : <element name=” claimInfoBack”>
4 1 : <complexType>
4 2 : <sequence>
4 3 : <element name=”sendInfoBack ” type=” s t r i n g ” />
4 4 : </sequence>
4 5 : </complexType>
4 6 : </element>
4 7 : </schema>
48:</ types>

A message element in listing 4.2 combines different parameters to a group, to of-
fer them to operations which are defined in listing 4.3. For instance at line number 1
the message “ClaimMessage” is defined. It consists of one part only, namely “claim-
Info”. “ClaimInfo” is associated to the type “tns:claimInfo” which corresponds to
the defined element in line number 12 at listing 4.1.

Listing 4.2: Second part of WSDL code of the insurance claim example
1 : <message name=”ClaimMessage”>
2 : <part name=” c la imInfo ” element=” tns : c la imInfo”/>
3 : </message>
4 : <message name=”CalculatedClaimMessage”>
5 : <part name=” ca lcu la tedCla imInfo ” element=” tns : CalculatedClaimMessage”/>
6 : </message>
7 : <message name=”PassClaimInTimeMessage”>
8 : <part name=”ClaimInTimeInfo ” element=” tns : PassClaimInTimeMessage”/>
9 : </message>
1 0 : <message name=” repairPropertyMessage”>
1 1 : <part name=”RepairPropertyofCustomer ” element=” tns : repairPropertyMessage”/>
1 2 : </message>
1 3 : <message name=”ClaimMessageBack”>
1 4 : <part name=” claimInfoBack ” element=” tns : c laimInfoBack”/>
1 5 : </message>
1 6 : <message name=”Insurance ClaimResponseMessage”>
1 7 : <part name=”payload” element=” tns : Insurance ClaimResponse”/>
1 8 : </message>

63

4 Mapping the UML 2 Activity Diagram to BPEL

Port types define the operations that are performed by web services. In listing 4.3
at line number 1 the port type “FinancialClaimSpecialist PT” defines the operation
“sendClaimInfo” with its input message “tns:ClaimMessage” which is defined in
listing 4.2 at line number 1. Listing 4.3 defines only one way operations. This means
a port type does not wait for an output message.

Listing 4.3: Third part of WSDL code of the insurance claim example
1 : <portType name=” F i n a n c i a l C l a i m S p e c i a l i s t P T”>
2 : <operation name=”sendClaimInfo”>
3 : <input message=” tns : ClaimMessage”/>
4 : </operation>
5 : </portType>
6 : <portType name=”ClaimAdministratorPT”>
7 : <operation name=”sendCalculatedClaim”>
8 : <input message=” tns : CalculatedClaimMessage”/>
9 : </operation>
1 0 : </portType>
1 1 : <portType name=”ClaimAdministratorPT”>
1 2 : <operation name=”passClaimInTime”>
1 3 : <input message=” tns : PassClaimInTimeMessage”/>
1 4 : </operation>
1 5 : </portType>
1 6 : <portType name=”Garage PT”>
1 7 : <operation name=” repa i rProper ty”>
1 8 : <input message=” tns : repairPropertyMessage”/>
1 9 : </operation>
2 0 : </portType>
2 1 : <portType name=”Customer PT”>
2 2 : <operation name=”sendClaimInfoBack”>
2 3 : <input message=” tns : ClaimMessageBack”/>
2 4 : </operation>
2 5 : </portType>

Partner link types define the roles in a relationship between two services. Fur-
thermore each role is refers to a port type. For instance in listing 4.4 at line number
1 the partner link type “Customer FinancialClaimSpecialist” defines the roles “Cus-
tomer” and “FinancialClaimSpecialist”. “Customer” refers to the port type “Cus-
tomerPT”, and “FinancialClaimSpecialist” refers to the port type “FinancialClaim-
Specialist PT”. The partner link types and their referenced port types are described
in listing 4.3 at line number 21 and 1. For instance the partner link type “ClaimAd-
ministrator FinancialClaimSpecialist” in listing 4.4 at line number 5 corresponds to
the partner link type used at the partnerLink with the name “ClaimAdministra-
tor FinancialClaimSpecialist” in listing 4.5 at line number 14.

Listing 4.4: Forth part of WSDL code of the insurance claim example
1 : <plnk : partnerLinkType name=” Customer F inanc ia lCla imSpec ia l i s t”>
2 : <plnk : ro le name=”Customer” portType=”CustomerPT”/>
3 : <plnk : ro le name=” F i n a n c i a l C l a i m S p e c i a l i s t ” portType=” F i n a n c i a l C l a i m S p e c i a l i s t P T”/>
4 : </plnk : partnerLinkType>
5 : <plnk : partnerLinkType name=” C l a i mA d m i ni s t r a t o r F i na n c i a l C l a im S p e c i a l i s t”>
6 : <plnk : ro le name=”ClaimAdministrator ” portType=”ClaimAdministratorPT”/>
7 : <plnk : ro le name=” F i n a n c i a l C l a i m S p e c i a l i s t ” portType=” F i n a n c i a l C l a i m S p e c i a l i s t P T”/>

64

4 Mapping the UML 2 Activity Diagram to BPEL

8 : </plnk : partnerLinkType>
9 : <plnk : partnerLinkType name=”Garage ClaimAdministrator”>
1 0 : <plnk : ro le name=”Garage” portType=”Garage PT”/>
1 1 : <plnk : ro le name=”ClaimAdministrator ” portType=”ClaimAdministratorPT”/>
1 2 : </plnk : partnerLinkType>
1 3 : <plnk : partnerLinkType name=”Customer ClaimAdministrator”>
1 4 : <plnk : ro le name=”Customer” portType=”Customer PT”/>
1 5 : <plnk : ro le name=”ClaimAdministrator ” portType=”ClaimAdministratorPT”/>
1 6 : </plnk : partnerLinkType>
1 7 : <plnk : partnerLinkType name=”ClaimManager ClaimAdministrator ”>
1 8 : <plnk : ro le name=”ClaimAdministrator ” portType=”ClaimAdministratorPT ”
1 9 : <plnk : ro le name=”ClaimManager” portType=”ClaimManager PT”/>/>
2 0 : </plnk : partnerLinkType>
21:</ defini t ions>

<partnerLinks> define how a process communicates with its partners. Each part-
ner may capture different roles to other partners. For instance in listing 4.5 at
line number 10 the <partnerLink> “Customer FinancialClaimSpecialist” consists
of the roles “FinancialClaimSpecialist” as well as “Customer”, and is described
by the <partnerLinkType> “tns:Customer FinancialClaimSpecialist”. “Financial-
ClaimSpecialist” defines the role within a business process, namely <myRole>.
“Customer” describes the function of the external partner, namely <partnerRole>.

Listing 4.5 contains three <myRole> tags and two <partnerRole> tags. The
<myRole> tags are “Claim Administrator”, “Claim Manager” and “FinancialClaim-
Specialist”. These thee roles describe the perspective of the flow of the business
process inside the insurance company. “Customer” and “Garage” describe the
<partnerRole> tags. These roles illustrate the external partners of the business pro-
cess. Moreover the partner link types in listing 4.4 describe the types in WSDL
which are associated to the partner links in BPEL in listing 4.5.

Variables are used for the exchange of messages. Every variable must be defined
by a data type, namely WSDL message type, XML Schema simple type, or XML
schema element. In listing 4.5 at line number 36 the variable “Claim” is defined
by the element “tns:claimInfo” which corresponds to the illustrated element in list-
ing 4.1 at line number 12. In listing 4.5 each variable element corresponds to the
described elements in listing 4.1.

In listing 4.5 the event handler in line number 53 reacts to events that occur while
the business process executes. <onAlarm> specifies that if the claim needs for pro-
cessing more then four days, then <throw> generates a fault. Afterwards the claim
manager invokes the claim administrator to create a report. After creating a report
about the case, the claim administrator sends a report back to the claim manager.

65

4 Mapping the UML 2 Activity Diagram to BPEL

Listing 4.5: First part of BPEL code of the insurance claim example
1 : <?xml vers ion =”1.0” encoding=”UTF−8”?>
2 : <bpws : process exitOnStandardFault =”yes ” name=” Insurance Claim2 ”
3 : s u p p r e s s J o i n F a i l u r e =”yes ”
4 : targetNamespace=” http :// e c l i p s e . org/bpel/sample”
5 : xmlns : bpws=” http :// docs . oas is−open . org/wsbpel /2.0/ process/executab le ”
6 : xmlns : tns =” http :// e c l i p s e . org/bpel/sample”>
7 : <bpws : import importType=” http :// schemas . xmlsoap . org/wsdl/”
8 : l o c a t i o n =” Insurance Claim . wsdl” namespace=” http :// e c l i p s e . org/bpel/sample”/>
9 : <bpws : partnerLinks>
1 0 : <bpws : partnerLink myRole=” F i n a n c i a l C l a i m S p e c i a l i s t ”
1 1 : name=” Customer F inanc ia lCla imSpec ia l i s t ”
1 2 : partnerLinkType=” tns : Customer F inanc ia lCla imSpec ia l i s t ”
1 3 : partnerRole =”Customer”/>
1 4 : <bpws : partnerLink myRole=” F i n a n c i a l C l a i m S p e c i a l i s t ”
1 5 : name=” C l a i mA d m i ni s t r a t o r F i na n c i a l C l a im S p e c i a l i s t ”
1 6 : partnerLinkType=” tns : C l a i m Ad m i n is t r a to r F i na n c i a l C l a im S p e c i a l i s t ”
1 7 : partnerRole =”ClaimAdministrator”/>
1 8 : <bpws : partnerLink myRole=”ClaimAdministrator ”
1 9 : name=”Garage ClaimAdministrator ”
2 0 : partnerLinkType=” tns : Garage ClaimAdministrator ”
2 1 : partnerRole =”Garage”/>
2 2 : <bpws : partnerLink myRole=”ClaimAdministrator ”
2 3 : name=”Customer ClaimAdministrator ”
2 4 : partnerLinkType=” tns : Customer ClaimAdministrator ”
2 5 : partnerRole =”Customer”/>
2 6 : <bpws : partnerLink myRole=”ClaimAdministrator ”
2 7 : name=”Customer ClaimAdministrator ”
2 8 : partnerLinkType=” tns : Customer ClaimAdministrator ”
2 9 : partnerRole =”Customer”/>
3 0 : <bpws : partnerLink myRole=”ClaimAdministrator ”
3 1 : name=”ClaimManager ClaimAdministrator ”
3 2 : partnerLinkType=”ClaimManager ClaimAdministrator ”
3 3 : partnerRole =”ClaimManager”>
3 4 : </bpws : partnerLinks>
3 5 : <bpws : variables>
3 6 : <bpws : var iable element=” tns : c la imInfo ”
3 7 : name=”Claim”/>
3 8 : <bpws : var iable element=” tns : ca lcu la tedCla imInfo ”
3 9 : name=”passedClaim”/>
4 0 : <bpws : var iable element=” tns : c la imInfo ”
4 1 : name=”ClaimInTime”/>
4 2 : <bpws : var iable element=” tns : c laimInfoBack ”
4 3 : name=” Letter2Customer”/>
4 4 : <bpws : var iable element=” tns : c la imInfo ”
4 5 : name=”DataOfCMS”/>
4 6 : <bpws : var iable element=” tns : RepairPropertyofCustomer ”
4 7 : name=”damagedProperty”/>
4 8 : <bpws : var iable element=” tns : RepairPropertyofCustomer ”
4 9 : name=” f ixedProper ty”/>
5 0 : <bpws : var iable element=” tns : c la imInfo ”
5 1 : name=”Report”/>
5 2 : </bpws : variables>
5 3 : <bpws : eventHandlers>
5 4 : <bpws : onAlarm f o r =” ’P4DT’”>
5 5 : <bpws : throw faultName=”Timeout” f a u l t V a r i a b l e =” Faul t ” />
5 6 : <bpws : invoke name=”CreateAReport ”
5 7 : inputVar iab le =”ClaimNotFinished ”
5 8 : operation =” f in ishCla im ”
5 9 : outputVariable =”Report ”
6 0 : partnerLink=”Manager Administrator”/>
6 1 : <bpws : rece ive name=” Receive ReportGenerated ”
6 2 : operation =” f in ishCla im ”
6 3 : partnerLink=”Manager Administrator ”
6 4 : var iable =”Report”/>
6 5 : <bpws:/onAlarm>
6 6 : </bpws : eventHandlers>

