

DISSERTATION

A vision-based sensing system for sentient
building models

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors

der technischen Wissenschaften unter der Leitung von

Univ. Prof. Dipl.-Ing. Dr. techn. Ardeshir Mahdavi

E 259.3
Abteilung für Bauphysik und Bauökologie

Wien

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Institut für Architekturwissenschaften

eingereicht an der Technischen Universität Wien
Fakultät für Architektur und Raumplanung

von

Oğuz İçoğlu

Matrikelnummer: 0326183
Abteilung für Bauphysik und Bauökologie, TU-Wien

Karlsplatz 13 (259.3), A1040 Wien

, Mai 2006.

 ii

 iii

ACKNOWLEDGEMENT

This dissertation is carried out during my employment at the Department of Building
Physics and Building Ecology in Vienna University of Technology. First and
foremost, I would like to thank my supervisor, Univ. Prof. Ardeshir Mahdavi, for his
generous support and guidance throughout the studies starting with the building
physics lectures and ending up in the preparation of this dissertation.

I would also like to thank Ao. Univ. Prof. Markus Vincze for his valuable review and
examination.

The research described in this dissertation is undertaken as a part of a project, which
is funded by Austrian Science Foundation, project number P15998-N07. The project
team, whom I am indebted to, includes Univ. Prof. Ardeshir Mahdavi (director), Ao.
Univ. Prof. Georg Suter, Mag. Klaus Brunner, Dipl.-Ing. Bojana Spasojević and
Josef Lechleitner. I would like to state my acknowledgement particularly to Georg
Suter for his guidance throughout the project, and to Klaus Brunner for his help
during the technology review given in chapter 3.

A great deal of thanks goes to my family for their endless support; to my mother who
encouraged me through all stages of my academic pursuit, and to my father who put
the first appetite of being an engineer in my mind.

Finally, my deepest gratitude is directed to my beloved fiancée, whose patiance and
support provided the amount of time and effort needed to make this thesis happen
possible.

Oğuz İÇOĞLU

March 2006

 iv

 v

ABSTRACT

The quality and cost effectiveness of services in the building industry possess high
potential for improvement. One significant approach in bringing out this potential is
to conceive buildings as sentient entities that continuously adapt to changes in the
environment. A sentient building possesses a multi-faceted internal representation of
its own context, structure, components, systems, and processes (Mahdavi 2003a,
2003b). This representation enables the self-regulatory determination of such a
building’s indoor-environmental status in accordance with the needs of its occupants.
However, towards the realization of the sentient buildings, already acquired scientific
foundations (theories, methods, and tools) must be transformed into a technically
mature and industrially promising level.

Specifically, such transformation must occur in three critical areas. Firstly, the
representational core of sentient buildings must integrate rather static building
component class hierarchies (product models) with process-oriented systems
controller hierarchies (process models). Secondly, to achieve real-time building
operation support and to avoid bottleneck situations resulting from manual model
input and updating activities, the underlying product-process model must possess the
capability to autonomously update itself. Finally, given the specific features and
challenges of the building systems control domain (e.g. multiple domains/systems,
multiple levels of spatial hierarchy, contingencies of outdoor climate and occupancy
behavior), proper control semantics (methods, rules, algorithms) must allow for
scalable implementation schemes.

To provide a proof of concept for the feasibility of this transformation towards the
realization of sentient buildings, a lighting control system is developed within the
scope of a FWF project (Mahdavi & Suter 2002). The aim of the project is,
concisely, to provide and maintain the most desirable lighting conditions in an office
space. The research described in this thesis focuses on the second challenging item of
the transformation within the project context. The second item implies that the
associated representations must be self-updating, if they are to be applied effectively
in the course of building operation and maintenance activities. This requires
capabilities in the areas of contextual and indoor-environmental monitoring.

 vi

In the lighting control system, the required monitoring capabilities arise in three
major fields. Objects in the space must be identified, their locations must be sensed
and occupancy information must be obtained. In addition to these monitoring
activities, the prospective solution must comply with the building-specific
requirements, where low-cost, low-maintenance, and scalability are crucial. In this
dissertation, the study towards the realization of these capabilities is described. Prior
to the implementation of a solution, available technologies are reviewed. With
respect to the requirements, vision-based approaches were found to be preferable in
terms of being software supported and system customizable. In our efforts for
realizing such a solution, a Vision-based Object Location and Occupancy Sensing
system (VIOLAS) is developed (İçoğlu & Mahdavi 2005).

VIOLAS extracts context information from the environment using image processing
methods applied to the scenes captured by the cameras. VIOLAS utilizes network
cameras for this purpose. These new technology cameras are feasible for buildings.
They make use of the existing network installation without requiring additional
infrastructure. They act like regular network devices, and convey camera images
with standard Internet protocols. Through the same communication channel, they
also enable the control of third-party devices like pan-tilt units that effectively
increase the monitoring ranges.

In addition to its primary objectives, the software implementation of VIOLAS must
fulfill the aforementioned building-specific requirements. Towards this end, the
research proposes a common model that integrates hardware and software whereby
the components are tied together via Internet. Network cameras constitute the
hardware part of the system, and fit in this structure by conveying video images like
as distributed network devices on Internet. Image Processing Units (IPUs) form the
distributed software components. They are the programs that perform vision-based
sensing and extract the context information by applying optimized image-processing
and computer-vision methods on the images captured from the cameras. IPUs,
implemented on different computers scattered across the facility, convey the context
information to a central Application Server, where the parallel incoming results are
combined, displayed to the operator, and concurrently conveyed to the lighting
control system. In addition to enabling scalability and incremental growth, the
distributed structure of the model enhances performance resulting from the parallel
operations.

Additional function of the Application Server is to control the status of the
components and dynamically assign active network cameras to active IPUs in such a

 vii

manner that the workload is constantly balanced within the system. This arrangement
provides a kind of self-organizing capability, and minimizes operator overhead. The
resulting flexible and adaptive structure is highly suited to the requirements of
control applications for sentient buildings.

 viii

INHALTSANGABE

Ein visuell-basiertes Sensorsystem für sentiente Gebäudemodelle

Die Qualität und Kosteneffektivität von Dienstleistungen in der Bauindustrie haben
ein grosses Verbesserungspotenzial. Eine mögliche Strategie zur Umsetzung dieses
Potenzials besteht darin, Gebäude als sentiente Einheiten zu verstehen, welche sich
kontinuierlich an Veränderungen in der Umgebung anpassen. Um sentiente Gebäude
(sentient buildings) zu realisieren, müssen umfassende Modelle der physischen und
Verhaltensaspekte von Gebäuden über den Lebenszyklus generiert werden. Eine
händische Wartung führt jedoch zu Engpässen, welche das Erreichen von Echtzeit-
Unterstützung des Gebäudebetriebs verunmöglichen (Mahdavi 2003a, 2003b).
Deshalb sollte ein Modell die Fähigkeit haben, sich selber zu aktualisieren. Das
bedingt einen vielseitigen Sensormechanismus, welcher Echtzeit-Information über
den Zustand eines Gebäudes liefert (Mahdavi 2001a, 2001b, Pal & Mahdavi 1999).

Deshalb hat sich die Abteilung für Bauphysik und Bauökologie an der Technischen
Universität Wien darauf konzentriert, einen Prototyp eines selbstaktualisierenden
Raummodells für den Gebäudebetrieb zu entwickeln. Als Demonstrationsprototyp
wurde ein Lichtregelungssystem umgesetzt im Rahmen eines FWF (Fonds zur
Förderung der wissenschaftlichen Forschung) Projekts (Mahdavi & Suter 2002). Das
Ziel des Projekts bestand darin, die bestmöglichen Lichtverhältnisse in einem
Büroraum zu erzeugen. Für die Generation eines umfassenden, selbst-
aktualisierenden Modells ist es notwendig, dass der Systemprototyp Objekte
identifizieren, ihre Position bestimmen, sowie die Anwesenheit von Personen im
Raum (occupancy) erkennen kann. Zusätzlich zu diesen Erfassungsaktivitäten soll
eine mögliche Lösung gebäudespezifische Anforderungen erfüllen, d.h. es soll
kostengünstig, wartungsarm und skalierbar sein. In dieser Dissertation wird die
Umsetzung von diesen Anforderungen beschrieben. Vor der Beschreibung der
Umsetzung werden bestehende Technologien beurteilt. Mit Blick auf die
Anforderungen wurden computer-vision-basierte Lösungsansätze als
vielversprechend eingeschätzt bezüglich der vorhandenen Software und
Anpassbarkeit. Im Rahmen unserer Arbeit mit dem Ziel der Realisierung einer

 ix

solchen Lösung wurde ein Vision-based Object Location and Occupancy Sensing
system (VIOLAS) entwickelt (İçoğlu & Mahdavi 2005).

VIOLAS funktioniert nach dem bekannten Barcode-Leseprinzip und setzt eine
Kombination von visuellen Markierungen (Tags) und Videokameras ein. Anders als
bei einem Barcode ermöglicht die Struktur der Tags zusätzlich zur
Identifikationsnummer die Extraktion von Positionsinformation. Durch
bildverarbeitende Methoden erfasst das System in Echtzeit Identifikation und
Position eines markierten Objekts. Durch den Einsatz von Videokameras kann es
ebenfalls die Anwesenheit von Personen basierend auf Bewegungsanalyse erkennen.

Zusätzlich zu diesen primären Zielen soll die Softwareumsetzung von VIOLAS die
erwähnten gebäudespezifischen Anforderungen erfüllen. Deshalb wird in dieser
Dissertation eine verteilte Systemarchitektur vorgeschlagen, in welcher die Hardware
(Kameras) und die Software (bildverarbeitende Programme) über das Internet
miteinander verküpft werden. Neben der Skalierbarkeit und inkrementellen
Erweiterbarkeit verbessert die verteilte Systemarchitektur die Performance durch
parallele Operationen. Die resultierende flexible und anpassbare Struktur ist sehr
geeignet für die Anforderungen von Steuerungsandwendungen in sentienten
Gebäuden.

 x

ÖZET

Duyarlı Bina Modelleri için Görüntü Tabanlı Bir Algılama Sistemi

Kontrol ve otomasyon sistemlerinin; binalardaki işletme ve bakım maliyetlerini
düşürerek, çevresel şartları iyileştirerek ya da konfor ve güvenlik seviyelerini
yükselterek yapı performansını arttırması beklenmektedir. Ancak, bu amacın
gerçekleştirilmesine yönelik veri toplama ve izleme faaliyetleri mevcut bina
otomasyon sistemlerinde sınırlıdır: genellikle bu işlemler sadece asansör ve birkaç
benzeri bina ekipmanını kapsar. Binaların yaşam döngüsü boyunca yürütülen
kapsamlı bir durum izlemesine yönelik sistematik ve ölçeklenebilir yaklaşımlarda
hala eksiklikler bulunmaktadır. Daha yüksek seviyede bir başarım elde etmek için
önemli yaklaşımlardan biri, binaları duyarlı birer varlık olarak tanımlamak, ve onları
sürekli değişen çevresel ve beşeri şartlara cevap verecek şekilde tasarlamaktır
(Mahdavi 2003a, 2003b). Duyarlı binalarda (sentient buildings) düzenli olarak
toplanması gereken veriler sadece asansörlere değil; iç yüzeylere, mobilyalara,
kapılara, pencerelere, içerde bulunan insanlara ve benzer diğer statik veya dinamik
ögelere ait olmalıdır.

Ancak duyarlı binaların gerçeklenmesi henüz tartışmalı bir konudur. Böyle bir
gerçekleme, herşeyden önce binaların fiziksel ve (insan etkileşimi sonucu oluşan)
sosyolojik özelliklerine ait kapsamlı modellerinin üretilmesine ihtiyaç duyar. Bu
modellerin manuel olarak üretilmesi bir darboğaz yaratmakta ve bina otomasyon
sistemlerinin gerçek-zamanlı desteklenmesini önlemektedir. Bundan dolayı gerçek-
zamanlı bina durum bilgisini üretebilecek çok yönlü algılama sistemlerine ihtiyaç
duyulmaktadır (Mahdavi 2001a, 2001b, Pal & Mahdavi 1999).

Viyana Teknik Üniversitesi, Yapı Fiziği ve Bina Ekolojisi bölümü, bina
operasyonları için prototip bir kendini güncelleyen bina modelinin geliştirilmesi
üzerinde çalışmaktadır (Mahdavi 2001b). Konseptin somutlaştırılması için, bir FWF
(Avusturya Bilim Kurulu) projesi kapsamında, örnek bir aydınlatma kontrol sistemi
geliştirilmektedir (Mahdavi & Suter 2002). Bu sistemin amacı, kısaca, çalışma ofisini
temsil eden bir test alanında en uygun aydınlatma koşullarını sağlamaktır.
Aydınlatma kontrolü için gerekli algılama işlemleri üç temel konu üzerinde

 xi

yoğunlaşmıştır: alan içindeki nesneler tanınmalı, yerleri tespit edilmeli ve alandaki
doluluk (occupancy) bilgisi sezilmelidir. Algılama özelliklerinin yanında, olası bir
çözüm binaya özgü gereksinimlere de uyum sağlamalıdır. Dolayısıyla az bakım
gerektirmeli, ölçeklenebilir ve düşük maliyetli olmalıdır. Bu tezde, sisteme bu
yeteneklerin kazandırılmasına yönelik çalışmalar anlatılmaktadır. Herhangi bir
çözümün uyarlanmasından önce mevcut teknolojiler incelenmiştir. Bu doğrultuda,
gerek yazılım destekli, gerekse konfigüre edilebilir olmasından ötürü görsel tabanlı
yaklaşımlar üzerinde odaklanılmıştır. Böyle bir çözümün gerçeklenmesi çabaları
sonucunda, görüntü tabanlı bir algılama sistemi olan VIOLAS (vision-based object
location and occupancy sensing system) geliştirilmiştir (İçoğlu & Mahdavi 2005).

VIOLAS, “barkod okuyucu” prensibine benzer bir şekilde çalışmaktadır. Sistem,
nesneler üzerine yapıştırılan görsel etiketler (tag) ve onları tarayan kameralardan
faydalanır. Etiketlerdeki özel yapı sayesinde, görüntü işleme (image-processing)
metodları kullanılarak, nesneler tanınır ve yerleri belirlenir. Aynı zamanda,
kameralar aracılığıyla, alandaki doluluk bilgisi, görüntülerdeki hareketin
algılanmasıyla ortaya çıkarılır.

VIOLAS’ın yazılım uyarlaması, ana amacın gerçekleştirilmesine ek olarak, yukarıda
bahsedilen binaya özgü gereksinimleri de karşılamalıdır. Bu amaçla, tez
çalışmasında, sistemin donanım (kameralar) ve yazılım (görüntü-işleme programları)
bileşenlerini Internet üzerinden bağlayarak entegre eden dağıtık bir mimari
sunulmuştur. Bu mimari, ölçeklenebilirlik ve aşamalı büyümeye ek olarak, paralel
işlemler sayesinde yüksek bir başarım da sağlamaktadır. VIOLAS, döner-taban
ünitesine (pan-tilt) bağlı bir kamera aracılığı ile 50 m2’lik bir alanı tarayabilmektedir.
Bu tarama ile alan içindeki doluluk algılanmakta, nesneler tanımlanmakta ve yerleri
ortalama olarak 0.18 cm pozisyon ve 4.2 derece oryantasyon hatası ile tespit
edilmektedir. Gerek elde edilen algılama başarımı, gerekse meydana gelen esnek ve
adaptif yapı, görüntü tabanlı uygulamaların duyarlı binaların gereksinimlerine uygun
olduğunu göstermektedir.

 xii

List of Contents

ABSTRACT v
INHALTSANGABE viii
ÖZET x
1 INTRODUCTION 21
2 REQUIREMENTS FOR A SELF-UPDATING MODEL 26
3 TECHNOLOGY REVIEW 27

3.1 Object Identification and Location Sensing 27
3.1.1 Electromagnetic and Radio Frequency 27
3.1.2 Ultrasound 28
3.1.3 Optical / Vision-Based 28
3.1.4 Technology Evaluation 30

3.2 Occupancy Sensing 31
4 SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES 32

4.1 Web Cameras 32
4.2 Digital Photo Cameras 33
4.3 CCTV Cameras 33
4.4 Network Cameras 34
4.5 Technology Evaluation 35
4.6 Pan-Tilt Units 37

4.6.1 Communication 37
4.6.1.1 Physical Layer 37
4.6.1.2 Data Link Layer 38

4.6.2 Position Feedback 39
5 OBJECT IDENTIFICATION AND LOCATION SENSING 40

5.1 Location Sensing 40
5.2 Object Identification 41
5.3 Original Method 42

5.3.1 Target Recognition 43
5.3.1.1 Binarization 43
5.3.1.2 Edge Detection 43
5.3.1.3 Edge Filtering 44
5.3.1.4 Ellipse Fitting 45
5.3.1.5 Concentricity Test 45
5.3.1.6 Code Deciphering 46

5.3.2 Pose Extraction 48
5.3.2.1 Extracting the Plane Orientation 48

 xiii

5.3.2.2 Extracting the Tag Position 54
5.3.2.3 Extracting the Rotation Angle 56
5.3.2.4 Breaking the Ambiguity 60

6 ENHANCED LOCATION SENSING 65
6.1 Adaptive Sharpening 66
6.2 Edge-Adaptive Zooming 68
6.3 Results of Enhanced Location Sensing 74

7 OCCUPANCY SENSING 77
7.1 Homomorphic Filtering 78
7.2 Illumination-invariant Change Detection 81

8 VIOLAS CONCEPTUAL DESIGN 83
8.1 Hardware Interface 83
8.2 Sensing Core 85
8.3 Coordinate Transformation 85
8.4 Data Fusion 89

8.4.1 Tag-Level Fusion 89
8.4.2 Object-Level Fusion 90

8.5 Communication Interface 91
8.6 User Interface 91

9 IMPLEMENTATION 96
9.1 Image Processing Unit 97

9.1.1 IPU Control 98
9.1.2 Image Acquisition 99
9.1.3 Image Processing 106

9.2 Application Server 107
9.2.1 Resource Management 108
9.2.2 Data Integration 110

9.3 User Interface Server 111
9.3.1 Common Development Scheme for CGI Applications 111
9.3.2 Implementation in VIOLAS 113

9.4 Database Server 116
9.4.1 Remote Data Module 116
9.4.2 Communication with the Database Server 118
9.4.3 Implementation in VIOLAS 119

10 AUXILIARY PROGRAMS IN VIOLAS 121
10.1 Camera Calibration 121
10.2 Image-Processing Tester 124

11 A DEMONSTRATIVE TEST 126

 xiv

11.1 Organization of the Test Platform 126
11.2 VIOLAS in Operation 131

12 CONCLUSIONS 139
REFERENCES 141
Appendix A 143
Appendix B 145
Appendix C 148
Appendix D 153
Appendix E 156
CURRICULUM VITAE 159

 xv

List of Figures

Figure 1. Flow diagram of the lighting control system. ... 22
Figure 2. Generation of self-updating space model.. 23
Figure 3. Layered view of the system architecture (Brunner 2006)....................................... 25
Figure 4. Web camera connection scheme. .. 33
Figure 5. CCTV camera connection scheme.. 34
Figure 6. Network camera connection scheme... 35
Figure 7. Pan-Tilt unit installation scheme. ... 38
Figure 8. “Pose from circle” algorithm. ... 41
Figure 9. Tag structure is illustrated with a sample tag.. 42
Figure 10. Original method used in TRIP system. ... 42
Figure 11. (a) Original image captured from the network camera. (b) Result of the

binarization after being applied to the input image.. 43
Figure 12. (a) Connected edge points for a prospective ellipse. (b) Connected edge points

that will be eliminated after the filtering process.. 44
Figure 13. (a) Result of edge detection. (b) Result of edge filtering...................................... 44
Figure 14. Geometric parameters of an ellipse... 45
Figure 15. A tag possesses at least two concentric ellipses in the edge-detected image. With

the addition of even-parity bit, the number of concentric ellipses may be three. ... 46
Figure 16. Code ring is scanned, first for designating the start bits, then for extracting the ID

number. The dot-trio on the code ring represents the pixel samples for each sector.47
Figure 17. The geometry of pinhole camera model. .. 49
Figure 18. Camera intrinsic parameters. .. 50
Figure 19. 3D rotation of the camera frame to the new),,(ZYX ′′′ frame, after 1R is applied.53

Figure 20. 3D rotation of the camera frame to the new),,(ZYX ′′′′′′ frame after 2R is applied.55

Figure 21. The unit vectors on the target plane. ... 57
Figure 22. Circle projection ambiguity. ... 61
Figure 23. Modified tag structure designed to break the ambiguity. Benchmark points,

),,,(
4321 ttttt eeeeP = , are depicted on the target-centered coordinate system. 63

Figure 24. Extracting the location of projected benchmark points,),,,(4321 eeeeP = , in the

binary image. .. 63
Figure 25. Enhanced object identification and location sensing. ... 66
Figure 26. The results of low-pass filtering. .. 67
Figure 27. (a) Unsharp-masked image. The sharpening process also augments the power of

the noise. (b) Adaptively sharpened image... 69

 xvi

Figure 28. The expansion of the original image, ()21, nnf , to the zoomed image, ()21,nnz 70

Figure 29. Results obtained with different zooming algorithms. ... 72
Figure 30. Results obtained for a sample scene in the test-bed.. 75
Figure 31. An example for the common motion detection problems..................................... 78
Figure 32. Decomposition of the images into illumination and reflectance components. 80
Figure 33. Homomorphic filter for multiplied signals. .. 81
Figure 34. Change detection in sequential reflectance components....................................... 81
Figure 35. The results of the change detector... 82
Figure 36. Hardware interface.. 84
Figure 37. Sensing core.. 85
Figure 38. Coordinate transformation. ... 86
Figure 39. Parameters considered in the coordinate transformations..................................... 86
Figure 40. Data fusion.. 89
Figure 41. Tag-level fusion. ... 90
Figure 42. Object-level fusion.. 90
Figure 43. Communication interface.. 91
Figure 44. User interface. ... 92
Figure 45. Object and tag hierarchy in the object inventory. ... 93
Figure 46. Object and tag reference frames. .. 94
Figure 47. Distributed structure of VIOLAS.. 97
Figure 48. Structure of the image processing unit.. 98
Figure 49. Serial D9 port of an IQeye3 camera.. 101
Figure 50. (a) Visca DCP-24 controller (GNT 2006). (b) RS232 connection layout between

the camera and the controller.. 102
Figure 51. Structure of the application server. ... 109
Figure 52. Common gateway interface. ... 111
Figure 53. Structure of the user interface server. ... 114
Figure 54. User table given as an example to show the structure of a XML file. 117
Figure 55. Structure of the database server. ... 118
Figure 56. Calibration image.. 124
Figure 57. Image-processing tester. ... 125
Figure 58. Database server program... 126
Figure 59. User interface server, and the camera employed in the test................................ 127
Figure 60. (a) System parameters setup. (b) Camera parameters setup. 128
Figure 61. Object setup. ... 129
Figure 62. A snapshot of the object list.. 129
Figure 63. Some of the tagged objects in the test-bed.. 130

 xvii

Figure 64. 2D sketch of the test-bed... 130
Figure 65. Application server... 132
Figure 66. Image processing unit ... 133
Figure 67. Graphical representation of the test-bed generated by the user interface server. 136
Figure 68. Converting RGB images to gray scale.. 144
Figure 69. Translation in 3D. ... 149
Figure 70. Rotation in 3D... 150
Figure 71. Extracting the incidence angle. ... 153
Figure 72. A simple potentiometer... 156

 xviii

List of Tables

Table 1. Qualitative overview of location-sensing technologies.. 30
Table 2. Qualitative comparison of camera technologies. ... 36
Table 3. Ground-truth data of the objects in the test-bed. .. 131
Table 4. Sensed location values of the objects in the test-bed recorded by VIOLAS.......... 134
Table 5. Position and orientation errors of the objects with respective camera distances and

incidence angles. ... 134
Table 6. The average and maximum position and orientation errors for different camera-tag

distance bins.. 135
Table 7. The average and maximum position and orientation errors for different incidence

angle bins. ... 135
Table 8. Identification results of the test implemented without enhancement methods....... 137
Table 9. Location values of the identified objects sensed without enhancement methods. . 138

 xix

Glossary

2D Two dimensional

3D Three dimensional

A/D Analogue to Digital

API Application Programming Interface

CAM Camera

CCD Charge Coupled Device

CCTV Close Circuit Television

COM Component Object Model

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CTS/RTS Clear-to-Send / Ready-to-Send

DCOM Distributed Component Object Model

FOV Field of View

FTP File Transfer Protocol

FWF Fonds zur Förderung der wissenschaftlichen Forschung

GUID Global Unique Identifier

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HW Hardware

ID Identity, Identification, Identifier

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPU Image Processing Unit

 xx

JPEG Joint Photographic Experts Group

LAN Local Area Network

LED Light Emitting Diode

MS Microsoft

NETCAM Network Camera

NTSC National Television Systems Committee

P/T Pan-Tilt Unit

PC Personal Computer

PCI Peripheral Component Interconnect

PIR Passive Infrared

RFID Radio Frequency Identification

RGB Red-Green-Blue

SNR Signal to Noise Ratio

STDOUT Standard Output

SW Software

TCP/IP Transfer Control Protocol / Internet Protocol

TRIP Target Recognition using Image Processing

USB Universal Serial Bus

VIOLAS Vision-based Object Location and Occupancy Sensing System

WEBCAM Web Camera

XML Extensible Markup Language

XON Transmit on

XOFF Transmit off

INTRODUCTION

 21

1 INTRODUCTION

Building automation is expected to improve building performance by reducing the
operation and maintenance costs of buildings (e.g. for heating, cooling, and lighting),
improving environmental performance, augmenting human comfort, and providing
higher safety levels. However, data collection and monitoring activities in current
building automation systems are rather limited: the focus is mostly on service
systems such as elevators and office equipment. There is a lack of systematic and
scalable approaches to comprehensive facility state monitoring throughout buildings’
life cycle. One significant approach in achieving a higher level of building
automation technology is to assume that buildings are sentient entities, constantly
changing in response to changes in the environment and occupancy (Mahdavi 2003a,
2003b). In sentient buildings, collected data must cover not only the state of systems
such as elevators, but also the state of room enclosure surfaces, furniture, operable
windows, occupants, and other static or dynamically changing building entities.

However, the realization of a sentient building is still a controversial subject.
Towards such a realization, the role of the simulation-based control mechanisms is
important (Mahdavi 2001b). These mechanisms control specific building operations
(like heating, lighting or security) through the analysis of the building model with an
embedded simulator component. As a result of this analysis, the current conditions
can be observed, and consequently, the new prospective conditions that will take
place with the actuation of the control devices can be foreseen. These features enable
the development of an effective control system. However, such a development
primarily entails for generating comprehensive and self-updating models of the
physical and behavioral aspects of facilities over their life cycle (Mahdavi 2001a,
2001b, 2003a, 2003b, Pal & Mahdavi 1999). Thereby, Vienna University of
Technology, Department of Building Physics and Building Ecology has focused on
developing a prototype sensor-supported self-updating building model for
simulation-based building operation support (Mahdavi 2001b). To deliver a proof of
the concept for feasibility, a lighting control system is designed and implemented
within the scope of a FWF project (Mahdavi & Suter 2002).

The aim of the system is, concisely, to provide and maintain the most convenient
lighting conditions in a test space intended to represent an office room. Figure 1

INTRODUCTION

 22

briefly demonstrates the flow in the system. First, a data collection unit collects the
environmental data. A weather station located on the tower of the university building
is used for sensing the outdoor conditions. Weather station is an integrated unit that
tracks the values of temperature, humidity, global irradiance and global illuminance.
Within the context of environmental conditions, data collection unit also tracks the
status of the control devices, i.e., positions of the remotely controllable window
blinds and the illumination levels of the room uplights.

Model
Model

Controller Lighting
Simulator

Actuator

Data Collection

Idle

Weather Station

Control Devices

Figure 1. Flow diagram of the lighting control system.

As stated above, unlike the feedback control systems that cannot effectively support
sentient buildings, a simulation-based control approach is implemented in the
project. Based on the collected environmental data, the model of the subject space is
generated. A controller unit analyzes the lighting status of the space through a
lighting simulator program applied on the generated model. Based on the returning
results, the controller runs a decision making process, and consequently provides the
solution that generates the most appropriate lighting. For the realization of the
outcome, the controller subsequently applies this solution to the control devices
through an actuator unit. This flow is reiterated in order to maintain the most
convenient lighting against changing conditions in the environment.

INTRODUCTION

 23

As mentioned above, the simulator application requires a precise model of the
associated space, and this model must be constantly updated with respect to the
changes in the building. The data collection unit, however, is not sufficient to
provide such an updated model of the space. Therefore, the generation of the self-
updating space model is undertaken with a model generator unit supported by a
digitally derived sky luminance mapping and an object sensing system (Figure 2).

Model
Model

Model
Generator

Object
Sensing

Object Inventory

Sky
Luminance
Mapping

Video Camera Tag

Data Collection

Digital
Camera

Figure 2. Generation of self-updating space model.

Towards the realization of the first supporting unit, i.e., sky luminance mapping, a
digital camera equipped with a fisheye converter and pointing toward the zenith is
placed next to the weather station on the tower of Vienna University of Technology.
Digital images of the sky are continuously taken, analyzed and calibrated to construct
the sky model (sky luminance distribution pattern) for the simulation application
(Spasojević & Mahdavi 2005).

This thesis describes the implementation of the second supporting unit of the model
generator: object sensing system. As depicted in Figure 2, the information (definition
and dimensions) about the objects in the test space is stored in an object inventory.
Object sensing, briefly, identifies these objects, extracts their location, and detects
the occupancies in the space. Thus, in addition to the environmental data and sky
luminance map, the model generator combines these sensed object information with

INTRODUCTION

 24

the known object data (stored in the inventory), and constructs a comprehensive and
up-to-date space model.

Before the implementation of an object sensing solution, available technologies are
reviewed, and vision-based methods are found to be preferable. Towards this end, a
vision-based object location and occupancy sensing system, VIOLAS, is
implemented. This system concisely works like the well-known “barcode reader”
principle, using a combination of visual markers (tags) and video cameras. Unlike
the barcode, the special structure of the tags enables the extraction of location
information together with a coded identity number. Thus, with utilizing image-
processing methods, the system obtains in real-time the identification and location of
the tagged objects; and by exploiting the video cameras, also detects the occupancy
based on the motion salience in the space. The details of the design and
implementation of the system are described throughout the thesis.

For the project, the implementation of the lighting control system requires the
concurrent execution of the distinct units described above. The lighting controller,
model generator and simulator must run in parallel and in accordance with each
other. In addition to these units, the object inventory is managed, the generated
model is visualized and the system performance is continuously monitored within the
system. The data flow and hardware integration (handling the data collection from
sensors, and driving the actuators) must also be established in a way to enable the
harmony and consistency.

