

Technische Universität Wien

D I S S E R T A T I O N

Security and Privacy Management in
Service Oriented Architectures

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors
der technischen Wissenschaften

unter der Leitung von

Ao. Univ.-Prof. Dipl.-Inf. Dr.-Ing. Jürgen Dorn

188/1
Institut für Software Technologie und Interaktive Systeme

Abteilung für Electronic Commerce

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Mag.rer.soc.oec. Dipl.-Ing. Wolfgang Schreiner

9902261

Johann-Straußgasse 21/35
A – 1040 Wien

Wien, Mai 2007

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Die folgende Arbeit beschäftigt sich mit der Analyse und dem Entwurf einer
Software-Architektur, die sicheres und verteiltes Benutzer- und Dokumenten-
management unterstützt. Besondere Aufmerksamkeit wird dabei dem Aus-
lagern sicherheitskritischer semi-strukturierter Daten auf nicht vertrauens-
würdigen Datenbankservern und sich damit ergebenden Sicherheitsfragen
gewidmet. Dazu werden grundlegende Technologien im Bereich Service Ori-
entierter Architekturen (SOA) und Web services, sowie Kryptographie und
Zugriffskontrolle analysiert. Aktuelle Entwicklungen im Bereich der Web
service Sicherheit, im Speziellen Standardisierungsversuche sowie auch rele-
vante wissenschaftliche Publikationen, dienen als Ausgangspunkt für die Ent-
wicklung zentraler Komponenten mit Fokussierung auf Verschlüsselung sen-
sibler Daten, sowie Autorisierung von Benutzeranfragen auf unsichere Daten-
bankserver.

Anwendungen, in denen der Einsatz solcher Technologien eine interessante
Rolle spielen könnte, werden identifiziert, wobei Hauptkriterien der Auswahl
die Anwendbarkeit von Mehrbenutzersystemen sowie eine hohe Nachfrage
nach Schutzmechanismen für sensible Daten darstellen. Von besonderem In-
teresse sind Anwendungen aus dem Bereich des Personalmanagements.

Darüber hinaus soll auf die konkrete Umsetzung der entwickelten Konzepte
anhand einer prototypischen Referenzimplementierung eingegangen werden.
Eine detaillierte Spezifikation der entwickelten Schnittstellen soll die Inte-
gration der sicherheitsrelevanten Services in bestehende Applikationen er-
leichtern. Des Weiteren wird eine Programmierschnittstelle geschaffen, die
die Anpassung des entwickelten Systems, in Abhängigkeit der Anforderungen
der jeweiligen Anwendung, vereinfachen soll. Für rasche Entwicklung von
Software auf Basis der bereitgestellten Technologien, steht eine graphische
Benutzeroberfläche zur Verfgung, die in bestehende Entwicklungsumgebun-
gen eingebunden werden kann. Ergebnisse der Arbeit werden anhand von
beispielhaften Anwendungen, die im Zuge von Praktika und Diplomarbeiten
an der Technischen Universität Wien entwickelt wurden, demonstriert und
validiert.

Abstract

The following thesis deals with the analysis and design of a software ar-
chitecture with the purpose of supporting distributed user and document
management. Particular attention is dedicated to the outsourcing of sensi-
tive semi-structured document data to untrustworthy database servers and
related security concerns. Basic technologies in the areas of Service Oriented
Architectures (SOA) and Web services, as well as cryptography and access
control are analyzed and connected with each other. Current development
in the field of Web service security, especially standardization efforts and
relevant scientific work, serve as starting point for the development of cen-
tral security components with focus on sensitive data encryption as well as
authorization of user requests on untrustworthy database servers.

Application settings in which the deployment of these technologies would
engage an interesting role are identified, whereas main selection criteria com-
prise the applicability of multi-user systems and a high demand for security
mechanisms for sensitive data. Use case scenarios in the area of human re-
source management are of special interest.

Furthermore, the thesis dwells on the realization of the concepts by referring
to a prototypical reference implementation. A detailed specification of the
developed interfaces shall facilitate future integration of the security services
with existing application systems. Additionally a programming interface is
provided for easy adaptation of the system depending on the requirements
of the actual application. For rapid software development based on the tech-
nologies provided, a graphical user interface has been made available, which
may be integrated into existing development environments. Results of the
thesis are demonstrated and tested by exemplary applications, which are the
result of several practical works and master theses carried out at the Vienna
University of Technology.

Acknowledgements

There are many people, who play an important role in my life and give me
a lot of strength and energy to reach the goals I aim at. Without their con-
tribution many things would have passed off a different way and probably
would have been much harder to achieve.

First of all, I would like to thank my supervisor Prof. Jürgen Dorn, for
giving me the unique opportunity to work on my dissertation in the inspir-
ing environment of the E-Commerce Competence Center and his exceeding
support during that time, and Prof. A Min Tjoa for his contribution during
the final phase of the thesis.

Special thanks go to my parents for making my education possible and for
their permanent and unconditional mental and financial support during my
studies and the time before.

On this occasion, I would also like to address my girlfriend for her out-
standing patience and all my colleagues, friends and relatives, I could always
rely on and who were backing me all the way. Thank you, folks!

Contents

I Preliminaries 7

1 Introduction 8
1.1 Problem Statement . 8
1.2 Scientific Objectives . 9

2 Related Work 13
2.1 Security Fundamentals . 13

2.1.1 Distributed Systems Security 13
2.1.2 Cryptography . 15
2.1.3 Key Management . 17

2.2 XML and Semi-Structured Data 18
2.2.1 XML Essentials . 18
2.2.2 XPath and XUpdate 21

2.3 Web Services . 24
2.4 XML and Web Service Security 27

2.4.1 XML Encryption . 27
2.4.2 XML Signature . 28
2.4.3 The WS-Security Stack 29
2.4.4 Related Specifications 33

2.5 Access Control Approaches . 36
2.5.1 Traditional Access Control 36
2.5.2 XML Access Control 39
2.5.3 Semantic Access Control 41

2.6 Project SemCrypt . 43

II Concepts 47

3 Use Case Scenarios 48
3.1 Human Resource Management 50
3.2 Project Management . 54

1

CONTENTS 2

3.3 Document Archives . 55
3.4 Tourism . 57
3.5 Biotechnologies and Human Medicine 58
3.6 E-Government . 59

4 Architectural Requirements 60
4.1 Basic Architecture . 60
4.2 Responsibilities of Domain Entities 62
4.3 P2P Networking . 64

5 Analysis and Design 66
5.1 Access Control . 66

5.1.1 Authentication . 67
5.1.2 Query Processing . 69
5.1.3 XAccess Control Policies 73
5.1.4 Performing Authorization 77

5.2 Cryptographic Requirements 79
5.2.1 Encryption and Decryption 79
5.2.2 XCipher Instructions 82

5.3 Security Data Management 83
5.3.1 Storage Abstraction . 83
5.3.2 Hierarchical Document Storage 85
5.3.3 Versioning . 86
5.3.4 Relational Information Storage 86

III Implementation 90

6 Service Environment 91
6.1 Introductory Comments . 91
6.2 Component Interfaces . 93

6.2.1 Authorization Service 93
6.2.2 The Encryption/Decryption Service 94
6.2.3 Untrustworthy Storage Service 96

6.3 Workflow Services . 98
6.3.1 SemCrypt Service . 98
6.3.2 The Management Service 103
6.3.3 SemCrypt Security Services 108

CONTENTS 3

7 Prove of Concepts 115
7.1 Development Environment . 116

7.1.1 Eclipse IDE Integration 116
7.1.2 Web Application Generation 119

7.2 Use Case Implementation . 122
7.2.1 Human Resource Management 122
7.2.2 Distributed Project Management 125
7.2.3 A Secure SMS Storage Provider 125
7.2.4 Document Archives in E-Tourism 125
7.2.5 Encrypted E-Mail Storage 126
7.2.6 A Generic SemCrypt Testbed 126

IV Epilogue 127

8 Conclusion 128

9 Ongoing and Future Work 130

V Appendices 133

A Schema Definitions 134
A.1 XAccess.xsd . 134
A.2 XCipher.xsd . 135
A.3 XVersion.xsd . 136
A.4 SemCryptEmployeeInfo.xsd 138

B Service Interfaces 155
B.1 AuthorizationService.wsdl . 155
B.2 CipherService.wsdl . 156
B.3 StorageService.wsdl . 157
B.4 SemCryptService.wsdl . 160
B.5 ManagementService.wsdl . 165
B.6 SecurityService.wsdl . 173

List of Figures

2.1 Common Web service infrastructure 26
2.2 The Web Service Security stack of specifications 30
2.3 W3C Semantic Web architecture 42
2.4 Initial SemCrypt approach . 45

4.1 Basic SemCrypt application domains 61
4.2 Hybrid P2P networking architecture 65

5.1 Authentication components in SemCrypt applications 68
5.2 Query processing in SemCrypt applications 70
5.3 Access control components . 78
5.4 The SemCrypt database components architecture 84
5.5 Suggested XML storage structure 85
5.6 Relational entity relationships 87
5.7 Trusted relational and XML storage interdependencies 89

6.1 Basic SemCrypt component interactions 109
6.2 Service request message structure 110
6.3 Service response message structure 112

7.1 A screenshot of the Eclipse Plug-In taken on Ubuntu Linux . . 118
7.2 Architecture of the XForms Web interface generator 120
7.3 The generated default XForms user interface 121
7.4 The HR-XML Web application interface 123
7.5 Architecture of the HR-XML Web applications 124

9.1 Integration of ontologies with authorization assertions 132

4

List of Tables

2.1 A sample schema with valid XML document representations . 19
2.2 Axes and abbreviated equivalences used for XPath rewriting . 22
2.3 XPath rewriting examples . 23
2.4 Representation layers in the SemCrypt database system 46

3.1 Classification of application scenarios 48

5.1 The subset of XPath syntax used for access control description 73

6.1 Namespaces used for the SemCrypt Web Service Framework . 92
6.2 Security operation signatures 113

5

Listings

2.1 Definition of an XML Schema file 20
2.2 A sample XML document . 20
2.3 Usage of import/include schema elements 20
2.4 An XUpdate fragment creating an employee’s competency . . 23
3.1 A sample SemCrypt employee description 52
5.1 Authorization algorithm for selective access 72
5.2 Permission format of an XAccess policy file 75
5.3 Namespace definitions in XAccess policies 76
5.4 The XCipher encryption instruction info-set 82
A.1 XAccess.xsd . 134
A.2 XCipher.xsd . 135
A.3 XVersion.xsd . 136
A.4 SemCryptEmployeeInfo.xsd 138
B.1 AuthorizationService.wsdl . 155
B.2 CipherService.wsdl . 156
B.3 StorageService.wsdl . 158
B.4 SemCryptService.wsdl . 160
B.5 ManagementService.wsdl . 165
B.6 SecurityService.wsdl . 173

6

Part I

Preliminaries

7

Chapter 1

Introduction

1.1 Problem Statement

Service Oriented Architectures (SOA) have in many ways revolutionized the
art of software engineering and usage. Software is composed of a set of
different components each providing different functionality. Service orienta-
tion introduces the concept of loosely coupled software components, since
functionalities are uniformly described by service interfaces hiding the actual
implementation. Standardized message protocols allow the integration of
heterogeneous components independent of hosting platform or programming
language. SOA is a concept, which can be realized by a variety of existing
technologies, such as Remote Procedure Calls (RPC), the Distributed Com-
ponent Object Model (DCOM) [109], the Common Object Request Broker
Architecture (CORBA) [124] or Web services. The perspectives of complete
independence in networking issues, including messaging, transaction man-
agement, data persistence or security, has lead to new perceptions in how
software can be developed, deployed and actually used. Due to the extension
of the Internet and accompanying reduction of costs and available bandwidth
allowing high speed data transfer rates, user applications need no longer be
installed locally on a private computer, but can be accessed remotely on an
Application Service Provider (ASP) by a Web browser. Applications, such as
Web mailers or Web hosting providers already embodied the ASP principles
years ago, however, overall acceptance has just taken place due to the con-
cept of social online communities based on the Web 2.0 principle and concrete
success stories, including MySpace, YouTube or Flickr. Large companies like
Google and Microsoft, tend towards providing their software as online ser-
vices, which guarantees maximum accessibility as long as the servers stay
online. All that is needed is a Web browser, which is available even on many

8

CHAPTER 1. INTRODUCTION 9

mobile phones today. The trend towards remote software hosting brings a lot
of benefits to application end-users, since they need no longer take care of file
management. Precisely because users in some way lose control of their data,
they need to trust the remote service provider that their data is secured from
unauthorized access and modifications. This raises many security concerns,
since at the outset the service provider cannot be trusted with respect to
maintaining the privacy of user data. The following thesis addresses these se-
curity issues by developing a secure application architecture, which embodies
fine granular access control for encrypted semi-structured data. Furthermore
a service oriented framework is presented, which facilitates secure application
development and specifies interoperability and interaction mechanisms.

1.2 Scientific Objectives

The motivation for the thesis is founded in the scientific efforts made by
the SemCrypt research project, which is discussed at the end of Chapter
2 in greater detail. The motivation for SemCrypt stems from the increas-
ing need of outsourcing huge amounts of complex data on external database
servers with the possibility of accessing the data store anytime anyhow using
standard communication protocols. In order to not be forced to care about
securing the data store with additional hardware of software mechanisms,
confidential data is stored encrypted. The application logic, which is capable
of encrypting and decrypting the sensitive content, is moved to some trusted
computing environment, either a trusted ASP or to the data owner itself.
Sensitive data has to be dealt with in almost any application scenario imag-
inable, such as confidential customer or company data, but often users are
short of confidence in the service provider and hesitate or refuse to reveal
their private data. Who guarantees that data is properly secured from unau-
thorized access or not forwarded to any unknown third party? Among others,
SemCrypt aims at developing a mechanism for ensuring that sensitive data
can only be accessed by subjects, which are entitled to. Regardless of whether
we are dealing with some single-user file storage or a multi-user collaboration
platform, security can only be assured by encrypting data and restoring its
plain text representation on the trusted client side using the client’s valid
private key, which is only known at the client’s domain. When dealing with
structured or semi-structured data it might be uneconomic to secure all of
the information available, since only parts of it might require protection
from unauthorized access. Furthermore, an access request that only refers to
a small portion of the complete data set would cause an unnecessarily high
performance overhead, since the whole database content would have to be

CHAPTER 1. INTRODUCTION 10

loaded into main memory and analyzed computationally. Semi-structured
data is mostly stored using XML or related technologies. Nowadays, XML
usage is wide spread and has gained a key role for exchanging and storing
electronic information. Many efforts for standardizing security issues with
special focus on access control, signature and encryption have been made.
With XML Encryption, for instance, it is possible to ensure confidentiality
of XML structured information. The increasing deployment of XML for Web
services and remote data management, however, requires additional methods
for secure and efficient querying and updating of encrypted XML document
data. The approaches provided in this thesis support state-of-the-art security
standards and could thus add some significant value to increase the overall
acceptance of E-Business applications and E-Collaboration models. Primary
target markets for such techniques could be ICT outsourcing markets, which
deploy advanced XML technology, and at the same time have serious short-
comings regarding appropriate security mechanisms. Furthermore, the xSP
model may reduce risk by providing the possibility to apply Service Level
Agreements (SLA). Especially, small and medium-sized businesses may ben-
efit from the latter aspect.

Trust and security issues have a high impact on the success of inter-organizati-
onal business processes and are a crucial starting-point for improving the
general acceptance of ICT business models. Trust relationships are essen-
tial between cooperating companies and customers. Since trust and security
issues arising from storage of documents in the Semantic Web are mainly
unsolved, especially, integration technologies in the area of XML and Web
service standards are central subject to considerations regarding deployment
of IT support in Small and Medium Enterprises (SME) with respect to their
specific trust, security and efficiency requirements. Among others, trust and
security issues are - although not yet sufficiently solved - basic requirements
for collaboration in E-Business environments.

Another strong issue of motivation is data outsourcing in the context of Vir-
tual Organizations (VO). VOs, Virutal Enterprises (VE) and Smart Business
Networks [167] are concepts for networks of legally independent companies
cooperating to produce complex products or services and are a new and ma-
jor trend in the cooperative business (B2B) scenario. These three concepts
are almost identical, though VEs are a particular molding of VOs. A VE is
a temporary alliance of enterprises that cooperate closely in a service pro-
duction process without having legal or financial interrelations to share skills
or core competencies and resources in order to better respond to business
opportunities, and whose cooperation is supported by computer networks

CHAPTER 1. INTRODUCTION 11

[37]. Different business models could be classified as VE. However, any such
business model should have benefits for the customer as well as for the par-
ticipating partners. The motivation to collaborate is to offer better services
products to customers that cannot be offered by a single company. If a single
company cannot easily handle complex demands in an effective manner, such
networks may become useful. A VE enables outsourcing of responsibilities
and is thus advantageous for large companies, which may then concentrate
on their key capabilities, but also for small and medium companies, because
they may participate in the production of very complex services and prod-
ucts. VOs defy the conventional rule for operating an organization. They
do so by accomplishing tasks traditionally meant for an organization much
bigger, resourceful and financially stable than the ones who are actually able
to do so because of being a collaborative effort. Although such requirements
exist since a long time, today the localization of appropriate partners and
the management of the cooperation may be supported by recent information
technology more efficiently. Of course, partners in a VE may also be non-
commercial organizations. The success of VEs depends on the flexible, ad
hoc establishment of cooperation and sometimes in the mass customization
of delivered services. Cooperation in VEs can be established ad hoc with-
out great organizational overhead due to ICT benefits. Especially better
coordination of services and execution is an advantage that may be achieved
by VEs and sophisticated ICT. On one side, this flexibility is achieved by
electronic communication and information systems. For example, EDIFACT
(ISO 9735) [166] has established as considerable success for large and stable
networks such as in the food industry. However, for short-term cooperation
such a standard is insufficient and moreover, too expensive for small and
medium companies. To achieve the required flexibility, the usage of semantic
knowledge in communication and cooperation is demanded [181].

A drawback in current ad hoc networks is missing trust, which consequently
locks potential business partners away from information valuable for future
collaborations. In B2C contracts, a customer may not want to reveal private
data or preferences, to avoid the data being accessed by someone who is not
entitled to. In B2B environments, participating companies may wish to hide
knowledge about internal processes and be careful in establishing coopera-
tion with unknown partners. Financial security is one aspect of trust, which
may also be influenced by quality of service and cultural aspects. Total
Quality Management (TQM) is a general management discipline demand-
ing that processes and responsibilities are defined in an enterprise. In many
traditional companies ISO 9000 certifications have gained tremendous im-
portance. Digital signatures, certificates and encryption of information can

CHAPTER 1. INTRODUCTION 12

increase trust relationships between single and network enterprises if their ap-
plication is designed properly. Customers and employees may receive unique
digital signatures to determine their identity in business processes unambigu-
ously. Furthermore, processes must be transparently specified whose duty it
is to perform a certain task and these responsibilities must be controlled
electronically. However, there may be portions of a process that should be
visible only to certain groups such as partners or employees. If a well-known
trust center certifies an organization the trust into this organization will be
higher. Thus an independent trust center may certify that a company really
exists, has a certain reputation, is financial stable, its quality management
complies with standards and achieves other organizational attributes that
seem to be important. Moreover, delivered services should be certified. This
is of course more complex in context with customized services and products
in a VE. Trust is an important issue addressed always has a drawback to
actual implementations. Several issues are addressed by authors to improve
the trust. [191] assume that different partners have different trust levels
assigned and they show how for complex composed services of a VO trust
can be composed from individual trust levels. In this case, trust is assigned
to single services based on the trust given to the organization/person that
provides the service. A labeling scheme for sensitive objects within a VO do-
main is introduced in order to facilitate trust management. A label contains
information about the originality of an object. The introduced framework
also allows re-labeling of objects to react to the dynamic nature of a VO.
With this model, recommendations supplied by other subjects can be made
to adjust the trustworthiness of an object.

Nevertheless, the progressive use of XML for Web services as well as the need
of remote data and document management using XML databases [27] addi-
tionally calls for special methods that efficiently and securely query and up-
date (encrypted) XML documents at third parties that might not be trusted.
Such techniques can make an important contribution to an increased accep-
tance and adoption of electronic business models and electronic collaboration
in general as they address the trust problem, make use of the latest security
standards, and even mitigate privacy concerns, if used appropriately. Conse-
quently, there is a vast potential for these techniques in the ICT outsourcing
markets, as these make use of XML and have large trust and security needs.
Moreover, the service provider model and its markets offer many promising
applications as risk is reduced and service level agreements can be slimmed,
which makes this model more interesting for small and medium enterprises
that have specific trust and efficiency requirements.

Chapter 2

Related Work

This chapter provides a discussion of relevant approaches and related work in
the area of security management with respect to the work presented in this
thesis. Starting with an introduction into the fundamentals of security man-
agement, including issues, such as authentication, authorization, cryptogra-
phy or key management, the thesis provides a brief review of semi-structured
data in the perspective of XML and related technologies and a summary of
XPath fundamentals with respect to required security mechanisms presented
in this work. XML plays an elemental role in information technologies to-
day and is essential for understanding the outline of Web services in context
with security and Service Oriented Architectures (SOA), also presented in
this chapter. The final section is devoted to the SemCrypt project, which
scientific objectives and achievements are crucially important in order to pro-
vide a full understanding of the technologies developed and discussed in the
course of the thesis.

2.1 Security Fundamentals

2.1.1 Distributed Systems Security

Security can be roughly divided into two parts: secure communication, which
can be ensured via encryption and authentication, and authorization, often
referred to as access control [159]. Encryption is discussed in the next sec-
tion. It is a mechanism to ensure confidentiality and message integrity and
pervades nearly every issue in security management. Confidentiality protects
information from unauthorized access, while integrity deals with the prob-
lem that alterations to information can only be made in an authorized way.
Message integrity ensures that information has not been tampered during

13

CHAPTER 2. RELATED WORK 14

transmission from sender to receiver. Authentication is about verifying the
identity of a communication partner. Identity is thus be proved by the pos-
session of a certain credential, for instance a password or a cryptographic
key. While for confidentiality it is sufficient to encrypt the message content,
integrity involves a notion of authentication to ensure that the message has
not been modified and cannot be modified in the future. Authentication and
message integrity are dealt with interchangeably, since both issues cannot do
without the other one. What use is it to a receiver if a message has been
transmitted correctly, if it cannot be sure that is has been sent by the entity
it expects? And on the other hand what use is it to a receiver if it is sure
about the sender’s identity but not about the message content?

In distributed systems, four types of security threats need to be taken into
account:

• Interception happens when a party gains unauthorized access to data

• Interruption refers to the situation in which data becomes unavailable

• Modification involves unauthorized message tampering

• Fabrication generates data which would normally not exist in an unau-
thorized manner

Secure systems should be immune against all possible security threats. This
is usually achieved by formulating security policies, defining which actions
entities or subjects, i.e. users, machines, etc., are allowed to perform. Policies
are enforced by security mechanisms:

• Encryption implements confidentiality and integrity

• Authentication refers to entity identification

• Authorization is often used interchangeably with access control

• Auditing traces which subject accesses what when in which way

Designing secure distributed systems is a very sensitive area. Design flaws
may very rapidly make security considerations obsolete. Performance is of-
ten a crucial issue in designing security protocols. Unfortunately, assumed
optimization measures may have affect a protocol’s correctness leading to
unforeseen vulnerabilities, such as reflection or man-in-the-middle attacks.
Secure channels deal with how to secure communication between interacting

CHAPTER 2. RELATED WORK 15

parties by providing confidentiality, integrity, authentication and authoriza-
tion. The first issue to think about is the focus of control, dealing with the
problem on which application components protection mechanisms should be
applied. Data can be directly protected by prohibiting operations, which
may cause invalid data states and violate data integrity. Other protection
mechanisms affect unauthorized invocation of operations or take measures by
which only specific people may gain access to the application independent of
the operations they wish to perform. The second issue aims at which layer,
referring to the ISO/OSI model, security mechanisms should be placed. Secu-
rity on the transport layer is up to the local networking hardware, while data
link, network and transport layers may be protected by the local operating
system kernel. Application layer security refers to transportation of security
information in the actual protocol headers, such as HTTP which lets the
corresponding application decide what to do with the request. Security can
be enforced at very different levels depending on the type of system and type
of data that needs to be secured. For instance, messages between communi-
cation partners may be secured by encrypting the message itself or leaving
the message in plain and encrypting the communication channel. Both ap-
proaches provide some notion of security but at different levels regarding the
ISO/OSI model. This allows combination of security, since message may be
encrypted and then be sent over the secure channel. Certainly, this only
works if both communication partners implement the same type of security
mechanisms.

2.1.2 Cryptography

Cryptography deals with message confidentiality and integrity. Transform-
ing a plain text message into cipher text message using a cryptographic key,
ensures that, given a strong encryption algorithm and key, an unauthorized
party cannot gain access to the message, unless it somehow gets access to the
required key. Integrity is ensured, since message tampering is only possible
if the key is known as well. Alteration of the cipher text will be recognized
as intrusion attempt as soon as the intended receiver tries to decrypt the
message, which will result in a failure. Cryptographic systems are catego-
rized into symmetric and asymmetric cryptosystems. Symmetric systems
are also often referred to as shared key or secret key systems and use exactly
one key for encrypting and decrypting a message. The key must be shared
among interacting parties and locked away from unauthorized access. Asym-
metric or public key systems consist of a key pair, namely a public key for
encryption and a private key for decryption, where both keys must be mathe-
matically related. The public key may be known by anyone, while the private

CHAPTER 2. RELATED WORK 16

key should be kept secret and only the party receiving a message should be
able to decrypt and read the encrypted message. The advantage of symmet-
ric keys over asymmetric keys is faster encryption/decryption computation.
The difficult thing is key exchange without anyone else getting noticed. In
practice key exchange using slow asymmetric encryption combined with fast
symmetric encryption/decryption processing is used very often, for instance
combining the public key Rivest-Shamir-Adleman (RSA) algorithm with the
Data Encryption Standard (DES) [133]. Often it is required to prove that
a message has been sent by one specific entity and no one else. This is
something symmetric encryption cannot achieve, but is left to asymmetric
cryptography. With asymmetric ciphers confidentiality can be achieved by
letting the sender encrypt a message using the receiver’s public key. Identity
works the other way round, by letting the sender encrypt a message with the
private key and all recipients decrypt with the sender’s public key. This is
comparable to a unique signature and ensures that the message could have
only come from one specific sender. Unfortunately, public key encryption is
very slow and not applicable to large documents. This is where hash func-
tions come into play.

Hash functions are one-way mathematical functions, which take a plain text
as input and calculate a fixed length hash value as output, usually 20 bytes,
which allows a total of 2160 different values. This raises the probability of cre-
ating the same hash value out of two different messages to a 1 to 2160 chance,
making guessing computationally infeasible. Hence, strong hash functions
provide uniqueness, i.e. they are collision resistant in mathematical terms.
The Secure Hash Algorithm SHA-1 and Message Digests MD4 and MD5,
for instance have been proven to meet this requirement. Hash functions are
very fast and useful for error detection, since as soon a message is altered,
the hash-value a.k.a. checksum will be different. It is possible to generate
a fixed-length encoded equivalent of the original input message, called the
message digest, which in turn is easy to encrypt using public key cryptogra-
phy to establish identity. However, what still is missing is the certainty that
the owner of the public key is really the person who actually encrypted and
sent the message. This is subject to key management discussed later on.

Security in cryptographic systems must be accomplished by using preferably
strong cryptographic keys, not by keeping the ciphering algorithm secret.
Algorithms are easy to break, strong keys are not. A good example is pro-
vided by the Global System for Mobile Communications (GSM) [120] security
architecture. GSM uses relatively weak authentication and communication
ciphers using shared key cryptography. If the algorithm could be kept secret,

CHAPTER 2. RELATED WORK 17

which was the consideration, it will be hard to ever break the security sys-
tem. Because things that are secret often unintentionally attract increased
attention, soon successful attacks on A5/1 and A5/2 algorithms used in GSM
phones were published. However, algorithms should be made public to over-
come proprietary ciphering implementations, which is especially important
in distributed environments. Furthermore, algorithm publication leads to an
improvement of the algorithm strength and quality. The XML Encryption
standard, which is also subject of this chapter, specifies the usage of partic-
ularly strong algorithms, which have been intensively revised, such as Triple
DES (3DES) or the Advanced Encryption Standard (AES). 3DES, for exam-
ple, is based on the 25 year old DES standard, which is still considered strong
and is widely applied, since it also runs fast in digital computing hardware.
Cryptanalysis is a special field of research, which deals primarily with ana-
lyzing security systems and finding potential security leaks attackers could
exploit to overcome protection mechanisms and invade the system.

2.1.3 Key Management

Establishment of cryptographic keys among interacting parties is not a triv-
ial issue. Key exchange and distribution must be performed via secured
channels at any rate. Sometimes it even has to be performed off the line.
Also mechanisms for key invalidation and establishing new ones, known as
key revocation, have to be provided. Since symmetric encryption algorithms
are usually hundreds or even thousands of times faster than asymmetric
algorithms, interacting parties use a shared secret key for encrypting and
decrypting their messages. Distribution of shared secret keys is usually done
via asymmetric keys. It is safe to encrypt a key with a public key and trans-
mit it over the Internet, since it can only be decrypted using a special private
key, which is not publicly known. The same approaches are applicable when
interacting with a Key Distribution Center (KDC). A widely adopted algo-
rithm is the Diffie-Hellman key exchange algorithm. If two parties wish to
establish shared keys, they have to agree on two large numbers, which can be
publicly known. At the same time both generate a number, which they keep
secret. The Diffie-Hellman algorithm is based on the mathematical principle
of modulo operations [133].

One problem of secret key management is scalability. If a system has a
total of N hosts each communicating with each other using separate secret
keys, N different keys are involved in the system with each host storing N-1

secret keys and leading to an overall key number of N*(N-1)/2, which needs
to be managed by the system. A solution is a centralized KDC holding ex-

CHAPTER 2. RELATED WORK 18

actly N keys. In this approach each host first contacts the KDC to obtain a
secret key it can use when initiating communication. Famous examples for
secret key authentication are the Needham-Schroeder protocol named after
its inventors and the Kerberos system developed at the Massachusetts Insti-
tute of Technology (MIT). Needham and Schroeder proposed the usage of
unique random numerical values attached to each message, so-called nonces
(number used once), to prevent replay attacks, i.e. sending a message twice
to exploit vulnerabilities in the security protocol. With public key authenti-
cation protocols, no KDCs are needed, since public keys need not be stored
in a secure manner and each host only needs to keep its own private key.

Another problem here is the credibility of the communication partner. Each
interacting party has to be sure that the public key really belongs to the
party who is claiming to be the owner. This can be accomplished via public
key certificates (PKC), which are hosted by a trusted Certification Author-
ity (CA) and which are signed by the authority’s public key. A certificate is
stored together with a public key and an identifier of the entity with which
the public key is associated. If a client wants to verify that a certificate indeed
belongs to the identified entity, it uses the authority’s public key to validate
the public key and the identifier of the certificate. This works, since the client
trusts the CA that its public key has not been modified. Authorities’ public
keys may in turn be validated using other CAs, leading to a hierarchical trust
model. Certificates often have limited lifetime. Certificate Revocation Lists
(CRL) are published regularly by a CA and indicate whether a certificate
has been revoked or not. KDCs and CAs play a significant role in public key
and secret key distribution processes. However big drawbacks are, they must
be trusted and provide a high level of availability, otherwise secure commu-
nication channels can not be established and public keys can not be verified.
Replication may be one workaround to providing availability, which on the
other hand makes a server more vulnerable.

2.2 XML and Semi-Structured Data

2.2.1 XML Essentials

In recent years, the eXtensible Markup Language (XML) [33] has become
the de-facto standard for data exchange. XML is the successor of the Stan-
dard Generalized Markup Language (SGML) [51]. It is a meta-language for
describing information, rather than handling information in an application
specific manner. Transformation languages, such as the eXtensible Stylesheet

CHAPTER 2. RELATED WORK 19

(a) (b) (c) (d)

Table 2.1: A sample schema with valid XML document representations

Language (XSL) [45] define how XML data needs to be processed in order to
be used in an application specific context. For example: HTML provides an
element , which tells a Web browser to display a consecutively num-
bered list of data, but does not provide any information about the type of
data. With XML one could describe an employee’s professional qualifica-
tions as <Competencies/> pass it on to the XSL transformer, which in turn
generates a HTML document that could actually be rendered in the browser
window. XML thus abstracts data processing from its context-specific pur-
pose, but is focused on semantic data annotations. Which elements are al-
lowed in an XML document is defined by a separate source, called the XML
Schema [152] or a Document Type Definition (DTD) [173]. XML Schema is
a much more powerful language than DTD and allows very extensive docu-
ment structure definitions, including names, types and contents of elements,
as well as cardinality and many more. The following illustration should serve
as clarifying though simplistic example: The left part of Table 2.1 (a) rep-
resents an exemplary XML Schema as cyclic, directed tree graph. It defines
elements a, b, c, d and e and their relations among each other. a is called
a global element, which directly refers to elements b and c. A schema may
contain cyclic references, enabling recursive occurrences of elements as in the
case of b and c. Unlike DTD, XML Schema does not prescribe a mandatory
root element, i.e. valid XML documents must not define one specific root
element to be schema valid. It may as well use only portions of a schema or
refer to multiple schemas, as schematically illustrated in graphs (b), (c) and
(d).

CHAPTER 2. RELATED WORK 20

Exactly when referring to multiple schema instances, it might happen that
schemas define elements with the same name but different structures, re-
sulting in conflicts. The solution is namespaces. Namespaces refer to URIs
to distinguish overlapping element declarations from each other. They are
declared by the root elements of a schema and document to avoid parsing
errors during document processing. An XML Schema root or header looks
as follows:

Listing 2.1: Definition of an XML Schema file
<xsd:schema xmlns:xsd ="http: //www .w3.org /2001/ XMLSchema "

targetNamespace="http: // semcrypt .ec3.at/xml/access /types "

xmlns="http: // semcrypt .ec3 .at/xml/access /types"

elementFormDefault="qualified ">

...

</xsd:schema >

The root of all schemes is the <schema/> element. All XML Schema ele-
ments are per standard defined by the http://www.w3.org/2001/XMLSchema
namespace. The prefix xmlns:xsd declares xsd as namespace prefix to
be used for each element defined by the namespace URI, for instance the
<schema/> element. xmlns without suffix defines the default namespace. El-
ements declared therein must not be prefixed. The target namespace is often
abbreviated as tns and specifies the namespace for the elements defined by
the current schema. When setting elementFormDefault to qualified, all ele-
ments must be namespace qualified. A valid document header may then look
as follows:

Listing 2.2: A sample XML document
<XAccess xmlns="http: // semcrypt .ec3.at/xml /access /types"

xmlns:xsi ="http: // www.w3.org /2001/ XMLSchema -instance "

xsi:schemaLocation="http: // semcrypt .ec3.at/xml/access /types

xaccess .xsd">

...

</XAccess >

Namespace xsi is only required for the schemaLocation attribute, which
contains to parameters separated by white space. The first one indicates the
namespace to use and the other the physical location of the schema document,
in this case it resides in the same folder as the XML document. This is
important for validating the document against a schema. For integrating
multiple schemas, there are two possibilities, import and include:

Listing 2.3: Usage of import/include schema elements
<xsd:import (id)? (namespace)1 (schemaLocation)? ... />

<xsd:include (id)? (schemaLocation)1 ... />

A schema import only requires the definition of another namespace URI to be
added to the schema namespace. With include statements the schemaLoc-

CHAPTER 2. RELATED WORK 21

ation is mandatory. Schemas to include must specify the same target names-
pace as the including schema.

2.2.2 XPath and XUpdate

XPath is for XML what SQL is for relational database tables. It can be
used to select and navigate through portions of XML data. This section
shall give an introduction to XPath features and XPath query processing,
which is fundamental to describe access control for XML documents. The
full specification of XPath can be found at [46] whereby the newer XPath 2.0
proposal [20] is part of the more complex XQuery standard [25]. XQuery can
be used for much more than just querying XML, thus a comparison between
XQuery and SQL would be maybe more appropriate. Related specifications
are the XPointer [58] and XLink languages [59]. Referring to the previous
section, an XML document is made up of different types of nodes, such as
elements, attributes, text, comments and processing instructions. Depending
on the corresponding schema, element nodes may be arbitrarily nested, while
attributes can only be used to further specify an element. Text may occur
within elements, attributes, comments or processing instructions. However,
sensitive data is represented by elements and their contents, i.e. other ele-
ments, attributes or text. Comments may be used to further explain XML
fragments and although it would be easily possible. Basic XPath syntax can
be formally defined as:

XP := ("/"(N":")?E)* ("/"(N":")? "@"A)?

where E denotes an element contained by the affected XML document, A

an attribute and N an optional namespace, the element or attribute respec-
tively, are defined by. The syntax reminds of Unix file system navigation,
where a single ”/” selects the root directory and subsequent steps navigate
down the directory hierarchy. A file, however represents a leaf and can-
not contain other files or directories, which is also true for XML attributes.
XPath queries can truly become very complex. The syntax contains very
powerful features, which on the other hand are often redundant and may
be rewritten by queries, which are equivalent but far simpler. One such
mechanism is axes used to facilitate location based navigation. When an
XML node, i.e. element or attribute, for instance, the node becomes the
context node, which surrounding nodes may be more easily obtained using
axis navigation. The default axis is child. Every path step that has no axis
prefixed is assumed to be a child of the preceding step. The descendant axis
contains all the descendants of the context node, except from attributes or

CHAPTER 2. RELATED WORK 22

Axes Abbreviated

child::N N
descendant::N //N
attribute::N @N
self::N .
descendant-or-self::N descendant::N |.
namespace::N N:
parent::N ..
ancestor::N ../../ etc.
ancestor-or-self::N ancestor::N |.

Table 2.2: Axes and abbreviated equivalences used for XPath rewriting

namespace nodes, while descendant-or-self contains all the descendants
of the context node, and the context node itself. Attributes and namespaces
are excluded as well. attribute axes must be used in case the selected step
points at an attribute node. The self axis contains just the context node,
which is useful in cases the context nodes should be explicitly referenced.
The following-sibling axis contains all the following siblings of the con-
text node, and following points at all nodes that come after the context
node in document order. Analogous, the preceding axis contains all nodes
that occur before the context node in document order, excluding any an-
cestors of the context node, and again also excluding attribute nodes and
namespace nodes. The preceding-sibling axis contains all the preceding
siblings of the context node, unless context node is an attribute node or
namespace node. The namespace axis references the namespace value of the
context node if the node is an element. The parent axis contains only the
parent of the context node, if there is one, while the ancestor axis contains
all the ancestors of the context node, including its parents, grandparents,
and so on. This axis always contains the root node unless the context node
is the root node. The ancestor-or-self axis contains all the ancestors of
the context node, and the context node itself.

Axes are a useful feature, but may be omitted using equivalent abbrevi-
ated syntax as shown in tables 2.2 and 2.3 [168]. The left column in Table
2.2 lists XPath axes and the right column their abbreviated equivalent. Note
that preceding and following axes have been omitted, since they do not have
an abbreviated equivalence and are more complex to handle. These issues are
fundamentally important for query evaluation, which in turn forms the basis
for the XML access control approach discussed in Chapter 5. It is crucially

CHAPTER 2. RELATED WORK 23

Examples

/a/child::b ≡ /a/b
/a/descendant::b ≡ /a//b
/a/attribute::b ≡ /a/@b
/a/self::b ≡ /a/b/.
/a/descendant-or-self::b ≡ /a//b | /a/.
/a/b[namespace::N] ≡ /a/N:b
//a/parent::b ≡ //b/a
//a/ancestor::b ≡ //b//a
//a/ancestor-or-self:b ≡ //b//a | //a/.

Table 2.3: XPath rewriting examples

important to put these features into context with each other to map XPath
expressions to a selected syntax portion and to be able to semantically com-
pare XPath queries.

An XUpdate is defined as well-formed XML document, which makes ex-
tensive use of XPath [46] for specifying the XML portions to be updated.
The following code sample inserts a new Competency element after the first
Competency occurence, including a name attribute and a sub-element Com-

petencyId with attributes id and idOwner. The project Web site [162] pro-
vides additional example and usage descriptions to each update operation
supported.

Listing 2.4: An XUpdate fragment creating an employee’s competency
<xupdate:insert -after select ="/SemCryptEmployeeInfo // Competency [1]" >

<xupdate:element name="Competency ">

<xupdate:attribute name="name">

Programming Language

</ xupdate:attribute >

<xupdate:element name="CompetencyId">

<xupdate:attribute name="id">

C++

</xupdate:attribute >

<xupdate:attribute name="idOwner ">

9902261

</xupdate:attribute >

</ xupdate:element>

</xupdate:element >

</xupdate:insert -after >

XUpdate supports appending and inserting elements, attributes, text-content,
comments and processing-instructions before and after the node-set selected
by the specified XPath expression. Update, remove and rename operations
are allowed as well. Furthermore, XUpdate introduces variables and includes
conditional processing. The working draft was last updated in 2000, but its

CHAPTER 2. RELATED WORK 24

likely to be integrated into the XQuery specification in predictable future.

2.3 Web Services

The introductory chapter already established basic understanding of service
orientation concepts. This section is focused on a special form of SOA, called
Web services. Web services is a very generic and frequently discussed term
referring to a technology, which is capable of implementing a wider range
of distributed interaction mechanisms [34], where SOA is one of them. Of-
ten Web services are defined in the same context as SOA, though they do
not necessarily imply each other. With distributed computing it has always
been a major goal to achieve interoperability among interacting endpoints,
regardless of programming languages the communication processes were writ-
ten in or the operating system platform they were running on. Traditional
middleware systems, like RPC and CORBA already achieved this, but re-
quired compatible communication partners, i.e. RPC and CORBA endpoints
respectively. Web services evolved from existing distributed computing tech-
nologies and rely on a few core XML based specifications.

The UDDI consortium [123] defines Web services as

Definition 2.1. self-contained, modular business applications that have open,
Internet-oriented, standards-based interfaces

As understood today Web services expose the functionalities of an infor-
mation system and make it accessible through standard Web technologies.
This reduces heterogeneity and facilitates application integration. Interop-
erability and application integration are very closely related. Application
integration exists with many different characteristics most importantly for
sharing and aggregating information inside and outside organization bound-
aries in the Business to Consumer (B2C) as well as in the Business to Business
(B2B) sector [2].

The World Wide Web Consortium (W3C) [26] is very much involved in Web
service specifications and definitions and considers Web services more pre-
cisely:

Definition 2.2. A Web service is a software application identified by a URI,
whose interfaces and bindings are capable of being defined, described, and
discovered as XML artifacts. A Web service supports direct interactions with
other software agents using XML-based messages exchanged via Internet-
based protocols.

CHAPTER 2. RELATED WORK 25

or as

Definition 2.3. A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an in-
terface described in a machine processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its descrip-
tion using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.

The reason why conventional middleware failed to succeed was their com-
plexity and incompatibility to other technologies. Roughly spoken, CORBA
[124] requires compatible Object Request Brokers (ORBs) at each communi-
cation endpoint, DCOM [109] requires Microsoft Windows installed at each
interacting host and RMI [155] requires Java processes for communications.
Web services aim at overcoming these drawbacks by relying on XML stan-
dards for middleware functionalities, be it messaging, security or transaction
support. The big advantage of XML is that it is a widely used meta-data
format and that it is plain text rather than a binary format, which any
computing system is able to handle. Web service standards are vastly inde-
pendent from each other and from the specific underlying technology.

Conventional middleware suffers from the limitation of being centralized, i.e.
controlled by a single company. B2B integration therefore requires compa-
nies to use the same middleware platform, including Workflow Management
System (WfMS), Message Brokers for interaction or naming and directory
servers. The same applies to security. Since companies rely on proprietary
security mechanisms, required trust and confidentiality in company coop-
erations cannot be granted. Or considering transactions, traditional 2PC
semantics as provided by most database management systems do not meet
B2B requirements for long lasting transactions that may occur in Web ser-
vice environments. Locking of resources for several days may be imprac-
tical in real-world cross-organizational distributed processes. Lack of stan-
dardization efforts made B2B integration costly. The EDIFACT standard
was considered successful, but never widely adopted, because it was expen-
sive to develop, difficult and almost impossible to maintain, such that only
large companies could afford it. XML Web services aim at bypassing these
shortcomings by defining middleware features at higher levels of abstraction,
actually enabling independence from the underlying implementation. Web
services may thus be easily integrated into more complex distributed applica-
tions, since compatibility among middleware platform is no longer an issue.
Furthermore, Web services implement SOA following the ”everything is a

CHAPTER 2. RELATED WORK 26

Figure 2.1: Common Web service infrastructure

service” principle. Software should be composed out of loosely coupled, in-
dependent components. Many standardization efforts have been made with
the success of Internet technologies in mind. The World Wide Web works
due to standards without centralized coordination. Standardization is driven
by small, focused groups of companies and adopted by standardization orga-
nizations, such as OASIS or W3C, with the aftertaste of competing standards.

Technologies required for Web services comprise service description using
XML as common base language, service discovery for registering new ser-
vices as well as searching for and locating services and service interaction
transparent of actual transport technologies. The traditional Web service
architecture [26] consists of a service provider describing a Web service in
a standardized way (WSDL) [44], a service registry to store service infor-
mation (UDDI) [123] and a service consumer. Communication is performed
using SOAP [169], encoding protocols and interaction mechanisms into com-
mon XML syntax. The common SOAP data format enables loosely coupled
messaging or RPC, ignores semantics of complex communication patterns
and requires to be combined with an underlying middleware, such as HTTP
or SMTP. Describing is done via a common description language. The so-
called WSDL standard is comparable to the CORBA Interface Definition
Language (IDL), but separates interface description from other middleware
features, including addressing and protocol binding. Services provided via
WSDL may be invoked statically via precompiled stubs or dynamically using
stubs generated during runtime. UDDI implementations provide a naming
and directory interface for Web service environments. It allows publication,
location and pervasive usage of Web services at global scale.

