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Kurzfassung

Die Entwicklung der letzten Jahrzehnte hat gezeigt, dass die numerische Bauelementsimulation einen
wichtigen Beitrag zur Charakterisierung von Halbleiterstrukturen leistet. Der wirtschaftliche Vorteil des
Einsatzes von modernen Simulationsprogrammen ist enorm, da Resultate von aufwendigen und teuren Ex-
perimenten durch numerische Berechnungen vorausgesagt werden konnen. Dariiberhinaus kénnen diese
Resultate fiir die Optimierung der Strukturen herangezogen werden, wodurch nur die vielversprechend-
sten Varianten hinsichtlich zuvor bestimmter KenngroBen tatsichlich hergestellt werden brauchen. Neben
diesen Vorteilen fiihrte auch die breite Verfiigbarkeit und groBziigigere Speicherausstattung eines durch-
schnittlichen Computers heutzutage zu einer stark vermehrten Anwendung dieser Simulationsprogramme.

Um die Voraussetzungen fiir die Simulation von modemen Halbleiterbauelementen zu erfiillen, miissen
die Simulationsprogramme stets erweitert werden, um alle notwendigen physikalischen Effekte beriick-
sichtigen zu konnen. Neben immer genaueren und aufwendigeren Modellen werden auch neue Simula-
tionsmodi bendtigt, um die Menge an berechenbaren Kenngroen zu erweitern. Im Zuge dieser Arbeit
wurden die Anforderungen an eine numerische Kleinsignalanalyse definiert und die zugrundeliegenden
Konzepte in den allgemeinen Bauelement- und Schaltungssimulator MINIMOS-NT implementiert.

Nach einer kurzen Einleitung iiber die Motivation dieser Arbeit und einen Uberblick iiber die derzeitige
Marktsituation die Bauelemente und Simulatoren betreffend, wird das analytische Problem der Simulatio-
nen hergeleitet. Fiir stark miniaturisierte Feldeffekt-Bauelemente verliert das wegen seiner numerischen
Robustheit nachwievor sehr stark eingesetzte Drift-Diffusionsmodell fiir den Ladungstrigertransport an
Genauigkeit, weshalb erweiterte Transportmodelle, die mehr als zwei Momente beriicksichtigen, herange-
zogen werden sollten. Die betreffenden Systeme nichtlinearer partieller Differentialgleichungen werden
zusammen mit den Systemen fiir die Kleinsignalanalyse hergeleitet. Danach werden die implementierten
neuen Fihigkeiten des Simulators erklirt und anhand von typischen Simulationsaufgaben vorgestellt.

Alle Fahigkeiten werden in einem eigenen Kapitel mit Beispielen eingesetzt, um moderne Bauelemente zu
charakterisieren, zum Beispiel InGaP/GaAs und SiGe He‘terostrukturbipolartransistoren, einen SiC MES-
FET sowie Doppelgate-Feldeffekttransistoren. Alle Fahigkeiten zur Simulation von Schaltungen werden
anhand eines Colpitts-Oszillatorbeispiels gezeigt. '

Da der gewihlte Kleinsignalansatz direkt im Frequenzbereich arbeitet, muss pro Frequenzschritt ein kom-
plexwertiges Gleichungssystem geldst werden. Da zuvor nur reellwertige Module zur Assemblierung und
Ldsung von Gleichungssystemen zur Verfiigung standen, wurde beschlossen, diese durch neue Module
zu ersetzen, welche sowohl reell-, als auch komplexwertige Systeme behandeln konnen. Dariiberhinaus
bieten die neuen Module auch eine neue simulatorunabhingige Programmierungsschnittstelle, die es er-
laubt, einfach und benutzerfreundlich beliebige Gleichungssysteme zu assemblieren und l5sen.

Um von der fortschreitenden Entwicklung von linearen Gleichungsldsern zu profitieren, wurde das Loser-
modul um eine Schnittstelle zu externen Modulen erweitert. Mehrere Module mit Vorteilen fiir bestimmte
Simulationen wurden bereits angebunden. Zur Analyse dieser Vorteile wurden alle internen und externen
Loser einer Beurteilung anhand von zahlreichen Simulationsbeispielen unterzogen, deren Ergebnisse es
erlaubten, automatische Hierarchien aus mehreren Gleichungslosern in den Simulatoren zu entwickeln.



Abstract

During the last decades numerical device simulation has proven to be invaluable for characterizing semi-
conductor devices. The economic impact is enormous because results of expensive experiments can be
predicted by employing one or more simulation tools. Furthermore, the results can be used to optimize
the investigated device structures and to single out unpromising variations in advance. The application of
simulation tools has been significantly intensified because of the computational power and the available
memory in today’s average computers.

To meet the requirements for the simulation of advanced devices, ongoing effort is put into extension of
these tools by implementations of state-of-the-art descriptions of all relevant physical effects. Besides of
that modeling the simulators have also to be extended by new simulation modes. In course of this work,
the requirements for small-signal simulations have been identified and new features have been added to
the general-purpose device and circuit simulator MINIMOS-NT.

After a short introduction including a motivation and overview of the current market situation, the ana-
lytical problem of the respective simulations is derived. As advanced device structures cannot be correctly
simulated by the drift-diffusion transport model any more, higher-order transport models such as four- and
six moments models are also taken into consideration. In addition, the small-signal systems are derived
which are based on the sinusoidal steady-state approach. Afterwards, the various new capabilities of the
simulator are presented and applied for typical simulation tasks.

All features have been used to characterize advanced devices, such as InGaP/GaAs and SiGe HBTs, a
wide-bandgap SiC MESFET, and double gate MOSFETSs. The latter require higher-order transport models
in order to accurately extract the steady-state and small-signal device quantities. Furthermore, the mixed-
mode small-signal features have been used to simulate a Colpitts oscillator.

Since the small-signal simulation mode is directly based in the frequency domain, the solution of one

complex-valued equation system per frequency step is required. For that reason, the numerical core mod-

ules have been extended to handle both real-valued and complex-valued quantities. The application pro-

- gramming interface of the new modules allows an efficient and user-friendly assembling and solving of
linear equation systems. -

In order to profit from new developments of mathematical code, the solver module has been extended
by an interface to external solvers. Several promising linear solvers which have particular strengths for
different kinds of simulations have been coupled to the solver module. In the course of a subsequent
performance evaluation, these strengths have been identified and efficient solver hierarchies have been
constructed.
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Chapter 1

Introduction

Numerical device simulation has proven to be invaluable for characterizing the specific properties of semi-
conductor devices under different operating conditions. Advanced simulation tools are able to extract var-
ious figures of merit and allow detailed insight into the physical processes taking place in all regions of
the devices. Furthermore, they can be finally employed to optimize the device structures regarding various
targets.

Due to the computational power and the available memory in today’s average computers, device simulation
and optimization can be rigorously employed to pursue these goals. The economical impact is enormous,
considering only the cost of one test wafer in comparison to the costs of one average workstation and the
maintenance of application setups. For that reason, the development of these tools, both commercially
and academically, will be continued in order to provxde state-of-the art models, simulation modes, and
user-interaction capabilities. :

Such extended features are necessary to meet the requirements for today’s advanced radio frequency
(RF) device structures, which are supposed to be characterized also by efficient small-signal capabili-
ties. The basic idea of a small-signal simulation mode is to linearize the transport equations around a
steady-state operating point and apply sinusoidal contact signals. Various important figures of merit, such
as S-parameters or the cut-off frequency fT of a transistor, can be extracted by means of the small-signal
simulation mode.

In this introductory chapter the term RF is discussed first, followed by-an overview of state-of-the-art RF
devices. In addition, the respective capabilities of commercial simulators are presented and compared
with academic codes, especially with the newly implemented features of MINIMOS-NT.

The second chapter contains the derivation of the analytical problem and its discretization including the
nonlinear solution technique. Since the accurate simulation of advanced MOS devices requires a higher-
order transport model as a replacement for the well-known drift-diffusion model, the energy-transport
and six moments model provided by MINIMOS-NT are discussed. Furthermore, the small-signal systems
for all three transport models are derived. The third chapter deals with the identified concepts of all
small-signal capabilities which have been implemented in MINIMOS-NT based on the chosen small-signal
approach. The various figures of merit are described and their results presented.

Since the small-signal simulation mode requires the ability to handle complex-valued quantities, the topic
of linear equation systems becomes important. As discussed in the fourth chapter, it has been decided
to completely replace the formerly applied modules handling the real-valued equation systems assembled
by the steady-state and transient simulation mode. Instead, new modules have been introduced which are
able to handle both real-valued and complex-valued equation systems. As this decision raised various
questions regarding the design, implementation, and application of the new modules, their solutions are
a fundamental part of the discussion of a small-signal simulation mode. Thus, the fourth chapter deals



with the assembly module, whereas the fifth one discusses the solver modules. Both chapters include
an overview of existing modules and the motivation behind each measure taken during assembling and
solving linear equation systems.

The simulations presented in the sixth chapter finally demonstrate all of the capabilities discussed before.
Different kinds of examples show how well these features can be used to perform advanced device and
mixed-mode device/circuit simulations. In addition, higher-order transport models are evaluated for a set -
of devices. All simulation results are compared either with measurements or with reference results from
other simulators.

A final summary and the outlook for future developments regarding the two main topics of this thesis are
given in the last chapter. The appendices consist mostly of topics regarding the usability of the newly
implemented capabilities. After the documentation of the input-deck interface to all features, the powerful
and convenient stepping module of MINIMOS-NT is presented, which has been significantly extended
in the course of this work. The third appendix discusses miscellaneous projects such as the interactive
and post-processing mode of MINIMOS-NT, the newly designed and implemented library SEILIB for
advanced and efficient processing of parameterized input-decks, and eventually one of its most prominent
applications, the MINIMOS-NT test. The fourth appendix summarizes the formulae of two-port parameter
conversions and the last one explains three different sparse matrix formats.

1.1 Radio Frequéncy

The abbreviation of radio frequenéy RF is used both as noun and as a qualifier as seen for example in
RF devices. Actually, the distinction between RF and other objects is based on different historical con-
siderations, such as the bandwidth-based, frequency-based, application-based, and size-based definition
[95): '

Bandwidth-Based Definition: RF amplifiers are treated synonymously with tuned amplifiers, implicating
that RF circuits are necessarily narrow-band ones with bandwidths of a small-fraction of the center
frequency. This definition is not much in use any more today.

Frequency-Based Definition: RF is frequently defined as the range of electro-magnetic waves lying be-
tween the low-frequency and the microwave frequency bands, thus consisting of the three frequency
bands: :

e MF (Middle Frequency) refers to the frequency band between 300 kHz — 3MHz. The waves
are propagated in the troposphere and absorbed in the ionosphere. They are used for AM radio,
maritime radio, radio direction finding, and emergency applications.

e HF (High Frequency): The band between 3 MHz — 30 MHz is propagated in the ionosphere
and used for amateur radio, CB radio, international broadcasting, military communication,
long-distance aircraft and ship communication, telecommunication.

e VHF (Very High Frequency): The frequencies between 30 MHz — 300 MHz are characterized
by line-of-sight propagation and are used for VHF television, FM radio, aircraft AM radio, and
aircraft navigation.

Applicétion-Based Definition: Especially in communication system engmeermg, RF is distinguished
by considering the role of the signals at these frequencies. RF signals were historically used as
carriers rather than containing information. Whereas an amplifier extending signals from 600 kHz
to 1600 kHz in the AM radio band would be an RF amplifier, a video amplifier having a pass-band
from 50 Hz to 6 MHz is not, since the information itself is the frequency range.
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Size-Based Definition: An RF device is characterized by taking the phase shift of a signal, occurring over
the extent of the device, into account. Compared to the wave-length of the electro-magnetic wave,
the size of RF devices is not negligible.

The qualifier RF is used to refer to the frequency range lying just below the microwave range. But this
definition is inconsistent with the term RFIC (Radio Frequency Integrated Circuits) referring to integrated
circuits operating at the millimeter and sub-millimeter wave frequencies. Furthermore, signals are referred
as RF from the AM band to the sub-millimeter and even IR region. For that reason, microwave would be a
sub-range of RF and the distinction between RF and microwave would be obsolete. Though problematic,
the phrase RF and microwave is very popular [95]. :

As RF cannot be properly defined by etymological and historical considerations, the most rational basis
for defining RF seems to be a feature-based definition. So the distinction between the RF and non-RF
objects is based on required design considerations [95], such as phase shift, reactances, dissipation, noise,
radiation, reflections, and nonlinearity. That set of issues combines any kind of device employed from LF
up to IR ranges. '

1.2 Devices for RF Applications‘

Transistors for RF applications have been mostly a market for devices based on the III-V material system
rather than for silicon technologies. These compound semiconductors are based on group III elements,
for example aluminum (Al), gallium (Ga), or indium (In), and group V elements, for example arsenic
(As), phosphorus (P), or antimon (Sb). III-V semiconductors provide better high-frequency performance,
because the inherent physical properties such as the electron mobility enable the components to achieve
a much higher performance. Consequently, III-V components are particularly useful for applications at
higher frequencies or for higher data rates as required for broadband and RF wireless components as well
.as for satellite communications. However, as discussed in the sections below, silicon technologies have
started to be a major competitor for such applications.

Besides of the material system, a distinction between the device type has to be made. Devices for RF
applications can be split into two major groups: the heterojunction bipolar transistors (HBTs) and field
effect transistors (FETs) such as MESFETs, high electron mobility transistors (HEMTs) and in recent time
the RF MOSFET. A heterostructure device consists of two or more adjacent layers of different semicon-
ductor materials. Due to the different material properties of these layers, there is an abrupt transition in the
bandgap and carrier transport. The transit times of vertical bipolar devices such as HBTs mainly depend
on the thickness of the base layer, which has to be as thin as possible to achieve an fr above 200 GHz
[113,211], and on the base-collector space-charge regions. For silicon FETs, the performance depends
on the capabilities of the lithography technology [68]. Basically, the most important limiting factor of
the response of the transistor is the transit time of the minority carriers across the base region. Due to
the performance advantage, the transconductance, high self-gain, low' 1/f noise and other benefits bipolar
transistors are still the device of choice for many applications, for example in the 40 Gb market [68].

1.2.1 Devices Based on the III-V Material System

The GaAs heterojunction bipolar transistor (HBT) has been among the most popular RF devices and was
applied in advanced mobile communication applications. Besides the performance, the advantages are a
very low off-state power consumption as well as high current amplification [160].



In recent years a new III-V compound semiconductor technology emerged: devices based on indium
phosphide (InP), which are able to replace GaAs as the material of choice for high-performance, high-
volume commercial applications [210]. InP based technologies have numerous advantages over the GaAs
system for many applications. For example, they offer performance advantages in fiber-optic, millimeter-
wave and even wireless applications due to the high gain x breakdown voltage product and thus yield
efficiency. In addition, the ability to produce cost-efficient high-volume InP microelectronics enables
several markets for government and commercial applications. InP single heterojunction bipolar transistors
demonstrated excellent cut-off frequencies fr and maximum oscillation frequencies frax, but due to
the narrow bandgap collector only relatively low collector breakdown voltages BVcgo — conventionally
between 0.5 and 2.0 V — are possible.

In order to increase the breakdown voltage, a second heterojunction and thus a double heterojunction
bipolar transistor has been introduced. A number of promising results with cut-off frequencies up to
342 GHz and breakdown voltages of the order of 6 V have been demonstrated [102]. A wide bandgap
material, for example typically InP or AllnAs, allows higher BVego — up to 9V and more — due to the
reduced collector fields and thus reduced impact ionization. In addition, the thermal conductivity is higher
and the electron saturation velocity Vg, of InP is about two times higher than that of InGaAs resulting
in a short collector transit time at high breakdown voltages [184]. The limitation is the collector current
blocking due to the conduction band discontinuity. Thus, the design of the layer structure for the second
(base collector) heterojunction is of utmost importance. A quaternary material, that is a positionally step
graded InGaAsP, is commonly used to lower the conduction band spike [160].

At the moment, the most prominent high electron mobility transistor is the pseudomorphic AlGaAs/InGaAs
HEMT, which still provides competitive performance (tough challenged by the SiGe HBT) for low-noise
applications in receiver circuits up to 100 GHz [101, 160]. HEMTs based on narrow bandgap materials
such as InGaAs and gate lengths below 100 nm show cut-off frequencies beyond 400 GHz [160]. Recent
results show a cut-off frequency of 547 GHz for an InGaAs/InAlAs HEMT [199] and 550 GHz for an
InP HEMT [198]. Finally it is to note, that devices which incorporate nitrides have become popular in
recent time [170]. The so-called IlI-nitride devices combine different advantages regarding the transport
properties, thermal conductivity, and wide bandgaps results in high breakdown fields [160].

1.2.2 Devices Based on Silicon

Heterojunction bipolar transistors (HBT) based on silicon germanium (SiGe) are able to progressively
- replace devices of the III-V material system, because competitive typical figures of merit are already
achieved. For example values for the cut-off frequency of 375GHz [173] (with associated fpax =
210 GHz), and for the maximum oscillation frequency of 285 GHz [113] are reported. The major ben-
efit of these devices is their compatibility with the standard CMOS process flow, where well-established
- sophisticated multi-layer metalization layers and interconnects are available [160].

Integrated circuits for optical transmission and wireless communication systems are based on SiGe HBT-
or BICMOS technologies. Among these applications are 40 Gb optical fiber links, 5.8 GHz electronic
toll collection transceivers for intelligent transport systems, and integrated frequency divider circuits for
wireless local area networks [236].

Development of such advanced devices is based on aggressive device scaling. Thereby, the design focuses
separately on the emitter, the base, and the collector. The base transit time is reduced by thinning the base
film as deposited, reducing thermal cycles in order to minimize the base dopant diffusion, adding carbons
to reduce boron diffusion, and increasing the germanium ramp to accelerate electrons. The concentration
in the collector is increased in order to reduce the collector-base space-charge layer and to increase the
transconductance [69].



Due to the relatively low electron mobility, compared to III-V materials, and the location of the inversion
channel near to the interface between silicon and silicon dioxide, silicon MOS transistors have always
been regarded as slow devices. In addition, the relatively large gate length contributed to an inferior

_RF performance. Due to the aggressive downscaling in the last decade, an advanced RF MOSFET does

in fact have a smaller gate length than comparable III-V FETs today. Due to the resulting peak cut-off
frequencies up to 100 GHz with relatively low noise figures, complementary metal oxide semiconductor
(CMoOs) devices can now be employed also for RF applications.

The main reason for this development can be found in the recent advances in CMOS processing, gate length
scaling, and progress in SOI technologies [132]. Despite of several scaling limits regarding short channel
and hot carrier effects, gate tunneling and minimum oxide thickness the development has been already
continued down below the 100 nm feature size. In fact development has sped up, so that the International
Technology Roadmap for Semiconductors [67] had to be revised twice recently: the 1999 projection for
the 2003 technology node was decreased from 120 nm to 100 nm, the gate length for devices in high-
performance logic circuits from 85nm to 45nm. These developments have also a significant impact on
the transistor speed. The continuous scaling has both reduced the chip size and accelerated the transistors.

Furthermore, there has been research in the area of materials compatible with silicon technology. In order
to improve the performance of VLSI circuits, silicon germanium is applied due to its material properties.‘
Strained silicon has been started to be used as channel material. This layer, which utilizes an underlying
relaxed SiGe layer, allows to enhance both the electron and hole mobilities. In [120], laterally scaled
Si-SiGe n-channel FETs are reported with fr = 79GHz and fynax = 212GHz for Ly = 80nm and
fr = 92GHz for Ly = 70 nm. Related results can be found in [57, 121]. '

1.3 Numerical Simulators

In order to cope with explosive costs, reduced time-to-market figures, and to deal with high competition,
Technology Computer-Aided-Design (TCAD) is more and more applied during development and produc-
tion of new devices [162]. The basic motivation for applying numerical simulation tools is to reduce the
number of test wafers, to evaluate a vast number of device variations by numerical means and to.optimize
devices and processes. Optimization of geometry, doping, materials, and material compositions targets
high output power, high breakdown voltage, high speed (high fr and fpax), low leakage, low noise, and
low power consumption. This is a challenging task that can be significantly supported by device simu-
lation. While steady-state simulations are sufficient for optimization targets such as breakdown voltages,
turn-on voltages, or leakage currents, small-signal simulations are required for many performance and
noise issues [162]. '

The continuously increasing computational power of the average workstation computer and available
cluster computing technologies enables the large-scale application of TCAD software. Several commer-
cial device simulators [4,20,42,111,200,214-216] company-developed simulators like [30, 148], and
university-developed simulators [38, 62, 104, 105, 116, 153,203, 205, 207, 237] have already been used for
supporting device design and development. The major differences between these simulators are

o the dimensionality: one, quasi-two, two, quasi-three, or three dimensions.
e the choice of the computational approach: partial differential equations or Monte Carlo.

e the choice between microscopic or macroscopic approaches: Wigner, Schrodinger, Green’s function
or macroscopic transport models.

e the choice of the macroscopic carrier transport model: drift-diffusion, energy-transport, or six mo-
ments.

e capabilities of included electrothermal effects.
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On the circuit simulation level the approaches mentioned above including the various macroscopic trans-
port models require too much computational resources, especially in terms of time and memory, if large
circuits consisting of thousands of transistors have to be simulated. For that reason, circuit analysis tools
like the well-known SPICE [168] simulator are based on compact models (see Section 3.6.1). They try
to provide a closed form description of the electrical behavior of the devices, which results in far less
equations than the approaches based on discretized partial differential equations. However, especially for
advanced semiconductor devices the extraction of the various parameters is a cumbersome task. Further-
more, calibration against given experimental data is required as extrapolation from one generation to the
next is rarely possible. A possible replacement of normally expensive experimental data can be simulation
results from device simulations.

1.3.1 The Commercial Simulators

Tools for Technology Computer Aided Design have been essential for the development of more advanced
and sophisticated devices. In the area of device simulation, the major player in the commercial market
for simulators is the company Synopsis at the moment. Since the acquisition of Integrated Systems En-
gineering AG (ISE) in November 2004, the company provides the well-known TCAD software packages
MEDICI/DAVINCI [214,216] and DESSIS [111]. Competition comes for example from Silvaco with the
ATLAS framework [200] and Crosslight (formerly Beamtek Software) with the LASTIP/PICS3D/APSYS
simulators for optoelectronics and advances physical modeling [42]. In addition, several general frame-
works as presented in Section 4.2.1 are provided for the solution of partial differential equations, which
can also be employed for semiconductor modeling and simulation.

S-PISCES of Silvaco as part of the ATLAS simulation framework [200] calculates steady-state, small-
~ signal AC, and transient solutions for general rion-planar two-dimensional silicon device structures. The
related simulator for compound semiconductors is BLAZE2D/3D, which provides a library including also
ternary and quaternary materials. The calculated small-signal characteristics are the cut-off frequency fr,
S-, Y-, H-, and Z- parameters, the maximum available gain (MAG), the maximum stable gain (MSG), the
maximum frequency of oscillation (fmax) and the stability factor.

The multi-dimensional simulator DESSIS [111] provides related features. The small-signal capabilities are
incorporated in the mixed-mode, which supports electrothermal netlists with mesh-based device models
and SPICE circuit models. :

'MEDICI of Synopsis [216] (a former Avant! product) is a two-dimensional simulator. A small-signal
analysis can be performed to calculate frequency-dependent capacitances, conductances, admittances, Y-,
S-, and H-parameters. DAVINCI [214] is the related three-dimensional device simulation program with
a similar set of features. The approach is also based on [127], including the numerical split of real- and
complex-valued part. : V

Applications of advanced RF devices must often be seen in a circuit related context [208]. For that reason,
circuit simulation programs such as Spice [147], Agilent’s ADS [4], or HSPICE of Synopsis [215] are em-
ployed. Whereas these circuit simulators are based on compact models, device simulators with distributed
modeling (solving of a system of partial differential equations) of the transistors offer so-called mixed-
modes. Realistic dynamic boundary conditions imposed by a circuit allow to extract circuit-related figures
of merit. Although this approach is limited by performance and memory considerations, the highly so-
phisticated models required for today’s advanced device structures can be directly employed for transient
or small-signal circuit simulations [231].

It is a well-known fact, that correct steady-state modeling is an important prerequisite for any kind of
subsequent simulations. Thus, the advanced simulators incorporate drift-diffusion and advanced transport
models such as energy transport models [89] and provide several advanced mobility models. In addition,
models for recombination, band-gap narrowing, impact ionization, band-to-band tunneling, hot carrier in-
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Jection, Schottky contacts, and floating gates have to be included to account for the properties of advanced
device structures.

1.3.2 The Device and Circuit Simulator Minimos-NT

MINIMOS-NT [105] is a general-purpose semiconductor device simulator providing steady-state, tran-
sient, and small-signal analysis of arbitrary two- and three-dimensional device structures. In addition,
mixed-mode device/circuit simulation [88] is offered to embed numerically simulated devices in circuits
with compact models. The devices can be connected both electrically and thermally.

The simulator deals with different complex structures and materials, such as Si, Ge, SiGe, GaAs, AlAs,
InAs, GaP, InP, their alloys and non-ideal dielectrics. In combination with this comprehensive material
database, the state-of-the-art set of physical models enables the user to simulate all kinds of advanced
device structures, such as MOS devices of the sub-100 nm technology, silicon-on-insulator devices, and
heterostructures. The implemented physical models take all important physical effects such as bandgap
narrowing, surface recombination, transient trap recombination, impact ionization, self-heating, and hot
electron effects into account.

Besides the basic semiconductor equations [193], several different types of transport equations can be
solved. Among these are the energy-transport equations which capture hot-carrier transport [22,209], a
six moments transport model [85], the lattice heat-flow equation to cover thermal effects like self-heating
[227]. Furthermore, various interface and boundary conditions are taken care of, which include Ohmic
~ and Schottky contacts, thermionic field emission over and tunneling through various kinds of barriers.

‘MINIMOS-NT is equipped with a very powerful control language called Input-Deck Programming Lan-
guage (IPL) [118]. For the specification of a simulation various keywords must be set. These keywords
can contain arbitrarily nested expressions and can depend on the current simulation status. With the
IPL, the user is able to customize a simulation by creating input-deck filés written in plain ASCII text.
MINIMOS-NT provides various default input-deck files with standard settings.

MINIMOS-NT is the successor of MINIMOS [195]. Whereas the latte_:r. i$ restricted to simple MOS struc-
tures, MINIMOS-NT can be employed for arbitrary device structures with unstructured grids.



Chapter 2
Device Simulation

In order to analyze the electronic properties of semiconductor structures under all kinds of operating
conditions, the effects related to the transport of charge carriers under the influence of external fields must
be modeled. '

Most applied macroscopic models for carrier transport in semiconductors are based on the semiclassical
Boltzmann transport equation. By applying the method of moments [22] this six-dimensional equation can
be transformed into an infinite series of three-dimensional equations. This allows one to derive a hierarchy
of increasingly complex tfansport models:

e The drift-diffusion transport model:* Keeping only the zero- and first- order moment equations
together ‘with proper closure assumptions [193] yields the current relations of the drift-diffusion
model. Together with the Poisson equation, they form the basic semiconductor equations as given
first by VanRoosbroeck [225] (see Section 2.1.1).

e The energy-transport transport model: Considering two additional moments gives the energy-trans-
port model [22, 89, 209], where the carrier temperatures are allowed to be different from the lattice
temperature. Since the current densities depend then on the respective carrier temperature, two more
quantities, the electron temperature and the hole temperature, are added.

e The six moments transport model [84, 85]: accordihg to the name, six moments are included to
describe carrier transport. The two additional quantities are the electron and hole kurtosis.

Whereas in most simulators carrier transport can be treated by the drift-diffusion and the energy-transport
transport models, MINIMOS-NT additionally provides the six moments transport model. Recent research
indicates, that the six moments model is able to accurately cover the important range of gate lengths from
25nm to 100 nm [83]. Above this gate length less costly four moments models, for example an energy-
transport model, can be used if the more accurate descriptions of the distribution function of the carriers
is not required. Despite the fact that the drift-diffusion transport model loses its accuracy already for gate
length below 250 nm, it is still frequently and industrially applied due to its efficiency.

In this chapter, the analytical problem based on the three transport models as well as its discretization is
discussed. The second part of the chapter deals with the simulation modes of the simulator. The discussion
of the steady-state simulation mode covers also the nonlinear solution.technique. This is followed by the
transient simulation and eventually the derivation of the small-signal system.



2.1 The Analytical Problem

The analytical problem is basically formed by nonlinear partial differential equations. These equations are
the Poisson equation (2.1) and the current continuity equations for the two carrier types in semiconducting
materials, electrons and holes,

V- (eVY)=—o, 2.1)
V.J,= q(R+?£-) . . (2.2)
V-J,=—-q (R+ %) : O @23)

. The unknown quantities of this equation system are the electrostatic potential 1), and the electron and hole
concentrations n and p, respectively. q is the elementary charge, o denotes the space charge density and
R stands for the net recombination rate, which is defined as :

R=Ru—-Gn=Ry—GC,. (2.4)

These three equations can be derived from the four Maxwell equations [100]:

: 0B ,
VxE=-—, | | 2.5)
V.-B=0, - 2.6)
oD .
V:-D=p. ~ 2.8)

E and D are the electric field and displacement vectors, respectively, and H and B are the magnetic field
and induction vectors, respectively. J is the conduction current density.

D is related to the electric field E by the permittivity tensor & (assumed to bé a scalar ¢ hereafter):
D=¢E, A ‘ ' 29

which is valid for all materials which have a frequency—indepehdent permittivity and do not have piezo-
electric or ferroelectric effects. The Poisson equation can be derived by introducing a vectoxj potential A
defined by B = V x A, which is inserted in (2.5):

| 5 | |
VxE=-2(VxA). (2.10)

After interchanging the order of the time derivative and the curl operator and using the associative property
of the curl operator, the argument of the curl operator can be substituted by the gradient of a scalar
potential, because V x V ¢ yields zero:
0A
E+—=-— ) 2.11

+ 5 =V @11)
Since the wavelength is much larger than the typical semiconductor device dimensions, the quasi-stationary
approximation can be assumed. With an operating frequency fop, = 200 GHz, cg as the speed of light in
vacuum and ¢, = 11.9 [217] and p; = 1 as the relative permittivity and permeability in silicon, respec-
tively, A = co/(\/Zr pir fop) €quals 435 um [91]. The typical gate length of industrially produced devices
is already below 100 nm. In the quasi-stationary approximation, the time derivative of the vector potential
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can be neglected. By inserting E = —V 9 into (2.9) and by inserting the result into (2.8), the Pois-
son equation (2.1) is finally obtained. The space charge density o in semiconductors is composed of the
charges of electrons, holes, the ionized dopant atoms and other charged defects:

o=q(p—n+0C). (2.12)
The fixed charge C is commonly mode_ied as
C = Ng - Ny, (2.13)

where NB‘ is the concentration of the positively charged donor atoms and N, the concentration of the
negatively charged acceptor atoms. Dynamic recombination processes such as the Shockley-Read-Hall
recombination require an additional dynamically changing trap charge N;. It is important to note that not
all dopants are electrically active and that not all electrically active dopants are always ionized. Particularly
at low temperatures this fact has to be included in the model. However, in silicon at room temperature
Ng = Np and N, = N4 is assumed.

The Poisson equation without considering a magnetic field is finally obtained by
V- (eVy)=q(n—p+ Ny —N3) . . S (214

The continuity equétion for the conduction current density is derived by applying the divergence operator
to (2.7) and using (2.8):
do ’ :
J+==0. - 2.15
VeIt =0 (2.15)

The equation can be interpreted, that all sources and sinks of the conduction current density are compen-
sated by the time variation of the space charge density.

Whereas the Maxwell equations can be used to derive the -Poisson equation and the current continuity
equations, the current relations cannot be derived from them. The carrier transport equations are therefore
discussed in the next sections. :

2.1.1 The Drift-Diffusion Transport Model

Many causes of the current flows can be identified, for example gradients of the carrier concentrations,
temperatures or material properties or a contribution determined by Ohm’s law [137,138]. The latter
~component is called drift current and can be formulated as

Joift = R . - , (2.16)

With o, = qnu, as the electrical conductivity, u, as the mobility of electrons, and V,, = —pu,E as the
mean velocities of electrons, the current density is obtained by

Jgrift = qnup,E = —qnV,, . ’ (2.17)_

Whereas the electric field accelerates the carriers, the veloéity of the carriers is limited by various scat-
tering mechanisms- such as lattice vibrations (phonon scattering) [31]. The saturation velocity Vgt is
generally modeled independently of the doping, whereas below Vg,; an indirect relation is encountered.
The diffusion current is caused by the thermal motion of the carriers described by the gradient of the
carrier concentration. Derived from the law of diffusion, the following relation can be given:

Jdifusion _ 4D Y. (2.18)
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D, is the diffusion coefficient for electrons which is often modeled using the mobility .by the Einstein
relation

kgT, .
Dn=mzz", (2.19)

where kg is the Boltzmann constant. This relation is valid for conditions close to thermal equilibrium and
~ for non-degenerate carrier systems (Boltzmann statistics). Both current components are added to obtain
the isothermal drift-diffusion transport model

3, =qDnV 1 — quanV 9 = q(DaV 1 — punV ) , (2.20)

which is applied in (2.2) to obtain the current continuity equation. Together with the Poisson equation
(2.1), they form the basic semiconductor equations as given first by VanRoosbroeck [225]:

ot -’

To this set the lattice heat-flow equation (2.24) is frequently added to account for thermal effects such as
self-heating in the device: '

V- (eVY) = —p; @21)

V- (DpVn—pu,nViy)=R+ e (2.22)
Op .

V- (DpVp+puppVy) =R+ = (2.23)

' 0T :
V. (s VTL) = ”LcLa_tL - H. (2.24)
This equation requires modeling of the thermal conductivity «1,, the mass density pr, the heat capacity
crL, and the locally generated heat H. As the parameters of equations (2.21) to (2.23) depend also on
the lattice temperature and a gradient in the lattice temperature causes a current flow [227], the thermal
drift-diffusion carrier continuity equations for electrons and holes are given as [194]

k .
J,.=V. (/,cn—ngnTL - ,u,qu[z) =R+ g—qz , (2.25)
. kg dp .
J'p =V- ’u,p?VpTL - ,LLPPV’I,/) = R+ E 3 (226)

forming a coupled system with (2.24). .

 2.1.2 Types of Partial Differential Equations

Nonlinear partial differential equations of second-order can appear in three variants: elliptic, parabolic,
and hyperbolic. The Poisson equation as well as the steady-state continuity equations form a system of -
elliptic partial differential equations, whereas the lattice heat-flow equation is parabolic.

This can be shown for the Poisson equation posed in a bounded domain D € R? by rewriting the differ-
ential operators of (2.21) in (2.27) and for Cartesian coordinates in (2.28), which is then compared with a
general partial differential equation of second order (2.29):

V%) = —p/e, 2.27)
2u+ Ou=—p/e, (2.28)
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The coefficients A to G are piecewise continuous functions of z and y. In analogy to quadratic forms, one
can calculate the determinant

d=AC - B?, A (2.30)

and classify the given equation: in case d > 0 the equation is elliptic (for the Poisson equation: A = C =
1, B = 0), in case d = 0 parabolic and in case d < 0 hyperbolic.

To completely determine the solution of an elliptic partial differential equation boundary conditions have
to be specified. Since parabolic and hyperbolic partial differential equations describe evolutionary pro-
cesses, time normally is an independent variable and an initial condition is additionally required. As the
transient continuity equations are parabolic, they require such an initial condition. -

2.1.3 Systematic Derivation of the Macroscopic Transport Models

i
Macroscopic transport models can be systematically derived from the Boltzmann transport equation [134]

of

Bt
This equation is a time-dependent partial integro-differential equation in the six-dimensional phase space
(k, r), which assumes that the carrier motion is determined by Newton’s laws. The solution is the distri-
bution function f, u denotes the group velocity, F stands for the external force. The scattering operator
Q[*], which is in general nonlinear in f, represents the rate of change of f due to collisions and is modeled
via Fermi’s Golden Rule. :

+u-Vof +F-Vof = Q[f(K)]. | 2.31)

The distribution function f as solution of (2.31) is used to obtain the probability of finding a carrier inside
a phase-space volume dkdr. The equilibrium distribution function is the Fermi-Dirac distribution. If the
Pauli exclusive principle is neglected, the Maxwell distribution is obtained. In the drift-diffusion model
the cold and in the energy-transport the heated Maxwell distribution is used. The six moments model uses
an analytical distribution function in the approach pursued here [84].

This can be performed either directly by Monte Carlo simulations [112, 115,122, 123] or by the methods
_based on the expansion of the distribution function in momentum space into a series of spherical harmonics
[97].

Monte Carlo simulations are particulvarly useful to obtain a physically accurate picture including vari-
ous effects with as few approximations as possible. Since the simulations require much computational
resources in terms of time and memory, it is rarely used on an engineering level. The extraction of
small-signal parameters is often prohibitively costly, because the evaluation of a small-signal perturbation
~ requires a low variance in the results.

Whereas for extremely small devices with gate lengths below 10 nm systems based onv the Wigner-Boltz-
mann equation [70, 149-151] have been applied, the ballistic limit has been investigated by using transport
models based on the Schrodinger [124] equation.

As its direct solution requires considerable computational resources, simpler solutions are obtained by
investigating lower moments of the distribution function only. These include the electron concentration n,
the electron temperature T, and the electron kurtosis 3.

By multiplying (2.31) with a weight function ¢ (k) and integrating the result over the k space, the macro-
scopic transport equations are obtained. It is assumed that the Brillouin zone extends towards infinity,
which is justified due to the exponential decline of the distribution function [240]. This procedure results
in the following partial differential equations in (r, t)

on(¢)
ot

+% n(ued) —nF (%00 = [$Ql0)] ¢k, 232)
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while the coordinates of the k space are saturated. As macroscopic quantities describing the average
behavior of the microscopic quantity ¢(k), moments neither depend on k nor contain the respective infor-
mation any more.

For the balance and flux equations, the weight functions & * and pS’ with the momentum p = hk are
often used [84]. For the drift-diffusion transport model, the expansion is truncated at 2 = 1, for the
energy-transport transport model at ¢ = 2, and eventually for the six moments transport model at z = 3.
The balance and flux relations read as follows [83]: ’

wo==1 = T 4@ —nw @33
h=pEl=p = 57;:’0 +V-(@0;) - nF =nQg (2.34)

B=€ 5 T (V) - 1nF Vo —ngy (239

43 = pE! = LV (a0~ F-ni+ 0) =nQ @30

g = E2 - ang .+ V- (nVy) - 2nF Vi =ng, (2.37)

¢s = pE? > 82132 + V- (nUs) — nF-(wa1+20,) =nQz ~ (239)

with '
P, = (p&Y, Vi=(u&), w;=(&Y, U;=(uepsl). (2.39)

The moments of the scattering integral are
na= [ E£1QUMN ¢k, . (2.40)
nQi= [ pEIQUIG K. @41)
F standé for the external force, which is given as |

F(r) = —qE(r), (2.42)

for homogeneous band structures and neglected magnetic fields. In addition, the system is claimed to be
diffusion dominated [174]. As a consequence, the convective terms and the time derivatives in the flux
relations are neglected resulting in parabolic partial differential equation systems [89].

The moment n is the carrier concentration, n'Vy the average carrier flux, w; the average energy, n'V; the
average energy flux, wy the average energy squared, and nVs the average kurtosis flux. Vp is the average
carrier velocity, Py is the average momentum, U, the energy tensor, U, the second energy tensor, and Us
is eventually the third energy tensor. Furthermore it can be noted that (2.33) — (2.38) are the continuity
equation and current relation, the energy balance and energy -flux relation, and the kurtosis balance and
kurtosis-flux relation, respectively.

As this equation system contains more unknowns than equations and each equation is coupled to the next
higher one, the so-called closure problem comes into play: additional relations have to be introduced in
order to close the equation system, thus making it solvable. There are several approaches to overcome
this problem [84], for example the maximum entropy method [129], Grad’s method [80], the cumulant
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closure method [176, 192, 235], or a Maxwell closure [85]. The choice of variables which are expressed
by other ones is critical. The current density is proportional to the average velocity Vy. Furthermore,
the average energy w; is used to model many physical effects. For that reason, V; and w; are chosen
to remain as solution variables and the additional moments are expressed as functions of the solution
variables. According to [82], the energy-like tensor f)’i are

. . 2 .
Ui = (u@pEt) = SHwil + U (wy, Vi), (2.43)

where the anisotropic second term is neglected. By applying the macroscopic relaxation time approxima-
tion [82, 87] the equation system in the form of (2.44) and (2.45) is obtained.

678”:’" +V - (nV;) —iF -nVi_; = ngi, (2.44)
V-(nUi) = nF - (w;I1+1U0;) =nQ;, . h (2.45)
with
g = —“”%ﬁw’eq A (2.46)
Q= » 2.47)

The fluxes can be explicitly written as

_2piHipy

nVi = 3q

3+2’LH7;) . (248)

(V(TL’LUi+1) —-Nn F'U)i —m
The non-parabolicity correction factors H; equal unity in the case of parabolic bands and are modeled
as either energy-dependent using a simple analytical expression [28], by the incorporation of bulk Monte
Carlo data [84,219] or via analytic models for the distribution function [82].

Note that (2.45) still contains the tensors U; which have to be approximated by the unknowns of the
equation system w; and V;. Finally, the following variable transformation according to [86] is introduced:

3 15 105

w1 =3keT, wp= (Zk%Trz) B, ws= (Tkgéﬂ) V- (2.49)
—— N— .

" Maxwell Maxwell

[ and + are the contributions of the non-Maxwell closure. Thus, in order to obtain the Maxwell closure,
B = 1and v = 1is used. The quantity 3 is the kurtosis of the distribution function and indicates the
deviation from the Maxwell shape. The quantity -y depends on the applied closure relation and equals 3¢
for the generalized Maxwell closure, which will be used in the following. Then, the following form of the
flux equations can be obtained:

nVp = —AO(V(nkBT) - tho) . | 2.50)

nVy = — A4y (V(rkET?B) - nFhuksT) , @.51)

nVy = — s (V(rkB T ) — nFhlGT?6) (2.52)

with
i+1 -
iHi 1 , 3 + 2iH;
Ay =B d hi= ot 2.53
' 2'q 3 j=0(1 v T B+ 20)Hin @3
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The balance equations are derived as

4V = 0, (2.54)
Clan—T +V-(nV1)— F-nVig=-n 01 Teq (2.55)

ot T1

onT?B Tzﬁ T2 ﬂeq

Cs + V.- (nVa) —2F -nV) = —nCs-

ot To

with C; = 3kg/2 and C> = 15k3/4. By using the equilibrium solution of the Boltzmann transport
equation, the equilibrium values T4 and [q can be calculated for the Maxwell distribution.

(2.56)

The equilibrium carrier temperature defined by (2.49) is different from the lattice temperature, because a
non-parabolic band structure is used. One obtains Teq ~ 309.452 K and Seq =~ 1 [84]. These are also the
values used for the Dirichlet boundary conditions for 7" and . For the carrier concentration a standard
Ohmic contact model is used, corresponding to a cold Maxwell distribution at the contacts.

In the following sections, the transport models for the parabolic case are used. Thus, h; = H; =
Teq = 11, and Beq = 1, resulting in
Ag=H2 Ay = 2B A2:3Z‘;2. (2.57)

2.1.4 The Six Moments Transport Model

The closure of the six moments transport model at ¢g was determined as v = 3°. Thus, the following flux
equations can be derived: :

3, = —q(nVo) = —qdo (V(nkBT) _ nF) , (2.58)
S, = (nVi)= —A4, (V(nk T28) — anBT) , (2.59)
K,= (nVa)= —A, (V(nk%T3ﬂc) - an%Tz,B) . (2.60)
The balance equations are ' A
g—’z + V- (nVo) = o0, | @.61)
312{’3 agtT_ +V.- (V)= F-nVy= —n% T ;TL : 2.62)
15 4k’23 anaz;zg +V.(nV3) —2F -nV; = —n 154k123 T2ﬂT2_ U (2.63)

With ¢ = 2.7 the best match for w3 was obtained in comparison to Monte Carlo simulations [83]. The
boundary conditions are derived by applying a cold Maxwell distribution:

feq = Aexp (— kBETL) , h (2.64)
Vn=/'fgd8, (2.65)
resulting in the boundary conditions for the higher moments ' '
Wy = Eeq = l/é’vfgdé' _g kgT ., (2.66)
/ E2f gdE _2— KET? . o (2.67)
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2.1.5 The Energy-Transport Model

By using the closure 8 = 1 at ¢4, the flux equations of the energy-transport transport model can be
obtained:

Jn = —q(nVo) = —qAo (V(nkBT) —nF) , (2.68)
S,= (nVi)= —A (V(nk%Tz)—anBT) . (2.60)

The balance equations are (2.61) and (2.62).

2.1.6 The Drift-Diffusion Transport Model

For the drift-diffusion transport model, the closure at ¢o was found to be T}, = Ty, yielding the following
balance and flux equation:

I, = —q(nVo) = —qdo (V(nkBTL) _ nF) . (2.70)
on on 1

These equations look very familiar, as they were the result of the derivation in Section 2.1.1. In the flux
equation (2.70), the external force is substituted by F = —qE = gV 9.