Towards this end, a system architecture is designed, where a layered view is shown
in Figure 3. At the lowest level, the physical layer comprises the building and its
environment as such. Observing and controlling the state of these entities are handled
with sensors and actuators, as shown on the next system level. Sensors can be
hardware devices like the weather station, or hardware-software integrated units like
sky mapping and object sensing. Actuators are utilized to drive blinds (motorized
shading), and luminaries (dimmers). To gather and distribute data between these
devices and computer programs using them, a communications layer is needed. This
may include combinations of various specialized (LonWorks, BACnet) and general-
purpose (Ethernet, TCP/IP, MQ) communication technologies.

The key element of the system is in the next level, the model service layer. Instead of
letting applications –such as lighting controller or inventory management–
communicate directly with the communications layer, it offers an additional level of
abstraction that isolates applications from the details of communications and sensor
hardware. The model service represents the current state of the building and its

INTRODUCTION

 25

environment in the form of a live building product model. Applications are thus freed
from dealing with specific communication, sensor and actuator systems, but instead,
communicate with objects whose properties, methods and relations with other objects
provide a high-level interface to the physical world. The details of the software
architecture and implementation of the lighting control system are described in
Brunner 2006.

Physical Building, Inventory, and Environment
Blinds, Uplights, Walls, Windows, Doors, Furniture, Occupants, Weather Conditions, ...

Weather
Station

BACnet

Controller Model
Generator

Inventory
Manage-

ment

Performance
Monitoring

LonWorks LUXMATE LabVIEW

Object
Sensing

Sky
Luminance
Mapping

Motorized
Shading Dimmers Dimmers

Application
Layer

Model Service
Layer

Communications
Layer

Sensor/Actuator
Layer

Physical
Layer

SOM/IFC/… Building
Product Model

Simulator Visual-
ization

Figure 3. Layered view of the system architecture (Brunner 2006).

The present thesis, hereafter, describes the requirements for generation of self-
updating models within the object-sensing scope in chapter 2, and review of the
available sensing technologies towards the meeting of these requirements in chapter
3. Chapter 4 explains the feasibility of vision-based solutions and the evaluation of
different type of visual sensors. Chapter 5 and 6 describes the details concerning
object identification and location sensing. The methods used in occupancy detection
are given in chapter 7. Chapter 8, 9 and 10 describe the design and implementation
phases of VIOLAS, the vision-based object location and occupancy sensing system,
based on the outlines and methods given in previous chapters. Chapter 11 defines the
layout of a demonstrative test implemented for the performance evaluation of
VIOLAS. The conclusions derived from the research are, finally, given in chapter 12.

REQUIREMENTS FOR A SELF-UPDATING MODEL

 26

2 REQUIREMENTS FOR A SELF-UPDATING MODEL

The generation of a space model is possible with the known dimensions of the
objects in the space. However, enabling a self-updating capability requires the
continuous collection of additional prerequisite information. Firstly, the objects in
the space must be identified, and their locations must be sensed. The location
information must be comprised of both position and orientation data for a precise
model.

Furthermore, the solution intended for model generation should also comply with the
requirements specific to building environments. Therefore, the prospective solution
should require minimum maintenance, and be scalable to adapt itself to changes in a
facility. Other important evaluation criteria are accuracy (relatively small systematic
variation in measurements), unobtrusiveness (minimal installation and maintenance
necessary, no inconvenience or health hazards for occupants), cost (per square meter,
per object), scalability (dozens to hundreds of items per room, thousands per
building), and reliability (accurate location information for long time intervals, under
adverse conditions, in cluttered, changing indoor environments).

In addition to these major requirements, the lighting simulator program utilized
within the project particularly needs to be aware of the occupancy information in the
space. In the following chapter, the review of available technologies is given from
these requirements’ perspective.

TECHNOLOGY REVIEW

 27

3 TECHNOLOGY REVIEW

Prior to the implementation of a solution, the available technologies are reviewed
from the building automation perspective. First, the object identification and location
sensing systems are examined in view of primary requirements. Then, the possible
occupancy detection methods are investigated.

3.1 Object Identification and Location Sensing

Most currently available location systems use tags, small items affixed to the actual
objects to be tracked. Location information is obtained by signal exchange between
these tags and a sensor infrastructure (sensors, readers). Even more so than in other
ubiquitous computing applications, building model applications call for rather small,
long-lived tags that require no batteries or any other maintenance. Moreover, systems
based on devices that obtain or calculate position information internally (called
localized location computation) are not meaningful in building model applications,
unless the location information is fed back to the overall system.

3.1.1 Electromagnetic and Radio Frequency

These include technologies based on the measurement of electromagnetic or radio
frequency signals’ field strengths, distortion, time-of-flight or frequency. Their main
advantage is that they can usually operate through obstacles, without requiring a line-
of-sight between tags and sensors. However, the presence of metal objects and thick
walls can have significant influence on operating range and location accuracy.
Electromagnetic systems (such as Polhemus FASTRAK (Polhemus 2004)) achieve
very high accuracy and precision (mm range), but can only operate in relatively
small, closed environments. They are also very expensive and sensitive to metallic
objects, and often require cable connections between tags and sensors. A number of
research prototypes and products are available for using existing RF infrastructure
(such as Bluetooth or 802.11 networks) to calculate position information, for instance
Ekahau Positioning Engine (Ekahau 2004). All these products are based on localized
location computation, making them currently less suitable for building model
applications.

TECHNOLOGY REVIEW

 28

Systems based on RFID (radio frequency identification) tags are particularly
interesting, but currently no mature commercial system with acceptable accuracy is
available. SpotON (Hightower et al. 2000), a research project, claims accuracy in the
one meter range using off-the-shelf active tags. However, the available data can only
support an accuracy of three meters. LANDMARC (Ni et al. 2003), a similar
research system, aims to improve accuracy by installing a grid of reference tags
throughout the area of interest. The location accuracy of the system is approximately
the same as the granularity of the grid, which means that to achieve one meter
accuracy, active (battery-powered) reference tags have to be placed in a grid with a
unit length of one meter.

The commercial product PinPoint (Werb & Lanzl 1998) uses active tags,
communicating with transponders in the microwave frequency range. In indoor
environments, the system requires considerable installation overhead. The system
can achieve a resolution of 3 meters at best, and for further resolutions, is limited to
generating only the existence information. A competing product, WhereNet
(WhereNet 2004), achieves similar performance.

3.1.2 Ultrasound

Ultrasound-based systems typically consist of battery-powered tags or “badges” and
a set of transponder stations communicating with them; position information is
obtained by measuring time-of-flight of acoustic signals. Research prototypes
include Bat (Ward 1998) and Cricket (Priyantha 2000). A commercial product is
available from Sonitor Technologies (Sonitor 2004). Sonitor’s system can operate in
two modes: room-based (containment) and 3D. In 3D mode, it requires eight receiver
devices to be fixed in every room; for positioning, four of these must be in direct
line-of-sight to the tag. A maximum of four tags can be tracked per room, with a
claimed resolution of 2–3 centimeters. Although this resolution is sufficient for
building model purposes, the poor scalability and the strict line-of-sight restriction
make this technology impractical for use in real-world applications.

3.1.3 Optical / Vision-Based

Sensors stimulated by optical attributes are also used for location awareness. The
main advantage of vision-based location awareness systems is that they do not
require high-cost tags that need continuous maintenance; sometimes they do not
require a tag at all. The non-tagged technologies utilize visual attributes of the
objects, and are based on computer vision methods that exploit the relationship of the

TECHNOLOGY REVIEW

 29

brightness at a point (x,y) in the image with the depth (z) information of the surface
under certain lighting or camera conditions. A prototypical realization of the methods
mentioned above is EasyLiving (Krumm et al. 2000), where the location of the
occupants inside a room is detected together with their personal identification.
EasyLiving successfully combines multi-sensor data. However, the system is limited
to person location and identification. Moreover, the identification is based on color
features only, which makes it difficult to distinguish people wearing clothes with
similar colors.

Another approach is the use of laser sensors to determine depth information. These
systems comprise a transmitter unit where a laser beam is generated and emitted, and
a receiver unit where the reflecting laser beam is captured. Depth information is
extracted from the travel time of the laser beam. A more complex version of these
sensors is the laser camera where the above process takes place for each picture
element and consequently, forms a range map of the scene. CityScanner (GeoData
2004) performs a combination of this technology with digital cameras. This system
is, however, designed primarily for outdoor use and generally too slow for building
model applications.

The laser sensor systems mentioned above do not directly accomplish object
identification, but require additional processing methods to recognize the objects
from 3D scenery. Other vision-based systems use passive tags and utilize their visual
attributes rather than the visual attributes of the objects themselves. These
technologies usually work in variations of the well-known ”barcode reader”
principle, scanning scenes for distinctive optical markers. Just as other optical active-
tagged or non-tagged systems, they have the disadvantage of requiring line-of-sight
between objects and sensors (cameras, scanners). However, when compared with
non-tagged solutions, the main benefit of using tags is that they can be coded with an
ID number that makes the identification of the individual objects possible.

One example is Phoenix Technologies’ Visualeyez system that uses LED (light
emitting diode) markers fixed to the tracked object. It achieves sub-millimeter
accuracy, and is able to track thousands of tags simultaneously. Its main
disadvantages are high cost and the power consumption of the LED tags, limiting its
usefulness for realistic office situations. There are also systems using simpler visual
tags rather than power consuming LEDs. Shape features are used for identifying
most of these tags, where the area and number of holes, lines and plain regions in the
tag determine its main shape features. A Mitsubishi Electric Research Laboratories
research prototype (Mitsubishi 2004) focuses on identification of trademark logos by

TECHNOLOGY REVIEW

 30

using the shape definitions. In addition to shape-based methods, the contours of the
visual tag are extracted and length and curvature features are also processed for
identification. TRIP (Target Recognition using Image Processing (Lòpez et al.
2002)) is a particular example of the contour-based method. It works with circular
black-and-white TRIPcode tags that can be generated with an ordinary laser printer.
The contours of the circular tags are taken from camera images, and then used to
calculate the location and identification with a number of image processing
techniques.

3.1.4 Technology Evaluation

Table 1 provides a qualitative comparison of the main location-sensing technologies
considered above.

Table 1. Qualitative overview of location-sensing technologies. __
 RFID ultrasound vision (tagged) __

Precision 3 m Few cm Few cm
Obtrusiveness Medium Medium High
Cost High High Low
Scalibility High Low High
Reliability High Low Low
Identification Yes Yes Yes __

In short, the findings are:

– RF-based tagged systems—while promising due to their high scalability and
reliability— are not accurate enough and require considerable infrastructure, as well
as fairly expensive tags.

– Ultrasound systems provide sufficient accuracy, but have serious shortcomings in
scalability and reliability, as only a few tags per room can be tracked, and accurate
positioning requires clear line-of-sight between tags and receivers. Cost, both in
terms of infrastructure and tags, is comparable to RFID solutions.

– Tagged vision-based systems require relatively simple and cheap infrastructure
(cameras) and very cheap tags (paper printouts). For real-world applications, full
camera supervision of office spaces raises privacy concerns. However, the
discernible sensors of visual-based technologies generate less anxiety among privacy
advocates than RF-based systems because of their stealthy nature. Vision-based
systems require a clear line-of-sight that reduces their reliability. For experimental

TECHNOLOGY REVIEW

 31

applications, though, such systems provide a useful solution and possess potential for
adaptation to the real-world.

It can be concluded that there is no perfect location system for self-updating building
models today. Vision based methods appear as the most appropriate solutions that
can form a basic infrastructure to the requirements because of being software-
supported and open for modifications and improvements. The latest developments in
distributed programming, software agents and high power processors, also make the
vision-based solutions more promising. Based on this technical review, such a
system is adopted as described in the following chapters.

3.2 Occupancy Sensing

Occupancy sensors operate based on detection of motion, assuming that occupancy
creates movement. There are two types of off-the-shelf occupancy sensors, passive
infrared (PIR), and ultrasonic.

PIR sensors sense infrared heat radiated from the human body (10 micron wave
lengths). Because there can be other sources of heat at the same temperature, the
sensors respond to changes in position of the source of heat.

Ultrasonic sensors emit an inaudible high frequency tone. Like sonar, the tone
bounces off the objects in the room and returns to the sensor. If there is motion, the
acoustical response changes and occupancy is sensed. When occupancy is sensed (by
either type of sensor), the occupancy flag is kept risen until no motion is detected for
approximately 15 minutes. These sensors have a limited sensing range. They can
detect slight hand motion up to 3 meters and full body motion up to 10 meters.
Ultrasonic sensors offer better detection than PIR sensors. In rooms where it is
critical to sense occupancy accurately, dual technology (PIR and ultrasonic) sensors
can be used.

On the other hand, it is also possible to integrate a vision-based solution for
occupancy sensing by using the same infrastructure developed for location. Motion
detection from video image sequences is a method currently being developed and
used for surveillance purposes (Wildes 1998, Toth et al. 2000). This method also
provides a robust detection in adjustable sensitivity levels.

SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES

 32

4 SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES

Based on the technical review described in previous chapter, vision-based methods
appear to be the most feasible solution towards the requirements of a self-updating
model generation. Subsequently, different camera technologies are examined in the
course of selecting an appropriate sensor. During the review process, four major
camera technologies are evaluated in accordance with the system requirements
defined in chapter 2.

4.1 Web Cameras

Web cameras (webcam) are digital cameras that enable image transfer on the
Internet. However, web cameras need a separate computer designated for the image
communication. These cameras utilize USB data communication standard for
connection to the computers. When connecting multiple cameras to a computer, USB
extension cards must be used for additional cameras. USB hubs can also be used for
multiplexing USB ports, but this critically drops the data transfer speed (for USB 1.1
standard, data speed is 12 Mbits/sec). Utilizing cameras that support USB 2.0
standard (480 Mbits/sec) may reduce the number of required capture cards. USB
standard has a cable length limit of 5 meters. In order to extend this limit, USB hubs
are used as cable extenders.

Image acquisition from web cameras can be accomplished with DirectShow API's
provided by Microsoft company. DirectShow is a software development kit that
enables hardware-independent software design for communication with various
multimedia devices. Web cameras are among these devices, which are supported by
DirectShow compatibility. Figure 4 demonstrates a brief layout for the utilization of
web cameras in an office space.

SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES

 33

5m. limit

LAN

Space 1

iMac

P
C

M
C

IA

56K

INSE RT THIS END

P
C

M
C

IA

56K

INSE RT THIS END

Space 2

iMac

P
C

M
C

IA

56K

INSE RT THIS END

P
C

M
C

IA

56K

INSE RT THIS END

FWF
Server

Data
Collection
Computer

Data
Collection
Computer

USB Hub
Cable > 5 m.

USB
extension

cards
USB

extension
cards

Figure 4. Web camera connection scheme.

Most of the web cameras come with a fixed lens, and provide low image quality in
order to cope with the connection speed. However, there are some web camera
solutions that provide relatively higher image quality, and changeable lenses (C/CS
mount).

4.2 Digital Photo Cameras

Digital photo cameras shoot high resolution and high quality images, but acquiring
them in a software application is not as straightforward as web cameras. Most of the
digital photo camera manufacturers also use USB standard for computer connection,
and develop software libraries to allow image transfer to external applications.
However, utilizing such a method results in an undesired hardware-dependent
solution. As the connection structure is very similar to the above USB system,
additional information is not given specifically for these cameras.

4.3 CCTV Cameras

CCTV (close circuit television) cameras are conventional type of television cameras
that generate analog video output. The structure of CCTV camera connection is
given in Figure 5.

Since CCTV cameras generate analog video input, video capture cards must be
utilized to digitize the images. These cards capture frames from analog video input

SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES

 34

with a specific frame rate, and subsequently encode them to a predefined image or
video format. Most of these cards work on PCI bus. Even though some capture cards
comply with DirectShow standard, there is no common support in video streaming
like web cameras. Therefore, data acquisition from such cameras requires PCI bus
programming. Video capture cards enable multiple analog camera inputs, however,
they still cost a substantial additional expense to the cameras because of the
complexity of hardware components they involve.

Video
Capture
Cards

Video
Capture
Cards

LAN

Space 1

iMac

P
C

M
C

IA

56K

INSERT THIS END

P
C

M
C

IA

56K

INSERT THIS END

Space 2

iMac

P
C

M
C

IA

56K

INS ERT THIS E ND

PC
M

C
IA

56K

INS ERT THIS E ND

FWF
Server

Data
Collection
Computer

Data
Collection
Computer

Figure 5. CCTV camera connection scheme.

CCTV cameras are widely used for various purposes. Most of them provide higher
image quality and larger resolution when compared with webcams, since the frame
rate and connection speed is not a matter of concern for these cameras.

4.4 Network Cameras

Recent developments in embedded computing led to the integration of sensors with
processors. This reduced the costs, as dedicated computers were not necessary to
enable data communication. Thus, data could be efficiently conveyed over large-
scale networks. In vision sensing domain, such developments gave rise to network
cameras (netcams). Netcams have embedded computing power that enables image
relay over Internet via standard protocols. They also enable the control of third-party
devices like pan-tilt units (P/T) through the same communication channel.

Figure 6 demonstrates the installation scheme of netcams in an office space. A
network camera can be described as a camera and a computer combined. It has built-
in software for a web server and FTP server, and it is connected directly to the

SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES

 35

network as any other network device. However, like other network devices, netcams
are designed to relay data over network as fast as possible, therefore, they apply
compression prior to data transfer. This results in the generation of relatively low-
quality images, low resolution and blurred frames having lost the sharp details.

Netcam
with P/T

Space 1

LAN

FWF
ServeriMac

See Video from Web browser

Netcam
with P/T

Space 2

Figure 6. Network camera connection scheme.

Network cameras broadcast their images on the Internet through HTTP protocol.
Frames can be seen from the web browsers. Some cameras require the installation of
a plug-in or activex component for decoding the compression, where the camera’s
compression format is different from the ones that web browsers can read. These
components can also be utilized in external applications for data acquisition. If such
a specific compression is not a matter of concern, any application programmed to act
as a web client can easily control the netcams and acquire images.

4.5 Technology Evaluation

Table 2 provides a qualitative comparison of the four main camera technologies
considered above.

The web camera, standalone, is the most efficient technology regarding cost.
However, expanding the number of web cameras is not feasible in a building
environment, since dedicated computers are needed for transmitting the images over
the network. The processing power of these computers can be utilized in the overall

SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES

 36

system, but this design will eventually prevent the configurability, and the system’s
processing capabilities will be bound down to the web cameras.

Table 2. Qualitative comparison of camera technologies. __
 Webcam Digital CCTV Netcam __

Image Quality Medium High High Medium
Resolution Low High Medium Medium
Changeable Lens No Yes Yes Yes
Standard Data Comm. Yes No Partly Yes
Pan-Tilt Control No No No Yes
Cost (camera only) Low High High High
Cost (additional) High High High No cost __

Even though they provide a more effective image quality, digital photo cameras and
CCTV systems also posses the same drawbacks with the web cameras. These devices
also require a sophisticated and hardware-dependent software development for image
transfer.

Netcams relatively posses lower image quality when compared with CCTV and
digital photo cameras. However, if a building is equipped with a network, the
required infrastructure is already in place for netcams. In the typical office,
computers are most likely connected via an ethernet network, e.g. a local area
network (LAN). Network cameras comply with this standardized structure, and use
either conventional ethernet protocol (IEEE 802.3, 100 Mbps) or wireless ethernet
protocol (IEEE 802.11, 11 Mbps). Each device in a LAN must have a unique
address, the IP address, to be able to connect directly to the Internet. This
standardization enables the identification of cameras individually in a global
environment. Today’s computers and network devices have a high capacity to
simultaneously communicate with several different units. A high-end network
camera can send images to ten or more computers simultaneously. Therefore, they
can easily be adapted to a prospective vision-based solution.

Towards this end, network cameras are selected as the proper sensor for the project.
They also comply with requirements of a built environment, since they make use of
the existing network installation without requiring additional infrastructure, and
enable the control of third-party devices like pan-tilt units that effectively increase
the monitoring ranges.

SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES

 37

4.6 Pan-Tilt Units

Pan-tilt units are motorized mechanisms that provide rotation capability to cameras
in vertical and horizontal directions. The employment of such units increases the
covered space, which is otherwise achieved by either adding new cameras or
increasing the field-of-views (FOV) of current ones. Increasing the FOV seems like
the more efficient solution, however, high FOV (using low focal length) has some
drawbacks like lower image detail and visible barrel-effect.

Pan-tilt mechanisms are comprised of two main parts: head and controller. P/T head
is the part where the camera or the camera housing is mounted. It involves two
motors for executing the pan and tilt functions. P/T controller (a.k.a. telemetry
device) is an electronic interface that enables the control of P/T head by an external
device. It receives control signals from the external device (mostly through the serial
communication port) and converts them to proper electrical voltages that drive the
P/T head. The external device can either be a keyboard-controller used widely in
surveillance systems, or a PC. In our case, the external devices are the network
cameras each of which substantially possesses the functionalities of a PC.

4.6.1 Communication

4.6.1.1 Physical Layer

The physical layer determines the cable connections and electrical voltages that
correspond to 0s and 1s. RS232, RS485 and RS422 are some of the most common
protocols used in this layer. Network cameras support serial communication
connections like RS232 and RS485. Figure 7 illustrates the connection scheme of a
pan-tilt unit mounted on the ceiling. Analogous to camera control and image
acquisition commands, netcams receive pan-tilt control commands over the network,
and convey them to the P/T controller through the serial port.

Even though network cameras are designed for a standardized solution, a
contradictory situation arises at this point. Some network cameras accept every serial
data string, and directly convey it to the P/T controller for execution. On the other
hand, some network cameras accept predefined P/T control commands, and convey
them to the P/T controller after converting to proper serial signals that the P/T
controller can understand. Such cameras achieve this conversion with the guidance
of an internal look-up table filled by the netcam user. A prospective solution must
take both of these situations into consideration in order to comply with every

SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES

 38

network camera model. However, in either case, serial communication support of the
netcams gives the possibility to handle pan-tilt functions simply like any other
camera control.

C e i l i n g

Network cable

Pan-Tilt Controller

RS232
Pan-Tilt
Head

Camera

Column Spacers

Pan

Tilt

Figure 7. Pan-Tilt unit installation scheme.

4.6.1.2 Data Link Layer

The physical communication between the P/T controller and external device is
performed generally by serial protocols like RS232, RS485, or RS422 as mentioned
above. Data link layer resides at the top of the physical layer, and these two layers
together define how the communication is set between the P/T controller and camera.

The data link layer defines the data flow control, error handling and handshake
between the two nodes. CRS (cyclic-redundancy-check), checksum are some of the
famous error-handling algorithms, and CTS/RTS (clear-to-send/ready-to-send),
XON/XOFF are some of the popular flow-control methods. The protocols of this
layer combine these methods, and provide an error-free communication. In
contradiction to physical layer, there are no standard protocols for data link layer
among P/T controllers. Main pan-tilt manufacturers develop their own protocols for
communication. Among these proprietary protocols, some do not provide error
handling, whereas some make use of CRS or checksum. Handshake between the
nodes is usually not applied. Each protocol uses its own flow control, which is
usually a simple quasi stop-and-wait method. These P/T controller protocols also
define the set of commands (like pan-left, tilt-right...etc) used to control the P/T
heads.

SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES

 39

4.6.2 Position Feedback

Pan and tilt position recall is achieved by factory fitting inside the P/T head for both
pan and tilt functions with high-grade servo potentiometers. These potentiometers are
used to feedback positional information to the P/T controller. The P/T controller
must also support this functionality to convey position information back to the
camera, and eventually back to the vision-based sensing system. Controllers exploit
non-volatile memories to store a fixed number of preset positions defined by the
user, and rotate the P/T heads to these preset pan and tilt angles. Additionally, some
controllers move the P/T head directly to a given absolute or relative pan-tilt angle.
This functionality is defined in the command set of the controller protocol.

Position feedback is crucial for the system, since the exact viewing location of the
camera must be known to convert the identified object locations to the real-world
coordinates.

OBJECT IDENTIFICATION AND LOCATION SENSING

 40

5 OBJECT IDENTIFICATION AND LOCATION SENSING

As explained in chapter 3, vision-based methods are preferred for an appropriate
solution towards the generation of self-updating building models. Therefore, the
object identification and location sensing system is designed on a similar approach
that uses a combination of visual markers (tags) and cameras. The selection of a
proper camera technology is described in the previous chapter. In this chapter, the
selection of a feasible location sensing technology, and its adaptation to the system
requirements are given.

Among the reviewed vision-based methods, the algorithm proposed in TRIP (Lòpez
2002, Lòpez et al. 2002) offers a suitable solution for location sensing in building
environments. The TRIP algorithm uses optimized image processing methods, and
obtains in real-time the identification and location (both position and orientation) of
an object to which the visual tag is attached. Furthermore, the proposed method
utilizes low-cost tags that do not require constant maintenance, and power supply.

5.1 Location Sensing

For location sensing, TRIP uses “pose from circle” algorithm (Forsyth et al. 1991,
Trucco & Verri 1998), estimating the pose of a circle in space from a single image.
The idea behind the algorithm is illustrated in Figure 8. A circle on the target plane
generates an ellipse on the image plane of the camera. From the known parameters of
the ellipse, it can be back-projected to the original circle, enabling the extraction of
the orientation and the position of the target plane with respect to the camera origin.

Towards this end, if tags with reference circles are attached on the objects, their
location can be estimated by the agency of the algorithm with respect to the viewing
cameras. The details of the algorithm and the overall location sensing process are
given in the following sections.

OBJECT IDENTIFICATION AND LOCATION SENSING

 41

IM
AGE PLANE

circle

ellip
se

Zt

X

Z

Y

Xt

Yt

O

TARGET PLANE

Camera

Figure 8. “Pose from circle” algorithm.
),,(ZYX denotes the coordinate system of the image plane, whereas),,(ttt ZYX denotes

the coordinate system of the target plane. The outcome of the algorithm is the parameters of
the transformation between two coordinate systems. This transformation also defines the

location of the target plane with respect to the image-plane-coordinate-system.

5.2 Object Identification

In TRIP system, object identification is also performed with a method similar to the
barcode principle: special marks are placed around the reference circle used for
location sensing. Particularly, two code rings are utilized, one surrounding the other.
The reference circle lies concentrically in the center of these code rings. This
arrangement enables for ternary coding (each code ring corresponds to one binary
digit), where the fourth combination is reserved as a special sign to designate the
starting point.

Unlike the TRIP system, binary coding is preferred for a more convenient structure.
Even though binary coding reduces the number of uniquely identifiable objects, it
enables the production of smaller tags that would be less discernible with one code
ring. For the tag generation, code ring around the reference circle is divided into 16
equal sectors (Figure 9), each one resembling a pie slice. The presence or absence of
the “black” mark on the sector denotes the “1” or “0” coding respectively. The
pattern of “0111” code sequence defines the start bits, and is never repeated
elsewhere in the rest of the data string.

The identification number is encoded in the remaining 12 sectors. Finally, an even-
parity bit is added at the center of the reference circle for the verification of the
decoded data string in the end of the identification phase. This coding structure

OBJECT IDENTIFICATION AND LOCATION SENSING

 42

enables the definition of 2031 distinct tagged objects. The tags consume 12×12 cm2
area, and they can be printed using regular black-and-white printers. This is one of
the main benefits of the system, since the tags are low-cost, low-maintenance, and
require no power input.

1

1

1
01

1

0

1

0 0

1

0
11

0

1

Start bits

Identification code

parity

Reference
circle

Figure 9. Tag structure is illustrated with a sample tag
coded with 0111-011010101101 data string (even-parity = 1). Identification number

corresponds to 1709 in decimals.

5.3 Original Method

The TRIP system divides the object identification and location sensing procedure
into two phases (Figure 10). First is the “target recognition” phase, where the tags are
detected, parameters of the reference ellipses (projection of the reference circle on
the camera image) are extracted, and the identification numbers are decoded. Second
is the “pose extraction”, where the locations of the tags are computed from the
outputs of the first phase (Lòpez et al. 2002).

Target
Recognition

Pose
Extraction

Tag Image

Object Identification & Location Sensing

Netcam

 - ID.
 - Location

Results

Figure 10. Original method used in TRIP system.

OBJECT IDENTIFICATION AND LOCATION SENSING

 43

5.3.1 Target Recognition

Target recognition is the first phase that determines the geometric properties of the
projections of tags in the images. By using the geometric properties, this procedure,
subsequently, extracts the identification number encoded in the tags. In the course of
accomplishing these actions, six sequential procedures are applied.

5.3.1.1 Binarization

Images are, firstly, binarized with an adaptive thresholding function, where a
variable threshold value is employed taking the background illumination of each
pixel into consideration (Wellner 1993). This procedure provides a robust image
analysis furthermore, against variable lighting conditions. Figure 11 exemplifies the
result of the binarization procedure. This procedure is applied to gray scale images,
however, the original images captured by the cameras are defined in RGB format
(Figure 11a). Prior to the implementation of the binarization process, the images are
converted to gray scale. The details of the conversion are given in Appendix A.

(a) (b)

Figure 11. (a) Original image captured from the network camera. (b) Result of the binarization after
being applied to the input image.

5.3.1.2 Edge Detection

Following binarization, one-pixel width edges in the binary image are extracted by
applying an optimized binary edge detection process. This process is applied in TRIP
system as follows: The “black” pixels that have a perpendicularly adjacent (four-
connected) neighbor pixel with “white” intensity value and a diagonally adjacent
(eight-connected) pixel with “black” intensity value are designated as edge points.
Figure 13a illustrates the results of edge detection applied on the binary image.

OBJECT IDENTIFICATION AND LOCATION SENSING

 44

5.3.1.3 Edge Filtering

Since the projection of a circle in an image generates an ellipse, tags’ reference
circles are observed as elliptical. The connected chains of edge points, located in the
edge detection phase, are tracked in clockwise direction. The edge points, whose
shape defines an ellipse are extracted by a filtering process. Filtering is performed
with analyzing the ratio between the Euclidean distance of the extreme points of the
edge and its pixel length. The details of the analysis are given in Figure 12 and Eq1.

a

a

b

b
(xb ,yb)(xb ,yb)

(xa ,ya)

(xa ,ya)

(a) (b)

Figure 12. (a) Connected edge points for a prospective ellipse. (b) Connected edge points that will be
eliminated after the filtering process.















≠

=<
−+−

=
=

=

ellipse L else,

 ellipse L ,T
(L) length pixel

)y(y)x(x

 if
value threshold T

 ,L of points extreme b)(a,
points edge connected L

2
ba

2
ba

 Eq.1

Eventually, the filtered connected edge points correspond to candidate tag’s circular
borders (Figure 13b).

(a) (b)

Figure 13. (a) Result of edge detection. (b) Result of edge filtering.

OBJECT IDENTIFICATION AND LOCATION SENSING

 45

5.3.1.4 Ellipse Fitting

The purpose of this process is to obtain the ellipse parameters that best approximate
the edge points. Therefore, “Direct Least-squares Ellipse Fitting” method (Pilu et al.
1996) is applied to each elliptical edge candidate encountered in the previous step.
This procedure extracts the conic function (a second order polynomial given in Eq2)
that represents the ellipse.

