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Abstract

This thesis gives an introduction to basic concepts of information geometry, a the-

ory that uses notions of differential geometry to describe information and probabil-

ities. These concepts are applied to the analytic description of an iterative receiver

for bit interleaved coded modulation (BICM). The operation of the receiver’s sub-

blocks are recognized as implicit projections of input probability distributions on cer-

tain sub-manifolds, which for example represent the code. Furthermore, the effects

of log-likelihood ratio (LLR) clipping onto the receiver performance are studied using

information geometry. Again, clipping has an interpretation as a projection. Finally

numerical simulations of a BICM system show the performance improvements due to

iterative decoding and the effects of LLR clipping.
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Kurzfassung

Diese Diplomarbeit gibt eine Einführung in bestimmte Aspekte der Informationsge-

ometrie, eine Theorie, in der Konzepte der Differentialgeometrie für eine Beschreibung

von Information und Wahrscheinlichkeiten herangezogen werden. Die vorgestellten

Konzepte werden für die analytische Beschreibung eines iterativen Empfängers für “bit

interleaved coded modulation” (BICM) verwendet. Die Arbeitsweise der Teilblöcke aus

denen der Empfänger aufgebaut ist wird als implizite Projektion von Eingangs-Wahr-

scheinlichkeitsdichtefunktionen auf bestimmte Teilmannigfaltgkeiten, die z.B. den Code

repräsentieren, interpretiert. Weiters werden die Auswirkungen von “log-likelihood

(LLR) clipping” auf die Leistungsfähigkeit des Empfängers mithilfe der Informations-

geometrie untersucht. Auch hier taugt eine informationsgeometrische Projektion zur

Beschreibung des zu untersuchenden Sachverhalts. Schlussendlich zeigen numerische

Simulationen die Leistungssteigerung durch das iterative Dekodierverfahren sowie die

Auswirkungen des LLR clipping.
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1

Introduction

Soft-decoding has been recognized to have performance advantages above hard-decoding.

It furthermore enables the use of iterative (turbo) decoders [1], which consist of sub-

blocks that exchange soft information about the transmitted bits to improve the decod-

ing performance. The idea is that each block does a local optimization that converges

to a global one over the iterations.

Bit interleaved coded modulation (BICM) [2, 3] is a transmission system that uses

interleaving on a bit level to reduce the impact of burst errors. It is therefore very

applicable to wireless communication channels where it can combat the effects of fad-

ing on the receiver performance. For maximum likelihood detection of BICM with a

soft decoding algorithm it is mandatory to split up the sequence probabilities into bit

probabilities, which is an approximation that leads to sub-optimal performance. This

performance penalty can be reduced by the use of an iterative demodulation method [4].

Soft information can be represented in the form of probabilities, or, equivalently, log-

likelihood ratios (LLRs). The latter are often more convenient for the use in practical

implementations. Restricting their value range generally means a loss of information,

and therefore can lead to decreased performance. However, it can be desirable to restrict

1



Chapter 1. Introduction 2

LLR values (“LLR clipping”) to reduce computational complexity in implementations

[5].

Information geometry is a relatively young mathematical field that applies differential-

geometric concepts to information theory and statistics. Families of probability distri-

butions are considered as manifolds, on which for example distance measures can be

defined. Many important statistical concepts can be interpreted inside this framework.

This text contains an introduction to information geometry and an information-

geometric interpretation of BICM decoding and LLR clipping. It is structured as fol-

lows:

• Chapter 1: This introduction.

• Chapter 2 introduces several concepts of information geometry that will be used

in the later chapters.

• Chapter 3: A general information-geometric interpretation of soft-sequence de-

coding is given, which then serves as the theoretical ground for the interpretation

of a practical iterative decoding algorithm for bit interleaved coded modulation.

• Chapter 4 tackles the problem of log-likelihood ratio clipping. A geometrical

interpretation of LLR-clipping is given that could be used for analytically assessing

the resulting performance loss.

• Chapter 5 shows numerical simulation results of iterative demodulation and LLR

clipping in a BICM system.

• Chapter 6 gives a summary and discusses several open points that could be

tackled in future research.



2

Information Geometry

2.1 Introduction

Information geometry is a mathematical theory that considers the geometric properties

of information and probability, using concepts of differential geometry. It is a relatively

young theory that reached its maturity only recently with the work of Shun’ichi Amari

in the 1980s.

We will only introduce the notions that are essential for the purpose of describing it-

erative soft-decoding. Although the probability distributions considered in information

geometry are generally distributions of continuous random variables (probability den-

sity functions), we will restrict ourselves to distributions of discrete random variables

(probability mass functions, briefly called “pmfs”), and use the words distribution and

pmf synonymously unless stated otherwise. This chapter is mostly based on [6] and to

a lesser extent on [7].

3



Chapter 2. Information Geometry 4

2.2 Basics

The first important idea we consider is the concept of a family of probability distri-

butions. A family is a set of distributions that depend on some parameters but apart

from that have the same structure. The parameters can be regarded as coordinates

of a point in a manifold. In this way, the family is a manifold in which one specific

distribution is a point specified by its coordinates.

2.2.1 Exponential Families

Definition 2.2.1. An exponential family of discrete probability distributions p(x) on

an alphabet X is the set

E =

{

p : p(x) = c · q(x) exp

( K∑

1

θifi(x)

)}

. (2.1)

Here, q(x) is a given distribution and the normalization constant c is

c = c(θ1, . . . , θk) =

(
∑

a

q(x) exp
( K∑

1

θifi(x)
))−1

.

Furthermore, f1, f2, . . . , fK are some given functions on X . The set of all these functions,

{fi(x)}K
1 is called ”sufficient statistics”.

The distribution q(x) is itself an element of the exponential family that is “built

around” it, as can be seen by setting θ1 = θ2 = . . . = 0. Any element of E could play

the role of q(x), but if it is necessary to emphasize the dependency of E on q(x), we will

write Eq.

The set E can be regarded as a K-dimensional manifold. The numbers θ1, θ2, . . . , θK

can be collected in a vector θ. This vector plays the role of a coordinate system

in E , so that each distribution (which is now seen as a point in the manifold E) is

specified by one θ. This particular coordinate system, although being one out of many
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possible coordinate systems, is given the name “natural” or “canonical” parameter for

the exponential family.

The distributions in an exponential family have the following important property:

Given two pmfs p1, p2 ∈ E , with natural parameters θ1 and θ2, respectively, the nor-

malized log-convex combination p(x; t) =
p
(1−t)
1 (x)pt

2(x)

c(t)
of the two is again a pmf in the

same exponential family. For 0 ≤ t ≤ 1,

log p(x; t) = (1 − t) log p1(x) + t log p2(x) − log c(t)

= (1 − t)[log c1 + log q(x) +
∑

i

θi,1fi(x)]+

+ t[log c2 + log q(x) +
∑

i

θi,2fi(x)] − log c(t)

= log ct + log q(x) +
∑

i

[(1 − t)θi,1 + tθi,2]fi(x)

or

p(x; t) = ct · q(x) exp

(
∑

i

[(1 − t)θi,1 + tθi,2]fi(x)

)

,

with ct =
c
(1−t)
1 ct

2

c(t)
. For the natural coordinates of the set of resulting distributions, this

means

θt = (1 − t)θ1 + tθ2.

The normalized log-convex combination p(x; t) is a curve connecting p1 and p2, para-

metrized by t. This curve is obviously itself an exponential family and a one-dimensional

submanifold of E . It appears as a “straight line” in the natural coordinates θ and is

thus called an “exponential (or e-)geodesic”.

In [8], the exponential geodesic is called “exponential segment”, and an alternative

definition for an exponential family is given:

Definition 2.2.2. An exponential family is a set of probability distributions with the

characteristic property that it contains the exponential segment between any two of its

members.
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An exponential family is not a closed set in general. We will discuss this fact in the

context of example 2.2.2. In the following, the closure is referred to as cl{E}.

Example 2.2.1. An example for an exponential family that we will consider in a later

chapter in the context of soft-decoding is the family of factorizable densities:

EF =
{

p(x) : p(x) =

K∏

i=1

pi(xi)
}

.

Here x ∈ XK is a vector or sequence of length K containing the individual bits xi ∈ X ,

X = {0, 1}, i = 1, . . . , K. The sufficient statistics and natural coordinates are in this

case fi(x) = xi and θi = log pi(xi=1)
1−pi(xi=1)

, respectively.

We will use the aforementioned alternative definition to show that it is indeed an

exponential family:

log p(x; t) = (1 − t) log p1 + t log p2 − log c(t)

= (1 − t)
∑

i

log p1,i(xi) + t
∑

i

log p2,i(xi) − log c(t)

=
∑

i

(1 − t) log p1,i(xi) + t log p2,i(xi) − log c(t)

=
∑

i

log p1,i(xi)
(1−t) + log p2,i(xi)

t − log c(t)

=
∑

i

log p1,i(xi)
(1−t)p2,i(xi)

t

︸ ︷︷ ︸

pt,i(xi)

− log c(t) =
∑

i

log pt,i(xi) − log c(t)

= log
∏

i

pt,i(xi) − log c(t).

We can write p(x) as

p(x; θ) = c(θ) · exp
{∑

i

θifi(x)
}

=
∏

i

1

1 + eθi
· exp

{

log
pi(xi = 1)

1 − pi(xi = 1)
· xi

}

.

Example 2.2.2. Finally we show that the set of discrete distributions p(x), where

x ∈ X = {0, 1, . . . , N}, is by itself an exponential family, without further restrictions
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1

1

p1

p0

1

p2

Figure 2.1: Manifold of discrete probability distributions.

on its structure.

Let x be a discrete random variable taking values on the set X = 0, 1, . . . , N .

Let p = (p0, p1, . . . , pN) be the probability vector containing the probabilities of each

outcome x, pi = P{x = i}. Then any distribution on X corresponds to one vector

p whose components satisfy
∑N

i=0 pi = 1, pi > 0. Therefore the set of all discrete

distributions ED = {p} over X is an N-dimensional manifold.1 For example, if N = 2,

the manifold is a triangle, i.e., a two-dimensional simplex, in R
3, as shown in Fig. 2.1.

Let’s show that this is indeed an exponential family! By putting

θi = log pi

p0
, i = 1, . . . , N,

fi(x) = δi(x), i = 1, . . . , N,

where δi(x) = 1 when x = i and δi = 0 otherwise, we can write p(x) in the form (2.1)

of an exponential family:

p(x; θ) = c · q(x) exp
{∑

i

θifi(x)
}

,

1Note that p has N + 1 elements. The manifold S only has N dimensions because due to the
condition

∑

i pi = 1, pi > 0, N probabilities fully determine the remaining one.
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with q(x) = 1
N+1

and c = (N + 1)p0. Here, c and q(x) have been chosen such that

c · q(x) = p0 and
∑

x q(x) = 1. Indeed,

p(x; θ) = (N + 1) · p0 ·
1

N + 1
· exp

{
∑

i

δi(x) log
pi

p0

}

= p0 · exp

{

log
px

p0

}

= px.

As already mentioned, a exponential family need not be a closed set. In the present

example, e.g. the corner points of the triangle that represents the exponential family in

the figure are not included in the exponential family. Consider the point corresponding

to the distribution {p1 = 1, p0 = p2 = 0}. As the θ-coordinates are defined as θi = pi

p0
,

and p0 = 0, it is obvious that we run into troubles here.

2.2.2 Linear Families

Definition 2.2.3. A linear family of probability distributions on A is the set

L =
{

p :
∑

x

fi(x)p(x) = αi, 1 ≤ i ≤ K
}

, (2.2)

for any given functions f1, f2, . . . , fK on A and corresponding numbers α1, α2, . . . , αK .

In other words, the expected value Ep{fi(x)} =
∑

x fi(x)p(x) of the random variable

x with respect to the distribution p(x) is restricted to αi. We can stack the αi in a

vector α, the fi(x) in a vector f(x), and (2.2) can be written as

L = {p : Ep{f(x)} = α}.

In the following, we will often prefer to use this brief notation.

The vector α serves as a coordinate system in the manifold of the linear family.

These coordinates are called “mixture coordinates”.

A linear family has a characteristic property, analogue to an exponential family:

the convex combination2 of two of its probability distributions is again a distribution

2Note that we now use the convex combination instead of the log-convex combination
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contained in the linear family. Given p1(x), p2(x) ∈ L, and 0 ≤ t ≤ 1, there is

p(x; t) = (1 − t)p1(x) + tp2(x) ∈ L.

Indeed, as Ep1{f(x)} = α and Ep2{f(x)} = α, we have

Ep(x;t){f(x)} = E(1−t)p1+tp2
{f(x)} = (1 − t)α + tα.

This means, the convex combination p(x; t) of p1 and p2 satisfies the condition

Ep(x;t){f(x)} = α,

and therefore belongs to the linear family.