Eventually, (2.70) must be inserted into (2.71), which is the balance equation corresponding to (2.2).
. | on

Veli=—ag @.72)
[ Ho _g0n
v [—q; (V(nksTr) ~naVy)] = —q = (2.73)

When T, is assumed to be constant, the isothermal drift-diffusion model as already shown in (2.22) can
be finally obtained: ' :

po kg7t __On , '
v ( o Vn— ponaV ¢) =5+ R, (2.74)
| —
Dy,
with the net recombination rate R = Ry according to
H-Q ‘ '
ngo = il = Dea + Ro = R (2.75)

0
2.2 The Discretized Problem

In general, the problem as defined in section Section 2.1.3 cannot be solved analytically. Thus, the so-
lution has to be calculated by numerical methods, which normally require a discretization of the partial
differential equations. For that reason, the domain V where the equations are posed has to be partitioned
into a finite number of subdomains V;, which are usually obtained by a Voronoi tessellation [33, 156]. In
order to obtain the solution with a desired accuracy, the equation system is approximated in each of these
subdomains by algebraic equations. The unknowns of this system are approximations of the continuous
solutions at the discrete grid points in the domain [193].
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Several approaches for the discretization of the partial differential equations have been proposed. Due to
the discretization of the current continuity equations it has been found to be advantageous to apply the
finite boxes discretization scheme for semiconductor device simulation [193]. This method considers the
equation integral form for each subdomain, which is the so-called control volume V; associated with the
grid point P;. o

Before the Gauss integral theorem can be applied, the fluxes (2.58)(2.60) are inserted in the balance
equations (2.61)~(2.63) (analogously to the drift-diffusion model above):

on 1 )
- __v. A =0 2.
e 1 vV-Jn 0, (2.76)
1 —
Cl—aﬁz + V-Sn+—F-Jn+n01T £ =0, .77
ot q T
2 T28 — T2 '
2T, Gk, —2F-S,4nc P TE_yg (2.78)
ot v T2
The inner producis F-J,and F - S,, are discretized as [85]
Fodo|  =aV-(@-v)-Ja), 2.79)

which can be handled in a straightforward way by employing the box integration method [193]. Conse-
quently, equations (2.76)~(2.78) as well as the Poisson equation (2.21) are integrated resulting in

ed v .da . +/pdV =0, (280
av v '
on gy _1}( I, -dA =0, (28D)
y Ot qJav
Vv ot 8y )% 1% 1

2 - 2
cg/ PP +4 Kn -dA—2q?{' (% — ¥1)Sn ~dA+02/ h-Tigy=0. es
Vv ot ay . ay 14 72

Finally, the discretized equations are written implicitly as control functions:

Fp;= szwf d_“w"A,-j +piVi =0, (2.84)
N 17
Foi= 2y, —12J i Aij : | =0, (285
n,g = ot % q & n,ij4iig | =Y, .
onT | T-T
Fri=Ci——Vi +) Snijly + Y (- w,)JmJAU-I—n(Jl — Lw =0, (286)
J J
3nT2 T2 T2
Fps= Cr— By, +ZKMJ i —2qZ(z/zJ 1) Sn,ij Aij+n Co b= “ P Ly=0, (287)

72

with d;; as the distance between grid point P; and P;, A,-j as the interface area between the respective
domains, and V; as the volumn of the domain. J, ;;, Sn ij, and Ky, ;; are the projections of the fluxes J,,
Sn. and K, onto the edge e;;, respectively, and are evaluated at the center point of this edge. For the grid
point P; a general control function for the quantity z is implicitly given as

=) F,+Gi=0, | (2.88)
J
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Figure 2.1: Box i with six.neighbors

where j runs over all neighboring grid points in the same segment, Fy,; is the flux between points ¢ and j,
and G; is the source term (see Figure 2.1).

Grid points on the boundary 8V are defined as having neighbor grid points in other segments. Thus, (2.88)
does not represent the complete control function F,, since all contributions of fluxes into the contact or
the other segment are missing. For that reason, the information for these boxes has to be completed by
taking the boundary conditions into account. Common boundary conditions are the Dirichlet condition,
which specifies the solution on the boundary 0V, the Neumann condition, which specifies the normal
derivative, and the linear combination of these conditions giving an intermediate type:

n-Vzx+ozr=56. ' (2.89)

Generally, the form of these conditions depends on the respective boundary models, and the conditions
depend in tum on the interior information. For that reason, the equation assembly is often performed
in a coupled way, causing complicated modules. For instance, it is absolutely necessary to differenti-
ate between interior and boundary points. Considering a general tetrahedron, there exist many kinds of
boundary points (depending on the number of edges involved), which have to be treated separately. This
leads to a complicated implementation of the models and can make simplifications necessary. Thus, due
to organizational and implementational issues this form of coupling should be avoided.

More complex models with exponential interdependence between the solution variables such as thermionic
field emission interface conditions [185,201] have also been implemented.

A method has been under development to implement segment models calculating the interior fluxes and
their derivatives independently from the boundary models. The segment models do not have to differen-
tiate the point type, they do not even have to care about the boundary model used. The assembly system
is responsible for combining all relevant contributions by using the information given by the boundary
models.

2.2.1 Interface Conditions

To account for complex interface conditions, grid points located at the boundary of the segments (see
Figure 2.2a) have three values, one for each segment (see Figure 2.2b) and a third point located directly
at the interface which can be used to formulate more complicated interface conditions like for example,
interface charges. However, to simplify notation these interface values will be omitted in the discussion
and only the two interface points, 7 and 7', are used.
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Figure 2.2: Splitting of interface points: Interface points as given in a) are split into three different points having
the same geometrical coordinates b) '

Basically, the two (incomplete) equations Ffi and Ffi, are completed by adding the missing boundary
fluxes F. ,: :

Fp= Fo, +F,, =0, (2.90)
-F,,=0. (2.91)

The intermediate type of interfaces (2.89) and thus also the two other types of interfaces are generally
given in linearized form by: ' ' '

oz — ﬁxif +7)=Fy,, (2.92)

@, B, and -y are linearized coefficients, F , represents the flux over the interface. The three types of
interfaces differ in the magnitude of c. '

In the case of an arbitrary splitting of a homogenous region into different segments, the boundary models
have to ensure that the simulation results remain unchanged. By adding (2.91) to (2.90), the box of grid
point P; can be completed and the boundary flux is eliminated. The merged box is now valid for both grid
points, for that reason the respective equation cannot only be used for grid point P;, but also for Py

Whereas the segment models assemble the so-called segment matrix, the interface models are responsible
for assembling and configuring the interface system consisting of a boundary and special-purpose trans-
formation matrix. New equations based on (2.92) can be introduced into the boundary matrix without any
limitations on «, thus from 0 (Neumann) to oo (Dirichlet). The interface models are also responsible for
configuring the transformation matrix to combine the segment and boundary matrix correctly. Depending
on the interface type there are two possibilities: '

e Dirichlet boundaries are characterized by @ — oo. Thus, the implicit equation z; = Sz — 7y can
be used as substitute equation. As these equations are normally not diagonally dominant they have
a negative impact on the condition number and are configured to be preeliminated (see Section 4.8).

e For the other typés (explicit boundary conditions) the boundary flux is simply added to the segment
fluxes. In the case of a large o, the transformation matrix could be used to scale the entries by 1/
because of the preconditioner used in the solver module (see Section 4.10).

Note, that all interface-dependent information is administrated by the respective interface model only.

As an additional feature, the transformation matrix can be used to calculate several independent boundary
quantities by combining the specific boundary value with the segment entries (also in the case of Dirichlet
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boundaries). For example, the dielectric flux over the interface is calculated as ) _, Ffl, and introduced as a
solution variable because some interface models require the cross-interface electric field strength to model
effects such as tunnel processes. Calculation of the normal electric field is thus trivial. Note that this is
not the case when the normal component of the -electric field E,, has to be calculated using nelghborlng
points when unstructured two- or three-dimensional grids are used.

See Figure 2.3 for an illustration of these concepts. The transformations are set up to-combine the various
segment contributions with the boundary system.

A Po= Ab o+ Tb As

sl substitutel = s1 incomplete] =il

s2 : substitute2=s2 | .~ ‘| incomplete2 = i2
XSRS : [boundary =b ze10

-

f[(ml+il issingl = ml incomplete]l =il
m2+i2 : | [ missing2 =m2 plete2 = 12
oenen : : [boundary=b zer0

i Complete System ! Boundary/Interface System i | Segment System !

Flgure 2.3: The complete equations are a combination of the boundary and the segment system. This combination
is controlled by the transformation matrix and depends on the interface type. In the upper figure, the
case for Dirichlet boundary conditions including substitute equatxons is shown, in the lower figure for
all other cases. : :

2.2.2 Boundary Conditions

Contacts are handled in a similar way to interfaces. However, in the contact segment there is only one
variable available for each solution quantity (zc). Note that contacts are represented by spatial multi-
dimensional segments. Furthermore, all fluxes-over the boundary are handled as additional solution vari-
ables F¢ (for example, contact charge Q¢ for the Poisson equation, contact electron current I for the
electron continuity equations, or H¢ as the contact heat flow).

For explicit boundary conditions one gets ‘
Fr =Fccsi + Fi'?zc =0, (2.93)
Fpo=Fc+) Fa=0, (2.94)
i

with 7 running over all segment grid points.

At Schottky contacts explicit boundary conditions apply. The éemjconductor contact potential 9 is fixed
and given as the difference of the metal quasi-Fermi level (which is specified by the contact voltage 1¥¢)
and the metal workfunction difference potential ;.

Ey

Ys = Y — Ywi, Wwhere Pyr = Bl (2.95)

The difference between the conduction band energy Ec and the metal workfunction energy gives the
workfunction difference energy Ey, which is the barrier height of the Schottky contact.
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For Dirichlet boundary conditions one gets

Fy, =z¢c — h(z;) =0, (2.96)
Fp,=Fc+ ) Fp=0. 2.97)
i |

Here, z¢ is the boundary value of the quantity, which is a solution variable, whereas (2.97) is used as
constitutive relation for the actual flow over the boundary Fe.

For example, at Ohmic contacts simple Dirichlet boundary conditions apply. The contact potential 95, the
carrier contact concentrations n; and ps, and in the energy-transport simulation case, the contact carrier
temperatures 1, and T}, are fixed. The metal quasi-Fermi level (which is specified by the contact voltage
1Y) i1s equal to the semiconductor quasi-Fermi level. With the constant built-in potential v, (calculated
after [65]), the contact potential at the semiconductor boundary reads

s =vo P - - @%)

For Neumann boundaries the flux over the boundary is zero hence the equation assembled by the segment
model is already complete.

2.3 Steady-State and Transient Analysis

This section gives an overview about the steady-state and transient simulation modes including a discus-
sion of the nonlinear solution technique. For the steady-state analysis, the discretized equations (2.21),
(2.22), and (2.23) can be symbolically written as:

Fy(w) =0, (2.99)
Fo(w)=0, | : : (2.100)
Fp(w) =0, (2.101)
with
(0
w=[mn|. | (2.102)
P

Note that for the sake of simplification, the vectors of the discretized quantities and equations are not
explicitly noted. The resulting discretized problem is then usually solved by-a damped Newton method
which requires the solution of a linear equation system at each step. The result of the steady-state sim-
ulation mode is the operating point, which is a prerequisite for any subsequent transient or small-signal
simulation.

2.3.1 Solving the Nonlinear System

As the resulting discretized equation system is still nonlinear, the solution w*, which is assumed to exist
is obtained by applying a linearization technique. The nonlinear problem can be defined as

F(w)=0, : (2:103)
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with

Fy(w) _
F(w) = F:/:(w) L (2.104)
Fp(w)

Most iterative methods are based on a fixpoint equation w = M(w), where M(w) is constructed in such
a way that the fixpoint w* is a solution of that equation [193]. During the iteration the error between
the current solution w* of the k-th iteration step and w* converges to zero, if specific properties and
requirements on the initial guess w? are fulfilled. With a neighborhood S(w*), M(w) € S, w € Sanda
constant o € [0, 1], the iteration will converge for any w € S(w*) to w*, if

IM(w) — w*|| < a||w — w*|| ,Yw € S (2.105)

Then, M(w) is a so-called contractive mapping, and the locally convergent iteration does converge for
any w0 € S to w*. In order to fulfill (2.105) it is assumed that the Frechet derivative M/(w) exists at
the fixpoint w* and that its eigenvalues are less than one in modulus [193]. According to the Ostrowski
theorem [243], M(w) is contractive if the spectral radius p(M’(w)) < 1, which is the maximal modulus
of all eigenvalues of M(w). If M’(w) exists such that o

M(w* + h) - M(w) —~ M'(w)h

lim =0, . (2.106).

h=0 irdl

M’(w) is the Frecher derivative. The most prominent of such linearization techniques is the Newton.
method [136] based on a Taylor series expansion. It can be written in the form [193, 201]:

A
=Jw)-| An | =f(w), (2.107)
Ap : :

where J(w) is the Jacobian matrix with the first partial derivatives [136]:

3F¢ 5F¢ 8F¢

O On Op
OF, OF, OF, .

= 2.108
=% an o | @199

0F, O0F, O0F,

o on Op

As the iteration can be rewritteh in the form

wktl = M(w*) = w* — J7IR(w") , (2.109)

the Frechet derivative evaluated at w* equals I — J(w*)F/(w*) resulting in p = 0. Hence, the Newton
method converges for all w? sufficiently close to w*.

It is important to note that J must only be an approximation of the Frechet derivative, which follows from
the derivation of p [193]. Furthermore, in order to enlarge the radius of convergence and thus improve the
convergence behavior of the Newton approximation, the couplings between the equations can be reduced,
especially during the first steps of the iteration. Before the update norm, that is the infinity norm of the
update vectors of all quantities, has fallen below a specified value, the derivatives as shown in Table 2.1 are
normally ignored. Besides the driving force for electrons and holes in the drift-diffusion model, F;, and
F,, and the tunneling current density Jiun, all quantities are already known from the previous sections.
Note that for the sake of simplification just the symbols are given without vector notations.
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P n P T Ty Bn Bp F, F,
; A A
" oT, : OF,
; 24y 8%,
P o7, O0F,
s, | 95 85, 85,
" oy 0T, ‘ 00n
S, 95, ' 95, 95y
P oy 0T, 9B
oY on Op
. Opin
Hn 9F,
Ou
Hp B—Fz;
5| 8%un | 8%tun | BJeun | Odiun | BJtun
S on dp T, | T,

Table 2.1: Ignored derivatives during the first steps of the Newton iteration.

The linear equation system for the k-th iteration step looks like:
—JExbtl = F(wk) . - (2.110)

The right-hand-side vector F(w¥) is the residual and x**! is the update and correction vector. This
solution vector x of the linear equation system is used to calculate the next solution w of the Newton
approximation:

k+1

w =wk 4+ xk1 : : (2.111)

To avoid overshoot of the solution and to extend the local convergence of the method several damping
schemes suggested by Deuflhard [50] or Bank and Rose [15] can be used to calculate a damping factor D.
The damped update reads

whtl = wk 4 Dxk+1 (2.112)
Investigations have shown that damping based on the potential delivers the most promising results [65]:

146-1n IIXthII

D= ol . with 0<34, (2.113)
A IXpll
1+6 (W 1) '

- where 4 is an adjustable parameter of the damping scheme, x,; the update norm of the potential sub-
vector, and V;y, the thermal voltage. Larger ¢ yields more logarithm-like damping. The potential damping
scheme avoids the expensive evaluation of the right-hand-side vector, which is for example required for
the scheme of Bank and Rose [15]. '
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2.3.2 Transient Simulation

The transient problem arises if the boundary condition for the electrostatic potential or the contact currents
becomes time-dependent. Hence, the partial time derivatives of the carrier concentrations in (2.22) and
(2.23) have to be taken into account.

There are several approaches for transient analysis [193], among them are the forward and backward Euler
approaches. Whereas the former shows significant stability problems, the latter is unconditionally stable
for arbitrarily large time steps At. However, full backward time differencing requires much computational
resources for solving the large nonlinear equation system at each time step, but gives good results. The
quality of the results can be measured by the truncation error [146]. Equations (2.21), (2.22) and (2.23),
discretized in time and symbolically written, read then at the m-th time step when m+-1 is to be calculated:

Ey(w™t) =0, (2.114)
nm+1 —nm

Fp(w™t) = — x> (2.115)
pm+1 _ pm

Fy(w™th) = —x (2.116)

From a computational point of view it is to note, that in comparison to the steady-state solution the alge-
braic equations arising from the time discretization are significantly easier to solve [193]. This has mainly
two reasons: first, the partial time derivatives help to stabilize the spatial discretization. Second, the so-
lutions can be used as a good initial guess for the next time step. Furthermore, the equation assembly
structures can be reused (see Section 4.12).

2.4 Small-Signal Simulation

Small-signal device simulation is used to extract the relationship between small sinusoidal terminal volt-
ages and currents which are superimposed upon an already calculated steady-state operating point. This
relationship depends on the DC operating point and on the frequency. The amplitude of the superimposed
signal is considered to be small as long as harmonics are not generated within the device.

A small-signal simulation mode can be based on several approaches, some of them which will be shortly
discussed in this section in accordance with the well-known overview from [127]. Whereas many of these
approaches are based in the time domain and can thus use a transient simulation mode, the S3A approach
(Sinusoidal Steady-State Analysis) is directly applied in the frequency domain.

In Figure 2.4 a comparison between approaches based in the transient and frequency domain is shown.
The time derivatives are usually discretized by a backward Euler discretization, and thus a high number of
steps has to be performed to achieve sufficient accuracy. For that reason the time consumption is usually
reduced by extracting an equivalent circuit using the information of only one frequency.

Fourier decomposition techniques were one of the first choices to characterize AC device behavior [127].
The entries of the admittance matrix are obtained after the Fourier transformation of transient current
and voltage responses. This allows to employ a transient simulation mode followed by transformation
algorithm, for example a fast Fourier transformation. The technique is rigorous and universally applicable,
but requires much computational resources, as a high number of time steps is required in order to achieve
sufficient accuracy in the time and frequency domain.

An alternative are the so-called incremental charge partitioning heuristics. An entry of the capacitance
matrix is obtained by C;; = AQ;/AV;. A Q; is the incremental charge at the contact ;. Whereas the
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Figure 2.4: Comparison of transient and frequency-domain-based approaches [233]. The dashed fgctangles of the
S3 A approach symbolize complex-valued equation systems, the other real-valued ones.

results can be accurate and computatidnally inexpensive, this approach cannot be applied in a general-
purpose device simulator. For example the gate capacitances of a MOSFET can be readily computed, since
the transient current is solely a displacement current and the integral can be evaluated. The incremental
charge is then simply the incremental charge induced at the gate by the voltage perturbation: The charge
‘partitioning technique is heuristic and cannot be generally applied. For specific problems good results can
be obtained with small computational resources.

2.4.1 Equivalent Circuits

In order to perform small and large signal simulations, equivalent circuits are frequently extracted and
applied. The advantages of these circuits can be summarized as follows: like the compact models used in
circuit simulations, they can be evaluated very efficiently. In addition, the values for the circuit elements
can be optimized in order to deliver a nearly perfect match with the measurement data used for the cali-
bration. The extraction procedure and the limitation for predefined operating conditions can be regarded
as the disadvantages of this approach.

The small-signal modeling of a GaAs heterojunction bipolar transistor is often based on the linear hybrid
IT model [74,187]. The applied model is extended by the separation of inner and outer base resistance
and of the base-collector capacitances. An alternative model is the T-model as discussed in [130]. In
Figure 2.5 a standard II-type small-signal equivalent circuit of a HEMT [169] (left) and a T-type eight-
element small-signal equivalent circuit of an HBT are shown [160]. Although this approach can be very
efficient, inaccurate compact models can endanger the quality of the results.

2.4.2 Sinusoidal Steady-State Analysis
The most rigorous small-signal simulation mode is based on the sinusoidal steady-state analysis (S>A)

approach, which is well-established in the device simulation area [77,90,111,127,214,216,218]. In
contrast to the alternative approaches, transient analysis is not employed. The approach is rigorously
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Figure 2.5: These figures [160] show a standard II-type small-signal equivalent circuit of a HEMT (left) and a T-
type eight-element small-signal equivalent circuit of an HBT. The dashed rectangles denote the intrinsic
devices, the terminal resistances can be additionally included in the simulation.

correct and can be applied with small computational effort. Its results are very accurate due to the formal
linearization of the device. In addition, the analysis is based directly in the frequency domain. Harmonics
cannot be considered, because the device is linearized by a Taylor series expansion terminated after the
linear term. Two properties can be identified why S2A is both an extremely accurate and very efficient
approach:

1. Due to the linearization of the device, no harmonic generation is possible. Hence, no errors related
to the perturbation amplitude are possible.

2. Furthermore, this approach is not based on a time discretization and hence no respective discretiza-
tion error can occur. '

2.5 Derivation of the Complex-Valued Small-Signal System

In order to derive the complex-valued small-signal system based on the S3A approach, the equations
(2.21), (2.22), and (2.23) can be symbolically written as [90]:

Fy(¢,n,p) =0, ' 2.117)
Fh(¢,n,p)==§gzﬁéggals- : : (2.118)
Fp(,n,p) = % : (2.119)

For the derivation of the linear small-signal system, the following time-dependent functions

P(t) = o + Yt (2.120)
n(t) = ng + nelt ' (2.121)
p(t) = po + pet (2.122)
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are substituted into the equations (2.117), (2.118), and (2.119) to obtain

Fy(tho + Y&, ng + ne*, po + pe**) = 0, (2.123)
: ) jwt
Fo (%o + 9!, ng + nel?, pg + pelt) — BG"(”"a’: ne”) o, (2.124)
. : : dGp(po + pet :
Fp(to + 9", ng + ne™’, po + pe™*) — p(Poat pe) _ 0. (2.125)

The zero subscript stands for the steady-state operating point of the device. The time derivatives of the G
functions in (2.118) and (2.119) are calculated using the chain rule as follows:

0Gn(n(t) _ Gn(n(t)) O _ BGa(no + 1)

- _ o 5= = wet (2.126)
8G e]wt
Gplp(t) _ aapggungf _0 ,,<poa :p ) piwcit 2.127)

To obtain the linearized version of (2.117), (2.118), and (2.119), a Taylor series expansion is performed,
which is generally defined for a function with several unknowns as follows [29]:

, P ' v
F(z+hy+k,..)=F(z,vy,... +Z ( +k— ) F(z,y,..)+ Ry, (2128)

where Ry is the remainder term of the approximation. This formula can be specialized for the three
unknowns 1, n, and p, and termination after the linear part (z = 1) resulting in the small-signal approxi-
mation:

F(+hn+kp+l)=F,np) + (h%+ka z;)p(w,h,p)+R1. (2.129)

By applying (2.129) for the functions F' of equations (2.123), (2.124), and (2.125) with the functions
(2.120), (2.121), and (2.122), the following approximation is derived:

F(tpo + et ng + ne?, po + pet) = .
8 [e“"F] - 0 [ne*F| 0 [peF] (2.130)
5y T oen T o

= F(v0, 70, po) +
e e

_dc solution

If this approximation is substituted into equations (2.123), (2.124), and (2.125), the resulting equation
system reads

. dF; dF, 0Fy 1
_r wt[ 40P, OFy — OFy J 131
0 ¢(¢0an0’p0)+ej ’(p 8’!,0 n on + p 8]) ’ ( )
dc solution o
. OF, oG OF,
_ wit n o n __71
0= Fn(¢0,n0,p0)+e’ 1& 8¢ n <—8n Jw Bn ) + p ap ] ’ (2.132)
dc solution
. 8F, 8F, . 8G |
0=F wt hufinll 2 —P . =2 . 2.133
»(%0, 0, Po) +€ 1/) %/1 ot E( a  “op ) ] (2.133)
dc solution .
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According to equations (2.99), (2.100), and (2.101), the steady-state solutions are equal to zero. This linear
equation system can be written in the following matrix notation [127], where the subscript dc emphasizes
that all derivatives are evaluated at the steady-state operating point:

oY . On Op "
O0F, OF, . 8G, OF, -
_ =0. 134
oYy On “on dp L 0 2.134)
oF, 0F, or, 3G, | L2
L oY on .~ Op Op Jdc

The real-valued part of the system matrix equals the Jacobian matrix as shown in (2.108). For that reason,
the assembly of this part of the matrix can be performed in exactly the same way as for steady-state
analysis. The complex-valued contributions are then added by the transient models. As a consequence,
the real-valued part can be stored during a frequency stepping since only the complex-valued part is
modified. '

As already discussed in Section 2.3.1, the exact Jacobian matrix can be replaced by a simpler matrix.
Since the solution of the S3A small-signal system does not involve an iterative process but is based on the
linearization of the device, it is absolutely necessary to take all derivatives into account. If the simulator
offers the possibility to skip several entries (for example iteration schemes, see Section 3.6.4), it has to be
ensured that the complex-valued system matrices contain all necessary entries. The same problem occurs
while iteratively solving the complex-valued equation system. The preconditioner has to be configured in
such a way that no entries are removed (see Section 5.2.5).

2.5.1 Boundary Conditions and the Complete System

In contrast to the Newton procedure, the right-hand-side vector is mostly zero. The small-signal Neumann
boundary conditions are the same as during steady-state analysis. The frequency-independent boundary
conditions for n and p are zero, because the derivatives vanish in the Taylor series expansion of the contact
control function. Real- or complex-valued Dirichlet boundary conditions for 1) can be used to excite the
system.

After the complete complex-valued linear system for a small-signzil analysis is assembled, the following
parts can be identified: A :

~[J+jwClx=b, | | (2.135)

where J is the real-valued Jacobian as shown in (2.108) and (2.134), C contains the contributions of the
time-dependent nonlinear G functions, x is the complex-valued solution vector

¥
x=| n |, , (2.136)
p
and b the complex-valued right-hand-side vector.
2.5.2 Extension for Higher-Order Transport Models
The small-signal system for the energy-transport transport model reads as follows:
T
—m[@ np In Q] = Bup - o (2137)
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with

[ 8F¢ 3F¢ 3F¢ 3F¢ 8F¢
ED on  dp 8T, T,
8F, . 8G, OF, 0OF, OF, ' OF,
3 “on on  Top T, 3T,
OF, 8F, &8F, . 8G, 0F, OF,
Anp = | By an  ap. “op BT, aT,
dFr, 8Fr, OFr, oF;, . 8Gr, OFr,
e N o1, “oT, T,
dFr, 8Fr, OFr, 8Fr, oFr,
N on  dp T, T,

0Gn

Y on

(2.138)

With matrix Agp from (2.138), the small-signal system for the six moments transport models is eventually

given by
_ [ Amnp
Su
with
ST =
Si =
S =

S : ) T
s llenrmt e s) -8,
Sm — =
[ OF, OF, 8F, OFp OFfr, ]
OBn OBn OBn OBn OBn
0F, OF, OF, O0Fy OFr,
L 96y OBy OBy OBy OBp |
[ OFp, OFp, OFp, OFp, 0Fp, ]
oYy  On op oI, 01,
OF, By OF, By OF, By 0Fp, OF Bp
| 9y  on  Op oI, o1, |
i 3F,Bn _JwaGﬂn 3Fﬁp
0P OBn  OBn
OFj, OFs, _ . 0Gs,
L 9B By - OBy

2.6 Concluding Remarks

(2.139)

(2.140)

(2.141)

(2.142)

If a device, for example a power RF transistor, has to be characterized under conditions where a harmonic
generation takes place, the small-signal approximation has to be replaced by large-signal simulations
[241] such as the nonlinear harmonic balance, envelope, or shooting-method simulation [220]. In contrast
to small-signal simulation, the device is then not linearized and the harmonic generation as depicted in
Figure 2.6 can be taken into account. Rather than ignoring the harmonics and thus getting results which
actually violate physical conditions, the additional voltage and current vectors are included in the simula-

tion. Simulators for Harmonic Balance simulations are for example proposed in [6, 8, 206].

An alternative are Volterra methods which are similar to the small-signal systems besides the fact that they

take more than the first term of the Taylor series expansion into account [125].
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Figure 2.6: Comparison of small-signal and large-signal simulations. In the case of too high RF power, harmonics
are generated within the non-linear devices. These additional voltage and current vectors cannot be
taken into account by linearized small-signal approximations [45].

2.6.1 Harmonic Balance

Three important parameters for RF and power devices are the power gain and output level, the power
added efficiency as the ratio between the difference of the output and input power and the steady-state
input power, as well as distortion [241]. These quantities can be efficiently extracted by the Harmonic
Balance method.

Harmonic Balance is a highly accurate analysis technique which is also based in the frequency domain
[220]. For that reason the large-signal steady-state performance of a semiconductor device can be much
faster obtained than using a computationally more expensive transient analysis [177]. Harmonic Balance
can be used for simulating analog RF problems which are naturally handled in the frequency domain.
‘Among the results are harmonic distortion, third-order intercept points, gain compression, phase noise,
and intermodulation products in non-linear circuits [5]. As the input stimulus is assumed to consist of
steady-state sinusoids, the solution of the Harmonic _Balance' simulation is a sum of steady-state sinusoids
including the input frequencies additionally to significant harmonics and mixing terms.

The Harmonic Balance approach consists of an expansion of each device variable, that is for example ¢,
n, and p, as a Fourier series and solves for the coefficients X,,0, X, p = X,If,h + jX,Il, » given as [177]

H H
Zn(t) = Xno + ) (X7 cos(wa(t)) — X7 psin(wa(t))) = R [Z (@exp(jwht))} ,  (2.143)
h=1 | h=1 ,

with H as the number of harmonics. Thus, the main objective is to calculate the coefficients in such a
way that the nonlinear partial differential equations as derived above are satisfied within a given tolerance.
Higher-order frequency components are neglected as they are assumed to be irrelevant. This results in the
characteristic trade-off between accuracy and performance, because smaller numbers of H can be faster
solved while being less accurate. As the Fourier coefficients are calculated, the time-domain signal can
be obtained from the Fourier expansion [177)].

The time domain state vector z of length N = 3K + @ is given by [221]

X = [1,71,P1, - - YK, N, PR VL, - 0Q) (2144)

with K internal nodes and () terminals of the linear network. For the three quantities 1, n, and p, the
lengths and the dimension of the equation system is given by (3K + Q)(2H + 1), because (2H + 1)
values are required to represent each state variable waveform z,(t). Thus, the memory consumption can
be regarded as the major disadvantage of that approach.

30



The input stimulus is usually an either one- or two-tone sinusoid (more than two sinusoids are normally
already too expensive) with the form [241]: :

( )= A; cos(Qlt + ¢1) + Az cos(Qat + ¢2) , (2.145)

where As is zero for an one-tone 51mulat10n In an mtermodulatlon distortion test, the frequencies 2; and
Qs are very closely spaced [221].

The benefits of Harmonic Balance are that this approach is able to extract steady-state performance of a
device in the presence of potentially longer time constant phenomena, while it avoids excessive number
of time steps in multitone analyses [177]. A particular strength of the Harmonic Balance method is that it
can include models for linear components which are directly based in the frequency domain. Such models
are required for lossy or dispersive transmission lines [125].

For the solution of the resulting equation systems, special algorithms and numerics, such as the restarted
version of GMRES, are required [220]. Furthermore, difficulties are reported in case of strongly nonlinear
circuits or circuits containing signals with abrupt transitions [125].

Finally it has to be noted that the linearity is an important prerequisite for advanced systems as higher-order
harmonics at the output can be neglected. In a nonlinear device harmonics are generated even for pure
sinusoidal inputs. An important figure of merit is the so-called third-order inter-modulation intercept point
[171], at which the output amplitude of the third harmonic equals that of the fundamental one [135]. For
that reason, the third harmonic intercept voltage parameter is considered to give a good indication of the
device lmearxty For Mos devices, Vips can be approximately obtained from steady-state characteristics

[239]
24 '
Vips = | ==, (2.146)
gm3

with the transconductance gr, and its third derivative gpy3.

2.6.2 Complex-Valued Equation Systems

The S3A approach obviously requires the ability for solving complex-valued linear equation systems,
for which several methods can be applied. One possibility is to reuse a real-valued assembly and solver
system, split the real and imaginary part as suggested in [127] and solve both systems separately If the
complex-valued matrix has the form :

—-[J+iClx=b, (2.147)
the real-valued system looks as follows: |
e FIRI-
where |
x = [xg +jxi], (2.149)
b = [bg + jbi]. (2.150)

In terms of memory consumption this approach has, especially for three-dimensional simulations, severe
 disadvantages, since the dimension doubles causing a fourfold-sized system matrix. Thus, the compu-
tational effort for factorization can be excessive. In [127] iterative methods like block-Gauss-Seidel or
block-SOR are suggested for reducing this effort. In Chapter 4 and Chapter 5, complex-valued assembly
and solver systems are discussed. In addition, the results of an evaluation of these approaches is given.
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Chapter 3

Small-Signal AC Analysis

The small-signal analysis mode of MINIMOS-NT is based on the S3A approach presented in Chapter 2

. and discussed in Section 2.5. After a conventional DC step at a given operating point the simulator is

switched to the simulation mode in the frequency domain, where the device is excited by a complex
sinusoidal perturbation of infinitesimal amplitude. In comparison to transient methods performance is

better (only one equation system per frequency step has to be solved) and the results are more accurate as

time discretization is not mvolved

3.1 Introduction

The major objective of small-signal simulations is to extract various figures of merit of the devices or
networks. Two-port parameter sets are useful design aids provided by manufactures for high-frequency
transistors. In addition, they are used to extract the cut-off frequency or the maximum oscillation fre-
quency, which are further required for characterization of the devices. The following basic definitions are
generally used [164]: :

Impedance  Z =R +jX, Z =2 =VR+ X?
Resistance R = R(2), R= ‘1%

Reactance X =%(2), X = 52
Admittance Y = % =G+jB, Y=[Y|=VG*+B?
‘Conductance G = 9;(17_), G= ;

Susceptance B = ¥(Y), B = 2(2

with the imaginary unit j = /—1.

Furthermore, a distinction between intrinsic and extrinsic parameters has to be made. Measured admit-
tance and scattering parameters are normally different from the simulation results. If the errors are system-
atically introduced by the measurement environment, it is useful to represent the device as embedded in a
parasitic equivalent circuit. Hence, the intrinsic parameters represent the de-embedded device. Based on
a standard parasitic equivalent circuit, the simulator can take all parasitics into account and can calculate
also extrinsic two-port parameters. ‘
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In order to clarify the notation of the various parameters hereafter, the following definition shall be used:
Y refers to a specific complex-valued admittance value, however for the sake of readability Y as in Y-
parameters refers to a general admittance quantity. A lower case letter for an intrinsic parameter is some-
~ times used to distinguish from extrinsic parameters written with an upper case letter. For the sake of

clarification, this distinction is not made in this work and the context of the respective parameter is always
clearly indicated. '

3.1.1 Admittance, Impedance, Hybrid Matrices and Parameters

An N-port device/network can be represented by several matrices or parameter sets. At low frequencies,
these are usually Y-, Z-, H-, or A-matrices or parameters, because they can be easily measured with open
or short circuits.

i ~ | y-Marix | ™ T L
—— —e
Z-Matrix
v Port 1. - ' Port 2 v
H-Matrix
A-Matrix

Figure 3.1: Voltages and currents of a two-port device/network.

For a two-port device/network as depicted in Figure 3.1, they are defined as follows:

11 f Y Yo V1
Ay n Jzyfmy 3.1

(&
V1 Z11 Zi2 3 '
o) o4 L )fn) 32

(.
(2)-(2 =)L) e
(fj):( ﬁ)(i) | - Ge

Hybrid (H-) parameters are often used for the description of active devices such as transistors. Like Y-
parameters, they are difficult to measure at high frequencies. The absolute value of the Hg) parameter is
used to characterize fr, where the current gain has dropped to unity. The so-called chain or A-parameters,
sometimes also referred to as ABCD-parameters, are useful for cascaded circuit topologies, since these
parameters allow matrix multiplications of the single elements:

A E _ A E . A E _ (AlAZ + Blc2) (A1B2 + B1D2) (3 5)

¢ D), \€ D/ \C D), \(Cids+DiCy) (CiBz2+ D1Dy) '
Measurements of Z-parameters require (analogously to Y-parameters) open circuit connections which may
act as short circuits at RF frequencies due to stray capacitances.
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1
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3.1.2 Scattering Parameters

Advanced devices are operated under their originally intended environment conditions for higher frequen-
cies above 100 MHz. A steady-state bias is applied to all terminals superimposed by an additional RF
excitation. The sinusoidal currents and voltages of all terminals with magnitude and phase should be mea-
sured. This would normally involve Z-, Y-, H- and A-parameters of the linear two-port theory, which are
able to completely describe the electrical properties of the device. Unfortunately, three main problems can
be identified [45]:

1. At high frequencies it is problematic to directly measure voltages and currents. Voltmeters and
current probes cannot be simply connected due to the probe impedances and problems related to a
correct positioning. It is necessary to apply either AC-wise open or short circuits as part of the Z-,
Y-, and H-parameter measurement. Especially at high frequencies short and open circuits are diffi-
cult to obtain because of lead inductances and capacitances. Such measurements typically require
tuning stubs which are adjusted at each measurement frequency. This is not only inconvenient and
cumbersome, but a tuning stub shunting the input or output may cause active devices to oscillate or
self-destruct and thus prevent measurements or making them invalid [98].

2. The voltages and currents depend on the length of the cable used to connect the device under test to
the measurement setup. Hence, the measured values depend on the position along the cable.

3. At high frequencies, true open and short termination of the device is hard to achieve.

To avoid these drawbacks, S-parameters can be used to characterize a two-port network, which are related
to the scattering and reflection of traveling waves (power or equivalent voltage waves). Instead of open
and short termination, the ports are terminated by a cable of the characteristic impedance Zg. The device -
is so embedded into a transmission line of a certain characteristic impedance Zg, usually 502. This
scattering and reflection is comparable to optical lenses which transmit and reflect a certain amount of
light. The traveling waves can so be interpreted in terms of normalized voltage and current amplitudes.
S-parameters are the complex-valued reflection coefficients at each port and complex-valued transmission
coefficients of the equivalent voltage wave between each pair of ports. Hence, an N-port device or circuit
with N2 S-parameters has N reflection coefficients and N2 — N transmission coefficients. An additional
advantage is the fact, that traveling waves do not vary in magnitude at points along a lossless transmission
line. In contrast to other parameter measurements, S-parameters can be measured at some distance from
the measurement transducers [98].

*—] —e
q * S—Matrix * (27}
Port 1 Port 2
b — — " b
o—— —eo

Figure 3.2: Traveling waves at a two-port device/network.

S-parameters provide detailed information on the linear behavior of the two-port. As shown in Figure 3.2,
they are basically defined as follows:

b\_(Su Su)(a
()= (5 8)(8) as
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Figure 3.3: Definition of S-parameters.

with a; and b; as traveling waves. As illustrated in Figure 3.3, the S-parameters are defined as:

by_(Su S2)(a
(w)=(5 5)(&): o7

a
with
|as)? ... power wave traveling towards the two-port,
1b;|? ... power wave reflected from the two-port,
o [baf? '
|S11] 5 . power reflected from port 1,
- |ai| laz=0
b - .
|S10|% = % ... power transmitted from port 1 to port 2,
- las| lay=0 -
bo|? '
|S91|? = % . ... power transmitted from port 2 to port 1,
|ﬂ| |az=0 .
2 _ lbef
| Sa2|* = ol ... power reflected from port 2.
_ 22— la1=0 ’

The parameters Sy; and S are obtained by terminating the port 2 by a perfect Zg load (|ag|? = 0) and
measuring the incident, reflected, and transmitted signals. Parameter Si; is equivalent to the complex-
valued input reflection coefficient (impedance) of the device and So is the complex-valued forward trans-
mission coefficient. In turn, while terminating port 1 by a perfect load (|a1|> = 0), the parameters Sap
and S12 are measured, which are the complex-valued output reflection coefficient (output impedance) or
reverse transmission coefficient, respectively. The accuracy of the measurements strongly depends on the
quality of the terminations. If the perfect load cannot be established, the S-parameter definition require-
ments are not met. ’

The magnitudes of the reflection parameters S1; and Sap, which are always smaller than 1, can be in-
terpreted as follows: In the case of -1, all voltages are inverted and reflected (0 (2), zero means perfect
impedance matching and no reflections (50 2), and at +1 all voltages are reflected (co €2).

In the case of an active amplification, the magnitudes of the transfer parameter S5 and reverse parameter
Si12 can be larger than 1. They can also start at a negative value in the case of a phase inversion. If the
magnitude is zero, there is no signal transmission, between 0 and +1 a damping takes place, at +1 there
is a unity gain transmission and above +1 an input signal amplification.
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Si; on the real-valued axis characterize Ohmic resistors. S;; above the real-valued axis characterize in-
ductive impedances. S;; below the real-valued axis characterize capacitive impedances. Sj; curves in the
Smith chart are followed clock-wise to increasing fréquencies.

Sij curves in the polar chart are followed clock-wise to increasing frequencies.

3.1.3 Extraction of the Cut-Off and Maximum Oscillation Frequency

The cut-off frequency fr and maximum oscillation frequency fn.x are the most important figures of
merit for the frequency characteristics of microwave transistors. They are often used to emphasize the
superiority of newly developed semiconductors or technologies. For example, as a rule of thumb, the
operating frequency of a transistor, sometimes referred as fop should be ten times smaller than fr [189].
Thus, extraction of these parameters is a commonly performed simulation task usually done by small-
signal simulations.

The cut-off frequency fr is the frequency at which the gain or amplification is unity, thus the absolute
value of the short circuit current gain Ha; equals unity:

|Ha1|,_, =1. 3.8)

Hj, is defined as the ratio of the small-signal output current to the input current of a transistor with
short-circuited output. For a bipolar junction transistor, Hj, basically characterizes the ratio between the
small-signal collector current ¢c and the small-signal base current 5. For a MOS transistor, a similar ratio
regarding the small-signal drain and gate currents can be specified:

lic|

o = €L 3.9)
)

Bmos = _l .Dl . (3.10)
lic|

The cut-off frequency is normally extracted for various operating points. Thus, the peak fr value is the
highest frequency for this range of operating points. See the left side of Figure 3.4 for a typical curve.
To extract such a complete curve I¢ or Ip (or Vg or Vg respectively) is stepped. Hence, two stepping
variables (see Appendix B) are necessary to obtain fr: one for the steady-state operating point and one
for the frequency. Whereas the operating point is-a matter of ordinary stepping functions, there are several
approaches for frequency stepping:

e The frequency can be simply increased until 3 is smaller than one. Then, an interpolation algorithm
is used to obtain the frequency for which 8 = 1.

o This so-called unity current gain frequency can be calculated by extrapolation of | Hy; |, because for
a conventional transistor | Hy, | drops with a slope of —20 dB/dec or —6 dB/oct at higher frequencies.
This roll-off slope of a one-pole low-pass is depicted on the right side of Figure 3.4. Thus, the
frequency is increased until the —20 dB/dec region of the curve is reached. An extrapolation yields
the cut-off frequency. Measurement equipments often use this approach to obtain fr, since they
are normally not able to measure such high frequencies as required for today’s cut-off frequencies.
However, this method depends on the frequency chosen, that means which frequency assures the
validity of the single-pole approximation [172].

e For simulation purposes it is very inconvenient to run a simulator and a post-processing script in the
end. For that reason a conditional stepping approach was developed to use a mathematical iteration
algorithm to approximate fr for a given accuracy (see Section 3.3.3).
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. Figure 3.4: Complete fr curve of a bipolar junction transistor (left). Sldpe of the absolute value of the short circuit
current gain and the cut-off frequency at the unity gain point at Ic = 0.865 mA (right).

The second important RF figure of merit is the maximum oscillation frequency fmax, Which is related to
the frequency at which the device power gain equals unity. The value of fpax can be determined in two
ways. The first one is based on the unilateral power gain U as defined by Mason

S 2
-
: 12
Ulf) = == , 3.11
O u[E]w (2) o
S12 Si2
where k is Kurokawa'’s stability factor [94] defined as
o = LSl =190l +SuSn ~ Susul’ o1

2[S1z| |Saa

Therefore, fmax is the maximum frequency at which the transistor still provides a power gain [189]. An
ideal oscillator would still be expected to operate at this frequency, hence the name maximum oscillation
Jfrequency. Like the short-circuit current gain Ha;, U drops with a slope of —20 dB/dec.

The second way to determine fi,ax, Which is not entirely correct [189], is based on the maximum available
gain (MAG) and the maximum stable gain (MSG). Whereas MAG shows no definite slope, MSG drops
with —10 dB/dec.

fmax does not have to be necessarily larger than fr. Generally, transistors have useful power gains up
to fmax, that above they cannot be used as power amplifiers any more. However, the importance of fr
and fmax depends on the specific application. Thus, there is no general answer whether fmax should be
priorized over fr. Both figures should be as high as possible, and manufactures often strive for fr & fmax
in order to enter many different markets for their transistors [189].
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3.2 Overview of the Minimos-NT Small-Signal Capabilities

As depicted in the overview in Figure 3.5, the small-signal capabilities which were implemented into
MINIMOS-NT can be divided into two branches:

1. Standard small-signal capabilities: general complex-valued amplitudes can be applied to an arbi-
trary number of terminals of the device. In combination with the frequency setting, the simulator
can be used to calculate the respective complex-valued terminal currents or voltages. For example,
this feature can be efficiently applied to extract the cut-off frequency fr of the simulated device.

