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Kurzfassung

Heutzutage wird die Quantenchromodynamik (QCD) als Teil des Standardmodelles der
Teilchenphysik allgemein als die korrekte Theorie für die starke Wechselwirkung angese-
hen. Eine besondere Eigenschaft der QCD ist die Beobachtung, dass die fundamentalen
Fermionen der Theorie nicht als freie Teilchen auftreten, sondern stets als Bausteine
zusammengesetzter Teilchen, nämlich der Hadronen, z.B. Proton und Neutron. Wegen
der Größe der starken Kopplungskonstanten g kann die Störungstheorie, welche die
QCD bei hohen Energien erfolgreich behandeln kann, nicht auf Niederenergieprobleme
wie den Quarkeinschluss angewandt werden. Eine Methode um die Niederenergie-QCD
dennoch zu untersuchen ist eine Regularisierung der Theorie, welche die kontinuierli-
che Raumzeit durch ein diskretes euklidisches Gitter ersetzt. Das eröffnet den Weg so-
wohl zu analytischen Rechnungen wie auch zur numerischen Simulation der QCD durch
das Monte-Carlo-Verfahren. Obwohl der Quarkeinschluss klar am Gitter gezeigt werden
kann, existiert trotzdem noch immer kein unumstrittenes Modell für den Mechanismus
des Quarkeinschlusses in der QCD. In den letzten Jahren allerdings rückte solch ein
Modell, das Vortexmodell, wieder vermehrt in den Mittelpunkt des Interesses. Dieses
Modell wurde bereits in den Siebzigern entwickelt, aber erst Ende der Neunziger konnte
es durch die fortschreitende Rechentechnik numerisch am Gitter überprüft werden.

Im Vortexmodell ist das Zentrum der Eichgruppe entscheidend für den Quarkein-
schluss; in dieser Arbeit untersuchen wir, wie für die Eichgruppe SU(2) die Zentrums-
freiheitsgrade aus Eichfeldkonfigurationen extrahiert werden können. Die Anregungen
dieser Freiheitsgrade werden als P-Vortices bezeichnet und können als zweidimensiona-
le Flächen auf dem vierdimensionalen Raumzeitgitter dargestellt werden; sie sollen die
für den Quarkeinschluss verantwortlichen Objekte im QCD-Vakuum identifizieren. Die-
se Objekte sind Träger eines quantisierten magnetischen Flusses und werden als dicke
Vortices bezeichnet.

Wir zeigen in ausführlichen numerischen Untersuchungen wie mit Hilfe von geeigneten
Eichungen Vortices erfolgreich identifiziert werden können und beleuchten die Mängel
der verschiedenen Detektionsmethoden sowie die Wege, diese Mängel zu überwinden.
Hierauf untersuchen wir die Eigenschaften der extrahierten P-Vortices; wir finden, dass
diese komplizierte, nichtorientierbare Zufallsflächen sind, die das ganze Gitter durchzie-
hen. Diese und andere Vortexeigenschaften stehen in guter Übereinstimmung mit den
Anforderungen für die Erklärung des Quarkeinschlusses. Der Zusammenhang zwischen
Vortexeigenschaften und Quarkeinschluss wird weiter ausgedehnt auf Systeme bei end-
licher Temperatur, solche in der Phase des Quark-Gluon-Plasmas und auch auf Systeme
mit dynamischen Materiefeldern. Für all diese Systeme ist der Mechanismus des Quark-
einschlusses mehr oder weniger unterschiedlich, diese Änderungen spiegeln sich gut in
den untersuchten Vortexeigenschaften wider.

Schlussendlich wird das Vortexmodell auch auf andere Infraroteigenschaften der QCD,
die nicht unmittelbar mit dem Quarkeinschluss zusammenhängen, insbesondere auf die



topologischen Eigenschaften der Eichfelder, angewandt. Konkret zeigen wir, wie die to-
pologische Suszeptibilität aus den extrahierten P-Vortices berechnet werden kann. Auf
diese Weise liefert das Vortexmodell ein vereinheitlichtes Bild für den infraroten, nie-
derenergetischen Sektor der QCD und kann sowohl den Quarkeinschluss als auch die
chiralen und topologischen Eigenschaften der starken Wechselwirkung beschreiben.
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Abstract

Being part of the standard model of particle physics, quantum chromo dynamics (QCD)
is generally believed to be the correct theory of the strong interactions. A particular
feature of QCD is that its fundamental fermions, the quarks, cannot be observed as free
particles, but are always confined in composite particles, the hadrons, such as the protons
and neutrons. Due to the large value of the strong coupling constant g, perturbation
theory, which can treat successfully QCD at high energies, cannot be applied to the
low energy problem of confinement. One method to investigate low energy QCD is to
regularise the theory reducing the continuous space-time to a discrete Euclidean lattice.
This opens the way both for analytical calculations and for numerical simulations of
QCD on computers via Monte Carlo methods. But although confinement could be
persuasively shown on the lattice, there exists still no indisputable model explaining
how confinement exactly emerges from QCD. In the last years there has arisen a new
interest for the vortex model of confinement. This model has already been suggested
in the seventies, but only since the late nineties the improving computer technology
enabled numerical tests of the vortex model on the lattice.

The vortex model claims that the center of the gauge group is crucial for confinement;
in this work we investigate how, for the gauge group SU(2), the center degrees of freedom
can be extracted from gauge field configurations. The excitations of the extracted d.o.f.
are dubbed as P-vortices and can be represented by two-dimensional surfaces on the
four-dimensional lattice; they are thought to indicate objects present in configurations
before the extraction step. These objects are called thick vortices, carry quantised
magnetic center charges and are responsible for confinement according to the vortex
model.

In detailed numerical studies we show how using appropriate gauges one can success-
fully detect vortices, we highlight the shortcomings of various detection methods and
investigate how to overcome these shortcomings. Next we look at the properties of the
extracted P-vortex surfaces; we find that they are complicated, unorientable random
surfaces percolating through the lattice. These and other P-vortex properties are in
good agreement with the requirements to explain confinement. The connection between
vortex properties and confinement is further extended to systems at finite temperature,
in the phase of the quark-gluon plasma, and to systems with dynamical matter fields.
For all these systems confinement is more or less changed, and this is properly reflected
in the investigated vortex properties.

Finally, the vortex model could be applied to other infrared features of QCD not
immediately related to confinement, namely the topological properties of gauge fields. In
particular we show how the topological susceptibility present in QCD can be accurately
calculated from the extracted P-vortex surfaces. This way the vortex model provides an
unified picture for the infrared, low energy sector of QCD explaining both confinement
and the chiral and topological features of the strong interaction.
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1 Introduction

Within the standard model, the strong interaction is successfully described by quantum
chromo dynamics (QCD). QCD is a non-abelian, Yang-Mills quantum gauge theory with
colour gauge group SU(2). The fundamental fermions of QCD are the quarks which
interact via gluons, the quanta of the gauge field. In QCD, hadronic particles such as
the nucleons, proton and neutron, are thought to consist of quarks. Using perturbation
theory, many high energy properties of the strong interaction could be satisfactorily
described, such as asymptotic freedom. The latter means that the strength of the
interaction between quarks decreases at short distances, which enables a perturbative
treatment of QCD despite its large coupling constant g. Asymptotic freedom suggests
that the inverse is also true, the effective coupling increases at low energies and thus at
large distances. This increase gives a hint for the solution of a notable problem of QCD,
the confinement problem. In nature, the fundamental particles of QCD, the quarks, are
never observed as free particles, they are always contained in hadrons. Unfortunately
confinement cannot be explained using perturbation theory because of the large coupling
constant g.

Hence non-perturbative methods had to be pushed forward to treat confinement. It
was Wilson [Wil44] who suggested to put quantum gauge theories on a discrete Euclidean
lattice instead of on continuous space-time. Analytic calculations on the lattice such as
the strong coupling expansion indeed could confirm the confinement hypothesis. Most
convincing were numerical calculations following the pioneering work of Creutz [Cre80];
nowadays computer simulations are successfully used to study a wide range of properties
of the strong interaction, such as particle spectra. The non-perturbative methods showed
that the colour electric field between a colour charge-anticharge pair does not spread out
as in electrodynamics, but squeezes into a flux tube, the string, connecting the charges.
Because the energy density in such a flux tube is almost independent of its length, the
potential between the charges increases linearly with their distance. Hence the charges
cannot be separated using a finite amount of energy, they are confined. This picture
is supported by the observations of Regge trajectories. If the spin of mesons is plotted
against their squared mass, the mesons lie on straight lines. This can be understood
in a simple model featuring a pair of massless quarks connected by a string, where the
different mesons are excited rotational states.

Although confinement could be convincingly shown on the lattice, there exists still
no indisputable model explaining how confinement emerges from QCD. But in the last
years there has been renewed interest, within the lattice gauge theory community, in
the center vortex theory of confinement which has already been pushed forward in the
70s [tH78, ACY78, NO79, Mac80a, AO80b, AO80a, Vin78, Yon78, Cor79, Fey81]. The
revival of this old idea is due to a number of numerical studies, which all indicate that
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1 Introduction

center vortices are ubiquitous in the QCD vacuum and give rise to the linear confining
potential [DFGO97, DFGO98, DFG+98, FGO99a, dFD99, ADdF00, LRT98, ELRT00,
LTER99, GLSR00, Ber98, BFGO99, BVZ99, KT00, HLST00].

Vortices can be thought to be flux tubes carrying a quantised colour magnetic flux.
This quantised flux takes values in the center of the gauge group, In QCD these are the
SU(3) and Z3 groups, respectively, whereas in this work mainly the simpler gauge group
SU(2) with its center Z2 is investigated. In the Euclidean path integral formulation,
these vortices have the shape of two-dimensional closed surfaces in the four-dimensional
space-time. The vortex surfaces have some finite thickness in which the center flux is
spread out somewhat. The random fluctuations of these surfaces induce center disorder
causing the linear rising potential between colour charges, and thus confinement.

To test the vortex picture numerically, various methods have been proposed to detect
vortices in gauge field configurations. Most of these methods impose a gauge to isolate
as much as possible of the center degrees of freedom, and then neglect the non-center
part of the fields. Such a procedure replaces gauge fields containing the aforementioned
thick vortices by a configuration of thin vortices, also called P-vortices. In P-vortices
the center flux extending over a finite cross-section of thick vortices is compressed into
an infinite thin surface. All preserved information about a configuration is described by
the shape and position of the P-vortex surfaces in four-dimensional space-time.

In this work we investigate to what extend the non-perturbative properties of the
strong interaction can be isolated in P-vortices. The structure of the work is as follows:
In chapter 2 we give a short introduction to gauge theories on an Euclidean space-time
lattice. We define the elements of the theory such as the action, observables and gauges.
Finally Monte Carlo methods to simulate the theory on computers are introduced. In
chapter 3 the phenomenon of quark confinement is discussed. Observables used to inves-
tigate confinement are introduced, and the vortex model is presented as an explanation
for confinement. The basic features of the vortex model and some numeric results are
introduced and discussed. The detailed investigations of the vortex model start in chap-
ter 4, were various methods to detect and identify vortices in Monte Carlo simulations
are defined, examined and discussed. We show the dependence of these methods on
various parameters, their shortcomings and how to overcome the shortcomings. Chap-
ter 5 deals with the properties and the structure of vortices found using the methods
introduced in chapter 4. These properties agree well with the constrains imposed by
the requirement that vortices explain the confining properties of the strong force. Up
to chapter 6, all calculations have been done using the quenched approximation which
decouples dynamic matter field (i.e. the quark fermion fields) from the investigated
gauge fields with their vortex content. In chapter 6 the influence of matter fields is
studied using the simpler SU(2)-Higgs model, and it is shown that the vortex picture
of confinement holds also after including dynamic matter fields. Finally in chapter 7
it is shown that the vortex model is not only able to treat quark confinement, but can
also explain other important features of the strong interaction at low energies, namely
the topological properties, providing us with an unified picture of the infrared sector of
QCD.
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2 Quantum Chromo Dynamics on the
Lattice

Abstract

We give a short summary of gauge theory, introduce the formulation on the
lattice and describe Monte Carlo techniques. This is mostly done in order
to fix the notation; for details we refer to the textbooks on gauge theory
[Ish89, IV97, KN63, Nak90, SU95], and on quantum fields on the lattice and
the Monte Carlo method [Rot92, MM94].

2.1 Gauge Theory

Quantum chromo dynamics (QCD) is a non-abelian, Yang-Mills quantum gauge theory
with colour gauge group SU(3). In the language of fibre bundles we can describe gauge
theories using vector and principal fibre bundles. In this section we briefly fix our notion.
The gauge transformations are formulated as a principle bundle (P,M, π,G), where P is
the total space, the base space M is some manifold, π the projection from P on M , and
the fibre is some Lie group G; as abbreviation, we denote the whole principal bundle as
P . In the continuum, M is Minkowski space-time, after performing Wick rotation it is
the four-dimensional Euclidean space-time R4.

Gauge transformations act on fields transforming as some representation of the consid-
ered gauge group G. These fields are defined as vector bundles (E,M, π, V,G) associated
to the principal bundle P , where E is the total space and the fibre is some vector space
V . As shorthand notation we use E for the vector bundle. In the case of QCD, the fields
are the fermionic spinor fields ψf with flavour index f which transform according to the
fundamental representation of the gauge group SU(3). In this work we will mainly use
a simplified model for QCD taking instead of SU(3) the simpler, but still non Abelian
group SU(2). For our studies on the influence of the matter fields on the gauge fields
in chapter 6, we will consider the numerical less involved scalar fields instead of quarks,
where the fibre V is a two-dimensional complex vector space C2 transforming with the
fundamental representation of SU(2). Finally, fields in the adjoint representation of the
gauge group will be important for the investigations on Laplacian gauges presented in
section 4.3. We write sections of a vector bundle (i.e. vector field configurations) as
ϕ,ψ, ξ, ζ, . . . , and sections of the tangent bundle T (M) (i.e. Lorentz vector fields) as
v,w, u, . . . .

Gauge fields are related to connections on the principal bundle, and can be regarded
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2.1 Gauge Theory

as g-valued one-forms on M , where g is the Lie algebra of the Lie group G. In the case
of G = SU(2) we have the Lie algebra su(2). We denote the operator of the covariant
derivative ∇ as

∇v : C∞(E) → C∞(E). (2.1)

The covariant derivative acts on smooth sections ϕ ∈ C∞(E) of the given vector bundle
E. v is an (Euclidean) Lorentz vector field, i.e. a section of the tangent bundle T (M).

Next we introduce (for a local region of M) base vectors ∂µ (µ = 1, 2, 3, 4) in tangent
space T (M), dxµ dual to ∂µ in cotangent space T ∗(M) and ei(x) (i = 1, . . . ,dimV ) in
colour space V . In terms of gauge theory, the choice of ei(x) is equivalent to choosing a
gauge, and gauge transformations are written as

ēi = Sj
i ej (2.2)

∇ acts on the colour space base vectors as

∇vei = ωj
i (v)ej , (2.3)

where the matrix of one-forms ω =
[
ωj

i

]
is the connection form and can be interpreted

as a g-valued one-form. Under gauge transformations the connection form changes as

ω̄ = S−1ωS − S−1dS. (2.4)

The exterior covariant derivative D∇ acts on some g-valued one-forms ϕ and is given
by

D∇ϕ = dϕ + ω ∧ ϕ, (2.5)

where ∧ denotes a combination of the wedge product of forms and the action of the
algebra on the vector.

Using also the base vectors in tangent space, and writing explicitly the dependence
on x, we get the more familiar notion of a gauge field as

[
∇∂µ

ei
]
(x) = igAj

iµ(x)ej(x) (2.6)

where the matrices igAµ =
[
igAj

i

]
µ

= ω(∂µ) are elements of the Lie algebra g, and g
is the gauge coupling constant. Algebra elements can be written using their generators
Tm =

[
Tj

i

]
m
,m = 1, . . . ,dim g; the Lie product (commutator) of the generators fulfil

[Tm,Tn] = C l
mnTl, (2.7)

where C l
mn are the structure constants. Using the generators we can write the gauge

field as Am
µ Tm = Aµ. Writing v = vµ∂µ and ϕ = ϕiei, we arrive for the covariant

derivative at

∇vµ∂µ
(ϕiei) = ((∂µϕ

i)vµ + igAi
jµv

µϕj)ei = (Dµϕ
i)vµei (2.8)

with
Dµϕ

i := ∂µϕ
i + igAi

jµϕ
j (2.9)
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2.1 Gauge Theory

The gauge transformation for the Aµ field reads

Āµ = S−1AµS + S−1∂µS. (2.10)

The parallel transport will be important on the lattice and is determined by the
connection. It associates the fibres at two points x and y connected by some path Cxy

and is given by

U [Cxy] = P exp

(
−

∫

C
ω

)
, (2.11)

where P is the path ordering operator taking into account the non-abelian nature of G.
Parallel transporters satisfy

• U [∅] = 1,

• U [C ◦ C′] = U [C]U [C′]

• U [−C] = U−1[C],

where ∅ is a trivial, zero length path, C ◦ C′ is the path composed from C and C′, and
−C is the path traversed in opposite direction as C. The parallel transport transforms
under gauge transformations as

Ū [Cxy] = S−1(x)U [Cxy]S(y) (2.12)

If Cxy is a closed loop with x = y, the parallel transport is called holonomy. It maps
closed loops into the group G, its image is the holonomy group of the bundle P and a
subgroup of G.

The algebra valued curvature 2-forms Ω are obtained by applying twice the exterior
covariant derivative on a g valued form ϕ. Using

D∇D∇ϕ = (dω + ω ∧ ω) ∧ ϕ (2.13)

we get the curvature as (Cartan structure equation)

Ω = D∇ω = dω + ω ∧ ω. (2.14)

The curvature transforms, as the holonomies, with the adjoint representation of the
gauge group

Ω̄ = S−1ΩS (2.15)

and fulfils the Bianchi identity
D∇Ω = 0. (2.16)

To write (2.14) in components we use

dω = ∂µdxµ ∧ igAm
ν Tmdxν (2.17a)

ω ∧ ω = (ig)2Am
µ A

n
ν

1

2
[Tm,Tn] dxµdxν (2.17b)
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2.2 Lattice Formulation

Figure 2.1: Symbolic picture of a two-dimensional lattice, highlighting a site (c0), a link
(c1), and a plaquette (c2).

and get
F l

µν = ∂µA
m
ν − ∂νA

m
µ + igC l

mnA
m
µ A

n
ν , (2.18)

where the field strength is defined as Ω = igF l
µνTl dx

µdxν .
An important property of gauge fields is the topological charge. Dependent on the

base space M , gauge fields can be topologically classified. The Pontryagin index , in
physics also known as topological winding number or topological charge, depends on the
curvature and is defined as

Q = − 1

8π2

∫
TrΩ ∧ Ω. (2.19)

The Pontryagin index is quantised and will be discussed in chapter 7.

2.2 Lattice Formulation

In lattice field theory, the continuous Euclidean space-time is replaced by a discrete lat-
tice Λ = {x|xµ/a ∈ Z}, where a is the lattice spacing, and the four Euclidean space-time
directions are labelled with µ = 1, . . . , 4. This leads to a regularisation of field theories
because momenta are restricted to the first Brillouin zone of the inverse lattice. Usually
finite hypercubic lattices are considered, in this work we use lattices of size aNt · (aNs)

3,
where the number of lattice sites is Nvol = Nt ·N3

s . The asymmetry of the (Euclidean)
lattice in time direction enables calculations for systems at finite temperature T , as we
will show below. We exclusively use periodic boundary conditions.

In fig. 2.1 a part of a two-dimensional lattice is depicted symbolically. A lattice can
also be regarded as a cell complex consisting of cells cn, where c0 are the lattice sites,
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2.2 Lattice Formulation

c1 are the links connecting two sites, and being bordered by sites, c2 are the plaquettes
bordered by c1, c3 are the cubes and c4 are the hypercubes. A site, a link and a plaquette
are highlighted in fig. 2.1 on the previous page. On the lattice, (Lorentz) scalar fields
have support on lattice sites, but vectors join neighbouring sites and are located on links
ci. The most important link field is the connection, which is a bilocal quantity on the
lattice. It can be inferred from the continuum formulation using the parallel transport
(2.11)

Uµ = P exp

(∫ x+µ̂

x
igAµ(x)dx

)
, (2.20)

where the integration paths C are the links c1 with end points x and x + µ̂, and the
vectors µ̂ = axµ of the affine space R4 point from one lattice site to a neighbouring one.
The matrices Uµ =

[
U j

i

]
µ

= U(∂µ), the link variables, are elements of the Lie group G.

As shorthand notation we also write sometimes U =
[
Uµ

]
. They transform under gauge

transformations as
Ūµ(x) = S−1(x)Uµ(x)S(x+ µ̂). (2.21)

Reversely, from the link variables algebra valued lattice gauge fields can be defined using

Uµ = exp(igaAµ). (2.22)

For small lattice spacings a → 0 the group elements Uµ are supposed to be near the
identity elements 1 of the group. Expanding around 1 gives the algebra element as

Uµ = 1 + igaAµ. (2.23)

The action of the covariant derivative on colour space base vectors (2.8) reads on the
lattice

[∇µei] (x) = U j
iµ(x)ej(x+ µ̂) − ei(x). (2.24)

Applying the operator of covariant derivative on a section ϕ = ϕiei of the vector bundle
E we get

∇µ(ϕiei) = (U i
jµ(x)ϕj(x+ µ̂) − ϕi(x))ei = (∇̂µϕ

i)ei (2.25)

with
∇̂µϕ

i := U i
jµ(x)ϕj(x+ µ̂) − ϕi(x). (2.26)

The equivalent to the curvature on the lattice can be inferred from the holonomies
and is called plaquette variable. The closed path C in (2.11) is set to the border of
the plaquettes c2, which consists of four links c1. Hence the plaquette variable can be
written as the product of four link variables as depicted in fig. 2.2 on the following page,
and is given by

Uµν(x) := Uµ(x)Uν(x+ µ̂)U−1
µ (x+ ν̂)U−1

ν (x). (2.27)

As shorthand notation we write sometimes UP =
[
Uµν

]
. As for the link variables, also

for the plaquette variables an algebra valued lattice field, the field strength, can be
defined with

Uµν = exp(iga2Aµν). (2.28)

In the continuum limit a→ 0, expending the link variables (2.22) in (2.27), the contin-
uum relation (2.18) is revealed.
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2.3 Quantisation

Uµ(x)

ν−1
µU (x+  )

−1U (x)ν µ(x+  )Uν

µx+

µ νx+  +νx+

x

Figure 2.2: The product of the link variables around a plaquette gives the plaquette
variable.

2.3 Quantisation

2.3.1 Path integral formalism

In the Euclidean path integral formalism, vacuum expectation values for operators O[Σ]
depending on a configuration Σ of some fields are given by

〈O〉 =
1

Z

∫
D[Σ]O[Σ] exp (−S[Σ]) . (2.29)

Here S[Σ] is the action, D is an appropriate integration measure, and Z is the partition
function defined as

Z =

∫
D[Σ] exp (−S[Σ]) . (2.30)

Hence the partition function resembles formally the partition function of a thermody-
namic system, and many methods can be used both for thermodynamics and quantum
field theory.

The expectation values (2.29) can be exactly calculated for rather simple models only.
To treat more involved models like QCD or the SU(2) gauge theory, approximating
methods have to be used. Namely for SU(N ) gauge theories on the lattice there are at
our disposal:

• Strong coupling expansion, which works for large values of the gauge coupling
constant g.

• Weak coupling expansion for small value of g.

• Numerical calculations using Monte Carlo simulation on computers.
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2.3 Quantisation

2.3.2 Gauge fields

In the continuum, the Yang-Mills action for gauge fields is given by

SY M [ω] =
1

4g2

∫
Tr (Ω ∧ ⋆Ω) , (2.31)

where ⋆ is the Hodge dual operator. Writing the action in terms of the components Am
µ

and Fm
µν we get for the Euclidean action

SY M [A] =
1

4

∫
d4xFm

µν(x)Fm µν(x). (2.32)

On the lattice, we use the Wilson action [Wil44] which is given for SU(N ) gauge theories
by

SW = β
∑

P

(
1 − 1

2N

(
Tr Uµν(x) + Tr U−1

µν

))
(2.33a)

= β
∑

P

(
1 − 1

N
Re Tr Uµν(x)

)
, (2.33b)

where the sum
∑

P =
∑

µ<ν,x runs over all plaquettes c2, and the inverse coupling β

is defined as β = 2N/g2. The latter definition of β gives the correct expression (2.31)
in the continuum limit. We note that there are other lattice actions having the same
continuum limit; but in this work we use the Wilson action for gauge fields only. The
expression (2.33) does not explicitly depend on the lattice spacing a; this holds for all
lattice actions, because the action expressed in units of ~ is a dimensionless quantity, and
all fields in the lattice formulation can be scaled according to their canonical dimension
with some power of a to make them dimensionless, too. The Wilson action (2.33) is
supplemented by actions for other fields like fermion fields. In chapter 6 we will introduce
the action for the SU(2) gauge-Higgs system. The integration measure is determined by
the invariant Haar measure dU of the SU(N ) group, it reads

D[U ] =
∏

x,µ

dUµ(x). (2.34)

Introducing a discrete lattice, the functional path integral is modified to a finite number
of well defined ordinary integrals over the gauge group.

2.3.3 Hamiltonian Formalism

In the Hamiltonian formalism, states are in the Hilbert space H of square integrable
functionals Ψ from the set of all configurations Σ on the three-dimensional spatial lattice
in the field of complex numbers C

Ψ : {Σ} → C. (2.35)

16



2.3 Quantisation

The scalar product reads

〈Ψ|Φ′〉 =

∫
D[Σ]Ψ⋆[Σ]Φ[Σ]. (2.36)

Field operators Σ̂ act multiplicatively on the state vectors

(
Σ̂Ψ

)
[Σ] = ΣΨ[Σ]. (2.37)

The unitary operator of gauge transformations Ŝ is given by

(
ŜΨ

)
[Σ] = Ψ[ΣS ] = ΨS [Σ], (2.38)

where ΣS is the configuration transformed by the gauge transformation S. Gauge in-
variant states fulfil ΨS = Ψ, and an operator Ô is gauge invariant if it commutes with
Ŝ [

Ŝ, Ô
]

= 0. (2.39)

Gauge dependent states indicate the presence of external charges. The simplest case is
a single point-like charge at position ~x in the fundamental representation; such a state
transforms like

Ψ → Ŝ(v)(S(x))Ψ (2.40)

where Ŝ(v)(S(x)) is in a faithful unitary irreducible representation ν of the gauge group.
Due to the gauge invariance of the Hamiltonian, external charges are static, and states
with different external charge distributions decouple completely. This means the Hilbert
space H is divided in different charge sectors.

The vacuum expectation values of the product of time-ordered operators of the Hamil-
ton formalism can be calculated using the path integral expression (2.29)

〈TÔ1Ô2 · · · 〉 =
1

Z

∫
D[Σ]O1O2 · · · exp(−S). (2.41)

In section 3.2 we will illustrate this for the Wilson loop operator.