CHAPTER 2. RELATED WORK 27

Issues not handled by the standards described so far are subject to other
proposals. A Web service specification only deals with very specific features,
but does not attempt to tackle all of them as previous middleware platforms
tried to achieve. WSDL, for instance, can only be applied for actual service
description, but it does not provide information about invocation sequence
of operations provided by the service described or describe conversational
semantics and non-functional service properties. Latter ones may be con-
tained by a service repository, such as UDDI. SOAP offers generic message
templates, i.e. basic structure of message header and body, which may be
enhanced by standards as WS-Security [122], adding security related infor-
mation to SOAP. WS-Security by the way is one major subject of this thesis
and will be discussed in greater detail shortly. Maintenance of conversation
states or messaging sequences is transferred to meta-protocols, such as WS-
Coordination. WS-Transaction [88] in turn extends coordination mechanisms
with both short running and long living transactions. In the field of workflow
management, the Business Process Execution Language (BPEL) [91] is very
likely to succeed.

2.4 XML and Web Service Security

2.4.1 XML Encryption

The XML Encryption Working Group has published a proposal for encrypt-
ing and decrypting XML data and documents [89]. Its motivation is to ex-
change sensible data as encrypted XML data, in order to disable an illegal ac-
cess to this data during communication. The proposal specifies the structure
of encrypted data and the processing rules for decryption and encryption. An
XML element is replaced by an encrypted cipher text, which again forms a
well-formed XML element. A type attribute specifies whether the encrypted
data is text, an XML element or the content of an XML element. Attribute
encryption is not supported. The encryption algorithm is specified by the
EncryptionMethod element and the key for the encryption algorithm can
be specified with the KeyInfo element. The CipherData element contains
either the encrypted text or a URI to the encrypted text. WS-Security uses
XML Encryption [130] to hide selected information contained in SOAP mes-
sages. It additionally requires a reference list in the security header, which
holds references to the encrypted data in the SOAP body. XML Encryption
supports shared or secret key encryption, which requires both communica-
tion endpoints to know the key. An alternative approach is key wrapping,

CHAPTER 2. RELATED WORK 28

also called digital enveloping which uses shared key encryption to encrypt
sensitive data and public key encryption for key exchange. Since the key
is encrypted with the receiver’s public key, the receiver is the only one who
may decrypt the key and thus apply it on the SOAP message body. When
using key wrapping, WS-Security additionally stores the wrapped key in the
security header and the reference list is contained by the encrypted key data
structure.

2.4.2 XML Signature

A number of activities were performed to consider security concepts in the
context of the Semantic Web and XML. The XML Signature Working Group
[65] has published 2002 a proposal for a digital signature for XML documents
and elements [18]. The motivation for a digital signature is to proof the in-
tegrity of a document, i.e. nobody may alter unintentionally or deliberately
the document, without detection of this alteration by the intended receiver
and an unambiguous identification of the sender of a message. The adopted
proposal describes the structure of a digital signature and a number of pro-
cessing rules to be applied if a message is signed or if the integrity is checked.
A signature may be part of a document, it may embrace the document or
the signature may be outside of the document. A signature may also be used
for more than one object. A signature may specify several processing steps
performed before the signature is computed. These steps may be a canoni-
calization of an XML document, an XSLT-transformation and/or a filtering
with XPath [31]. The proposal specifies some algorithms for a digital sig-
nature in its name space to be used. Further algorithms may be used if an
URI is given where the specification of the algorithm is defined. An optional
element can be used to supply key or certificate with the signature. Digital
signatures in SOAP documents can be used for verifying a security token or
the message integrity by comparing document hash values.

Message timestamps are the only new mechanism that WS-Security intro-
duces to SOAP messages. All the other features are a way to incorporate
existing security technologies into Web service messaging. If message times-
tamps are used, the sender may include a field, which tells the receiver about
the expiry date of the message, which tells the receiver whether to process or
discard the message. Furthermore it tells the processing intermediaries when
the message was created and additionally allows timestamp based tracing.

We have now seen that WS-Security comprises a lot of issues that may be
used with SOAP messaging. Of course, it allows maximum flexibility when

CHAPTER 2. RELATED WORK 29

configuring the security layer of a Web service, but always with the drawback
of tremendous performance tradeoffs. Using XML Signature, XML Encryp-
tion and security tokens to which extent ever, may dramatically increase the
size of a SOAP message. Not to mention other middleware features, such as
coordination, transaction or context information, that might be necessary in
an application setting, a SOAP header is very likely to quickly explode in size.
This may appear a bit weird especially if the size of the body containing the
actual message is confined to a few lines. In large inter-enterprise application
software message size could significantly affect transmission time, processing
time and memory consumption. In particular XML processing, which re-
quires canonicalization, and computationally expensive signature validation
or asymmetric encryption/decryption algorithms may significantly slow down
the communication process.

2.4.3 The WS-Security Stack

WS-Security is not a new technology per se but rather incorporates existing
security mechanisms within SOAP messages [96]. It is important to under-
stand that WS-Security directly operates on the messages themselves, i.e.
on the application layer. Security is very complex and may also be directly
applied on the transport level, which leaves the message unsecured on any
higher level in the ISO/OSI model [132]. For example, it is fine to use exist-
ing transport layer security mechanisms, such as Secure Sockets Layer (SSL),
to Web service messages since they do not care which type of message they
encrypt. Moreover they are simple, supported by most systems and well
known to system administrators. However, there are a number of serious
drawbacks to the approach: Transport layer security only applies to a cer-
tain transport protocol, for instance SSL cannot be applied to a protocol
other than HTTP, messages cannot be accessed during transport (at least
partially) but are in the clear after leaving the receiver’s SSL socket, and we
must apply the same security for all of the messages being carried over the
secure pipe. Pros and cons of transport layer security are almost inverted
in case of message layer security. WS-Security allows securing parts of each
message differently, which makes it possible to encrypt the message content
with a private key for the message receiver and using a separate key for the
routing information. This is an issue also addressed by WS-Routing [110].
Incorporation with other emerging Web service standards and involving flex-
ibility is the most promising feature of Web service security but at the same
time its probably biggest weakness. Since Web services aim at creating an
abstract middleware and transport is not part of any middleware specifica-
tion, WS-Security thus addresses the issue of securing Web service messages

CHAPTER 2. RELATED WORK 30

Figure 2.2: The Web Service Security stack of specifications

themselves on the application layer while staying transparent to the under-
lying transport technology. Before becoming a standard proposed by IBM,
Microsoft and VeriSign in 2002, WS-Security was defined as SOAP extension
supporting only digital signatures. The following figure was taken from [118],
a whitepaper published by Microsoft and IBM: Similar to other Web service
standards, WS-Security defines the type of information transported in the
SOAP header, i.e. XML Encryption, XML Signature and security tokens,
which are being introduced in greater detail within this section. Tokens usu-
ally cover all the security related topics different from encryption or digital
signatures, such as SAML tokens for authentication or authorization. WS-
Security extending standards specify which tokens may be used, how they
are created, processed, transported and so on. WS-Security itself defines
username tokens for simple username/password authentication. Though not
very secure, it is a widespread authentication method and often sufficient,
depending on the application setting. Username tokens may come along with
plain text passwords or hashed passwords adding a timestamp and a nonce to
increase randomness and prevent guessing or replay attacks. Another option
would be to use shared secrets between service provider and invoking clients.
The only thing that needs to be taken care of is that both interacting parties
have sufficient information to repeat the hashing process and compare the
resulting password digest. Another form of security tokens are binary secu-
rity tokens. Because they are binary, they need to be encoded, e.g. Base-64,
in order to be represented within XML documents. Up to now, WS-Security
specifies X.509 certificates, version 3, and Kerberos tickets. XML tokens are
XML formatted information, where each type defines its own root element,
such as SAML assertions, XrML licenses or XCBF (XML Common Biomet-
ric Format) [121] tokens. SAML and XrML will be discussed shortly.

To inform Web service consumers about the security requirements a Web

CHAPTER 2. RELATED WORK 31

Service has, WS-Policy [16] provides a framework to express interaction rules
in a machine readable manner. WS-Policies may either be associated with
a set of Web services by letting a policy point to the Web services it ap-
plies to or referencing a set of required policies within a WSDL document.
This differentiation is important, since Web service consumers can but not
necessarily need to be Web services and thus may not be described by a
WSDL file, though policies may also apply to clients. WS-Policy seems like
the perfect endorsement to WSDL, which was always criticized of being too
static and not offering functional or non-functional service documentation.
WS-Policy may introduce more dynamics to Web service descriptions and
could even be suitable for policy negotiation among a set of Web services
and interacting clients, which was long discussed in context with agent tech-
nology, or a useful support when handling Web service evolution [138]. More
particularly, WS-Policy defines a framework for specifying policy assertions
(WS-PolicyAssertions) [28] and how these resources are bound to a specific
resource, for example WSDL (WS-PolicyAttachment) [17]. WS-Policy is ap-
plicable to a wide number of different functional domains, such as reliable
messaging or Quality of Service (QoS) characteristics. An assertion must
specify whether it must, must not or may be applied. Additionally, re-
questors may be informed as soon an assertion is applied or ignored. An
optional preference number indicates the priority of the policy assertion.
Multiple assertions may be combined using the <All/>, <ExactlyOne/> or
<OneOrMore/> element operators, where <All/> is the default value.

WS-SecurityPolicy [57] builds upon the set of WS-Policy recommendations.
It embodies a policy description language specific to expressing security con-
straints of a Web service, such as required security tokens, encryption al-
gorithms or signature processing. This is exceptionally hard when we re-
member the complexity involved standards have to offer. WS-SecurityPolicy
currently supports username tokens, XrML licenses, SAML assertions, X.509
certificates and Kerberos version 5 Ticket Granting Ticket (TGT) and Ser-
vice Ticket (ST). Token issuers contain the names of trusted issuers. Claims
further describe the type of token in use. This affects username, X.509v3 and
Kerberos token types. Username fields need not match exactly, prefix values
and regular expressions are allowed as well. According to WS-Security, pass-
words may again be specified in plain text or as hashed digest value. X.509
extensions allow adding more descriptive data to the certificate. Integrity
determines whether a SOAP message needs to be signed, which parts need
to be signed and which algorithms to use for signing. Usage and preference
attributes may be declared as discussed with WS-Policy. Allowed algorithm
types are canonicalization, signature, transform and digest algorithms. Al-

CHAPTER 2. RELATED WORK 32

gorithms may further be specified by adding algorithm specific elements and
attributes. Multiple algorithms of the same type introduce more flexibility
and allow the other party to choose which one to use. Security tokens and
claims as mentioned previously may also be used. Which parts actually need
signing may be indicated by XPath 1.0 expressions or functions defined by
the WS-PolicyAssertions specification. Confidentiality defines which parts of
the message need to be encrypted. It supports exactly the same features as
integrity does, except the claim concept and the only supported algorithm
type is encryption. Visibility configures the SOAP message parts which must
be visible to intermediary message recipients, such as routers or firewalls.
Visibility refers to either plain text message portions or messages encrypted
in a way that intermediaries can handle them, i.e. using keys any intermedi-
ary must know. Additional assertions include security header, which allows
constraints to be put on the message security header and message age, which
is similar to the WS-Security timestamp.

We saw that WS-Security is extremely powerful in terms of expressing se-
curity on message level. We also saw that such dimensions of complexity
have their price. The vast number of configuration options Web service
specifications have to offer may result in huge message sizes and thus se-
rious performance bottlenecks. WS-SecureConversation [3], developed by
IBM, Microsoft, RSA and VeriSign tries to solve for Web services on the
messaging layer what SSL does on the transport layer. It establishes a mu-
tually authenticated security context, which can be used to transport a series
of subsequent messages. This significantly reduces the size of the message
headers, and overcomes inefficiency that equal messages have to go through
the same security checking process, which is computationally expensive. Like
SSL, WS-SecureConversation uses public key cryptography to exchange a se-
cret key, which is used for encrypting and decrypting SOAP messages. The
so called security context token contains an identifier, a created and expiry
timestamp and an optional list of secret keys. If no secret keys are specified,
it is assumed they are already known between the communication partners.
Security contexts may be established by letting a third party create the se-
curity context token or one of the communication partners is responsible for
it or by negotiation. Token exchange is performed through protocols defined
by WS-SecureConversation and WS-Trust.

Trust is a difficult issue, which raises many questions about whom to trust
and under which circumstances. Each communicating party has to decide
whether it can trust the credentials provided by the other party. Hence, WS-
Trust [4] needs to formulate methods for exchanging trust related security

CHAPTER 2. RELATED WORK 33

tokens and establishing trust relationships as extensions to the underlying
WS-Security layer. WS-Trust tokens are similar to SAML request/response
tokens discussed later on. A Security Token Service (STS) serves as trust bro-
ker between communicating parties of probably different trust domains. A
Web service notifies the invoking party of eventually present security policies.
The client may either already possess them or contact the STS for retrieving
the required token set. This model might become arbitrarily complex, since
each STS could be provided as secured Web service with own policies as well.

WS-Privacy is a not yet published standard, which may be compared to
the W3C Platform for Project Privacy Preferences (P3P) [171]. Designed for
the Web application domain, P3P allowed a server to publish privacy pref-
erences, which compared with the user preferences as specified in the Web
browser options, notified the user of privacy conflicts.

Web services may often have different security requirements as described
by WS-Policy. To establish a common security context among a set of in-
teracting Web services, WS-Federation [102] aims at translating one security
token into another via Secure Token Services (STS). If a client wishes to ac-
cess a Web service, it requests a security token from its STS. With this token,
the client may contact the service STS and obtain the tokens required for
interacting with the service provider. The only precondition in this setting
is that both STS entities have established a trust relationship between each
other.

WS-Authorization [132] has not yet been published but is very likely to aim
at tailoring the concepts introduced by SAML and XACML to Web service
environments.

2.4.4 Related Specifications

The Security Assertion Markup Language (SAML) [114] is a standardized
XML format for describing identities and assertions identities want to make
in a manner portable across company boundaries and also support secure dis-
tributed transactions. Features include suitability for any underlying trans-
port protocol, it is XML and thus any available XML processing tools also
apply to SAML, it is a standard message exchange protocol and does not
require a central certification authority, since security is expressed in form of
assertions.

Although SAML predates Web services and related security standardization

CHAPTER 2. RELATED WORK 34

efforts, it exactly addresses the needs of Web services for portable identity,
which led OASIS to integrate SAML 1.1 into the WS-Security layer. Web
services aim at cross-domain usage and thus demand portable trust specified
by WS-Security. The problem is that SOAP supports no means to com-
municate security properties to establish trust relationships. Collaborative
commerce environments however, need all participants authenticated in a
compatible way across the entire virtual system spanning multiple trusted
domains. SAML provides a common identity infrastructure. It facilitates
building cross-domain trust enabled contractual agreements, which provide
single sign-on while allowing each participating entity using its own authen-
tication system and thus retaining the loosely coupled nature of Web services
to establish B2B integrations. In traditional information systems the user
provides its credential, for instance as password, which is compared with the
permissions stored in the company’s information systems. In other words,
each company hosts its own individual trust domain, which is too restrictive
for interoperation among company boundaries. Furthermore, in complex or-
ganizations, a large number of users and applications must be managed, each
probably owning multiple accounts. A solution to this problem is single sign-
on, enabling a user once logged in, to having access to all services contained
within a trusted domain via cross-domain contractual agreements.

SAML specifies to carry assertion information, including authentication and
authorization attributes, within SOAP headers. Security expressed in the
form of assertions about subjects, which are credentials used to initiate some
action. These assertions as well as protocol request/response messages and
protocol binding information are specified via XML schemas. Hence, interop-
erability is given at the specification level. An assertion contains information
about the claims an issuer is stating, including validity conditions, authenti-
cation method and subject identifier. There are different types of assertions
for various purposes: Attribute assertions certify that a particular subject
has particular attributes/properties, authentication assertions certify that a
particular subject was authenticated at a particular time and authorization
assertions can be used to transport access control decisions and/or authoriza-
tion polices. Authentication is performed by a trusted third party authenti-
cation authority, which evaluates the credentials provided by the requestor
according to access control policies. It subsequently creates an authentica-
tion statement containing the authenticated subject, i.e. the requestor, the
authentication method and the authentication timestamp. Authentication
is given when the authentication authority has authorized the subject of an
assertion at a particular time with validity for a certain period of time. In
other words, the subject is who it claims to be and prove that credentials

CHAPTER 2. RELATED WORK 35

are legitimately in the possession of the subject. SAML supports password-
based authentication as well as Kerberos tickets, secure remote passwords,
hardware tokens, SSL client certificates, XML digital signatures and public
key authentication following the X.509, PGP, SPKI or XKMS key model.
Analogous, an authorization authority replies with an authorization state-
ment containing assertions that enable a subject to access a resource for an
assured amount of time given certain evidence. SAML architecture com-
prises a Policy Decision Point (PDP) making decisions about access control
given a set of parameters. A PDP may have access to an external Policy
Retrieval Point (PRP), which delivers the policies required for the decision
making process. Each time a decision is being made the Policy Enforcement
Point (PEP) is called, which in turn forwards the request to the appropri-
ate PDP for decision making. The SAML standard has been implemented
by OpenSAML efforts [90] and is also integrated in Liberty project, which
is comparable to federated identity management as achieved by Microsoft
Passport.

Known originally as XML Access Control Language (XACL) [81], the eX-
tensible Access Control Markup Language (XACML) [103] was approved as
OASIS standard in 2003. XACML builds on SAML and is an extremely
powerful language for describing general, fine-grained access control for all
kinds of computing platforms, handling policy enforcement at any point in
the system and allowing different access control enforcement mechanisms.
On top of the XACML data model is a policy or a set of policies, which may
contain policies or recursively other policy sets. Policies are combined via
reusable rules, which evaluate to Boolean expressions indicating either per-
mit or deny. Consequences of rules are called effects. Targets define sets of
resources, subjects and actions, a rule applies to. Obligations are operations
defined by policies, which must be performed in context with the enforcement
of an authorization decision. Decision making in XACML is actually done
via combining algorithms, which may be used by both policies and rules to
build up increasingly complex policy hierarchies.

The XML Key Management Working Group [69] works on a general concept
on key management. A first XML Key Management Specification (XKMS)
[83] was published in 2001 and was applied for example by Verisign. In the
mean time a new proposal XKMS2 was published in 2004. Currently, inter-
operability tests between prototype implementations are conducted. XKMS
was defined on top of XML Encryption and XML Signature to provide a
technology similar to Public Key Infrastructure (PKI) as trusted service for
Web service consumers and providers. PKI handles distribution, certifica-

CHAPTER 2. RELATED WORK 36

tion and life cycle management of cryptographic keys. Since PKI has proven
to be very expensive regarding maintenance in practice, XKMS relieves Web
service requestors and providers of having to build an own PKI. XKMS spec-
ifies an architecture for generation and registration of private and public key
pairs. This architecture addresses also the mediation between existing ap-
proaches, such as PGP, SPKI or X.509. XKMS is divided into the XML
Key Information Service Specification (X-KISS) and the XML Key Regis-
tration Service Specification (X-KRSS). X-KISS is responsible for locating
and validating key information, which is being used by communication end-
points without direct access to required security information. X-KRSS offers
functions for registering a public key at a trusted registration server, key
recovery, revocation and reissuing, which may be applied in cases common
X-KISS services are not sufficient. A typical application scenario might be a
Web service receiving a certificate it cannot process. In turn the Web service
would forward the certificate to an X-KISS Locate service and receive a key
value. Validation would be performed in connection with an underlying PKI
service. The server interface abstracts from existing PKI approaches and is
implemented by means of Web services.

The eXtensible Rights Markup Language (XrML) [184] is used specifically
to control access to digital content using arbitrarily complex access rights
definitions. The data model defines a Principal who is responsible for pre-
senting the required credentials, a Right object an abstract Resource to
which a principal may gain access and a Condition, specifying the terms,
conditions and obligations, which must be met before accessing a resource.
The root element of XrML is a license, which wraps principal, right, resource
and condition into a grant object.

2.5 Access Control Approaches

2.5.1 Traditional Access Control

Access control has a long history in information systems. Multi-user operat-
ing systems require access control to avoid conflicts between users. Database
servers or Web server software incorporate a more sophisticated control model,
since such servers are intended to distribute information to different users.
Access control is typically specified by assertions stating that a certain sub-
ject has a certain privilege to perform an action on a specified object. Subject
and object may also be groups of subjects or objects respectively. Access con-
trol ensures that access is granted only if the requesting subject is entitled

CHAPTER 2. RELATED WORK 37

to perform the requested operation. Access control is a fuzzy term, which
is often used in the context of authorization, policy enforcement or decision-
making. Well, these concepts are very closely related to each other and are
often used in an interchangeable way nevertheless there are subtle differences,
which will be discussed within this section. Access control is about verify-
ing access rights, whereas authorization is about granting access rights [159].
Controlling access is basically about protecting objects from unauthorized
access of subjects. Subjects are very often processes acting on behalf of a
user or independently to perform a certain action.

A common approach to oppose subjects and their access rights on objects is
by an Access Control Matrix (ACM), where each subject is represented as
row in a matrix, each object as a column and cells contain the allowed ac-
tions. Since many cells may be empty, an ACM is often not the right choice
to store permissions efficiently. An Access Control List (ACL) stores only the
permissions that may be actually granted as triple of subject, object and ac-
cess right and omits empty entries, indicating that no such permissions exist.
ACLs represent the ACM by column and are attached to objects. Capability
lists are similar to ACLs but represent an ACM by row and are assigned
to subjects. Since ACLs can grow very large themselves, an alternative ap-
proach is to use so-called protection domains. Protection domains hold a set
of object and access rights pairs indicating which action may be carried out
on an object in a certain domain. When a subject is authenticated it can be
determined which protection domains it belongs to and which actions it is
entitled to carry out.

This approach is strongly related to the concept of Role-Based Access Con-
trol (RBAC), which organizes individual users into groups to facilitate the
administration of access control policies. Instead of browsing through the
permissions for each user registered in an information system, it is only re-
quired to check, whether a user belongs to a role which is allowed to perform
the desired action. A simple example is the case of a company’s intranet,
which each employee may access, but external users must be prevented from
gaining access to the system. It is sufficient to test whether the current user
is member of the employee role and grant access accordingly. In other words,
roles determine the protection domains a subject may operate within. Hierar-
chical grouping of user roles can further improve efficiency, since permissions
may be inherited starting from the up-most role down the tree hierarchy.
The same applies to objects whenever they may be somehow interrelated
with each other. Access control may be performed on many different levels
in the information system architecture. Concrete implementation depends on

CHAPTER 2. RELATED WORK 38

the actual security needs. Strembeck and Neumann [154] present a general
framework based on RBAC constraints to make authorization decisions using
context information. An engineering process for context constraints is pre-
sented and describes design and implementation of an RBAC service enabling
context constraints enforcement. Means for the definition and enforcement
of fine-grained context-dependent access control policies are discussed as well.

Access control is often implemented based on an abstract architecture con-
sisting of a Policy Repository, holding policy rules and policy related data, a
Policy Decision Point (PDP), which represents a logical system which makes
policy decisions, and a Policy Enforcement Point (PEP), which is responsible
for enforcing policy decisions. Usually access control is performed as follows:

1. Client sends access request to PEP

2. PEP asks PDP to check access

3. PDP fetches policies from the Repository, makes and returns the policy
decision

4. PEP enforces the decision and returns to the Client

Access control models provide an abstract framework for the definition of
authorization policies. As mentioned previously, RBAC assigns permissions
to roles and roles in turn are assigned to subjects. Roles represent responsi-
bilities and user profiles in an organization. Roles abstract from individual
users and facilitate the administration of authorization policies. At any time
permissions can be assigned to or revoked from roles and roles can be as-
signed to or revoked from subjects. RBAC is the de facto standard for access
control in software based systems and can emulate other access control mod-
els, such as DAC and MAC. Discretionary Access Control (DAC) allows the
owner of an object to determine who may access the object and how it may
be accessed. Permissions are assigned to individual subjects and/or to user
groups at the object owner’s discretion. Mandatory Access Control (MAC)
aims to control information flow in a lattice of security classes to protect
confidentiality or integrity of sensitive data. Such a lattice structure can
be imagined as a directed graph allowing information flow from less secured
protection domains to the most sensitive ones but not the other way round.
Development of MAC based systems was mostly was driven by the military
sector and is also applied in the SE Linux operating system.

Tolone et al. [164] review access control in collaborative systems. They

CHAPTER 2. RELATED WORK 39

distinguish a traditional matrix access control model, RBAC, Task-Based
Access Control (TBAC), Team-Based Access Control (TMAC), spatial ac-
cess control and context-aware access control. In a traditional access control
model for each subject and object an individual assertion is required. To
facilitate the representation a matrix is used to specify for each object which
users may access it. In RBAC several users may be grouped and one assertion
is sufficient to give a group of users certain rights. In a TBAC the context in
which a user wants to access an object is recognized and he may only have
access if the object is required for the current task. Thus the access rights
are time dependent. The team-based approach seems especially interesting
for virtual teams. In contrast to a role-based approach the grouping of users
to a team is temporarily. Thus TMAC is also an approach to incorporate
the context of the subjects. Tolone et al. describe further models that use
contextual information to decide permissions.

2.5.2 XML Access Control

Different approaches address access control on the file-system level, XML
however, represents an important opportunity to provide more fine-grained
access control. Damiani et al. [54] propose an improved model for spec-
ifying the subject of an access control assertion. They claim that for E-
Commerce and similar fields of application a file based specification as it is
used in operating systems or current Web servers is insufficient. Hence, they
use meta-information typically supplied by XML Schema [152] or Document
Type Definitions (DTD) [173] to specify sub-trees of XML structures as sub-
ject of an access control assertion. Their model is applied for Web servers
where typically read operations are performed and they give an algorithm
how to restrict the view on semi-structured data when a user has not the
right to read the complete structure. Further research is presented in [56].
Different degrees of sensitivity and needs for sharing portions of XML data
demand models and mechanisms for the enforcement of access control poli-
cies on XML documents. [24] defines a formal model of access control policies
and a mechanism for encrypting different portions of the same document ac-
cording to different encryption keys, and selectively distributing these keys
to the various users according to the access control policies.

The widespread use of XML demands the need for flexible access control
models for XML documents to protect sensitive and valuable information
from unauthorized access. [153] presents a novel declarative access control
model and introduces the Xplorer engine for search-browse-navigate activities
on XML repositories, which is also capable of auto-generating an access con-

CHAPTER 2. RELATED WORK 40

trol enabled Web application according to access control rules. Access control
on the basis of data location or value in an XML document is essential to re-
strict access to sensitive information. However, current approaches regarding
XML access control tend to work on individual documents and suffer from
the lack of scalability. [128] proposes the notion of Policy Matching Tree
(PMT), which performs accessibility checks and is shared by all documents
of the same document type. Goel et al. [74] use relationships between a set
of different XML documents. Access control rules are derived from schema-
level rules, document or database content using the XQuery language [25].
[36] focuses on usage control for XML documents and supports expressions
of access restrictions directly on XML elements and attributes as well as
data-types and reuse relationships between documents. Wang and Osborn
[174] analyze combinations of different access modes. The authors propose a
RBAC model for XML databases, which allows complex authorization mod-
els and propagation of permissions. The drawback of the approach presented
is that only roles and no single users are supported. This could be overcome
by defining roles on a much finer level of granularity by introducing role Ids.
For example members of role Employee could be assigned an employee Id,
such that a permission can be granted only to specific role members. [53] pro-
poses access restrictions for XML documents that contains encrypted regions.

Fundulaki and Marx [72] give an extensive overview of most popular ap-
proaches using XPath for XML access control, such as XACL [81] or the
work done by Bertino and Ferrari [24]. The paper formalizes an specification
language for XML access control polices, including granularity, conflict reso-
lution and query evaluation. Murata et al. [117] introduce a static analysis
approach on node level and restrict the usage of XPath axes to forward navi-
gation. Similarly Luo et al. [105] suggest primitive, pre-processing and post-
processing access control approaches with special focus on pre-processing
using Non-deterministic Finite Automata (NFA) to rewrite a query to elim-
inate any parts violating the access control rules. Static analysis using tree
automata is also subject to research efforts made by Yagi et al. [185]. Most
of these approaches only focus on authorizing read requests. Lim et al. [100]
also consider update operations in case users attempt to change the structure
of an existing XML document. The focus of [53] is how to control access to
XML documents, once they have been received. Access control policies for
restricting access to XML documents can be enforced by encrypting regions
of the document specified using XPath filters. Methods for minimizing the
number of keys distributed to users and comparisons to other access control
frameworks are subject to the paper as well.

CHAPTER 2. RELATED WORK 41

So far, the role of XPath in authorizing queries on XML data has been
discussed. How this is actually enforced is subject to this section. XPath
is a convenient method for identifying portions of XML data. With access
control the role of XPath is twofold: for querying and protecting sensitive
data. What is needed is an algorithm, which determines whether a permis-
sion that satisfies a query has been defined. Therefore two XPath fragments,
the protected path and the query itself, have to be compared with respect to
containment and equivalence. A series of research has been conducted in this
field, such as a by Miklau and Suciu [112]. As already presented in previous
sections, XPath incorporates many different language features, for example
axis navigation, branching, i.e. filtering, or wildcard selections. Hammer-
schmidt et al. [84] deal with the intersection of XPath expressions and prove
that the problem becomes even NP-complete if the negation operator is in-
troduced as well. Schwentick [151] discusses different XPath features and
provides complexity analysis of their combinations. Prior work has shown
that containment and equivalence algorithms considering combinations of
XPath features are coNP-complete. The authors therefore present a sound
algorithm, which runs in EXPTIME and show that special cases are can be
decided in PTIME. Although in some other cases the algorithm is again coNP-
complete, a modification of the algorithm can efficiently handle those cases
but sometimes may occur to return false negatives.

2.5.3 Semantic Access Control

The foundations of Semantic Access Control (SAC) are based on the Se-
mantic Web architecture as illustrated in Figure 2.3 [21]: The SAC model is
based on the semantic properties of the resources to be controlled, properties
of the clients that request access to them and semantics about the context
and the attribute certificates trusted by the access control system [186]. Ac-
cess control should be location transparent indicating authorization can be
performed independent of resource location. To positively identify a user or
client, the credentials provided must be digitally signed as shown in Figure
2.3. The advantage of SAC is characterized by its flexibility and support
for interoperability of authorization mechanisms in distributed and dynamic
systems with heterogeneous security requirements. It enables the semantic
validation of the access control criteria and promises simplicity, correction
and safety of the system. [187] discusses a validation algorithm for detecting
semantically incomplete or incorrect access control policies. Furthermore, a
formal SAC model is presented along with some proofs of the model, which
forms the foundation of the semantic validation algorithm. [189] introduces
semantic layers to authorization components. The paper describes the devel-

CHAPTER 2. RELATED WORK 42

Figure 2.3: W3C Semantic Web architecture

opment of an application framework, which incorporates a Semantic Policy
Language (SPL) for the description of access criteria. The same approach is
applied to Web service environments as illustrated in [188]. [190] presents an
access control system for Web services. SPL is chosen for the description of
access control criteria based on the use of attribute certificates. SPL has been
designed to take advantage of semantic information about resources and the
context to achieve policy validation and facilitate security management. SPL
applies traditional concepts of modularity, parameterization and abstraction
in order to provide simplicity and flexibility to the difficult task of specifying
access control criteria. The modular definition of SPL policies implies the
separation of specification in three parts: access control criteria, allocation
of policies to resources and semantic information, i.e. properties about re-
sources and context. Additionally, SPL makes possible the abstraction of
access control components and, as a consequence, the ability to reuse these
access control components. All the previous properties help the reduction
of the complexity of management. Moreover, the use of semantic informa-
tion about the context allows the security administrator to include relevant
contextual considerations in a transparent manner, also helping the semantic
validation task.

In [129], Qin and Atluri develop a concept-level access control model for the

CHAPTER 2. RELATED WORK 43

Semantic Web by specifying access control based on ontologies using OWL.
They identify and categorize domain-independent relationships among con-
cepts and propose propagation policies. How user requests are handled is dis-
cussed as well. This approach describes an access control model that can be
used for specifying authorization over ontology concepts and enforcing them
over concrete instances. Demonstration of how concept-level security polices
can be represented in an OWL based access control language is presented
as well. The concept-level model is considered especially suitable for the
specification and administration of access control over semantically related
document data even if they conform to different DTDs or use different tag
names. Providing inter-organizational data access to users across company
boundaries is traditionally solved by sharing metadata using federated and
mediated databases, which may not be acceptable for certain organizations
due to privacy concerns. [115] introduces a Toolkit for Privacy-preserving Ac-
cess Control (PACT) without having to share sensitive metadata. Ontologies,
ontology-mapping tables, role hierarchies and queries are stored encrypted
to maximize privacy and confidentiality of semantic data, while enabling in-
teroperability among heterogeneous databases. Semantic access control is
incorporated using ontologies and semantically enhanced authorization ta-
bles. Development of effective mechanisms for manipulating access and ver-
sion control has become a major research area. Updating a document may
require modifications in associated access control policies and vice versa. [41]
deals with the integration of these issues into a single framework, such that
different document versions can be assigned different access authorizations,
and uses RDF as unified representation of access control policies. Based
on RDF ontologies, [5] presents a flexible and interchangeable XML access
control model using view-based, declarative semantics.

2.6 Project SemCrypt

The work described was performed in the context of a research project funded
by the Austrian FIT-IT and carried out at the E-Commerce Competence
Center (EC3) in collaboration with the Data and Knowledge Engineering
Group at the Johannes Kepler University of Linz, from now simply referred to
as DKE Linz, and the EC3Networks GmbH as industrial partner. The project
SemCrypt [177] explores techniques for processing queries and updates over
encrypted XML documents stored at untrustworthy storage providers [134].
By performing encryption and decryption only on the client and not on the
server, SemCrypt guarantees that neither the document structure nor the
document contents are disclosed on the server. The chosen approach exploits

CHAPTER 2. RELATED WORK 44

the structural semantics of XML documents and uses standard, well-proven
encryption techniques. SemCrypt has been launched to investigate different
approaches of how XML data may be encrypted on element level while still
providing the possibility to modify the elements without revealing the in-
ternal storage structures. Supporting software was designed to rely on open
standards in order to provide an extensible and flexible framework for build-
ing trusted application environments that may also be easily integrated in
existing electronic workflow structures.

Inspiration for the SemCrypt project is funded in related research work.
The idea of service oriented databases and related security concerns are
presented in [79]. Outsourced databases need at first be protected against
theft and secondly protected from service providers, since they cannot be
trusted as well. The approach taken focuses on relational databases and
thus on execution of SQL statements over encrypted data and letting the
client take care of decryption. [80] follows a similar approach of database
outsourcing. Administration is done by service providers. Data manage-
ment is provided as service guaranteeing privacy. [55] deals with querying
encrypted databases that are hosted by insecure remote servers and selecting
data without needing to disclose database content. An indexing mechanism
is used to balance the trade-off between efficiency and privacy requirements
using B+ data structures. An evaluation of vulnerability is also presented.
The architecture introduced in [39] uses a Trusted Privacy Manager (TPM)
entity, which takes care of key generation and management as well as data
encryption to enforce user privacy requirements on outsourced data. The
system proposed provides scalability, standards compliance and the enforce-
ment of privacy requirements of both data owners and consumers. It makes
use of non-standard encryption strategies and relies on a TPM in charge of
data encryption and key delivering. Furthermore, strategies for key genera-
tion and management are presented. As illustrated in Figure 2.4, query and
update processing are shared between client and server, where as much as
possible is done at the server and encryption/decryption being performed
only at the client. The semantic-based solution is orthogonal to encryption
techniques employed and, thus, widely applicable and independent of gen-
eral technological advances in encryption. Servers provide special storage
and access structures for storing encrypted fragments of XML documents.
Clients exploit these special storage and access structures according to the
given document’s structural semantics, which is known to them, but not to
the server. With neither the document structure nor the document content
being disclosed at the server, the server need not be trusted with respect
to maintaining data privacy. Query and update statements, written as if

CHAPTER 2. RELATED WORK 45

Figure 2.4: Initial SemCrypt approach

against a plain XML document, are mapped by the client to corresponding
access primitives against the encrypted XML fragments held at the server.
The techniques are explained in more detail in [134]. Part of the SemCrypt
project is the development of an environment where the authorization of
users and the encryption/decryption is takes place. This is especially re-
quired if the SemCrypt technology is to be used in applications with users
having diverse privileges. The SemCrypt approach is evaluated in different
applications. One of these applications is settled in the Human Resource
Management (HRM) area discussed in Chapter 3.

Comparable database systems (DBS) transfer the complete data content
to the client, decrypt the data and execute the query locally on the client
machine. This leads to tremendous performance drawbacks due to huge
data-set transfers. SemCrypt uses index structures, which are built upon
available XML Schema information. These indices are used to efficiently
query in encrypted data-sets [78]. An XML Schema is the starting point for
each SemCrypt application, since all documents stored in the database must
adhere to a single schema file. Chapter 7 provides a step-by-step documen-
tation of how to develop and deploy a SemCrypt compliant application. The
SemCrypt DBS consists of a database management system (DBMS) and a
database server. The DBMS is moved to the trusted client domain and man-
ages the data-sets, which is made available through the database server. The

CHAPTER 2. RELATED WORK 46

actual physical storage is done by a conventional relational DBMS (RDBMS).

The SemCrypt DBS is built of multiple layers providing different views on the
storage data (2.4). The lowest layer represents the stored documents as key/-

Layer View

External XML
Logical Tree-based
Internal Path-based
Physical Id/Value pairs

Table 2.4: Representation layers in the SemCrypt database system

value pairs, completely destroying the semantic structures of the XML data,
to additionally leverage security measurements by making statistical analysis
of the data storage almost impossible. For improved internal data process-
ing, the internal and logical layers provide appropriate data structures. XML
has distinguished as emerging standard for semi-structured data. Therefore,
XML is used for representing the database content to the end-user, which
may then be further processed using XSL and related technologies.

Part II

Concepts

47

Chapter 3

Use Case Scenarios

The following chapter concentrates on the identification and specification of
possible future application settings applying the SemCrypt framework tech-
nology, aiming at supporting both single-user and multi-user scenarios. Be-
ginning with a few considerations about single-user deployments, the main
focus of this chapter lies on the in-depth analysis of selected large real-life
application areas. Thereby the applicability of existing XML technologies is
crucial. Criteria for use case selection are ostensibly high data sensitivity,
collaborative query and update operations, applicability of XML for interop-
erability, existing, adoption of XML as communication protocol and storage
format, XML initiatives, acceptance and demand, user role models, impor-
tance of archiving and securing large data sets, legal aspects with respect
to privacy and data protection, relevance for ICT and market potential of
security applications.

Very often application settings are something in between multi- and single-
user. Single user as well as multi-user environments may both occur in cen-
tralized and distributed applications. The following table opposes application
examples classified by computing organization and user interaction. Since we
can assume that private document data stored locally on a user’s private ma-
chine, which is not even connected to the Internet, is safe as long as it is not
accessed by someone who is not entitled to. Additionally, file encryption
tools provide an additional notion of security. SemCrypt however aims at

Single-User Multi-User (Collaborative)

Distributed Web Hosting Human Resource Management
Centralized XML Spy Multiplayer Games (Offline)

Table 3.1: Classification of application scenarios

48

CHAPTER 3. USE CASE SCENARIOS 49

far more challenging security management in distributed systems and thus
concentrates on the left column of the table 3.1 presented above. Widespread
applications, such as file or Web hosting services can be seen as distinct single-
user applications, since they do not imply any notion of collaboration among
the users accessing the service. Files are stored at a remote server and belong
to exactly one user who has full access to all private document data. The
security model here is quite simple: access control is based on the outcome of
the user authentication. The challenge in this case is to develop encryption
strategies that protect remote data from unauthorized access. Based on the
fundamental architecture design presented at the end of Chapter 2, it is up
to the application designer to choose whether to provide a trusted domain
or not. Subject to protection is the cryptographic key, which both must be
applied on the sensitive data in order to get useful information out of them.
Both may be stored directly or detached at the user side or at the trusted do-
main as long protection from unauthorized access can be guaranteed. Apart
from key management, further design decisions comprise whether the user or
the trusted application provider is responsible for key generation and how to
accomplish dynamic key change during application runtime.

Whether data should be encrypted or not also is dependent on the design
decisions of the application developers. Sometimes, it might even be unde-
sirable to store data encrypted in case the data provider wants to analyze
the database. This is happening with Google services, such as the Mailing or
Calendar services, for instance, which index client data and extract informa-
tion out of it for scientific reasons. Access control, however, is indispensable
in SemCrypt environments. Chapter 5 gives an in-depth analysis of autho-
rization processing in SemCrypt applications and provides a specification of
the access control definition language in use. In each application setting, at
least one access control policy must be used, which is valid for all documents
and users registered in the system. In some applications, users may wish
to introduce own access control rules for their private documents. Hence,
permission and denial inheritance and overriding is a fundamental feature
being supported by the SemCrypt environment.

The following sections contain an analysis of different application domains,
in which the application of SemCrypt technology is considered reasonable.
Each section provides a general introduction of the topic and demonstrates its
usability in the context of single- and multi-user application settings. These
scenarios have been identified in the course of the SemCrypt project for
demonstration purposes of the technologies developed and have been made
publicly available for download on the project Web site [177].

CHAPTER 3. USE CASE SCENARIOS 50

3.1 Human Resource Management

Human resources (HR) are in today’s organizations the most important re-
source for running the business and for continuous innovation of business
models, processes and systems. Typical Human Resources Management
(HRM) tasks are the development of an organization’s workforce and the
staffing of an organization [180]. Another important task in HRM is the
assignment of work force to given tasks. If an inter-organizational project
is started, different human resources are assigned to the project. The as-
signment has to consider the skills of the people, the interests of individual
partners as well as those of the employees of the partners, the availability of
the personnel as well as costs attributed to such resources. Hence, to assign
human resources to a project, different attributes of employees of different
business partners must be accessible. However, such data about personal
attributes is highly sensitive and must only be accessed in an authorized
manner. In some situations access over the boundaries of a single company
may improve the flexibility of a virtual organization, will speed up business
processes and improve the quality of decisions. Thus, a sophisticated access
control management is required in virtual enterprises. We may restrict the
access to certain roles and assign people to such a role in order to give only
few people the possibility to access certain artifacts. For instance, in each
participating organization we may identify a person who is responsible for
the cooperation with other partners. One problem that occurs is how to
specify the artifacts that a certain person, role or process may access. There
may be information that is made accessible to any public audience such as
marketing information, there is information accessible to business partners,
but employees may access different information and finally there may be in-
formation accessible only by certain members of the staff.

The field of HRM offers a wide range of possible application scenarios. In par-
ticular HR Outsourcing (HRO), as it is already practiced in the United States
and is very likely to being established in European countries as well, lends
itself as prototype environment for testing and demonstrating the achieve-
ments made in the course of the thesis for the following reasons:

• Extensive query and update requirements for HR data

• High sensitivity of covered information due to legal regulations, com-
petitive advantage and privacy aspects

• Adequate amount of sensitive and non-sensitive data

• Availability of standardized vocabulary for data exchange (HR-XML)

CHAPTER 3. USE CASE SCENARIOS 51

• Multi-user scenarios: different access rights for different user roles

Furthermore, HRM as horizontal application branch is involved in many areas
including E-Government, E-Health, E-Tourism, insurance, finance and pro-
duction. On first sight, HR settings can be subdivided into inter-organizatio-
nal scenarios covering information flows between companies and intra-organi-
zational applications deployed within one single company. The ideal scenario
would contain features of both aspects, such as external recruiting services
and internal staffing requirements. An example for a hybrid form of both ap-
proaches would be a project, which involves multiple companies and requires
external as well as internal manpower for successful completion. External
acquisition is performed via an external recruiting partner. For purposes of
flexibility demonstration, alternatives to the primary search result regard-
ing qualifications or salary could be displayed as well. Thereby it would be
possible to query for qualitative differences of the employees and support
employers in the decision process whether to employ additional specialists or
provide additional training courses. Drop outs during project runtime could
be compensated and changes in project duration or project aims could be
bypassed. Background checks including verification of the provided qualifi-
cation information or relationships to other companies could be performed
automatically. After project termination, update and archiving of a possibly
large amount of XML documents is necessary, involving staff qualifications,
publications, project report or financial services.

In Chapter 7, a simple HRM application is documented, which allows stu-
dents to upload their private resumes and competencies. Each student is
allowed to edit and query his own documents, which demonstrates the us-
age of HR material in multi-user environments. Multiple roles, such as HR
managers and teaching staff, have been introduced, with each role having
different access rights on the students’ documents. A student, of course has
full access to his own documents, other parties have limited read access. Fur-
thermore, a student may consider the access permissions of the application
environment as not suitable for his private documents and thus upload a
user-defined access control policy to override the default permissions and/or
denials provided by the application server.