2. Extended small-signal capabilities: for several simulation tasks such as the S-parameter extraction,
it is necessary to calculate the complete admittance matrix of the device, which can be obtained by
applying the unity voltage once to each terminal. Since the device is linearized, it does not matter
which voltage is applied at the terminal (besides of numerical considerations). For the special case
of the unity voltage, there is no subsequent division necessary to obtain the admittance value. By
using the standard capabilities, the calculation of the matrix can be a cumbersome task, because
appropriate stepping variables have to be defined and the respective post-processing for collecting
these values has to be implemented and configured. Furthermore, speed-up features suitable for
this kind of simulation task cannot be employed. See for example the discussion of the multiple
right-hand-side feature in Section 4.3. For that reason, a feature for automatically calculating the
complete admittance matrix is provided. Based on these features, various sets of intrinsic and
extrinsic parameters can be extracted.

Mixed—Mode DC
Single-Mode DC

Mixed—Mode AC
Single-Mode AC

T~

Standard Small-Signal: Extended Small-Signal:
Currents, Voltages Intrinsic Admittance Matrix
Further Cut—off Intrinsic Intrinsic Extrinsic R
User-defined . Frequency Capacitance Scattering Two-Port
Calculations Extraction Matrix Matrix Circuit

Extrinsic Y-, Z-, H-,
ABCD- Parameter Sets

Figure 3.5: Overview of the MINIMOS-NT small-signal capabilities.

The main simulator output of the extended branch is the intrinsic (de-embedded) admittance matrix. Based
on this matrix, the intrinsic capacitance and intrinsic scattering matrix can be calculated. As an optional
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feature these parameters can be transformed into extrinsic parameters in order to take parasitics introduced
by the measurement set-up into account. '

Both branches finally provide comfortable features to extract the cut-off frequency fr or additional figures
of merit such as the maximum oscillation frequency fmax. In addition, the user is able to inquire all small-
signal simulation results (see Appendix A.6) and can employ the input-deck built-in functions to perform
further calculations, which can then be written to the simulator output file. Thus, as a matter of improved
usability no subsequent post-processing is necessary for the most common simulation tasks.

As already seen in Figure 3.5, all small-signal capabilities are available also for mixed-mode simulations,
which are discussed in the second part of this chapter.

3.3 Standard Single-Mode AC Analysis

This section deals with the basic settings and configuration of the small-signal simulation mode. In addi-
tion, some information about the internal implementation is given. As transient and small-signal analysis
are related simulation modes, their setup and configuration is very similar (see Appendix A.1).

3.3.1 Introduction

The AC steps are based on a fully converged steady-state operating point, Therefore, it has to be ensured,

that a DC simulation is started prior to any AC step. Note that this is also implicitly the case for transient

simulations. During initialization of a transient or small-signal simulation, the internally used time or

frequency representation is updated. Due to the backward Euler discretization the transient simulation

mode requires the difference between two time points. Thus, in addition to the current time point also the
last point has to be stored. ' -

All models obtain the reciprocal time as input, which is used by the transient models to calculate their
time-dependent contributions to the equation systems. Depending on the simulation mode, the variable
contains either the reciprocal time difference or the angular frequency. Therefore, it is set as follows:-

1
Cto—t1 ]
Tac =27f. (3.14)

(3.13)

Ttransient

This value is then passed to each model, indicating a DC step in case of zero and a transient or small-signal
step in case of non-zero values. All models are subsequently called to add their contributions to the linear
equation system. In order to excite the device, the user can specify the complex-valued amplitude of each
terminal of the device. ‘ ' '

3.3.2 Simulation Example

These standard small-signal capabilities will be demonstrated on a simple diode as shown in Figure 3.6.
In the example discussed below, the capacitances over a wide range of frequencies are extracted. The
anode voltage is an additional parameter of the simulation. Refer to Appendix A.3 for further details on
the simulation setup.

In addition, the diode was also subject to transient simulations in order to demonstrate the generation of
harmonics when the device is excited with large signals. Three different amplitudes A were used in the
signal applied at the amplitude:

VAnode = Vo + Asin(27 ft) , (3.15)
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Figure 3.6: Simple diode structure under investigation. The boron concentration in the p-doped half on the left is
1 x 10'7 cm™=3 equal to the phosphorus concentration in the n-doped part of the diode. -

with Vp = —0.5V, f = 1 MHz, and the time stepped from Os to 2 us in 2,048 steps (two periods). The
last 1,024 data points of the cathode currents were the input for the Fast Fourier Transformation [165].
In the left figure of Figure 3.7, the results of the transient simulations are shown for all four amplitudes
A=10mV, A =250mV, A = 500mV, and A = 1V. Note that the cathode currents are scaled to fit in
the same graph. The right figure depicts the results of the Fast Fourier Transformation.

The upper left side of Figure 3.8 shows the comparison of the simulation results with those obtained
by the commercial simulator DESSIS [111]. The other three figures compare small-signal and transient
simulation results of MINIMOS-NT. For an anode voltage of —0.8 V, both modes are used to extract the
capacitances and arguments. In the lower right figure the simulation effort-and the relative error of the
transient results in comparison to those obtained by the small-signal mode are shown. It is important to
note that the transient mode requires more than twice the time of the small-signal mode for only ten steps.
‘For 1000 transient steps, the effort is more than 60 times larger than for the small-signal simulation.
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Figure 3.7: The left figure shows the results of the transient simulations for the three amplitudes A = 10mV,
: A =250mV, and A = 1V. The small figures depict the results of the Fast Fourier Transformation of
the respective cathode currents.
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Figure 3.8: The upper left figure compares the small-signal results of MINIMOS-NT and DESSIS. The other three
figures compare the small-signal results of MINIMOS-NT with its transient results: In the upper right
figure the capacitance versus the frequency is shown. The argument versus the frequency is given in
the lower left figure. In both figures, different number of periods (P) and number of steps per period
(S) are compared. Finally, the dependence of the relative errors and the time scaled to the small-signal
result (time ratio) on the number of transient steps is illustrated in the lower right figure.” The number
of periods is 2, the frequency is 1 MHz and the transient data is compared with the small-signal results.
The trade-off between the reduction of the relative errors and the increasing computational effort can be

clearly seen.
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3.3.3 Extraction of the Cut-Off Frequency

Frequency stepping can be based on several approaches (see Section 3.1.3). One possibility is to apply
a conditional stepping algorithm which is directly stepping to the unity gain point. Such a method is not
only faster and more accurate, but additionally makes a post-processing for interpolations or extrapolations
obsolete. As for a bipolar transistor 3 is defined as

lic(F)]
= , 3.16
ﬂ(f) i (£)] 510
one can easily obtain a nonlinear function ’
FB)=p-10=0. : 3.17)

The objective of the conditional stepping is to find the root of the function (3.17) with an error below a
specified value. As such a simulator capability can be applied to extract also other quantities, for example
the threshold voltage, it is generally implemented and derived in the following.

Basically, the root of the nonlinear function F is bracketed in the interval [f), f,]. The values F(f;) and
F(fu) have opposite signs and the function is continuous, for that reason one root lies in the interval given.
The conditional stepping algorithm is based on the well-known Regula Falsi (False Position) algorithm.
According to [165] the nonlinear function is assumed to be approximately linear in the local region of
interest. ‘

False Position converges less rapidly than the related Secant method. In contrast to a Newton method
which requires the derivatives, only the actual function values are used. For that reason, the algorithm can
be directly integrated in the respective stepping module (see Appendix B).

The first two iteration steps are used to obtain the initial values F'(f) and F(f,) at the specified start
boundaries fi (lower boundary) and f,. These values must have opposite signs, otherwise the method
fails. The next value is found at the intersection of the line connecting these two points. This line is given
by L:

L) = F() + (f — py P = L)

3.18
fu - fl ( )
Separating the intersection frequency fi (L(f) = 0) yields
fu - fl : »
=fi- F(fi) —————. 3.19
i A PTG —F ) G.19

Depending on the sign of F(f1) either the lower or the upper boundary is replaced by fi. The loop is
terminated if F(f1) is smaller than the accuracy given or if the maximum iteration count is reached.

For fr extraction this algorithm seems to be promising as the frequency characteristics are indeed an
approximately linear function (in the area of interest) with only one root. However, an important drawback
of this approach is the use of fixed boundaries fi and f,. First, the frequency range of a fr extraction can
be very wide, especially if more than one operating point is required. Second, the method fails if both
values F(f;) and F(f,) have the same sign. Third, the method converges slowly if the interval {fy, f,]
is very wide. To overcome this trade-off between usability and performance, the boundaries fi and f,
are always reread during the simulation. Furthermore, an automatic adaptation is provided such that too
narrow boundaries are automatically extended. This allows on the one hand side the specification of
very narrow boundaries, which is important to speed up the convergence, and exempt the user of finding
practicable values for f; and f,;, which can be a cumbersome task.
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In order to quantify these considerations, an evaluation of various boundary settings and error values has
been performed. The narrowness of the boundaries NV in respect of an fr (which is already known) means,
that the lower and upper boundaries equal fr + N, respectively (fr = 35.8 GHz). In Figure 3.9 the effort
for the extraction of fr in terms of the required steps is analyzed. The left figure shows the iteration
steps for two different sets of boundaries. The right figure compares various boundaries and errofs. It
can be seen that a significant speed-up can be achieved with narrow boundaries even for very accurate
simulations.
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Figure 3.9: These figures analyze the effort for the extraction of fr by conditional stepping. On the left side, two
different sets of lower and upper boundaries are compared for an error value of 10~3. Whereas for the
wide boundaries of 10 GHz and 100 GHz 24 steps are required,. the narrow boundaries of 30 GHz and
40 GHz reduce this effort down to five steps. On the right side, the number of steps depending on the
narrowness of the boundaries for different errors are shown. '

In Figure 3.10, extracted cut-off frequencies for MOS transistors with different gate lengths and the three
transport models as discussed in Chapter 2 are shown. The results obtained by the small-signal simulation
mode of MINIMOS-NT are compared with Monte Carlo data [83] and results based on the quasi-static
approximation. The latter are obtained as a result of steady-state simulations. By applying the quasi-static
approximation, the following definition can be used for MOS transistors [115,217]:

1 dip 1 In(Vg + AV) — In(Vg — AV)

fr= 27 @E T or Qc(Vo +AV) — Qe(Vo — AV)’

(3.20)

with the gate voltage Vi varied and all other voltages kept constant. The quasi-static simulation results
differ from those of the small-signal mode, which is evident due to the approximation and in consistence
with the results reported in [142]. The quasi-static approach, which consists of two steady-state steps, has
general performance advantages over the small-signal simulations. If a conditional stepping is applied as
discussed before, the number of steps depends on the narrowness of the boundaries. As one can assume
that the first steady-state step is a good initial guess for the second one for the quasi-static simulation, the
small-signal simulations generally require more computational resources in terms of simulation time than
the quasi-static approximation. However, as can be seen in Figure 3.10, the error compared to the exact
result can be quite significant.
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Figure 3.10: In the left figure, the three transport models are compared with quasi-static simulation results of
MINIMOS-NT as well as with Monte Carlo data. The right figure shows the cut-off frequency depend-
ing on the gate voltage. Whereas for larger devices, the difference is again minimal, the superiority of
the six moments transport model for smaller devices can be clearly seen.

3.4 Extended Single-Mode AC Analysis

As already discussed above, by using the standard single-mode AC a general complex-valued amplitude
can be applied to an arbitrary number of terminals of the device. However, under these circumstances the
calculation and assembly of the complete admittance matrix is a cumbersome task. For that reason the
simulator has been extended to provide a feature for the automatic calculation of the complete matrix.

The intrinsic scattering matrix S can be calculated by the following analytical formula [244]:
S=2(I+Y)'-1, (32D

where I is the identity matrix and Y the intrinsic admittance matrix. In order to obtain the usually applied
formulae for a two-port network (see Appendix D), the following calculation can be performed:

1+ Y1 Y12 '
—14+Y = o ho 3.22
a-rex- (k3 ) 622
1 I+Y -Yi2
A= — , (3.23)
Ds\' -vn 141 -
with
Ds = (14 Yi1)(1 + Ya2) — YioYa1 - (3.24)

After multiplying by two and deducting the identity matrix, the following well-known formulae can be
derived:

51 = ((1- Ya)(1 + Yao) + YisYa1 )/ Ds | (3.25)
S12 = (—2Y12)/Ds, . (3.26)
So1 = (—2Ya1)/Ds, : (3.27)
S = ((1 +Yi1)(1 - Yao) + Y12Yz1)/Ds (3.28)
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3.4.1 Capacitance Matrix

The capacitances are calculated according to the charge-based capacitance model [9]: the terminal charges
are in general a function of the terminal voltages. Each terminal has a capacitance with respect to the
remaining terminals. For that reason a four terminal device has 16 capacitances.

All capacitances form the so-called indefinite gdmlttance matrix. Each element C;; of this matrix describes
the dependence of the charge at the terminal ¢ with respect to the voltage applied at the terminal j with all
other voltages held constant. In general,

o ., .-
_831) Z#J'

= J

Cii = 00, . _. (3.29)
a‘/j, =7.

The signs are chosen to keep the capacitances positive for all devices for which the node charge is directly
proportional to the voltage at the same node, but indirectly proportional to the voltage of any other node.
Thus, for a four terminal MOS transistor the 16 capacitances of the matrix Cj; are defined as follows:

Cec —Cep —-Cgs -CgB
—Cpc Cpp -Cps —Cps
—Cs¢ —Csp Css —Csp
—Csc —Cep —CsBs BB

Cyy = (3.30)

Each row and column sum must be zero in order to fulfill Kirchhoff’s laws. For that reason, the capaci-
tances are not independent from each other, but one of the four can be calculated with the remaining three.
The gate capacitance Cgg is therefore:

Cce =Ces + Cep + CGB_ . A (3.31)

The four capacitances Cgg, Cca, Cag, and Cgg are the self-capacitances of a MOS transistor, whereas
the remaining twelve are the internodal, intrinsic, or trans-capacitances. They are non-reciprocal and the
corresponding capacitances differ both in value and physical interpretation [9].

3.4.2 Simulation Example

The extended small-signal features have been evaluated by a comparison with results of the commercial
simulator DESSIS [111]. The structure, which has been designed with the program MDRAW, was con-
verted by using ISE2PIF and is shown in Figure 3.11. For f = 100 MHz, Vgs = 0.0V, and Vps = 0.0V
the simulator calculates the admittance matrix shown in Table 3.1.

Gate Drain Source Bulk > _

Re Im Re Im Re - Im Re Im Re Im
Gate 2.2e-11  29e-07 | 4.2e-11 -9.6e-08 [ 42e-11 -9.6e-08 [ -1.0e-10 -1.0e-07 | -1.5¢-19  9.2e-18
Drain 42e-11 -9.6e-08 | 2.0e-10 5.5e-07 | 1.2e-10 -1.0e-10 | -3.7e-10 -4.5e-07 | -1.2e-14 -1.2e-16
Source | 4.2e-11 -9.6e-08 1.2e-10  -1.0e-10 | 2.0e-10  5.5¢-07 | -3.7e-10 -4.5¢-07 | -1.4e-15 -2.8e-15
Bulk -1.0e-10  -1.0e-07 | -3.7e-10 -4.5¢-07 | -3.7e-10 -4.5¢-07 | 8.5e-10  1.0e-06 | -7.0e-17  5.3e-17

> ] 1.8e-17 1.3e-197 -1.2e-14  -7.2e-17 | -1.4e-15  -2.8e-15 | -7.2e-17  9.5e-18 | J

Table 3.1: Admittance matrix calculated by MINIMOS-NT for a frequency f = 100 MHz and terminal voltages
VGS —OOVandVDS =0.0V.
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Figure 3.11: Part of the investigated device structure with a depth of 1 um.

The last row of Table 3.1 contains the column sums, and the last column the row sums. Due to numerical
~ reasons, zero can hardly be obtained, but the error is significantly lower than the entries in the matrix.

" After the calculation of the steady-state operating point, the solution of the complex-valued linear equation
system requires 4.2 s on a 2.4 GHz Intel Pentium IV with 1 GB memory running under Suse Linux 8.2. The
dimensions of the complete and inner equation system are 6,610 and 4,805, respectively. In Figure 3.12,
the gate drain capacitance Cgp as calculated by MINIMOS-NT is compared with results of DESSIS. Note,
that the sign of the DESSIS result had to be inverted.
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Figure 3.12: Gate drain capacitance versus gate voltage at Vp = 0V: comparison of simulation results of
MINIMOS-NT and DESSIS.
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3.5 Transformation to Extrinsic Parameters

As already discussed above, the calculation of extrinsic parameters is provided in order to take the para-
sitics introduced by the measurement environment into account. Based on a standard parasitic equivalent
circuit, the simulator can take all parasitics into account and can provide also extrinsic two-port parame-
ters. First of all, it is necessary to configure this equivalent circuit consisting of two ports (contacts) and
one ground port, see Appendix A.5. Based on all data given in the contact descriptions, four intrinsic
Y-parameters are extended by the parasitics and are also transformed to extrinsic S-parameters as well
as to H-, Z-, and ABCD-parameters. The equivalent circuit consists of a single inductance and a single
resistance for each port (or contact), and one capacitance between each port and the ground.

Since the intrinsic simulation results are transformed to extrinsic parameters, one can think of embedding
the device in an equivalent circuit describing the parasitics. In this section, that embedding strategy is
discussed. In turn, de-embedding strategies transforms extrinsic parameters into intrinsic ones, which
can be already performed by the measurement equipment. The calculation starts with the intrinsic Y-
parameters which are the actual result of the numerical simulation. The embedding strategy consists of
the following steps: ' ‘

1. Convert to Z-parameters and add serial parasitics.
- 2. Convert to Y-parameters and add parallel parasitics.
3. Calculate other two-port parameter sets.

In order to account for the effects of the serial parasitic elements, a Z-parameter transformation is per-
formed. If the parasitic Z-parameters are known, they can be added to the intrinsic simulation results:

= Zo1 + R3 + jwLs Zay + (R2 + R3) + jw(La+ L3) ) ° o
Including the transformation to Z-parameters, these equations read like this:
Zn = Yu/|Y|+(R1+ R3)+jw(Ll+ L3), ' (3.33)
Ziz = -Y1o/|XY |+ R3 +jwL3, (3.34)
Zy = —Yn/[Y|+R3 +jwL3, . (39
Zy = Yn/[Y|+(R2+ R3)+jw(L2+ L3). (3.36)
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The determinants of the 2 x 2 matrices are calculated after the standard formula:

Y| =Y11Y9 — Y1o¥a1 , (3.37)
|Z| = Zn1Z99 — Z12Z9: - : o (3.38)

The purpose of the second step is to take the parallel capacitaﬂceé into account:

Y = ( Y1 + jw(Ciz + Cr2) Y12 + jwCio )
N Y21 + jwCi Yoo +jw(Cas + Cr2) /-

Before the parallel parasitics are added, the Z-parameters have to be re-transformed to Y-parameters.

(3.39)

Yu=2n/l2Z], . (3.40)
Yio = Z12/ 12, (3.41)
Yo =25/12|, (3.42)
Yy =25/1Z]. (3.43)

Finally, Y-parameters are multiplied by the characteristic impedance of the respective port:

Yu=YuZ, : (3.44)
Yiz = Y1221, o | (3.45)
Yo =YnZs, ' (3.46)
Yoo = YasZo . (3.47)

The embedding process consists of nine free parameters: three resistors, three capacitors, and three induc-
tors. So, an optimization can be performed to minimize the error between measured data and simulation
results. Whereas for example the Simplex Method can be employed, also optimizations based on the
methods mentioned in Appendix C.3.9 are possible. After finding an appropriate parameter setting, the
extrinsic parameters are eventually calculated according to the respective formulae in Appendix D.

3.6 Small-Signal Capabilities for Mixed-Mode Device/Circuit Simulations

All presented small-signal features are not only provided for single-mode simulations, but also for the
mixed-mode of MINIMOS-NT. After a short introduction, the mixed-mode AC capabilities of MINIMOS-
NT are discussed.

3.6.1 Mixed-Mode Simulation

Traditional device simulation has considered the behavior of isolated device structures under artificial
boundary conditions (single-mode). To gain additional insight into the performance of devices under
realistic dynamic boundary conditions imposed by a circuit, mixed-mode simulations have proven to be
invaluable [81]. The main advantages of mixed-mode simulations are {231]:

o A calibrated device simulator can be directly employed for circuit simulations: No subsequent and
often expensive parameter/model extraction is necessary. Thus, in time-to-market considerations
results of many different devices are available at significantly earlier times.

e It is common practice to create optimization loops consisting of process and device simulators.
Controlled by various kinds of optimizers, device figures of merit (for example, cut-off frequency
ft) trigger process variations in order to be improved. By switching the device simulator into the
mixed-mode, also circuit figures of merit can be optimization targets.
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The major drawback in comparison to compact model approaches is the significant performance differ-
ence, since much larger equation systems have to be assembled and solved. However, the compact models
can only be applied after the cumbersome extraction of the various parameters of the respective models.
For example, the. BSIM model [48] for short-channel MOS transistors provides over 300 parameters for
c_alibrafion purposes, the VBIC95 model [143] for bipolar junction transistors offers about 30.

A physical circuit consists of an interconnection of circuit elements. Two well-known different aspects
have to be considered when developing a mathematical model for a circuit. First, the circuit equations
must satisfy Kirchhoff’s topological laws:

e Kirchhoff’s current law: the algebraic sum of currents leaving a circuit node must be zero at every
instant of time (provided there is no charge on the nodes).

e Kirchhoff’s voltage law: the algebraic sum of voltages around a circuit loop must be zero at every
instant of time.

Second, each circuit element has to satisfy its branch relation which will be called a constitutive relation
in the following. There are current-defined branches where the branch current is given in terms of circuit
and device parameters, and voltage-defined branches where the branch voltage is given in terms of circuit
and device parameters. Devices with N terminals can be described using IV - (N — 1)/2 branch relations.
It is not necessary to include all branch currents and voltages into the vector of unknowns. It is possible
to also include charges and fluxes. The wide choice of possible unknown quantities leads to a variety of
equation formulations that are available. From the number of published methods, the nodal approach and
the tableau approach [46] are the most important. Whereas the latter is the most general approach allowing
also simulation of many idealized theoretical circuit elements, it has several inherent disadvantages (for
example, ill-conditioned system matrices). Since one main objective is to solve realistic devices, the nodal
approach perfectly suits the needs. '

3.6.2. The Nodal Approach and Modified Nodal Approach .

The independent variables of the nodal approach are the node voltages of each circuit node to a reference
node which can be chosen arbitrarily. Kirchhoff’s current law is applied to each node other except the
reference node in the circuit such that the summation of the currents leaving the node is zero. Thus,
in matrix representation, the admittance matrix of the circuit is assembled, which consists of N — 1
independent equations for a circuit of N nodes.

The admittance matrix can be assembled by taking all contributions of each element into account. The
various admittance matrices of the circuit elements can simply be superpositioned to yield the complete
circuit admittance matrix. Current sources contribute to the current source vector on the right-hand-side
of the equation system [81]. All contributions are commonly referred to as stamps as they can be directly
stamped into the equation system without considering the rest of the circuit.

For circuits containing conductances and current sources only, the condition of the resulting system matrix
is very good, because the nodal approach produces diagonally dominant matrices which are well suited
for iterative solution procedures. Two additional devices can be modeled, namely a voltage controlled
current source and the gyrator [204]. However, these devices destroy the diagonal dominance of the
circuit admittance matrix.

One disadvantage of the nodal approach is the inadequate treatment of voltage sources. Ideal voltage
sources and current controlled elements cannot be modeled with this approach. However, a very large
class of integrated circuits can be accommodated by adding-a provision for grounded sources. The mod-
ified nodal approach [99] overcomes these shortcomings by introducing branch currents as independent
variables, which are available to formulate the device constitutive relations.
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Since it is not difficult to implement, the modified nodal approach enjoys large popularity. However, the
numerically well-behaved system matrix obtained by the nodal approach is distorted by those additional
equations, and some additional measures (see Chapter 4) have to be taken. Furthermore, the additional
equations can even produce zero diagonal entries which are avoided by exchanging the rows of the admit-
tance matrix [147]. '

3.6.3 Two-Level Newton and Full Newton Methods

Several efforts dealing with circuit simulation using distributed devices have been introduced [144, 175].
Most publications deal with the coupling of device simulators to SPICE [147, 168]. This results in a two-
level Newton algorithm since the device and circuit equations are handled subsequently. Each solution
of the circuit equations gives new operating conditions for the distributed devices. After creating a new
input-deck the device simulator is then invoked to calculate the resulting currents and the derivatives of
these currents with respect to the contact voltages [81].

The alternative approach is called full Newton algorithm as it combines the device and circuit equations in
one single equation system. This equation system is then solved applying a Newton method. In contrast to
the two-level Newton algorithm where the device and circuit-unknowns are solved in a decoupled manner,
here the complete set of unknowns is solved simultaneously. In MINIMOS-NT the capability to solve
circuit equations was added to the simulator kernel. This allows to assemble the circuit and the device
equations into one system matrix which results in a real full Newton method. Since the contact currents
are solution variables, derivatives of the contact currents in respect to the contact voltages need not be
calculated explicitly.

Although the full Newton algorithm seems to be more effective as the complete set of capabilities is
part of the simulator, the two-level Newton algorithm has particular parallelization advantages. Whereas
the relatively quick circuit simulation can be done on one host, the simulations of all devices can be
distributed over a network in a straightforward way. In contrast, the full Newton algorithm is restricted to
parallelization strategies regarding the solution of the large linear equation system (see Chapter 5).

3.6.4 Iteration Schemes

The need for iteration schemes arises from the fact that when solving very complex coupled equation sys-
tems, the solution can often not be obtained from the available initial-guess as the region of attraction for
the Newton scheme would be too small. Since the equations are split into their terms, the flexible equation
-assembly can simply neglect some of the contributions. Thus, it is possible to apply iteration schemes as
described in [58, 59], where for example some of the derivatives are neglected (see also Section 2.3.1).

Hence, the problem can be split into different levels of complexity with each of them using the previ-
ous level as an initial-guess to further refine the solution by applying more complicated models. This
procedure is called iteration scheme. MINIMOS-NT provides an interface so that iteration schemes can
be arbitrarily programmed with several additional options making use of the features provided by the
input-deck [81]. An iteration scheme consists of arbitrarily nested iteration blocks. Each block can have
subblocks which will be evaluated recursively.

For mixed-mode simulations an iteration scheme consisting of two blocks has been created. In the first
block, specified node voltages are kept constant in order to obtain a converged solution for the distributed
devices. This block is similar to single-mode device simulation. In the second block, the fixed voltages are
set free in order to start the full circuit simulation. This procedure can be further improved by providing a
previously obtained solution in an initial file.
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3.6.5 The Mixed-Mode AC Capabilities

The Ac features are activated the very same way than for the single-mode. However, circuits have to be
extended by complex-valued sources. The sources are basically responsible for the setup of the mixed-
mode AC mode. The mixed-mode of MINIMOS-NT can be used as pure circuit simulator with compact
models only. In order to demonstrate the complex-valued sources, a parallel resonant circuit and a band

rejection filter are simulated. For the simulation setup, see Appendix A.8. The output curves of both
examples are shown in Figure 3.14. '
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Figure 3.14: Results of mixed-mode AC simulations with compact models only: the resonant circuit on the left side
and the band rejection filter on the right side.

MINIMOS-NT provides a feature to calculate the complete admittance, scattering, and capacitance matrix
of a circuit. In contrast to the single-mode, the user has to specify the output nodes which should act as
small-signal terminals of the circuit. This is performed by including voltage sources. In Appendix A.10, an
example setup for the simulation of a heterojunction bipolar transistor is shown. The H-, Z-, and ABCD-
parameter sets provided for the single-mode are bound to the parasitic circuit, so they are not provided for
the mixed-mode, because the parasitic elements can be included in the fully simulated circuit.

3.7 Concluding Remarks

MINIMOS-NT has been equipped with a set of capabilities which allows the user to efficiently extract
various small-signal quantitities. The implemented small-signal simulation mode can be applied to

perturb the device with an arbitrary complex-valued sinusoidal input at any terminal,

extract important figures of merit such as the cut-off frequency fr,

obtain the complete intrinsic admittance and scattering matrix of the device,

calculate other commonly used two-port parameter sets,

transform the intrinsic matrices to extrinsic ones,

simulate circuits using the small-signal mixed-mode capabilities,

make further calculations by using the convenient and powerful output and input-deck functions.

The implemented simulator features have been successfully‘ applied for various simulations as discussed
in detail in Chapter 6. Since the method requires capabilities for assembling and solving complex-valued
linear equation systems, these problems will be discussed in the following two chapters.
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Chapter 4

The Assembly Module

‘Many numerical simulations require the solution of a nonlinear system of partial differential equations.
Generally, such a system cannot be solved analytically, and the solution must be calculated by numerical
methods. This approach normally consists of three tasks [193]:

1. The domain is partitioned into a finite number of subdomains, in which the solution can be approx-
' imated with a desired accuracy.

2. The system of partial differential equations is approximated in each of the subdomains by algebraic
equations. The unknowns of the algebraic equations are approximations of the continuous solutions
at discrete grid points in the domain. Thus, generally a large system of nonlinear, algebraic equa-
tions is obtained with unknowns comprised of approximations of the unknown functlons at discrete
points.

3. The third task is to derive a solution of the unknowns of the nonlinear algebraic system. In the best
case an exact solution of this system can be obtained, which represents a good approximation of
the solution of the analytically formulated problem (which cannot be solved exactly). The quality
of the approximation depends on the fineness of the partitioning into subdomains as well as on the
suitability of the approximating functions for the dependent variables.

This nonlinear problem is usually solved by a damped Newton algorithm (see Section 2.3.1) demanding
the solution of a sparse non-symmetric linear equation system at each step. As many simulators, for
example MINIMOS-NT, are based on this approach, specific capabilities are required to assemble and
solve equation systems. Due to their independence from the other parts of the simulators, these capabllmes
are frequently incorporated in separate modules.

In this chapter, the assembly module is going to be discussed, subject of the next one is the solver module.

4.1 Key Demands on the Assembly Module

From the perspective of a simulator, which can be an arbitrary code requiring assembling and solving of
linear equation systems, the key demands on the assembly module can be summarized as follows:

1. Application Programming Interface (API) providing methods for:

o Adding values to the equation system.

e Deleting equations.
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¢ Invoking the solving process.

e Retrieving the solution.
2. Usability.
3. Performance.
4. Conditioning of the equation sysiem for solving.

5. Handling of real-valued and complex-valued equation systems.

Hence, the assembly module employed by the simulator shall be responsible for storing the contributions
of the various physical models of the simulator. In addition, for the sake of consistence and simplicity
the API shall embrace also the interface to the solver module. This allows also the conditioning of the
assembled equation system in order to improve its solvability.

By providing these abstracted features the simulator can be designed and implemented in a very efficient
way. This has the following reasons:

e The model developer is able to focus on the model implementation only, because the respective
contributions can be conveniently added without taking any aspects regarding the implementation
(allocation, access, deallocation etc.) of the assembly module into account.

e The further development of the simulator is not limited by the assembly module in case this module
is generally designed and does not impose restrictions for its application.

4.2 Approaches to Meet these Demands

Meeting these requirements can be managed by pursuing several approaches:

e The design of the simulator can be based on a specific computational numerics package and adhere
to the requirements given for this module. These requirements include the field of application,
type of the equations, their discretization etc. Many of these-packages also include a non-linear
solver and tools regarding the discretization of the equation system. Some examples of the specific
computational numerics packages are given in Section 4.2.1.

e A new module for the specific simulator is implemented which implicitly meets all requirements.
Such a module can contain third party components as well, for example by coupling this module to
packages like LAPACK or Blitz++ (see Section 5.1).

e A new generally applicable module is implemented which exactly offers the requested capabilities
without restricting the simulator in the usage of them. '

4.2.1 Third Party Modules and Packages

The general-purpose finite element analysis package ANSYS [7] is a product of ANSYS, Inc., Canonsburg,
PA. There are seven generic steps to solving any problem in ANSYS [114]: '

1. Building Geometry: After a preliminary design, a two- or three-dimensional representation of the
object is constructed by using the work plane coordinate system within ANSYS.
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2. Definition of Material Properties: The materials the object is composed of are selected in order to
account for the thermal and mechanical properties.

3. Mesh generation.

4. Applying loads: After the complete de51gn the system is completed by spec1fy1ng loads or con-.
straints, for example thermal boundary conditions.

5. Calculating the solution: depending on the simulation mode the solution is calculated.

6. Results: the results obtained by the solution steps can be graphically illustrated and used for further
applications or improving the simulation setup.

ANSYS is able to perform structural analysis which is one of the most common applications of the finite
element method. Examples are simulation of buildings, ships, aircraft, or mechanical components. Linear
and nonlinear static analysis is used to determine stresses under static loading conditions, whereas transient
analysis takes dynamic effects under time-varying loads into account. In addition, buckling analysis is
used to calculate solutions for buckling loads. The effects of thermal loads, for example convection or
heat fluxes, can be simulated by means of the steady-state thermal analysis. Specific packages allows to
analyze magnetics, fluid-flows, or acoustics. The package also provides features for fracture mechanics,
composites, fatigue, p-Method, and beam analysis. In the recent version a distributed package called
DANSYS [7] is also available which allows to parallelize several costly tasks, such as calculatmg the
stiffness matrix, solving the equations, and performing the results calculations.

FEMLAB [40], originally a product of Sweden and today marketed by Comsol, Inc., Burlington, MA,
provides an interactive modeling environment for scientific and engineering applications, which are based
on partial differential equations. FEMLAB is based on the finite element method and claims to provide
unprecedented speed and accuracy through its high-performance solvers [40]. The term multi-physics is
frequently used to stress that multiple physical effects can be combined and solved in a coupled manner
(in the ANSYS packages, this is called coupled-field analysis).

ABAQUS software, a product of ABAQUS, Inc., Providence, RI, provides a suite of interoperable applica-
tions for finite element analysis [1]. ABAQUS can be used to solve nonlinear finite element problems, for
example arising from mechanical, structural, civil, biomedical, and related engineering applications.

Ls-DYNA of Livermore Software Technology Corporation, Livermore, CA, can be used to analyze the
nonlinear dynamic response of three-dimensional structures. The general purpose, explicit finite element
program provides a comprehensive selection of material models, element formulations, and contact al-
gorithms. These capabilities have been already used to solve many complex automotive safety, metal
forming, structural, and failure analysis problems [133].

MAFIA, a product of the Gesellschaft fiir Computer Simulationstechnik in Darmstadt, Germany, offers a
collection of programs for solving electrical engineering problems. The software discretizes the Maxwell
equations with the Finite Integration Theory method, which is a special finite-volume method, and uses the
same mesh for different problems. For example, eigenmodes analysis and magnetic fields calculations can
be performed for the same structure. The product claims that almost all problems related to the Maxwell
equations and some outside the area of electrodynamics, for example acoustics, can be treated [73].

PDE2D is a successor of TWODEPEP [196] and provides an interactive, general-purpose solver for par-
tial differential equations [197]. The program can be used to solve partial differential equations in two-
dimensional polygonal regions and applies a Galerkin finite element method and triangular elements. In
addition, it solves problems in general two-dimensional regions with arbitrary curved boundaries [196].
Furthermore, it has been extended to handle also three-dimensional systems.

DIFFPACK is provided by inuTech GmbH, Niirnberg, Germany and offers an object-oriented problem-
solving environment for the numerical solution of partial differential equations [108]. The package is a
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collection of C++ libraries with classes, functions, and utilities [126]. The kernel and add-on toolboxes
provide a substantial collection of data structures and numerical algorithms. The list of functionality in-
cludes vectors, matrices, general multi-index arrays, representation of linear systems, also large sparse sys-
tems, iterative methods for sparse linear systems, solvers for non-linear systems, finite element and finite
difference meshes, finite element algorithms, high level finite difference support, real- and complex-valued
arithmetic, adaptive meshes, multigrid methods, domain decomposition methods, generalized (mixed) fi-
nite element methods, and parallel computing on linear algebra and domain decomposition level. There-
fore, DIFFPACK can be employed to develop specialized finite element solver programs. It also provides
interfaces to other products such as ANSYS [7], ABAQUS [1], MATLAB [141], or the VTK [186], which
can be particularly used as pre- and post-processing tools. Flexibility is the strength of DIFFPACK as it
can be employed for non-standard problems such as multi-physics systems of partial differential equa-
tions. DIFFPACK provides most of the solution process so that the simulator has to be developed for data
input and decisions only. Object-oriented approaches are used for administrative functions, whereas the
computations are performed in highly-optimized lower level code [76].

ScILAB by INRIA, Rocquencourt, France, is a scientific software package with a high-level language for
numerical computations. The software features data structures such as polynomial, rational and string
matrices, lists, multivariable linear systems, sophisticated interpreter and programming language with
MATLAB-like syntax, various built-in mathematical functions, two- and three-dimensional graphics as
well as animations, interfaces to FORTRAN, C, and MAPLE, and various built-in libraries for linear algebra,
control systems, signal, processing, simulation, optimization, and network analysis [106].

422 A Newaenerally. Applicable Assembly Module

Although a large variety of already existing packages is available, the decision was made to design and
implement a new assembly module, because of the following two reasons:

1. This module shall be applied for assembling linear equation systems and preparing of these sys-
tems for the solving process. Thus, the nonlinear solving system and all problems related to the
discretization of the underlying physical models shall be solved within and by the simulator. This
offers the possibility for providing a generally applicable module which can be effectively used for
different kind of numerical simulators.

2. Third party modules are frequently bound to license agreements, which restrict their application
especially for commercial application. As the institute provides its codes to industrial partners
and binary release versions to the general public, third party license requirements would make

* such distributions more complicated. An in-house assembly module avoids such complications and
allows the institute to freely distribute complete versions. .

One additional reason for that decision is also the history of one important simulator, namely MINIMOS-
NT. This simulator has been under development for a long time (see Section 1.3.2) and has always em-
ployed an assembly and solver module. All experiences with these old modules were taken into account
while the new modules were designed [65]. However, it is a crucial question why two core modules,
which were tested and properly working for a long time, are replaced at all. The answer to that question
consists of the following three reasons:

1. Providing a more convenient application interface: due to the significant internal improvements it is
always possible to randomly access all parts of the linear equation system. In contrast to the former
module, which required a specific four-phases assembly sequence [228], the model implementations
can now be implemented in a much easier way. '
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2. Handling of complex-valued equation systems: For the steady-state analysis and transient simula-
tion, MINIMOS-NT assembles real-valued linear equation systems. In context of an efficient small-
signal simulation mode, complex-valued contributions have to be handled as already discussed in
Section 2.6.2. The redesigned module is able to assemble and solve both real-valued and complex-
valued equation systems while featuring an advanced C++ design and implementation.

3. Working in a deterministic way: as discussed in Section 5.2.5, multiple starts of a solver~all result
in exactly the same solution. This is a very important feature while the simulator is extended and
during model evaluation and debugging.

4.3 Refined Key Demands on the Assembly Module

After the decision to design and implement new modules has been made, the key demands on the assembly

‘module can be refined. This also brings a row transformation as discussed in Section 2.2.1 into play. Due
to its advantages, the assembly module shall provide the required capabilities.” First of all, the following
definitions are given in order to clarify some terms:

e Assemble: assemble means to bring together. Thus, assembling regards the adding. of values to the
linear equation system. Assembling is completed when all values have been added.

e Assembly: in this context, the assembly or the assembly module specifically provides all neces-
sary features which allow a simulator to assemble those values. However, the assembly module is
generally responsible for meetmg all key demands given above.

o Compile: compile means to compose out of materials from other sources, to collect and edit into a

volume, to run through a compiler, and to build up gradually. Since four matrices (Ay, As, T, and

T,) and two sets of right-hand-side vectors (b}, and by) are assembled, the first task is to compile

all of these parts to one linear equation system. Refer to equatlons (4.12) and (4.13) to see how the
parts are compiled.

e Compilation result: the compilation result is one linear equation system Ax = b, the so-called
complete linear equation system.

e Pre-elimination: after the complete linear equation system is-compiled all equations marked with an
elimination flag are pre-eliminated. Hence, the assembly module also provides a solvmg capability
based on Gaussian elimination (see Section 4.8).

o Inner linear equation system: one result of the pre-elimination is the so-called inner linear equation
system. It consists of all equations which were not pre-eliminated.

The refined requirements can be summarized as follows:

1. Application Programming Interface (API) providing methods for

Adding values to the boundary system: Ay, and by,

Adding values to the segment system: Ag and bg.

Adding values to the transformation matrix Ty,

Deleting equations.

Administration of priority information required for the correct handling of grid- pomts which
are part of several segments.
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o Setting elimination flags for pre-elimination: mark equations which are eliminated from the
linear equation system before it is passed to the solver module. ‘

¢ Invoking the solving process.

¢ Returning the solution: After reverting. all transformations and back-substituting the pre-
eliminated equations, the output of the assembly module is the complete solution vector (or
vectors in the case of more than one right-hand-side vector). In addition, the right-hand-side
vector(s) are returned which can be used for various norm calculations frequently required for
the damping and update of the Newron method. :

2. Usability

e Random access during assembling: all parts of the linear equation system should be always
accessible.

e Centralized administration of control parameters.
3. Preparation of the linear equation system for solving:

e Row transformation: linear combination of rows to extinguish large entries.
e Variable transformation: reduce the coupling of the equations.

e Pre-elimination: eliminate problematic equations by Gaussian elimination to improve the con-
dition of the inner system matrix.

e Scaling: Since some preconditioners (for example the Incomplete-LU factorization, see Sec-
tion 5.2.5) use a threshold to decide whether to keep or skip an entry, the entries of the system
matrix are normalized. :

e Sorting: Reduction of the bandwidth of a matrix in order to reduce the factorization fill-in and
thus the memory consumption.

4. Handling of real-valued and complex-valued linear equation systems: In the context of an efficient
small-signal mode, handling of complex-valued systems is particularly important.

5. Performance-related features:

e Handling of multiple right-hand-side vectors: For some simulations, for example calculating
the complex-valued admittance matrix (see Section 3.4), several linear equation systems differ
only in the right-hand-side vector. Thus, the effort for assembling, compiling, pre-eliminating,
sorting, scaling, and factorizing of the system matrix actually has to be done only once. This
factored matrix can then be used for all right-hand-side vectors. For that reason the module is
able to simultaneously assemble several right-hand-side vectors. '

¢ Reassembling of the imaginary part only: during a frequency stepping, only the imaginary part
is changed. In order to speed up the simulation, the real-valued part should remain unmodified.

6. Efficient handling of the sparse linear equation systems: storing large linear equation systems in

_dense format requires a huge amount of memory. Since the system matrices contain relatively few

non-zero entries (see Section 5.5.1), far less memory has to be allocated if sparse matrix formats,
for example MCSR (see Section 4.6 and Appendix E), are used.

A plug-in concept has been implemented for scaling, sorting and solving the inner linear equation system,
making it possible to adapt or replace these modules easily. The sorting and scaling modules obtain the
system matrix on input and return the sorting and scaling (diagonal) matrices which are then applied by
the assembly module. The solver module obtains the system matrix and all right-hand-side vectors on
input and returns the solution vectors of all inner linear equation systems.
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4.4 Condition of the Linear System

The use of the discretized and linearized semiconductor equations yields large linear equation systems of
the form Ax = b. Such a system has to be solved with a given accuracy.

As described in [65], the results of both direct and iterative solvers depend on the accuracy of digitally
stored numbers and the condition of the system matrix A. The internal storage representation of numbers
is responsible for their accuracy. The assembly module currently provides the C data type double ac-
cording to its IEEE norm 754-1985 standard for binary floating-point arithmetic. This standard defines four
binary formats for 32-bit single, (normally 43-bit) single-extended, 64-bit double, and (normally 80-bit)
double-extended precision numbers. They are composed of three parts. A double precision number has a
sign bit being either zero or one, an eleven bit exponent ranging from Emin = —1022to Epax = 1023, and
a 52 bits fraction [60]. The standard also defines how zero, infinity, and so-called NaNs (Not a Number)
are to be encoded. NaNs represent undefined or invalid results, for example the square root of a nega-
tive number. For the sake of completeness it is stated that a complex-valued number stores both the real
and imaginary part in the double precision format. Furthermore, due to the limited representation results
of mathematical formulae generally vary although they are correctly changed according to mathematical
laws such as the commutative law.

The condition of a matrix can be used to estimate the worst possible error of the solution vector x of
Ax = b obtained by Gaussian elimination using a restricted number representation. This is measured by
the condition number of that matrix. Well-conditioned matrices have a small condition number [51]:

Koo = [|Allool|A™ oo , (4.1)

with the infinity norm for the system matrix
: N | |
1Alloo = mguxZ @ikl - @Y

For iterative solvers the spectral condition norm (spectrum of the system matrix) is more characteristic
[78]. It is defined as ratio of the largest eigenvalue to the smallest one:

kg = max ' ' (4.3)

>\min
The larger the value of x5 the poorer is the condition of the system matrlx Iteratlve solvers are particularly

sensitive to bad condition numbers which can then cause -

e a large number of necessary iterations;
o the failure of the solver to converge at all, or

e convergence to a wrong solution.