022 =+++++ feydxcybxyax Eq.2

An ellipse can also be expressed in parametric form as formulated in Eq3, and
illustrated in Figure 14, where),(00 yx is the centre point, a , b are the axes and θ is

the orientation with respect to x -axis in clockwise direction. The stroll of t -
parameter from 0 to π2 defines the associated ellipse. This parametric equation can
be calculated from the cubic function extracted by the ellipse fitting process.

)sin().cos(.)cos().sin(.
)sin().sin(.)cos().cos(.

0

0

tbtayy
tbtaxx

θθ
θθ

+−=
++= Eq.3

y

x(0,0)

a
b

θ
(x0 ,y0)

Figure 14. Geometric parameters of an ellipse.

“Direct Least-squares Ellipse Fitting” method requires minimum six values on the
connected edge points in order to fit an ellipse. Therefore, the edge points must be
longer than six pixels in the image. With the application of the method, it is possible
to acquire always one and only one elliptical solution for each chain. The method is
designed for specifically fitting ellipses in the least-squares sense. Further details
about the method are given in Appendix B.

5.3.1.5 Concentricity Test

After the fitting process, ellipses are examined for concentricity. As seen in Figure
13b, all of the ellipses do not belong to the tag, but edges of circular objects still

OBJECT IDENTIFICATION AND LOCATION SENSING

 46

remain in the image. In order to eliminate these false ellipses, the results are
undergone the concentricity test. As illustrated in Figure 15, a tag possesses at least
two concentric ellipses after edge detection. Therefore, two or more ellipses sharing
the same center and orientation are designated as tag circles. Among these, the
outermost ellipse is used as base trajectory for the next step, code deciphering.

1
2

3

Figure 15. A tag possesses at least two concentric ellipses in the edge-detected image. With the
addition of even-parity bit, the number of concentric ellipses may be three.

5.3.1.6 Code Deciphering

Among the ellipses that pass the concentricity test, the outermost ones are used as
base trajectory for code deciphering. The outermost ellipses are marked as reference
ellipses, and their parameters are exploited for pixel sampling procedure applied on
the binary image for ID number extraction.

First, each reference ellipse is transformed to unit circle by a rotation process applied
with θ degrees in counterclockwise direction, and subsequently, by a stretching

process applied with
a
1 and

b
1 factors to x and y axis respectively.

Thus, the parametric equation of the ellipse given in Eq3 is transformed into the
general equation of the unit circle (Eq4). The details of such geometric
transformations are explained in Appendix C.

)sin(
)cos(

tyy
txx

o

o

+=
+= Eq.4

Since the distance between the reference circle and the code ring is fixed in the tag
design, the code ring’s sector points are easily determined with respect to the unit
circle. These point locations are transformed back to the corresponding image pixel
locations using the inverse transformation of the one employed to convert the

OBJECT IDENTIFICATION AND LOCATION SENSING

 47

reference ellipse to the unit circle. The intensity values of the pixels in the binary
image determine the values on the code ring.

In a detailed explanation, it can be demonstrated that the back-transformation applied
on the unit circle gives the parametric equation of the code ring (Eq5) on the image.

)sin().cos(.)cos().sin(..
)sin().sin(.)cos().cos(.

0

0

tbtayy
tbtaxx

θθ
θθ
′′+′′−=
′′+′′+= Eq.5

Since the code ring’s projection on the image is an outer ellipse surrounding the
reference ellipse (Eq3), the constants in Eq5 are expected to prove the following;

aa >′ , b b >′ , and θθ ≈′ .

First, the code ring is scanned for determining the position of the start bits (Figure
16). In order to perform the scan process, t -parameter, defined for the code ring

(Eq5), is strolled from θ in
16
2π intervals. In each step, three pixel samples are taken.

The correspondence of any of these pixels to “black” defines the “1” coding, and the
contrary situation defines the “0” coding. The scan continues until the starting pattern
is designated, or the rotation reaches the end, πθ 2+=t . During the scanning, the
outermost point that corresponds to the transition from “0” to “111” in the start-bits
pattern is marked as synchronization point to be used further for pose extraction
(depicted as a star in Figure 16).

0

1

1

1 Start Bits

scan

t = θ

2π/
16

t = synchronization point

Figure 16. Code ring is scanned, first for designating the start bits, then for extracting the ID number.
The dot-trio on the code ring represents the pixel samples for each sector.

After the designation of the start bits, the code ring is scanned one more time to
extract the entire ID number. Finally, the ID number is validated with the even-parity
check bit. In cases where the starting bits cannot be found or the ID number is not
validated by the parity check, the tag is marked as spurious.

OBJECT IDENTIFICATION AND LOCATION SENSING

 48

5.3.2 Pose Extraction

As introduced in section 5.1, TRIP utilizes “pose from circle” algorithm (Forsyth et
al. 1991, Trucco & Verri 1998) that estimates the pose of a circle in space from a
single image. However, this algorithm alone is not sufficient to give out the exact
location of the objects. The complete “pose extraction” method (Lòpez 2002) used
for location sensing is described in this section.

Pose extraction is applied to the outcomes of the target recognition process described
in section 5.3.1. Pose extraction method takes as input the following parameters: (1)
the conic function representing the reference ellipse (Eq2), i.e., the outermost border
used as base trajectory for code deciphering, (2) coordinates of the synchronization
point (Figure 16), (3) radius of the reference circle, a fixed value in the sighted
target. Reference circles are printed on the tags with this fixed radius value.

The method involves four major phases. Initial two phases are comprised of the
“pose from circle” algorithm. First phase enables the extraction of the target plane
(tag plane) orientation by using the reference ellipse conic function. The tag position
is computed in the second phase, where trigonometric rules are applied on the fixed
tag radius. As mentioned above, “pose from circle” algorithm possesses a meager
capability, and extracts only the plane orientation that lacks the plane rotation value.
The rotation angle is computed in the third phase with the utilization of the
synchronization point. In the final phase, the ambiguity arisen by the nature of the
“pose from circle” algorithm (explained in section 5.3.2.1) is removed. As a result of

four sequential procedures, the translation vector,),,(zyx TTTT =
→

, and rotation angles,

),,(γβα , that define the rigid body transformation between the camera coordinate
system,),,(ZYX , and the target-centered coordinate system,),,(ttt ZYX , are returned

(Figure 8). This rigid coordinate transformation is a means of defining the location of
the tags with respect to the viewing camera. Details of the each phase, mentioned
above, are described in the following sections. Preliminary information about such
3D transformations like translation and rotation are described in Appendix C.

5.3.2.1 Extracting the Plane Orientation

The first phase of pose extraction establishes a homography, i.e., a projective
transformation from one plane to another, that back-projects the reference ellipse on
the image plane into its actual circular form on the target plane (Figure 17). As a
result of this transformation, the orientation of the target plane is extracted with
respect to the camera coordinate system.

OBJECT IDENTIFICATION AND LOCATION SENSING

 49

IMAGE PLANE

circle

X

Z

Y

πi

π
t

O

o

P

OPTICAL AXIS

TARGET PLANE

p

ell
ips

e

Figure 17. The geometry of pinhole camera model.

5.3.2.1.1 Camera Calibration

An important assumption of this procedure is that the subject camera is calibrated.
On the left side of Figure 17, the most common mathematical model of an intensity
camera, the pinhole camera model, is illustrated. The pinhole camera model consists
of image plane, iπ , and a 3D point, O , the focus or center of projection. The
distance between iπ and O is the focal length, f . The line through O and
perpendicular to iπ is the optical axis, and o , the intersection between iπ and the

optical axis, is the image center or principal point. Based on this model, a camera
undertakes a perspective projection from the 3D projective space to the 2D projective
plane. This projection is performed with an optical ray (light beam) reflected from a
scene point. A sample scene point, P , is illustrated in Figure 17. The optical ray
reflected from P passes through the center of projection and the image plane at the
point p . The camera image is formed with the projection of such infinite 3D scene
points to the finite 2D image points (pixels) on the iπ . The 3D reference frame in
which O is the origin and the plane, iπ , is orthogonal to the z –axis is called the

camera frame or camera coordinate system. The point locations in the camera
coordinate system are expressed in metric units. The 2D reference frame defined on
the plane, iπ , in which o is the center is called the image coordinate system. The

point locations are expressed in pixel units.

In target recognition, all of the mentioned image processing methods are performed
on the image coordinate system. Therefore, no camera calibration is required. On the

OBJECT IDENTIFICATION AND LOCATION SENSING

 50

other hand, the pose extraction method determines the location values in 3D space
with respect to the camera coordinate system. However, one of the main inputs of the
method, extracted conic function representing the reference ellipse (Eq2), is defined
in the image coordinate system. The camera calibration is utilized at this point, since
it enables the transformation of the pixel locations from the image coordinate system
to the camera coordinate system.

In order to perform the camera calibration, the intrinsic parameters of the camera
must be acquired. The pixel coordinates in the image do not correspond to the
physical coordinates in the image plane. The relation between both depends on the
perspective projection, the size and shape of the pixels, and the position of the light-
sensor chip (CCD) in the camera. To find the transformation between the camera and
pixel coordinates, the coordinates of an image point,),(vu , in pixel units must be
linked with the coordinates of the same point,),,(ccc zyx , in the camera reference

frame as shown in Figure 18. Moreover, there may be skew (non-orthogonality)
between the pixel axes, as illustrated with α in the same figure. For standard
cameras, it is represented by a factor, αk , with a value close to zero.

pixel

IMAGE
PLANE α

kv

ku

u

v

u0

v0

xc

yc

Figure 18. Camera intrinsic parameters.
The point is lying on the image plane, therefore fzc = in this example.

Therefore, the intrinsic parameters of a camera are defined as (1) the focal length, f ,
(2) the location of the image centre in pixel coordinates,),(00 vu , (3) the effective
pixel size in the horizontal and vertical directions,),(vu kk , and (4) the skew αk . For
most CCD cameras, the pixels are almost-perfectly rectangular, thus 0≈αk .

To perform the transformation between the image and camera coordinates, a
mapping, M , between the pixel coordinates []Tvuw = and the camera coordinates

[]Tccc zyxp = is defined in homogenous form (Eq6).

















=
















′

′

c

c

c

z

y

x

 M

s

v

u

. , where
















=

100

0 0

0

vkf

ukkf

 M v

u α

 Eq.6

OBJECT IDENTIFICATION AND LOCATION SENSING

 51

The Cartesian pixel coordinates,),(vu , are obtained by the normalization of `u and
`v values with czs = . So, u and v are computed by: suu `= , and svv ′= . This also

normalizes the depth coordinate of the pixel frame, i.e., the focal length, to 1.
Normalization is actually the loss of the depth data, which is an evident result of
mapping from 3D to 2D. Thus, in a back-transformation from image to camera
coordinate system, the depth component, cz , cannot be reconstructed, instead, every

point is defined in terms of the focal length, namely in focal-length units.

For a camera with fixed optics, these parameters are identical for all the images
within the camera. For cameras with zooming and focusing capabilities, the focal
length and the principal point location in the image can vary. Nevertheless, for auto-
focusing cameras, the intrinsic parameters vary slightly, and they can reasonably be
considered fixed. For auto-zooming cameras, the intrinsic parameters are usually
calculated for a small set of zooming factors, and considered fixed only within those
zooming intervals. The network cameras support the utilization of such adjustable
focus and zoom lenses. However, in the project, the cameras are fixed to a constant
focal length value. Therefore, the cameras are calibrated once, before being
employed in the system. The computation of the required camera intrinsic parameters
is described in section 10.1. The explanation of “pose from circle” algorithm,
henceforth, assumes that the subject camera is already calibrated, i.e., the camera
intrinsic parameters are known.

5.3.2.1.2 The Algorithm

As a general notation, the ellipse curve is defined in 3D as a cross-section of a cone:

0222 PCP fzeyzdxzcybxyax T =⋅⋅=+++++ Eq.7

where T represents the matrix transpose, []TzyxP = is a point on the curve, and

C is the real symmetric matrix of a cone:

















=
fed

ecb
dba

 C
22

22
22

 Eq.8

As mentioned before, the edge image of the outermost border (Figure 15) is selected
as the reference ellipse, and is used as the base trajectory for code deciphering. The
same ellipse is also utilized for pose extraction. However, the reference ellipse
parameters are extracted in the image plane as defined in Eq2. “Pose from circle”
algorithm assumes that the reference ellipse is expressed in the camera coordinate
system rather than in the image-plane pixel coordinates as returned by the target

OBJECT IDENTIFICATION AND LOCATION SENSING

 52

recognition process. Therefore, the image origin must be at the principal point, and
the distances must be transformed into focal-length units. To achieve this, the real
symmetric matrix of cone, C , (expressed in pixel coordinates) is normalized by
using the matrix M (Eq6) of intrinsic camera parameters:

 MC MC T
n ⋅⋅= Eq.9

The orientation of the circle’s plane, tπ , is found by rotating the camera so that the

intersection of the cone with the image plane becomes a circle, which happens when
the image plane, iπ , is parallel to the target plane (Figure 17). This rotation, CR , is
estimated as the composition of two successive rotations, namely 1R and 2R :

 21C RRR ⋅= Eq.10

The first rotation, 1R , is determined by diagonalizing nC , i.e., removing the
coefficients with terms in xy , xz and yz . This 3D rotation transforms the ellipse
matrix nC into C′ .

If 321 ,, λλλ are the eigenvalues of nC , (arranged in the order of 321 λλλ <<), and
→→→

321 ,, eee , are the corresponding eigenvectors, then:

 







=

→→→

3211 eeeR Eq.11

When applied on a single point, the rotation 1R , transforms the point, []TzyxP = ,
residing on the ellipse nC , to the point, P′ , residing on the ellipse C′ (Eq12).

→→
⋅=′ PR P T

1 Eq.12

When applied on a cone matrix, 1R transforms ellipse matrix, nC , into C′ (Eq13).

















=⋅⋅=′

3

2

1

11

00
00
00

λ
λ

λ
 RCR C n

T Eq.13

The image plane, iπ , can also be transformed into a new plane, iπ ′ , by using the
rotation, 1R . If the camera frame is reconstructed with taking iπ ′ as the new image

plane, it can be seen that the transformation puts the new Z ′–axis through the center
of the target (Figure 19). Projection of the reference circle on the new image plane
generates the ellipse, C′ , where a and b axes become aligned with the new X ′ , and
Y ′ axes, the eventual result of removing the coefficients with terms in xy , xz and yz .

OBJECT IDENTIFICATION AND LOCATION SENSING

 53

The arrangement of eigenvalues in the order of 321 λλλ << means that the shorter

ellipse axis is aligned with X ′ and the longer ellipse axis is aligned with Y ′ .

IMAGE PLANE

circleellipse

Z

X'

Z'

Y'

X

Y

π
t

O
o

p'

P

TARGET PLANE

π'i

o

Figure 19. 3D rotation of the camera frame to the new),,(ZYX ′′′ frame, after 1R is applied.
Please note that Z ′ –axis intersects the target plane with a generic angle.

The second rotation, 2R , must transform the image plane, iπ ′ , into a new plane, iπ ′′ ,
in such a way that the new plane becomes parallel with the target plane, tπ .

Thereby, the projection of the reference circle on the new image plane generates a
circle.

Thus, the second rotation, 2R , imposes the equality of the coefficients of 2x and 2y
in C′ in order to transform it into a circle. 2R is achieved with a rotation around the

Y ′ -axis by an angle θ (Eq14).

















−
=

θθ

θθ

cos0sin
010

sin0cos

2R Eq.14

This rotation sends a point P′ to P ′′ (Eq15),

→→→
⋅⋅=′⋅=′′ PRR PR P TTT

2 12 Eq.15

and transforms the ellipse, C′ , into the circle, C ′′ (Eq16).

OBJECT IDENTIFICATION AND LOCATION SENSING

 54

















+−

−+
=⋅′⋅=′′

3
2

1
2

31

2

311
2

3
2

22

.cos.sin0).(cos.sin
00

).(cos.sin0.cos.sin

λθλθλλθθ
λ

λλθθλθλθ
 RCR C T Eq.16

The value of the rotation angle, θ , is obtained by imposing the equality for the
coefficients of 2x and 2y in Eq16. Towards this end, the matrix element, 11

C ′′ , that

defines the 2x coefficient is set to the 2y coefficient, 2λ (Eq17).

 21
2

3
2 .cos.sin λλθλθ =+ Eq.17

13

122
21

2
3

2 sin).sin1(.sin
λλ
λλ

θλλθλθ
−
−

=⇒=−+

13

232
21

2
3

2 cos.cos).cos1(
λλ
λλ

θλλθλθ
−
−

=⇒=+− thus,

23

12arctan
λλ
λλ

θ
−
−

±= Eq.18

The composite rotation, CR , which is the result of multiplying 1R and 2R ,
transforms the image plane, iπ , so that it becomes parallel to the target plane, tπ

(Figure 20). Consequently, a vector normal to the target plane can be obtained by

applying Eq19. Vector
→
n represents the orientation of the plane tπ expressed in the

camera coordinate system (1− in Eq19 allows for the right-handed coordinate
system).

 [] []TCCC
T

C RRR R n
332313

100 −=−⋅=
→

 Eq.19

As a result of Eq18, there is a two-fold ambiguity in the recovered orientation
depending on which sign of θ is chosen. Section 5.3.2.4 explains the geometric
implications of this result, and the way proposed to break this ambiguity.

5.3.2.2 Extracting the Tag Position

C ′′ represents the real symmetric matrix of a circle in the image plane of radius, 0r ,
and center,)1,0,(0 x , in terms of the coordinate system,),,(ZYX ′′′′′′ , as illustrated in
Figure 20. Eq16 can, therefore, be simplified making the terms 2x and 2y equal to

2λ , and then dividing by 2λ , as depicted in Eq20:

















−−

−

=
















Φ∆

∆

=
















Φ∆

∆

=′′
2

0
2

00

0

22

2

2

2

0

010

01

0

010

01

0

00

0

rxx

x

 C

λλ

λ
λ

λ
 Eq.20

OBJECT IDENTIFICATION AND LOCATION SENSING

 55

IMAGE PLANE

circle

Z''

Y''

π
t

O

p''

P

X''

circle

A

O
C

n

1

d

o
c

δ

ρ

x
0

TARGET PLANE

B

r0

π''i

X'

Z'

Y'

Figure 20. 3D rotation of the camera frame to the new),,(ZYX ′′′′′′ frame after 2R is applied.
The figure also gives the geometric relations between planes iπ ′′ and tπ , where δ=AOC , ρ=CPO ,

0xBoc = , and 0rop c =′′ .

Equating correspondences between Eq16, Eq17, and the first equality in Eq20, it can
be derived that:

 3213
2

1
2 .cos.sin λλλλθλθ +−=+=Φ Eq.21

)).(()).(cos.(sin 2312
2

31
2 λλλλλλθθ −−=−=∆ Eq.22

If the same process is now applied to the correspondences in the last two equalities of
Eq20, the 0x value for the coordinate X ′′ , and the 0r radius of the imaged circle,
C ′′ , are obtained:

2

2

2312
2

2
2

0
)).((

λ
λλλλ

λ
−−

=∆=x Eq.23

2

2

13

2

2
0

2
0

.

λ
λλ

λ
−

=Φ−= xr Eq.24

As mentioned within camera calibration (section 5.3.2.1.1), all distances are defined
in focal-length units, therefore, the distance, OB , between the focus and image plane

OBJECT IDENTIFICATION AND LOCATION SENSING

 56

in Figure 20 equals to 1 . When the equations, Eq23 and Eq24, are applied on the
triangle-similarity constructed by the triangles POOC and pOoc ′′ , an expression for
δ in terms of the eigenvalues of nC and the known radius of the reference circle, ρ ,

can be derived (Eq25). The fixed radius of the reference circle is defined in metric
units. This reveals the depth information, and enables the acquisition of δ also in
metric units.

ρ
λλ

λλλλ
δδρ .

.
)).((

31

2312

00

−−−
=⇒=

xr
 Eq.25

The distance between the camera and the target plane, denoted by d , can be obtained
by applying triangle-similarity principle to the triangles COAO and cOBo .

01 x

d δ= Eq.26

Similarly, substituting Eq26 in Eq25, an expression for the distance of the target
plane to the camera origin, d , is obtained (Eq27).

 ρ
λλ
λρ .
. 31

2
2

0

−
==

r
d Eq.27

The 3D coordinates of the center of the target (Figure 20), expressed in the

),,(ZYX ′′′′′′ frame, correspond to the translation vector,
→
T , which can be calculated in

terms of the original coordinate system,),,(ZYX , as:

 []TC dRT 0δ⋅=
→

 Eq.28

However, as a consequence of Eq18, the ambiguity still remains. There are two

possible solutions for the translation vector, i.e.,
→

1T and
→

2T , depending on which sign

of θ is chosen.

5.3.2.3 Extracting the Rotation Angle

Disregarding the ambiguity, the use of a circle has provided a closed form solution to
the determination of the 3D pose of a tagged object. Unfortunately, due to the circle
symmetry, the view of a planar circle does not permit the determination of rotations
around the Z –axis of the target coordinate system, orthogonal to the target plane. No
matter how much a circle is rotated around the Z –axis, its projected image looks the
same. This means that from the rotation matrix, CR , only the angles),(βα around the

OBJECT IDENTIFICATION AND LOCATION SENSING

 57

axes X and Y can be obtained. Therefore, it is necessary to calculate a new rotation
matrix, CR′ , from which the angle γ around the Z –axis can also be recovered.

Any rotation matrix can be expressed in terms of unit vectors. Towards this end, the
vector columns of the matrix, CR′ , are established with the three unit vectors defining

the target-centered coordinate system. Among these vectors, the one that corresponds

to the target’s Z –axis is already known (
→
n). In order to calculate the other two

column vectors, namely
→

xr and
→

yr , it is necessary to use two correspondences

between points expressed in the target-frame, and their projections in the image plane
(Figure 21). The first point correspondence is given by the known center of the

target,
→

COO (i.e.,
→
T), and its projection in the image,

→

cOo . For the second

correspondence, the back-projection of the synchronization point, denoted by a small
star in Figure 16, is utilized. In Figure 21, this point and its back-projection on target
plane are named as 1x and 1X respectively. Thus, the second correspondence is

given by the unknown synchronization point vector,
→

1OX , and its projection in the

image,
→

1Ox . This point can be uniquely identified in every projection of a tag. The

following computations are applied to calculate this correspondence.

IMAGE PLANE
π

t

O

π''i

O
C

n

o
c

x
1

TARGET PLANE

X
1

r
x

r
yOOC

OX1

Ox1

Ooc

Figure 21. The unit vectors on the target plane.

OBJECT IDENTIFICATION AND LOCATION SENSING

 58

Given a vector []Tzyx pppp =
→

, any other vector with the same direction and origin

is given in homogenous coordinates by Eq29, where s indicates a free scale factor
applied to the vector’s modulus:














=

→→

s
p sP)(Eq.29

Therefore, the correspondence between the 3D point 1X and its projection in the
image 1x are given by:



















≡
=














=

→→

c

z

y

x

c
s

x
x
x

s

Ox OX
11

1

1

11 Eq.30

The scale factor, cs , can be determined by considering that the point 1X belongs to
the target plane tπ , i.e.,

 0)(=⋅
→

t
TsP π Eq.31

where tπ is given by the point normal plane equation (Farin & Hansford 1997).

This equation states that given a point p , and a normalized vector
→
n , i.e., 1=n ,

bound to p , a plane is defined by the locus of all points x that satisfy the equation:

0
0)(0).(332211321

=+++⇒

=++−++⇒=−
→→→

DCzByAx
pnpnpnznynxn pxn Eq.32

where, 1nA = , 2nB = , 3nC = , and)(332211 pnpnpnD ++−= . It can be proven that D

reflects the distance of the plane to the coordinate origin. Therefore, based on Eq32,
the equation of plane tπ can be represented in homogenous form as:

[] 01
d

n zyx t =














−
⋅=

→

π Eq.33

where
→
n represents the previously calculated orientation of the target plane with

regard to the camera, and d represents the calculated distance from the camera
center-of-projection to the target plane.

Thus, substituting Eq33 into Eq31, and using the known coordinates of the
synchronization point),(11 yx

xx , the value of cs is:

OBJECT IDENTIFICATION AND LOCATION SENSING

 59

d

nOx sc

→→
⋅

= 1 Eq.34

Finally, the Cartesian coordinates of 1X , expressed in the original coordinate system,
),,(ZYX , are calculated by combining Eq34 and Eq30:

















≡
=

→

cz

cy

cx

sx
sx
sx

 OX
)1(1

1

1

1 Eq.35

The first column of the rotation matrix,
→

xr , can hence be calculated as the unitary

vector joining
→

COO and
→

1OX in Figure 21, i.e.,

C

C
x OOOX

OOOX
 r

−
−

=
→

1

1)(Eq.36

The second column of the rotation matrix,
→

yr , can be estimated by considering that

the columns of a rotation matrix, or the unitary vectors defining a coordinate system,
are orthogonal. Therefore, a third orthogonal vector can be obtained by taking the
cross product of the other two:

→→→
×= xy r nr Eq.37

Thus, the rotation matrix defining the transformation between),,(ZYX and
),,(ttt ZYX , finally, is (Figure 17):

 







=′

→→→
nrr R yxC Eq.38

The matrix CR′ is a 3D rotation resulting from the composition of three consecutive
rotations, namely zR , yR and xR , around the coordinate axes by angles γ , β and α

respectively. The form of CR′ is given by:















 −
=

















−
=

















−=
100
0cossin
0sincos

,
cos0sin

010
sin0cos

,
cossin0
sincos0
001

γγ
γγ

ββ

ββ

αα
αα zyx R R R Eq.39

 zyxC RRR R ⋅⋅=′ Eq.40

















++
++=′

βα.γα. γ β.α.γα. γ β.α.-
βα.-γα. γ β.α.-γα. γ β.α.

βγβ.-γβ.
 RC

coscoscossinsinsincossinsincossincos
cossincoscossinsinsinsincoscossinsin

sinsincoscoscos
 Eq.41

OBJECT IDENTIFICATION AND LOCATION SENSING

 60

Given Eq38 and Eq41, the angles α , β and γ can be obtained. The angle β , to be
visible by the camera, must be between []2,2 ππ− , and can be calculated directly
from

13CR′ , as:

 ()
13

arcsin CR ′=β Eq.42

The angle α can also be directly obtained from the third column (i.e.,
→
n) of CR′ .

Again, to be visible, this angle is constrained to the values in range []2,2 ππ− :

 











 ′
=

β
α

cos
arcsin 23CR

 Eq.43

Finally, the angle γ is calculated. However, there is no visibility constraint for this
angle, therefore, two equations set with

12CR′ and
11CR′ are used in order to remove

the uncertainty generated by arc function:













 ′−
=













 ′−
=

β

β

cos
arccos

cos
arcsin

11

12

2

1

C

C

R
 γ

R
 γ

 Eq.44

If both 1cosγ and 2cosγ have the same sign, then γ is set to 1γ , otherwise γ is set to

2γπ − .

Eventually, the angles α , β and γ determine the orientation of a tag with respect to
the viewing camera. However, it should not be forgotten that the ambiguity remains,

since there are two possible solutions for the target-plane normal vector,
→
n . The

following section describes the method developed to break this ambiguity that

generated solution pairs for the translation vector,
→
T , and rotation matrix, CRR ′= , so

far.

5.3.2.4 Breaking the Ambiguity

As noted in the previous two sections, the pose extraction method returns two
feasible solutions. This result can be explained geometrically by observing Figure 22.
The circles with the same radius, illustrated in Figure 22a and Figure 22b, are
projected to the same ellipse in the image plane. Consequently, it is necessary to use
additional information, apart from the reference ellipse, in order to be able to decide
which of the two solutions is the real one. In the original TRIP system, this additional
information is provided by the projection of the synchronization point. The

OBJECT IDENTIFICATION AND LOCATION SENSING

 61

projection of this point is identified in the code deciphering stage of the target
recognition process (section 5.3.1.6). Likewise, the location of the synchronization
point in the target coordinate system is also known, since the tags are generated with
a fixed structure (Figure 16). The projections of this point, obtained by means of the
two rigid body transformations returned by the “pose extraction” process, are
compared with the known projection of this point in the image. The calculated
projection lying closer to the known projection in the image shall correspond to the
right solution.

X

(a) (b)

p'4

p1

p4

p3

p2
p'1

p'2 p1

p4

p2

p3

p'3

Y

(c)

(d)

p1p2

p4
p3

p'1

p'4

p'2

p'3

Figure 22. Circle projection ambiguity.
(a) and (b) depict the two different tag orientations that generate the same ellipse when projected on

the image plane. (c) and (d) depict the same situation arisen along Y-axis.

OBJECT IDENTIFICATION AND LOCATION SENSING

 62

However, the synchronization point alone may not be sufficient to break the
ambiguity. In Figure 22, some possible tag orientations are given, where the
associated synchronization points are illustrated with stars. When the two rigid body
transformations returned by the “pose extraction” process are applied on the known
target-centered synchronization point, identical results will be obtained as depicted in
Figure 22a and Figure 22b. Same situation arisen along a different axis is also
demonstrated in Figure 22c and Figure 22d. The calculated synchronization point
projections will lie on the same location in the image. There may be very small
differences in the numerical values of the pixel coordinates, but these differences are
not comparable, especially for the tags that reside far from the camera, since the
pixel sampling error of the cameras are already beyond these very small values.
Therefore, it is not possible to judge whether these very small numerical differences
are generated by the calculated projections or the camera errors.

Moreover, in the TRIP system, the position of the projected synchronization sector
used as the reference value for comparison is determined in the code deciphering
stage. As described in section 5.3.1.6, this determination is performed with the help
of the reference ellipse parameters, thus the reference value used for the comparison
inherits the ambiguity.

Towards the removal of these drawbacks, a more robust constraint is employed with
fitting four benchmark points on the tag structure. When the projection of these
points are calculated with the solutions returned by the “pose extraction”, at least two
points out of four are projected to different positions in the image. The projections of
these points for the controversial orientations are illustrated in Figure 22b, where

),,,(4321 ppppP = represent the projections for the first solution, and
),,,(4321 ppppP ′′′′=′ for the second.

As illustrated in Figure 23, the extreme points of the four gussets located around the
tag are utilized for benchmark points,),,,(

4321 ttttt eeeeP = . The target-centered

coordinates of these points are known with the fixed tag structure as also depicted in
the figure. The locations of these points are obtained by using a method independent
from the reference ellipse parameters. Even though the tag is scanned around the
ellipse, the point locations are not directly obtained by the ellipse parameters as done
in the original method, but the tag image is scanned around the angles it θ= , where

4).12(πθ −= ii for 4...1=i . These angle ranges correspond to the corners where the

gussets are located (Figure 24). The extreme points are obtained by scanning the
corners in the binary image (Figure 11b) with respect to the calculated t angle

OBJECT IDENTIFICATION AND LOCATION SENSING

 63

values. The black-white transition at the outermost border gives out location of the
extreme points, namely projected benchmark points,),,,(4321 eeeeP= .