2.3.4 Finite Temperature

The path integral formalism can also be used for the calculation of operator expectation
values in systems at finite temperature T . On the lattice this is done by using a finite
extent aNt in time direction, and by imposing periodic boundary conditions in time di-
rection. For the spatial directions, still the limit Ns → ∞ is regarded. The temperature
is given by the temporal lattice extent as

T =
1

aNt
. (2.42)
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2.4 Continuum limit

2.4 Continuum limit

For the continuum limit, the lattice spacing a is sent to zero a → 0, whereas the
number of lattice sites diverges Nvol → ∞. Renormalisation relates the dimensionless
lattice observables to physical observables in dependence on a. For observables with the
dimension of a mass this relation reads

m = m̂/a, (2.43)

where m is some physical mass and m̂ is calculated on the lattice. For lengths ξ the
relation is

ξ = ξ̂a. (2.44)

Because a does not occur explicitly in the lattice expectation values, the system de-
pends on dimensionless coupling parameters only, and/or some mass parameters. In
the continuum limit, the lattice lengths ξ̂ have to diverge in order to keep the physical
lengths ξ at a constant, physical value. We have noted above that the quantum dynam-
ical partition function (2.30) corresponds to the partition function describing systems of
statistical mechanics. In statistical mechanics lengths appear as correlation lengths ξ,
and in the language of statistical mechanics the continuum limit is related to a critical
region in the phase diagram of the corresponding statistical mechanical system where
correlation lengths diverge, such as at second order phase transitions. If we note the
parameters of the system as α, correlation lengths behave like

lim
α→αcrit

ξ̂(α) = ∞, (2.45)

where αcrit is a parameter set indicating a critical point.
In order to investigate the dependence of a on α, we consider some observable O of

dimension d. At some given values of a and α, we can write

〈O〉(a, α(a)) = a−d〈Ô〉(α), (2.46)

where 〈Ô〉 is the dimensionless expectation value calculated on the lattice. The physical
value for the expectation value is gained in the continuum limit

〈Ophys〉 = lim
a→0

〈O〉(a, α(a)). (2.47)

Therefore, if the dependence of 〈Ô〉(α) from α can be calculated, we can infer the
lattice spacing a for small values of a as a function of the parameters α and of the
physical value 〈Ophys〉. This relation between a and g depends on the observable O
used, but universality known from statistical mechanics ensures that sufficiently close
to the continuum the result is independent from O.

For the case of pure SU(2) lattice gauge theory mainly investigated in this work, the
only parameter is the inverse coupling β = 4/g2. The critical value for the continuum is
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2.5 Monte Carlo Techniques

g = 0. Using the weak coupling expansion mentioned in section 2.2 for the Wilson loop
observable described in section 3.2, one finds in the two-loop approximation

a2(β) =
1

σphys

(
6π2

11
β

)102/121

exp

(
−6π2

11
β

)
, (2.48)

where σphys is the physical string tension (section 3.2). Having determined a(β), which
is valid in the limit a → 0, we can test whether for expectation values of observables
calculated on the lattice the right hand side of (2.46) is constant with respect to the
parameter β. If this is the case, one speaks of asymptotic scaling of the observable.
Usually a scaling window is found where the relation holds. For smaller values of β the
lattice is too coarse and too far away from the continuum, whereas for larger values
the physical volume a4Nt ·N3

s is too small and finite size effects occur. The reason for
the latter problem is that the number of lattice sites Nt ·N3

s is limited due to restricted
computer memory and speed.

2.5 Monte Carlo Techniques

The Monte Carlo method can be used to calculate numerically the expectations values
of operators (2.29)

〈O〉 =
1

Z

∫
D[Σ]O[Σ] exp (−S[Σ]) . (2.49)

This is done by generating an ensemble {Σ} of Ne lattice field configurations Σ, where
the probability that some field configuration is present in {Σ} is given by the Boltzmann
distribution exp(−S[Σ]). Then an estimate for 〈O〉 is given by

O =
1

Ne

∑

{Σ}

O[Σ]. (2.50)

In the limit of an infinite number of configurations Ne → ∞, the estimates O approach
the expectations values 〈O〉.

The configurations of the ensemble are generated by a discrete Markov process. Such
a process consists of update steps which create from a given configuration Σ a new
configuration Σ′, generating a sequence of configurations called the Markov chain. In
order to produce a Boltzmann distributed ensemble, we require three properties for the
probability P (Σ → Σ′) that Σ′ is generated after Σ in the process:

Strong ergodicity Each configuration can be generated with finite probability from each
configuration

P (Σ → Σ′) > 0. (2.51)

This ensures that a Boltzmann distributed ensemble can be generated indepen-
dently from the first starting configuration.
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2.5 Monte Carlo Techniques

Normalisation The sum of probabilities equals 1:

∑

Σ′

P (Σ → Σ′) = 1. (2.52)

Detailed balance
P (Σ → Σ′)

P (Σ′ → Σ)
=

exp(−S[Σ′])

exp(−S[Σ])
. (2.53)

This condition actually causes the Boltzmann distribution.

It can be shown that a Markov process fulfilling these requirements generates a Boltz-
mann distributed chain after a finite number of steps. One problem of this procedure
is that configurations of the Markov chain can be correlated, which depending on the
observable leads to increased statistical errors and requires larger ensembles. In order
to reduce these errors, we measure observables not for all generated configurations, but
separate the measurements by several Monte Carlo steps.

In our simulations we use two methods with the required properties:

Heatbath algorithm This algorithm is given by

P (Σ → Σ′) =
1

Z
exp(−S[Σ′]). (2.54)

Metropolis algorithm This algorithm consists of two steps:

• First a new configuration Σ′ is suggested, where this step fulfils

P1(Σ → Σ′) = P1(Σ
′ → Σ). (2.55)

• Second the new configuration is accepted with probability

P (Σ → Σ′) =

{
1 if S[Σ′] < S[Σ]

exp(−S[Σ′])/ exp(−S[Σ]) if S[Σ′] > S[Σ].
(2.56)

If the new configuration is rejected, proceed with the first step and generate
a new trial configuration.

For our lattice gauge theory simulations, the configurations are not updated at once.
An update is composed of micro steps, where only one link variable of the lattice (or
some other local variable such as a Higgs field at a site) is updated using the heatbath
or Metropolis algorithm. Only the full update (sweep) fulfils the requested properties.
We remark that there exist many more elaborated update methods, but they were not
needed for our simulations.

Crucial for the detection of vortices is the choice of an appropriate gauge for the con-
figuration, as will be described in chapter 4. Some gauges are imposed to maximise a
functional R[Σ] of a field configuration Σ. This can be done by generating a sequence

20



2.5 Monte Carlo Techniques

of configurations, each created by a gauge transformation from the previous configura-
tion, which approach a maximum of R. A gauge condition might not fix uniquely the
gauge, and some reduced gauge freedom can remain. But apart from this there can be
ambiguities in gauge fixing because the iterative methods might find not the global, but
some local maximum of R[Σ]. The existence of such Gribov copies will emerge to be
important for the detection of vortices. Two methods used for gauge fixing are:

Over-relaxation This method [Adl81] changes iteratively, locally the field to some com-
bination of the original field, and of a field which maximises the functional locally,
Over-relaxation finds quite effectively a (local) maximum of R[Σ]. We note that
over-relaxation can also be used for Monte Carlo updates supplementing proce-
dures like heatbath and the Metropolis method [BW87, Cre87].

Simulated annealing In simulated annealing [KGV83, Cer85], the instead of the action
the functional R is used in order to generate a Markov chain by the Metropolis
algorithm with the “action” 1/T R[Σ], where T is some appropriately chosen tem-
perature. This allows the system during the procedure also to depart from the
maximum of R, and avoid in the way to be caught in a local maximum. During
the Markov process, the temperature is slowly decreased to zero, and finally a
maximum is reached.
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3 Confinement and the Vortex Model

Abstract

A description of colour confinement is given. We introduce the Wilson loop
and the Polyakov loop observables to investigate the potential between colour
charges and confinement. The vortex model of confinement explaining the
observed results is introduced; see also the review article of Greensite [Gre03]
for further information. Further we also present various already well known
results on the vortex model.

3.1 Colour confinement

What is confinement? Quark confinement has been introduced as the phenomenon
that quarks are never observed as isolated, free particles but are confined in composed
particles, the hadrons. More general, no isolated particles with colour charge are seen
in nature. There are several distinct ways how free colour charges can be prohibited;
some of these ways as they are observed in different phases of various quantum gauge
theories are:

• In the Higgs phase, the vacuum is filled with a condensate of dynamic colour
charges. Any colour charged probe introduced into such a vacuum is screened by
the condensate; thus at large distances the total charge inside a volume around
the charge vanishes. See chapter 6 for more information on such phases in the
framework of the vortex model.

• In a confined phase, the potential of a charge-anticharge pair at distance r raises
linearly, for large r. The colour magnetic flux builds a flux tube called string
between the charges. Thus charges cannot be separated because of the distance
independent force attracting them. The main intend of the vortex model is to
explain this behaviour of the potential.

• In QCD, the potential rises linearly at intermediate distances. But at some dis-
tance r0, the string breaking distance, the energy of the string is high enough to
create a new charge-anticharge pair. This breaks the string, the new state consists
of two colourless compound objects at distance r0, and the potential is constant
for larger distances. We will discuss string breaking in chapter 6.

We note that the linear rising potential for large charge distances is present for system
without dynamical matter fields only. This is the case for the quenched approximation of
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3.2 Wilson Loop

QCD, where the gauge fields are the only dynamical degrees of freedom. The advantage
of this approximation is that it gives reasonable results without the numerically costly
simulation of fermion fields. We use this approximation in this work, but study the
influence of dynamical matter fields in chapter 6.

In order to investigate numerically confinement, we next introduce some important
observables.

3.2 Wilson Loop

The Wilson loop is used to measure the potential between a pair of infinitely massive
colour charges. As introduced in section 2.3.3, states Ψ containing a static charge at
position ~x and an anticharge at position ~y, where their distance is aI = ||~x − ~y||,
transform under gauge transformation as

Ψ → Ŝ(S(~x))Ŝ−1(S(~y))Ψ. (3.1)

These states lie in a charge sector of the Hilbert space noted Hxy. The eigenstates of
the Hamilton operator in Hxy fulfil

ĤΨ(n) = E(n)Ψ. (3.2)

The energy of the ground state depends only on the charge separation aI and is known
as the static potential

V (I) = E0(I) = min
Hxy

Ĥ. (3.3)

For an arbitrary state Ψ ∈ Hxy, the static potential can be inferred by

〈Ψ|e−aJ bH |Ψ〉 =
∑

n

|〈Ψ(n)|Ψ〉|2e−aJE(n)
, (3.4)

where
Cn := |〈Ψ(n)|Ψ〉|2 (3.5)

is the overlap between the trial state Ψ and the nth eigenstate Ψ(n). In the limit of large
Euclidean times J the lowest eigenstate dominates and we get

lim
J→∞

〈Ψ|e−aJ bH |Ψ〉 = |〈Ψ(0)|Ψ〉|2e−aJV (I). (3.6)

This works only if the overlap C0 between the ground state Ψ(0) and the trial state Ψ
is not zero.

A simple choice for Ψ is the trial state generated from the zero-charge vacuum state
Ψvac by the operator given by the parallel transport (2.11):

Ψxy = Û [Cxy]Ψvac, (3.7)
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a * J

t

xa

a * I

Figure 3.1: Diagram of the Wilson loop operator W (I, J) on the lattice. The loop is
the expectation value of the trace of the product of link variables along
a rectangular path. Here the loop extends a · I in x-direction and a · J in
t-direction.

where C is the straight line between ~x and ~y. As mentioned in section 2.3, expectation
values of time-ordered operators in the Hamiltonian formalism correspond to vacuum ex-
pectation values (2.29) in the path integral formalism. In this formalism the expectation
value (3.4) is given by the expression

W (C) = 〈Tr P exp

(
−

∫

C
ω

)
〉. (3.8)

The closed curve C is of rectangular shape and is composed of the parallel transports
Cxy at time 0 and Cyx at time aJ , and the straight parallel transport connecting the
times 0 and aJ . For the lattice, the Wilson loop is depicted in fig. 3.1; it reads

W (I, J) = 〈Tr
∏

l∈C

Ul〉. (3.9)

Here Ul are the link variables around the loop with extent aI in some spatial direction
and aJ in time direction.1 From the Wilson loop, the static potential follows up to a
constant as

V (I) = − lim
J→∞

1

J
ln W (I, J), (3.10)

where the lattice spacing a has been absorbed in the lattice definition of V to get a
dimensionless quantity.

The Wilson loop is nothing but the vacuum expectation value of the trace of a holon-
omy. There are similar operators where the spatial straight lines are replaced by other
combinations of the fields such that the loop remains gauge covariant; such operators

1It is also possible to study loops extending in two spatial directions; such loops will be discussed in
section 5.6.
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3.3 Polyakov Loop

correspond to other generated trial states in the Hamilton formalism which might have
better ground state overlap. We will discuss this topic in section 6.3.

It can be shown that asymptotically for large distances the static potential does
not increase faster than linearly [Sei78], and cannot decrease [SY82]. This suggest the
following ansatz for the potential at large distances I:

V (I) = α+ σI − c. (3.11)

This potential can be supplemented, if appropriate, by a Coulomb like potential −e/I
for small distances. The coefficient for the linear part is the string tension σ; if σ > 0,
the static potential is linearly rising asymptotically, and colour charges are confined
due to the constant force between them. This is dubbed as the Wilson criterion for
confinement. For the Wilson loop, the ansatz (3.11) yields

W (I, J) = exp
(
−σIJ − α(I + J) + γ

)
; (3.12)

here the Wilson criterion means area law . The Wilson loop is dominated by a fall off
which is exponential with A = IJ for large A, where A is the area bordered by the loop.
On the other hand, for an asymptotically constant potential, the area term is zero and
the Wilson loop decreases with an exponent proportional to the perimeter 2(I + J) of
the loop, which is called the perimeter law .

Only for large areas A the Wilson loop is governed, if confinement is present, by the
area law. In order do extract the string tension σ already from smaller loops, the Creutz
ratio[Cre80]

χ(I, J) = − ln

(
W (I + 1, J + 1)W (I, J)

W (I, J − 1)W (I − 1, J)

)
(3.13)

can be used. In this expression perimeter law and constant factors cancel, and already

for moderate areas the Creutz ratio approaches the string tension χ(I, J)
A→∞−−−−→ σ.

3.3 Polyakov Loop

As introduced in section 2.3.4, expectation values of operators in systems of finite tem-
perature T can be calculated by setting the temporal extent of the lattice to a finite value
aNt = 1/T , and by imposing periodic boundary conditions in time direction. Therefore
the Wilson loop is not usable any more to infer the potential, because the Nt → ∞
limit of the loop cannot be performed. On the other hand, a parallel transport can be
closed over the periodicity of the lattice, which leads to the Polyakov loop observable.
The Polyakov loop is defined as the holonomy for a curve extending straightly in time
direction. On the lattice it is composed of link variables in time direction and reads

L(~x) :=
1

N
Tr

Nt∏

x4=1

U4(~x, x4). (3.14)
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x

t

Figure 3.2: For an aperiodic gauge transformation, all time-like links in a given time-slice
are multiplied with a center element.

The expectation value of the modulus of L(~x), averaged over the position ~x, can be
related to the free energy of a single static quark, measured relatively to the absence of
the quark:

〈|L|〉 =
〈∣∣∣

1

N3
s

∑

~x

L(~x)
∣∣∣
〉

Ns→∞
= e−F/T . (3.15)

3.4 Vortices

The relevance of the center degrees of freedom for confinement can be seen from N-ality.
The N -ality (representation class) classifies representations of a group according to the
representation of their center. The center of a group is defined as the subgroup of
elements commuting with all elements of the group. There is an infinity number of
representations of the gauge groups SU(N ), but only N different representations for
the center ZN of SU(N ). The center in a representation of N -ality k = 0, . . . ,N − 1
can be represented by numbers zn = exp(2πikn/N), where n = 0, . . . ,N − 1 labels the
center element zn ∈ ZN . Now the asymptotic string tension σ for static charges in a
representation of some N -ality only depends on the presence or absence of dynamical
fields of this N -ality. Fundamental charges have N -ality k = 1 and can be screened
be dynamical matter fields in the fundamental representation only, and not by adjoint
fields. On the other hand, even in the absence of matter fields adjoint charges can be
screened by gauge fields which transform under the adjoint representation with N -ality
k = 0.

There exists a global center symmetry which allows to define an order parameter for
confinement and deconfinement in systems at finite temperature [KPS81]. If all time-like
link variables in a given time-slice of the lattice are multiplied with a center element,
as depicted in fig. 3.2, the Yang-Mills action and most gauge independent observables
are unchanged. This transformation is an example for a singular (aperiodic) gauge
transformation S(~x, aNt) = zS(~x, 1) generated by gauge transformations which are
aperiodic in time direction. They are also called discontinuous or large gauge transfor-
mations. An observable affected by a aperiodic gauge transformation is the Polyakov
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x

t

Figure 3.3: If in some three-volume the temporal links are multiplied with a nontrivial
center element, thin center vortices (indicated by shaded plaquettes) are cre-
ated at the border of the three-volume. The circles represent thick vortices,
where the flux through the thin vortices is spread out over a finite area.

loop, which is sensible whether this global symmetry is broken and thus can serve as an
order parameter for confinement. If fundamental matter fields such as fermions or Higgs
field are present, the action and observables involving these fields are not invariant any-
more. This impacts confinement, as we will see. On the other hand for observables in
the adjoint representation the symmetry always holds, which is again related to N -ality.

In order to introduce vortices, we consider a change of the link variables as for the
singular gauge transformations, but restrict the center multiplication to a region of the
lattice which covers only some part of the whole three-dimensional time-slice. This is
plotted in fig. 3.3. The 3D-volume where the links are flipped is the Dirac volume. The
plaquettes in the Dirac volume remain unchanged. At the border of the Dirac volume,
plaquettes are multiplied by the center element. The set of these plaquettes is called a
thin center vortex, and the plaquettes are the vortex plaquettes. Using ordinary
gauge transformations, the location of the Dirac volume can be changed; the thin vortex
is a gauge invariant quantity, and the border of the Dirac volume is fixed. By generating
a thin vortex plaquette, a quantised colour magnetic flux with the value of the center
element is created; it flows through the vortex plaquette and can be represented by a
plaquette of the dual lattice, the P-vortex plaquette. We will investigate P-plaquettes
in detail in chapter 5.

It is important for the vortex model that the change of action caused by the generation
of a thin vortex is only proportional to the surface, i.e. the vortex area, and not to the
volume of the Dirac volume. This favours the occurrence of center vortices in field
configurations [NO79, AO80b, AO80a, Ole82], enabling them to dominate the low-
energy properties of QCD.

Singular gauge transformation can also be defined in the continuum; in fact it is in
the continuum where aperiodic gauge transformation are singular, because the aperiodic
gauge S(~x, t) is discontinuous at t = aNt, and the gauge potential A is singular. Thin
center vortices can be formulated in the continuum, too. Here the colour magnetic
center flux is located on closed vortex surfaces which are boundaries of Dirac volumina.
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3.4 Vortices

Because the flux is concentrated in infinite thin surfaces, the action density of thin
continuum center vortices is singular; this imposes obstacles for the continuum limit
of vortex detection methods [ER00a], as will be investigated in chapter 4. Because
thin vortices are suppressed in the continuum limit due to their singular action density,
the vortex model features so called thick vortices. Here the colour magnetic flux is
spread out over a finite cross-section of the vortex; in fig. 3.3 on the preceding page
such thick vortices are symbolically depicted as circles. The main tool to investigate
vortices numerically are techniques which detect thick vortices assumed to be present in
gauge field configurations by replacing them with a configuration of thin vortices; this
will discussed in detail in chapter 4.

Here we report shortly some results on the vortex model of confinement which lie
somewhat outside the investigations done in this work; these include

• The vortex free energy defined using twisted boundary conditions can be used
as an confinement criterion [MP79, Mac80a, MP80, Mac80b, MP82]; it has been
measured successfully in Monte Carlo simulations [KT00, HLST00].

• A simple model [FGO98, FGO99b] taking into account the thickness of vortices
is able to explain qualitatively Casimir scaling [AOP84, DDFGO96, FGO98].
Casimir scaling is the observation that at intermediate distances the string tension
calculated from Wilson loops is proportional to the quadratic Casimir operator Cν

of the representation ν used for the loop. Here “string tension” refers not to the
asymptotic string tension σ respecting N -ality, but to the slope of the static po-
tential calculated e.g. from Creutz ratios.

• For gauge groups SU(N ) with N > 4, it can be shown [GO02] that vortices are
local minima of most, also effective, lattice actions, and percolate through the
lattice. For N ≤ 4 there are good reasons [FGO00] that vortices are local minima
of the effective action at large scales, thus dominating the long-range infrared
sector of QCD, where confinement occurs.

• An effective model for QCD where thin vortex surfaces are the degrees of freedom
can be constructed [ER00b]; many features found in vortices detected in gauge
configurations are also present in the vortices of this effective model.

In the remnant of this work, we focus on the identification of vortices in gauge field
configurations, on the properties of the detected vortices, and on the application of the
vortex model on other low-energy properties of QCD apart from confinement, i.e. the
topology of gauge fields.
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4 Detection of Vortices

Abstract

We discuss methods to detect vortices in Monte Carlo generated field con-
figurations. This is done by choosing an appropriate gauge, and projecting
link variables to the center of the gauge group. Numerically we show that
indeed the position of vortices can be inferred this way. We discuss the short
comings of this method and problems in the continuum limit, and how to
overcome these problems eventually.

4.1 Introduction

In this section we want to describe methods to identify vortices in Monte Carlo generated
gauge field configurations on the lattice1. As described in section 3.4, vortices carry
magnetic colour fluxes quantised in terms of elements of the center ZN of the gauge
group SU(N ). In gauge field configuration, these vortices have some finite diameter and
are therefore called thick vortices in order to distinguish them from the thin vortices
generated by a discontinuous gauge transformation. Most vortex detection methods try
to replace a field configuration consisting of a condensate of thick vortices and other
fluctuations and excitations by a new configuration of thin vortices, which is done in
two steps:

• First a suitable gauge is chosen.

• Then center projection [DFGO97] is performed.

(There exists also a way to identify vortices not by center projection but by looking at
defects of the gauge fixing procedure. We will treat this method in section 4.3.) Center
projection substitutes the group valued links by the center element of the group nearest
to the link variable. The SU(N ) links can be uniquely written as

Uµ(x) = Zµ(x)Vµ(x), (4.1)

where Zµ(x) is the element of ZN which is on the SU(N ) manifold closest to Uµ(x). For
SU(2), the nearest center element can be found by choosing the sign of the trace:

Zµ(x) = sign Tr[Uµ(x)] . (4.2)

1Some of these methods work also in the continuum, as will be shown later.
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4.2 Maximal Center Gauges

V is closer to the trivial center element than to all other center elements. The hope is that
V contains short range excitations of the gauge field only. In center projection, Vµ(x)
is neglected and the link variables replaced by Zµ(x); all what remains is a ZN gauge
field configuration. The excitations of this gauge theory are thin center vortices; we
will call them P-vortices henceforth, indicating that they are obtained by a projection
step. On the dual lattice they are composed of the P-plaquettes, which are dual to the
thin vortex plaquettes. Hereafter the task is to ensure that P-vortices are really related
to thick vortices of the unprojected lattice. With P-vortices it can be studied which
features of the unprojected gauge configurations such as confinement could be preserved
– and isolated – in vortices.

The choice of the gauge performed before the projection is crucial to capture the
relevant degrees of freedom in Z; several gauges are treated in this chapter. A neces-
sary condition in order to localise vortices is the so called vortex finding property
[FGOY99] of gauges: A procedure fulfilling this property fixes the gauge uniquely up
to center degrees of freedom. The gauge has to be center blind. This means that start-
ing from two gauge field configuration U and U ′, where the link variables between the
configurations differ only by multiplication with center elements, the gauging procedure
yields configurations Ug and U ′

g differing by exactly the same multiplication with a cen-
ter element as U and U ′, modulo a center gauge transformation. What is the impact
of such a gauge on the detection of vortices? Let U be a gauge field configurations.
After gauging and projection, we get a ZN gauge field configuration of P-vortices Z.
Next, we put a thin vortex into the unprojected configuration U . This is achieved by
a discontinuous gauge transformation (section 3.4), i.e. some links are multiplied with
center elements. Assuming the vortex finding property, the gauge yields (modulo center
gauge transformations) the same configuration as by starting with the unmodified con-
figuration, but multiplied by the very center elements. Finally, center projection returns
the center elements closest to the links, which are the same as for the first, gauged con-
figuration, but again multiplied with the vortex generating center elements. As a result,
using the gauge and center projection we get exactly the same vortices as before, plus
the inserted thin vortex. Subsuming, a gauge with the vortex finding property reliably
finds thin vortices. Of course, vortices in unprojected configurations are considered to
be thick, thus the procedure might not always work and, and the method has to be
checked numerically. Some gauges possessing the vortex finding property are discussed
in the next sections.

4.2 Maximal Center Gauges

Maximal center gauge (MCG) was the first gauge used to identify vortices. The idea
behind MCG is simple: Before performing the projection step which changes the link
variables to their nearest center element as described in section 4.1, simply gauge the
links such that they are already as close as possible – on average – at the center elements.
This way one hopes to minimise the part V in the decomposition of (4.1) thrown away
at the projection step. There are mainly two forms to achieve such a gauge: The

30



4.2 Maximal Center Gauges

indirect maximal center gauge (IMCG) and the direct maximal center gauge (DMCG).
Historically the first type of MCG was the indirect version [DFGO97]. IMCG builds on
an older gauge, the maximal Abelian gauge (MAG) [KLSW87]. This gauge moves the
link variables as close as possible to some chosen Abelian subgroup U(1) of the gauge
group SU(N ). Parallelling center projection, Abelian projection discards all non-Abelian
degrees of freedom. It can be investigated whether this step preserves the long-range
physics contained in the unprojected configurations. In a next step, Abelian monopoles
can be identified in the projected configurations, and one gains an effective theory of
monopoles which is hoped to describe confinement.

This theory is the dual superconductor model of quark confinement. In a super-
conductor electrons are coupled to Cooper pairs by a short range “pairing” force.
The condensation of these doubly charged objects inhibits the penetration of mag-
netic flux lines into the superconductor, they are squeezed into flux tubes. The idea
of the dual superconductor model is the exchange of electric and magnetic observ-
ables in the model of a real superconductor. In the confining phase of QCD magnetic
monopoles are condensed in the vacuum. This leads to the formation of flux tubes,
the strings, between colour charges. Because there are no magnetic monopoles in
QCD, gauge fixing and projection are used to define Abelian monopoles.

After Abelian projection, the IMCG is fixed. This is done by using the remnant U(1)
gauge freedom to move the Abelian link variables as close as possible towards the center
elements of the SU(2) group we started with. Finally the center projection step can be
performed. IMCG has the advantage to bridge the vortex picture of confinement, and
Abelian and monopole based explanations. For example it has been found [DFGO98]
that monopole lines (the world lines of Abelian monopoles) are located mostly on P-
vortex worldsheets. In our opinion the vortex model is favourable, because confinement
is retained not only after Abelian projection, but also after center projection which re-
duces the degrees of freedom even more. On the other hand, models based on monopoles
alone seem to fail to explain N -ality, as introduced in section 3.4. The relation between
monopoles and P-vortices will be further illuminated discussing Laplacian gauges in sec-
tion 4.3. For the application of the vortex model on the topological properties of QCD,
which will be treated in chapter 7, monopoles will have an important role related to the
orientation of P-vortex surfaces.

In this work we primarily deal with the direct maximal center gauge [DFG+98].
DMCG tries to find the absolute maximum of

R =
∑

µ,x

Tr[Ũg
µ(x)] =

∑

µ,x

Tr
[
S−1

g (x)Ũµ(x)Sg(x+ µ̂)
]

(4.3)

by an iterative procedure. The links Ũ and the gauge matrix Sg are in the adjoint
representation, where g(x) notes the gauge group elements at x. DMCG is nothing
but the adjoint version of Landau gauge, a gauge which maximises the traces of the
fundamental links:

RF =
∑

µ,x

Re Tr[Ug
µ(x)] =

∑

µ,x

ReTr
[
g−1(x)Uµ(x)g(x + µ̂)

]
. (4.4)

31



4.2 Maximal Center Gauges

Because of the adjoint representation, DMCG is center blind, and after gauge fixing
there remains a residual gauge freedom stemming from the ambiguous mapping from
the gauge matrices Sg to the fundamental gauge elements g. Hence DMCG possesses
the vortex finding property. For the case of SU(2), finding the maximum of (4.3) is
equivalent to find the maximum of

R′ =
∑

µ,x

|TrUg
µ(x)|2 (4.5)

where U is in the fundamental representation. A reason to believe that this gauge
followed by center projection indeed can localise vortices is the interpretation of DMCG
as a best fit procedure [ER00a, FGO01b]: The classical vacuum state of a gauge field
configuration is given by a pure gauge

g(x)g−1(x+ µ̂). (4.6)

In order to approximate a given configuration Uµ(x) by a pure gauge we can minimise
with respect to g the distance of Uµ(x) to g(x)g−1(x+ µ̂) on the group manifold

d2
F =

∑

µ,x

Tr
[(
Uµ(x) − g(x)g−1(x+ µ̂)

)
× h.c.