In analogy to the section about exponential families we can state the following:

p(x; t) is a curve parametrized by t. It is a linear family and a one-dimensional sub-

manifold of L. This one-dimensional linear family appears as a “straight line” in the

mixture coordinates α, it is called a “linear (or m-)geodesic”.

The above mentioned property of linear families can be used as an alternative def-

inition for a linear family. If we call the m-geodesic “linear segment” to be consistent

to the previous section about exponential families, we can give the following

Definition 2.2.4. A linear family is a set of probability distributions with the charac-

teristic property that it contains the linear segment between any two of its members.

A linear family of probability distributions is a closed set. This will become clear

in example 2.2.4.

Example 2.2.3. A linear family that will be important in the context of soft-decoding

is the “family of code-compatible distributions”:

LC =
{

p(x) : Ep

{
f(x)

}
= 0

}
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Here, the functions f = (f1, f2, . . . , fF ) represent the code structure: fi(x) = 0 are the

check equations. This linear family will be discussed in detail in section 3.4.2.

Example 2.2.4. The family of discrete probability distributions which we dealt with

in Example 2.2.2, where we regarded it as an exponential family, can also be seen as a

linear family. With the same sufficient statistics fi(x) = δi(x) we have

Ep{fi(x)} =
∑

x

p(x)δi(x) = p(i) = pi = αi.

We see, that the mixture coordinates αi are in fact the probabilities of the outcomes i.

It is this mixture coordinate system that is used in Fig. 2.1.

Furthermore, looking at the same figure, we see that the linear family is a closed

set. The borders of the simplex are of course included - for example, the corner point

α = (1, 0, 0).

2.2.3 Kullback-Leibler Divergence

In information geometry, the Kullback-Leibler (KL) divergence serves as a distance

measure between two probability distributions.

Definition 2.2.5. For two probability mass functions p and q on X , the KL divergence

is given by

D(p‖q) =
∑

a∈A

p(x) log
p(x)

q(x)
. (2.3)

It has properties that are those of a distance:

D(p‖q) ≥ 0,

D(p‖q) = 0 if and only if p = q.

Note however that D(p‖q) 6= D(q‖q), that’s why it is not a metric in the strict

sense. In fact, KL divergence can be regarded as a nonsymmetric analogue of a squared
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Euclidean distance. This will become clear in section 2.2.4.

The KL divergence is not the only possible distance measure for statistical manifolds.

It can be regarded as a special case of the so-called f-divergence [9]

Df(p‖q) =
∑

x

q(x)f

(
p(x)

q(x)

)

,

for f(t) = t log t (f(t) has to be a convex function in general).

Example 2.2.5. In the context of sequence log-likelihood ratio clipping, the KL di-

vergence of a distribution and the uniform distribution is important. Let’s calculate

the KL divergences of the following distribution p = (0.1, 0.2, 0.4, 0.3) from the uniform

distribution p̄ = (1/4, 1/4, 1/4, 1/4):

D(p̄‖p) =
4∑

i=1

p̄i log
p̄i

pi

= 0.25 × (log(2.5) + log(1.25) + log(0.625) + log(0.833)

= 0.25 × (1.32 + 0.32 − 0.678 − 0.263)

= 0.176 bits,

D(p‖p̄) =

4∑

i=1

pi log
pi

p̄i

= 0.1 × log
0.1

0.25
+ 0.2 × log

0.2

0.25
+ 0.4 × log

0.4

0.25
+ 0.3 × log

0.3

0.25

= −0.132 − 0.064 + 0.271 + 0.079

= 0.154 bits.

Base 2 logarithms have been used, therefore the unit is bits.

Example 2.2.6. We will now show that the KL divergence of a factorizable distribution

(see example 2.2.7) is the sum of “partial” KL divergences, for simplicity for the case

of two distributions consisting of two marginal pmfs, p(x) = p1(x1)p2(x2) and q(x) =
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q1(x1)q2(x2):

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)

=
∑

x1

∑

x2

p1(x1)p2(x2) log
p1(x1)p2(x2)

q1(x1)q2(x2)

=
∑

x2

p2(x2)
∑

x1

p1(x1)

[

log
p1(x1)

q1(x1)
+ log

p2(x2)

q2(x2)

]

=
∑

x2

p2(x2)

︸ ︷︷ ︸

=1

∑

x1

p1(x1) log
p1(x1)

q1(x1)
+
∑

x2

p2(x2)
∑

x1

p1(x1)

︸ ︷︷ ︸

=1

log
p2(x2)

q2(x2)

= D(p1‖q1) + D(p2‖q2).

.

In general, one can write for factorizable distributions p(x) =
∏

i pi(xi) and q(x) =

∏

i qi(xi),

D(p‖q) =
∑

i

D(pi‖qi). (2.4)

2.2.4 Projections

Analog to the familiar orthogonal projection in Euclidean geometry, it is possible to

define projections in information geometry. A necessary prerequisite is some kind of

distance measure, like the KL divergence we have just introduced.

I-projection

Fig. 2.2 shows the so-called I-projection. Given some distribution q in an exponential

family M one looks for the distribution p∗ in the submanifold Π that is closest to p in

terms of KL divergence.3

Definition 2.2.6. The I-projection of a distribution q onto a closed convex4 subset Π

3The I-projection is often called “e-projection”, because the curve connecting q and p∗ is an e-
geodesic (see for example [7])

4A set C is convex if the line segment between any two points in C lies in c. More precisely, if for any
q1, q2 ∈ C and any θ with 0 ≤ θ ≤ 1 the convex combination of q1 and q2, q′ = θq1 +(1− θ)q2 ∈ C. [10]
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M

p p∗

q

Π

Figure 2.2: I-projection of a distribution q onto a convex submanifold Π.

of distributions on A is the p∗ ∈ Π such that

D(p∗‖q) = min
p∈Π

D(p‖q). (2.5)

Supposing that q(x) > 0 for all x ∈ X , the function D(p‖q) is continuous and

strictly convex in p, so that p∗ exists and is unique (see Fig. 2.3). The support of the

distribution p is the set S(p) = {x : p(x) > 0}. Since Π is convex, among the supports

of elements of Π there is one whose support contains all the others. This will be called

the support of Π and denoted by S(Π).

For the I-projection there is the following

Theorem 2.2.1. S(p∗) = S(Π) and D(p‖q) ≥ D(p‖p∗) + D(p∗‖q) for all p ∈ Π.

This inequality resembles the Pythagorean theorem from Euclidean geometry, con-

sidering the interpretation of KL divergence as a sort of squared distance. Fig. 2.4

shows a visualization of the theorem, applied to Euclidean geometry. The convex set

Π is represented by a circle (only a sector is shown). p∗ is the normal projection of q

onto Π. One can easily see that due to the convexity of Π, the angle between the lines

pp∗ and p∗q must be obtuse, which implies that l2pq ≥ l2pp∗ + l2p∗q - the same form as
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p∗ p

D(p‖q)

Figure 2.3: Convexity of D(p‖q) as function of p (with I-projection p∗).

the above theorem for the I-projection. This similarity supports the claim that the KL

divergence can be of a squared Euclidean distance.

The inequality becomes an equality iff the set we project onto is a linear family:

Theorem 2.2.2. Pythagorean identity

The I-projection p∗ of q onto a linear family L satisfies

D(p‖q) = D(p‖p∗) + D(p∗‖q), ∀p ∈ L.

Furthermore, if S = A then L ∩ Eq = {p∗}.

For a visualization of the above theorem, see figure 2.5. According to [7], the

connecting line between q and p∗ is itself a (one dimensional) exponential family. It is

the exponential family Eq containing q with the same sufficient statistics fi as in the

linear family L. The intersection point L ∩ Eq is the I-projection p∗, which means that

p∗ is of the form (2.1).
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p

p∗

q

Π

Figure 2.4: Illustration of theorem 2.2.1.

q

L

p
p∗

Eq

Figure 2.5: I-projection onto a linear family.
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Reverse I-Projection

As the KL divergence is nonsymmetric, there are two choices how to define the dis-

tance between two distributions p and q. Since we have defined the I-projection as the

distribution minimizing the distance D(p‖q) keeping q constant and varying p, there

must be a second kind of projection, which is based on the “other” distance between

two distributions, in which the arguments of D(.‖.) are reversed. That is called the

“reverse I-projection (rI-projection)”.

Definition 2.2.7. The reverse I-projection (rI-projection)5 of the distribution p onto

a closed, convex subset Π′ of distributions on A is the q∗ ∈ Π′ such that

D(p‖q∗) = min
q∈Π′

D(p‖q). (2.6)

Note that now we minimize over the second argument of the KL divergence, whereas

for the I-projection, we minimized over the first argument.

There is again a Pythagorean theorem for the inverse I-projection:

Theorem 2.2.3. The reverse I-projection q∗ of the distribution p onto an exponential

family E satisfies the Pythagorean identity

D(p‖q) = D(p‖q∗) + D(q∗‖q) ∀q ∈ E .

We will now show the reverse I-projection of some distribution onto the manifold of

factorizable distributions, which we’ve introduced in Example 2.2.1.

Theorem 2.2.4. Projection onto the set of factorizable distributions

For any distribution p, the rI-projection of p onto

EF =
{

p(x) : p(x) =
∏

i

pi(xi)
}

,

5The reverse I-projection is often called “m-projection”, because the curve connecting the original
distribution and its projection is an m-geodesic.
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is the distribution pF(x) given by the product of the marginal probabilities of x, i.e.:

pF (x) = arg min
q∈EF

D(p‖q) =
∏

i

pi(xi) =
∏

i

∑

x∼xi

p(x′).

Here, the summation is performed over all elements of x except xi.

For any distribution p and for any distribution r ∈ EF , we have:

D(p‖r) = D(p‖pP) + D(pP‖r).

Proof. Let us consider a factorizable distribution q and some arbitrary distribution p.

Then

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
=
∑

x

p(x)

(

log
p(x)

∏

i pi(xi)
+ log

∏

i pi(xi)
∏

i qi(xi)

)

= D(p‖pF) +
∑

x

p(x)
∑

i

log
pi(xi)

qi(xi)

= D(p‖pF) +
∑

i

∑

xi

∑

x∼xi

p(x)

︸ ︷︷ ︸

pi(xi)

log
pi(xi)

qi(xi)

= D(p‖pF) +
∑

i

D(pi‖qi).

The left hand term is independent of q while the right hand term is positive for any q

and zero for qi = pi. Hence D(p‖q) is minimum for q = pF =
∏

i pi(xi).

The family of factorizable distributions is an exponential family, the unique projec-

tion onto this subset is therefore an rI-projection, therefore it is no surprise that the

Pythagorean theorem (2.2.4) holds.

Example 2.2.7. Let us now consider a distribution for four bit sequences of length 2,

(x1,x2,x3,x4) = (00, 01, 10, 11), p(x) = (0.1, 0.3, 0.4, 0.2). By x0 and x1 we denote the

first respectively the second bit of a sequence. We have just shown that the reverse

I-projection of p onto the factorizable distributions EF , p∗(x) = pF(x), is given by the
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product of the marginal distributions. In our case,

pF(x) = p0(x0)p1(x1) =







∑

x:x0=0

p(x)
∑

x:x1=0

p(x) = 0.5 × 0.6 = 0.3 x = (00),

∑

x:x0=0

p(x)
∑

x:x1=1

p(x) = 0.5 × 0.4 = 0.2 x = (01),

∑

x:x0=1

p(x)
∑

x:x1=0

p(x) = 0.5 × 0.6 = 0.3 x = (10),

∑

x:x0=1

p(x)
∑

x:x1=1

p(x) = 0.5 × 0.4 = 0.2 x = (11)

We notice that a maximum likelihood sequence decoder would have picked sequence

10 as the most probable one given the original pmf, but it would be unable to decide

between 00 and 10 knowing only the factorizable distribution, which is a consequence

of the loss of information due to the marginalization.

2.3 Iterative Algorithms

In this section we will consider iterative algorithms to minimize the KL divergence

between two convex sets of distributions.

2.3.1 Alternating Divergence Minimization

In the following we describe an algorithm that finds the minimum KL divergence be-

tween two convex sets P and Q of probability distributions on a finite alphabet X .

The algorithm is actually also applicable to a more general divergence definition and

arbitrary sets, and is presented with proofs in [9], but we will stick to this special case.

Let P and Q be convex sets of discrete probability distributions on X , and D(p‖q)

the KL divergence. To find the two distributions out of P and Q respectively that

minimize the KL divergence between the two sets,

Dmin , min
p∈P, q∈Q

D(p‖q),
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p2 = p∞

Q

P

q0

p1

q1

D(p∗‖q∗)

q2 = q∗(p∞)

Figure 2.6: Alternating divergence minimization between convex sets P and Q

there is the following iteration scheme.