An important way to handle ill-conditioned matrices (x(A) > 1) is to precondition the matrix A. Hence,
iterative methods usually determine a second matrix that transforms the system matrix into one with a
better condition. This second matrix is called a preconditioner and improves the convergence of the
iterative solver (see Section 5.2.5).

Beside the purely numerical concept of preconditioning, a good approach to improve the condition during
the assembly process is to aim for diagonal dominance of the equations, since it is a necessary (but not
sufficient) condition in the proof of convergence for a range of iterative solver schemes. A matrix is
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diagonally dominant, if in all equations the absolute value of the diagonal element is larger than the sum
of the absolute values of all off-diagonal elements in all equations, and equal in at least one row [52]:

n .
3 1Aisl < Al , for i | 4.4
j=1

A matrix is strictly diagonally dominant if in all equations the absolute value of the diagonal element is
larger than the sum of the absolute values of all off-diagonal elements [52]:

n
D lAisl < Agil, for i#j. , (4.5)
j=1 ) .

Besides of this advantage it is important to note that in case of diagonal dominance direct solution tech-
niques can apply a diagonal strategy and avoid alternative and costly pivoting steps [188].

4.5 The Parameter Administration

The parameter administration is a crucial aspect regarding the usability of the system. As the assembly
and solver module can be controlled by more than hundred parameters, it would be inconvenient if all of
them had to be specified -as arguments. For that reason, all parameters are centralized in one structure,
which has a threefold purpose: ’

1. It provides a method of passing data to the solver function that influence the behavior of the func-
- tion. This includes the choice of a proper solver, preconditioner, sorter, and scaler, the choice of
maximum limits for memory allocation and time consumption, and other parameters.

2. It supports the persistence of data that has to be conserved between multiple runs of the solver

function on the same type of equation system, for example the repeated solving during the Newton

~ iteration. In such cases, information about the previous solving step is used to improve the solu-

tion speed on the next call to the solver function, for example by choosing proper preconditioning
parameters.

3. It provides a method of returning statistical data about the solution process to the simulator.

4.6 Assembling the Complete Linear Equation System

The assembly module can be used to assemble arbitrary linear equation systems Ax = b independently
of the concept the simulator is based on. This fulfills the major key demand of general applicability.
However, the row transformation feature necessitates to continue the discussion with a more specific
field of application. Although not mandatory, this feature can be well applied for the finite volume (or
box integration) discretization method. For that reason it shall be used as example during the following
discussion. ' '

A semiconductor device which is going to be simulated is normally divided into several segments that
are geometrical regions employing a distinct set of models. The implementation of each model is com-
pletely independent from other models and each model is basically allowed to enter its contributions to
the linear equation system. All boundary and interface issues are completely separated from the general
segment models represented by assembly structures for the boundary system which are independent from
the segment ones.
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Thus, the system matrix A will be assembled from two parts, namely the direct part A}, (boundary models)
and the transformed part A (segment models). The latter is multiplied by the row transformation matrix
Ty, from the left before contrlbutmg to the system matrix A. The right-hand-side vector b is treated the
same way:

A=A+ TBAS , (4.6)
b = by + Tpbs, ’ @47
Ax=b. ' (4.8)

Although in principle every model is allowed to add entries to all components, the assembly module
checks two prerequisites before actually entering the value: first, the quantity the value belongs to must be
marked to be solved (the user may request only a subset of all provided models), and second the priority
of the model has to be high enough to modify the row transformation properties. As stated before, the
row transformation is used to complete missing fluxes in boundary boxes. Since a grid point can be part
of more than two segments, a ranking using a priority has been introduced. For example contact models
have usually the highest priority and thus their contributions are always used for completion.

All three matrices Ay, Ag, and T, and the two vectors by, and bg may be assembled simultaneously, so
no assembly sequence must be adhered to. In addition, a fourth matrix T, is assembled which contains
information for an additional variable transformation (see Section 4.7.2).

The assembly module offers an additional feature for quantity administration. The simulator is able to
use this feature to store and obtain the information about quantity indices and other properties from the
assembly module. This has the specific advantage that multi-level solvers can directly be provided with
the required connectivity information between the equations (see Section 5.3.3). '

During the assembling process, all contributions are added to values stored in a flexible sparse matrix
structure based on a balanced binary tree. The advantage of this structure is that new entries can be
easily added at any place and any time. The purpose of this matrix format is for data entry only, so no
mathematical operations are defined for this structure. Since diagonal entries are always required to be
assembled (zero diagonals are not allowed), they are stored in an array allowing very fast access. So the
dimension of the linear equation system must be known in advance before the structure can be allocated.
In the format sorted by row indices, all off-diagonal entries are stored in a balanced binary tree for each’
row. This allows one to delete complete rows very efficiently. If complete columns have to be deleted,
for example required for the transformation matrix, it is faster to store the off-diagonal entries sorted by
columns, which can be specified on construction.

After the assembling has been finished, that is after the flexible sparse matrix structure is completely
constructed, these structures are converted to the sparse matrix format MCSR, which stands for Modified
Compressed Sparse Row [178]. The analogous, column-oriented Modified Compressed Sparse Column
format MCSC is used to speed up column deleting. See Appendix E.1 for a detailed description of these
formats. The advantages of using compressed structures can be summarized as follows [54]: if A is
considered as a dense matrix with a dimension of n, it requires O(n?) storage. The so-called big-O
notation O(n) [158] is a theoretical measure usually for the time or memory required by an algorithm,
given for the problem size n, which is normally the number of items processed. Thus, a matrix with
n = 100, 000 stored with double precision numbers requires 100, 0002 x 8§ bytes. These roughly 75 GB
are a huge chunk of memory even for today’s computers. Since typically sparse systems are solved with
similar or even higher dimensions, dense formats and algorithms require prohibitively high amounts of
memory and time. Thus, the objective of sparse matrix formats and algorithms is solving linear equation
systems with time and space proportional to O(n) + O(Ngon—zero)> With Tnon—zero as the number of non-
Zeros.
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During the Newton iterations the structural configuration of these matrices is not modified very often. A
structural reconfiguration can be triggered by a change of iteration schemes, for example for enabling
more derivatives in the Jacobian (see Section 3.6.4). The assembly module is designed to take such
considerations into account. If the structure remains unchanged, the balanced binary trees can be skipped
and the variables may be entered directly in the already existing MCSR structures. Hence, the effort
for deleting, tree assembling, reallocating and converting can be saved which drastically speeds up the
assembly process. The so-called Newton adjustment addresses not only the assembly matrices, but also
the resulting structures of the compilation and pre-elimination process. The performance impact of these
features has been analyzed and is discussed in Section 5.5.2. See Section 4.12 for more details on the
Newton adjustment levels.

After the four compressed sparse matrix structures have been completely constructed, the following steps
discussed in the respective sections are performed:

e Compiling of the complete linear equation system: see Section 4.7.

Pre-elimination to obtain the inner linear equation system: see Section 4.8.

Sorting the inner linear equation system: see Section 4.9.

Scaling the inner linear equation system: see Section 4.10.

Solving the inner linear equation system: see Chapter 5.

Back-substitution and retransformation: see Section 4.11.

4.7 Compiling the Complete Linear Equétion SyStem A

After the assembly process has been finished, all four matrices and two vectors have to be compiled to
obtain the complete linear equation system. The first step is to compile the segment and the boundary
system in the following way:

b = by + Tybs , “.9)

A=A, +TpA,, - (4.10)

Ax=b, : @1

(Ap + TpAg)x = by + Tpbs . “.12)

The second compilation step regards the variable transformation matrix T :

((Ap + ToAg)Ty)(T7x) = (bp + Tpbs) . | (4.13)

The left side of Figure 4.2 shows the completely compiled 'systerh'matrix arising from the discretization
of a two-dimensional MOS transistor structure. Since the linear equation systems has been assembled by
the drift-diffusion models of MINIMOS-NT, it consists of three major quantities. For the semiconductor
seégment, the values of and the couplings between the potential (row or column number 45-955), electron
(956-1879) and hole concentrations (1880-2803) can be clearly seen. After the discussions of the pre-
elimination, the sorting, and the scaling, the respective graphical representatlons of the same system matrix
will be shown.

In the next sections the row and variable transformations are going to be discussed in a more detailed way.
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4.7.1 Row Transformation

As already discussed in Section 4.6, semiconductor device simulation based on the finite volume method
is used as an example to discuss the row transformation. The complete linear equation system is built from
a segment system, which is the segment system matrix Ag and the segment right-hand-side vector bs, both
of them representing cumulated fluxes and their derivatives to the system variables. Basically, the fluxes
are calculated from segment models describing the interior of discretized regions. The matrix is a linear
superposition of very small matrices, one for each flux, with few non-zero elements only. Consequently,
the same superposition applies for the vector bs. '

All fluxes are assigned to boxes, a box is in turn assigned to each variable. As the control function for
a box is defined by the user, for example being the sum of all fluxes leaving the box, the fluxes leaving
the boxes are entered into the vector bs in the places appropriate for the variables that are assigned to
the boxes. In context of the Newron method, Ag is part of the Jacobian matrix and contains the negative
derivatives of the values in bg to the system variables. The right-hand-side vector depends on the current
solution of the Newron iteration. '

The boundary conditions will enforce some special physical conditions at the boundaries. The control
functions of boxes along the boundaries will usually be completed by the boundary conditions. For exam-
ple, a Dirichlet boundary condition will use the dielectric flux cumulated in the boundary box to calculate
the surface charge on the surface of the adjacent material. The equation used to calculate the value of the
boundary variable, however, will not always make use of the fluxes accumulated in the segment system.

The boundary conditions are therefore implemented by two elements: a boundary system (A and by,)
and a transformation matrix T,. The purpose of the matrix T, is the forwarding of the fluxes of the main
system to their final destinations or their resetting if they are not required. The system of A} and by
represents additional or, in case of Dirichlet boundary conditions, substitutional parts of the final equation
for the variables at the boundaries. Again, the entries in the matrix Ag are the negative derivatives of the
right-hand-side vector by, to the variable vector v. '

4.7.2 Variable Transformation

Especially in the case of mixed quantities in the solution vector, a variable transformation is sometimes
helpful to improve the condition of the linear system. The representation chosen here allows to specify
fairly arbitrary variable transformations to be applied to the system. Basically, a matrix T is assembled
and multiplied with the system matrix from the right. :

For example, to reduce the coupling of the semiconductor equations and thus improve the condition of the
system matrix, a transformation of the stationary drift-diffusion model is suggested in [10]. The system
matrix can be diagonalized to leading terms by substituting d¢, dn, and dp by

d¢ dé
dn =T, | dn , ' 4.14)
dp : dp

A=AT,, - (4.15)

T,=| &% 10]. 4.16)
—__Pq_
k7L

‘This transformation is the Gummel-Ascher transformation, and was extended for the differential equations
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of the energy-transport model in [201}:

1 0 0 O '0\
2
B 2 0 -2 0 | |
-2
Tn=| & 0 2 0 2Z|. (4.17)
0 &L o 2 o0
T

o 0 % o 2

The Gummel-Ascher transformation meets all requirements for such variable transformations: first the
transformation is expressed by a matrix T, which has an inverse T !. Second, it does not destroy the
diagonal dominance. In fact there is no qualitative difference between A and A in terms of this condition
property because the original system is substituted by a related one (see (4.14)). Third, the transformation
matrix decomposes into small submatrices with a limited number of variables involved in a single trans-
formation. The variable transformation is restricted to variables on the specific grid points, thus, it is a
local transformation. '

For compactness, the following substitutions will be used hereafter for the complete linear equation sys-
tem: )

A= ((Ap + TpA)T,), (4.18)

(
x=(T;%), ' '  (4.19)
b = (bp + Tpbs).. | | (4.20)

4.8 The Pre-Elimination

The main matrix A consists of fluxes that will (if the control functions are correctly assigned to the
variables) satisfy the criterion of diagonal dominance which is necessary to make the linear equation
system solvable with an iterative solver (see Section 4.4).

The transformations and additional terms imposed by the boundary conditions may heavily disrupt this
feature both in structural and numerical aspects. Some of the boundary or interface conditions can make
the full system matrix so ill-conditioned thereby simply preventing iterative linear solvers to converge.

This problem can be simply passed to the solver module which is likely to employ a direct solver to solve
such heavily ill-conditioned problems. Alternatively, an elimination concept as designed and presented
in [65] can be pursued which applies a Gaussian elimination to some parts of the linear equation system
only. It is important to note that this solving capability is part of the assembly module. It is possible to
disable this feature and pass the complete linear equation system to the solver module (after sorting and
scaling, if enabled).

The elimination concept is based on the idea to apply Gaussian elimination to the problematic or critical
equations before the system is passed on to the linear solver. After the iterative solver has converged,
the eliminated variables are calculated by back-substitution into the eliminated equations. This process is
thus a partial Gaussian factorization of the matrix, which is called pre-elimination in the context of the
assembly module.

Before these equations can be eliminated, they are sorted to the end of the matrix, together with their
assigned variables. This is done by applying a permutation matrix P to the linear equation system. The
permutation matrix is calculated automatically on solving the system. All equations causing a possible ill
condition have to be marked for pre-elimination by the simulator.
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Figure 4.1: All equations marked for pre-elimination (*) are moved to the outer system matrix, the others remain in
the inner one [65, 228]. :

The outer system is removed from the linear equation system and later solved by Gaussian elimination, the
inner system with an improved condition suitable for iterative solvers is passed on to the solver module.
See Figure 4.1 [65, 228] for an illustration of this concept. The resulting system is given by

(EPAPT)(P%) = (EPb), - (4.21)

where P is the permutation matrix with its inverse equal to its transposed matrix PT. As the factorization
starts with the last equation and proceeds upwards, the usual terms for direct Gaussian LU factorizations
have a different meaning. The upper triangular matrix E stores the elimination coefficients obtained as
the lower matrix L of a Gaussian elimination. It contains non-zero off-diagonals in the outer parts only,
the inner matrix domain is a strict unity matrix. The unity diagonal of E is not stored. The result of the
multiplication of E with A is a matrix with some (but not all) entries in the domain right of the diagonal
removed, and some newly created entries. This matrix is split into two parts: the core matrix containing
all equations of the inner matrix and the outer matrix. '

In Figure 4.2 the effect of the pre-elimination for the system matrix shown. The so-called inner system
matrix does not contain the problematic equations any more, for example the equations in rows 1-44 of the
complete system matrix. It is obvious that the majority of equations remains in the inner system matrix.
Thus, the effort of the Gaussian elimination is kept small whereas the solver module is expected to bear
the main solving effort.

4.9 Sorting the Inner Linear Equation System

Matrices arising from the discretization of differential operators are sparse, because only neighbor points
are considered. For that reason,.only the non-zero elements are stored in order to reduce the memory
consumption (see the MCSR format in Appendix E.1). However, during the factorization of the system
matrix A into an upper and lower triangular matrix A = LU, additional matrix elements termed fill-in
[193] become non-zero. The profile p(A) is a measure for this fill-in -

n “
p(A)=>"mi,. (4.22)
. i=1
m; =1— axz;;rélo(j) 5 (4.23)
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Figure 4.2: On the left the completely compiled system matrix of a discretized two-dimensional MOS transistor
structure assembled by MINIMOS-NT is shown. The magnitude of the entries are encoded by the
colors according to the legend in the right. Some regions with problematic equations are indicated
by red dashed rectangles. After the pre-elimination, the inner system matrix (right) does not contain
the problematic equations any more. The dimension is not significantly reduced since the majority of
equations is not affected.

and the bandwidth of the matrix is max;(m;). Thus, the bandwidth of the system matrix is the maximum
distance between a diagonal and an off-diagonal entry of the same row. Since storing of p(A) requires
additional memory, a transformation is applied to reduce the bandwidth and the profile. Thus, sorting
algorithms sort the rows and columns of the system matrix in such a way that the elimination performed
by a Gaussian type factorization yields a small number of fill-ins. The term reordering can be used instead
of sorting.

‘The standard module provided by default obtains the sorting matrix R (similar to P) by a reverse Cuthill-
McKee algorithm [43,193]. It contains a single unity entry in each row and is applied in such a way
that rows and columns are equally swapped in order to keep the diagonal dominance. In Figure 4.3 the
reordered inner system matrix with a significantly reduced bandwidth is shown. With A;x; = b; as the
inner system and RT equal R;L, sorting can be written as follows: .

(RTAR,)(RTx;) = (RTh;) S 4.24)

The effort of the sorting algorithms as well as the effort for evaluating the required étorage (cf. symbol'ic
phase) is O(Npon—zero) €ach, with npon—zero as the numbers of non-zeros. By defining an average band-
width b,yg as the average line length in the L part or column depth in the U part of the matrix, one can

roughly estimate the space consumption as O(nbayg) and the time consumption as O(n/ 2b§vg) [65].

As alternative to the in-house implementation of the reordering algorithm, external packages can be em-
ployed. For example, the Boost++ [27] (see ‘Section 5.1.5) libraries provide a graph package with re-
spective algorithms. In [193], the Gibbs-Poole-Stockmeyer algorithm [75] is suggested as an efficient
alternative to the Cuthill-McKee-based algorithms. Further alternatives are the minimum degree [72] or
nested dissection [71] algorithms. )

In [44], a column approximate minimum degree ordering algorithm is presented. Basically, sparse Gaus-
sian elimination with partial pivoting computes the factorization PAQ = LU. While the row ordering
P is generated during factorization, the column ordering Q is used to limit the fill-in by considering the
non-zero pattern in A. A conventional minimum degree ordering requires the sparsity structure of APT.
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Since the computation can be expensive, alternative approaches are based on the sparsity structure of A
instead. '

In [183], an introduction is given to find unsymmetric permutations which try to maximize the elements
on the diagonal of the matrix. Since matrices with zero diagonal entries cause problems for both direct and
iterative solving techniques, the rows and columns are permuted in order that only non-zero elements re-
main on the diagonal only. Due to performance considerations and the applicable diagonal strategy during
factorization (see Section 4.4), the assembly module does not provide such a feature. As a consequence,
the simulator is obliged to avoid zero diagonal entries, which can be done in all cases of interest.

4.10 Scaling the Inner Linear Equation ASystem

Scaling is the final step before the inner linear equation system is passed to the solver module in order
to obtain its solution. Since preconditioners like the Incomplete-LU factorization compare the entries per
row, a normalized representation of the matrix has to be provided. Such a normalization is not required
when external modules include their own capabilities or when different kind of preconditioners are used
(see Section 5.2.5). In those cases, the scaling should be switched off in order to save the computational
effort. : '

The standard algorithm used by default works with a two-stage strategy [66]: In the first stage, the matrix
is scaled such that the diagonal elements equal unity. The second stage attempts to suppress the off-
diagonals while keeping the diagonals at unity. The resulting scaling matrices S, and S are diagonal
matrices. With A;x; = b; as the inner system, the effect of sorting' and scaling is given as:

(S:(RJ AiRs)Sc)(S¢H (R x:)) = Sr(Ryby) . . (429

In Figure 4.3 a cut-out of the scaled inner system matrix is shown. Since the values are modified while
keeping the structure constant, only the colors are changed. Note the red color of the diagonal entries
indicating the unity entries.
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Figure 4.3: In comparison to the pre-eliminated structure, the reordering algorithm significantly reduces the band-
width from 2,867 to 102 in order to reduce the factorization fill-in (left). The circle indicates the range
of the cut-out of the scaled matrix shown in the right figure. The scaled inner system matrix has diago-
nal entries equal unity, which is demonstrated by the red color. Since only the values are changed, no
structural difference can be seen in comparison to the sorted matrix.

66



wton iteration control —\
Newto Model 1

' Tv Tb
no | Model 2 !—
yes Model 3
Terminate?I — o.e R .
: - Flexible Sparse

[ Model n Ab As Structures
Y
Update
Sol
J o (L . ] Conversion
: ST R } __________ 1 ___________ } _________ I to MCSR
rR r ’ Scal p Plug-Ins
etran S n
Sl ove ]_[ ¢ ]_[ © mestTv | [mesrAb| | mesrAs| | mesrTb
L - S F-s
\ J \ ’

@—— Compiling

».

Pre—elimination

i-- E" [ Y’ ............... D
Outer/E — <% 7
: S
l _]( Q } Sl C_ )

Figure 4.4: Schematic assembly overview.

4.11 Solving and Back-Substitution

The solver module is responsible for calculating the solution vector of the inner linear equation system.
Basically, it is a separate module, but is invoked by the assembly module. As discussed in the next chapter,
the solver module provides three in-house solvers as well as an interface to external solver modules. To
summarize the various steps between assembling the linear equation system and returning its complete
solution vector to the simulator, a schematic overview is given in Figure 4.4,

In the upper left comer the Newton iteration control of the simulator is represented, which uses an interface
class to access the assembly. The inputs of the assembly module are the contributions of the various
segment and boundary models implemented in the simulator, which are subsequently called. Following
the black solid lines beginning at the interface, the four matrices T, Ag, Ay, and Ty are assembled by
using the flexible sparse storage class-based on balanced binary trees.

These structures are then converted to the MCSR format and compiled resulting in the complete linear
system, which is pre-eliminated to obtain the inner and outer system. The inner one is sorted, scaled,
and finally passed to the solver module. After the solver module has returned the solution vector (or
solution vectors in case of multiple right-hand-side vectors), the assembly module has to back-substitute
the pre-eliminated equations as well as revert scaling, sorting, and the variable transformation to obtain
the complete solution vector(s). '

The Newton adjustment levels (red dashed lines) reuse already existing MCSR structures to reduce the
assembling effort: the flexible sparse structures may be skipped completely, and during compilation and
pre-elimination much simpler functions (red bold boxes) can be used than in the conventional mode (black
bold boxes with slash). The latter requires symbolic phases in order to calculate the result storage require-
ments, which are known for the already existing structures. In the next section, the Newton adjustment is
described in more detail.
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As the assembly module also provides an interface to a system for calculating eigenvalues, the system
matrices shown in Figures 4.2 and 4.3 have been analyzed. The spectral condition for a non-symmetric
matrix [52] is given by ' :

Amax(AAT)

ks(A) = _—_—/\min(AAT) ) |

(4.26)

The results summarized in Table 4.1 have been obtained by the ARPACK package [128], which stands
for Arnoldi Package and provides a collection of FORTRAN 77 subroutines for the solution of large scale
eigenvalue problems. The package can be applied for Hermitian, non-Hermitian, standard or generalized
eigenvalue problems. It is designed to compute a user-specified number of eigenvalues only, for example
the largest or smallest eigenvalue. The ARPACK package links against the LAPACK and BLAS libraries
(see Section 5.1). S :

| System matrix after | Amax(AAT) Mmin(AAT) | Ks
compiling 230.323 | 2.53722 x 1073% | 3.01294 x 10!8
pre-elimination 574.806 | 4.26668 x 10717 | 3.67042 x 10%°
sorting 574.806 | 4.32143 x 10717 | 3.64709 x 10%°
scaling _ 4.28363 | 1.32148 x 10712 | 1.80043 x 10%

Table 4.1: Eigenvalues of the compiled, pre-eliminated, sorted, and scaled system matrix.

A spectral condition in the order of 10¢ and the precision of the numeric representation of 10~7 approx-
imately results in an error of 10°~P [52]. Thus, a small error follows from a small residual only for a
small condition number [188]. As it is demonstrated by the results in Table 4.1, the condition number is
significantly improved by twelve orders of magnitude due to the applied measures.

4.12 Newton Adjustment

One possibility to speed up the assembly process is to reuse already allocated MCSR structures for the
next Newton iteration step. For some applications such as semiconductor device simulation, this should
be possible since the structure of the equation system hardly ever changes: on the one side, the mesh
used in the simulation remains normally unmodified, on the other side changes in the Newton iteration
regarding models, quantities, or iteration schemes occur infrequently. Furthermore, the efficiency of the
Newton adjustment can be increased if separate equation systems are created for each activated simulation
mode and iteration scheme. Consequently, the assembly module provides two assembly modes: first, the
conventional assembly mode based on flexible sparse structures (see Section 4.6), and second the Newton
. adjustment mode presented here.

The benefit of the Newton adjustment does not only originate from fewer memory allocations and deal-
locations but also from the possibility to skip symbolic phases of all involved mathematical operations.
For sparse matrices, a mathematical operation must first count the required number of entries in the result,
which is done in the symbolic phase. Then, the result structure is allocated and the actual mathematical
operation is performed. :

However, if one entry in the structure intended to be reused is missing, measures have to be taken to correct
this so-called Newron adjustment error. One possibility might be to add the missing entry to the structure,
which is a cumbersome and complicated task (see also Section 4.13.3). However, it is advantageous to
simply restart the complete assembly in the conventional assembly mode.

68



The reasons for this are:

o Restarting is a simpler solution since no additional code is required.

e The circumstances when Newton adjustment errors occur are known in advance. Therefore, the
simulator should take care of the correct settings and avoid Newfon adjustment errors in advance as
well.

e The effort of the enlargement algorithms must not be neglected since several requirements have to
be met (see also Section 4.13.3).

e For the same reasons, there is no code provided which copies the already assembled entries to
flexible sparse structures and silently continues in the conventional mode.

\

4.12.1 The Administration Scheme

In the first implementation of the assembly module the main class was supposed to be bound to one linear
equation system or one Newton iteration step, respectively. The class provided two administration meth-
ods: one method was responsible for allocating all required structures, the other one for their deallocation.
In other words, the new modules were designed for solving one linear equation system during the life cy-
cle between construction and destruction as illustrated in the left of Figure 4.5. Some information the next
step could benefit from is stored in the separate parameter class, for example the fill-in control parameter.

This administrative scheme of the main assembly class was changed in the refined version of the module:
the class itself should be used for all iterations of a complete Newton approximation. Only some of its
members should be allocated for a single iteration only and deleted afterwards. Since the structure was
divided into two parts with different life times, a division of the allocation and deallocation process as
depicted in the center of Figure 4.5 was necessary. ' :

I Class Instantiation ’ ‘ Clﬁss Instantiation |

Class Allocation . . ’ Class Allocation

AReuse Structures?
- yes no
I Allocation ' | Newton Allocation ’ ’ 1
4 } Newton Initialization ] )
| Deatlocation - I Newton Deallocation | Adjustment yes Newton Allocanon |
Error? . ]
Convergence no
no ~ Achieved?
yes no

Convergence
Achieved?

Class Deallocation

Figure 4.5: Former (left), refined (center), and final (right) administrative scheme.

[ Class Destruction l I Class Destruction |

The step from the former to the refined scheme does not result in a Newton adjustment, but lays the
foundations for actually reusing already allocated structures. The final administrative scheme is shown in
the right figure of Figure 4.5. If Newton adjustment is activated, the already existing assembly structures
are not deallocated but kept in the memory after reinitialization. In the case of a Newton adjustment error,
the conventional assembly mode is used instead. Note that in this figure the Newton deallocation is not
separately shown any more, because it is implicitly called by the allocation and the class deallocation.
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4.12.2 Newton Adjustment Levels

The Newton adjustments were introduced in three levels. Level two and three depend on the success of
the preceding one.

1. The first level reuses the structure of all four matrices of the assembly process: Ay, Ag, Ty, and
Ty. If a Newton adjustment error occurs, the simulator must correct the situation, preferably by
restarting the complete assembly in the conventional assembly mode.

2. The second level reuses all resulting structures created during the compilation of the complete linear
equation system. In contrast to the first level the assembly process is already finished at execution
time. Thus, in the case of a Newton adjustment error the simulator is not affected at all.

3. The third level reuses all matrices resulting from the -pre-elimination process. As for the second
step, Newton adjustment errors are corrected internally.

An overview about the Newton adjustment is given in Table 4.2.

Level | Status Target Errors
1 | assembly Ay, A;, Ty, and T, handled by simulator
2 | compilation compilation results handled internally
3 | pre-elimination | pre-elimination results | handled internally

Table 4.2: Newton adjustment levels.

The Newton adjustment levels do not change the sequence of mathematical operations, so both assembly
modes yield exactly the same linear equation systems and exactly the same solution is obtained. Thus, the
Newton adjustment levels are a performance improvement feature only — and do not affect the accuracy or
any values at all. ’

4.12.3 Improved Sorting Feature

In the implementation of the sorting permutation of the inner linear equation system an additional potential
for speed-up can be identified. This possibility is related to the Newton adjustment, because a conventional
mode is involved as well. In this mode, a sorting vector is calculated and applied. However, once the
sorting vector is known, it can be already used during pre-elimination. This saves not only the recalculation
of the sorting vector, but makes it also possible (and necessary) to skip the sorting permutation.

The lower part of the pre-elimination vector is basically initialized by ascending indices. If both sorting
and pre-elimination are enabled, the already existing sorting vector can directly become the lower part of
the pre-elimination vector. If the inner system matrix is already sorted, the subsequent sorting must be
skipped. As already discussed for the Newton adjustment levels, the simulator is responsible for setting
the appropriate parameters to have the sorting vector recalculated if respective modifications make this
necessary.

In contrast to the Newron adjustment levels, the improved sorting feature causes a changed sequence of
mathematical operations and thus different results are observed.
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4.13 The Transferred-Transformation Pro_blem ‘

By comparing saved MCSR structures of the same system matrix assembled by the formerly used and
the new module, misordering problems have been detected. As a consequence, the new modules were
presumed to deliver wrong results and an investigation of the problem was started which finally resulted
in an elegant solution for the problem which is directly related to the row transformation.

The row transformation as discussed in Section 4.7.1 is used to supply equations (or rows of the system
matrix) with equations having a higher priority. This is necessary, because several segments (with different
priorities) could contain the same grid point. Each of the control functions determines a result for this grid
point, but only the one with the highest priority should be used.

Segment3 | ' Segment 2 ,
Source Contact (Al) Gate Oxide (SiQ,)
3 7T 2804
O
" Segment 1 115

Semiconductor (Si) -

Figure 4.6: Transformations involved if three segments share one physical grid point.

See Figure 4.6 for an illustration of the physical background as it occurs for a MOs structure. The semi-
conductor segment (segment 1), the gate oxide (segment 2), and the source contact (segment 3) share one
physical grid point. Thus, three equations are assembled to obtain the solution for the potential at this
point.

Since the contact segment has the highest priority, its solution has to.be used by the other two segments.
However, during the assembly of the three interface equations, the interface models (which are respon-
sible for setting up the transformation matrix), do not have the full information about all three segments
involved. They only take two segments into account, namely the segments the interface is in-between. As
a consequence, the following transformation entries can be found in T :

1. Equation 3 belongs to the boundary charge of the source contact (segment 3) and has to be completed
by contributions from the neighboring segments. '

2. Equation 115 belongs to the potential quantity of the semiconductor segment and is transferred
to equation 3 in order to calculate the boundary charge. Its diagonal entry is zero (a substitute
equation is used instead) and the single off-diagonal entry in column 3 equals one. Note, that in
Tg the column index is the target of the transformation. This transformation is represented by the

" black/solid arrow in Figure 4.6.

3. Equation 2804 belongs to the potential quantity of the gate oxide segment. Since semiconductor
segments have a higher priority than oxide segments, a substitute equation is used: —115+ %2304 =
0. While the diagonal entry of row 2804 of TT is zero, the only off-diagonal entry being non-zero
is that of column 115 and equals one. This transformatlon is represented by the red/dashed arrow in
Figure 4.6. :
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These transformations result in the following equations of the complete linear equation system. Depending
whether a correction is activated or not, equation 3 is shown in (4.27) and (4.28), respectively. C, stand for
other contributions equal for both cases and thus not of interest here. The coefficients D, denote entries
wrongly transferred to (4.30) instead of (4.27). With 13 as the contact potential of segment 3 (source
contact), the correct and wrong equation 115 can be seen in (4.29) and (4.30), respectively:

Q3+Cys1 + Crys1 + Cpys1 + Cyysa + D1vagoa + D2 9osos + D3 2807=Crhs + Drns ~ (4.27)

Q3+C¢/sl + Cn/sl + Cp/sl + C'z/)/s2 =Lrhs _ (4.28)
- Yc3+v11s 4 =0 , (4.29)
— Yc,3+¥115 + D1 vosos + Dath2sos + D3 ¥2807=Drns (4.30)

With

Source | V =1.0V | I = —6.9374202644 x 10~17 A | Q = —5.3344762188 x 10~1°C
Gate | V=12V | I = 0.0000000000 x 10° A | @ = 1.1515548905 x 10~1°C
Drain | V=12V | I = 1.9820343061 x 10-16 A | Q = —5.3344761939 x 10~1°C
Bulk | V =0.0V | I = —1.2882922796 x 10~ 16 A | Q = —4.0243642506 x 10~20C
Without ' ‘
Source | V =10V | I = —6.9354539375 x 10~} A | Q = —2.6653626903 x 10~16C
Gate | V=12V | I = 0.0000000000 x 10° A | Q = 1.1515496006 x 10~15C
Drain | V=12V | I = 1.9818396270 x 1010 A | Q = —2.6653626903 x 10716 C
Bulk | V=0.0V | T = —1.2882936666 x 10~16 A | Q = —4.0243767580 x 10-20C

Table 4.3: Comparison of terminal quantities with and without the correction. Note that the boundary charges are
significantly different. - '

Since the segment equation should also be transferred to the equation of the boundary charge, the red/
dashed transformation is wrong and should be replaced by the green/thick one. As a consequence, the
gate oxide is transferring its incomplete equation to the semiconductor segment. Such situations could
be prevented if the respective models are provided with the complete information. Since this is not the
case for the main simulator MINIMOS-NT and for unstructured meshes an arbitrary number of segments
would have to be considered, the assembly module was equipped with an algorithm which corrects the
transformation matrix before it is applied. This algorithm has the full information available, but remains
deactivated for all simulators which do not require this correction. See Table 4.3 for a comparison of the
terminal quantities showing significant differences particularly for the boundary charge.

The reason for the differences between the formerly used and new module can be explained as follows:
one important difference between the modules is the assembly sequence. The new assembly module
assembles four matrices and compiles them afterwards to the complete linear system (see Section 4.14).
This compiling step uses matrix additions and multiplications which operate on the completely assembled
structures. :

In contrast, the formerly used module calculates all transformations during a symbolic assembly phase in
advance and is therefore able to assembly only one system matrix during the actual assembly phase (cf.
Newton adjustment). So the matrix additions and multiplications are performed immediately while an en-
try is added. As analyzed, these transformations do not perform a multiplication in the strict mathematical
form, but are already adapted for the requirements described above. This behavior should be demonstrated
on a simple mathematical example.
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4.13.1 Mathematics

For the demonstration of the matrix transformation, consider a simple A matrix multiplied by T}, from
the left:

A =TyA,, |  @3D

1.0
A= 20 . : 4.32)

3.0
4.0

By using three different transformation matrices, the actual problem should be made evident. The first
transformation matrix and the multiplication result are:

0.0 1.0 o 0.0 4.0
; 1.0 | 2.0

Ty = , A =ThAs =

1.0 (4.33)

3.0
1.0 4.0

The entries of T, can be interpreted as follows: the column index is interpreted as source, the row index
as target of a transformation. The respective equations of Ag are scaled by the value of these positions
of Ty, In the example all values in T}, are either one or zero. The entry in row zero and column three is
taken as an example: equation three of A (the source) is completely (factor one) added to the equation
zero of A. Since in the first column of T, all entries are zero, the first equation of Ag is never used.

The second transformation matrix and the multiplication result are:

0.0 1.0 1.0 | 0.0 3.0 40
1.0 ' : ' 2.0
Tb = ’ A = TbAS = 0.0

0.0 (4.34)
1.0 4.0

The interpretation is straightforward: Now equation zero is a linear combination of the equations two and
three. Row two of A is zero because there are no non-zero entries in row two of T'y,.

The third transformation matrix and the multiplication result are:

0.0 1.0 o 0.0 3.0
1.0 2.0

00 1.0 |~ A =ThAs = 0.0 4.0

1.0 4.0

T, = (4.35)

Now equation three is transferred to equation two, which in turn is transferred to equation zero. The result
of this operation is mathematically correct, but does not meet the requirement of the assembly process.
The result should be the same as for the second transformation matrix. If one equation is transferred to an
equation which is transferred itself to another target, it must be further transferred to that target. Hence,
the problem was called transferred-transformation problem.

4.13.2 The Basic Correction Algorithm

As discussed above, the formerly used module takes such situations into account while calculating all con-
tributions of a matrix entry. However, the new assembly module requires a correction algorithm before the
mathematically correct matrix multiplication is processed during the compiling process. For the following
reasons, the development of a correction algorithm is a crucial part for the success of the new modules:
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e Waiving a particular assembly sequence is a very important benefit of the new assembly module.
However, this benefit fundamentally depends on the matrix multlphcatlon :

e The correction code of the particular matrix can be tumed on and off by keeping the orlgmal com-
pilation code unmodified. This is advantageous if the (mathematically correct) multiplication algo-
rithm is once replaced by a more optimized version (cf. LAPACK).

e A correction code can deliver the required result since the complete information is available.

e A correction code can deliver the required result in an efficient way because only few entries are
involved and the effon is linear.

e A correction code fully fits in the Newton adjustment concept of the new module (see below).

¢ Instead of a correction algorithm, the matrix multiplication itself could be modified in the required
manner. This would actually result in two implementations: one mathematically correct and one
“incorrect”. In this case the doubled code in a generally appllcable module would have to be justified
by a special-purpose requirement.

For these reasons, it was decided to develop a correction algorithm which is presented here. Based on
the third example in the last section, the problem is described verbally once again: equation three is
transformed to equation two, that is transformed itself to equation zero: thus, a transformation source is
also a transformation target. A correction to replace the (three to two to zero) problem by a straightforward
(three to zero) transformation is required.

The basic correction algorithm can use all information provided by the transposed MCSR data structure.
In Tg, the column indices represent the targets of the transformations.

| 0.0 |
T 1.0 |
=10 oo L (4.36)

1.0 1.0

Note that the transposed MCSR structure is actually stored in the Mcsc format. For simplification, the
discussion here still uses the MCSR format. The index and value arrays of the TT matrix read like this (u
stands for unused, see Appendix E.1):

pos 0 1 2 3 4 5 6
val 00 1.0 00 1.0 u» 1.0 1.0
idx 5 5 5 6 7 0 2

The algorithm has to focus on the off-diagonal entries in the upper part of the arrays. The column index
stands for the target of the transformation. Hence it must be checked if the target row is a source of a
transformation which is indicated by off-diagonal entries.

dx[idx[row]] # idx[idx[row] + 1] . @3

The correction algorithm loops over all off-diagonal entrles starting at posmon five in the example. For
the first entry the test is negative since

idx[idx[5]] = idx[idx[5] + ]=1. | (4.38)
= 1
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However, for the second entry the test is positive:

5 6
idx[idx[6]] # idx[idx[6] + 1] . (4.39)

Row two does have off-diagonals, so a transferred transformation is detected. The basic algorithm is able
to correct such situations if there is one entry only which is checked by the following condition:

idx[idx[row]] + 1 == idx[idx[row] + 1] . » (4.40)

More than one entry (as required in cases where more than three segments share one grid point) would
require a restructuring of the complete MCSR array or alternative approaches as discussed in the next
section. If there is only one entry, the correction is just a simple assignment:

idx[row] = idx[idx[idx[row]]], | (4.41)
—— .
idx([6] = idx[idx[idx[6]}]] = O . (4.42)

After the correction is completed, Tg has to be transposed back: resulting in the same transformation
matrix as used in (4.34): ’

0.0 1.0° 1.0

Ty, = : 'o.o - ' . (4.43)
1.0

4.13.3 The Advanced Algorithm

The basic algorithm explained above could not be used for more complicated structures, for example the
ones which contain grid points calculated by four control functions.

In addition, duplicate entries in the resulting MCSR structure (as they could occur using the basic algo-
rithm) should be avoided. In contrast to the full format, a sparse format stores only entries' which are
intended to be non-zero. Besides the actual value, also the row and column number have to be stored.
Thus, it is possible to store one matrix entry more than one time, which is a duplicate entry of the same
position. Most of the mathematical operations defined for MCSR take those implicitly into account, since
they simply process all entries in the structure. However, due to the fact that all multiple entries should be
actually summed up to one entry, numerical inaccuracies may occur. So duplicate entries are best avoided
at all.

The main objective of the advanced algorithm should provide a generally applicable correction of the
transformation matrix while avoiding duplicate entries. A new example should demonstrate the actual
problem. In a transposed transformation matrix TE the entries (row:34, col:3) and (47, 34) are set to one.
The basic algorithm corrects the latter entry to (47, 3). Since there is only one entry, this correction is
successful (case one).

To extend the example, an additional entry in (78, 34) is supposed to be one. That means, that equation 34
is not only transferred to equation 3, but also to equation 78. Note that in TT the column index stands for
the target of a transformation. In that case, the basic algorithm fails, because there is not enough space to
add new entries (case two). Both cases are graphically represented in Figure 4.7.
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Figure 4.7: Graphical representation of the multiple transfer problem.

The first case is shown in Figure 4.7a and Figure 4.7b. In Figure 4.7a, two arrows represent two trans-
formations, the blue/dashed arrow has to be redirected to the position the black/solid arrow points to. In
Figure 4.7b, the green/dashed arrow represents the redirection. After the correction the number of arrows
stays the same.

The second case is shown in Figure 4.7c and Figure 4.7d. Since the center position is transferred to
multiple (here two, generally n) right. positions, there are also n arrows needed to point from the left
position to all right positions. The number of arrows increases by n — 1. In Figure 4.7d, the red/dotted
arrow has to be created additionally. In the existing MCSR structure, there is no space for this entry.
Hence, no thorough correction of the second case could be made. -

If equation 47 of A contains the non-zero column entries 49, 51, and 55, the following misorderings are
the result of the omitted correction:

o Equation 3: entries in columns 49, 51, and 55 are missing.
e Equation 34: entries in columns 49, 51, and 55 should not be there.

e Equation 78: entries in columns 49, 51, and 55 are missing.

For that reason new entries have to be added in order to completely correct the transformation matrix.
There are two solutions for this problem:

1. The first approach requires an enlargement and reordering algorithm for the existing arrays. This
algorithm must take the requirement into account, that duplicate entries should be avoided. Thus,
the resulting algorithm must count all additional needed entries actually required, allocate a new
structure, copy all entries and eventually dismiss the old structure. However, all of these parts are
already implemented, which motivates the second approach.

2. The flexible sparse structure of the transformation matrix provides already many of these required
features: it can be used to add new entries easily and it avoids duplicate entries. So the second
approach yields an algorithm that reuses and iteratively improves the still existing flexible sparse
structure of the transformation matrix. '
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By pursuing the second approach, an algorithm was developed which benefits from already existing and
applied implementations. The system can now take all possible situations into account since it-does not
limit the number of commonly used grid points (independent of the number of spatial dimensions) any
more. Table 4.4 summarizes the initial situation and the correction result for both the transposed and
untransposed transformation matrix.

Tp| 3 34 47 78 T | 3 34 47 78
3[10 1.0 _ 3]1.0

Before: 34 1.0 341 1.0 1.0
47 47 1.0
78 1.0 1.0 - 78 1.0
Ty, | 3 34 47 78 TE| 3 34 47 78
3[1.0 1.0 1.0 310

After: 34 341 1.0 1.0
47 47 | 1.0 1.0
78 1.0 1.0 1.0 78 1.0

Table 4.4: The transposed and untransposed transformation matrix before and after the correction. The column
index stands for the source or the target of the transformation, respectively.

Regarding the Newton adjustment it is important to note, that the advanced algorithm is fully employable
due to the following considerations. After a successful first Newtor adjustment level, no flexible sparse
structure exists which could be used to add additional entries. However, the already existing ‘T, matrix
does already contain all required entries. This assumption holds since all deterministic algorithms always
yield the same result for the same inputs. Therefore, no Newton adjustment errors will occur. '

4.14 Concluding Remarks |

At the end of this chapter concluding remarks shall be given in order to summarize the benefits of the
in-house assembly module.

e Shared library concept: the simulator can be directly linked against the‘assembly module.

_e Comprehensive Application Programming Interface: this API enables random access to all struc-
tures and is therefore an important contribution to simplify and improve model development See
Figure 4.8 for a comparison of the four-phases and one-phase approach.

¢ Rigorous implementation in C/C++: 30,500 lines of code.
e C++-Templates (type parameterization): efficient implementation based on templates [212].
¢ Handling of real-valued and complex-valued equati‘on systems.

0  Ability to provide multi-level solvers with the respective connéctivity information: the simulator
can use the assembly module to administer its quantities.

e Centralized administration of control parameters.
e Comprehensive input-/output system: all structures can be written to files and read from the files to

be further processed. These features can be used to check the assembly and to efficiently evaluate
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Figure 4.8: Comparison of the one-phase (upper) and four-phases (lower) approach. In the latter case the implemen-
tation of the simulator is much more complicated as the assembly module requires a specific assembling
sequence. Whereas in the one-phase approach the loop over all models is processed only once, it has to
be processed four times in the four-phases approach. In addition it is necessary to call specific prepara-
tion functions and each model implementation has to take the current phase into account, which leads
to complicated codes.

different parameter settings for the solution of the same linear equation system. In addition these
files can be used for debugging and quality assessment of the simulator as they include the full
‘quantity information for all equations.

e Stand-alone version: several test programs are available to see how the library is applied.