]

=
∑

µ,x

Re Tr
[
1 − g−1(x)Uµ(x)g(x + µ̂)

]
.

(4.7)

Now the gauge g(x) minimising (4.7) is exactly the gauge transformation of Uµ(x)
maximising (4.4), i.e. Landau gauge. To localise vortices, we search for an approxi-
mation of Uµ(x) not by a pure gauge, but by a configuration of thin center vortices
g(x)Zµ(x)g−1(x+ µ̂). In the adjoint representation, a thin vortex configuration equals
the vacuum state. Hence we can first look for an approximation of the adjoint links by
a pure gauge, and repeating the procedure for the adjoint representation, we arrive not
at fundamental but at adjoint Landau gauge, which is DMCG. Having fixed g(x) up to
the the remnant center gauge symmetry stemming from the mapping from Sg to g, we
look for the optimal Zµ(x) to maximise the distance to the configuration

d2
Z =

∑

µ,x

Tr
[(
Uµ(x) − g(x)Zµ(x)g−1(x+ µ̂)

)
× h.c.

]

=
∑

µ,x

2Re Tr
[
1− Z†

µ(x)g−1(x)Uµ(x)g(x + µ̂)
]

=
∑

µ,x

2Re Tr
[
1 − Z†

µ(x)Ug
µ(x)

]
.

(4.8)

This quantity is maximised if Zµ(x) is chosen to be the center element closest to Ug
µ(x).

In the end, we arrived at the same Zµ(x) as we get from center projecting the config-
uration in the maximal center gauge. DMCG followed by center projection finds the
configuration of thin vortices which is the best fit to the unprojected configuration.

We have to mention two problems with DMCG, though. First, in practice, it is
numerically not possible to really infer the global maximum of the gauge functional
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4.2 Maximal Center Gauges

R. Iterative gauging procedures such as over-relaxation or simulated annealing (see
section 2.5) only give local maxima of R. If one applies an arbitrary gauge transformation
to the configuration before starting an DMCG algorithm, a different maximum of R
corresponding to a different gauge of the configuration is found. This phenomenon is
dubbed as Gribov copies, as described in section 2.5. Second, for large inverse gauge
couplings β corresponding to small lattice spacings a, the fit of a configuration with thin
vortices is necessarily bad at the very position of the thin vortices on the lattice. Using
the decomposition Ug

µ = ZµVµ ((4.1)) of the links we can also decompose the plaquettes
as

Ug
P = ZPVP (4.9)

with ZP ∈ ZN . Whereas the gauge independent traces of the plaquette variables UP

are for small lattice spacings a near 1, P-vortex plaquettes take values of the nontrivial
center elements. In order to comply with (4.9) at P-vortex sites, the trace of VP has
to be far away from unity. In the maximal center gauge, all link components Vµ are
closer to the center element 1 than to all other center elements. The only way that the
product of four links Vµ building VP is away from 1 is that at least one of them is far
away from 1, but of course not nearer at other center elements. In other words, some
links at the P-vortex positions spoil the DMCG condition (4.3) requiring that their trace
is near unity in the adjoint representation. This problem is also apparent looking at the
action density: In the continuum limit the action density is singular at the position of
P-vortices, which is a bad approximation for a smooth configuration [ER00a, FGO01b].
To summarise, DMCG followed by projection is a good fit for the configuration away
from the P-vortices, but a bad fit near them. How good the approximation is numeric
calculations can tell only.

4.2.1 Numeric Tests – Overview

In the last years several numeric investigations support that P-vortices indeed localise
thick vortices, and preserve the confining properties of the gauge theory. Among those
are:

• projected Creutz ratios χcp(I, I) are close to the asymptotic string tension on the
unprojected lattice (center dominance);

• the density of P-vortices scales correctly if the coupling β is changed;

• The projected P-vortices are located roughly in the middle of thick center vortices
on the unprojected lattice;

• removing center vortices (located via the projected lattice) from unprojected lat-
tices also removes confinement.

Center dominance is the finding that measuring the asymptotic string tension using
projected operators gives results in good agreement with unprojected measurements.
Projected operators (e.g. Wilson loops) are operators used after center projection of the
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4.2 Maximal Center Gauges

configurations. We will give detailed results on center dominance below. The density
of P-vortices depending on β and therefore on the lattice spacing a will also be treated
further below.

Maybe the strongest numerical argument in favour of the vortex finding methods is
the correlation of the position of P-vortices with the position of vortices in the unpro-
jected lattice. This correlation can be investigated using vortex-limited Wilson loops
in SU(2) gauge theory. A vortex-limited Wilson loops Wn(C) is defined as a (planar)
fundamental Wilson loop which is calculated using a sub-ensemble of the configurations
in the Monte Carlo configuration only. The sub ensemble is the set of configurations
where the area of the loop is pierced by n P-vortices. Hence the center projection is
only done in order to select the configurations taken into account for the calculation
of the expectations value of the loop operator; the calculation itself is done using the
full, unprojected configurations. The argument is simple. Because thick vortices carry
a flux with values in the nontrivial center (i.e. −1), their only influence on the loop is
a factor of −1, assuming they pierce the loop area not close to the perimeter. Hence
the contribution of the short-range, non-vortex perturbation part of the configuration is
unaffected by the presence of thick vortices somewhere inside of the loop. This pertur-
bation part cancels in quotients of vortex-limited Wilson loops such as built below in
(4.10), and we see the isolated vortex background. Only if vortices crossed by the loop
are partly inside the area they give a non-center contribution to the Wilson loop. This
contribution is proportional to the border of the loop area and gives a perimeter law
contribution to the loop. Whereas the perimeter law governed contribution is important
for small loops, it is negligible for large loops, and it follows that for large loops the ratio
of vortex-limited Wilson loops behaves like

Wn(C)

Wm(C)
→ (−1)n+m. (4.10)

Fig. 4.1 on the next page taken from Del Debbio et al. [DFG+98] confirms these consid-
erations. For large loops W1(C)/W0(C) approaches −1. The deviation for smaller loops
can be used to explain the phenomenon of Casimir scaling, as described in section 3.4.

The removal of vortices from the unprojected configuration is done by multiplying
the links of the unprojected lattice by the center element got after center projection
[dFD99]. This means that for the removal the unprojected configurations are changed
themselves using the P-vortices found. What this procedure does is to add thin vortices
into the unprojected configurations at the positions where thick vortices are assumed
to be. In this way short range disorder is introduced into the configurations because
of the high action density of thin vortices, but the long-range influence of the original
thick vortices is cancelled. The numeric results show that indeed confinement measured
using Wilson loops and Creutz ratios is lost after applying vortex removal. Even more,
also the topological susceptibility and chiral symmetry breaking, two other important
properties of infrared QCD beside confinement, are not present after the procedure. We
will deal with the connection of the topological properties of gauge fields and the chiral
symmetry to vortices in chapter 7.
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4.2 Maximal Center Gauges

Figure 4.1: Ratio of the 1-Vortex to the 0-Vortex Wilson loops W1(C)/W0(0), vs. loop
area at β = 2.3. Taken from Del Debbio et al. [DFG+98].

4.2.2 Center Dominance and Vortex Density – Overview

In this section we will test the validity of MCG and center projection in detail looking
at center dominance and the vortex density. Some of these results have been already
reported in [BFGO00]. As mentioned in section 4.2.1, center dominance is the fact that
observables can be correctly calculated after center projection. The observable mainly
used in this section is the asymptotic string tension σ (section 3.2). The ZN gauge field
configurations yields the same value for σ as the full SU(N ) configurations. All results
presented in this section are for the gauge group G = SU(2). For the gauge procedure,
we have used the over-relaxation method on various lattices for different values of the
coupling β, and also using different parameters controlling how over-relaxation was
performed. The dependence on the way the gauge was done will be discussed further
below.

A first overview over our results for center dominance is plotted in fig. 4.2 on the
following page. Here we see the string tension calculated using Creutz ratios χ(2, 2)
and χ(3, 3) from both the unprojected and the center projected lattice. For comparison,
the asymptotic string tension inferred by two other methods is plotted: Strong coupling
expansion and data from the literature. The strong coupling result is given by an
analytical calculation using the strong coupling expansion up to the 14th order. This
approximation is valid for small values of β. The literature data stems from reference
lattice calculations using Wilson loops on the unprojected lattice; for β = 2.2 it is taken
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Figure 4.2: Creutz ratios χ(I, I) compared to the asymptotic string tension σ inferred
using various methods.

from Michael and Teper [MT87], for the other data points from Bali et al. [BSS95].
We see that starting from β = 2.2 the center projected Creutz ratios χcp(2, 2) nicely

reproduce the asymptotic string tension taken from the literature. The projected Creutz
ratios χcp(1, 1) lie higher; χcp(1, 1) is related to the vortex density, which we will treat in
detail below and in section 5.2. For low values of β the projected observables are clearly
below the expected result from the strong coupling expansion, whereas the unprojected
quantities approach the analytical result below β = 1.5. At low β the lattice spacing a
becomes bigger than the average distance of vortices. We think that vortex detection is
sensible to too large values of the lattice spacing, and also to the size of the lattice, as
will be shown soon.

Remarkable is that in the scaling region β >= 2.2 the projected Creutz ratios χcp(2, 2)
give the correct string tension, whereas the unprojected χ(2, 2) lie higher. This fact is
dubbed as precocious linearity. Unprojected Creutz ratios χ(I, I) give the asymp-
totic string tension only for larger values of I. Center projection isolates the center
degrees of freedom responsible for confinement and removes short-range perturbations
thus showing the linear rising potential earlier.

For β = 2.5, fig. 4.3 on the next page shows the precocious linearity in detail. In
figs. 4.3 to 4.10 on pages 37–43, solid (dashed) lines indicate the value (errorbar) of
the asymptotic string tension on the unprojected lattice, reported in ref. [BSS95]. The
unprojected Creutz ratios χ(I, I) approach the asymptotic string tension only for higher
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Figure 4.3: Creutz ratios χ(I, I) calculated on unprojected and center projected lattices
depending on I for β = 2.5. The horizontal line labelled “σ, literature data”
represents the asymptotic string tension as reported by Bali et al. [BSS95].

values of I. Due to rather poor statistics (30 configurations), the errorbars become too
large beyond I = 6, and the asymptotic value is not reached. The projected Creutz
ratios, on the other hand, approach starting from I = 2 perfectly the asymptotic string
tension σ. For the other values of β in the scaling region precocious linearity hold, too,
as can be seen from fig. 4.4 on the following page.

However, as pointed out in a paper by Bornyakov et al. [BKPV00], abbreviated BKPV
henceforth, MCG might fail. The success of the method depends crucial on the param-
eters used for the gauge procedure [BFGO00]. In our work we use the procedure of
over-relaxation. As noted above, when over-relaxation gauge-fixing procedure is applied
to different gauge copies of a given lattice configuration (i.e. some random gauge trans-
formation is applied before starting the MCG procedure), different local maxima of the
gauge functional R are obtained. One way to minimise the gauge copy dependence is to
carry out the over-relaxation procedure on a number Ncopy of random gauge copies.

We judge the procedure to have converged using the criterion

Rn −Rn−50

Rn
< δ, (4.11)

where the value of R after n over-relaxation steps is termed as Rn. Next the gauge
copy with the largest value of Rn is taken and center projection is performed. From
the projected configurations various observables depending on the used parameters can
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Figure 4.5: Center projected Creutz ratios χ
Ncopy

cp (4, 4) vs. Ncopy at various lattice vol-
umes, for β = 2.5. The solid line in this figure indicates the asymptotic string
tension extracted by standard methods on unprojected lattices, reported by
Bali et al. [BSS95]. Dashed lines indicate the errorbar in this asymptotic
string tension.

be investigated. Data obtained in this way, over a range of Ncopy values, can then be
extrapolated to the Ncopy → ∞ limit.

4.2.3 Ncopy and Lattice Size Dependence

We begin with the Ncopy dependence, whose importance was recently emphasised by
BKPV in [BKPV00]. They did not use only three gauge copies as in earlier simulations
[DFG+98], but calculated Creutz ratios in the range Ncopy ∈ [1, 20], and extrapolated
to Ncopy → ∞ by fitting their data to the functional form

χ
Ncopy

cp (I, I) = χcp(I, I) +
c(I, I)√
Ncopy

. (4.12)

The result reported by BKPV is that projected string tensions, at β = 2.4, 2.5, under-
estimate the full string tension by about 20% at Ncopy = 20, and by as much as 30% in
the extrapolation to Ncopy → ∞. On the other hand, BKPV used rather small lattices
of size 124 at β = 2.3 and β = 2.4, and 164 at β = 2.5. The following result have
been obtained by calculation at β = 2.3 and β = 2.5 on a variety of lattice sizes, for
Ncopy ∈ [1, 20]. For the convergence parameter in (4.11), we have used δ = 2 × 10−7.

In fig. 4.5 we display results for the Creutz ratio χ
Ncopy

cp (4, 4) vs. Ncopy at β = 2.5,
for lattice sizes ranging from 84 to 284. Two features of this data are immediately
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Figure 4.6: Center projected Creutz ratios χ
Ncopy

cp (I, I) vs. Ncopy and lattice volume, at
β = 2.3 and I = 2 − 5. The solid line in this figure indicates the asymp-
totic string tension extracted by standard methods on unprojected lattices,
reported by Bali et al. [BSS95]. Dashed lines indicate the errorbar in this
asymptotic string tension.

apparent. First, there is indeed a slow downward trend in the Creutz ratio as Ncopy

increases, as noted by BKPV, but this effect is much more pronounced on smaller lattices
than on larger lattices. Second, although Creutz ratios on the smaller lattices grossly
underestimate the full string tension, the data appears to steadily increase towards the
full asymptotic string tension, reported by Bali et al. [BSS95], as the lattice size increases.
These trends in the data are by no means unique to the particular Creutz ratio χcp(4, 4)
at β = 2.5, but are typical of all of our results. For completeness we display, in figs. 4.6
to 4.7 on pages 40–41, some other projected Creutz ratios χ

Ncopy

cp (I, I) for I in the range
I = 2 − 5, at couplings β = 2.3 and β = 2.5.

In fig. 4.8 on page 42 we show the projected Creutz ratios χ
Ncopy

cp (I, I) for Ncopy =
5, 10, 15, 20 for the largest lattice used: 204 at β = 2.3 and β = 2.4, and 284 at β = 2.5.
We also show the values of these Creutz ratios extrapolated to the Ncopy → ∞ limit,
using the fitting function (4.12). We find that all the χcp(I, I) for I ≥ 2 are close to the
asymptotic string tension. As another way of showing lattice size dependence, we take
the average of the projected (Ncopy → ∞) Creutz ratios χcp(I, I) in the range I = 2− 5
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Figure 4.7: Center projected Creutz ratios χ
Ncopy

cp (I, I) vs. Ncopy and lattice volume, at
β = 2.5 and I = 2 − 5. The solid line in this figure indicates the asymp-
totic string tension extracted by standard methods on unprojected lattices,
reported by Bali et al. [BSS95]. Dashed lines indicate the errorbar in this
asymptotic string tension.
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Figure 4.8: Center-projected Creutz ratios χcp(I, I) at Ncopy = 5, 10, 15, 20, and extrap-
olated to Ncopy → ∞.

depending on the lattice size, as depicted in fig. 4.9 on the next page. Clearly the
averaged Creutz ratios approach the full asymptotic string as the lattice size increases.

4.2.4 Gauge-Fixing Convergence Criterion

In addition to the lattice volume and Ncopy dependence we have also checked whether
the numerical results are stable with regard of the gauge-fixing convergence criterion δ
in (4.11). We find that if δ is too large and the gauging process is terminated too fast,
the center projected Creutz ratios χcp(I, I) come out too high. This can be seen from
fig. 4.10 on the following page, which shows results for χcp with convergence criteria
δ = 10−2, 10−3, 10−4, 2 × 10−7 at β = 2.5 on 244 lattices. The weakest convergence
criterion, corresponding to δ = 10−2, is clearly insufficient for accurate results, but
Creutz ratios obtained with the two smallest values of δ are fairly consistent, indicating
that these numbers are not far from the δ → 0 limit.
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Figure 4.9: Average of projected and extrapolated Ncopy → ∞ Creutz ratios χcp(I, I),
in the range I = 2 − 5, depending on the lattice size.
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4.2 Maximal Center Gauges

4.2.5 Problems

We have seen that the maximal center gauge using over-relaxation followed by center
projection is sensitive to the parameters (lattice size, number of gauge copies, etc.), but
gives good results if parameter sets are chosen appropriately. But the method has also
serious flaws:

• Gribov copies (see section 2.5) – Iterative, local gauging procedures like over-
relaxation converge only to an (arbitrary, not uniquely defined) local maximum,
not to the absolute maximum of the gauge functional R.

• Unprojected configurations can be cooled. If only a finite number of cooling steps
is performed, the result of cooling is strictly local, i.e. long range physics should
not be affected, which is confirmed in Monte Carlo calculations. But MCG and
center projection does not work for such configurations, no vortices are found.

• Similarly, renormalisation group smoothing diminishes short range excitations,
but does not change the infrared, confining properties of the theory. MCG and
projections fails for such configurations, too.

• As shown by Kovacs and Tomboulis [KT99], it is possible to find a gauge where
the gauge functional R (4.3) is higher as R obtained by the DMCG using standard
over-relaxation. This is done by first taking the configurations to (fundamental)
Landau gauge (4.5), and than apply DMCG to this configuration. Now although
R is higher in this gauge, after center projection confinement is lost, and the vortex
density is considerably lower than after the standard procedure!

• The reported results have been gained using the over-relaxation method for gauge
fixing. If instead the algorithmically more involved, but more powerful simulated
annealing procedure (see section 2.5) is used, even for large lattices, and a high
number of gauge copies, one arrives also at higher values for R, but again center
dominance does fail [BKP01].

The explanation for these problems has first been found by Engelhardt and Reinhardt
[ER00a]: In the continuum limit, thin vortices are not the best fit for a thick vortex
configuration, but a vacuum configuration – a pure gauge (4.6) – is a good one. Only the
existence of Gribov copies leads the over-relaxation procedure to a local, vortex finding
gauge maximum. Starting with Landau gauge, or using simulated annealing, brings the
configuration closer to the true maximum which does not localise vortices. We discuss
this problem in section 4.3 and also provides a solution, the Laplacian center gauges.

Although DMCG fails in the continuum limit, which comes already apparent at finite
lattice spacings a as shown by the reported problems, DMCG remains a reliable tool
to extract the thick vortex content from field configurations. This is supported by the
numerous results reported in this section and in chapter 3. Hence we will use DMCG
with the over-relaxation procedure in the calculations reported in chapters 5 to 7, but
are aware of the limits of the method.
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4.3 Laplacian Methods

4.3 Laplacian Methods

Laplacian (Landau) gauge has been introduced by Vink and Wiese in [VW92, Vin95]
as an ambiguity free substitution for Landau gauge, which does not suffer from the
Gribov problem (section 2.5, section 4.2.5). A variant of the Laplacian gauge, the
Abelian Laplacian gauge has been used for Abelian projection and for the identification
of Abelian monopoles [vdS97, vdS98].

In this section we deal mainly with the variants of Laplacian center gauges serving as
Gribov copy free substitutions for the maximal center gauge (MCG) which is the topic
of section 4.2. In addition the Laplacian center gauges provide a way to identify vor-
tices directly without center projection using local gauge ambiguities. We will prove the
relation of vortices and Laplacian gauge singularities and investigate numerically the be-
haviour of the Laplacian eigenvectors around vortices inserted by hand. This elaborates
further the findings of [Hir00, BFH02] and confirms results reported in [Mon01].

Laplacian methods are not restricted to the lattice and the SU(2) and SU(3) groups.
They can be formulated in the continuum [vB95], and can be extended to a certain
degree to arbitrary simple Lie groups [RT01]. We will stay as general as possible in the
following section; the numerical investigations have been done on the lattice with gauge
group G = SU(2).

4.3.1 Gauging Using Eigenvectors

The idea behind the various flavours of Laplacian gauges is to use covariantly smooth
vector fields – the eigenvectors of the covariant Laplacian – to construct a smooth gauge.
In section 2.1 we have regarded gauge transformations as changes of base vectors in
colour space. To get a smooth gauge we perform a (passive) coordinate transformation
Sg(x) which rotates the base vectors of colour space at each point as close as possible
in the direction of the smooth eigenvectors:

ēi = Sg
j
i ej (4.13)

Sg is a representation of the gauge group element g; the representation depends on
which vector bundle (E,M, π, V,G) associated to the principal bundle (P,M, π,G) we
consider. The section g(x) of the principal bundle is the gauge transformation looked
for. We denote that there might be an ambiguity in getting g from Sg; this will be
discussed below.

Originally, this method was used for the fundamental representation of SU(N ). This
leads to Laplacian (Landau) gauge [VW92]. Here we are interested in gauges substi-
tuting maximal center gauge (MCG), which requires the adjoint representation. The
covariant adjoint Laplace operator in the continuum is given by the Laplace-Beltrami
operator ∆, on the lattice it reads

∆̂ϕi(x)ei(x) :=
∑

µ

(
2ϕi(x) − U i

jµ(x)ϕj(x+ µ̂) − (U i
jµ

−1
(x− µ̂)ϕj(x− µ̂)

)
ei(x).

(4.14)
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Next one calculates the eigenfunctions / vectors of the covariant Laplace operator

∆ϕ(m) = λ(m)ϕ(m). (4.15)

On the lattice, the eigenvectors are represented as dim(V ) ×Nvol -dimensional vectors,
where Nvol is the number of lattice sites; for the adjoint representation, the dimension
of the vector space dim(V ) is given by the dimension of the Lie algebra dim g. The
eigenvalues are real and non-negative, and the eigenvector fields are orthonormalised
with (

ϕ(m)(x), ϕ(n)(x)
)

= δmn, (4.16)

where the scalar product is, due to the orthonormality / unitarity of the base, given by

(
ϕi(m)(x), ϕi(n)(x)

)
=

{∫
dxϕ∗i(m)(x)ϕi(n)(x) (continuum)

∑
x,i ϕ

∗i(m)(x)ϕi(n)(x) (lattice).
(4.17)

(For the adjoint representation, complex conjugation (∗) is not necessary.) Note that
the eigenvector fields ϕ(m) of the smallest eigenvalues λ(m) (called “lowest eigenvectors”
henceforth) are the most covariant smooth fields, i.e. ||D∇ϕ

(m)(x)|| is, on average, as
small as possible. Here the norm of a Lorentz scalar field is defined as

||ϕ(m)(x)|| =
(
ϕ(m)(x), ϕ(m)(x)

)
, (4.18)

whereas for fibre valued one-forms ϕ in addition the scalar product for forms in metric
spaces has to be performed. In our Euclidean space the norm reads

||ϕ(m)(x)|| =
(
ϕ(m)

µ (x), ϕ(m)
ν (x)

)
δµν , (4.19)

with ϕ = ϕµdxµ.
The task is now to find new base vectors in colour space ei(x) which are close to

the lowest eigenvectors ϕ(i)(x) at each position x. Because ||D∇ϕ
(m)(x)|| is small,

||D∇ei(x)|| is small for such a base, too, and using the definition of A ( (2.6) on page 11)

(D∇ei)(∂µ) = ∇∂µ
ei = igAj

iµej (4.20)

we conclude that we have found a gauge where on average

ig
[
Aj

i

]
µ
(x) as close as possible at 0 (continuum) (4.21)

[
U j

i

]
µ
(x) as close as possible at 1 (lattice). (4.22)

For the adjoint representation on the lattice, this is a gauge which shifts the (adjoint) link
variables Uµ close to unity. This is similar to maximal center gauge, a gauge which tries
to maximise the trace of the adjoint links 〈TrU〉 as described in section 4.2. After such
a gauge fixing, there remain the center degrees of freedom from the ambiguous mapping
of adjoint to fundamental variables. On the lattice, this gives the ZN symmetry of these
gauges. For the continuum, we discuss the situation in section 4.3.4.
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4.3.1.1 Relation to Other Gauges

Adjoint Laplacian gauges can be related to maximal center gauge as follows [FGO01a]
(see [VW92] for the relation of fundamental Laplacian gauge to the Landau gauge): In
MCG, one tries to find a gauge transformation Sg which maximises the average trace of
the adjoint links (section 4.2)

R =
∑

µ,x

Tr[ST
g (x)Uµ(x)Sg(x+ µ̂)]. (4.23)

But there is a serious problem with this gauge: If one finds the global maximum of
this functional R, and performs center projection in this gauge, no vortices are found
in the continuum limit. MCG plus center projections can be interpreted as fitting the
thick vortices of a configuration with infinite thin, projected center vortices, which is a
very bad approximation in the continuum limit [ER00a, FGO01b]. In our opinion, this
is also the source of various problems for this gauge [KT99, BKPV00], as outlined in
section 4.2.5. Only because of Gribov copies the procedure is such successful for finite
lattice spacings and a finite number of gauge copies in the gauge algorithm.

In order to identify vortices, inside of a thick vortex a gauge has to allow links far from
the center elements [FGO01b]. One way to cure the problem is to weight the functional
R less near the position of the projected vortex. The easiest way to achieve this is to
maximise a modified functional

R′ =
∑

µ,x

Tr[MT(x)Uµ(x)M(x + µ̂)], (4.24)

where M is a real matrix which is orthogonal only in average and not at each site as Sg:
∫
dxM i

j(x)M
jT
k (x) = δi

k (continuum) (4.25a)

∑

x

M i
j(x)M

jT
k (x) = δi

k (lattice). (4.25b)

The unique solution of this maximisation is given by the N lowest eigenvectors of the
Laplacian [VW92, FGO01a] related to M with

M j
i (x) = ϕ(i)j . (4.26)

4.3.2 From Eigenvectors to Gauge Matrices

After getting covariantly smooth vector fields ϕ, the eigenvectors of the Laplacian, the
question remains how to choose new base vectors e close to ϕ, i.e. construct the gauge
matrix Sg. In the last years, several ways have been proposed:

4.3.2.1 Laplacian Center Gauge

Laplacian center gauge (LCG) has been the first gauge intended to substitute MCG
[AdFD00, dFP00a, dFP01]. To go to Laplacian center gauge, we perform a (passive)
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coordinate transformation Sg(x) in (adjoint) colour space such that in each point of space
time / on the lattice the base vector e1(x) is parallel to ϕ(1)(x), and that the vector
e2(x) points in the direction given by the component ϕ⊥(2)(x) of ϕ(2)(x) orthogonal to
ϕ(1)(x).

After this, all adjoint base vectors are fixed. There remains a ZN symmetry from the
ambiguity to map the adjoint gauge matrix Sg to the fundamental group element g used
to gauge the link field. This is the case for all center gauges using the covariant adjoint
Laplace operator.

If only e1 is rotated in direction of ϕ(1) without fixing the direction of e2, we arrive at
Laplacian Abelian gauge [vdS97, vdS98]. This gauge shows a remaining U(1) symmetry.

4.3.2.2 Laplacian Adjoint Landau Gauge

Laplacian adjoint Landau gauge (LALG) [FGO01b, FGO01a] is the equivalent of the
original fundamental Laplacian gauge [VW92] for the adjoint representation of the SU(2)
gauge group. Singular value decomposition

M = V DWT, (4.27)

where V,W are orthogonal and D is a diagonal positive semi-definite matrices, followed
by polar decomposition

M = [V WT][WDWT], (4.28)

shows that M as a quadratic real 3 × 3 matrix can be unambiguously written as the
product of an SO(3) matrix Sg = det[V WT]V WT and a symmetric positive semi-definite
matrix P = WDWT:

M = ±SgP. (4.29)

This decomposition shows nicely the relation of the Laplacian gauges to MCG as
described above: P acts as variable weight factor going from (4.23) to (4.24). If M
would be orthogonal, the gauge transformation Sg = MT would let point the 3 base
vectors ei exactly into the direction of the 3 lowest eigenvectors ϕ(i), and we arrive at
a smooth gauge as pointed out at the beginning of section 4.3.1. In this special case,
LALG is the same gauge as the MCG. Generally, the eigenvectors of the Laplacian
are not orthonormal at each point, but only on average, and the task is to extract
an orthogonal gauge matrix Sg out of M which is closest to M , i.e. which maximises∣∣Tr

[
Sg(x)M

T(x)
]∣∣ at each point. This is exactly what singular value decomposition

followed by polar decomposition does.
The advantage of this gauge over LCG is that it treats the first 3 eigenvectors sym-

metrically, whereas LCG aligns only the first base vectors with ϕ(1), and then fixes e2
to ϕ⊥(2)(x) using the remaining U(1) gauge freedom. The properties of the three lowest
eigenvectors are discussed in detail in 4.3.4 and 4.3.5.