The HR-XML Consortium [86] is a non-profit group developing standard
vocabularies and XML schemes for the HR domain. Members of the con-
sortium are companies offering HRM software, recruiter and personnel con-
sultants. HRM encompasses a diverse range of business processes such as
advertising open positions, enrolling employees and their dependents within

CHAPTER 3. USE CASE SCENARIOS 52

benefit plans, and ensuring that changes in employee status are recorded ap-
propriately in internal information systems as well as the systems of external
partners and service providers [58]. There are XML schemes for different
HR processes as well as core schemes used to represent different aspects of
HR, such as contact information, payment and skills or competencies of these
resources. A sample schema incorporating parts of the HR-XML standard
can be found in Appendix A and is used as reference scenario within the
SemCrypt project introduced in Chapter 2 as well as for testing purpose
of the approaches developed in the course of the thesis. This schema is as
well used by the previously mentioned student scenario, which is further dis-
cussed in Chapter 7. A very simple but valid sample document according to
the schema file may look as follows:

Listing 3.1: A sample SemCrypt employee description
<?xml version ="1.0" encoding ="UTF -8"?>

<SemCryptEmployeeInfo xmlns="http: //ns.hr -xml.org /2004-08 -02"

xmlns:xsi ="http: //www.w3.org /2001/ XMLSchema -instance "

xsi:schemaLocation="http: //ns.hr-xml .org /2004 -08 -02 HRMSimple .xsd ">

<PersonInfo >

<PersonId >

<IdValue name="studentId ">9902261 </IdValue >

</PersonId >

<PersonName >

<FormattedName>Wolfgang Schreiner </FormattedName>

</PersonName >

<ContactMethod>

<InternetEmailAddress >

e9902261@student.tuwien .ac.at

</ InternetEmailAddress >

</ContactMethod>

<PersonDescriptors >

<LegalIdentifiers >

<Citizenship >Austria </Citizenship >

</ LegalIdentifiers>

<DemographicDescriptors />

<BiologicalDescriptors />

<SupportingMaterials />

</PersonDescriptors >

</PersonInfo >

<Competencies>

<Competency name=" Programming Language " required ="true">

<CompetencyId id="Java" idOwner ="9902261 " />

</Competency >

</Competencies>

<JobPositionHistory >

<JobHeader validFrom ="2005 -04 -18 ">

<JobId >

<Id>EC3 </Id>

</JobId >

<JobTitle >Researcher </JobTitle >

</JobHeader >

</JobPositionHistory >

<!--

<Salary />

<AssessmentResult />

CHAPTER 3. USE CASE SCENARIOS 53

-->

</ SemCryptEmployeeInfo >

Root of the document is always the SemCryptEmployeeInfo element, which
contains PersonInfo, Competencies, a JobPositionHistory, current Sala-
ry and an AssessmentResult. Latter elements are optional and are omit-
ted due to their complexity and space limitations. HR-XML defines these
types in separate schema files. Apart from name and address, personal data
comprises contact methods, legal identifiers and biological and demographic
descriptors. Competencies may be arbitrarily nested to define skills on in-
creasingly fine-granular levels of specification. One major research interest
in HRM and related field is knowledge and competency management, i.e.
how to describe and evaluate personal skills. Job history, salary information
and assessment result elements should speak for themselves and contain es-
pecially sensitive information, which have been omitted in this short example.

Typical queries and updates cover statements, such as:

• Project manager selects employee with certain competencies and salary
expectations and who is available in the next few months

• Employer inserts new employee with personal data, qualification and
availability

• Project manager books employees for a certain period

• Update salary, qualifications, experience, assessments, availability

The HR scenario demonstrates the tremendous significance for permissions
for accessing sensitive data of varying importance for a number of different
user roles. Applications allowing multiple users operating on the same data
sets additionally require a versioning mechanism for XML document data.
Document versioning might be also desirable for history recording. As an ex-
ample, from company internal permissions, we could define a set of user roles
(CEO, HR manager, project manager, employees), a set of paths uniquely
identifying portions of XML data (person description, contact method, com-
petencies) and access rights. Inter-organizational data exchange would be
much less questionable when using standard security techniques. The situa-
tion is slightly different for a job applicant. A classic resume is usually less
security critical, but also becomes subject to encryption as soon as personal
information is provided extensively, such as biometric information.

CHAPTER 3. USE CASE SCENARIOS 54

3.2 Project Management

The following show case shall briefly discuss features and requirements of the
deployment of SemCrypt technology in project management processes. In
inter-organizational projects, documents are often exchanged between com-
pany departments. In order to facilitate system integration, documents are
often described using semantic Web technologies, such as RDF [172] and Mi-
crosoft (MS) Excel is especially common in small and medium enterprises
(SMEs) for project management tasks. Fine granular access control on XML
formatted MS Excel documents is not a major objective in these environ-
ments. Unauthorized access is prohibited by locking documents and operat-
ing system folders per se. The big drawback of this approach is that access
control is performed location dependent rather than on the sensitive con-
tent itself. However, to extract data structures from MS Excel tables is a
necessity and daily practice in many SMEs. Since MS Excel tables may be
compared with relational database tables, mapping XML document data to
MS Excel table is a challenging task, but offers additional possibilities for
the deployment of the MS Excel based project management approach.

The project management domain is in some way closely related to the hu-
man resource sector discussed in the previous section. It comparably involves
HRM or controlling issues and many more and likewise has many different
types of users interacting with each other, including HR managers, project
leaders and the like. Possible tasks in a project management environment
comprise:

• Collaborative management of project deliverables

• Management of confidential financial data or research results

• Document management, including resumes and project schedules

The show case presented in context with the SemCrypt technology evalua-
tion relies on the standardized XML project management format PMXML
[52]. Documents following the PMXML schema are imported into MS Excel
creating resource, scheduling and controlling spreadsheets. Documents that
are created during project lifecycle often contain sensitive information and
underlie the Data Protection Act. Project members occupy different roles
of responsibility in a project and have very different access rights regarding
the project documentation. Since MS Office products are widely applied in
many companies worldwide, MS Excel spreadsheet documents shall serve as
starting point of the analysis. By applying SemCrypt technology and adding

CHAPTER 3. USE CASE SCENARIOS 55

meta-data over actual XML formatted information, a general improvement of
information management can be achieved. A demonstration of the SemCrypt
framework in combination with widely applied and accepted technologies, as
MS Office applications are, would on the other be a promising argument for
the overall acceptance of the SemCrypt project. Further details can be found
in Chapter 7 dealing with provisioning of the SemCrypt security services on
the client side.

3.3 Document Archives

Another interesting setting of applications is located in the area of sensitive
document archives and mobile devices. The challenge is to identify relevant
meta-data, which may be for formulated using XML Schema, and classify
their security requirements regarding access control and cryptography. In
any use case typical query and update requests for each user or user-role
on the encrypted storage provider must be identified as well to evaluate op-
portunities and limitations of the approach followed. Especially for mobile
devices required resources of the security modules is a critical issue. In case
of client-side encryption, hardware must be capable of performing the nec-
essary steps. This analysis does not only apply to mobile phones. Resource
availability issues also concern Palm, Blackberry and Pocket PC devices.

One specific application is that of encrypted E-Mail storages. E-Mail ap-
plications are typically single-user, since each user normally only has access
to his private mails. Deployment of SemCrypt technologies on the one-hand
ensure that data is encrypted and thus secured from unauthorized parties and
on the other allows E-Mail indexing, enabling comprehensive search function-
alities without the need to decrypt the whole E-Mail storage. This scenario
has been developed as show case for single-user document management and
is also briefly mentioned in Chapter 7. A concrete need for secure E-Mail
services could be identified for private home users, who wish to backup their
data on some remote storage provider, or companies, who do want to be sure
that no unauthorized party gains access to their IMAP server. Although ini-
tially intended as single-user scenario, it could be conceivable to make a mail
server open to multi-user access. Hence, users could define policies and allow
other users (restricted) access to private E-Mail documents, which especially
makes sense if an E-Mail has been accidentally sent to only one person while
it was intended for the whole company department. The original sender
would then not need to resend the message or need to know the addresses
of all the recipients, but the mail could be made publicly available on the

CHAPTER 3. USE CASE SCENARIOS 56

company’s mail server.

For the E-Mail application, query and update statements could be:

• Select all E-Mails received last week with subject S

• Select all urgent E-Mails from sender S

• Select all E-Mails, which contain certain keywords in the E-Mail body

• Insert a new E-Mail

One multi-user application example is settled in the field of transport logis-
tics, which is also discussed in Chapter 7 later on. A transport company
may inform a lorry driver about new orders via SMS. An order may con-
tain information about the type of packages, time and location. Afterwards
the driver should be able to decide whether the delivery shall be carried out
immediately or be stored on an external storage server. After completing a
delivery, the driver removes the order from the server. Storage data could
be used as record history in order to keep track of incoming and finished or-
ders, to optimize a company’s logistics department, for quality management
and similar problems. Many similar applications could be found in different
areas. In case of the logistics application, encryption may be performed on
the client side, i.e. the driver’s mobile device, or on the security server before
writing the content of the order message to persistent storage.

Possible query and update statements involve:

• Driver selects destinations with distance D to the driver location

• Driver selects orders with a maximum of P packages

• Company updates order with new items or delivery address

• Driver removes finished delivery from data storage

A typical scenario would start off with an order to deliver packets from
one location to the other. This order is then transmitted to a server and
stored in the database backend. To notify the lorry driver, an SMS message
is sent to his mobile phone. If the driver is not immediately capable of
fulfilling the order, he may wish to store the order message on some external
server, which may not be secured from unauthorized accesses. SemCrypt
technology could be applied to ensure that no-one except the driver can
access the order message. Fine-granular access control on SMS level may not

CHAPTER 3. USE CASE SCENARIOS 57

be required in this specific setting, since an SMS can be considered as single
document introducing some single-user and non-collaborational context. In
this context, different configuration settings may be considered as well. SMS
transfer may happen unencrypted or encrypted, while the order message
must be encrypted before actually stored, whether on the client’s mobile
phone or on a remote security server. Since SMS messages have a limit of
160 characters in size, an optimization of these procedures could be to only
send a reference number of the order to the driver’s mobile phone, while
storing detailed order information externally, the driver may access via the
reference number. We could even simply publish new orders on the remote
server and let the drivers decide, which order suits them most, depending on
their current location and availability.

3.4 Tourism

Internet technologies have radically changed the tourism market in the past
years and lead to an integration of available information and offered services.
Online search engines query tourism and destination Web sites to assist va-
cationers in increasingly complex holiday planning, such as viewing available
hotels and booking flight tickets or rental cars. As complexity grows, also IT
support becomes sparse.

Tourism has always been a main area of interest for the MOVE research
group [61]. One reference scenario was the packaging of different products to
holiday packages. Due to its complexity many technical and organizational
issues have to be taken into account. Holiday packages refer to the combina-
tion of a set of holiday services that together make up a complete holiday trip.
There are four levels ranging from pure tourism information, simple products
or from supplier- to consumer-defined holiday packages. Consumer-defined
holiday packages build on the foundation of the concept of supplier-defined
holiday packages. A system at this level enables the customer to pick a
supplier-defined holiday package and adapt it even further to his personal
needs thus constituting the first step towards consumer-defined holiday pack-
ages. Customization possibilities are price, departure time and length of stay.
This conforms with a general trend from a supplier market to a consumer
market where the demand side specifies which products are delivered. Be-
sides searching and packaging, the management of customer data and the
generation of customer profiles is an important task. By collecting data of
customers and their classification, service providers may organize special ser-
vices that address the actual requirements of customers.

CHAPTER 3. USE CASE SCENARIOS 58

A tourist should be given the possibility to define a personal profile con-
taining information about contact, such as E-Mail, phone number or home
address, authentication certificates and personal preferences regarding ac-
commodation and recreational activities. Such a profile facilitates the cre-
ation of custom-tailored services. Such a scenario is highly dynamic, since it
has to adapt to very special factors during runtime. Main requirement de-
rived from this scenario comprise among others security, authentication and
privacy the respect to protection of consumer data. If we consider services
such as transporting luggage of a customer as well payment with credit card
and much more, security is an important issue. Services defined in the virtual
enterprise must be clearly distinguished whether high security is required or
not. A related issue is authentication. If a customer asks for services such as
booking a room an authentication is necessary. Privacy on the other hand
deals with availability of consumer data to other entities involved in such
a setting. For many tourist agencies it may be interesting do perform sta-
tistically evaluate data of their guests, which requires the affirmation of the
data owner. Usually, a customer would not like to define a very fine-grained
level of access control to their data. Therefore certain common permission
definitions may be useful.

3.5 Biotechnologies and Human Medicine

XML has become the foundation of several markup languages for storing
biological data and is particularly important for biological research and the
biotech industry [178]. These markup languages support genetic and biolog-
ical data collection, management, retrieval, analysis, exchange, and publica-
tion. The growth in data produced for research in the field of life sciences
is extraordinary as well as the need for standardized exchange formats for
distributed processing of data or research in general, which is commonly or-
ganized in networks. For example, data is accumulated in the area of the
Human Genome Project [87], for various genetic and proteomic databases
or specific applications in life sciences. Most of the data involved is linked
to human beings, which leads to an aggregation of sensible information of
individuals and therefore poses a privacy and security risk. At the current
(research) stage, most of the data aggregated is eventually dedicated to pub-
lication with private information of probands detached from the data sets.
However, the existing ways of dealing with data exchange and privacy provi-
sion are discontenting, circumstantial, and aggravate the inclusion of network
partners in research projects. XML is broadly accepted as a promising means

CHAPTER 3. USE CASE SCENARIOS 59

for tackling the before-mentioned problems in bioinformatics, but does not
solve the privacy and security concerns. In recent years, the pharmaceutical
industry has gradually altered its research policy. Instead of conducting re-
search on their own, pharmaceutical groups are progressively trying to pass
on the risk involved in research to biotech SME, which are on the forefront
of research but notoriously lack of capital. The pharmaceutical groups sup-
port or buy the biotech SME only if the drug is successful in initial testing
phases and rather concentrate on sales and distribution than on research
itself. As a consequence, research in the field of life science is frequently
conducted by biotech SME that face SME-typical restraints in capacity, in
particular financial constraints that make it even more difficult to manage
and store large data sets appropriately. Therefore, cost-efficient outsourcing
of databases could be an interesting option, but poses a challenge as privacy
and security issues need to be addressed as well as the access of partners in
the research network to the data stored at a service provider. Even though
data will finally be accessible to the general public, the pre-publication or
pre-patent phase as well as the linkage of data sets with sensitive information
exemplifies the need of a method that enables a secure and cost-efficient way
of storing data, as conceived by the approaches of this thesis. The archiving
of accomplished experiments seems to be a particularly rewarding field of
application in this context.

3.6 E-Government

E-Government offers a wide range of services dealing with sensitive data that
is usually stored centralized and archived for longer periods [179]. Therefore,
issues of security and trust become prevalent, particularly when personal in-
formation can be gathered from the data sets, promoting the frequently men-
tioned ”transparency of the individual” that is favored by information and
communication technologies in general. Consequently, E-Government seems
to be an interesting field of application, as long as XML-based data formats
are involved in the E-Government services. These services can roughly be
divided into categories Government-to-Government (G2G), Government-to-
Business (G2B), and Government-to-Citizen (G2C).

Chapter 4

Architectural Requirements

4.1 Basic Architecture

SemCrypt applications may be basically distributed on three different do-
mains, which are classified by the security level they require. A user in a
SemCrypt application may store, remove, update or select data formatted
as XML and held by an untrustworthy storage provider. Thereby users may
operate on complete XML documents or only document fragments using the
XPath and XUpdate languages, for instance. Since data is stored encrypted,
a client must first contact the trusted security server and ask for authoriza-
tion. If the requested operation is permitted and the user wants to perform
an update operation, the key management, which is typically also located at
the security server, is asked for data encryption before the data can be saved
in the data store. In case of a query request, the data is fetched from the
untrustworthy database and sent to the key management afterwards to per-
form data decryption. Essential domain interaction and entity distribution
is depicted in illustration 4.1.

The elementary SemCrypt architecture only prescribes the division into
three security domains. How an application is deployed in concrete depends
on the concrete application requirements. In some cases, for instance, clients
may not even trust the trusted domain and take care of key management
themselves. In such scenarios, it is possible for the clients just to ask for
authorization and perform the rest of the interaction process locally. For
example PIN codes, which are required for the ATM, are directly stored on
a small amount of memory on credit cards. If the card gets lost, the owner
should immediately report this to the bank and lock the account. That is the
reason why the client domain is rated as semi-trusted. An attacker may un-

60

CHAPTER 4. ARCHITECTURAL REQUIREMENTS 61

Figure 4.1: Basic SemCrypt application domains

der certain circumstances gain unauthorized access to the system, to which
probability extent ever. Hence, if we manage to guarantee absolute data
confidentiality, there is still a potential risk remaining at the client side. If
we stay with the credit card scenario, the security server is physically mov-
ing towards the client domain. However, the authorization engine needs to
be absolutely protected from any unauthorized modifications otherwise each
client may change its access permissions. Also the data store must remain
untrustworthy, since this is the actual challenge that needs to be solved in
SemCrypt applications.

Figure 4.1 illustrates the simplest deployment setting for a SemCrypt ap-
plication. Unfortunately, real world matters are often far more complex.
SemCrypt basically aims at providing a database management system for
handling outsourced sensitive data on stored at untrustworthy databases. A
DBMS is primarily concerned with providing data persistence management
in distributed applications, which makes the approach widely applicable in
applications, where large amounts of sensitive data are involved and for which
data outsourcing is more than just an option. Therefore it may likely be the
case that data needs to be scattered on multiple data stores, which must to

CHAPTER 4. ARCHITECTURAL REQUIREMENTS 62

be queried, and several hundred client requests need to be handled at once,
which forces the usage of multiple security services to meet the high per-
formance requirements. Load sharing plays a very important role in these
considerations and involves deployment of multiple trusted and untrustwor-
thy domains, which need to interact with each other, also with respect to
non-functional quality of service application requirements, such as service
availability and reliability. Single clients do not require fine-granular access
control to single XML nodes, since each client has full access to its private
data. An example for single client settings is a Web hosting provider or a
private document store, more generally spoken. Authorization in multiple
client scenarios is dependent on the type of application. In collaborative en-
vironments it may be a requirement that all clients have full access to the
resources, while in high security applications very fine-granular access control
is demanded. Concurrent data modifications are not part of SemCrypt. For
locking resources standard techniques are applied.

The component assembly and interaction document provided by the DKE
Linz [93] provides an in depth analysis of the basic requirements of the secu-
rity server interface and discussed different deployment scenarios. However,
goal of this document is to give an overview of the components involved
in SemCrypt domain interactions and introduces an application framework,
which was designed to facilitate initial application development and deploy-
ment.

4.2 Responsibilities of Domain Entities

The storage provider actually contains encrypted data, only authorized en-
tities can access in a meaningful way. Components required for decrypting
database content are separated from the storage provider, which makes it
cumbersome for potential storage hijackers to read the database content,
since they do not have access to the required security data. Security of the
data stored actually depends on the security level of the encryption mech-
anism applied. The stronger the encryption algorithm used, the harder at-
tackers may gain access to the data content. The storage provider itself
represents a physical entity not providing any application functionality and
needs thus not be further investigated by SemCrypt technology. The chal-
lenging tasks are responsibilities of the security server introduced below.

Information contained by the storage provider is actually useless. The secu-
rity server contains meta-data, which is required to decrypt encrypted sensi-

CHAPTER 4. ARCHITECTURAL REQUIREMENTS 63

tive information and return it to the requesting client party. Responsibilities
of the security server are manifold and at the same flexible with respect to
the management of the security data. We briefly saw that the security server
is not an isolated server component by itself, but may rather be deployed
with many different facets, sharing security functionalities with the client
application, and sometimes be even physically moved to the client device.
Functionalities comprise key management to store cryptographic keys for en-
crypting and decrypting sensitive data stored at the storage provider, request
authorization, tightly coupled with authentication management of the sub-
jects involved in an application setting. Authorization and access control
needs to be protected by all means and must never allow any entity directly
operating on access control policies. Key management is a little more flex-
ible and may be shared with the client applications. Basically, the security
server needs to be trusted. If trust in key management cannot be granted
any application deployment becomes obsolete, since then it can also not be
granted for access control, which is crucially important. However, in some
applications, a client may need direct access to its keys without having to ask
an external entity. In this case the security server only needs to perform au-
thentication and authorization and return encrypted data back to the calling
client, which performs data decryption on its own. Both access control and
key management are subject to later chapters, which discuss the architecture
and components involved in greater detail. The security server was designed
to be applicable in any application without deployment limitation as regards
the configuration options of the application components. Furthermore, ev-
ery component provides a well-defined Web service interface incorporating
service orientation while providing security with respect to identity manage-
ment, access control and data protection.

Application integration should actually happen on the client side. The term
client not only refers to a nice-looking, clickable graphical user interface,
but refers to any application component that may wish to take advantage
of SemCrypt technology. This engages a wide range of front-ends reaching
from simple command-line tools for operating directly on the database to
complex workflow management systems, using the security server as under-
lying persistency layer. Application purposes are far reaching demanding
high configurability of the security technologies used in order to support
the many needs that may be requested from such a security system. This
very strongly argues for the conceptualization of the security server as Web
service oriented architecture. It must be easily integrate-able into existing
systems and stay independent from client platform and hardware. In the
previous chapter we saw applications settings, which very well suit the func-

CHAPTER 4. ARCHITECTURAL REQUIREMENTS 64

tionality developed within this thesis and which already serve as prototype
environments for applications that have been developed on the foundation of
the technologies presented herein. These applications will be discussed later
on and incorporate great heterogeneity, which fully justifies the deployment
of secure Web services and moreover demonstrates their power in real-life
applications.

4.3 P2P Networking

The approach discussed so far, primarily deals with a computing environ-
ment with entities interacting in a classical client-server model. This section
provides a brief discussion of an alternative Peer-to-Peer (P2P) architec-
ture [182]. Pure P2P networks merge the roles of client and server, rather
than delegating responsibilities to a few centralized server machines. Hy-
brid forms of P2P and client-server architectures involve some central hosts,
which store information about the peers registered in the environment. P2P
environments are very well known from file sharing applications, such as
the Gnutella network, and are typically useful for establishing ad-hoc con-
nections. Advantages of P2P technology is resource sharing. Since many
computing nodes are available, there is no longer the need for expensive
and powerful centralized server machines. Adding more nodes to the net-
work increases the overall system performance, while the opposite is true
for client-server architectures, since an increasing number of client nodes re-
duces server throughput. Network management on the other hand is not
necessarily a drawback, because large networks often require many servers,
these nodes have to be coordinated as well. From a legal perspective, P2P
networks always ranged in some grey area due to copyright issues mainly
driven by the music industry.

If we wanted to apply P2P technology in SemCrypt application scenarios,
some considerations need to be made. Access control policies and encryption
keys have to be protected from unauthorized access at any circumstances
as explained so far. Key management may be deployed in a still flexible
manner though, since keys may be stored at the security server or on be-
half of the clients. Considering hybrid forms of P2P networks, we still may
deploy a security server, which takes care of authorization management and
optionally of key management. Peers could take over the role of the insecure
storage provider. If we assume that data involved in SemCrypt applications
are secured in a way that there is no possibility that an unauthorized party
can use them, it is save to swap the data on client machines, regardless of

CHAPTER 4. ARCHITECTURAL REQUIREMENTS 65

Figure 4.2: Hybrid P2P networking architecture

whether they are trusted or not. Such a hybrid scenario does not seriously
affect application deployment so far, since instead of querying a centralized
data store, requests are sent to other peers. Thus we resolve the triangle
structure as illustrated at the beginning of this chapter by simply moving
the untrustworthy data storage to the client side as illustrated in Figure 4.2.

More challenging are pure P2P networks, since we have to think about secu-
rity management more carefully. Access control policies need to be protected
at all costs, which means that we cannot store them on peer nodes without
further measurements. We need to ensure that a subject never gains access
to its own access rights it could modify. The only possibility of P2P settings
is thus storing polices on other peers raising the question which access rights
these policies may contain. A malicious peer could host and arbitrarily mod-
ify policies and thus inject permissions or denials, which would throw the
application into inconsistency. A solution to that could be to couple access
control policies with the actual data they refer to. If a peer stores only poli-
cies, which apply to the data it owns, it will not want to maliciously modify
permissions, since they affect the peer’s private data. We must therefore
ensure that each peer only provides its own sensitive data and additionally
corresponding authorization policies and cryptographic keys, which are even-
tually required for accessing the data.

However, there are many more security issues that arise in P2P networks
and which cannot be solved by SemCrypt technology. P2P environments
often suffer from poisoning and polluting attacks, which refer to peers pro-
viding data containing differ from their description or data containing bad
chunks or even mal-ware or viruses making the whole file useless and even
dangerous for the recipient. Other forms of attacks are denial of service,
spamming and defection attacks, which must be managed separately.

Chapter 5

Analysis and Design

This chapter contains requirements analysis of security components, which
are mandatory in SemCrypt applications, i.e. access control and encryp-
tion and decryption modules, followed by concrete design suggestions imple-
menting the security functionalities. The next chapter, on the other hand,
discusses how these security components can be invoked in a service ori-
ented manner using Web service interfaces. All these responsibilities are
organized within the SemCrypt Application Framework (SCAF) [140]. The
SCAF serves as umbrella for security components and the service environ-
ment. Security components are namely the SemCrypt Authentication and
Authorization Framework (SCAAF) [142], the SemCrypt Encryption and
Decryption Framework (SCEDF) [144], which are both subject of the next
two sections, and the SemCrypt Database Framework (SCDBF) [143], which
represents the secure persistency layer for storing authorization policies, cryp-
tographic keys and user and document information. The service environment
is divided into the SemCrypt Web Services Framework (SCWSF) [148] and
the SemCrypt Security Services Framework (SCSSF) [147], dealt with in
Chapter 6.

5.1 Access Control

So far, related work has been discussed and put into context with the goals of
this thesis. Another focus was on identifying application scenarios, which are
suitable for secure XML data outsourcing, where HRM has been chosen as
reference show case. The following chapter is maybe most important, since it
deals with requirements for the concrete implementation of the access control
component, which must be hosted by a trusted security server. Advanced
XPath features are introduced to establish a context with the authorization

66

CHAPTER 5. ANALYSIS AND DESIGN 67

procedures described further on. The access control language being devel-
oped in the course of this chapter uses a reduced set of XPath syntax to
express which XML fragments must be protected. Reducing the XPath syn-
tax facilitates policy decisions and enforcements, since it is easier to manage.
On the other hand the access control mechanism must not be trivialized. A
preferably large set of XPath queries should be allowed in order to not be
forced to reduce the areas of deployment of the access control component
and at the same time not limit the power and expressiveness of the XPath
query language.

5.1.1 Authentication

The SemCrypt Authentication and Authorization Service (SCAAF) specifies
components for authenticating subjects, willing to interact with the applica-
tion, and authorizing their requests for accessing the untrustworthy database
storage provider. Authentication forms the foundation for any further request
processing and is thus fundamental in any application setting. Without iden-
tifying the invoking client party, no further processing is possible. Autho-
rization is always performed directly after authentication to check whether
the client has sufficient access rights on the database to perform the desired
operation.

The SCAF reference implementation provides a custom authentication mech-
anism, which is based on the Java Authentication and Authorization Service
JAAS [156], and thus provides all the benefits JAAS offers to the applica-
tion developer. Since authorization is a fundamental subject to SemCrypt
and JAAS is insufficient for providing access control on all levels neces-
sary within the SCAF, this section is focused on the authentication process
only. Figure 5.1 illustrates the most important components involved in the
user authentication process: Login process starts as soon an instance of the
AbstractUserInterface implementation is invoked. For improved readabil-
ity method listing has been omitted, but the process is rather straightforward,
since it basically is restricted to calling operations provided by the JAAS
classes. The AbstractUserInterface is responsible for collecting the user
authentication data. In this case we focus on password based authentication
and provide username and language code as well to the SCAF. The login
module instantiates the authentication components and passes on its own
reference to allow the DefaultCallbackHandler querying the login informa-
tion. For the sake of completeness, JAAS authentication components are
depicted as well. The LoginContext provided by the JAAS API is the glue
between the LoginModule and the CallbackHandler omitted in the diagram.

CHAPTER 5. ANALYSIS AND DESIGN 68

Figure 5.1: Authentication components in SemCrypt applications

Both are JAAS interfaces as well and need to be implemented by custom
classes. To be more concrete the LoginContext expects a CallbackHandler

and a configuration file as input. The configuration file in turn specifies which
login modules to use for authentication.

Although JAAS allows the specification of a set of login modules, for now we
use one single module named SCLogin. As specified by the JAAS API, there
are several ways how to tell the LoginContext about the login modules. Since
we know our configuration file, which we may wish to modify in the future,
the most convenient way in this case is probably to do it programmatically
by setting the system property java.security.auth.login.config to our
configuration file path during Java Virtual Machine (JVM) initialization.
Besides the login modules, the configuration may contain space separated
additional parameters which may be accessed by the login module’s initial-
ization method. As soon as the login method is called on the LoginContext

it is passed on to the login module, which creates all Callback objects neces-
sary, such as username, password or language. The CallbackHandler then
gathers the required information from the user and forwards it to the login
module, which performs the final authentication.

Note that the AbstractUserInterface can be regarded as interceptor be-

CHAPTER 5. ANALYSIS AND DESIGN 69

tween the user interface and the actual authentication module. This enables
higher flexibility, since we only need to integrate the LoginInterface with
any client frontend and do not need to rewrite the callback handler for each
login method anew. Though callback handling using command line user
input is trivial, it would require much more workarounds for Web based
user authentication due to the request/response mechanism of Java Servlets.
Identity management is one main issue specified by the SCAAF. Authenti-
cation is needed for every incoming client message and must be performed
on the service layer before forwarding the request to the internal compo-
nents, such as authorization and key management. Authorization is enforced
by means of an XPath statement, which aims at a specific portion of data
stored in the database and which has to be analyzed to determine whether
the requesting client is granted access. Different access control approaches
are discussed and compared regarding their applicability and extensibility in
SemCrypt applications.

5.1.2 Query Processing

XPath is a widely applied technology in the XML area. Many efforts have
been made to optimize XPath expressions to speed up query processing and
evaluation. Although the term is often put into context with the database
world, query processing is of significant importance in other fields, such as
access control, which shall be discussed in the following section. Query pro-
cessing is performed using a two phase model, which involves static and
dynamic query evaluation.

Static context information is available during expression analysis before eval-
uation is actually performed. This is where query authorization is hooked
in, since whether a request is granted or denied should be known, if possi-
ble, before the query is forwarded to the XML store. However, the reason
why this has to be said with some caution is that sometimes post filtering of
query evaluation is required to be absolutely sure that no access policies are
violated. These issues will be subject to the next section. Static evaluation
comprises function names, namespaces, document, in-scope schema defini-
tions, types, which are statically known. Dynamic evaluation covers function
and variable values, dynamically available documents, date and time values
and most importantly context processing, referring to the context element
currently being processed. XPath query processing is a very complex task
and has been subject to many scientific publications. For instance, Gottlob
et al. propose algorithms which run in main-memory with polynomial time
complexity and introduce XPath fragments for which linear-time processing

CHAPTER 5. ANALYSIS AND DESIGN 70

Figure 5.2: Query processing in SemCrypt applications

algorithms exist [75].

According to the information provided so far and the architectural require-
ments analysis from Chapter 4, the following paragraphs are dedicated to
authorization processing. The following image reveals the interaction among
software components necessary for XML based access control using a simpli-
fied collaboration diagram: Components are separated into trusted and un-
trustworthy domains, i.e. clients and database server. Trusted components
involved in query processing are the authorization manager, cipher engine,
query parser and result filter. The client is representative for any application
interacting with the trusted Web service, such as a standalone application or
a service provider enabling access via an intermediary application framework.
The client application, however, is responsible for generating appropriate re-
quest statements that can be handled by the Web service component, which
are XPath statements. The authorization manager forwards any incoming
request to the XPath parser which validates the statement and returns an
object hierarchy similar to the document object model [170]. The resulting
DOM is used to perform the authorization process. One big advantage of

CHAPTER 5. ANALYSIS AND DESIGN 71

the object model is reusability: each valid XPath statement can be compiled
into objects, which highly facilitates working with XPath expressions on a
programmatic level. Existing XPath parsers fail to provide these interface,
e.g. [47]. Furthermore its modular design allows comfortable application in-
tegration. The drawback, of course, is decreasing performance, since requests
have to be parsed twice: once to retrieve the object model and once again
traversing the object hierarchy during authorization process. A compromise
to increase performance without losing ease of use could be to just generate
absolutely required objects.

After parsing the request, the result is corrected by eliminating context items,
i.e. access to the current node within the expression context, reverse steps
forward steps, axes, type casts, variables and function calls. In other words
queries are transformed into valid canonical XPath expressions by extracting
only absolute path expressions and eliminating axis navigation and abbre-
viated reverse steps. Function calls are considered as irrelevant as well for
authorization purposes, since if any path relevant for a function call is acces-
sible, there is no reason why the operation on the path expression should be
prohibited. We actually could restrict on return values of a function and due
to the openness of our proposal, this could be subject for further extension.
Casts and variable assignments may fail during XPath evaluation but are
also not subject to security considerations. he discussion of related work in
Chapter 2 provides XPath rewriting examples, which serve as starting point
for the design of the authorization engine.

Query transformation makes it much easier to check for access permissions,
since irrelevant query information are ignored and only absolute path ex-
pressions and its contents are of main interest. Since each expression may
recursively contain sub-expressions, i.e. predicates, a take bottom-up ap-
proach is taken to evaluate expressions on the lowest level first to be able
to evaluate the parent expressions. For example, if we defined an access
restriction on an employee’s monthly wage, we first need to know what
wage the predicate is pointing to before we can permit or deny the ac-
cess. //Salary[/SemCryptEmployeeInfo/PersonInfo/PersonId[IdValue

= "9902261"]] for instance, would never make it through the authoriza-
tion manager if the requested wage is higher than the requestor is allowed
to see. The biggest drawback of this approach is again performance. Very
complex queries waste a large amount of network traffic, since a potentially
vast number of sub-queries are being made to the untrustworthy database
server. And in the worst case an access denial may occur at the final
stage of evaluation, which implies error detection unnecessarily late. Nev-

CHAPTER 5. ANALYSIS AND DESIGN 72

ertheless, the algorithm operates on exactly relevant data. Another possi-
bility would be to forward all top-level path expressions to the database,
which causes as many requests as the query contains top-level expressions.
//PersonInfo/PersonName and //PersonInfo/ContactMethod would gen-
erate exactly two database requests. In the worst case, requesting XML
root elements would result in transfer of the complete database content.
The listing below illustrates the basic bottom-up authorization approach in
pseudo-code:

Listing 5.1: Authorization algorithm for selective access
FUNCTION authorizeSelect expr

FOR each pathExpr in expr

IF pathExpr contains Predicate THEN

INIT resultList

FOR each Predicate in pathExpr

CALL authorizeSelect with pathExpr RETURNING result

ADD result to resultList

END FOR

CALL rewriteExpr with pathExpr and resultList

RETURNING pathExpr

END IF

CALL evaluateExpr with pathExpr RETURNING granted

IF granted EQUALS true THEN

INVOKE DBServer with pathExpr returning cipher

INVOKE CipherEngine with cipher RETURNING decrypted

INVOKE ResultFilter with decrpyted RETURNING result

RETURN result

ELSE

RAISE AuthorizationException

END IF

END FOR

END FUNCTION

The function takes a corrected XPath statement as input and calls itself as
long as the algorithm discovers Predicates contained by the expression. If
the lowest level has been reached, the path is evaluated by the authorization
component and sent to the untrustworthy database server. If we wish to gain
read access, the resulting data is encrypted and has to be decrypted by the
cipher engine. For validation purposes we filter the resulting data by applying
the XPath request again on the result and return it to the calling function.
Formally speaking, a request of form p1[p2 op p3] where pi denotes a canonical
path representation and op some comparison operation, after replacing the
rightmost path p3 or leftmost path p2 with the appropriate evaluation result,
makes it possible to evaluate access control to p1 with respect to its restriction
definitions. If we turn back to the collaboration diagram, the invocation of
the cipher engine depends on the type of action requested. We can reduce
database access requests to reading and modifying access, regardless of which
access rights have been specified previously. Anyway, the cipher engine has to
be called to encrypt data which is about to be inserted or to decrypt data that

CHAPTER 5. ANALYSIS AND DESIGN 73

XPath := PathExpr
PathExpr := (”/” RelativePathExpr?) |

(”//” RelativePathExpr) |
RelativePathExpr

RelativePathExpr := StepExpr ((”/” | ”//”) StepExpr)∗
StepExpr := AxisStep | FilterExpr
AxisStep := (ForwardStep | ReverseStep) PredicateList
ForwardStep := (ForwardAxis NodeTest) | AbbrevForwardStep
AbbrevForwardStep := ”@”? NodeTest
ReverseStep := (ReverseAxis NodeTest) | AbbrevReverseStep
AbbrevReverseStep := ”..”
NodeTest := KindTest | NameTest
NameTest := QName | Wildcard
Wildcard := ”*” | NCName ”:” ”*” | ”*” ”:” NCName
FilterExpr := PrimaryExpr PredicateList
PrimaryExpr := Literal | ParenthesizedExpr | ContextItemExpr
Literal := IntegerLiteral | DecimalLiteral |

DoubleLiteral | StringLiteral

Table 5.1: The subset of XPath syntax used for access control description

is going to be displayed to the user on the client application frontend. Calling
the result filter for validation purposes is optional but provides additional
safety regarding sensitive result data. Modifying the algorithm shown above
to suit the requested action should be straightforward.

5.1.3 XAccess Control Policies

Policies describe permissions and/or denials for XML document access. Both
permissions and denials are made up of a triple <S, A, R>, where S denotes
the subject, i.e. the role or user for instance, making the access attempt,
A refers to the action the subject wants to perform, such as read or write,
and R is short for the resource the subject is trying to access. Resources are
specified as XML fragments, which may be selected using XPath. The table
5.1 shows the subset of the official XPath syntax, which is valid for describing
the XML resource: The allowed syntax is very restricted, but sufficient to
describe and protect all possible XML fragments. A standard conformant
XPath expression can be made up of multiple path expressions. To perform
authorization checks it is sufficient to investigate the smallest logical units of
XPath expressions, i.e. step expressions, which make up a path referencing
specific portions of XML data. It seems illegitimate to allow access to XML

CHAPTER 5. ANALYSIS AND DESIGN 74

content and at the same time restrict the access of a sub-portion. For ex-
ample, in case access to element E is be granted, while applying a substring
function on E is prohibited, a subject may retrieve element E and apply sub-
string autonomously, resulting in annoying workaround without providing
additional security. Hence, XPath expressions are considered legal as long as
the path expressions involved are allowed to be performed. Excluded from
authorization processing are therefore, qualified, if, logical, arithmetic, union,
intersection, instance of and cast expressions as well as functions. Filter ex-
pressions take up a special status, since they are disallowed in the XAccess
path syntax, but need to be treated somehow. Filter expressions allow access
to nodes via indices, node names or comparison expressions.

• /E1/E2[2] returns the second element E2 as defined by document order

• /E1/E2[E3] returns elements E2 with child E3 in document order

• /E1/E2[E3 eq V] same as above, but E3 must equal value V

The XPath specification allows whole XPath expressions to be used with fil-
ter predicates, i.e. considering the filter expression rule in the previous syntax
table, a predicate list contains zero or more predicates, which are defined as
[Expr], which in turn can evaluate to any valid XPath expression. However,
reducing these XPath expressions to path expressions is again sufficient for
making authorization decisions. Filter expressions provide additional gran-
ularity to permission definition, since not only authorization on element or
attribute level can be made, but also restrictions on their contents may be
defined.

Recalling the triple <S, A, R>, a resource R is thus made up of path ex-
pressions and restrictions, i.e. definition of filters. The reason why filters are
excluded from the grammar specification above is that recursively defined
path expressions makes permissions considerably hard to handle. An exam-
ple should make that clear:
/E1[E2[E3 eq V]] is a valid XPath expression, but during evaluation time
it is unclear what the contents of E2, E3 and possibly also V are. Such an
expression has to be recursively resolved to decide whether the query points
at legal XML fragments. Though legal with respect to the path expression
grammar, using indices as filter is discouraged, since it cannot be known dur-
ing runtime, how an element at a predefined position looks like, i.e. whether
it holds content that needs to be protected. This is because of the semi-
structured nature of XML, which describes the structure of documents, but
not orderings of elements of the same name. Hence if subject S has access to

CHAPTER 5. ANALYSIS AND DESIGN 75

some element E with value V, a permission definition of E[2] may have fatal
consequences, since there is no way to specify that E holding V must always
be on second position regarding document order. This situation, however,
can be prevented by not specifying permissions or denials for indices, but
what if subject S queries for exactly the second element in document D? In
this case, index based permissions could suddenly make sense to make access
control decisions during static checking. Or the query may be allowed for
now and the result is subject to post-filtering before being returned to the
calling subject. Only performing static query checks, however, is only safe,
by either prohibiting index-based queries or storing metadata about each
document in the database, such that an index-based query can be mapped
to actual element or attribute values.

The policy file format developed within this section uses XML to describe
access control policies. XAccess allows the definition of permissions and de-
nials, which both specify the same element structure. The difference lies in
the policy processing semantics. Not surprisingly, permissions express paths
that may be accessed and denial exactly the opposite. XAccess prescribes a
restrictive handling of permissions, i.e. anything that is not explicitly permit-
ted is prohibited. Denials may be used to overwrite permissions. For instance
subject S may have access to element E1 but not element E1/E2. Since per-
mission for a node N involves access to N and any sub-nodes, denials can
explicitly restrict permission definitions. This can become especially useful
in case of permission inheritance. To facilitate policy management, subjects
with similar permissions may inherit them from each other. With denials it
is then possible to restrict specific permissions on a very fine granular level,
instead of requiring the whole permission to be redefined for another subject
with only a few modifications.

Listing 5.2: Permission format of an XAccess policy file
<Permission >

<PathValue />1

<SubjectName />+

<RightName />+

<RequiresSubjects >

<SubjectName />+

</RequiresSubjects >?

<Filter >

(<Index />1) |

(<PathValue />1 (<Operation />1 <Value />1)?)

</Filter >*

</Permission >+

The previous code sample illustrates the info-set of an XAccess policy. Path
values contain a string value as defined by the reduced XPath grammar at
the beginning of this section. For each permission at least on subject must

CHAPTER 5. ANALYSIS AND DESIGN 76

be specified to which the permission applies. Also at least one access right
must be granted. Interpretation of the access rights is up to the authoriza-
tion component handling the policy files. Required subjects aim at subjects,
which must be additionally provide their identity in order to allow the re-
quest, stated by some privileged subject, being processed. Filters are exactly
what have been discussed previously. For each path an arbitrary number of
filters may be specified containing wither a node index or a path value. If
an additional operation is present, a value is mandatory as well for defin-
ing value barriers of the path specified. Denials may be declared exactly
the same, whereby the processing sequence of the underlying authorization
engine should assign denials a higher priority than permissions. In case
of contradictory denials and permissions definitions, the denial should gain
higher importance and override the permission. Both permissions and de-
nials are surrounded by a Permissions or Denials tag, which at least contain
a permission or denial respectively. Permissions and denials are contained
by the XAccess root element.

Another element which is subject to XAccess policies are namespaces, defined
as follows:

Listing 5.3: Namespace definitions in XAccess policies
<Namespaces >

<Namespace >

<URI >anyURI </URI >1

<Prefix >string </Prefix >?

</Namespace >+

</Namespaces >1

What has been omitted from the simplified XPath grammar table are names-
pace prefixes. These are defined by grammar elements not contained in this
table, such as the literal constants and qualified names (QName). A path
expression consists of step expression, whereby a step expression often refers
to an element name. Since XML elements may be defined by namespaces
other that the default target namespace, XPath may also contain namespace
prefixed path steps. Namespace information is extracted for permission def-
inition, since the authorization engine must somehow be able to determine,
which namespace an element belongs to, in order to distinguish between even-
tually conflicting element names. Elements may be defined with the same
name but different namespaces. Hence, subject S may have access to element
E of namespace NSi but not E of NSj . Additionally, XML documents that
in fact are valid for the schema description, do not necessarily need to use
the same namespace prefix that is used in the schema definition. Names-
pace declarations are tuples <P, U>, where P denotes the namespace prefix
and U the namespace URI. For a document D valid according to a schema

CHAPTER 5. ANALYSIS AND DESIGN 77

S, namespaces are perfectly equivalent if URI(D) equals URI(S). For that
reason a mechanism for mapping namespaces during request processing is
mandatory. XAccess requires at least the definition of a target namespace.

5.1.4 Performing Authorization

Authorizing XPath statements is one central security issue in SemCrypt en-
vironments. Since XPath is used to select fragments of XML document data,
which might contain confidential information, it is necessary to analyze which
data a query is about to select and permit or deny the statement accordingly.
In case of an XUpdate request, the containing XPath statement is first ex-
tracted and then passed on to the parser. Each request must contain a query
context object provided by the API, which in turn contains at least one role
actually stating the request. This is mandatory, since some requests may
require multiple privileged users and simply knowing of currently logged in
users is definitely insufficient for performing authorization. Starting point
for defining access control policies is an XML schema, declaring the struc-
ture of the affected XML documents access should be restricted to. With
schema information it is possible to determine the corresponding valid docu-
ment structures and derive all possible element paths valid for a given schema.

This section deals with policy enforcement concepts in SemCrypt applica-
tions. Since the reference implementation is written in Java, authorization
management is also based on the JAAS framework as introduced in the
previous section. Core classes provided by the JAAS API are again illus-
trated as grey filled rectangles, while SemCrypt extensions are kept trans-
parent. Entry point for authorization processing is again the UserInterface
interface, which additionally to login and logout methods provides an
abstract perform operation, which attempts to perform some application
specific action by first checking user privileges with existing policy files
through the JAAS layer. Additionally to the LoginContext, which has al-
ready been discussed previously, JAAS contains a set of abstract classes,
which need to be extended to meet application specific requirements. The
XAccessPolicy class is responsible for loading and parsing XAccess policy
files and providing their content to the authorization framework. The idea of
the CompositePolicy is to hold a collection of different types of policy files
and not restrict the SCAAF to processing only XAccess policies. Currently,
default JAAS policies and XAccess policies are supported. After parsing the
policy file, an XAccessPolicy holds a set of XPathPermissions. Whenever
an incoming user request involves XPath authorization, an XPathAction is
created and checked with the permissions obtained via the XAccess poli-

CHAPTER 5. ANALYSIS AND DESIGN 78

Figure 5.3: Access control components

cies. The whole policy enforcement process is done via the Subject object
of the JAAS framework. After successful login via the LoginContext, the
authenticated subject may be obtained, which may be associated with a set
of identities. Identities are represented by the Principal interface, which is
implemented by the SCAAF UserIdentity class.