66

4 Mapping the UML 2 Activity Diagram to BPEL

In listing 4.6 the BPEL process starts with the <receive> tag record the claim. The
financial claim specialist waits for receiving the claim from the customer. After receiv-
ing the claim, the financial claim specialist invokes the service calculate the insurance
sum for passing the calculated claim to the claim administrator. After the calcula-
tion of the insurance sum is successful accomplished by the claim administrator, the
claim administrator sends an answer back to the claim specialist, which is shown
at line number 20. Furthermore if the damage is above a specific amount, then the
history of the customer has to be checked, by updating the claim files with data of the
customer management system (CMS). After that the claim administrator invokes the
garage for repairing the property of the customer. When the reparation is done, the
garage informs the claim administrator in line number 39. If the claim is enabled
to pay the insurance sum to the customer, then the claim administrator replies an ap-
priate answer back to the customer. Also the customer receives a letter from the
claim administrator if the insurance sum will not be paid. In both cases the process
is closed afterwards.

Listing 4.6: Second part of BPEL ode of the insurance claim example
1 : <bpws : sequence name=”Sequence”>
2 : <bpws : rece ive name=”Receive RecordTheClaim ”
3 : operation =”sendClaimInfo ”
4 : partnerLink=” Customer F inanc ia lCla imSpec ia l i s t ”
5 : var iable =”Claim”/>
6 : <bpws : invoke inputVar iab le =”Claim”
7 : name=” Invoke CalculateTheInsurance ”
8 : operation =”sendCalculatedClaim ”
9 : outputVariable =”passedClaim”
1 0 : partnerLink=” C l a i mA d m i ni s t r a t o r F i na n c i a l C l a im S p e c i a l i s t”/>
1 1 : <bpws : rece ive name=” reply InsuranceSumCalculated ”
1 2 : operation =”sendClaimInfo ”
1 3 : partnerLink=” F i n a nc i a l C l a i m Sp e c i a l i s t C l a i m A d mi n i s t r a t o r ”
1 4 : var iable =”Claim”/>
1 5 : <bpws : i f name=” I f”>
1 6 : <bpws : assign name=”Assign CheckHistoryOfTheCustomer” v a l i d a t e =”no”>
1 7 : <bpws : copy>
1 8 : <bpws : from var iable =”DataOfCMS”/>
1 9 : <bpws : to var iable =”Claim”/>
2 0 : </bpws : copy>
2 1 : </bpws : assign>
2 2 : <bpws : condition ><![CDATA[damageIsTooHigh=true ()]]></bpws : condition>
2 3 : <bpws : e lse/>
2 4 : </bpws : i f>
2 5 : <bpws : invoke inputVar iab le =”damagedProperty”
2 6 : name=”Invoke ContactTheGarage ”
2 7 : operation =” repa i rProper ty ”
2 8 : outputVariable =” f ixedProper ty ”
2 9 : partnerLink=”Garage ClaimAdministrator”/>
3 0 : <bpws : rece ive name=” reply InsurancedPropertyFixed ”
3 1 : operation =” repa i rProper ty ”
3 2 : partnerLink=”Garage ClaimAdministrator ”
3 3 : var iable =” f ixedProper ty”/>
3 4 : <bpws : assign name=” Assign ExaminationOfResults ” v a l i d a t e =”no”>
3 5 : <bpws : copy>
3 6 : <bpws : from var iable =”Claim”/>
3 7 : <bpws : to var iable =”DataOfCMS”/>

67

4 Mapping the UML 2 Activity Diagram to BPEL

3 8 : </bpws : copy>
3 9 : </bpws : assign>
4 0 : <bpws : i f name=” I f 1”>
4 1 : <bpws : reply name=”Reply DoPayForTheDamage”
4 2 : operation =”sendClaimInfoBack ”
4 3 : partnerLink=”Customer ClaimAdministrator ”
4 4 : var iable =” Letter2Customer”/>
4 5 : <bpws : condition ><![CDATA[C a s e I s J u s t i f i e d =true ()]]></bpws : condition>
4 6 : <bpws : else>
4 7 : <bpws : reply name=”Reply DontPayForTheDamage”
4 8 : operation =”sendClaimInfoBack ”
4 9 : partnerLink=”Customer ClaimAdministrator ”
5 0 : var iable =” Letter2Customer”/>
5 1 : </bpws : else>
5 2 : </bpws : i f>
5 3 : </bpws : sequence>
5 4 : </bpws : process>

4.3 Mapping the UML 2 Activity Diagrams with time
measures to BPEL

The Business Process Execution Language (BPEL) is a language for specifying busi-
ness process behaviour based on Web Services [Oas07]. The UML profile will be
mapped onto BPEL, in order to transform a specific business process modelling lan-
guage and its conceptually described performance measures to an execution lan-
guage. Figure 4.3 shows the extended UML 2 Activity Diagram for BPEL based on
[BS04].

Bordbar et al. present in [BS04] a transformation of the UML 2 Activity Diagram
to BPEL to show the behavioural aspects of web services. This approach is used for
mapping the stereotyped actions in figure 3.3 to the BPEL tags <receive>, <invoke>,
<reply>, and <assign> in figure 4.3. Furthermore,!Alert" is mapped by using the
BPEL tag <onAlarm>, as well as
!Organisational Unit" and !Organisational Role" by using the <partnerLink>
tag. For sake of simplicity the !Cycle Time", !Waiting Time", and !Working
Time" are based on one metaclass, namely
!AcceptTimeEventAction". We do not map the performance measures cycle time,
cost and quality to BPEL tags. Cycle time is represented indirectly by <onAlarm>,
because an alert and the cycle time have the same time restriction for executing the
business process. Furthermore cost and quality are concepts that are not provided
by BPEL.

As explained in subsection 4.1, partner links are parties that interact with the
business process. A <partnerLink> consists of the attributes myRole and partner-

68

4 Mapping the UML 2 Activity Diagram to BPEL

Role. The attribute myRole defines the role within a business process, which calls
and answers to other business partners. A partnerRole describes the function of the
external partner. Since the!Organisational Unit" and!Organisational Role" are
mapped to <partnerLink> tags, and the two stereotypes extend the metaclass ac-
tivity partition, the <partnerLink> tag is graphically described as an activity parti-
tion. To be more precise, the!Organisational Unit" and!Organisational Role"
are mapped to the attribute myRole, since a business process described with UML
2 AD usually shows only one business partner that interacts with an action, and not
an interorganisational view of two or more partners. The the first partition name
labels myRole, and the second partition name labels the partnerRole. For a better
understanding the activity partitions in figure 4.3 are not shown as swimlanes, but
are placed above the activity name according to the specification of UML. The arrow
within the action marks if another partner is called (incoming arrow), or if an aswer
of a partner is expected (outgoing arrow). If an action has no arrow, then it has to
execute a local operation. The partners which are part of the business process are
the claim manager (CM), the claim administrator (CA), financial claim specialist (FCS),
customer (C), and garage (G).

The example business process consists of a main part, and an <eventHandler>
which is attached to the business process. An <eventHandler> reacts to events that
occur while the business process executes, and consists at least one <onMessage>
or <onAlarm>. For describing the time factor a business process has for execut-
ing its tasks, <onAlarm> activity is mapped to !AcceptTimeEventAction" of
UML 2 AD. An alarm event goes off when the specified time or duration has been
reached. The for attribute specifies the duration after which the event will be trig-
gered. The alternative attribute until describes a specific point in time when the
alarm will be fired. The clock for the duration starts at the point in time when the
associated process starts. For the sake of simplicity we do not integrate the whole
<eventHandler> tag with the <onMessage> elements into the diagram. If the over-
all process execution exceeds four days, then a <onAlarm> activity is activated,
which is mapped to the!AcceptTimeEventAction" in UML 2 AD. Afterwards the
<throw> activity generates a fault, which is mapped to the Interruptible Activity Re-
gion. Afterwards claim manager invokes the claim administrator for creating a report
of the delay. Afterwards the claim administrator sends an answer back to the claim
manager that a report is generated.

69

4 Mapping the UML 2 Activity Diagram to BPEL

Table 4.1: Mapping relations between the UML 2 profile and BPEL

UML Base Class UML Stereotype BPEL Tag
Activity <process>
StructuredActivityNode <scope>

Action !AcceptEventAction" <receive>
Action !CallOperationAction" <invoke>

Action !CallBehaviourAction" <assign>

Action !SendSignalAction" <reply>

ActivityFinalNode <exit>
InterruptableActivityRegion <throw>

AcceptTimeEventAction !Alert" <onAlarm>

ControlFlow <sequence>

Decision/MergeNode <If> activity
Fork/JoinNode <flow> activity
ActivityPartition !Organisational Unit" <partnerlink>

ActivityPartition !Organisational Role" <partnerlink>

In a UML 2 Activity Diagram a control flow connects the different action together
for describing the process order. For describing a pre-defined order in BPEL, the
Sequence activity is used. A <sequence> tag contains all other tags that have to be
proceed in a sequential order.

In UML 2 AD for describing different alternative pathes the decision and merge
nodes are used. For describing the same process logic in BPEL the nodes are mapped
to the If activity. The fork and join nodes describe actions that are executed in par-
allel. These nodes are mapped to the <Flow> activity for describing the same in
BPEL.

Table 4.1 shows the mapping relations between the stereotypes of the UML 2 Pro-
file and the BPEL tags, which are used in Figure 4.3. In figure 4.3 the base for the
graphical notation of the mapping is a UML 2 Activity Diagram. For the sake of clar-
ity not every BPEL tag is graphically assigned in 4.3. For instance the <sequence>

is implicitly described by the control flow that connects the different actions.

70

4 Mapping the UML 2 Activity Diagram to BPEL

Figure 4.3: Example business process based on the UML 2 profile for business process goals and per-
formance measures and the mapping to BPEL

71

4 Mapping the UML 2 Activity Diagram to BPEL

4.4 Designing a UML Profile for BPEL with Eclipse

Eclipse is a well known open source framework for developing software, and sup-
port multiple platforms. As a result of its structure which is based on plug-ins, it
is used for different development challenges. Also a plug-in has been developed
for creating UML models as well as UML profiles based on the UML 2 metamodel.
The following subsection 4.4.1 and 4.4.2 define a UML model based on the example
business process of handling an insurance claim, and a UML profile based on the
mapping table 4.3.