4.3.2.3 Direct Laplacian Center Gauge

As we will show in section 4.3.5.3, LALG allows to many fluctuations in order to identify
the confining vortices appropriately [LRS01]. A solution is to modify the map from the
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real matrix M to the orthogonal matrix Sg. Instead of simply taking the closest or-
thogonal matrix, one requires that the orthogonal matrix satisfies the Laplace equation,
too [FGO01a]. Such orthogonal matrices are local maxima of the MCG gauge condi-
tion (4.23). This can be achieved by applying MCG with over-relaxation to the gauge
matrices inferred from LALG and results in a damping of undesired fluctuations. This
procedure is called direct Laplacian center gauge (DLCG). Numerical studies show
that the results known from DMCG, such as precocious linearity, center dominance, and
vortex limited Wilson loops hold also for DLCG [FGO01a]. Finally we note that the
over-relaxation MCG step can also be performed after LCG [LRS01].

4.3.2.4 Generalisation to Simple Lie Groups

It can be shown that the LCG procedure to get a gauge from two covariantly smooth
fields ϕ(n)(x) in the adjoint representation can be generalised to arbitrary simple Lie
groups G with Lie algebra g [RT01]: For the adjoint representation, ϕ(n) is a Lie algebra
valued field. In a first step, ϕ(1) is gauge transformed such that it lies in the fundamental
domain of the Cartan subalgebra of g. For the case of G = SU(N ), this is exactly the
Laplacian Abelian gauge. After this rotation there remains a residual Abelian gauge
freedom, which can be fixed imposing appropriate conditions on the components of the
second field ϕ(2). This step is the Laplacian Center Gauge in the case of the gauge group
SU(N ). The center of the gauge group G remains unfixed, as for all adjoint gauges.

Of course the question remains how to get reasonable smooth fields ϕ(n) for arbitrary
simple Lie groups – using the eigenvectors of the Laplacian has only been used for the
SU(N ) groups so far. And the LALG and DLCG procedure to get gauge transformations
from smooth fields has not yet been get generalised to other groups.

4.3.3 Gauge Singularities

All Laplacian gauge methods are plagued by singularities. The eigenvectors ϕ(n)(x)
might vanish at some points x, or they might be linearly dependent locally. In these
cases the prescription how to get the base vectors en, and thus the desired gauge trans-
formation, from the vectors ϕ(n) fails at the singularities. However, this problem only
occurs in the continuum, on the lattice the probability of such gauge defects is zero.

Moreover, these defects can even be associated to the position of Abelian monopoles
[vdS97, vdS98] and P-vortex surfaces [dFP01]. In the continuum for the gauge group
SU(N ), the first eigenvector ϕ(n) is zero at line-like regions identified with monopole
world lines, and a linear dependence occurs at surfaces, the P-vortices. We will investi-
gate these singularities further in section 4.3.4.1.

4.3.4 A Simple Configuration

In this section we illustrate how the family of Laplacian gauges localises vortices, and
how gauge ambiguities are related to vortices. The mechanism is discussed using the
simple configuration drawn in fig. 4.11 on the following page. We have a plane pierced
by a localised thick vortex. As described in section 3.4, such a thick vortex is defined as
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Figure 4.11: ϕ around a vortex.

a flux tube of finite diameter d carrying flux which is quantised in terms of the nontrivial
center elements of the gauge group. For SU(2), which is used in the following sections,
there is only one nontrivial element in the center group Z2. A thin vortex is a vortex
with d→ 0. In a thin vortex the flux is concentrated in infinitely thin, closed lines and
surfaces in 3 and 4 dimensions respectively. We recall that the idea of the various center
gauges, combined with center projection, is to replace the full gauge configurations with
a ZN gauge field configuration, and the excitations of a ZN system are thin vortices.

For the considered configuration, we require that outside the vortex of fig. 4.11 only
short range fluctuations of the chromo dynamic field are admitted, i.e. the trace of the
parallel transporter in fundamental representation along each closed line not linked with
the vortex is small (the path C is not such a line). Linking is a property of two cycles
that they cannot continuously be shrunk to a point without crossing. Examples are two
linked loops in three dimensions, or in four dimensions, as in our case, a loop and a
surface such as the P-vortex surface. Linking between Wilson loops and vortices will be
discussed in section 5.2.

Vortices are boundaries of a 3-volume, the Dirac volume. Hence a single vortex
piercing a plane is not possible, there have to be an even number of vortex pierc-
ings. In the configuration of fig. 4.11, the second vortex is thought far away and
is not considered. The numerical calculations in section 4.3.5 will investigate the
eigenvectors around pairs of vortex piercings.

For a trivial field configuration (a pure gauge), we have λ(1) = 0 for the lowest eigen-
value of the adjoint Laplacian. This eigenvalue is 3-fold degenerated, and the eigenvec-
tors are three covariantly constant fields orthogonal in colour space at each point. The
next eigenvalue is 12 fold degenerate, corresponding to plane waves in 4 space time di-
mensions and 3 directions in colour space. A thin center vortex is “invisible” for adjoint
fields. Hence it does not change the eigenvectors compared to the trivial configuration.
In the configuration of fig. 4.11, the region outside the vortex is large compared to the
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thick vortex with small diameter d. Hence a thin vortex is a good approximation for
the configuration, and we expect that the modifications for the eigenvectors compared
to the trivial field are small. The lowest eigenvalue is split in three non degenerate
eigenvalues, but the first three eigenvalues remain small compared to the next higher
eigenvalues, and the eigenvectors of these eigenvalues are still approximately covariantly
constant. More precisely, we expect that ϕ′(i)(x) ≃ ϕ(i)(x), where ϕ′(i)(x) is ϕ(i)(x) after
an (adjoint) parallel transport along an arbitrary closed line not cutting the interior of
the vortex (the path C is such a line). This means that the covariant (adjoint) difference
of the vector field over finite distances is small outside the vortex.

Now, let us assume that we perform LCG fixing as described in section 4.3.2.1 starting
at point P in fig. 4.11 on the preceding page. Locally, if we gauge along path C in
counter clockwise direction from P to Q(φ), it is possible to choose one of the two
fundamental gauge matrices g(x) and g′(x) giving the same adjoint Sg(x) stemming
from LCG in a smooth way. Because the fields ϕ(i)(x) are nearly constant on C, LCG
moves the gauge field A(x) close to zero as explained above. A(x) ≃ 0 is equivalent
to Afundamental(x) ≃ 0, and we arrive locally at a gauge resembling the (fundamental)
Landau gauge. As stated above, the lowest eigenvector fields are nearly covariantly
constant over finite distances. Thus in our gauge also the fundamental parallel transport
UPQ ≃ 1. But the fundamental parallel transport around the full path C gives −1
because the vortex carries a flux of −1. Therefore our choice between g and g′ cannot
be smooth along all of the curve C. This corresponds exactly to the discontinuous gauge
transformation generating a thin vortex, and the discontinuity is its Dirac volume. Hence
after center projections a (thin) vortex is found at this position.

In this section we have used the relation if D∇ϕ
(i) is small, also D∇ei is small in order

to explain that LCG moves the link variables close to the center elements. But this is
not the case at positions where local ambiguities of Laplacian center gauge occur. If at
a position x the lowest eigenvector ϕ(1) vanishes, small derivations of ϕ(1) around x give
big derivations of the direction ϕ(1)/|ϕ(1)| in which we want e1 direct, and thus also big
derivations of e1. Another gauge ambiguity occurs if ϕ(1) and ϕ(2) are parallel. Then
the orthogonal component ϕ⊥(2) of ϕ(2) is small around the position of the ambiguity,
which leads to a big D∇e2. These are the gauge defects associated to monopoles and
P-vortices, as introduced in section 4.3.3. In the next section, we will show that parallel
eigenvectors indeed can be identified with center vortices. We will see that for each thick
vortex such an ambiguity arises. This will provide us with a gauge independent way to
locate vortices.

On the lattice, these gauge ambiguities never occur. Nevertheless there are regions
in the thick vortex where the first two eigenvectors are nearly parallel, and D∇ei is
not small. As a consequence, LCG does not shift the links close to the center elements
somewhere inside the vortex. This cures the problem of MCG in the continuum limit
as described in section 4.3.2.2.

For our conclusions, as well as for the considerations in the next section, we made two
essential assumptions:

1. The gauge field shows only small short range fluctuations outside the vortex. This
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means that the gauge field can be separated in a part described by thick vortices
and a part consisting only of short range fluctuations.

2. The vortex diameter is small compared to the region outside the vortex, such that
the first three eigenvectors are only slightly modified compared to a trivial field
configuration.

But there are indications that in Monte Carlo generated field configuration the distance
between vortices is of the same order as the vortex thickness, and we have rather a liquid
and not a dilute gas of vortices, as we will see in section 5.7. Therefore our conclusions
might not hold for realistic field configurations. However, for configurations fulfilling
these two conditions we could numerically confirm our results.

For thin vortices, the second condition is always fulfilled. Thus most of our results
hold exactly for thin vortices. This corresponds to the vortex finding property of a class
of gauges including MCG and LCG as described in section 4.1.

4.3.4.1 Laplacian Eigenvectors Around a Vortex

In this section we will show that, under the conditions outlined at the end of the last
section, each thick vortex can be located using the gauge singularities of LCG. Again we
consider a plane pierced by a (thick) vortex as drawn in fig. 4.11 on page 50. Outside
the vortex, the field has only short range fluctuations.

As stated in the last section, the lowest eigenvectors of the covariant adjoint Laplacian
do not feel the center vortex far outside the vortex. If ϕ′(i)(x), x ∈ C, is the vector
ϕ(i)(x) after a parallel transport along the closed line C, then we have ϕ′(i)(x) ≃ ϕ(i)(x),
because the parallel transporter equals 1 in the adjoint and −1 in the fundamental
representation. For the following considerations, we assume that ϕ′(i)(x) = ϕ(i)(x)
holds exactly and expect the small variation induced by the final thickness of the vortex
not to change the result principally.

Therefore, in the continuum, if we choose any smooth gauge, the fundamental parallel
transporter UPQ = U(φ) is a function of φ which maps the circle C (see fig. 4.11) on
a path in the group SU(2) connecting the two center elements – for φ = 0 we have
U = 1, and for φ = 2π we have U = −1. In the adjoint representation, U(φ) is
a non contractible closed path on SO(3), corresponding to the nontrivial element of
the fundamental group π1(SO(3)) ≃ Z2. Thus the lowest eigenvector fields ϕ(i), which
are approximately covariantly constant over finite distances outside the vortex, show a
rotation of 2π in colour space around the vortex in any smooth gauge. This is plotted
in fig. 4.11, too.

Thus we can conclude that vortices can be identified by looking for rotations of 2π of
the eigenvectors along closed lines. But on the lattice, this method is not as straightfor-
ward as in the continuum. The direction of the eigenvectors can be chosen independently
at each lattice site using a gauge transformation. To see the rotation, we have to choose
a smooth gauge and small lattice spacing a. In section 4.3.5 we will describe appro-
priate gauges. In general, it can be difficult to see the rotation of 2π, because the non
contractible path on SO(3) can be very complicated.
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In the continuum, the lowest adjoint eigenvectors fields ϕ(i)(φ) on the closed line C can
be generated by applying the SO(3) parallel transporters U(φ) on some vectors ϕ(i)(0)
at point P using ϕ(i)(φ) = U(φ)ϕ(i)(0). The matrices U(φ) form a non contractible path
on SO(3). In a next step, if we look at the interior of the area B bordered by C, the
lowest eigenvector fields are some smooth continuation of the fields given on C. Now
let us assume that two of these vector fields are linearly independent at each point of
B. Then we can construct at each point three orthonormal vectors ei from these two
linearly independent vectors in a smooth way. Next we assign to each point x an unique
SO(3) element U(x) using ei(x) = U j

i (x)ej(P ). This gives a smooth mapping from B,
which is homeomorphic to the filled disk D2, on SO(3). All mappings of D2 on SO(3)
are topological trivial, i.e. contractible. But we have assumed that the mapping of the
contour C on SO(3) is not contractible. The only solution for this contradiction is that
the vector fields are linearly dependent at least at one point inside C.

In this way we conclude that independent of the internal structure of the thick vortex
an ambiguity for the Laplacian center gauge arises somewhere inside the thick vortex.
Because the linear dependence of the lowest eigenvectors of the adjoint covariant Laplace
operator is a gauge independent property, we can use it to detect thick center vortices
in a gauge independent way as proposed in [dFP01, AdFD00].

On the lattice, these ambiguities never occur exactly. But the smaller the lattice
spacing a is, the more parallel the first three eigenvectors become somewhere inside the
vortex. How can the position of the vortex determined on the lattice? One could look
at places where the angle between two of the lowest eigenvectors is smaller than some
fixed angle θ. But this introduces an arbitrary parameter and is not well defined.

An alternative is to use the triple product of two of the eigenvectors with some linearly
independent reference vectors ξ and ζ. If ϕ(1) · (ϕ(2)×ξ) changes sign between two lattice
sites, the product vanishes somewhere between, i.e. the three vectors are coplanar. This
occurs on a closed three-dimensional hypersurface on the dual lattice. Another 3d
hypersurface is given by the condition that ϕ(1), ϕ(2) and ζ are coplanar. The intersection
of these hypersurfaces is a closed two-dimensional surface in four dimensions, where ϕ(1)

and ϕ(2) are collinear. This is the position of a thin vortex indicating the position of
the thick vortex.

Unfortunately its not trivial to find appropriate reference vectors ξ and ζ. Choosing
random vectors gives a randomly fluctuating triple product and no information. In
order to get gauge covariant reference vectors, one might try higher eigenvectors of the
Laplacian ϕ(i). For ϕ(3), the triple product with ϕ(1) and ϕ(2) never changes sign in
our simple configuration. They form a left or right handed system on the whole lattice
because they rotate together around the vortex. Nevertheless minima of ϕ(1) · (ϕ(2) ×
ϕ(3)) indicate the vortex position as shown in section 4.3.5. Higher eigenvectors ϕ(i)

seem not to be smooth enough to see the collinearity of the first two vectors, at least
on a coarse lattice. They correspond to “wave” solutions of the Laplacian and introduce
sign changes not related to the vortex (see section 4.3.5).

Finally we want to give a comment to the limit of thin vortices. The simplest config-
uration of thin vortices is generated, starting from the trivial configurations, by flipping
the sign of the links of some strip. Because the adjoint Laplacian does not see center
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elements, the eigenvectors are not changed with regard to the trivial configurations.
The vectors do not become shorter, and no gauge ambiguities occur. Nevertheless the
Laplacian gauges work: all links are gauged to ±1. Also the rotation of the vectors can
be seen using a smooth fundamental gauge, the vectors are the same as for the trivial
configuration, but the gauge to look onto the colour vector rotation is different. Only
our findings on the linear dependence of the lowest eigenvectors somewhere at the vortex
does not hold for thin vortices. In the continuum thin vortices are singular objects, and
our topological arguments rely on smooth eigenvectors fields.

4.3.5 Numerical Investigations

Next we study the four lowest eigenvectors of the covariant Laplacian for configurations
with vortices inserted by hand, and for configurations generated using Monte Carlo
simulation of QCD. First we look at a very simple vortex, a pair of plane vortices, and
then at a spherical vortex. All calculations were done on a 204 lattice.

4.3.5.1 Plane Vortex

VortexVortex

Uy

Uy

Uy

x

z

t

Figure 4.12: Two plane vortices.

We start investigating a pair of “plane” vortices
which were inserted into two given z–t–planes of
the lattice. Fig. 4.12 is a schematic picture of this
configuration. We write the SU(2) links variables
as cos(α)1 + i sin(α)niσi with σi being the Pauli
matrices and nini = 1. All links of the configu-
ration are equal +1, only for y = 16 all the links
Uµ in direction µ = y vary with x from +1 to −1.
The links vary in direction σz in colour space. The
center of the first vortex is at x = 16.05 and the
second is located at x = 10.05. The thickness of
the vortex is 4 lattice spacings. Between these val-

ues of x the trace of the links Uy is negative. For this configuration, the four lowest
eigenvectors of the covariant Laplacian as well as the triple products and the norms of
these vectors are calculated.

λ(1) 7.56830D-16

λ(2) 1.91805D-02

λ(3) 1.91805D-02

λ(4) 4.23054D-02

Table 4.1: Eigenvalues
λi of ϕ(i)

In order to see the rotation of the eigenvectors around the
vortices, fundamental Landau gauge was chosen for the plots of
the vector fields. In this gauge the rotation of 2π is distributed
smoothly along the closed paths around the vortex. Because
this configuration is constant with respect to z and t, in the
following plots only one xy slice is drawn. For the plots of the
vectors only σx and σy components are drawn, σz is omitted.
The colour space components of σx and σy are plotted in the
space directions x and y, respectively.

The four lowest eigenvectors ϕ(i) of the covariant lattice Laplacian in Landau gauge
are plotted in fig. 4.13 on the next page. The corresponding eigenvalues are given in
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Figure 4.13: The four lowest eigenvectors ϕ(i) for a plane vortex.
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Figure 4.14: The norm of the four lowest eigenvectors ||ϕ(i)|| for a plane vortex.
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Figure 4.15: Triple products ϕ(1) · (ϕ(2) ×ϕ(3)) and ϕ(1) · (ϕ(2) ×ϕ(4)) for a plane vortex.
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table 4.1. We only see points for the lowest eigenvector ϕ(1), because it has only a
component in σz direction. The links Uµ rotate vectors only in direction σz, thus ϕ(1)

is not affected by the parallel transport. The covariant derivative is the same as the
normal derivative for this vector, ϕ(1) is up to machine precision a perfect solution of
the Laplace equation, and it is an eigenvector of the Laplacian with eigenvalue λ(1) = 0.

The next two eigenvectors have the same eigenvalues. This degeneracy is due to
the symmetry of the configuration with request to σx and σy in colour space. These
eigenvectors are orthogonal to each other and to the first eigenvector at each point of
the lattice. We have checked this by calculating the normalised triple product

|ϕ(1) · (ϕ(2) × ϕ(3))|
||ϕ(1)|| ||ϕ(2)|| ||ϕ(3)|| .

This product equals 1 on the whole lattice. The vectors ϕ(2) and ϕ(3) show exactly the
behaviour we have expected. The two vectors rotate perfectly around the positions of
the two vortices. In addition we see some change in direction at y = 7. This is necessary
to fulfil the periodic boundary conditions. One can also check that these two vectors
get no component in direction σz approaching the positions of the vortices; they simply
become shorter and seem to vanish in the middle of the thick vortices.

This can be checked looking at fig. 4.14 on the preceding page, where the norm of
the eigenvectors is plotted. The constant first vector ϕ(1) has constant norm. The next
vectors ϕ(2) and ϕ(3) both are longer outside the vortex, and approaching the vortex
their norm approaches zero.

The triple product of the three lowest eigenvectors is plotted in fig. 4.15 on the previous
page. It behaves like ||ϕ(1)|| and ||ϕ(2)|| and indicates the Laplacian gauge ambiguity
and thus the vortex position.

The fourth lowest eigenvector field ϕ(4) is an excited state compared with ϕ(2) and
ϕ(3) (see table 4.1), as described in section 4.3.4. It is the lowest plane wave solution
of (4.15) on page 46. Thus the fourth vector should show some “wave” compared with
the first three vectors. We see some wave (fig. 4.13), and in addition there is some
rotation around the positions y = 6, x = 6, 16. There is no vortex at this positions, but
it is the vortex positions shifted by a half of the lattices extent in direction y. Maybe
this is due to the orthogonality requirement with respect to ϕ(2) and ϕ(3): Exactly where
these two vectors are short, this vector is long, and vice versa, as can be seen in fig. 4.14.

Because ϕ(4) does not rotate together with ϕ(2) and ϕ(3), the triple product ϕ(1) · (ϕ(2)×
ϕ(4)) is not strictly positive as ϕ(1) · (ϕ(2) × ϕ(3)). It shows some “irregular” behaviour
and is plotted in fig. 4.15 on the previous page.

We conclude that the eigenvectors of the adjoint covariant Laplacian behave just as
expected in section 4.3.4.1. As a next step, we have a look on the more complicated
spherical vortex.
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4.3.5.2 Spherical Vortex

Figure 4.16: Model of the
spherical vortex.

The spherical vortex is shaped like a sphere and is defined
as follows: All links Uµ(t, ~x) are +1 for t 6= 10 and µ 6= µt.
The center of the sphere is at x = 10.05, y = 10.05 and
z = 10.05, its radius is R = 6 and the thickness of the
vortex surface is d = 1.9. The links Ut(r) vary from −1 to
+1 between r = R−d/2 and r = R+d/2. The direction
in colour space ~n~σ in which the links vary from −1 to +1
is given by the radius vector ~x on the Euclidean lattice
by setting ~n = ~x/||~x||. Thus this vortex takes values in
the whole SU(2).

A symbolic picture of this vortex is plotted in fig. 4.16.
The vortex has the shape of a three-dimensional sphere.
It is contained in a single time slice t = 10 and extends
only in spatial directions. Because we have a symmetric
lattice, one could swap t and z direction and get a vor-
tex evolving in time. This would correspond to a circle

created at some time, expanding to radius R with time evolution, and again shrinking
to zero. The temporal links are +1 outside the sphere and in other time slices, and −1
only inside of the plotted sphere. Between these regions there is a smooth change in the
surface of the sphere which has a finite thickness.

λ(1) 3.28851D-03

λ(2) 3.28851D-03

λ(3) 3.28872D-03

λ(4) 9.63221D-02

Table 4.2: Eigenvalues
λ(i) of ϕ(i).

The colour of the sphere in fig. 4.16 indicates the colour di-
rection ~n~σ of the Ut links in the vortex surface. +~n has been as-
signed the same colour as −~n, opposite points on the sphere have
the same colour. Be aware that the “red”, “blue” and “green” re-
gions on the sphere are in orthogonal directions, but they are
not plotted in the ~σi directions. The reason of this choice is ex-
plained later. The red, blue and green tori around the sphere are
monopole loops. These monopoles arise if one gauges the con-
figuration to maximal Abelian gauge (see section 4.2) with the
U(1) subgroup of SU(2) that leaves the links indicated by the red, blue or green regions
invariant, respectively2, followed by Abelian projection. This can easily understood from
the very definition of the spherical vortex: The links of one half of the sphere change
from −1 to +1 crossing the vortex surface in direction +~n~σ, the other links change in
direction −~n~σ. Between a monopole line is found. The fact that monopole lines lie
often on vortex worldsheets has been reported in [DFGO98]; it is found that at β = 2.4
about 97% of the monopoles are located on P-vortex surfaces, where monopoles and
vortices are detected using abelian and indirect center gauge and projection. If vortices
are detected using the singularities of the Laplacian gauges as described in section 4.3.3,
monopole are automatically located on P-vortex surfaces. In chapter 7 we will treat the
significance of such monopole lines for the vortex picture.

We have also checked our calculations using spherical vortices with other radii R and

2This is the isotropy group for this direction.
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thickness d. For all these vortices the results are in good agreement.
In fig. 4.17 on the next page, again the four lowest eigenvectors of the covariant Lapla-

cian are drawn. The corresponding eigenvalues are written in fig. 4.2 on the preceding
page. Because of the symmetry of the configuration in colour space, the first three
eigenvectors have exactly the same eigenvalues. The fourth eigenvalue is excited with a
factor of ∼ 30.

Originally, we plotted the eigenvectors of the adjoint Laplacian in fundamental Landau
gauge, just as for the plane vortex. We could not see any rotation of the vector field
around the vortex. Some rotations appeared far from vortices. We think that this is
because Landau gauge does not only try to shift the links lying in the plane pierced by
the vortex as close as possible to 1. In addition, the trace of the links orthogonal to the
considered plane is maximised too. For the plane vortex described in section 4.3.5.1,
this does not matter because this configuration is constant in z and t direction. For the
spherical vortex, this is not the case and our approach failed. Thus we use a modified
gauge: We consider xt-planes cutting the spherical vortex. For our modified gauge
we maximise the functional

∑
x,µ Tr[Uµ(x)], where µ is restricted to µ = x, t. This

gauge maximises the traces of x and t links for each xt-plane independently of the other
xt-planes and independently of links in y and z direction.

Fig. 4.17 on the next page shows the xt-plane with y = 10 and z = 10. The vector
fields are drawn in the modified gauge. This plane is pierced by the spherical vortex
in two points with coordinates t = 10, x = 4 and x = 16. As for the plane vortex,
also for the thick vortex the first three eigenvectors show a rotation of 2π exactly at
the position of the two vortex piercings. We have observed that at some cuts through
the vortex one of the three lowest eigenvectors localises only one vortex piercing. If one
looks carefully at all vortex cuts, one sees that on the points of the sphere indicated by
the intersections of the tori in fig. 4.16 on the preceding page, always one of the vectors
does not localise the vortex. This corresponds to the behaviour of the first eigenvector
for the plane vortex. We will discuss this in detail below. The fourth eigenvector is
again an excited state.

In fig. 4.18 on page 61, the norm of the lowest vector is plotted. In this figure we
have chosen a space like cut through the vortex, a xy-plane with z = 10 and t = 10,
and a space time cut using the xt-plane with y = 10 and z = 10. The norm of the
vector is decreased where the vortex intersects the planes. If one looks at all cuts
through the vortex, one sees that the norm of all three lowest eigenvectors decreases
exactly on the vortex sphere. Fig. 4.18 on page 61 shows also that this decrease is not
spherical symmetric, but the vectors “feels” the vortex with different intensity on the
vortex surface. This can be inferred from fig. 4.19 on page 61. Here the norm of the two
lowest eigenvectors ||ϕ(i)|| is plotted for the xy–plane with z = 8, z = 10 and z = 12,
and t = 10. We have truncated the plot if ||ϕ(i)|| > 0.0015, and we see only the parts
where ||ϕ(i)|| is strongly decreased.

Following through all z-slices, one can infer that the norm of each vector is strongly
reduced on a great circle on the vortex sphere. The more we move away from the
circle, the weaker becomes the decrease. Analogous to the plane vortex we conclude
that each of the lowest three eigenvectors does not feel the vortex at points where
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Figure 4.17: The four lowest eigenvectors ϕ(i) for a spherical vortex. The xt–plane for
y = 10 and z = 10 is plotted.
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Figure 4.18: The norm of the lowest eigenvector ||ϕ(1)|| for a spherical vortex. The xy–
plane for z = 10 and t = 10, and the xt–plane for y = 10 and z = 10 are
plotted.
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Figure 4.19: The norm of the two lowest eigenvectors ||ϕ(i)|| for a spherical vortex. The
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Figure 4.20: The normalised triple product
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ϕ(1)(ϕ(2) × ϕ(3))
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for

a spherical vortex. The xy–plane for t = 10 and z = 10, 13 is plotted.

the adjoint Ut links in the vortex are in the Abelian subgroup of SO(3) leaving the
eigenvector invariant. This is indicated in fig. 4.16 on page 58: For instance the red
region on the sphere symbolises a part of the vortex where the local gauge field lets a
certain eigenvector invariant. On the region of the sphere indicated by the red torus, the
eigenvector is orthogonal to this local invariant direction, it has no invariant component.
But as we have seen for the plane vortex, the orthogonal components vanish approaching
the vortex, and thus the vector vanishes on this great circle. It is remarkable that this
circle is also the position where an Abelian monopole arises if we project the full SU(2)
on the Abelian subgroup letting the considered eigenvector invariant. We thus find the
observation of [vdS97, vdS98] that Abelian monopoles are characterised by vanishing of
the lowest eigenvector, and that the monopoles lie on the vortex surface.