The ability to be generally applicable has been proved as the assembly module is used for another simulator
at the institute, namely the Finite Element Diffusion and Oxidation Simulator FEDOS [32].-

Due to the rigorous implementation in C++ and the application of inline methods, the performance differ-
ence to the former version, which was implemented in C, is minimal. Especially in combination with the
Newrton adjustment, the new system is not systematically slower than the old one.
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Chapter 5

The Solver Module

The assembly and solution of sparse linear equation systems is a fundamental task in numerical simulators
which discretize nonlinear partial differential equations on a mesh. As already discussed in Section 2.3.1,
the Newton method [136] is commonly used as a lmeanzatlon technique, which requires the solution of
one linear equation system per iteration step.

As solving linear equation systems is a common and well-known computational task, an overview of third
party solutions is given in Section 5.1. However, there are four main reasons for providing, mamtammg,
and extending an in-house solver module: :

1. Whereas the calculation of the model contributions represents the physical modeling and thus the
main purpose of employing TCAD tools in general, the largest share of the run-time of the numerical
simulators is spent in the linear modules, that is for assembling and solving linear equation systems.
In order to quantify this statement, a respective evaluation was performed, which is discussed in
Section 5.5.2. A subsequent evaluation was performed to analyze the performance of various solver
systems for different kinds of simulation tasks. So the in-house solver module does not provide only
one linear solver, but an interface to various in-house and external solver systems.

2. The solvability of a linear equation system depends on specific properties of the system itself, for
example the condition of the system matrix. Although several measures have already been taken
to improve these properties (see Chapter 4), some kinds of solver techniques may still fail during
the calculation of the solution. For that reason, again a choice of several different solver systems
can increase the probability for finding a useful solution for the complete simulation task. However,
insufficient convergence for example may also point to inappropriate simulation setups such as
inadequate meshes or inaccurate physical modeling. Hence, the behavior of the solver modules and
respective feed-back information can be used to assess and improve the complete simulation. It is
therefore advantageous to benefit from a direct access to the solver module.

3. External modules are often bound to license agreements, which frequently contain restrictions es-
pecially for commercial application. As the institute provides its codes to industrial partners and
binary release versions to the general public, third party license requirements would restrict such
distributions. So an in-house solver module enables the institute to independently- release complete
versions which are directly applicable also from a legal point of view.

4. The quality assessment approach of MINIMOS-NT (see Section C.4) requires a deterministic be-
havior of the solver system both in the short and long run. By using the in-house solvers, which are
intended to remain basically unmodified, this behavior can be assumed to be guaranteed.
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5.1 Third Party Modules and Libraries

Since solving linear equation systems is a very common computational task, a short overview of the

_avallable third party solutions shall be given.

The Basic Linear Algebra Subprograms BLAS provide hlgh quahty bunldmg block routines for performing
basic vector and matrix operations: Level 1 BLAS for vector-vector operations, Level 2 BLAS for matrix-
vector operations, and Level 3 BLAS for matrix-matrix opérations [18]. Since BLAS libraries are efficient,
portable, and widely available for many different platforms many mathematlcal developments are based
on them.

The original objective of the Linear Algebra PACKage LAPACK, which is based on the BLAS library, was
to provide a version of the widely used EISPACK [202] and LINPACK [53] libraries that runs efficiently
on shared memory vector and parallel processors. The bottle necks of these modules are the memory
access patterns disregarding the multi-layered memory hierarchies of the machines. Thus, too much time
is spent for data manipulation rather than for doing useful floating-point operations. LAPACK addresses
this problem by making use of block matrix operations, such as matrix multiplication, in the innermost

* loops. Since these block operations can be optimized for various architectures to account for the memory

hierarchy, a way to achieve high efficiency on diverse modern machines was found [13]. The Scalable
LAPACK (SCALAPACK) library provides a subset of LAPACK routines for distributed memory parallel
computers [21]. Whereas SCALAPACK can be applied for dense systems, a library for parallel linear
algebra computation on sparse matrices is presented in [64]. That PSBLAS package addresses the parallel
implementation of iterative solvers and is designed for distributed memory computers.

5.1.1 Commercial Libraries

The NAG libraries of the Numerical Algorithms Group contain a wide range of robust numerical and
statistical routines, for example for linear algebra, eigenvalue analysis, and differential equations [155].
The libraries are offered in FORTRAN 77 and 90, C, as well as an SMP Library for shared memory and a
Parallel Library for distributed memory parallel computing.

The IMSL libraries of Visual Numerics provide accurate and reliable FORTRAN algorithms with full cov-
erage of mathematics and statistics. According to [226], the libraries are claimed to be a comerstone of
high-performance and deep computing as well as predictive analytics applications in science, technical
and business environments for well over three decades. IMSL stands for International Mathematical and
Statistical Library. ‘

"‘The HSL Software Library, formerly known as the Harwell Subroutine Library and commercially dis-

tributed by Hyprotech UK Ltd, offers a collection of portable, fully documented FORTRAN packages.
Besides the commercial distribution, there are special arrangements for licensing to academic users. The
library can be particularly applied for sparse matrix computations and large-scale optimization. HSL rou-
tines can be found in advanced software applications such as for chemical engineering and finite element
modeling.

'5.1.2 Libraries of Hardware Vendors

Intel offers the Math Kernel Library MKL to prov1de highly optimized thread-safe mathematical routines
for High-Performance Computing (Hpc), science, engineering and financial applications, Wthh are able
to take advantage of the maximum performance on Intel processors [107]. The key features of the MKL
are its optimization for recent Intel platforms, an automatic run-time detection of the CPU actually used,
scaling on multi-processor environments, thread-safety, and royalty-free distribution of the run-time li-
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brary. The Linux non-commercial development license is also free. The functionality embraces not only
linear algebra (BLAS and LAPACK), but also discrete Fourier transforms vector mathematics and a vector
statistical library with random number generators.

The AMD Core Math Library ACML for Linux and Windows offers BLAS, LAPACK and FFT routines,
which can be applied by a wide range of software developers to obtain excellent performance on AMD
platforms. The highly optimized library provides numerical functions for mathematical, engineering,
scientific and financial applications. ACML is available both as a 32-bit and 64-bit library which is able to
fully exploit the large memory space and improved performance offered by new AMD 64-bit architectures
(3].

Applications running on IBM pSeries computers can take advantage of optimized ESSL (Engineering
and Scientific Subroutine Library) routines. This allows both to reduce programming requirements and
performance improvements. The library provides optimized versions of dense matrix kernels contained in
the BLAS and LAPACK libraries. Another approach to improve the performance of applications is the IBM
Mathematical Acceleration SubSystem Library MASS. It provides high-performance versions of a subset
of intrinsic functions while sacrificing a small amount of accuracy [2].

5.1.3 Recent Developments

In [190], an overview of parallel frontal solvers for large sparse linear systems can be found. These
codes were implemented in the HSL package. As a variant of Gaussian elimination, the frontal method
was originally developed [109] to solve large linear equation systems. Because the computational work
is limited to a relatively small frontal matrix, large problems could be solved even on computers with
small memories. The assembly and elimination procedure were combined, and the additional data was
written to secondary storage systems. Today the motivation for frontal solvers arise from the fact, that the
frontal matrices can be stored in full format [191]. This allows one to employ high-level BLAS routines.
Furthermore, multiple front methods were developed, which can smultaneously process subproblems,
and allow to parallelize the factorization.

A new parallel direct solver for large sparse linear systems is presented in [56], which is also incorporated
in the HSL package as the HSL_MP48 algorithm. This algorithm is designed to solve highly unsymmetric
systems by employing several processors, typically up to 16. It is based on the serial code MA48, which
implements a sparse variant of Gaussian elimination with sparse data structures and threshold pivoting.
Since MAA48 stores the matrix and its factorization in main memory, HSL_MP48 can parallelize the prob-
lem in order to reduce the memory demand as well as to speed up the factorization process. The parallel
approach is based on partitioning the system matrix into a small number of loosely connected submatrices
(singly bordered block diagonal form [56]). A modified version of MA48 is then used to factorize all
matrices which can be done in parallel. The interface problem can be solved by any sparse solver. Three
advantages in comparison to a general parallelization of a sparse solver are given: all processors can be
preassigned all data in advance, the factorizations of the submatrices can be done in parallel, and interpro-
cessor communication as required for the interface problem is limited and structured. For the majority of
test cases arising from chemical process engineering problems HSL_MP48 outperforms MA48 if two pro-
cessors are employed. For some problems and eight processors speed-ups in excess of four are achieved.
Since the code does not require a single file system and is based on MPI {159], it can be applied both on
shared memory and distributed memory machines (see Section 5.3.1).

The comparison in [93] involves different strategies mainly regarding the numerical factorization and the
target architecture. However, it is concluded that improvements in all phases of solving sparse linear
equation systems have been achieved, which are the main reasons for the significant speed-up already
observed.

81




The following solvers are compared [93]:

e UMFPACK, the Unsymmetric Multi-Frontal Package, is a set of serial routines for solving unsym-
~ metric sparse linear systems using the unsymmetric multi-frontal method. Whereas verswns 22
and 3.1 are compared in [93], [47] provides version 4.4 now.

e SuperLUyr and SuperLUdist [223): whereas the former is designed for Shared Memory Parallel
Processors (SMPs), the latter is designed for Distributed Memory Parallel Processors (see Sec-
tion 5.3.1). The factorization is based on the super-nodal left-looking or right-looking approach,
respectively.

e SPOOLES stands for SParse Object Oriented Linear Equations Solver [140] and is a library for
solving sparse real- and complex-valued linear equation systems. Numerical factorization is done
by a super-nodal Crout [131] -approach. The target architectures include serial, shared-memory
parallel, and distributed-memory parallel.

e MUMPS stands for MUlti-frontal Massively Parallel sparse direct Solver and provides capabilities
" for solving linear equation systems with symmetric positive definite matrices, general symmetric
matrices, general unsymmetric matrices, complex or real arithmetic matrices. Furthermore, it of-
fers parallel factorization as well as iterative refinement and backward error analysis [163]. The
implementation is written in FORTRAN 90 and based on MPI. Partial pivoting and dynamic dis-
tributed scheduling is used to accommodate both numerical fill-in and multi-user environment. The
BLAS, LAPACK, and SCALAPACK packages are employed. The numerical factorization is based on
symmetric-pattern multi-frontal and the target architecture is distributed-memory parallel.

o WsMP: The Watson Sparse Matrix Package (WSMP) is a high-performance software package for
solving large sparse linear equation systems by a direct method on IBM pSeries Systems, serial or
multi-processor Linux workstations and Linux clusters [2]. WSMP can be used as a serial package,
in a shared-memory multiprocessor environment, or as a scalable parallel solver in a message-
passing environment, where each node can either be a uniprocessor or a shared-memory multipro-
cessor. The numerical factorization is based on unsymmetric-pattern multi-frontal and the target
architecture is shared-memory parallel.

Two additional modules are PARDISO [182] and SAMG [37]. The former is also provided by DESSIS [111]
and the MKL [107]. The latter is industrially employed for computational fluid dynamics as used in the
car industry, oil reservoir simulations, electromagnetics, groundwater flows, semiconductor physics, and
. structural mechanics [213]. Both packages are discussed later in this chapter in a more detailed way, see
Section 5.3.2 and Section 5.3.3, respectively. :

5.1.4 Solver Frameworks

The Boeing Math Group commercially provides the Intelligent Iterative Solver Service 11sS, which is
based on the performance considerations regarding the advantage of iterative solvers for large sparse
linear equation systems. The optimal selection of an iterative solver varies and these methods are also
known to suffer from irregular performance in different applications. Furthermore, it can be difficult for
users to choose the correct parameters required for performance. For that reason the Boeing Math Group
provides a collection of state-of-the-art iterative solvers [24]. ' '

This collection contains BCSLIB-EXT [23], a preconditioned iterative solver, which has been also used for
semiconductor device simulation. Hypre [63], a scalable software for solving large, sparse linear equation
systems on massively parallel computers, and AZTEC [222], a massively parallel iterative solver library
‘with advanced partitioning techniques and dense matrix algorithms, are additionally available [24].
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Trilinos is a project aiming to provide parallel solver algorithms and libraries for the solution of large-
scale, complex multi-physics engineering and scientific applications. Since an object-oriented software
framework is developed, Trilinos is based on packages [180). Each package is focused on important,
state-of-the-art algorithms in its problem regime, developed by a small expert group, self-contained, as
well as configurable, buildable and documented on its own [61]. For example, Trilinos supports the
object-oriented version of AZTEC, SuperLU, Hypre, HSL and many more. In addition, three specific
package collections are provided: one for linear algebra classes, one for abstract solver classes, and one
for basic tools like BLAS or MPI interfaces.

5.1.5 Special-Purpose Libraries

The Automatically Tuned Linear Algebra Software ATLAS provides portable linear algebra software, in-
cluding a complete C or FORTRAN 77 BLAS API and a very small subset of the LAPACK API. For
all supported operations, ATLAS achieves performance comparable with machine-specific tuned libraries
[224,238]. Thus, ATLAS can be used as an alternative to the BLAS library.

Blitz++ is a C++ class library for scientific computing showing a comparable performance with FOR-
TRAN 77/90 [157]. The library incorporates dense arrays and vectors, random number generators and
small vectors and matrices. It is available under an open sourc'c license. The basic idea is to use the
advanced features of the C++ programming language while avoiding the performance drawback. The
speed-up is not achieved by better compiler optimization and related measures, but by using templates,
which allow to perform optimizations such as loop fusion, unrolling, tiling, and algorithm specializa-
tion automatically at compile time. Thus, instead of compiler optimizations, the Blitz++ library parses
and analyzes array expressions at compile time and performs respective loop transformations in order to
speed-up the code. In addition, Blitz++ extends the conventional dense array model to incorporate new
and useful features, such as flexible storage formats, tensor notation and index placeholders [157].

Finally, there is Boost++, a set of free portable C++ source libraries [27] which fully comply to the C++
standard and work well with the C++ standard library. It is based on C++-templates and the system is
said to be included into the next C++ standard. One template class library regards linear algebra: UBLAS
provides BLAS functionalities for dense, packed, and sparse matrices.

The design and implementation is based on operator overloading and efficient code generation via tem-
plates. Classes are provided for dense, unit, and sparse vectors, dense, identity, triangular, banded, sym-
metric, hermitian, and sparse matrices. Ranges, slices, and adaptor classes can be defined to view into
-vectors and matrices. The library provides reductions like different norms, addition and subtraction of
vectors and matrices and multiplication with a scalar, inner and outer products of vectors, matrix-vector
and matrix-matrix products and triangular solver. The implementation is mostly STL conform including
the iterator interface [26]. The known limitations are that the implementation assumes a linear memory
address model and that dense matrices have been the tuning focus.

5.1.6 Discussion

As can be easily seen, there is a large variety of solver systems and packages available and many of them
are still developed and improved. As they are highly optirﬁized, particularly for specific platforms, the
two-strategy approach for the in-house solver module presented here seems to be promising. On the one
hand side own implementations are provided, on the other hand side the application can benefit from
external codes which are directly coupled to the solver module.
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However, the integration of external modules is restricted by purpose and does not embrace the full spec-
trum of available systems presented above. By now, only two external modules with specific properties
have been made available. The choice of the external modules depends on the following considerations:

1. Performance should be the main priority for providing different solvers. As evaluated, both inte-
grated external solver systems show a higher performance for specific kinds of simulations than the
in-house solver systems. So the choice was motivated by performance advantages rather than offer-
ing alternative solvers to try getting non-converging simulations run. Whereas some solver systems
are known for being advantageous in context of more ill-conditioned problems (see Section 5.5.1),
a trial-and-error convergence strategy frequently hides problems in the underlying simulation setup.
These short-comings can cause questionable overall simulation results although one linear solver is
maybe able to deliver a result with the desired accuracy at each step of the Newton approximation.

2. Many users of the simulators regard the linear solver modules as black boxes which are supposed to
deliver the “correct” solution vector. There are plenty of settings both for the assembly and solver
module, but in most cases the default settings are used. Therefore, several solvers are integrated to
automatic solver hierarchies (see Section 5.4), which lose efficiency with an increased number of
solvers. Furthermore, to avoid contradictions with the first item regarding the convergence prob-
lem, appropriate feedback has to be given. It could be useful to obtain a questionable solution in
combination with a respective feedback in order to specifically improve the simulation setup.

3. Typical simulators require a specific set of capabilities which should be available. Independently
of the particular implementation and target architecture, the key demands on the solver module can
be summarized as follows: solving of sparse real-valued non-symmetric and complex-valued non-
hermitian linear equation systems, speed-up features like Newron adjustment and multiple right-
hand-side vectors, shared library concept, as well as a control concept based on parameters. If
complex-valued linear equation systems are not directly supported, the interface can transform them
to double-sized real-valued ones (see Section 2.6.2). Since the linear equation systems are sparse,
the solver systems designed for sparse matrices are preferred, because the memory consumption of
compressed storage formats is far less than that of full matrices (see Section 4:6). However, due to
linear memory addressing, algorithms working on full or band matrices can be far better optimized.

. 4. Since the simulators are provided for several platforms, for example Linux and AIX, portability
of the libraries is a critical issue. Platform-dependent libraries normally utilize all capabilities of
the respective hardware. However, if the same functionality and/or API used in the interface is not
available or efficient on alternative platforms, the module should not be chosen.

5. As already stated in the introduction of this chapter, economic and legal considerations must not be
neglected. First of all, the various license agreements have to be taken into account.” Besides the
technical evaluation, the decision whether to employ a module bound to commercial run-time or
development licenses, must take the market, financial return, costs, and the economic situation of
the vendor into account.

5.2 Overview of the Solver Module

As outlined in the introduction of this chapter, an in-house module is provided which consists of an exten-
sible interface to three in-house solvers and to two external (third‘party) solver modules. In combination
with the assembly module (see Chapter 4), this module is currently employed by MINIMOS-NT and FE-
DOS. In Figure 5.1 an overview is given how these modules are integrated in the simulation flow of these
simulators. :

84




Newton iteration control

Solver Module

- Model 1 ( C—
Matrix
I Model 2 Structures
. Model 3
Terminate? * ;
1 Model n -
SEam——
Solve Convert &
Transform
—/ L )
l ( Re—Transformation ] E Sort
f A Scale
[So]ver] [Solver} ' [ Solver] (Solver] [ Solver] l
I l o I |
External External | | In-house Solvers E Assembly Modl.lle

Figure 5.1: Schematic overview of the linear modules [230].

In the upper left corner the Newton iteration control of the simulator is shown. Depending on the kind of
simulation, various model implementation functions are selected and subsequently called. They add their
contributions to the matrix structures in the assembly module [229].

After assembling has been completed, the simulator requests the solution of the equation system by start-
ing the solving process which is preceded by the compilation, pre-elimination, sorting, and scaling as
discussed in Chapter 4. Eventually, a solver module is called which actually calculates the solution vec-
tor. After the chosen solver module has returned the solution vector, all transformations are reverted. -
MINIMOS-NT uses the solution to calculate the update for Newton approxxmatlon or terminates the itera-
tion if a specific criterion is fulﬁlled

There are different approaches available to calculate the solution vector. The in-house solver module pro-
vides one direct Gaussian solver as well as two iterative solvers, namely BICGSTAB [49] and GMRES(M)
[179] in combination with an ILU-preconditioner. In addition, an interface is provided to employ recently
developed modules, which provide hlghly optlmlzed mathemat1cal code and allow a significant speed-up
of the solving process.

5.2.1 Solver Selection

The choice of the solver basically depends on the following considerations:

e In contrast to direct methods, the convergence rate of iterative methods highly depends on spectral
properties of the system matrix (see Section 5.2.5). Several measures are taken in order to improve
the solvability. For example, iterative methods involve a second matrix, the so-called preconditioner,
which transforms the system matrix into one with better properties (see Section 5.2.5). However,
for some kinds of simulations still direct methods have performance and solving advantages (see
Section 5.5.1). ' :
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o Although direct methods show solving advantages in general, their memory consumption is the
main limiting factor. Since iterative methods require less computational resources, they are normally
employed as standard solvers for well-conditioned linear equation systems.

As can be seen from the MINIMOS-NT examples given below, the iterative solvers have also performance
advantages for problems with smaller dimensions. In the literature, often the opposite is found [182].
The reason for this fundamental difference are the various transformations done in the assembly module
resulting in well-conditioned inner equation systems. Of course, the overall effort could be less if all
transformations are skipped and a direct solver employed instead.

5.2.2 In-House Direct Solvers

Direct solution techniques refer to Gaussian elimination using a factorization of the system matrix A ina
lower and upper triangular matrix as A = LU. The liriear equation system Ax = b can thus be written as
L(Ux) = b. Therefore, the following three steps can be specified, that determine the Gaussian algorithm:

1. A = LU: Gaussian elimination (factorization;corrilputing L and U)
2. Ly = b: forward-substitution (compute y)

3. y=Ux: back-substitution (compute x)

If the linear equation system has to be solved for multiple right-hand-side vectors b, only steps two and
three have to be repeated. So the factorization has to be done only once. The effort of the factorization
is O(n®) in the general case, resulting'in a prohibitively high computational effort for problems with
higher dimensions, for example three-dimensional device simulations. The time and memory consumption
of the in-house LU factorization is indeed very high. ‘The effort for determining space requirements is
O(Minon—zero), that for determining time requirements O(space), and that for factorizing is O(time). For
the sake of completeness it is to note that the Cholesky method [52] has not been implemented since the
assembled matrices are normally not symmetric and positive definite.

5.2.3 In-House Iteratiye Solvers

Iterative methods refer to techniques which use successive approximations to obtain more accurate solu-
tions at each step [17]. The iteration is stopped if the error is sufficiently reduced or a maximum number
of iterations has been reached. There are two types of 1terat1ve methods:

) Stationary methods: they are older and simpler in both understanding and implementing, but gener-
ally not as effective. The four main stationary methods are the Jacobi method, the Gauss-Seidel, the
Successive Over-Relaxation method (SOR), and the Symmetric Successive Over-Relaxation method
(SSOR). Stationary methods can be generally expressed by x*) = Bx(*~1) 4 ¢, where B and c are
independent from the iteration counter k.

. Non-stationary methods: in contrast to stationary methods, they use information that changes at
each iteration. Most of the methods are based on the idea of sequences of orthogonal vectors. The
most prominent examples are the Krylow subspace methods GMRES(M) CG, CGS, BICG, and the
BICGSTAB. :

The Biconjugate Gradient Stabilized [49] (BICGSTAB) is applicable for non-symmetric matrices. This
method avoids the irregular convergence patterns but shows almost the same convergence speed as the al-

ternative Conjugate Gradient Squared method CGS [17]. The Conjugate Gradient method (CG) calculates

86



a sequence of conjugate vectors, which are the residuals of the iterates. The minimization of these resid-
uals is equivalent to solving the linear equation system [17]. The BICG method calculates two sequences
of vectors: one of the system matrix and one of the transposed system matrix. The CGS and BICGSTAB
are variants of the BICG with modifications regardmg the-updating operations of the sequences. The BI-
CGSTAB uses different updates for the sequence of the transposed matrix and therefore obtains smoother
convergence than CGS. :

5.2.4 The Generalized Minimal Residual Method

The Generalized Minimal Residual method (GMRES) is also applicable for non-symmetrie matrices, leads
to the smallest residual for a fixed number of iteration steps, although these steps require increasingly
more computational resources. Thus, GMRES is actually not an iterative solver, since the exact solution
of an equation system with rank n can be obtained in at most n steps (if an exact arithmetic is assumed).
The solution procedure is based on orthogonal basis vectors, which are combined by a least-squares solve
and update. :

The dimension of the orthogonal vectors increases with each step. Since this increase in memory con-
sumption is the drawback of this method, a restarted version of GMRES, normally referred by GMRES(M),
can be used instead. The iteration will be terminated and the solution will be used as initial guess for the
next iteration. : :

The choice of an optimum restart factor m is not trivial and “requires skill and experience” [17]. In [96],
m < 10 is suggested for device simulation, but a significant higher value seems to be necessary for more
ill-conditioned problems. In [183], m was set to 20 to avoid too high memory consumption. In view of
the system memory of the average computer this parameter can be set to higher values at least in the area
of classical device simulation. However, a default value for m had to be found and for that reason an
empirical investigation was performed (see Section 5.5.3).

In order to provide an alternative solver system, a restarted version of the Generalized Minimal Residual
method [179] was implemented for the internal solver module. This was done based on templates provided
by the Netlib repository [17,152]. During the implementation, it was absolutely crucial to retain the
existing structure of the solver module and to apply all already implemented capabilities.

‘5.2.5 Preconditioner

The convergence rate of iterative methods depends on spectral properties of the system matrix A [17]. For
that reason preconditioning is used to transform the linear equation system into a similar one, which has
the same solution but better spectral properties. Thus, by usmg a precondmoner M the original system
Ax = b is transformed to

M 1Ax=M"1b, - (5.1

where M1 A has better spectral properties than A.

There are many approaches to derive the preconditioner M. One class of them is the Incomplete-LU
factorization (ILU), which approximates the matrix A. Basically, a factorization LU is incomplete if not
all necessary fill elements are added to L or U. The respective preconditioner has the form -

- M=LU=A. : (5.2)
Adding a preconditioner to an iterative solver causes extra cost, so the resulting trade-off between con-

struction/application and gain in convergence speed must be considered. As outlined in [65], a hierar-
chical concept is used to minimize the necessary computational time of this system. This time is mainly
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influenced by the parameters fill-in and threshold (tolerance) of the Incomplete-LU factorization process.
These parameters are stored by the parameter administration and automatically adapted after each solver
call. See Figure 5.2 for an illustration of the hierarchical concept. ‘This form of the Incomplete-LU factor-
ization is sometimes referred as ILUT(, g) [183] with € standing for the threshold and ¢ standmg for the
fill-in parameter spemfymg the g largest elements which are kept per row.

* Alternatives are the ILU(0) and ILU(p) methods. The former has less complexity and simply keeps the

elements whose corresponding values in the system matrix are non-zero, that is € = 0. The method called
ILU(p) drops elements but takes only the structure of the linear equation system into account. However,
the Incomplete-LU factorization faces the same problems as the Gaussian elimination. For example, due
to zero or negative pivots, incomplete factorizations may break down or result in indefinite matrices,
respectively, even if the full factorization exists and yields a positive definite matrix [17].

An alternative to these methods are those which approximate the inverse of A, the so-called approximate
inverses methods. The major advantage of these approaches is that the application of the resulting precon-
ditioner requires matrix-vector products only and not a soliéing step [183]. Examples are the SPAI [92] or
the AINV methods [19]. ’
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- Determination
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Preconditioning Parameter Set

Solver Iteration

Time Limit?
Maximum Iteration
- Count?

Convergence

no

Determination

of an Optimal

Parameter Set

Parameter Set for No Solution
the Next Solving Process -, Possible

Figure 5.2: The hierarchical concept [65, 228].

For the synchronization between preconditioner and solver the concept of counting mathematical oper-
ations is used. In contrast to the system time which was used in the former version this count remains
constant for the same simulations, and thus subsequent passes of the optimization loop are deterministic
even in a multitasking environment.

The dual drop-off strategy in the incomplete factorization strategy employed in the internal solver module

-works as follows: Elements in L and U whose size is less than the threshold (relative to the average

element size of the current row in U) are dropped. By setting a zero threshold, all elements will be kept.
Furthermore, only a specific number of the remaining elements are kept. This number is determined by
the fill-in parameter and the selection is done by size. Thus, the largest elements remain in the matrix. One
can use a zero fill-in parameter to obtain a strategy based on keeping the largest elements in each row of L
and U. Or, by choosing an appropriate threshold but setting the fill-in parameter to n, the usual threshold
strategy will be applied, but the number of fill-ins is then unpredictable.
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5.3 External Solvers |

Since the remarkably increased performance of todays average computers inspires to even more costly
simulati_ons (for example optimizations and mixc_ad-_mode‘ device/circuit simulations), a further speed-up
of the simulators is highly appreciated. Thus, the development of highly-optimized mathematical code
must not be neglected. With regard to such new developments, an interface is provided to employ external
solver modules.

At the moment, two external modules can be employed: First, the Parallel Sparse Direct Linear Solver
PARDISO [117, 181, 182], which provides a multi-threaded direct solver as well as an LU-CGS iterative
solver implementation. Second, the Algebraic Multigrid Methods for Systems SAMG [36, 37], which not
only provides multi-level algorithms, but almost the same iterative solvers as those of the in-house module.
Both external packages are written in FORTRAN. The only overhead of the interface to these modules is
the conversion of matrix storage formats (see Section E), which is regarded as negligible due to its linear
implementation effort (see Section 5.5.2 for quantitative information). o

Since PARDISO provides a multi-threaded solver, a discussion of several parallelization issues is given in
the next section. ’ '

5.3.1 Parallelization Issues

Parallelization techniques become important in case a simulation is regarded to take a “long” time. Thus,
the main objective is the reduction of the simulation time, especially if time-to-market figures are con-
sidered also in the TCAD context. - An additional utility of parallelization can be seen in the efficient
employment of all available computational resources.

Whereas during one kind of long simulations much time is spent for particular tasks such as solving large
.linear equation systems, the other kind consists of a large number of simulation runs with similar setups.
In the latter case one simulator run might be short, but thousands of them take sometimes a prohibitively
long time. Obviously, a combination of both makes parallelization even more necessary. Typical examples
"for these kinds of long simulations are three-dimensional device, process, and mixed-mode device/circuit
simulations or expensive optimizations and multi-parameter steppings, respectively.

Basically, the main objective of parallelization is the distribution of the simulation load over several CPUs
and/or workstations in order to reduce the execution time. In the case of the first kind of simulations, the
program execution itself is parallelized. Libraries, such as OPENMP [145] or MPI [159], can be used to
split the simulator into several threads, as far as the code is suited for parallelization. Due to the parallel
execution, the total computational effort increases, but the real simulation time can be reduced.

For the second kind of simulations, another approach can be identified: The repeated execution of the
simulator with similar setups can be distributed over several CPUs and/or a network. Since the single runs
are independent from each other, the simulation time can be significantly reduced. Still, the computational
effort is increased if simulator-internal speed-ups or synergies are not fully used. From the engineer’s

perspective a convenient administration of the various simulation setups and results must be provided,
~ otherwise the overall results are likely inconsistent and thus as contra-productive as useless. Normally, the
input/output system causes a prominent restriction for this kind of load distribution.

Distribution of Repeated Executions
The load distribution of repeated executions is extremely important during optimizations. For example,

the calculation of gradients offers the possibility to simultaneously start independent runs of the same
simulator with slightly different setups. Another example in this field are genetic optimizers [234].
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The optimization framework SIESTA [232] consists of an internal host management in order to employ

various hosts for such calculations. Due to the distribution, SIESTA is able to significantly reduce the
ooptimization time. ' :

Besides of optimizations, another field of application are fixed sets of similar simulations yielding com-
bined results. A simple example is the calculation of an IV curve. A single-threaded simulator such as
MINIMOS-NT calculates each operating point subsequently, using simulator-internal speed-ups such as
good initial guesses for the next step. In addition, the pre--and post-processing has to be done only once.
However, if several CPUs are available, each branch of the 1V curve can be calculated independently,

multiplying the pre-processing effort, but reducing the overall real simulation time. See Figure 5.3 for a
comparison of the two approaches.
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Figure 5.3: Concept of sihgle- (left) and multi-threaded (right) siepping algorithm. Whereas the former calculates
all 55 steps subsequently, the latter uses five processes to calculates eleven steps each.

As stated above, the administration of such a parallelization approach might be difficult, cumbersome, and
error-prone. Since the simulator is not parallelized itself, additional functionality is required in a higher
level of application. As already used for optimizations, so-called meta- or parameterized input-decks are
systematically used to create actual simulator setups.

Here, a counter-part to the SIESTA systém is required to exempt the user from the administration of these
setups and their results as well as from a fault-tolerant host management, simulator calling, and con-
sistency checking. All of these tasks are performed by the new library SEILIB, which is discussed in
Appendix C.3. As an application example, the test of the MINIMOS-NT simulator is presented in Chap-
ter C.4. This test takes more than one day on a single-CPU Linux machine, but can be run in approximately
one hour on an IBM cluster with 32 CPUs. As additional benefits, this library can also be used to combine
several programs to complete simulation flows and to perform optimizations.

Parallelization of the Prbgram Execution

Whereas load distribution of repeated executions does not require modifications of the simulators, this
section gives a short introduction in parallelization of the codes itself. This task frequently raises severe
design and implementational problems, which might be hard to resolve for already existing single-threaded '
codes. However, particular tasks which are sufficiently modularized can be targets for simulator-internal
parallelizations.
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In context of semiconductor device and process simulations, a significant part of the computation time
is spent on solving linear equation systems. As can be seen in Table 5.2, the range starts at about 40%
for small two-dimensional device simulations up to 90% for large mixed-mode simulations. However,
well-known bottle-necks prevent a significant performance impact. Direct algorithms are a promising
parallelization target as shown in several publications, for example about the OPENMP-based PARDISO
[181] or MPi-based HSL codes. [56].

The implementation of PARDISO is based on OPENMP [145], Wthh has become a standard for paral-
lelization applications. In comparison to single-threaded program developments, additional design and
programming complexity have to be taken into account. Algorithms are not only defined in terms what
work they are supposed to perform, but also how this work can be distributed to more than one processor.
Therefore, OPENMP is an implementation model to support the implementation of parallel algorithms.
Based on the standard programming languages FORTRAN and C++, OPENMP provides a set of compiler
directives and a small function library. In summary, the main objective of OPENMP is to provide a stan-
dard and portable Application Programming Interface (API) for 1mplementmg shared memory parallel
programs [34].

For that reason, OPENMP is primarily designed for shared memory multiproeessors, where all available
processors can directly access the complete memory of the machine. The alternative is distributed memory,
- where memory is physically associated with each processor. Since each processor can access only the local
memory, the programmer is responsible for mapping the program data accordingly. Messages have to be
passed to access memory associated with other processors. For that reason, so-called Message Passing
Interfaces (MP1 [159]) and Parallel Virtual Machines (PVM) are employed. There are also high-level
language approaches for automatic generation of low-level messages, for example High- Performance
Fortran (HPF [119]). Distributed memory systems are particularly employed if the number of processors
exceeds the limit for shared memory systems. A schematic comparison of shared and distributed memory
architecture is depicted in Figure 5.4 [34].

Processors . Processors and Memorj/
- Mo| |M1| |m2 Mn
- Memory ' Interconnection Network -

Figure 5.4: Comparison of a canonical shared memory (left) and message passing non-shared memory (right) ar-
chitectures [34].

5.3.2 Pardiso

PARDISO is a high-performance and memory efficient package for solving large symmetric and unsym-
metric linear equation systems on shared memory multi-processors [39]. The implementation is based
on OPENMP [145] and a combination of left- and right-looking Level-3 BLAS super-node techniques are
used [182]. To improve the performance of sequential and parallel factorlzatlons a Level-3 BLAS update
is used.
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In terms of the provided features, PARDISO can be perfectly used as an alternative for the internal solver
modules. Basically, it solves real- and complex-valued linear equation systems Ax = b, where multiple
right-hand-side vectors b may be specified. Actually, PARDISO supports even a wider range of sparse ma-
trix types, which are not all required by MINIMOS-NT: real- and complex-valued, symmetric, structurally
symmetric and unsymmetric, positive definite, indefinite, and hermitian sparse linear equation sysferns.

PARDISO can also reuse already existing structures in the memory (cf. Newton Adjustment). The required
phases among the four existing phases can be specified [39]:

1. Phase 1: Fill-reduction analysis and symbolic factorization.
2. Phase 2: Numerical factorization.
3. Phase 3: Forward and backward solve including iterative refinements.

4. Phase < 0: Termination and deallocation phase.

For the first call, phases one to three are performed, whereas for subsequent steps only phase two and three
have to be repeated. On exit, the destructing phase is invoked. Note that due to the already established
Newton adjustment levels (see Section 4.12), the solver interface has always the complete information
whether to repeat the symbohc phase or not. '

The user of the module has the choice between two different solvers either the direct LU-factorization or
a combination of the direct and 1terat1ve method LU-CGS. See Appendix A.12 on how to select PARDISO
in the input-deck.

5.3.3 Algebraic Multigrid Methods for Systems

The efficiency of solving large linear equation systems arising from discretized partial differential equa-
- tions can be increased by applying hierarchical algorithms [213]. Over the last decades, the multigrid
principle has turned out to be a promising approach and therefore the interest in algebraic methods has
been increasing. Such methods automatically derive the hierarchy based on algebraic information which
is contained in the discretization matrix. Geometric multigrid methods on the other side use a hierarchy
of grids which are defined by coarsing based on grid information.

Two advantages of the algebraic multigrid methods can.be given:

1. Increased geometrical complexity which restricts the use of geometric multigrid approaches.

2. Demand for solver modules which are plugged into an existing environment without modifying the
already existing interface. Thus, algebraic multigrid approaches can be easily used as an alternative
for one-level solver modules without modifying the complete code.

Algebraic multigrid or AMG was the first hierarchical, matrix-based multigrid method. The ideas of geo-
metric multigrid, that is the coarsing and smoothing of the grids, have been extended to specific classes of
linear equation systems. The automatically derived hierarchy consists of linear equation systems whose
dimension is repeatedly decreasing. Matrix entries are used to derive the operators to transfer informa-
tion between two levels. Due to this automatic procedure, the robustness, adaptability, and flexibility is
remarkably increased.

The SAMG package (Algebraic Multigrid Methods for Systems) [37] has been fully coupled to the internal
solver module. Like PARDISO, it can be used as an alternative for the in- house solver module. See
Appendix A.12 how to select these solvers.
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As SAMG is a package of several solver systems, the user can choose between four configurations of
preconditioners and solvers (accelerators): AMG-BICGSTAB, AMG-GMRES(M), ILU-BICGSTAB, and
ILU-GMRES(M). The SAMG interface is implemented in a separate function. Since SAMG can handle
real-valued equation systems only, the approach of splitting a complex-valued one into a real-valued sys-
tem with double dimension as discussed in Section 2.6.2 is used. As seen for the internal and PARDISO
solvers, also SAMG provides specific features for solving multlple right- -hand-side vectors and to reuse

already allocated structures during repeated calls of SAMG.

5.4 Solver Hierarchy

Since several linear solvers are available, a choice has to be made regarding whether to use one of the two
in-house iterative solvers, the in-house direct solver or an external module. This choice can be based on
a-priori available information. For example the performance evaluation presented in Section 5.5 resulted
in some conclusions about which solvers are best-suited for different kinds of simulations.

However, although a solver is selected due to general a-priori considerations regarding the kind and di-
mension of the simulation, the solver still might fail whereas an alternative type may succeed in solving
the equation system. Although care has to be taken while evaluating the results of such problematic simu-
lations, a successful result may trigger particular improvements in the complete simulation setup. Keeping
this goal carefully in mind, the user will normally select an alternative solver if one fails.

The manual selection of alternative solvers has one major drawback: if the convergence problem occurs
after a long simulation time, the complete simulation has to be rerun with the alternative solver although
this would not be necessary. An automatic solver hierarchy as implemented in the iteration control module
of MINIMOS-NT resolves this problem. The simulation is started according to the user settings in the
input-deck. Note that the user setting can also enable an automatic solver selection which is based on

conclusions drawn from a performance evaluatlon

If a problem occurs, the solver parameters are reset in order to adjust them for the new situation. If this
does not help, the alternative iterative in-house solver is selected. This means that GMRES(M) replaces
BICGSTAB and vice versa. If the problem persists, the direct in-house solver is selected instead of the iter-
ative one. If the direct solver is not able to solve the system, the simulation will be terminated. Otherwise,
the user settings are reestablished in order to use the original solver for the next step. In this hierarchy, the
external modules can be integrated. Since the in-house direct solver will quickly exceed its limitations for
large mixed-mode and three-dimensional simulations, the PARDISO direct solver would be a very good

~ alternative.

An alternative possibility for selecting another solver is to use an interactive mode of the simulator. As
shown for MINIMOS-NT (see Appendix C.2), the user can interrupt the simulation process and directly
modify the settings in the input-deck database.’ These modlﬁcatlons include the selection of solver mod-
ules and systems.

Note that there exists a second solver hierarchy directly in the solver module. If no selection of a particular
solver type is made (default), ﬁrst the iterative solver is tried, followed by the direct one in case problems
occur.

5.5 Practical Evaluation of the Solvers

In the course of this work the performance of these solvers has been evaluated. Rather than using a set
of single matrices, the approach is based on complete simulations with consistent settings, as typically
encountered during daily work.
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In mathematical publications, different solver systems are normally compared by applying them for single
linear equation systems. For example, the matrix market [25,139] provides such a data repository for
use in comparative studies of linear algebra algorithms. The repository does not only provide matrices,
but also matrix generation software in a wide variety of scientific and engineering disciplines. For each
matrix and matrix set details regarding the matrix properties and a visualization of the matrix structure
is provided. The matrices can be downloaded in several different text file formats. A matrix generator
is either a static software for download, a Java applet, or a form-based web service to process requests
for generating matrices. In 2000, 482 individual matrices and 25 matrix generators were available. The
database includes the Harwell-Boeing Sparse Matrix Collection (Release I) [55], the SPARSKIT collection
[178], and the Non-Hermitian Eigenvalue Problem collection [14]..

Such an approach is particularly useful for the evaluation of new mathematical algorithms. The conclu-
sions drawn from the results are used to improve the respective implementations. However, from the
perspective of the implementation of a general-purpose simulator, the objective is quite different. Here,
a set of solvers are available and the one which fits best for the respective problem shall be chosen. In
contrast to the solver development, the research on this topic is restricted to practical evaluations regarding
the respective simulators. ‘

5.5.1 Test Examples and Processing

The 16 examples summarized in Table 5.1 were taken from current scientific projects at the institute.
They consist of field effect, bipolar, and silicon-on-insulator transistors. Structures such as FINFETSs are
analyzed by means of three-dimensional simulations.

All examples were simulated on:

e An IBM cluster with four nodes with eight CPUs each based on the Powerd+ architecture. Two
nodes have 64 GB memory each and the other two nodes have 32 GB each. The operating system is
AIX 5.2. For compiling and linking the 32-bit xIc/xIC/x1f compilers with optimization level O5 were
used. For PARDISO the solver module was linked against the Engineering and Scientific Subroutine
Library ESSL (see Section 5.1.2). '

¢ A24GHzsingle Intel Péntium IV computer with 1 GB memory running under Suse Linux 8.2. For
compiling and linking the Intel 7.1 compilers for the IA32 architecture with optimization level O3
were used. For PARDISO the solver module was linked agamst the LAPACK and BLAS llbrarles (see
Section 5.1).

The extensible benchmark is processed by a single program, which has been implemented as a SEILIB
application (see Section C.3). The real (wall-clock) and user time is measured by the GNU time command,
and the fastest of three consecutive runs is taken.

5.5.2 General Quantitative Comparisons

Table 5.2 contains information on how the simulation time is actually spent. The simulator was started on
the IBM cluster and the in-house ILU-BICGSTAB was selected. The first columns show the number of the
example, the dimensions of the inner and complete system, and the ratio diminner/déiMcomplete- A lower
ratio indicates that more equations are pre-eliminated and thus more time is spent for pre-elimination. The
CPU column shows the absolute user time required for the respective example. The remaining columns
show the shares of the simulation time spent in selected modules or for selected tasks: for initialization,
pre-processing, assembling the linear equation systems (including the calculation of the model contribu-
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tions), the share of the linear modules including all steps shown in Table 5.3, the update of the-quantities,
and eventually the postprocessing.

The most important data in the context of that chapter is how much time is spent for the linear system after

. the assembly has been completed (the Lin column). For the smaller two-dimensional examples that share is
below 50%, that means more time is spent for calculating and assembling the model contributions as well
as for pre- and post-processing. However, for all other simulations including the larger two-dimensional
ones, that share rises significantly even up to more than 90%. Thus, for increasing the efficiency of
advanced device simulations and optimization, it is essentlal to reduce the relative effort spent on preparing
and solving the linear equation systems.

In addition, the effort of the conversion to alternative sparse matrix formats. was evaluated. Since the
time required for the conversion is too short, no significant information can be given by comparison of
complete run times. However, in order to give quantitative information on the negligibility of the matrix
conversions, the input and output system of the assembly module was used.

The assembly module has been equipped with a comprehensive input and output system which enables
the user to have the assembled complete and inner linear equation systems read from or written to files.
These features can be used for debugging and quality assessment purposes. Furthermore, different sets
of parameters or alternative solvers can be efficiently tested. Whereas the simulator is normally used to
calculate the entries of the linear equation system, a test. program is provided which reads the files and
starts the solver.

In order to quantify the effort of the matrix conversions, the first linear equation system assembled for the
three-input nand gate (dimension 219,920, 1,925,553 non-zeros) was written to a file. Afterwards, it was
read by a modified version of this test program. The modification regards only the activation of one type
of matrix conversion. The conversion time is measured by the gettimeofdayv function, the minimum time
of three consecutive runs is taken. One conversion to CSR variant 1 takes 38.212 ms, 266 conversions
take 9,184.06 ms. For the CSR variant 2, the times are 38.955ms and 8,798.3 ms, respectively. Since
the complete simulation takes 8,468. 19's, the share of all conversions is 0.108% or 0.104%, respectively.
These very small shares allow to conclude that the effort of the conversion can be neglected. -

The complex-valued variant of that test program was also modified to evaluate another interesting issue.
As outlined in Section 2.6.2, one can split a complex-valued equation system into a double-sized real-
valued one in order to employ a real-valued assembly and solver system also for complex-valued linear
equation systems. Regarding the memory consumption, this approach has disadvantages, which shall be
~ quantified in the following discussion. Three examples were taken and the small-signal systems for 1 GHz
were written to files. These files were read by the test program — once for the original version employing
the complex-valued solver system and once for the modified version. Thus, this evaluation approach
emulates also the different assembling process of the respective matrices. The results can summarized as
follows:

e The small-signal simulation of a two-dimensional MOS transistor structure (example 1) results in
an inner system matrix of dimension 2,704 with 25,432 non-zeros, which require 406,912 bytes. If
the equation system is split, the number of nonzeros and thus the memory consumption increases to
101,728 and 813,824 bytes, respectively. However, the solving time is reduced from 1.43 to 0.69s.