4.4.1 A UML 2 Activity Diagram designed with Eclipse

Figure 4.4 shows a part of the UML 2 profile for BPEL designed in eclipse. It de-
scribes the stereotypes !Process", !compensationHandler", and !Partner",
which are based on the mapping table 4.3. The UML profile consists of its stereo-
types, extensions, and the relationships between them. The stereotype!Process"
consists of several properties and extends the metaclass activity. A property labels
either the end of an association, or the attribute of a stereotype. Properties with the
prefix “AEnd” show the end of an association. In the case of the!Process", it has
associations to !FaultHandler", !Partner", and !Activity", and a property
which defines the name of the stereotype. The stereotype!Partner" has five prop-
erties. myRole, name, and serviceLinkType define attributes. AEnd Partner describes
the association relationship to !Process", and the property base ActivityPartition
illustrates the metaclass of!Partner".

For designing a UML 2 Activity Diagram with the eclipse framework, Eclipse 3.X,
EMF 2.X and the UML 2 plug-in have to be installed. EMF is the abbreviation for
the Eclipse Modeling Framework. EMF is an open-source framework based on Java
for the automatic generation of code based on structured models. As figure shows
4.5, a UML model designed in Eclipse consists of three main views: the package view
(left), the model view (right), and the property view (at the bottom). The package
view describes the different projects and models of UML. The model view shows the
model in a tree view or textual view. The property view defines the different options
of a model element.

Figure 4.6 describes the UML model of an Insurance Claim, shown in Eclipse and
as a graphical representation. For a better understanding the labels of the Control

72

4 Mapping the UML 2 Activity Diagram to BPEL

Figure 4.4: Stereotypes of the UML profile shown with eclipse

Figure 4.5: Screenshot of the eclipse views

Flows in Eclipse are also annotated to the graphical representation. The process
starts with element Initial Node. Furthermore the Accept Event Action Record the
Claim and the Call Operation Action Calculate the Insurance Sum as well as Accept
Event Action Insurance Sum is Calculated and the different Control Flows that con-
nect the different elements together are part of the Activity Partition Financial Claim

73

4 Mapping the UML 2 Activity Diagram to BPEL

Specialist.
Now two decision have to be made as figure 4.6 shows: first, whether the his-

tory of the customer has to be checked, and second, whether the customer receives
the insurance sum from the insurance company. The first decision depends on the
Guards annotated to the Control Flows c4a and c4b whether the insurance sum has
a minor amount or a major amount. The second decision depends on the Guards
annotated to the Control Flows c9a and c9b whether the Call Behaviour Action Check
History of the Customer is judged positive or negative. After the Send Signal Actions
Pay or Do not Pay for the Damage the case is closed. These elements are part of the
Activity Partition Claim Administrator.

Furthermore, if the duration of the execution of the process exceeds 4 days, then
the Interruptible Activity Region stops the process. In that case, the Activity Partition
Financial Claim Manager gets a report, and the business process ends.

4.4.2 Applying the UML Profile onto a UML 2 Activity Diagram

For applying a UML 2 Profile on a UML 2 Model in Eclipse, several steps have
to be made. All these steps are shown in figure 4.7. First, the profile has to be
defined, for referencing it to the meta-metamodel Ecore. Second, in order to make
use of the profile, the profile is loaded in the workspace of the example model of the
Insurance Claim. Third, the profile must be applied to the UML model, for relating
the stereotypes that are defined in the profile to the UML model.

4.5 Conceptually desribed Transformation of a BPML to
BPEL code

In the sense of Model Driven Engineering (MDE) [OMG06b], the transformation of
the Platform Independent Model (PIM), e.g. a UML profile to the Platform Specific
Model (PSM), e.g. BPEL code has to be the next step in our work. Now the proper
model transformation language has to be taken to find the way from the conceptual
level to the implementation level. The most well-known transformation approaches
[JK06] are the Query/Views/Transformation (QVT) approach [OMG07b], and the
ATLAS Transformation Language (ATL) [Bez05].

ATL is available as a plug-in in eclipse, and is therefore chosen to discourse the

74

4 Mapping the UML 2 Activity Diagram to BPEL

Figure 4.6: Example UML 2 Activity Diagram, left a graphical representation, right designed in eclipse

outlook of this section. The designed UML profile in eclipse in this section can be
used for creating an ecore complaint extended UML Metamodel, as figure 4.8 shows
at M2. Models designed with ecore in eclipse are comparable to metamodels in
UML. At M2 the Weaving Model establish the mapping links between the extended
UML Metamodel and a BPEL Metamodel, which also has to be created in ecore. The
Weaving Model is based on a Weaving Metamodel, which itself is based on MOF, like

75

4 Mapping the UML 2 Activity Diagram to BPEL

First step: defining the UML Profile Second step: loading the UML Profile
into the workspace of the model

Third step: Applying the profile onto
the model

Forth step: Applying the stereotypes
onto the model

Figure 4.7: Applying the UML Profile onto a UML 2 Model

extended UML Metamodel and the BPEL Metamodel. With a generator implemented

76

4 Mapping the UML 2 Activity Diagram to BPEL

by Wimmer et al. [WSS+07], ATL Code is derived from the Weaving Model, which
uses a UML Model as an input, and generates a BPEL Model as an output. With
MOF Scripts the BPEL Model is transformed to XML Code. MOF Script was submit-
ted to the OMG process for MOF Model to Text Transformation, and is developed
as an eclipse plug-in. Figure 4.8 shows a graphical representation of the conceptual
explained transformation.

Figure 4.8: Transforming a BPML to BPEL code

77

5 Linking Business Processes with
Software Elements and Variabilities

Contents
5.1 Introduction . 78
5.2 Linking Business Processes with Software Elements 80
5.3 UML Profile for Variability Models and their Interdependencies

with Business Processes . 84

5.1 Introduction

Although business processes are often the starting point for software development
and define requirements for software systems, linking business processes with soft-
ware elements is inadequately supported in conceptual modelling. On the on hand
side it is not possible to show software requirements or components which have an
influence on a BPML. On the other hand side it is not possible to show the variabil-
ities of a BPML.

In order to integrate software requirements and components into a BPML, we de-
scribe how the UML 2 profile for EPCs is linked with software systems. We connect
the profile with UML 2 elements. On the one hand side we describe the software
requirements of a process. On the other hand side we present software components
that are provided to successfully realise a process. The extension is used as the start-
ing point for achieving a business-goal oriented software development, but also for
a better description of a business process and its supporting software systems.

A variability model defines the variability of a software product line and is used
during the different life cycle stages of software product lines [PBvdL05]. Vari-
ability modelling is a domain specific modelling technique, that is becoming more
and more integrated into traditional software engineering. Variability models also

5 Linking Business Processes with Software Elements and Variabilities

have an impact on processes, because variabilities may change the process flow.
Consider, a car engine manufacturing process. The decision wether the variability
manufacture a diesel engine or a petrol engine is chosen, changes the process flow.
Unfortunately, variability models that describe such cases, are not integrated into
popular modelling frameworks, like the Unified Modelling Language.

The UML 2 profile for EPCs [KL06] represents a mapping from EPCs to UML 2
activity diagrams and aims at providing business process models to software devel-
opers in a well known notation. In this section, the linking process focuses on the
software requirements of a business process and the software components that are
necessary to successfully implement and execute the process. The contribution of
the linking process is:

• Business process models that are used as a starting point for software devel-
opment support the achievement of a business goal-oriented software devel-
opment.

• By linking business process with software systems a better description of a
business process and its supporting software systems is provided.

• Business process models in general and the UML 2 profile for EPCs in par-
ticular, are utilised to elicit requirements for a new software system, but also
for checking whether the functions of an existing software system match the
requirements of a new business process.

• We provide a UML 2 profile comprising stereotypes representing software
components. The close relationship between these profiles is a further step
towards bridging the gap between business process engineering and software
engineering.

Variability Models are designed for modelling variabilities of a software. Unfortu-
nately they are not part of a well-known modelling framework for a higher usability,
like the Unified Modelling Language. To address this limitation, we provide a UML
2 profile for variability models. Furthermore we show the dependency from the
UML profile to activity diagrams to visualize the relationship between variability
models and process models. This profile and its mapping are tested with example
business processes. The goals of this section are:

• to provide variability models in a UML notation allowing software developers
to use any UML tool

79

5 Linking Business Processes with Software Elements and Variabilities

• to show the dependency between variability models and business processes to
visualize the relationship between structural models and behavioural models
in all stages of the software developing process

UML profiles are an extension mechanism for building UML models for particu-
lar domains or purposes [OMG05c]. We utilize this well-defined way to develop a
UML profile for variability models and describe its dependencies onto activity di-
agrams, showing the impact of variabilities on the process flow and thus, provide
the following contributions:

• The profile provides variability models in UML notation for software develop-
ers. Software systems are very complex and require variabilities for defining
their process logic e.g. by customization. The profile represents variability re-
quirements to software developers or process engineers in a semi-formal and
well-known modelling notation.

• The UML profile for variability models offers the possibility to create, present
and edit variability models with existing UML modelling tools, if they support
UML profiles.

• The UML profile and its dependencies onto activity diagrams makes the rela-
tionship between variabilities and processes visible.

The remainder of this section is organized as follows:
• Subsection 5.2 describes the approach to connect software requirements and

components to the UML 2 Profile for EPC.
• Subsection 5.3 presents a UML 2 profile for variabilities. Furthermore the sub-

section discusses the dependency onto business processes.

5.2 Linking Business Processes with Software Elements

In this section, we describe the details of how a business process, represented as
a UML 2 profile for EPCs [KL06] is used in software development. Therefore,
we connect business process activities, in our profile stereotyped actions, called
!elementary function", with the UML 2 elements component and use case by us-
ing dependencies. Use cases are suitable for defining software requirements, while
components represent the modular structure of a software system.

The Object Management Group (OMG) [OMG05c] describes use cases as a col-

80

5 Linking Business Processes with Software Elements and Variabilities

lection of actions, which stand for a specific behaviour. According to the OMG
[OMG05c], a component covers physical and logical modelling aspects; this means
that a component is a modular part of a system. On the one hand side, use cases rep-
resent software in an abstract way, which means that no concrete implementation
stands behind them. They describe the requirements of a software. On the other
hand side, components describe a software system or part of it.

We use dependencies to connect stereotyped actions with use cases and compo-
nents, because with dependencies it is possible to connect UML 2 elements from
behavioural diagrams with elements from structural diagrams. By contrast, asso-
ciations cannot connect stereotyped actions with use cases and components. The
reason is that the meta-class property represents the association end and belongs to
the structural models, while the UML 2 Activity Diagram which is the foundation
for the UML profile for EPCs belongs to the behavioural models. Generally, in UML
2 it is impossible to link the two different modelling types with associations. A de-
pendency allows to show that one or more elements, called client(s), are dependent
on one or more elements, called supplier(s) [OMG05c]. This means that a modifica-
tion of the supplier may impact the client. For instance, the client might need the
model element of the supplier for its specification or implementation. The graphical
notation of a dependency is a dashed arrow. The model element at the tail of the
arrow (the client) depends on the model element at the arrowhead (the supplier).
The arrow may be labelled with an optional stereotype and an optional name. If no
stereotype is labelled, the dependency makes no declaration about its semantic.