The algorithm presented by Miklau and Suciu [112] is very promising also
for access control processing, since it is capable of handling descendant se-
lections, wildcards and filter expressions. With those features supported, it
is possible to compare a wide range of XPath queries with respect to access
control, since as discussed in previous sections it is sufficient to concentrate
on path expressions anyway. With the previous sections in mind it is possible
to overcome these shortcomings to a certain extent. In the following exten-
sion mechanisms to the algorithm by Miklau and Suciu shall be discussed.
Axes can be handled by query rewriting and replacing axis navigation syn-
tax with abbreviated syntax. Since path permissions as specified in the
access control policies contain only abolsolute path values, even abbreviated
parent (”..”) and context navigation (”.”) can be eliminated by rewriting
/E/../E to /E and /E/./E to /E/E. The problem remaining and also omitted
when discussing axes and abbreviated syntax equivalence, are the preceding

CHAPTER 5. ANALYSIS AND DESIGN 79

axis, which involves the preceding-sibling axis and the following axis, which
involves the following-sibling axis, having no abbreviated correspondence.
This problem is similar to the indexing problem presented earlier. Due to
the semi-structured nature of XML it is a priori not possible to determine
what elements are being accessed. Also here, the solution would be wither to
entirely deny queries containing such syntax or perform post-filtering or store
metadata about each document that could possibly be accessed. Metadata
information must on all accounts contain data about the elements and their
contents to make access control decisions during XPath processing. Post
processing during XPath evaluation phase maybe would be much simpler to
achieve, but requires an additional processing step by the authorization en-
gine, which could result in unnecessary data transmission and performance
overhead. However, the approach followed within this thesis is an exten-
sion of the algorithm by Miklau and Suciu with extensions regarding query
rewriting and adding comparison expressions. The algorithm is capable of
handling filter expressions on arbitrary levels of recursion, which is not re-
quired herein, since permission definition aims at fine granular XML access
control, where recursive predicates are considered redundant and moreover
hard to handle and understand.

5.2 Cryptographic Requirements

The SemCrypt Encryption and Decryption Framework (SCEDF) is respon-
sible for encrypting and decrypting database content. Both symmetric and
asymmetric keys may be used with the SCEDF. With asymmetric keys it is
the application’s responsibility that the public key is used for encryption and
the private key for decryption. Inspired by preceding work, such as [113], the
following sections are dedicated to the discussion of suggested encryption/de-
cryption procedures as well as key management, which are subject to testing
and evaluation within the SemCrypt framework.

5.2.1 Encryption and Decryption

Cryptography is one of the core components in SemCrypt applications. They
are decisive with respect to the overall application security. It is not the aim
of the SCEDF, to define innovative encryption algorithms or provide some
formal cryptanalysis. It rather relies on existing cryptographic algorithms
for symmetric and asymmetric key generation as well as their appliance in
application management. Furthermore, this section does not describe the us-
age of specific algorithms, but rather a framework which is open for adding

CHAPTER 5. ANALYSIS AND DESIGN 80

any security algorithm. Security with respect to data confidentiality thus
depends on the strength of the encryption algorithms used for a specific ap-
plication. It is the responsibility of the application developers and end users
to choose algorithms which are secure and fast enough with respect to the
actual application requirements.

The SCDBF describes the feature allowing each user to upload own doc-
uments and securing them with own cryptographic keys, which may either
be stored at the security server or locally at the client side. Each user must
therefore also have the possibility to upload own cryptographic keys, which
may then be used by the security server to encrypt/decrypt document data
and return the result to the client front-end. How key management in incor-
porated into SemCrypt applications is part of the service environment de-
scribed in the next chapter. Key management responsibilities are delegated
to subjects in charge, i.e. system administrators for general purpose cipher-
ing, roles and single users. If a key is removed, appropriate actions have to
be performed on affected artefacts, i.e. XCipher descriptions discussed in the
next section and document data. Any references to the removed key have to
be resolved by deleting them from the XCipher instructions and decrypting
affected data fragments. If a key gets lost it becomes very hard if not impos-
sible to recover the original data later on. These actions need only be taken,
if the affected key is stored at the security server, otherwise it can be assumed
that it is stored somewhere else and it is up to the client to know what to do.
Dynamic key change, i.e. updating or modifying a key during runtime has
the same implications as when a key is being removed and a new one inserted.

Since data is stored encrypted in untrustworthy database domains, the keys
for encrypting/decrypting the data as well as required cryptographic proce-
dures are locked away on the security server. Access is only granted if the
requesting party could be successfully authenticated. Key management and
ciphering techniques are part of the SCEDF [144]. It discusses how data
confidentiality is ensured within the SCAF and falls back on some methods
developed by the SCAAF, such as XPath processing, which is already re-
quired by encrypting/decrypting sensitive data.

Appendix A contains a schematic listing of the XCipher language. It specifies
an XML descriptor containing instructions of which key should be used to
encrypt a specific portion of XML data. The descriptor is very simple. The
root is the XCipher element, which contains at least one Encryption element.
Each encryption element in turn contains at least one path value and at least
one key alias. The key alias must be a string value identifying exactly one

CHAPTER 5. ANALYSIS AND DESIGN 81

cryptographic key in the client or security server key store discussed in prior
sections. The path value is an XPath compatible expression (see Chapter 2)
of the form:

XP := ("/"(N":")?E)* ("/"(N":")? "@"A)?

If multiple key aliases are specified, the identified data portion is being en-
crypted exactly in the sequence the keys are specified. When decrypting
the affected data, the inverse sequence is taken. Any modifications to the
XCipher description during runtime without proper configuration may cause
unstable application states, which eventually makes data irrecoverable. If
multiple path values are specified the key sequence must be applied and the
ciphering algorithm works as follows:

1. Apply the XPath containment and equivalence algorithm discussed in
[112] and order the path values by their containments.

2. Obtain the referenced cryptographic key from the security key store if
possible.

(a) If keys could be retrieved, apply the encryption algorithms bottom-
up (top-down in the decryption process) on the ordered path val-
ues.

(b) If keys could not be retrieved, indicate an error and return the
unprocessed plain text (cipher text in the decryption process).

3. Repeat steps 1 and 2 for each encryption element contained by the
descriptor.

A note on step 2 : The encryption/decryption processes are defined only if
the relevant cryptographic keys are stored either at the security server or at
the client side. In the latter case the XCipher descriptor is more or less a re-
minder for the client to lookup the ciphering instructions, but actual encryp-
tion/decryption must be completely performed at the client side. Although
imaginable it is not yet part of the SCEDF specification to split up the ci-
phering process being performed mixed at both the client and the server side.

An encryption element can thus be used to define an encryption/decryption
sequence. Multiple path values may be added on which the key sequence
should be applied. Since it may happen that a path defined is contained by
another path it must be ensured, that the sequence is applied on the path
denoting a subset of another path first. Otherwise the node-set denoted by

CHAPTER 5. ANALYSIS AND DESIGN 82

the parent path is encrypted and the child path can no longer be accessed.
The same procedure has to be followed with the other encryption elements.

5.2.2 XCipher Instructions

In the last section we mentioned the trusted cipher engine, which is being
dealt with greater detail in this part. The untrustworthy database man-
agement system has been designed to support multiple cryptographic keys,
allowing XML elements encryption differently and even multiple times. As
described earlier in this thesis, design executives who are planning and de-
ploying an application scenario may specify very fine granular access control
for XML documents. Key management is meant to be part of the design
process as well. For each path that is valid for scenario documents, the ap-
plication designer may define at least one key the specified path is being
encrypted with. During runtime, the trusted domain is able to determine,
which element is affected by the request and which key to choose to encrypt
or decrypt the data. Since we already authorized the request in a previous
step, we just apply the correct key to the data without needing to associate
the requesting role with the cipher key. We store key information in a sepa-
rate XML file, called xcipher.xml on the trusted domain. The most relevant
information is listed as follows:

Listing 5.4: The XCipher encryption instruction info-set
<XCipher >

<Encryption >

<PathValue >string </PathValue >+

<Sequence >

<KeyId >string </KeyId >+

</Sequence >1

</Encryption >+

</XCipher >1

Since multiple encryption of XML elements and multiple keys per schema
are allowed, a ciphering instruction is defined as a collection of at least one
path valid for a schema and an ordered list of cryptographic keys referenced
by a unique identifier. For each path pij in encryption instruction ksi, keys
kk are applied in the order they are specified in the descriptor. Manipulation
of this description during runtime without performing dynamic key change
on the document provider side, would make encrypted data become useless
since not restorable by the application logic. Key sequences are handled se-
quentially as well. Similar to the user database, keys are also stored in a
relational database at the trusted domain and may be identified via a unique
key identifier formatted as string.

CHAPTER 5. ANALYSIS AND DESIGN 83

Key storage is assumed by a local key store. Each key is identified by a
unique alias, an array of binary data actually containing the key data, an
optional password for protecting the key from unauthorized access and a list
of certificates, which is only required for protecting private keys in case of
asymmetric encryptions. Implementation of a key store is application respon-
sibility, however, the default SCEDF implementation incorporates a Java
Keystore [157], which exactly states and implements these requirements.

5.3 Security Data Management

Security information needs to be available throughout the whole application
lifecycle, which forces the call for data persistency on the security server.
This is specified by the SemCrypt Database Framework (SCDBF). Data
storage involves user information, key management and document metadata
using relational data tables as well as XML formatted policy files ciphering
and versioning information held by a native XML database. The SCDBF
describes the SemCrypt persistency API with special focus on its flexibility
regarding the deployment of concrete database back-ends. This includes the
relational database scheme describing entity attributes and relationships as
well as XML document organization.

5.3.1 Storage Abstraction

The purpose of the SCDBF is to provide a programming interface for both re-
lational and document centric databases. The database framework serves as
umbrella for any underlying database technology that might be deployed.
Each type of database has a corresponding database manager attached,
which is responsible for creating, deleting as well as opening and closing
a database connection. Semantics of those operations differ depending on
the concrete database implementation. Diagram 5.4 illustrates the inter-
relations of database components using UML class diagram notation using
the Abstract Factory Pattern [73]. The basic database declaration does nei-
ther contain any operations or global fields, since the technological nature
of relational databases is fundamentally different from document oriented
XML databases. Methods provided for relational databases comprise CRUD
implementations for all types of database tables, while XML databases in-
corporate document management. Although the SCDBF provides a uniform
way for handling different types of databases, it is not yet possible to pro-
vide operations independent of the underlying technology. The operations
defined for XML databases are completely different from relational database

CHAPTER 5. ANALYSIS AND DESIGN 84

Figure 5.4: The SemCrypt database components architecture

operations. The relational database layer serves as wrapper for underlying
object-relational mapping technology, such as Hibernate [131], TopLink [127]
or Cayenne [12], and does not directly operate with SQL statements, which
tremendously facilitates development efforts. For the sake of flexibility and
openness, the relational layer provides a well-defined interface for plugging
other mapping frameworks. Object-relational mappers can really push pro-
ductivity. Unfortunately, at time of development no comparable technology
for XML databases existed, which forced the implementation of different
XML database handlers from scratch. Thus the application developer at
least has to decide which type of database to deploy, the rest can be de-
termined dynamically. The SCDBF currently supports XIndice [8], Berkeley
DBXML [126] and an interface to the database storage provided by the DKE
Linz.

The reason why the DKE interface has been incorporated with the XML
database layer might appear some kind of weird, since SemCrypt data are
not stored as plain XML, but rather as encrypted key/value pairs. The point

CHAPTER 5. ANALYSIS AND DESIGN 85

is that the database layer hides the physical structure of the stored data and
is focused on functional services. Neither programmers nor application users
should be confronted with how the data is stored, what counts is the type of
data and in the case of SemCrypt it is XML document data, which should be
presented to the users. Hence the SCDBF provides a document centric inter-
face for actual data storage, independent of the underlying XML database.

5.3.2 Hierarchical Document Storage

The document centric database interface is not only used for handling the
untrustworthy document data store, but also deployed for holding appli-
cation specific access control policies, ciphering instructions and versioning
information. These files contain very sensitive application specific security
information and must thus be stored at the security server. Since those
artifacts are represented as XML documents, it appears reasonable to im-
plement an XML layer for storing these files to profit from the benefits of a
native XML store, such as document indexing and thus improved querying
and updating performance. A possible XML storage structure is illustrated

Figure 5.5: Suggested XML storage structure

in the tree graph 5.5 above. The top ellipse represents the application spe-
cific data store holding four document collections. Collections are an XML
database mechanism to group related documents within a database. One col-
lection could be used for holding the general purpose access control policy,
ciphering instruction and versioning document, while the other collections
represent specific storage containers. General purpose policies and encryp-
tion instructions apply to every document involved in the actual application
setting. These general purpose files may be overridden by document specific
artifacts, stored in the designated XML container. Files stored within the
trusted XML database can be accessed via a unique identifier, which must be
known to the relational database to reference the artifacts accordingly. For

CHAPTER 5. ANALYSIS AND DESIGN 86

instance, if a document is secured by a user defined access control policy, the
policy is stored in the specific XAccess policy collection and referenced by
the document via its Id. However, the structure presented not mandatory,
but represents the default implementation and should clarify the purpose of
the data store. The application must only ensure that identifiers used for the
XML descriptors is identical with the identifiers used in the document table
of the relational layer, such that a document can be easily associated with
the corresponding XML metadata.

5.3.3 Versioning

Storing versioning information about XML document data was also consid-
ered in initial SemCrypt objectives shall be briefly discussed as secondary
achievement within this thesis. The approach taken focuses on the inte-
gration of existing Diff-Tools tailored to XML formats, such as the xmldiff
project presented in [50]. As mentioned in the related work in Chapter 2,
there are many research papers, which aim at research documentation in the
area of XML versioning, such as [41], which suggests a framework for assign-
ing different access control policies with different versions of the same XML
document. Although, this approach definitely deserves further investigation,
it has not been integrated in SemCrypt and would probably fill additional
Ph.D. theses. However, versioning has been considered regarding the research
agenda and may optionally be implemented in SemCrypt applications. An
XML schema for storing versioning information, called XVersion (to fit in the
naming conventions of the framework developed) has been suggested, which
is listed in Appendix A.

5.3.4 Relational Information Storage

The relational layer is not supposed to store sensitive document data but
provide persistency for application management data, i.e. store users, roles,
documents metadata and access rights. Figure 5.6 below illustrates database
entity relationships: How these entities are actually described depends on
specific application requirements. Nevertheless each entity must define a set
of attributes, which is listed in the following table.

• User: Id and credentials

• Role: Id and description

• Document: Id, according schema, XAccess, XCipher and XVersion

CHAPTER 5. ANALYSIS AND DESIGN 87

Figure 5.6: Relational entity relationships

• Right: Id and description

Each application must be able to identify the users registered in the system.
Hence, each user must be given the possibility to choose a unique username
or the application uses an Id, which is per definition unique, such as a user’s
mailing address. For increased performance, however it is suggested to ad-
ditionally use an internal identifier as primary key, which is represented by
an auto-incremented numerical value and which is not visible outside the
database layer. This also avoids database reengineering in case of merg-
ing several data stores and possible primary key conflicts when only using
user-assigned Ids. In such operative decisions, uniqueness can no longer be
guaranteed. Additionally to usernames, it is required to store credentials in
order to perform authentication if a user logs into the system. For credentials
a binary data type should be used to stay independent of credential types,
such as encrypted passwords or private keys for instance. Users must belong
to at least on group of users, called role. A role consists of an identifier and
a textual description. For the role Id the same rules apply as for user Ids.
The Id listed in the table above is meant as unique textual name of the role.
Analogous to the user Id it is encouraged to use an additional internal nu-
meric Id. With each role at least one user is associated, indicated by the n:m
relationship between users and roles to facilitate navigation between these
entities.

Each document is identified by a unique textual name and optional schema,

CHAPTER 5. ANALYSIS AND DESIGN 88

XAccess, XCipher and XVersion fields. Typically a SemCrypt application
supports documents, which validate against a specific XML schema. The
database structure does not impose any restrictions, but is kept open to
eventually support many different schemas. The name of the corresponding
schema may be added to a document entry. For each application a set of
permissions and/or denials are defined using the XAccess policy structure.
One single policy file is sufficient to represent the general purpose permissions
for an application. However, each user and each role may upload documents
individually and may wish to define very specific access control policies for
their documents overriding the general purpose access control. This intro-
duces some notion of Discretionary Access Control (DAC) allowing the owner
of a file defining permissions for other subjects involved in the system. The
same applies to XCipher encryption/decryption instructions and versioning.
When uploading specific policies or encryption instructions, these artifacts
have to be associated with an already existing document. The XAccess, XCi-
pher and XVersion fields are then modified to hold a reference to the specific
descriptors saved in the XML data store. The order in which access control,
ciphering and versioning rules are applied is basically the decision of the
application, the initial assumption, however, is to override general purpose
definitions with fine granular rules. Hence, if a user or role specific policy is
found, it is taken, otherwise the general purpose definitions are applied to
the document. To clarify the dependencies among the relational and XML
data stores, the following figure 5.7 illustrates the XML store on the left
hand side and the relational database on the right side. Both are associated
via the document table, which optionally contains references to user or role
specific XAccess, XCipher and XVersion documents persisted in the trusted
XML storage. Managing these data and ensuring consistency and integrity
is a very complex task and will be thoroughly discussed with the interfaces
specifications later on. The database schema enables users and roles individ-
ually storing a set of private documents. User or role documents respectively
are stored in separate associative tables as indicated by the n:m relationships.

The rights entity is optional in the SCDBF database schema, since it simply
lists all relevant access rights for a specific application independent of the
other database entities. Subjects, i.e. users and roles, and actions or rights,
are brought together on a higher level in the application structure, i.e. on the
XAccess layer which defines permissions as tuples of subjects, actions and
resources, which are data portions denoted by XPath statements. Rights as
well as roles have recursive relationships. This allows composition of existing
roles and rights at increasingly high levels of abstraction. It enables more
complex rights definitions, such as execute or delegate, on the basis of existing

CHAPTER 5. ANALYSIS AND DESIGN 89

Figure 5.7: Trusted relational and XML storage interdependencies

rights. A big advantage of role extension is inheritance of existing permis-
sions and denials. This increases manageability of the database system. If
after application deployment during runtime an additional group of users is
added, which should be given the same permissions as an existing group with
certain exceptions, it is not required to define the same set of permissions a
second time. Hence we formally define a role as tuple R<id, R*> containing
a unique identifier and a set of an arbitrary number of base roles. This may
also be the case with newly added users. Furthermore it would be imaginable
to introduce the same extension mechanisms to documents as well, with the
confinement of allowing only one single base document, because of possible
conflicts with access control policies and encryption/decryption instructions.
For now this is not considered as part of the SCDBF specification but subject
to further discussions and future extensions.

Part III

Implementation

90

Chapter 6

Service Environment

While Chapter 5 contained a detailed analysis of required security compo-
nents, this chapter discusses appropriate service interfaces, which provide
the functionalities to the outside world. Services discussed offer well-defined
functionalities through state-of-the-art Web service interfaces. These services
could be easily integrated in existing software requiring trusted persistency.
Additionally, the services are not tied to special database systems, which
facilitates integration in existing business workflows. The big advantage of
XML orientation over traditional middleware is very evident in these cases.
Independent of how the client application is actually implemented, it will
work with the SemCrypt service environment, reaching from standalone rich
client programs over Web applications to workflow integration. This chap-
ter starts with general comments on the service environment regarding con-
figuration possiblities and basic information about operations provided by
the services. The SemCrypt Web Services Framework (SCWSF) [148] com-
prises services for the SemCrypt security components, i.e. access control and
cryptography, and a service definition for directly accessing the unsecured
data storage domain. The SemCrypt Security Services Framework (SCSSF)
[147] implements very particular data storage requirements. It makes basic
SemCrypt functionalities, i.e. XPath authorization and storage unit encryp-
tion/decryption operations available through a Web service interface as well
as an RMI server and TCP sockets to speed up distributed database access.

6.1 Introductory Comments

Security services comprise authorization and ciphering components. The
SemCrypt Web Serivces Framework (SCWSF) [148] describes how these func-
tionalities can be made publicly accessible via Web service interfaces. It

91

CHAPTER 6. SERVICE ENVIRONMENT 92

discusses relevant operations provided to invoking client parties as well as
security issues regarding secure interaction, especially features such as mes-
sage encryption, digital signatures and most importantly communication of
authentication information to identify clients and their permissions within
the service environment. The SCWSF concentrates on what should be made
publicly available, not in which way. Interacting parties are thus free to ac-
cess the services in which application context ever, depending on the concrete
application workflow structure. The SemCrypt Security Service Framework
(SCSSF) [147] on the other hand, is specifically tailored to application inter-
action as originally developed in the SemCrypt project proposal to meet the
requirements of the database management system as discussed in [93].

The SemCrypt Application Framework (SCAF) [140] consists of several sepa-
rately configurable and deployable application modules, which provide both a
programming interface for programmatic application integration and a well-
defined interaction interface allowing access to the modules in a preconfigured
manner. These interaction interfaces are described as Web services, i.e. each
module provides a WSDL description of the functionalities it provides. The
purpose of this chapter is to provide an in-depth description of each WSDL
interface and general requirements of the SCWSF.

Each service is discussed listing and specifying signature as well as func-
tional purposes and behaviors of the operations provided. The Appendix, on
the other hand, contains a complete listing of the service WSDL definitions.
Types used are either defined by the XML schema namespace referencing
standardized XML Schema types, or the concrete WSDL namespace, de-
noted as target namespace. The following table lists all relevant namespaces
with according prefixes used throughout this chapter: Some operations do

Prefix Namespace URI

xsd http://www.w3.org/2001/XMLSchema
tns targetNamespace http://semcrypt.ec3.at/services/types

Table 6.1: Namespaces used for the SemCrypt Web Service Framework

not require to provide an output value by default Since WS-I [175] pre-
scribes output values as mandatory, for each of those methods a return type
tns:CommonResponse has been defined in the appropriate namespace to al-
low returning any arbitrary, application specific value. However, responses
are not expected by those operations and handling of these values are not
subject of the specifications. Each operation defines a service specific fault to

CHAPTER 6. SERVICE ENVIRONMENT 93

indicate any exceptional behaviour to the invoking entities. These exception
types are defined as complex schema types and are subject to incorporation
of the WS-BaseFaults [101] specification in order to provide a uniform error
representation in future implementations.

In order to invoke the services specified herein, it is required to provide
authentication information to most operations except the general purpose
encryption/decryption operations. Security must be handled implicitly by
these services using WS-Security token profiles as provided in Chapter 2.
Which (if any) of these tokens must be provided, depends on the concrete de-
ployment setting. WS-Security defines different profiles reaching from simple
username/password authentication to more sophisticated SAML single sign-
on and identity management. Thus authentication must be handled by the
underlying application service, not on the application level of the concrete
service implementations. However, each operation allows passing on a string-
formatted security token for any application-layer purposes whatsoever.

While the previous chapters were dedicated to implementation details of
security and storage modules, as well as interface definitions for accessing
these components, the next chapters deal with the interaction of these ser-
vices. The purpose of these so-called management services is to provide a
simple interface for facilitating application development based on the core
components. This is achieved by abstracting the details of component inter-
action and letting preconfigured services handling the interaction. The first
service is called SemCrypt service, named after the underlying technology
exactly representing its capabilities. For application development, however,
there needs to be a way to set up the computing environment, i.e. users and
roles involved in the application, document and cryptographic key manage-
ment. This is finally the job of the Application service, which enables access
to the trusted data store in a service oriented manner.

6.2 Component Interfaces

6.2.1 Authorization Service

The purpose of the authorization service is to provide access to the under-
lying access control modules required in SemCrypt applications. Note that
access control is discussed in greater detail in and is not subject of the cur-
rent specification. Briefly stated, we need a way to determine whether a
user may be granted access to a portion of data stored in the untrustworthy

CHAPTER 6. SERVICE ENVIRONMENT 94

data store based on an XPath request and a desired operation, such as basic
database-related CRUD access method. The authorization service only needs
to provide a single method with two parameters (path value and operation),
which returns an access confirmation token on success or raises an exception
if the user is not entitled to perform the desired operation. This behaviour
is subject to each of the services involved in the service environment and is
further discussed in the previous chapter. Note that no user information,
which could be used for authentication is provided within the service opera-
tions. This information is passed implicitly to the service using WS-Security
tokens in the SOAP header. Available options are also further discussed in
the preliminary chapter. The authorization operation is specified as followed
and provided by the Appendix:

authorize
Currently, the authorization service only offers a single operation, which per-
forms the authorization of a client request, which is formatted as string.
SemCrypt applications implement the authorization service in a way that it
is capable of authorizing XPath requests. Any client party invoking the ser-
vice needs first to be authenticated in order to determine its identity. With
the subject identity and two parameters, i.e. request value and desired op-
eration, it is possible to perform authorization checks. To stay SemCrypt
conformant, the operation is supposed to obtain XAccess policy descriptions
from the trusted data store and determine permissions and denials for the
invoking party as explained in the previous section. As already introduced
with the storage service, the operation also includes a string parameter, which
serves as placeholder for any application specific purposes, such as applica-
tion specific authentication.

The operation accepts three parameters, where the first one is a placeholder
for any application level token handling, such as in case a user shall be
authenticated by a WS-Security independent authentication module. This
parameter is optional and is not handled in the current authorization im-
plementation. The operation does not specify any return value, but indi-
cates success or failure of the authorization process via a message indicating,
whether an exceptional state has occurred. AuthorizationException is spec-
ified within the schema part of the WSDL description.

6.2.2 The Encryption/Decryption Service

The encryption/decryption service has been designed as gateway to the un-
derlying SCEDF [144], which implements the key management and crypto-

CHAPTER 6. SERVICE ENVIRONMENT 95

graphic procedures to encrypt/decrypt portions of binary data. These data
fragments may represent XML document structures or binary storage units
and ids respectively. The functionality provided by the cipher service may
be accessed using the operations, which signatures are specified as follows:

encrypt
Encryption is usually done directly after the authorization of an XPath state-
ment, whenever a user attempts to modify the database content. Authenti-
cation of the encryption operation should rely on ensuring that authorization
process has already taken place or take care of authorization itself. The later
option an be chosen, since the XPath expression must be passed on as string
parameter to decide which key has to be chosen for encrypting the XML
data, which is also delivered in string format. Since actual data upload is
performed by some storage service, the encryption operation only encrypts
the text and returns the result as byte array. Note that invocation of the
cipher service is optional in cases the client overtakes the responsibility of
encryption and decryption processes. Encryption fails and throws an excep-
tion of type CipherException in case no appropriate key is found on the
security server to encrypt the plain text, encryption failed for some technical
reason, or the user has insufficient privileges to access the service operation.

decrypt
Decryption of cipher text in SemCrypt application, follows the same prin-
ciples than the encryption procedure. The XPath statement is required to
identify the corresponding cryptographic key, and the cipher text has to be
provided to apply the key. Calling the operation within an application work-
flow is optional if the client holds the required key. An error message using
CipherException is returned to the client, if the invoking party has insuffi-
cient access rights, decryption failed due to technical errors, or no appropriate
decryption mechanism could be applied to the cipher text.

Further operations defined by the cipher service are optional and only serve
as general purpose methods for encrypting/decrypting plain- or cipher text.
The user may transmit data to process and required additional information,
i.e. most importantly key and algorithm to the cipher service and obtain
the result formatted as array of bytes. Implementation of these operations
is not part of the SemCrypt encryption/decryption framework and may be
omitted.

CHAPTER 6. SERVICE ENVIRONMENT 96

6.2.3 Untrustworthy Storage Service

The service is intended to be used with databases other than the data store
provided by the DKE Linz, since implementations should directly operate on
XML databases.

Both, relational database management system and XML database are part
of the trusted data and metadata storage layer and as such subject of the
SCDBF. For accessing the untrustworthy storage server, which actually con-
tains the probably encrypted XML document data, the SCAF also comes
with a service interface, which allows direct interaction with the actual stor-
age server. Although the deployment of this service is considered optional, it
abstracts the integration of any kind of external data storage. And though
not related with the trusted database layer the storage service is actually con-
sidered being part of the SemCrypt persistency layer and thus also subject
of the SCDBF. It allows CRUD operations on XML documents and enables
users to query and update the database content. Modifications of schemas
contained documents adhere is not allowed, since such an action involves
additional application logic that has to be performed in order to prevent
the database from falling into inconsistent states. All storage service func-
tions again include an optional application token, a mandatory document
id, which identifies a specific document in the database and update infor-
mation depending on the desired operations. Appendix B lists the complete
WSDL document of the storage service specified below. The storage service
is supposed to serve as gateway between the untrustworthy data storage and
invoking parties. It neither performs any authorization checks for query or
update requests, nor does it care about encryption or decryption of document
content. However, this service is part of the SemCrypt service environment
and if deployed supposed to be properly integrated within the application
workflow. Application developers need to take care about securing the ser-
vice from unauthorized access very rigorously, since it does not prescribe
the implementation of any additional security mechanisms. Like all services
contained by the SCAF, however, also the storage service is supposed to
be secured by an authentication mechanism, which must be configured in a
way that only parties, which have properly accessed the authorization and
cipher service before, may perform an operation provided by the storage ser-
vice. Again, this can be achieved by appropriate WS-Security authentication
mechanisms, such as SAML tokens or proprietary username/password iden-
tification. How this is actually done is the responsibility of the application
developer, but it is strongly suggested to provide a proper trust domain for
the storage service. The storage service provides a list of low level database

CHAPTER 6. SERVICE ENVIRONMENT 97

operation, which shall be specified in the following paragraphs:

insertDocument
To add a document to the external, untrustworthy document storage, only
the document’s XML content formatted as string and a unique Id are re-
quired. Implementing components should only need to call the persistence
mechanism on the underlying database management system and not care
about document validation and similar issues. Most XML databases content
themselves with document content and identifier. Database specific param-
eters required for persisting the document, such as transaction or context
objects must be provided by the implementation, since the service shall ab-
stract database specific features from invoking instances. The operation may
return a StorageException message if a document with the Id provided al-
ready exists, accessing the database failed, or insufficient access rights have
been passed on to the service.

updateDocument
Updating a document aims at replacing content of an existing document.
Document identifier can thereby not be modified. Similar to the insert-

Document operation, the update procedure abstracts database specifics from
the outside world. A StorageException fault is raised, if no document with
the Id provided exists, the invoking party could not be authenticated or in-
ternal database errors occurred.

deleteDocument
In case a document shall be permanently removed from the database, the
caller of the service only needs to pass on the document Id, removing both
identifier and document content from the database. An error message for-
matted as StorageException is throws whenever the invoking party could
not be identified, no document with the Id provided exists or for some tech-
nical reasons.

selectDocument
Selecting a documents means returning the document content as string. Once
more, the implementing module must not implement any additional logic.
Since underlying databases cannot be assumed to return the document con-
tent formatted as string, the operation implementation must take care of
appropriate mapping mechanisms. A StorageException fault must be re-
turned, if the requesting party could not be authenticated, no document with
the Id provided exists, or the underlying database management system could
not be properly accessed for some technical reason.

CHAPTER 6. SERVICE ENVIRONMENT 98

query
An XML query selects a portion of XML from the document specified by
its unique identifier. Both, Id and query statement must be formatted as
string. The actual syntax of the query depends on the query language of
the underlying database management system. For instance, Apache XIndice
[8] uses XPath 1.0 while Berkeley DBXML [126] supports XQuery and thus
XPath 2.0. Because service implementations should only overtake type map-
ping tasks, also for performance reasons, it is discouraged from translating
between different query languages, which should happen on a higher level
in the application logic if necessary. The query operation returns the result
of the query evaluation formatted as string. Note that this operation may
eventually return an empty string, if the query could not be satisfied, but
never null. In case the invoking party could not be properly authenticated,
no document corresponding to the provided Id could be found or in case of
a database error, a StorageException is thrown.

update
Analogous to the query operation, the update accepts an update statement
according to the update mechanism provided by the underlying database.
To stick with the examples provided previously, Apache XIndice and eXist
[68] use the XUpdate language [162] and Berkeley DBXML incorporates a
proprietary update mechanism. The update operation does not replace ex-
isting document contents, but modifies portions of XML document data. A
StorageException is thrown in case of insufficient client authentication, an
attempt to update a non-existent document is made or some internal fatal
runtime error occurred.

6.3 Workflow Services

6.3.1 SemCrypt Service

The SemCrypt service provides access points to all available basic function-
ality adherent applications provide. Basic functionalities comprise all opera-
tions provided by the database management system, i.e. operations that can
be performed on the database. In contrast to the storage service described
in the previous section, the SemCrypt service also offers CRUD operations
on schema information. Since implementation of schema operations is far
from trivial and implies well sophisticated implementation details, this func-
tionality has been omitted from the storage service directly operating on the

CHAPTER 6. SERVICE ENVIRONMENT 99

database. The SemCrypt service should be considered as optional entry point
for any already implemented and tested SemCrypt application workflow and
could thus be used as starting point for any XML based process definition,
such as BPEL [91]. Concrete implementations should provide the function-
ality as specified within this service and access the core components through
the other services as defined in the previous chapters. Operations on XML
documents as well as the query and update operations are not thought to be
mapped directly to the storage service, since these require authorization as
well as encryption/decryption of storage data, which is only handled by the
appropriate authorization and cipher services.

Optionally, an application may support CRUD operations for documents and
corresponding schemes on role and user level as described by the SCDBF.
These operations are thought to replace the general purpose operations and
allow a wider variety of valid documents for an application implementation.
However the implementation of those operations is an optional extension and
does not adhere to the SemCrypt application workflows. Therefore invoca-
tion of those methods is not SemCrypt standard conformant and should not
be implemented in conjunction with the DKE data store. The following ta-
ble lists the operations of the SemCrypt service, including input parameters
and return types. It should be noted that fault messages have been removed
from this summary for reasons of simplicity. However, each of these methods
may throw a SemCryptException message, which wraps any error that may
occur during execution and reports it to the invoking party. Since this is the
only port for reporting errors to the calling entities it has to be ensured that
any exceptional states are handled appropriately and forwarded to invoking
parties using the SemCrypt exception type. As already seen with the other
service specifications, each method contains an optional token parameter,
which serves as placeholder for any application level processing purposes,
such as authentication. In the default implementation, this token is ignored
and has no impact on the operation invocation.

insertDocument
Basic document insertion requires the document content, i.e. the complete
content of an XML file, formatted as string and a string identifier, which
must be unique throughout the application the document refers to. It is up
to the invoking client application how this identifier is provided, whether it
is automatically generated or assigned by the individual users comparable to
document file names. Documents stored via the insertDocument operation
are stored in the external insecure database and metadata, such as refer-
ring policies, ciphering instructions, relevant schema or optional versioning

CHAPTER 6. SERVICE ENVIRONMENT 100

information, are written to the document table on the secure data store as
specified by the SCDBF. Since documents accepted by this operation do
not specifically belong to a user or group of users, they do not explicitly
refer to any subject in the database schema. The operation must throw a
SemCryptException fault in case the identifier already exists, the user is
not privileged to invoke the operation or some internal database error occurs
during sensitive document metadata or external untrustworthy document
storage.

selectDocument
Obtaining a document requires the invoking party to know the identifier of
the requested document. The operation returns the document formatted as
string only if the requesting user is the owner of the document or the user is
entitled to see the whole document. A user is assumed to have access to the
complete document, if an access policy exists, which grants the user access to
the document root via the query operation discussed below. The operation
must throw a SemCryptException fault in case the access to the document
cannot be granted, the document could not be found or in case any internal
exceptional state occurs during operation processing. In less restrictive ap-
plication environments it is worth the consideration, whether all portions of
the document are returned the invoking parties are allowed to see, based on
the specified access control policies.

updateDocument
This operation is functionally similar to the insertDocument operation. Ba-
sically it should follow a delete-old-document and insert-new-document pro-
cedure. Documents, which do not exist in the database according to their
identifiers, are not candidates for being updated. In this case the operation
must throw a SemCryptException fault. Analogous, the insertDocument

operation is not supposed to independently update a document, but indicate
a fault if the provided identifier already exists in the security storage. Users
allowed to perform this operation are document owners and role administra-
tors respectively.

deleteDocument
Subjects allowed to remove documents are document owners, i.e. single users
or role administrators. Access control is performed in conjunction with au-
thentication on operation invocation. The operation must indicate a fault
message if a non-existent identifier is passed on to the delete request, the
invoking party is not allowed to perform the operation or some internal ex-
ceptions are raised during transaction processing.

CHAPTER 6. SERVICE ENVIRONMENT 101

insertDocumentForRole
This operation is a special implementation of the insertDocument opera-
tion and necessary to associate uploaded documents with a group of users.
The subject attempting to perform this operation must be role adminis-
trator in order to successfully store a document for the group otherwise a
SemCryptException fault is returned to the client. Since a user may belong
to several groups, the role Id must be passed on to the operation to determine
the role the document should be associated with.

insertDocumentForUser
This one is intended for single users to insert their private documents. What
insertDocumentForRoles does for role administrators is solved by this op-
eration, which allows even more specific data management.

insertSchema
Documents saved in the data store must adhere to a specific XML schema,
which must be defined when using the DKE database management system,
but is optional in other conventional XML databases. Thus implementation
of the schema operations may be omitted when deploying the SCWSF in set-
tings using databases different from the DKE database. The insertSchema

operation is the very first operation that has to be invoked on the security
server when deploying a new application environment. XML Schema holds
the central information required for nearly any other artifacts. Policies, ci-
phering instructions, versioning history and finally documents refer to schema
data. The SemCrypt environment only accepts a single schema, which must
be carefully designed before application deployment, because future mod-
ifications have a tremendous impact on all the other artifacts and require
substantial modifications on authorization, key management and document
storage. Further invocations of insertSchema after application deployment
must raise a fault message and lead to immediate operation abortion. A
schema may only be inserted by the application administrator during setup
time, not by any subject registered in the application during runtime. It ac-
cepts a schema name and schema content, both formatted as string param-
eters and throws a SemCryptException message if an unauthorized party
tries to invoke the operation or a schema has already been defined.

updateSchema
Since it is highly unpredictable, which program state it may run into, it is
strongly discouraged from ever call this operation during runtime. If the
application schema is becoming obsolete for some reason, a complete re-

CHAPTER 6. SERVICE ENVIRONMENT 102

deployment should be considered. SemCrypt does not yet implement any
notion of schema evolution, which makes it seriously cumbersome if not im-
possible to change the schema during runtime and apply the modifications
to all affected artifacts and at the same time not run into any application
inconsistencies. Furthermore, in some application settings, single users may
have stored their private documents on the server and provided their own
access control policies, which must not be changed in order to preserve user
privacy. The operation signature is the same as with insertSchema, the
difference is the purpose of replacing an existing schema.

deleteSchema
Like updating a schema, deleteSchema has been specified for the sake of
completeness in order to provide full CRUD support also for schema infor-
mation. And like updating a schema, deleteSchema should never be called
during runtime.

selectSchema
Provided the correct string identifier, this operation delivers the XML content
of the schema information deployed for the actual application environment.
Though SemCrypt security does not depend on the concealment of schema
information, schema operations are basically reserved to application adminis-
trators. It throws fault messages in case of unauthorized access, non-existent
schema data or database access errors.

queryDocument
The query operation is probably the most important communication point
with the document storage. It takes a query string containing a valid XPath
expression and a document identifier referring to the document for which the
query shall be executed. After successful authentication, the document iden-
tifier is investigated and determined whether the user has access to the desired
document or not. Afterwards, XPath queries are parsed and forwarded to the
authorization engine, which applies access control policies accepts or denies
the query request depending on the policy evaluation outcome. If access can
be granted the query is forwarded to the data storage interface, which finally
executes the query and returns the result to the invoking client. The security
check must therefore consist of three steps: authentication, checking access
rights for the document and query evaluation. Since all this implementation
efforts aim at providing a secure database management service, querying and
updating the data store is the main functionality SemCrypt application en-
vironments provide to client applications and will thus be most frequently
called during runtime. Exceptions may occur due to authentication errors,

CHAPTER 6. SERVICE ENVIRONMENT 103

access control on documents and document fragments and technical issues
during communication and request processing, and are reported by returning
a SemCryptException fault.

queryDocuments
This operation works exactly as the queryDocument operation, but accepts
an array of document identifiers to query more than one document in the data
store and thus speed up query processing by eliminating unnecessary com-
munication overhead. Otherwise the contract specified for queryDocument

also holds for this operation.

updateDocument
Currently, the update of a document is triggered by the provisioning of an
XUpdate statement. Since XUpdate is a proposal, which development seems
to be frozen and is likely to be replaced by appropriate XQuery profiles in
the future, the current implementation of the updateDocument operation is
likely to undergo a comprehensive revision in forthcoming release versions.
Nevertheless, the signature is similar to the queryDocument operations, with
the difference that an XUpdate statement needs to be passed on instead of
an XPath expression. Since each XUpdate expression contains an XPath
statement to identify the portion of XML to modify, the operation needs
to extract the statement and pass it on to the authorization module. The
update procedure does not return anything, but eventual exception messages
as already discussed with the query operations.

6.3.2 The Management Service

Apart from database operations, the SCAF provides interfaces responsible
for handling application relevant functionalities, which are not covered by the
other services. This applies to user management, key management as well as
policy, ciphering and versioning definitions. User management is part of the
SCDBF [143], key management comprises encryption/decryption processing
as well as issues including dynamic key change and is discussed in SCEDF
[144] and access control policies are subject to the core authorization frame-
work and as such, specified within the SCAAF [142]. This section provides a
list of operations offered by the application management service. Policy and
ciphering information may be inserted, updated, deleted and selected and
defined on a general purpose level, affecting all users registered in the appli-
cation, on role level, overriding the general purpose instructions and being
only valid for a specific group of users and on user level as well, overriding
even role level and allowing very specific policy and ciphering definitions. As

CHAPTER 6. SERVICE ENVIRONMENT 104

defined in the SCDBF, each document stored by the application, has a ref-
erence to its schema and may optionally hold a specific access control policy,
encryption/decryption instruction and versioning document. The difference
between the general purpose CRUD operations and those defined for users
and roles is that users need to pass on the document identifier for gaining
access to the specific file definition. Note that again, authentication infor-
mation is omitted in method signatures. Depending on whether access to
role or user specific documents is requested, the appropriate operation needs
to be called, which in turn performs a different authentication process. On
role level, the authentication engine needs to return the set of roles the user
belong to, on user level it is sufficient to check whether the user is entitled
to perform the specific operation.

insertPolicy
Policies are used in SemCrypt applications to restrict access to portions of
XML documents identified via XPath statements. In each application at least
one policy must be defined, which is valid for any document stored in the
untrustworthy database. This policy must be added using the insertPolicy
operation, which accepts a string containing the complete XML policy doc-
ument and may only be called once during application setup time by the
application administrator. Access permissions specified by the general pur-
pose policy may be overridden by document specific policies, which may be
added by single users or roles by calling the insertDocumentPolicy opera-
tion, discussed shortly. No users or roles may access this operation, which
is indicated by a ManagementException message if any unauthorized party
tries to perform this operation. Faults may also be triggered if a policy
already exists and an administrator tries to access this operation or any in-
ternal error occurs.

deletePolicy
Removing the general policy is only a good idea in low-security applications
or if access permissions are expressed via document specific policies. Since no
Id is required or explicitly assigned to the single, general purpose policy, this
operation does not require any parameter to identify the correct policy file.
A a ManagementException is raised if a subject different from the system
administrator tries to access the operation, no policy file has been specified
so far, or any internal failures occurred.

updatePolicy
Implementing the update process of a policy is a comparably simple task,
since no further artifacts involved in the application are affected. It simply

CHAPTER 6. SERVICE ENVIRONMENT 105

replaces existing access privileges by some new one. Also, calling this op-
eration is only administrator business. Fault messages are indicated by the
a ManagementException type and are returned if the calling party is not
member of the administrator role, if there is no policy to update, or in case
of technical errors.

selectPolicy
To complete the CRUD operations for general purpose policies, it should be
possible for application administrators to check the content of current de-
ployed access permissions and restrictions. As with deletePolicy, selecting
the one and only general purpose policy does not require any parameters
being passed to the service operation. Unauthorized invocation attempts, a
non-existent policy or internal service errors are considered as exceptional
application states and indicated by a ManagementException message.

insertRole
A role is at least defined by a role name, a description and an optional set
of base roles used for permission inheritance. Additional information re-
quired depends on the application scenario. Role information is wrapped
by a role object, which must adhere to the role table as specified by the
database schema on the security server. Adding a new role does not work, if
a role with the specified role name already exists or accessing the database
due to technical reasons or insufficient access privileges. In these cases a a
ManagementException message specifies the reason of failure.

updateRole
Whenever a role needs to be updated, the updateRole operation needs to be
called. Similar to the a insertRole operation, it accepts a role object with
the required attributes. The role name must be the value of an existing role,
other values are used to overwrite existing ones, i.e. description or base roles.
A a ManagementException error is raised if no such roe with the specified
name exists, or accessing the database failed for some technical reason or
because of missing authentication credentials.

deleteRole
Removing a role may be accomplished by simply specifying the name of
the role formatted as string. When deleting a role, relations to users and
other roles as well as artifacts, specifically associated with the role, i.e. doc-
uments, policies, versioning histories and encryption strategies may be re-
moved in a way no inconsistencies can occur as well. Removal may fail with
a a ManagementExceptionmessage if removing the role or directly associated

CHAPTER 6. SERVICE ENVIRONMENT 106

artifacts fails for internal, technical reasons, authentication failed, or no role
with the specified name exists in the database.

selectRole
By providing the string formatted role name, the complete structure of a role
may be returned to the invoking client. This involves at least description and
the identifiers of eventually specified base roles, but no artifacts associated
with the role, such as encryption keys, documents or policies. This opera-
tion must throw a ManagementException if any unauthorized party tries to
access role information or no role with the specified name exists. Database
failures must be reported as well.

insertUser
Each application may define a different user data structure, depending on
which user information need to be stored. The operation only accepts a user
object, which must adhere to the user definition of the SCDBF user table.
It must contain a unique identifier, such as a username, a customer Id or an
E-Mail address to uniquely obtain user information from the database and an
optional set of roles the user belongs to. It may throw a ManagementException
message if the user Id provided already exists, the requesting party is not
entitled to perform the operation, or accessing the database failed for some
technical reason.

updateUser
Modifying user data is only possible for user information already existent
in the database. Updating should be basically possible for any user data,
except for unique usernames. The operation accepts a user object as pa-
rameter, which must contain the user Id to gain the correct reference to the
user object in the database. All the other attributes may either contain no
value, which indicates that no modifications need to take place or any value
different from the existing as long as the data type is valid according to the
database schema. The operation may raise a ManagementException fault
if no user with the Id provided exists, the requesting party has insufficient
access rights, or update failed for some internal, technical reasons.

deleteUser
In order to permanently remove a user from the application, only the unique
identifier is required. Deleting a user involves not only removal of user in-
formation, but also any information associated with the user, including doc-
uments, policy files, ciphering instructions and role associations. If the last
user of a role is removed, removing the role may also be considered. If a

CHAPTER 6. SERVICE ENVIRONMENT 107

user is removed, who is at the same time role administrator, another rep-
resentative should be specified. However, these issues may be implementa-
tion dependent and is currently not supported. The operation must throw a
ManagementException message if no user with the Id provided exists, the re-
questing party has insufficient access privileges, or in case of technical failure.

selectUser
Retrieving user information happens by passing the user Id to the operation
and obtaining a data structure containing the user information, just like the
one passed to insertUser and updateUser when writing user information
to the trusted data store. Invoking the selectUser operation is straight for-
ward and only fails with a ManagementException message if the requesting
party is not entitled to perform the operation, no user with the Id provided
exists in the database or some technical error occurred during processing.

insertKey
A cryptographic key in SemCrypt environments is made up of a single unique
identifier and the key itself formatted as array of bytes. When inserting a
new key, the identifier passed on with the invocation needs to be checked
for uniqueness and writes the key information to the trusted key store. The
identifier must be unique throughout the application, since users and roles
do not have a separate key store to save their keys. The key identifier is
the same value that has to be used by the XCipher encryption/decryption
instructions as stated in [144]. Providing cryptographic keys at the secure
server is entirely optional in each SemCrypt based application, since users
may decide to store their cipher keys locally on their private machine. In this
case the user either knows which key to apply to the encrypted data, or ob-
tains the ciphering instruction from the server by invoking the selectCipher
operation from the ManagementService. In case a user performs a decryp-
tion request on the security server, the cipher module attempts to obtain the
correct cryptographic key as specified in the ciphering instruction from the
key store to decrypt the data or throws a fault message if it fails to do so
for some reason. The insertKey operation raises a ManagementException

fault if a key with the Id specified already exists, the requesting party is not
allowed to perform the operation or if some technical problems are encoun-
tered during processing.

updateKey
Updating a key is tries to replace an existing key with a new one. However,
this operation should be implemented and used with great caution, since
it has a significant impact on document data involved in the application.