 (k,k)(-k,k)

(-k,-k) (k,-k)r

1.8r

r

1.8r

Xt

Yt
1te2te

4te
3t

e

k =

Figure 23. Modified tag structure designed to break the ambiguity. Benchmark points,
),,,(

4321 ttttt eeeeP = , are depicted on the target-centered coordinate system.

e1 (t = π/4)
(t = 3π/4) e2

(t = 5π/4) e3 e4 (t = 7π/4)

synchronization point
(t = 0)

t = π/4 − ∆θ

Figure 24. Extracting the location of projected benchmark points,),,,(4321 eeeeP = , in the binary
image.

OBJECT IDENTIFICATION AND LOCATION SENSING

 64

After the determination of the projected benchmark point locations that will be

further used for comparison, the two rigid body transformations,
→

11 ,TR and
→

22 ,TR

returned by the “pose extraction” process are applied on the known target-centered
gusset points,),,,(

4321 ttttt eeeeP = . The projection of these points from the target plane

into points),,,(4321 ppppPC = and),,,(4321 ppppPC ′′′′=′ in the image plane can be

calculated by applying the planar projective transformation (Faugeras 1993) for both
of the solutions:








 +⋅⋅=
→→→

11 TPR MP tC Eq.45

 






 +⋅⋅=′
→→→

22 TPR MP tC Eq.46

where M is the camera-calibration matrix that performs the mapping between the
pixel coordinates and the camera coordinates (Eq6). The planar projective
transformation exploits the fact that every point lying on the target plane has a value
of 0=Z . Therefore, the equations Eq45 and Eq46 can be defined for each benchmark
point as:



































⋅=
















1

..

.

3231

2221

1211

i

i

z

y

x

i

i

y

x

TRR

TRR

TRR

M

s

vs

us

 Eq.47

where),(ii yx , for 4...1=i , are the known coordinates (Figure 23) of the benchmark
points on the target frame,),,,(

4321 ttttt eeeeP = . The coordinates of the calculated

projection of the benchmark points are depicted as),(ii vu . These are the coordinates

of points,),,,(4321 ppppPC = , calculated for
→→

== 11 , TT RR , and the coordinates of

points,),,,(4321 ppppPC ′′′′=′ , calculated for
→→

== 22 , TT RR .

In the final stage, the calculated projections, CP and CP′ , are compared with the
known projection of points (Figure 24) in the image,),,,(4321 eeeeP = . The right

solution eventually projects the calculated results into the points lying very close to
P :













−<−′

−′<−
=

→

→

→

PPPP if ,TR

PPPP if ,TR
 TR

CC

CC

22

11

,

,
, Eq.48

ENHANCED LOCATION SENSING

 65

6 ENHANCED LOCATION SENSING

As given in Figure 10, the original TRIP system divides the location sensing
procedure into two phases. First is the “target recognition” phase, where the tags are
detected, parameters of the reference ellipses (projection of the reference circle on
the camera image) are extracted, and the identification numbers are decoded. Second
is the “pose extraction” phase, where the tag locations are computed from the
reference ellipse parameters. After the implementation of these modules, it has been
observed that the method provides a closed form solution towards the identification
of the objects and determination of their locations in space.

On the other hand, when the network cameras are employed, the system achieves a
performance below the requirements. The TRIP system is originally implemented on
images captured by digital cameras that provide uncompressed, high quality data.
However, working on raw images is not applicable in distributed environments such
as buildings. Towards this end, as mentioned in section 4.5, network cameras
(netcams) are selected as sensor devices, where the images can be transported in
wide areas through HTTP. Like other network devices, netcams are designed to
convey data as fast as possible, and therefore apply compression to images prior to
transmission. This generates smoothed input images, and causes tag regions to lose
their sharp details. In addition to such artifacts, netcams produce relatively lower
resolution images. An increase in the camera-tag distance reduces the pixel
resolution of the tag regions below the required level, and makes the identification
codes harder to decipher, even though the tags are detected and reference ellipses are
extracted properly.

Towards the compensation of these drawbacks, the original method is enhanced with
the employment of two additional phases as depicted in Figure 25. Firstly, “adaptive
sharpening” phase is undertaken, where the images blurred by the netcam effect are
sharpened prior to being processed in target recognition. This implementation
provides a beforehand augmentation in the image quality.

ENHANCED LOCATION SENSING

 66

Tag Image

Object Identification & Location Sensing

Netcam

Edge-adaptive
Zooming

Pose
Extraction

Target
Recognition

Adaptive
Sharpening

 - ID.
 - Location

Results

Figure 25. Enhanced object identification and location sensing.

After the images are processed in target recognition, the “edge-adaptive zooming”
phase is executed. In this phase, a zooming procedure is applied locally to the
spurious tags from which the code could not be deciphered or validated. Edge-
adaptive zooming is repeated in coordination with the target recognition phase, until
the tags are validated. However, this iteration becomes ineffective after a while, since
the zoomed image regions lose their details for further processing. Such an
unfortunate case indicates a false alarm situation or the presence of an unidentified
tag.

6.1 Adaptive Sharpening

As mentioned above, network cameras are designed to convey data as fast as
possible for consumer comfort, and therefore they apply compression on the original
images prior to the transmission. In our implementation, the subject netcam is
applying JPEG transformation with a 10:1 compression ratio even at the highest
quality level. This process generates smoothed input images, and causes the tag
regions to lose their sharp details. Additionally, some of the objects in the scene may
reside out of the effective focus range and demonstrate a blurred vision.

In order to prevent these artifacts, “adaptive sharpening” algorithm (Battiato et al.
2003) is applied on the input images before being employed in target recognition.
This method, first, restores the original image by unsharp masking process. In
unsharp masking, the original image is blurred (unsharpened), and a fraction of the
unsharp image is subtracted from the original. In other words, a fraction of the
unsharp image masks the original. The image processed by the unsharp masking can
be expressed as:

() () ()212121 ,,, nnfb nnfa nng L⋅−⋅= Eq.49

ENHANCED LOCATION SENSING

 67

where ()21, nnf is the original image, ()21, nnf L is the low-pass filtered or unsharp
image, a and b are positive scalars with ba > , and ()21, nng is the processed image.
The parameters, 1n and 2n , represent the pixel coordinates, where Mn ...01 = and

Nn ...02 = for the image with NM × resolution.

In order to acquire the unsharpened (blurred) image, ()21, nnf L , the 33× low-pass
filter, Lu , given in Eq50, is applied to the original image, ()21, nnf , as stated in Eq51.

















⋅
+

=
11

2
11

64
1

m
mmm

m

m
 uL Eq.50

 () ()2121 ,, nnf u nnf LL ∗= Eq.51

The original image ()21, nnf is convolved by the low-pass filter with a factor of m ,

which determines the weight of the origin pixel over its neighborhood. The results of
low-pass filtering are demonstrated in Figure 26 with a sample image.

(a) (b)

Figure 26. The results of low-pass filtering.
(a) Original image acquired from the network camera (after being transformed to gray scale. See

Appendix A for details). (b) Low-pass filtered image.

An image can be considered as a combination of its low and high frequency
components. Thus, the original image, ()21, nnf , in Eq49 can be rewritten as a sum of
the low-pass filtered image ()21, nnf L and a high-pass filtered image ()21, nnf H :

 () () () ()212121 ,,, nnfa nnfba nng HL ⋅−⋅−= Eq.52

From Eq52, it is clear that high frequency components are emphasized over low
frequency components and that unsharp masking is some form of high-pass filtering.
Since the edges or fine details of an image are the primary contributors to the high-

ENHANCED LOCATION SENSING

 68

frequency components of an image, high-pass filtering often increases the local
contrast and sharpens the image. Consequently, the black-white transitions in the tag
images are sharpened, enabling a proper extraction of the reference ellipses.

However, because a high-pass filter emphasizes the high frequency components, and
background noise typically has significant high frequency components, high-pass
filtering tends to increase the background noise power. Therefore, a sharpened image
appears more noisy than the unprocessed image. The accentuation of background
noise is a substantial limitation of unsharp masking. In our case, the network cameras
expose a uniform noise with approximately 45 dB SNR (signal to noise ratio).
Uniform noise generates variations in the image intensity (brightness of the pixels),
where the variations are effected in accordance to a uniform distribution within a
narrow intensity range. Therefore, uniform noise is visible as grain in the pixel level
intensities. An example of this type of noise is depicted in Figure 26a. (Please note
that the noise in this image is manually generated, and its level is exaggerated when
compared with the netcam for visibility). Directly sharpening the images increases
the effectiveness of this noise, and generates false pixels in the early binarization
phase. The “adaptive sharpening” algorithm reduces these artifacts by combining
adaptively restored image with the original one as defined in Eq53:

 () () () ()212121 ,1,, nnfk nngk nnr ⋅−+⋅= Eq.53

where ()21, nnf is the original image, ()21, nng is the restored (sharpened) image, and
()21, nnr is the processed image. The parameter, k , is used as a measure of

texturization that defines the intensity difference of the pixel ()21, nn in the original

image from its eight-connected neighborhood. As depicted in Eq53, for the pixels
that expose a significant difference from its neighborhood (like edge boundaries of
the tag circles), the weight of the sharpened image is emphasized over the original
one. However, for the image pixels that reside on a homogenous region, the original
image is taken into consideration. The effects of directly high-pass filtering, i.e.,
unsharp masking, and adaptively sharpening applied on the original image (Figure
26a) are given in Figure 27.

6.2 Edge-Adaptive Zooming

In addition to the camera artifacts mentioned above, an increase in the tag-camera
distance reduces the pixel resolution of the tag images. This complicates the
deciphering of identification codes, even though the tags are detected and reference
ellipses are extracted properly in the target recognition phase. As a consequence of

ENHANCED LOCATION SENSING

 69

this drawback, the identification codes are not validated with the parity check, and
the tags are marked as spurious.

(a) (b)

Figure 27. (a) Unsharp-masked image. The sharpening process also augments the power of the noise.
(b) Adaptively sharpened image.

To solve the problem, “edge-adaptive zooming” algorithm (Battiato et al. 2000) is
applied locally to the spurious tags from which the identification codes could not be
deciphered or validated. The major problem in zooming is to properly fill the new
pixels that come to existence after doubling the image resolution. There are several
algorithms, like bilinear and bicubic zooming that interpolate the intensity values of
the intervening pixels. Edge-adaptive zooming, as opposed to its counterparts, fills
the new pixels with considering the discontinuities and sharp luminance variations in
the images. This feature of the algorithm restricts the smoothing effect of the
interpolation, and preserves the enhancement performed in the adaptive sharpening
phase.

Towards the implementation, the algorithm performs a gradient controlled and
weighted interpolation. The method, however, does not require a pre-gradient
computation, since the relevant information is collected during the zooming process.
The algorithm includes four successive steps, explained as follows:

(1) The original NM × image, ()21, nnf , is expanded to the zoomed image, ()21, nnz ,
size, () ()1212 −×− NM , where

() ()2121 2,2, n nz nnf = Eq.54

After the expansion, the case in Figure 28 occurs, where the “black” pixels mark the
first step enlargement. Following steps involve the process of filling the spaces

ENHANCED LOCATION SENSING

 70

marked with “green” and “blue” (pixels with at least one even coordinate), and “red”
(pixels with both odd coordinates) in the figure.

0 1 M-1

0

1

N-1

f (n1 ,n2) M x N

b

g r g

b

0 1 2M-2

0

1

2N-2

z (n1 ,n2) 2M-1 x 2N-1

b

g r g

b

b

g r g

b

b

g r g

b

Figure 28. The expansion of the original image, ()21, nnf , to the zoomed image, ()21,nnz .

(2) Following steps fill the empty pixels with respect to some required conditions. In
the second step, the algorithm scans only the “red” ones to examine the conditions.
Towards this end, it tries to detect the presence of an edge for “red” pixels in
southwest−northeast, northwest−southeast, north−south and east−west directions.

The value of the “red” pixel is assigned in accordance with the southwest−northeast
and northwest−southeast edge direction if one is detected. The values of neighboring
“green” and “blue” pixels are assigned in case of an edge presence in north−south
(vertical) and east−west (horizontal) directions respectively. The assignments are
performed with averaging the known values of two neighboring “black” pixels that
lie on the edge direction.

In case of uniformity, the overall average computed with four neighboring “black”
pixels is assigned to the “red” pixel. If none of the above conditions are met (no
edge, and no uniformity), the pixel is left unassigned.

(3) In the end of the previous step, there may be several “red”, “blue” and “green”
pixels left unidentified. Successive scans of the zoomed image take care of these
empty holes.

ENHANCED LOCATION SENSING

 71

The third step scans the “blue” and “green” pixels in image, ()21, nnz . For each

scanned “blue” pixel, if the neighboring “red” pixels are assigned, the algorithm
checks for the presence of a horizontal or vertical edge. And if one is detected, it
assigns a proper value to the “blue” pixel in accordance with the edge direction. For
vertical edges, the known values of “red” pixels are used, whereas for horizontal
edges, the known values of “black” pixels are utilized in the assignment. If the
neighboring “red ” pixels are not assigned, the algorithm checks only the presence of
a horizontal edge, for which the assignment can be performed with using the known
“black” pixels.

Same condition is also applied to the “green” pixels. However, this time, the
neighboring “red” pixels are used for horizontal edges, whereas “black” pixels are
used for vertical ones.

At the end of this step, all the pixels, whose spatial dependences from the
neighborhood values are “simple”, are assigned to a value. Using the information
collected so far, the remaining holes are filled at the next step.

(4) The final step scans the image, ()21, nnz , looking for unidentified remaining

pixels, and fixes the holes using a suitably weighted mean value. The weighted mean
is computed with calculating the mean of relevant neighboring pixel values, after
quantizing them to a selected m number of bins. In this case, the more frequent
values are weighted less so as to guarantee that a better detail preservation is
achieved in the zoomed image. For “red” pixels, the weighted mean values of the
“black” neighbors are used. After the accomplishment of “red” pixels, the “green”
and “blue” pixels are filled with the weighted mean values of the “black” and “red”
neighbors.

The qualitative comparison of the edge-adaptive zooming with different zooming
algorithms is given in Figure 29. The original image used for testing is depicted in
Figure 29a before being downsampled with a ratio of 50%. The result of the first test
method, zoomed image using pixel replication technique, is illustrated in Figure 29b.
This is the simplest method that fills the empty pixels with directly replicating the
original ones. Pixel replication is not suitable to enlarge photographic images, since
it does not provide any anti-aliasing, and therefore increases the visibility of jaggies.
Being hardly a technical term, jaggies refer to the visible steps of diagonal lines or
edges in a digital image. Also referred to as aliasing, these steps are simply a
consequence of the regular, square layout of a pixel.

ENHANCED LOCATION SENSING

 72

(a) (b)

(c) (d)

(e) (f)

Figure 29. Results obtained with different zooming algorithms.
(a) Original image before downsampled by 50%. (b) Image zoomed with pixel replication, (c) bilinear

interpolation, (d) bicubic interpolation, (e) original edge-adaptive zooming, (f) edge-
adaptive zooming combined with bicubic interpolation.

The zoomed image using bilinear interpolation is illustrated in Figure 29c. Bilinear
interpolation determines the value of a new pixel based on the average of the four
pixels in the nearest 22× neighborhood. The averaging has an anti-aliasing effect
and therefore produces relatively smooth edges. Bicubic interpolation, given in

ENHANCED LOCATION SENSING

 73

Figure 29d, is more sophisticated, and produces a better result than bilinear
interpolation. A new pixel is a bicubic function using 16 pixels in the nearest 44×
neighborhood. This is the method most commonly used by image editing software
and digital cameras for resampling images. The high order averaging obtained by the
bicubic function takes also the derivatives of the neighboring pixels into account.
This prevents the step-like boundary problem of the pixel replication, and copes with
the bilinear interpolation blurring.

The result obtained with edge-adaptive zooming algorithm is finally given in Figure
29e. When compared with pixel replication and bilinear interpolation methods, it can
be seen that a better anti-aliasing is provided with edge-adaptive zooming. Against
the smoothing side effect of averaging, the algorithm takes into account the
information about the discontinuities, while doubling the input image. However,
when compared with bicubic interpolation, it can be observed that the averaging
along an edge direction with only two neighboring pixels generates more smoothing.
The utilization of weighted mean values in the fourth step of the algorithm provides a
protection for the sharp details only when the bin number is kept very low during the
quantization. However, in this case, the method produces undesired textures in
homogenous regions, and generates jaggies like the bilinear interpolation method. If
the bin number is selected with an acceptable value, the method does not provide a
sufficient protection against smoothing. This artifact suppresses the advantage gained
from the edge adaptation. Towards this end, the algorithm is combined with the
bicubic interpolation method. The weighted averaging proposed in the original
algorithm is replaced with the bicubic interpolation performed in the nearest

44× neighborhood. However, since the interpolation is applied along an edge
direction, only the four pixels lying on the associated edge are utilized. All of the 16
neighbors are employed in uniformity cases, when the overall averaging is required.
The interpolation kernel used in the combined method can be defined as:

()

() () ()2121

32

32

,

,0
21,584
1,21

nhnh nnh

otherwise
t ifttt
t 0 iftt

 th

⋅=










<≤−+−
<≤+−

=

 Eq.55

where t represents the distance between the new pixel and its neighbors. In the
kernel, the distance is given in a normalized manner, so that 5.0=t between two
successive pixels on the image. The result of the combined solution is illustrated in
Figure 29f. Even though the algorithm complexity is raised to the level of bicubic

ENHANCED LOCATION SENSING

 74

interpolation, the advantages of both methods are integrated, enabling an edge-
adaptive zooming with augmented anti-aliasing, and obviated smoothing side effect.

6.3 Results of Enhanced Location Sensing

As given in Figure 25, the zoomed tag regions are re-processed in the target
recognition phase with sharpened images and enlarged resolutions, enabling the
identification of the tags that could not be validated in the previous attempt. After the
proper identification of tag codes and extraction of reference ellipse parameters, the
pose extraction phase is executed. If zooming is applied, the matrix of camera
intrinsic parameters, M (Eq6), is adjusted before the execution, since the relation
between the image coordinates and camera coordinates changes with respect to the
zoom factor (explained in section 10.1 in more detail).

After the implementation of the enhanced location sensing system, its performance is
examined with the network camera. Towards this end, a typical office environment
(test-bed) is constituted with several office equipments that possess a significant role
in the model generation. These equipments are used as test objects, and are tagged
for the location sensing. They are placed at several distances from the camera in the
range of 0.7 and 3.7 meters, and with several incidence angles (angles between the
normals of the target and image plane) in the range of 0 and 72 degrees. The test-bed
is scanned with a netcam and pan-tilt unit pair, and the results are recorded for the
original and enhanced system. Towards a solid model generation of the test-bed,
even the objects lying at the utmost distances must be identified. However, as stated
in the beginning of the chapter, the original system is insufficient towards the
meeting of this requirement, and performs an effective sensing only up to 3 meters
distance and 60 degrees incidence angle. The tags lying beyond these limits generate
problems, since their images are not either sharp or large enough for a proper
identification. A sample situation is illustrated in Figure 30. In Figure 30a, the raw
image acquired directly from the netcam is given. The test objects visible in this
image are the table located at 1.65 meters with 72 degrees incidence angle, and the
floor located at 3.69 meters with 72 degrees incidence angle. The original system is
not able to identify both of the objects. On the other hand, as given in Figure 30b, the
system is able to identify and locate the objects after the enhancements are applied.

ENHANCED LOCATION SENSING

 75

(a)

(b)

Figure 30. Results obtained for a sample scene in the test-bed
(a) from the original system, (b) from the enhanced system. Please note that the resolutions are scaled

proportionally to fit the images on the page.

Camera distances and incidence angles of the tags in the test-bed limit the
performance of the original system, whereas the enhanced method is able to identify
all of the test objects in the space. The location results do not expose a substantial
variance when compared for the objects identified by both of the methods.
Nevertheless, it has been observed that the enhanced method demonstrates a lesser
deviation from the ground-truth values. The test is performed after the

ENHANCED LOCATION SENSING

 76

implementation of the entire system, and the overall execution is examined.
Therefore, a detailed explanation of the test platform and the evaluation of the test
results are given in chapter 11, following the chapters where the related system
design and implementations are described.

OCCUPANCY SENSING

 77

7 OCCUPANCY SENSING

In addition to the object location data, the model generator unit utilized within the
project (Figure 2) needs to be aware of the occupancy information in the space for a
comprehensive model construction. Even though there are several products in the
market (see section 3.2), it is more convenient to integrate a vision-based solution for
occupancy detection by using the same infrastructure developed for location sensing
rather than to implement a discrete system all over again. Occupancy sensors operate
based on detection of motion, assuming that occupancy creates movement. Towards
this end, a method is implemented for detecting motion from the sequential camera
images. The temporal changes in the gray scale intensity (brightness) values of the
pixels are evaluated to sense the motion within the camera’s field-of-view. As
mentioned before, the original camera images are in RGB format. The images are
converted to gray scale before the implementation of this method. The details of the
conversion are given in Appendix A.

Such visual motion detection methods based on temporal intensity changes are
currently applied for several purposes. The visual motion can be an important source
of information for surveillance systems. Objects of interest can be detected as their
motion becomes apparent. Similarly, objects can be tracked on the basis of their
motion defined trajectories (Wildes 1998).

In our case, the visual motion data is not utilized for extracting object information,
but instead for sensing occupancy. For this reason, classifying or tracking the moving
patterns are not a concern. The classification of image sequences into two particular
groups, “occupied” or “not occupied”, is sufficient for judgment. However,
occupancy does not necessarily generate motion, and motion does not necessarily
generate intensity change in image pixels. One example of this common problem is
illustrated in Figure 31a. A smooth sphere rotating under constant illumination does
not generate changes in the images of the shooting camera. Second problem is
illustrated in Figure 31b. In contrast to the first situation, the intensity values change
even though there is no object motion. Such illuminance variations in the scene may
cause false occupancy results.

OCCUPANCY SENSING

 78

 (a) (b)

Figure 31. An example for the common motion detection problems.
(a) A smooth sphere is rotating under constant illumination, but the image does not change. (b) A

fixed sphere is lighted with a varying illumination, and this causes the image to change
even though there is no object motion.

7.1 Homomorphic Filtering

The case illustrated in Figure 31a represents a common problem of occupancy
sensors and requires the employment of additional methods, which were not further
pursued in our project. We assumed that the occupancy eventually generates motion,
and this motion consequently leads to intensity changes in the image sequences.

However, it is not possible to assume such limitations for the second case, since the
illumination may change within temporal images. Even though the light source does
not move as fast as the illustration in Figure 31b, the light level variations of the
uplights in the test-bed may generate intensity changes. Additionally, the aperture of
the camera is managed automatically by the camera mechanism, and its width can
vary within image sequences, which leads to similar intensity changes in the image
pixels. Finally, the noise in the images produces slight variations in the pixel level,
and the total sum of these variations become substantial when calculated for the
overall image. In order to overcome these problems, a model utilized in Toth et al.
2000, and well known in homomorphic image filtering is used. In this model, the
image intensity is considered to be generated by an incoming illumination, which is
reflected by the surfaces of the objects in the observed scene. For diffuse surfaces
that reflect light equally in all directions, the relation between observed intensity, y ,

illumination, i , and reflectance, r , is multiplicative. The intensity of the τ th frame in
an image sequence can be modeled as:

OCCUPANCY SENSING

 79

() () ()212121 ,,, nnrnni nny τττ ⋅= Eq.56

with 21, nn being the pixel index. The verification of this model proposed for diffuse

surfaces can be found in Horn 1986. Most surfaces in the built environment are
diffuse reflectors, but transparent elements such as glass, or shiny objects such as
smooth metallic surface cause specular reflection. The model is not accurate in the
case of such objects, but this rarely affects the occupancy detection effectiveness.

In many realistic cases, the scene illumination, ()21, nni can be assumed to be

spatially slow-varying. These slow-varying regions correspond to the low frequency
components of the image. On the other hand, the reflectance map, ()21, nnr , contains

medium and high frequency details, where the effects of the illumination are
suppressed. These details typically correspond to object information on the image.
Therefore, it is more convenient to utilize the reflectance maps rather than the
intensity images for evaluating the pixel changes in the video sequences.

In Figure 32, an example is demonstrated with a scene illuminated by a changing
light source. The scene is firstly illuminated by a spot of light from the left side as
depicted in Figure 32a, and then from the right side as depicted in Figure 32b. It can
be observed that the reflectance maps of the images, r (given in Figure 32c and
Figure 32d respectively), are identical, since the effect of the varying illumination is
strongly suppressed, while the object information is preserved. In the illumination
images, i (given in Figure 32e and Figure 32f), however, the light spot is very
prominent whereas object details are blurred.

Since the reflectance maps provide a robust determination of occupancy, the raw
camera images must be decomposed into their illuminance and reflectance
components. Towards the decomposition of such multiplied signals, homomorphic
filtering is utilized (Figure 33). First, the logarithm is applied to transform the
multiplicative relation between y , i and r (Eq56) into an additive one, i.e.,

()() ()() ()() nnr nni nny 212121 ,log,log,log τττ += Eq.57

After applying the logarithm, the image is low-pass filtered using a binomial filter-
kernel (with 21=size for the sample images in Figure 32). Although the log-
nonlinearity modifies the spectral content of illumination and reflectance
components, it is in practice often justified that the log-illumination is still spatially
slow varying. Therefore, the log-illumination still corresponds to the low frequency
component, and can be revealed by low-pass filtering. Subtraction of the low-pass
filtered output from the logarithmic original yields to the extraction of the high-pass

OCCUPANCY SENSING

 80

component. Exponentiation of both high-pass and low-pass components eventually
separates the image into its illuminance and reflectance maps.

 (a) (b)

 (c) (d)

 (e) (f)

Figure 32. Decomposition of the images into illumination and reflectance components.
(a) Image illuminated from the left side by a spot-light. (b) Same image illuminated from the right

side. Reflectance components are given in (c) and (d) respectively. The effects of
illuminance are suppressed in both of the images. Illumination components are given in (e)

and (f). This time, the light-spot is very prominent in both of the images.

OCCUPANCY SENSING

 81

log expLP

+

y log(i) + log(r) log(i)

log(r)

i

r
-

exp

Figure 33. Homomorphic filter for multiplied signals.

7.2 Illumination-invariant Change Detection

After the extraction of reflectance components, the temporal video image sequences
are processed in order to determine the presence of occupancy in the scene. Towards
this end, the detector mechanism shown in Figure 34 is applied to the reflectance
maps sequentially.

+ abs AVG
<
T
>

-
rτ

rτ+1

dτ

cτ

uτ

Figure 34. Change detection in sequential reflectance components.

The reflectance of the τ th frame is subtracted from the 1+τ th frame, and the absolute
value of the difference, τd , is calculated so as to provide the change between frames

in pixel level. These pixel-based changes are, however, not sufficient to directly
judge for occupancy, since the underlying reason for the change may be a noise in
that particular image location. Therefore, the change values are averaged in a 33×
neighborhood. The averaged results are compared with a threshold, and the ones that
exceed this threshold are marked as real object change, τc , and the others as
unchanged, τu . Eventually, the particular groups of changed values determine the

presence of occupancy. An example is demonstrated in Figure 35, where two
sequential video shots are given in Figure 35a and Figure 35c respectively. The
cartoon cat figure in the first image moves to the left. The extracted reflectance
components, shown in Figure 35b and Figure 35d, are processed with the detector
mechanism described above. After the processing, the pixels denoted as object
change, τc , are marked on a new image illustrated in Figure 35e. The moving object,

namely the cat figure, in the image is strongly salient. The marks on the right side
demonstrate a change, since the cat is not present any more, and its shape is replaced

OCCUPANCY SENSING

 82

with the background. On the other hand, the marks on the right side demonstrate the
change generated by the new cat shape replacing the background in that region.

(a) (b)

(c) (d)

(e)

Figure 35. The results of the change detector.
(a) τ th image in the video sequence, (b) and its reflectance component. (c) 1+τ th image in the video

sequence, (d) and its reflectance component. (e) The demonstration of object changes, τc .

VIOLAS CONCEPTUAL DESIGN

 83

8 VIOLAS CONCEPTUAL DESIGN

Our primary goal is to collect visual data from the sensors, and extract the object
information (identification and location of the objects together with the occupancy
data in the space) required by the lighting control system. So far, the sensors and
algorithms developed and utilized for this purpose are described in the thesis.
However, to achieve this goal, and to adapt the outcome applications to the built
environment, a more comprehensive scheme is required. This scheme must manage
the data flow between the applications, generate accurate and consistent sensing
information, and provide the transmission of these results to the lighting control
system. Towards this end, a conceptual scheme is designed with isolated blocks, each
of which performs a different and designated task. We named the resulting system
that wraps this scheme as VIOLAS, vision-based object location and occupancy
sensing.

This section describes the conceptual process flow in VIOLAS. The functional
blocks given in the design scheme execute a specific algorithm or a bunch of
algorithms to accomplish their purposes. Please note that, the realization of these
blocks may reside on different applications, therefore, the following explanations do
not give information about the software implementation, but only the designed
process flow.

8.1 Hardware Interface

Hardware interface is the first initiated unit that isolates the software parts of
VIOLAS from the hardware devices. Thus, the effect of any change in the hardware
to the overall system is minimized. Hardware interface, briefly, performs the
communication with the cameras. In case of the existence of a pan-tilt unit, it also
performs the motion of these devices. So, the purpose of the hardware interface is
concisely to (1) set the connection with the network camera, (2) set the necessary
camera adjustments (resolution, compression rate...etc), (3) acquire the images, and
convert these raw images into an understandable format (Appendix A) for further
processing, (4) control the pan-tilt unit, if one is attached to the camera.

VIOLAS CONCEPTUAL DESIGN

 84

For each camera, several parameters must be known for communication and image
processing. These required parameters are retrieved from a camera table defined in
the VIOLAS database to harbor such sensor data (Figure 36). Parameters stored for
each camera are: (1) an ID number that uniquely defines the camera in the system (2)
details for a HTTP connection, i.e., IP address and the communication port of the
camera (see section 4.4 for netcams), (3) camera model, (4) camera intrinsic
parameters (see section 5.3.2.1.1 for details), (5) camera’s location in the room, (6)
horizontal and vertical FOV (7) pan-tilt unit availability, (8) model of the pan-tilt
unit, if one is available, (9) pan range, (10) tilt range, (11) pan angle, (12) tilt angle,
(13) camera’s on-the-fly status, (14) camera’s location on the pan-tilt unit, (15)
status, (16) last-activity time.

Hardware

Interface

Cam #1
Image

Camera
Data

Netcam #1

Netcam #2
P/T

Cam #2
Image

Image Request
P/T Drive Request

Figure 36. Hardware interface.