The three orthogonal circles indicated by tori in fig. 4.16 on page 58 correspond
to the monopoles of three different Abelian subgroups given by the three orthogonal
eigenvectors. Because of the three fold degeneracy of the lowest eigenvalue, we can
choose arbitrary other eigenvectors by linear combinations of our eigenvectors. This way
we can move around the corresponding monopoles on the vortex sphere in an arbitrary
way. This reflects the perfect spherical symmetry of our configuration.

For each eigenvector of the configurations there is a local invariant direction. These
directions are not necessarily identical with the directions σi, and such it is plotted in
fig. 4.16. On the intersection of the tori, one vector points in the invariant direction of
the local gauge field, and the other two are orthogonal. Therefore approaching the vortex
these two vectors become shorter and shorter, but all three vectors remain orthogonal.
On other points of the vortex, at least two vectors have invariant components, and the
normalised triple product measuring the angle between the vectors

|ϕ(1) · (ϕ(2) × ϕ(3))|
||ϕ(1)||||ϕ(2)||||ϕ(3)|| .
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Figure 4.21: The triple product ϕ(1) · (ϕ(2) × ϕ(3)) for a spherical vortex. The xy–plane
for z = 10 and t = 10, and the xt–plane for y = 10 and z = 10 are plotted.

becomes smaller than 1. This is plotted in fig. 4.20 on the preceding page. The product
is decreased on the vortex sphere, but there are six isolated points on the vortex – the
intersections of the tori in fig. 4.16 on page 58 – where the vectors remain orthogonal.

The norms of the eigenvectors depend on the choice of our vectors in our configuration
with a degenerate lowest eigenvalue. But the triple product is an invariant quantity
indicating exactly the vortex position as can be seen from fig. 4.21. The product is
decreased in a spherical symmetric way.

4.3.5.3 Monte Carlo Generated Configurations

Having studied the eigenvectors of the Laplacian for very special configurations con-
structed by hand, we discuss in this section the results obtained with configurations
generated by simulating the pure lattice SU(2) gauge theory with standard Monte Carlo
techniques.

The first problem we face is the high vortex density for the usual coupling. We
have done a simulation on a 324 lattice at an inverse coupling β = 2.74. At this β
the piercings of vortices with a given plane should be, according to asymptotic scaling,
about 15 lattice spacing apart on average.

In fig. 4.22 on the next page, the triple product of the three eigenvectors is plotted.
The green and red vertical lines symbolise vortex piercings found using LCG and MCG,
respectively, followed by center projection. The density of Laplacian center gauged
and center projected vortices is much higher than the estimated density. It has been
shown that this density does not scale [LRS01]. It seems that the Laplacian gauged and
projected vortices do not contain only the infrared degrees of freedom of QCD which are
responsible for confinement, but also perturbative contributions. The density of MCG
vortices is as expected.

It is interesting that the triple scalar product is very small over large parts of the
lattice. It is concentrated in rather small regions. We think that the reason for this
large regions, and for the non-scaling of the vortex density after center projection, is
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of vortices found using LCG and MCG, respectively, followed by center
projection.
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found in (4.24) on page 47. MCG ((4.23)) fails in the continuum limit because it weights
the derivations of thin vortices from thick vortices to strong, and hence to few vortices
are found. For the Laplacian gauges, the opposite is true. Because (4.24) weights the
gauge matrix S of (4.23) with an arbitrary positive semidefinite (though orthogonal in
average) weight matrix M , the main part of the contributions to R′ comes from rather
small regions of the lattice where it is possible to gauge the links quite close towards
the center elements. All other parts of the lattice are weighted less. For a detailed
study for the localisation of the Laplacian eigenmodes, we refer to the recent extensive
investigation reported in [GOP+05].

4.4 Conclusions

Using various gauges we have found that vortices can successfully be detected in gauge
field configurations. Nevertheless there are serious problems with this detection meth-
ods. In the continuum limit P-vortex are a bad approximation for the thick vortices
which have to be identified. The consequences of this failure are visible already at finite
lattice spacings a. An example is the underestimate of center projected Creutz ratios
in various circumstances such as DMCG with many gauge copies and the simulated
annealing method, MCG for cooled or renormalisation group smoothed field configura-
tions, or performing fundamental Landau gauge before doing the center gauge. On the
other hand the Laplacian gauges followed by center projection yield many perturbative
contributions, and the long range content of the gauge fields encoded in thick vortices
cannot be isolated properly. Also the identification of vortices using ambiguities of the
Laplacian gauge, working very well for configurations generated by hand, could not yet
be applied to Monte Carlo generated gauge field configurations.

Various ways to overcome these problems have been proposed or are already in use.
These includes the direct Laplacian center gauge, which combines a Laplacian gauge
with maximal center gauge, and a proposal to not insist on finding the global maximum
of the MCG functional (4.3) on page 31 but to average over various local maxima.
Formally, this is akin to the well-known procedure of introducing a gauge-fixing term
with a finite gauge fixing parameter into the action, without insisting on any particular
limit for this parameter [ER00a, LERT00]. Finally the methods not related to center
projection, such as the investigation on the vortex free energy, are not touched by these
difficulties.

Apart from these difficulties, MCG with over-relaxation remains a reliable tool in order
to detect vortices, as the convincing results reported in section 4.2.1 show. Therefore
we will further use this method with a low number of gauge copies, but pay attention
to the limits of the method as investigated in section 4.2.
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5 Structure of Vortices

Abstract

We investigate the structure and other properties of vortices detected in
Monte Carlo calculations using maximal center gauge and center projection.
These properties are in perfect agreement with the requirements from the
vortex model of confinement.

In chapter 4 we showed that the thick vortices present in Monte Carlo generated gauge
field configurations can be detected using various methods. From now on, we use the
maximal center gauge with over-relaxation using 6 gauge copies followed by center pro-
jection, limited to SU(2) gauge theory. The choice of MCG with over-relaxation is
justified by the fact that although this method seems not to work in the continuum
limit, for the parameters used in our calculations the MCG results agree with the better
funded DLCG results mentioned in section 4.3.2.3.

Center projection yields Z2 gauge configurations, as described in section 4.1. The
excitations of a Z2 configuration are thin center vortices, P-vortices. In this chapter, we
investigate the properties of P-vortices and their relation to confinement. Parts of the
results presented here and some additional details can be found in [Ber98, BFGO99].

5.1 P-vortex Surface

First we clarify how projected vortices look like according to their definition. After
center projection, we arrive at Z2 gauge field configurations. Each link is assigned the
value +1 or −1. We note the −1 links as negative links. Links are gauge dependent,
but the plaquette variables defined in section 2.2 as

Uµν(x) = Uµ(x)Uν(x+ µ̂)Uν(x+ ν̂)Uν(x) = ±1 (5.1)

are gauge independent. Its useful to look at the plaquette variables using the dual lattice.
The dual lattice is shifted with respect to the original lattice half a lattice spacing a/2 in
each direction. To each cell cn on the original lattice corresponds a cell cD−n of the dual
lattice, where D is the dimension of the lattice. In three dimensions, dual to points are
cubes of the dual lattice centered around the points, dual to links are plaquettes pierced
midway by the links, and dual to cubes are points located in the center of the cubes. In
four dimensions, the duals of points, links, cubes and hypercubes are hypercubes, cubes,
links and points, respectively. We note a plaquette of the original lattice to be pierced
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5.1 P-vortex Surface

Figure 5.1: A negative link (red), a negative plaquette (yellow), and the corresponding
dual P-link (blue).

Figure 5.2: Negative plaquettes and P-links (blue) around one or two negative links
(red).

by a P-vortex – an object defined on the dual lattice – if the plaquette variable equals
−1. To each negative plaquette there corresponds a dual object, in three dimensions it
is a dual link, in four its a dual plaquette. These are called P-links and P-plaquettes
and form a P-vortex line or a P-vortex surface, respectively.

For three dimensions, this is sketched in fig. 5.1. In this configuration, all links
are positive with exception to the one plotted red. Thus the plaquette plotted yellow is
negative. Dual to this plaquette is the blue link, which is a P-link. It is part of a P-vortex
piercing the yellow plaquette and carrying a center flux of −1, corresponding to the −1
factor of the product of the links around the negative plaquette. Note that negative
plaquettes and P-vortices are gauge independent, a gauge transformation multiplies all
links connected to a given site with −1. For each plaquette attached to the site, two
links are changed which gives a factor of +1 for the plaquette leaving it invariant.

Negative plaquettes do not come alone. If there is only one negative link in a con-
figurations, all plaquettes attached to this link are negative. The corresponding P-links
form a closed loop, as can be seen from fig. 5.2 (left part). We note such a closed loop of
P-links bordering a single dual plaquette as elementary plaquette. Adding more neg-
ative links to the configurations adds more elementary loops to the configuration. Two
elementary loops touching common P-links cancel, and form a larger loop as depicted
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5.1 P-vortex Surface

Figure 5.3: P-vortex resulting from the union of two elementary cubes. Links with
temporal plaquettes attached are plotted red. Only the bordering links of
temporal plaquettes are plotted. The plot shows a xyz and a yzt elementary
cube, their surface is the P-vortex.

in fig. 5.2 (right part). A connected set of P-links is called P-vortex, which is a closed
loop on the dual lattice. More, a P-vortex is not only closed but is also the border of
a two-dimensional volume, the Dirac volume, as already described in section 3.4. In
terms of holonomy theory, P-vortices are not only 2-cycles but also 2-boundaries. The
Dirac volumes are gauge dependent, only their boundaries, the P-vortices are gauge
independent.

In four dimension, as in our investigations, the dual of plaquettes are plaquettes on the
dual lattice, e.g. dual to a xy-plaquette is a zt-plaquette, where the two plaquettes are
orthogonal and intersect at their common center point. A single negative link is part of
6 attached negative plaquettes. The six P-plaquettes dual to these negative plaquettes
form a closed surface, the surface of a closed three-dimensional cube with volume a3,
where a is the lattice spacing. We call such a cube elementary cube. Adding more
links to the configuration, also more elementary cubes are added forming the (gauge
dependent) 3-dimensional Dirac volumes whose boundaries are the two-dimensional P-
vortices. Again if two elementary cubes touch at a common plaquettes than they cancel.
In general multiplication of a link with −1 changes the corresponding cube on the dual
lattice such that the P-plaquettes of the cube are created where no P-plaquette was
present, and cancels existing P-plaquettes of the cube. This effect of a link multiplication
on the P-plaquettes of the dual lattice is called elementary cube transformation
and ensures that the P-vortex surface consisting of the P-plaquettes remains closed.
An application and illustration of elementary cube transformations will be described in
section 5.3. The closeness of the P-vortex surface is the lattice equivalent to the Bianchi
identity of the continuum gauge theory.
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5.1 P-vortex Surface

Figure 5.4: P-vortex resulting from the union of a xyz and a yzt elementary cubes. The
two timeslices are plotted separate, temporal plaquettes are indicated by red
links for spacelike links and small legs for timelike links. The negative links
of the original lattice are plotted green. Be aware that the right green arrow
points in x direction and starts at x = x0 +a/2, where x0 is the x-coordinate
of the right, yzt elementary cube, and ends at x = x0 + a/2. The left arrow
is a t-link on the original lattice.

5.1.1 Visualisation of P-vortex Surfaces

In order to visualise two-dimensional P-vortex surfaces on the four-dimensional lattice,
we single out one direction as time direction and plot time like links in a arbitrarily
chosen direction in the 3D subspace spanned by the other directions. In fig. 5.3 on the
preceding page, we depict a P-vortex which is the surface of a xyz and a xzt cube which
touch each other. Links where a temporal plaquette is attached are plotted red. The
temporal plaquettes themselves are not plotted, only their bounding links in order to
make the plot more readable.

For larger P-vortex configurations, such a plot quickly becomes confusing. Hence
we depict each 3D timeslice in a separate plot and indicate the t-links bordering a
P-plaquette using small legs, as shown in fig. 5.4 which depicts the same P-vortex as
fig. 5.3. Here also the two negative links of the original lattice generating the P-vortex
are depicted as green arrows. (of course there are other gauge equivalent negative link
configurations generating the same P-plaquettes). As an example for a Monte Carlo
generated, center projected configuration, fig. 5.5 on the following page shows a 3D
timeslice of the dual of a configuration on a 124 lattice with β = 2.3. Already from
this picture some features of the vortex surface can be seen. The surface is closed, as
it should be. At a first glance this is not obvious, but taking into account the periodic
boundary conditions and the continuation of surfaces in time direction, the closeness
can be confirmed. There seems to be a single big surface filling the whole volume, we
see percolation (there are also smaller fragments, but they are mostly connected through
other time slices). And the surface seems highly irregular.

In the next sections we investigate the properties of the P-vortex surfaces in detail.
We used Monte Carlo generated SU(2) gauge field configurations gauged to MCG using
over-relaxation with 6 gauge copies, followed by center projection. The chosen lattice
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5.1 P-vortex Surface

Figure 5.5: 3-dimensional cut through the dual of a 124-lattice at β = 2.3. Spatial P-
plaquettes are indicated. They form closed two-dimensional surfaces. Tem-
poral P-plaquettes which extend in time direction and connect the given
3-dimensional space with neighbouring time-slices are indicated by small
amputated lines in forward or backward direction. Links with temporal
plaquettes attached are plotted red.
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5.2 Vortex Density

sizes are Nvol = 124, 124, 164, 224 for β = 2.2, 2.3, 2.4, 2.5, respectively.

5.2 Vortex Density

The P-vortex density is defined as the fraction p = NP /Npa of the number of P-vortex
plaquettes NP compared to the number Npa = 6Nvol of all plaquettes of a given 4D
lattice with Nvol lattice sites. p is the probability that a plaquette belongs to a P-vortex,
and it is proportional to the average area taken up by P-vortices per unit lattice volume.
The P-vortex density is one of the crucial test for the vortex picture of confinement. We
investigate the relation of the vortex density to the string tension, and how we can infer
properties of the P-vortex surface from p.

The distribution of P-vortices in space-time determines the string tension. The num-
ber n of piercings of P-vortices through the minimal surface spanned by a Wilson loop
determines the value of the projected Wilson loop Wcp(I, J) of size A = I × J :

Wcp(I, J) = (−1)n . (5.2)

n is also called the linking number, as introduced in section 4.3.4, of the Wilson loop
and the P-vortex surfaces. For projected Wilson loops, a piercing of the minimal area
does not only change the sign as it is the case for full, unprojected Wilson loops – after
projection, there is nothing but P-vortices left, and Wcp(I, J) is determined just by n.
We remark that the linking number does not change if not the minimal surface, but
any other surface bordered by the Wilson loop is taken. This is due to the fact that
P-vortices are closed, i.e. the Bianchi identity. Now because p is the probability that a
plaquette belongs to a P-vortex, by assuming the independence of piercings we get for
the expectation value of Wcp(I, J)

〈Wcp(I, J)〉 = [(1 − p)1 + p(−1)]A = (1 − 2p)A = e−σcpA ≈ e−2pA . (5.3)

The string tension σcp in center projection follows from its definition (3.12) as

σcp = −ln(1 − 2p) ≈ 2p . (5.4)

For the smallest Wilson loops Wcp(1, 1) = there can be maximal one piercing of the
minimal surface, and the assumption of independence of piercings is fulfilled trivially.
Hence the relation

〈Wcp(1, 1)〉 = (1 − 2p) (5.5)

holds exactly.

5.2.1 Scaling of the Density

Next we consider the scaling of the vortex density p. As discussed in section 2.4, the
dependence of the lattice spacing a on the inverse gauge coupling g in the large β limit
is given by asymptotic freedom in the two-loop approximation as

a2(β) =
Λ2

σp
F (β). (5.6)
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Figure 5.6: Vortex area per unit volume Av and ratio of string tensions σl and σa,
calculated on the lattice and from the asymptotic freedom expression (5.9),
respectively. The values for σl are taken as reported by Michael and Teper
[MT87] and Bali et al. [BSS95].

Here a is the physical lattice spacing given in fm, σp the physical string tension, and Λ
is the lattice parameter. We use the values

√
σp = 440 MeV and Λ = 62. The scaling

function F is defined as

F (β) =

(
6π2

11
β

)102/121

exp

(
−6π2

11
β

)
. (5.7)

If the asymptotic freedom estimate of (5.7) holds, the area of the P-vortex surface
per unit volume, expressed in physical units (fm−2)

Av = 6a−2 p (5.8)

should not depend on β approaching the continuum. In fig. 5.6 we plot Av . Starting
from β = 2.2 there seems to be good evidence for scaling, in agreement with previous
results [DFG+98, LRT98, ELRT98, LTER99, BFGO00]. For comparison, in fig. 5.6 also
the scaling for the string tensions σl inferred using lattice calculations on unprojected
lattices is depicted. To this end we divide the reference values for σl – taken from
Michael and Teper [MT87] for β = 2.2 and from Bali et al. [BSS95] for the other data
points – by the value σa for the string tension in lattice units calculated in two-loop
approximation via

σa = Λ2F (β). (5.9)
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5.3 Correlations and Fluctuations

For perfect scaling, the ratio σl/σa should be independent from β, and moreover using
a suitable value for Λ the ratio can be adjusted to 1. It is interesting to note that the
scaling of Av, in the range β = 2.3 − 2.5, is substantially better than the scaling of the
full asymptotic string tension σl in this range.

5.3 Correlations and Fluctuations

The vortex area per unit volume Av calculated from the vortex density p scales nicely
with the inverse coupling β, as shown in section 5.2.1. However, already from the figs. 4.2
to 4.4 on pages 36–38 in section 4.2.2 it can be seen that the center projected Creutz
ratios χcp(1, 1) (the logarithm of 1× 1 Wilson loops Wcp(1, 1)) lie above the asymptotic
string tension σ [Ber98, LTER99, BFGO99], and therefore the values of p come out
higher than those of f that can be inferred from σ using (5.4):

f = (1 − e−σcp)/2 . (5.10)

Why is the P-vortex density higher than necessary in order to give the correct string
tension? The reason is that the piercings of the surface spanned by the Wilson loop
are not independent, as assumed in (5.3), due to correlations of the P-vortex surface.
Because χ(I, I) is nearly independent of I for I ≥ 2 (precocious linearity), we think
that these correlation between piercings violating the independence assumption are at
a distance of one lattice spacing. In our opinion the reason for the correlation are short
ranged fluctuation of the P-vortex surface induced by the roughness of the lattice. As
already discussed in section 3.4 and in chapter 4, the vortices on the unprojected lattice
have a finite thickness. Center projection replaces these thick vortices by thin P-vortices,
but the exact position is not fixed and fluctuate within the thick vortex core. In addition
P-vortex locations, while correlated among random Gribov copies, do vary somewhat
from one random copy to another [DFG+98]. We find that these fluctuations are indeed
of the order of the lattice spacing a, at least for the values of β we have investigated, as
will be shown by the smoothing procedure described below.

For the 3-dimensional case, fluctuations of a P-vortices are depicted in fig. 5.7 on the
next page. The small elementary loop at the right side of the figure does not influence
the Wilson loop, because the two piercings cancel. Similarly, the S-formed fluctuation of
the P-vortex in the middle gives three piercings, which is equivalent to a single piercing
of the surface as at the left side of the figure. For loops Wcp(I, J) with I, J > 1, such
fluctuations only influence the loop if they are partly inside and partly outside of the
loop. Hence the fluctuations contribute to the perimeter part of the Wilson loop only
(see section 3.4), and not to the string tension.

In order to remove the small fluctuations of the P-vortex surfaces we introduce several
smoothing steps which are depicted in fig. 5.8 on the following page. This vortex
smoothing procedure iteratively scans for cubes of the lattice and transforms them
according to the following rules: In a first step a) we identify single isolated P-vortex
cubes consisting of six P-plaquettes only (i.e. the surface of elementary cubes) and
remove them. The next step b) identifies cubes covered by 5 P-vortex plaquettes. Such
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5.3 Correlations and Fluctuations

Figure 5.7: P-vortices piercing the minimal surface of a Wilson loop.

5 plaquettes 1 plaquetteb)

6 plaquettes 0 plaquettesa)

4 plaquettes 2 plaquettesc)

4 plaquettes 2 plaquettesd)

Figure 5.8: Various smoothing steps for vortices.
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5.3 Correlations and Fluctuations

Figure 5.9: Result of applying repeatedly all smoothing steps a)–d) on the configuration
of fig. 5.5 on page 70 after.

cubes can be substituted by one complementary plaquette which closes the attached
P-vortex surface. Step c) substitutes cubes which 4 P-plaquettes which are positioned
opposite on the cube by the two missing plaquettes. This step disconnects at least
locally two surfaces which have been joint before. Finally, in step d) the two missing
plaquettes join a common link. Note that each of these smoothing steps consists of
elementary cube transformations as defined in section 5.1, and preserves the closeness
of the P-vortex surface. Of course the negative links of the original lattice are changed
accordingly with the P-vortices on the dual lattice such that the P-vortices are the ones
calculated from the links. In our investigations, we take a configuration of P-vortices and
apply repeatedly some combination of the smoothing steps until the configuration does
not change any more. Applying all smoothing steps a)–d) on the configuration depicted
in fig. 5.5 on page 70 yields fig. 5.9. The P-vortex density has decreased considerably,
and on small scale the surface appears to be smoother. Nevertheless, there is still a
large percolating P-vortex surface which looks rather random.

The effect of the smoothing procedure on the vortex density is plotted in fig. 5.10
on the next page. The P-vortex density p labelled “unsmoothed” is clearly above the
estimate f from the stringtension labelled “from stringtension”. Removing the isolated
elementary cubes in smoothing step a) reduces p somewhat, and this reduction is fairly
independent from β. There seem to be some excitations creating elementary cube vor-
tices due to the coarseness of the lattice, and independent from the physical size of the
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lattice constant a. Applying step b) in addition drops p considerable, and this drop
depends on β. For both smoothing steps p remains larger than f . Most aggressive is
the addition of step d), whereas adding step c) to the a)+b) or to the a)+b)+d) com-
bination does not change the density considerably. The connecting bridges of step c) as
plotted in fig. 5.8 on page 74 simply do occur rather rarely. For β = 2.2 and 2.3, the
inclusion of step d) brings p below f , this smoothing is on coarse lattices too aggressive.
Starting from β = 2.4, p matches f quite nicely using step d). This indicates that the
only significant correlation among P-plaquettes is at a distance of one lattice spacing,
and we expect to have removed exactly the fluctuations which are responsible for this
correlation.

In order to check whether the smoothing procedure leaves the string tension invariant,
projected Creutz ratios χcp(I, I) calculated after smoothing are plotted in fig. 5.11 on
the next page. Whereas χcp(1, 1), which is directly related to the P-vortex density, is
lowered by the smoothing procedure, at β = 2.4 starting from I = 2 the Creutz ratios are
not influenced at all by the smoothing procedure. The lowering of χcp(1, 1) by applying
also the strongest smoothing step d) results in precocious linearity starting already at
I = 1. We have truly removed the short ranged fluctuations. For β = 2.2 and 2.3, the
inclusion of smoothing step d) lowers χ(I, I) also for I > 2, and it is lowered somehow
(∼ 5%) below the asymptotic string tension σ. In more detail, this results are shown for
χ(3, 3) in fig. 5.12 on page 78. All in all, the results on χcp(I, I) are in perfect agreement
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to the findings for the influence of smoothing on the P-vortex density p.
The influence of the smoothing steps on observables depending on β is also consistent

with findings for the correlation of vortex plaquettes presented in [ELRT98]; there a
correlation length of 0.2 − 0.6 fm for P-vortex plaquettes lying in a plane is found. At
β = 2.2 the lattice spacing is about a = 0.21 fm, and the most aggressive step d) can
change the Creutz ratios, whereas starting from β = 2.4 with a = 0.13fm the local
smoothing procedure acting on the scale of one lattice spacing (and somewhat above
due to the repetitive application of the smoothing steps on the configuration) does not
change the vortex surface beyond the correlation length found in [ELRT98].

5.4 Size of P-vortices

We have seen that short range fluctuations of the P-vortex surface contribute to the
perimeter part of the Wilson loop observable only. The estimate (5.3) on page 71 does
not hold because the assumption of the independence of piercings is not fulfilled. The
same is true for any vortex with some finite diameter. Lets assume that the linear
extent of vortices is bounded by some distance L. For Wilson loops W (I, J), I, J > L,
vortices inside the loop and far from the perimeter pierce the minimal area bounded
by the loop even times, and cannot contribute to the area law fall-off of the Wilson
loop. Only vortices in a region of thickness 2L around the loop can contribute, and the
area of this region is a function of the loop perimeter. For this reason, confining vortex
configurations will have to be very large, with an extent comparable to the size of the
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5.4 Size of P-vortices

lattice. In other words, we expect a percolating vortex to be present on the lattice.
To check this assumption we have to particularise the individual, separated vortices

present in a projected configuration. We do this by starting at a given plaquette and
determine neighbouring P-plaquettes. This leads to the question when two P-plaquettes
are connected. In most cases there is no doubt about the neighbouring plaquettes,
since most dual links connect only two P-plaquettes. But in some cases there appear
ambiguities, when dual links are attached to 4 or 6 P-plaquettes.1

1
23

4

Figure 5.13: The question of con-
nectedness can not be solved
uniquely for this configuration of
P-vortices.

In general P-vortices can be in contact at sites,
links and plaquettes. Let’s have a look at these dif-
ferent possibilities. A contact point is of no impor-
tance since we define the connectedness via com-
mon links. For our case of the Z2 center group
a plaquette belonging to two independent vortices
leads to a fusion of these vortices. The remaining
possibility, a contact of P-vortices at links needs
a more detailed discussion. A simple example of
such field configurations are two cubes, consisting
of 12 plaquettes, touching like in fig. 5.13.

For such a configuration it is not clear whether
it builds one or two vortices. At the given length

scale there is no unique solution for the question of connectedness. Connecting 1 with
2, 3 with 4 would result in one vortex, connecting 1 with 3, 2 with 4 in two separated
vortices. In most cases the situation can be resolved by postponing the decision about
the connectedness of these plaquettes until, by following the vortex surface in all other
directions, the indicated plaquettes (usually) turn out to be members of the same vortex.
There appear some cases where no decision is possible by these means, as in the simple
example of fig. 5.13. In order to get a lower limit for the size of vortices we decide in
such cases to treat the configuration as two separate vortices.

It may even occur that vortices touch along closed lines. In these cases parts of the
vortex surface cannot be reached following regular connections of plaquettes. Identifying
separated vortices we end with parts of P-vortices which are not closed surfaces. These
cases are even not so rare, their percentage is shown in fig. 5.14 on the following page.
The length of the closed line is usually very small and includes in the average 5 to 7
links. After applying smoothing step a), the percentage is very small, and starting from
step a)+b), all such closed lines are removed. Be aware that the percentage is calculated
using P-vortices weighted with their size, i.e. the number of contained P-plaquettes.

With the above mentioned rules for deciding connectivity of P-vortices in ambigu-
ous cases, we determine the P-vortex sizes. For this purpose we define the weighted
average vortex size sw. This is the relative size ||vi(a)||/NP of the vortex vi(a) con-
taining the P-plaquette Pa, averaged over all NP P-plaquettes in the projected gauge

1This problem is only present on the lattice. In a theory of P-vortices in the continuum as in [ER00a],
the probability that such ambiguities emerge has measure 0, and they do not contribute in the path
integral.
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field configuration2:

sw :=
1

NP

NP∑

a=1

||vi(a)||
NP

=

Nv∑

i=1

||vi||2
N2

P

. (5.11)

Here ||vi|| is the number of plaquettes in vortex vi, i(a) the index of the vortex containing
plaquette Pa, and Nv is the number of vortices in the projected configuration. In the
limit of infinite lattice volume and finite vortex density, sw = 1 if all P-plaquettes belong
to a single percolating vortex, and sw = 0 for the depercolation case.