CHAPTER 6. SERVICE ENVIRONMENT 108

Dynamic key change means that affected encrypted documents need to be
obtained from the unstrustworthy, external data store, decrypted and then
re-encrypted with the new key. Furthermore, if the affected key is not only
stored at the security server, but also at client hosts, appropriate propaga-
tion of the key change has to be taken into account when implementing this
operation. In current SemCrypt settings a key is assumed to remain constant
throughout an application lifetime, i.e. it cannot be changed, which in turn
makes the current default implementation to ignore this operation and throw
a ManagementException fault on invocation to indicate the missing imple-
mentation. When this operation is implemented, a ManagementException

message must be returned to the invoking parties to indicate missing autho-
rization, a non-existent key or technical problems on the server side.

deleteKey
Removing a key from the key store is somewhat cumbersome as updating a
key, since it may affect documents and ciphering instructions used in an ap-
plication setting. Deleting a key involves decrypting affected documents and
removing corresponding information from the ciphering instructions leaving
document data being written back in plain text to the untrustworthy data
store. This has a serious impact on the security level an application may
assure to interacting users. The operation takes the unique key identifier as
parameter to permanently remove the key from the key store and triggers
ciphering and database access components to obtain and decrypt sensitive
document data affected by this operation. A ManagementException fault
must be raised whenever authorizing the invoking party fails, no key can be
identified by the Id provided or any technical failures occur during processing.

selectKey
This operation returns the array of bytes containing the actual key infor-
mation from the security key store. The unique string identifier of the key
must be provided as parameter. Selecting a key has no further impact on
any internal application states on the security server. Like the other Manage-
mentService operations, selectKey throws a ManagementException message
if authorizing the invoking party fails, no appropriate key could be identified
by the Id provided as parameter, or technical problems occurred.

6.3.3 SemCrypt Security Services

The component discussed by the SCAF [140], are general purpose modules
with a well-defined API to facilitate application integration and to enable
enhancements independent of the actual configuration. However, SemCrypt

CHAPTER 6. SERVICE ENVIRONMENT 109

Figure 6.1: Basic SemCrypt component interactions

originally aimed at very specific application settings with very specific work-
flow definitions. This envisioned the deployment of an arbitrary number of
untrustworthy data stores holding tons of binary data, which semantic mean-
ings could only be recovered by the deployment of a suitable and specifically
tailored security service. This service and possible access mechanisms shall
be discussed within this section. In typical SemCrypt application scenarios,
we differ between untrustworthy storage providers, trusted security servers,
which perform query and update authorization as well as storage unit en-
cryption and decryption, and trusted or at least semi-trusted clients, rep-
resenting the user application front-end. These architectural differences are
discussed in detail in [141]. However, the requirements for the security ser-
vice are independent of the concrete architectural setting. The difference
is located in the interaction between the SemCrypt Database Management
System (SCDBMS) and the security server. The client application provides
query and update as well as document upload and modification functional-
ities and passes required data on to the common SemCrypt client compo-
nent, which provides a common view of the underlying database manage-
ment system to the invoking client application and thus facilitates end-user
application development. The SCDBMS is responsible for performing any
pre-processing operations on the data provided, including document index-
ing, query processing and metadata management. However, each path that
is affected during query optimization needs to be authorized by the security
server, before being executed on the data store. The resulting data is sent
back to the security server for decryption and should be eventually filtered

CHAPTER 6. SERVICE ENVIRONMENT 110

Figure 6.2: Service request message structure

to ensure that no unauthorized data is being sent back to the client appli-
cation. In case of an update operation encryption is performed immediately
after authorization has been successful.

For accessing the security server, the SemCrypt Security Services Framework
(SCSSF) [147] provides a Web service interface for easy integration with the
SCWSF and TCP and RMI interfaces for performance issues. Queries may
be executed very quickly and in short time intervals, which makes a Web ser-
vice susceptible to performance bottlenecks due to expensive SOAP parsing.
The Web service interface is different from the RMI and TCP interfaces with
respect to how authentication information is passed on from the client appli-
cation. Web services as specified by the SCWSF and corresponding compo-
nent documentations take advantage of incorporating WS-Security headers
within SOAP message to communicate required security issues. Therefore,
authentication information, such as username and password are transmit-
ted implicitly within each SOAP message and handled by the application
server hosting the service. Neither RMI nor TCP technology provide some
built-in security mechanisms allowing to implicitly pass required security in-
formation. Authentication has to be performed on the application level, i.e.
the implementation of the RMI/TCP services respectively. For that purpose
both RMI and TCP services are defined on the basis of a common mes-
sage structure, which is illustrated as simplified UML class diagram below:
Figure 6.2 illustrates the request message structure used by the SemCrypt
security service. Supported messages are authorization, value encryption/de-

CHAPTER 6. SERVICE ENVIRONMENT 111

cryption and id encryption/decryption requests. All messages must contain
a username, a password and a desired operation to be performed. Currently
operations comprise basic CRUD functionality. An authorization request ad-
ditionally contains a path value, which must be a valid XPath 2.0 statement,
which is used to perform basic authentication checks. Detailed analysis of the
path expression is not required, since query processing and optimization is
performed at the SCDBMS and sub-queries must be handled by the security
server subsequently through id or value encryption/decryption requests. The
basic authorization request is optional and if used without further requests
must guarantee correct results, i.e. grant or deny access. Different authoriza-
tion approaches are discussed in SCAAF [142]. Any encryption/decryption
request must contain a classifier containing the path value information, rep-
resented by either an index or a document classifier. The difference in both
classifiers is how the path value, i.e. the XPath expression is provided. The
document classifier contains the path value and the id of the affected doc-
ument the same way as the authorization request does. An index classifier
denotes an index value, which is used to obtain a path value from the meta-
data manager. Hence, there are two equivalent possibilities to retrieve a path
value and authorize it, either by directly passing it on to the security server
or letting the server obtain it from the metadata manager.

Classifiers indicate how path information is passed to the security service.
Path information in turn is used to perform authorization and obtain the
correct key for encryption/decryption of sensitive data from the secure key
store. Applications may support encryption using multiple cryptographic
key, which makes it necessary to remember which parts of XML data has
been encrypted with which key. This is described in greater detail by the
SCEDF [144]. Ciphering may be performed directly on data fragments or id
values. Ids are again subject to metadata management and do not affect the
security server, which must only take care of authorization and ciphering.
What kind of data is being encrypted or decrypted is nothing for the server
to worry about. Nevertheless, this needs to be differentiated with respect to
the message structure. Figure 6.3 illustrates the response messages structure
analogous to Figure 6.2 representing the request messages. The diagram
should be self-explanatory. Value and id encryption/decryption responses
only contain an array of binary data containing the encrypted/decrypted
data or null if something went wrong, mainly caused by failed authoriza-
tion or ciphering process. The authorization response carries an information
message indicating whether the authorization process was successful or not.
The following list gives an overview of the data types used for representing
the message structure. It specifies parameter types and a brief description

CHAPTER 6. SERVICE ENVIRONMENT 112

Figure 6.3: Service response message structure

of their purposes.

SemCrypt request and response classes represent base request/response struc-
tures. A request must always contain a username and a password as well as
an operation value containing the type of request. An authorization request
additionally contains the path value denoting the XML resource attempted
to being accessed and a document Id identifying the document the access
should be applied on. The authorization response holds the authorization
decision, i.e. whether the access has been granted or denied, and a textual
description of success or failure respectively. An encryption request may be
either made up of a value holding the plain text to encrypt or an Id, which is
used to obtain the value from the metadata manager [93]. Responses simply
contain the encrypted value as byte array. Decryption may be requested by
providing directly the cipher-text or an Id identifying the cipher-text in the
metadata manager.

These message types are used for the RMI and TCP interface. The TCP
service runs a thread opening a socket for each incoming request, then de-
termining the concrete message type and forwarding it to the message han-
dler. Errors are indicated by returning appropriate information within the
response messages as presented above. With RMI, methods on the server
are called, where each method accepts exactly one parameter, i.e. a message.
Throwing method specific exception type in case of an error is not specified,

CHAPTER 6. SERVICE ENVIRONMENT 113

since clients interacting with TCP sockets should expect the same server be-
havior when changing the service interface to RMI. Return values should be
handled equally in both cases, such that everything that needs to be changed
is the client interceptor performing the invocation. The operation signatures
should be straightforward and are listed below: Both the RMI and TCP

Parameter Return value

authorize AuthorizationRequest AuthorizationResponse

encryptValue ValueEncryptionRequest ValueEncryptionResponse

decryptValue ValueDecryptionRequest ValueDecryptionResponse

encryptId IdEncryptionRequest IdEncryptionResponse

decryptId IdDecryptionRequest IdDecryptionResponse

Table 6.2: Security operation signatures

interface use username/password information with each method call to per-
form authentication checks, since no session handling mechanism is provided.
Authentication methods are discussed by the SCAAF in [142].

With Web services, the interface definition needs some little modifications
for authentication reasons. As discussed in [148] the SCWSF communicates
security information through the SOAP header, which at least also includes
authentication information. With Web services, authentication information,
i.e. username and password are rather implicitly transferred to the appli-
cation server and handled by the underlying SOAP engine than explicitly
as method invocation parameter. Thus username and password are being
extracted from the request messages presented previously and the remain-
ing parameter values are transferred separately to avoid unnecessary data
transfer, since it will not be handled anyway. Adapted service operations are
listed below. The full service interface can be found in Appendix B.

authorize
Signature and behavior of the authorization operation are equivalent to the
authorization operation of the authorization service. What is needed is a path
value identifying the protected XML resource, the desired operation and the
document identifier, the request is targeted at. All these parameters are for-
matted as strings. No return value is expected, instead a SecurityException
error is raised if authorization fails. This operation is intended as replace-
ment of the authorization service operation, but was added to the security
service to logically group all operations relevant for the service functionality.
Implementation may either simply forward the request to the authorization

CHAPTER 6. SERVICE ENVIRONMENT 114

service, if one is deployed, or directly access the authorization module on its
own behalf.

encryptValue
For value encryption a classifier must be provided to indicate whether the
value parameter already contains the value to encrypt or only provides an
identifier, which must be used to access the metadata storage in order to
obtain the value from there. When calling this operation, authorization is
performed implicitly requiring the desired operation being passed along with
the classifier. If the procedure completed successfully, the encrypted value
formatted as byte array is returned to the caller. A SecurityException

error must be raised in cases authorization or encryption fails or insufficient
authentication information has been provided. The error message thus wraps
potential AuthorizationException or CipherException messages, if such
an error occurred.

decryptValue
This operation represents the counterpart of the encryptValue procedure.
Parameters and error message are just the same. Instead calling the encryp-
tion operation on the cipher service or cipher component, the decryption
operation must be called analogously. The return value of the decryption
operation is therefore the decrypted vale formatted as byte array.

The procedures encryptId and decryptId work just like those operating
directly on the document values. Ids identify the corresponding values in the
DKE Linz metadata store.

Nevertheless, the client code may remain widely untouched, since no spe-
cific exceptional messages are thrown and handled by the client. The request
interceptor at the client side only needs to extract authentication information
from the message, add it to the SOAP header and pass the rest on separately.
Since most data types in use are basic types, mapping from programming
language specific type to XML type is trivial.

Chapter 7

Prove of Concepts

The previous chapters were focused implementation details of the server-
side core components. The following sections deal with the presentation of
a development environment for applications based on SemCrypt technology
and security service provisioning on the client side. In concrete, the first
section documents an Eclipse Plug-In, allowing basic SemCrypt application
design and deployment in terms of access control and data encryption, and
an automatic Web user interface generator based on XForms, which may
optionally be integrated with the Plug-In extension. The user interface gen-
erator was developed in the course of a master’s thesis with the purpose to
investigate current state-of-the-art Web technologies and their applicability
regarding the generation of device-independent user interfaces. Function-
alities comprise querying and modifying database content via a form-based
Web application, which in turn translates user selections into valid XPath and
XUpdate statements and transmits them to responsible services for further
processing. Furthermore, several client applications, which take advantage of
the SemCrypt services, shall be presented in detail: The first application was
created for both testing service functionalities and demonstration purposes
of SemCrypt capabilities. The application was made available to students
at the Vienna University of Technologies, who were supposed to model their
competencies in a university lab using a subset of HR-XML and store their
documents on a remote server, which could then be queried and modified.
Other applications presented are a secure SMS data store with focus on se-
curity management on mobile devices and collaborative project management
using Microsoft Excel.

115

CHAPTER 7. PROVE OF CONCEPTS 116

7.1 Development Environment

Chapter 6 provides a detailed specification of the service interfaces, which
can be referred to as programming interface in cases programmatic integra-
tion with existing application systems is required. For developing new ap-
plications from scratch, the SemCrypt toolbox comes with a graphical user
iterface, which may for instance be used as Eclipse Plug-In [19], to develop
simple SemCrypt based applications via drag and drop. This and an ex-
tension allowing the generation of Web based user interfaces, which enable
direct interaction with the SemCrypt services, are subject of the following
sections.

7.1.1 Eclipse IDE Integration

In order to facilitate application development on the basis of SemCrypt tech-
nology, a Plug-In for the Eclipse IDE platform has been developed. The
Plug-In is designed as graphical user interface, which is composed of a set of
dialogues, each with a different purpose. It currently supports the deploy-
ment of basic SemCrypt functionalities, which are listed as follows:

• Schema import and document validation

• Creation of users and roles

• Definition of a general purpose XAccess policy

• Definition of a general purpose XCipher encryption strategy

• Optional deployment of Web interfaces (see next section)

The first step that needs to be taken when developing a SemCrypt compli-
ant application is to define a schema, which describes valid XML document
structures for an application. The GUI allows importing only one schema
file, but is capable of resolving references to external schema files automat-
ically. Since only one schema is allowed per application, internally, a single
schema is generated, which is used in the application thenceforward. After
schema import, it is possible to add an arbitrary amount of XML documents,
which are automatically validated against the newly created schema file. Af-
terwards, the application developer is asked to define a set of users and roles
that are going to be registered in the application setting.

Based on the schema file generated at the beginning, the Plug-In inter-
face generates a complete list of XPath statements, which are allowed for

CHAPTER 7. PROVE OF CONCEPTS 117

documents associated with the application being developed. These XPath
expressions (compare Chapter 2 and Chapter 5) have the form:

XP := ("/"(N":")?E)* ("/"(N":")? "@"A)?

The XPath statements are displayed as tree, containing elements and at-
tributes specified by the schema file. When selecting a branch or leaf in
the tree, additional information about the selected node, which is extracted
from the schema file, is displayed in the Plug-In window. This information
comprises node comments, data type of the selected element or attribute
and a Boolean flag whether the selected node may contain text or other el-
ement nodes. Data types provide indications of what kind of data a node
may contain and assist the application developer if they wish to restrict ac-
cess to a node with respect to the value it contains. For instance, referring
to the schema file in Appendix A, we can easily determine that the ele-
ment CompetencyId is made up of three attributes, namely id, idOwner and
description, each of built-in schema data-type string. With that in mind,
we may easily restrict access to any element CompetencyId, which attribute
id contains the value ICT, without having to open the schema file and check-
ing data-type and allowed barriers ourselves. Of course, this only works with
simple types. Complex types may define sequences of other elements and
attributes, which in turn may specify their own data-type, which makes it
really hard to define restrictions for complex schema types. Indications about
whether an element may contain other elements, attributes or text is espe-
cially interesting in cases we wish to restrict access to a certain sub-element,
but not to the textual content, for instance. When selecting a node in the tree
representation, node information is automatically updated and an input dia-
logue opens, which allows defining access control rules for the node selected.
Access control rules embrace the definition of conditional access control rules,
i.e. value barriers as just explained and access rights. Access rights are ac-
tions that may be performed on the selected node. Since SemCrypt provides
an application framework for secure storage provisioning, actions supported
by the Plug-In are basic CRUD operations, i.e. insert, select, update and
delete. To clarify the access control definition process, Figure 7.1 illustrates
the corresponding interface provided by the SemCrypt Eclipse Plug-In.

This allows easy specification of basic permissions for an application, without
asking special knowledge of the XPath language from the application devel-
oper. After defining the access control rules, the Plug-In internally generates
XPath statements, compatible to the grammar defined in Chapter 6, and
creates the general-purpose policy file named xaccess.xml, which is used

CHAPTER 7. PROVE OF CONCEPTS 118

Figure 7.1: A screenshot of the Eclipse Plug-In taken on Ubuntu Linux

by the SCAAF after application deployment, which can also be managed
by the Plug-In. Nevertheless, the Plug-In is intended as supporting tool for
application developers, who are just making their first steps using SemCrypt
technology. In its current state of development, the Plug-In is nothing more
than a prototype, which was also made for testing and evaluation purposes,
and surely has some limitations, which shall be discussed shortly.

After finishing permission definition, an XCipher encryption instruction may
be specified as well. The Plug-In currently does not support the generation
of cryptographic keys, but rather prompts the developer for a local key-store
to obtain existing keys from. If no such key-store exists, the reference im-
plementation generates a set of dummy keys by relying on the local Java
Cryptography Extension (JCE) [157]. If this does not suffice, the develop-
ers have to take care of key generation and provide a key-store themselves.

CHAPTER 7. PROVE OF CONCEPTS 119

The XCipher window displays the same node tree as known from the access
control configuration, but adds different, encryption related, options. As
explained in Chapter 5, ciphering configuration does not provide such fine
granular XPath syntax as XAccess does, but the idea is the same: On se-
lection of a node in the node tree, the developer may specify an arbitrary
number of cryptographic keys by their identifiers, which are also used for the
local key-store, that should be used for the encryption sequence of an XML
sub-tree.

The final configuration step is optional. It integrates the possibility to let
automatically generate a user-specific Web interface. Each user or each role,
respectively, has different permissions in the application environment. The
Plug-In uses the XAccess permission definition to generate an XForms based
interface, which provides exactly the functionality, the user is allowed to
access. More information on that is provided later on in this chapter. Ap-
plication designers are asked to provide some technical parameters, which
are necessary to deploy the Web application, including Web server URL and
database server attributes. Future efforts are focused on stability testing
and enhancement of existing functionality. So far, basic application deploy-
ment is supported. Due to the complexity and openness of the SemCrypt
application framework, a list of possible extensions are considerable, such as
including update restrictions, user-defined access rights, user and role specific
policies and encryption instructions, more sophisticated document manage-
ment as well as automatic application deployment and runtime monitoring
and configuration options.

7.1.2 Web Application Generation

XForms [32] is a promising and emerging standard for describing Web forms
in a presentation neutral manner, independent of platform or input device.
XForms is XML and thus describes meta-forms which can be used to gener-
ate concrete user interfaces, such as XML related languages, such as HTML
or WML, procedural formats, like PDF or PostScript, and many more. Since
XForms is abstracted from concrete presentation layout it requires a proces-
sor for rendering the output on the underlying device. This processor can be
either deployed on the server [43] or on the client, for example as Web browser
Plug-In. XForms has been chosen, because it is the result of a W3C stan-
dardization effort and has the advantages of being open source and platform
independent. Competitive products are Microsoft XAML [111], XIML [183],
UIML [165] and Mozilla XUL [116]. UIML is standardized and platform inde-
pendent, but only partially free and open source and requires an own browser

CHAPTER 7. PROVE OF CONCEPTS 120

Figure 7.2: Architecture of the XForms Web interface generator

for being displayed. XUL is free and open source, but not standardized and
only supported by Mozilla browsers. XAML runs only on Windows Vista
and Internet Explorer and is a commercial product. The term client may be
a bit misleading in the context of the application in hand, since it requires
a separate application server to run, service consumer may be more appro-
priate, nevertheless it is considered to be a Web service client. When a user
logs in via the login Servlet, authentication is performed using the SCAAS
modules and if successful the request is forwarded to the application’s main
Servlet. Required content type, such as XHTML or WML as well as preferred
language are extracted from the user’s HTTP request and used to determine
the transformation module most suitable for the client device. Since XForms
pages must be embedded within existing documents, this step is required to
decide which XSL transformation must be used, including style-sheet infor-
mation. Currently, this client provides HTML modules for Novell Internet
Explorer and Mozilla FormsPlayer [71] Plug-Ins. Actual XForms rendering
components are not illustrated, since they may be either be deployed on the
client side as Web browser add-on or as server-side module. In the latter
case the Web browser only performs client-side data validation. The follow-
ing image (7.3) illustrates the result of the interface generation process: The
layout of the user interface is defined by Apache Velocity [160] templates ac-
tually generating the XForms markup. A user interface contains both generic
and fixed content. Fixed content are namespaces for XForms elements and
Events, basic XML schema data-types and a header including title, icon and
copyright. Other elements, such as navigation, form submission and input

CHAPTER 7. PROVE OF CONCEPTS 121

Figure 7.3: The generated default XForms user interface

handling remain generic. The interface is structured hierarchically, starting
from the root element of the document data to be queried. Via radio buttons,
child elements of the current context node may be selected, which triggers
an event to reload the page with the selected element as root. This allows
navigation deeper down the tree hierarchy. Element and attribute values
may be further restricted via appropriate form elements, such as text-fields,
checkboxes or drop-down lists. If a selection has been made, the user may
state a selection or update request, which makes the Servlet pass on the
selected content to the conversion module, which in turn generates XPath
or XUpdate statements respectively. From then on the SemCrypt security
services are invoked as usual: Authorization is performed and if successful
the desired operations are preformed on the data storage.

It should be noted that information for user interface generation is not taken
from the application specific XML schema, but rather from the XAccess pol-
icy files. When a user logs in, corresponding permissions are loaded through
the XAccess parser and returned to the interface generator. This prevents
generation of content, the user is not allowed to access anyway. Restrictions
are handled as well. Nevertheless, the authorization service should be con-
tacted further to rule out the possibility that generated XPath or XUpdate
statements have eventually been intercepted and modified.

CHAPTER 7. PROVE OF CONCEPTS 122

7.2 Use Case Implementation

7.2.1 Human Resource Management

Developing a security service is one thing. The other is to provide a service,
which does what it is supposed to do. This should be proved by making
basic functionalities publicly available and letting users interact with a con-
crete application scenario. This scenario was taken from the academic human
resources sector. Students from the Vienna University of Technologies were
asked in a university lab to model their personal data and competencies using
a subset of the HR-XML standard and store it on some remote server using
a Web application interface (http://move.ec3.at:8180/cms/). Apart from
testing purposes the application was developed with the intention of demon-
strating system capabilities to potential industry partners as well as to the Vi-
enna University of Technologies career center (http://www.tucareer.com/)
for further deployment. If users trust in the security of the system, which
was the assumption, then they would start using Web services in the literal
meaning more intensively even with sensitive private data involved. Users
could store their competency data externally, which could then be queried
by potential employers, who are looking for young academic personnel.

Regarding the application deployment some modifications with respect to the
default deployment process of the SemCrypt Application Framework (SCAF)
were made: Authentication as included by the SemCrypt Authentication and
Authorization Framework (SCAAF) was replaced by the authentication ser-
vice provided by the Vienna University of Technologies to ensure that only
students have access to the system using their university passwords and to
retain scalability and reusability when demonstrating the system in future
university courses. Note that students need not be employees at the same
time, hence the SemCryptEmployeeInfo schema from Appendix A might be
a bit misleading. Nevertheless, the main focus lies on competence modeling
and employment histories and salaries may be optionally provided as well.
Furthermore, a separate login procedure for academic staff of the university
and business partners was created. Exemplary, these authentication pro-
cesses are shortly demonstrated by the student login procedure.

Despite this set of modifications, services functionalities and security capa-
bilities could be successfully tested, since the most crucial components, in-
cluding authorization and the encryption/decryption module were deployed
as well. The DBMS provided by the DKE Linz still serves as data storage
holding encrypted sensitive data as discussed in the Security Services section

CHAPTER 7. PROVE OF CONCEPTS 123

Figure 7.4: The HR-XML Web application interface

in Chapter 6. Unfortunately, many attractive features, including perfor-
mance tuning did up to now not have the resounding effect due to moderate
user participation of about thirty students over several weeks. Figure 7.5
illustrates the involved architectural entities and their initial communication.

When a student wants to login, he calls the Web application via a Web
browser, enters student identification number and password, which is then
forwarded by the application server to the Vienna University of Technologies
authentication service along with a unique application identifier. This Id
tells the authentication service to which URL the user should be redirected
if authentication was successful. Note that communication must be carried
out over SSL, such that the application cannot see the user password. If au-
thentication succeeds, the authentication service generates a unique session
token using student Id, password, client hostname and current timestamp
and sends it in addition with the Id back to the application server. The
reason why there is an additional Web server is involved is that whenever
the URL of the application changes, it is not necessary to tell the university,
but only modify it on the private server. The application server performs
token validation and if successful, an HTTP session is started and the user
may invoke the application services.

For academic staff and external partners a different user interface is pro-
vided, which limits user permissions to read access. Since the documents
belong to students it did not seem reasonable to allow external users to mod-

CHAPTER 7. PROVE OF CONCEPTS 124

Figure 7.5: Architecture of the HR-XML Web applications

ify the content. Queries however are checked by the authorization engine
before forwarding them to the data store. Decryption of the database con-
tent is automatically handled, since the keys are known by the trusted service
domain in this setting. Similar to students, teaching staff can be authenti-
cated by the university authentication service as well, for external users, such
as companies, accounts are created on request.

In concrete services comprise document upload, query a document using
XPath or modify it using XUpdate, as shown in chapters 2 and 3. The
screenshot 7.4 shows the main page of the Web interface. In the HRM ap-
plication first insights into the usage of the technology could be received.
Privacy concerns and the difficulty to evaluate their own competencies were
evident problems here. However, the technological problems were solved in
the first prototype. In this application the framework could be extended in
such a way that students can define their own access control assertions, since
each student will have different security concerns. This, however, means a
potentially very large number of assertions which could lead to performance
problems. Techniques from recommender systems may help here.

CHAPTER 7. PROVE OF CONCEPTS 125

7.2.2 Distributed Project Management

Artifacts, which are created during the lifecycle of a (software) project, of-
ten contain confidential information, which may only be seen by authorized
people involved in the project. Sensitive data may comprise program source
code, innovative research results or budget related information. Mainstream
applications, such as Microsoft Excel or Project are widely used for electronic
support during project settlement. A prototype developed in the course of a
master’s thesis [64] shall evaluate the applicability of SemCrypt technologies
in combination with existing client-side collaborative applications. Project
management with Excel is often performed in SMEs, which often do not im-
plement satisfying security policies. Excel files, which have a corresponding
XML schema could thus in the future be stored encrypted using the Sem-
Crypt security infrastructure.

7.2.3 A Secure SMS Storage Provider

Lorry drivers often receive delivery orders on their mobile phones via SMS.
In some cases it may be convenient to store order information remotely at
a secure storage provider, which may be queried later on ordered by time,
location or subject. After delivery the storage may be updated by deleting ac-
complished orders. With that scenario in mind the client application should
implement a fat client with ciphering components directly implemented on
the mobile device, in case messages are already sent encrypted to the drivers
[66]. This application should only incorporate remote authorization, since
access control needs to be performed in a trusted environment, but keep ci-
pher keys in a local key store. Challenges to investigate encompass typical
queries and updates, device hardware persistency and performance analysis
with respect to remote service access, local key management and supported
encryption/decryption algorithms. Prototyping includes JavaME [158] on
Java compatible mobile phones, Blackberries, Palms or Pocket PCs.

7.2.4 Document Archives in E-Tourism

Customer care is one major key factor of success in E-Business. In this sec-
tor, service orientation gained tremendous significance to stay competitive.
Companies have to be innovative and flexible to satisfy customer needs at
the best possible rate to win their loyalty. In Part II, E-Tourism has been
identified as promising fields for establishing new E-Services. In a bachelor
thesis, carried out at the Vienna University of Technologies, an XML schema
has been developed, which defines information structures describing tourist

CHAPTER 7. PROVE OF CONCEPTS 126

destinations as well as tourist profiles allowing local tourism service providers
as well as travel agencies and accommodations, statistical analysis of tourist
data and thus adapt their services in a customer-oriented manner. Particu-
larly latter type of information needs to be protected, since it may contain
personal sensitive data. The schema relies on a subset of the Open Travel
Alliance (OTA) XML [161] specification. Target of the thesis was to analyze
potential application scenarios, typical query and update structures, groups
of users involved and suitability of tourism scenarios for a variety of end-user
devices.

7.2.5 Encrypted E-Mail Storage

Another use case of sensitive document archives may be identified by an un-
trustworthy E-Mail storage provider. Sometimes people may wish to securely
archive their private E-Mails on some external storage provider or wish to en-
crypt their IMAP account, since they do not fully trust their Mail provider.
This scenario could be very well extended to Web hosting services, allow-
ing to secure parts of a Web site and making it accessible only to selected
users, for instance. The application has been designed as single-user scenario,
which makes use of the security components discussed within the thesis, but
does not require resource locking and multi-user control. E-Mail messages
are translated into an XML dialect to allow additional storage of metadata
information and to take advantage of the SemCrypt framework features.

7.2.6 A Generic SemCrypt Testbed

The final prototype discussed herein is not an application setting per se, but
rather a generic environment for demonstration purposes of SemCrypt stor-
age features. The tool is available both as stand-alone and Web application
and provides a GUI frontend, which visualizes internal data storage processes.
For each user, who registers in the testing environment, a new data store is
created, which supports arbitrary schema and document upload as well as
modification operations and XPath and XUpdate processing. Authorization
and encryption processing are integrated as well. The focus however lays
on the graphical representation of technical details of the database internals.
The tool has been made available on the SemCrypt project Web site [177]
for public usage.

Part IV

Epilogue

127

Chapter 8

Conclusion

An article by Thuraisingham [163] briefly discusses security and privacy con-
cerns in the Semantic Web, E-Business and knowledge management and their
impact on data mining and information extraction. Security mechanisms, for
example authentication or encryption, are considered essential and must be
incorporated into all aspects of (semantic) business processes.

Trust management and flexibility of access and usage control policies are
indispensable for future research efforts on developing a security framework
for semantic E-Business applications. Lee et al. [99] consider knowledge
management as one key factor for economic success. They state that if a
company’s knowledge is not properly protected, the company will lose its
competitive advantage. Since the Semantic Web widely relies on XML, ap-
propriate security mechanisms, which are discussed in Chapter 2, have to be
applied.

Inspired by the scientific objectives of the SemCrypt research project, the
goal of this thesis was to investigate existing general security concepts with
special focus on access control, data encryption and key management, which
both form the core of SemCrypt security components. The ideas presented
in this thesis aim at developing a service-oriented framework based on state-
of-the-art Web service and related security technologies in order to provide
document-centric database functionality through a trusted environment. It
was shown how fine-grained encryption of sensitive data and access control
based on semantic concepts can be used to design a collaborative business
model secure but still flexible.

Furthermore, a set of service interfaces are specified, which abstract secu-
rity and data management functionalities from underlying implementations

128

CHAPTER 8. CONCLUSION 129

and can be configured to suit a wide range of different application scenarios as
discussed in Chapter 3. Chapter 4 introduces potential architectural settings
and illustrates the interactions among entities involved in typical SemCrypt
applications. Finally, Chapter 7 discusses concrete implementations, which
take advantage of the concepts developed and demonstrate the validity of
the framework.

Still, according to [99] there are many problems, which require a sophis-
ticated research agenda. In Chapter 9, ongoing and future research efforts
are briefly presented. These shall improve the current security framework,
provide enhanced development and deployment support for SemCrypt appli-
cations and are more focused on the incorporation of semantic knowledge.

Chapter 9

Ongoing and Future Work

A lot of research and development energy has been put in the investigation
of related technologies so far. Since the framework developed already incor-
porates very advanced and promising technologies, it would be very exciting
to further explore its capabilities and applicability. One ongoing issue is the
planned integration of XAccess policies and JAAS authorization with the
XACML standard. Furthermore, XACML could be used to perform access
control on system levels other than XML document fragments, such as whole
documents, file resources or system components, including service operation
invocations [104]. The latter aspect is strongly related to the intended in-
corporation of the emerging WS-Policy specification. Further studies of Web
service security related standards, is a general objective to improve overall
system security and state-of-the-art conformance. Due to many overlapping
features XrML and SAML integration for rights and identity management is
a primary goal as well. With respect to public key management it might be
considerable to keep an eye on future XKMS development efforts.

The XCipher encryption instructions supports XML data encryption to the
node level, including elements, attributes and node kind tests, such as text
content or commentaries. Although this might be sufficient in most cases
a support for filter expressions and thus increasing the level of encryption
granularity is considered. The idea of XML versioning has been marginally
touched, but could not be further investigated both within the SemCrypt
project and in the scope of the thesis as well. The framework specified
herein has been designed to be capable of supporting document versioning
in future extensions and implementations. The XVersion schema presented,
suggests a format for storing versioning information in an XML style, but no
comparisons or evaluations regarding related work has been made so far. It
would be desirable to automate the versioning process by defining schemas

130

CHAPTER 9. ONGOING AND FUTURE WORK 131

and ontologies that lets the application framework discover and adapt to
document modifications. Comparable efforts have been made in the area of
WSDL monitoring and evolution management [138].

As discussed in Chapter 2, the SemCrypt database system provides an index-
ing mechanism for efficient query/update processing of XML document data.
However, in cases another DBMS should be deployed, further research in the
area of native XML database integration needs to be done. The SemCrypt
Database Framework (SCDBF) [29] already provides appropriate abstraction
mechanisms, which are subject to current evaluation efforts.

Regarding workflows, there is up to now no way to define access control
criteria. The Business Process Execution Language (BPEL) [91], which is
the emerging standard for describing workflows and compositions for Web
services, leaves all security aspects to the implementation of compliant work-
flow engines. The approach taken in [62] respectively can be used to specify
access control assertions that can be extended by referencing concepts of
ontologies expressed in XML. OWL [108] is used to develop ontologies. Re-
ferring to Figure 9.1, an ontology to describe the subject of an assertion,
an ontology for describing the objects that can be accessed and an ontology
for describing the privileges, are developed. On the second layer of the in-
heritance hierarchy, principal classes that will be found in most applications
are described. On subsequent layers typical domain dependent classes are
defined. The advantage of this ontology hierarchy is its extensibility. For
instance, a further class Employee that is classified as similar to the class
Staff may be introduced. If one organization uses the class Staff and the
other Employee the applicability of the same assertion for both companies
could be deduced. With XAccess and XCipher descriptions, which are both
subject to detailed discussions in Chapter 5, semantic descriptions security
objects, i.e. XML document nodes, as well as information related to key man-
agement are provided. Access rights may be recursively composed by other
privileges defined for an application scenario and access control for XML doc-
uments may be defined on a fine granular level in either a permissive or more
restrictive manner. Using an XAccess descriptor is also suitable for defining
access control to Web services, by providing access control rules for WSDL
documents. BPEL descriptions may be subject to access control, in case
workflow execution should be restricted or ontology information provided by
an RDF or OWL document may be protected either. XAccess is therefore
applicable to any XML formatted information. The advantage of XAccess
being an XML proposal itself facilitates integration into other XML based
standards. Ontology description integration allows the definition of semantic

CHAPTER 9. ONGOING AND FUTURE WORK 132

Figure 9.1: Integration of ontologies with authorization assertions

cross-domain information, moving our proposals to an even higher level of
abstraction. Although more complex semantic issues are already taken care
of, it may be desirable to refer to other standards, which already solve prob-
lems that are not considered so far. However, implementation of XAccess and
XCipher languages are necessary for integrating semantic knowledge into the
final concrete application scenario.

Future work could also address the development of application development
to evaluate and further improve the suggested SemCrypt technology frame-
work. Initial tool support and IDE integration is available, nevertheless the
features provided are kept to a minimalist level to support basic functionali-
ties. With testing performance of selected system components, one important
step towards Quality of Service (QoS) evaluation has been made. However,
to provide good advices overall application performance is very crucial and
valuable information regarding the likeliness of success of the developed secu-
rity framework. Standard conformance, applicability of the approaches taken
as well as usability are strong arguments for convincing future collaborators
and potential industry partners to further support the development of the
technology in hand.

Part V

Appendices

133

Appendix A

Schema Definitions

A.1 XAccess.xsd

The following listing is a full representation of the XAccess Schema file. It de-
scribes the document structure of XAccess policy files currently implemented
in the SemCrypt access control component. A full discussion of XML based
authorization is subject to Chapter 5.

Listing A.1: XAccess.xsd
<?xml version="1.0" encoding ="UTF -8"?>

<schema xmlns ="http: //www.w3.org /2001/ XMLSchema "

targetNamespace ="http: //semcrypt .ec3.at/xml/access/types "

xmlns:tns ="http: // semcrypt .ec3.at/xml/access/types ">

5 <element name ="XAccess " type ="tns:XAccessType "></element >

<element name ="Permissions " type ="tns:PermissionsType "></element >

<element name ="Permission " type ="tns:DecisionType "></ element >

<element name ="PathValue " type =" tns:PathValueType "></ element >

<element name ="Description " type ="tns:DescriptionType "></element >

10 <element name ="RoleName " type ="tns:RoleNameType "></element >

<element name ="RightName " type =" tns:RightNameType "></ element >

<complexType name ="XAccessType ">

<sequence >

<element ref="tns:Namespaces " maxOccurs ="1" minOccurs ="1" />

15 <element ref="tns:Permissions " maxOccurs ="1" minOccurs ="0" />

<element ref="tns:Denials " maxOccurs ="1" minOccurs ="0" />

</sequence >

</complexType >

<simpleType name ="RoleNameType ">

20 <restriction base ="string" />

</simpleType >

<simpleType name ="RightNameType ">

<restriction base ="string" />

</simpleType >

25 <complexType name ="PermissionsType ">

<sequence >

<element ref="tns:Permission " maxOccurs ="unbounded "

minOccurs ="1" />

</sequence >

30 </complexType >

<simpleType name ="PathValueType ">

<restriction base ="string" />

</simpleType >

<simpleType name ="DescriptionType ">

35 <restriction base ="string" />

</simpleType >

<element name ="RequiresRoles " type ="tns:RequiresRolesType " />

<complexType name ="RequiresRolesType ">

<sequence >

40 <element ref="tns:RoleName " maxOccurs ="unbounded "

minOccurs ="1" />

134

APPENDIX A. SCHEMA DEFINITIONS 135

</sequence >

</complexType >

<element name ="Namespace " type =" tns:NamespaceType " />

45 <element name ="Namespaces " type ="tns:NamespacesType " />

<complexType name ="NamespacesType ">

<sequence >

<element ref="tns:Namespace " maxOccurs ="unbounded "

minOccurs ="1" />

50 </sequence >

</complexType >

<element name ="Prefix" type ="tns:PrefixType " />

<element name ="URI" type ="tns:URIType " />

<simpleType name ="PrefixType ">

55 <restriction base ="string" />

</simpleType >

<simpleType name ="URIType">

<restriction base ="anyURI" />

</simpleType >

60 <element name ="Denials " type ="tns:DenialsType " />

<element name ="Denial" type ="tns:DecisionType " />

<complexType name ="DenialsType ">

<sequence >

<element ref="tns:Denial " maxOccurs ="unbounded "

65 minOccurs ="1" />

</sequence >

</complexType >

<complexType name ="DecisionType ">

<sequence >

70 <element ref="tns:Description " maxOccurs ="1" minOccurs ="0" />

<element ref="tns:PathValue " maxOccurs ="1" minOccurs ="1" />

<element ref="tns:RoleName " maxOccurs ="unbounded "

minOccurs ="1" />

75 <element ref="tns:RightName " maxOccurs ="unbounded "

minOccurs ="1" />

<element ref="tns:RequiresRoles " maxOccurs ="1"

minOccurs ="0" />

</sequence >

80 </complexType >

<complexType name ="NamespaceType ">

<sequence >

<element ref="tns:Prefix " />

<element ref="tns:URI" />

85 </sequence >

</complexType >

</schema >

A.2 XCipher.xsd

XCipher documents are currently used by SemCrypt applications to specify
encryption procedures of XML elements identified via XPath. A full descrip-
tion of the ciphering component is subject to Chapter 5.

Listing A.2: XCipher.xsd
<?xml version="1.0" encoding ="UTF -8"?>

<schema targetNamespace ="http: //semcrypt .ec3.at/xml/cipher/types "

xmlns ="http: //www.w3.org /2001/ XMLSchema "

xmlns:tns ="http: // semcrypt .ec3.at/xml/cipher/types ">

5 <element name ="XCipher " type ="tns:XCipherType "></element >

<element name ="Encryption " type ="tns:EncryptionType "></element >

<element name ="Sequence " type ="tns:SequenceType "></element >

<element name ="PathValue " type =" tns:PathValueType "></ element >

<element name ="KeyAlias " type ="tns:KeyAliasType "></element >

10 <simpleType name ="KeyAliasType ">

<restriction base ="string"></restriction >

</simpleType >

<complexType name ="XCipherType ">

<sequence >

15 <element ref="tns:Encryption " maxOccurs ="unbounded "

minOccurs ="1">

</element >

</sequence >

</complexType >

APPENDIX A. SCHEMA DEFINITIONS 136

20 <complexType name ="EncryptionType ">

<sequence >

<element ref="tns:PathValue " maxOccurs ="unbounded " minOccurs ="1"></element >

<element ref="tns:Sequence " maxOccurs ="1"

minOccurs ="1">

25 </element >

</sequence >

</complexType >

<complexType name ="SequenceType ">

<sequence >

30 <element ref="tns:KeyAlias " maxOccurs ="unbounded "

minOccurs ="1">

</element >

</sequence >

</complexType >

35 <simpleType name ="PathValueType ">

<restriction base ="string"></restriction >

</simpleType >

</schema >

A.3 XVersion.xsd

The following XML Schema provides a structure for storing modification
information about versioned XML documents. XVersion embodies the third
component of SemCrypt XML document handling and is subject to future
enhancements.