Starting from some distribution q0 ∈ Q, alternating projections are carried out:

p∗(qn−1) is the I-projection of qn−1 onto P,

pn = p∗(qn−1) = arg min
p∈P

D(p‖qn−1),

and qn = q∗(pn) is the reverse I-projection of pn onto Q,

qn = q∗(pn) = arg min
q∈Q

D(pn‖q).

For an illustration of the algorithm, see Fig. 2.6.

According to a general theorem proved in [9], this iteration scheme converges:

D(pn‖qn) → Dmin, as n → ∞
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If P is compact, pn converges to an p∞, p → p∞, such that

D(p∞‖q∗(p∞)) = Dmin

There is also the inequality

D(pn+1‖qn) − Dmin ≤ max
x∈X

log
pn+1(x)

pn(x)
, (2.7)

which allows to use the right-hand-side of 2.7 as stopping criterion.

2.3.2 The EM Algorithm

The expectation-maximization (EM) algorithm is an often used technique in statistics

to estimate a probability distribution, that is supposed to belong to a set of “feasible”

distributions Q on alphabet X , when there is only incomplete sample data available.

Instead of the “full” sample x = (x1, x2, . . . , xN ) ∈ XN , only an “incomplete” sample

y = (y1, y2, . . . , yN) ∈ YN can be observed. The components yi are obtained by a known

mapping T : X 7→ Y , yi = Txi. This mapping is normally a many-to-one mapping, so

that information that exists in the full sample is lost when only the incomplete sample

is observable. One example would be combining several adjacent outcome values to one

single value, like in a histogram.

The EM algorithm produces a sequence of distributions qk ∈ Q, that are regarded as

consecutively improved estimates of the unknown distribution, by iterating the following

two steps, starting with an arbitrary pmf q0.

E-step: Calculate the conditional expectation

pk = Eqk−1
{p̂N |y}

Here p̂N(a) = number of occurrences of a in sequence x

N
is the empirical distribution (“type”6) of

6An introduction into the concept of types can be found in [11].



Chapter 2. Information Geometry 21

the full sample x. This empirical distribution cannot be observed directly, because we

cannot observe x. We can observe y though, which is of course statistically dependent on

x, due to the deterministic mapping yi = Txi. The expected value is taken with respect

to the current estimate of the true distribution, qk−1. The result is a distribution pk

that is constructed by taking its previous estimate and the observed incomplete samples

into account.

M-step: In the next step, we calculate the maximum-likelihood estimate of the

distribution where the full sample x is coming from, using the distribution pk obtained

in the last step as the “empirical” distribution. This ML estimate is obtained as the

result of the following KL divergence minimization (cf. [9], Lemma 3.1):

qk = arg min
q∈Q

D(pk‖q).

The EM algorithm is a special case of an alternating divergence minimization al-

gorithm as introduced in the previous section. The M-step is obviously divergence

minimization, where we minimize over all q ∈ Q, Q being the set of “feasible” distri-

butions where q is supposed to come from.

Now we will show, that the E-step minimizes the divergence D(p‖qk−1) subject to

p ∈ P. Here, P = {p : pT = p̂T
n} is the set of distributions p, whose image under the

mapping T is equal to the image of the empirical distribution of the (unobservable)

full sample. The image of a distribution p under a mapping T : A 7→ B is given by

p(b) =
∑

a:Ta=b

p(a) - the probabilities of outcomes a ∈ A that are mapped to the same

b ∈ B are added up.

One can show that for any distribution q on A, the conditional expectation p =

Eq(p̂n|y) attains the minimum of D(p‖q) subject to pT = p̂T
n : Let δ(x, a) = 1 if x = a
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and 0 otherwise. Then we can write, for any a ∈ A

pk(a) = Eqk−1
{p̂n(a)|y} = Eqk−1

{
1

n

n∑

i=1

δ(xi, a)
∣
∣
∣y

}

=
1

n

n∑

i=1

Eqk−1
{δ(xi, a)|yi} =

1

n

n∑

i=1

∑

xi

qk−1(xi|yi)δ(xi, a)

=
|i : yi = Ta|

n

qk−1(a)

qT
k−1(Ta)

= p̂T
n (Ta)

qk−1(a)

qT
k−1(Ta)

.

(2.8)

In the first step we wrote the empirical distribution p̂n(a) in terms of δ(x, a). Next

we used the fact that the yi are i.i.d. Then the conditional expectation in the sum is

written out explicitely, and it turns out that it is actually the probability of xi = a

conditioned on yi, which is qk−1(a)

qT
k−1(Ta)

if yi = Ta and zero otherwise. The first fraction in

the resulting expression can be recognized as the empirical distribution of yi, called p̂T
n .

It remains to be shown that the pk(a) obtained in 2.8 has minimum KL divergence

to qk−1(a). This can be done by using the “lumping property” (see Lemma 4.1 in [9])

D(p̃‖q) ≥ D(p̃T‖qT ) for arbitrary p̃. Setting p̃ = pk(a) in the lumping property shows

that it satisfies the inequality with equality, meaning it minimizes D(p̃‖qk−1) subject

to p̃T = p̂T
n .

We have thus shown that both in the E-step and the M-step a KL divergence is

minimized: the E-step is an I-projection and the M-step an rI-projection.



3
Geometrical Interpretation of

BICM Decoding

3.1 Introduction

The optimum decoder (in terms of sequence error probability) is the maximum a pos-

teriori (MAP) decoder, which chooses of all possible transmit sequences the one with

the highest probability given the observed symbols. In the case of BICM, an exhaustive

search over all code words is generally the only possible implementation of the MAP

decoder, with a complexity growing exponentially in codeword length. Algorithms that

reduce this complexity, like the Viterbi algorithm, cannot be directly used for BICM in

most cases, because they rely on the encoder being a Markov source, observed through

a memoryless channel. The interleaving on bit level destroys this structure.

It will be shown that using an information-geometric approach, the decoding prob-

lem can be split up into three steps [8]: First, the a posteriori probabilities (APP) of the

transmit sequences given the observed receive symbols are calculated, omitting the code

structure. By doing so, the complexity of the APP calculation is reduced to a linear

one, since only the marginal probabilities of the complex symbols have to be computed

instead of the probabilities of the whole codewords. The second step accounts for the

23
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code structure: the distribution resulting from the first step is projected onto the lin-

ear family of code-compatible distributions. This projection is shown to be an inverse

I-projection. The third and last step is the maximization over all possible sequences.

The procedure described in the last paragraph still cannot be implemented directly,

but [8] furthermore describes a practical algorithm justified by information-geometric

arguments, which will also be dealt with in the present chapter.

3.2 BICM Decoding

First, let us explain where the problem with BICM decoding lies, which necessitates

special precautions at the receiver. For many transmission schemes, a maximum a pos-

teriori (MAP) or maximum likelihood (ML) sequence decoder, which is optimum in that

it minimizes sequence error probability, can be implemented using a Viterbi algorithm

(VA). For example, consider a transmission scheme consisting of a convolutional en-

coder followed by a PAM modulator, that maps the encoded bits to transmit symbols,

which are sent over a memoryless channel. The receiver could be a soft-input Viterbi

decoder that uses the received symbols as input. This is possible because the convolu-

tional coder is a Markov source and the channel is memoryless. Symbol interleaving at

the transmitter would still pose no problem, the interleaving could be reversed at the

receiver before the deinterleaved symbols are forwarded to the VA.

The problem lies in the bit-level interleaving. Consider for example a 16-QAM

constellation, where four coded bits are mapped to one complex transmit symbol. It

can be seen that these four bits will in general correspond to different, non-adjacent

trellis transitions, because they originate in coded bits belonging to different information

bits. Although for some specific interleavers it is possible to construct a new trellis (with

far more states than the original one) and still use the VA, it is in general not practical.1

1For BPSK constellations and QPSK constellations with Gray labeling, this problem does not occur,
because only one bit is mapped to one symbol respectively one quadrature component.
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Encoder Interleaver
Mapper Channel

c d

Figure 3.1: BICM transmitter consisting of encoder, interleaver and mapper, with
physical channel.

For a BICM system with a 16QAM or higher constellation, the channel “seen” by

each code bit, consisting of interleaving, mapping, and the physical channel, has to be

considered a channel with memory, if the source is still modeled Markovian. Or alter-

natively, the channel can be modeled as memoryless, but the source is not Markovian

anymore in this case. Either way, Viterbi decoding cannot be applied directly.

One solution to the problem is to demap the received symbols to code bits, so that

these can be deinterleaved before decoding. This is not optimum, because the demap-

per’s output are bit probabilities, and due to the channel being non-memoryless, the

sequence probabilities cannot be simply recovered as the product of the bit probabilities

anymore. But this is exactly the way BICM receiver discussed in the present chapter

works, and it uses an iterative procedure to achieve near-optimum decoding.

3.3 System Model and Notation

In this chapter, vectors or sequences are represented by bold-face letters. The trans-

mission scheme is shown in Fig. 3.1.

The length K sequence b = (b0, . . . , bK−1) of source bits bi is first encoded into a

length N sequence c = (c0, . . . , cN−1) of coded bits cj . The codeword length N ≥ K

depends on the encoder used. In the following we will only consider a convolutional

encoder with rate R = K
N

= 1
2
, although the results apply to other encoders. In

this case, the sequence of coded bits has length N = 2K and we can write c =

(c0
0, c

1
0, . . . , c

0
K−1, c

1
K−1). There are of course more sequences of length N , which con-

stitute the set R = {0, 1}N , than there are valid codewords c ∈ C of the same length,

therefore C ⊂ R. Due to the 1:1-correspondence between sequences of information bits
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and codewords, the cardinality of the set of codewords |C| = 2K = 2NR in contrast to

|R| = 2N = 22K .

The next stage of the transmitter is the interleaver that scrambles the encoded bits

to avoid burst errors at the receiver. It is represented by a permutation function π(.)

operating on the bit indices j.

The resulting interleaved bits dj = cπ(j) are then gathered into subsequences of B

bits dk = (dkB, dkB+1, . . . , d(k+1)B−1) that are mapped to complex transmit symbols sk

from a given signal constellation of size M = 2B. The sequence of interleaved coded bits

corresponding to c is denoted as d and the corresponding set of interleaved codewords

as D. So we can also say that the interleaved code bits sequence d is mapped to

the sequence of L = N/B complex symbols sC = (s0, . . . , sL−1) which is sent over the

channel. The subscript C is used to emphasize that this is a sequence that corresponds to

a valid interleaved code sequence. We write simply s to denote an arbitrary sequence of

transmit symbols. In the following, we denote by SC and S the set of symbol sequences

corresponding to the set of code sequences respectively arbitrary symbol sequences of

length L.

An arbitrary sequence of code bits will be denoted as x. The interleaved bit sequence

corresponding to the same code bit sequence is written as x̃. The relationship between

a code bit with the corresponding interleaved code bit is x̃j = xπ(j), respectively xj′ =

x̃π−1(j′).

Only the AWGN case is considered here, but the results can easily extended to flat

Rayleigh or Ricean fading channels. Therefore the input-output relation of the channel

is

y = sC + n, n ∼ N (0, σnI),

or yk = sk + nk for the k-th symbol in the received symbols vector y = (y0, . . . , yL−1).

The receiver’s task is to detect the transmitted information bits given the observed

symbol sequence s. The classical optimality criterion is the sequence error probabil-
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ity, which is minimized by the MAP-detector (which reduces to the ML detector for

uniformly distributed information sequences).

3.4 Interpretation of Soft Sequence Decoding

On the way to a practical implementation, we first introduce an information-geometric

interpretation of soft sequence-decoding, which is general and not limited to BICM.

We will start from the MAP criterion and show how its calculation can be split up

into three steps. The MAP decoder, which is equal to the maximum likelihood (ML)

decoder for uniformly distributed information bits, chooses the information bit sequence

that has the highest probability given the received symbol sequence:

b̂ = arg max
b

p(b|y). (3.1)

It can be shown that it minimizes the sequence error probability P(b̂ 6= b|y).

Carrying out this minimization directly has a complexity growing exponentially

with information sequence length, since for each sequence the probability has to be

calculated. There are algorithms like the Viterbi Algorithm (VA) that take advantage

of the hidden markov model (HMM) structure of the convolutional encoder, avoiding

the need to do an exhaustive search over all sequences. As already mentioned, this is

not an option for BICM in most cases.

In the following, a three-step procedure is shown, as a first step to a practical

implementation.

3.4.1 Step One: Calculating the “Observed Distribution”

In this step, the a posteriori pmf p(s|y), called “observed distribution” of the transmit

symbol sequences s is calculated, ignoring the constraints that are mandated by the

code. In other words, we simply calculate the probabilities of all possible transmit
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symbol sequences given the received sequence y = s + n. The code structure will be

“reintroduced” in the next step.

Let’s first consider a series of equalities that are due to the various 1:1-mappings of

the sequences we have considered so far, starting from the MAP-criterion:

max
b

p(b|y) = max
c∈C

pC(c|y)

= max
d∈D

pD(d|y) = max
sC∈SC

pSC
(sC |y).