5.2.1 Example business processes with software requirements and
components

Figure 5.1 shows a dependency relationship between an elementary function and a
use case as well as between an elementary function and a component. The left hand
side of the figure shows that the elementary function Internet Buying has the role
of the client, and the use case Credit Card Payment represents the supplier. Internet
Buying needs Credit Card Payment for its execution. This means that Internet Buying
needs the realisation of the software requirement Credit Card Payment for further
processing. We address the following utilization scenarios for this type of diagram:
Process actors directly access the process diagram, by the help of use cases and
know how they need to interact with the system. Moreover the process actors raise

81

5 Linking Business Processes with Software Elements and Variabilities

Figure 5.1: Dependency Relationship with a Use Case and a Component

basic system requirements from a process perspective. The designer of a business
process has now the possibility to check which tasks of a specific business process
depend on a specific software requirement.

A dependency between an elementary function and a component is shown at the
right hand side of figure 5.1. The component represents the supplier, and the ele-
mentary function the client. The elementary function Register Participant needs the
component Participant Management System for its full execution. The utilization sce-
nario for the relationship with a component is intended to describe the interaction
between stereotyped actions and concrete software systems, either existing ones or
to be developed ones. The example visualizes that a certain software application is
required by a stereotyped action.

Figure 5.2 presents the processing of automobile insurance claims business process
and its dependencies with stereotyped actions and use cases as well as software
components. The process starts with the stereotyped action record the claim, which
requires the component claim management system as well as the use cases check policy
and formulate claim description for its execution. Furthermore, the claim management
system is also needed by the stereotyped actions calculate the insurance sum and ex-
amination of results.

The!Organisation Role" Financial Claim Expert is responsible for the execution
of record the claim and calculate the insurance sum. The component claim manage-
ment system saves, destroys, and archives the different insurance claims. To start the
process, the stereotyped action record the claim needs access to the claim management
system as well as to the the software requirements check policy and formulate claim
description. After the claim is recorded, the software requirement proof of documents
is necessary for calculate the insurance sum. Now the!Organisation Role" Financial
Clerk has to decide wether the insurance company pays for the damage or not. If the
insurance sum represents a major amount, then the stereotyped action checking his-
tory of the customer is necessary. This action also requires the customer relationship
management (CRM) system. All relevant data from the customers of the insurance

82

5 Linking Business Processes with Software Elements and Variabilities

Figure 5.2: Processing of Automobile Insurance Claims

company are saved at the CRM system. After checking the history of the customer,
the stereotyped action examination of results needs all relevant files of the claim from
the claim management system for the decision wether the company pays for the dam-
age or not. Finally, if the action examination of results is positive, the bank transfer
component is used by the stereotyped action to pay for the damage, otherwise the ac-
tion do not pay for the damage is processed. The process ends with a closed case. The
first part of the process shows how software requirements are integrated into the
process model. The second part of the process illustrates which stereotyped action
depends on a specific software component for its execution.

83

5 Linking Business Processes with Software Elements and Variabilities

Figure 5.3: Variability metamodel

5.3 UML Profile for Variability Models and their
Interdependencies with Business Processes

5.3.1 Variability Modelling

A variability model shows the different variation points and variants of a software
product line. Variability models are based on a metamodel developed by Pohl et
al. [PBvdL05]. This metamodel is not MOF-compliant, because it has association
classes which are not part of MOF. This is shown in figure 5.3. We adapt the meta-
model of Pohl et al. [PBvdL05] by changing the association classes and its associa-
tions with binary relationships and classes to make it MOF-compliant according to
Hitz et al.[HKRK05]. The MOF-compliant metamodel could be for instance easily
integrated into UML, which is based on MOF. The adapted metamodel is shown in
figure 5.4.

A variability model consists of the variabilities variation point, variant, and the re-
lationships between them. A variation point is a representation of a variable item of
the real world or a variable property of such an item. It has a variability dependency
relationship with at least one variant. A variant is a representation of a particular
instance of a variation point. It may constrain it by a constraint dependency. Fur-
thermore it has at least one variability dependency to a variation point. A variabil-
ity dependency is an abstract class. We distinguish between optional or mandatory
dependencies. If a variation point has a mandatory dependency to a variant, the
variant has to be chosen when the variation point is selected. An optional variability

84

5 Linking Business Processes with Software Elements and Variabilities

Figure 5.4: MOF-compliant metamodel of the variability metamodel

dependency indicates that none, one or more variants may be selected. Moreover,
it may be refined by an alternative choice, which declares the range between a vari-
ation point and its variants. The constraint dependency distinguishes an requires and
an excludes dependency between variants, variation points and variants to variation
points. An requires constraint dependency indicates that a variability is dependent
on another variability. An excludes constraint dependency defines that a variability
has to eliminate another variability if it is selected.

5.3.2 UML Profile for Variability Models

In this subsection the UML 2 profile for Variability Models is described. As stated
in subsection 5.3.1, variability modelling is a domain specific modelling technique,
that has no MOF-compliant metamodel for integration in a modelling framework,
and has no tool support yet. The Meta-Object-Facility (MOF) is the four-layered
metamodelling architecture of the OMG [OMG05a]. If a modelling technique is
based on a MOF-compliant metamodel, then a UML Profile may be easily created,
because UML offers a mechanism to extend and adapt its metamodel to a specific
area of application. A profile extends a metamodel or another profile [OMG05c]
while preserving the syntax and semantic of existing UML elements. It adds ele-
ments which extend existing classes, and consists of stereotypes, constraints and
tagged values. A stereotype is a model element defined by its name and by the base
class(es) to which it is assigned. Base classes are usually metaclasses from the UML
metamodel, but may also be stereotypes from another profile. In this profile the

85

5 Linking Business Processes with Software Elements and Variabilities

different stereotypes are based on the metaclass ”Class”. Furthermore, a stereotype
may have its own notation, e.g., a special icon.

5.3.2.1 Extended metamodel with variabilities

A UML 2 class diagram describes the structure of a system that needs to be de-
signed. It shows the main static properties as well as the relationship among each
other. However it has no mechanism showing the variabilities of a system. There-
fore, a subset of the metamodel for class diagrams is used as metaclasses to define
a UML 2 profile for Variability Models introducing variability concepts in UML.
Figure 5.5 illustrates a section of the UML metamodel for Classes and its extension
with stereotypes for representing variation points, variants, and their relationships
among each other. The triangle at associations marks the direction of reading a re-
lationship between the metaclasses. The stereotypes are shown as grey rectangles.
Furthermore we use the icons of the variability model of Pohl et al. [PBvdL05] for
presenting the UML profile graphically.

Figure 5.5: Extended UML Class Metamodel with Variabilities

5.3.2.2 Description of stereotypes

In a variability model a!variation point"marks out the different sets of options of
a model. The OMG defines a class as “a set of objects that share the same specifi-
cations of features, constraints, and semantics. The purpose of a class is to specify
a classification of objects and to specify the features that characterize the structure

86

5 Linking Business Processes with Software Elements and Variabilities

and behavior of those objects.” [OMG05c]. A class is the appropriate metaclass
for describing the stereotype !variation point" and its characteristics, because a
variation point describes common properties of instances. Furthermore a subclass
is a child from another class in a generalization relationship. A subclass inherits the
structure, relationship and behaviour of its superclass and may add to it. The stereo-
type !variant" is a representation of a particular instance, and thus it represents
an extension of the subclass of a class.

The different variability dependencies of a variability model, namely
!mandatory",!optional", and!alternative choice" extend the metaclasses gener-
alisation and generalisationSet to describe these different types of stereotypes. Table
5.1 shows the different characteristics of variability dependencies with their mul-
tiplicities. Moreover, table 5.1 shows how the variabilities are described with the
appropriate generalisationSet corresponding to the UML profile including examples
for each type. A generalisation is defined as a taxonomic relationship between a
more general classifier and a more specific classifier, for example from a class to its
superclass [OMG05c]. Each instance of the specific classifier is also an indirect in-
stance of the general classifier. Thus, the specific classifier inherits the features of
the more general classifier. A generalisationSet defines a specific set of generalisation
relationships. The metaclass generalisationSet describes how a general classifier (or
superclass) may be divided into specific subtypes. Furthermore it has two metaat-
tributes with boolean values, namely isCovering and isDisjoint. If isCovering is true,
the generalisation set is complete, otherwise it is incomplete. If isDisjoint is true, the
generalisation set is disjoint, otherwise it is overlapping. When isCovering is true,
every instance of an superclass has to be an instance of at least one of its subclasses
at the same time. If isDisjoint is true, every instance of a superclass corresponds
only to one subclass. The overall multiplicity for the couple {complete, disjoint} is
1. This is equal to the multiplicity of the mandatory relationship. This means if a
variant has a mandatory relationship with a variation point, the variation point has
to select the variant.

The example in table 5.1 shows that a door lock can only be opened if a finger-
print and an eye-scan are accomplished. If isCovering is false, then a superclass
can have more instances that do not correspond to the declared subclasses and the
overall multiplicity for {incomplete, disjoint} is 0 to 1. This means that for example
the color of a car may be either red or blue, or may have a different color. The alter-

87

5 Linking Business Processes with Software Elements and Variabilities

Table 5.1: variability dependency and generalisation set

var. dep. mult. generalisation set Class Diagram UML Profile

Mandatory 1 {complete, disjoint}

Alternative 0..1 {incomplete, disjoint}

Alternative 1..* {complete, overlapping}

Optional 0..* {incomplete, overlapping}

native choice expresses this fact, because in such a relationship a group of variants
may but does not need to be a part of the business process. If isDisjoint is false,
an instance of a superclass may have more then one related subclasses. The com-
bination {complete, overlapping} is on a par with the alternative choice with the
multiplicity 1 to *. This means a variation point has to select at least one variant.
For example, a calendar entry can be a todo list, a date reminder or both. The op-
tional variability dependency defines that a variation point may select none, one or
more variants, which conforms to the multiplicity 0..*. The generalisation couple
{complete, overlapping} matches to the optional variability. An example is that an
operating system installed on a computer may be Win XP or Mac OS X, both of
them, or a different one.

The variability constraint dependencies!requires" and!excludes" between
the stereotypes !variation point" and !variation point", !variation point"
and !variant", as well as !variant" and !variant" are defined by the meta-
class dependency. A dependency denotes that an element, called client, is depen-
dent on another element, called supplier. The client depends on the model ele-

88

5 Linking Business Processes with Software Elements and Variabilities

ment of the supplier, e.g. for its specification or implementation. Dependencies
are shown as dashed arrows, whereas the model element at the tail of the arrow
(the client) depends on the model element at the arrowhead (the supplier). The
!requires" stereotype defines that a client needs the consideration of a supplier.
The !excludes" stereotype declares that a client excepts the consideration of a
supplier.

5.3.3 Constraints

The tables 5.2, 5.3, 5.4, 5.5, and 5.6 show the different constraints in OCL with ex-
planations in natural language for the stereotypes!Variation Point",!Variant",
!Mandatory",!Optional",!Alternative Choice",!Requires" and
!Excludes".