¢ For the three-dimensional simulation of a FINFET structure (eXample 13 with a dimension of 81,037),
the following results can be given: the number of non-zeros and the memory consumption is in-
creased from 841,678 to 3,366,712 and from 13,466,848 to 26,933,696 bytes, respectively. In ac-
cordance with the two-dimensional results, the simulation time is decreased by roughly 59 % from
152,66 s to 87,70s.
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e The mixed-mode simulation of the three-input nand gate (example 11) shows similar figures re-
garding the memory consumption, which rises from 33,587,712 to 67,175,424 bytes (number of
nonzeros: 2,099,232 and the four-fold value of 8,396,928). However, the simulation time is in-
creased from 437.96s to 1,117.88s.

These results motivates the conclusion that with the current implementation it i$ advantageous to solve
the complex-valued equation systems with the complex-valued solver implementations. The main reason
for that is the memory consumption, which is always doubled, whereas different results for the simulation
time are obtained.

'5.5.3 Simulation Results of the GMRES(m) Evaluation

Several test runs of the in-house GMRES(M) solver were performed and the cumulated number of mathe-
matical operations as a function of m were recorded.

Since values of m smaller than 16 cause errors for some three-dimensional and mixed-mode simulations,
the commonly used m has to be set to a value higher than 16. In Figure 5.5, all values are scaled to
those of m = 16. The following ratios are shown: minimum, maximum, and average of the number of
mathematical operations, the user time, and the memory consumption. By analyzing the solid black line
with symbols for the average user time, a default value shall be selected which can be commonly set for
- all kinds of simulations. The first part of that curve is decreasing between 16 and 70 down to a level of
- approximate 55%. Afterwards, it slightly increases again. One reason for this might be the higher memory
consumption. The curve for the mixed-mode device/circuit simulations has a similar shape, however the
increasing part starts a little bit earlier. Finally, the curve for the two-dimensional simulations shows a
contraproductive effect of an increased m between 70 and 75. '

So one can conclude that a value between 50 and 70 seems to be advantageous for all kinds of simulations
if enough memory is available. For that reason, the default value was set to m = 65. As this value
can be easily controlled by the user, different requirements depending on the simulation and the memory
resources can be met. In addition it is to note that the 31mu1ator itself can automatlcally adjust this value
if the respectlve information is available. '
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# | Simulation | Type | Dimension | Entries ([%o]) | DCit | Rémark S |
1 | MOSFET 2D device 2,704 23,662 (3.24) 17- | test structure with Lg = 1 um

2 | Flashcell 2D device 5,967 47,956 (1.35) 24 | tunneling effects

3 | Pin-diode 2D device 6,335 56,127 (1.40) 13 | optical generation mode!

4 | Bjt transistor 2D device 6,389 33,869 (0.83) 23 | ET transport model

5 | SA-LIGBT 2D device 16,774 158,223 (0.56) 27 | two Vp steps: 0V, 5V

6 | SiGe HBT 2D device 19,313 210,915 (0.57) 32 | self-heating

7 | Colpitts oscillator | circuit (1) 3,928 35,002 (2.27) 41 | transient (400 steps)

8 | Amplifier | circuit (1) 6,391 35,291 (0.86) 30 | ET transport-model

9 | Ring oscillator circuit (10) 25,246 226,931 (0.36) 29 | transient (100 steps)

10 | 2-input nand gates | circuit (8) 146,614 | 1,347,138 (0.06) 23 | transient (50 steps)

11 | 3-input nand gates | circuit (12) 219,920 | 2,020,706 (0.04) 23 | transient (50 steps)

12 | MagFET 3D device - - 85,308 921,860 (0.13) 36 | magnetic field

13 | FinFET ) 3D device 81,037 807,150 (0.12) 13 | thin SOI finger

14 | SOI 3D device 87,777 997,296 (0.13) 23 | two Vp steps: 0V, 0.1V

15 | HBT 3D device 175,983 | 1,833,138 (0.06) 35 |. self-heating :

16 | LD-MOSFET 3D device 167,197 | 1,925,553 (0.07) 25 | power device; two Vp steps: 0V, 1.0V

Table 5.1: Six two-dimensional, five mixed-mode device/circuit (the number of devices is given in parenthesis),
and five three-dimensional simulations were used for evaluating the solver performance. The dimension
of the linear equation system, the number of non-zero entries, and the typical number of DC Newton
iterations are given. :

{ #| Inner | Complete | Ratio[%] [ CPU[s] | Init[%] | Pre[%] | Asm[%] | Lin{%] | Upd [%] | Post [%]
o1 2,704 2,920 92.60 1.34 14.93 6.72 31.34 3433 3.73 2.99
2 . 5,967 13,915 ~ 42.88 7.02 | 3.56 5.98 46.15 40.17 1.71 1.14
3 6,335 6,451 98.20 5.06 16.01 7.51 - 17.19 55.53 0.59 2.17
4 6,389 6,754 94.60 4.84 9.09 - 599 28.10 51.24 1.45 1.65
5 16,774 17,705 94.74 39.64 12.66 4.69 37.24 42.73 " 0.33 1.54
6 19,313 19,836 97.36 28.29 39.46 3.45 10.35 44 .46 0.24 1.24
7 3,928 5,475 71.74 32.60 1.53 6.20 17.61 64.39 120 | 7.15
8 6,391 8,056 79.33 63.06 0.78 4.60 30.13 59.94 0.76 3.00
9 25,246 37,007 68.22 1226.97 0.81 4.88 13.69 76.16 2.07 1.74
10 | 146,614 202,168 72.52 | 3,641.37 '0.06 - 2.88 8.34 87.13 033 | 1.10
11 | 219,920 303,250 72.52 | 7,671.19 0.04 2.40 6.78 89.60 026 | . 0380
12 85,308 90,203 94.57 593.55 039 - 252 )| 724 89.03 0.10 048
13 81,037 98,870 81.96 99.13 4.68 4.07 9.69 79.72 0.22 1.12
14 87,777 93,572 93.81 190.19 1.45 5.41 23.19 67.32 0.19 | 1.90
15 | 175,983 226,687 77.63 988.29 0.65 2.54 6.97 88.42 0.14 1.04
16 | 167,197 179,111 93.35 495.99 0.74 3.61 9.98 83.93 0.15 1.20

Table 5.2: This table provides general quantitative information about the simulations using the in-house ILU-
BICGSTAB on the IBM cluster. After the index of the simulation, the dimensions of the inner and com-
plete equation system is given. The next column shows the share of the inner in respect to the complete
system. In order to analyze how the simulation time is spent, the remaining columns contain the shares
of the initialization, pre-processing, assembling, solving (includes all steps shown in Table 5.3), quantity
update, and post-processing, respectively.
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BICGSTAB (%]

{_# | Time [s] | McsR [%] | Compile [%] | Pre [%] | Sort [%] | Scale [%] | ILU [%] Back (%] |
1 0.49 0.65 10.93 6.11 225 ©17.02 3293 29.52 0.38
2 2.74 0.67 6.73 5.07 1.20 8.98 35.63 41.16 0.51
3 2.69 0.27 420 2.26 1.05 8.82 4271 40.54 0.12
4 2.40 0.45 6.69 . 421 1.64 10.70 37.67 38.38 0.19
5 27.67 0.16 4.58 3.08 0.99 8.53 34.37 48.16 0.12
6 13.11 1.25 5.01 3.02 1.10 6.93 36.06 46.51 0.11
7 35.17 0.26- 475 3.87 0.73 5.97 42.32 41.77 0.31
-8 45.53 0.19 5.65 431 1.10 8.04 40.00 40.48 0.20

9 224.52 0.26 3.28 2.66 0.66 4.04 30.85 58.04 0.19
10 | 3139.28 0.13 1.83 1.79 0.40 2.51 129.26 63.93 0.14
11 | 6855.87 0.12 1.38 1.48 0.31 1.97 27.53 67.11 0.11
12 504.36 3.99 2.32 1.14 0.50 2.39 16.67 72.95 0.04
13 94.43 9.82 495 2.75 0.88 3.84 23.16 54.47 0.12
14 146.11 - 1.08 3.48 2.48 1.01 5.17 26.68 59.97 0.13
15 921.04 37.04 3.51 1.69 0.58 2.71 11.33 43.08 0.07
16 447.12 1.47 2.45 1.82 0.68 3.12 28.21 62.16 0.09

Table 5.3: This table provides general quantitative information about the solving process which includes the MCSR
conversion, compiling of the complete linear system, pre-elimination, sorting, scaling, preconditioning
(ILU), and solving with the BICGSTAB. The simulations were started on the IBM cluster.

[ # ] Time [s] | MCSR [%] | Compile [%] | Pre [%] | Sort [%] | Scale (%] | ILU [%] | BICGSTAB [%] | Back (%] |
1 435 0.77 188 ] 207 0.50 1325 | 5099 30.06 0.15
2 2.86 343 563 | 536 1.19 876 | 3420 40.87 0.52
3 277 198 376 | 269 1.02 862 | 4152 40.27 0.11
4 231 237 567 | 465 1.69 10.60 | . 3652 3827 0.18
51 1622 261 398 | 341 1.10 831 | 34.40 46.04 0.14
6| 17.00 132 241 1.82 0.66 464 | 4533 43.74 0.07
7| 2144 174 417 | 495 097 592 | 4025 41.70 0.24
8| 3872 251 535 | 590 142 867 | 39.08 37.01 022
9| 180.63 2.19 397 | 3.0 0.67 399 | 2993 56.55 0.20
10 | 3388.38 145 164 | 223 041 241 | 2752 64.22 0.14
11 [ 7618.11 142 127 | 186 034 199 | 2531 67.71 0.11
12| 634.29 21.19 121 11 044 196 | 1337 60.68 0.04
13| 9297 33.06 203 | 205 0.55 279 | 1792 4149, 0.11
14 | 12994 7.13 297 | 2.86 0.94 446 | 25.17 5632 0.13
15 | 2499.04 79.80 058 | 070 0.18 0.89 383 14.00 0.02
16 | 462.25 9.60 179 | 164 0.62_ 283 | 24381 58.62 0.08

Table 5.4: This table shows the same information as Table 5.3, but without the Newton adjustment.
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5.5.4 Simulation Results of the Performance Evaluation

The objective of the performance evaluation is to compare the simulation times required by MINIMOS-NT
depending on the solver systems selected. Note that the solver hierarchy (see Section 5.4) was deactivated.
All three in-house solvers as well as the two PARDISO and four SAMG solvers are evaluated, although not
all examples could be solved by all solver systems..
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Figure 5.6: Solving times (avefage, minimum, maximum) on the Intel computer. All times are scaled to the in-house
ILU-BICGSTAB in the center.

In Figure 5.6 a comparison of different solvers on the Intel computer is given. Due to the large simulation
time differences, all times are scaled to the in-house ILU-BICGSTAB in the center of the graph. Interesting
results are the superiority of the advanced implementations of LU factorization and iterative solvers for
circuits and three-dimensional devices, respectively. The in-house GMRES(M) solver has advantages for
circuits also, whereas the direct solver on the left hand side can in fact only be used for quality assessment
of two-dimensional simulations. Whereas the iterative SAMG solvers show single significant performance
advantages up to 35%, the multi-level algorithms require still some effort to be generally applicable.

To show the relative impact of multi-threading, the PARDISO-LU solving ratios (referring to the single-
threaded version) against the number of processors/threads are shown in Figure 5.7. For the three-
dimensional examples, also the PARDISO-LU-CGS ratios are given. The real (wall clock) time required
for solving the example, the cumulated user (CPU) times are shown in Figure 5.7, which increase due to
the parallelization overhead. Whereas for two-dimensional device and circuit simulations too many pro-
cessors can be even contra-productive, the marginal additional utility. for three-dimensional simulations
is drastically diminishing. Thus, for the average simulation four processors should be sufficient. Espe-
cially under scarce conditions, for example during optimizations, assigning two tasks per node of eight
processors appears to minimize the real time effort.

The iterative methods still show a significant performance advantage over the direct solvers. However,
the 1983 quotation “In 3D sparse direct solution methods can safely be labeled a disaster” [16] describes
the experiences (in regard to both time and memory consumption) with the in-house LU solver, but does
not embrace the recent developments. Especially for mixed-mode device/circuit simulations the advanced
direct methods show a significant performance advantage, even up to the highest dimensions.
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parallelization overhead. : :

5.5.5 Evaluation of Solvers for Higher-Order Transport Models

" The same concept as discussed in the last section is used to evaluate solvers for higher-order transport mod-

els. However, instead of the devices presented above, double-gate MOSFETs with different gate lengths
were used, see Table 5.5.5.

| Simulation - [ sMm] ET[ DD [ DDCPU[s] [ DD Linear [%] |- '

| #
1 | MOSFET with Lg = 25nm | 4642 | 3522 | 2402 65.67 56.94
2 | MOSFET with Ly = 35nm | 3480 | 2640 | 1800 . 41.56 50.57
3 | MOSFET with Ly = 50nm | 2733 | 2073 | 1413 29.54 | 46.94

Table 5.5: Three two-dimensional device structures with the given gate lengths were simulated. The dimensions '
of the linear equation systems are given depending on the transport model used. For the drift-diffusion
simulation and BICGSTAB, the CPU time as well as the share of the simulation time spent for compiling,
pre-eliminating, sorting, scaling, and solving are specified.

The transport models as derived in Section 2.1.3 were used and compared on the Intel computer: the six
moments transport model (SM), the energy-transport transport model (ET), and the drift-diffusion transport
model (DD). Three different simulation tasks were performed:

1. Extraction of an IV-curve: For this simulation example, Vpg is stepped from 0.0V to 1.0V by
0.025V with Vgs = 1.0 V.

2. Quasi-static extraction of fr: In order to apply the formula given in (3.20) two Vg steps of 1.0V
+5mV are necessary while Vpg =1.0V.

3. Small-signal extraction of fr: A-small-signal simulation based on a conditional frequency stepping
was performed in order to extract fr.

As concluded in the evaluation of the last section, several solvers are better employable for more ill-
conditioned problems. In contrast to the drift-diffusion transport models, simulations based on the energy-
transport and six moments models tend to be more ill-conditioned. The underlying simulation setup is
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more sensitive to the mesh. As adaptive meshes are required, ongoing research outside the scope of this
thesis is performed to improve this situation. However, to some extend, solver systems better equipped for
‘ill-conditioned problems can significantly reduce the solving effort. The objective of this evaluation is to
confirm the respective conclusions of the last section and to give a quantitative information on this. -

The results for the two in-house iterative solvers BICGSTAB and GMRES(M) as well as those of the PAR-
DISO solver are presented in Figure 5.8. Due to the more ill-conditioned problem and the small dimensions
of the linear equation system, the direct solver significantly outperforms the two in-house solvers for the
higher—order transport models. For the same reasons also the GMRES(M) solver shows advantages over
the BICGSTAB. However, for the steady-state drift-diffusion simulations, the advantages of alternative
solvers shrinks, whereas for small-signal simulations PARDISO is still up to 50% faster than the in-house

ILU-BICGSTAB.
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Figure 5.8: Scaled results for the six moments transport models (upper figure). The lower figures show scaled
results for the energy-transport (left) and the drift-diffusion (right) transport models.
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5.6 Concluding Remarks |

The performance evaluation resulted in conclusions which solver system has to be activated for which kind
of simulation. As already stated above, the solver system as a core module of a simulator is frequently
regarded as a black box obliged to deliver the “correct” results in a “short” time. Hence, the conclusions
can be used to implement an automatic solver selection in the simulator. Depending on the simulation
mode, for example mixed-mode, the best-suited solver system is chosen, which results in an overall speed-
up of the simulator without any user interaction.

~ Whereas the concept and objective of the performance evaluation has been proven to be worthful and
promising, the executive part can be improved in order to obtain more specific and validated data:

e The extension of the simulation examples set: the current set can be extended by examples of
the same type and by new simulation modes, for example by the six moments transport model.
Since the benchmark program is extensible and fully automated, there is virtually no limit besides a
reasonable run-time of the complete benchmark. Whereas the original set of examples has pursued
the idea of orthogonal examples, which means that they are widely independent from each other,
more examples of the same type would yield more significant averages. ’

o A more differentiating grouping of the results: the existing three groups can be split into more sub-
groups. For example the three-dimensional examples can be grouped in various dimension ranges,
which would allow to assess the choice of iterative and direct solvers more accurately. In addition,
the transport models shall form separate groups. Keeping the objective of an automatic solver selec-
tion in mind, the grouping can be based on any parameter known in advance, for example simulation
mode, dimension, transport model] etc.

e Taking the memory consumption into account: As discussed also in [5] for harmonic balance simu-
lations, the selection can-be additionally based on the respective amount of required memory com-
pared with the memory available. If costly simulations are considered, the required memory can
become an interesting criterion. Since a simulator is able to detect the host type and the amount of
available. memory, this criterion can also be part of an automatic solver selection.

e The data conditioning and visualization of all results: in addition to the grouping, averaging, and
scaling of the results, a more sophisticated profiling of the various solvers can be given.

Basically, the results are obtained by running a solver on a set of n examples and measuring interesting
data, for example the simulation time. In [79], a performance profile is used to evaluate and compare the
performance of various solvers. This profile is defined as follows: for an example j the solver 7 yields the
data d; j. Since for all examples the performance of the solver ¢ shall be compared with that of the best
solver, d; min is defined as the minimum data of all solvers for the example 1. Depending on an o > 1 the
performance profile of solver 4 is given by p;(c):

Zj k(di,ja dj,mim OA)

pi(a) = - , with (5.3)

1 for dij < adjmin - N
k(d; j, djmin, @) = (54
. ’ 0 fOI“ di,j > dj,min .

The performance profile gives the fraction of examples for which solver 7 is within a factor of « of the best.
Thus, p;(1) is the fraction for which solver i gave the best results. p;(2) is the fraction for which solver
is within a factor of 2 of the best. Finally, p;(c0) is the fraction for which solver 4 could be successfully
employed at all. The last value is particularly interesting, since 1t is inevitable that the benchmark takes
failures explicitly into account
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Chapter 6
Examples

This chapter presents different kinds of examples which were simulated with the small-signal capabilities
of MINIMOS-NT. First, results of an InGaP/GaAs HBT are presented, followed by a SiGe-HBT. The fea-
tures have also been employed for investigating a wide-bandgap SiC MESFET. In order to apply the new
mixed-mode AC capabilities, three mixed-mode examples have been simulated. The successful transient
simulation of an amplifier is followed by a small-signal simulation of the amplifier extended by a resonant
circuit. By feeding back the output of the resonant circuit to the input of the amplifier a Colpirts oscil-
lator is set up, which is then again subject to a transient simulation. Finally, results of the simulation of
double-gate MOSFETS are compared regarding the drift-diffusion and higher-order transport models. All
simulation results are compared either with measurements or with reference results of other simulators.

6.1 Simulation of an InGaP/GaAs Heter‘ojunctioh Bipolar Transistor

By means of the small-signal simulation mode of MINIMOS-NT, various high-frequency data for a one-
finger InGaP/GaAs HBT with an emitter area of 3 um x 30 um were extracted. This high-power device
has been used for power amplifier circuits for mobile communication. Figure 6.1 shows the simulated
device structure and the pad parasitics (capacitances and inductances) of the measurement environment
used for the S-parameter measurement in the two-port pad parasitic equivalent circuit. '

Subcollector

Substrate Thermal Contact

Symmetry axis

Figure 6.1: Simulatcd device structure together with pad parasitics used for S-parameter calculation [161].
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The pad capacitances of the equivalent circuit are Copg =150fF, Cpycg =75fF, and Cppc =24fF. The
parasitic inductance values are Lyg =1 pH, Lyg =75 pH, and finally L,c =50 pH. The resistive parasitics
are neglected, since a rather small device and therefore only low currents are considered.

Figure 6.2 shows a comparison between measured and simulated collector currents ic and an almost per-
fect match of the curves in the small-signal area of the figure. A further increase of the input power causes
harmonics in the device, which cannot be obtained by the linear small-signal mode (see Section 2.6).

The combined Smith/polar charts with a radius of one in Figure 6.3 show a comparison of simulated
and measured S-parameters at Vog =3V, with current densities Jo = 2kA/cm?, Jc = 8kA/cm?, and
Jo = 15kA/cm?, respectively, for the frequency range between 50 MHz and 10 GHz. For the same device
the high-frequency figures of merits current gain gn, and the squafed absolute value of the current ratio
. parameter Hy; were extracted. The cut-off frequency fr and maximum oscillation frequency fmax are
found at the intersection of these curves with the 0 dB line. The lower right side of Figure 6.3 shows a
comparison of the simulated and measured gr, and the absolute value of Hs;. The measurement data ends
at 10 GHz, whereas the simulation could be continued to 20 GHz showing another important advantage
of simulators to measurement equipments. In addition, a mixed-mode circuit was set up to compare large
signal measurement data in the small-signal range.

The AC-simulation takes about 200 s CPU-time on a 2.4 GHz Intel Pentium IV with 1 GB memory running
under Suse Linux 8.2 for a S-parameters computation with 20 frequency steps. A number of 20 steps is
more than sufficient to produce the graphs. For comparison, the conventional small-signal equivalent-
circuit approach takes about 590 s CPU-time at the same machine for 200 time steps at only one given
frequency. As stated in the introduction, many time steps have to be performed to ensure appropriate
accuracy in the time-domain to obtain sufficient accuracy for one frequency. To avoid this number of time
steps for all frequencies required, only one frequency is used to extract an equivalent circuit valid in a
specific frequency range. The time for such a post-processing of the transient simulation results to obtain
the S-parameters at all frequencies is not include_d. Thus, the more accurate approach can speed up the
frequency-domain simulation by about 98% (taking one frequency into account).

0.05 —r————————————— C20

0.04}.

10
003 =
= g
o 5
T 002 ol

0.01

0 . ) A -10 el sy
=30 -25 -20 -15 -10 -5 0 =30 -20 -10 0
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Figure 6.2: Comparison of simulated and measured AC collector current ic over AC input power Py (left). Com-
parison of simulated and measured AC output power PoyT over AC input power Py (right).
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Figure 6.3: S-parameters in a combined Smith/polar chart with a radius of one from 50 MHz to 10GHz at Vo =
3V, Jo = 2kA/cm? (upper left), Jo = 8kA/cm? (upper right), and Jc = 15 kA/cm? (lower left). In the
lower right figure the short-circuit current gain and matched gain versus frequency at Jc = 15 kA/cm?
is shown. ) :

6.2 Simulation of a SiGe Heterojunction Bipolar Transistor

The investigated 0.4 x 12 um? SiGe-HBT device structure is obtained by-process simulation [110], see
Figure 6.4. For DC simulations usually only the active part (base and emitter area, collector contact
moved to the bottom) of the device is required. For that reason the collector area was cut to speed-up
the simulations. Only half of the real structure was simulated because of symmetry. The upper figure in
" Figure 6.7 shows a comparison of simulated and measured forward Gummel plots at Vog = 1 V.

For AC simulations, however, it is absolutely necessary to take the complete device structure into account.
Otherwise, the simulation of the reduced device structure cannot reproduce the important capacitances
between collector and substrate Ccs as well as between base and collector Cgc. In addition, the correct
base and collector resistances are missing. There are two possibilities to overcome this problem. Either
the missing parts are approximated by introducing linear elements in a post-processing step or a larger
or even complete structure is used for AC simulations. The first option allows faster simulations but
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Figure 6.4: Active antimony concentration of the investigated SiGe Hetefojunction Bipolar Transistor (large de-
) vice).

gives approximated results. The second one produces more accurate results and does not require a post-
processing step, but takes much more time: in the example the computational effort of device simulation
- is 2.5 times higher. '

In Figure 6.6 both options are compared: in the frequency range between 50 MHz and 31 GHz measured
and simulated S-parameters at Vog =1V and current densities Jo = 28kA/cm? and Jc = 76 kA/cm?
are shown in the frequency range between 50 MHz and 31 GHz. For the first option the device structure
is embedded in a circuit containing the following elements: Ccg =50fF, Cpc =20fF, Rg =152 and
R =274}. Their values were experimentally estimated. The results of the second option are the intrinsic
parameters only. ’

For the same device the matched gain g, and the short-circuit current gain Hp, is calculated in order to
extract the figures of merit cut-off frequency fr and the maximum oscillation frequency fmax found at the
intersection with the 0 dB line (unity gain point). 6.7 shows the comparison of the simulation results and
the corresponding measurement data. While the measurement data ends at 31 GHz the simulation could
be extended to frequencies beyond this intersection. Note that the peak fr in the left figure of Figure 6.7
corresponds exactly to the frequency at the respective intersection in the right figure.

Figure 6.7 shows also the effect of the introduction of an anisotropic electron mobility [160]. In addition,
results obtained by the commercial device simulator DESSIS [111] using default models and parameters
are included for comparison. The agreement in order of the typical curve characteristics with measured
and transformed data proves the efficiency of the approach. In addition, the performance speed-up in
~ comparison to alternatives is an important advantage. However, a general approach to match simulated
results and measured data perfectly has to comprise a proper physical modeling of the complete device
since there are no extrinsic fitting parameters available.
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Figure 6.5: Comparison of simulated and measured forward Gummel plots at Vcg = 1 V.

_Figure 6.6: The figures compare S-parameters in a combined Smith/polar chart with a radius of one from 50 MHz

to 31 GHz at Vog = 1V for Jo = 28kA/cm? (left) and Jo = 76 kA/cm? (right) for a large device
structure and a small one embedded in a circuit.
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Figure 6.7: The cut-off frequency fr versus collector current I¢ at Vog = 1V (left) and the short-circuit current
: gain versus frequency (right) is depicted [233].
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- 6.3 Simulation of a 4H-SiC MESFET

An advanced RF SiC MESFET was investigated by means of numerical simulation with MINIMOS-NT.
_ This _device is fabricated by using epitaxial layers on-semi-insulating substrates. The simulator has been
extended by physically based models that permit the operation of the device to be examined and optimum
device structures to be determined [12]. Good agreement between simulation results and measurements
can be shown.

SiC-based devices have specific properties which allow them to be used in high temperature, high fre-
quency, high power, and radiation hard applications. Due to the progress in SiC-related process steps
the new devices have been developed in recent years [35,154). Devices such as SiC MESFETs can be
employed for microwave power amplifier and oscillator applications due to their excellent DC and RF
performance [242]. In particular, the investigated 4H-SiC MESFETSs structures are used as base station
transmitters for cellular telephone systems and power modules for phased-array radars [166]. The devices
are also attractive for higher operation temperatures.

In Figuré 6.8, the cross-section of a SiC MESFET is depicted. The typical device parameters are the
gate length L, the gate width W, and the thickness of the epitaxial layer a. Due to the higher electron
mobility, MESFETSs in SiC are made of an n-type material. Furthermore, the mobility of 4H-SiC is twice
than that of 6H-SiC [11]. In order to minimize parasitic capacitances, a MESFET is fabricated using
epitaxial layers on semi-insulating substrates. The device has three metal-semiconductor contacts: two
Ohmic contacts at the source and drain and a gate Schottky barrier.

Devices for microwave- or millimeter-wave applications typically have gate lengths in the range of Ly =
0.1 — 1 um. The channel thickness a is typically 1/3 to 1/5 of the gate length L. The spacing between
the electrodes is up to four times L. W and thus the cross-sectional area is directly related to the current
handling capability. '

For operation the drain contact is biased at a positive pbtential while the source contact is grounded. The
current flow through the channel is controlled by negative DC and superimposed RF gate voltages. The RF
signal modulates the channel current and provides an RF gain.
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Figure 6.8: On the left, the cross section of a MESFET in SiC is shown and on the right a comparison of measured
and simulated DC 1V characteristics [12].
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The 4H-SiC MESFET as shown in Figure 6.8 is analyzed by means of numerical device simulation for
both DC and high frequency characteristics. For the calibration the specifications obtained from Cree’s
CRF-24010 4H-SiC MESFET [41] are used to define the simulated device. The charge carrier transport
characteristics, the device dimensions, and the doping details are adjusted until good agreement between
the simulated and measured 1V characteristics is obtained. '

The good agreement between simulated and measured steady-state 1V characteristics is shown on the right
of Figure 6.8. This MESFET produces a maximum channel current of about 450 mA/mm. The ability of
the gate bias to turn the device off and on is good, as indicated by the channel current with zero and high
reverse gate bias applied. Good turn-off characteristics are observed for reverse bias slightly greater than
-10 V. The ability of the device to modulate current is given by the device transconductance which for
this device is about g, =160 mS/mm.. The zero gate voltage drain current at Vpg =10V is 0.42 A/mm.
This device simultaneously shows a high breakdown voltage of 110V and a low leakage current of only
100 pA/mm at S00K. '

After the successful calibration of the simulator, the sin’all-signal simulation mode was used to obtain
additional figures of merit. The frequency range under consideration was 100 MHz to 40 GHz. After
adapting the input and output impedances, the agreement between simulated and measured data as shown
in the left Figure 6.9 was obtained. It is important to note, that the RF results presented here were obtained
at a high drain-to-source bias voltage of 40 V and at the gate quiescent voltage of Vgg =-9 V. In the right
figure of Figure 6.9, the small-signal current and power gain are depicted, showing an fr =5.62 GHz and
fmax =37.18 GHz at 0dB. '
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6.4 Oscillator

This example demonstrates the implemented mixed-mode AC features on the simulation of a Colpitts
oscillator and two intermediate circuits. The following three circuits are simulated by means of transient
and small-signal device/circuit simulation:

1. An amplifier with one active device.
2. A resonant circuit is coupled to the output of the amplifier. .

3. The oscillator is eventually constructed by feedmg back the output of the resonant circuit to the
input of the amplifier.

Since all three circuits consist of equal subcircuits (see Figure 6.10), the input-deck inheritance feature
can be perfectly used, see Appendix A.13 for more details on this.

6.4.1 Amplifier

The amplifier circuit is a combination of the core and the AC source subcircuits as well as of load ele-
ments. The transistor used in the core subcircuit is a 0.4 x 12um? SiGe-HBT device structure obtained by
process simulation [110]. The structure was thoroughly mvestlgated by steady-state and small -signal AC
simulations [233] as presented in: Sectlon 6.2.

Circuitamplifier
{
Vsrc : “SubCircuits.Vsrc { in = "pinl"; }
Core : ~“SubCircuits.Core { in = "pinil-";
out = "pin2"; '}
CL : “Devices.C { N1 = "pin2"; N2 = "pin3"; C' = 1 nF; }
RL : "Devices.R { N1 = "pin3"; N2 = "gnd"; R = le3; }
} ,
LC subcircuit Core subcircqit """""""""""""""""""""""""""" memmmoes '

plna
AC source subcircuit +—o—+ Core ircul %M‘m } I
T c

It
L}

'

'

L}

:

L} .

! Amplifier circuit
'

I

.

'

+

'

'

2
=
]
- £
5
2
-]
H
2
e
g
-

v I
' - - ]
E 24 Core subclrcuit *:;m—m+ LC subcircuit E
' '
‘ o 1 1

. : H
b

scillator pint

Figure 6.10: The three subcircuits which are used in the example circuits are shown on the left side. They are parts
of the three circuits depicted on the right [231].
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All simulations use the mixed-mode iteration scheme (see Section 3.6.4). In the first block the fixed node
voltages apply static boundary conditions at the transistor terminals in order to improve convergence to
an initial solution useful for the subsequent circuit simulations. In this case, the three fixed node voltages
(Vpin2 =2.0V, Vping =1.2V, and Vping =0.4 V) represent the dimensioning of the circuit in respect to the
chosen operatmg point. Transient simulation results are shown in Figure 6.11. The linear equation system
has a dimension of 11,601 and the simulator requires between 1.0 and 2.9 s per time step on a 2.4 GHz
Intel Pentium IV with 1 GB memory running under Suse Linux 8.2.
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Figure 6.11: Result of transient simulation of the amplifier circuit with V. = 10mV and f = 2.4 GHz [231].
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Figure 6.12: Results of small-signal simulations of the resonant circuit: absolute value (left) and argument (right).
The results are compared with ADS simulations using a VBIC95 model of a similar transistor [231].

6.4.2 Amplifier with Resonant Circuit
The second example circuit consists of all three subcircuits, since the resonant circuit is now coupled to

the output of the amplifier. The resonant circuit is configured for an oscillation frequency of 10 GHz. This
can be confirmed by results of a small-signal simulation as shown in Figure 6.12 (V,. =1 mV). In average,
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MINIMOS-NT requires 8.5 s per frequency step. With a VBIC95 compact model of a similar transistor,
the circuit simulator ADS'[4] was used to obtain data from the same circuit.

CircuitResonant
{ . 4

Core : ~BaseCircuits.Core { in = "pin8"; out = "pind"; }

Vsrc : “BaseCircuits.Vsrc { in = "pin8"; }

LC : "BaseCircuits.LC - { in = "pind"; out = "pin9"; }

R5 : “Devices.R { N1 = "pin9"; N2 = "gnd"; R = le3; }
} ) . .

6.4.3 Colpitts Oscillator Circuit

Finally, a Colpitts oscillator circuit is built by feedlng back the output of the resonant circuits to the input
of the core circuit (amplifier).

CircuitOscillator
{ .
Core : “SubCircuits.Core { in = "pinl"; out = "pin2"; }
LC : “SubCircuits.LC { in = "pin2"; out = "pinl"; }
}
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Figure 6.13: Result of the transient simulation of the oscillator: output Vj,in2 in the initial phase (left) and in the
state of equilibrium (right) [231].

At turn on, random noise is generated within the active device, which is here the SiGe bipolar junction
transistor, and then amplified. This noise is positively fed back through the frequency selective circuit
(resonant circuit consisting of an inductor and two capacitors) to the input, where it is amplified again.
After the initial phase, a state of equilibrium is réached, where the losses are compensated by the power
supply. The amount of feedback to sustain oscillation is basically determined by the C;,/C1y, ratio.

Transient simulation results are shown in Figure 6.13. In the sirhulat‘or, the random noise of the active
device is replaced by a numerical noise caused by the restricted representation of floating point numbers.
The simulator requires 0.4 s in the initial phase and between 1.9s and 2.9 s in the state of equ111br1um per
time step.
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6.5 Simulations with Higher-Order Transport Models

The final section in this chapter presents results obtained from simulations of advanced MOSFET devices
with different transport models. As derived and discussed in Section 2.1.3, the following transport models
are compared in this work: :

1. The six moments transport model, see Section 2.1.4.
2. The energy-transport model, see Section 2.1.5.
3. The drift-diffusion transport model, see Section 2.1.6.

For the example a series of double-gate MOSFETs were used. They have gate lengths from Ly =250 nm
down to Ly, =25nm. The main objective of this example is to show that the impact of the higher-order

‘transport models significantly increases with smaller gate lengths and that their application is inevitable for

Lg <100nm. This is both demonstrated for 1V curves and cut-off frequency extractions. The simulation
results are compared with full-band Monte Carlo results [115]. In Figure 6.14, the basic structure of the
simulated devices as well as the doping profile including a neutral channel doping are shown depending
on the gate length L [83].

Top Gate

DE

Source
Drain

Doping
2
-3

distance [nm] '

Figure 6.14: Structure of the simulated double -gate MOSFET devices. The gate length is varied from 250 nm down
to 25 nm [83].

6.5.1 Simulation Results

Figure 6.15 depicts the results of the steady-state simulation of four double-gate MOSFETs with gate
lengths of Ly =250nm, Ly =100nm, L, =50nm, and Ly =25nm. Whereas for the largest device
the employment of higher-order transport models does not seem to be necessary, this situation signifi-
cantly changes for smaller devices. The drift-diffusion model delivers a clear underestimation of the drain
current, while the energy-transport model starts to overestimate the current.

For the same devices, small-signal simulations have been performed and the results are presented in Fig-
ure 6.16. In contrast to the drain current, the error of the drift-diffusion model regarding the cut-off
frequency fr is already significant for the device with Ly =250 nm. The underestimation continues with
smaller gate-lengths, resulting in an error of 50% for Ly =25 nm. The energy-transport model delivers the
same results as the six moments model for Ly =250 nm. However, for smaller gate lengths the energy-
transport model systematically overestimates fr. Note that in Section 3.3.3, a comparison of the cut-off
frequency results with quasi-static simulations are shown.
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6.5.2 Conclusions

As derived in Section 2.1.3, the drift-diffusion model is characterized by a very rough closure of T;, = T1..
Whereas the calculated terminal currents are not severely wrong, the error becomes worse if distributed
quantities such as the carrier concentrations or other important quantities such as the cut-off frequency
fr are considered. In fact, the development and underestimating character of the terminal quantity error
is used to justify the industrial application of the drift-diffusion model for such devices, which should
have already been subject to simulation with higher-order transport models. The main reasons why the
drift-diffusion model is still widely applied are its robust convergence behavior and performance.

The energy-transport models do not show an comparable numerical robustness than the drift-diffusion
models any more. Due to the additional temperature quantities, the convergence behavior and the perfor-
mance are generally worse. The simulation setup is more sensitive to the mesh and the heat-flux reduction
degrades the condition of the system matrix [83]. However, the benefit of these models are that instead of
the cold the heated Maxwell distribution can be used, which allows to take hot-carrier effects into account.

The six moments transport model as applied in the simulations above uses an empirical closure relation
calibrated to bulk Monte Carlo data. The six moments models are even more sensitive to the mesh and
the condition is more degraded. On an engineering level one can conclude that if the application of
energy-transport models has been restrained due to these properties, this will be even more the case for
the six moments models. However, they give the best results overall as more details of the distribution
function are available. For example, whereas the energy-transport models overestimates the velocity, the
six moments models stay closest to the Monte Carlo data. '

Furthermore the development of the error of the higher-order transport models with decreasing gate lengths
must not be neglected. As already said, the error of the terminal quantities calculated by the drift-diffusion
model is not significantly decreasing with smaller gate lengths. In contrast, higher-order transport mod-
els indicate that the error is disproportionally increasing with smaller gate lengths. This allows one to
conclude that the six moments models should be preferred over the energy-transport models. Although
.the numerical properties of the assembled equation systems become worse, one can partly counteract
on the numerical solver level. The solver evaluation in Section 5.5.5 clearly indicates that some solvers
such as the GMRES(M) shows significant advantages over the BICGSTAB in terms of convergence and
performance. In addition, as the higher-order transport models are more sensitive to the mesh, advanced
generation of adaptive meshes would enable a more convenient and industrial application of that models.
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Figure 6.15: These four figures show the increasing errors of the macroscopic transport models with decreasing gate

lengths. Whereas at L; =250 nm in the upper left figure the difference of the drain currents is minimal,
it can be clearly seen that for Ly =50nm the six moments transport model delivers the best results.
However, for extremely small gate length, it loses its advantages and even more moments would be
necessary. Note that the drift-diffusion model results in terminal quantities which underestimates the
Monte Carlo results. .
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Figure 6.16: These four figures show the cut-off frequency versus the drain current and the much higher sensitivity
of that small-signal figure of merit is demonstrated. S
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Chapter 7

Summary and Outlook

In the course of this work the requirements for a both effective and efficient small-signal simulation
mode have been identified. The respective features have been implemented in the general-purpose de-
vice/circuit simulator MINIMOS-NT, which prov1des now various small-signal capabilities for two- and
three-dimensional device/circuit simulations. Among them are not only basic features like complex-valued
excitations of the devices, but also extended ones which can be used to extract various figures ‘of merit.
Besides the correct and efficient implementation, the usability of the new features was an important issue.

Since the small-signal mode is based on the S3A approach, one complex-valued linear equation system
has to be assembled and solved for each frequency step. The respective modules have been equipped
with all necessary features to handle both real-valued and complex-valued systems. They have been
extended to be generally applicable for all kind of simulations. The solving of linear equation systems

‘accounts for a large share of the simulation time. For that reason, alternative solver systems with external

modules among them, have been integrated or coupled to the solver module. These modules, which take
all identified numerical requirements of semiconductor simulations into account, are employed also by
other simulators. In order to efficiently use new available hardware architectures, parallelization strategies
have been discussed. Future developments in this area should focus on further parallelization of the solver
algorithms itself, but also of suitable parts of the simulator code.

Basically, the implemented small-signal capabilities can be employed for a wide set of semiconductor
device structures. Thus, the simulation of advanced RF CMOS transistors or devices with compound semi-
conductors is now possible in a straightforward way. In addition, higher-order transport models are directly
applicable for small-signal simulations. The new simulation mode was used to describe the properties of
different device structures and circuits. In the course of this work, two different heterojunction bipolar
transistors based on the InGaP/GaAs and SiGe material system were analyzed. In addition, two amplifi-
cation circuits and a Colpitts oscillator have been simulated by means of mixed-mode device/circuit simu-
lation. Furthermore, an advanced RF silicon carbide MESFET was investigated and higher-order transport
models were compared for several double-gate MOSFETS.

From the engineer’s perspective, additional features of the simulator might be useful, for example the
extraction of noise and linearity parameters. In addition, the large-signal simulation capabilities, which
are now possible by means of transient simulations, could be extended by introducing a harmonic balance
simulation mode. With respect to performance the on-going parallelization efforts of the various solvers
are particularly interesting. In addition, platform-specific optimizations can be utilized. Due to the avail-
ability of drastically increased memory resources, also modules based on full matrix storages become
more and more interesting. For that reason, the integration of the external LAPACK and BLAS routines
might be useful. In order to make the solver module even more attractive for alternative simulators, the
integration of solvers, including in-house codes, for symmetric matrices might be interesting.
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Appendix A

Input-Deck Interface to the New Simulator
Features |

While implementing new simulator capabilities it is very important to keep the usability of the new features
in mind. MINIMOS-NT employs a powerful input-deck [118], enabling the user to customize the simula-
tion settings in many details. All new features are directly available via respective input-deck keywords.
In addition, it was tried to extend already existing and thus familiar functions in case the small-signal or
numerical context is related to them. This chapter contains all input-deck definitions the first chapters are
referring to.

A.l Activation of the Transient and Small-Signal Mode

Transient and small-signal analysis are related simulation modes. In respect to the usability of the sim-
ulator, their setup and configuration is very similar. In MINIMOS-NT, this setup is done in the Solve
section of the input-deck. The complete specification of the time or frequency domain is done by stepplng
functions, see Appendix B.

If either the transient or small-signal mode is activated, the simulator switches to the respective mode after
the calculation of the steady-state operating point. It is important to note that the transient and frequency
stepping functions can fully interoperate with other stepped parameters, such as contact voltages. In order
to ensure efficiency, the time and frequency steppings always have the highest priority within one slot. In
case one of them should be used as a lower-prioritized parameter the sxmulatlon results must be reordered
in a post-processing step (see Appendix C.1).

While the transient simulation mode is enabled via the transient keyword, the small-signal simulation
is activated by the keyword ac. The time and frequency domains are defined by stepping functions
assigned to keywords t ime and frequency, respectively. If both modes are simultaneously activated,
an error message is issued. The example shows the activation of the transient mode, whereas the small-
signal mode is deactivated.

Solve
{
transient = yes; :
time = step(0 s, le-6 s, le-8 s); // start, end, delta
ac = no; o
frequency = step(l MHz, 100 GHz, 10, log=yes);
}
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Whereas for the transient simulations at least two steps are always required, a single frequency small-
signal simulation is a useful feature. Since the definition by a stepping function is mandatory, a new
function stepSingle was introduced. A single stepping might look weird at the first glance, but the
extended features, such as slots, justify this concept (see Appendix B)..

A.2 Activation of the Admittance Matrix Calculation Feature

The so-called intrinsic admittance matrix can be obtained by activating the admittance matrix calcula-
tion feature in section Solve of the input-deck, see Section A.2. The activation of this feature has the
following consequences:

e The AC boundary conditions as speciﬁed.in the Device section are overruled by the unity voltage.

o The unity voltage is applied once at each terminal while the others are zero. This affects only the
right-hand-side vector and the system matrix remains constant.

¢ For that reason, the multiple-right-hand-side feature of the linear modules is applied. Since the
multiple assembly of the system matrix can be skipped, the simulation is sped up significantly.

¢ Unless suppressAdmittanceOutput is set, the output of the simulator changes from the ter-
mmal quantities to the admittance matrlx

o Several additional features and output functions can be used.

The keyword complexPolar in the Log section is prov1ded for prmtmg complex-valued numbers in
polar-coordinates.

The example shows the setup for calculating the admittance matrix at the frequency of 1 GHz.

Solve
{
ac = yes;
frequency = stepSingle(l GHz);

calcAdmittanceMatrix = yeé;

A.3 Simulation Setup of the Diode Example

This section contains the simulation setup for the small-signal simulation of the diode.