(3.2)

The maximizing arguments of each of these expressions also have 1:1 correspondences

with each other, via encoding, interleaving and mapping, respectively.

Note that it is very important that for this equalities to hold one has to carry out

the maximizations over the right subset of sequences, C, D or SC !

Now let’s calculate the pmf p(s|y) for all possible sequences s ∈ S, including those

which do not correspond to valid code sequences. Using the Bayes Criterion and the

fact that the channel is memoryless (each “channel use” is independent), we can write

p(s|y) =
p(s)

p(y)
p(y|s) =

p(s)

p(y)

∏

k

p(yk|sk).

p(y) is a positive factor that does not depend on s, so it can be omitted for the maximiza-

tion. Further assuming uniformly distributed information bits (which actually means

using the ML-criterion instead of the MAP-criterion), thus uniformly distributed code

and symbol sequences, we can also omit p(s) because it is constant for all s. Thus we

finally obtain

p(s|y) ∝
∏

k

p(yk|sk).

We observe that the probability of a whole sequence (omitting the code structure)

is actually the product of its symbol probabilities. The complexity of calculating the

sequence probabilities is thus reduced to a linearly growing one.

Using the correspondence between symbols sk and subsequences of interleaved bits
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x̃k, we can compute p(x̃|y) for every sequence x̃ ∈ R:

p(x̃|y) = p(s(x̃)|y) ∝
∏

k

p(yk|x̃k). (3.3)

Because the de-interleaved bits x correspond 1:1 to the interleaved bits x̃, this is

further equivalent to evaluating the pmf

pR(x) = p(x|y) ∝
∏

k

p(yk|xk), (3.4)

where xk = (xπ−1(kB), . . . , xπ−1(k+1)B−1)). Note: this holds for x ∈ R, meaning all

sequences of length N. In other words: this probability distribution will in general also

have non-zero value for sequences x that are not in the code. It is intuitive that these

sequences should not be considered when doing the maximization, so we need to get

rid of them before. This is done in the next step.

3.4.2 Step Two: I-Projection onto the Code Manifold

Omitting the code structure altogether of course won’t lead to an optimum decoder.

We will account for it in the present step by taking the sequence APPs obtained in the

first step and projecting it onto the submanifold of probability distributions that are

compatible with the code. Intuitively, this submanifold only may contain distributions

that have zero probability for sequences not included in the code, leaving all the non-

zero probabilities to the valid code sequences.

We are now going to present two approaches to this projection problem.

Approach I

The first approach is taken from [8]. It starts with the following
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Definition 3.4.1. Code-compatible distributions

EC = {p | p(x) = 0 iff x /∈ C}.

This can be shown to be an exponential family but this fact is not actually used in

the following.

The observed distribution p(x|y) is now projected upon this set of code-compatible

distributions.

Theorem 3.4.1. Projection onto the code-compatible distributions

For any distribution p(x), the closest distribution to p in EC,

pC = arg min
q∈EC

D(q‖p),

is the distribution pC given for each x by

pC(x) =
p(x)IC(x)

∑

x∈R p(x)IC(x)
, (3.5)

where IC is the “indicator function” of the code, given by

IC =







1 if x ∈ C

0 if x /∈ C
.

For any distribution p and for any distribution r ∈ EC, we have D(r‖p) = D(r‖pC)+

D(pC‖p).

Proof. Let us consider a code-compatible distribution r ∈ EC and any discrete proba-
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bility distribution p. Then

D(r‖p) =
∑

x

r(x) log
r(x)

p(x)
=
∑

x

r(x)

(

log
r(x)

p(x)IC(x)
P

x
′ p(x′)IC(x′)

+ log

p(x)IC(x)
P

x
′ p(x′)IC(x′)

p(x)

)

= D

(

r

∥
∥
∥
∥

p(x)IC(x)
∑

x′ p(x′)IC(x′)
︸ ︷︷ ︸

pC

)

+
∑

x

r(x) log
IC(x)

∑

x′ p(x′)IC(x′)
.

The term on the left is D(r‖pC) and therefore zero for r = pC. The right hand term

does not depend on r and is equal to D(pC‖p):

∑

x

r(x) log
IC(x)

∑

x′ p(x′)IC(x′)
=

(
∑

x

r(x)

)

log
1

∑

x′ p(x′)IC(x′)

= log
1

∑

x′ p(x′)IC(x′)

=
∑

x

p(x)IC(x)
∑

p(x)IC(x)
︸ ︷︷ ︸

pC

log
p(x)IC(x)
∑

p(x)IC(x)
︸ ︷︷ ︸

pC

1

p(x)
.

In the first step we use the fact that r(x) is code-compatible and therefore r(x)IC(x) =

r(x). In the final step, we multiplied with the sum over pC, which is one, and extended

the fraction in the logarithm with IC(x)p(x)
p(x)

, which does not change the value of the

expression, because the summation is actually done only over the valid codewords.

We have shown that the distribution that is compatible with the code and with

minimum KL divergence to the observed distribution p(x|y) is given by the expression

(3.5). The denominator in that expression is a normalization factor, which ensures that

pC is a valid pmf, i.e. that the sum over all its values is one.

This approach interprets the code-compatible densities as an exponential family,

but does not make use of this fact. Furthermore, the projection given in the above

theorem is easily recognized to be an I-projection, and the equality given at the end of

the theorem is the Pythagorean Theorem for a projection onto a linear family that we
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discussed in section 2.2.4.

Approach II

Another approach [12] regards the manifold of code-compatible distributions as a linear

family right from the start, and furthermore gives a more general view of our problem.

When inferring the distribution p(x) (in our case pC(x)) of a random variable x with

an a priori distribution q(x) (here p(x|y)), the Principle of minimum cross-entropy

(=KL divergence) selects that distribution p(x) which has the minimum KL divergence

D(p‖q) subject to the known constraints on the random variable x. This can be formally

written as follows:

Find p(x) such that

D(p‖q) = arg min
s

D(s‖q), (3.6)

subject to

Ep{f(x) = 0}. (3.7)

For our projection problem, the component functions fi that constitute f in (3.7)

correspond to the parity-check equations of the code. For a linear binary (N, K)-block

code, there will be F = N −K independent check equations. A check equation can be

expressed as an equality constraint, e.g.

fi(x) = x1 ⊕ x2 ⊕ x6 = 0. (3.8)

If the code bits satisfy the constraint, which means that x is a valid codeword, fi(x) = 0,

else fi(x) = 1. Since the constraint functions fi are nonnegative, the parity check

equation (3.8) is equivalent to the expected value constraint Ep{fi(x)} = 0. This gives

rise to the following
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Definition 3.4.2. Family of code-compatible distributions (alternative definition)

LC =
{

pC(x) : Ep

{
f(x)

}
= 0

}

. (3.9)

The essential property of this family is the following: each distribution of the fam-

ily has non-zero probability values for valid codewords, and zero probability for non-

codewords.

Recalling the information geometric setting established in Chapter 2, we recognize

(3.7) as a linear family, and (3.6) is therefore the I-projection of q onto LC. Thus, pC(x)

is of the form (see also the remark 3.1 in [9])

pC(x) = c · q(x) exp

( K∑

1

θifi(x)

)

. (3.10)

In order to find the values θi, one first notes that c, q(x) and fi(x) are all non-

negative. Thus for any x such that fi(x) > 0, θi has to be −∞ for the restriction (3.9)

to hold. With θi = −∞

exp(θifi(x)) =







0 if fi(x) 6= 0

1 if fi(x) = 0

= Ii(x),

where Ii(x) is the indicator function for the sequences x that satisfy the i-th check

equation of the code.

In this manner, the expression (3.10) becomes

p(x) = cq(x)I1(x)I2(x) · · · IF (x).

Because a valid codeword has to satisfy all the parity check equations simultaneously,

the individual indicator functions can be collected into the indicator function for the

code, IC(x) =
∏F

i=1 Ii(x). Using p(x) = p(x|y) the posterior pmf pC(x) = p(x) is finally
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written as

pC(x) =
p(x|y)IC(x)

∑

x∈R p(x|y)IC(x)
.

Here the constant c has already been chosen so that

∑

x∈X

pC(x) = 1.

Comparing the two approaches we conclude that they lead to the same solution: we

end up with the I-projection pC of p(x|y) onto the code-compatible distributions.

3.4.3 Step Three: Maximization

In the previous step we have shown the distribution in the code-submanifold that has

minimum KL divergence to the observed distribution p(x|y) of all possible sequences

to be its I-projection onto the code-submanifold LC. The expression can be written

explicitly as

pC(x) =
p(x|y)IC(x)

∑

x∈R p(x|y)IC(x)
.

The third step is to perform the maximization. It can be easily shown that maxi-

mizing pC obtained in the projection step over all possible bit sequences (3.11d) leads to

the same resulting code sequence estimate ĉ as evaluating the MAP-criterion directly:

ĉMAP = arg max
c∈C

p(c|y) (3.11a)

= arg max
c∈C

p(c|y)IC(c) (3.11b)

= arg max
c∈C

pC(c) (3.11c)

= arg max
x∈R

pC(x). (3.11d)
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p1 = P{11}

1

1

1

pR

ER

p2 = P{00}

p3 = P{01}

LC

pC

Figure 3.2: Soft sequence decoding.

3.4.4 Example

As an illustration of the information-geometric interpretation of the soft sequence-

decoding process, we consider the simple case of length-two bit sequences and a repe-

tition code.

There are four bit sequences x of length two: x ∈ R = {00, 01, 10, 11}. The

codebook of the repetition code consists only of two codewords, C = {00, 11}.

A pmf p(x) ∈ ER consists of four probabilities for the four different bit sequences:

p(00) = P{00}, p(01) = P{01}, p(10) = P{10}, p(11) = P{11}. As
∑

x p(x) = 1, three

probabilities fully determine the fourth one, for example, p(10) = p(11)−p(01)−p(00).

The set of valid probability distributions p is therefore a three-dimensional manifold

(ER in Fig. 3.2). It consists of the three-dimensional simplex between the corner points

with coordinates (0, 0, 0),(1, 0, 0),(0, 1, 0) and (0, 0, 1). The coordinates used are mixture

coordinates α = (α1, α2, α3), which for discrete distributions are simply the probabilities

of the different outcomes, αi = pi, i being the decimal value of the sequence.

Note the difference to the visualization we presented in the example 2.2.2, Fig.

2.1. There, the manifold was two-dimensional, but we had chosen to embed it into a

three-dimensional coordinate system, to make things easier to understand. Now, we

make use of the fact that the fourth probability is totally defined by the other three
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probabilities and therefore we can use a three-dimensional visualization although we

have four probabilities. We have chosen to omit p(10) from the coordinate system.

This means, that in the origin lies the distribution α = (0, 0, 0) where p(10) = 1 and

the othere probabilities are zero.

Let’s give one more example to make the meaning of the coordinate system used

more clear. The point α
′ =

(
1
4
, 1

4
, 1

4

)
represents the uniform distribution for which

p(00) = p(01) = p(10) = p(11) = 1
4
.

The repetition code allows only the sequences 00 and 11. The linear family of code-

compatible densities is in this case and in the chosen coordinate system a “straight line”

(m-geodesic) between the points (1, 0, 0) and (0, 1, 0). It can be easily be verified that

all points on this connection line correspond to distributions that have zero probability

for the non-codewords 01 and 10. That is, LC is the convex combination

LC = {pt | pt = (1 − t)p0 + tp1, 0 ≤ t ≤ 1}.

Now that the setting for the example is laid out, the actual interpretation of soft-

decoding in the context of the example is quickly explained. The first step is to calculate

the observed distribution pR(x) = p(x|y). This distribution is represented by a point

inside the three-dimensional simplex representing the manifold ER. The second step

is the I-projection of pR(x) onto the code-manifold LC, we obtain the distribution

pC(x) = arg min
p∈LC

D(p‖pR). The third step (maximization) is in the present example a

decision between the two sequences 00 and 11.

3.5 A Practical Algorithm

The procedure described in the previous section is a reinterpretation of maximum-

likelihood soft sequence-decoding. The complexity of soft sequence-decoding generally

increases exponentially with sequence length, because the posterior probability of each
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code sequence has to be calculated. The information geometric interpretation splits

the problem up into to sub-problems. The first step, the calculation of the ”observed”

distribution pR(x) = p(x|y), only has linear complexity, because it can be split up

into the products of individual symbol pmfs. But the second step still has exponential

complexity, because the calculation of the projection onto the code manifold pC requires

to go through all the sequences and decide wether they are in the codebook or not.

For many transmission systems, the implementation of optimum or near-optimum

sequence detection is still possible with reasonable complexity by using e.g. the Viterbi

algorithm or the BCJR-algorithm. But direct application of such an algorithm is not an

option for BICM. These algorithms assume a Markovian source that is observed through

a memoryless channel. Because of the interleaver, the channel cannot be regarded as

memoryless anymore.