The model of the camera is stored in the database, since some models apply custom
image-compression methods that require the utilization of a plug-in component in the
image acquisition software. In order to avoid implementing different programs for
different cameras, the acquisition methods are collaborated in the hardware interface,
and the corresponding one is applied based on the camera model. Similarly, the pan-
tilt unit models are also collaborated, as each model implements a proprietary
protocol in the data link layer of the communication (see section 4.6.1.2 for details
about pan-tilt units). Based on the selected model, the corresponding communication
protocol is undertaken. The FOV values and pan-tilt ranges retrieved from the
camera table are also utilized during the control of pan-tilt device motions.

The outputs of the hardware interface are the images. The ID of the camera is
attached on the images together with the camera’s calibration and location values. If
a pan-tilt unit is available for that camera, the hardware interface also attaches the
information of camera’s location on the pan-tilt unit, and the pan-tilt angle positions

VIOLAS CONCEPTUAL DESIGN

 85

from which the image is taken. These parameters are further used during sensing
activities. The status and last-activity-time parameters are utilized by VIOLAS for
tracking the available cameras in the system. The detailed usage of these parameters
are described in the following sections.

8.2 Sensing Core

The different sensing activities of the system are collaborated under the sensing core
unit. The purpose of the sensing core is to process the collected images, and extract
the (1) identification, (2) location, and (3) occupancy information in the scenes as
described in the previous sections (Figure 37). The sensing core also conveys the
camera parameters attached on the incoming images to the output results. Therefore,
the following units that process the results are able to be aware of the information
about the camera from which the results are generated.

 -Object ID
 -Location
 -Occupancy

Object
identification

Location
sensing

Occupancy sensing

Sensing Core

Image

Figure 37. Sensing core.

8.3 Coordinate Transformation

Outcome of the sensing core regarding the location data is the position and
orientation information with respect to the coordinates of the camera from which the
processed image is acquired (Eq48). In this state, the location data is not usable for a
model generation. By using 3D transformations, coordinate transformation converts
the position and orientation data with respect to camera coordinates to a feasible
form: the position and orientation data with respect to the real-world coordinates, i.e.,
room coordinates (Figure 38). In order to perform such a transformation, the
camera’s location in the room must be utilized (Figure 39a). In other words, the
translation and rotation values between the two coordinate systems must be known
(see Appendix C for 3D transformations). Towards this end, the location of each
camera inside the relevant room is stored in the camera table, and conveyed to the
coordinate transformation unit as described in the previous sections.

VIOLAS CONCEPTUAL DESIGN

 86

HW

Interface

Coordinate Transformation

Camera
Data

Sensing
Core

 - Room
based
Location

Netcam #1

Netcam #2
P/T

Coordinate Transformation
 - Room
based
Location

Cam #1

Cam #2

Object
Data

Figure 38. Coordinate transformation.

Thus, the location parameters attached on the input data uniquely identifies the
transformations between each of the camera reference frames (camera coordinate
systems) and the world reference frame (room coordinate system). For describing the
relative positions of the origins of the two reference frames, a 3D translation vector,
→
T , is used. An orthogonal 33× rotation matrix, R , aligns the corresponding axes of
the two frames. In a common notation, the relation between the coordinates of a
point in room and camera frame, roomP and camP respectively, is

→

+⋅= TPRP camroom Eq.58

where translation is defined in room coordinates, and rotation is defined from room
to camera. As a general notation, the 3D transformation, i.e., translation and rotation,
that brings the room reference frame onto the camera, performs the coordinate
transformation from camera to room reference frames.

y

x

Pan

Tilt

Shift

Room

z

x

Cam

 (a) (b) (c)

Figure 39. Parameters considered in the coordinate transformations.
(a) Cameras’ locations inside the room are important to define the transformations. (b) If P/T unit is

involved, pan and tilt angles must also be considered. Most P/T devices are manufactured
with built-in potentiometers that provide the angle values. (c) Position of the camera on the

P/T unit is not negligible.

VIOLAS CONCEPTUAL DESIGN

 87

If the camera is attached on a pan-tilt unit, two sequential rotations must be applied.
First rotation, 1R , is defined from room to P/T, where P/T device is assumed to take
the place of the camera with its original position (°= 0pan , °= 0tilt). Second
rotation, 2R , is defined from P/T to camera, where pan and tilt angles are involved

(Figure 39b). Pan rotation of these devices defines the motion capability around their
y -axis, and tilt rotation defines the motion capability around their x -axis. Pan-tilt

units do not provide any motion capability around the z -axis. The tilt angle rotation
is implemented first in order to get the desired total rotation that overlaps the P/T and
camera reference frames. This order does not match the general notation used so far:

αβγ →→ . This mismatch occurs because of the angle notation difference of the
pan-tilt units. Namely, pan angle does not correspond to β , and tilt angle does not

correspond to α . The provided tilt angle is not the geometric value, but the relative
angle adjustment applied to move the netcam vertically. Therefore, the sequential
implementation of these angles in the order of pantilt → provides 2R , the rotation

from P/T to camera.

Eventually, the two rotations are given respectively as:

CameraTP

TPRoom

RR
RR

→

→

=
=

/2

/1 Eq.59

If we assume that the camera is mounted on top of the pan-tilt unit, there is no

additional translation other than the translation of the P/T device,
→
T . Therefore the

equation becomes:

 ()
→

+⋅⋅= TPRRP camroom 21 Eq.60

However, practically it is impossible to place the camera right at the top of the pan-
tilt unit: there is always a shift from the origin of the P/T coordinate system (Figure

39c). This shift,
→
S , is also stored in the camera table, and conveyed to this unit as a

part of the camera parameters. It is defined in the pan-tilt unit's coordinate system,

and must be transformed into the room specific values,
→
′S , in order to be added in

the final equation:

→→

+






 +⋅⋅= TSPRRP camroom 21 Eq.61

→→
′++⋅⋅= STPRRP camroom 21 Eq.62

VIOLAS CONCEPTUAL DESIGN

 88

Eventually, the total rotation, 21 RRRtotal ⋅= , and the total translation,
→→→
′+= STT total ,

give the final relation between the locations of the objects in the room and camera
frame.

On the other hand, the outputs of the sensing core are not point coordinates like camP ,

but again translation and rotation values defined from camera to tag. In other words,
the outputs are the values that perform the coordinate transformation from tag
reference frame to camera reference frame. So, a final transformation must be
applied to acquire a total transformation between tag and room coordinate systems.

Let TagCamR → , and TagCamT →
→

 be the outputs of the sensing core, and tagP be a point on

the tag reference frame. Then:

 TagCamtagTagCamcam TPRP →
→

→ +⋅= Eq.63

Assuming that a pan-tilt unit is also involved (Eq62), this makes a total coordinate
transformation defined from tag to room reference frames:

→→

→
→

→ ′++






 +⋅⋅⋅= STTPRRRP TagCamtagTagCamroom 21 Eq.64

TagCamT →
→

 is defined in the camera coordinate system, and must be transformed into

the room specific values, TagCamT →
→
′ , in order to be added in the final equation:

 TagCamtagTagCamroom TSTPRRRP →
→→→

→ ′+′++⋅⋅⋅= 21 Eq.65

The total rotation, totalR , and the total translation, totalT
→

, finally give the location of

the objects in the room with respect to the tag frame:

TagCamtotal

TagCamtotal

TSTT

RRRR

→
→→→→

→

′+′+=

⋅⋅= 21
 Eq.66

The coordinate transformation is also applied for occupancy results, if the detecting
camera is attached on a pan-tilt unit. The position of the camera is known with the
provided pan and tilt angles. Together with the camera’s FOV range information

retrieved from the camera table, this enables the extraction of the region within
which the occupancy is detected. The rotation in Eq60, 21 RRR ⋅= , provides the

desired transformation. For translation values, a fixed vector, []200=
→
T , is used,

assuming that occupancy takes place in the 2 meters distance of the camera. Even
though this calculation does not provide a precise location data, it enables the

VIOLAS CONCEPTUAL DESIGN

 89

acquisition of a region information for the occupancy. Finally, the results (both
occupancy and tag locations) are recorded in an object table together with the related
camera information (Figure 38).

8.4 Data Fusion

Data fusion unit is designed to be executed continuously in certain time intervals. In
these timer activations, the coordinate-transformed location data acquired from all
cameras are combined by this phase. The input data are retrieved from the object
table, and the fused outputs are stored in the fusion table (Figure 40). There are two
phases of the data fusion, namely tag-level fusion and object-level fusion.

HW

Interface

Coordinate
Transformation

Camera
Data

Sensing
Core

Netcam #1

Netcam #2
P/T

Coordinate
Transformation

Data
Fusion

Fusion
Data

Object
Inventory

Object
Data

Figure 40. Data fusion.

8.4.1 Tag-Level Fusion

The same tag can be detected with more than one camera (Figure 41), or one camera
assigned to multiple instances of the “sensing core” (to be discussed in chapter 9).
This will eventually generate repeated tag records coming from multiple cameras (or
sensing cores) in the system.

Data fusion combines these records by taking the identification time and uncertainty
data into account. Most up-to-date and certain information is selected as the final,
unique tag information. Time and uncertainty are assigned by the sensing core unit
after the object identification. Uncertainty is generated with respect to the pose data
(particularly, the parameters of the reference tag ellipse). This provides information
about the accuracy of the location sensing. As distance increases (as reference ellipse
gets smaller), the deviation of the location information from the real values increases
as well (see chapter 11 for details). Therefore, if the identification times of the

VIOLAS CONCEPTUAL DESIGN

 90

multiple records are close to each other, the one detected by the proximate camera is
selected as the final result.

 Cam #1

Cam #2

Tag: 0001

Figure 41. Tag-level fusion.

8.4.2 Object-Level Fusion

The second phase of the data fusion is implemented in the object-level. In this phase,
the (fused) tag information is transformed to object information.

When a tag is created (to be explained in section 8.6), the related object information
(name, description, dimensions…etc) is also entered in the object-inventory table.
Therefore, the system is aware of the object information with the identified tag ID.

The system also enables the attachment of multiple tags on a larger object to reduce
the occlusion possibility and to increase the line-of-sight between tags and cameras.
This requires the second level fusion in order to prevent redundant object records
when both tags are identified (Figure 42). As with the tag-level fusion, most up-to-
date and certain information is selected as the final, unique object information.

 Cam #1

Tag: 0001

Tag: 0002

 Cam #2

CABINET

Figure 42. Object-level fusion.

In addition to location, the occupancy data is also managed in data fusion. The time
stamps are attached for detected occupancies in the sensing core, as done for tag

VIOLAS CONCEPTUAL DESIGN

 91

identifications. Based on the detection times, the duration of occupancies are
determined. The ones that exceed the lifetime periods are removed. Finally, the
output, unique location and occupancy information, is stored in the fusion table.

8.5 Communication Interface

Output of the data fusion, i.e., the final and consistent data, is transformed into XML-
like data packets for convenient data communication, and transferred to the lighting
control system through the communication interface (Figure 43). The communication
is designed with a TCP/IP socket server implemented in the interface. It enables the
connection of not only the lighting control system, but also any other third party
applications that can prospectively download and process the data packets.
Communication interface conveys the object data to the clients in the course of the
first connection and afterwards, whenever a change occurs in the environment.

HW

Interface

Coordinate
Transformation

Camera
Data

Sensing
Core

Netcam #1

Netcam #2
P/T

Coordinate
Transformation

Data
Fusion

Fusion
Data

Object
Inventory

Communication
Interface

Lighting Control System

Object
Data

Figure 43. Communication interface.

8.6 User Interface

User interface provides the communication between VIOLAS and the operator. As
mentioned above, the system needs the existence of some predefined information.
This unit enables an operator to add and modify such data, and to see the system

VIOLAS CONCEPTUAL DESIGN

 92

results on the screen. It is comprised of several subunits that allow the access to
distinct data groups (Figure 44).

 Camera Management

Result Display

System Management

Tag
GeneratorObject Management

User Interface
Camera

Data

Fusion
Data

Object
Inventory

System
Data

2D
Model
Image

Operator

Tag Image

Figure 44. User interface.

Firstly, the camera management subunit allows the operator to modify the camera
parameters mentioned in section 8.1. In addition, system requires certain
information, like the occupancy lifetime values mentioned in section 8.4, or other
values that are substantial for the execution (to be described in chapter 9). These
values are stored in a system table, and the system management subunit enables the
operator for their modification.

Similarly, with the object management subunit, user interface provides the
modification of the object inventory. The operator can introduce new objects to the
system, and for each object, he/she can enter related information, i.e., (1) the object’s
name, (2) description, (3) dimensions of the object, and (4) parameters of the tag that
will be attached on the object.

As mentioned above, the system allows the attachment of multiple tags on a single
object, but each tag code is created uniquely and automatically by the system. The
tag generator program, designed as a part of the object management, produces a new
code number for each tag demand, creates the tag image with respect to this
automatically supplied tag code, and finally, enables the image to be printed on a
printer device.

Figure 45 illustrates the hierarchy of the records stored in the object inventory. Each
object data possesses its proprietary parameters as mentioned above, and additionally
the parameters of the tags that are attached on the object. For each tag, (1) the code

VIOLAS CONCEPTUAL DESIGN

 93

number, i.e., ID number, and (2) its location on the object is defined. The object
dimension and tag location values are utilized in the next subunit, result display.

Object
#1

Name:
Object 1

Description:
CABINET

Dimensions:
X,Y,Z

Tag #1 Tag #2

Code:
0001

Location:
LEFT,

[Tx,Ty,Tz]
Code:
0002

Location:
FRONT,

[Tx,Ty,Tz]

Object
#2

Name:
Object 2

Description:
TABLE

Dimensions:
X,Y,Z

Tag #1

Code:
0003

Location:
TOP,

[Tx,Ty,Tz]

Figure 45. Object and tag hierarchy in the object inventory.

The result display subunit combines the sensed location values retrieved from the
fusion table with the values retrieved from the object inventory, and generates the 2D
graphical representations of the objects inside the room. Towards this end, the
system assumes every object as a minimum bounding-box covering the original
object shape (Figure 46). So, each object can be represented by eight points,

8321 ,,,, PPPP l , with the following corresponding coordinates defined on the object’s

local coordinate system:

[]
[]
[]
[]
[]
[]
[]
[]ZYP

ZYXP

YXP

YP

ZP

ZXP

XP

P

0

0

00

00

0

00

000

8

7

6

5

4

3

2

1

=

=

=

=

=

=

=

=

 Eq.67

where ZYX ,, mark the dimensions of the object in the order of width, height and
depth as shown in Figure 46. The results stored in the fusion table are the final total

rotation, totalR , and total translation, totalT
→

, values explained in Eq66. These values

transform the point coordinates defined with the tag coordinate system to the point
coordinates defined with the room coordinate system. However, this transformation
cannot be directly applied to the bounding-box point locations, 8321 ,,,, PPPP l , since

they are defined with respect to the object’s local frame. Therefore, these point
coordinates must firstly be redefined with respect to the tag reference frame.

VIOLAS CONCEPTUAL DESIGN

 94

y-height

depth-z

x-width

TOP

RIGHT

BOTTOMP1

P2

P3

P4

P5

P6

P7P8

object’s local frame

ytag

xtag

tag reference frame
ztag

Figure 46. Object and tag reference frames.

Towards this end, the transformation parameters of each tag, i.e., the location of the
tag on the object, are stored in the object inventory. For rotation, instead of defining
variable angles, six fixed values are defined associated with the sides of the bounding
box: (1) right, (2) left, (3) top, (4) bottom, (5) front, (6) rear. So, when the tag is
attached on the object, its orientation must comply with this definition in the object
inventory. The rotation matrix, which is a function of rotation angles around each
axis, ()γβα ,,R , is defined for each façade as follows:

()
()
()
()
()
()0,,0

0,0,0

0,0,2

0,0,2

0,2,0

0,2,0

π

π
π

π
π

−=

=

−=

=

=

−=

 RR

 RR

 RR

 RR

 RR

 RR

rear

front

bottom

top

left

right

 Eq.68

where the angles are defined as radians, and the rotations are given from tag to object
so as to provide the coordinate transformation from object to tag frame. When a tag
is generated in the object management subunit, its orientation is stored in the object
inventory with these predefined rotations, []reartopleftrightObjectTag RRRRR ,,,, l∈→ .

Similarly, the translation of each tag, []zyxObjectTag TTTT =→
→

, is defined with

respect to the tag reference frame in the object inventory as a part of the tag location

VIOLAS CONCEPTUAL DESIGN

 95

data (Figure 45). The result display subunit applies the transformation to each of the
bounding box points:

 ObjectTagiObjectTagi TPRP →
→

→ +⋅=′ Eq.69

where 81l=i . Subsequently, the coordinates of the new points, 8321 ,,,, PPPP ′′′′
l ,

defined on the tag are transformed to room coordinates as follows:

 totalitotali TPRP
→

+′⋅=′′ Eq.70

The final point coordinates 8321 ,,,, PPPP ′′′′′′′′
� give the real location of the object’s

bounding box inside room. These points are drawn on an image with a bird-eye view,
in other words, abstracting from the height coordinate information. While drawing
the image, the meter values are scaled to pixel values so as to fit the room inside the
scene. The result display subunit allows the operator to adjust the scaling, so images
with different resolutions can be generated based on the requirement. The objects are
constructed in the image with the reconnection of the corner points. However,
images are not drawn object by object, but instead, the bounding boxes are separated
to their panels, and the images are formed panel by panel, where the panels with
minimum height are drawn first. This drawing method enables the hindmost panels
lie behind the proximate ones that are more visible to the viewer.

Similarly, the occupancy information is also drawn on the image with the same
formula (Eq70) used for object location. However, this time, the point locations are
not required. As mentioned in section 8.3, the transformations are also stored in the
fusion table for occupancies. Based on these transformations, rough 2D region
representations are drawn on the room image for occupancy detections. An example
of a display output is given in chapter 11. Please note that these 2D graphical
representations are not the space models defined in the lighting control system, and
utilized by the simulator application (Figure 2), but instead a projection of the
sensing results on the screen for user convenience.

Finally, it can be concluded that the diagrams given in Figure 43 and Figure 44
summarize the conceptual scheme of VIOLAS, where as input, the camera images
are acquired, and as output, the sensed object information is stored in relevant tables,
and consequently transmitted to the lighting control system.

IMPLEMENTATION

 96

9 IMPLEMENTATION

The implementation scheme of VIOLAS figures out how the blocks in the
conceptual scheme are implemented and executed.

As mentioned in chapter 2, the solution intended for model generation should comply
with the requirements specific to building environments. VIOLAS can be installed to
a room equipped with one camera, whereas it can be applied to an entire building
with one hundred rooms, equipped with one hundred cameras. The latter scenario
involves intensive processing loads of data acquired from multiple sensors. To
accommodate such loads, multiple computing resources must be utilized that can
function in parallel and that can be reconfigured in a scalable fashion.

For this reason, VIOLAS is implemented in a distributed structure, where the
subcomponents of the system communicate on Internet platform. Communication
and data sharing is ruled by the distributed component object model (DCOM)
protocol enabling software components to communicate directly over a network in a
reliable, secure, and efficient manner (DCOM 2004). Distributed structure of
VIOLAS provides scalability, incremental growth and enhanced performance
derived from parallel operation. Additionally, remote data access permits
information, resource sharing, and load balancing that allows efficient resource
utilization.

Based on the above structure, VIOLAS software is divided into server and client tiers
(Figure 47). Application server lies on the server tier. This module is the heart of the
system that achieves two vital activities, resource management and data integration.
Concerning its resource management activity, application server controls the
distributed components, including the sensors and client modules, lying on the client
tier. Sensors are the network cameras that fit in this structure by conveying video
images like as distributed network devices. Client modules are the image processing
units (IPU) implemented on different computers scattered across a facility. They
process the input images captured from netcams, and perform the sensing activities.
Towards this end, application server is liable for establishing their connection with
the available netcams in the system. Concerning the data integration activity,

IMPLEMENTATION

 97

application server combines the results obtained from multiple IPUs, and
subsequently transfers them to the lighting control system.

Netcam

User
Interface
Server

Database
Server

Server-Side

Netcam
P/T

Netcam

Netcam
P/T

Application
Server

IPU

IPU

Operator
Space 1

Space 2

Lighting Control System

VIOLAS Database

Figure 47. Distributed structure of VIOLAS.

Database server is the second subcomponent that lies on the server side. This
module handles the data access demands of other modules, and provides their
connection with the VIOLAS database. User interface server is the last module of
the server tier that provides the communication between the operator and VIOLAS.

The modules are implemented on the Windows operating system with using Borland
C++ software development environment. The implementation details of each module
are given in the following sections.

9.1 Image Processing Unit

Image processing units (IPUs) are the programs that lie on the client side, and run
parallel on different computers scattered around the facility. IPUs are the consumers
of the system that exploit resources, i.e., sensors, namely, the cameras. Their main
job is to acquire images from the cameras, and process them to extract the object

IMPLEMENTATION

 98

information. Hence, the hardware interface, sensing core and the coordinate
transformation units explained in the conceptual design are implemented inside this
module. An IPU also performs additional processes to maintain the course of
execution within the overall system. The structure of an IPU is given in Figure 48.

IPU

Sensing Core Coordinate
Transformation

Hardware Interface1

Database Server

Camera

Object

Resource-Link

IPU-Clients

Server-Side

Thread #1

Thread #2

IPU InitApplication Server
Responder

Thread #3

6

9

8

11

Cam
Loop 2

IPU - Status Check

System

13

Camera #1 with P/T

Camera #2

Camera #3

7

New resource sharing

Shared MemoryShared MemoryShared Memory

3

4

10

Figure 48. Structure of the image processing unit.

An IPU program runs three concurrent threads each of which is responsible with a
distinct job as described in the following.

9.1.1 IPU Control

The IPU control mechanism provides the proper execution of the IPU and the
communication with the application server in the course of VIOLAS operation.
Towards this end, service thread (thread#3 in Figure 48) is implemented. This is the
main thread created with the start of the program. Other threads are created within
this thread. It involves three major functions:

First one, the IPU init function, runs at the startup of the program, and registers the
IPU client to the system. The steps taken by this function are as follows: (1) Fetch
the IP of the host computer. (2) Access the IPU-clients table (for reading), and check
for other running IPUs. All data regarding IPU clients (ID number, IP address,
communication port, performance, status, and last-activity time) are stored in the

IMPLEMENTATION

 99

IPU-clients table, and can be accessed after connecting the database server (to be
explained in section 9.4). Based on the table lookup, get a unique ID number that has
not been reserved before. (3) Access the IPU-clients table again to check for clients
running on this computer only, and get a port number that also has not been reserved
before. For this purpose, the function also makes a reading from the system table to
learn the base-port number for the IPU clients (shown with dataflow line 13 in Figure
48). It may be possible for multiple IPUs to run on the same computer with the same
IP, thus, each distinct IPU must possess a unique port for communication. (4) Access
the IPU-clients table for the last time, and add this IPU together with the computed
communication information (Figure 48, line 8).

Second function, the application server responder, provides the communication
between the IPU and the application server. The tasks undertaken by this function are
as follows: (1) Respond to the application server's “control” request sent for checking
the status of the IPUs. The application server understands the status of the IPUs
(whether they are active or not) by sending this request message with a TCP
connection. (2) Fetch the application server's “new resource sharing” request. The
IPU recognizes the cameras that shall be connected for image acquisition through
this message. In order to learn the new resources, i.e., netcams, assigned to the IPU,
the function accesses the resource-link table (Figure 48, line 9). Please note that, at
the startup of the IPU, no cameras are assigned. The application server runs a new
resource sharing function after recognizing the new IPU client. It rearranges the
assignments between the cameras and the IPUs, and stores this arrangement in the
resource-link table. Consequently, the application server sends a "new resource
sharing” request to all IPUs whose camera assignments are changed. This is how the
IPU (consumer) lines up its cameras (resources) at the initial state.

9.1.2 Image Acquisition

Image acquisition is handled by the image acquisition thread (thread#1 in Figure 48)
in the IPU. This thread runs the hardware interface explained in the conceptual
design, thus, acquires images from the cameras, transforms them into a usable format
for image processing, and, in case of the existence of a pan-tilt unit, performs the
motion of these devices (Figure 48, line 1).

However, the existence of a pan-tilt unit is not a sufficient criterion to perform its
control. All IPUs are graded as master by default when they are first assigned to a
camera by the application server. As a result of this assignment, multiple IPUs may
be sharing one camera, a possible situation that can occur when the number of

IMPLEMENTATION

 100

computing sources exceeds the number of sensors. This arrangement prevents the
presence of jobless IPUs, and provides an efficient usage of these distributed
modules in such “famine times”. On the other hand, the shared camera may be
equipped with a pan-tilt unit. In order to eliminate the inconsistencies, the application
server keeps one of the IPUs as the master, and degrades the others as slave. Only
the master IPU is authorized to drive the pan-tilt unit. This ranking is conveyed to the
image acquisition thread with the application server responder that also informs
which cameras will be connected (as described in the previous section). Afterwards,
the hardware interface firstly sets the connection with the cameras and the pan-tilt
units if one is available, i.e., attached and authorized. Towards this end, hardware
interface retrieves the communication details about these designated cameras from
the camera table, together with other camera parameters that will be conveyed to
further functions (Figure 48, line 11).

In chapter 4, where the visual sensors are introduced, the communication structure of
the network cameras is also mentioned. Netcams possess a processor inside, and they
are capable of connecting to the networks and broadcasting their images using the
HTTP protocol like a regular web server. Thus, any application acting as a web client
can access the camera, and download the images. Furthermore, the netcam
manufacturers also provide plug-in components that can easily be embedded inside
the applications. These plug-ins save the programmers from the workload of
constructing a web client module and parsing the incoming data to pick the image
inside. VIOLAS utilizes a Versacam-IC4 (Pentax 2006) and an IQeye3 (Iqinvision
2006) camera, and employs their plug-in components for communication. Using the
plug-in component for Versacam-IC4 is necessary, since this camera, unlike its
counterparts, employs a specific image compression technique (wavelet). Actually,
most netcams use JPEG image compression that can be resolved in the web client
module. As mentioned in the design scheme, camera table stores the model
information for each camera. Based on this model information, the proper plug-in
component is selected.

After the camera, the communication is set with the pan-tilt unit. As also mentioned
in chapter 4, pan-tilt units are comprised of two main parts: the head and the
controller. P/T head is the part where the camera or the camera housing is mounted.
It involves two motors for executing the pan and tilt functions. P/T controller is
simply an electronic interface employed to enable the control of the head by an
external device. It receives control signals from the external device, and converts
them to proper electrical voltages that drive the head part. The communication
between the controllers and the external devices is performed by serial protocols like

IMPLEMENTATION

 101

RS232, RS485, or RS422 in physical layer. The protocols of this layer determine the
cable connections and electrical voltages that correspond to 0s and 1s. In VIOLAS, a
Visca DCP-24 device (GNT 2006) is employed for the controller part, and a Mustang
P25 (Bewator 2006) is used for the head. The controller provides the physical
connection between the head and the external device using the RS232 protocol. The
external device can be either a keyboard-controller used widely in surveillance
systems, or a PC. In our case, it is the network camera. Based on the given structure,
netcams provide a serial output for the control of pan-tilt units. A 9-pin D port (D9)
mounted for this purpose at the back of the IQeye3 is shown in Figure 49.

1 - DCD
2 - RX
3 - TX
4 - DTR
5 - GNG

6 - DSR
7 - RTS
8 - CTS
9 - RING

Figure 49. Serial D9 port of an IQeye3 camera.

In RS232 protocol, only the RX (data receive), TX (data transmit), and GND
(ground) pins of a D9 port are utilized. These pin outputs are connected to the
corresponding input pins of the Visca controller as shown in Figure 50 (Visca-in port
marked with X4 sign). The P/T head is also connected to the controller so that Visca
can convert the incoming commands into signals that drive the head motors.

The IQeye3 cameras provide a flexible serial output control. After setting a TCP
socket connection to the camera's 3001st port, any dataset sent out is directly
conveyed to the D9 output by the camera. The input data is also transferred through
the same path back to the socket server that sets the connection. However, it is not
possible to say that this serial output control method is standard among all network
cameras. Some manufacturers, like that of the Versacam-IC4, instead use the plug-in
components to control the serial output, and they accept a limited number of control
commands predefined in a lookup table.

IMPLEMENTATION

 102

(a)

P/T Controller Netcam

Port: Visca-In

TX
RX

GND

TX
RX

GND
Port: D9

(b)

Figure 50. (a) Visca DCP-24 controller (GNT 2006). (b) RS232 connection layout between the camera
and the controller.

The same situation is also present for the data link layer of the communication. Data
link layer resides at the top of the physical layer, and these two layers together define
how the communication is set between the controller and camera. Data link layer
defines the data flow control, error handling and handshake between the two nodes.
CRS (cyclic-redundancy-check), checksum are some of the famous error-handling
algorithms, and CTS/RTS (clear-to-send/ready-to-send), XON/XOFF are some of the
popular flow-control methods. The protocols of this layer combine these methods,
and provide an error-free communication. In contradiction to the physical layer, there
are no standard protocols for data link among P/T controllers. Main pan-tilt
manufacturers develop their own protocols for communication. Among these
proprietary protocols, some do not provide error handling, whereas some make use
of CRS or checksum. Handshake between the nodes is usually not applied. Each
protocol uses its own flow control, which is usually a simple quasi stop-and-wait

IMPLEMENTATION

 103

method. These controller protocols also define the set of commands (pan-left, tilt-
right...etc) used to control the P/T heads.

Because of this variety in the data link protocols, netcam manufacturers produce
configurable serial outputs. The Visca controller uses the following values in the data
link layer: 9600 baud data transfer speed, 8 bit data length (in one data packet), 1
start and 1 stop bits (used to designate the begin and end points of the data packet),
no XON/XOFF, no hardware handshake. Prior to the connection, the IQeye3 and
Versacam-IC4’s serial outputs are configured with these values. (Detailed
information about the layers and protocols used in computer communications can be
found in Tanenbaum 2002).

So far, how the communication is set between the IPU, camera and the pan-tilt unit is
described. As seen above, there is no direct connection between the IPU and the pan-
tilt unit, since all the communication is set through the netcam. Thus, no additional
infrastructure is required between the IPU and the pan-tilt devices (also shown in
Figure 7, chapter 4). After the connection, hardware interface can drive the pan-tilt
unit by sending commands through this communication channel. The command sets
are also proprietary, and different datasets are used among different pan-tilt models
and manufacturers. VIOLAS uses one model, Visca DCP-24, but it is also possible to
employ different models of P/T controllers with a similar method used for cameras:
based on the pan-tilt model information stored in the camera table, proper data link
protocol and command set can be selected for communication.

Because of the variety, P/T manufacturers provide command set documents for the
developers. Regarding the pan-tilt control, these command sets mostly cover the
management of the movement with the supplied pan and tilt angle values. The
controllers may provide the control of devices other than the pan-tilt units, like
motorized zooming, thus the command sets may include additional definitions. A
sample command of the Visca DCP-24 controller is given below in hexadecimal
code:

 8x 01 06 03 vv ww 0y 0y 0y 0y 0z 0z 0z 0z FF

The first 8x and last FF bits mark the header and terminator parts. These values are
present in all commands so that Visca can partition the incoming data. The following
bits, 01 06 03, mark the definition of the command, which is “relative position
drive” in this particular example. This command sets the relative coordinates
between the current position to the target position. The parameters, vv and ww, are
determined by the developer, and they define the pan and tilt motion speed

IMPLEMENTATION

 104

respectively. Finally, the parameters, yyyy and zzzz, define the new pan and tilt
positions in relative values. Another example can be the following command that
sends the pan-tilt unit to its home position, i.e., the position where pan and tilt angles
are 0 degrees.