Fig. 5.15 on the next page shows sw for various smoothing steps. It is obvious that for
all investigated β-values there is mainly one huge vortex. After removing the elementary
cube vortices using smoothing step a), the average plaquette is in a P-vortex which
contains over 90% of all P-plaquettes. All other vortices are rather small and should
not contribute to the string tension according to the above arguments. The stronger
smoothing steps remove even more of the smaller vortices. In all investigated field
configurations we found a single huge P-vortex, we never met a configuration with two
large vortices. Only vortices extending over the whole space contribute to an area law
at all length scales. We conclude that the string tension is determined by the area of a

2This observable resembles the average cluster size S of percolation theory. In our case the clusters
are the vortices. S differs from our sw in that i) it is not the average absolute size, but the average
fraction with respect to all P-plaquettes; and ii) all clusters resp. vortices, including the percolating
one, are included in the sum.
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Figure 5.15: Weighted average vortex size sw for various types of smoothing.

single huge P-vortex. Consistent with this result we also find that the linear extent of
the largest P-vortex surface equals the extent of the lattice. In other words, the P-vortex
does not fit into a hypercube smaller than the whole lattice confirming earlier results of
Chernodub et al. [CPVZ99] on this subject.

5.5 Topological Properties

The basis for the investigation of the topology of P-vortices is the following rule: The
type of homeomorphy of a two-dimensional, compact and closed surface is determined by
a) the orientation behaviour, b) the Euler characteristic. P-vortices in dual space would
fulfil the requested conditions (i.e. closeness) if every link joined only two plaquettes.
As mentioned in section 5.4, P-vortex are not always regular surfaces, they can touch
at points and links. We have already seen that if vortices touch along closed lines, they
cannot be isolated properly, and there remain parts of vortices which are not closed
surfaces. This can be solved by applying the smoothing procedure which removes the
ambiguities, as shown in fig. 5.14 on the preceding page – even the first smoothing
step a) is sufficient. Further, because the vast fraction of P-plaquette is part of one
single percolation P-vortex, and because only this vortex is relevant for confinement, we
restrict the calculations to the one dominating vortex of each configuration.

We will proceed in the following way. First, we will treat the determination of the
orientability for the case that every link joins uniquely two attached P-vortex plaquettes.
For each link of every P-plaquette we specify a sign. We start with an arbitrary P-
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5.5 Topological Properties

plaquette and fix an arbitrary rotational direction. Those two links which are run
through in positive axis direction get a plus sign, the other two get a minus sign. We
continue at an arbitrary neighbouring P-plaquette. Its rotational sense we fix in such a
way that the joining link gets the opposite sign than before. We continue this procedure
for every plaquette of the given P-vortex. If at the end every link of the P-vortex has
two opposite signs we call such P-vortices orientable. The simplest example is a three-
dimensional cube. If some links appear with two equal signs the P-vortex is unorientable,
e.g. it could be homeomorphic to a Klein bottle.

We already gave a certain classification for those cases where four or six P-plaquettes
are joined by a single link, see also fig. 5.13 on page 79. In cases of this kind, where
different pairs of P-plaquettes can be treated as belonging to independent vortices, we
determine the orientability as though the vortices did not touch at such links. This
way we get an upper bound for the orientability of vortices. Analogously we proceed
for the case of a vortex touching itself at a link. We determine the orientability for
a configuration where this touching is avoided. The case where a part of the surface
cannot be reached because the touching links form a closed loop has already be excluded
by applying the smoothing procedure.

The simulation shows that without exceptions the large vortices in all investigated
field configurations, for all investigated β-values, turned out to be unorientable surfaces.
We checked for the various employed smoothing steps whether this behaviour remains
unchanged. It turns out that P-vortices remain unorientable after smoothing; apparently
the smoothing procedure does not remove all of the local structures (e.g. “cross-caps”)
responsible for the global non-orientability.

The second property which determines the topological properties of a closed, compact,
two-dimensional surface is the Euler characteristic χ3. For cell complexes such as P-
vortices on the lattice χ is defined by

χ = N0 −N1 + N2 , (5.12)

where Nk is the number of cells ck of the cell complex, i.e. N0 is the number of vertices,
N1 the number of links, and N2 the number of plaquettes forming the P-vortex surface..
χ is directly related to the genus g of a surface, in the orientable case by

χ = 2 − 2g (5.13)

and in the unorientable case by
χ = 2 − g . (5.14)

An orientable surface of genus g is homeomorphic to a sphere with g attached handles.
An unorientable surface of genus g corresponds to a sphere with g attached Möbius
strips (also known as “cross-caps”).

3We use the same symbol for the Euler characteristic χ and the Creutz ratios χ(I, J). The arguments
present for Creutz ratios (e.g. (I, J)) unambiguously distinguish the two quantities.
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Figure 5.16: Genus g of the largest P-vortex per fm4 for various inverse couplings β.

The determination of the Euler characteristic of a P-vortex is not inhibited by possible
self-touchings. We can simply treat the vortex as it is; the result is the average between
a possible separation and a real fusing of the two parts of the vortex. For a detailed
discussion of this case see [Ber98].

In fig. 5.16 we show the genus g = 2 − χ per fm4 of the dominating P-vortex for
various values of β. For the scaling to physical volumes we use again (5.6) on page 71.
Smoothing step a) only removes elementary cube P-vortices and does not change χ for
the largest vortex, but this smoothing removes the ambiguities due to touching links
which form closed loops, as discussed above. Hence in fig. 5.16 only results for smoothed
configurations starting with step a) are shown. After only applying smoothing step a)
the genus density takes a maximal value around β = 2.3. With b) smoothing, contact
points and contact links can be removed, therefore a reduction of the genus of a vortex
by smoothing step b) is to be expected. In fig. 5.16 this reduction is of the order of 15
%. As for the vortex density plotted in fig. 5.10 on page 76, smoothing step d) has the
largest effect. This step also removes contact points and contact links. Finally, step c)
can also remove regular bridges in vortices, as depicted in fig. 5.8 on page 74. Although
these bridges occur rather seldom as can be seen from the small effect of smoothing
step c) on the P-vortex density, there is some impact on the Euler characteristic χ.
Because c) changes χ coercively and not only occasional if contact links and points are
removed as for the other smoothing steps, its effect is disproportionate. The reduction
by all smoothing steps combined amounts to 55% at β = 2.2 and 43% at β = 2.5.
The genus stays more nearly constant with β with than without smoothing. It has to
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5.6 Structure of P-vortices at Finite Temperature

be investigated how the behaviour of g behaves at still higher β-values. The trend in
the investigated region seems compatible with a scaling behaviour for genus g, and is
not compatible with a self-similar short-range structure below the confinement length
scale. Fractal structure of that kind would lead to an increase of the genus with β, as
more handles are uncovered at ever-shorter length scales. Of course, even a smoothed
P-vortex surface will be rough at length scales beyond the confinement scale, and an
appropriate fractal dimension can be defined. The fractal dimension of unsmoothed
P-vortex surfaces, using the definition of dimension D = 1 + 2N2/N1, where N2 is
the number of plaquettes and N1 the number of links on the vortex surface, has been
reported in [CPVZ99] and [BVZ99].

These investigations of the topology of P-vortices show that they are not topologically
3-spheres. This is not so surprising; there was no particular reason that vortices should
have this topology. The structure which we identified, huge vortices extending over the
whole lattice, unorientable with a lot of handles, is quite consistent with rotational sym-
metry in four dimensions. It is also consistent with the picture of a percolating random
surface giving uncorrelated piercings of Wilson loops and area law behaviour for the
loops and thus confinement. The unorientability of the vortex surface is also important
for another feature of the vortex model besides the explanation of confinement. Chiral
symmetry and the topological susceptibility in the framework of the vortex model will
be treated in detail in chapter 7.

5.6 Structure of P-vortices at Finite Temperature

The SU(2) gauge theory possesses a high temperature phase, the deconfined phase. In
this phase the quark-gluon plasma arises and fundamental charges are set free. The
first discussion of the confinement/deconfinement phase transition in the context the
vortex theory and center-projection methods, was made by Langfeld et al. in [LTER99],
giving a nice explanation of the space-space string tension in the deconfined phase
in terms of vortices closed in the time direction by lattice periodicity. Another very
interesting investigation on the effect of finite temperature on the vortex structure is
due to Chernodub et al. [CPVZ99]. In this section we will extend our study of P-vortex
topology, and the effect of our smoothing steps on P-vortices, to the finite temperature
case.

As described in section 2.3.4, finite temperature can be simulatedβ Ns

1.6 - 2.1 12
2.2 - 2.3 16
2.4 - 2.6 20

2.7 28

Table 5.1: β vs.
Ns.

on the lattice by using an asymmetric lattice of size Nvol = Nt ·N3
s

where the physical extent in time direction aNt corresponds to the
inverse temperature T . Because the lattice constant a decreases with
β, the temperature can be adjusted using different values of β and
different temporal lattice extents. We did our finite temperature cal-
culations on Nt ·N3

s -lattices with temporal lattice extents of Nt = 2,
Nt = 4 and Nt = 6. For the spatial lattice extent Ns we used de-
pending on β the values given in table 5.1, if not specified otherwise

below. For each parameter set 300 configuration have been generated to measure ob-
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Figure 5.17: Percentage of electric P-plaquettes compared to all P-plaquettes as a func-
tion of β for lattices with Nt = 2.

servables. To infer the vortex content, MCG using over-relaxation with Ncopy = 5 gauge
copies has been performed, followed by center projection.

The most striking difference to zero-temperature calculations is the strong asymme-
try of P-plaquette distributions in the deconfined phase which can be seen in figs. 5.17
to 5.19 on pages 85–86. As a short-hand notation we use E-plaquette or electric plaque-
tte for space-time and B-plaquette for space-space negative plaquettes of the original
lattice. On the dual lattice, E-plaquettes are space-space P-plaquettes and B-plaquettes
are space-time P-plaquettes. An investigation of this asymmetry was also performed
in [LTER99]. In the confined phase, the densities of E-plaquettes and B-plaquettes are
equal, just as for the zero-temperature calculations on symmetric lattices. Just below
the phase transition the density of E-plaquettes is slightly larger than the density of B-
plaquettes. Whereas this effect is almost absent for Nt = 6, at Nt = 4 we have ∼ 50.9%
E-plaquettes, and for a time extent of Nt = 2 lattice units the fraction of E-plaquettes
amounts to ∼ 53% as one can see in fig. 5.17. This excess of E-plaquettes seems to be
connected with short range fluctuations of the vortices, since it is greatly reduced by
smoothing, and can be considered to be a finite size effect because it is nearly absent at
Nt = 6.

In the deconfined phase, the density of E-plaquettes is strongly decreasing with
smoothing, and for the a)+b)+c)+d) smoothing step with Nt = 2 soon reaches values
close to 0% as seen in fig. 5.17. For Nt = 4 and Nt = 6, with the strongest smoothing the
percentage of E-plaquettes also decreases strongly with β, and inclines toward 0%, but
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Figure 5.18: Percentage of electric P-plaquettes compared to all P-plaquettes as a func-
tion of β for lattices with Nt = 4.
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Figure 5.19: Percentage of electric P-plaquettes compared to all P-plaquettes as a func-
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Figure 5.20: P-plaquettes of a typical field configuration at β = 2.6, on a 2 · 123-lattice.
The two t-slices for the x-y-z-subspace are shown. The rightmost t-slice
is a copy of the leftmost one in order to illustrate the periodic boundary
conditions. Amputated lines leaving a t-slice arrive at a neighbouring t-
slice.

larger values of β seem to be necessary in order to reach 0%. E-plaquettes in the decon-
fined phase appear obviously due to short range fluctuations and cannot contribute to
an area law behaviour, as can be seen from the large effect of the smoothing procedure
on E-plaquettes reducing their fraction considerably. The detected strong asymmetry in
the deconfined phase gives a very intuitive explanation for the behaviour of space-time
and space-space Wilson loops, as discussed in [LTER99]. The dominant vortex which
percolates through the lattice is a (mostly) timelike surface on the dual lattice, which is
closed via periodicity in the time direction. Polyakov lines are not affected by timelike
vortex surfaces, and timelike Wilson loops are also unaffected. Therefore the string ten-
sion of timelike loops is lost in the deconfined phase [LTER99, ELRT00]. On the other
hand, large timelike vortex surfaces (composed of B-plaquettes) do disorder spacelike
Wilson loops, which accounts for the string tension of spatial loops [BFH+93, KLL95]
in the deconfined regime.

Fig. 5.20 displays the P-plaquettes of a typical field configuration at β = 2.6 on a
2 · 123-lattice. The two time-slices of the lattice are plotted separately. Actually there
are three slices plotted, but the rightmost slice is a copy of the leftmost slice, illustrating
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5.6 Structure of P-vortices at Finite Temperature

a) b)

Figure 5.21: P-plaquettes in a typical field configuration at β = 2.6, on a 2 · 123-lattice.
Two successive z-slices for the x-y-t-subspace are shown. The amputated
lines leaving the left figure towards right arrive in the right figure from the
left.

the periodic boundary conditions. Small legs indicate B-plaquettes connecting the dif-
ferent slices. In fig. 5.21 the same configuration as in fig. 5.20 on the preceding page is
plotted. Here not the two x-y-z-subspaces, but two x-y-t-subspaces are drawn. Plaque-
ttes extending in z-direction are indicated by small legs. This plot illustrates that the
P-plaquettes form cylinders in time direction, closed via the periodicity of the lattice.
Thus they are homeomorphic to a torus. Vortices of this shape are also well known in
finite temperature theory under the name of ordered-ordered interfaces [HJK92].

The density of P-plaquettes is depicted in figs. 5.22 to 5.23 on pages 89–90 for un-
smoothed configurations, and after applying all smoothing steps. In each figure the
densities are plotted separately for E- and B-plaquettes. Below the phase transitions,
which depends on the temporal lattice extent Nt, both densities coincide, and are equal
to the P-vortex density found in the temperature T = 0 calculations of section 5.3.
Only for the unsmoothed Nt = 2 calculations, the finite size effect mentioned above
that E-plaquettes are somewhat increased is present; B-plaquettes seem to be somewhat
decreased. At the phase transition, the situations changes drastically. The E-plaquette
density falls quickly. Interesting is the density of B-plaquettes: First, it drops also faster
than in the confined phase, but boldly less than the E-plaquette density. This drop can
be seen nicely by comparing with the Nt = 4 or later Nt = 6 curves, which remain in
the confined phase till higher values of β. But at higher temperatures, the slope of the
B-plaquette density flattens, and at large values of β the density is clearly larger than
in the zero-temperature case. This result is in perfect agreement with the findings in
[BFH+93, KLL95]. The measured spatial string tension increases with the temperature
T , too.

For the calculation of topological properties and of the size of vortices, again as for the
case at zero-temperature the question of connectedness of the vortex surface has to be
resolved, see the discussion about fig. 5.13 on page 79 in section 5.4. Fortunately, as in
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Figure 5.22: Percentage of E- and B-plaquettes, compared to the number of all space-
space and space-time plaquettes as a function of β forNt = (2, 4, 6), without
smoothing.

the zero-temperature case the ambiguities can be treated satisfactorily. The exception
are vortices which touch along closed lines, which results in unclosed parts of P-vortices
if we try to identify the individual vortex surfaces. For the temperature T = 0 case, we
could avoid this problem by applying the first smoothing step a) which only removes
elementary cube vortices and does not influence the bigger vortices whose topological
properties we are interested in. At finite temperature with Nt = 2, we have not been
able to solve this problem using smoothing. On a lattice with such a small extent in time
direction, there is a higher probability that some part of a P-vortex surface is connected
to the rest of the surface only crossing ambiguous links. Easily these links can form two
loops of length 2, each closed over the periodicity of the lattice, and separating a part
of the vortex surface. But for Nt = 4 and Nt = 6, smoothing step a) can successfully
remove the closed line ambiguities, thus we have results for the topological properties on
lattices with Nt = 4 and Nt = 6 only. Therefore as for the zero-temperature case, for the
topological properties we only show results from smoothed lattices, because smoothing
a) does not change the orientability or the Euler characteristic of the larger vortices, but
helps to identify the separated P-vortex surfaces by removing elementary cube vortices.

As expected from the zero-temperature results, in the confined phase most of the
P-plaquettes belong to a single large vortex. This can be seen in figs. 5.24 to 5.25 on
pages 90–91, where the weighted average vortex size sw (5.11) is plotted for Nt = 4 and
Nt = 6. The situation changes drastically at the phase transition where the percentage
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Figure 5.25: Weighted average vortex size sw as a function of β with Nt = 6.

of P-plaquettes in the average vortex drops considerably, especially for the unsmoothed
configurations. The smoothing procedure shows that there is still one large vortex but its
dominance is not so strong as in the zero-temperature case. The reason for the increase
of the percentage from β = 2.5 to β = 2.7 for Nt = 4, and from β = 2.6 to β = 2.7
for Nt = 6, is unclear. This might be a finite size effect as presumed in [BFGO00];
we have done some calculation for different spatial lattice extents Ns and could not
confirm this assumption, but a definitive answer could not be given yet. This question
will require detailed investigations on a large range of lattices sizes and gauge copies
with better statistics, as it was done for the MCG tests at zero-temperature described
in section 4.2.3. In any case, the indisputable existence of a large space-time vortex on
the dual lattice is required, at finite temperature in the deconfined phase, in order to
explain area law behaviour for spacelike Wilson loops. We have also found percolation
for the largest P-vortex both below and above the phase transition; it extends over the
whole lattice.

With the decrease in the percentage of E-plaquettes we find increasing orientability of
P-vortices. The orientability is one of the few observables depending on the used spatial
lattice extents Ns of our Nt ·N3

s lattices, as shown in figs. 5.26 to 5.27 on pages 92–93.
Be aware that the percentage is calculated using P-vortices weighted with their size,
i.e. the number of contained P-plaquettes. The orientability approaches 100% for large
β, but on the larger lattices this happens at larger values of β. This can readily be
understood by the nature of unorientability: Any local unorientability (i.e. each “cross-
cap”) makes the whole P-vortex surface unorientable, and assuming a constant density
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Figure 5.26: Percentage of orientable P-vortices on 4 ·N3
s lattices for different values

of Ns depending on β. The P-vortices are weighted with their size (the
number of P-plaquettes in the vortex).

of “cross-caps”, on larger lattices the probability that there is at least one “cross-cap” in
the P-vortex is higher. Smoothing step d) strongly increases orientability.

The relations between genus g and Euler characteristic χ are different for orientable
(5.13) and unorientable surfaces (5.14). Since both types of surfaces appear in finite
temperature calculations we investigate the value of 2 − χ as in the zero-temperature
case. For orientable vortices this expression is the genus g, for unorientable surfaces half
of the genus. In figs. 5.28 to 5.29 on pages 93–94 we show the value of 2 − χ divided
by the lattice volume Nt ·N3

s for the largest vortex of each configuration. These data
are not scaled with the lattice constant a as in the zero-temperature case (fig. 5.16 on
page 83) because changing β does not only change the lattice spacing a but also the
temperature T . We have checked that for this observable the dependence on the lattice
size is very weak. In the confined phase P-vortices are again complicated surfaces; as
in the zero-temperature case, and as for the unorientability, smoothing step c) has a
disproportional effect.

Above the phase transition 2 − χ approaches – independent from the lattice size –
the value 2, as plotted in figs. 5.30 to 5.31 on pages 94–95. This is a consequence of the
vanishing density of E-plaquettes. The largest P-vortex becomes orientable with genus
g = 1 and χ = 0. It is homeomorphic to a torus, as can also be seen in fig. 5.21 on
page 88.
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5.7 Structure of Thick Vortices

In this chapter, up to this section, we have only investigated the properties of thin,
projected vortices. We will now look at the structure of unprojected vortices.

A particular feature of the vortices present in the unprojected configurations which
is lost in the projection step is their thickness. As described in section 3.4, the action
of thin vortices on the unprojected lattice is divergent in the continuum limit. Hence
vortices bordering the Dirac volume are thick, and the colour magnetic flux of the vortex,
which is quantised in terms of a center element of the gauge group, extends over a finite
area.

We have seen the influence of the finite vortex thickness already in our investigation
of the maximal center gauge (MCG), see section 4.2.3. Calculating center projected
observables after MCG and center projection, considerably larger lattices are required
to avoid finite size effect, compared to unprojected observables. Only if the linear
extent of the lattice is larger than the average vortex diameter, the vortices can be fully
detected. In fig. 5.32 on the following page, we plot the P-vortex density p against the
linear extent L of our L4 lattices using Ncopy = 20 gauge copies. It can clearly by seen
that p is quite low on smaller lattices and increases with L. At L = 16 the density starts
to level off. This indicates that the vortex thickness is smaller than 16 lattice spacings
at β = 2.5.

There are three independent ways to actually estimate the thickness of center vortices,
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Figure 5.32: Vortex density p vs. the extent L of the hypercubic lattice (volume L4) at
β = 2.5.

which can be deduced from either

1. the ratio of “vortex-limited” Wilson loops [DFG+98];

2. the vortex free energy as a function of lattice size [KT00];

3. the adjoint string-breaking length [dFP00b].

Vortex-limited Wilson Wn loops have been defined in section 4.2.1. Data for W1/W0

vs. loop area at β = 2.3 taken from [DFG+98] has been plotted already in fig. 4.1 on
page 35. We can expect that

W1(C)

W0(C)
→ −1 (5.15)

in the limit where the vortex core is entirely contained within the loop. Judging from this
figure, the vortex appears to almost fit inside a 5×5 loop, which leads to a rough estimate
of the vortex radius, as it pierces a plane, of about 3 lattice spacings. Calculating the
lattice spacing in physical units using (5.6) we find that the estimated vortex diameter
of 6 lattice spacings corresponds to a vortex thickness of about one fm. Of course this
neglects the possibility that the vortex is not contained entirely within the loop because
it lies not at center point of the rectangular loop, but more towards the border of the
loop. There are some simulations taking into account the position of the projected vortex
in vortex-limited Wilson loops [Ste00], they indicate a smaller value for the diameter of
the vortex core. More calculations are needed for this method to estimate the vortex
thickness.

A second estimate is obtained from the calculation of the vortex free energy vs. lattice
size, carried out numerically by Kovács and Tomboulis [KT00]. The vortex free energy is
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close to zero when the lattice extent is greater than the vortex thickness, and this again
gives an estimate for the vortex thickness of a little over one fm. Finally, if confinement
is due to center vortices, then an I × J Wilson loop in the adjoint representation must
change from a (Casimir scaling) area law falloff to a (colour-screening) perimeter law
falloff for charge separation I greater than the vortex thickness [FGO98, FGO99b], see
also section 3.4. The adjoint string-breaking distance has been measured, by de Forcrand
and Philipsen [dFD99], to be 1.25 fm, and this distance provides us with a third estimate
of the vortex thickness, which is roughly consistent with the other two.

It is instructive to compare the vortex thickness with the average distance between the
vortices which can be inferred from the vortex density. We use the estimate f calculated
from the string tension using (5.10) for the P-vortex density. This estimate agrees well
with the actual P-vortex density p after smoothing the short range fluctuations of the
vortex surface, as has been shown in section 5.3. For β = 2.3 we find f = 0.063. This
implies an average distance of f−1/2 ≈ 4 lattice spacings between the centres of vortex
cores piercing a plane. Since we have already estimated the vortex thickness at β = 2.3
to be about 6 lattice spacings, its clear that there must be a substantial overlap between
vortex cores, even on a very large lattice. There is nothing in principle wrong with that;
vortex cores are not impenetrable objects, and their long-range effects are associated
with Dirac 3-volumes, rather than the detailed structure of the core. Our findings for
vortex thickness and separation simply indicate, in accordance with some old ideas of
the Copenhagen group [NO79, AO80b, AO80a], that the QCD vacuum is more like a
liquid of vortices than a dilute gas.

Other features of thick, unprojected vortices include the colour structure. The center
projection squeezes thick vortices into thin P-vortices carrying a flux of exactly −1,
whereas thick vortices can have a profile extending the whole gauge group. We have
discussed this colour structure already in the context of the Laplacian center gauges
in section 4.3.5.2. Some part of the colour structure can even be saved for projected
vortices and be encoded in the orientability of the two-dimensional P-vortex surface.
This is an import feature for the topological properties of QCD in the vortex model,
which will be dealed with in chapter 7.

5.8 Conclusions

We have investigated the size and topology of P-vortices in SU(2) lattice gauge theory;
P-vortices are surfaces on the dual lattice which lie at or near the middle of thick
center vortices. We have found that in the confined phase the four-dimensional lattice
is penetrated by a single huge P-vortex of very complicated topological structure. This
huge P-vortex is a closed surface on the dual lattice which is unorientable and has
many (∼ 10/fm4) handles. There exist also a few very small vortices. They contribute
together with short range fluctuations of the large P-vortex to the perimeter law falloff
of projected Wilson loops only. These short range fluctuations may simply be due to a
slight ambiguity in the precise location of the middle of a thick center vortex and are
not necessarily characteristic of the thick center vortices themselves.
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5.8 Conclusions

By a smoothing procedure, we were able to remove these perimeter contributions due
to short-range fluctuations, keeping the Creutz ratios constant. Thus the short-range
P-vortex fluctuations are found to account for the difference between the percentage p
of plaquettes which are pierced by P-vortices, and the comparatively smaller fraction
f which, in the simplest version of the vortex model (with uncorrelated P-plaquettes),
contributes to the string tension. Upon smoothing away the short-range fluctuations,
we find the fraction p closely approaching the value of f extracted from the asymptotic
string tension.

The density of vortices does not vanish in the deconfined phase, but a strong space-
time asymmetry is found. P-vortices at finite temperature are mainly composed of
space-space plaquettes forming timelike surfaces on the dual lattice. These surfaces are
closed via the periodicity of the lattice in the time direction, they are orientable, and
have the topology of a torus, i.e. genus g = 1. The dominance of the largest vortex is not
as strong as in the zero-temperature case. The space-time asymmetry of P-vortices in
the deconfined phase nicely explains [LTER99] the corresponding asymmetry in Wilson
loops, which have area-law falloff for spacelike, and vanishing string tension for timelike
loops.

Finally we find that thick vortices present in the unprojected configurations are not
well separated objects, but overlap considerably. This suggests rather the picture of a
liquid of vortices than that of a dilute vortex gas.
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6 Vortices with Matter Fields

Abstract

We investigate the influence of matter fields on vortices. Because fermions
are costly to simulate on the lattice, we use scalar fields instead. Our model
is the SU(2)-gauge Higgs theory.

6.1 The SU(2)-Higgs Model

Up to now, our numerical investigations have concerned pure gluonic QCD only (or the
simpler pure SU(2) gauge theory). As already mentioned in section 3.1, if dynamical
fermions are included, it is well known that the long range part of the potential be-
tween static charges changes qualitatively compared to the quenched approximation:
Schematically depicted in fig. 6.1, at some screening distance r0 the string between
a quark-antiquark pair breaks. Out of the vacuum an additional quark-antiquark is
formed, and the potential levels off. This is roughly shown in fig. 6.2 on the next page.
At small distances we have a Coulomb-like 1/r potential, at intermediate distance we
see the linear rising potential characteristic for confinement, and beyond r0 the potential
V (r) is constant.

The simulation of dynamic fermions on the lattice is rather involved and costly with
regard to computer time. Fortunately string breaking has been observed numerically
also for a simpler model, the gauge-Higgs system [KS98]. More precisely, the model used
in this chapter is lattice SU(2) gauge-Higgs theory with Higgs fields in the fundamental

Figure 6.1: Schematic picture of the breaking of the string between a quark and an
antiquark.
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6.1 The SU(2)-Higgs Model

Figure 6.2: Schematic plot of the static potential between a quark and an antiquark.

representation; the action is given by

S[ω,Φ] = SY M [ω] +

∫
|D∇Φ|2 + V (Φ) (6.1)

V (φ) = m|ϕ|2 + λ|ϕ|4. (6.2)

On the lattice this action can be written as

S[U,Φ] = SW +
∑

x

[
Φ†(x)Φ(x) + λ

(
Φ†(x)Φ(x) − 1

)2
]

− κ
∑

µ,x

(
Φ†(x)Uµ(x)Φ(x+ µ̂) + cc

)
(6.3)

SW = β
∑

µ<ν,x

(
1 − 1

2
ReTrUµν(x)

)
, (6.4)

where SW is the Wilson plaquette action (2.33) on page 16, and Φ =
(φ1

φ2

)
, with

φ1, φ2 ∈ C, is a massive scalar field in the fundamental representation of SU(2). A
schematic phase diagram for the SU(2)-Higgs model is depicted in fig. 6.3 on the next
page. In the “confined”1 phase, the potential between fundamental charges rises linearly
at intermediate distances. Due to colour screening of fundamental charges, there is
string breaking at some finite distance r0, and the potential levels off. In the Higgs
phase, the Higgs mechanism is at work, and the potential is Yukawa-like; the string
tension vanishes at all separations. However, these are not thermodynamically distinct
phases. The phase diagram is connected, in the sense that one can always find a path
between any two points in the phase diagram which avoids any non-analyticity in ther-
modynamic quantities. The transition line which might have separated the Higgs and

1We have introduced in section 3.1 the confined phase as a phase with non vanishing asymptotic string
tension σ. Thus we quote the term “confined” in order to indicate that σ is asymptotically zero due
to string breaking.
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6.1 The SU(2)-Higgs Model
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Figure 6.3: Schematic phase diagram for the SU(2)-Higgs system at zero temperature
(top), and on lattices with a fixed extent in the time direction (bottom).
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6.2 Finite Temperature

confinement phases ends at a critical point in the strong coupling region, and from there
changes over to crossover behaviour. Thus if we speak of the Higgs or the “confined”
phases in this model, we are aware that we speak rather of regions belonging to a single
phase of the system [FS79].