Listing A.3: XVersion.xsd
<?xml version="1.0" encoding ="UTF -8"?>

<schema xmlns ="http: //www.w3.org /2001/ XMLSchema "

targetNamespace ="http: //semcrypt .ec3.at/xml/version /types "

xmlns:tns ="http: // semcrypt .ec3.at/xml/version/types ">

5 <element name ="XVersion " type ="tns:XVersionType "></element >

<element name ="VersionNumber " type ="tns:VersionNumberType "></element >

<element name ="Filename " type ="tns:FilenameType "></element >

<element name ="CreationInfo " type ="tns:CreationInfoType "></element >

<element name ="LastModification "

10 type ="tns:LastModificationType ">

</element >

<element name ="Modifications " type ="tns:ModificationsType "></element >

<element name ="Author" type ="tns:AuthorType "></element >

<complexType name ="LastModificationType ">

15 <sequence >

<element ref="tns:ModificationNumber " minOccurs ="1"

maxOccurs ="1">

</element >

</sequence >

20 </complexType >

<complexType name ="AuthorType ">

<sequence >

<element ref="tns:Firstname " minOccurs ="1"></element >

<element ref="tns:Lastname " minOccurs ="1" maxOccurs ="1"></element >

25 <element ref="tns:ResponsibleEmail " minOccurs ="1"

maxOccurs ="1">

</element >

</sequence >

</complexType >

30 <complexType name ="ModificationsType ">

<sequence >

<element ref="tns:Modification " minOccurs ="1"

maxOccurs ="unbounded ">

</element >

35 </sequence >

</complexType >

<complexType name ="CreationInfoType ">

<sequence >

<element ref="tns:Date " minOccurs ="1" maxOccurs ="1"></ element >

40 <element ref="tns:ResponsibleEmail " minOccurs ="1"

maxOccurs ="1">

</element >

<element ref="tns:Purpose " minOccurs ="1" maxOccurs ="1"></element >

</sequence >

APPENDIX A. SCHEMA DEFINITIONS 137

45 </complexType >

<complexType name ="XVersionType ">

<sequence >

<element ref="tns:VersionNumber " minOccurs ="1"

maxOccurs ="1">

50 </element >

<element ref="tns:Filename " minOccurs ="1" maxOccurs ="1"></element >

<element ref="tns:CreationInfo "></element >

<element ref="tns:LastModification " minOccurs ="1"

maxOccurs ="1">

55 </element >

<element ref="tns:Modifications " minOccurs ="1"

maxOccurs ="1">

</element >

<element ref="tns:Authors "></element >

60 </sequence >

</complexType >

<element name ="Date " type ="tns:DateType "></element >

<element name ="Purpose " type ="tns:PurposeType "></element >

<element name ="ResponsibleEmail "

65 type ="tns:ResponsibleEmailType ">

</element >

<element name ="Documentation " type ="tns:DocumentationType "></element >

<element name ="Modification " type ="tns:ModificationType "></element >

<element name ="ModificationNumber "

70 type ="tns:ModificationNumberType ">

</element >

<complexType name ="ModificationType ">

<sequence >

<element ref="tns:ModificationNumber " minOccurs ="1"

75 maxOccurs ="1">

</element >

<element ref="tns:Date " minOccurs ="1" maxOccurs ="1"></ element >

<element ref="tns:ResponsibleEmail " minOccurs ="1"

maxOccurs ="1">

80 </element >

<element ref="tns:Documentation " minOccurs ="1"

maxOccurs ="1">

</element >

</sequence >

85 </complexType >

<element name ="Firstname " type =" tns:FirstnameType "></ element >

<element name ="Lastname " type ="tns:LastnameType "></element >

<element name ="Authors " type ="tns:AuthorsType "></element >

<complexType name ="AuthorsType ">

90 <sequence >

<element ref="tns:Author " minOccurs ="1"

maxOccurs ="unbounded ">

</element >

</sequence >

95 </complexType >

<simpleType name ="DateType ">

<restriction base ="dateTime"></restriction >

</simpleType >

<simpleType name ="DocumentationType ">

100 <restriction base ="string"></restriction >

</simpleType >

<simpleType name ="FilenameType ">

<restriction base ="string"></restriction >

</simpleType >

105 <simpleType name ="FirstnameType ">

<restriction base ="string"></restriction >

</simpleType >

<simpleType name ="LastnameType ">

<restriction base ="string"></restriction >

110 </simpleType >

<simpleType name ="ModificationNumberType ">

<restriction base ="nonNegativeInteger "></restriction >

</simpleType >

<simpleType name ="PurposeType ">

115 <restriction base ="string"></restriction >

</simpleType >

<simpleType name ="ResponsibleEmailType ">

<restriction base ="string"></restriction >

</simpleType >

120 <simpleType name ="VersionNumberType ">

<restriction base ="string"></restriction >

</simpleType >

</schema >

APPENDIX A. SCHEMA DEFINITIONS 138

A.4 SemCryptEmployeeInfo.xsd

The following schema represents a document structure compatible with the
SemCrypt storage provider. It allows modeling employees’ personal informa-
tion, assessment results and competencies and serves as reference scenario
for the SemCrypt prototype implementation.

Listing A.4: SemCryptEmployeeInfo.xsd
<?xml version="1.0" encoding ="UTF -8"?>

<xs:schema xmlns ="http: //ns.hr -xml.org /2004 -08 -02"

xmlns:xs ="http: //www.w3.org /2001/ XMLSchema "

targetNamespace ="http: //ns.hr -xml.org /2004 -08 -02"

5 elementFormDefault ="qualified ">

<xs:element name ="SemCryptEmployeeInfo ">

<xs:complexType >

<xs:sequence >

<xs:element name ="PersonInfo "

10 type ="SemCrypt_PersonInfoType " />

<xs:element name ="Competencies "

type ="SemCrypt_CompetenciesType " minOccurs ="0" />

<xs:element name ="JobPositionHistory "

type ="SemCrypt_JobPositionHistoryType "

15 minOccurs ="0" />

<xs:element name ="Salary" type ="SemCrypt_SalaryType "

minOccurs ="0" />

<xs:element name ="AssessmentResults "

type ="SemCrypt_AssessmentResultsType "

20 minOccurs ="0" />

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:complexType name ="EntityIdType ">

25 <xs:sequence >

<xs:element name ="IdValue" maxOccurs ="unbounded ">

<xs:complexType >

<xs:simpleContent >

<xs:extension base ="xs:string ">

30 <xs:attribute name ="name " type ="xs:string "

use="optional " />

</xs:extension >

</xs:simpleContent >

</xs:complexType >

35 </xs:element >

</xs:sequence >

<xs:attribute name ="validFrom " type ="xs:date" use="optional " />

<xs:attribute name ="validTo" type ="xs:date" use="optional " />

<xs:attribute name ="idOwner" type ="xs:string " use="optional " />

40 </xs:complexType >

<!-- EntityReferenceType -->

<xs:complexType name ="EntityReferenceType ">

<xs:sequence >

<xs:element name ="Id" type ="EntityIdType " minOccurs ="0" />

45 <xs:element name ="Name " type ="xs:string " minOccurs ="0" />

</xs:sequence >

</xs:complexType >

<xs:complexType name ="PersonNameType ">

<xs:sequence >

50 <xs:element name ="FormattedName " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

<xs:simpleContent >

<xs:extension base ="xs:string ">

55 <xs:attribute name ="type "

type ="xs:string " />

</xs:extension >

</xs:simpleContent >

</xs:complexType >

60 </xs:element >

<xs:element name ="LegalName " type ="xs:string "

minOccurs ="0" />

<xs:element name ="GivenName " type ="xs:string "

minOccurs ="0" maxOccurs ="unbounded " />

65 <xs:element name ="PreferredGivenName " type ="xs:string "

minOccurs ="0" />

<xs:element name ="MiddleName " type ="xs:string "

minOccurs ="0" />

<xs:element name ="FamilyName " minOccurs ="0"

APPENDIX A. SCHEMA DEFINITIONS 139

70 maxOccurs ="unbounded ">

<xs:complexType >

<xs:simpleContent >

<xs:extension base ="xs:string ">

<xs:attribute name ="primary "

75 type ="xs:string " />

<xs:attribute name ="prefix"

type ="xs:string " />

</xs:extension >

</xs:simpleContent >

80 </xs:complexType >

</xs:element >

<xs:element name ="Affix " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

85 <xs:simpleContent >

<xs:extension base ="xs:string ">

<xs:attribute name ="type " type ="xs:string "

use="required " />

</xs:extension >

90 </xs:simpleContent >

</xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

95 <xs:complexType name ="PostalAddressType ">

<xs:sequence >

<xs:element name ="CountryCode " type ="xs:string " />

<xs:element name ="PostalCode " type ="xs:string "

minOccurs ="0" />

100 <xs:element name ="Region" type ="xs:string " minOccurs ="0"

maxOccurs ="unbounded " />

<xs:element name ="Municipality " type ="xs:string "

minOccurs ="0" />

<xs:element name ="DeliveryAddress " minOccurs ="0">

105 <xs:complexType >

<xs:sequence >

<xs:element name ="AddressLine "

type ="xs:string " minOccurs ="0"

maxOccurs ="unbounded " />

110 <xs:element name ="StreetName " type ="xs:string "

minOccurs ="0" />

<xs:element name ="BuildingNumber "

type ="xs:string " minOccurs ="0" />

<xs:element name ="Unit " type ="xs:string "

115 minOccurs ="0" />

<xs:element name ="PostOfficeBox "

type ="xs:string " minOccurs ="0" />

</xs:sequence >

</xs:complexType >

120 </xs:element >

<xs:element name ="Recipient " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

<xs:sequence >

125 <xs:element name ="PersonName "

type ="PersonNameType " minOccurs ="0" />

<xs:element name ="AdditionalText "

type ="xs:string " minOccurs ="0"

maxOccurs ="unbounded " />

130 <xs:element name ="Organization "

type ="xs:string " minOccurs ="0" />

<xs:element name ="OrganizationName "

type ="xs:string " minOccurs ="0" />

</xs:sequence >

135 </xs:complexType >

</xs:element >

</xs:sequence >

<xs:attribute name ="type " type ="xs:string " />

</xs:complexType >

140 <xs:complexType name ="TelcomNumberType ">

<xs:sequence >

<xs:element name ="FormattedNumber " type ="xs:string " />

<xs:element name ="InternationalCountryCode "

type ="xs:string " />

145 <xs:element name ="NationalNumber " type ="xs:string " />

<xs:element name ="AreaCityCode " type ="xs:string " />

<xs:element name ="SubscriberNumber " type ="xs:string " />

<xs:element name ="Extension " type ="xs:string " />

</xs:sequence >

150 </xs:complexType >

<xs:complexType name ="MobileTelcomNumberType ">

<xs:complexContent >

APPENDIX A. SCHEMA DEFINITIONS 140

<xs:extension base =" TelcomNumberType ">

<xs:attribute name ="smsEnabled " type ="xs:boolean "

155 use="optional " />

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name ="TelcomNumberListType ">

160 <xs:sequence >

<xs:element name ="Telephone " type ="TelcomNumberType "

minOccurs ="0" />

<xs:element name ="Mobile" type ="MobileTelcomNumberType "

minOccurs ="0" />

165 <xs:element name ="Fax" type ="TelcomNumberType "

minOccurs ="0" />

<xs:element name ="Pager " type ="TelcomNumberType "

minOccurs ="0" />

<xs:element name ="TTYTDD" type ="TelcomNumberType "

170 minOccurs ="0" />

</xs:sequence >

</xs:complexType >

<xs:complexType name ="ContactMethodType ">

<xs:sequence >

175 <xs:element name ="Use" type ="xs:string " minOccurs ="0" />

<xs:element name ="Location " type ="xs:string "

minOccurs ="0" />

<xs:element name ="WhenAvailable " type ="xs:string "

minOccurs ="0" />

180 <xs:element name ="Telephone " type ="TelcomNumberType "

minOccurs ="0" />

<xs:element name ="Mobile" type ="MobileTelcomNumberType "

minOccurs ="0" />

<xs:element name ="Fax" type ="TelcomNumberType "

185 minOccurs ="0" />

<xs:element name ="Pager " type ="TelcomNumberType "

minOccurs ="0" />

<xs:element name ="TTYTDD" type ="TelcomNumberType "

minOccurs ="0" />

190 <xs:element name ="InternetEmailAddress " type ="xs:string "

minOccurs ="0" />

<xs:element name ="InternetWebAddress " type ="xs:string "

minOccurs ="0" />

<xs:element name ="PostalAddress " type ="PostalAddressType "

195 minOccurs ="0" />

</xs:sequence >

</xs:complexType >

<!-- ==================== flexible dates

============================== -->

200 <xs:complexType name ="FlexibleDatesType ">

<xs:sequence >

<xs:element name ="AnyDate" type ="xs:date" />

<xs:element name ="YearMonth " type ="xs:date" />

<xs:element name ="Year " type ="xs:date" />

205 <xs:element name ="MonthDay " type ="xs:date" />

<xs:element name ="StringDate " type ="xs:string " />

</xs:sequence >

<xs:attribute name =" dateDescription " type ="xs:string " />

</xs:complexType >

210 <xs:complexType name ="UserAreaType ">

<xs:sequence />

<!-- minOccurs ="0" maxOccurs ="unbounded " not supported -->

</xs:complexType >

<!-- Distribution Guidelines -->

215 <xs:complexType name ="DistributionGuidelinesType ">

<xs:sequence >

<xs:element name ="DistributeTo " type ="DistributionType "

minOccurs ="0" maxOccurs ="unbounded " />

<xs:element name ="DoNotDistributeTo "

220 type ="DistributionType " minOccurs ="0"

maxOccurs ="unbounded " />

</xs:sequence >

</xs:complexType >

<xs:complexType name ="DistributionType ">

225 <xs:sequence >

<xs:element name ="Id" type ="EntityIdType " minOccurs ="0" />

<xs:element name ="Name " type ="xs:string " minOccurs ="0" />

</xs:sequence >

<xs:attribute name ="validFrom " type ="xs:date" />

230 <xs:attribute name ="validTo" type ="xs:date" />

</xs:complexType >

<!-- Location Summary -->

<xs:complexType name ="LocationSummaryType ">

<xs:sequence >

235 <xs:element name ="CountryCode " type ="xs:string "

APPENDIX A. SCHEMA DEFINITIONS 141

minOccurs ="0" />

<xs:element name ="PostalCode " type ="xs:string "

minOccurs ="0" />

<xs:element name ="Municipality " type ="xs:string "

240 minOccurs ="0" />

<xs:element name ="Region" type ="xs:string " minOccurs ="0" />

</xs:sequence >

</xs:complexType >

<!-- Reference Type -->

245 <xs:complexType name ="ReferenceType ">

<xs:sequence >

<xs:element name ="PersonName " type ="PersonNameType "

minOccurs ="0" />

<xs:element name ="PositionTitle " type ="xs:string "

250 minOccurs ="0" />

<xs:element name ="ContactMethod " type ="ContactMethodType "

minOccurs ="0" maxOccurs ="unbounded " />

<xs:element name ="Comments " type ="xs:string "

minOccurs ="0" />

255 </xs:sequence >

<xs:attribute name ="type " type ="xs:string " />

</xs:complexType >

<!-- Acheivement Type -->

<xs:complexType name ="AchievementType ">

260 <xs:sequence >

<xs:element name ="Date " type ="FlexibleDatesType "

minOccurs ="0" />

<xs:element name ="Description " type ="xs:string "

minOccurs ="0" />

265 <xs:element name ="IssuingAuthority " type ="xs:string "

minOccurs ="0" />

</xs:sequence >

</xs:complexType >

<!-- Association Type -->

270 <xs:complexType name ="AssociationType ">

<xs:sequence >

<xs:element name ="Name " type ="xs:string " />

<xs:element name ="Id" type ="EntityIdType " minOccurs ="0" />

<xs:element name ="Link " type ="xs:string " minOccurs ="0" />

275 <xs:element name ="StartDate " type ="FlexibleDatesType "

minOccurs ="0" />

<xs:element name ="EndDate" type ="FlexibleDatesType "

minOccurs ="0" />

<xs:element name ="Role " minOccurs ="0"

280 maxOccurs ="unbounded ">

<xs:complexType >

<xs:sequence >

<xs:element name ="Name " type ="xs:string "

minOccurs ="0" />

285 <xs:element name ="Deliverable "

type ="xs:string " minOccurs ="0"

maxOccurs ="unbounded " />

<xs:element name ="StartDate "

type ="FlexibleDatesType " minOccurs ="0" />

290 <xs:element name ="EndDate"

type ="FlexibleDatesType " minOccurs ="0" />

<xs:element name ="Comments " type ="xs:string "

minOccurs ="0" />

</xs:sequence >

295 </xs:complexType >

</xs:element >

<xs:element name ="Comments " type ="xs:string "

minOccurs ="0" />

</xs:sequence >

300 </xs:complexType >

<!-- Association Types -->

<!-- SupportingMaterials -->

<xs:complexType name ="StaffingSupportingMaterialsType ">

<xs:sequence >

305 <xs:element name ="Link " type ="xs:string " minOccurs ="0" />

<xs:element name ="AttachmentReference " minOccurs ="0">

<xs:complexType >

<xs:simpleContent >

<xs:extension base ="xs:string ">

310 <xs:attribute name ="context "

type ="xs:string " />

<xs:attribute name ="mimeType "

type ="xs:string " />

</xs:extension >

315 </xs:simpleContent >

</xs:complexType >

</xs:element >

<xs:element name ="Description " type ="xs:string "

APPENDIX A. SCHEMA DEFINITIONS 142

minOccurs ="0" />

320 </xs:sequence >

</xs:complexType >

<!-- Language -->

<!-- Job Level Info -->

<xs:complexType name ="JobLevelInfoType ">

325 <xs:sequence >

<xs:element name ="JobPlan" type ="xs:string " minOccurs ="0" />

<xs:element name ="JobGrade " type ="xs:string "

minOccurs ="0" />

<xs:element name ="JobStep" type ="xs:string " minOccurs ="0" />

330 <xs:element name ="Comments " type ="xs:string "

minOccurs ="0" />

</xs:sequence >

</xs:complexType >

<!-- Occupational Taxonomy Types -->

335 <xs:complexType name ="OccupationalCategoryType ">

<xs:sequence >

<xs:element name ="TaxonomyName " minOccurs ="0">

<xs:complexType >

<xs:simpleContent >

340 <xs:extension base ="xs:string ">

<xs:attribute name ="version "

type ="xs:string " use="optional " />

</xs:extension >

</xs:simpleContent >

345 </xs:complexType >

</xs:element >

<xs:element name ="CategoryCode " type ="xs:string "

minOccurs ="0" />

<xs:element name ="CategoryDescription " type ="xs:string "

350 minOccurs ="0" />

<xs:element name ="Comments " type ="xs:string "

minOccurs ="0" />

<xs:element name ="JobCategory "

type ="OccupationalCategoryType " minOccurs ="0" />

355 </xs:sequence >

</xs:complexType >

<!-- Position Posting Type -->

<xs:complexType name ="PositionPostingsType ">

<xs:sequence >

360 <xs:element name ="PositionPosting " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

<xs:sequence >

<xs:element name ="Id" type ="EntityIdType "

365 minOccurs ="0" />

<xs:element name ="Title " type ="xs:string "

minOccurs ="0" />

<xs:element name ="Link " type ="xs:string "

minOccurs ="0" />

370 </xs:sequence >

</xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

375 <!-- Supplier Type -->

<xs:complexType name ="SupplierType ">

<xs:sequence >

<xs:element name ="SupplierId " type ="EntityIdType "

minOccurs ="0" />

380 <xs:element name ="EntityName " type ="xs:string "

minOccurs ="0" />

<xs:element name ="ContactMethod " type ="ContactMethodType "

minOccurs ="0" maxOccurs ="unbounded " />

</xs:sequence >

385 <xs:attribute name ="relationship " type ="xs:string "

use="optional " />

</xs:complexType >

<!-- RecordInfoType -->

<xs:complexType name ="RecordInfoType ">

390 <xs:sequence >

<xs:element name ="Id" type ="EntityIdType " minOccurs ="0"

maxOccurs ="unbounded " />

<!-- <xs:element name ="Status" minOccurs ="0">

<xs:complexType >

395 <xs:simpleContent ><xs:extension >

<xs:attribute name ="validFrom "

type ="xs:date" />

<xs:attribute name ="validTo "

type ="xs:date" />

400 </xs:extension >

</xs:simpleContent >

APPENDIX A. SCHEMA DEFINITIONS 143

</xs:complexType >

</xs:element > -->

</xs:sequence >

405 </xs:complexType >

<!-- PositionDateInfo type -->

<xs:complexType name ="PositionDateInfoType ">

<xs:sequence >

<xs:element name ="StartAsSoonAsPossible " type ="xs:boolean "

410 minOccurs ="0" />

<xs:element name ="StartDate " type ="xs:date" minOccurs ="0" />

<xs:element name ="ExpectedEndDate " type ="xs:date"

minOccurs ="0" />

<xs:element name ="MaximumStartDate " type ="xs:date"

415 minOccurs ="0" />

<xs:element name ="MaximumEndDate " type ="xs:date "

minOccurs ="0" />

</xs:sequence >

</xs:complexType >

420 <xs:complexType name ="PersonDescriptorsType ">

<xs:sequence >

<xs:element name ="LegalIdentifiers "

type ="LegalIdentifiersType " minOccurs ="0" />

<xs:element name ="DemographicDescriptors "

425 type ="DemographicDescriptorsType " minOccurs ="0" />

<xs:element name ="BiologicalDescriptors "

type ="BiologicalDescriptorsType " minOccurs ="0" />

<xs:element name ="SupportingMaterials "

type ="StaffingSupportingMaterialsType " minOccurs ="0"

430 maxOccurs ="unbounded " />

<xs:element name ="OtherDescriptors "

type ="OtherDescriptorsType " minOccurs ="0"

maxOccurs ="unbounded " />

<xs:element name ="UserArea " type ="UserAreaType "

435 minOccurs ="0" />

</xs:sequence >

</xs:complexType >

<xs:complexType name ="LegalIdentifiersType ">

<xs:sequence >

440 <xs:element name ="PersonLegalId " type ="PersonLegalIdType "

minOccurs ="0" maxOccurs ="unbounded " />

<xs:element name ="MilitaryStatus " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

445 <xs:simpleContent >

<xs:extension base ="xs:string ">

<xs:attribute name ="type "

type ="xs:string " />

</xs:extension >

450 </xs:simpleContent >

</xs:complexType >

</xs:element >

<xs:element name ="VisaStatus " minOccurs ="0"

maxOccurs ="unbounded ">

455 <xs:complexType >

<xs:simpleContent >

<xs:extension base ="xs:string ">

<xs:attribute name ="countryCode "

type ="xs:string " />

460 <xs:attribute name ="validFrom "

type ="xs:date" />

<xs:attribute name ="validTo "

type ="xs:date" />

</xs:extension >

465 </xs:simpleContent >

</xs:complexType >

</xs:element >

<xs:element name ="Citizenship " type ="xs:string "

minOccurs ="0" maxOccurs ="unbounded " />

470 <xs:element name ="Residency " type ="xs:string "

minOccurs ="0" maxOccurs ="unbounded " />

<xs:element name ="UserArea " type ="UserAreaType "

minOccurs ="0" />

</xs:sequence >

475 </xs:complexType >

<xs:complexType name ="DemographicDescriptorsType ">

<xs:sequence >

<xs:element name ="Race " type ="xs:string " minOccurs ="0"

maxOccurs ="unbounded " />

480 <xs:element name ="Ethnicity " type ="xs:string "

minOccurs ="0" maxOccurs ="unbounded " />

<xs:element name ="Nationality " type ="xs:string "

minOccurs ="0" maxOccurs ="unbounded " />

<xs:element name ="PrimaryLanguage " type ="xs:string "

APPENDIX A. SCHEMA DEFINITIONS 144

485 minOccurs ="0" maxOccurs ="unbounded " />

<xs:element name ="BirthPlace " type ="xs:string "

minOccurs ="0" />

<xs:element name ="Religion " type ="xs:string "

minOccurs ="0" />

490 <xs:element name ="MaritalStatus " type ="xs:string "

minOccurs ="0" />

<xs:element name ="ChildrenInfo " minOccurs ="0">

<xs:complexType >

<xs:sequence >

495 <xs:element name ="NumberOfChildren "

type ="xs:integer " minOccurs ="0" />

<xs:element name ="Comments " type ="xs:string "

minOccurs ="0" />

</xs:sequence >

500 </xs:complexType >

</xs:element >

<xs:element name ="UserArea " type ="UserAreaType "

minOccurs ="0" />

</xs:sequence >

505 </xs:complexType >

<xs:complexType name ="BiologicalDescriptorsType ">

<xs:sequence >

<xs:element name ="DateOfBirth " type ="xs:date"

minOccurs ="0" />

510 <xs:element name ="MonthDayOfBirth " type ="xs:date"

minOccurs ="0" />

<xs:element name ="Age" type ="xs:integer " minOccurs ="0" />

<xs:element name ="GenderCode " type ="xs:integer "

minOccurs ="0" />

515 <xs:element name ="EyeColor " type ="xs:string "

minOccurs ="0" />

<xs:element name ="HairColor " type ="xs:string "

minOccurs ="0" />

<xs:element name ="Height" minOccurs ="0">

520 <xs:complexType >

<xs:simpleContent >

<xs:extension base ="xs:string ">

<xs:attribute name ="unitOfMeasure "

type ="xs:string " />

525 </xs:extension >

</xs:simpleContent >

</xs:complexType >

</xs:element >

<xs:element name ="Weight" minOccurs ="0">

530 <xs:complexType >

<xs:simpleContent >

<xs:extension base ="xs:string ">

<xs:attribute name ="unitOfMeasure "

type ="xs:string " />

535 </xs:extension >

</xs:simpleContent >

</xs:complexType >

</xs:element >

<xs:element name ="IdentifyingMarks " type ="xs:string "

540 minOccurs ="0" maxOccurs ="unbounded " />

<xs:element name ="DisabilityInfo "

type ="DisabilityInfoType " minOccurs ="0"

maxOccurs ="unbounded " />

<xs:element name ="UserArea " type ="UserAreaType "

545 minOccurs ="0" />

</xs:sequence >

</xs:complexType >

<xs:complexType name ="OtherDescriptorsType ">

<xs:sequence >

550 <xs:element name ="Name " type ="xs:string " minOccurs ="0" />

<xs:element name ="Applicable " type ="xs:boolean "

minOccurs ="0" />

<xs:element name ="Value " type ="xs:string " minOccurs ="0" />

<xs:element name ="List " minOccurs ="0">

555 <xs:complexType >

<xs:sequence >

<xs:element name ="Item " type ="xs:string "

maxOccurs ="unbounded " />

</xs:sequence >

560 </xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

<xs:complexType name ="PersonLegalIdType ">

565 <xs:complexContent >

<xs:extension base ="EntityIdType ">

<xs:attribute name ="countryCode " type ="xs:string " />

APPENDIX A. SCHEMA DEFINITIONS 145

<xs:attribute name ="jurisdiction " type ="xs:string " />

<xs:attribute name =" issuingRegion " type ="xs:string " />

570 <xs:attribute name ="documentType " type ="xs:string " />

<xs:attribute name ="idSource " type ="xs:string " />

</xs:extension >

</xs:complexContent >

</xs:complexType >

575 <xs:complexType name ="DisabilityInfoType ">

<xs:sequence >

<xs:element name ="LevelOfDisability " type ="xs:string "

minOccurs ="0" />

<xs:element name ="Percentage " type ="xs:integer "

580 minOccurs ="0" />

<xs:element name ="Type " type ="xs:string " minOccurs ="0" />

<xs:element name ="AccommodationsNeeded " type ="xs:boolean "

minOccurs ="0" />

</xs:sequence >

585 </xs:complexType >

<xs:complexType name ="JobIdentifierType ">

<xs:sequence >

<xs:element name ="Id" type ="xs:string " />

<xs:element name ="Domain" minOccurs ="0">

590 <xs:complexType >

<xs:sequence >

<xs:element name ="IdIssuer " type ="xs:string "

minOccurs ="0" />

<xs:element name ="IdType" type ="xs:string "

595 minOccurs ="0" />

</xs:sequence >

</xs:complexType >

</xs:element >

</xs:sequence >

600 </xs:complexType >

<xs:complexType name ="PositionIdentifierType ">

<xs:sequence >

<xs:element name ="Id" type ="xs:string " />

<xs:element name ="Domain" minOccurs ="0">

605 <xs:complexType >

<xs:sequence >

<xs:element name ="IdIssuer " type ="xs:string "

minOccurs ="0" />

<xs:element name ="IdType" type ="xs:string "

610 minOccurs ="0" />

</xs:sequence >

</xs:complexType >

</xs:element >

</xs:sequence >

615 </xs:complexType >

<xs:complexType name ="CalculatedValueFixedType ">

<xs:sequence >

<xs:element name ="Value " type ="xs:double " minOccurs ="0" />

</xs:sequence >

620 </xs:complexType >

<!-- Calculated Argument Types -->

<xs:complexType name ="ArgumentType ">

<xs:complexContent >

<xs:extension base =" CalculatedArgumentType ">

625 <xs:attribute name ="index " type ="xs:integer " />

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name ="CalculatedArgumentType ">

630 <xs:sequence >

<xs:element name ="ArgumentValue " type ="ArgumentValueType " />

<xs:element name ="ArgumentVariableName "

type ="ArgumentVariableType " />

</xs:sequence >

635 </xs:complexType >

<xs:complexType name ="ArgumentValueType ">

<xs:simpleContent >

<xs:extension base ="xs:string ">

<xs:attribute name ="name " type ="xs:string " />

640 <xs:attribute name ="multiplier " type ="xs:double " />

</xs:extension >

</xs:simpleContent >

</xs:complexType >

<xs:complexType name ="ArgumentVariableType ">

645 <xs:simpleContent >

<xs:extension base ="xs:string ">

<xs:attribute name ="name " type ="xs:string " />

<xs:attribute name ="multiplier " type ="xs:double " />

</xs:extension >

650 </xs:simpleContent >

APPENDIX A. SCHEMA DEFINITIONS 146

</xs:complexType >

<!-- Basis Type -->

<xs:complexType name ="BasisType ">

<xs:sequence >

655 <xs:element name ="BasisValue " type ="ArgumentValueType " />

<xs:element name ="BasisVariableName "

type ="ArgumentVariableType " />

</xs:sequence >

</xs:complexType >

660 <!-- the Calculated Value Percent -->

<xs:complexType name ="CalculatedValuePercentType ">

<xs:sequence >

<xs:element name ="Basis " type ="BasisType " />

<xs:element name ="Percentage " type ="xs:double " />

665 </xs:sequence >

</xs:complexType >

<!-- the Calculated Value Linear -->

<xs:complexType name ="CalculatedValueLinearType ">

<xs:sequence >

670 <xs:element name ="YIntercept " type ="xs:double "

minOccurs ="0" />

<xs:element name ="Argument " type ="ArgumentType "

maxOccurs ="unbounded " />

</xs:sequence >

675 </xs:complexType >

<!-- the Calculated Lookup Table -->

<xs:complexType name ="CalculatedLookupTableEntryType ">

<xs:sequence >

<xs:element name ="Key" type ="xs:string " />

680 <xs:element name ="Value " type ="ArgumentValueType " />

</xs:sequence >

</xs:complexType >

<xs:complexType name ="CalculatedLookupTableType ">

<xs:sequence >

685 <xs:element name ="LookupTableId " type ="EntityIdType "

minOccurs ="0" />

<xs:element name ="LookupTableName " type ="xs:string "

minOccurs ="0" />

<xs:element name ="LookupTableEntry "

690 type ="CalculatedLookupTableEntryType "

maxOccurs ="unbounded " />

</xs:sequence >

</xs:complexType >

<!-- the Lookup Table -->

695 <xs:complexType name ="CalculatedValueLookupType ">

<xs:sequence >

<xs:element name ="LookupTableId " type ="EntityIdType "

minOccurs ="0" />

<xs:element name ="LookupTable "

700 type ="CalculatedLookupTableType " minOccurs ="0" />

<xs:element name ="LookupKey " type ="xs:string " />

</xs:sequence >

<xs:attribute name ="notFoundValue " type ="xs:double " />

</xs:complexType >

705 <!-- the Calculated Schedule Interval Type -->

<!-- the Calculated Schedule double Interval -- >

<xs:complexType name ="CalculatedScheduleIntervalValueType ">

<xs:simpleContent >

<xs:extension base ="xs:double ">

710 <xs:attribute name ="inclusive " type ="xs:boolean " />

</xs:extension >

</xs:simpleContent >

</xs:complexType >

<xs:complexType name ="CalculatedScheduleTableEntryType ">

715 <xs:sequence >

<xs:element name ="IntervalLow "

type ="CalculatedScheduleIntervalValueType "

minOccurs ="0" />

<xs:element name ="IntervalHigh "

720 type ="CalculatedScheduleIntervalValueType "

minOccurs ="0" />

<xs:element name ="Fixed " type ="CalculatedValueFixedType " />

<xs:element name ="Percent"

type ="CalculatedValuePercentType " />

725 <xs:element name ="Linear"

type ="CalculatedValueLinearType " />

<xs:element name ="Lookup"

type ="CalculatedValueLookupType " />

</xs:sequence >

730 </xs:complexType >

<xs:complexType name ="CalculatedScheduleTableType ">

<xs:sequence >

<xs:element name ="ScheduleTableId " type ="EntityIdType "

APPENDIX A. SCHEMA DEFINITIONS 147

minOccurs ="0" />

735 <xs:element name ="ScheduleTableName " type ="xs:string "

minOccurs ="0" />

<xs:element name ="ScheduleTableEntry "

type ="CalculatedScheduleTableEntryType "

maxOccurs ="unbounded " />

740 </xs:sequence >

</xs:complexType >

<!-- the Schedule Table -->

<xs:complexType name ="CalculatedValueScheduleType ">

<xs:sequence >

745 <xs:element name ="ScheduleTableId " type ="EntityIdType "

minOccurs ="0" />

<xs:element name ="ScheduleTable "

type ="CalculatedScheduleTableType " minOccurs ="0" />

<xs:element name ="ScheduleValue "

750 type ="CalculatedScheduleIntervalValueType " />

</xs:sequence >

<xs:attribute name ="notFoundValue " type ="xs:double " />

</xs:complexType >

<!-- the Calculated Value Extended -->

755 <xs:complexType name ="CalculatedValueExtendedType ">

<xs:sequence >

<xs:element name ="Function " type ="xs:string " />

<xs:element name ="Argument " type ="ArgumentType "

minOccurs ="0" maxOccurs ="unbounded " />

760 </xs:sequence >

</xs:complexType >

<!-- the Calculated value -->

<xs:complexType name ="CalculatedValueType ">

<xs:sequence >

765 <xs:element name ="Fixed " type ="CalculatedValueFixedType " />

<xs:element name ="Percent"

type ="CalculatedValuePercentType " />

<xs:element name ="Linear"

type ="CalculatedValueLinearType " />

770 <xs:element name ="Lookup"

type ="CalculatedValueLookupType " />

<xs:element name ="Schedule "

type ="CalculatedValueScheduleType " />

<xs:element name ="Extended "

775 type ="CalculatedValueExtendedType " />

</xs:sequence >

</xs:complexType >

<!-- infinity types -->

<!-- reusable elements -->

780 <!-- the Deduction -->

<xs:complexType name ="DeductionType ">

<xs:sequence >

<xs:element name ="ApplyToCompensation " type ="xs:string "

minOccurs ="0" maxOccurs ="unbounded " />

785 <xs:element name ="DeductionPlan " type ="DeductionPlanType " />

<xs:element name ="DeductionStartDate " type ="xs:date " />

<xs:element name ="DeductionOrder " type ="xs:integer "

minOccurs ="0" />

<xs:element name ="DeductionEndDate " type ="xs:date"

790 minOccurs ="0" />

<xs:element name ="DeductionFrequency " type ="xs:string "

minOccurs ="0" />

<xs:element name ="DeductionCaseNumber " type ="EntityIdType "

minOccurs ="0" />

795 <xs:element name ="DeductionOptionalDate " type ="xs:string "

minOccurs ="0" maxOccurs ="unbounded " />

<xs:element name ="DeductionPreTaxFlag " type ="xs:boolean "

minOccurs ="0" />

</xs:sequence >

800 <xs:attribute name ="reportOnly " type ="xs:boolean " />

</xs:complexType >

<!-- the Deduction Plan -->

<xs:complexType name ="DeductionPlanType ">

<xs:sequence >

805 <xs:element name ="DeductionCategory " type ="xs:string " />

<xs:element name ="DeductionPlanName " type ="xs:string "

minOccurs ="0" />

<xs:element name ="DeductionPlanId " type ="EntityIdType "

minOccurs ="0" />

810 </xs:sequence >

</xs:complexType >

<!-- the Benefit -->

<xs:complexType name ="BenefitType ">

<xs:sequence >

815 <xs:element name ="ApplyToCompensation " type ="xs:string "

minOccurs ="0" maxOccurs ="unbounded " />

APPENDIX A. SCHEMA DEFINITIONS 148

<xs:element name ="BenefitPlan " type ="BenefitPlanType " />

<xs:element name ="BenefitStartDate " type ="xs:date" />

<xs:element name ="BenefitEndDate " type ="xs:date "

820 minOccurs ="0" />

<xs:element name ="BenefitFrequency " type ="xs:string "

minOccurs ="0" maxOccurs ="unbounded " />

<xs:element name ="BenefitCaseNumber " type ="xs:string "

minOccurs ="0" />

825 <xs:element name ="BenefitOptionalDate " type ="xs:string "

minOccurs ="0" maxOccurs ="unbounded " />

</xs:sequence >

<xs:attribute name =" benefitTaxTreatment " type ="xs:string " />

<xs:attribute name ="reportOnly " type ="xs:boolean " />

830 </xs:complexType >

<!-- the Benefit Plan -->

<xs:complexType name ="BenefitPlanType ">

<xs:sequence >

<xs:element name ="BenefitCategory " type ="xs:string " />

835 <xs:element name ="BenefitPlanName " type ="xs:string "

minOccurs ="0" />

<xs:element name ="BenefitPlanId " type ="EntityIdType "

minOccurs ="0" />

</xs:sequence >

840 </xs:complexType >

<!-- the Amount -->

<xs:complexType name ="PayrollAmountType ">

<xs:sequence >

<xs:element name ="AmountStartDate " type ="xs:date" />

845 <xs:element name ="AmountEndDate " type ="xs:date"

minOccurs ="0" />

<xs:element name ="AmountValue " type ="CalculatedValueType " />

<xs:element name ="AmountLimit " type ="PayrollLimitType "

minOccurs ="0" maxOccurs ="unbounded " />

850 </xs:sequence >

<xs:attribute name ="duration " type ="xs:string " />

<xs:attribute name ="count " type ="xs:integer " />

<xs:attribute name ="currency " type ="xs:string " />

</xs:complexType >

855 <!-- Limit -->

<xs:complexType name ="PayrollLimitType ">

<xs:sequence >

<xs:element name ="LimitMaxValue " type ="xs:double " />

<xs:element name ="LimitMinValue " type ="xs:double " />

860 </xs:sequence >

<xs:attribute name ="type " type ="xs:string " />

</xs:complexType >

<!-- payroll date type

<xs:complexType name ="Payrollxs:date ">

865 <xs:simpleContent >

<xs:extension base ="xs:date">

<xs:attribute name ="type " type ="PayrollOtherxs:date " />

</xs:extension >

</xs:simpleContent >

870 </xs:complexType > -->

<xs:complexType name ="AssessmentStatusType ">

<xs:sequence >

<xs:element name ="Status" type ="xs:string " />

<xs:element name ="Details" type ="xs:string " minOccurs ="0" />

875 <xs:element name ="StatusDate " type ="xs:date " />

</xs:sequence >

</xs:complexType >

<xs:complexType name ="AssessmentRequestType ">

<xs:sequence >

880 <xs:element name ="ClientId " type ="EntityIdType " />

<xs:element name ="ProviderId " type ="EntityIdType "

minOccurs ="0" />

<xs:element name ="ClientOrderId " type ="EntityIdType " />

<xs:element name ="ReceiptId " type ="EntityIdType "

885 minOccurs ="0" />

<xs:element name ="UserArea " type ="UserAreaType "

minOccurs ="0" />

</xs:sequence >

</xs:complexType >

890 <xs:complexType name ="AssessmentResultType ">

<xs:sequence >

<xs:element name ="ClientId " type ="EntityIdType " />

<xs:element name ="ProviderId " type ="EntityIdType "

minOccurs ="0" />

895 <xs:element name ="ClientOrderId " type ="EntityIdType " />

<xs:element name ="ReceiptId " type ="EntityIdType "

minOccurs ="0" />

<xs:element name ="Results" minOccurs ="0"

maxOccurs ="unbounded ">

APPENDIX A. SCHEMA DEFINITIONS 149

900 <xs:complexType >

<xs:sequence >

<xs:element name ="Profile" type ="xs:string "

minOccurs ="0" />

<xs:element name ="OverallResult "

905 type ="AssessmentResultsType "

minOccurs ="0" />

<xs:element name ="DetailResult "

type ="AssessmentResultsType " minOccurs ="0"

maxOccurs ="unbounded " />

910 </xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name ="AssessmentStatus "

type ="AssessmentStatusType " />

915 <xs:element name ="UserArea " type ="UserAreaType "

minOccurs ="0" />

</xs:sequence >

<!-- <xs:attribute ref="xml:lang "/>-->

</xs:complexType >

920 <xs:complexType name ="AssessmentResultsType ">

<xs:sequence >

<xs:element name ="ScoreId" type ="EntityIdType "

minOccurs ="0" />

<xs:element name ="Passed" type ="xs:boolean " minOccurs ="0" />

925 <xs:element name ="Description " type ="xs:string "

minOccurs ="0" />

<xs:element name ="Score " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

930 <xs:simpleContent >

<xs:extension base ="xs:double ">

<xs:attribute name ="type " type ="xs:string "

use="required " />

</xs:extension >

935 </xs:simpleContent >

</xs:complexType >

</xs:element >

<xs:element name ="Scale " type ="xs:string " minOccurs ="0" />

<xs:element name ="Band " type ="xs:string " minOccurs ="0" />

940 <xs:element name ="Comments " type ="xs:string "

minOccurs ="0" />

</xs:sequence >

</xs:complexType >

<xs:complexType name ="SemCrypt_PersonInfoType ">

945 <xs:sequence >

<xs:element name ="PersonId " type ="EntityIdType " />

<xs:element name ="PersonName " type ="PersonNameType " />

<xs:element name ="ContactMethod " type ="ContactMethodType "

minOccurs ="0" maxOccurs ="unbounded " />

950 <xs:element name ="PersonDescriptors "

type ="PersonDescriptorsType " minOccurs ="0"

maxOccurs ="unbounded " />

</xs:sequence >

</xs:complexType >

955 <xs:complexType name ="SemCrypt_CompetenciesType ">

<xs:sequence >

<xs:element name ="Competency " maxOccurs ="unbounded ">

<xs:complexType >

<xs:sequence >

960 <xs:element name ="CompetencyId "

minOccurs ="0">

<xs:complexType >

<xs:attribute name ="id"

type ="xs:string " use="required " />

965 <xs:attribute name ="idOwner "

type ="xs:string " />

<xs:attribute name ="description "

type ="xs:string " />

</xs:complexType >

970 </xs:element >

<xs:element name ="TaxonomyId " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

<xs:attribute name ="id"

975 type ="xs:string " use="required " />

<xs:attribute name ="idOwner "

type ="xs:string " />

<xs:attribute name ="description "

type ="xs:string " />

980 </xs:complexType >

</xs:element >

<xs:element name ="CompetencyEvidence "

APPENDIX A. SCHEMA DEFINITIONS 150

minOccurs ="0" maxOccurs ="unbounded ">

<xs:complexType >

985 <xs:sequence >

<xs:element name ="EvidenceId "

minOccurs ="0">

<xs:complexType >

<xs:attribute name ="id"

990 type ="xs:string "

use="required " />

<xs:attribute

name ="idOwner"

type ="xs:string " />

995 <xs:attribute

name ="description "

type ="xs:string " />

</xs:complexType >

</xs:element >

1000 <xs:element name ="NumericValue ">

<xs:complexType >

<xs:simpleContent >

<xs:extension

base ="xs:double ">

1005 <xs:attribute

name ="minValue "

type ="xs:double " />

<xs:attribute

name ="maxValue "

1010 type ="xs:double " />

<xs:attribute

name ="description "

type ="xs:string " />

</xs:extension >

1015 </xs:simpleContent >

</xs:complexType >

</xs:element >

<xs:element name ="StringValue ">

<xs:complexType >

1020 <xs:simpleContent >

<xs:extension

base ="xs:string ">

<xs:attribute

name ="minValue "

1025 type ="xs:string " />

<xs:attribute

name ="maxValue "

type ="xs:string " />

<xs:attribute

1030 name ="description "

type ="xs:string " />

</xs:extension >

</xs:simpleContent >

</xs:complexType >

1035 </xs:element >

<xs:element

name ="SupportingInformation "

type ="xs:string " minOccurs ="0"

maxOccurs ="unbounded " />

1040 </xs:sequence >

<xs:attribute name ="dateOfIncident "

type ="xs:date" />

<xs:attribute name ="name "

type ="xs:string " />

1045 <xs:attribute name ="typeDescription "

type ="xs:string " />

<xs:attribute name ="expirationDate "

type ="xs:date" />

<xs:attribute name ="typeId"

1050 type ="xs:string " />

<xs:attribute name ="required "

type ="xs:boolean " />

<xs:attribute name ="lastUsed "

type ="xs:date" />

1055 </xs:complexType >

</xs:element >

<xs:element name ="CompetencyWeight "

minOccurs ="0" maxOccurs ="unbounded ">

<xs:complexType >

1060 <xs:sequence >

<xs:element name ="NumericValue ">

<xs:complexType >

<xs:simpleContent >

<xs:extension

1065 base ="xs:double ">

APPENDIX A. SCHEMA DEFINITIONS 151

<xs:attribute

name ="minValue "

type ="xs:double " />

<xs:attribute

1070 name ="maxValue "

type ="xs:double " />

<xs:attribute

name ="description "

type ="xs:string " />

1075 </xs:extension >

</xs:simpleContent >

</xs:complexType >

</xs:element >

<xs:element name ="StringValue ">

1080 <xs:complexType >

<xs:simpleContent >

<xs:extension

base ="xs:string ">

<xs:attribute

1085 name ="minValue "

type ="xs:string " />

<xs:attribute

name ="maxValue "

type ="xs:string " />

1090 <xs:attribute

name ="description "

type ="xs:string " />

</xs:extension >

</xs:simpleContent >

1095 </xs:complexType >

</xs:element >

<xs:element

name ="SupportingInformation "

type ="xs:string " minOccurs ="0"