8x 01 06 04 FF

The relative-positioning command given above is utilized by the hardware interface
to drive the pan-tilt unit. As mentioned in the design scheme, the angles that define
the FOV range of the camera-lens are stored in the camera table. These parameters
are used so that the pan-tilt unit is moved relatively by a tilt angle of vertical FOV
degrees, or by a pan angle of horizontal FOV degrees in each step. This prevents the
camera from skipping scenes between the two successive steps. The pan and tilt
ranges are also defined in the camera table, thus the device can scan only a portion of
the room when it is not necessary to perform a full circular movement, most likely
when the pan-tilt unit is placed in the corner.

Starting from the home position, the room is scanned with a certain path. Firstly, the
left part of the pan-tilt unit (corresponds to the positive pan angle values) is scanned.
In each pan position, the device performs a vertical scanning from top to bottom with
the tilt angles adjusted to the vertical FOV. After accomplishing the vertical scan
within the tilt-range, the device moves to the next pan position. This time, it performs
a vertical scanning from bottom to up. Using this path, the device scans its left side
within the defined pan-range, then, returns to its home position, and performs the
same course on the right side. Thus, the entire room is scanned with the minimum
step, and without allowing any scene repetitions.

After the end of each step, pan and tilt angles of the P/T unit change, and these
values are important for the further coordinate transformation. The hardware
interface of the hereby IPU writes the new pan and tilt angles back to the camera
table, enabling the slave IPUs to be aware of the current pan-tilt positions. Therefore,
the IPUs access the camera table right before every image acquisition to retrieve the
up-to-date pan and tilt angles.

However, the new pan and tilt angles are not updated immediately. The motion of the
pan-tilt unit must be synchronized with the angle values. It takes some time for the
device to reach to its next position. This period is adjusted with a timeout value.
Images acquired within this timeout duration are not taken into consideration, since
the camera takes these images on the fly. The camera’s on-the-fly status is written in
the camera table right after the movement ignition. Thus, all the IPUs using this

IMPLEMENTATION

 105

camera are aware of its status, and disregard the processing results within this period.
After the timeout duration, the pan and tilt angles are updated on the database
together with removing the on-the-fly flag, which enables the processing of images
in the next step.

By using the methods described above, the hardware interface acquires an image
from the camera, and drives the pan-tilt unit to its next position. After a short period
of suspension, the camera loop unit runs, and switches the camera. This activates the
hardware interface to acquire a new image from the next assigned netcam, and,
maybe (to be explained in the following), to drive its pan-tilt unit to the next position.
With the reiteration of the loop unit’s execution, pan-tilt devices are moved step by
step, and images are continuously procured from the cameras for processing.

The method for acquiring images and driving pan-tilt units are described so far.
However, when to perform these actions is not mentioned, because it is not under the
image acquisition thread’s control to decide how frequently to run the camera loop
unit, and when to drive the pan-tilt device to its next step. This thread only
implements the P/T driving action, and does this with the activation of another
thread: image processing. Image processing thread prevents the movement of the
pan-tilt unit, until it processes sufficient images to sense the scene context.
Therefore, the hardware interface may pursue to acquire more images from the same
position, even though a pan-tilt device is attached to the camera, and the IPU is a
master authorized for its control. The camera loop frequency is also controlled by the
image processing thread. The loop is reiterated in every t millisecond, value of
which is determined dynamically by image processing (explained in detail in the
following section).

The acquired images (Figure 48, line 2) are transformed to a standard data structure,
MS Windows Bitmap object (Figure 48, line 3), and stored in the shared memory
with the parameters of the camera (pan-tilt angles, on-the-fly status and the others
given in the design scheme) from which the image is taken. Shared memory is
created dynamically depending on the number of cameras assigned to that particular
IPU. Each camera has its own shared memory space, which is actually a global
memory space shared by the image acquisition and image processing threads. Since
these threads are running concurrently within the IPU program, their simultaneous
access to the global memory may cause inconsistencies. In order to prevent this
artifact, the accesses of the threads to the shared memory are mutually excluded. A
programming standard, “semaphore” structure (Tanenbaum 1992), is employed to
perform the mutual exclusion. The employment of this structure avoids the

IMPLEMENTATION

 106

simultaneous access of the threads to the shared memory. The second thread
demanding access to the global memory space is suspended until the first comer
accomplishes its access. The CPU power is not consumed by the second thread
during its suspension, enabling a high system efficiency. Since the shared memories
of the cameras are isolated, the image processing thread can read the image of the
first camera, while the image acquisition thread writes the image of the second. This
augments the efficiency with preventing the threads to suspend each other for
irrelevant data access.

As seen above, all of the control and access mechanisms implemented for the
VIOLAS hardware components are wrapped inside the hardware interface. Other
software components in the system access the hardware devices in an isolated
manner, without being obliged to know the underlying communication details. In
case of any hardware device change, the modification of the hardware interface
function is sufficient for the operation of the overall system.

9.1.3 Image Processing

Image processing is provided with the implementation of the image processing
thread (thread#2 in Figure 48). This thread retrieves the images from the shared
memory together with the required parameters (Figure 48, line 4) as stated above,
and processes them so as to sense the object data. Towards this end, image
processing thread executes the sensing core and coordinate transformation units of
the design scheme. The dataflow lines 6, and 7 in Figure 48 show the data transfer
from sensing core to the coordinate transformation, and subsequently, to the object
table.

The image processing thread is bestowed a substantial control over image
acquisition. This control provides the synchronization between the image acquisition
(producer thread) and the image processing (consumer thread). Firstly, the data
acquisition frequency, t , is set by the image processing thread. This adjustment
balances the image production rate with the image consumption speed, which is
necessary for the efficient usage of the CPU among the threads. Within the IPU,
image processing substantially consumes the CPU of the computer rather than the
image acquisition. The execution of image acquisition with a high frequency results
in the production of high amount of images that cannot be processed on time and
overwritten by the new ones. This is a waste of the CPU power, which is very
valuable for the image processing, Therefore, the value of t , amount of time that
takes for image processing, is clocked by the image processing thread, and used as a

IMPLEMENTATION

 107

break. This value is conveyed to the image acquisition over the shared memory, and
also stored in the IPU-clients table (Figure 48, line 10).

Secondly, image processing thread activates the movement of the pan-tilt units
towards their next position. After processing sufficient images for sensing the
context information in the scene, thread writes its movement demand as a data to the
corresponding camera’s shared memory (if the IPU is ranked as master). After
proceeding to the next camera queued up by the camera loop, the hardware interface
first checks for the presence of the movement demand, and if any, drives the pan-tilt
unit to its next step. The sufficiency of sensing is essentially determined by the
occupancy detection, where a sequence of temporal images must be processed. Thus,
only the master IPU executes the occupancy detection in the sensing core, if the
camera is shared among multiple IPUs.

Eventually, it can be concluded that the IPUs are implemented based on the
concurrent and synchronized execution of the image acquisition and processing
threads. Another alternative to the above software design is to implement a distinct
thread for each camera and to run the image acquisition and processing sequentially.
However, this scheme reduces the performance for single-processor computers
because of the overhead that occurs on the CPU take-over among the threads.
Especially, if the amount of cameras increases per IPU, the performance decreases
critically, where the cameras are blocking each other without any system control.
Therefore, such a design is avoided, and the above structure is utilized.

9.2 Application Server

As the key component in VIOLAS, the application server controls the overall
system. First, it manages data integration by combining the results coming from
parallel running IPUs. Second, it dynamically performs the assignment of resources
to consumers. In other words, the application server detects changes in the status of
the cameras and IPUs in the system, and accordingly rearranges the assignments of
cameras to the existing IPU clients. While performing these assignments, application
server also balances the workload of IPUs. The structure of the application server is
given in Figure 51.

The application server is comprised of five distinct functions. First three functions
undertake the resource management activities, whereas the last two functions
implement the data transfer and integration.

IMPLEMENTATION

 108

9.2.1 Resource Management

It is not feasible to assign an operator to continuously and manually manage the large
amount of distributed components (cameras and IPUs). Therefore, the
implementation of resource management is important for VIOLAS towards its
adaptation to built environments. For this purpose, three functions given in the
following are implemented.

First function is the IPU controller that is executed continuously to check the status
of the IPU clients. It connects to the database server, and reads the available IPUs
and their communication details (Figure 51, line 3) from the IPU-clients table. Then,
it sends a “control” request to each of the IPUs (see also application server responder
in Figure 48). If the IPU responds within a timeout duration, its status is updated as
“active”. If the IPU fails to respond in the given timeout duration, or an error occurs
during the connection, its status is updated as “inactive”. Afterwards, the status of the
IPUs are updated back in the IPU-clients table. If the IPU is active, the last-activity-
time data is also updated with the current time. This function also accesses the
system table to retrieve the connection timeout period and lifetime of IPU clients
(Figure 51, line 1). The inactive clients whose last-activity times exceed the lifetime
duration are removed from the system by this function. Please note that the
application server verifies the IPU with the ID number conveyed in the response
message in order not to mistake the client for a program that gives a very different
service in the same computer and from the same port.

The second function, camera controller, checks the status of the cameras in a similar
way. It reads the available cameras and their communication details (Figure 51, line
4) from the camera table, and then sends a “control” request to each of the cameras.
The netcams have a built-in FTP server. If the camera's FTP server responds within a
timeout duration, the camera's status is updated as “active”. If the camera's FTP
server fails to respond in the given timeout duration, or an error occurs during the
connection, the camera's status is updated as “inactive”. Similar with the IPU
controller, the status of the cameras are updated back in the camera table. If the
camera is active, the last-activity-time data is also updated with the current time. This
function also accesses the system table to retrieve the connection timeout period and
lifetime of cameras (Figure 51, line 2). The inactive cameras whose last-activity
times exceed the lifetime duration are removed from the system by this function.

IMPLEMENTATION

 109

D
at

ab
as

e
Se

rv
er

Camera

Object Inventory

Fusion

System

Resource-Link

IPU-Clients

Data Fusion

Resource Sharing &
Load Balancing

Application
Server

7

8

5

3

Server-Side

IPU - Status Check

IPU Controller

Camera Controller

Communication
Interface

Camera - Status Check

Invoke IPUs for new
resource sharing

1 2

Lighting Control System

10

Camera - Status Check

9

6

11

Camera Camera

4

Object

12

Figure 51. Structure of the application server.

Please note that, even though the status data of the cameras and IPUs are managed
within the local memory of the application server, these values are also updated on
the database so that the operator can also track the status of distributed client
components in the system (Figure 53).

The third function, resource sharing and load balancing is executed at the initial run
of the system and whenever the status of the cameras or IPUs change. This module
assigns the active cameras (resources) to the active IPUs (consumers). This
assignment is performed in such a manner that the workloads applied on the IPUs are
continuously balanced. In order to provide this balancing, IPU clients feed their
performance data back to the system (Figure 48, line 10). This function retrieves the
IPUs' performance data from the IPU-clients table to decide the amount of cameras
that will be assigned for each IPU (Figure 51, line 6).

In addition to the amount, resource sharing and load balancing function also
determines which cameras will be assigned to a specific IPU by taking the network
domain of the cameras into consideration. The cameras that lie on the same network

IMPLEMENTATION

 110

area or on a network area close to the IPU are assigned to reduce the network load
and increase the image transfer speed.

Consequently, as a result of such assignments, multiple IPUs can share a single
camera, when the number of computing sources exceeds the number of available
sensors. This arrangement prevents the existence of jobless IPUs, and organizes an
efficient operation. As mentioned before, in order to eliminate inconsistencies, the
application server ranks one of the IPUs as the master, and degrades the rest to slave.
The master IPU is authorized to control the pan-tilt unit if one is available for the
shared camera.

Eventually, the assignment results (Figure 51, line 5) are written in the resource-link
table, and the IPUs are invoked by sending a “new resource sharing” request. By the
receipt of the request, IPUs rearrange their connections with the cameras (see also
application server responder in Figure 48).

9.2.2 Data Integration

Data integration is vital for handling multiple results coming from concurrent IPUs.
Towards this end, data fusion function is implemented. As seen from its name, data
fusion function continuously executes the data fusion unit in the design scheme.

In the design scheme, the situations that can generate inconstancies and reiterated
results are described as (1) multiple cameras detecting the same tag, or, (2) multiple
cameras detecting the tags of the same object. On the other hand, as explained in the
resource sharing and load balancing function, multiple IPUs can also create reiterated
results when they share the same camera. Thus, data fusion combines the sensed
object data acquired from all of these parallel-running resources and consumers
(Figure 51, line 7). The results are updated in the fusion table (Figure 51, line 8).

Communication interface function similarly executes the communication interface
unit defined in the design scheme. This function transfers the final object data
(Figure 51, line 9) to the lighting control system. It is also possible to transfer the
results to a third party application that connects to the application server. The
communication port assigned for the interface is stored in the system table (Figure
51, line 11). This function is executed similar to the resource sharing and load
balancing function: at the initial run of the system, and whenever the status of the
results change.

IMPLEMENTATION

 111

9.3 User Interface Server

User interface server implements the user interface unit of the design scheme. It
provides the communication between VIOLAS and an operator through his/her web
browser program, which can be executed from any computer on the network. The
communication is achieved by common gateway interface (CGI). This method
provides the execution of programs on the server platform, eliminating any hardware
or software requirement on the client side. CGI programs are special applications that
can run upon the initiation of a web server. They can be written with variable
programming languages, and are supported by all the web servers independent from
the manufacturer.

9.3.1 Common Development Scheme for CGI Applications

The basic structure of a CGI program developed with Borland C++ is given in Figure
52. CGI is a standard developed to generate a common platform to marshal the
interaction between the web services and the programs. CGI program is executed
externally by the web servers, and the program brings a dynamic feature to the static
characteristic of the web pages. Using the CGI, web servers can acquire input data
from the user, run the CGI program, and convey the generated results back to the
web browser. The main benefits of the CGI are: (1) ability to process the input
values, (2) ability to provide an interface for data access that web servers cannot
manage individually (like connecting to a database).

 CGI
 Program

Web Client

Operator
Web Server

Web
Browser

Web server

CGI
HTTP Response

TWebModule

TPageProducer

TWebActionItem 1

2
3

4

HTTP Request

Figure 52. Common gateway interface.

CGI programs are not different from the regular programs, where specific inputs are
used, and the outputs are declared with specific rules. CGI programs cannot be
executed standalone. They need web servers, and must be placed in certain locations
determined by the web server like “cgi-bin” or “scripts” folders. It should not be
forgotten that the necessary file execution rights are given for the CGI programs

IMPLEMENTATION

 112

within the operating system. The Internet users run these programs, and the lack of
execution rights may result in failure.

CGI works in the following manner: (1) The web browser user sends an HTTP
request to the web server without being aware of the status of the resource, whether it
is static or dynamic. (2) Web server interprets the request, and understands that CGI
should be started, so it initiates a new process. (3) Web server assigns the variables
that involve the input data inside the HTTP request (Figure 52, line 1) as the
environmental variables of the process so that the process can access them. (4) Web
server executes the CGI program inside the new process to fulfill the demand of the
user. (5) CGI program reads the input variables, processes them, and writes the
results (Figure 52, line 2) to the standard output, STDOUT. (6) Web server reads the
generated results from the STDOUT, constructs an HTTP response by adding the
convenient data (header…etc), and finally sends it to the web browser.

In addition to this standard flow, Borland C++ provides the following components
that facilitate the implementation of a CGI program: (1) TWebModule, (2)
TWebActionItem, (3) TPageProducer.

TWebModule is the object name of the web module component that provides the
communication between the CGI program and the web server. When a new web
application, i.e., CGI program, is created in Borland C++, it automatically contains a
web module. The web module serves as a repository for non-visual components:
TWebActionItem and TPageProducer. A CGI application can have only one web
module.

Web module also enables the CGI program to respond to HTTP request messages by
passing the request objects, TWebRequest (Figure 52, line 3), and response objects,
TWebResponse (Figure 52, line 4), to the appropriate “action items”. The
TWebModule object manages a collection of action items, which know how to
respond to HTTP request messages. Each action item component, TWebActionItem,
performs a specific task in response to a given type of request message. Action items
can completely respond to a request, or perform part of the response, and allow other
action items to complete the job.

Page producers are the auxiliary components (TPageProducer) that help the action
items to construct HTML codes for HTTP responses. TPageProducer takes an
HTML template, and converts it by replacing special HTML-transparent tags with
customized HTML code. A set of standard response templates filled in by page
producers can be stored when generating the response to an HTTP request message.

IMPLEMENTATION

 113

An HTML template is a sequence of HTML commands and HTML-transparent tags.
An HTML-transparent tag has the form:

<#TagName Param1=Value1 Param2=Value2 ...>

The angle brackets, “<”, and “>”, define the entire scope of the tag. A pound sign “#”
immediately follows the opening angle bracket with no spaces separating it from the
angle bracket. The pound sign identifies the string to the page producer as an HTML-
transparent tag. The tag name immediately follows the pound sign with no spaces
separating it from the pound sign. The tag name can be any valid identifier, and
identifies the type of conversion the tag represents.

Following the tag name, the HTML-transparent tag can optionally include
parameters that specify details of the conversion to be performed. Each parameter is
of the form “ParamName=Value”, where there is no space between the parameter
name, the equals symbol, “=”, and the value. The parameters are separated by
whitespace. The angle brackets make the tag transparent to HTML browsers that do
not recognize the “#TagName” construct.

9.3.2 Implementation in VIOLAS

User interface server is a CGI program that works as defined in the above structure.
The flow diagram of the server program is given in Figure 53. The user interface
server is placed inside a web server, and the requests of the operator are conveyed
through the CGI interface of the web server. The web server runs the user interface
server, and transfers the requests to the module as stated above. The following action
items are declared inside the web module of the CGI program: (1) for logging in the
system, Login, (2) regarding camera management, CamList, CamView, CamQuery,
CamCommit, (3) regarding system management, SysQuery, SysCommit, (4)
regarding user management, UserList, UserQuery, UserCommit, (5) regarding object
management, ObjectList, ObjectQuery, ObjectCommit, (6) regarding result display,
ResDisp, and finally (7) regarding the IPU tracking, IpuList.

The Login action item is the default action that is implemented when no action detail
is given. It checks the “username” and “password” inputs of the operator (Figure 53,
line 1) by connecting to the database server, and verifying the data with the ones
defined in the users table. Login action item gives access to the main menu, if they
are correct. Otherwise, it generates an invalid-user page with using its relevant
TPageProducer component.

IMPLEMENTATION

 114

Database Server

FusionSystem Users

Camera Mng.

User Interface Server

Server-Side

Login

Invalid
UserList

Query

Commit

System Mng.

Query

Commit

User Mng.

List

Query

Commit

Result Display

ResDisp

Query

Web server

3

4

1

Web Browser

8

Common Gateway Interface

Cam
View

7

Camera Camera

6

Object Mng.

List

Query

Commit

Operator

Object Inventory

9
10

5

Camera
IPU-Clients

Resource-Link

IPUs

List

11
12

2

Main Menu

Cookie

Figure 53. Structure of the user interface server.

If the “username” and “password” are correct, this action item places a cookie inside
the web client's computer (Figure 53, line 8) to recognize the further connections of
the client. This is how the user interface server identifies the connecting clients, and
writes their usernames on the top of the web pages. On the other hand, the cookies
have a timeout duration. If the operator's connection time exceeds this period, the
login request is repeated by the user interface program. The cookie acceptance must
be enabled in the setup menu of the web browser, otherwise user interface server will
not be able to place the cookie, and the operator will get an “invalid user” message
each time he/she logs on.

The action items named with xxxList nomenclature are presented at the first link of
the main menu. Their function is to list the records in the relevant tables (Figure 53,

IMPLEMENTATION

 115

lines 2, 4, 9, 11 and 12). There is one exception to this structure: system
management. System parameters are comprised of one single record in the system
table, so system management link in the main menu leads the operator directly to the
SysQuery action item.

xxxQuery action items are implemented when the operator wants to add, modify or
delete a record in the table. The record number and the action type (delete or modify)
are conveyed inside the HTML links that are created by the xxxList action items.

xxxCommit action items are implemented at the last stage to commit the “modify” or
“delete” transactions on the database server. These action items are marked with a
different color in the figure to state that some users may not possess an execution
right for this function. Each time an action is executed by the client request, two a-
priori functions are implemented: one tests the database connection, other checks the
user validity by reading the contents of the cookie. A failure in the database
connection results in the generation of a warning message page. A failure in user
validation forces the user to re-login by directing him to the Login action item. Thus,
this function prevents the direct access of the user to the action items other than the
Login without being logged on to the system. While performing the a-priori user
validation, xxxCommit action items also read the user types stored in the user table.
There are two types of users defined in the system: (1) administrative users, (2)
standard users. Only administrative users have the right to commit changes and
deletions in the tables. In order to provide this capability, the xxxCommit action items
check the user type before sending requests to the database server.

The above scheme marshals the data retrieval and manipulation. In addition to this
structure, the ResultDisp action item reads the final results (Figure 53, line 5) from
the fusion table, and generates a bitmap file that demonstrates the simple 2D figures
of the objects, as defined in the result display subunit in the design scheme of
VIOLAS.

Finally, the CamView action item is accessed by the link that is created in the web
page of CamList action for each active camera. This action reads the ID of the
camera as input, connects to that camera, and generates a new page where the raw
camera images (Figure 53, lines 6 and 7) can be viewed. As explained in section 4.4,
the network cameras have built-in web servers that publish raw images over HTTP,
and enable the display of camera images in personal HTML documents.

IMPLEMENTATION

 116

9.4 Database Server

Database server is also an important module in VIOLAS, as its underlying structure
enables the access to distributed COM objects over a network. COM is a software
architecture that standardizes the programming interfaces, implementation models,
and the data structures so that the non-compliances among different software
platforms are removed. Derived from this architecture, distributed COM objects
(DCOM 2004) are developed that can be employed by other applications remotely in
a network environment. This allows the software components to access data or
implement a function remotely from different computers.

Based on this model, the software components of VIOLAS, i.e., image processing
units, application server and user interface server, act like client applications that
request service from the database server. Database server manages the connection
between these software components and the VIOLAS database where the
information resides. It provides a convenient interface that responds to the client
applications' requests like modify, add, delete, or retrieve.

Towards this end, database server also decodes the tables’ file format in the database.
The VIOLAS database involves tables that store relevant data in XML format. XML
files posses a certain tag structure like HTML files. Based on this structure, these
tables are constructed with one metadata part, where the information about data
structure is defined, and one data part, where the records are stored. Together with
this partitioning, a specific tag nomenclature is used so that Borland C++, describing
more specifically, the TDataSetProvider object (to be explained in the following),
can resolve the data in the table. This file structure is illustrated in Figure 54 with a
sample table. The list of available tables in the database is as follows: (1) camera
table, (2) IPU-clients, (3) resource-link table, (4) object table, (5) fusion table, (6)
object inventory, (7) system table, (8) users table.

9.4.1 Remote Data Module

“Remote data module” located inside the database server manages data transfer and
manipulation between the database and client applications. It involves two Borland
C++ components that undertake the data transfer and manipulation processes for the
programmer: (1) IAppServer, (2) TDataSetProvider (Figure 55).

IMPLEMENTATION

 117

<?xml version="1.0" standalone="yes" ?>
<DATAPACKET Version="2.0">
<METADATA>
<FIELDS>
<FIELD attrname="USERNAME" fieldtype="string" WIDTH="20" />
<FIELD attrname="PASSWORD" fieldtype="string" WIDTH="20" />
<FIELD attrname="NAME" fieldtype="string" WIDTH="20" />
<FIELD attrname="AUTHORIZATION" fieldtype="string" WIDTH="20" />

</FIELDS>
</METADATA>
<ROWDATA>
<ROW USERNAME="admin" PASSWORD="admin" NAME="System Admin" AUTHORIZATION="1" />
<ROW USERNAME="guest" PASSWORD="guest" NAME="Guest User" AUTHORIZATION="0" />
<ROW USERNAME="oguzi" PASSWORD="oguzi" NAME="Oguz Icoglu" AUTHORIZATION="1" />

</ROWDATA>
</DATAPACKET>

Figure 54. User table given as an example to show the structure of a XML file.

TDataSetProvider (object name of the dataset providers) supplies the mechanism by
which TClientDataSets (object name of the client datasets) obtain their data. For each
table, there is one “dataset provider” in the database server and one “client dataset”
in the client application. Image processing unit, application server and the user
interface server are the client applications of the database server that request database
service. So, hereafter in this section, all of these software components of VIOLAS
will be referred as “client applications”. Each of the client applications involves a
client dataset for each of the tables it wants to access. Client datasets are the
components in the client applications that provide access to a table in the VIOLAS
database through the dataset providers (Figure 55).

Dataset provider procures data from the database to a client dataset, and resolves
updates from a client dataset back to the underlying database. TDataSetProvider
object serves as a data broker between the database server and the client dataset in
the desktop client application. TDataSetProvider packages data from a table, and
passes it in one or more transportable data packets to the client dataset. The client
dataset receives the data packets, and reconstructs the data to create a local, in-
memory copy for user access. When user access is complete, the client dataset
repackages any changed data, and sends the updates to the data provider residing on
the database server. The data provider applies the updates back to the underlying
database table.

IMPLEMENTATION

 118

Remote Data
Module

Database Server

VIOLAS - Database

Server-Side

XML

Borland Socket
Server

(Scktsrvr.exe)

Client-Side

1

DCOM connection

User Interface Server

IPU

Application Server

TDataSetProvider

IAppServer
interface

IPU Program

Server Program

Server Program

IAppServer
interface

TDataSetProvider

2

2

Tables

TClientDataSet

TClientDataSet

TClientDataSet

TClientDataSet

TD
co

m
C

on
ne

ct
io

n

TD
co

m
C

on
ne

ct
io

n
TD

co
m

C
on

ne
ct

io
n

Operator

Web Browser

1
Socket connection

Figure 55. Structure of the database server.

Database Server does not establish any connection with client applications. Instead,
connection is maintained by client applications. Client applications can access
TDataSetProvider methods using the IAppServer interface of the remote data
module. This interface provides the basis of communication for the distributed
applications. Client datasets obtain an IAppServer instance from a connection
component (explained in the following) in the client application. Then, the client
datasets can communicate with the data providers directly by calling the data
provider component’s TDataSetProvider methods.

9.4.2 Communication with the Database Server

The client applications, additionally, require a connection component to connect to
the database server. This component identifies the protocol for communicating with
the database server. Each type of connection component represents a different
communication protocol. One option is to use a DCOM connection component,
TDCOMConnection, to establish and maintain the connection with the database
server. TDCOMConnection uses the computer name of the host computer to identify
the machine on which the server resides. Once the connection is established, the
client application registers any or all of its client datasets with TDCOMConnection,

IMPLEMENTATION

 119

and these client datasets use the IAppServer interface from the DCOM connection
component to communicate with data providers on the database server. DCOM
provides the most direct approach to communication, requiring no additional runtime
applications on the server. However, the DCOM connection must be configured prior
to the connection with using the application, DcomCnfg.exe, provided by the MS
Windows operating system (DCOM 2004).

Another alternative is the usage of a socket connection component,
TSocketConnection. The connection to the database server is established using
sockets from any machine that has a TCP/IP address. This method has the advantage
of being applicable to more machines, but does not provide for using any security
protocols like the DCOM connection protocol. TSocketConnection identifies the
server machine using the IP address or host name of the server system.
TSocketConnection establishes the initial connection between the client application
and the database server using TCP/IP as stated above. To use TSocketConnection, the
database server must also be running the Borland socket server, Scktsrvr.exe (the
socket dispatcher), program. Instead of instantiating the remote data module directly
from the client, sockets use Borland socket server (Scktsrvr.exe), which accepts
client requests, and instantiates the database server using COM. The connection
component, TSocketConnection, on the client and Scktsrvr.exe on the server are
responsible for marshaling IAppServer calls.

In addition, no matter which connection protocol they use, the client applications
need ServerName or ServerGUID information to identify the database server on the
server machine. ServerName identifies the name of the database server to which the
client application should connect. ServerGUID also serves for the same purpose, and
specifies the GUID of the remote data module’s interface. Using ServerGUID rather
than ServerName to identify the database server is more robust, because it does not
require the database server to be registered on the client system. However, either
ServerName or ServerGUID must be provided so that the dispatch connection can
create and communicate with the appropriate server COM object.

9.4.3 Implementation in VIOLAS

The information required for connecting to the server machine (IP address and port
number for a socket connection, or the computer name for a DCOM connection), and
for connecting to the database server on that machine (ServerName, or ServerGUID)
are stored in the client application’s initialization file (*.ini). This file resides on the
directory where the executable exists. The client applications check for the database

IMPLEMENTATION

 120

server connection by sending a void request message prior to making a real
connection. If they cannot achieve a connection, an error message is raised, and the
application is terminated, since there is no meaning for the application to keep on
working without a database connection.

An example of the above scheme is demonstrated in the database server structure
diagram given in Figure 55. The IPU is accessing the camera table (Figure 55, line 1)
and the IPU-clients table (Figure 55, line 2). For each table connection, a client
dataset component, TClientDataSet, is employed in the client application. These
client datasets use the IAppServer interface from the DCOM connection component,
TDCOMConnection, to communicate with the dataset providers, TDataSetProvider,
in the remote data module. The data in the tables are accessed and manipulated by
the dataset providers that resolve the underlying XML files. The TDCOMConnection
component implemented in the IPU module establishes the communication between
the client application and the database server, and manages the IAppServer calls. The
same structure also applies to each of the other client applications, i.e., application
server and user interface server, that wants to access the tables in the VIOLAS
database.

AUXILIARY PROGRAMS IN VIOLAS

 121

10 AUXILIARY PROGRAMS IN VIOLAS

In addition to VIOLAS described in the previous chapter, two additional programs
are implemented in the course of the project development.

10.1 Camera Calibration

During the extraction of the location information (section 5.3.2), the cameras are
assumed to be already calibrated, i.e., the intrinsic parameters of the camera (Eq6)
are known. These parameters are used to the transform the point locations from the
image coordinate system to the camera coordinate system. Specifically, they are
utilized in Eq9 to transform the parameters of the reference ellipse defined in pixel
units to focal-length units. They are also employed in Eq47 for breaking the
ambiguity with a similar reason, to transform the coordinates of the benchmark
points.

As explained above, the camera calibration is simply the extraction of the intrinsic
parameters of the camera. For a camera with fixed optics, these parameters are
identical for all the images within the camera. However, they are not identical for
different cameras, even though they are from the same model. Even the cameras that
are manufactured sequentially from the same production line may posse different
intrinsic parameters. Hence, each camera in VIOLAS is calibrated, i.e., its intrinsic
parameters are extracted and stored in the camera table, before being employed in the
system. Towards this end, an external camera calibration program is implemented.
This program extracts the intrinsic parameters as explained in the following.