At finite temperature and κ = 0 there is an additional phase, namely, the deconfined
phase. In this phase the quark-gluon plasma arises and fundamental charges are set free.
For κ > 0 there is no true phase transition between the “confined” and “deconfined”
phases, but only crossover behaviour indicated by the dashed line in fig. 6.3 on the
preceding page (lower figure). Hence we still have only one phase in the β − κ plane.

The vortex picture of confinement was first applied to the SU(2) gauge-Higgs system in
the early 1980s [MMO82, MO84]. Numerically we have seen in section 5.6 that the vortex
density p drops across the deconfinement transition, and that because of the suppression
of E-plaquettes timelike loops are not disordered any more. Newer investigations [Lan02,
BF02] show that in the Higgs phase the vortex density is suppressed too, which raised the
expectation that also in the gauge-Higgs system confinement can be described within
the vortex model [BFGO04]. In this chapter we investigate the properties of center
projected observables and of the center vortex surfaces themselves in the various phases
of the model depending on couplings and temperature.

It is most efficient to carry out Monte Carlo simulations of the gauge-Higgs system
in unitary gauge, where Φ =

(φ
0

)
, φ ∈ [0,∞], and only one degree of freedom has to be

simulated for the Higgs field. In the unitary gauge we get the partition function

Z =

∫
D[U ]D[φ] exp (−SW − SHu) (6.5)

SHu =
∑

x

[
φ2(x) + λ

(
φ2(x) − 1

)2
]

− κ
∑

µ,x

(
φ(x)φ(x+ µ̂)Tr[Uµ(x)]

) (6.6)

with φ =
√

Φ†Φ and integration measure

∫
D[φ] =

∏

x

∫ ∞

0
dφ(x)φ3(x). (6.7)

In contrast to the simulations presented in the other chapters, where we used the heat-
bath algorithm, it was necessary to fall back on the Metropolis algorithm to generate
the 1000 Monte Carlo configurations used for each parameter set. Again center gauge
using over-relaxation and center projection are used.

6.2 Finite Temperature

We start with calculations at finite temperature T where it is much easier to study string
breaking, as we will see below. At finite temperature, confinement and deconfinement
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Figure 6.4: Expectation values of the Polyakov loop in the “confined” phase at β = 2.1.
Open symbols denote measurements at κ = 0.0, filled symbols at κ = 0.25.
Squares are used for measurements on unprojected, full SU(2) configurations
and circles for center projected fields.

can be studied using the expectation value of the modulus of the Polyakov loop as
defined in section 3.3:

〈|L|〉 =
〈∣∣∣

1

N3
s

∑

~x

L(~x)
∣∣∣
〉

Ns→∞
= e−F/T for Ns → ∞ (6.8)

where

L(~x) :=
1

2
Tr

Nt∏

x4=1

U4(~x, x4) (6.9)

and F is the free energy of a single static quark relative to vacuum at temperature T .
Without dynamical matter fields, we have

lim
Ns→∞

〈|L|〉 = 0 (6.10)

in the confined low temperature phase. If matter is included, screening becomes possible.
In that case 〈|L|〉 is non-zero, and F is finite, in the large volume limit. This means a
single static quark can exist because it is screened by the dynamic matter field.
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6.3 Zero Temperature

To test whether center dominance holds also in the gauge-Higgs model, we do Monte
Carlo simulations without (κ = 0) and with (κ = 0.25) the scalar field for various lattice
sizes and inverse gauge couplings β, and perform DMCG and center projection. For the
quartic coupling we use λ = 0.5. Some results for β = 2.1, 2.2 and 2.25 are shown in
figs. 6.4 to 6.6 on pages 103–105. In this region, as seen in section 5.6, the system is in
the low temperature “confined” phase. Clearly for κ = 0 the expectation value of 〈|L|〉
vs. 1/

√
N3

s on unprojected lattices extrapolates linearly to zero in the Ns → ∞ limit of
infinite spatial volume. In contrast, at finite gauge-Higgs coupling κ = 0.25, 〈|L|〉 tends
to a non-zero constant at infinite spatial volume, as expected. This well known result
is also found on center projected lattices. Due to suppressed self energy contributions
and ultraviolet fluctuations in the projected configurations, the expectation value of the
Polyakov loop observable 〈|LP |〉 on projected lattices is larger than the corresponding
expectation value 〈|L|〉 on unprojected lattices, but the qualitative behaviour of the two
observables, in the large-volume limit, is the same. Again for κ = 0 the Polyakov loop
tends to zero, whereas at κ = 0.25 〈|LP |〉 remains finite. Even though the levelling off to
a finite values starts at different lattice sizes depending on β, projected and unprojected
loops behave in the same way: As can be seen from fig. 6.7 on the next page, the ratio
of the projected and unprojected Polyakov expectation values is virtually constant, and
nearly independent of both lattice extent Ns and coupling κ for β = 2.1, 2.2 and 2.25.

As mentioned above, without Higgs field at the transition to the deconfined phase
〈|L|〉 becomes finite in the large volume limit. This holds also after center projection
[DFGO97] and can be explained by vortex polarisation and depercolation, as described
in section 5.6. The inclusion of the scalar matter field does not qualitatively change the
behaviour of the system in the deconfined phase, as can be seen from the measurements
at β = 2.3 and 2.4 depicted in figs. 6.8 to 6.9 on pages 108–109.

At β = 2.3 the Higgs field leads to an increase of 〈|L|〉 and 〈|LP |〉. This increase
becomes quickly very small at higher temperatures T as shows the result at β = 2.4
(fig. 6.9). The important result is center dominance. As in the “confined” phase, the
projected values are higher than the unprojected ones, but their ratio is almost constant
with respect to Ns as plotted in fig. 6.10 on page 110. Also in the deconfined phase the
dependence of the ratio on κ is still weak.

To conclude, at any temperature with or without dynamical matter fields 〈|L|〉 and
〈|LP |〉 are in the infinite volume limit either both zero, or both non-zero. This means
the confining properties of QCD are again shown to be contained in the center vortex
content isolated using DMCG and center projection. In particular, the presence of a
dynamical matter field must influence the spatial distribution of P-vortices, in such a
way that P-vortex fluctuations no longer bring 〈|LP |〉 to zero in the large volume limit,
even in the low temperature regime. This will be discussed below.

6.3 Zero Temperature

For the investigations at zero temperature, T = 0, we have performed simulations for a
wide range of the parameters β and κ. In detail, we have generated 800 configurations
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6.3 Zero Temperature

with λ = 1.0 on hypercubic 104 lattices for β ≤ 1.9, on 124 lattices for β = 2.1, and on
164 lattices at β = 2.3. For β = 0.25, we have performed a detailed scan over κ on a
164 lattice in order to look closer at the region below the critical point shown in fig. 6.3
on page 101. Otherwise, we have used the same parameters and methods as for the
simulations at finite temperature.

As described in section 3.2, the Wilson loop W (I, J) gives the static potential V (I)
in the limit of infinite temporal size aJ → ∞. But at finite sizes J the correct result
may be overshadowed by excited states in the expression (3.4) on page 23 due to a
small overlap between the true ground state of the configuration of two static charges
at distance J , and the flux-tube state created by the Wilson loop operator (3.7). This is
exactly the case for values of aI beyond the screening distance aI > r0. At these values
the ground state is described by two isolated static charges, each screened by dynamic
light charges. In order to measure string breaking in the “confined” phase using Wilson
loops only, very large loops and extremely high statistics are needed.2

On the other hand, using more involved observables instead of Wilson loops, it is
possible to investigate string breaking with high accuracy. Such investigates have
been done by Knechtli and Sommer[KS98, Kne99]. They supplement the Wilson

loop by operators such as Φ̂(~x)Φ̂†(~y). These operators are modelled on the expected
state and generate static charges screened by dynamical Higgs fields. In addition
also smoothed versions of these operators are used.

This problem is reflected in the vortex model. All over the “confined”phase, after center
projection the influence of the Higgs field on the Wilson loop observable W (I, J) can be
effectively described — for our available small loops I, J ≤ 4 — by some shift β → βeff

[BF02]. Consequently we also do not see any notably change in the P-vortex surface
properties investigated in chapter 5, because these are tightly connected to the Wilson
loop observable. This means that the Wilson loop observable behaves in the same way
before and after center projection. No remarkable effect of the matter field was found
in both cases – center dominance holds again.

At the transition to the Higgs phase, on the other hand, the string tension measured
by Wilson loops disappears even for small distances. At the phase transition line in the
gauge-Higgs model a rapid drop in the vortex density p is observed, as shown in fig. 6.11
on the next page. Here the density of P-vortex plaquettes in percents is plotted as
contours in the β−κ plane. Data for the phase transition line are taken from [JLNV85].
In the“confined”phase, the vortex density is almost independent of κ, whereas the vortex
density decreases rapidly, with increasing κ, in the neighborhood of the phase transition
line, a result first reported independently by Langfeld [Lan02] and in [BF02]. Again this
result supports center dominance The lost of the linear rising potential inferred from
Wilson loops is in agreement with the suppression of P-vortices. An interesting fact is
that this rapid decrease in density appears to extend beyond the actual thermodynamic
transition line, which ends in a critical point, as depicted in fig. 6.3 on page 101, further
down to the β = 0 axis. This phenomenon deserves some more accurate investigation.

2We note that recently adjoint string breaking has been successfully measured using Wilson loops in
[KdF03], using a powerful algorithm for noise reduction devised by Lüscher and Weisz [LW01].
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Figure 6.11: P-vortex density p in the β − κ plane. Lattice sizes are indicated in the
text. The phase transition line is taken from [JLNV85].

6.3.1 The Kertész Line

Whereas thermodynamic observables change to a crossover behaviour below the critical
point, the drop of the vortex density p remains rather sharp even in this region. It
was suggested by Langfeld [Lan02] that the crossover line at small β, where there is
a sudden drop in the vortex density, could be a “Kertész line” of the sort found in
the Ising model [Ker89, Sat02]. A Kertész line is a line of percolation transitions which
is free of any non-analyticity in the corresponding free energy, and hence is not a line
of thermodynamic phase transitions, as usually defined. (As mentioned above, there is
only one single true thermodynamic phase in the gauge-Higgs model.)

In our case, the“Kertész line”consists of a P-vortex depercolation transition, as can be
seen in fig. 6.12 on the next page. This plot shows the data for a 164 lattice at β = 0.25,
a β−value far below the end of the thermodynamic phase transition line around β = 1.
We depict depending on κ the following observables:

• The one-link contribution to the gauge-Higgs energy density

OGH :=
〈
Re

[
Φ†(x)Uµ(x)Φ(x+ µ̂)

] 〉
. (6.11)

This is a local, thermodynamic observable.

• The P-vortex density p.
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6.3 Zero Temperature

• The weighted average vortex size sw, as defined in (5.11) on page 80. This is
a highly non-local observable, and it is the quantity which we use to detect a
percolation transition.

Fig. 6.12 clearly shows that the one-link energy density OGH is a smooth function of
κ, and displays no evidence of a transition. The vortex density, although dropping
rapidly in the interval κ ∈ [0.6, 0.9], see also fig. 6.11 on page 112, shows no sign of any
discontinuity, too.

For the evaluation of sw we face again the problem that parts of a P-vortex surface may
not be reached because vortices touch sometimes along closed lines. As in section 5.4,
this occurs usually only along very small lines, and can be cured applying the smoothing
procedure introduced in section 5.3. Because smoothing has a bigger impact at lower
β, we use only the first smoothing steps a) which removes elementary cubes. We have
checked that down to β = 1.0 this removal does not modify projected Creutz ratios
χ(I, I), I ≥ 2. In fig. 6.12, unsmoothed vortex observables are depicted using open
symbols, whereas filled symbols (labelled with “sm”) denote observables extracted from
projected configurations after applying smoothing step a). The smoothing procedure
decreases the vortex density p slightly, but does not qualitatively change the shape of
the curve. Smoothed or not, the vortex density decreases continuously from just under
50% to zero as κ increases, with no evidence of any sudden change in phase.

There is, however, a clear sign of a sudden transition, around κ = 0.74, in the weighted
average vortex size sw. The plot of sw in fig. 6.11 on page 112 shows a sharp depercolation
transition for this observable. For κ ≤ 0.7, the majority of P-plaquettes belong to one
big, percolating vortex surface, but for κ ≥ 0.74, this surface is split into many small
vortices. This is even more pronounced if we remove the smallest (one cube) vortices
using the smoothing procedure. After smoothing, but below the transition, the average
vortex contains over 90% of all P-plaquettes. Just after the transition, this number
drops to under 1.5%. This is a fairly convincing sign of the existence of a percolation
transition. Considering the problem of touching vortices, smoothing step a) is able to
remove all closed touching lines starting from κ = 0.8 which shows that there are really
many small separated vortices above the “Kertész line”. (Below κ = 0.8 it needs at least
smoothing step a)+b) to remove all ambiguities, but even smoothing step a)+b)+c)+d)
which changes drastically the Creutz ratios and the P-vortex density cannot break up
the dominant vortex surface in this region.)

We have also checked percolation directly, by measuring the spatial extent of the
largest vortex surface on the lattice. In the Higgs phase, the largest vortex always fits
inside a hypercube which is smaller than the full lattice, while in the“confined”phase this
is not possible; the largest connected vortex surface extends through the entire lattice,
irrespective of lattice size. Thus we find center vortex percolation in the “confined”
phase of the gauge-Higgs theory, and no percolation in the Higgs phase. There is a first-
order phase transition line, which has an endpoint in the interior of the β− κ plane but
then continues as a Kertész line, completely separating these two regions of the phase
diagram. This result is not so surprising regarding percolation theory: Either a surface
percolates, or it does not. Thus a depercolation transition between two regions cannot
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end at some critical point.

6.4 Discussion at Conclusions

We have found strong evidence for center dominance in the SU(2) gauge-Higgs theory,
as before in the quenched theory. For finite temperature T > 0, the Polyakov line
observable behaves the same way before and after center projection, both at low and
high temperatures, throughout the β − κ coupling plane. Polyakov line expectation
values 〈|L|〉 and 〈|LP |〉, on the full and projected lattices respectively, are either both
zero, or both non-zero, in the infinite volume limit.

Similarly, in the zero temperature case looking at the P-vortex density p we could
reproduce the two regions of the system, namely a “confined” and a Higgs region. The
confinement-like region is characterised by an area-law decay of Wilson loops up to a
certain string-breaking scale, while in the Higgs-like region there is no area-law falloff
at any scale. Using the highly non-local observable sw, the average vortex size which
is sensitive to percolation, we could show that the thermodynamic phase transition line
ending at some critical point can be continued down to the β = 0 axis by a“Kertész” line.
As in the Ising spin system, the Kertész line is a line of percolation transitions, with the
free energy analytic across the transition. It separates the region of P-vortex percolation
present in the “confined” phase from the Higgs phase without P-vortex percolation.

We remark that the sharp transition between the Higgs and confinement-like
regions has been seen also in other ways. Langfeld [Lan02] has noted that after
fixing to Landau gauge, there is a remnant unfixed global symmetry, and that
this symmetry is unbroken in the confinement-like phase, and broken across the
Kertész line in the Higgs phase. A similar observation, this time in Coulomb gauge,
has been made Greensite, Olejńık, and Zwanziger in [GO04, GOZ04]. It should
be noted that the order parameter for remnant symmetry breaking, if expressed
as a gauge-invariant observable, is highly non-local, as is the order parameter for
percolation.

On the other hand, there is a significant influence of the Higgs field we could not
find in the center projected configuration. For κ > 0, but below the phase transition,
the static potential is strictly not confining any more, but here occurs string breaking.
This is true for any gauge theory with matter in the fundamental representation of
the gauge group. However for zero temperature no significant change in the P-vortex
properties could be detected with regard to the κ = 0 case. Fortunately, this does not
contradict the vortex picture: Also for the unprojected configurations it is very hard to
see string breaking using Wilson loops only. The vortex mechanism requires that vortex
piercings of the minimal area of a Wilson loop are uncorrelated, but percolation alone
is not enough to ensure this property. As an example, consider a percolating P-vortex
surface having the form of a branched polymer (a form which often arises in numerical
simulations of random surfaces). In this case each piercing of a plane surface will be
accompanied by a second nearby piercing, with the pair contributing no net center
flux, and therefore no net disordering, to the Wilson loop. In this example there is no
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6.4 Discussion at Conclusions

confinement, even though the P-vortex percolates throughout the lattice. Percolation
is therefore a necessary, but not a sufficient condition for confinement [GR02]. A hint
that there is some change in the P-vortex distribution in the “confined” phase for κ > 0
is the result for Polyakov loops at finite temperature. The projected loops 〈|LP |〉 is an
observable calculated only from P-vortices, and behaves different in the large volume
limit depending on κ = 0 or κ > 0. But more involved investigations are needed to
detect the influence of the scalar matter field on the properties of percolation P-vortices
in the “confined” phase of the gauge-Higgs theory.
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7 Vortices and the Topological Properties
of QCD

Abstract

Interestingly enough, the vortex model is not only suited to describe the con-
fining properties of QCD. In this chapter we use vortices in order to explain
the topological properties of chromodynamics. Particularly, we show how
the topological susceptibility arises from self intersections of vortex surfaces.

7.1 Topological Properties of Yang-Mills Fields

Until this chapter we have used the vortex model essentially to explain confinement. But
there are two other important properties of low-energy, non-perturbative QCD, namely

a) the topological susceptibility and

b) the spontaneous breaking of the chiral symmetry.

In this chapter we investigate how to treat these other non-perturbative phenomena
in the framework of the vortex model. In particular we will show how the topological
susceptibility can be calculated from singular points of the P-vortex surface.

The topological susceptibility is connected to the topological properties of the
SU(2) gauge field. The topological charge or topological winding number was defined in
section 2.1 as

Q = − 1

8π2

∫
TrΩ ∧ Ω; (7.1)

written in components it reads

Q = − 1

16π2

∫

T4

Tr F̂µν(x)Fµν(x)d4x, (7.2)

where the integral runs over all the hyper-torus T4 which is our base manifold M due to
the periodic boundary conditions. F̂µν = ǫµναβFαβ is the dual of the field strength. In
mathematics Q is known as Pontryagin index, in physics also known as a topological
quantum number. It is strictly half-integer valued on the hyper-torus; hence SU(2) gauge
field configurations can be classed into topological sectors characterised by the value of
Q. Configurations of a sector can be continuously deformed into one another, whereas
configuration of two different sectors are not continuously connected in the space of
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7.1 Topological Properties of Yang-Mills Fields

field configurations. Bear in mind that the half-integer valuedness strictly holds only
in the continuum. On a lattice with finite lattice spacing a all possible gauge field
configurations are smoothly connected due to the discreteness of the lattice. Thus we
first discuss the continuum. Nevertheless a topological charge can be approximately
defined also on the lattice, as discussed below. Finally the topological susceptibility
χq

1measures the fluctuations of the topological charge in the vacuum and is given by

χq = 〈Q2〉/V, (7.3)

where V is the space-time volume under consideration.
The importance of χq stems from its relation to the anomaly breaking the UA(1) part

of the quark flavour symmetry. A consequence of this anomaly is the anomalously large
mass of the η′ meson, which is directly related to χq by the Witten-Veneziano estimate
[Wit79, Ven79]

m2
η′ +m2

η − 2m2
K = 2Nfχq/f

2
π , (7.4)

where fπ is the pion decay constant, mη′ , mη and mK are the masses of the η′, η and
K mesons, respectively, and Nf is the number of flavours. Further, the winding number
Q is related through the Atiya-Singer index theorem [AS68a, AS68b] to the exact zero
modes of the Dirac operator: Q = N− − N+, where N− and N+ are the number of
exact zero modes with negative and positive chirality, respectively. The not exact,
but near zero modes are also important for the other important infrared property of
QCD mentioned above, the breaking of the chiral symmetry (χSB). The Banks-Casher
relation [BC80]

〈ψ̄ψ〉 = −πρ(0) (7.5)

relates directly the quark condensate 〈ψ̄ψ〉 to the density ρ of small eigenvalues λ of the
Dirac operator in the limit λ→ 0.

7.1.1 An Interlude about Instantons

As mentioned above, on a discrete lattice all field configurations can be continuously
deformed to trivial configurations. There are several methods to get some approximation
for Q on the lattice. One can cool down, i.e. iteratively minimise the action in order to
get smooth configurations which cannot be deformed to trivial configurations without
considerably increasing the action. Such a cooling leads to interesting topological objects
called instantons, which are the ingredients of a model which is able to describe both
the topological susceptibility and χSB, the instanton model [BPST75, CDG78, Shu82,
Shu88, SV93]: Instantons are self-dual solutions for the classical Euclidean Yang-Mills
action (2.31); they are the minima for the action in each topological charge sector. In
instanton models, gauge field configurations are thought as a gas of localised instantons
and anti-instantons, each contributing +1 or -1 to the topological charge. Further,
instantons and anti-instantons can overlap and interact, which perturbs the exact zero

1We use the same symbol for the topological susceptibility χq, the Creutz ratios χ(I, J) and the Euler
characteristic χ. The subscript q of the susceptibility χq and the arguments (I, J) of the Creutz
ratios χ(I, J) unambiguously distinguish the three quantities.
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7.2 Topological Charge from Vortices

modes into a band of near zero modes, yielding via the Banks-Casher relation the quark
condensate. Although these instanton models are able to describe chiral properties of
QCD, they fail to treat confinement correctly and cannot reproduce the string tension.

7.2 Topological Charge from Vortices

Cooled instantons are spread out hyper-spherical objects. This is quite the opposite
to the vortex detection procedure. Here the action is concentrated in infinite thin P-
vortices. Nevertheless there are results supporting that center vortices are connected
both to the topological susceptibility and the breaking of the chiral symmetry. There
are indications that P-vortices are found at the position of instantons in configurations
created by hand [ADdF00]. This supports the hope that instantons are not genuine
objects on Monte Carlo generated configurations, but are created by cooling from thick
center vortices. It has been observed [dFD99] that after removing vortices from field
configurations (see section 4.2.1), not only confinement is lost, but also the two other
important infrared properties of QCD are affected: The configurations are moved into
the topologically trivial sector Q = 0, and chiral symmetry is restored. Center projected
configurations yield both at zero and at finite temperature the breaking of the chiral
symmetry, as do unprojected configuration [ADdF00, AdFD00]. For the calculation of
the chiral condensate from P-vortices we refer to the work of Engelhardt [Eng02]; in
this work we will only describe how to extract the topological susceptibility χq from
projected center vortex configurations.

In order to define the topological charge of P-vortices we can can start with a config-
uration in the continuum containing thick vortex of some given finite diameter d only.
For the limit of zero diameter d we arrive at a configuration of thin Z2-vortices in the
continuum. Calculating the winding number as (7.2) we get for limd→0Q the expression
[Cor98, Cor00, ER00a]

Q = − 1

16
ǫµναβ

∫

S
d2σαβ

∫

S
d2σ′µνδ

4(x(σ) − x(σ′)), (7.6)

where x(σ) is a parametrisation of the two-dimensional P-vortex surface S in four-
dimensional space-time. Hence P-vortices contribute to Q at points where vortex sur-
faces intersect. This definition of Q can readily be used also for P-vortices on the
lattice. Each intersection of two surfaces (or self-intersection of a single surface) gives
a contribution of ±1/2 in (7.6); in addition there are important contributions of other
points [Eng00], which will be discussed below in section 7.3. We will denote all points
contributing to Q as singular points of the P-vortex surface henceforth.

It is important to note that the sign of the surface element d2σµν defines an orien-
tation of the P-vortex surface S. To calculate Q for a given P-vortex configuration
an orientation has to be specified for the vortex surfaces. As discussed thoroughly in
section 5.5, P-vortices in the confined phase are unorientable surfaces. This means we
cannot assign a single orientation to all of the surface. The surface has to be divided
into patches. At the boundaries separating two patches the orientation can flip. These
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7.3 Topological Charge of P-vortices on the Lattice

boundaries can be related to Abelian monopole trajectories [ER00a]. We have seen
this already at the discussion of the spherical vortex depicted in fig. 4.16 on page 58
and described section 4.3.5.2: After performing maximal Abelian gauge for some U(1)
subgroup of SU(2) given by some direction in colour space ~n~σ, followed by Abelian pro-
jection on this subgroup, an Abelian monopole line indicated by a torus in fig. 4.16 is
found. Hence the location of the patch boundaries, if associated with Abelian monopole
lines, can save some information about the colour structure of the thick vortex even
after center projection is performed, and this information might be important for the
topological properties of QCD encoded in P-vortices. We will investigate this below.

The expression (7.6) defined in the continuum can be also formulated on the lattice
[Eng00] and has been successfully used to reproduce the correct topological susceptibil-
ity, first for the model of random vortex surfaces described in section 3.4, then also for
vortices detected with center projection [BEF01]. We will describe here the procedure
for the latter case.

7.3 Topological Charge of P-vortices on the Lattice

Given a P-vortex configuration on the dual lattice, the topological charge Q cannot be
determined immediately using (7.6). The oriented patches and the monopole lines as
described above have to be inferred. In principal the indirect version of the maximal
center gauge IMCG could be used. As described in section 4.2 this gauge first transforms
the SU(2) configuration to maximal Abelian gauge. Abelian projection reveals the
monopole lines. Next gauging towards the center elements using the remaining U(1)
symmetry, followed by center projection yields the P-plaquettes. The monopole lines
can then be used as the borders of the oriented patches. However the monopole lines are
not guaranteed to lie exactly on the vortex surfaces [DFGO98]. If vortices and monopole
lines are detected using the singularities of a Laplacian gauge (section 4.3.3), monopole
lines are located exactly on the P-vortex surface, but this method does not succeed
to detect the thick vortices of the lattice properly. Fortunately we will find that the
topological charge barely depends on the location of monopole lines. Hence we follow a
simpler procedure: We just assign to the P-vortex plaquettes some random orientation.
Next we iteratively change the orientation of the P-plaquettes of the lattice, one time
such as to maximise the density ρm of the monopole lines, one time such to minimise it.
The topological charge evaluated for the two cases does not differ within the statistical
error, as we will see in section 7.4, were we will explain this result.

The second problem for the calculation of the topological charge Q are ambiguities
due to the coarseness of the lattice. We can distinguish two types of ambiguities: The
first one has already been discussed in section 5.4. In contrast to the continuum, where
the probability of such an ambiguity vanishes, on the (4-dimensional) lattice surfaces
intersect (and touch) not only at points but also at links. In such a situation it is in
general not clear which plaquettes sharing such a link are connected, and are locally
part of which surface. Because the assignment of plaquettes to surfaces influences the
disposition of the oriented patches forming the P-vortex surfaces, and thus the sign of
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7.3 Topological Charge of P-vortices on the Lattice

the contribution to Q, it is crucial to resolve these ambiguities. In addition for links
with 6 P-vortex plaquettes attached there are contributions to Q not only from isolated
points but from all along the links, and the integral in (7.6) diverges. The second type
of ambiguities occurs if monopole lines intersect with lattices sites contributing to Q.
At such sites the orientation of the surface is not properly defined, and Q cannot be
evaluated [Eng00]. Because this type is again due to the coarseness of the lattice, such
ambiguities appear in the continuum with vanishing probability.

7.3.1 Resolving Lattice Ambiguities

In order to resolve the ambiguities, we deploy a local procedure.