1100 maxOccurs ="unbounded " />

</xs:sequence >

<xs:attribute name ="type "

type ="xs:string " />

</xs:complexType >

1105 </xs:element >

<xs:element name ="UserArea "

type ="UserAreaType " minOccurs ="0" />

</xs:sequence >

<xs:attribute name ="name " type ="xs:string " />

1110 <xs:attribute name ="description " type ="xs:string " />

<xs:attribute name ="required " type ="xs:boolean " />

</xs:complexType >

</xs:element >

</xs:sequence >

1115 </xs:complexType >

<xs:complexType name ="SemCrypt_JobPositionHistoryType ">

<xs:sequence >

<xs:element name ="JobHeader " minOccurs ="0"

maxOccurs ="unbounded ">

1120 <xs:complexType >

<xs:sequence >

<xs:element name ="JobId "

type ="JobIdentifierType " />

<xs:element name ="JobTitle " type ="xs:string "

1125 minOccurs ="0" />

<xs:element name ="JobDescription "

type ="xs:string " minOccurs ="0" />

<xs:element name ="JobStatus " minOccurs ="0">

<xs:complexType >

1130 <xs:sequence >

<xs:element name ="Code "

type ="xs:string "

minOccurs ="0" />

<xs:element name ="Description "

1135 type ="xs:string "

minOccurs ="0" />

</xs:sequence >

</xs:complexType >

</xs:element >

1140 <xs:element name ="JobLevel " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

<xs:sequence >

<xs:element name ="Code "

1145 type ="xs:string "

minOccurs ="0" />

<xs:element name ="Description "

type ="xs:string "

APPENDIX A. SCHEMA DEFINITIONS 152

minOccurs ="0" />

1150 </xs:sequence >

<xs:attribute name ="type "

type ="xs:string " />

</xs:complexType >

</xs:element >

1155 <xs:element name ="JobCategory " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

<xs:sequence >

<xs:element name ="Code "

1160 type ="xs:string "

minOccurs ="0" />

<xs:element name ="Description "

type ="xs:string "

minOccurs ="0" />

1165 </xs:sequence >

<xs:attribute name ="type "

type ="xs:string " />

</xs:complexType >

</xs:element >

1170 </xs:sequence >

<xs:attribute name ="validFrom " type ="xs:date" />

<xs:attribute name ="validTo " type ="xs:date" />

</xs:complexType >

</xs:element >

1175 <xs:element name ="PositionHeader " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

<xs:sequence >

<xs:element name ="PositionId "

1180 type ="PositionIdentifierType " />

<xs:element name ="JobId "

type ="PositionIdentifierType "

minOccurs ="0" />

<xs:element name ="PositionTitle "

1185 type ="xs:string " minOccurs ="0" />

<xs:element name ="PositionType "

type ="xs:string " minOccurs ="0" />

<xs:element name ="PositionDescription "

type ="xs:string " />

1190 <xs:element name ="PositionStatus ">

<xs:complexType >

<xs:sequence >

<xs:element name ="Code "

type ="xs:string "

1195 minOccurs ="0" />

<xs:element name ="Description "

type ="xs:string "

minOccurs ="0" />

</xs:sequence >

1200 </xs:complexType >

</xs:element >

<xs:element name ="ReportToPositionId "

type ="PositionIdentifierType " />

<xs:element name ="SpecialInstructions "

1205 type ="xs:string " />

<xs:element name ="TypeOfHours "

type ="xs:string " minOccurs ="0" />

<xs:element name ="Quantity " type ="xs:double "

minOccurs ="0" />

1210 <xs:element name ="RequestedPerson "

minOccurs ="0" maxOccurs ="unbounded ">

<xs:complexType >

<xs:sequence >

<xs:element name ="PersonName "

1215 type ="PersonNameType "

minOccurs ="0" />

<xs:element name ="PersonId "

type ="EntityIdType "

minOccurs ="0" />

1220 <xs:element name ="Supplier "

type ="EntityReferenceType "

minOccurs ="0" />

</xs:sequence >

<xs:attribute name ="mandatory "

1225 type ="xs:boolean " />

<xs:attribute name ="currentlyAssigned "

type ="xs:boolean " />

</xs:complexType >

</xs:element >

1230 <xs:element name ="PositionSpecificCondition "

minOccurs ="0" maxOccurs ="unbounded ">

APPENDIX A. SCHEMA DEFINITIONS 153

<xs:complexType >

<xs:sequence >

<xs:element name ="ConditionCode "

1235 type ="xs:string "

minOccurs ="0" />

<xs:element

name ="ConditionDescription "

type ="xs:string "

1240 minOccurs ="0" />

<xs:element name ="ConditionValue "

type ="xs:string "

minOccurs ="0" />

</xs:sequence >

1245 </xs:complexType >

</xs:element >

</xs:sequence >

<xs:attribute name ="validFrom " type ="xs:date" />

<xs:attribute name ="validTo " type ="xs:date" />

1250 </xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

<xs:complexType name ="SemCrypt_SalaryType ">

1255 <xs:sequence >

<xs:element name ="PayrollInstructions ">

<xs:complexType >

<xs:sequence >

<xs:element name ="PayrollEmployer ">

1260 <xs:complexType >

<xs:sequence >

<xs:element name ="EmployerId "

type ="EntityIdType "

maxOccurs ="unbounded " />

1265 <xs:element name ="EmployerName "

type ="xs:string "

minOccurs ="0" />

<xs:element

name ="EmployerGovernmentId "

1270 type ="EntityIdType "

minOccurs ="0"

maxOccurs ="unbounded " />

</xs:sequence >

</xs:complexType >

1275 </xs:element >

<xs:element name ="PersonInstruction "

maxOccurs ="unbounded ">

<xs:complexType >

<xs:sequence >

1280 <!-- Employee -->

<xs:element

name ="PayrollPerson ">

<xs:complexType >

<xs:sequence >

1285 <xs:element

name ="PersonId "

type ="EntityIdType "

maxOccurs ="unbounded " />

<xs:element

1290 name ="PersonName "

type ="PersonNameType "

minOccurs ="0"

maxOccurs ="unbounded " />

<xs:element

1295 name ="PersonGovernmentId "

type ="EntityIdType "

minOccurs ="0"

maxOccurs ="unbounded " />

</xs:sequence >

1300 </xs:complexType >

</xs:element >

<!-- the instruction type -->

<xs:element name ="Instruction ">

<xs:complexType >

1305 <xs:sequence >

<xs:element

name ="PaymentDate "

type ="xs:date"

minOccurs ="0" />

1310 <xs:element

name ="Deduction "

type ="DeductionType " />

<xs:element

name ="Benefit"

APPENDIX A. SCHEMA DEFINITIONS 154

1315 type ="BenefitType " />

<xs:element

name ="Amount"

type ="PayrollAmountType "

minOccurs ="0" />

1320 <xs:element

name ="UserArea "

type ="UserAreaType "

minOccurs ="0" />

</xs:sequence >

1325 <xs:attribute name ="mode "

type ="xs:string "

use="required " />

</xs:complexType >

</xs:element >

1330 <xs:element name ="UserArea "

type ="UserAreaType "

minOccurs ="0" />

</xs:sequence >

</xs:complexType >

1335 </xs:element >

<!-- the request control totals -->

<xs:element name ="RequestTotal " minOccurs ="0"

maxOccurs ="unbounded ">

<xs:complexType >

1340 <xs:sequence >

<xs:element name ="Deduction "

type ="DeductionType "

minOccurs ="0" />

<xs:element name ="Amount"

1345 type ="PayrollAmountType " />

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name ="UserArea "

1350 type ="UserAreaType " minOccurs ="0" />

</xs:sequence >

<xs:attribute name ="version " type ="xs:string " />

<xs:attribute name ="currency " type ="xs:string " />

<!--<xs:attribute ref="xml:lang "/>-->

1355 </xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

<xs:complexType name ="SemCrypt_AssessmentResultsType ">

1360 <xs:sequence >

<xs:element name ="AssessmentResult "

type ="AssessmentResultType " maxOccurs ="unbounded " />

</xs:sequence >

</xs:complexType >

1365 </xs:schema >

Appendix B

Service Interfaces

B.1 AuthorizationService.wsdl

In SemCrypt applications, access control is performed on XPath fragments.
The authorization service, however, as specified by the SemCrypt Authen-
tication and Authorization Framework (SCAAF) [142], provides a general-
purpose authorization operation, which abstracts from actual service im-
plementation. This and the following services are subject to an in-depth
discussion in Chapter 6.

Listing B.1: AuthorizationService.wsdl
<?xml version="1.0" encoding ="UTF -8"?>

<wsdl:definitions xmlns:soap ="http: // schemas.xmlsoap .org/wsdl /soap /"

xmlns:tns ="http: // semcrypt .ec3.at/services /authorize "

xmlns:wsdl ="http: //schemas .xmlsoap .org/wsdl /"

5 xmlns:xsd ="http: //www.w3.org /2001/ XMLSchema "

name ="AuthorizationService "

targetNamespace ="http: //semcrypt .ec3.at/services /authorize ">

<wsdl:types >

<xsd:schema

10 targetNamespace ="http: //semcrypt .ec3.at/services /authorize ">

<xsd:complexType name ="AuthorizationException "></xsd:complexType >

<xsd:complexType name ="CommonResponse "></xsd:complexType >

</xsd:schema >

</wsdl:types >

15 <wsdl:message name =" authorizeRequest ">

<wsdl:part name ="token " type ="xsd:string " />

<wsdl:part name ="pathValue " type ="xsd:string " />

<wsdl:part name ="operation " type ="xsd:string "></wsdl:part >

</wsdl:message >

20 <wsdl:message name =" authorize_faultMsg ">

<wsdl:part name ="fault " type ="tns:AuthorizationException " />

</wsdl:message >

<wsdl:message name =" authorizeResponse ">

<wsdl:part name ="response " type ="tns:CommonResponse "></wsdl:part >

25 </wsdl:message >

<wsdl:portType name ="AuthorizationService ">

<wsdl:operation name ="authorize ">

<wsdl:input message="tns:authorizeRequest " />

30 <wsdl:output message="tns:authorizeResponse "></wsdl:output >

<wsdl:fault name ="fault "

message="tns:authorize_faultMsg ">

</wsdl:fault >

</wsdl:operation >

35 </wsdl:portType >

<wsdl:binding name =" AuthorizationServiceSOAP "

155

APPENDIX B. SERVICE INTERFACES 156

type ="tns:AuthorizationService ">

<soap:binding style ="document "

40 transport ="http: // schemas.xmlsoap.org/soap /http " />

<wsdl:operation name ="authorize ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /authorize /authorize " />

<wsdl:input ><soap:body use="literal " parts ="token pathValue operation " /></wsdl:input >

45 <wsdl:output ><soap:body use="literal" parts ="response " /></wsdl:output >

</wsdl:operation >

</wsdl:binding >

<wsdl:service name =" AuthorizationService ">

<wsdl:port binding =" tns:AuthorizationServiceSOAP "

50 name ="AuthorizationServiceSOAP ">

<soap:address

location ="http: // semcrypt .ec3.at/services /authorize " />

</wsdl:port >

</wsdl:service >

55 </wsdl:definitions >

B.2 CipherService.wsdl

For accessing the encryption/decryption implementation, the cipher service
defined by the SemCrypt Encryption and Decryption Framework (SCEDF)
[144], offers appropriate operations to be included in existing SemCrypt ap-
plication workflows, as well as general-purpose operations for any client party
that needs to encrypt or decrypt sensitive data.

Listing B.2: CipherService.wsdl
<?xml version="1.0" encoding ="UTF -8"?>

<wsdl:definitions xmlns:soap ="http: // schemas.xmlsoap .org/wsdl /soap /"

xmlns:tns ="http: // semcrypt .ec3.at/services /cipher"

xmlns:wsdl ="http: //schemas .xmlsoap .org/wsdl /"

5 xmlns:xsd ="http: //www.w3.org /2001/ XMLSchema " name ="CipherService "

targetNamespace ="http: //semcrypt .ec3.at/services /cipher">

<wsdl:types >

<xsd:schema

targetNamespace ="http: //semcrypt .ec3.at/services /cipher">

10 <xsd:complexType name ="CipherException "></xsd:complexType >

</xsd:schema >

</wsdl:types >

<wsdl:message name ="encryptRequest ">

<wsdl:part name ="token " type ="xsd:string " />

15 <wsdl:part name ="queryString " type ="xsd:string "></wsdl:part >

<wsdl:part name ="plainText " type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

<wsdl:message name ="decryptRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

20 <wsdl:part name ="queryString " type ="xsd:string "></wsdl:part >

<wsdl:part name ="cipherText " type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

<wsdl:message name =" encryptForAllRequest ">

<wsdl:part name ="plainText " type ="xsd:base64Binary "></wsdl:part >

25 <wsdl:part name ="cipherKey " type ="xsd:base64Binary "></wsdl:part >

<wsdl:part name ="algorithm " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" decryptForAllRequest ">

<wsdl:part name ="cipherText " type ="xsd:base64Binary "></wsdl:part >

30 <wsdl:part name ="cipherKey " type ="xsd:base64Binary "></wsdl:part >

<wsdl:part name ="algorithm " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name ="encryptResponse ">

<wsdl:part name ="cipherText " type ="xsd:base64Binary "></wsdl:part >

35 </wsdl:message >

<wsdl:message name ="decryptResponse ">

<wsdl:part name ="plainText " type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

<wsdl:message name =" CipherService_faultMsg ">

40 <wsdl:part name ="fault " type ="tns:CipherException "></ wsdl:part >

</wsdl:message >

<wsdl:portType name ="CipherService ">

APPENDIX B. SERVICE INTERFACES 157

<wsdl:operation name ="encrypt">

45 <wsdl:input message="tns:encryptRequest " />

<wsdl:output message="tns:encryptResponse " />

<!-- <wsdl:fault name ="fault " message="tns:encrypt_faultMsg "></wsdl:fault > -->

<wsdl:fault name ="fault " message="tns:CipherService_faultMsg "></wsdl:fault >

</wsdl:operation >

50 <wsdl:operation name ="decrypt">

<wsdl:input message="tns:decryptRequest "></wsdl:input >

<wsdl:output message="tns:decryptResponse "></wsdl:output >

<!-- <wsdl:fault name ="fault " message="tns:decrypt_faultMsg "></wsdl:fault > -->

<wsdl:fault name ="fault " message="tns:CipherService_faultMsg "></wsdl:fault >

55 </wsdl:operation >

<wsdl:operation name ="encryptForAll ">

<wsdl:input message="tns:encryptForAllRequest "></wsdl:input >

<wsdl:output message="tns:encryptResponse "></wsdl:output >

<!-- <wsdl:fault name ="fault " message="tns:encrypt_faultMsg "></wsdl:fault > -->

60 <wsdl:fault name ="fault "

message="tns:CipherService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="decryptForAll ">

65 <wsdl:input message="tns:decryptForAllRequest "></wsdl:input >

<wsdl:output message="tns:decryptResponse "></wsdl:output >

<!-- <wsdl:fault name ="fault " message="tns:decrypt_faultMsg "></wsdl:fault > -->

<wsdl:fault name ="fault "

message="tns:CipherService_faultMsg ">

70 </wsdl:fault >

</wsdl:operation >

</wsdl:portType >

<wsdl:binding name =" CipherServiceSOAP " type ="tns:CipherService ">

75 <soap:binding style ="document "

transport ="http: // schemas.xmlsoap.org/soap /http " />

<wsdl:operation name ="encrypt">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /cipher/ encrypt" />

80 <wsdl:input ><soap:body use="literal " /></wsdl:input >

<wsdl:output ><soap:body use="literal" /></wsdl:output >

</wsdl:operation >

<wsdl:operation name ="decrypt">

<soap:operation

85 soapAction ="http: // semcrypt .ec3.at/services /cipher/ decrypt" />

<wsdl:input ><soap:body use="literal " /></wsdl:input >

<wsdl:output ><soap:body use="literal" /></wsdl:output >

</wsdl:operation >

<wsdl:operation name ="encryptForAll ">

90 <soap:operation

soapAction ="http: // semcrypt .ec3.at/services /cipher/ encryptForAll " />

<wsdl:input ><soap:body use="literal " /></wsdl:input >

<wsdl:output ><soap:body use="literal" /></wsdl:output >

</wsdl:operation >

95 <wsdl:operation name ="decryptForAll ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /cipher/ decryptForAll " />

<wsdl:input ><soap:body use="literal " /></wsdl:input >

<wsdl:output ><soap:body use="literal" /></wsdl:output >

100 </wsdl:operation >

</wsdl:binding >

<wsdl:service name ="CipherService ">

<wsdl:port binding =" tns:CipherServiceSOAP "

105 name ="CipherServiceSOAP ">

<soap:address

location ="http: // semcrypt .ec3.at/services /cipher" />

</wsdl:port >

</wsdl:service >

110 </wsdl:definitions >

B.3 StorageService.wsdl

The storage service defined by the SemCrypt Database Framework (SCDBF)
[143] is not part of the security server, but intended as gateway to interacting
with the unsecured data storage provider. Service implementations should
only take care of request/response mapping to the underlying database man-

APPENDIX B. SERVICE INTERFACES 158

agement system. Security issues, on the other hand, should be handled by
the secure domain and are thus not subject of the storage service. Declared
operations should be used for direct data access and need not invoke security
services themselves.

Listing B.3: StorageService.wsdl
<?xml version="1.0" encoding ="UTF -8"?>

<wsdl:definitions xmlns:soap ="http: // schemas.xmlsoap .org/wsdl /soap /"

xmlns:tns ="http: // semcrypt .ec3.at/services /storage"

xmlns:wsdl ="http: //schemas .xmlsoap .org/wsdl /"

5 xmlns:xsd ="http: //www.w3.org /2001/ XMLSchema " name ="StorageService "

targetNamespace ="http: //semcrypt .ec3.at/services /storage">

<wsdl:types >

<xsd:schema

targetNamespace ="http: //semcrypt .ec3.at/services /storage">

10 <xsd:complexType name ="StorageException "></xsd:complexType >

<xsd:complexType name ="CommonResponse "></xsd:complexType >

</xsd:schema >

</wsdl:types >

<wsdl:message name =" selectDocumentRequest ">

15 <wsdl:part name ="token " type ="xsd:string " />

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" selectDocumentResponse ">

<wsdl:part name ="documentContent " type ="xsd:string "></wsdl:part >

20 </wsdl:message >

<wsdl:message name =" updateDocumentRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

<wsdl:part name ="documentContent " type ="xsd:string "></wsdl:part >

25 </wsdl:message >

<wsdl:message name =" insertDocumentRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

<wsdl:part name ="documentContent " type ="xsd:string "></wsdl:part >

30 </wsdl:message >

<wsdl:message name =" deleteDocumentRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

35 <wsdl:message name ="queryRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

<wsdl:part name ="queryRequest " type ="xsd:string "></wsdl:part >

</wsdl:message >

40 <wsdl:message name ="queryResponse ">

<wsdl:part name ="queryResponse " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name ="updateRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

45 <wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

<wsdl:part name ="updateRequest " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" StorageService_commonResponse ">

<wsdl:part name ="response " type ="tns:CommonResponse " />

50 </wsdl:message >

<wsdl:message name =" StorageService_faultMsg ">

<wsdl:part name ="fault " type ="tns:StorageException "></wsdl:part >

</wsdl:message >

<wsdl:portType name ="StorageService ">

55 <wsdl:operation name ="selectDocument ">

<wsdl:input message="tns:selectDocumentRequest " />

<wsdl:output message="tns:selectDocumentResponse "></ wsdl:output >

<!-- <wsdl:fault name ="fault " message="tns:selectDocument_faultMsg "></wsdl:fault > -->

<wsdl:fault name ="fault "

60 message="tns:StorageService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="insertDocument ">

<wsdl:input message="tns:insertDocumentRequest "></wsdl:input >

65 <!-- <wsdl:fault name ="fault " message="tns:insertDocument_faultMsg "></wsdl:fault > -->

<wsdl:output

message="tns:StorageService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

70 message="tns:StorageService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="updateDocument ">

APPENDIX B. SERVICE INTERFACES 159

<wsdl:input message="tns:updateDocumentRequest "></wsdl:input >

75 <!-- <wsdl:fault name ="fault " message="tns:updateDocument_faultMsg "></wsdl:fault > -->

<wsdl:output

message="tns:StorageService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

80 message="tns:StorageService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="deleteDocument ">

<wsdl:input message="tns:deleteDocumentRequest "></wsdl:input >

85 <!-- <wsdl:fault name ="fault " message="tns:deleteDocument_faultMsg "></wsdl:fault > -->

<wsdl:output

message="tns:StorageService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

90 message="tns:StorageService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="query ">

<wsdl:input message="tns:queryRequest "></wsdl:input >

95 <wsdl:output message="tns:queryResponse "></wsdl:output >

<wsdl:fault name ="fault "

message="tns:StorageService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

100 <wsdl:operation name ="update">

<wsdl:input message="tns:updateRequest "></wsdl:input >

<wsdl:output

message="tns:StorageService_commonResponse ">

</wsdl:output >

105 <wsdl:fault name ="fault "

message="tns:StorageService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

</wsdl:portType >

110 <wsdl:binding name =" StorageServiceSOAP "

type ="tns:StorageService ">

<soap:binding style ="document "

transport ="http: // schemas.xmlsoap.org/soap /http " />

<wsdl:operation name ="selectDocument ">

115 <soap:operation

soapAction ="http: // semcrypt .ec3.at/services /storage /selectDocument " />

<wsdl:input >

<soap:body use="literal " />

</wsdl:input >

120 <wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

<wsdl:operation name ="insertDocument ">

125 <soap:operation

soapAction ="http: // semcrypt .ec3.at/services /storage /insertDocument " />

<wsdl:input >

<soap:body use="literal " />

</wsdl:input >

130 <wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

<wsdl:operation name ="updateDocument ">

135 <soap:operation

soapAction ="http: // semcrypt .ec3.at/services /storage /updateDocument " />

<wsdl:input >

<soap:body use="literal " />

</wsdl:input >

140 <wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

<wsdl:operation name ="deleteDocument ">

145 <soap:operation

soapAction ="http: // semcrypt .ec3.at/services /storage /deleteDocument " />

<wsdl:input >

<soap:body use="literal " />

</wsdl:input >

150 <wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

<wsdl:operation name ="query ">

155 <soap:operation

soapAction ="http: // semcrypt .ec3.at/services /storage /query " />

APPENDIX B. SERVICE INTERFACES 160

<wsdl:input >

<soap:body use="literal " />

</wsdl:input >

160 <wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

<wsdl:operation name ="update">

165 <soap:operation

soapAction ="http: // semcrypt .ec3.at/services /storage /update" />

<wsdl:input >

<soap:body use="literal " />

</wsdl:input >

170 <wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

</wsdl:binding >

175 <wsdl:service name ="StorageService ">

<wsdl:port binding =" tns:StorageServiceSOAP "

name ="StorageServiceSOAP ">

<soap:address

location ="http: // semcrypt .ec3.at/services /storage" />

180 </wsdl:port >

</wsdl:service >

</wsdl:definitions >

B.4 SemCryptService.wsdl

For application developers, who do not want to take care of service interac-
tion configuration, the SemCrypt service contained by the SemCrypt Web
Services Framework (SCWSF) [148] and its reference implementation respec-
tively, offers all operations required in typical SemCrypt application settings.
Access to fine-granular services may be abstracted through SemCrypt service
deployment and configuration.

Listing B.4: SemCryptService.wsdl
<?xml version="1.0" encoding ="UTF -8"?>

<wsdl:definitions xmlns:soap ="http: // schemas.xmlsoap .org/wsdl /soap /"

xmlns:tns ="http: // semcrypt .ec3.at/services /types "

xmlns:wsdl ="http: //schemas .xmlsoap .org/wsdl /"

5 xmlns:xsd ="http: //www.w3.org /2001/ XMLSchema "

name ="SemCryptService "

targetNamespace ="http: //semcrypt .ec3.at/services /types ">

<wsdl:types >

<xsd:schema

10 targetNamespace ="http: //semcrypt .ec3.at/services /types ">

<xsd:complexType name ="SemCryptException "></xsd:complexType >

<xsd:complexType name ="CommonResponse "></xsd:complexType >

</xsd:schema >

</wsdl:types >

15 <wsdl:message name ="queryRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

<wsdl:part name ="queryString " type ="xsd:string "></wsdl:part >

</wsdl:message >

20 <wsdl:message name ="queryResponse ">

<wsdl:part name ="result" type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name ="updateRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

25 <wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

<wsdl:part name ="updateString " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" SemCryptService_insertDocumentRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

30 <wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

<wsdl:part name ="content" type ="xsd:string "></wsdl:part >

<wsdl:part name ="schemaId " type ="xsd:string "></wsdl:part >

</wsdl:message >

APPENDIX B. SERVICE INTERFACES 161

<wsdl:message name =" SemCryptService_updateDocumentRequest ">

35 <wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

<wsdl:part name ="content" type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" SemCryptService_deleteDocumentRequest ">

40 <wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" SemCryptService_selectDocumentRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

45 <wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" SemCryptService_selectDocumentResponse ">

<wsdl:part name ="content" type ="xsd:string "></wsdl:part >

</wsdl:message >

50 <wsdl:message name =" SemCryptService_insertSchemaRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="schemaId " type ="xsd:string "></wsdl:part >

<wsdl:part name ="content" type ="xsd:string "></wsdl:part >

</wsdl:message >

55 <wsdl:message name =" SemCryptService_updateSchemaRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="schemaId " type ="xsd:string "></wsdl:part >

<wsdl:part name ="content" type ="xsd:string "></wsdl:part >

</wsdl:message >

60 <wsdl:message name =" SemCryptService_deleteSchemaRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="schemaId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" SemCryptService_selectSchemaRequest ">

65 <wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="schemaId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" SemCryptService_selectSchemaResponse ">

<wsdl:part name ="content" type ="xsd:string "></wsdl:part >

70 </wsdl:message >

<wsdl:message name =" SemCryptServiceCommonResponse ">

<wsdl:part name ="response " type ="tns:CommonResponse "></wsdl:part >

</wsdl:message >

<wsdl:message name =" SemCryptService_faultMsg ">

75 <wsdl:part name ="fault " type ="tns:SemCryptException "></wsdl:part >

</wsdl:message >

<wsdl:portType name ="SemCryptService ">

<wsdl:operation name ="selectDocument ">

<wsdl:input

80 message="tns:SemCryptService_selectDocumentRequest ">

</wsdl:input >

<wsdl:output

message="tns:SemCryptService_selectDocumentResponse ">

</wsdl:output >

85 <wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="deleteDocument ">

90 <wsdl:input

message="tns:SemCryptService_deleteDocumentRequest ">

</wsdl:input >

<wsdl:output

message="tns:SemCryptServiceCommonResponse ">

95 </wsdl:output >

<wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

100 <wsdl:operation name ="insertDocument ">

<wsdl:input

message="tns:SemCryptService_insertDocumentRequest ">

</wsdl:input >

<wsdl:output

105 message="tns:SemCryptServiceCommonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

110 </wsdl:operation >

<wsdl:operation name ="insertDocumentForUser ">

<wsdl:input

message="tns:SemCryptService_insertDocumentRequest ">

</wsdl:input >

115 <wsdl:output

message="tns:SemCryptServiceCommonResponse ">

APPENDIX B. SERVICE INTERFACES 162

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

120 </wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="insertDocumentForRole ">

<wsdl:input

message="tns:SemCryptService_insertDocumentRequest ">

125 </wsdl:input >

<wsdl:output

message="tns:SemCryptServiceCommonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

130 message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="updateDocument ">

<wsdl:input

135 message="tns:SemCryptService_updateDocumentRequest ">

</wsdl:input >

<wsdl:output

message="tns:SemCryptServiceCommonResponse ">

</wsdl:output >

140 <wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="insertSchema ">

145 <wsdl:input

message="tns:SemCryptService_insertSchemaRequest ">

</wsdl:input >

<wsdl:output

message="tns:SemCryptServiceCommonResponse ">

150 </wsdl:output >

<wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

155 <wsdl:operation name ="insertSchemaForUser ">

<wsdl:input

message="tns:SemCryptService_insertSchemaRequest ">

</wsdl:input >

<wsdl:output

160 message="tns:SemCryptServiceCommonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

165 </wsdl:operation >

<wsdl:operation name ="insertSchemaForRole ">

<wsdl:input

message="tns:SemCryptService_insertSchemaRequest ">

</wsdl:input >

170 <wsdl:output

message="tns:SemCryptServiceCommonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

175 </wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="updateSchema ">

<wsdl:input

message="tns:SemCryptService_updateSchemaRequest ">

180 </wsdl:input >

<wsdl:output

message="tns:SemCryptServiceCommonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

185 message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="deleteSchema ">

<wsdl:input

190 message="tns:SemCryptService_deleteSchemaRequest ">

</wsdl:input >

<wsdl:output

message="tns:SemCryptServiceCommonResponse ">

</wsdl:output >

195 <wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="selectSchema ">

APPENDIX B. SERVICE INTERFACES 163

200 <wsdl:input

message="tns:SemCryptService_selectSchemaRequest ">

</wsdl:input >

<wsdl:output

message="tns:SemCryptService_selectSchemaResponse ">

205 </wsdl:output >

<wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

210 <wsdl:operation name ="query ">

<wsdl:input message="tns:queryRequest "></wsdl:input >

<wsdl:output message="tns:queryResponse "></wsdl:output >

<wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

215 </wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="update">

<wsdl:input message="tns:updateRequest "></wsdl:input >

<wsdl:output

220 message="tns:SemCryptServiceCommonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:SemCryptService_faultMsg ">

</wsdl:fault >

225 </wsdl:operation >

</wsdl:portType >

<wsdl:binding name =" SemCryptServiceSOAP "

type ="tns:SemCryptService ">

<soap:binding style ="document "

230 transport ="http: // schemas.xmlsoap.org/soap /http " />

<wsdl:operation name ="selectDocument ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /selectDocument " />

<wsdl:input >

235 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

240 </wsdl:operation >

<wsdl:operation name ="deleteDocument ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /deleteDocument " />

<wsdl:input >

245 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

250 </wsdl:operation >

<wsdl:operation name ="insertDocument ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /insertDocument " />

<wsdl:input >

255 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

260 </wsdl:operation >

<wsdl:operation name ="insertDocumentForRole ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /insertDocumentForRole " />

<wsdl:input >

265 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

270 </wsdl:operation >

<wsdl:operation name ="insertDocumentForUser ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /insertDocumentForUser " />

<wsdl:input >

275 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

280 </wsdl:operation >

<wsdl:operation name ="updateDocument ">

<soap:operation

APPENDIX B. SERVICE INTERFACES 164

soapAction ="http: // semcrypt .ec3.at/services /types /updateDocument " />

<wsdl:input >

285 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

290 </wsdl:operation >

<wsdl:operation name ="selectSchema ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /selectSchema " />

<wsdl:input >

295 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

300 </wsdl:operation >

<wsdl:operation name ="deleteSchema ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /deleteSchema " />

<wsdl:input >

305 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

310 </wsdl:operation >

<wsdl:operation name ="insertSchema ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /insertSchema " />

<wsdl:input >

315 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

320 </wsdl:operation >

<wsdl:operation name ="insertSchemaForRole ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /insertSchemaForRole " />

<wsdl:input >

325 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

330 </wsdl:operation >

<wsdl:operation name ="insertSchemaForUser ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /insertSchemaForUser " />

<wsdl:input >

335 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

340 </wsdl:operation >

<wsdl:operation name ="updateSchema ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /updateSchema " />

<wsdl:input >

345 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

350 </wsdl:operation >

<wsdl:operation name ="query ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /query " />

<wsdl:input >

355 <soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

360 </wsdl:operation >

<wsdl:operation name ="update">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /types /update" />

<wsdl:input >

365 <soap:body use="literal " />

APPENDIX B. SERVICE INTERFACES 165

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

370 </wsdl:operation >

</wsdl:binding >

<wsdl:service name ="SemCryptService ">

<wsdl:port binding =" tns:SemCryptServiceSOAP "

name ="SemCryptServiceSOAP ">

375 <soap:address

location ="http: // semcrypt .ec3.at/services /types " />

</wsdl:port >

</wsdl:service >

</wsdl:definitions >

B.5 ManagementService.wsdl

In order to facilitate application deployment and runtime configuration, the
management service as specified by the SemCrypt Web Services Framework
(SCWSF) [148] provides operations for selecting and modifying access control
policies, encryption instructions, as well as application users and user groups,
also referred to as roles.

Listing B.5: ManagementService.wsdl
<?xml version="1.0" encoding ="UTF -8"?>

<wsdl:definitions xmlns:soap ="http: // schemas.xmlsoap .org/wsdl /soap /"

xmlns:tns ="http: // semcrypt .ec3.at/services /management "

xmlns:wsdl ="http: //schemas .xmlsoap .org/wsdl /"

5 xmlns:xsd ="http: //www.w3.org /2001/ XMLSchema "

name ="ManagementService "

targetNamespace ="http: //semcrypt .ec3.at/services /management ">

<wsdl:types >

<xsd:schema

10 targetNamespace ="http: //semcrypt .ec3.at/services /management ">

<xsd:complexType name ="CommonResponse "></xsd:complexType >

<xsd:complexType name ="ManagementException "></xsd:complexType >

<xsd:complexType name ="User "></xsd:complexType >

<xsd:complexType name ="Role "></xsd:complexType >

15 </xsd:schema >

</wsdl:types >

<wsdl:message name =" insertPolicyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="policyData " type ="xsd:base64Binary " />

20 </wsdl:message >

<wsdl:message name =" insertSpecificPolicyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="policyData " type ="xsd:base64Binary "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

25 </wsdl:message >

<wsdl:message name =" updatePolicyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="policyData " type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

30 <wsdl:message name =" updateSpecificPolicyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="policyData " type ="xsd:base64Binary "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

35 <wsdl:message name =" deletePolicyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" deleteSpecificPolicyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

40 <wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" selectPolicyRequest ">

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

45 <wsdl:message name =" selectPolicyResponse ">

<wsdl:part name ="policyData " type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

APPENDIX B. SERVICE INTERFACES 166

<wsdl:message name =" selectSpecificPolicyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

50 <wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" insertXCipherRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="xcipherData " type ="xsd:base64Binary "></wsdl:part >

55 </wsdl:message >

<wsdl:message name =" insertSpecificXCipherRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="xcipherData " type ="xsd:base64Binary "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

60 </wsdl:message >

<wsdl:message name =" updateXCipherRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="xcipherData " type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

65 <wsdl:message name =" updateSpecificXCipherRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="xcipherData " type ="xsd:base64Binary "></wsdl:part >

<wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

70 <wsdl:message name =" deleteXCipherRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" deleteSpecificXCipherRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

75 <wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" selectXCipherRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

</wsdl:message >

80 <wsdl:message name =" selectXCipherResponse ">

<wsdl:part name ="xcipherData " type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

<wsdl:message name =" selectSpecificXCipherRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

85 <wsdl:part name ="documentId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" insertKeyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="keyData" type ="xsd:base64Binary "></wsdl:part >

90 <wsdl:part name ="keyId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" updateKeyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="keyData" type ="xsd:base64Binary "></wsdl:part >

95 <wsdl:part name ="keyId " type ="xsd:string "></wsdl:part >

</wsdl:message >

<wsdl:message name =" deleteKeyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="keyId " type ="xsd:string "></wsdl:part >

100 </wsdl:message >

<wsdl:message name =" selectKeyRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="keyId " type ="xsd:string "></wsdl:part >

</wsdl:message >

105 <wsdl:message name =" selectKeyResponse ">

<wsdl:part name ="keyData" type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

<wsdl:message name =" insertUserRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

110 <wsdl:part name ="user " type ="tns:User "></wsdl:part >

</wsdl:message >

<wsdl:message name =" updateUserRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="user " type ="tns:User "></wsdl:part >

115 </wsdl:message >

<wsdl:message name =" selectUserRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="user " type ="tns:User "></wsdl:part >

</wsdl:message >

120 <wsdl:message name =" selectUserResponse ">

<wsdl:part name ="user " type ="tns:User "></wsdl:part >

</wsdl:message >

<wsdl:message name =" deleteUserRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

125 <wsdl:part name ="user " type ="tns:User "></wsdl:part >

</wsdl:message >

<wsdl:message name =" insertRoleRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="role " type ="tns:Role "></wsdl:part >

130 </wsdl:message >

APPENDIX B. SERVICE INTERFACES 167

<wsdl:message name =" updateRoleRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="role " type ="tns:Role "></wsdl:part >

</wsdl:message >

135 <wsdl:message name =" deleteRoleRequest ">

<wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="role " type ="tns:Role "></wsdl:part >

</wsdl:message >

<wsdl:message name =" selectRoleRequest ">

140 <wsdl:part name ="token " type ="xsd:string "></wsdl:part >

<wsdl:part name ="role " type ="tns:Role "></wsdl:part >

</wsdl:message >

<wsdl:message name =" selectRoleResponse ">

<wsdl:part name ="role " type ="tns:Role "></wsdl:part >

145 </wsdl:message >

<wsdl:message name =" ManagementService_commonResponse ">

<wsdl:part name ="response " type ="tns:CommonResponse "></wsdl:part >

</wsdl:message >

<wsdl:message name =" ManagementService_faultMsg ">

150 <wsdl:part name ="fault " type ="tns:ManagementException "></wsdl:part >

</wsdl:message >

<wsdl:portType name ="ManagementService ">

<wsdl:operation name ="insertPolicy ">

<wsdl:input message="tns:insertPolicyRequest " />

155 <wsdl:output

message="tns:ManagementService_commonResponse " />

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

160 </wsdl:operation >

<wsdl:operation name ="insertDocumentPolicy ">

<wsdl:input message="tns:insertSpecificPolicyRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

165 </wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

170 <wsdl:operation name ="updatePolicy ">

<wsdl:input message="tns:updatePolicyRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

175 <wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="updateDocumentPolicy ">

180 <wsdl:input message="tns:updateSpecificPolicyRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

185 message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="deletePolicy ">

<wsdl:input message="tns:deletePolicyRequest "></wsdl:input >

190 <wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

195 </wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="deleteDocumentPolicy ">

<wsdl:input message="tns:deleteSpecificPolicyRequest "></wsdl:input >

<wsdl:output

200 message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

205 </wsdl:operation >

<wsdl:operation name ="selectPolicy ">

<wsdl:input message="tns:selectPolicyRequest "></wsdl:input >

<wsdl:output message="tns:selectPolicyResponse "></wsdl:output >

<wsdl:fault name ="fault "

210 message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="selectDocumentPolicy ">

APPENDIX B. SERVICE INTERFACES 168

<wsdl:input message="tns:selectSpecificPolicyRequest "></wsdl:input >

215 <wsdl:output message="tns:selectPolicyResponse "></wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

220 <wsdl:operation name ="insertXCipher ">

<wsdl:input message="tns:insertXCipherRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

225 <wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="insertDocumentXCipher ">

230 <wsdl:input message="tns:insertSpecificXCipherRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

235 message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="updateXCipher ">

<wsdl:input message="tns:updateXCipherRequest "></wsdl:input >

240 <wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

245 </wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="updateDocumentXCipher ">

<wsdl:input message="tns:updateSpecificXCipherRequest "></wsdl:input >

<wsdl:output

250 message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

255 </wsdl:operation >

<wsdl:operation name ="deleteXCipher ">

<wsdl:input message="tns:deleteXCipherRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

260 </wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

265 <wsdl:operation name ="deleteDocumentXCipher ">

<wsdl:input message="tns:deleteSpecificXCipherRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

270 <wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="selectXCipher ">

275 <wsdl:input message="tns:selectXCipherRequest "></wsdl:input >

<wsdl:output message="tns:selectXCipherResponse "></wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

280 </wsdl:operation >

<wsdl:operation name ="selectDocumentXCipher ">

<wsdl:input message="tns:selectSpecificXCipherRequest "></wsdl:input >

<wsdl:output message="tns:selectXCipherResponse "></wsdl:output >

<wsdl:fault name ="fault "

285 message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="insertKey ">

<wsdl:input message="tns:insertKeyRequest "></wsdl:input >

290 <wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

295 </wsdl:fault >

</wsdl:operation >

APPENDIX B. SERVICE INTERFACES 169

<wsdl:operation name ="updateKey ">

<wsdl:input message="tns:updateKeyRequest "></wsdl:input >

<wsdl:output

300 message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

305 </wsdl:operation >

<wsdl:operation name ="deleteKey ">

<wsdl:input message="tns:deleteKeyRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

310 </wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

315 <wsdl:operation name ="selectKey ">

<wsdl:input message="tns:selectKeyRequest "></wsdl:input >

<wsdl:output message="tns:selectKeyResponse "></wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

320 </wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="insertUser ">

<wsdl:input message="tns:insertUserRequest "></wsdl:input >

<wsdl:output

325 message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

330 </wsdl:operation >

<wsdl:operation name ="updateUser ">

<wsdl:input message="tns:updateUserRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

335 </wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

340 <wsdl:operation name ="deleteUser ">

<wsdl:input message="tns:selectUserRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

345 <wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="insertRole ">

350 <wsdl:input message="tns:insertRoleRequest "></wsdl:input >

<wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

355 message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="updateRole ">

<wsdl:input message="tns:updateRoleRequest "></wsdl:input >

360 <wsdl:output

message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

365 </wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="deleteRole ">

<wsdl:input message="tns:deleteRoleRequest "></wsdl:input >

<wsdl:output

370 message="tns:ManagementService_commonResponse ">

</wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

375 </wsdl:operation >

<wsdl:operation name ="selectRole ">

<wsdl:input message="tns:selectRoleRequest "></wsdl:input >

<wsdl:output message="tns:selectRoleResponse "></wsdl:output >

<wsdl:fault name ="fault "

APPENDIX B. SERVICE INTERFACES 170

380 message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="selectUser ">

<wsdl:input message="tns:selectUserRequest "></wsdl:input >

385 <wsdl:output message="tns:selectUserResponse "></wsdl:output >

<wsdl:fault name ="fault "

message="tns:ManagementService_faultMsg ">

</wsdl:fault >

</wsdl:operation >

390 </wsdl:portType >

<wsdl:binding name =" ManagementServiceSOAP "

type ="tns:ManagementService ">

<soap:binding style ="document "

transport ="http: // schemas.xmlsoap.org/soap /http " />

395 <wsdl:operation name ="insertPolicy ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /insertPolicy " />

<wsdl:input >

<soap:body use="literal " />

400 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

405 <wsdl:operation name ="insertDocumentPolicy ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /insertPolicyForRole " />

<wsdl:input >

<soap:body use="literal " />

410 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

415 <wsdl:operation name ="updatePolicy ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /updatePolicy " />

<wsdl:input >

<soap:body use="literal " />

420 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

425 <wsdl:operation name ="updateDocumentPolicy ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /updatePolicyForRole " />

<wsdl:input >

<soap:body use="literal " />

430 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

435 <wsdl:operation name ="deletePolicy ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /deletePolicy " />

<wsdl:input >

<soap:body use="literal " />

440 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

445 <wsdl:operation name ="deleteDocumentPolicy ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /deletePolicyForUser " />

<wsdl:input >

<soap:body use="literal " />

450 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

455 <wsdl:operation name ="selectPolicy ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /selectPolicy " />

<wsdl:input >

<soap:body use="literal " />

460 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

APPENDIX B. SERVICE INTERFACES 171

</wsdl:output >

</wsdl:operation >

465 <wsdl:operation name ="selectDocumentPolicy ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /selectPolicyForRole " />

<wsdl:input >

<soap:body use="literal " />

470 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

475 <wsdl:operation name ="insertXCipher ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /insertXCipher " />

<wsdl:input >

<soap:body use="literal " />

480 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

485 <wsdl:operation name ="insertDocumentXCipher ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /insertXCipherForUser " />

<wsdl:input >

<soap:body use="literal " />

490 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

495 <wsdl:operation name ="updateXCipher ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /updateXCipher " />

<wsdl:input >

<soap:body use="literal " />

500 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

505 <wsdl:operation name ="updateDocumentXCipher ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /updateXCipherForRole " />

<wsdl:input >

<soap:body use="literal " />

510 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

515 <wsdl:operation name ="deleteXCipher ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /deleteXCipher " />

<wsdl:input >

<soap:body use="literal " />

520 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

525 <wsdl:operation name ="deleteDocumentXCipher ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /deleteXCipherForUser " />

<wsdl:input >

<soap:body use="literal " />

530 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

535 <wsdl:operation name ="selectXCipher ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /selectXCipher " />

<wsdl:input >

<soap:body use="literal " />

540 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

545 <wsdl:operation name ="selectDocumentXCipher ">

APPENDIX B. SERVICE INTERFACES 172

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /selectXCipherForUser " />

<wsdl:input >

<soap:body use="literal " />

550 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

555 <wsdl:operation name ="insertUser ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /insertUser " />

<wsdl:input >

<soap:body use="literal " />

560 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

565 <wsdl:operation name ="updateUser ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /updateUser " />

<wsdl:input >

<soap:body use="literal " />

570 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

575 <wsdl:operation name ="deleteUser ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /deleteUser " />

<wsdl:input >

<soap:body use="literal " />

580 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

585 <wsdl:operation name ="selectUser ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /selectUser " />

<wsdl:input >

<soap:body use="literal " />

590 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

595 <wsdl:operation name ="insertRole ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /insertRole " />

<wsdl:input >

<soap:body use="literal " />

600 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

605 <wsdl:operation name ="updateRole ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /updateRole " />

<wsdl:input >

<soap:body use="literal " />

610 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

615 <wsdl:operation name ="deleteRole ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /deleteRole " />

<wsdl:input >

<soap:body use="literal " />

620 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

625 <wsdl:operation name ="selectRole ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /selectRole " />

<wsdl:input >

APPENDIX B. SERVICE INTERFACES 173

<soap:body use="literal " />

630 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

635 <wsdl:operation name ="insertKey ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /insertKey " />

<wsdl:input >

<soap:body use="literal " />

640 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

645 <wsdl:operation name ="updateKey ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /updateKey " />

<wsdl:input >

<soap:body use="literal " />

650 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

655 <wsdl:operation name ="deleteKey ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /deleteKey " />

<wsdl:input >

<soap:body use="literal " />

660 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

665 <wsdl:operation name ="selectKey ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /management /selectKey " />

<wsdl:input >

<soap:body use="literal " />

670 </wsdl:input >

<wsdl:output >

<soap:body use="literal " />

</wsdl:output >

</wsdl:operation >

675 </wsdl:binding >

<wsdl:service name =" ManagementService ">

<wsdl:port binding =" tns:ManagementServiceSOAP "

name ="ManagementServiceSOAP ">

<soap:address

680 location ="http: // semcrypt .ec3.at/services /management " />

</wsdl:port >

</wsdl:service >

</wsdl:definitions >

B.6 SecurityService.wsdl

The following listing represents the WSDL version of the SemCrypt security
service, which as such is part of the SemCrypt Security Service Framework
(SCSSF) [147]. Service operations are specifically tailored to the needs of
the SemCrypt Database Management System (SCDBMS) [93]. Chapter 6
presents an RMI as well as TCP interface to satisfy application requirements
that can not be met by XML Web service technology.