The transformation matrix that maps the image points to camera coordinates is given
by:

















=

100

0 0

0

vkf

ukkf

 M v

u α

 Eq.71

This matrix is formed with the intrinsic parameters of the camera, where f is the
focal length,),(00 vu is the image centre defined in pixel coordinates, uk and vk are

AUXILIARY PROGRAMS IN VIOLAS

 122

the effective pixel size given in horizontal and vertical directions respectively, and
αk is the skew. For most CCD cameras, the pixels are almost-perfectly rectangular,

thus skew is negligible, 0≈αk .

In the above paragraph, it is mentioned that the intrinsic parameters change in each
camera. However, this does not include the effective pixel size, uk and vk . These

parameters are fixed values for each camera model, and they are announced by the
camera manufacturers. However, we assume that the pixel sizes are unknown, and
have to be extracted. The focal length, f , is a variable parameter that depends on the

lens properties, and changes with respect to the zooming ratio in adjustable zooming
lenses. In VIOLAS, the cameras are fixed to a constant focal length, and their
zooming ratio does not change after the calibration. So, the focal length, f , can be
taken as a constant parameter. As seen from Eq71, f is not an independent
parameter, and can be embedded in the uk and vk parameters as: fkK uu = , and

fkK vv = . With the addition of the image center,),(00 vu , there are four variables to

calculate for the camera calibration.

As mentioned in breaking the ambiguity (section 5.3.2.4), the projection of points in
the target plane (tag plane), tagP , into points in the image plane, imageP , can be

calculated by applying the planar projective transformation:

 






 +⋅⋅=
→
TPR MP tagimage Eq.72

where M is the camera calibration matrix, and R and
→
T are the results of location

sensing before being transformed to the real-world coordinates. As a verification of

Eq72, it can be seen that 






 +⋅
→
TPR tag corresponds to the points defined on the

camera coordinate system, the evident result of the application of location sensing on
the target frame. The planar projective transformation exploits the fact that every
point lying on the target plane has a value of 0=Z . Therefore, Eq72 can be defined
as:



































⋅
















=
















⋅

⋅

1

.

100

0

0

3231

2221

1211

0

0

tag

tag

z

y

x

v

u

image

image

y

x

TRR

TRR

TRR

vK

uK

s

ys

xs

 Eq.73

where),(imageimage yx are the Cartesian pixel coordinates that correspond to the point,
[]0tagtagtag yxP = , on the tag frame. Eq73 can be extended as:

AUXILIARY PROGRAMS IN VIOLAS

 123

 u
ztagtag

xtagtag
image K

TRyRx

TRyRx
xu ⋅

++

++
−=

)..(

)..(

3213

1211
0 Eq.74

 v
ztagtag

ytagtag
image K

TRyRx

TRyRx
yv ⋅

++

++
−=

)..(

)..(

3213

2212

0 Eq.75

As seen above, two equations, Eq74 and Eq75, can be constructed from one tag. The

unknown variables in these equations are: tagP , imageP , R ,
→
T , and the intrinsic

parameters, 0u , 0v , uK , vK .

In order to eliminate the extra unknown variables, firstly, we need a fixed point on
tag, namely tagP , whose location on the image, imageP , can be extracted without the

usage of camera calibration. In fact, there is a point, the synchronization point, used
in the code deciphering phase of the target recognition (section 5.3.1.6). The image
location of this fixed point (depicted as a star in Figure 16) is extracted directly on
the image without utilizing the calibration matrix. Secondly, we need the location

results, i.e., R ,
→
T , of this tag. However, it is not possible to compute the location

without knowing the intrinsic parameters. Towards this end, these values are
measured, rather than calculated. In other words, the tag is placed at a certain

location whose transformation values, R ,
→
T are already known.

The scheme described above removes the unknown values other than the intrinsic
parameters. However, at least four equations are needed to compute the four
unknowns. Therefore, the camera calibration utilizes two tags, the planar projective
transformation of which makes four equations. Hence, the calibration program
captures an image from the camera to be calibrated. The image contains two tags
whose locations are known. Such an image is called the calibration image, and one
used for IQeye3 camera is given in Figure 56.

The location of the tags in the calibration image can be given as (considering tag1 as
the tag on the left, and tag2 as the one on the right with respect to the viewer):

()
[] []25.25.0,205.0

0,,0

21

21

−==

==
→→
T T

RR π
 Eq.76

As stated above, these values are not sensed, but measured manually. Henceforth, the
camera calibration program applies target recognition to the calibration image, and
extracts the pixel location of the synchronization points on the tags. Employing these

values together with the known, R ,
→
T , calibration program calculates the intrinsic

parameters, 0u , 0v , uK , vK , by using the equations given in Eq74 and Eq75.

AUXILIARY PROGRAMS IN VIOLAS

 124

Consequently, towards the operation of the system, these calibration values are
entered in VIOLAS through the medium of the user interface server’s camera
management unit.

0.5 m

0.5 m

0.25 m

Figure 56. Calibration image.

As mentioned in the beginning of this section, the intrinsic parameters are dependent
on the zooming ratio. Even though the camera lenses are fixed to a constant focal
length, in other words, there is no optical zooming, the system performs a digital
zooming on the input images as a part of the image enhancement procedure
(described in section 6.2). The digital zooming affects the intrinsic parameters,
however, does not necessitate a recalibration. Since the zooming in question is an
artificial one performed digitally, in other words, simply doubles the resolution, the
intrinsic parameters can be recalculated with applying the zooming ratio, zk , as a
factor. Thus, new parameters can be found by: 00 uku z ⋅=′ , 00 vkv z ⋅=′ , uzu KkK ⋅=′ ,
and vzv KkK ⋅=′ .

10.2 Image-Processing Tester

The algorithms developed in the sensing core are tested with a standalone program,
image-processing tester (Figure 57). It is not feasible to implement the sensing
algorithms, and test their performance while VIOLAS is in operation. Towards this
end, the location and occupancy sensing algorithms (together with coordinate

AUXILIARY PROGRAMS IN VIOLAS

 125

transformation) are first implemented in the image-processing tester, and moved to
the IPU modules after being tested in this auxiliary program.

 Figure 57. Image-processing tester.

The structure of the image-processing tester is identical with the combination of the
sensing core and coordinate transformation units given in the design scheme. The
differences are the handling of input and output values. The inputs are not live video
sequences, but the bitmap image files previously captured from the netcams, and
stored in the computer. There is also no database connection, and the required
camera parameters are read from an initialization file. Similarly, the results are
displayed on the screen, or written to the local files for testing, rather than being
transferred to the VIOLAS database.

A DEMONSTRATIVE TEST

 126

11 A DEMONSTRATIVE TEST

To evaluate the performance of VIOLAS, a demonstrative test is performed.
Thereby, regularity of the system operation and accuracy of the sensing functions are
observed.

11.1 Organization of the Test Platform

The test is implemented in Vienna Technical University, Department of Building
Physics and Building Ecology. The university building is equipped with a local area
network, thus, provides the required infrastructure. Within this network, our
department possesses a domain conducted by a mainframe computer. The server
applications, i.e., database server, application server and user interface server, are
installed in the mainframe together with the VIOLAS database. This computer also
runs a web server for broadcasting the department’s web pages. So, the user interface
server is placed under the specific folder where the web server can access and
execute such CGI applications.

Before the operation of VIOLAS, required parameters must be initially defined
through the medium of the user interface server. However, the database server is
activated first so that the user interface can access the VIOLAS database. Figure 58
shows the database server program with one client connected: user interface server.

Figure 58. Database server program.

User interface server is activated with a web browser program executed from an
operator’s computer in the department. Figure 59 illustrates the connection to the
user interface server and the main menu of the application.

A DEMONSTRATIVE TEST

 127

 (a) (b)

 (c) (d)

 Figure 59. User interface server, and the camera employed in the test.
(a) Opening screen. (b) User login. (c) Main menu. It can be accessed if the entered user

information is valid. Otherwise, the user is directed to a message-screen warning for the
invalid input. (d) Camera and P/T device employed in the test.

The test is implemented with an IQeye3 network camera mounted on the Mustang
P25 pan-tilt unit (Figure 59d). The box under the camera houses the Visca DCP-24
controller. Firstly, the system and camera parameters are entered using the System
Setup and Camera Setup menus as shown in Figure 60.

A DEMONSTRATIVE TEST

 128

(a) (b)

Figure 60. (a) System parameters setup. (b) Camera parameters setup.

Following the camera, objects in the test space are defined. Towards the
implementation of the test, a typical office environment (test-bed) is used that
involves 25 objects relevant for the lighting control system. For each object, a tag is
generated. The tag codes are assigned automatically by the system, incrementing a
base number defined in the System Setup menu. The rest of the tag information is
entered by the operator. Consequently, the tags are printed and attached on the
corresponding objects. Figure 61 illustrates the definition of an object. Figure 62
shows the list of the objects previously defined in the system. Using this list,
available objects and their tags can be tracked, and new tag images can be reprinted,
if the original ones on the object are damaged or torn. Figure 63 shows some of the
tagged objects in the test-bed, and Figure 64, finally, shows the 2D sketch of the
entire test-bed together with the tagged objects and the sensor devices. As also
depicted in Figure 64, motion is generated at three points to test the occupancy
sensing capability of the system.

The ground-truth data, i.e., actual location information of the objects, are measured
before the implementation of the test. Position and orientation of each tagged object
resulting out of this measurement are given in Table 3. In the table, orientation is
denoted with the normal vectors of the tag planes. This vector represents the
orientation of the tag expressed in the room coordinate system.

A DEMONSTRATIVE TEST

 129

Figure 61. Object setup.

Figure 62. A snapshot of the object list.

A DEMONSTRATIVE TEST

 130

Figure 63. Some of the tagged objects in the test-bed.

WALL
3

WALL 1

WALL
4

WALL 2OPENING 1 OPENING 2

WINDOW 1 WINDOW 2

A

B

C

D

TABLE
1

TABLE
2

TABLE
3

TABLE
4

BLIND 1 BLIND 2

UPLIGHT
1 UPLIGHT

2
E

y

x

�
�

�

Figure 64. 2D sketch of the test-bed.
“A” refers to Cabinet-3 and Upper-Cabinet-2, “B” refers to Cabinet-4 and Upper-Cabinet-3, “C”

refers to Cabinet-1 and Upper-Cabinet-1, “D” refers to Cabinet-2, “E” refers to Camera and
P/T unit. The marks, ⊗, refer to the occupancies.

A DEMONSTRATIVE TEST

 131

Table 3. Ground-truth data of the objects in the test-bed.
Orientation is denoted with the normal vectors of the tag planes. This vector represents the orientation

of the tag expressed in the room coordinate system. __
 Object Name Position (m) Orientation __________________ _______________
 Tx Ty Tz Nx Ny Nz __

BLIND 1 1.04 4.25 3.38 0 -1 0
BLIND 2 4.03 4.25 3.38 0 -1 0
CABINET 1 5.16 3.1 1.42 -1 0 0
CABINET 2 5.16 1.9 1.42 -1 0 0
CABINET 3 0.44 3.69 1.42 1 0 0
CABINET 4 0.44 2.5 1.42 1 0 0
CEILING 4.1 1.25 4.05 0 0 -1
FLOOR 0.12 0.1 0 0 0 1
TABLE 1 1.95 2.55 0.73 0 0 1
TABLE 2 1.95 0.94 0.73 0 0 1
TABLE 3 3.35 3.94 0.73 0 0 1
TABLE 4 2.75 0.94 0.73 0 0 1
UPLIGHT 1 1.4 2.89 1.75 0 0 -1
UPLIGHT 2 4.24 2.44 1.75 0 0 -1
UPPER CABINET 1 5.16 3.1 2.16 -1 0 0
UPPER CABINET 2 0.44 3.69 2.16 1 0 0
UPPER CABINET 3 0.44 2.5 2.16 1 0 0
WALL 1 2.55 4.33 1.28 0 -1 0
WALL 2 2.55 0.8 1.28 0 1 0
WALL 3 0 1.43 3 1 0 0
WALL 4 5.6 2.8 1.89 -1 0 0
OPENING 1 0.85 0.8 3.5 0 1 0
OPENING 2 4.1 0.8 3.5 0 1 0
WINDOW 1 0.8 5.11 2.6 0 -1 0
WINDOW 2 3.95 5.11 2.6 0 -1 0 __

11.2 VIOLAS in Operation

Following the measurements, application server is initiated. Application server
immediately starts checking the status of the cameras and the IPUs in the system, and
finds the IQeye3 camera connected to the network. However, the camera is not
assigned to an IPU, since none of them is activated so far (Figure 65). Therefore, an
IPU is initiated from a computer in the department. After its initiation, the IPU client
registers itself to the system, and responds to the application server’s control request.
Detecting an active IPU client, application server executes a resource management
computation and assigns the netcam to the IPU. For testing the system’s behavior
with multiple clients, a second IPU is initiated from another computer. This IPU also
registers itself successfully to the system, and responds the application server’s
control request. After the detection of a second active IPU, application server
implements a reassignment, degrades the second IPU to slave, and shares the IQeye3
camera among the IPUs. Both of the IPUs successfully run in parallel, and scan the
test-bed. They extract the object information in the test-bed, and transfer the results

A DEMONSTRATIVE TEST

 132

simultaneously to the VIOLAS database. Figure 66 demonstrates the execution of the
master IPU driving the pan-tilt unit.

Figure 65. Application server.

The outputs of the IPUs are fetched by the application server. The incoming results
are fused by the internal data fusion unit, and subsequently recorded in the database.
By the implementation of the test, system achieves a 100% identification
performance, extracting all tag codes and recognizing all objects. The sensed location
values are shown in Table 4.

To evaluate the accuracy of location results, “position error” is defined as the
distance between the ground-truth position and the sensed position of the tag.
“Orientation error” is defined as the angle between the tag’s true surface normal and
the sensed surface normal. Thus, the errors are calculated by:

→→

−′= TT Error Position Eq.77

A DEMONSTRATIVE TEST

 133

→→

→→

′

⋅′=
N N

NN Error nOrientatio
.

 Eq.78

where
→
′T and

→
T refer to the sensed and true positions of the tag, and the vectors,

→
′N

and
→
N , refer to the sensed and true orientations of the tag surface respectively. In

Table 5, the resulting position and orientation errors are given for our test. The table
also includes the position errors in relative terms, i.e., in percentage of camera-tag
distance.

In addition to the resulting errors, Table 5 involves the two limitations observed in
the system: (1) camera-tag distances, and (2) incidence angles (angles between the
normals of the tag and image plane). The camera-tag distances are measured
manually with a laser distance-measurer. The incidence angles are calculated with
using the related pan and tilt angles as described in Appendix D. In order to observe
the system performance with respect to these limitations, the average and maximum
position and orientation errors are computed for different camera-tag distance and
incidence angle bins, as given in Table 6 and Table 7 respectively.

Figure 66. Image processing unit

A DEMONSTRATIVE TEST

 134

Table 4. Sensed location values of the objects in the test-bed recorded by VIOLAS. ___
 Object Name Position (m) Orientation _________________ __________________
 Tx Ty Tz Nx Ny Nz ___

BLIND 1 0.94 4.13 3.32 0.03 -1 -0.01
BLIND 2 4.01 4.28 3.26 0.07 -0.99 0.08
CABINET 1 5.08 3.22 1.31 -1 0.05 0.05
CABINET 2 5.2 2.04 1.31 -0.99 -0.12 -0.02
CABINET 3 0.5 3.6 1.38 1 0.01 0.02
CABINET 4 0.53 2.43 1.36 1 0.02 0.07
CEILING 4.38 1.25 3.79 -0.21 0.12 -0.97
FLOOR 0.26 0.09 -0.07 -0.01 -0.02 1
TABLE 1 1.97 2.54 0.75 0.01 0.05 1
TABLE 2 2.04 1.02 0.72 -0.01 -0.02 1
TABLE 3 3.27 3.9 0.73 0.03 0 1
TABLE 4 2.82 1.07 0.74 -0.01 -0.02 1
UPLIGHT 1 1.51 2.82 1.67 0.04 0.05 -1
UPLIGHT 2 4.19 2.5 1.64 -0.05 -0.03 -1
UPPER CABINET 1 5.17 3.22 1.77 -0.97 0 0.25
UPPER CABINET 2 0.47 3.59 2.07 1 -0.01 0.03
UPPER CABINET 3 0.49 2.41 2.06 1 0.02 0.03
WALL 1 2.49 4.23 1.24 0.06 -1 0.05
WALL 2 2.65 0.91 1.2 0 1 0.07
WALL 3 0.04 1.22 2.91 1 0.1 0.02
WALL 4 5.6 2.97 1.75 -0.99 -0.02 0.11
OPENING 1 1.02 0.65 3.34 -0.05 1 0.06
OPENING 2 4.33 0.9 3.22 -0.03 1 0
WINDOW 1 0.82 4.96 2.47 0.08 -1 0.03
WINDOW 2 3.9 5.13 2.47 0.02 -1 0.03 ___

Table 5. Position and orientation errors of the objects with respective camera distances and incidence
angles. __

 Object Name Distance to Incidence Position Error Orientation
 Camera (m) Angle (°) (m) (%)* Error (°) __

BLIND 1 3.01 67 0.17 5.6 1.81
BLIND 2 3.05 48 0.13 4.1 6.13
CABINET 1 2.68 0 0.18 6.8 4.04
CABINET 2 2.50 30 0.18 7.3 7.01
CABINET 3 2.32 30 0.12 5.0 1.28
CABINET 4 2.08 0 0.13 6.2 4.16
CEILING 3.49 56 0.38 10.9 14.00
FLOOR 3.69 72 0.16 4.3 1.28
TABLE 1 0.70 50 0.03 4.3 2.92
TABLE 2 1.76 72 0.12 6.9 1.28
TABLE 3 1.65 72 0.09 5.4 1.72
TABLE 4 1.69 70 0.15 8.8 1.28
UPLIGHT 1 1.21 50 0.15 12.6 3.66
UPLIGHT 2 1.78 50 0.13 7.6 3.34
UPPER CABINET 1 2.83 20 0.41 14.4 14.45
UPPER CABINET 2 2.49 35 0.14 5.5 1.81
UPPER CABINET 3 2.26 20 0.14 6.4 2.06
WALL 1 1.75 0 0.12 7.0 4.47
WALL 2 1.82 0 0.17 9.3 4.00
WALL 3 3.28 48 0.23 7.1 5.82
WALL 4 3.18 20 0.22 6.9 6.44
OPENING 1 3.35 48 0.28 8.3 4.47
OPENING 2 3.34 48 0.38 11.3 1.72
WINDOW 1 3.3 35 0.20 6.0 4.88
WINDOW 2 3.23 35 0.14 4.4 2.06___

 * Position error in percentage of camera-tag distance.

A DEMONSTRATIVE TEST

 135

Table 6. The average and maximum position and orientation errors for different camera-tag distance
bins. __

 Error values Camera-tag distances (m) All ________________________________
 0..1 1..2 2..3 3..4 distances __

Position Error (m)
AVERAGE 0.03 0.13 0.19 0.23 0.18
MAXIMUM 0.03 0.17 0.41 0.38 0.41

Position Error (%)
AVERAGE 4.3 8.2 7.4 6.9 7.3
MAXIMUM 4.3 12.6 14.4 11.3 14.4

Orientation Error (°)
AVERAGE 2.9 2.8 5.0 4.9 4.2
MAXIMUM 2.9 4.5 14.5 14 14.5 __

Table 7. The average and maximum position and orientation errors for different incidence angle bins. __
 Error values Incidence Angles (°) All ________________________________

 0..19 20..39 40..59 60..79 angles __
Position Error (m)
AVERAGE 0.15 0.19 0.21 0.14 0.18
MAXIMUM 0.18 0.41 0.38 0.17 0.41

Position Error (%)
AVERAGE 7.3 7.0 8.3 6.2 7.3
MAXIMUM 9.3 14.4 12.6 8.8 14.4

Orientation Error (°)
AVERAGE 4.2 5.0 5.3 1.5 4.2
MAXIMUM 4.5 14.5 14.0 1.8 14.5 ___

As mentioned in the design scheme of VIOLAS, data fusion unit combines the
reiterated results by selecting the most up-to-date and certain data as the final, unique
location information, and the uncertainty is determined with the camera-tag distance
(section 8.4). This judgment is based on the results acquired from Table 6, where the
effect of this limitation can be seen on the location accuracy: the error levels increase
with the camera distance. Similarly, Table 7 depicts the effects of the incidence
angle. However, increase in the incidence angle does not similarly degrade the
location accuracy. On the contrary, the system can fit ellipses more properly to the
projection of reference circles generated by high incidence angles. This results in the
ascension of deviations to some extend, but then causes a discernible decline. The
impact of this limitation is observed substantially in the identification accuracy as
explained in the following paragraphs. Eventually, based on the test, the system
possesses an average position error of 0.18 meters and orientation error of 4.2
degrees on aggregate. The position error percentage has a mean value of 7.3%.

The occupancies in the test-bed are also sensed without any miss and without any
false detections. The system can detect the motion of a hand wave within the location

A DEMONSTRATIVE TEST

 136

sensing range. Additionally, it is robust against illumination changes that occur due
to opening or closing of the aperture in the camera mechanism. Likewise, slow
changes in the illumination levels of the light sources also do not mislead the system
to false occupancies. It must be noted, however, that it takes approximately 2.5
seconds for the system to process one image in the scene. The motions taking place
faster than this duration possess the risk of not being able to generate any change in
the two successive images, thus they may not be detected. As mentioned before, it is
not possible for the system to give an exact location for the occupancy, however, it is
possible to state the region within which the motion takes place. A graphical
representation of the test-bed, as generated and displayed by the user interface, is
illustrated in Figure 67. The object location results can be seen together with the
sensed occupancies in the figure.

Figure 67. Graphical representation of the test-bed generated by the user interface server.
The objects are drawn with the extracted locations after the execution of the test. The slides are caused

by orientation errors that have an average value of ~5°. The detected occupancies are also
depicted with (green) circles.

A DEMONSTRATIVE TEST

 137

Afterwards, the test is re-implemented without the employment of enhancement
methods in order to observe their impact. Within this condition, the system is not
able to identify some of the tags in the test-bed. The identified and unidentified
objects are given together with respect to their corresponding camera-tag distances
and incidence angles in Table 8. As seen from the table, the impact of the incidence
angle on the identification performance is predominant over the camera-tag distance
limitation. The un-enhanced system cannot bring off the identification task especially
for the incidence angles beyond 60 degrees. This demonstrates the identification
performance augmentation of the enhancement methods. The sensed location results
are also shown in Table 9. Based on the values given in the table, the average
position error is calculated as 0.20 meters, and orientation error is calculated as 5.1
degrees. The position error percentage has a mean value of 8.4%. The acquired
results depict that the enhancement methods also provide a slight positive impact on
the location sensing accuracy.

Table 8. Identification results of the test implemented without enhancement methods.
The unidentified objects are stroke through in the table. ___

 Incidence Camera-tag distances (m) All __
 Angle (°) 0..1 1..2 2..3 3..4 distances* ___

0 ..19 –––
WALL 1
WALL 2

CABINET 1
CABINET 4 ––– 100%

20..39 ––– –––

CABINET 2
CABINET 3
UP. CAB. 1
UP. CAB. 2
UP. CAB. 3

WALL 4
WINDOW 1
WINDOW 2

88%

40..59 TABLE 1
UPLIGHT 1
UPLIGHT 2 –––

BLIND 2
CEILING
WALL 3

OPENING 1
OPENING 2 100%

60..79 –––

TABLE 2
TABLE 3
TABLE 4 –––

BLIND 1
FLOOR 20%

 * The identification performance given in percentage of identified objects for each angle bin.

The specifications of the sensors employed in the test can be given as follows: The
IQeye3 netcam is adjusted to 800×600 resolution. The camera possesses 10 mm (36°
FOV) lens, f1.6 aperture and 6×6 µm effective pixel size. As mentioned before, the
pan-tilt unit’s head part is a Mustang P25. This device possesses 0.2 degrees
backlash deviation as announced by the manufacturer. Additionally, a Visca DCP-24
is used as the P/T controller. Controller devices also involve errors in positioning the
head parts because of some internal mechanisms. A detailed evaluation of the pan-tilt
unit used within this test is given in Appendix E. Based on this evaluation, the total

A DEMONSTRATIVE TEST

 138

maximum rotation error of the pan-tilt unit is measured as 0.8 degrees that generates
roughly 4.5 centimeters deviation in 3 meters distance.

Table 9. Location values of the identified objects sensed without enhancement methods. ___
 Object Name Position (m) Orientation _________________ __________________
 Tx Ty Tz Nx Ny Nz ___

BLIND 2 4.01 3.5 3.32 0.04 -0.99 0.13
CABINET 1 5.07 2.42 1.34 -0.99 -0.02 0.13
CABINET 2 5.18 1.25 1.31 -0.99 -0.12 -0.03
CABINET 3 0.45 2.79 1.37 1 -0.01 0.01
CABINET 4 0.52 1.62 1.35 0.99 0 0.17
CEILING 4.43 0.41 3.84 -0.14 0.09 -0.99
TABLE 1 1.98 1.74 0.76 0 0.04 1
TABLE 4 2.79 0.21 0.73 -0.01 -0.03 1
UPLIGHT 1 1.53 1.97 1.67 0.04 0 -1
UPLIGHT 2 3.94 2.01 1.64 0 0 -1
UPPER CABINET 1 5.1 2.43 2.03 -1 -0.06 0.07
UPPER CABINET 2 0.44 2.76 2.05 1 0.02 0.03
UPPER CABINET 3 0.49 1.6 2.05 1 0.02 0.06
WALL 1 2.47 3.44 1.25 -0.03 -0.99 0.11
WALL 2 2.63 0.1 1.23 0.02 0.99 0.16
WALL 3 0.06 0.41 2.87 1 0.09 0.03
WALL 4 5.5 2.13 1.78 -0.99 -0.02 0.17
OPENING 1 1.05 -0.11 3.31 -0.03 1 0.09
OPENING 2 4.39 0.04 3.27 -0.05 1 0.04
WINDOW 2 3.83 4.31 2.49 0 -1 0.04 ___

CONCLUSIONS

 139

12 CONCLUSIONS

As mentioned in the beginning of the thesis, the implementation of simulation-based
control mechanisms is important towards the realization of sentient buildings, and
consequently towards the improvement of quality and effectiveness in building
services. To provide a proof for the concept, a simulation-based lighting control
system is developed in our department. The key point in fitting such control systems
in the sentient-buildings concept is to provide self-updating space models with
enabling a context awareness capability. For our lighting control system, the main
issues of the context awareness are comprised of identifying the objects, sensing their
location and detecting the available occupancies. In our efforts to meet these
requirements, VIOLAS is developed as described throughout the thesis. The essential
points in the development can be concisely summarized as: the selection of proper
sensors, i.e., network cameras, the implementation of the sensing algorithms, and the
design of the system software architecture.

As given in the previous chapter, software organization and sensing functionalities of
VIOLAS are fully tested in an office environment. The natural drawbacks of vision-
based solutions are the poor lighting conditions and occlusions that deform the first-
hand image information, and prevent the acquisition of a processable visual data. The
test platform is constructed without such inconvenient situations. Nevertheless, two
additional limitations are observed: the camera-tag distances and incidence angles.
Without the employment of image enhancement modules designed to compensate the
netcam drawbacks, the system identifies and locates the objects effectively within 3
meters range and 60 degrees incidence angle, and leaves some of the distant objects
in the test-bed unidentified. With the addition of these modules, the sensing
performance is augmented to 4 meters range and 75 degrees incidence angle,
enabling the identification of all objects in the test-bed, and locating them with an
accuracy of 0.18 meters average position and 4.2 degrees average orientation error.
Eventually, with a single netcam and pan-tilt unit, VIOLAS possesses an effective
scanning area of approximately 50 m2, within which it can simultaneously detect and
roughly locate the occupancies as well.

As mentioned in the technology review chapter of the thesis, there are various
systems that perform distinct sensing activities in different performance levels. Even

CONCLUSIONS

 140

among the vision-based solutions, there are different available visual sensors: cheap
devices like web cameras, or more expensive and sophisticated solutions like CCTV
or network cameras. Within all of these possibilities, the results obtained from
VIOLAS suggest that vision-based sensing, when enhanced computationally and
integrated with appropriate hardware, is also a promising technology for spatial
domains such as facilities and buildings.

In addition to the sensing results, several consequences are inferred from the
implementation and overall execution of the system. Based on the software design,
the application server of VIOLAS controls the status of the distributed components.
It dynamically assigns active netcams to active IPUs in such a manner that the
workload is well distributed within the system. This arrangement minimizes the
operator overhead, and offers a kind of self-organizing capability by automatically
providing a balanced and constant system operation.

Moreover, the distributed structure of VIOLAS provides a configurable system. It
enables the utilization of multiple cameras by a single IPU, or a single camera by
multiple IPUs. A camera-rich configuration can increase the coverage area of the
system, whereas an IPU-rich configuration can augment the system speed.
Consequently, the system can be utilized in various configurations, depending on the
environmental conditions, response time brevity and financial capabilities.

Thus, it can be concluded that VIOLAS wraps the assorted sensing solutions under a
common self-updating platform representing a scalable and configurable structure.
We believe this provides a flexible and adaptive system that is highly suited to the
requirements of indoor-environmental control applications in the built environment.
The self-updating building model, as generated by VIOLAS, can provide, thus, the
core of the prototypical implementation of the simulation-based control strategies in
sentient buildings.

As for the concurrently ongoing studies, the location results of VIOLAS are
processed by spatial reasoning methods towards the rectification of the position and
orientation data. This allows for the reconstruction of space models within the
lighting simulation context, and the comparison of performance between the as-built
and rectified models (Suter et al. 2005). The resulting models are utilized in the
studies performed towards the realization of a simulation-assisted lighting control
application, where the application can dynamically adjust the position of window
blinds and the status of room uplights to achieve user-specific performance levels
(Mahdavi et al. 2005).

REFERENCES

 141

REFERENCES

ArcSecond. 2004. ArcSecond Inc., http://www.constellation3di.com/
Battiato, S., Castorina, A., Guarnera, M., Vivirito, P. 2003. An adaptive global enhancement pipeline for

low cost imaging sensors. IEEE International conference on consumer electronics, Los Angeles, June
2003. 398-399.

Battiato, S., Gallo, G., Stanco, F. 2000. A new edge-adaptive algorithm for zooming of digital images.
IASTED Signal Processing and Communications, Marbella, September 2000. 144-149.