Resolving intersections at links
In order to remove singular links, i.e. links with more than two plaquettes attached, a
procedure related to the smoothing procedure described in section 5.3 is used. First
the P-vortex configuration is transfered to a lattice with 1/3 of the original lattice
spacing. Next the lattice is scanned for elementary cubes which contain at least one
singular link, and successively for each of these cubes an elementary cube!transformation
is done reducing, if possible, the number of P-plaquettes attached to singular links. If
the number of singular links is not changed by the transformation it has proven to
be efficient to do elementary cube transformation with a probability of 1/2 . The
orientation of newly created P-plaquettes is chosen such as to change the number of
monopole lines as little as possible. Because the transformation is done at most one
time for each cube, the P-vortex surfaces are moved maximal 1/3 of an original lattice
spacing. Remembering that the position of the thin P-vortex surface within the thick
vortex of the unprojected lattice is not significant below the accuracy of a lattice spacing
we expect such a small shift not to change important properties of the configuration. In
practice it is enough to perform this procedure twice in order to get rid of all singular
links, which means we end with a lattice with 1/9 of the original lattice spacing.

Resolving intersections of monopole lines with singular points
The second type of ambiguities occurs if monopole lines intersect with singular points,
and hence the orientation of the surfaces is not well defined at the intersection. This
ambiguity is resolved for each singular point independently. First a copy of all the 24
plaquettes attached to the point is made. Starting from randomly selected plaquettes
neighbouring plaquettes are reoriented such as to move monopole lines away from the
singular point. After this the contribution of the point to Q can be evaluated.

7.3.2 Types of Singular Points

After removing the ambiguities three different type of singular points can be distin-
guished. A singular point is here defined as a lattice site where the P-plaquettes span
all four directions of the Euclidean space-time and hence can contribute to (7.6):2

2In the continuum singular points can be defined as points of the surfaces where the tangent vectors
span all four directions
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Figure 7.1: A P-vortex with writhing and intersection points.

a Intersection points

b Touching points

c Writhing points

Examples of singular points are depicted in fig. 7.1 which shows a P-vortex surface
introduced first by Engelhardt in [Eng00]. To plot the two-dimensional vortex surface
on the four-dimensional lattice we use the procedure described in section 5.1.1. Links
in time direction are plotted in some chosen direction of the three-dimensional space
spanned by the spacelike directions. The timelike links are plotted longer in order to
separate the different time slices. Only E-plaquettes are coloured, B-plaquettes are
indicated by the timelike links and by the red colour of space-link links bordering the
plaquette. The plotted P-vortex extends over three timeslices and is a closed surface,
as no border can be seen with closer inspection of fig. 7.1. Assuming the absence of
monopole lines the P-vortex is an oriented surface, which means that its contribution
to Q vanishes, as discussed below.

Two of the types of singular points are present in fig. 7.1. Intersection points are lattice
sites where two surfaces intersect plainly. The two surfaces are perfectly orthogonal. In
fig. 7.1 there is one intersection point, labelled with “i”. One of the surfaces is the
horizontal, light blue plane, the other is indicated by the vertical red lines and extends
in time direction. The other type of singular points depicted in fig. 7.1 are writhing
points. They are points where one surface has tangent vectors in all four direction. The
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7.3 Topological Charge of P-vortices on the Lattice

four writhing points in fig. 7.1 are labelled with “w”. It can be easily checked that there
is indeed only one surface attached to the “w” site. A small loop around the writhing
point travels over all P-plaquettes around the site, in contrast to intersection points
where the two surfaces are not directly connected by links. All other types of singular
points, i.e. points with two involved surface segments, but not having the simple form of
intersection points, are in fact touching points. An infinitesimal displacement of one of
the surfaces dissolves the singular point and the surfaces are completely separated. As
argued in [Eng00], touching points do not contribute to the topological charge. This is
not true for writhing points. For example the configuration in fig. 7.1 shows an oriented
vortex surface. Such a surface can be represented [Eng00] by a gauge field which is
nonzero only on a compact region of space-time [ER00a]. The contribution of such a
gauge field to Q is independent from boundary conditions. Assuming hyper-spheric
space-time, the Pontryagin index must be integer valued. Intersection point contributes
with ±1/2 only. Therefore, writhing points must contribute to Q, too, and (7.6) has to
be replaced by

Q =
∑

qn

qn =
1

16

4∑

i,j=1

∑

µ<ν

∑

α<β

ǫµναβZ
(i)
µνZ

(j)
αβ .

(7.7)

Here Q is given as the sum of contributions qn from the distinct lattice sites. Z is
±1 depending on the orientation for P-plaquettes, and 0 if a plaquette of the lattice is
not a P-plaquette. The indices i, j label the four plaquettes attached to the site for a
given pair of space and time directions µ, ν or α, β. Each pair of mutually orthogonal P-
plaquettes attached to a site contributes with ±1/16 to qn for the site. In agreement with
(7.6) this results in a contribution of ±1/2 for intersection points. Whereas touching
points do not contribute writhing points do. All qn sum up to zero for the P-vortex
in fig. 7.1 on the previous page. In general, on the hyper-torus given by a lattice with
periodic boundary conditions, Q is quantised in half-integer units in accordance with
the result for unprojected configurations [tH79, vB82, GPGAM+00]. This is remarkable
considering the fact that the individual contributions qn from writing points can be as
small as 1/8, and in the continuum take even continuous values [Eng00, BEF01].

We note one particular difference between intersection and writhing points: Whereas
the contributions of intersection points can change their sign if the orientation of pla-
quettes change – one of the intersecting surface segments could change its orientation
– writhing points are invariant. Since there is only one single writhed surface element
involved a change of orientation for one P-plaquette reorients, after applying the am-
biguity removal procedure, also all other P-plaquettes attached to the singular point
because no monopole line may cross the writhing points (this would be the second type
of ambiguity defined above). This feature of writhing points will be revealed to be
important in section 7.4.
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7.4 Numerical Measurements and Discussion

7.3.3 Elimination of Short Range Fluctuations

Having removed all ambiguities the topological charge Q can be calculated. But as
discussed in section 5.3, the thin P-vortex surfaces can fluctuate somewhat within the
diameter of the original thick vortices of the lattice. The P-plaquette density is higher
than expected from the string tension extracted from Wilson loops. For the treatment
of confinement in the center vortex model this is of minor importance since these short
range ultraviolet fluctuations cannot contribute to the asymptotic potential. But the
fluctuations greatly increase the number of singular points leading to a strong influence
on the Pontryagin index Q. In order to control the short range fluctuations, we have
used two independent procedures:

The first one is the vortex surface smoothing procedure presented in detail in sec-
tion 5.3. In order to estimate which combination of smoothing steps is appropriate, we
take into account the following observations: As a local procedure smoothing does not
change the asymptotic string tension. But the strongest smoothing step a)+b)+c)+d)
lowers Creutz ratios χ(I, I) up to I = 3 for inverse couplings β ≤ 2.3 and seems to have
an influence up to intermediate distances, distances where important non-perturbative
properties like Casimir scaling (see section 3.4) are visible. Above I = 2 the other
smoothing steps have no effect on χ(I, I). At β = 2.4 the lattice spacing a starts to
become so small that even the strongest smoothing step does not remove important
features.

The other procedure is blocking. This is done by transforming the P-vortex configu-
ration on a coarser lattice with a lattice spacing of a′ = na, where a is a natural number
(we used n = 2, 3 and 4). To each plaquette of the new coarser lattice corresponds a
n×n loop on the finer lattice, and we assign to each new plaquette the holonomy of the
loop on the original lattice. This means that a plaquette of the coarser dual lattice is
a P-plaquette iff the associated plaquette of the coarse normal lattice is pierced by an
odd number of P-vortices of the finer lattice. This procedure smooths out all fluctuation
below the scale of a′ while preserving the asymptotic string tension σ since Wilson loops
of the coarse lattice are the same as the corresponding loops on the finer lattice. As for
the smoothing procedure the question arose how strong the blocking should be in order
to remove the spurious ultraviolet fluctuations without touching long and middle range
information from the P-vortex surfaces. As an upper bound, we can take the average
distance of nearest vortices in a plane, which we have estimated in section 5.7 to be
about 0.6 fm, as a target value for a′. The ultraviolet correlations of the vortex sur-
faces measured in [ELRT98] and described in section 5.3 are present up to 0.4 ± 0.2 fm.
We conclude that the target lattice spacing a′ should be somewhere in the range of
0.4 − 0.6 fm.

7.4 Numerical Measurements and Discussion

After presenting all elements, the procedure to calculate the topological charge Q from
P-vortices can be summarised as follows:
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Figure 7.2: Fourth root of the topological susceptibility χq from P-vortices, in units of
the square root of the string tension σ depending on the performed smoothing
steps. Open squares correspond to β = 2.3 on a 124 lattice, crosses to β = 2.3
on a 164 lattice, and filled squares to β = 2.5 on a 164 lattice. Error bars
are discussed in the main text.

• Generate an ensemble of SU(2) gauge field configurations on the lattice using
Monte Carlo techniques.

• Transform the configurations to the maximal center gauge and perform center
projection. The gauging is done using over-relaxation with 6 gauge copies, which
gives good results for the string tension σ as discussed in section 4.4.

• Remove ultraviolet fluctuations of the center projection vortex surfaces by either
blocking or smoothing, see section 7.3.3.

• Randomly assign orientations to the P-plaquettes such to either maximise or min-
imise the monopole line density ρm, see section 7.3.

• Remove ambiguities in the vortex surfaces, i.e. lines along which vortices in-
tersect and monopole lines coinciding with singular surface points, see section
section 7.3.1.

• Evaluate the topological charge Q carried by the singular points as described in
section 7.3.2.
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Figure 7.3: Fourth root of the topological susceptibility χq from P-vortices, in units of

the square root of the string tension σ depending on the blocked lattice
spacing a′. Open squares correspond to β = 2.3 on a 124 lattice, crosses to
β = 2.3 on a 164 lattice, and filled squares to β = 2.5 on a 164 lattice. Error
bars are discussed in the main text.
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7.4 Numerical Measurements and Discussion

Our results for the topological susceptibility χq are depicted in figs. 7.2 to 7.3 on
pages 125–126 for various values of β, and after applying smoothing or blocking. In
order to compare the result for different values of β we scale the susceptibility with
the string tension σ inferred from Creutz ratios and plot the dimensionless quantity
4
√
χq/

√
σ.

The vertical error bars are compound from three sources: The statistical error from the
susceptibility measurement, the statistical error from the string tension measurement,
and a systematic uncertainty stemming from the removal of vortex surface ambiguities.
This systematic error is estimated as follows: It can be checked that the ambiguity
removal procedure systematically increases the density of P-vortices p. We take this
change of density as a measure for the change of the topological susceptibility χq. Due
to the dimensions of the two quantities we estimate this error for χq to depend quadratic
on the variation of p. Because the ambiguity removal procedure increases p we com-
pound the calculated error only into the downward uncertainty of the measurements
plotted in figs. 7.2 to 7.3. Thus as can be seen for the blocked configurations in fig. 7.3,
the downward error bar is always larger than the upward error bar. Clearly the system-
atically error surpasses the statistical one. Blocking to a coarser lattices increases the
vortex density measured in lattice units which leads to more singular links, which have
to be removed again by a strong use of the ambiguity removal procedure. In contrast
the systematically error is very small after applying the smoothing procedure, as can
be seen from the small difference between the upward and the downward error bars
plotted in fig. 7.2 on page 125. This result is not surprising at all: As we have seen
in section 5.4, the smoothing procedure firmly suppresses touching (and intersecting)
of P-vortices along closed lines. This touching is nothing else but the occurrence of a
particular type of singular links. After smoothing only a few of the singular links are
left, and are treated by the ambiguity removal procedure. In addition to these errors for
χq/σ

2, fig. 7.3 shows also horizontal error bars. These come from the statistical error in
the lattice measurement of the string tension σ which was used to calculate the lattice
spacing a using (5.6) on page 71.

Before discussing the results for χq we have to consider an additional ambiguity.
As written in section 7.3 the orientation of the patches building the P-vortex surface,
and thus the associated monopole lines, are not inferred by some procedure from the
unprojected configuration but assigned in a random way. To control the influence of the
monopole lines all measurements have been done twice, one times maximising and one
times minimising iteratively the density of the lines. The results reported in figs. 7.2
to 7.3 on pages 125–126 were obtained after maximising the monopole density ρm. If
one instead minimises ρm the values for 4

√
χq/

√
σ vary by at most 1%, which is negligible

compared with the statistical and systematic errors. The topological susceptibility seems
to independent from ρm. This result has to be contrasted with the large variation of ρm

itself depicted in figs. 7.4 to 7.5 on pages 128–129. For comparison, the zero-temperature
monopole line density measured for the full SU(2) lattice gauge theory in maximal

Abelian gauge amounts to ρ
(mag)
m = 64 fm−3 [BIL+91].
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Figure 7.4: Monopole line density ρm depending on the smoothing step. For each point
on the horizontal axes, both the maximal and the minimal densities reached
by the reorientation procedure of section 7.3 are shown. Open squares cor-
respond to β = 2.3 on a 124 lattice, crosses to β = 2.3 on a 164 lattice, and
filled squares to β = 2.5 on a 164 lattice. Error bars are negligible.
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Figure 7.5: Monopole line density ρm depending on blocking and β. For each point on
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the reorientation procedure of section section 7.3 are shown. The error bars
indicate the rise induced by the ambiguity removal procedure. To associate
the data points with the values for β and for the lattice size, compare them
with the data in fig. 7.3 on page 126 which have the same ordering. The
inset is simply an enlargement of the range a ∈ [0.3 fm, 0.7 fm].
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depending on the blocked lattice spacing a′. The results were obtained by
taking into account only the contributions from intersection points. The plot
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7.4 Numerical Measurements and Discussion

This result has also been observed in the random vortex surface model introduced by
Engelhardt [Eng00]. It can be explained analysing the contributions qn to the topological
charge Q. The main part stems not from intersection points but from writhing points. In
order to separate the contribution of intersection and of writhing points, in figs. 7.6 to 7.7
on pages 130–131 the truncated topological susceptibility χ̄q, which is calculated from
the contributions of intersections points only neglecting writhing points, is depicted.3

Comparing these results with the analogous data shown in figs. 7.2 to 7.3 on pages 125–
126 we see that 4

√
χ̄q is roughly half as large as 4

√
χq, which means that the truncated

susceptibility is suppressed with a factor of 24 = 8 compared to the result including
contributions from writhing points. Now as already shown in section 7.3.2, the dominant
contribution from writhing points is not affected by reorientations of patches and shifts
of monopole lines. But this is not the full story. The results depicted in figs. 7.6 to 7.7
on pages 130–131 were again obtained after maximising the monopole line density ρm.
Minimising the density instead changes the result not more than 5%, which lies inside
the statistical uncertainty. This reveals that even the contribution of the intersection
points is rather insensible to the density of monopole lines. To explain this result we
note that even minimising ρ cannot remove the density completely. Due to the inherent
unorientability of the P-vortex surface in the confined phase reported in section 5.5
there is always a lower bound for the density of monopole lines. Evidently already this
minimal density suffices to randomise the signs of the intersection point contributions
to the topological charge Q to such an extent that additional random changes of the
signs, induced by adding monopole loops on the P-vortex surfaces, cannot strongly
influence the associated topological susceptibility any more. These results show that
the topological susceptibility χq can be evaluated from P-vortex configurations without
caring for the density and position of monopole lines.

Having treated all ambiguities the task remains to determine the correct value for χq

from the calculations presented in figs. 7.2 to 7.3. Looking first on fig. 7.3, we remember
from the discussion in section 7.3.3 that we estimate the desired blocked lattice spacing
a′ to be in the range of 0.4 − 0.6 fm. This gives for the limits taking in account also the
error bars

(150 MeV)4 ≤ χ(phys)
q ≤ (224 MeV)4 (7.8)

using
√
σ = 440 MeV. The results using smoothing in order to remove the ultraviolet

fluctuations are depicted in fig. 7.2 on page 125; at β = 2.3 the correct value should
lie between the results gained by applying the combined smoothing steps a)+b)+c) and
a)+b)+c)+d), respectively. Thus we get for the limits in the extreme cases admitted by
the error bars

(166 MeV)4 ≤ χ(phys)
q ≤ (230 MeV)4. (7.9)

This is nicely consistent with the value 4
√
χq = (187 ± 3) MeV (only statistical error

quoted) obtained at β = 2.5 with smoothing steps a)+b)+c)+d). As discussed for these
parameters the Creutz ratios χ(I, I) with I ≥ 2 are not decreased any more.

3Of course the topological charge χ̄q inferred only from writhing points does not fulfil the requirement
of half-integer valuedness as discussed in section 7.3.2. We use it only to distinguish the effects of
the different types of singular points and do not assign further some topological meaning to χ̄q.
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The limits for the topological susceptibility χq reported above are in good agreement
with the values gained using a completely different procedure, namely cooling of un-
projected SU(2) gauge field configurations as described in section 7.1.1. As reported in
[Sta00] these results give a range of

(191 MeV)4 ≤ χ(phys)
q ≤ (208 MeV)4, (7.10)

which lies roughly in the middle of the limits obtained from P-vortices. All in all,
while considerable systematic uncertainties are inherent in all the steps starting from
the SU(2) configurations followed by gauging, projection and ambiguity removal, the
result indicates that not only the confining properties of the gauge theory, but also the
topological properties can be described reasonably in the framework of the vortex model.

7.5 Local Correlations

We have successfully shown that the topological susceptibility χq can be inferred from
P-vortex configurations with reasonable accuracy. Comparing χq from P-vortices with
results obtained using other methods, such as cooling, shows compatible values. These
values are expectation values, i.e. averaged over many Monte Carlo generated gauge
field configurations. Now the interesting question arises whether the different methods
agree not only on average, but for each distinct configuration.

As a first test, we correlate the topological charge Q calculated from cooled unpro-
jected configurations with Q evaluated from the same configurations after DMCG and
center projection using (7.6). We find a negligible correlation, which is quite natural:
The topological charge Q is the result of the remainder of the cancelling of positive and
negative local contributions toQ. This is true both for P-vortices, and for the calculation
from instantons. The local contributions fluctuate from configuration to configuration
with both methods such that the fluctuation of Q, the topological susceptibility χq (7.3),
is in good agreement. But we cannot expect that on a large lattice these fluctuations
cancel and sum up to the same value for both methods.

Therefore in a next step we did rather look at local correlations. To this end we
correlate for each Monte Carlo generated configuration the topological charge density

q(x) = Tr
(
F̂µν(x)Fµν(x)

)
(7.11)

from the unprojected configurations with the contributions qn (7.7) to the topological
charge from P-vortex surfaces. Unfortunately both q(x) and qn are plagued with ambi-
guities and imponderableness. As already described in section 7.1.1, on the lattice the
topological charge Q is not well defined. For highly exited fields on the lattice Q is not
quantised, and the density q(x) is overshadowed by short-range fluctuation, and is thus
not localised and not correlated to the point-like contributions qn.

A well established method to extract Q is cooling of the configurations towards in-
stantons, which are also localised objects on the lattice, as described in 7.1.1. This
smoothing is done using a iterative procedure monotonous which decreases the action.
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Figure 7.8: Detecting plateaus of the topological charge Q depending on the cooling
step. For comparison the charge Q = 2 evaluated from P-vortices is plotted,
too. For the charge from the unprojected configuration, two different lattice
definitions for Q are used; they agree quite well. The first ∼ 15 cooling steps
decrease the action quickly; afterwards the topological charge which was
a continuous quantity without cooling shows plateaus of constant charge,
separated by quick transitions between the topological sectors.
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The problem of this method is that finally after enough cooling steps on the lattice the
configurations are always cooled down to a trivial field, a pure gauge. A solution is
to look for plateaus in the topological charge, as depicted in fig. 7.8 on the previous
page. Here we show the action and the topological charge depending on cooling for a
configuration on a 244 lattice at β = 2.5. For the calculation of the topological charge
Q (7.2), two distinct lattice definitions, the plaquettes and the hypercube definition, are
used, and they agree pretty well. The first ∼ 15 cooling steps rapidly lower the action.
At the same time Q changes in a non quantised, continuous way. For highly disordered
configurations the topological sector of the configuration is not well defined. But soon
the field becomes smooth, and there arise plateaus of constant charge, separated by
quick transitions between the topological sectors. There is some ambiguity at which
cooling step a stable instanton configuration is reached; the used algorithm searches for
ranges of cooling steps where Q only changes withing some threshold for a given number
of cooling steps. Such a found plateau is labelled as “charge plateau” in fig. 7.8 on the
preceding page.

Although localised, instantons are extended objects with a smeared charge density
q(x), whereas the contributions qn inferred from P-vortices are point-like. In order to
get sensible correlations between the two quantities, we smear out also qn using various
methods. Because the lattice on which qn is given has been transfered to a finer one
with up to 1/9 of the original lattice spacing, and / or have been blocked to remove
ambiguities as described in section 7.3.1, first both configurations have to be blocked
such that they are on the same lattice. Next one or both configurations are folded with
some test function, e.g. a Gaußian function, in order to smear out qn. Because the sign
of the qn is arbitrary due to the randomness in assigning monopole lines to the P-vortex
surface (see section 7.3), we correlate |q(x)| and |qn| or q2(x) and q2n.

The result is rather poor. We have done excessive studies using a wide range of values
for the different parameters such as smoothing steps and blocking, coupling constants,
lattice sizes, test function for smearing, parameters controlling cooling, and more. The
best we find are correlations of about 4%, and we see no systematic dependence of this
poor correlation on the used parameters. We think that there is, apart from all the
ambiguities present in evaluating q(x) and qn, a deeper reason for the failure in correlat-
ing the topological charge densities from P-vortices and from cooled instantons. Both
radically change the Monte Carlo generated field configurations, which are, according
to the vortex model, dominated with regard to long-range physics by thick, intersect-
ing center vortices. Center gauge and center projection concentrate the action into
infinitesimal thin P-vortex surfaces, whereas cooling yields extended, hyper-spherical
instantons. Both are non-local operations which are able to considerably move around
the topological charge densities on the lattice, and thus destroy the correlation.

We have some evidence for this explanation considering a configuration of thick vor-
tices set up by hand. It consists of a spherical vortex as introduced in section 4.3.5.2,
which is intersected at the north and south pole by a plain vortex as described in sec-
tion 4.3.5.1. This configuration gives two contributions of +1/2 for each intersection,
which sum up to Q = 1. Cooling shows two lumps of topological charge density which
move away from the intersection region during the cooling procedure. Hence the density
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is badly correlated with the contributions after center projection which are of course ex-
actly at the middle of the intersections of the thick vortices present on the unprojected
lattice. We remark that this result does not contradict findings [KHK+02] that in-
stantons are well correlated with low-lying eigenmodes of the Wilson-Dirac operator,
evaluated on the uncooled lattice. Both the evaluation of the cooled q(x) and of ψ̄ψ
are non-local operations, and at least for our vortex configuration set up by hand both
densities are correlated, but away from the intersections of thick vortices carrying q(x)
on the original, unprojected and uncooled configurations.

All in all, we conclude that it is possible to describe not only the confining properties,
but also the topological properties of SU(2) gauge theory in a satisfying way within the
vortex model.
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8 Conclusions and Outlook

The main focus of this work was the investigation of center vortices detected in Monte
Carlo generated lattice gauge field configurations. The most widely used method to
identify vortices in field configurations is a combination of two steps. First, an appro-
priate gauge is chosen which should help to isolate most of the non-perturbative, long
range content of the configuration. Then center projection is performed. This discards
all non center degrees of freedom and yields a ZN gauge theory, where ZN is the center
of the gauge group SU(N ). We mainly worked with the group SU(2). The excitations of
the ZN gauge theory are thin P-vortices which have the shape of closed two-dimensional
surfaces on the dual four-dimensional space-time lattice.

In chapter 4, we have performed detailed numerical studies in order to test whether
the inferred P-vortices correspond to the thick vortices present in unprojected config-
urations. We show that for the maximal center gauge (MCG) one has to take care of
the used parameters. Especially large enough lattices have to be used to avoid finite
size effects. We could demonstrate that the relevant degrees of freedom are contained
in the obtained P-vortex configurations. Because MCG is supposed to fail in the con-
tinuum limit, the alternative Laplacian center gauges (LCG) have been investigated. In
hand-made configurations we demonstrated how LCG identifies vortices. In particular
we could prove that thick vortices are associated with singularities of the Laplacian
gauges. This method does not work for Monte Carlo generated configurations, though.
Because of the strong localisation of the eigenfunctions of the Laplace operator, the de-
tected vortices contain perturbative fluctuations overshadowing the degrees of freedom
relevant for confinement. There are different proposals to overcome these short comings,
but despite the convincing success of different vortex detection methods there is still no
undisputed way to isolate vortices under all circumstances.

Having shown that it is possible to extract the vortex content from field configura-
tions, we investigate the properties of the detected P-vortex surfaces in chapter 5. We
have found that in the confined phase the four-dimensional lattice is penetrated by a
single huge P-vortex of very complicated topological structure. This huge P-vortex is
a closed surface on the dual lattice which is unorientable and has many (∼ 10/fm4)
handles. Using a smoothing procedure we could remove from these surfaces spurious
fluctuations caused by the coarseness of the lattice. The resulting vortex structure is
in good agreement with the required properties in order to explain quark confinement.
The density of vortices does not vanish in the deconfined phase, but a strong space-time
asymmetry is found. P-vortices at finite temperature are mainly composed of space-
space plaquettes forming timelike surfaces on the dual lattice. These surfaces are closed
via the periodicity of the lattice in the time direction, they are orientable, and have the
topology of a torus, i.e. genus g = 1. This space-time asymmetry of P-vortices in the
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deconfined phase nicely reflects the properties of the potential between colour charges
in this phase. The diameter of the thick vortices in unprojected configuration have
been investigated, too. We find that vortices overlap considerably and rather resemble
a liquid than a dilute gas.

The investigations reported above have been done in the quenched approximation,
where the influence of dynamic matter fields is neglected. In chapter 6 we find for the
SU(2) gauge-Higgs theory strong evidence for center dominance, as we have found before
for the quenched theory. Vortices still can encode the degrees of freedom responsible
for quark confinement. Using the highly non-local observable sw, the average vortex
size which is sensitive to percolation, as an order parameter, we could show that the
thermodynamic phase transition line in the SU(2) gauge-Higgs phase diagram ending at
some critical point can be continued down to the β = 0 axis by a “Kertész” line. As in
the Ising spin system, the Kertész line is a line of percolation transitions, with the free
energy analytic across the transition. It separates the region of P-vortex percolation
present in the “confined” phase from the Higgs phase without P-vortex percolation. In
the confined phase, the influence of the Higgs field on vortices is very weak, in agreement
with the center model of confinement. Methods to investigate this influence have yet to
be developed.

Finally, we applied in chapter 7 the vortex model to another property of infrared,
long range QCD, namely the topological properties of gauge fields. We could show that
the topological charge characterising the topological sector of gauge field configurations
can be calculated from intersections and writhing points of P-vortex surfaces. After
removing various ambiguities we get a value for the topological susceptibility which is
compatible with the result obtained from unprojected configurations.

To conclude the vortex model provides a unified picture for the low energy, non-
perturbative sector of the strong interaction, explaining both confinement and the topo-
logical properties of QCD.
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vortex-finding property of maximal center (and other) gauges. JHEP,
12:012, 1999.

[FS79] Eduardo Fradkin and Stephen H. Shenker. Phase diagrams of lattice
gauge theories with Higgs fields. Phys. Rev., D19:3682, 1979.

[GLSR00] J. Gattnar, K. Langfeld, A. Schafke, and Hugo Reinhardt. Center-vortex
dominance after dimensional reduction of SU(2) lattice gauge theory.
Phys. Lett., B489:251–258, 2000.
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[GO04] Jeff Greensite and Štefan Olejńık. Adventures in Coulomb gauge. In
H. Suganuma, N. Ishii, M. Oka, H. Enyo, T. Hatsuda, T. Kunihiro,
and K. Yazaki, editors, COLOR CONFINEMENT AND HADRONS
IN QUANTUM CHROMODYNAMICS, pages 152–163. World Scientific,
May 2004.
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