The stereotypes !Variation Point" and !Variant" are described in table 5.2.
Both stereotypes are based on the metaclass Class. However, both stereotypes need
different characteristics of their baseclass. !Variation Point" reflects a superclass,
while a!Variant" represents a subclass, because a!Variant" is a specialisation
of a!Variation Point".
!Mandatory",!Optional" and!Alternative Choice" describe the different

relationships between a !Variation Point" and a !Variant". The baseclass of
these three stereotypes is GeneralisationSet. The baseclass has two attributes, namely
isCovering and isDisjoint with boolean value. If a variation point and a variant are
connected by a mandatory relationship (see table 5.3), then the attributes have the
value complete and disjoint according to the UML 2 Superstructure [OMG05c].

An optional variability dependency states that a variant can but does not need
to be a part of a variability model. The dependency is described by the couple
{incomplete, overlapping}.

An alternative choice as shown in table 5.5 offers the possibility to define the min-
imum and the maximum number of optional variants to be selected from a given
group of variants. The couple {incomplete, disjoint} describes the multiplicity 1,
and the couple {complete, overlapping} the multiplicity 1 to many.
!Requires" and !Excludes" describe the different meanings of their base-

class Dependency. If !Requires" is chosen, a variability is required. In contrary,
if!Excludes" is chosen, then a variability is excluded.

89

5 Linking Business Processes with Software Elements and Variabilities

Table 5.2: Stereotype Definitions for!Variation Point" and!Variant"

Name Variation Point
Base class Class
Description A variation point is a representation of a variable item of the real

world.
Constraints A variation point must have a superclass as a baseclass which is a

role of a class.
context Variation Point inv:
class.superclass=true implies variation point

Name Variant
Base class Class
Description A Variant is a representation of a particular instance of the stereotype

variation point.
Constraints A variant must not have a superclass as a baseclass which is a role of

a class.
context Variant inv:
class.superclass=false implies variant

Table 5.3: Stereotype Definition for!Mandatory"

Name Mandatory
Base class GeneralisationSet
Description A variant must be selected for an business process if and only if the

associated variation point is part of the business process.
Constraints If the variability dependency is mandatory, then metaattributes is-

Covering and isDisjoint of the metaclass GeneralisationSet are true.
context Variability Dependency inv:
if self.Mandatory=true then
self.GeneralisationSet.isCovering=true and
GeneralisationSet.isDisjoint=true

5.3.4 Showing the dependency between Variability Models and UML 2
Activity Diagrams

Variability models show the different variabilities of a software. Activity Diagrams
are a part of the behavioural set of UML 2 diagrams, and are used for modelling

90

5 Linking Business Processes with Software Elements and Variabilities

Table 5.4: Stereotype Definition for!Optional"

Name Optional
Base class GeneralisationSet
Description A variant can but does not need to be part of a business process.
Constraints If the variability dependency is optional, then metaattributes isCov-

ering and isDisjoint of the metaclass GeneralisationSet are false.
context Variability Dependency inv:
if self.Optional=true then
self.GeneralisationSet.isCovering=false and
isDisjoint=false

business processes as well as for describing control flows in software.
On the one hand side variability models show the different variabilities of a soft-

ware, and on the other hand side UML 2 Activity Diagrams show the control and
data flow between different tasks according to the software system an activity dia-
gram has to describe. It follows that the two modelling techniques focus on similar
concepts from different perspectives. Accordingly, a mapping between these meta-
models to find out in which way they are related to each other is needed. Table 5.7
shows the related elements, with the variability metamodel on the left hand side
and the activity metamodel on the right hand side.

A variant is mapped to an action, because both describe the atomic tasks of their
metamodel. Due the fact that an activity partition is a kind of activity group for
identifying actions that have some characteristic in common, it is mapped to a vari-
ation point, because it describes common properties of variants.

The optional variability dependency defines that a variation point may select none,
one or more variants. Therefore this variability dependency maps to a fork node
which splits one incoming flow in several concurrent outgoing flows and a join
node, which synchronizes the several incoming flows. Additional guards on the
flows indicate wether none, one, or more paths are selected. The additional guards
are needed in our mapping, because if in an activity diagram no path is selected,
the business process is terminated. An user must define an additional control flow
to overcome this gap.

The mapping of the alternative choice to an appropriate element of the activity
diagram depends on the range of the variability dependency. If the range is 1 to

91

5 Linking Business Processes with Software Elements and Variabilities

Table 5.5: Stereotype Definition for!Alternative Choice"

Name Alternative Choice
Base class GeneralisationSet
Description The alternative choice groups a set of variants that are related

through an optional variability dependency to the same variation
point and defines the range for the amount of optional variants to be
selected for this group.

Tagged V. min, max
Type: UML::Datatypes::Integer
Multiplicity: 1
Description: Min and max stands for the range of a relationship

between variation points and variants.
Constraints If the variability dependency is an Alternative Choice and the range

is or smaller then 1, then the metaattribute isCovering is false and is-
Disjoint is true of the metaclass GeneralisationSet. Else if the tagged
values of the alternative choice are min = 1 and max = n, then then
the metaattribute isCovering is true and isDisjoint is false of the
metaclass GeneralisationSet.
context Variability Dependency inv:
if self.Alternative Choice=true and size()=<1
then self.GeneralisationSet.isCovering=false and
isDisjoint=true
else if self.AlternativeChoice=true and
self.AlternativeChoice.min=1 and
self.Alternative.max=n then
self.GeneralisationSet.isCovering=true and
GeneralisationSet.isDisjoint=false

*, then the alternative choice is mapped to a fork node starting concurrent flows,
and closed by a join node for sychronisation of the incoming flows. Furthermore
additional guards on the flows specify if one or more paths will be selected. If
the range is 0 to 1, then the alternative choice is mapped to a decision node with
guareds ensuring that at most one outgoing edge will be selected. Furthermore, a
merge node brings together the alternate flows.

The requires and the excludes constraint dependency are both mapped to the con-

92

5 Linking Business Processes with Software Elements and Variabilities

Table 5.6: Stereotype Definitions for!Requires", and!Excludes"

Name Requires
Base class Dependency
Description The selection of a variability requires the selection of another vari-

ability.
Name Excludes
Base class Dependency
Description The selection of a variability excludes the consideration of another

variability.

Table 5.7: Dependencies between Variability Models and UML 2 Activity Diagrams

Left MM Class Right MM Class
Variation Point Activity Partition
Variant Action
Mandatory Fork Node - Join Node
Optional Fork Node - Join Node
Alternative Choice [1..*] Fork Node - Join Node
Alternative Choice [0..1] Decision Node - Merge Node
requires Control Flow
excludes Control Flow - Decision Node

trol flow, independent from the fact if the dependency is between variants, varia-
tion points, or variants and variation points, because these elements are mapped
as described above. Furthermore the excludes constraint dependency needs for its
mapping to activity diagrams a decision node that the action that should be avoided
cannot be executed.

5.3.5 Applying the UML Profile to an Example Business Process

The UML profile for variability models and the mapping to activity diagrams is
shown in figure 5.6 with an example business process for an easier understanding
of our approach. This example business process is part of the inventory process of
a real international logistic company.

The variation point inventory accomplishment distinguishes between two types of

93

5 Linking Business Processes with Software Elements and Variabilities

inventory, permanent inventory and periodical inventory. An inventory accomplish-
ment may be a permanent or a periodical inventory or both of them, when the two
procedures overlap. Our example process focuses on the variant of the periodical
inventory. It requires the variation point base of inventory, which has a mandatory
relationship to the variant inventory requirements. The inventory requirements need
the variation points inventory records, behaviour of logistics execution and generation of
appointment for further processing. For the generation of appointment the number
of positions of the inventory goods may, but need not be used. The behaviour of
the logistics execution depends on wether a printing device or an electronic device or
both of them is required. The variant printing device needs a special type of an in-
ventory record, namely list, and the variant electronic device needs radio for further
processing.

As the activity diagram example on the left hand side of figure 5.6 shows, every
variation point of the right hand side of figure 5.6 has its corresponding activity par-
tition, and every variant has its corresponding action. The whole business process
is covered by the activity partition inventory accomplishment, which corresponds
to the root variation point of the variability model. The activity diagram starts with
the action creating periodical inventory work order, followed by examining inventory re-
quirements. Both are part of the activity partition base of the inventory, because the
action creating periodical inventory work order requires the base of the inventory. If it
is selected, then the inventory requirements continues with further processing. Af-
ter that one may choose whether the input of the number of positions of the inventory
goods is needed or not, which is part of the generation of appointment. Afterwards the
process continues with the decision wether the behaviour of logistics execution process
proceeds with the processing the inventory charge, with printing devices, or electronic de-
vices or both of them. The process ends with the processing of the inventory records. If
the inventory was made with radio support, the action acquire of manual or electronic
inventory records executes. Else the action acquire of manual inventory records finishes
the business process. But if the inventory was made with radio and list support,
then both actions execute.

94

5 Linking Business Processes with Software Elements and Variabilities

Figure 5.6: Example of a UML Profile for Variability Models and the Mapping to Business Processes

95

6 Related Work

6.1 Introduction

Contents
6.1 Introduction . 96
6.2 Evaluation . 97
6.3 Performance Measures in Business Processes 100
6.4 Mapping BPMLs to BPEL . 102
6.5 Linking Software Systems with Business Processes 103

There are a lot of approaches in the wide area of business process modelling lan-
guages. Their main goal is always extending and improving existing languages.
Before an extension is possible, an evaluation is needed for knowing which parts
of a BPML have the potential for improvement. There exist many frameworks with
different perspectives for evaluating a language. On the one hand side the authors
develop a metamodel and compare the languages with this metamodel. On the
other hand, these frameworks are based on metamodels. On the other hand, they
are based on a pattern approach. A summary of the most relevant evaluation con-
cepts is presented in subsection 6.2.

Business process performance measurement is an important topic in research and
industry, but the main focus of conceptual BPMLs is organizing the flow with its
tasks of a business process, but not the explicit modeling of process goals and their
measures (see subsection 2.4) of a language. An excerpt of approaches to integrate
business process goals and their measures in a BPMLs is shown in subsection 6.3.

Although business processes are often the starting point for software develop-
ment and define requirements for software systems, linking business processes with
software elements is inadequately supported in conceptual modelling. On the on
hand side it is not possible to show software requirements or components which

6 Related Work

have an influence on a BPML. On the other hand side it is not possible to show the
variabilities of a BPML. A section of relevant approaches that want to solve these
gaps is presented in subsection 6.5.

6.2 Evaluation

A number of publications on the evaluation of BPMLs is available. They evaluate
a very limited number of BPMLs. The evaluation concepts are mainly based on
metamodels representing a very technical perspective. We address these limitations
with a comprehensive metamodel and the evaluation of six state-of-the-art BPMLs.

Söderström et al. developed a generic metamodel for comparing BPMLs in
[SAJ+02]. The metamodel shows technical concepts of business processes, and cap-
tures a definition and an execution level similar to workflow management systems.
Events and control nodes are defined in detail, but roles and resources are described
at a very high level. The paper compares only three different BPMLs: the EPC, the
UML 1.3 State Diagram and the Business Modelling Language, the BPML of a com-
mercial tool.

The authors in [SAJ+02] declared that the increasing interest in process engineer-
ing and application integration has resulted in the appearance of various new pro-
cess modelling languages. To solve the problems of understanding and compar-
ing the high amount of different languages, Söderström et al. developed a generic
metamodel. The framework is useful for several purposes, for instance for translat-
ing between languages or verifying that certain aspects of an language have been
considered. Three different process modelling languages have been compared for
validating the framework. These Languages are the Business Modelling Language
(BML), the Event-driven Process Chains (EPC) and UML State Diagrams.