Listing B.6: SecurityService.wsdl
<?xml version="1.0" encoding ="UTF -8"?>

<wsdl:definitions xmlns:soap ="http: // schemas.xmlsoap .org/wsdl /soap /"

xmlns:tns ="http: // semcrypt .ec3.at/services /security "

xmlns:wsdl ="http: //schemas .xmlsoap .org/wsdl /"

APPENDIX B. SERVICE INTERFACES 174

5 xmlns:xsd ="http: //www.w3.org /2001/ XMLSchema "

name ="SecurityService "

targetNamespace ="http: //semcrypt .ec3.at/services /security ">

<wsdl:types >

<xsd:schema

10 targetNamespace ="http: //semcrypt .ec3.at/services /security ">

<xsd:complexType name ="AuthorizationException "></xsd:complexType >

<xsd:complexType name ="CipherException "></xsd:complexType >

<xsd:complexType name ="IndexClassifierType ">

<xsd:sequence >

15 <xsd:element name ="index " type ="xsd:string " />

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name ="DocumentClassifierType ">

<xsd:sequence >

20 <xsd:element name ="documentId " type ="xsd:string " />

<xsd:element name ="pathValue " type ="xsd:string " />

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name ="Classifier ">

25 <xsd:choice >

<xsd:element name ="DocumentClassifier "

type ="tns:DocumentClassifierType ">

</xsd:element >

<xsd:element name ="IndexClassifier "

30 type ="tns:IndexClassifierType ">

</xsd:element >

</xsd:choice >

</xsd:complexType >

</xsd:schema >

35 </wsdl:types >

<wsdl:message name =" authorizeRequest ">

<wsdl:part name ="pathValue " type ="xsd:string " />

<wsdl:part name ="operation " type ="xsd:string "></wsdl:part >

</wsdl:message >

40 <wsdl:message name =" authorizeResponse ">

<wsdl:part name ="response " type ="xsd:string " />

</wsdl:message >

<wsdl:message name =" encryptValueRequest ">

<wsdl:part name ="value " type ="xsd:base64Binary "></wsdl:part >

45 <wsdl:part name ="operation " type ="xsd:string "></wsdl:part >

<wsdl:part name ="classifier " type ="tns:Classifier "></ wsdl:part >

</wsdl:message >

<wsdl:message name =" encryptValueResponse ">

<wsdl:part name ="encrypted " type ="xsd:base64Binary "></wsdl:part >

50 </wsdl:message >

<wsdl:message name =" decryptValueRequest ">

<wsdl:part name ="value " type ="xsd:base64Binary "></wsdl:part >

<wsdl:part name ="operation " type ="xsd:string "></wsdl:part >

<wsdl:part name ="classifier " type ="tns:Classifier "></ wsdl:part >

55 </wsdl:message >

<wsdl:message name =" decryptValueResponse ">

<wsdl:part name ="decrypted " type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

<wsdl:message name =" encryptIdRequest ">

60 <wsdl:part name ="id" type ="xsd:base64Binary "></wsdl:part >

<wsdl:part name ="operation " type ="xsd:string "></wsdl:part >

<wsdl:part name ="classifier " type ="tns:Classifier "></ wsdl:part >

</wsdl:message >

<wsdl:message name =" encryptIdResponse ">

65 <wsdl:part name ="encrypted " type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

<wsdl:message name =" decryptIdRequest ">

<wsdl:part name ="id" type ="xsd:base64Binary "></wsdl:part >

<wsdl:part name ="operation " type ="xsd:string "></wsdl:part >

70 <wsdl:part name ="classifier " type ="tns:Classifier "></ wsdl:part >

</wsdl:message >

<wsdl:message name =" decryptIdResponse ">

<wsdl:part name ="decrypted " type ="xsd:base64Binary "></wsdl:part >

</wsdl:message >

75 <wsdl:message name =" SecurityServiceCipher_faultMsg ">

<wsdl:part name ="fault " type ="tns:CipherException "></ wsdl:part >

</wsdl:message >

<wsdl:message name =" SecurityServiceAuthorization_faultMsg ">

<wsdl:part name ="fault " type ="tns:AuthorizationException "></wsdl:part >

80 </wsdl:message >

<wsdl:portType name ="SecurityService ">

<wsdl:operation name ="authorize ">

<wsdl:input message="tns:authorizeRequest " />

<wsdl:output message="tns:authorizeResponse " />

85 <wsdl:fault name ="fault "

message="tns:SecurityServiceAuthorization_faultMsg ">

</wsdl:fault >

APPENDIX B. SERVICE INTERFACES 175

</wsdl:operation >

<wsdl:operation name ="encryptValue ">

90 <wsdl:input message="tns:encryptValueRequest "></wsdl:input >

<wsdl:output message="tns:encryptValueResponse "></wsdl:output >

<wsdl:fault name ="fault "

message="tns:SecurityServiceCipher_faultMsg ">

</wsdl:fault >

95 </wsdl:operation >

<wsdl:operation name ="decryptValue ">

<wsdl:input message="tns:decryptValueRequest "></wsdl:input >

<wsdl:output message="tns:decryptValueResponse "></wsdl:output >

<wsdl:fault name ="fault "

100 message="tns:SecurityServiceCipher_faultMsg ">

</wsdl:fault >

</wsdl:operation >

<wsdl:operation name ="encryptId ">

<wsdl:input message="tns:encryptIdRequest "></wsdl:input >

105 <wsdl:output message="tns:encryptIdResponse "></wsdl:output >

<wsdl:fault name ="fault "

message="tns:SecurityServiceCipher_faultMsg ">

</wsdl:fault >

</wsdl:operation >

110 <wsdl:operation name ="decryptId ">

<wsdl:input message="tns:decryptIdRequest "></wsdl:input >

<wsdl:output message="tns:decryptIdResponse "></wsdl:output >

<wsdl:fault name ="fault "

message="tns:SecurityServiceCipher_faultMsg ">

115 </wsdl:fault >

</wsdl:operation >

</wsdl:portType >

<wsdl:binding name =" SecurityServiceSOAP "

type ="tns:SecurityService ">

120 <soap:binding style ="document "

transport ="http: // schemas.xmlsoap.org/soap /http " />

<wsdl:operation name ="authorize ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /security /authorize " />

125 <wsdl:input >

<soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

130 </wsdl:output >

</wsdl:operation >

<wsdl:operation name ="encryptValue ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /security /encryptValue " />

135 <wsdl:input >

<soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

140 </wsdl:output >

</wsdl:operation >

<wsdl:operation name ="decryptValue ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /security /decryptValue " />

145 <wsdl:input >

<soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

150 </wsdl:output >

</wsdl:operation >

<wsdl:operation name ="encryptId ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /security /encryptId " />

155 <wsdl:input >

<soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

160 </wsdl:output >

</wsdl:operation >

<wsdl:operation name ="decryptId ">

<soap:operation

soapAction ="http: // semcrypt .ec3.at/services /security /decryptId " />

165 <wsdl:input >

<soap:body use="literal " />

</wsdl:input >

<wsdl:output >

<soap:body use="literal " />

170 </wsdl:output >

APPENDIX B. SERVICE INTERFACES 176

</wsdl:operation >

</wsdl:binding >

<wsdl:service name ="SecurityService ">

<wsdl:port binding =" tns:SecurityServiceSOAP "

175 name ="SecurityServiceSOAP ">

<soap:address

location ="http: // semcrypt .ec3.at/services /security " />

</wsdl:port >

</wsdl:service >

180 </wsdl:definitions >

APPENDIX B. SERVICE INTERFACES 177

[]

Bibliography

[1] C. Allen and L. Pilot. HR-XML: Enabling Pervasive HR e-Business.
http://www.gca.org/papers/xmleurope2001/papers/html/

s18-2b.html, May 2001.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Con-
cepts, Architectures and Applications. Springer-Verlag, Berlin, Heidel-
berg, 2004.

[3] S. Anderson, J. Bohren, T. Boubez, M. Chanliau, G. Della-Librera,
B. Dixon, P. Garg, M. Gudgin, S. Hada, P. Hallam-Baker, M. Hondo,
C. Kaler, H. Lockhart, R. Martherus, H. Maruyama, A. Nadalin,
N. Nagaratnam, A. Nash, R. Philpott, D. Platt, H. Prafullchandra,
M. Sahu, J. Shewchuk, D. Simon, D. Srinivas, E. Waingold, D. Waite,
D. Walter, and R. Zolfonoon. Web Services Secure Conversation
Language (WS-SecureConversation).
http://www-128.ibm.com/developerworks/library/

specification/ws-secon/, February 2005.

[4] S. Anderson, J. Bohren, T. Boubez, M. Chanliau, G. Della-Librera,
B. Dixon, P. Garg, M. Gudgin, P. Hallam-Baker, M. Hondo, C. Kaler,
H. L. R. Martherus, H. Maruyama, A. Nadalin, N. Nagaratnam,
A. Nash, R. Philpott, D. Platt, H. Prafullchandra, M. Sahu,
J. Shewchuk, D. Simon, D. Srinivas, E. Waingold, D. Waite, D. Wal-
ter, and R. Zolfonoon. Web Services Trust Language (WS-Trust).
http://www-128.ibm.com/developerworks/library/

specification/ws-trust/, February 2005.

[5] C. Anutariya, S. Chatvichienchai, M. Iwiahara, V. Wuwongse, and
Y. Kambayashi. Rules and Rule Markup Languages for the Semantic
Web, volume 2876, chapter A Rule-Based XML Access Control Model,
pages 35–48. Springer-Verlag, Berlin, Heidelberg, 2003.

178

BIBLIOGRAPHY 179

[6] Apache Software Foundation. Apache Tomcat.
http://tomcat.apache.org/, 2004.

[7] Apache Software Foundation. Welcome to JaxMe 2.
http://ws.apache.org/jaxme/, 2004.

[8] Apache Software Foundation. Apache Xindice.
http://xml.apache.org/xindice/, 2005.

[9] Apache Software Foundation. Web Services - Axis.
http://ws.apache.org/axis/, 2005.

[10] Apache Software Foundation. Apache WSS4J.
http://ws.apache.org/wss4j/, 2006.

[11] Apache Software Foundation. Welcome to XMLBeans.
http://xml.apache.org/xmlbeans/, 2006.

[12] Apache Software Foundation. Apache Cayenne. Object Relational
Mapping, Persistence and Caching for Java.
http://cayenne.apache.org/, 2007.

[13] Apache Software Foundation. Welcome to Apache Axis2/Java.
http://ws.apache.org/axis2/, 2007.

[14] Apache Software Foundation. Welcome to XML Security.
http://xml.apache.org/security/, 2007.

[15] A. Aviz̆ienis, J.-C. Laprie, B. Randell, and C. Landwehr. Ba-
sic Concepts and Taxonomy of Dependable and Secure Computing.
IEEE Transactions on Dependable and Secure Computing, 1(1):11–33,
January-March 2004.

[16] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-
Baker, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N. Na-
garatnam, H. Prafullchandra, C. von Riegen, D. Roth, J. Schlimmer,
C. Sharp, J. Shewchuk, A. Vedamuthu, Ümit Yalçinalp, and D. Or-
chard. Web Services Policy Framework (WS-Policy). March 2006.
Version 1.2.
http://www-128.ibm.com/developerworks/library/

specification/ws-polfram/, March 2006.

[17] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-
Baker, M. Hondo, C. Kaler, H. Maruyama, A. Nadalin, D. Orchard,

BIBLIOGRAPHY 180

H. Prafullchandra, C. von Riegen, D. Roth, J. Schlimmer, C. Sharp,
J. Shewchuk, A. Vedamuthu, and Ümit Yalçinalp. Web Services Policy
Attachment (WS-PolicyAttachment). March 2006. Version 1.2.
http://www-128.ibm.com/developerworks/library/

specification/ws-polatt/, March 2006.

[18] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon. XML-
Signature Syntax and Processing. W3C Recommendation 12 February
2002.
http://www.w3.org/TR/xmldsig-core/, February 2002.

[19] K. Beck and E. Gamma. Contributing to Eclipse. Principles, Patterns
and Plug-Ins. Addison-Wesley Professional, October 2003.

[20] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Ro-
bie, and J. Siméon. XML Path Language (XPath) 2.0. W3C Recom-
mendation 23 January 2007.
http://www.w3.org/TR/xpath20/, January 2007.

[21] T. Berners-Lee. Semantic Web - XML2000 - slide Architecture.
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.

html, 2000.

[22] E. Bertino, S. Castano, and E. Ferrari. Securing XML Documents with
Author-X. IEEE Internet Computing, 5(3):21–31, 2001.

[23] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Specifying and
enforcing access control policies for XML document sources. World
Wide Web, 3(3):139–151, 2000.

[24] E. Bertino and E. Ferrari. Secure and Selective Dissemination of XML
Documents. ACM Transactions on Information and System Security
(TISSEC), 5(3):290–331, August 2002.

[25] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language. W3C Recommen-
dation 23 January 2007.
http://www.w3.org/TR/xquery/, January 2007.

[26] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
and D. Orchard. Web Services Architecture. W3C Working Group Note
11 February 2004.
http://www.w3.org/TR/ws-arch/, 2004.

BIBLIOGRAPHY 181

[27] R. Bourret. XML and Databases.
http://www.rpbourret.com/xml/XMLAndDatabases.htm, 2005.

[28] D. Box, M. Hondo, C. Kaler, H. Maruyama, A. Nadalin, N. Nagarat-
nam, P. Patrick, C. von Riegen, and J. Shewchuk. Web Services Policy
Assertions Language (WS-PolicyAssertions). Version 1.0. December
18, 2002.
http://www-128.ibm.com/developerworks/library/

specification/ws-polas/, December 2002.

[29] J. Boyer. Canonical XML Version 1.0. W3C Recommendation 15 March
2001.
http://www.w3.org/TR/xml-c14n, March 2001.

[30] J. Boyer, D. E. Eastlake, and J. Reagle. Exclusive XML Canonicaliza-
tion Version 1.0. W3C Recommendation 18 July 2002.
http://www.w3.org/TR/xml-exc-c14n/, July 2002.

[31] J. Boyer, M. Hughes, and J. Reagle. XML-Signature Xpath Filter 2.0.
W3C Recommendation 08 November 2002.
http://www.w3.org/TR/xmldsig-filter2/, November 2002.

[32] J. M. Boyer, D. Landwehr, R. Merrick, T. V. Raman, M. Dubinko, and
L. L. Klotz. XForms 1.0 (Second Edition). W3C Recommendation 14
March 2006.
http://www.w3.org/TR/xforms/, March 2006.

[33] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C Rec-
ommendation 16 August 2006, edited in place 29 September 2006.
http://www.w3.org/TR/REC-xml/, September 2006.

[34] R. Butek. Which style of WSDL should I use?
http://www-128.ibm.com/developerworks/webservices/library/

ws-whichwsdl/, 2005.

[35] L. M. Camarinha-Matos, editor. Virtual Enterprises and Collabora-
tive Networks. Kluwer Academic Publishers, Toulouse, France, August
2004.

[36] J. Cao, L. Sun, and H. Wang. Towards Secure XML Document with Us-
age Contol. In Y. Zhang, editor, 7th Asia Pacific Web Conference (AP-
Web), pages 296–307, Shanghai, China, March 2005. Springer-Verlag
Berlin Heidelberg.

BIBLIOGRAPHY 182

[37] H. L. Cardoso and E. Oliveira. Virtual Enterprise Normative Frame-
work within Electronic Institutions. In 5th International Workshop on
Engineering Societies in the Agents World (ESAW), Toulouse, France,
October 2004.

[38] B. Carminati and E. Ferrari. AC-XML Documents: Improving the
Performance of a Web Access Control Module. In ACM Symposium
on Access Control Models and Technologies (SACMAT), Stockholm,
Sweden, June 2005. ACM.

[39] B. Carminati and E. Ferrari. Trusted Privacy Manager: A System
for Privacy Enforcement on Outsourced Data. In 21st International
Conference on Data Engineering Workshops (ICDEW), 2005.

[40] D. Chamberlin, D. Florescu, and J. Robie. XQuery Update Facility.
W3C Working Draft 11 July 2006.
http://www.w3.org/TR/xqupdate/, 2006.

[41] S. Chatvichienchai, C. Anutariya, M. Iwaihara, V. Wuwongse, and
Y. Kambayashi. Towards Integration of XML Document Access and
Version Control. In F. Galindo, editor, 15th International Conference
on Database and Expert Systems Applications (DEXA), pages 791–800,
Zaragoza, Spain, September 2004. Springer-Verlag Berlin Heidelberg.

[42] A. B. Chaudhri, A. Rashid, and R. Zicari. XML Data Management.
Native XML and XML-Enabled Database Systems. Addison-Wesley
Professional, March 2003.

[43] Chiba Project. Chiba.
http://chiba.sourceforge.net/, February 2007.

[44] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Services Description Language (WSDL) 1.1. W3C Note 15 March 2001.
http://www.w3.org/TR/wsdl, March 2001.

[45] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C Recommen-
dation 16 November 1999.
http://www.w3.org/TR/xslt, November 1999.

[46] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0.
W3C Recommendation 16 November 1999.
http://www.w3.org/TR/xpath, November 1999.

BIBLIOGRAPHY 183

[47] codehaus. jaxen.
http://jaxen.org/, December 2006.

[48] CollabNet, Inc. GlassFish Community. Building an Open Source Java
EE 5 Application Server .
https://glassfish.dev.java.net/, 2006.

[49] CollabNet, Inc. javacc. Project Home.
https://javacc.dev.java.net/, 2006.

[50] CollabNet, Inc. xmldiff. Project home.
https://xmldiff.dev.java.net/, 2006.

[51] D. Connolly. Overview of SGML Resources.
http://www.w3.org/MarkUp/SGML/, March 2004.

[52] Cover Pages Hosted by OASIS. Project Management XML Schema
(PMXML).
http://xml.coverpages.org/projectManageSchema.html, March
2000.

[53] J. Crampton. Applying Hierarchical and Role-Based Access Control to
XML Douments. In ACM Workshop on Secure Web Services, Fairfax,
VA, USA, October 2004. ACM.

[54] E. Damiani, S. de Capitani di Vimercati, S. Paraboschi, and P. Sama-
rati. A Fine-Grained Access Control System for XML Documents.
ACM Transactions on Information and System Security (TISSEC),
5(2):169–202, May 2002.

[55] E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati. Balancing Confidentiality and Efficiency in Untrusted
Relational DBMSs. In 10th ACM Conference on Computer and Com-
munications Security (CCE), Washington, DC, USA, October 2003.
ACM.

[56] E. Damiani, P. Samarati, S. D. C. di Vimercati, and S. Paraboschi.
Controlling Access to XML Documents. IEEE Internet Computing,
5(6):18–28, November-December 2001.

[57] G. Della-Libera, M. Gudgin, P. Hallam-Baker, M. Hondo,
H. Granqvist, C. Kaler, H. Maruyama, M. McIntosh, A. Nadalin,
N. Nagaratnam, R. Philpott, H. Prafullchandra, J. Shewchuk,
D. Walter, and R. Zolfonoon. Web Services Security Policy Language

BIBLIOGRAPHY 184

(WS-SecurityPolicy). July 2005. Version 1.1.
http://www-128.ibm.com/developerworks/library/

specification/ws-secpol/, July 2005.

[58] S. DeRose, R. D. Jr., P. Grosso, E. Maler, J. Marsh, and N. Walsh.
XML Pointer Language (XPointer). W3C Working Draft 16 August
2002.
http://www.w3.org/TR/xptr/, January 2002.

[59] S. DeRose, E. Maler, and D. Orchard. XML Linking Language (XLink)
Version 1.0. W3C Recommendation 27 June 2001.
http://www.w3.org/TR/xlink/, June 2001.

[60] J. Dorn. Planning in virtual enterprises. International journal of elec-
tronic business, 2(5):557–565, 2004.

[61] J. Dorn. MOVE. Management and Optimization of business processes
in Virtual Enterprises.
http://move.ec3.at/, 2005.

[62] J. Dorn and W. Schreiner. Security and Privacy Management in Virtual
Enterprises. E-Commerce Competence Center (EC3), January 2007.

[63] S. Dustdar and W. Schreiner. A Survey on Web Services Composition.
International Journal of Web and Grid Services, 1(1):1–30, January
2005.

[64] E. Dzakic. Tabellenkalkulation als verteilte Anwendung. Master’s the-
sis, Institute of Software Technology and Interactive Systems, Elec-
tronic Commerce Group, Vienna University of Technology, 2007.

[65] D. Eastlake and J. Reagle. XML Signature WG.
http://www.w3.org/Signature/, July 2006.

[66] T. Eberhartl. Sichere Archivierung von SMS. Master’s thesis, Institute
of Software Technology and Interactive Systems, Electronic Commerce
Group, Vienna University of Technology, 2007.

[67] Everware-CBDI Inc. Web Services Roadmap. Guiding the Transition
to Web Services and SOA.
http://roadmap.cbdiforum.com/reports/protocols/summary.

php, 2007.

[68] eXist. Open Source Native XML Database.
http://exist.sourceforge.net/, 2006.

BIBLIOGRAPHY 185

[69] S. Farrell and S. Mysore. XML Key Management Working Group.
http://www.w3.org/2001/XKMS/, 2004.

[70] S. Flesca, F. Furfaro, and E. Masciari. On the minimization of Xpath
queries. In 29th International Conference on Vey Large Data Bases
(VLDB), Berlin, Germany, September 2003.

[71] formsPlayer. formsPlayer.
http://www.formsplayer.com/, 2007.

[72] I. Fundulaki and M. Marx. Specifying Access Control Policies for XML
Documents with XPath. In ACM symposium on Access control models
and technologies (SACMAT), Yorktown Heights, New York, USA, June
2004. ACM.

[73] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley Long-
man, 1 edition, March 1995.

[74] S. K. Goel, C. Clifton, and A. Rosenthal. Derived Access Control
Specification for XML. In ACM Workshop on XML Security, Fairfax,
VA, USA, October 2003. ACM.

[75] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Process-
ing XPath Queries. In 28th International Conference on Very Large
Data Bases (VLDB), Hong Kong, China, August 2002.

[76] G. Gottlob, C. Koch, and R. Pichler. XPath Processing in a Nutshell.
In ACM International Conference on Management of Data (SIGMOD),
volume 32, pages 12 – 19, March 2003.

[77] K. Grün and M. Karlinger. Indexing Language. Technical report,
Data and Knowledge Engineering, Johannes Kepler University of Linz,
September 2006.

[78] K. Grün and M. Karlinger. Prototype specification. Technical report,
Data and Knowledge Engineering, Johannes Kepler University of Linz,
Linz, Austria, April 2006.

[79] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over
Encrypted Data in the Database-Service-Provider Model. In ACM
Special Interest Group on Management of Data (SIGMOD), Madison,
Wisconsin, USA, June 2002. ACM.

BIBLIOGRAPHY 186

[80] H. Hacigümüş, B. Iyer, and S. Mehrotra. Providing Database as a Ser-
vice. In 18th International Conference on Data Engineering (ICDE),
Washington, DC, USA, 2002. IEEE.

[81] S. Hada and M. Kudo. XML Access Contol Language: Provisional
Authorization for XML Documents.
http://www.trl.ibm.com/projects/xml/xacl/xacl-spec.html,
October 2000.

[82] P. Hallam-Baker and S. H. Mysore. XML Key Management Specifi-
cation (XKMS 2.0) Bindings. Version 2.0. W3C Recommendation 28
June 2005.
http://www.w3.org/TR/xkms2-bindings/, June 2005.

[83] P. Hallam-Baker and S. H. Mysore. XML Key Management Specifica-
tion (XKMS 2.0). Version 2.0. W3C Recommendation 28 June 2005.
http://www.w3.org/TR/xkms2/, June 2005.

[84] B. C. Hammerschmidt, M. Kempa, and V. Linnemann. On the Intersec-
tion of XPath Expressions. In 9th International Database Engineering
and Application Symposium (IDEAS), pages 49– 57. IEEE, July 2005.

[85] F. Hirsch and M. Just. XML Key Management (XKMS 2.0) Require-
ments. W3C Note 05 May 2003.
http://www.w3.org/TR/xkms2-req, May 2003.

[86] HR-XML Consortium. The independent platform for development of
human resources XML vocabularies.
http://www.hr-xml.org/, 2004.

[87] Human Genome Program of the U.S. Department of Energy Office of
Science. Human Genome Project Information.
http://www.ornl.gov/sci/techresources/Human_Genome/home.

shtml, August 2006.

[88] IBM. Web Services Transactions specifications.
http://www-128.ibm.com/developerworks/library/

specification/ws-tx/, August 2005.

[89] T. Imamura, B. Dillaway, and E. Simon. XML Encryption Syntax and
Processing. W3C Recommendation 10 December 2002.
http://www.w3.org/TR/xmlenc-core/, December 2002.

BIBLIOGRAPHY 187

[90] Internet 2. OpenSAML - an Open Source Security. Assertion Markup
Language implementation.
http://www.opensaml.org/, April 2007.

[91] D. Jordan and J. Evdemon. OASIS Web Services Business Process
Execution Language (WSBPEL) TC.
http://www.oasis-open.org/committees/tc_home.php?wg\

_abbrev=wsbpel, 2006.

[92] L. Kagal, S. Cost, T. Finin, and Y. Peng. A Framework for Distributed
Trust Management. In 5th International Conference on Autonomous
Agents, Montréal, Canada, May 2001.

[93] M. Karlinger and K. Grün. Assembly of and Interaction between the
SemCrypt System Components. Technical report, Data and Knowledge
Engineering, Johannes Kepler University of Linz, July 2006.

[94] A. H. Karp. Authorization-Based Access Control for the Service Ori-
ented Architecture. In 4th International Conference on Creating, Con-
necting and Collaborating through Computing, Berkeley, CA, USA, Jan-
uary 2006. IEEE.

[95] A. H. Karp. Authorization-Based Access Control for the Services Ori-
ented Architecture. Technical report, HP Laboratories, Palo Alto, Jan-
uary 2006.

[96] P. Kearney, J. Chapman, N. Edwards, M. Gifford, and L. He. An
Overview of Web Services security. BT Technology Journal, 22(1):27–
42, January 2004.

[97] A. Kemper and A. Eickler. Datenbanksysteme. Eine Einführung. Old-
enburg, 2006.

[98] H. Koshutanski and F. Massacci. An Access Control Framework for
Business Processes for Web Services. In ACM Workshop on XML Se-
curity, Fairfax, VA, USA, October 2003. ACM.

[99] J. K. Lee, S. J. Upadhyaya, H. R. Rao, and R. Sharman. Secure
Konwledge Management and the Semantic Web. Communications of
the ACM, 48(12):48–54, December 2005.

[100] C.-H. Lim, S. Park, and S. H. Son. Access Control of XML Documents
Considering Update Operations. In ACM Workshop on XML Security,
Fairfax, VA, USA, October 2003. ACM.

BIBLIOGRAPHY 188

[101] L. Liu and S. Meder. Web Services Base Faults 1.2 (WS-BaseFaults).
OASIS Standard, April 1 2006.
http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.

2-spec-os.pdf, April 2006.

[102] H. Lockhart, S. Andersen, J. B. nad Yakov Sverdlov, M. Hondo,
H. Maruyama, A. Nadalin, N. Nagaratnam, T. Boubez, K. S. Morri-
son, C. Kaler, A. Nanda, D. Schmidt, D. Walters, H. Wilson, L. Burch,
D. Earl, S. Baja, and H. Prafullchandra. Web Services Federation
Language (WS-Federation). Version 1.1 December 2006.
http://www-128.ibm.com/developerworks/library/

specification/ws-fed/, July 2003.

[103] H. Lockhart, B. Parducci, and A. Anderson. OASIS eXtensible Access
Control Markup Language (XACML) TC.
http://www.oasis-open.org/committees/tc_home.php?wg\

_abbrev=xacml, 2003.

[104] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah. First Expe-
riences Using XACML for Access Control in Distributed Systems. In
ACM Workshop on XML Security, Fairfax, VA, USA, October 2003.
ACM.

[105] B. Luo, D. Lee, and W.-C. L. andPeng Liu. QFilter: Fine-Grained
Run-Time XML Access Control via NFA-based Query Rewriting. In
ACM Thirteenth Conference on Information and Knowledge Manage-
ment (CIKM), Washington, DC, USA, November 2004. ACM.

[106] L. A. Maciaszek. Requirements Analysis and System Design. Develop-
ing Information Systems with UML. Addison-Wesley, 2001.

[107] K. D. Mann. Java Server Faces in Action. Manning Publications, 2005.

[108] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language
Overview. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/owl-features/, February 2004.

[109] Microsoft Corporation. DCOM Technical Overview.
http://msdn2.microsoft.com/en-us/library/ms809340.aspx,
November 1996.

[110] Microsoft Corporation. Messaging Specifications Index Page.
http://msdn2.microsoft.com/en-us/library/ms951268.aspx,
2007.

BIBLIOGRAPHY 189

[111] Microsoft Corporation. XAML Overview.
http://msdn2.microsoft.com/en-us/library/ms752059.aspx,
2007.

[112] G. Miklau and D. Suciu. Containment and Equivalence for an XPath
Fragment. In 21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), pages 65 – 76, Madison, Wis-
consin, USA, June 2002.

[113] G. Miklau and D. Suciu. Controlling Access to Published Data Using
Cryptography. In 29th International Conference on Very Large Data
Bases (VLDB), Berlin, Germany, 2003.

[114] P. Mishra, H. Lockhart, E. Maler, P. Madsen, R. Philpott, S. Ander-
son, and J. Hodges. OASIS Security Services (SAML) TC.
http://www.oasis-open.org/committees/tc_home.php?wg\

_abbrev=security, 2004.

[115] P. Mitra, C.-C. Pan, P. Liu, and V. Atluri. Privacy-preserving Seman-
tic Interoperation and Access Control of Heterogeneous Databases. In
ACM Symposium on InformAtion, Computer and Communications Se-
curity (ASIACCS), Taipei, Taiwan, March 2006. ACM.

[116] mozilla.org. XML User Interface Language (XUL).
http://www.mozilla.org/projects/xul/, 2007.

[117] M. Murata, A. Tozawa, and M. Kudo. XML Access Control Using
Static Analysis. ACM Transactions on Information and System Secu-
rity (TISSEC), 9(3):292 – 324, August 2006.

[118] A. Nadalin. Web Services Security: Moving up the stack. New
specifications improve the WS-Security model.
http://www-128.ibm.com/developerworks/library/ws-secroad/,
December 2002.

[119] NetBeans. NetBeans IDE 5.5.
http://www.netbeans.org/, 2004.

[120] Network System Architects, Inc. GSM Security.
http://www.gsm-security.net/, 2006.

[121] OASIS. OASIS XML Common Biometric Format (XCBF) TC.
http://www.oasis-open.org/committees/xcbf/, August 2003.

BIBLIOGRAPHY 190

[122] OASIS. OASIS Web Services Security (WSS) TC.
http://www.oasis-open.org/committees/wss/, 2004.

[123] OASIS. UDDI.
http://www.uddi.org/, 2006.

[124] Object Management Group (OMG). Catalog Of OMG CORBA/IIOP
Specifications.
http://www.omg.org/technology/documents/corba_spec\

_catalog.htm.

[125] Object Management Group (OMG). Unified Modeling Language. UML
Resource Page.
http://www.uml.org/, 2007.

[126] Oracle. Oracle Berkeley DB Product Family. High Performance, Em-
beddable Database Engines.
http://www.oracle.com/database/berkeley-db.html, 2006.

[127] Oracle. Oracle TopLink.
http://www.oracle.com/technology/products/ias/toplink/

index.html, 2007.

[128] N. Qi and M. Kudo. XML Access Control with Policy Matching Tree.
In S. D. C. di Vimercati, editor, 10th European Symposium On Research
In Computer Security (ESORICS), pages 3–23, Milan, Italy, September
2005. Springer-Verlag Berlin Heidelberg.

[129] L. Qin and V. Atluri. Concept-level Access Control for the Semantic
Web. In ACM Workshop on XML Security, Fairfax, VA, USA, October
2003. ACM.

[130] J. Reagle. XML Encryption WG.
http://www.w3.org/Encryption/2001/, November 2005.

[131] Red Hat Middleware. Relational Persistence for Java and .NET.
http://www.hibernate.org/, 2006.

[132] J. Rosenberg and D. Remy. Securing Web Services with WS-Security.
Demystifying WSSecurity, WS-Policy, SAML, XML Signature and
XML Encryption. Sams Publishing, 2004.

[133] B. Schneier. Applied Cryptography. Protocols, Algorithms and Source-
Code in C, volume 2. John Wiley and Sons, January 1996.

BIBLIOGRAPHY 191

[134] M. Schrefl, K. Grün, and J. Dorn. SemCrypt - Ensuring Privacy of Elec-
tronic Documents Through Semantic-Based Encrypted Query Process-
ing. In International Workshop on Privacy Data Management (PDM),
Tokyo, Japan, April 2005. IEEE Computer Society.

[135] W. Schreiner. The Development of a Service Oriented System for Med-
ical Image Conversion. Master’s thesis, Institute of Scientific Comput-
ing, Group for Software Science, University of Vienna, November 2003.

[136] W. Schreiner. Integrating State-of-the-Art Web Services with a Medical
Image Conversion System. Master’s thesis, Institute of Scientific Com-
puting, Group for Software Science, University of Vienna, November
2005.

[137] W. Schreiner. Stateful Web Services mit Apache WSRF. entwickler
magazin, 4:136–140, June 2006.

[138] W. Schreiner. On Web Service Evolution Monitoring. In 3rd Inter-
national Conference on Interoperability for Enterprise Software and
Applications (I-ESA). Springer, March 2007.

[139] W. Schreiner. Security and Privacy Management in Service Oriented
Architectures. In 3rd International Conference on Interoperability for
Enterprise Software and Applications (I-ESA), Funchal (Madeira Is-
land), Portugal, March 2007.

[140] W. Schreiner. SemCrypt Application Framework (SCAF). Technical
report, E-Commerce Competence Center (EC3), 2007.

[141] W. Schreiner. SemCrypt Architectural Requirements. Technical report,
E-Commerce Competence Center (EC3), 2007.

[142] W. Schreiner. SemCrypt Authentication and Authorization Framework
(SCAAF). Technical report, E-Commerce Competence Center (EC3),
2007.

[143] W. Schreiner. SemCrypt Database Framework (SCDBF). Technical
report, E-Commerce Competence Center (EC3), 2007.

[144] W. Schreiner. SemCrypt Encryption and Decryption Framework
(SCEDF). Technical report, E-Commerce Competence Center (EC3),
2007.

[145] W. Schreiner. SemCrypt Native XML Database Integration. Technical
report, E-Commerce Competence Center (EC3), 2007.

BIBLIOGRAPHY 192

[146] W. Schreiner. SemCrypt Prototype Environment. Technical report,
E-Commerce Competence Center (EC3), 2007.

[147] W. Schreiner. SemCrypt Security Services Frameword (SCSSF). Tech-
nical report, E-Commerce Competence Center (EC3), 2007.

[148] W. Schreiner. SemCrypt Web Services Framework (SCWSF). Technical
report, E-Commerce Competence Center (EC3), 2007.

[149] W. Schreiner and S. Dustdar. Collaborative Web Service Technolo-
gies. In Workshop on Challenges in Collaborative Engineering (CCE),
Sopron, Hungary, April 2005. CCE.

[150] S. Schweigl. User-Interface Generator für SemCrypt Applikationen.
Master’s thesis, Institute of Software Technology and Interactive Sys-
tems, Electronic Commerce Group, Vienna University of Technology,
2007.

[151] T. Schwentick. XPath Query Containment. In ACM International
Conference on Management of Data (SIGMOD), volume 33, pages 101
– 109, Paris, France, March 2004.

[152] C. M. Sperberg-McQueen and H. Thompson. XML Schema.
http://www.w3.org/XML/Schema, January 2007.

[153] R. Steele, W. Gardner, T. S. Dillon, and A. Erradi. XML-Based Declar-
ative Access Control. In M. Bielikova, editor, 31st Annual Confer-
ence on Current Trends in Theory and Practice of Informatics (SOF-
SEM), pages 310–319, Liptovsky Jan, Slovak Republic, January 2005.
Springer-Verlag Berlin Heidelberg.

[154] M. Strembeck and G. Neumann. An Integrated Approach to Engineer
and Enforce Context Constraints in RBAC Environments. ACM Trans-
actions on Information and System Security (TISSEC), 7(3):392–427,
August 2006.

[155] Sun Microsystems, Inc. Java Remote Method Invocation (RMI).
http://java.sun.com/j2se/1.3/docs/guide/rmi/, 1999.

[156] Sun Microsystems, Inc. Java Authentication and Authorization
(JAAS).
http://java.sun.com/products/jaas/, 2007.

BIBLIOGRAPHY 193

[157] Sun Microsystems, Inc. Java Cryptography Extension (JCE).
http://java.sun.com/j2se/1.5.0/docs/guide/security/

CryptoSpec.html\#JceKeystore, 2007.

[158] Sun Microsystems, Inc. The Java ME Platform - the Most Ubiquitous
Application Platform for Mobile Devices.
http://java.sun.com/javame/index.jsp, 2007.

[159] A. S. Tanenbaum and M. van Steen. Distributed Systems. Principles
and Paradigms. Prentice Hall, 2003.

[160] The Apache Software Foundation. The Apache Velocity Project.
http://velocity.apache.org/, March 2007.

[161] The OpenTravel Alliance. OTA.
http://www.opentravel.org/, 2004.

[162] The XML:DB Initiative. XUpdate - XML Update Language.
http://xmldb-org.sourceforge.net/xupdate/, 2003.

[163] B. Thuraisingham. Directions for Security and Privacy for Semantic
E-Business Applications. Communications of the ACM, 48(12):71–73,
December 2005.

[164] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access Control in
Collaborative Systems. ACM Computing Surveys, 37(1):29–41, March
2005.

[165] UIML.org. Home of the User Interface Markup Language.
http://www.uiml.org/, 2007.

[166] United Nations Economic Commission for Europe (UNECE). United
Nations Directories for Electronic Data Interchange for Administration,
Commerce and Transport. UN/EDIFACT Standard Directories.
http://www.unece.org/trade/untdid/directories.htm, 2006.

[167] P. Vervest, E. van Heck, K. Preiss, and L.-F. Pau, editors. Smart
Business Networks. Springer, November 2004.

[168] J.-Y. Vion-Dury and N. Layaida. Containment of XPath expressions:
an inference and rewriting based approach. In Extreme Markup Lan-
guages, Montréal, Québec, Canada, August 2003.

[169] W3C. Latest SOAP versions.
http://www.w3.org/TR/soap/, June 2003.

BIBLIOGRAPHY 194

[170] W3C Architecture domain. Document Object Model (DOM).
http://www.w3.org/DOM/, January 2005.

[171] W3C Platform for Privacy Preferences Initiative. Platform for Privacy
Preferences (P3P) Project. Enabling Smarter Privacy Tools for the
Web.
http://www.w3.org/P3P/, October 2006.

[172] W3C Technology and Society domain. Semantic Web Activity. Re-
source Description Framework (RDF).
http://www.w3.org/RDF/, Jannuary 2007.

[173] W3Schools. DTD Tutorial.
http://www.w3schools.com/dtd/default.asp.

[174] J. Wang and S. L. Osborn. A Role-Based Approach to Access Control
for XML Databases. In ACM Symposium on Access Control Models and
Technologies (SACMAT), Yorktown Heights, New York, USA, June
2004. ACM.

[175] Web Services Interoperability Organization. WS-I.
http://www.ws-i.org/, 2006.

[176] M. Weber. Anforderungsanalyse - Zsfg. Technical report, E-Commerce
Competence Center (EC3), March 2005.

[177] M. Weber. Overview on Scientific Objectives.
http://semcrypt.ec3.at/, June 2005.

[178] M. Weber. WP1 - Biotechnology. Technical report, E-Commerce Com-
petence Center (EC3), April 2005.

[179] M. Weber. WP1 - eGovernment. Technical report, E-Commerce Com-
petence Center (EC3), May 2005.

[180] M. Weber and P. Hrastnik. WP1 - HR-Szenario. Technical report,
E-Commerce Competence Center (EC3), March 2005.

[181] H. Werthner, M. Hepp, D. Fensel, and J. Dorn. Semantically-enabled
Service-oriented Architectures: A Catalyst for Smart Business Net-
works. In Smart Business Networks Workshop, Rotterdam, Nether-
lands, 2006.

[182] Wikipedia. Peer-to-peer.
http://en.wikipedia.org/wiki/P2P, 2006.

BIBLIOGRAPHY 195

[183] XIML. eXtensible Interface Markup Language.
http://www.ximl.org/, 2007.

[184] XrML. The Digital Rights Language for Trusted Content and Services.
http://www.xrml.org/, 2005.

[185] I. Yagi, Y. Takata, and H. Seki. A Static Analysis Using Tree Au-
tomata for XML Access Control. In 3rd International Symposium on
Automated Technology for Verification and Analysis (ATVA), volume
3707, pages 234–247. Springer LNCS, 2005.

[186] M. Yagüe. Semantic Access Control, A Semantics-based Access
Control Model for Open and Distributed Environments.
http://www.lcc.uma.es/~yague/Semantics-basedAccessControl.

html.

[187] M. I. Yagüe, M. del Mar Gallardo, and A. Manña. Computer Secu-
rity ESORICS 2005, volume 3679, chapter Semantic Access Control
Model: A Formal Specification, pages 24–43. Springer-Verlag, Berlin,
Heidelberg, 2005.

[188] M. I. Yagüe and A. Maña. A Metadata-based Access Control Model
for Web Services. Internet Research, 15(1):99–117, 2005.

[189] M. I. Yagüe, A. Maña, J. López, and J. M. Troya. Applying the Seman-
tic Web Layers to Access Control. In 14th International Workshop on
Database and Expert Systems Applications (DEXA), page 622, 2003.

[190] M. I. Yagüe and J. M. Troya. A Semantic Approach for Access Control
in Web Services. In EuroWeb 2002 Conference, Oxford, UK, December
2002.

[191] Y. Zuo and B. Panda. Component Based Trust Management in the
Context of a Virtual Organization. In ACM Symposium on Applied
Computing (SAC), Santa Fe, New Mexico, USA, March 2005. ACM.

Wolfgang Matthias Schreiner

Johann-Straußgasse 21/35, A – 1040 Wien
e9902261@student.tuwien.ac.at

Beruflicher Werdegang

Seit April 2005: Researcher am E-Commerce Competence Center (EC3) in Wien

(http://www.ec3.at/)

Februar 2005 – Juni 2005: Mitarbeiter am NeDiNe Projekt (http://www.nedine.org/) in der

Abteilung für Verteilte Systeme an der Technischen Universität Wien
(http://www.infosys.tuwien.ac.at/)

August 2003: Assistent Produktmanagement in der Software Group der IBM Österreich in Wien

Juli 2002: Software-Entwickler im Speech Lab der IBM Österreich in Wien

Oktober 2001 – Januar 2004: Tutor für C++ Anwendungsentwicklung und Java Web Engineering

an der Universität Wien (http://www.cs.univie.ac.at/)

Juli 2000: Raiffeisen Bank Eisenstadt, Burgenland

Ausbildung

März 2004 – Juni 2007: Doktoratsstudium der technischen Wissenschaften an der Technischen

Universität Wien

März 2004 – Dezember 2005: Studium Software Engineering & Internet Computing an der

Technischen Universität Wien; abgeschlossen als Dipl.-Ing. mit ausgezeichnetem Erfolg

Oktober 1999 – Dezember 2003: Studium der Wirtschaftsinformatik an der Universität Wien und

der Technischen Universität Wien; abgeschlossen als Mag.rer.soc.oec.

September 1991 – Juni 1999: Gymnasium der Diözese Eisenstadt, Burgenland

(http://www.wolfgarten.at/)

September 1988 – Juni 1999: Joseph Haydn Konservatorium Eisenstadt, Burgenland

(http://www.haydnkons.at/)

September 1987 – Juni 1991: Volksschule Müllendorf, Burgenland

Persönliche Information

Geburtstag: 29. Juni 1981

Staatsbürgerschaft: Österreich

Eltern: o. Univ.-Prof. Dipl.-Ing. Dr.techn. Manfred Schreiner, Elisabeth Schreiner

(Hauptschuldirektorin)

Interessen: Literatur, Gitarre, Snowboarden, Klettern, Radfahren, IT

Fremdsprachen: Englisch (fließend), Französisch (fortgeschritten), Spanisch (Anfänger)