However, there are standard BICM receiver algorithms, described e.g. in [4] An

information-geometrical interpretation of one such algorithm is proposed in [8], this

interpretation will be presented in the following.

The basic idea is to split up the detection problem into two main subblocks. The

first subblock, in the following referred to as the “demapper”, calculates probabilities

for the code bits, assuming that the bits carried by a received symbol are independent.

The code structure is not considered - it cannot be, because the demapper carries out

symbol-by-symbol processing, it does not consider the whole symbol sequence.

The second main block is a soft-input-soft-output (“SISO”2) channel decoder, in

the following called “decoder”. Its task is to decode the channel code using the bit

probabilities provided by the demapper, and to produce information bit probabilities.

The two blocks are linked by a deinterleaver that reverses the bitwise interleaving

that has been performed at the transmitter.

The receiver can be improved by using an iterative procedure, which we will describe

2Unfortunately, this is the same acronym as the one of the well established term ”single-input-
single-output”.
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De-Interleaving

Bit SISO

Decoding

Symbol to Bit
y

Demapping

Figure 3.3: BICM receiver, consisting of demapper, deinterleaver and SISO decoder.

in the final section of the present chapter. For now, we will restrict ourselves to the

non-iterative system shown in Fig. 3.3. In the following sections we will describe

the different subblocks in detail and show that their function can be interpreted as

projections of probability distributions.

3.5.1 The Demapping Sub-Block

In section 3.4, the first step was to calculate the “observed” distribution p(x|y), where

x ∈ R stands for any possible bit sequence with length N . It was shown that this pmf

can be factored into individual symbol probabilities.

To be able to use bit-wise processing, we need a factorization of p(x|y) into individ-

ual bit probabilities,

pdem(x|y) =
∏

j

pj(xj |yk(j)). (3.12)

Remember that j is the index of the coded bits and k(j) denotes the index of the

received symbol yk that carries the coded bit cj .

To simplify things in the following we assume a rate-1
2

convolutional code, which

means that every information bit bi is encoded into two coded bits c0
i and c1

i . Further-

more we will now describe the interleaver with the two functions π0
i and π1

i , that give

the indices of the transmit symbols that carry the encoded bits c0 and c1, respectively.

A code bit can now be linked with the corresponding received symbol the bit is mapped

to, for example c0
i is mapped to yπ0

i
.

The next assumption is that we have chosen a labeling for which a code bit is mapped

either to the in-phase or to the quadrature component. The function fπ0
i

denotes the

function representing either the real part or the imaginary part function, depending on

which component the bit c0
i is mapped to.
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With this notation and assumptions, we obtain for the observed distribution the

expression

p(x|y) = c
∏

i

p0
i (x

0
i |fπ0

i
(yπ0

i
)) p1

i (x
1
i |fπ1

i
(yπ1

i
)). (3.13)

Note that for this equation to hold, the equivalent channel “seen” by each code bit,

consisting of bit interleaver, mapping and transmission channel, has to be memoryless.

Only in that case the received code bits are statistically independent3 and the sequence

pmf is the product of the bit pmfs. This is true for simple signal constellations like BPSK

or 4QAM with Gray labeling, but not for higher-order constellations, as explained in

section 3.2. In other words, using this relation for higher signal constellations is an

approximation, and will lead to suboptimum sequence error performance in general.

But there is an information-geometric justification for the approximation that the

received code-bits are independent: it is the best approximation in the sense that the

factorizable distribution given in (3.12) has minimum KL divergence to the original

distribution p(x|y).

In fact, the factorization can be regarded as an inverse I-projection onto the factor-

izable distributions EF . This has been shown in example 2.2.7.

By approximating the observed distribution by the product of individual bit proba-

bilities, the demapper sub-block does an implicit projection of the observed distribution

onto the factorizable distributions.

The observed distribution p(x̃|y) written in terms of the interleaved encoded bits x̃

is given by

p(x̃|y) = p(s(x̃)|y) =
∏

k

p(x̃k|yk). (3.14)

Let us now concentrate on the individual factors of the product. Each one is a posterior

probability for the interleaved bit sub-sequence x̃k carried by the observed received

symbol yk. Here, x̃k = (x̃kB, x̃kB+1, . . . , x̃kB+(B−1)) =: (x̃0
k, x̃

1
k, . . . , x̃

(B−1)
k ). To each

3The code bits are of course never independent, because they have dependencies due to the code
structure. But for the calculation of the observed distribution we don’t consider the code structure!



Chapter 3. Geometrical Interpretation of BICM Decoding 40

interleaved bit sub-sequence there is the corresponding sequence of non-interleaved code

bits xk = (xπ−1(kB), xπ−1(kB+1), . . . , xπ−1(kB+(B−1))). The bit probabilities can now be

calculated by marginalizing:

p(x̃l
k|yk) = p(xπ−1(kB+l)|yk) =

∑

sk:x̃l
k

p(sk|yk),

that is, by summing the symbol APP p(sk|yk) over all transmit symbols sk of the symbol

alphabet whose bit at position l has the value x̃l
k. As there is a one-to-one mapping

between transmit symbols and interleaved bits, we can further write

p(x̃l
k|yk) =

∑

x̃k∼x̃l
k

p(sk(x̃k)|yk), (3.15)

and, using Bayes’ theorem and assuming uniformly distributed code bits and thus trans-

mit symbols,

p(x̃l
k|yk) ∝

∑

x̃∼x̃l
k

p(yk|sk(x̃k). (3.16)

For an AWGN channel with noise variance σ2, p(yk|sk(x̃k)) is

p(yk|sk(x̃k)) = e−
1

2σ2 |yk−sk|
2

.

Using the one-to-one correspondence between sk and x̃k, and normalizing appropri-

ately, the a posteriori probability of the interleaved bit x̃l
k, is

pdem(x̃l
k) := p(x̃l

k|yk) =

∑

x̃k:x̃l
k
p(yk|x̃k)

∑

x̃k
p(yk|x̃k)

. (3.17)

This is the “local”, that is, symbol level description of the demapper sub-block. For

one given received symbol yk it produces 2B (the number of bits per symbol of the

constellation times two, for values 0 and 1) bit-probabilities. This local behavior is

illustrated in Fig. 3.4.
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Demapping
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(I+1)
dem (x̃0
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(I)
dem(x̃B−1

k )

Figure 3.4: Local interpretation of the demapper sub-block.

pdem(x̃)
Marginalization

p(x̃|y)

Figure 3.5: Global interpretation of the demapper sub-block.

The “global” description, i.e. the description on the level of sequence probabilities,

is given by the projection onto the factorizable distributions, which is the product of the

individual bit probabilities. The demapper’s output distribution can therefore finally

be written as

pdem(x̃) =
∏

k

B−1∏

l=0

∑

sk:x
π−1(kB+l)

p(x̃k|yk)

=
∏

k,l

p(x̃l
k|yk)

=
∏

k,l

pdem(x̃l
k).

(3.18)

This interpretation is illustrated in Fig. 3.5.

3.5.2 BCJR Decoding Sub-Block

The BCJR decoder (also called “forward-backward” or “sum-product” algorithm) takes

a sequence of bit-probabilities as input. It produces a sequence of updated probabilities,

using the whole sequence and taking the code structure into account, as output. A

detailed discussion of the BCJR algorithm can be found for example in the original

paper [13] by the inventors of the algorithm. It is applicable to our problem because it

is a method of calculating a posteriori bit probabilities, instead of sequence probabilities,

which the Viterbi Algorithm would produce. This will be essential for iterative (turbo)

decoding, as we will see later. For non-iterative BICM decoding, the use of a (soft-input)
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VA would be also possible.

Geometrically, the operation of the BJCR-algorithm can be interpreted as two suc-

cessive projections: The starting point is a factorizable probability distribution. This

input probability distribution is first projected onto the manifold of code-compatible

densities, which is a linear family, but not necessarily a factorizable distribution. In

a second step, the newly found distribution is again projected onto the manifold of

factorizable densities. This is what we will show in the following.

The output distribution of the demapper, after having been deinterleaved, serves as

the input distribution for the decoder,

pdem(x) =
∏

m,n

pdem(xn
m),

which is a factorizable distribution consisting of the code bit probabilities.

In the following, we will assume a rate-1
2

convolutional channel code code, which

means that every information bit bj corresponds to two code bits, (c0
j , c

1
j). The convo-

lutional code is represented by a time-invariant trellis with M states (the number of

states depends on the code). Each trellis transition from one state m to another state

m′ corresponds to one combination of two output code bits. From one time point k to

the next k + 1, there are only certain allowed trellis transitions - this represents the

code constraints. By taking a path through the trellis and concatenating the code bits

of all the transitions, a valid codeword is obtained.

The BCJR algorithm operates on the code trellis and recursively computes the

following two quantities:

αk(m) =
∑

ck
1∈C

k
1 (m)

k∏

j=1

pdem(c0
j)pdem(c1

j)
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and

βk(m) =
∑

cN
k+1∈C

N
k+1(m)

N∏

j=k+1

pdem(c0
j)pdem(c1

j ),

where Ck
1 (m) stands for the set of 2k bits that are allowed by the trellis structure and

end in state m at time k. Similarly CN
k+1(m) stands for the set of 2(N − k) bits that

correspond to allowed valid paths in the trellis and begin in state m at time k.

These quantities can be seen as the projection of the probabilities of the length-2k

bit-sequences onto the set of partial codewords starting an ending in state m. Using

the indicator function ICk
1 (m)(.) that has value one only for these codewords, zero for

the rest of the sequences, we can rewrite αk(m) as

αk(m) =
∑

ck
1∈C

k
1 (m)

k∏

j=1

pdem(c0
j )pdem(c1

j )

=
∑

xk
1∈R

k
1(m)

( k∏

j=1

pdem(x0
j )pdem(x1

j )

)

ICk
1 (m)(x

k
1).

In the same manner, denoting by ICk
1
(.) the set of all partial code sequences of length

2k,
∑

m αk(m) can be seen as the projection of the probabilities of the sequences of 2k

bits onto the set of partial codewords. Indeed ICk
1
(.) =

∑

m ICk
1 (m)(.) and therefore

∑

m

αk(m) =
∑

m

∑

ck
1∈C

k
1 (m)

k∏

j=1

pdem(c0
j )pdem(c1

j)

=
∑

m

∑

xk
1∈R

k
1(m)

( k∏

j=1

pdem(x0
j )pdem(x1

j )

)

ICk
1 (m)(x

k
1)

=
∑

xk
1∈R

k
1(m)

( k∏

j=1

pdem(x0
j)pdem(x1

j )

)
∑

m

ICk
1 (m)(x

k
1)

=
∑

xk
1∈R

k
1(m)

( k∏

j=1

pdem(x0
j)pdem(x1

j )

)

ICk
1
(xk

1).

(3.19)

The β-coefficients can be interpreted in a similar way by considering the sets CN
k (m).
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Once the αk’s and βk’s have been calculated, the BCJR algorithm evaluates the prob-

ability that a transition from state m to state m′ occurs at time k of the trellis:

σk(m, m′) = αk−1(m)pdem(x0
k = c0

m→m′)pdem(x1
k = c1

m→m′)βk(m
′)Ic(m, m′), (3.20)

where Ic(m, m′)=1 only if the transition m → m′ is allowed by the trellis, 0 else.

Furthermore, c0
m→m′ and c1

m→m′ denote the values of the first respectively the second

output bit corresponding to the trellis transition m → m′.

We see that this is the moment where the a priori probabilities of the coded bits

pdem(x0,1
j ), that are provided by the demapper, are incorporated by the decoder.

In the same way we did for the α and β coefficients, we will now rewrite σk(m, m′)

using some indicator functions, in order to reveal the underlying projection onto the

code structure. Let us first use the expression (3.5.2) and the analogue for β in (3.20):

σk(m, m′) =

(
∑

ck
1∈C

k
1 (m)

k∏

j=1

pdem(c0
j)pdem(c1

j )

)

(
pdem(x0

k = c0
m→m′)

pdem(x1
k = c1

m→m′)Ic(m, m′)
)

(
∑

cN
k+1∈C

N
k+1(m

′)

N∏

j=k+1

pdem(c0
j)pdem(c1

j )

)

.