The framework consists of a general process metamodel, an analysis of the event
concept, and a classification of concepts according to the interrogative pronouns:
what, how, why, who, when, and where.

The main elements of the framework are activity, state, event, and time point.
They are defined as follows: An activity is a performance of a task and can change
a state. A time point is an instant in time, and not further decomposable. An event
is a occurrence. The focus lies on event, it connects states and activities in time. The
authors discusses three different event types, namely time point events vs. time

97

6 Related Work

duration events, pre-activity events vs post-activity events and state change events
vs. no state change events. Furthermore Söderström et al. argued that different
types of events are used in different BPMLs.

The metamodel is divided in two ways. On the one hand side the metamodel dis-
tinguishes between a type and an instance level. On the other hand side the meta-
model elements are separated through the interrogative pronouns. On the type
level, we find activity, resource, role and logical dependencies between activities.
On the instance level, we find event, state, actor, and temporal dependencies be-
tween events.

Compared to our generic metamodel, the metamodel of Söderström et al. is not
presented in a well known modelling language, like UML 2 class diagrams. For
describing their metamodel the authors used an own modeling notation which is
not clearly defined in their work. Therefore the taxonomic relationships between
the metaclasses are not obvious. Furthermore events and control nodes are defined
in detail, but roles and resources are described at a very high level.

Lin et al. analysed 10 BPMLs in [LYP02] and derived eight generic concepts:
activity, resource, behaviour, event, information, relation, agent and entity. This
bottom-up approach requires more detail for an evaluation of BPMLs, as the basic
concepts are represented in all BPMLs.

The authors proposes a generic structure for modeling business processes. Lin et
al. compares various BPM (Business Process Modeling) methods in order to elicit
generic features from these BPM methods. Furthermore the authors developed a
generic BPM method, which utilizes essential components of process representa-
tion and incorporate other functions. The generic structure offers two main fea-
tures. At first, it represents a business process in various concerns and multiple
layers of abstraction. Second, it lowers the barriers between process representation
and model analysis by embedding verification and validation with the model. Lin et
al. examined 10 BPMLs for detecting the main BPM methods for those languages.
The languages were IDEF0, IDEF1, IDEF1X, IDEF3, RAD, REAL (acronym for re-
sources, events, agents and locations), Dynamic Modeling, Object- Oriented Mod-
eling (OO), AI and MAIS (multi-agent information system). The essential concepts
the authors identified are: activity, behaviour, resource, relation, agent, information,
entity, event, verification and validation.

The authors compared the BPML in two ways. On the one hand side they com-

98

6 Related Work

pared if the languages fulfill the perspectives of Curtis [CKO92]. Furthermore Lin
et al. extended the perspectives with verfication and modeling procedures. On the
other hand side the methods of the languages were compared against the perspec-
tives of Curtis.

This bottom-up approach requires more detail for an evaluation of BPMLs, as the
basic concepts are represented in all BPMLs. Therefore the languages are examined
on a high level. Furthermore the authors did not examine well known languages,
like UML 2 AD or EPC.

UML 2 Activity Diagrams are evaluated by Wohed et al. based on workflow
control flow patterns in [WvdAD+05]. These patterns are very detailed by nature
and focus on the execution of business processes. Concepts that target business
users, like traditional resources or goals are not addressed at all.

Wohed et al. examined the Activity Diagrams notation for collecting patterns.
The patterns were used for evaluating control flow capabilities of BPMLs. The anal-
ysis tries to find out the strengths and weakness of control flow specifications in
Activity Diagrams. Furthermore the pattern-based analysis detect some of the am-
biguities in the current UML 2.0 specification.

For providing a fine-grained analysis the authors have chosen a specialised eval-
uation framework, namely the workflow patterns of Aalst et al. In this analysis
YAWL (Yet Another Workflow Language) is used as a reference realisation of the
patterns (where appropriate). YAWL provides a reference formalisation for the
control-flow patterns.

The first seven control-flow patterns, namely Sequence, Parallel Split, Synchroni-
sation, Exclusive Choice, Simple Merge, Multiple Choice, and Multiple Merge are
directly supported in UML AD. The first five of these patterns are supported by
basically all process modelling and description languages and they correspond to
control-flow constructs defined by the Workflow Management Coalition [Wor98].
Furthermore the Deferred Choice, Cancellation Patterns, Structural Patterns, Arbi-
trary Cycles and Implicit Termination are captured in UML 2 AD. The Synchronis-
ing Merge pattern and the Milestone pattern are not supported. Furthermore Mul-
tiple Instances Patterns, Interleaved Parallel Routing and Discriminator are indirect
supported.

The pattern analysis of Wohed et al. is very detailed by nature and focuses on the
execution of business processes. Concepts that target business users, like traditional

99

6 Related Work

resources or goals are not addressed at all.

Mendling et al. address the heterogeneity of business process interchange for-
mats in [MNN04]. The authors argued that a commonly accepted interchange for-
mat is needed to import business process into different tools.

The work of Mendling et al. identified the superset of high-level concepts covered
in metamodels of various proposals for interchange formats. From the analysis of
fifteen specifications they gathered the following list of thirteen high-level meta-
model concepts: Task I/O, Task Address, Quality Attributes, Task Protocol, Con-
trol Flow, Data Handling, Instance Identity, Roles, Events, Exceptions, Transactions,
Graphic Position, and Statistical Data.

The thirteen metamodel concepts are compared with fifteen different business
process modelling interchange format proposals. A couple of these interchange
formats are BPEL4WS, BPMN, BPSS (Business Process Specification Schema) and
WSCI (Web Service Choreography Interface). The interchange formats are used in at
least four different areas of application, namely Composition, Choreography, Busi-
ness Analysis, Formal Analysis.

The authors proposed their classification as a framework for comparing the com-
pleteness of BPM interchange formats. It serves as a first step towards a reference
model for BPM that unifies the different perspectives. Though the metamodel el-
ements are very technical (e.g. instance, identity, events, exceptions, transactions,
task address) and have a strong focus on the execution of business processes.

6.3 Performance Measures in Business Processes

The related work discusses the different approaches that focus on different aspects
of the quantification of performance measures and business process goals.

Aguilar et al. [ARGP06] developed a set of measures to evaluate the structural
complexity of business process models on a conceptual level. The authors use the
Business Process Modeling Notation (BPMN) [OMG06a] for their evaluation. The
base measures consist of counting the business process models significant elements.
The work is based on the proposal FMESP (Framework for the Modeling and Eval-
uation of Software Processes). The proposal defines a set of measures to evaluate
software process models at two levels. The first level models the scope to evaluate
the overall structural complexity of the model. The second level models the core

100

6 Related Work

elements scope, to evaluate the concrete complexity of fundamentals elements such
as activities, roles or work products. In FMESP the main goal is to choose a set
of indicators that are useful in the maintenance of software process models by the
evaluation of their structural complexity. In order to achieve that goal the authors
adapted and extended FMESP to business process models, which are represented
with BPMN. Furthermore when all measures are defined, it is possible to evalu-
ate the structural complexity of business process models developed with BPMN.
The evaluation of performance measure like time or costs is not important for their
work, the focus lies on measuring the core elements of BPMN.

The approach of Vitolins [Vit04] is based on metamodeling according to the Meta
Object Facility (MOF) [OMG05a]. The author provides a metamodel with typical
process measures for UML 2 activity diagram-like notation. The work of Vitolins
is defined by different abstraction layers, which define aspects of business process
measures. The M1 layer is represented by an activity diagram extended by mea-
sures as well as a class diagram defining the measure view of the same example.
M2 presents the metamodel which shows common possibilities and features for
business process models. At M3 the meta-metamodel outlines a universal frame-
work for measure definition. Furthermore the metamodel at M2 can be used as an
instance of M3. The author argued that the metamodel can be used as a unified
framework for the development of comprehensive business modelling and mea-
surement tools. As a contrast to our work, the author annotates cost and time to
each action separately as a note. Therefore the activity diagrams looses its clarity
and explicitness. Furthermore there are no considerations to integrate the perfor-
mance measures more tightly into the activity diagrams.

Nurcan et al. [NEK+05] adopted a goal-perspective, the map-driven process
modelling approach, to master the complexity of process modelling. The map-
driven process modelling approach defines a business process in terms of gaols and
strategies of reaching these goals. The map representation system conforms to goal
models in the fact that it recognises the concept of a goal but departs from those
by introducing the concept of strategy to attain a goal. Each strategy can be refined
by representing it in goal-strategy terms of the next level of details. Furthermore
the authors adopted the two levels hierarchical spiral process model. The reason
for that is to support the propagation of the intentional changes onto operational
ones, since a business and its supporting system change in a concurrent way. The

101

6 Related Work

intentional spiral deals with the production of the business process models using
the map formalism. The operational spiral deals with the specifications of the sup-
porting systems. The work of Nurcan et al. is situated on a higher level than our
work. While Nurcan et al. adopted a common approach, namely the map-driven
process modelling approach for mastering the complexity of process modelling, we
integrate business process goals and their measures in concrete BPMLs.

Neiger et al. [NC04] focus on the problem that business process management
frameworks are able to represent various aspects of the business process, but they
do not meet the requirements of goal-oriented business process modelling. In a pre-
vious work the authors examined the i* framework, the ”value focused thinking”
(VFT) framework and EPC to derive the requirements of goal-oriented business pro-
cess modelling of these modelling technics. A conceptual model that describes the-
ses requirements at an intuitive level was proposed in [NC03]. In this work the
authors introduce a formal syntax for describing the EPC and the VFT goal model.
As a next step, the authors establish links recorded in the formal syntax between
EPCs and its additional goals with the VFT framework to address the gaps in the
existing frameworks and tools. Compared to our work, Neiger et al. focus on busi-
ness process goals, without looking at the measurement of the goals.

Anderson et al. [ABJP05] developed a formal definition of goal-oriented business
process patterns for making a formal comparison of business processes. The paper
analyzes widespread modelling technics to discover which of them are able to build
patterns for comparison. Based on this analysis the state-flow modeling technique
is chosen as a foundation for defining business process patterns. In this approach
a business process described as a trajectory in a specially constructed multidimen-
sional state space, and not as sequence of activities. Therefore a pattern is defined
as a three component entity: state space, goal, and valid movements in state space.
This approach is very high level, because the authors focus on business processes,
and not on a specific business process modeling language.

6.4 Mapping BPMLs to BPEL

Bordbar et al. [BS04] present a transformation of the UML 2 Activity Diagram to
BPEL. The authors show the behavioural aspects of web services by using a meta-
model based on MOF [OMG05a] for BPEL. The work presents model transforma-

102

6 Related Work

tion by example. The UML Activity Diagram is the source metamodel, and the
target model is BPEL. First, an UML 2 activity diagram example of a Stock Quote
Process is shown. Second, the authors refined the example diagram with stereo-
typed actions from the UML 2 superstructure to define the diagram more precisely.
Third, the stereotyped actions are mapped to its conforming BPEL tags. Since the
example did not include all BPEL tags, the mapping is not completed. The map-
ping is made manually by a table and the transformation rules are expressed in
OCL. This work used OCL as a transformation language adapted from [KWB03] at
a time where no standard language for writing transformation definition existed.
We use in section 4 the mapping from the stereotyped actions to the BPEL-tags as a
basis for our transformation.