Device
{
+Contactl = 0.0 V;
+Contact0 = step(-0.8 Vv, 0 8V, 0.1 V);
+acContactl = 0:0 V;
+acContact0 = 1.0 V;
}
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Solve

{
ac = yes; )
frequency = step(l Hz, 1le20 Hz, 10, log=yes);

In the device section (not completely shown here) the terminal conditions are set once for the DC
operating points and once for the AC systems. Note the prefix ac of the name of the terminals. The DC
anode voltage is stepped by 0.1 V from —0.8 V to +0.8 V.

As seen in the previous section, the freqhency domain is defined in the Solve section of the input-deck.
The simulation consists of a logarithmic frequency stepping from le to 1020 Hz with a multiplication
factor of 10.

A.4 Inquiring Capacitances

This section shows how the gate and the gate-drain-capacitances are inquired by using the function
" outputParam (see Section A.6):

Curve
{
file = "ac.crv";
Response
{ )
Cg = outputParam("Device", "CMatrix", "Gate", "Gate"):;
Cgd = outputParam("Device", "CMatrix“)~"Gate“, "Drain") ;
} , .
}

A.5 Configuration of the Two-Port Features

This section describes the configuration of the equlvalent circuit as dlSCUSSCd in Sectlon 3.5. The following
keywords in the Contact section are available:

| Keyword | Type | Default | Description . : | |

z0 Real 50 Q) | characteristic impedance

parL Real 0.0 H | parasitic inductance for the two-port calculation.
parC Real 0.0F | parasitic capacitance for the two-port calculation.
parR Real 0.0 | parasitic resistance for the two-port calculation.

Table A.1: Keywords provided in the Contact section.

Thus, all capacitances, inductances, and resistances can be defined in the same way as the keyword Z0:

Device : DeviceDefaults
{

Phys

{
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+Collector{ Contact{ Ohmic{ parL 50 pH; parC 75 fF; }}}

+Emitter { Contact{ Ohmic{ parL = 1 pH; parC = 24 fF; }}}
+Base { Contact{ Ohmic{ parL = 75 pH; parC = 150 fF; }}}
}
}
Solve

{

calcTwoPortParameters = yes;

poftl = "Base";
port2 = "Collector";
~ground = "Emitter";

In the Solve section the conﬁguration of the two-port circuit can be found. The two ports are connected
to the base and collector terminal, respectively, and the ground is connected to the emitter terminal. By
setting the calcTwoPortParameters to yes, the calculation is enabled.

A.6 Output Functions

The standard output function of MINIMOS-NT can also be used to request complex-valued quantities.
The return value of the output function can be passed to any built-in input- deck function, for example
arg to get the argument of the complex value.

For output of the various matrix parameters the function outputParamisused. See the following exam-
ples for details, which are based on the specifications given in the Solve section. The outputParam
functions can be used to request the quantities YMatrix, SMatrix, ZMatrix, HMatrix, AMatrix,
and CMatrix. Whereas the first five matrices contains the common complex-valued two-port Y-, S-, Z-,
H-, and ABCD-parameters, the last matrix is the real-valued capacitance matrix of the device.

Note that the Z-, H-, and ABCD-parameters are available in combination with the parasitic circuit only
(see calcTwoPortParameters in Section 3. 5).

Curve
{
file = "ac.crv";
Response
A : g
+IB = output("Device", "I", "BaseContact");
+IC = output("Device", "I", "CollectorContact”);
+ICac = output("Device", "I", "CollectorContact", ac=yes) ;

// intrinsic Y11 and S11: :
+¥Y11i outputParam("Device", "YMatrix", "BaseContact", "BaseContact");
+S11i = outputParam("Device", "SMatrix", "BaseContact", "BaseContact");

// extrinsic Y1l and S11l:

+Y1ll = outputParam("Device", "YMatrix", "BaseContact", "BaseContact",
parasitic=yes); ‘
+S11 = outputParam(“Device“, "SMatrix", "BaseContact", "BaseContact",

parasitic=yes);
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// absolute value and argument of S21:

+S2labs = abs(outputParam{"Device", "SMatrix", "CollectorContact",
"BaseContact", parasitic=yes));

+S2larg = arg(outputParam("Dev1ce", "SMatrix", "CollectorContact",
: "BaseContact", parasitic=yes));

A.7 Setup for the Cut-Off Frequency Extraction

The simulation concept is divided into two steps:

1. Simulation configuration and test
2. Simulation

Since the curve shape is known in advance the configuration is usually performed very quickly. After
setting up a standard input-deck consisting of all parts necessary for the device simulation, the definition
of the stepping variables Vg and frequency remain.. The base voltage is stepped to vary. the collector
current in a range between 1076 and 10~1. The frequency variable is combined with the new conditional
stepping function. This function requires two boundaries that should be updated for each base voltage
step. Thus, an index stepping is used to step through three different arrays (tables): one array contains the
base voltages (vbtbl), one the lower and one the upper boundaries. Usually these arrays are defined in
the global section of the input-deck (see below).

After the basic part of the configuration is finished, the boundaries have to be tested since their condi-
tion values must have different signs. Note the optional argument maxCount of the frequency stepping
function. It is now set to 3, which forces the simulator to give additional information on the stepping and
which restricts each voltage step to three frequency steps being the mm1ma1 conditional simulation.

Thus, the boundaries as defined in tables lower and higher of each voltage step can be tested. After
each step the simulator gives detailed information on the steps, for example :

Conditional Stepping Information: Interval [ 1.500e+08, 2.000e+08]
Values = [ 3.257e-01, -4.488e-03]

and in case of invalid boundaries a similar error message, for example

#### mmnt: Invalid range for step condition (count=1)
###4 mont: Interval [ 1.000e+06, 4.000e+06 ]
#### mmnt: ‘Values = [ 4.150e+00, 2.893e-01]

Obviously, the only remedy for these errors is adjusting the boundaries. In case of the fr extraction as pre-
sented in this work the first condition value must be positive (lower frequencyAmeans higher (), the second
one must be negative. If both conditional values are positive, the frequencies should be increased, in case
of the opposite, they should be decreased. Note, performance is directly proportional to the narrowness of
the boundaries.

A useful feature to speed up the configuration prbcess is to adapt the start index value that should always
be the index of the (latest) erroneous index. For example, mdlces O and 1 are processed successfully, but
index 2 fails, the start index should be set to 2:

index = step(2, <Number of Steps n>, 1);
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If the complete simulation is done, the start index should be reset to 0 and the maxCount argument
should be set to a higher value, for example 150. Then, the simulation can be restarted again. Due to the
narrow and tested boundaries it will be both fast, successful and as accurate as in the fourth argument of

the stepping function given. '
Conditional stepping- has been extended by an automatic adaptation for the boundaries. Since it can
be generally employed for several applications, for example threshold voltage extraction; the automatic
adaptation is implemented as an input-deck-based feature (see Section B.4).

The example demonstrates the setup for the cut-off frequency extraction by conditional stepping (see also
Appendix B.3).

index = step(0, 10, 1);

vbtbl = [0.74, 0.76, 0.78, 0.80, 0.82, 0.84, 0.86, 0.87, 0.88, 0.90, 0.92];
lower = [1, 32, 15, 12, 3, 5, 20, 29, 29, 0.5, 0.5);
upper = [2, .35, 45, 13, -4, 9, .40, 30, 30, 10, 10)
Vb = “vbtbl[~index};

In order to step these three arrays simultaneously, it is necessary to introduce an index variable which is
actually stepped. By using this index, the base voltage V3 is then obtained by subscripting the vbtbl
array. The Solve section of the input-deck should look like this:

Solve

{
ac = yes;
+1b = “lower{“index] * 1 Hz; // lower boundary
+ub =

“upper{~index] * 1 Hz; // upper boundary

frequency = stepCond(lb,
ub, . .
~Curte.Response.beta - 1.0,
S le-2,
maxCount = 3);

}

The Curve section of the iﬁput-deck contains the calculation of variable beta:

Curve -
{
file = "sim out_ft.crv";
. Response '
{
+ic = abs(output ("Device", "I", "C", ac = yes));
+ib = abs(output ("Device", "I", "B", ac = yes));

+beta = ic/(ib + 1le-300a);

It is important to note that the currents are zero while the simulator is initialized. To prevent a division by
zero, a very small and thus negligible current is added to the numerator in the beta assignment.

124




A.8 Setup of the Resonant Circuit and the Band Rejection Filter

This section contains the setup of the parallel resonant circuit and the band rejection filter:

ResonantCircuit
{
aux VR = 10 kOhm;
aux f0 = 10 MHz;
aux w0 = 2 * pi * £0; .
raux' Q = stepTbl(([0.5,-1.0, 2.0, 5.0, 10.0]1);
aux vL = VR / (w0 * Q);
aux vC = Q / (w0 * vR); -
Iin : ~Devices.I { P = "out"; M = "gnd"; I0 = 1 A; acI0 = 1 A; }
R : “Devices.R { N1 = "out"; N2 = "gnd"; R = "vR; }
L : “Devices.L { N1-= "out"; N2 = "gnd"; L = "vL; }
C : “Devices.C { N1 = "out"; N2 = "gnd"; C = “vC; }
}
BandRejection
{ ) -
aux £0 = 50 Hz;
aux vC = 100 uF;
aux w0 = 2 * pi * f0;
aux Q = stepTbl1([0.5, 1.0, 2.0, 5.0, 10.0]);
caux vL = 1 / (w0 * w0 * vC);
aux VR = 1 / (Q * w0 * vC);
Vdd : "Devices.V { P = "Vin"; M = "gnd"; VO = 1 V; acv0 = 1 V; }
R :. "Devices.R { N1 = "vin"; N2 = "out"; R = "vR; }
L : "Devices.L { N1 = "out"; N2 = "ctr"; L = "vL; }
C : "Devices.C { N1 = "ctr"; N2 = "gnd"; C = "vC; }
}

Since both simulations use the same Solve and Curve section, the conditional inheritance is a good
choice to improve the setup. This feature can be especially employed for including several similar simu-
lations in one input-deck. Depending on the variable resonant (which could be, for example, bound to
an environment variable), either section ResonantCircuit or section BandRejection is inherited
by the Circuit section. A ' '

aux resonant = yes;
Circuit : ResonantCircuit ? ;resonant, BandRejection ? !“resonant;
Note, that the sources provide the following keywords:

e Parameter acI0 for complex-valued current sources.
o Parameter acV0 for complex-valued voltage sources. -
e Parameter acPort for port names of voltage sources required for the admittance matrix simula-

tions.
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A9 Inquiring Complex-Valued Node Voltages and Terminal Quantities
This section shows how several mixed-mode AC quantities are inquired.

Curve

{

file = if ("resonant, "res_out", "band _out"};

Response

{
+mhz = “Solve.frequency / 1 MHz; // will become dimensionless
+outAc = ' V("out", ac = 'yes);
+outdbs = abs(V("out", ac = yes));
+outArg = arg(V("out", ac = yes));
+outAbsdB = 20 * logl0(value(outAbs)) ;

. +acVc = output("C", "acv");

+aclr = output("R", "acI");

}

The V function has been extended to handle also complex-valued node voltages. In that case, the user has
to set the optional parameter ac to yes. Several built-in functions of the input-deck are used for further
calculations finally resulting in the logarithmic value. While the output function remained basically
unchanged, it can be used to inquire complex-valued quantities from devices in a straightforward way.

The built-in input-deck functions abs, arg, realpart, imagpart, logl0, value (to get the di-
mensionless value) etc. can be used to transform the actual simulator output to common output formats,
such as dB. ’

A.10 Setup for the Extended Mixed-Mode AC Simulation |

The example shows the Circuit section for the simulation of a heterojunction bipolar transistor:

Circuit
{ .
Vbe : "Devices.V { P = "Vbe"; M = "gnd"; V0O = "B; acv0 - = 1.0 V;
‘ acPort = “1; )
Vce : “Devices.V { P = "Vce"; M = "gnd"; V0O = ~C; acv0 = 0.0 V;
' *  acPort = 2; }
HBT : "MyDevices.HBT { Base = "Vbe";
Emitter = "gnd";
Collector = "Vce"; }
}

The active device is the heterojunction bipolar transistor. Its setup is found in the MyDevices.HBT
section not shown here. The three terminals are connected with the Vbe, ground, and Vce node of the
circuit, respectively. ’ '

Two voltage sources are defined between Vbe and ground as well as between Vce and ground. While the
steady-state voltages refer to global input-deck variables B and C, respectively, the small-signal voltages
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of 1.0V and 0.0 V are directly set. According to the acPort configuration, both voltage sources are part
of the admittance matrix calculation feature with the base voltage in the first and collector voltage in the
second row.

A.11 Inquiring Circuit Quantities

This section contains the statements which inquire the circuit parameter quantities. Note the special-
purpose device name Circuit as the first parameter of the function outputParam. It refers to a
quantity of the complete circuit, and can therefore not be used as a device name any more. '

Curve
{
Response
{
aux B = "Vbe";
aux C = "Vce";
+Yllre = realpart(outputParam("Circuif“, "YMatrix", B, B });
+Y¥1lim = imagpart (outputParam("Circuit", "¥YMatrix", B, B ));
+S21lre = realpart (outputParam("Circuit", "SMatrix", C, B ));
+S21im = imagpart (outputParam("Circuit", "SMatrix", C, B ));
+C12 = outputParam("Circuit", "CMatrix", B, C );
}
}

The built-in functions realpart and imagpart are used to obtain the real or imaginary part of a
complex-valued variable, respectively. The auxiliary variables B and C are used to shorten the parameter
list of outputParam. :

A.12 Selection of External Solvers

This section demonstrates the selection of external solver modules and their respective solvers. For exam-
. ple, the parallelized direct solver of the PARDISO module can be selected as follows:

Num

{
externalSolver = ves;
externalModule = "PARDISO";
externalType = "PARDISOQ_LU";

} .

Analogously, the algebraic multi-level preconditioner in combination with BICGSTAB acceleration is ac-
tivated by the following input-deck parameters: ‘

Num

{
externalSolver = vyes;
externalModule = "SAMG";
externalType = "AMG_BICGSTAB";

}
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To employ an external solver module, the keyword externalSolver has to be set to yes. In this
case, the settings of directSolver and iterativeSolver are ignored. Two strings are available
to select the module and the solver type, respectively. The case-insensitive selection is checked by the
simulator and rejected in case of invalid settings. In Table A:2, the valid selections are summarized.

| externalModule | externalSolver |

Pardiso Pardiso LU
Pardiso_CGS
Samg AMG_BICGStab
' AMG_GMRES
ILU_BICGStab
ILU_GMRES

Table A.2: Valid selections for external solver modules.

A.13 Netlist Definition of the Oscillator Example

This section contains all netlist definitions found in the input-decks for the oscillator example, see Sec-
tion 6.4 (page 111).

The input-deck section SubCircuits contains the definition of all three subcircuits. The settings for
the distributed devices are specified like in the single-mode [105]. In addition, MINIMOS-NT directly
provides compact models of the commonly used circuit elements like capacitors and inductors.

Therefore, the respective. Devices sections have to be simply inherited and their public members ac-
cordingly overwritten. In the definition of the resonant circuit both terminals are connected to the input,
output, and ground nodes of the subcircuit.

SubCircuits
{
Core
{
in = 1 nl.
out = " II’.
V0 : “Devices.V { P = "pini"; M = "gnd"; - V0 = 2.0 V; }
Tl : “NPN { C = “out; B = "pin3*"; E = "pinb"; }
L : "Devices.L { N1 = "pinl"; N2 = “out; ‘L, =1 uH; }
Rl : "Devices.R { N1 = "pinl"; N2 = "pin3"; R = 20e3; }
R2 : “Devices.R { N1 = "pin3"; N2 = "gnd"; R = 30e3; }
Re : "Devices.R { N1 = "pinb"; N2 = "gnd“; R = 1.25e3; }
Ce : "“Devices.C { N1. = "pin5"; N2 = "gnd"; C =1.00 nF; }
C4 : ~Devices.C { N1 = "in; N2.= "pin3"; C = 1.0 nF; }
}
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LC

{
in = ""; // is assigned in circuit .
out = "";
L1 : "Devices.L { N1 = "in; - N2 = "out; L = 1.000 nH;- }
Cla : "Devices.C { N1 = "in; N2 = "gnd"; C = 0.279 pF; }
. Clb : “Devices.C { N1 = "gnd"; N2 = “out; C = 2.790 pF; }
}

}

For the AC source subcircuit, the conditional inheritance feature of the input-deck is used. Since the
transient and small-signal modes are subsequently employed, the respective voltage source has to be de-
fined for a transient or small-signal result, respectively. This is controlled by the Solve.transient
keyword: )

SubCircuits
( .
Vtransient
{
VS : “Devices.V { P = "pinlQ"; M = "gnd"; :
VO = 1 mV * sin(~Solve.time * 2*pi * 1le9 Hz); }
}
Vac
{ |
VS : "Devices.V { P = "pinlO"; M ‘= "gnd";
, : VO = 0 mV; acv0 = 1 mv; }
) .
Vsrc : Vac ? ~Solve.ac, Vtransient ? “Solve.transient // conditional
( .
+in = ""; -
+R4 : “Devices.R . { N1 = "in; N2 = "pinl0O"; R = 1e3; }
}
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Appendix B

The Stepping Module of Minimos-NT

Stepping is a fundamental infrastructure feature of any simulation tool, since it is important for both
usability and performance considerations. For example during steady-state analysis several operating
points are normally of interest to extract an I-V curve. On the one hand side the user can specify these
points by variables in one input-deck rather than starting the simulator again and again. On the other hand
side the solution of one operating point is normally a very good initial guess for the next one, resulting in
a significant speed-up of the complete simulation.

This application of stepping variables is well-known and for reasons of consistency the definition of the
time or frequency domain has been based on these concepts. This allows to employ the various powerful
stepping functions also for transient and small-signal analysis.

Stepping is controlled via the step function family. The main purpose of the step functions is to
introduce parameters for the simulation. There are several step functions available:

Function Functional Parameters

step start and stop value, delta, 1og, deltaMin, deltaMax

stepN start and stop value, number of steps, 1og, deltaMin, deltaMax
stepTbl table of values

stepCrv curvefile, parameter, response, state

stepSingle | single.value
stepCond | lower boundary, upper boundary, formula, error, mnaxCount

Table B.1: Stepping functions provided by MINIMOS-NT.

Common to all different types of stepping functions are the admlmstratlon parameters name, pri, slot,
prev, and post: :

e pri denotes the priority of the parameter. For each combination of values of the stepped parameters
a single simulation is run. The parameter with the highest priority runs fastest. Default priority is -1.
Overruling of the priority of time and frequency is prohibited, because these variables always
get the highest priority during stepping initialization. Furthermore, it is not allowed to combine
their stepping functions with other input-deck functions.

e For consecutive stepping of different parameters, the optional arguments slot, prev, and post
can be used. Only parameters with the same value of slot are stepped together, while other
parameters are given the value defined in prev or post, depending on whether the current slot
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comes before or after the value given in slot. Parameters without a value in slot are stepped
in slot -1 as default. If prev and post are not specified, the first or last value of the stepping
parameter is used, depending on the slot position.

Stepping control (see Appendix B.4) adjusts the standard delta within a range specified by deltaMin
and deltaMax. If these optional arguments are not given, both variables are set to delta. In the case
of user specified values they should fulfill deltaMin < delta < deltaMax. But this is not enforced
by the simulator.

B.1 The Basic Stepping Functions

For simple additive or multiplicative (logarithmic) stepping the normal step function can be used. Here,
start is the start value of the parameter, stop its final value, and de1ta the additive or multiplicative
increment. The first three arguments must be of the same type or must be convertible to the same type.
The type of the return value is determined by this conversion operation. '

a = step(0, 2 , 1 )i // returns- an- integer

b = step(0, 2 , 1.0 ); // returns a real

c = step(0 VvV, 2V, 1.0 V); // returns a quantity with unit Vv
d = step(O Vv, 2 , 1.0 ); // returns a quantity with unit v

In the case of quantity arguments the first three arguments must be of convertible units. For missing units
the default unit (of the first parameter) is used, but it is recommended to provide units to all parameters.
Basically, the resulting unit is always the equivalent SI-unit.

step(0 W, 2 "J/s", 1 eV); // quite a long loop, but OK

a =
// returns "W" as unit
b = step(0 VvV, 2 a4, 1.0); - // mismatching units, error

!

The optional parameter 1 og determines whether additive or multlphcatlve stepping is used with additive
being the default.

Ni = step(10e3, 1e20, 1.2, log = yes);

The stepN function is similar to the step function, the only difference being the third argument. Here,
it specifies the number of step points to be used.

Ni = stepN(10e3, 1le20, 100, log = yes); // use 100 points

The number of steps is used to calculate a stepping delta. Consequently, the stepN function is treated
like a step function. This is particularly important as both functions can be attached to stepping control
algorithm to modify the stepping delta during the simulation (see Appendix B.4).

B.2 The Special-Purpose Stepping Functions

The stepTbl function can be used to step through the values of an array. All values contained in the
array will be subsequently assigned to the parameter. As for the additive stepping the type of the values °
given in the array must be of the same type, or must be convemble to the same type. The type of the return
value is determined by this conversion operation. :
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B = stepTbl([ O, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7 1);

To get stepping information from a curve file the stepCrv function is available.

G = stepCrv("iﬁit.ch", *G", "Vg", pri=4, slot=2, prev = 8 V, post = 5 V);
The simple stepping function stepSingle can be used to introduce a single value into the stepping
configuration. Such a function is essentially required by a single frequency AC simulation, but can also
be used by other variables in combination with useful values of arguments slot, prev, and post. This

function must not be used for transient simulations (variable time).

frequency = stepSingle(100 MHz, slot=0); // single frequency ac simulation

B.3 Conditional Stépping

Function stepCond provides a conditional stepping based ona simple zéro point approximation within
two boundaries given by the first two parameters:

// Threshold Voltage Extraction :
A = stepCond(0.7v, 0.8V, // boundaries

output ("Device", "I", "A") - le-7aA, // comparison value
le-4, // error value
pri = 2, maxCount = 20); // optional

1

The stepping is coupled to an internal control mechanism which determines the new stepping value de-
pending on the evaluation of the condition. This implementation of this mechanism is based on the False
Position or Regula Falsi method (see Section 3.3.3)).

The condition is the combination of the third and fourth argument. Here, the comparison value in the
third argument is coupled to an output current and has to be smaller than the error value of 1e-4. If
the condition cannot be fulfilled within maxCount steps (iterations), the approximation is terminated. If
maxCount is not given, a default value of 1000 is used.

Sometimes it is more applicable to determine the threshold voltage by logarithmic stépping. For this
purpose, the stepping function can be defined as follows:

// Threshold Voltage Extraction , S
A = stepCond(0.7v, 0.8v, : // boundaries

log(value(~Curve.Response.Id)) - log(le—7), // comparison value
le-4, - : . // error value
pri = 2, maxCount = 20); // optional

Conditional stepping is particularly useful to determine the cut-off frequency fr. The small-signal sim-
ulation mode (see Appendix A.1) requires the setup of the variable frequency. This variable can be
subject of a conditional stepping:

- // Cut-off Frequency Extraction :
frequency = stepCond(10 GHz, 100 GHz, ~Curve.Response.beta - 1.0, le-05);

As shown in the following example, the Curve .Response section contains the calculation of beta,
which equals 1 . 0 at the cut-off frequency. For that reason, the conditionbeta - 1.0 should be fulfilled

within an error of le-5.
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Curve

{

+Response

{ . .
ic = abs(output ("Device", "I", "CollectorContact", ac=yes));
ib = abs (output ("Device", "I", "BaseContact", ac=yes));
beta =

ic / if (ib == 0.0 A, 1le-20 A, -ib);

}

Conditional stepping obviously fails if the zero point cannot be found within the boundaries given as the
first two arguments. By setting up a proper stepping control (see Appendix B.4), the boundaries can be
automatically varied during stepping. The boundary adaptation allows to resolve the trade-off between
usability and narrow boundaries. Narrow boundaries speed up the iterative stepping process significantly
(see Section 3.3.3). ' o '

B.4 Stepping Control

Stepping control is a powerful feature for influencing the step increments/decrements while the simulation
is already running;: '

e The stepping delta can be modified for the stepping functions step and stepN. This is useful to
decrease the delta in numerically involved simulation phases, but to speed up simulation by increas-
ing the delta in phases with small changes. Breakdown voltage and transient circuit simulations are
prominent application examples for this kind of stepping control. '

e The iteration boundaries for the conditional stepping function stepCond can be adapted. On the
one hand, narrow boundaries significantly speed up the iteration, on the other hand they reduce
the flexibility of conditional stepping. If the zero point cannot be found within the boundaries, the
simulator fails after the first two steps. For that reason, stepping control can be employed to adapt
the boundaries during simulation. :

Basically, all stepping variables are subject to default stepping control schemes. These default schemes
do literally nothing, so the deltas and boundaries remain constant. If one wants to apply non-trivial algo-
rithms, the SteppingControl section has to be redefined. In the subsection Scheme, a section with
the same name as the stepping variable must be added by inheriting the stepping algorithm:

SteppingControl
{

Scheme

{

+time : SimpleTimestep;

}

In this example, the stepping variable time (obviously of a transient simulation) is assigned to the
SimpleTimestep stepping control algorithm.
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The default files not only provide the default algorithms (ConstantStep and StepCondDefault),
but also the following non-trivial ones:

e SimpleStep: A simple algorithm for decreasing and increasing the stepping delta. '

. StepConlerect Adaptatlon of the iteration boundaries for dlrectly propomonal varlables for
example the threshold voltage.

e StepCondIndirect: Adaptation of the iteration boundanes for indirectly proportional vari-
ables, for example the cut-off frequency.

If the default algorithms do not serve the purpose, one is encouraged to define individual schemes. For
delta steppings, the respective section consists of two independent subsections with predefined names:
Failure and Converged. The former is addressed if the 'simulation of the current stepping configura-
tion failed, the latter is addressed if the solution could be successfully calculated.

The author of the scheme is almost completely free in drawing the right conclusion for the respective
simulation. The only constraint is that the characteristic of the stepping function must not be changed. Due
to the unmodifiable start and stop boundaries, an mcreasmg stepping function must always be increasing,
a decreasing function must always be decreasing.

In order to calculate a new stepping delta, MINIMOS NT provides the following input to the Failure
and Converged section:

Keyword Type Description

delta Real the current stepping delta

deltaOrig | Real the original stepping delta as specified
deltaMin | Real the minimum stepping delta as specified
deltaMax | Real the maximum stepping delta as specified
deltalLog | Boolean | true if logarithmic stepping is activated
start Real the start value of the stepping

stop Real: the stop value of the stepping

value Real the current value of the stepping

Table B.2: Infonnation provided to delta stépping‘cont‘:rol algorithms.

MINIMOS-NT reads/expects two variables from the respective stepping control section:

Keyword Type Description
deltaNew | Real the new stepping delta
print String | information for the user

Table B.3: Information expected from delta stepbing control algorithms.

The termination of the stepping is indicated by specific values for deltaN ew: one for the logarithmic and
zero for the linear case. The author of the stepping algorithm is responsible to adhere to the boundaries
deltaMin and deltaMax of the respective stepping function. These boundaries are not enforced by
MINIMOS-NT.
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A good starting point for writing a new stepping algorithm is to create a new section which is inherited
from SchemeDefaults.ConstantStep. This section will look something like this:

NewStepping : SchemeDefaults.ConstantStep
{ A
Failure // => reduce the delta

{
-aux d = delta / 1.9;
deltaNew = if(abs(d) < abs(deltaMin), if(deltalLog, 1.0, 0.0), 4);
aux printText = "Decrementing delta: " + delta + " -> " + deltaNew;
print = if(deltaNew == delta, "", printText); ‘

) ; ! :

Convérged // => increasé the delta

{ .
aux d = if (value == start, delta, delta * 2);
deltaNew = if (abs(d) > abs(deltaMax), -deltaMax, 4d);

aux printText = "Increasing delta: " + delta + " -> " + deltaNew;
print if (deltaNew == delta, "", printText);

For the control of conditional steppings, a different kmd of algorithm can be apphed MINIMOS-NT
provides values for the following variables:

Keyword Type | Description

valueLow | Real | the current lower stepping boundary
valueHigh | Real | the current higher stepping boundary
condLow Real | the function value at the lower boundary
condHigh Real | the function value at the higher boundary

Table B.4: Information provided to conditional stepping control algorithms.

MINIMOS-NT reads/expects three variables from the respective stepping control section:

valueLowNew | Real the new lower stepping boundary

valueHighNew | Real | the new higher stepping boundary
print String | information for the user

Table B.5: Information expected from conditional stepping' control algorithms.

The stepping algorithm is always addressed in case valueLow and valueHigh have the same sign
since then no zero point can be calculated in-between. This has dlfferent consequences for directly and
indirectly proportional variables.
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Thus, a typical algorithm looks like this:

StepCondDirect : StepCondDefault
{

+checkSign = 1; .

= if (sign(condLow) == checkSign, -valueLow / 1.5, valueHigh);

valueLowNew <
valueHighNew = if (sign(condLow) == checkSign, valueLow, valueHigh * 1.5);
print = if (sign{condLow) -== checkSign,

"Adaptation: bounds are too high => must be lower",
"Adaptation: bounds are too low => must be higher");

}

This algorithm is derived from the default one, inheriting .all definitions of the input variables above.
Depending on checkSign, the boundaries are either shifted up or down. :Due to multiplication and
division in this algorithm the sign of the boundaries is not changed. By using inheritance again, the
indirect variant is very simple: ' -

StepCondIndirect : StepCondDirect - .

{
checkSign = -1;
}

B.5 Additional Stepping Control Keywords

In contrast to the function-level discussed above, stepping can also be controlled at the overall level. In
the Solwve section, two keywords are provided: '

Keyword Type Description
breakSteppingLoop | Boolean | break the innermost stepping loop
evalSteppingLoop .| Boolean | evaluate the stépping only, do not simulate

Table B.6: General stepping control keywords.

The keyword breakSteppingLoop contains a condition for compietely terminating the innermost
stepping loop. For example, the stepping can be terminated if the drain current exceeds 500 mA or if the
cut-off frequency is already exceeded: ' :

breakSteppinglLoop = output {"Device", "I", "DrainContact") > 5e-1 A;

frequency step (1l MHz, 6 GHz, 100 MHz);
‘breakSteppinglLoop = !"Extern.firstStep && ~Curve.Response.beta < 1;

In order to evaluate the stepping functions only, the keyword evalSteppingLoop can be set. This flag
allows a quick view on how the stepping functions work without starting the actual simulation. As there is
no simulator information available, interactive features such as the conditional stepping cannot be tested.
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Appendix C

Miscellaneous Projects |

The following projecis will be presented and discussed in the next.éections:

o The MINIMOS-NT Post-Processing System: Appendix C.1" .
e The MINIMOS-NT Interactive Mode: Appendix C.2
e The Simulation Environment Interaction Library: see Appendix C3

e The MINIMOS-NT Test Appendix C.4

C.1 The Minimos-NT Post-Processing Systém

Despite the fact that the contents of both output files of MINIMOS-NT can be configured by the user in a
very flexible way, it is still necessary to transform or process these outputs after the actual simulation has
been finished. In order to simplify the interface between MINIMOS-NT and such post-processing steps, a
new post-processing system directly administered by MINIMOS-NT has been introduced.

Most of the post-processing is normally done in separate scripts, which read and parse the output files
of MINIMOS-NT and start some additional calculations. For example, the purpose of this can be data
conditioning for visualization purposes or the generation of input files for the next simulation tool in a
simulation flow. To simplify the calling procedures and to make an additional wrap-around script obsolete,
MINIMOS-NT is now able to execute arbitrary shell commands and to call external programs.

But MINIMOS-NT can also provide additional post-processing steps-based on its own output data. A
simple example is the 1astLine post-processing steps, which stores the last line of each curve file block
in a new curve file. This feature is especially useful for conditional steppings (see Appendix B.3), for
example after the extraction of the fr curve. Although the respective behavior could also be controlled
directly in the curve output module depending onan input-deck keyword, it was decided to use this feature
as a demonstration on how to implement MINIMOS-NT post-processing. steps.

However, MINIMOS-NT was also equipped with a more sophisticated post-processing step, namely a Fast
Fourier Transformation functionality. The implementation of the transformation itself is based on the code
given in [165]. In addition, a general input-deck-based interface is provided for the user.

The user can specify an arbitrary number of post-processing steps, which are processed in a consecutive
order. The respective input-deck section has the name PostProcessing.
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It is basically structured as follows:

PostProcessing
A
postProcOnly = no; // Perform only post-processing steps
printSteps = no; // Print available post-processing -steps
enter = yes; " // Enable post-processing at all
Steps
{
FirstStep
{
function = "";
o}
SecondStep
{
FirstSubStep
{
function = "";
}
}
}
}

The simulator iterates over all subsections found in section PostProcessing.Steps. The kind of
post-processing step to execute is specified in the function stfing. ‘Each block can be deactivated by
setting enter to no. Since post-processing uses per definition already calculated data, the preceding
simulation can be completely skipped in case the output files are already present (post ProcOnly). In
addition, the user can request a short help (printSteps) to see which'post-processing functions are
available at all. ' '

As stated above, the lastLine step is a very simple one. Therefore it is used to sketch the usage and
implementation idea. All available post-processing steps can be derived from default steps. In case of
lastLine this predefined step looks as follows:

StepDefaults
{
GeneralStep
{
enter = yes; . // Perform function in this step?
function = "*; // Function, such as "LastLine" or. "FFT"
} : : :
<GenerallIOStep> : GeneralStep
{ .
input = "n, : // Input file
output = """y // Output file
} ‘ . S _
LastLineStep : GeneralIOStep // Write last line of each block
{ ' // to new curve file
function = "LastLine"; ‘
}
}
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The necessary inputs are already derived from other sections, so a typical instance can be defined very
quickly:

PostProcessing
{
Steps
{
+LastLine : "“StepDefaults.LastLineStep.
{

input “Curve.file; .
output = "ft_" + "Curve.file;

}

}

In this example, the simulation task is to start a conditional stepping in order to extract the fr curve. The
output of each step is written to the file specified in the Curve section. This file is the input file for the
post-processing step, whereas the output file name is simply the same name with a preceding £t ..

C.2 The Minimos-NT Interactive Mode

MINIMOS-NT has been equipped with an interactive mode. Whereas the conventional operation mode is
batch-oriented, the user is now able to influence the simulator settings while the simulation is still running.
The simulator is started as usual, so an input-deck is read which contains the complete set of parameters
the simulator requires for all kinds of simulations. Actually, there would be no additional user input
necessary.

The basic motivation for an interactive mode is related to the various output and logging functions of
MINIMOS-NT, which are normally annoying and thus deactivated. Unfortunately, these functions would
be of great interest in case problems like non-converging Newton iteration steps occur. In former versions
of MINIMOS-NT, it was necessary to restart the complete simulation process in order to have the respec-
tive logging activated, for example that of the update norms. This could be even more annoying in case of
long steppings or very time consuming three-dimensional or mixed-mode simulations. So the idea of an
interactive mode came into mind, which would allow to change the input-deck database during simulation.

A typical scenario is then as follows: MINIMOS-NT is started with an input-deck which specifies a three-
dimensional simulation. The first steps, which take several hours, run very well, but then convergence
problems are encountered. The user, who was glad about a concise simulator output up to now, normally
wants then to see the update norms of all quantities, since this would help to identify the problematic
region and/or carrier in the device. The user knows about the interactive mode, presses CTRL-C and after
a while a prompt is offered. '

Received signal, waiting to enter interactive mode

Interactive Mode (h for help)

>

~ >h
h [command] ... print help message
c ... continue
a ... quit without saving anything
cs [dir] ... change current section in input-deck
cd ‘[dir] ... change current directory in input-deck
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1s © [dir] ... list given section, else current section

alias command ... create an alias (alias x=y;)
saveAlias ... save all aliases in .mmi_alias -
show [item] ... show information on a variable/section
showComment - [item] ... show information on a variable/section
: with comment
parse command ... parse ipd/ipl command

By issuing “h”, the list as shown above is offered. The user can now go to the Log section of the input-
deck and can set updateInfo to yes.

> cd Log
“Log > show

Item: “Log
Type: section
Name : Log
Fullname: “Log

File:Line: /iuehome/wagner/vproject/mmnt/defaults/root.ipd: 251
Parent: ~ (base section) :
Ancestor: LogDefaults

Type Name Vartype Value Unit
variable allTerminalQuantities - Boolean tfue

variable updateInfo Boolean . false

variable writeAuxiliary Boolean false

variable writeComplex o Boolean false

“Log >

“"Log > parse updatelnfo = yes;
~“Log > show

Item: ~“Log

variable updateInfo Boolean . true
variable writeAuxiliary . Boolean false
variable writeComplex Boolean false
“Log >

“Log > ¢

Continuing

This version of the interactive mode offers that specific show capability which also takes all inheritances
within the input-deck database into account. In addition, the parsing of complete IPL commands is pro-
vided. While these capabilities are deactivated by default, they are automatically enabled when a given
number of steps has been exceeded. ‘

140



The user is able to influence the compléte parameter database. This does not make sense fo; the majority
of parameters (for example model parameters), but it might be useful to inquire them on a read-only bases.
Furthermore, the interface between the simulator and the input-deck database has to be improved that more
keywords are inquired during the simulation process. A prominent example is the choice of the solver for
linear equation systems. ' . ’

C.3 SEILIB - The Simulation Environment Interaction Library

SEILIB - the Simulation Environment Interaction Library — is designed for handling parameterized input-
decks and commands. In addition, several tools can be integrated to complete simulation flows based on
these parameterized input files and optimization setups can be configured.

Values in text input-decks can be replaced by so-called arguments, which are generally encoded with pre-
ceding and succeeding brackets: <{ SEIARG}>. The parameterized input-decks are regarded as templates
or meta input-decks. They are used to create the actual input files for the simulators. The library provides
several additional features, such as process administration, multi-threading, and host management.

C.3.1 Motivation

The library is dedicated to all users of an arbitrary number of arbitrary programs, scripts, or functions.
Many similar simulations depending on an arbitrary number of input parameters shall be processed and
(partly) repeated. It is therefore essential to keep the inputs and outputs consistent.

Furthermore, all available computational resources should be employed to reduce the execution time. The
setup is extensible and several tools can be integrated to complete tool flows. In context of the GMRES(M)

- evaluation discussed in Section 5.5.3, the library successfully processed 23,000 processes on four IBM

cluster nodes. It is important to note, that the use of arguments is not a must. So the host management can
also be used for simulations based on conventional (non-parameterized) input-decks.

The library is written in PYTHON [167]. The implementation of the library itself can be found in the file
seilib.py, which has to be accessible for the interpreter. .

C.3.2 Getting Started

This section addresses the most important steps how to set up a new SEILIB application. Note that the
optimization system is not covered here, see Appendix C.3.9 for this information.

- A new PYTHON script normally starts with an execution directive for the operating system. As PYTHON

is an interpreted language, the following line tells the loader which interpreter to use:
#! /usr/bin/env python

After importing the SEILIB library file, a new instance of the main class can be created, the name for it
chosen here is p: :

import seilib
p = seilib.seiclass ()

At this point, the proper processing can be already tested. After setting execute permissions for the script

(chmod u+x name_of_script.py), it can be directly started like other programs by typing on the

command line: ./name_of_script.py. Alternatively, the name of the script can be passed to the
interpreter: python name_of_script.py.
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Note that the seilib.py file must be accessible for the interpreter. If the library is stored in another
directory, the search path for libraries can be extended in order to avoid import errors:

import sys
sys.path.append(* ‘name_of_directory’’)

If the script is properly executed, only the welcome message of the SEILIB is printed. Of course, the
newly created instance can now be set up for the actual SEILIB application. The setup can be divided in
two steps: : :

1. Define the tool or the tool flow.

2. Define the arguments and prepare the templates.

C.3.3 Basic Nomenclature and Deﬁnitioné

In order to understand the functionality of the script, the deﬁnmons of tool, command, host, argument,
template, and auxlllary have to be glven

Tool: A tool represents either an arbitrary programi or PYTHON function. The corrimgmd line for a call
and its template input-decks must be specified. In order to be executed, a specific command is
assigned. Since one program might be represented by several tools, each tool should be given a
unique name, which is called prefix. It can be used to derive unique file names for all aux111ar1es and
output files. However, the uniqueness is neither checked nor forced

Command: A command defines the way how a ool is executed. Depending on which of five methods is
chosen, the program is either executed on the local host or on a remote host. PYTHON functions are
always executed on the local host. In add'ition, a command can be restricted to a distinct set of hosts.
This might be necessary for taking the memory consumption of the simulator or license restrictions
of commercial products into account. -

Argument: An argument is the general expression for either a.variable or constant. The name of the
argument, preceded and succeeded by brackets <{NAME}>, can be arbitrarily.used in templates and
all kind of command line definitions. During processing, this name is replaced by the current value
of the argument. Thus, an argument stands for a set of values, which are subsequently processed.
These values are defined either in arrays or by PYTHON functions. In addition to user-defined
arguments, the library provides so-called special-purpose arguments (see Table C.1).

Template: A template looks almost like the input-deck of the erriployed simulator. However, it contains
some arguments instead of some values. For example, if the base voltage is normally defined by
VB = 1.0 V;, it is defined as VB = <{VB}> V;. The templates are used to generate actual
input-decks for the simulators according to the values of its arguments.

Auxiliary: An auxiliary is an actual input-deck which was created based on a template. Its number and
name can be addressed by special-purpose arguments provided by the library.

Host: A host generally represents a computer. The user specifies, how many processes may be simul-
taneously running and which nice level is set. An additional parameter controls the number of
subsequently started processes on that host. A host can have an arbitrary number of host-specific
arguments.
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The following examples give a first glance on how the script is conﬁgured:

p = seilib.seiclass()
p.hostman.newHost ("tcad0l", 0, 8, 1) )
ecmd "= seilib.seicmdexec("<{CMD}> > <{LOG}>") .

p.newTool ("mmnt", # name of the tool
1, 1, # mode and number of sub-modes
ecmd, # command '
"short", # prefix
"<{AUX1}>", .# command line options
[ "seimos.ipd" 1) # array with template files

p.newTool (merge, 12, 1, O, "test", "", [']Y

The instance of the main class seiclass is p. A new host, fcad0l, is registered at the host manage-
ment system of p. The nice level for all processes on that host will be zero, eight processes may run
simultaneously, and the once parameter is set to one (see below).

Next, a command is created, which is here an instance-of the simple execution class seicmdexec.
One purpose of this class is to compose the command line of the actual tool execution depending on the
execution method. The user is absolutely free in defining these commands. In the example, the command
line consists of <{CMD}> and the pipe of standard output to <{LOG}>. The special-purpose argument
<{CMD}> contains the name of the tool and its command line options as specified in the parameter of the
newTool call. ’

Finally, the tools are specified which is here a call of MINIMOS-NT (mode one, one sub-mode, prefix
“short”) with one input-deck only. In the command line, this input file is represented by the special-
purpose argument <{AUX1}>. The template is stored in array, that could hold an arbitrary number of

“templates which are consecutively numbered. Note that all automatically generated numbers start with
one, whereas PYTHON counting starts with zero. ‘

More than one template is particularly useful if the include statement of the input-deck is used in order
to construct a hierarchy of input-decks (as an alternative to conditional inheritance). For example, the
physical definition is stored in a base input-deck, which is then included in various application input-
decks like for simulating Gummel plots and extracting S-parameters. As all of these input-decks may
contain SEILIB arguments, the library therefore supports an arbitrary number of templates. Note that
template names may be arguments themselves.

The second tool is a PYTHON function (not shown here) and does therefore not require a command. It is
supposed to combine all MINIMOS-NT output curve files to one. It belongs to mode twelve.

There are five methods for executing processes:

e Normal execution (seicmdexec): A process is simply started on the local host and the script
waits until it returns. This method should be used for very short programs or scripts.

e SSH process spawning (seicmdssh): The secure shell (SSH).is used to access a remote host. In
addition, a new process is spawned and the script does not wait for its return.

e SSH process spawning and waiting (seicmdsshwait): Same as the method before, but the script
waits for all processes after the last process of the current mode has been spawned. This is necessary
for synchronization purposes. For example, a merge function must wait for all output curve files of
preceding simulations.
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e local process spawning (seicmdspawn): Same as seicmdssh, but the local host is used. If the
name of the local host is found-in the list of hosts, the settings regarding the number of processes
and nice level are considered.

e local process spawning and waiting (seicmdspawnwait): Same as the method before including
the waiting as described for seicmdsshwait. :

The library always waits for all spaWned processes before it terminates.

C.3.4 The Argument System

What happens to the template and its arguments? This brings the argument system into play which is
going to be discussed in this section. The template input-deck seimos . ipd contains the following four
arguments: .

aux infile = "<{CWDIR}>/" + if(getenv("HOSTTYPE“) ==""i386", "mos",
. "mosibm") ;
aux outfile = "<{DEVOUT}>";
aux crvfile = "<{CRV}>";
aux numSteps = <{SN}>;

As stated above, arguments are addressed by their names extended by preceding and succeeding brackets.
The constant <{CWDIR}> is always provided by the library and stands for the current working directory.
The names of the input device is added to this directory, but depends on the host type due to the binary
ordering. The name of the device output and curve files (<{DEVOUT}> and <{CRV}>).depend on the
actual state of the script processing, otherwise they would be overwritten all the time. The only input
parameter is the number of steps <{SN}>, which is referenced by a stepping function. This example is
for demonstration purposes only — the number of scattering events in a Monte Carlo simulator might be a
better one. '

Note that in the parameterized input-deck the double quotes-must still be used for all represented strings
such as the file names. But there are no double quotes for <{SN}>, which actually stands for an integer.
Basically, the script processes strings only, and all non-string values specified as arguments are automati-
cally converted to strings. However, this is no restriction for system handling text-based input-decks.