Now we introduce the indicator functions

σk(m, m′) =

(
∑

xk
1∈R

k
1

ICk−1
1 (m)(x

k−1
1 )

k∏

j=1

pdem(x0
j )pdem(x1

j )

)

(
pdem(x0

k = c0
m→m′)pdem(x1

k = c1
m→m′)Ic(m, m′)

)

(
∑

xN
k+1∈R

N
k+1

ICN
k+1(m′)(x

N
k+1)

N∏

j=k+1

pdem(x0
j )pdem(x1

j)

)
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and gather the marginal probabilities:

σk(m, m′) =
∑

xk
1∈R

k
1

∑

xN
k+1∈R

N
k+1

ICk−1
1 (m)(x

k−1
1 )Ic(m, m′)ICN

k+1(m
′)(x

N
k+1)

pdem(x0
k = c0

m→m′)pdem(x1
k = c1

m→m′)
∏

j 6=k

pdem(x0
j)pdem(x1

j )

=
∑

x∈R:(c0
m→m′ ,c

1
m→m′)

ICk−1
1 (m)(x

k−1
1 )Ic(m, m′)ICN

k+1(m
′)(x

N
k+1)

(
N∏

j=1

pdem(x0
j )pdem(x1

j )

)

.

By defining IC:m→m′(x) := ICk−1
1 (m)(x

k−1
1 )Ic(m, m′)ICN

k+1(m
′)(x

N
k+1), we finally obtain

σk(m, m′) =
∑

x∈R

IC:m→m′(x)
( N∏

j=1

pdem(x0
j)pdem(x1

j )

︸ ︷︷ ︸

pdem(x)

)

.

The posterior pmfs pdec(x
l
k) are then evaluated by summing up the σk(m, m′) over

all the trellis transitions (m, m′) that yield as output the value of the bit xl
k we are

considering:

p(xl
k) ∝

∑

(m,m′):cl
k

σk(m, m′)

=
∑

(m,m′):cl
k

(
∑

x∈R

IC:m→m′(x)pdem(x)

)

=
∑

(m,m′)

(
∑

x∈R:cl
k

IC:m→m′(x)pdem(x)

)

=
∑

x∈R:cl
k

(
∑

(m,m′)

IC:m→m′(x)pdem(x)

)

=
∑

x∈R:cl
k

(

IC(x)pdem(x)

)

.

Therefore the output of the BCJR decoder can be seen as the result of the projection
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pdem(x) pdec(x)
MarginalizationCode Projection

rdec(x)

Figure 3.6: Interpretation of the BCJR decoder.

onto the set of factorizable densities EF (which is represented by the marginalization) of

the projection of pdem(x) onto the set LC of code-compatible distributions (represented

by the indicator function that zeros out all the non-codewords’ probabilities).

The output distribution, which consists of the a posteriori code bit pmfs, is written

as

pdec(x) =
∏

k,l

p(xl
k).

The operation of the decoding sub-block is illustrated in Fig. 3.6. The intermediate

distribution rdec, which is the projection of pdem onto LC is given by

rdec(x) =
pdem(x)IC(x)

∑

x pdem(x)IC(x)
.

3.5.3 Example

We will again illustrate the procedure described above by an example. The setup is

the same as in the example given in section 3.4.4, that is we consider length-two bit-

sequences and a repetition code. The setup is illustrated in Fig. 3.7. It shows the

probability simplex, which represents the manifold of all pmfs with four outcomes,

and two submanifolds: the code manifold LC and the manifold of the factorizable

distributions, EF .

The manifold of factorizable densities is in our case two-dimensional. This can be

understood by considering the fact that each pmf of the family is a product of two bit-

pmfs, pF(x) =
∏

i pi(xi) = p0(x0)p1(x1). Each bit-pmf is actually characterized fully

by one parameter (either the probability P (xi = 0) or P (xi = 1)). Since pF(x) is the

product of two pmfs, each described by one parameter, we need two parameters to fully
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p1 = P{01}

p2 = P{10}

p3 = P{11}

Figure 3.7: The practical BICM-decoding algorithm.

determine it.

The demapper takes as input the observed transmit symbols, calculates the observed

distribution q(x̃) = p(x̃|y) and implicitly projects it onto the family of factorizable

distributions, yielding pdem(x̃). Then the BCJR-decoder projects pdem(x) onto the

code-manifold LC and again onto the factorizable distributions. The resulting pmf is

pdec(x), the output of the decoder.

3.6 Iterative Demodulation

In order to compensate for the loss of information (and therefore performance) that

occurs due to the demapper’s assumption that the code bits are independent, [8] de-

scribes an iterative algorithm. The idea is to “feed back” the information about the

code bits generated by the decoder sub-block to the demapper, which can use it as a

priori information about the bits to be demapped. In this way, the new pmf generated

by the demapper should represent the actual coded bits transmitted in a better way.

This new pmf is then again used as input for the BCJR-decoder, and the next iteration

begins.

Iterative demodulation is commonly also referred to as “turbo demodulation”, be-
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Figure 3.8: Iterative BICM receiver

cause of the analogy to a turbocharger that uses the pressure of the exhaust gases to

compress the air in the combustion chamber of an engine, to improve its performance.

We need to make three essential changes to the non-iterative setup described so

far: the demapper has to be modified to take bit probabilities as additional input

besides the received symbols. Second, instead of directly using the a posteriori bit

probabilities generated by one block as the input of the other block, we use so-called

“extrinsic probabilities” because this leads to better convergence behavior. And finally,

a feed-back branch has to be introduced to supply the demapper with bit probabilities

generated by the decoder. The iterative receiver is depicted in Fig. 3.8

The probability distributions in the following will be denoted with a superscript

(e.g., “I”) that stands for the number of the iteration step in which it is produced.

3.6.1 Extrinsic Probabilities

Let’s first define extrinsic probabilities and then discuss the meaning of the definition.

Definition 3.6.1. The extrinsic probability of an encoded bit b is the ratio of the a

posteriori probability of b given the constraints imposed by the considered sub-block

and the a priori probabilities over the a priori probability of b. Informally, we can write

e(b) =
a posteriori probability (b)

a priori probability (b)
.

We will give the explicit expressions for the extrinsic probabilities of the respective

sub-block in the corresponding sections.
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3.6.2 The Demapping Sub-Block

The demapper described for non-iterative decoding calculated the probabilities for the

encoded bits without considering the code structure. The APPs of the code bits are

(see equation (3.15))

p(x̃l
k|yk) =

∑

x̃k∼x̃l
k

p(sk(x̃k)|yk),

and for uniformly distributed code bits (see (3.16)),

p(x̃l
k|yk) ∝

∑

x̃k∼x̃l
k

p(yk|sk(x̃k)).

For the iterative receiver, the demapper has to incorporate a priori knowledge about

the coded bits, therefore we drop the assumption the code bits being uniformly dis-

tributed. This means that Bayes’ rule applied to (3.15) yields, instead of (3.16), the

expression

p(x̃l
k|yk) ∝

∑

x̃k∼x̃l
k

p(yk|sk(x̃k))
∏

n

p
(I)
dec(x̃

n
k),

where n ∈ (1, 2, . . . , B − 1), and p
(i)
dec(x̃

n
k) being the a priori probabilities supplied by

the decoder sub-block in iteration I.

To obtain the extrinsic probability of x̃l
k we need to divide by its a priory probability

p
(i)
dec(x̃

l
k), and get

e(x̃l
k|yk) ∝

∑

x̃k∼x̃l
k

p(yk|sk(x̃k))
∏

n 6=l

p
(i)
dec(x̃

n
k).

The a priori information that goes into the previous two equations comes from

the decoder. As already mentioned, the extrinsic probabilities are used instead of the

a posteriori probabilities. Inserting these extrinsic probabilities and normalizing, the

expressions become

p
(I+1)
dem (x̃l

k) =

∑

x̃k∼x̃l
k
p(yk|x̃k)

∏

n e
(I)
dec(x̃

n
k)

∑

x̃k
p(yk|x̃k)

∏

n e
(I)
dec(x̃

n
k)

(3.21)
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k )

Figure 3.9: Local description of demapping sub-block.

and

e
(I+1)
dem (x̃l

k) =

∑

x̃k∼x̃l
k
p(yk|x̃k)

∏

n 6=k e
(I)
dec(x̃

n
k)

∑

x̃k
p(yk|x̃k)

∏

n 6=k e
(I)
dec(x̃

n
k)

. (3.22)

The equations (3.21) and (3.22) describe the local behavior of the demapping sub-

block for the iterative receiver. For each symbol index k it takes 2B + 1 inputs: the

received symbol yk and the 2B extrinsic probabilities e
(I)
dec(x̃

l
k = b) for 0 ≤ l ≤ B −

1,b ∈ 0, 1, obtained after the Ith iteration. It produces 4B outputs, 2B a posteriori

probabilities and 2B extrinsic probabilities of the encoded bits. Fig. 3.9 illustrates this

behavior.

The global behavior in the iterative case is slightly more complicated to describe

than in the non-iterative case. In the non-iterative case, the demapper’s only function

was the implicit projection of the observed distribution p(x|y) onto the factorizable

distributions. This projection is the geometric interpretation of the approximation of

p(x|y) by its marginal bit probabilities.

In the iterative case, there is the additional a priori pmf

qdec(x̃) =
∏

m,n

e
(I)
dec(x

n
σ,m)

for the sequence of interleaved coded bits coming from the decoder, which is incorpo-

rated by the demapper.



Chapter 3. Geometrical Interpretation of BICM Decoding 51

We will now define an “intermediate” pmf r
(I+1)
dem

r
(I+1)
dem (x̃) =

p(x̃|y)q
(I)
dec(x̃)

∑

x̃′ p(x̃′|y)q
(I)
dec(x̃

′)
.

Then we define p
(I+1)
dem as the projection of r

(I+1)
dem onto the set of factorizable distributions:

p
(I+1)
dem (x̃n

m) =

∏

m,n

∑

x̃′∼x̃n
m

r
(I+1)
dem (x̃′)

∑

x̃′

∏

m,n

∑

x̃′′∼x̃′n
m

r
(I+1)
dem (x̃′′)

=

∏

m,n

∑

x̃′∼x̃n
m

p(x̃′|y)q
(I)
dec(x̃

′)
∑

x̃′

∏

m,n

∑

x̃′′∼x̃′n
m

p(x̃′′|y)q
(I)
dec(x̃

′′)
.

Now let us show that the resulting pmf is the output of the demapper, that is, it

is the factorizable distribution consisting of the individual bit pmfs given in equations

(3.21) and (3.22): the upper term can be further written as

∏

m,n

∑

x̃′∼x̃n
m

p(x̃′|y)q
(I)
dec(x̃

′) ∝
∏

m,n

∑

x̃′∼x̃n
m

∏

k

p(yk|x̃′
k)
∏

l

e
(I)
dec(x̃

′l
k )

=
∏

m,n

∑

x̃′
1

. . .
∑

x̃′∼x̃n
m

. . .
∑

x̃′
L

(
∏

k

p(yk|x̃′
k)
∏

l

e
(I)
dec(x̃

′l
k)

)

=
∏

m,n

∑

x̃′∼x̃n
m

p(ym|x̃′
m)
∏

l

e
(I)
dec(x̃

′l
m),

the lower term as

∏

m,n

∑

x̃′

p(x̃′|y)q
(I)
dec(x̃

′) ∝
∏

m,n

∑

x̃′
m

p(ym|x̃′
m)
∏

l

e
(I)
dec(x̃

′l
m),

with equal proportionality constants. Therefore the marginal probability for a bit x̃n
m

of pdem(x̃) is equal to

p
(I+1)
dem (x̃n

m) =

∑

x̃′∼x̃n
m

p(ym|x̃′
m)
∏

l e
(I)
dec(x̃

′l
m)

∑

x̃′
m

p(ym|x̃′
m)
∏

l e
(I)
dec(x̃

′l
m)

.

This is the same expression as we derived for the marginal bit probability in (3.21).

In this way we have found a probability distribution that describes the output of the
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Figure 3.10: Global interpretation of the demapping sub-block.

demapper. The corresponding distribution describing the extrinsic bit probabilities can

then be obtained as

q
(I+1)
dem (x̃) =

p
(I+1)
dem (x̃)/q

(I)
dec(x̃)

∑

x̃ p
(I+1)
dem (x̃)/q

(I)
dec(x̃)

.

So, for the iterative receiver, the global interpretation of the demapping sub-block is

that it performs two steps, illustrated in Fig. 3.10. The first step is an evaluation of a

posteriori coded bit probabilities that are compatible with the input symbols as well as

the a priori probabilities. It could be regarded as a projection of the input distribution

onto a manifold of “channel-likelihood-compatible distributions”, which will be defined

below. The second step is a projection onto the family of factorizable distributions.

Definition 3.6.2. The set of channel-likelihood-compatible distributions is given by

EY = {p|p(x̃) = c · p(x̃|y)q(x̃)}, where q(x̃) is a factorizable distribution,

with a normalization constant c such that p is a valid pmf.

It can be shown that EY is an exponential family [8].

3.6.3 BCJR Decoding Sub-Block

The interpretation of the BCJR algorithm as two successive projections has already

been shown in section 3.5.2 for the non-iterative case. The input distribution was the

factorizable distribution consisting of the a posteriori bit probabilities, coming from the

demapper.
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Figure 3.11: Global interpretation of the decoding sub-block.