Gardner et al. [GAGI03] show a UML Profile for Automated Business Processes
which enables BPEL processes to be modelled using an existing UML tool. The au-
thors introduced a UML profile which supports modelling with a set of semantic
constructs that correspond to those in the Business Process Execution Language for
Web Services. Furthermore the authors describe a mapping to BPEL to automati-
cally generate web service artefacts (BPEL, WSDL, XSD)from a UML model meeting
the profile. The approach enables service-oriented BPEL4WS com- ponents to be
incorporated into an overall system design utilizing existing software engineering
practices. The mapping from UML to BPEL4WS permits a model-driven develop-
ment approach in which BPEL4WS executable processes can be automatically gen-
erated from UML models. This work is out of date, because of the old UML version
1.4 and BPEL 1.0.

6.5 Linking Software Systems with Business Processes

There are quite a lot of conceptual Business Process Modelling Languages (BPMLs)
and UML profiles for business process modelling available. They focus primarily on
the sequential flow of the business process and do not integrate software elements
(see subsection 2.4).

Tyndale et al. [BSWS02] focus in their work onto the COMBINE Project. This
project has the goal to improve software development productivity by providing a
holistic approach to component-based development of Enterprise systems. The au-
thors want to reach their goal by identifying a coherent minimum set of modelling

103

6 Related Work

concepts and discovering a way of representing these in UML. A business model
in the COMBINE project consists of seven work products. Context statement, vi-
sion statement, risk analysis belong belong to the informal work products. Goal
model, business process and role model, business resource model as well as busi-
ness component model are a set of linked rigorous models expressible in UML 1.4.
The paper describes a conceptual business metamodel which contains a minimum
set of metaclasses to describe the seven work products and their relations. Based
on that metamodel, Tyndale et al. develop a UML profile. It shows the integration
of business processes and software development from an industry perspective by
mapping business concepts to software artefacts.

The UML profile for Business Modelling in [SVC+01] of Sinogas et al. is focus-
ing on the integration of business processes into software development. The profile
maps between business concepts and software artefacts. This profile is located at
the level M2, and it is an end user specific profile. The UML Profile for Business
Modeling present in UML 1.4 uses actors and introduces the stereotypes worker,
case worker, internal worker and entity. Therefore, the profile describes the pro-
cess flow in a very a detailed way, and in addition it adds processes, goals, and re-
sources. The global metamodel which serves as a foundation for the profile shows
the relation of the model elements. It is possible to decompose processes, goals and
resources. The process stereotype is also connected to an activity state to allow the
modeler to express parts of the business process in a UML Activity Graph. Com-
pared to our approach the UML profile from Sinogas et is presented from a high
level, since it lacks in integrating more advanced concepts like customers, process
types or process owners. Furthermore a possibility to measure the business process
is not integrated in the profile.

There are a lot of approaches in the global area of variability modelling available,
and a few of them will be presented now.

Rosemann et al. [RvdA07] want to solve the problem that most Enterprise Sys-
tems (ES) solutions provide reference models that describe the functionality and
structure of the system, but they do not capture the potential configuration alter-
natives. The authors define reference models as reusable conceptual models that
depict recommended structures and processes. Rosemann et al. proposed in their
work configurable Event-Driven Process Chains as an extended reference modelling
language. This approach allows to capture the core configuration patterns of Dreil-

104

6 Related Work

ing et al. [DRvdA+07] by introducing configurable elements into the Event-Driven
Process Chains. Furthermore the approach of Rosemann et al. allows that the pro-
posed extensions may be easily adapted to other modelling techniques (e.g. UML
or Petri Nets). The difference between our approach and the approach of Rosemann
et al. is, that we do not want do describe the configurability of a certain business
process modelling language, because we want to show how the configurability of a
software process can be mapped to its business process, which describes the control
flow of the software.

Clauss [Cla01] address to the problem that on the one hand side modeling vari-
abilities is a key element in developing product families and product lines, but there
is no uniform and consistent notation for modeling variabilities and commonalities
available. On the other hand side UML is able to model a wide range of software
systems, but it is not useful for modeling groups of related systems which are for
product families. The author introduces a UML extension to support feature di-
agrams which are an extension for the explicit representation of variation points,
and adds elements describing variability in the standard kinds of UML diagrams.
The extensions use the standardized extension mechanisms of UML. Therefore the
extensions are fully compatible with the standard and enable a broader usability.
The distinction between our work and the work of Clauss is that Clauss integrates
feature models in UML diagrams like the Use Case Diagram, whereas our approach
extends the UML metamodel to integrate variability models as a independent mod-
elling language into UML.

Becker argued in his work [Bec03] that the increasing amount of variability in
software systems leads to a situation where the complexity of variability manage-
ment becomes a primary concern during software development. On the one hand
side methodic support to analyze and specify variability on an abstract level is al-
ready available. On the other hand side corresponding support on realization level
is still lacking. The goal of this paper is to introduce more efficient approaches to
manage variability. Becker [Bec03] developed a general metamodel for variability
models on an examination of the most common concepts in variability modelling.
Furthermore the authors developed an own language to specify variability, the so
called Variability Specification Language (VSL). The advantage of VSL is that it is a
XML-based language that can be applied in a broad range of documents and thus
allows to handle variability in a uniform manner. The work of Becker is specified

105

6 Related Work

on a high-level, while our approach goes with the development of an UML-profile
and the mapping to a business process modelling language more in detail.

Ziadi et al. [ZHJ03] want to solve the gap that managing variability in software
systems is still a problem. that The authors propose a UML profile for software
product lines that should allow the description of variability of product models. In
this case the UML models should be considered as reference models from which
product models can be derived and created. The authors also propose an extension
for class diagrams and an extension for sequence diagrams, but they did not well
picked the appropriate stereotypes for the profile. For instance the authors chose
classifier, package and feature as a metaclass for the !optional" stereotype. The
problem here is that these metaclasses did not have the semantics to be the metaclass
for a dependency relationship.

106

7 Conclusion

Business Process Modelling Languages (BPMLs) differ in the extent of describing
different aspects of a business process case. This leads to a couple of problems. This
section presents a short overview of these problems, and summarizes solutions that
have been worked out in this thesis.

Section 2 discusses the evaluation of six well-known conceptual Business Process
Modelling Languages (BPMLs). It shows which aspects of processes (e.g. activities,
roles, interactions, data, etc.) are expressed in each BPML and which ones are not
supported.

Although BPMLs have been widely used in research and industry, a comprehen-
sive comparison is missing. Also, a general framework for an evaluation of BPMLs
is not available. In order to overcome this gap, a generic metamodel was proposed
in section 2. It captures a wide range of business process concepts, because meta-
models represent the core concepts of BPMLs and are a good foundation for an eval-
uation. This metamodel is derived from business process theory [Ham96] [Har91]
[JEJ94] [Mar95] and well-established industry and research concepts.

Based on this metamodel, six BPMLs were evaluated, namely UML 2 Activity Di-
agram (UML 2 AD), Eventdriven Process Chain (EPC), Business Process Modelling
Notation (BPMN), Integrated Definition Method 3 (IDEF3), Role Activity Diagram
(RAD), and Petri Nets. The metamodel was categorised according to four perspec-
tives: organisational, functional, behavioural, and informational. These four per-
spectives were extended with the business process context perspective in order to
address context information, like process goals or their measures. Basically, the
functional and the behavioural perspectives are very well represented in all BPMLs,
while the organisational and informational perspectives are only partly supported,
and business process context is not explicitly supported.

Section 3 discussed the problem that in general the main focus of conceptual
business process modelling languages (BPMLs) is organizing the control flow of

7 Conclusion

tasks of a business process. Usually the explicit modelling of process goals and
their measures (see section 2.4) is not addressed in BPMLs. . To solve this gap, the
BPMLs UML 2 AD, BPMN, and EPC were extended with business process goals
and performance measures. For this challenge different mechanisms are used. At
UML 2 Activity Diagrams a UML profile was created, and at the EPC a new view
was introduced, as well as at BPMN a new category was established.

We have designed a UML 2 profile for integrating business process goals and per-
formance measures into UML 2 Activity Diagrams. The profile provides an explicit
illustration of the performance measures time, cost, and quality. Furthermore, it is
possible to show the goals a business process must achieve, as well as the organi-
sational structure that is concerned with alerts that belong to a measure. In order
to capture these characteristics, we have extended the UML 2 metamodel for Ac-
tivity Diagrams, and described them by the stereotypes of our UML 2 profile for
performance measures and goals.

EPC as well as BPMN belong to the most famous languages, but both are not
able to represent performance measures. In contrast to UML 2 AD, BPMN has no
specific metamodel, it defines only a mapping to the Business Process Definition
Metamodel (BPDM) [OMG07a]. BPDM provides a general process modeling meta-
model that supports the BPMN notation. As explained in section 2 the EPC consists
of different views. The EPC provides for each view a metamodel, but not an in-
tegrated metamodel that interconnects the related views. A metamodel for EPC
and a metamodel for BPMN was defined. Both metamodels are based on the Meta-
Object Facility (MOF), the OMG’s meta-metamodel [OMG05a]. The metamodels
with its extension were presented for integrating business process goals into these
languages.

Furthermore the performance measures time, cost, and quality are integrated into
defined metamodel, because without measuring the process goals it is not possible
to assess if a goal is fulfilled or not. These extensions better illustrate the require-
ments of a certain business process and enhance the expressiveness of a model. Fur-
thermore the organisational structure, a concept that is already available in EPCs, is
integrated in BPMN and UML 2 AD.

Section 4 defined a mapping between the UML profile for performance measures
and goals and BPEL for establishing a basis to transform a specific business process
modelling language and its conceptually described performance measures to an

108

7 Conclusion

execution language as well as to monitor the process instances continuously.
This described approach consists of two main steps. First, the UML 2 profile for

performance measures and goals is annoted with stereotyped actions, and mapped
to BPEL which is shown by a graphically described example. The performance mea-
sures cost and quality are not mapped to BPEL, because our approach focusses on
the instance level of a business process and not on the type level. Furthermore cost
and quality cannot be shown in BPEL, because their are not part of BPEL. Second,
the mapping of the UML Profile to BPEL is defined as a UML Profile in eclipse.
Thus we provide a foundation for transforming the UML profile to BPEL code with
eclipse.

Section 5 focused on the problem that linking business processes with software
elements is inadequately supported in business process modelling. On the one hand
side it is not possible to show software requirements or components which have an
influence on a BPML. On the other hand side it is not possible to show the variabil-
ities of a BPML.

In this section the UML 2 profile for EPCs by [KL06] was connected with UML
2 elements representing software for integrating software requirements and com-
ponents into a BPML. The goal was to support the connection between business
processes and software systems, as well as providing business process models to
software developers in a well known notation. Stereotyped actions were linked
with use cases as well as with components by the means of dependencies. Use cases
address the elicitation of software requirements supporting an action. Components
represent the software systems an action requires for its further processing.

Variability models are designed for modelling variabilities of a software. A vari-
ability model defines the variability of a software product line and is used during
the different life cycle stages of software product lines [PBvdL05]. Variability mod-
elling is a domain specific modelling technique, that is becoming more and more
integrated into traditional software engineering. Variability models also have an
impact on processes, because variabilities may change the process flow. Unfortu-
nately they are not part of a well-known modelling framework for a higher usability,
like the Unified Modelling Language. To address this limitation, section 5 provides
a UML 2 profile for variability models, and shows the the dependency between
variability models and activity diagrams for visualizing the relationship between
variability models and process models.