Bewator, 2006. Bewator Group, http://www.bewator.com/
Bookstein, F. L. 1979. Fitting conic sections to scattered data. Computer Graphics and Image Processing

(9), pp.56-71. 1979.
Brunner, K. A. 2006. Phd dissertation, Vienna University of Technology.
DCOM. 2004. Microsoft COM technologies - Information and resources for the component object

model-based technologies, http://www.microsoft.com/com/
Ekahau. 2004. Ekahau Inc., http://www.ekahau.com/
Farin G., Hansford D. 1997. The geometry toolbox for graphics and modelling. A.K. Peters Publishing,

ISBN 1-56881-074-1.
Faugeras, O. D. 1993. Three-dimensional computer vision: a geometric viewpoint. Artificial Intelligence

Series. MIT Press, Cambridge, USA. ISBN 0-26206-158-9.
Forsyth, D., Mundy, J.L., Zisserman, A., Coelho, C., Heller, A., Rothwell, C. 1991. Invariant descriptors

for 3-D object recognition and pose. IEEE Transactions on Pattern Analysis and Machine
Intelligence, October 1991; 13(10): 971-991.

Geodata. 2004. GeoData GmbH, http://www.geodata.at/
GNT, 2006. GNT Gumprecht Nachrichtentechnik, http://www.gnt.biz/
Hightower, J., Borriello, G., Want, R. 2000. SpotON: An indoor 3D location sensing technology based on

RF signal strength. UW CSE Technical Report 2000-02-02, February 2000
Horn, B. K. P. 1986. Robot vision, Reflectance Map: Photometric Stereo. The MIT Electrical

Engineering and Computer Science Series. MIT Press, Cambridge, USA. ISBN 0-26208-159-8,
1986. pp 209-213.

İçoğlu, O., Mahdavi, A. 2005. A vision-based sensing system for sentient building models, 22nd CIB-
W78 Conference – Information Technology in Construction, Dresden, Germany.

Iqinvision, 2006. IQinVision Inc., http://www.iqeye.com/
Krumm, J., Harris, S., Meyers, B. 2000. Multi-camera multi-person tracking for EasyLiving.

Proceedings of 3rd IEEE International Workshop on Visual Surveillance, July 1, 2000, Dublin, Ireland
Lòpez de Ipina, D. 2002. Visual sensing and middleware support for sentient computing. PhD

dissertation, University of Cambridge.
Lòpez de Ipina, D., Mendonca, P. S., Hopper, A. 2002. Visual sensing and middleware support for

sentient computing. Personal and Ubiquitous Computing. Volume 6, Issue 3, ISSN: 1617-4909. pp.
206–219.

Mahdavi, A. 2001a. Aspects of self-aware buildings. International Journal of Design Sciences and
Technology. Europia: Paris, France.Volume 9, Number 1. ISSN 1630 - 7267. pp. 35 - 52.

Mahdavi, A. 2001b. Simulation-based control of building systems operation. Building and Environment.
Volume 36, Issue 6, ISSN: 0360-1323. pp. 789-796.

Mahdavi, A. 2003a. Computational building models: Theme and four variations (Keynote). Proceedings
of the Eight International IBPSA Conference, Eindhoven, Netherlands, 2003. Augenbroe, G. -
Hensen, J. (eds). ISBN 90 386 1566 3. Vol. 1. pp. 3-18.

REFERENCES

 142

Mahdavi, A. 2003b. Modell-basierte Steuerungsstrategien für selbstbewusste Gebäude. Gesundheits-
Ingenieur. Oldenbourg Industrieverlag. Munich, Germany. Heft 5 2003. ISSN 0932-6200. pp. 234 -
244.

Mahdavi, A., Suter, G. 2002. Sensorgestützte Modelle für verbesserte Gebaeudeservices. FWF proposal.
Mahdavi, A., Spasojević, B., Brunner, K. A. 2005. Elements of a simulation-based daylight responsive

illumination systems control in buildings. Building Simulation '05, International Building
Performance Simulation Assosication, IBPSA, Montreal, Canada.

Mitsubishi. 2004. Mitsubishi Electric Research Laboratories, http://www.merl.com/projects/visual-tags/
Ni, L. M., Liu, Y., Lau, Y. C., Patil, A. P. 2003. LANDMARC: indoor location sensing using active

RFID. Proceedings of the 2003 IEEE Annual Conference on Pervasive Computing and
Communications (PerCom 2003), Dallas, Texas, USA.

Pal, V., Mahdavi, A. 1999. A comprehensive approach to modeling and evaluating the visual
environment in buildings. Building Simulation. International IBPSA Conference. Kyoto, Japan. Vol.
II. ISBN 4-931416-02-0. 1999. pp. 579 - 586.

Pentax, 2006. Pentax Imaging, http://www.pentaxtech.com/
Pilu M, Fitzgibbon A, Fisher R. 1996. Ellipse-specific direct least-square fitting. IEEE International

Conference on Image Processing.
Polhemus. 2004. Polhemus Inc., http://www.polhemus.com/
Priyantha, N. B., Chakraborty, A., Balakrishnan, H. 2000. The Cricket location-support system. Proc. of

the Sixth Annual ACM International Conference on Mobile Computing and Networking
(MOBICOM).

Ryburg, J. 1996. New churn rates: people, walls, and furniture in restructuring companies. Facility
Performance Group, Inc.

Sonitor. 2004. Sonitor Technologies AS, http://www.sonitor.com/
Spasojević, B., Mahdavi, A. 2005. Sky luminance mapping for computational daylight modeling.

Building Simulation '05, International Building Performance Simulation Assosication, IBPSA,
Montreal, Canada.

Suter, G.., İçoğlu, O., Mahdavi, A., Spasojević, B. 2005. Position uncertainty in space scene
reconstruction for simulation-based lighting control. Building Simulation '05, International Building
Performance Simulation Assosication, IBPSA, Montreal, Canada.

Tanenbaum, A. S. 1992. Modern operating systems, Interprocess communication. New Jersey: Prentice
Hall Inc., ISBN 0-13595-752-4, 1992. pp. 100-123.

Tanenbaum, A. S. 2002. Computer networks. New Jersey: Prentice Hall Inc., ISBN 0-13-038488-7.
Toth, D., Aach, T., Metzler, V. 2000. Illumination-invariant change detection, 4th IEEE Southwest

Symposium on Image Analysis and Interpretation.
Trucco, E., Verri, A. 1998. Introductory techniques for 3-D computer vision. New Jersey: Prentice Hall

Inc. ISBN 0-13-261108-2.
Ward, A. 1998. Sensor-driven computing. PhD dissertation, University of Cambridge.
Werb, J., Lanzl, C. 1998. Designing a positioning system for finding things and people indoors. IEEE

Spectrum, Vol. 5, Issue 9, Sep. 1998, pp. 71–78
Wellner P. 1993. Interacting with paper on the DigitalDesk. Communications of the ACM, August 1993;

36(7): 87-96
WhereNet. 2004. WhereNet, http://www.wherenet.com/
Wildes, R. P. 1998. A measure of motion salience for surveillance applications. In Proceedings of the

IEEE International Conference on Image Processing, 183-187.

Appendix A

 143

Appendix A

CONVERTING IMAGES FROM COLOR TO GRAY-SCALE

All of the image processing methods described in this dissertation (identification and
location sensings, image enhancements, occupancy sensing) are applied to gray scale
images. The intensity (brightness) values of the pixels in the gray scale images are
represented with 8 –bits, ranging from 0 to 255 . The colors demonstrate a transition
from black to white, where the 0 value corresponds the black, the 128 value
corresponds to absolute gray and 255 corresponds to white.

However, the images captured from the cameras are represented with a RGB color
space. Color spaces are a way of orginizing the colors perceived by the human
beings. The RGB color space consists of the three additive primaries: red, green, and
blue. Spectral components of these colors combine additively to produce a resultant
color. The pixel values are represented with 24 –bits; 8 –bits per color channel. Red
is defined by ()0,0,255 , green by ()0,255,0 , and blue by ()255,0,0 . The combination of

these components are sufficient to define almost all colors we perceive, such as
()0,255,255 that gives the yellow color.

Since the color is a perceived phenomenon, there is no closed form conversion from
RGB space to gray scale. However, there are some predefined standards. The method
used in this research is the standard set by the American National Television Systems
Committee (NTSC). With respect to this standard, the RGB values of an image are
converted to gray scale as follows:

BGR intensity Gray scale ⋅+⋅+⋅= 114.0587.0299.0 Eq.79

Please note that the shooting camera’s being color or black-and-white does not affect
the conversion. In a black-and-white camera, the pixel values are still defined in
RGB space. These values are given by ()xxx ,, , where 2550l x = . The result of the

conversion, in this case, will be x for each pixel. The conversion does not create any
difference for the viewing eye, but the pixels’ representation in the image changes.

Appendix A

 144

In Figure 68, a sample conversion is illustrated. Figure 68a shows an image captured
by the network camera used in the project. The pixels of the image are defined in
RGB space. Each pixel is represented with 24 –bits. Since the network camera is a
color one, the different RGB combinations can be seen in the captured image. Figure
68b illustrates the result of the conversion. The pixels are defined in gray scale, and
represented by 8 –bits in this image.

(a) (b)

Figure 68. Converting RGB images to gray scale.
(a) Pixels in the image are defined in RGB space. Each pixel is represented by 24-bits. (b) Pixels are

defined in gray scale. Each pixel is represented by 8-bits.

Appendix B

 145

Appendix B

DIRECT LEAST SQUARES ELLIPSE FITTING

The direct least squares method fits an ellipse to at least six given points, and always
yields to one and only one elliptical solution. The method is described in Pilu 1996 in
detail. In this section, its implementation is explained concisely.

The general ellipse equation defined as a second order polynomial is given by:

() 0, 22 feydxcybxyax XA XAF =+++++=⋅= Eq.80

where A is a 16× matrix, []TfedcbaA = , and X is a 61× matrix,
[]122 yxyxyxX = . The algebraic distance of a point iX to the ellipse

() 0, =XAF is given by:

 () dXAF i =, Eq.81

In the least square fitting method, the algebraic distances over the set of N data
points have to be minimized:

 







== ∑

=

N

i
iA XAF A

1

2),(min Eq.82

This minimization problem can be transformed into the following form, and solved
by applying a quadratic constraint on the ellipse parameters (Bookstein 1979):

 AC AS ADDT ⋅⋅=⋅=⋅⋅ λ Eq.83

where []TnxxxxD l321= is called the design matrix (6×N). Indices of the

design matrix are the known edge points, on which we want to fit the ellipse.
DDS T ⋅= is the known scatter matrix (66×) formed by the design matrix. C is a

constant matrix (66×) (determined by Pilu 1996) that gives one and only one
elliptical solution when applied to Eq83:

142 −=−=⋅⋅ acb ACAT Eq.84

Appendix B

 146

So, the constraint matrix, C , can be defined as:





























−

−

=

000000

000000

000000

000002

000010

000200

 C Eq.85

Now, Eq83, ACAS ⋅⋅=⋅ λ , can be solved with these known values. Scatter matrix,
S , is a symmetric matrix, and can be decomposed as given by:

TLLS ⋅= Eq.86

Thus, Eq83 becomes:

 ACALL T ⋅⋅=⋅⋅ λ Eq.87

If we name VALT =⋅ , then () VLA T ⋅=
−1

() VLCVL T ⋅⋅⋅=⋅
−1λ

() VLCLV T ⋅⋅⋅⋅=
−− 11λ

If we name () MLCL T =⋅⋅
−−⋅ 11

VM V ⋅⋅= λ

() V VM ⋅=⋅ λ1 Eq.88

We can proceed with naming λ1 as the new scalar, λ :

VVM ⋅=⋅ λ Eq.89

Now, V and λ become eigenvectors and eigenvalues of the known 66× matrix, M .
Matrix A can be computed from () VLA T ⋅=

−1 . However, this equation has six
eigenvalue-eigenvector pairs. The one, ()ii A,λ , that solves Eq83 must have the same

sign with the constraint (Pilu 1996):

() ()ACA sign sign T
i ⋅⋅=λ Eq.90

So, the eigenvalue-eigenvector pair for 0<iλ gives the parameters of the fitting
ellipse: []TfedcbaA =

Appendix B

 147

From the general ellipse equation, we can reach to parametric ellipse equation:

() () () ()
() () () ()tbtayy

tbtaxx

sin.cos.cos.sin.

sin.sin.cos.cos.

0

0

θθ
θθ

+−=

++=
 Eq.91

where ()00 , yx is the centre point, a , b are the axes and θ is the orientation with

respect to x -axis in clockwise direction.

Appendix C

 148

Appendix C

3D TRANSFORMATIONS

3D transformations map each point in 3D space to a potentially different point in the
same 3D space. Some type of transformations may be rotation, translation, scaling,
shearing and reflection. In some situations, several types of transformations may be
restricted, for example, when modeling a solid object, it can move (translate) and
rotate, but scaling, shearing or reflection may not be valid.

When simulating solid 3D objects, some means of specifying, storing and calculating
the orientation and subsequent rotations of the object are needed. Rotational
quantities are more difficult to represent than linear quantities. One method of
holding this information is not suitable for all needs, therefore there are different
ways to specify and perform this rotation. These methods include defining Euler
angles, axis and angle, quaternions and matrices. Representing transformations with
matrices allows to define rotation, translation and scaling. In transforming tag
coordinates to camera coordinates, or camera coordinates to room coordinates,
translation and rotation are the transformations that have to be considered. Towards
this end, the matrix representation of the transformations is utilized within the
calculations in this thesis.

Translation in 3D

A vector with three dimensions (in other words, a 13× matrix) can represent a
physical quantity, which is directional, such as position, velocity, acceleration, force,
or momentum. If the vector represents a point in space, these three numbers represent
the position in the x , y and z coordinates, where x , y and z are mutually

perpendicular axes in some agreed direction and units.

A three-dimensional vector may also represent a displacement in space, such as a
translation in some direction. Translation is actually the shifting of the coordinates
with given vector values (Figure 69).

Appendix C

 149

y
lo

ca
l

x local

 z
loc

al

y
ab

so
lu

te

x absolute

 z
ab

so
lut

e

tx

ty

tz

Figure 69. Translation in 3D.

Therefore, translation is applied by the addition of the translation vector to each point
on the solid object:

→
+=′ TP P Eq.92

where []Tzyx pppP = is a point on the solid object represented by a vector in the

object’s local coordinates (T represents the matrix transpose), []Tzyx tttT =
→

 is the

translation vector, and []Tzyx pppP ′′′=′ is the new location of the point after the

translation represented by a vector in absolute coordinates.

Combining Translations

Two successive translations,
→

1T and
→

2T , can be combined by adding their vectors,
→→→

+= 21 TTT . So,

















+
+
+

=
















=
→

zz

yy

xx

tt
tt
tt

t
t
t

T

z

y

x

21

21

21

 Eq.93

The resulting vector,
→
T , can be used as the final translation vector.

Rotation in 3D

Rotations can be represented with 33× orthogonal matrices. The matrix, A , is
orthogonal, if:

1=⋅ TAA Eq.94

Appendix C

 150

In 3D rotation, there are three degrees of freedom: azimuth, elevation, and tilt
(Figure 70). In some areas, different terms may be used such as roll, pitch and yaw.

y

x

z

β

α

γ

Figure 70. Rotation in 3D.

Azimuth, α , is the rotation around x –axis, elevation, β , is the rotation around y –
axis, and tilt, γ , is the rotation around z –axis. The positive values of the angles

represent a rotation direction performed by the right hand while closing the fingers
inside the palm. The negative values represent a rotation in the opposite direction.
This notation is called the right-hand rule.

In general, rotation around x –axis with α degree, xR , rotation around y –axis with
β degree, yR , and rotation around the z –axis with γ degree, zR , are given by the

following matrices:















 −

=
















−

=
















−=

100

0cossin

0sincos

,

cos0sin

010

sin0cos

,

cossin0

sincos0

001

γγ
γγ

ββ

ββ

αα

αα zyx R R R Eq.95

The rotation around an axis is applied by the multiplication of the corresponding
rotation matrix to each point on the solid object:

() PRP ⋅=′ θ Eq.96

where, []TzyxP = is a point on the solid object represented by a vector in the
object’s local coordinates, ()θR is a rotation matrix which is a function of angle θ ,

and P′ is a point moving with respect to the angle θ , and represented by a vector in
absolute coordinates.

Appendix C

 151

Combining Rotations

Successive rotations can be calculated by multiplying together the matrices
representing the individual rotations. In the same way that the order of rotations is
important, the order of matrix multiplications is important.

In other words, the rotation operation is not commutative. The order of successive
rotations is significant. For example: (1) rotation around x –axis with 90 degrees, (2)
rotation around y –axis with 90 degrees, and (3) rotation around x –axis with 90−

degrees eventually gives 90 degree rotation around z –axis. However, keeping the
first rotation but replacing the second rotation with the third, gives 90 degrees
rotation around y –axis (first two rotations cancel out).

A 3D rotation is defined by the sequential implementation of the rotations around
each axis given above: xR , yR , and zR . So, zyx RRRR ⋅⋅= is a three-dimensional

rotation ordered by firstly the z –axis, γ , then y –axis, β , and finally x –axis, α .

















++
++=

βα.γα. γ β.α.γα. γ β.α.-
βα.-γα. γ β.α.-γα. γ β.α.

βγβ.-γβ.
 R

coscoscossinsinsincossinsincossincos
cossincoscossinsinsinsincoscossinsin

sinsincoscoscos
 Eq.97

There are three degrees of freedom, and three axis values which should make 33×
different combinations to move one point to another location. However, because of
the orthogonality constraint, there six different combinations (six different α , β , γ

values) to rotate one point to another in 3D.

Coordinate Transformation

As mentioned above, 3D transformations map each point in 3D space to a potentially
different point in 3D space defined with the same coordinate system. However, in the
coordinate transformation, the situation is vice versa; same point is mapped by a
different 3D space. The purpose is to figure out the coordinate values of the “same
point” in the “new coordinate system”. In order to achieve this, the translation and
rotation values between the two coordinate systems must be known.

As an example, it can be assumed that a 3D point defined in a camera coordinate
system is being transformed to the harboring room’s coordinate system. The 3D
transformation between the coordinate systems is as follows: the camera can be
moved onto the origin of the room coordinate system (with the corresponding axes
overlapping each other) by rotating it γ , β , α degrees (order of rotation is

 152

important), and translating it xT , yT , zT meters. Please note that the rotation and

translation values are defined with respect to the camera’s coordinate system.

In this case, a point’s camera-based coordinates, camP , can be transformed into the
room-based coordinates, roomP with the following equation:

 roomcamcamroomcamroom TPRP →
→−

→ −⋅= 1 Eq.98

where ()γβα ,,RR roomcam =→ , and []Tzyxroomcam TTTT =→
→

. The equation means that,

the points (defined by the camera’s system) must be rotated and translated in the
inverse of the direction that is used to bring the camera back to the origin of the
room, so that new coordinates of the point can be found.

Thus, the equation can be reformed in a more understandable way by defining a new

rotation, 1−
→→ = roomcamcamroom RR , and a new translation, roomcamcamroom TT →

→
→

→
−= .

Finally, the equation becomes:

 camroomcamcamroomroom TPRP →
→

→ +⋅= Eq.99

where the rotation and translation are defined from room to camera, rather than the
one used in the initial 3D transformation, from camera to room. Therefore, the 3D
transformation, i.e., translation and rotation, that brings the room reference frame
onto the camera, performs the coordinate transformation from camera to room
reference frames.

All the methods described above can also be applied in 2D space. Towards this end,
the transformations must be reduced to two dimensions with removing the absent
axis. For translation, two dimensional vectors are used, whose elements correspond
to the relevant axes of the coordinate system. Similarly, for rotation, 22× matrices
are utilized. The rotation is applied with respect to the axis orthogonal to the 2D
frame.

Appendix D

 153

Appendix D

EXTRACTING INCIDENCE ANGLES

Incidence angle is the angle between the normals of the target (tag) and image
(camera) plane. This value is important for the evaluation of VIOLAS performance,
since it is one of the main limitations in object identification. Towards the evaluation
of the system, a demonstrative test is implemented as given in chapter 11. This
section describes how the incidence angles are computed for the tags used in the test.
A sample tag viewed by the camera from a particular pan-tilt angle is demonstrated
in Figure 71.

C

A

B
a

b

t

θ

θ

β

α

x

y

-z

c

O

D

Figure 71. Extracting the incidence angle.

As given in the figure, the lines, CA and AD , represent the normals of the camera

and tag plane respectively. The incidence angle represented by θ lies on the corner,
DAC , and it is identical with the angle lying on the C corner of the triangle, ABC .
This triangle is a facet of the pyramid OABC formed by the pan and tilt angles as

Appendix D

 154

described in the following. The pan rotation performed around y –axis is represented
by angle α , and the tilt rotation performed around x –axis is represented by angle β

in the figure. The right triangle, OBC , is generated by the pan angle, and lies on the
xz –plane. The right triangle, OAC , is generated by the subsequent tilt angle, and lies
on the plane that is formed with rotating the yz –plane by α degrees around y –axis.

Taking the OBC triangle as basis and OAC triangle as a facet, the triangular-
pyramid, OABC can be formed.

In order to find the θ angle, the law of cosines is applied to the ABC triangle:

ab

cba
2

cos
222 −+=θ Eq.100

The values, a , b and c represent the corresponding edges of the triangle as also
stated in Figure 71. These values are computed with using the pan and tilt angles, α
and β , as follows:

In OBC right triangle:

 αcos⋅= ta Eq.101

 αsin⋅= t OB Eq.102

In OAC right triangle:

 βcostb = Eq.103

 βtan⋅= t OA Eq.104

By using the hypotenuse law in AOB right triangle:

 222 OBOA c += Eq.105

Thus, combining Eq105 with Eq102 and Eq104:

 βα 22 tansin +⋅= t c Eq.106

If we apply the results obtained in Eq101, Eq103 and Eq106 to Eq100:

β
α

β
β

α
θ

cos
cos2

tansin
cos

cos
cos

2

2222
2

2
22

⋅⋅

⋅−⋅−+⋅
=

t

tttt
 Eq.107

Appendix D

 155

β
α

β
βα

β
α

θ

cos
cos2

cos
sinsin

cos
1cos

cos
2

2

2
2

2
22

⋅⋅











−−+⋅

=
t

t
 Eq.108

The unknown t values cancel out each other:

()

β
α

β
βαα

θ

cos
cos2

cos
sin1sincos

cos
2

2
22

⋅

−+−
= Eq.109

 ()
β
α

αθ

cos
cos2

11cos2cos
2

⋅

+−⋅= Eq.110

 () βα θ coscosarccos ⋅= Eq.111

Thus, the incidence angle, θ , is acquired in terms of pan and tilt angles, α and β .

For all the tags in the test-bed, the incidence angles are computed similarly, by using
the corresponding pan and tilt values of the viewing camera.

Appendix E

 156

Appendix E

RESOLUTION AND ERROR ESTIMATION FOR PAN-TILT UNITS

Pan-tilt units manage the rotation control with a special type of embedded sensors:
potentiometers. Potentiometer is an electromechanical device that converts
mechanical information into an electrical signal. It is commonly used as a position
sensor in servo systems, having a terminal connected to each end of a restrictive
element, and a third connected to a wiper contact. The output is a voltage that is
variable depending upon the position of the wiper contact (Figure 72).

Figure 72. A simple potentiometer.

In Visca DCP-24 controller, signals of the potentiometer are digitized by the 12 –bit
A/D converter embedded inside the unit. Theoretically, for a range of °360 , a
mechanical resolution of °=° 088.04096360 should be achieved (4096212 = steps).

However, in practice, the entire area of the potentiometers cannot be used. Therefore,
the maximum and the minimum voltage levels (0 and 5 volts) at the A/D converter
cannot be reached. As an example, for a voltage deviation of 5.0 to 5.4 volts, a loss
of 1 volt (51 of the total voltage range) occurs, and this results in the loss of

81954096 = steps. Thus, a mechanical resolution of () °=−° 11.08194096360 can be

achieved in this example.

In the Visca controller, 3168 steps are reserved for pan positioning, and 2160 steps
are reserved for tilt positioning. Even though the P/T head part has an announced

Appendix E

 157

swiveling capability of °365 pan and °180 tilt, its potentiometers’ angular lengths are
measured as °368 for pan positioning, and °188 for tilt positioning. This results in a
pan resolution of °=° 116.03168368 , and a tilt resolution of °=° 087.02160188 .

These values are important, since the positioning commands are not given in degrees,
but in number of steps that have to be performed to reach the relevant angles.

In addition to the A/D converter resolution, measuring errors due to mechanical and
electrical reasons develop. Gear backlash is the mechanical error generated by the
P/T head. Noise in the environment, on the other hand, generates electrical errors. It
affects the wires that carry the position data from the potentiometers. This error is
mostly apparent for long wiring.

It is important to know the error level of the pan-tilt unit, since it directly affects the
accuracy of location results. Towards this end, the rotation error is measured. As
announced by their manufacturers; Bewator P25, the P/T head utilized in the project,
involves °2.0 gear backlash. Together with the resolution precision, this makes a
total theoretical error range of:

°=
°=

∑
∑

287.0
316.0

 error rotation tilt
 error rotation pan

 Eq.112

After the rotation accuracy test, a total error range of °8.0 is measured including the
external errors in addition to the theoretically calculated ones. °8.0 deviation
generates a 2.4 centimeters shift at 3 meters distance.

°8.0 is the maximum amount of deviation measured in one positioning step. Even
though this looks like a negligible value, the sequential relative positioning of the
pan-tilt unit increments the error, and substantial deviations may occur in the final
phases of the pan-tilt unit’s scan-path. Towards this end, inside the scan-path, four
absolute positioning commands are used. These commands align the pan-tilt unit to
an absolute value at the locations: °=°±= 0,60 tilt pan , and °=°±= 0,120 tilt pan .

Actually, the “return home” command used in the middle of the scan-path is also an
absolute positioning performed at °=°= 0,0 tilt pan . This makes totally five

alignments that rectify the angle values. The reader may be curious at this point
about the reason for the preference of relative positioning, even though a more
accurate alternative, absolute-positioning, exists. The reason lies in our efforts to
make the system compatible with different netcam models. As mentioned in section
4.4, some network cameras enable the employment of a limited number of P/T
control commands. It is possible to comply with this structure by using relative

Appendix E

 158

positioning, since absolute positioning requires a distinct command for each position,
therefore, requires unlimited access to the pan-tilt unit.

CURRICULUM VITAE

Page 159 / 160 - Curriculum vitae of
İÇOĞLU, Oğuz

For more information on Europass go to http://europass.cedefop.eu.int
© European Communities, 2003 20051110

CURRICULUM VITAE

Personal information

Surname / First name İÇOĞLU, Oğuz

Address Abteilung für Bauphysik und Bauökologie, TU-WIEN. Karlsplatz 13
(259.3) A1040, Wien, Austria.

E-mail oguz.icoglu@tuwien.ac.at

Date of birth 26 November 1975

Place of birth Istanbul, Türkei

Work experience

Dates May 2003 – November 2005

Occupation or position held Research assistant

Main activities and responsibilities
Development of a vision-based object sensing system in a FWF (Fonds
zur Förderung der wissenschaftlichen Forschung) project (project
number: P15998-N07).

Name and address of employer Univ. Prof. Ardeshir Mahdavi. Department of Building Physics and
Building Ecology, Vienna University of Technology, Vienna, Austria.

Type of business or sector Education / Research

Dates July 2000 – April 2003

Occupation or position held Researcher

Main activities and responsibilities Several projects in Multimedia group, covering topics in: MPEG-7,
image-processing and user-interface development.

Name and address of employer Institute of Information Technologies, Marmara Research Center,
Kocaeli, Turkey

Type of business or sector Research and development

Dates November 1997 – November 1999

Occupation or position held Software developer / Application specialist
Main activities and responsibilities Design and implementation of systems for logistics and export-sales.

Name and address of employer Department of Information Technologies, Arçelik A.Ş., Istanbul, Turkey
Type of business or sector Manufacturing

CURRICULUM VITAE

Page 160 / 160 - Curriculum vitae of
İÇOĞLU, Oğuz

For more information on Europass go to http://europass.cedefop.eu.int
© European Communities, 2003 20051110

Education and training

Dates May 2003 – present

Title of qualification awarded Doctor of Philosophy
Doctorate degree in Architecture

Name and type of organisation
providing education and training

Department of Building Physics and Building Ecology, Faculty of
Architecture and Space Planning, Vienna University of Technology.

Level in national or international
classification

Level 8 in draft framework of qualifications (set by Turkish Ministery of
Education).

Dates October 1998 – June 2001

Title of qualification awarded Master of Science
Master diploma in Computer Engineering

Name and type of organisation
providing education and training

Department of Computer Engineering, Faculty of Electric and
Electronics, Istanbul Technical University.

Level in national or international
classification

Level 7 in draft framework of qualifications (set by Turkish Ministery of
Education).

Dates October 1993 – February 1998

Title of qualification awarded Bachelor of Science
Diploma in Computer Engineering

Name and type of organisation
providing education and training

Department of Computer Engineering, Faculty of Electric and
Electronics, Istanbul Technical University.

Level in national or international
classification

Level 6 in draft framework of qualifications (set by Turkish Ministery of
Education).

	I
	INTRODUCTION
	REQUIREMENTS FOR A SELF-UPDATING MODEL
	TECHNOLOGY REVIEW
	Object Identification and Location Sensing
	Electromagnetic and Radio Frequency
	Ultrasound
	Optical / Vision-Based
	Technology Evaluation

	Occupancy Sensing

	SENSOR EVALUATION FOR VISON-BASED TECHNOLOGIES
	Web Cameras
	Digital Photo Cameras
	CCTV Cameras
	Network Cameras
	Technology Evaluation
	Pan-Tilt Units
	Communication
	Physical Layer
	Data Link Layer

	Position Feedback

	OBJECT IDENTIFICATION AND LOCATION SENSING
	Location Sensing
	Object Identification
	Original Method
	Target Recognition
	Binarization
	Edge Detection
	Edge Filtering
	Ellipse Fitting
	Concentricity Test
	Code Deciphering

	Pose Extraction
	Extracting the Plane Orientation
	Camera Calibration
	The Algorithm

	Extracting the Tag Position
	Extracting the Rotation Angle
	Breaking the Ambiguity

	ENHANCED LOCATION SENSING
	Adaptive Sharpening
	Edge-Adaptive Zooming
	Results of Enhanced Location Sensing

	OCCUPANCY SENSING
	Homomorphic Filtering
	Illumination-invariant Change Detection

	VIOLAS CONCEPTUAL DESIGN
	Hardware Interface
	Sensing Core
	Coordinate Transformation
	Data Fusion
	Tag-Level Fusion
	Object-Level Fusion

	Communication Interface
	User Interface

	IMPLEMENTATION
	Image Processing Unit
	IPU Control
	Image Acquisition
	Image Processing

	Application Server
	Resource Management
	Data Integration

	User Interface Server
	Common Development Scheme for CGI Applications
	Implementation in VIOLAS

	Database Server
	Remote Data Module
	Communication with the Database Server
	Implementation in VIOLAS

	AUXILIARY PROGRAMS IN VIOLAS
	Camera Calibration
	Image-Processing Tester

	A DEMONSTRATIVE TEST
	Organization of the Test Platform
	VIOLAS in Operation

	CONCLUSIONS