The only modification for the iterative receiver is to substitute the input distribution

pdem(x) by qdem(x), the factorizable distribution consisting of the extrinsic bit proba-

bilities e(xn
m). All the derivations of section 3.5.2 stay valid. The end result stays the

same: the decoding sub-block can be interpreted as two projections: first, the projec-

tion of the input distribution qdem onto the code-manifold. Second, the projection of the

intermediate distribution obtained in the first step onto the factorizable distributions.

The first output distribution, which consists of the a posteriori code bit pmfs is

written as

p
(I+1)
dec (x) =

∏

k,l

p(xl
k).

The second output distribution, consisting of the extrinsic code bit probabilities, is

given by

q
(I+1)
dec (x) =

p
(I+1)
dec (x)/q

(I+1)
dem (x)

∑

x p
(I+1)
dec (x)/q

(I+1)
dem (x)

.

The operation of the decoding sub-block is illustrated in Fig. 3.11. The intermediate

distribution r
(I+1)
dec , which is the projection of q

(I+1)
dem onto LC is given by

r
(I+1)
dec =

q
(I+1)
dem (x)IC(x)

∑

x q
(I+1)
dem (x)IC(x)

.



4

Log-Likelihood Ratio Clipping

4.1 Introduction

In practical implementations, log-likelihood ratios (LLRs) are often preferred over bit

probabilities as the carrier of soft information. As the theoretical range for an LLR is

from −∞ to ∞, it is obvious that these values have to be clipped at some threshold.

Limiting the LLRs to smaller values can reduce implementation complexity and thus

cost, because then a smaller number of bits is required for representing an LLR value.

Furthermore it has been shown, that the MIMO sphere decoder described for ex-

ample in [5] can benefit from notable complexity reduction if it needs to deliver only

clipped LLR values.

In the following chapter, we will show that bit LLR clipping has an information-

geometric interpretation as projection onto a clipping-manifold, which is a submanifold

of the manifold of factorizable distributions. To this end, we first introduce bit LLRs.

Then we show that clipping of a single bit amounts to an I-projection that is obtained

by solving an optimization problem, with the constraint that the clipped distribution

has a certain maximum KL divergence from the uniform distribution. This “binary”

case is generalized to the case of bit-sequences, for which we define “sequence LLRs”.

54
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The interesting result here is that clipping of those LLRs does not change the maximum

of the sequence pmf, therefore the MAP estimate of the transmit sequence is unaffected

by the clipping.

The practical demodulation algorithm described in the previous chapter works with

factorizable distributions. We will therefore finally show that under the assumption

of a factorizable distributions, the sequence LLR clipping for which we have found an

information geometric interpretation, can also be used for the description of bit-wise

LLR clipping, where the bits are from a bit sequence.

4.2 Log-Likelihood Ratios

The a posteriori log-likelihood ratio1 of a bit b, given some observation y is defined as

ξ(b) = ln
P{b = 1|y}
P{b = 0|y} .

An LLR can take on values ranging from −∞ to ∞. The sign of the LLR contains the

information about the value of the bit, i.e. a positive LLR means that the probability

of the bit to be “1” is greater than the probability that it is “0”. The magnitude of the

LLR stands for the reliability of this statement, larger LLR values mean more certainty

about the bit value. Values near zero mean great uncertainty, and ξ = 0 corresponds

to a uniform bit pmf and stands for non-existing knowledge about the bit value.

The representation of soft information by such “bit LLRs” is fully equivalent to using

a posteriori bit probabilities. Let’s consider the probability p(1) that bit b given y is

equal to 1, p(1) = P{b = 1|y}. In this case, obviously, p(0) = P{b = 0|y} = 1 − p(1),

which means any of p(0) or p(1) is a full representation of the soft information about b.

1Despite the name likelihood -ratio, we use the term in the broader sense of the ratio of two proba-
bilities instead of likelihood functions
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Given one of the probabilities p(1) or p(0) we obtain the LLR ξ as

ξ(b) = ln
P{b = 1|y}
P{b = 0|y} = ln

p(1)

p(0)
= ln

p(1)

1 − p(1)
= ln

1 − p(0)

p(0)
.

Going into the other direction, we can calculate the bit probabilities given some

LLR-value ξ as

p(1) =
eξ

1 + eξ
=

1

1 + e−ξ

and

p(0) = 1 − eξ

1 + eξ
=

1

1 + eξ
.

4.3 Sequence LLR Clipping

Soft sequence detection is the calculation of the a posteriori pmf p(x|y) of the bit

sequences x given a received sequence y. One could think of defining sequence LLRs

as some function of the a posteriori sequence probabilities, analog to bit LLRs. The

problem is that there are many possibilities for such a definition, and it is not clear

which of those are meaningful. Given a set of sequences x, over which a probability

distribution p(x) : p = (p0, p1, . . . , pN−1), pi = P{x = xi} is defined, one possible

LLR-definition would be

Λi = log
P{x = xi}
P{x = x0}

= log
pi

p0
, i = 1, . . . , N − 1 (4.1)

which means that one sequence probability (p0) is arbitrarily picked as a reference.

As there is no reason for one sequence to be singled out, this sort of definition is

problematic. But we will be using it in the next section about bit LLR clipping where

it actually leads to meaningful results.

We use the following approach to circumvent this problem: bit LLRs can be re-

garded as special case of LLRs of a length-one “sequence”. We will show that it is
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possible to describe bit LLR clipping as a projection of the corresponding bit probabil-

ity distribution onto a clipping manifold, which contains all Bernoulli-distributions that

have a certain maximum KL divergence from the uniform distribution. Then we gen-

eralize this one-dimensional clipping manifold to higher dimensions, thus considering

sequences of a length greater than one.

Consider a bit-distribution p(x), x ∈ {0, 1}, described by the length-two probability

vector p = (p(0), p(1)), with p(0) + p(1) = 1. The uniform bit distribution is denoted

as p̄(x), with the corresponding probability vector p̄ = (1/2, 1/2).

First we will show that clipping the LLR values for one bit is equivalent to restricting

the KL divergence of the corresponding bit distribution to the uniform distribution. Let

γ be the clipping level (clipping threshold), i.e we restrict the LLR values to the interval

−γ ≤ ξi ≤ γ.

For the probability of the ”1”-bit this means

−γ ≤ ln
p(1)

1 − p(1)
≤ γ,

which is equivalent to

1

1 + eγ
≤ p(1) ≤ 1

1 + e−γ
.

This means that we have found two bounding values in the “probability regime” that

correspond to the clipping threshold in the “LLR-regime”. Because p(0) = 1−p(1), we

have furthermore found the two distributions that correspond to the clipping threshold,

pU =

(
1

1 + eγ
,

1

1 + e−γ

)

, pL =

(
1

1 + e−γ
,

1

1 + eγ

)

Finally, we explicitly write down the KL divergences of each of the two distributions
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to the uniform distribution:

D(pU‖p̄) =
1

1 + eγ
ln

2

1 + eγ
+

1

1 + e−γ
ln

2

1 + e−γ

D(pL‖p̄) =
1

1 + e−γ
ln

2

1 + e−γ
+

1

1 + eγ
ln

2

1 + eγ

These divergences are identical. We conclude that for one single bit, LLR clipping is

equivalent to restricting the KL divergence of the corresponding bit distribution from

the uniform distribution. This is illustrated in Fig. 4.1. The upper part of the figure

shows the LLR values and the clipping thresholds −γ and γ. The middle part is the

one-dimensional manifold of binary distributions p, parametrized by the coordinate p1.

The section of the axis between the probability values pL
1 and pU

1 is the clipping manifold

Mclip =
{
p(x) : D(p‖p̄) ≤ D∗

}
.

The lower part of the figure shows the KL divergence D(p‖p̄), which is a convex function.

This representation makes it easy to see that restricting D(p‖p̄) is equivalent to clipping

the LLR value ξ.

Let us now calculate the I-projection of the bit pmf p onto the clipping manifold.

This calculation is an optimization problem that can be approached using Lagrangian

multipliers with Kuhn-Tucker conditions. The problem is defined as follows: we are

looking for the distribution pclip that lies inside the clipping manifold Mclip and has

minimum KL divergence D(pclip‖p) to the original pmf p. This can be formulated by

the following expressions:

pclip = arg min
q

D(q‖p), (4.2a)

D(q‖p̄) ≤ D∗, (4.2b)

q(0) + q(1) = 1. (4.2c)
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Figure 4.1: Relations between LLR clipping and restricting the KL divergence to the
uniform distribution.
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The Lagrangian function is therefore

L = q(0) ln
q(0)

p(0)
+ q(1) ln

q(1)

p(1)

+ λ1

(
q(0) ln 2q(0) + q(1) ln 2q(1) − D∗

)
+ λ2

(
1 − q(0) − q(1)

)
. (4.3)

The solution to the optimization problem gives the resulting distribution pclip as

pclip = c(α) · (p(0)α, p(1)α
)
,

with a constant α that depends on the “probability clipping threshold” D∗, and a second

constant c(α). The latter is obtained by inserting into (4.2c),

c(α) =
1

p(0)α + p(1)α
,

which means normalizing.

To calculate α, we insert into (4.2b). Due to the convexity of Mclip, pclip lies at the

boundary of Mclip, hence we look for the α where (4.2b) attains the bound. This yields

D(p‖p̄) = p(0) ln 2p(0) + p(1) ln 2p(1) =

= c(α)p(0)α ln 2c(α)p(0)α + c(α)p(1)α ln 2c(α)p(1)α = D∗.

Unfortunately there is no analytical solution, so α has to be calculated numerically. Let

us now consider two extreme cases. For α = 0, we get

α = 0 : pclip =
(
c(α), c(α)

)
=

(
1

2
,
1

2

)

= p̄,

the uniform distribution. Obviously, this is the case of extreme clipping, that is, setting
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the LLR clipping threshold or, equivalently, D∗ to zero. Setting α = 1 yields

pclip =
(
p(0), p(1)) = p.

This can be seen to be the case of no clipping, because the clipped distribution is equal

to the original one.

The binary case discussed above can be straightforwardly generalized to sequences

of bits. For a bit sequence of length L there are N = 2L different possible sequences

xi, i = 0, . . . , N −1. The a posteriori distribution p(x|y) has therefore N outcomes and

is characterized by the probability vector

p = (p0, p1, . . . pN−1).

The uniform distribution is now

p̄ =

(
1

N
, . . .

1

N
︸ ︷︷ ︸

n times

)

There are N − 1 corresponding sequence LLRs

Λi = log
pi

p0
, i = 1, . . . , N − 1.

We clip the sequence LLRs, i.e. restrict them to

−γ ≤ Λi ≤ γ,

and argue that this is again equivalent to restricting the KL divergence of the sequence

pmf to some clipping threshold,

D(p‖p̄) ≤ D∗.
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This leads to a slightly modified version the equations (4.2).

pclip = arg min
q

D(q‖p), (4.4a)

D(q‖p̄) ≤ D∗, (4.4b)

∑

i

qi = 1. (4.4c)

Solving this optimization problem is now more elaborate than in the binary case, the

Lagrangian function is

L =
N−1∑

k=0

qk ln
qk

pk
+ λ1

(
N−1∑

l=0

ql ln(Nql) − D∗

)

+ λ2

(
N−1∑

m=0

qm − 1

)

(4.5)

The solution to the problem is, similar to the binary case,

pclip = c(α) ·
((

p0
)α

, . . . ,
(
pN−1

)α
)

.

The most interesting aspect of this solution is that the MAP estimate of the sequence

x given the observation y is not influenced by the clipping:

xMAP = arg max
x

p(x|y) = arg max
x

pclip(x|y).

The case N = 3 is illustrated in Fig. 4.3. The clipping in a way “smoothes” the

corners of the probability simplex, which stands for non-clipped distributions. This can

be understood by considering that the restriction of the KL divergence of a distribution

from the uniform distribution means prohibiting very high probability values of single

sequences.
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p̄

p

pclip

Mclip

Figure 4.2: Sequence LLR clipping for the case of three different possible sequences.

4.4 Bit LLR Clipping

In the discussion of the practical BICM receiver in the previous chapter, we already

stated that in order to handle bit interleaving, the probability distributions manipulated

by the receiver have to be factorizable into individual bit probabilities, or approximated

by factorizable distributions, respectively.

When a sequence probability can be factorized into bit probabilities, we can also

split up sequence LLRs into individual bit LLRs. Using the fact that the sequence

probabilities considered are factorizable, the definition for sequence LLRs (4.1) becomes

Λi = log
pi

p0
= log

∏

k pi
k

∏

k p0
k

=
∑

k

log
pi

k

p0
k

=
∑

k

δ(bi
k = 1)ξk.