109

Bibliography

[ABJP05] Birger Andersson, Ilia Bider, Paul Johannesson, and Erik Perjons. To-
wards a formal definition of goal-oriented business process patterns.
Business Process Management Journal, 11(6):650–662, 2005.

[ARGP06] Elvira Rolón Aguilar, Francisco Ruiz, Félix Garcı́a, and Mario Piat-
tini. Evaluation measures for business process models. In Hisham
Haddad, editor, SAC, pages 1567–1568. ACM, 2006.

[Bau90] Bernd Baumgarten. Petri-Netze: Grundlagen und Anwendungen. BI-
Wissen- schaftsverlag, Mannheim, 1990.

[Bec03] Martin Becker. Towards a General Model of Variability in Product
Families. In First workshop on Software Variability Management, 2003.

[Bez05] Jean Bezivin. On the unification power of models. Software and Sys-
tem Modeling Journal, 4(2):171–188, 2005.

[BS04] Behzad Bordbar and Athanasios Staikopoulos. On behavioural
model transformation in web services. In ER (Workshops), pages 667–
678, 2004.

[BSWS02] Sandy Tyndale Biscoe, Oliver Sims, Bryan Wood, and Chris Sluman.
Business modelling for component systems with uml. In Proceedings
of the Sixth International Enterprise Distributed Object Computing Con-
ference (EDOC ’02), pages 120–131. IEEE Press, 2002.

[Cas05] Fabio Casati. Industry trends in business process management
getting ready for prime time. In 16th International Workshop on
Database and Expert Systems Applications (DEXA 2005), First Interna-
tional Workshop on Business Process Monitoring and Performance Man-
agement (BPMPM 2005). IEEE Press, August 2005.

Bibliography

[CKO92] Bill Curtis, Marc Kellner, and Jim Over. Process modeling. Commu-
nication of the ACM, 35(9):75–90, 1992.

[Cla01] Michael Clau. Modeling variability with uml. GCSE 2001 Young
Researchers Workshop, 2001.

[DKM+05] Lois Delcambre, Christian Kop, Heinrich C. Mayr, John Mylopoulos,
and Oscar Pastor, editors. Conceptual Modeling - ER 2005, 24th Inter-
national Conference on Conceptual Modeling, Klagenfurt, Austria, Octo-
ber 24-28, 2005, Proceedings, volume 3716 of Lecture Notes in Computer
Science. Springer, 2005.

[DRvdA+07] Michael Dreiling, Michael Rosemann, Will van der Aalst, Lutz
Heuser, and Karsten Schulz. Model-based software configuration:
Patterns and languages. European Journal of Information Systems, 15:1–
23, 2007.

[GAGI03] T Gardner, J Amsden, C Griffin, and S Iyengar. Draft UML 1.4 Profile
for Automated Business Processes with a mapping to the BPEL 1.0. IBM
alphaWorks, 2003.

[Ham96] Michael Hammer. Beyond Reengineering How the process-centered orga-
nization is changing our work and our lives. Harper Collins Publishers,
1996.

[Har91] James H. Harrington. Business Process Improvement - The breakthrough
strategy for total quality, productivity, and competitiveness. McGraw-
Hill, 1991.

[HKRK05] Martin Hitz, Gerti Kappel, Werner Retschitzegger, and Elisabeth
Kapsammer. UML @ Work. dpunkt.verlag GmbH Heidelberg, 2005.

[HRG83] A Holt, R Ramsey, and J Grimes. Coordinating system technology as
the basis for a programming environment. Electrical Communication,
57(4):308–314, 1983.

[IBM03] IBM. Business Process Execution Language
for Web Services version 1.1. http://www-

111

Bibliography

128.ibm.com/developerworks/library/specification/ws-bpel/,
2003.

[Jea05] Jean-Jacques Dubray. BPEL 1.1 Metamodel.
http://www.ebpml.org/bpel4ws.htm, 2005.

[JEJ94] Ivar Jacobson, Maria Ericson, and Agneta Jacobson. The Object Ad-
vantage Business Process Reengineering with Object Technology. ACM
Press, Addison-Wesley Publishing, 1994.

[Jen92] Kurt Jensen. Coloured Petri Nets: A High Level Language for Systems
Design and Analysis. Springer-Verlag, Berlin, 1992.

[JK06] Frédéric Jouault and Ivan Kurtev. On the architectural alignment
of atl and qvt. In SAC ’06: Proceedings of the 2006 ACM symposium
on Applied computing, pages 1188–1195, New York, NY, USA, 2006.
ACM.

[KK97] Peter Kueng and Peter Kawalek. Goal-based business process mod-
els - creation and evaluation. Business Process Management Journal,
3(1):17–38, April 1997.

[KL06] Birgit Korherr and Beate List. A uml 2 profile for event driven pro-
cess chains. In Proceedings of the 1st IFIP International Conference on
Research and Practical Issues of Enterprise Information Systems (CONFE-
NIS 2006), pages 161–172. Springer Verlag, IFIP, 2006.

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained. The
Model Driven Architecture: Practice and Promise. Addison-Wesley,
2003.

[LK05] Beate List and Birgit Korherr. A uml 2 profile for business process
modelling. In Jacky Akoka, Stephen W. Liddle, Il-Yeol Song, Michela
Bertolotto, Isabelle Comyn-Wattiau, Samira Si-Said Cherfi, Willem-
Jan van den Heuvel, Bernhard Thalheim, Manuel Kolp, Paolo Bres-
ciani, Juan Trujillo, Christian Kop, and Heinrich C. Mayr, editors, ER
(Workshops), volume 3770 of Lecture Notes in Computer Science, pages
85–96. Springer, 2005.

112

Bibliography

[LYP02] Fu-Ren Lin, Meng-Chyn Yang, and Yu-Hua Pai. A generic structure
for business process modeling. Business Process Management Journal,
8(1):19–41, 2002.

[Mar95] Martyn Ould. Business Processes - Modelling and Analysis for Re-
engineering and Improvement. John Wiley and Sons, 1995.

[MMP+95] Richard J. Mayer, Christopher P. Menzel, Michael K. Painter, Paula S.
deWitte, Thomas Blinn, and Benjamin Perakath. Information Integra-
tion for concurrent Engineering (IICE) IDEF3 Process Description Cap-
ture. http://www.idef.com, 1995.

[MNN04] Jan Mendling, Gustaf Neumann, and Markus Nüttgens. A com-
parison of xml interchange formats for business process modelling.
In Fernand Feltz, Andreas Oberweis, and Benoı̂t Otjacques, editors,
EMISA, volume 56 of LNI, pages 129–140. GI, 2004.

[NC03] Dina Neiger and Leonid Churilov. Goal-oriented decomposition
of event-driven process chains with value focused thinking. In In
Proceedings of the 14th Australasian Conference on Information Systems
(ACIS 2003), pages 1–12, 2003.

[NC04] Dina Neiger and Leonid Churilov. Goal-oriented business process
modeling with epcs and value-focused thinking. In Jörg Desel, Bar-
bara Pernici, and Mathias Weske, editors, Business Process Manage-
ment, volume 3080 of Lecture Notes in Computer Science, pages 98–115.
Springer, 2004.

[NEK+05] Selmin Nurcan, Anne Etien, Rim Kaabi, Iyad Zoukar, and Colette
Rolland. A strategy driven business process modelling approach.
Business Process Management Journal, 11(6):628–649, 2005.

[Oas07] Oasis. Business Process Execution Language
for Web Services version 2.0. http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/,
2007.

[OMG05a] OMG. MOF 2.0 Specification. http://www.omg.org, 2005.

113

Bibliography

[OMG05b] OMG. OCL 2.0 Specification. http://www.uml.org, 2005.

[OMG05c] OMG. UML 2.0 Superstructure. http://www.uml.org, 2005.

[OMG06a] OMG. Business Process Modelling Notation. http://www.bpmn.org,
2006.

[OMG06b] OMG. MDA Guide V. 1.0.1. http://www.bpmn.org, 2006.

[OMG07a] OMG. Business Process Definition Metamodel, Final Submission.
http://www.modeldriven.org/web/bpdm, 2007.

[OMG07b] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Spec-
ification. Final Adopted Specification. http://www.uml.org, 2007.

[PBvdL05] Klaus Pohl, Gnter Bckle, and Frank van der Linden. Software Product
Line Engineering. Springer-Verlag Berlin Heidelberg, 2005.

[Pet62] Carl A. Petri. Kommunikation mit Automaten. Schriften des IIM Nr. 2,
Institut fr Instrumentelle Mathematik, 1962.

[RtHEvdA05] Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil
M. P. van der Aalst. Workflow data patterns: Identification, repre-
sentation and tool support. In Delcambre et al. [DKM+05], pages
353–368.

[RvdA07] Michael Rosemann and Will van der Aalst. A configurable reference
modelling language. Information Systems, 32:1–23, 2007.

[SAJ+02] Eva Soederstroem, Birger Andersson, Paul Johannesson, Erik Per-
jons, and Benkt Wangler. Towards a framework for comparing pro-
cess modelling languages. In Anne Banks Pidduck, John Mylopou-
los, Carson C. Woo, and M. Tamer Özsu, editors, CAiSE, volume 2348
of Lecture Notes in Computer Science, pages 600–611. Springer, 2002.

[Sch99] August-Wilhelm Scheer. ARIS Business Process Modeling. Springer
Verlag, 1999.

[SVC+01] Pedro Sinogas, André Vasconcelos, Artur Caetano, João Neves, Ri-
cardo Mendes, and José M. Tribolet. Business processes extensions

114

Bibliography

to uml profile for business modeling. In ICEIS (2), pages 673–678,
2001.

[vdAtHKB03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kie-
puszewski, and Alistair P. Barros. Workflow patterns. Distributed
and Parallel Databases, 14(1):5–51, 2003.

[Vit04] Valdis Vitolins. Business process measures. In Proceedings of the In-
ternational Conference Baltic DB and IS. Scientific Papers University of
Latvia Vol. 673, 2004.

[W3C01] W3C. Web Services Description Language 1.1.
http://www.w3.org/TR/wsdl, 2001.

[Wor98] Workflow Management Coalition. Interface 1: Process
Definition Interchange Process Model, WfMC TC-1016-P.
http://www.wfmc.org/standards/docs/if19807r10.pdf, 1998.

[WSS+07] Manuel Wimmer, Andrea Schauerhuber, Michael Strommer,
Wieland Schwinger, and Gerti Kappel. A Semi-automatic Approach
for Bridging DSLs with UML. In Workshop Proc. of 7th OOPSLA Work-
shop on Domain-Specific Modeling (DSM07), Montreal, Canada, 2007.

[WvdAD+05] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M.
ter Hofstede, and Nick Russell. Pattern-based analysis of the control-
flow perspective of uml activity diagrams. In Delcambre et al.
[DKM+05], pages 63–78.

[ZHJ03] Tewfik Ziadi, Loı̈c Hélouët, and Jean-Marc Jézéquel. Towards a UML
Profile for Software Product Lines. In Software Product-Family Engi-
neering, 5th International Workshop, pages 129–139. Springer, 2003.

115