In this expression and for the rest of this section, the subscripts k denote the position

of the bit in the sequence, i.e pi
k = P{xk = [xi]k}, and pi=p(xi). The LLR of the bit

at position k is ξk = log pk=1
pk=0

. The reference sequence x0 has been chosen to be the all

zeros codeword. We see that in this case the ith sequence LLR Λi is the sum of the

individual LLRs of the bits that are “1” in the sequence xi.

Let us again consider the example from section 3.5.3. We have sequences of length

two, and a family of corresponding probability distributions pα(x), p = (p0, p1, p2, p3),

where pi is the probability of sequence with decimal value i, which is illustrated by
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α3

α2

α1

Figure 4.3: Probability simplex with factorizable distributions.

Fig. 4.3. The twisted surface in the figure represents the manifold EF of factorizable

distributions, i.e. distributions that can be written as the product of marginal bit-

distributions, pF(x) =
∏

i pi(xi). The coordinate system in the figure is that of the

mixture coordinates, αi = pi. For the factorizable distributions this means

p(00) = p0(0)p1(0)

α1 = p(01) = p0(0)p1(1)

α2 = p(10) = p0(1)p1(0)

α3 = p(11) = p0(1)p1(1)

In natural coordinates,

θi = log
pi

p0
,

which happen to be the sequence LLRs we defined in (4.1), the exponential family of

factorizable distributions EF is a plane, see Fig. 4.4. Written explicitly, the natural
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Figure 4.4: Bit LLR clipping: interpretation as projection of pdem onto the clipping
manifold Mclip.

coordinates are

θ1 = ln
p1

p0
= ln

p1(1)

p1(0)
= ξ1

θ2 = ln
p1

p0
= ln

p0(1)

p0(0)
= ξ0

θ3 = ln
p1

p0
= ln

p0(1)p1(1)

p0(0)p1(0)
= ξ0 + ξ1,

where ξ0 and ξ1 are the LLR values of the first and the second bit respectively. We

see that the coordinates of the distributions in EF are linear functions of the LLRs of

the individual bits. It is therefore easy to calculate the coordinates of the submanifold

Mclip which contains factorizable sequence pmfs that are allowed for a certain clipping

value. For the figure, a uniform (for both bits) clipping threshold of γ = 2 has been

chosen. The clipping region is the dark square that is located around the origin, the

latter representing the uniform distribution.
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Figure 4.5: Bit LLR clipping (2-dimensional representation)

Because the manifold of factorizable distributions is two-dimensional, the coordinate

θ3 is redundant, therefore we can also illustrate it like in Fig. 4.5.

Mclip is a convex set. Bit LLR clipping can be interpreted as an I-projection of

a distribution from the family of factorizable distributions onto the clipping-manifold

Mclip.

Bit LLR clipping as we have explained in the present section can be seen as a

special case of sequence-LLR clipping, with which we dealt in the previous section.

The expressions (4.4) stay unchanged, we repeat them here:

pclip = arg min
q

D(q‖p), (4.6a)

D(q‖p̄) ≤ D∗, (4.6b)

∑

i

qi = 1. (4.6c)

We want to find the distribution from the clipping manifold that has minimum
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KL divergence to the original distribution p, and the clipping manifold is the set of

distributions that has some maximum KL divergence to the uniform distribution. What

is different now compared to the sequence LLR case is the assumption that the pmf p

as well as the clipped distribution pclip are factorizable distributions.

We again consider sequences x of length K, which means there are N = 2K different

sequences, and the pmf to be clipped, p(x) =
∏K−1

k=0 pk(xk). Due to the property of the

KL divergence of two factorizable distributions (2.4) that we discussed in example 2.2.6,

D(q‖p) =
∑

k

D(qk‖pk) =
∑

k

[

qk(0) log
qk(0)

pk(0)
+ qk(1) log

qk(1)

pk(1)

]

.

The Lagrangian function (4.5) is now

L =
∑

k

(

(1 − qk(1)) ln
1 − qk(1)

1 − pk(1)
+ qk(1) ln

qk(1)

pk(1)

)

+ λ1

[
∑

k

(

(1 − qk(1)) ln
(
N(1 − pk(1))

)
+ qk(1) ln(Npk(1))

)

− D∗

]

=:
∑

k

Lk(pk(1)).

Hence L consists of K functions Lk that can be individually minimized by differentiating

with respect to pk(1),

∂Lk

∂pk(1)
= 1 + ln

qk(1)

pk(1)
+ λ1

(
1 + ln 2pk(1)

) !
= 0,

and the solution to this problem is again

pk(1) = c(α) · pk(1)α.

Each component minimization problem is therefore the same as in the case of bit

LLR clipping, described by (4.3) and illustrated by Fig. 4.1.
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In this way we have shown that the factorizable pmf

pclip(x) =
∏

k

pclip,k(xk),

which is the product of the individual clipped bit pmfs - which in turn result from the

clipping of the respective bit LLRs - has an information-geometric interpretation: it

can be described as an I-projection onto the clipping manifold Mclip. We conjecture

that the properties of the I-projection, particularly the Pythagorean theorem, may be

useful for assessing the performance of communications systems in which LLR clipping

is used.
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Simulation Results

5.1 Implementation Issues

A BICM-receiver as shown in Fig. 5.1 has been implemented in MATLAB. The major

difference between the formulas derived for the operation of the demapper and decoder

sub-blocks in the previous chapter and the implementation is that LLRs have been used

for the implementation instead of bit probabilities. As we have already shown in the

previous chapter, the two descriptions are equivalent.

The operation of the demapping sub-block is described by the expression (3.21). A

derivation using LLRs instead of bit-probabilities leads to

ξn
m

Bit SISO

Decoding

Symbol to Bit
y

Demapping

Bit Interleaving

De-Interleaving

ξl
E,k

ξn
E,mξ̃n

E,m

ξ̃l
E,k

ξi

Figure 5.1: Iterative BICM receiver.
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ξ̃l
k = ξ̃l

A,k +

log
∑

x̃k:x̃l
k
=1

exp
{
− 1

σ2 ‖yk −Hsk(x̃k)‖2 + 1
2

∑

n 6=l(2x̃
n
k − 1)ξ̃n

k

}

log
∑

x̃k:x̃l
k
=0

exp
{
− 1

σ2 ‖yk −Hsk(x̃k)‖2 + 1
2

∑

n 6=l(2x̃
n
k − 1)ξ̃n

k

}

≈ ξ̃l
A,k + max

x̃k:x̃l
k
=1

{

− 1

σ2
‖yk −Hsk(x̃k)‖2 +

1

2

∑

n 6=l

(2x̃n
k − 1)ξ̃n

k

}

− max
x̃k:x̃l

k
=0

{

− 1

σ2
‖yk − Hsk(x̃k)‖2 +

1

2

∑

n 6=l

(2x̃n
k − 1)ξ̃n

k

}

= ξ̃l
A,k + min

x̃k:x̃l
k
=0

{
1

σ2
‖yk −Hsk(x̃k)‖2 − 1

2

∑

n 6=l

(2x̃n
k − 1)ξ̃n

k

}

− min
x̃k:x̃l

k
=1

{
1

σ2
‖yk − Hsk(x̃k)‖2 − 1

2

∑

n 6=l

(2x̃n
k − 1)ξ̃n

k

}

.

Here we used the max-log-approximation log(ea +eb) ≈ max(a, b). It is notable that

the LLR is the sum of the a-priori information ξ̃l
A,k and the extrinsic information.

The expression is for a N ×M MIMO-system with a channel matrix H, and MIMO-

symbols s. The SISO-system is included as the special case N = M = 1.

For the decoding sub-block, an existing C-implementation of the BCJR-algorithm

has been used.

5.2 Performance of Iterative Demodulation

The general simulation parameters are: a block length of 256 information bits, a rate-

1/2 convolutional code (generator polynomials 13,15), a random interleaver, a 16QAM

signal constellation with set partition mapping, and an i.i.d. fast Rayleigh-fading chan-

nel. These parameter have been used unless stated otherwise.

Fig. 5.2 shows the performance improvement that is achieved by using the iterative

procedure. We see a huge gain already in the first iteration. The subsequent iterations

improve the performance even more in the lower SNR domain.

For comparison, in Fig. 5.3 a 4QAM signal constellation has been used. It seems
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Figure 5.2: Performance improvement over iterations (16QAM).

that the 4QAM constellation does not benefit from the iterative decoding as much the

16QAM constellation. Fig.5.4 shows the results for a 2x2 MIMO system. The deviation

of the expected behaviour in the high SNR regime is most certainly due to numerical

problems. Qualitatively there is no striking difference between the three results.

The next figures (5.5-5.7) show histograms of the LLR values that correspond to

transmitted ”1”-bits after the demapper, for an SNR of 12 dB and for the iterations 1,

2 and 10. We can see that the number of negative LLRs, which correspond to a wrong

decision for bit ”0”, decreases over the iterations. Furthermore, the mean travels to the

right and the variance increases from iteration to iteration. The variance normalized by

the squared mean decreases from 2.6 in the first to 0.2 in the 10th iteration, however.

5.3 Influence of LLR Clipping

The following figures show the influence of LLR clipping onto the receiver performance,

for a non-iterative receiver. Fig. 5.8 shows the bit error rate over the clipping value,
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Figure 5.3: Performance improvement over iterations (4QAM).
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Figure 5.4: Performance improvement over iterations (2x2 MIMO).
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Figure 5.5: LLR histogram, Eb/N0 = 12 dB, Iteration 1.
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Figure 5.6: LLR histogram, Eb/N0 = 12 dB, Iteration 2.
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Figure 5.7: LLR histogram, Eb/N0 = 12 dB, Iteration 10.

for different values of Eb/N0. Coming from the right edge of the figure, where we have

virtually no clipping at all, the clipping values become smaller, going to the left. The

trace for Eb/N0 = 14dB is the first one that is affected by the clipping, the others

follow. We conclude that for each SNR-value there is one clipping threshold, above

which there is no performance penalty. The higher SNR levels are affected more than

the lower ones, which means more aggressive clipping is possible at low SNR values

without losing performance. Interestingly, by normalizing the clipping values to the

square root of the SNR, the saturation regions of the traces are vertically aligned, see

Fig. 5.9, with an optimum clipping threshold γopt ≈ 3 ·
√

Eb/N0. This means that by

scaling the clipping threshold with the SNR, the performance degradation due to the

clipping stays constant over the SNR. The optimum clipping threshold depends on the

code, but only in a weak manner, see Fig. 5.10 and Fig. 5.11.

The next results show the relation between the clipping value and the number of

LLRs relative to the total block length that get clipped. First, we see the relative
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Figure 5.12: Relative number of clipped LLRs over clipping value.

number of clipped LLRs over the clipping level, in Fig. 5.12. The next figure, Fig. 5.13

shows that by normalizing the clipping value to Eb/N0, we achieve that the traces for

the different SNR-values nearly align. We conclude that the number of clipped LLRs

stays constant over the SNR if we scale the clipping value accordingly with the SNR.

Fig. 5.14 shows the BER over the relative count of clipped LLRs. As expected

the BER increases with the number of LLRs that get clipped. It is interesting to see

that for high SNR levels, it is apparently possible to clip more LLRs without losing

performance, compared to low SNR levels. This could be due to the fact that for high

SNR values, most LLR values are quite large and the sign is in many cases correct, even

before the channel decoding. In the low SNR regime, there are more wrong LLR signs,

hence the absolute value which contains the reliability of a bit is more important. Due

to clipping, the absolute values become more and more uniform, and the information

that they contain is lost.
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6

Summary and Outlook

In this thesis, we have presented concepts of information geometry that are applicable to

the description of iterative receivers. The main part is dedicated to the geometric inter-

pretation of an iterative BICM receiver that consists of a symbol-to-bit demapper and

a BJCR decoder. The operation of these sub-blocks has been recognized as information

geometric projections of an input distribution onto certain manifolds of probability dis-

tributions. The use of bit-wise processing has lead to sequence probability distributions

that are factorizable into marginal bit probabilities.

Then we have applied the information geometric concepts to the description of LLR

clipping. Sequence LLRs have been introduced and analysis has shown that clipping

these LLRs does not change the sequence MAP estimate. We have further shown

that bit-wise LLR clipping can be interpreted as a projection of the original sequence

probability distribution onto a clipping manifold.

Finally we have provided simulation results for the BICM system that had been

treated in the previous chapters. We have shown the performance gain that can be

achieved by soft and iterative decoding and the effects of LLR clipping on the perfor-

mance. It has been recognized that very strong clipping is possible without noticeable
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performance loss and that an optimum normalized clipping threshold that is valid for

a range of SNR values can be found.

There is a number of things left that seem natural to explore further: Using the

Pythagorean theorem for I-projections it should be possible to assess the performance

loss due to clipping, by combining the projections onto the code manifold and on the

factorizable distributions.

The analysis and simulations of LLR clipping could be extended to an iterative

system.

The empirical distributions of LLR values could be approximated by analytically

tractable distributions to assess the number of LLR values that get clipped for a certain

clipping threshold.
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