The last point is how the arguments and their values are registered. This should be demonstrated for the
example: :

p.newVariable ("SN", getSN)

plnewCQnstant("NAME", "Test")

p.newConstant ("AUXDIR", "<{CWDIR}>/aux/", vdir")
p.newConstant ("LOGDIR", "<{CWDIR}>/log/", "dir")
p.newConstant ("OUTDIR", "<{CWDIR}>/out/", rdir")
p.newConstant ("ALLDAT", "<{NAME} >_< {FLATB}>_<{PREFIX}>")

p.newConstant ( "AUX", "< {AUXDIR)}>/<{ALLDAT}>_<{AUXNR}>_<{AUXNAME}>")
p.newConstant ("LOG", "<{LOGDIR}>/<{ALLDAT}>.log", ) "log")
p.newConstant ("CRV", . "<{OUTDIR}>/<{NAME}>_<{FLATB}>.crv")

p.newConstant ("DEVOUT", "<{OUTDIR}>/< {ALLDAT} >_out.pbf")
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Although this does not look-like the ultimate selling point at the first glance, there are quite many argu-
ments for such a small parameterized simulation. Obviously it would have been possible to skip some
of them. But this example is also intended to be a template for further apphcatlons where the underlying
concepts mlght be useful.

Starting with the variable SN its values are coming from a PYTHON function, namely get SN. The func-
tion itself is shown below. Then, nine constants are defined: -a name, three directories, one constant being
used as intermediary, the name convention for auxiliary files, and finally the three constants which were
used in the template input-deck. The following statements characterize the argument system:

e All values may contain arguments itself — they are subsequently refined, but there is a maximum
depth of 20 to avoid endless loops.

o All arguments representing directories should have the third optional parameter dir. The library can
then create the directories in case they do not exist.”

° Constants are constant in terms of their definition only and therefore they are always strings. They

- can indeed stand for a constant value as seen for <{NAME}>, but they can also represent different

values as used for <{CRV}>. The definition of a curve file is constant, but it contains variables so
that the actual value changes. ‘ '

o There are two ways for defining values for variables: either an array or a PYTHON function. By
choosing the latter option,. the user can take advantage of the complete PYTHON language and
libraries.

e Similar to the directories, all log files should have the optional qualifier log. By giving the optional
qualifier, the library is able to detect which log file was actually used for a process. This is partic- .
ularly convenient in heterogenous network environmeénts if the output is piped to log files stored at
different locations. Such a setup is easy with host-specific arguments.

‘e The way of setting up the arguments is often ambiguous.

Note the different definition of <{CRV}>. In contrast to the other constants, it does not include the unique
tool prefix. While setting up tool flows, the output of one tool is normally used as input for another tool. In
the example, the MINIMOS-NT output curve files are the inputs for the merge function which is supposed .
to combine them. This can be easily achieved if the definition does not depend on the tool prefix.

The auxiliary files are created after all arguments have got their respective values. The stream editor is
used to transform the templates to auxiliary files. The user can define an argument <{AUX}>, which
contains the template for a name of an auxiliary file (see the example above). If such a variable is missing,
a unique name is generated by combining <{FLATB}>, <{PREFIX}>, the number of the auxiliary and
its name. The special-purpose arguments <{FLAT}> and <{FLATB}> contain the current meta-level
and combination (for example M1_CI), and can be extended by a certain number of variable values (cf.
maxVarDepth). A list of all special-purpose arguments is given in Table C.1.

C.3.5 Process Management System

The library is basically process-oriented and so the complete implementation is based on this idea. There-
fore, it is useful if the user keeps the idea of creating processes in mind, which are finally executed on one
host. The underlying simulations differ from each other by an arbitrary number of argument values. How
many processes are potentially started?
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| Name Value _
AUX Template for the name of an auxiliary file (not generated if existing)
AUXNAME | Name of the currently processed template file (not generally available)
AUXNR Number of the currently processed template file (not generally available)
AUXx Name of the x-th auxiliary file o
CMD - | The command line of the tool and its options -
COMBNUM | The current combination number
CWDIR The current working directory during initialization
FLAT Current meta-level and combination (extendible)
FLATB Like <{FLAT}>, but all points are replaced by underscores
HOST The name of the selected host (is used for the ssh command)
HUNAME The uname string of the selected host
HVARXx The x-th host-dependent variable
METANUM | The current meta-level number
MODE The current mode
NICE The nice level of the selected host
PREFIX The prefix of the current tool
PROGRAM | The name of the current tool
SUBMODE | The current sub-mode -

Table C.1: List of all special-purpose arguments, which are automatically generated by the library.

This depends on the user conﬁgufation, which can be completed now:

def getSN (name, currPrdcess): return currProcess.procComb * 10

p.numCombinations = 7

The function get SN was already referenced by argument <{SN}> and should return the number of steps.
This number should obviously depend on the processing state. In the example, the number of steps is the
tenfold value of the current combination number. Note that the integer value is automatically converted
to a string. Furthermore, it should be again emphasized that functions like get SN are native PYTHON
code without any restrictions coming from the library. The library provides the following information in
the function parameters: as first parameter the name of the argument the library is requesting a value,
since one function could be used for several variables. The second parameter is the current process (the
name of the parameter is up to the user: here currProcess was chosen) and an instance of the class
seiprocess, which stores all information on this specific process. "

But there is also a second way for defining values of variables: the array. The library automatically uses

the combination number as index for the array. If the array is too small, the combination number modulo
the array length is taken. The alternative configuration for <{SN}> could simply look as follows:

p.newVariable("SN", [ 10, 20, 30, 40, 50, 60, 70 1)
Four members of the process class are essentially defining the state of processing:
Combination: A combination is a set of values of all variables. Each variable gets one particular value
in each combination. Thus, all combinations create one axis of a two-dimensional parameter space.

The class member for the number of combmatlons is numCombznanons which is seven for the
example above. Thus, there are seven states on this axis.
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Meta-Level: This level creates the second axis of the two-dimensional parameter space. All combina-
tions are repeated a specific number of times. The default value for the corresponding class member
metaMultiplier is one, which is not modified in the example above. Note that further dimen-
sions are of course possible, but it was decided to provide them .on a multiplicative basis. The user
is so responsible to derive the dimension by analyzing the meta-level.

Mode: As stated above, each tool is assigned to a mode. Thus, all tools create a set of active modes.
Note that a tool can be disabled by specifying a negative mode.

Sub-Mode: In addition, each tool can have several sub-modes. This means, that each tool can be subse-
quently processed more than one time.

Since this looks a bit complicated, it is inevitable to note that the library can only be as powerful as its state
system. Since the user already specified a set of tools which have to be additionally taken into account,
the hierarchy is given by: '

Loop over all active modes.
Loop over all meta-levels.
Loop over all combinations.

Loop over all tools of the current mode.

AEECEE S

Loop over all sub-modes.

Inside the fifth loop, an instance of the process class is allocated, a host is selected, all arguments get their
values, the auxiliary files are created, and the tool is finally started.

The data stored in the process class is not always complete. There are three levels:

1. Value requesting level: the state information and the real constants are available only.

2. Pre-execution control: besides the state 1nformat10n the values of all arguments are retrlevable by
using getValue. ‘

3. Post-execution control: all data is available

The library offers a flexible execution control. Before a tool is really executed, the function assigned
to the doExecute class member is called. It takes the current process as the only parameter. If this
function returns zero, the process is not executed. Note that the values of all arguments and the complete
state information is available. The user can of course use the complete PYTHON syntax to write this
function. The post-execution function afterExecute works in a similar way. It takes the complete
process information (including the exit code) as only parameter. If it returns zero, the library processmg
-will be terminated as soon as possible. Examples for these two functlons are given now:

def doExecute(currProcess):
if currProcess.procMode != 12: return 0

return 1

def afterExecute(currProcess):

if currProcess.procExit != 0 and not currProcess.procIsCF:
print("log file: " + currProcess.procLog)
return 1

The function doExecute allows only tools of mode twelve to be executed. The function afterExecute
prints the log file of the process in the case of a non-zero exit code, but only if the process represents a
program and not a callable function.
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C.3.6 The Host Management System

The host management system offers the possibility to distribute the load over several CPUs and/or over a
network (see Section 5.3.1). The user can specify an arbitrary number of hosts which are subsequently
used- to execute processes. The system retrieves information -about the load -average of each host, which
can be used to select or reject hosts. By using the once parameter of the host, the user can influence the
way how hosts are selected. This should be clarified by an.example. It is supposed that more than eight
processes should be executed, and four hosts (tcad01 — tcad04) are registered allowing two processes at
the same time. Depending on the parameter once, the following host selection sequences are possible:

once = 1: tcad0l => tcad02 => tcad03 => tcad04 =>
tcad0l => tcad02 => tcad03 => tcad04 => walting...

"
0

tcad0l => tcad0l => tcad02 => tcad02 =>

once o
tcad03 => tcad03 => tcad04 => tcadl04 => waiting...

Hence the parameter once can be used to priorize some hosts, for example to keep the first processes local
or to fully employ the local resources before remote ones are allocated.

Two classes are responsible for the host management: whereas the seihost class represents one partic-
ular host and stores all information about it, the hostManagement class administers the list of all hosts
and organizes the communication to them. '

As already mentioned above, some commands can be restricted to particular hosts. The following example
should demonstrate this:

tcad0l = p.hostman.newHost ("tcadll", 0, 1, 1, [ “powerpc" 1)

tcad02 = p.hostman.newHost ("tcad02",.0, 2, 2, [ "powerpc" ])

tcad03 = p.hostman.newHost ("tcad03", 0, 2, 1, [ "powerpc" 1)
0, 2, 2, [

tcad04 = p.hostman.newHost ("tcad04r", "powerpc" 1)

scmdl = seilib.seicmdssh("source <{CWDIR}>/Seisetup;
nice -n <{NICE}> <{CMD}> > <{LOG}>“
[ tcadll, tcad04 1)

Four hosts are registered, but the command scmdl is restricted to tcad0l and tcad04. Note that in the
restriction array the return values of newHost are used. If there is no host for such a restricted process
available, it is simply postponed. Thus, while the process is waiting for an appropriate host, other unre-
stricted processes can still be executed on hosts tcad02 and tcad03. However, postponed processes have
priority over new processes for the hosts they are waiting for.

Since a new shell is opened for all spawned processes, the user has to ensure the setting of the environment.
Therefore, a setup script can be sourced as shown in the example above. In addition, the user is responsible
for taking the nice level into account. The library offers a wide variety of possibilities in the parameter
space, but the user is totally free in applying them.

C.3.7 Class Diagram

The diagram of the major SEILIB classes is depicted in Figure C.1. In the center, the main class seiclass
is shown. This class combines own functionalities and those of other classes in order to provide the com-
plete set of features. Therefore, it is the base class for all SEILIB applications.

In addition, an auxiliary class provides basic functions such as the administration of command line ar-
guments, exit codes, output functions etc. The name of thlS class is Aux111ary and a global instance
seilib.auxiliary is publicly available.
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Figure C.1: SEILIB class diagram.

C.3.8 Example Application: The Minimos-NT Test

- The formerly single-threaded MINIMOS-NT test system was parallelized mainly for two reasons:

1. New tests have been added to the test suite so that the execution time on a single CPU computer
exceeds user-friendly limits. Such a situation could result in skipped tests and therefore less quality
and effectiveness of the test.

2. With the IBM cluster, new hardware resources are available which can be employed for spawning
multiple processes. B '

So the platform of the complete test system was changed from Linux to AIX, which did not have any
consequences for the PYTHON code since the interpreter is also available for AiX. Furthermore, the new
platform has additional advantages regarding the numerical representation (see Appendix C.4.1).

Instead of parallelizing the existing test system, a new test _System has been developed as a SEILIB appli-
cation. Since both systems are based on the same ideas, the adaptation of the old tests was very simple.
Due to extended features of SEILIB, new tests can be written in a much more flexible and easier way.

In Figure C.2, the class diagram of the new MINIMOS-NT test system is shown. The main class Example
is derived from seiclass and is responsible for processing one test. The process and host management
systems are directly available, the argument system is processing the settings found in the test script.

There is also one test which does not fit entirely in the concept. This test is intended to evaluate all
MINIMOS-NT examples as found in a exa directory. So the specialized class ExaExample was written
in order to process all input-decks found in this directory and to provide all features known from the other
tests.

The new test system is not oniy able to parallelize the execution of one test, but also to parallelize the
execution of all test scripts found in the test directory. This functionality is regarded as a test itself, and
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seiclass - Example

CompleteTest

Figure C.2: Class diagram of the MINIMOS-NT test systefn based on the SEILIB libfary.

therefore a specialized class CompleteTest derived from Example was implemented. At this point of
the test system a cascaded application of the SEILIB can be seen, which is an important aspect regarding
the flexibility and stability of the library.

C.3.9 The Optimization System

Another proof of concept can be conducted based on the next considerations. If the set of the implemented
SEILIB subsystems is analyzed, interesting similarities to the SIESTA framework [232] can be found.
Basically, SEILIB is able to process template input-decks, employs a process and host management system,
and allows to define tool flows consisting of an arbitrary number of arbitrary tools. ‘

1In contrast to the SIESTA system, SEILIB was designed to process a fixed number of combinations in a
pre-defined and deterministic way. However, this should be no obstacle for providing an optimization
feature by implementing a new optimizer class derived from seiclass. The optimization system is a
highly-specialized SEILIB application which can be employed as a full alternative for SIESTA optimization
models. - :

The description of the optimizer system starts with some ‘details on the technical implementation: each
supported optimizer provides an interface program to the actual optimizer system. The optimizers them-
selves and their interfaces are not strictly speaking part of the SIESTA framework. SIESTA starts the
interface program as a separate process and communicates with this process by writing to standard input
and reading from standard output. This part can be easily reproduced in PYTHON.

Each optimization model includes one or more so-called free parameters which are varied by the optimizer
in order to find a minimum of a given scalar (cost or score function) or vector (cf. Levenberg-Marquart
optimizer) target. The free parameters are defined by specifying a default, minimum, and maximum
value. The variation of the free parameters depends on the results of the respective simulations. So
during the optimization process, the interface class of the chosen optimizer requests one or more variable
combinations per step. For each of these combinations, the defined tool flow must be processed after the
values of the free parameters have been replaced in the template input-decks. The respective results are
collected and written to standard output. »

In the SEILIB context, the free parameters are argumehts with boundaries. Furthermore, in the core results
were not of interest at all up to now. For that reason, also slight extensions of the core modules were
necessary and implemented. However, each request of the interface class represents a new setup of a
pre-defined number of combinations. Thus, the concept fits perfectly in the already existing system and
very few adaptations were necessary for providing the optimization setups with all features known from
SEILIB and SIESTA. In fact, the largest part of the optimization system deals with preparing the settings
for the optimizers.

SEILiB-based optimizations are based on one of four optimizer classes, which are derived from a base
optimizer class (see the class diagram in Figure C.3).

150



The Seilib

timization ’ .

_ seilmmin

seiclass seiopt

seigenopt

seisiman

Figure C.3: Class diagram of the SEILIB optimization system.

The following four systems are currently supported:

1. Levenberg-Marquardt Algorithm (LMMIN) by Moré€ et al., 1980

2. Donlp2 (DONOPT) by Peter Spellucci, 1995

3. Adaptive Simulated Annealing (ASA, SIMAN) by Lester Ingber, 1993-2000 [103]

4. A C++ Library of Genetic Algorithm Components (GALIB) by Matthew Wall, MIT [234], 1995-1999

Note that these optimizer systems are not part of the SEILIB code; but merely coupled to SEILIB. Thus,
although their code is redistributed and provided, the license agreements of the respective code or package
(see more information in [232]) have to be considered.

In the following, a short example should be discussed, which employs the DONOPT optimizer:
p = seiopt.seidonopt()
Besides of normal arguments, free parameters are defined, for example:

p.newVariable("a", p.getVariable, [ 1.0, -10.0, .10.0 ]
p.newVariable("b", '‘p.getVariable, [ 0.0, -10.0, 10.0.]
p.newVariable("c", p.getVariable, [ 0.0, -10.0, 10.0 )

Free parameters are variables and get their values from the optimizer. The name of the method is
getvariable (getValue is already used in the argument system). The optional third argument was
used for dir and log before, now it is used to specify the default, minimum, and maximum value of the
variable in an array.

The most critical point of the optimizer model is the feedback path of the result. The tool flow is processed
depending on the input values requested by the optimizer. In order for the results to be written back to the
optimizer, the user is responsible for

1. collecting the results from the correct output files,

2. passing the either scalar or vector-valued result to the setResult method of the current process,
and

3. finally calling the optimizer method writeResult.
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A frequently used place for doing this is the af terExecute method. If more than one tool is involved,
the user must furthermore ensure that this is done for the last tool in the tool flow only.

For example:

currProcess.setResult (scalarResult)
p.writeResult (currProcess)

Now the definition of the optimization model is done — the only missing part is the configuration of the
optimizer. Whereas DONOPT and LMMIN provide configuration methods, the settings of the GENOPT and
SIMAN optimizers have to be done drrectly by accessing the public members of the classes

The advantages of the SEILIB over the SIESTA system are:

o Higher flexibility while deﬁning tool flows.
e Increased performance of the script processing.

Scripts can be combined with the model and optimizer setup.

More user interaction and flexibility during execution.

Simpler extraction of results from output files.

Cornplete system is based on PYTHON syntax and library.
The disadvantages are:

o The optimization model is less strictly defined.
e No compatibility to SIESTA models. .
e Not directly included in further developments of the SIESTA framework.

C.4 The Minimos-NT Test

MINIMOS-NT is always under develdpment since there are always new ideas for additional features.
However, in order to preserve the already achieved efforts, their functionalities have to be tested ona
regular basis.

The MINIMOS-NT test (mmnztest) is a feature-based test: a given set of simulations is run and the pro-
duced output files are compared with references. In case differences are detected, the reason for them
should be found out. The test is based on the following ideas:

e Before new features enter the CVS repository of MINIMOS NT, their mdependence from already
tested features has to be proven.

e As new features enter the CvS repository of MINIMOS-NT, appropriate tests have to be constructed
and added to mmnttest. '

C.4.1 Numerics

Unfortunately, comparing output files is a cumbersome task. The main reason for difficulties is the limited
representation of floating point numbers. The output files heavily depend on

e the compiler,

e the compile mode,
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o the machine(s) used for compiling and linking, and

o the machine used for running the tests.

Therefore, the mmnztest references have to be created multiple times to cover the range of development
environments used at the institute.

Note that all vprojects have to be compiled with the same mode in order to ensure consistent numerical
representations. In addition, compiling and linking should be restricted to one machine only, even if the
full paths are specified in the configuration file.

The problem of the numerical representation has been partly resolved by changing the platform to AIX.
This has one particular reason: The main development platform of the institute is Linux. So here a variety
of compilers and compilation modes can be found, because each developer has personal preferences which
are widely accepted and supported due to the academic context. But once the development is ready to
be ported to AIX, all members of the development team use the same compiler and (almost) the same
compiler configurations. Since AIX is not the major developmerit platform it is also easier to recommend
respective guidelines. ‘

Since the test can be run on more than one platform, also inter-platform comparisons can be made. These
analyses can detect implementation errors which become obvious by running a binary compiled and linked
by another compiler. As the SEILIB test system conveniently allows to repeatedly access the results files,
several checks can be additionally performed during a post-processing of a test run. These checks may
also include comparisons with references generated for other platforms

C.4.2 Nomenclature and Definitions
As stated above, minnttest is a feature-based test:

o A featureisa single MINIMOS-NT functionality, in most cases as described in the documentation.

e A test combines a set of related MINIMOS-NT features, for example stepping functions or optlcal
model functionalities, :

A test consists of general settings such as the name or id as well as of different models.

A name is the name of the template input-deck.
e An id is a unique three-character abbreviation of the test.

devices is a list of one or more input pif files. '

schemes is a list of one or more iteration schemes.

args is a list of variables equally used for all models.

models is a list of one or more model combinations.

For all devices and all iteration schemes all model combinations are performed. The small optical test is
given as example:

import seitestlib
example = seitestlib.Example()

example.newConstant ("NAME", "Optical")

example.newConstant ("NAMEID", "OPT")
example.newConstant ("DEVICE", "Diode-PIN")
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example.newConstanf: ("SCHEME", "DD") -
example.newConstant ("LVL", 1)

example.numCombinations = 2
example.newVariable("ID", [ "01", "2 1)

example.newVariable("J0", [ "lel2", "lel5" 1)
example.newVariable("alpha", [ "0.5", "0.7" 1)

C.4.3 Test Levels

In contrast to former mmnttest versions, a level system was introduced. A level is defined by the argument
<{LVL}>. Generally, it was decided to provide nine levels, which are defined as follows:

| Level | Execution Time | ~ Started |

1 < 30s always
2 < 60s always
3 < 120s always
4 >=120s always
5 < 30s | -not always
6 < 60s | not always
7 < 120s | not always
8 >= 120s | not always
| 9 | deactivated never |

Table C.2: Definition of the test levels.

The ninth level is reserved for deactivated models, for example unsuccessful simulations. The other two
blocks are divided into four categories each based on the execution time. This time refers to a specific
computer, compiler, and mode. At the moment there are over 800 tests available, thus, a complete run
takes several days on a single' computer. This would be obviously very inconvenient for fast tests during
development. In addition, not all tests have to be run really every time. Despite some models are maybe
still important in context of full tests, they can be skipped in order to speed-up pre-check-in tests. So
before changes may be committed to the CVS repository, a full level 1-4 test should be performed. Level
5 to 8 are additionally tested by automated test runs, which are started independently of feature check-ins.

The --1evel option of the test script requires a range or level numbers, all separated by commas, for
example: '

e ——level 1: selectslevel 1.
e —-level 1-4: selectslevel 1,2,3,4.
e —-level 1,3-5,7, 8: selects level 1,3,4,5,7,8 .

C.4.4 File Structure

Core of the test is the main library seitestlib.py, which provides two main classes: Example and
CompleteTest. The former is derived from seiclass, the latter from Example (seé Figure C.2).
The new test library is therefore a full SEILIB application. This library is imported and used by each test
script file. To run all tests automatically, the driver script mmnt test . py can be used.
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Each test consists of several files:

o the test script file in mmnt test which contains all settings and model combinations,

o the test template file which is a parameterized input-deck stored in mmnttest/tpl_ipd,

e the test device file stored in mmnttest/in_pif,

e maybe test data files which are stored in mmnt test /data (see the stepping test for an example).

The following directories, which may further depend on the host platfbrm, are created by the library if
they do not exist:

e in_ipd: the actual input-decks. Their creation is based on the template in tpl_ipd.
e in_pbf: the input-pbf files, which are the converted pifs from in pif..

e out_crv: the output curve files of the tests.

e out_log: the log files contain the MINIMOS-NT output of the respective test.

e out_pbf: the output pbf files of the tests.

e out_pif: the output pif files of the tests.

Obviously, there are connections between the géneral settings and filenames:

e the name specifies the template input-deck in the directory tpl_ipd,
" forexample tpl_ipd/Optical.ipd.tpl

e one device is specifying the input pif file in the directory in_pif,
for example tpl_ipd/Diode-PIN.pif

In the former versions, the input device names were connected with thé test name, which is actually not
necessary. Furthermore, this connection avoids a quite useful sorting by device classes such as diodes. In
the new system, the device name must start with a class and continue with an optional description.

Since the test system combines input information to filenames, several conventions for naming test files
must be adhered to. Devices start with a general device description, for example Diode, the first letter is
capitalized. To further specify the device, for example the material Si-Si, an appropriate string is concate-
nated, separated by a hyphen. So it is easy to see all already existing devices of a specific category and to
pick one for a new test if appropriate. Of course, the extension has to be pif.

Templatés start with a capital letter, the name describes the test. The extension has to be ipd. tpl. Note
that the name of the test is connected with the general setting name in the test script.

Test scripts start with a specific prefix, which is mmnt- for all tests of MINIMOS-NT, and a specific name
of the test script. It is recommended to use the same name as for the template. The extension is . py.

As already shown above, the test script test-optical . py contains:

example.newConStant("NAME“, '"Optiéal") # connected with the template
example.newConstant ("DEVICE", "Diode-PIN") # connected with the device
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C.4.5 Model Identification System

A system was defined to create unique file names for the actual input and output files. To identify a test,
two strings are used:

1. The <{NAMEID}> of the test itself, which is now a three-character abbreviation, for example /MD.
2. The <{ID}> of the model, which is given as first argument of a model

Why is <{ID}> a separate argument and not automatically generated by taking the combination numbers
into account? First, related tests can so have a relationship expressed by the combination number. Second,
skipped or added tests do not destroy already generated references (note that the combination number is
part of the filenames). Based on the idea of the former versions, the device name and the iteration scheme
are added to the filename.

C.4.6 The References

References are created by specifying the --genref option together with a new reference directory:
--refdir x. The directory x should be an existing directory with a-descriptive name. This directory is
not automatically created if it does not exist. However, the shell script automatically creates the following
four subdirectories if they do not exist: x/ref_crv, x/ref pif, x/ref pbf,and x/ref_log.

Since the output log contains information about the simulation time and date, the output log of the simu-
lations is not automatically compared. However, it might be interesting for manual comparisons.
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Appendix D

Calculation of Additional Extrinsic
Parameters |

Based on the extrinsic Y-parameters (see Section 3.5), the S ‘H-, Z-, and A- (ABCD- ) parameters are
calculated: :

' Ds=(1+Yi)(1+Ya) - Yqu', @)

Dy =(1-51)(1+S2)+ 512521 - (D.2)
' Dz = Y11 Yoo — YioYa1 , ‘ ‘ (D.3)

(1= Yu)(1 + Ya) + Yia¥s1) /Ds, . 09

—2Y15)/Ds, , : D.5)
~2Y31)/Ds , (D.6)

(1+ Yar)(1 — Ya) + YiaYar ) /Ds @7

[ |
[V

Il
A/\/\/—\

l\’)
fl

Hy = ((1+ Su)(1+ S2) — 512821) /Du | Y
Hyy = (2512)/Du : - (DY)
Hy = (-28n)/Du, | | (D.10)
Hay = ((1 S22)(1 - Su1) —"512521)/@, . @a1D
Zu =Yn/Dg, S ' (D12
Z13 = —Y13/Dyg, } . (D.13)
Za = —Ya/Dgz, ' (D.14)

Zop =Y1u/Dz, . ' (D.15)
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An = —Yoo/An , ~ (D.16)

Ap=-1/Yn, (D.17)
Ao = (Y12Yo1 — Y Y22)/Yo1, . (D.18)
Ap=-Yu/Ya. . : , (D.19)

Note that the extrinsic Y-parameters are multiplied by the characteristic impedance. If the user wants
MINIMOS-NT to calculate for example intrinsic H-parameters based on the formulae above, not only the
parasitic elements must be set to zero, but also the characteristic impedances of the ports have to be set
to one. In case of a mixed-mode simulation, these additional two-port parameters are not provided. This
is due to the fact that they were originally bound to the parasitic circuit which does not make sense if the
simulation is anyway based on dynamic boundary conditions imposed by a circuit.

However, these calculations are in fact post-processing steps, which could also be done in the context of the
generalized MINIMOS-NT post-processing interface which was recently introduced (see Appendix C.1).
Although the chosen approach is coherent and straightforward, it might be a useful alternative to exempt
the MINIMOS-NT output functions of the various sets, to move the optimization to the post-processing
interface and to provide the transformation formulae in the input-deck. This is not only a matter of
implementation and design, but also of usability.

In addition, a Graphical User Interface for edmng curve files has been developed. The MDI system
(Multiple Document Interface) is able to visualize the curve data values in tables and offers the specific
functionality to transform two-port parameters into other representations. The user is able to select specific
ranges and may also edit the complete file, which is particularly required in case manufacturers provide
measurement data in different formats. The program can also be started in batch-mode as used in a loop
for optimizing the transformation to extrinsic parameters. . :
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Appendix E
Matrix ,Storage Formats

Since the linear equation systems are arising from discretized partial differential equations; only a few
elements of the n x n entries of the system matrices are unequal to zero. In Table 5.1 the share of nonzero
entries is between 3.24 %o and 0.04 %o. In order to reduce the memory consumptlon requlred for storing
such sparse matrices, specific matrix storage formats are employed.

The assembly and in-house solver module use the storage format called MCSR [178], which stands for
Modified Compressed Sparse Row. An analogous concept is.the MCSC format, which stands for Modified
Compressed Sparse Column. The order of the latter format is not row-oriented, but column-oriented,
which significantly speeds up deleting of a complete column. The PARDISO solver module requires the
matrix in a format called CSR, which stands for Compressed Sparse Row. The SAMG package requires a
- format with the same name, but a different variant of it.

E.l Modified Compressed Sparse Row Matrices

In general an MCSR or MCSC matrix is very well suited for sparse matrices with the diagonal elements
all non-zero, which is a basic requirement for the in-house solver module (see Section 4.9). It consists of
two parallel arrays of equal length but different data types. One array contains all indices (idx), the other
all values (val).

The template MCSR class encapsulates all data members required for storing MCSR matrices and provides
the interface to this data. The dimension of the system matrix is n. The number of non-zeros in the matrix
isnnzall. .

Note that all existing elements count as non-zero elements, even though their actual value might be zero. In
context of Newton adjustment, it makes definitely sense to assembly also zero entries in order to reserve
the space for elements which are later required. This can happen if transient contributions or ignored
derivatives are later added. :

The n diagonal elements of the matrix are stored in the first n array elements of the value array. The
value of the i-th position val [i] is located in the i-th row and i-th column of the square matrix. The
off-diagonal elements are stored in the array positions after the diagonal elements in the val array. In the
case of a MCSR matrix the off-diagonals are sorted by the row indices. All off-diagonals of one row are
stored sequentially. The val array contains these sequences for all rows beginning with row number O.
There is no space or separator between the sequences. The last off-diagonal is stored at val [nnz].

The index array is required to store the column indices of the respective values. This array runs in parallel
to val. First, the column numbers can be found in the positions idx [n+1 ...nnz]. Second, the row
numbers and the border between two sequences/rows are needed. This information is found in the lower
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part of the index array which runs in parallel to the diagonal elements in the value array. For the i-th
row the begin index of the sequence stored in the upper part is found at idx [1]. Hence the end of the
sequence equals the beginning of the next row idx[i+1]. To enable a consistent treatment of all rows,
especially in loops, it is convenient to leave val [n] unused, to keep the arrays parallel

Using the Mcsc format means that the off-diagonals are grouped by column. All off- -diagonals of a
column build up a sequence. Hence, the MCSC can be con31dered the transposed matrix stored in MCSR
format.

As an example, the following 4 x 4 matrix should be stored in a MCSR structure [228]:

row /col 01 2 3
0 2100
1 0 43 5
2 706 0
3 0 008

First of all the four diagonal entries 2, 4, 6 and 8 are stored in the lower part of the value array - and then
the four off-diagonals 1, 3, 5 and 7 in the upper part. nnz is eight, two arrays with a diménsion of nine
have to be allocated. The lower part of the value array contains the four diagonal entries, the next entry is
left out and then the off- dlagonals are stored sequentially. Hence, the value array looks like (u stands for
unused): : :

4
u

=, o
w o
[SARRN |
~ 00

The lower part of the index array contains the starting index of every row in the upper part, the upper part
the original column indices: :

The access to this structure is straightforward. For instance, the entry at the position ([row, coll)
[2, 2] should be derived. For a diagonal entry, the entry can be directly derived: val[2]=6. The
next example is the off-diagonal [1, 3], hence the index array is needed. The off-diagonal sequence
of row number 1 starts at position idx[1]=6. In case there are off-diagonal entries at all, their col-
umn indices have to compared with 3. So the number of off-diagonal entries of the first row is derived.
The starting index of the sequence of the next row is idx[2]=8, hence there are two off-diagonals
(1dx[2]-1idx[1]=8-6=2). The first one belongs to column idx [6]=2, so the next one has to be
checked, idx[7]=3, which is the right position within the array. The last step is to read the value
val [7]=5. If there is no value for an existing position stored, it is assumed to be zero.

E.2 Compressed Sparse Row - Variant 1

As already mentioned above, PARDISO requires the system matrix stored in a format called CSR, Com-
pressed Sparse Row. Since there are several variants, this one is called Variant 1 in this work.

The main difference between MCSR and CSR regards storing of diagonal entries. In MCSR an array of
length n is used to store all diagonal entries, even if there are zero ones. The CSR format does not store
all diagonal entries, and requires therefore also the index information for these entries. For that reason

160



all entries of all rows are stored sequentially in the value array of length nnz and all column indices are
stored in the parallel array ja. The only information missing is the starting index of each row, which is
stored in the array ia of lengthn + 1. The CSR representation of the matrix above looks as follows:

pos

012345867
val 2 1 4 35 76 8
ja 01123023
ia 02578

E.3 Compressed Sparse Row - Variant 2

The difference between Variant I and Variant 2 is the place of the diagonal entry within the value sequence
of each row. Whereas Variant 1 stores the diagonal entry in ascending order with off-diagonal entries,
Variant 2 requires the diagonal entry to be the first one of each row followed by the off-diagonal entries.
Therefore, the matrix example is represented as follows:

pos 01 23 45 67
val 2 1 4356 7 8
ja 01123203
ia 0 25 7 8

E.4 Matrix Storage Format Conversion

Since the CSR format is used in context of external solver modules only, the MCSR class provides a
method for converting the already stored MCSR matrix to the respective CSR variant.

This method takes two boolean arguments: the first one, fortran, can be used to adapt the index array
for the use in FORTRAN code. It is a well-known fact that indexing in FORTRAN starts with 1, whereas
with 0 in C/C++. For that reason, the indices have to be incremented by one in case the array is passed to
a function written in FORTRAN. The second flag sortedDiag indicates whether to store the diagonal
sorted (Variant I) or at the beginning of the row (Variant 2). The respective arrays are stored within the
class and respective direct access methods to the CSR data are provided.

161



Bibliography

[1] ABAQUS, Inc., Providence, RI. ABAQUS, January 2005. REp7/www.hks.comv|

[2] Advanced Computing Technpldgy Center, IBM. Engineering and Scientific Subrqutine Library
(ESSL), January 2005. hitp://www.research.ibm. com/actc/()ptlmlzed_Math_Llbranes.htmll

[3] Advanced Micro Devices. AMD Core Math Ltbrary, January 2005 http-/7www.amd.com/us}
en/Processors/DevelopWithAMD/0,,30_2252_2282,00.html. C :

[4] Agilent Technologies, Inc., Palo Alto, CA. Advanced De‘sign System ADS, 2003.
[5] Agilent Technologies, Inc., Palo Alto, CA Guide to Harmonic Balance Sirﬁulation in ADS, 2003.

[6] Agilent Technologies; Inc., Palb Alto, CA. E8882A Harmonic Balance Simulator, 2004.
http://eesof.tm.agilent.com/products/e8882a-a.html.

[7] ANSYS, Inc., Canonsburg, PA. ANSYS, January 2005. http://www.ansys.éom/l

- [8] Applied Wave Research, Inc., El Segundo, CA. 7 Microwave Office 2004, 2004.
http:77Wwww.mwollice.com/products/mwoltice/] . : :

[9] N. Arora. MOSFET Models for VLSf Circuit Simulation. Springer, 1993.

(10]. U. Aschér P.A. Markowich, C. ‘Schmeiser H. Steinriick, and R. Weiss. Conditioﬁing of the Steady
State Semiconductor Device Problem. Techmcal Report 86-18, University of British Columbia,
1986. : . :

[11] T. Ayalew. SiC Semiconductor Devices Technelogy, Modeling; and Simulation. lDiésertation, TU

Vienna, 2004. fittp:/7www.iue.tuwien.ac.at/phd/ayalew/]

{12] T. Ayalew, S: Wagner, T. Grasser,‘ and S. Selberherr. Numerical Simulation of Microwave MESFETSs
in 4H-SiC Fabricated Using Epitaxial Layers on Semi-Insulating Substrates. In Proc. 5th European
Conference on Silicon Carbide and Related Materzals pages.76-77, Bologna, Italy, September
2004, : A

[13] E. Anderson Z. Bai, C. Bischof, S. Blackfbrd J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Ham.marhng, A. McKenney, and D. Sorensen. IAPACK Users Guide. SIAM, third edition,
1999. :

[14] Z. Bai, D. Day, J. Demmel, and J. Dongarra. A Test Matrix Collectzon for Non-Hermitian Eigen-
: value Problems (Release 1.0), October 1996. '

[15] R.E. Bank and D.J. Rose. Global Approximate Newton Methodé. NumerMath., 37:279-295, 1981.

[16] RE Bank, D.J. Rose, and W. Fichtner. Numerical Methods for Semiconductor Device Simulation.
-IEEE Trans.Electron Devices, ED-30(9):1031-1041, 1983.

162


http://www.hks.coml.
http://www.research.ibm.comlactc/Optimized.Math-Libraries.html.
http://www.amd.comlus-
http://www.ansys.corlll.
http://www.mwoffice.comlproducts/mwoffice/.
http://www.iue.tuwien.ac.at/phd/ayalew/.

[17] R.Barrett, M. Berry T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks of Iterative
Methods. SIAM, Philadelphia, PA, 1994.

[18] Basic Linear Algebra Subprograms. Basic Lmear Algebra Subprograms (BLAS), January 2005.
[ttp-77www.netliborg/blas/.

[19] M. Benzi, -C.D. Meyer, and M. TUMA. A Sparse Approx1mate Inverse Precondmoner SIAM
J.Sci.Comput., 17(5): 1135 1149, 1996.

[20] BIPSIM, Inc., London, Onfario. BIPOLE3, September 2004.
hftp77www.bipsim.com/mainirame.himl] '

[21] L.S. Blackford, J. Choi, A. Cleary, E. D’ Azevedo, J. Demmel, L. Dhillon J. Dongarra, S. Hammer-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley Scal APACK Users’ Guide.
Siam, Phlladelphla 1997.

[22] K. Blgtekjer.  Transport Equations for Electrons in Two-Valley Semiconductors. IEEE
Trans.Electron Devices, ED-17(1):38-47,1970.

[23] Boeing Math  Group. " BCSLIB-EXT  Iterative  Solver, January 2005.
htip:7www.boeing.com/phantom/iiss/beamsif.himl] :

[24] Boeing Math Group. Ihtelligent Iterative Solver Service (IISS), January 2005.
htip:/7www.boeing.com/phanfom/115s/}

[25] R. Boisvert, R. Pozo, K. Remington, R. Barrett, andJ Dongarra. Matrix Market: A Web Resource
for Test Matrix Collections. The Quality of Numerical Software: Assessment and Enhancement,
pages 125-137, 1997.

[26] Boost. Basic Linear Algebra: uBLAS, November 2004.vhttp://Www.boost.org/lnbs/numenc/ublas/[

[27] Boost. The Boost C +;|- Librafies,‘ November 2004. http:77www.boost.org/]

[28] T.J. Bordelon, X.-L. Wang, C.M. Maziar, and A.F. Tasch." Accounting for Bandstructure Effects
in the Hydrodynamic Model: A First-Order Approach for Silicon Device Simulation. Solid-State
Electron., 35(2): 131-139, 1992.

[29] LN Bronstein, K.A. Semendjajew, G. Musiol, and H. Miihlig. Tas‘chenbuch der Mathematik 3.
liberarbeitete und erweiterte Auflage. Verlag Harri Deutsch Frankfurt am Main, Thun, 19997.

[30] E. Buturla, P. Cottrell B. Grossman, and K. Salsburg Finite-Element Analysns of Semiconductor
Dev1ces. The FIELDAY Program. IBM J.Res.Dev., 44(1-2):142-156, 2000

[31] D.M. Caughey and R.E. Thomas. Carrier Mobilities in SlllCOl’l Empmcally Related to Doping and
Field. Proc.IEEE, 52:2192-2193, 1967.

[32] H. Ceric, A. Hoessinger, T. Binder, and S. Selberherr. Modeling of Segregation on Material Inter-
faces by Means of the Finite Element Method. In Proc. 4th IMACS Symposium on Mathematical
Modeling, pages 445-452, Vienna, Austria, February 2003. '

[33] J. Cervenka. Three-Dimensional Mesh Generation for Device and Process Simulatibn. Dissertation,
Technische Universitit Wien, 2004.

- [34] R. Chandra, L. Dagurh, D. Korh, D. Maydan, J. McDonald, and R. Menon. Parallel Programming
in OpenMP. Academic Press, San Diego, London, San Francisco, 2001.

163


http://www.netlib.
http://www.bipsim.comlmainframe.html.
http://www.boeing.comlphantomliiss/beamsit.html.
http://www.boeing.comlphantomliiss/.
http://www.boost.org/libs/numeric/ublas/.
http://www.boost.org!.

[35] R. C. Clarke and J. W. Palmour. SiC Microwave Power Technologles Proc.IEEE, 90(6):987-992,
2002.

[36] T. Clees and K. Stﬁben. Algebraic Multigrid for Industrial Semicoﬁductor Device Simulation. In
Proc. Challenges in Scientific Computing, pages 110-130. Springer, Berlin, 2002.

[37] T. Clees, K. Stiiben, and S. Mijalkovi¢. Application of an Algebraic Multigrid Solver to Process
Simulation Problems. In Proceedings 2000 International Conference on Simulation of Semicon-
ductor Processes and Devices, pages 225-228. IEEE, 2000.

[38] Computational Electronics Research Group, University of Purdue. Nanomos, 2002.
nttp://www.nanonub.org/s1mulatxon_too1s/nanomos_tool_mtormatlonl '

[39] Computer Science Department, University of Basel, Switzerland. Parallel Sparse Direct Linear
Solver PARDISO - User Guide Version 1.0, 2003.

[40] Comsol, Inc., Burlington, MA. FEMLAB, January 2005. [P/ Www.comsol.cony]

[41] Cree. Cree’s Silicoh Carbide RF Products, 2003. ftp://www.cree.con/Products/iI sicproducts.asp

[42] Crosslight, Inc. APSYS, 2005. [ifip7Twww. crosslight. corrvaownloadsmownloaas html]

[43] E. Cuthill and J. McKee. Reducmg the Bandwidth of Sparse Symmetric Matrices. In ACM Conf.,
pages 157-172, 1969.

[44] T.A. Davis, J.R. Gilbert, S.I. Larimoré, and E.G. Ng. A Column Approximate Minimum Degree
Ordering Algorithm. ACM Trans. Mathematical Software, 30(3):353-376, 2004. '

[45] M.]. Deen and T.A. Fjeldly. CMOS RF Modeling, Characterzzatlon and Applzcatzons World
Scientific, 2002

[46] J. Demel. JANAP — Ein Programm zur Szmulatzon von elektrischen Netzwerken Dissertation,
Technische Universitat Wlen 1989. '

[47] Department of Computer and Smence and Engineering, University of Florida. Unsymrrgetfic Multi-
Frontal Package (UMFPACK), January 2005. http://www.cise.ufl edu/research/sparse/umfpack/}

[48] Department of Electrical Engineering and Computer Sciences, University of Berkeley, Berkeley,
CA. BSIM4.4.0 MOSFET Model, March 2004. :

[49] H.A. Van der Vorst. ‘BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the
_ Solution of Nonsymmetric Linear Systems. SIAM J.Sci.Stat.Comput. 13(2), pages 631-644, 1992.

[50] P. Deuflhard. A Modified Newton Method for the Solution of Ill-Conditioned Systems of Nonlinear
Equations with Application to Multiple Shooting. Numer.Math., 22:289-315, 1974.

{51] H.J. Dirschmid. Mathematische Grundlagen der Elektrotechnik. Vieweg, 1986.
[52] H.J. Dirschmid. Matrizen und Lineare Gleichungen. Manz, 1998.
[53] J.J. Dongarra and J.R. Bunch. LINPACK User’s Guide. SIAM, Philadelphia, 1990.

[54] J.J. Dongarra, L.S. Duff, D.C. Sorensen, and H.A. Van der Vorst. Numerical Linear Algebra for
High-Performance Computers. SIAM, Philadelphia, 1998.

(55] L Duff, R. Grimes, and J. Lewis. User’s Guide for the Harwell-Boeing Sparse Matrix Collection,
October 1992.

164


http://www.nanohub.org/simulation_tools/nanomos_tooljnformation.
http://www.comsol.coml.
http://www.cree.comlProducts/rLsicproducts.asp.
http://www.crosslight.comldownloads/downloads.html.
http://www.cise.ufl.eduiresearch/sparse/umfpack/.

[56] LS. Duff and J.A. Scott. A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear
Systems. ACM Trans.Mathematical Software, 30(2):95-117, 2004.

[57] M. Enciso-Aguilar, F. Aniel, P. Crozat, R. Adde, H.-J. Herzog, T. Hackbarth, U. Koénig, and
H. v. Kénel. DC and High Frequency Performan’ce of 0.1 um n-type Si/Sip.6Geg.4« MODFET with
fmax = 188 GHz at 300K and fpax = 230 GHz at S0 K. Electron.Lett., 39(1):149-151, 2003.

[58] W.L. Engl and H. Dirks. Numerical Device Simulation Guided by Physical Approaches. In B.T.
Browne and J.J. Miller, editors, Numerical Analysis of Semiconductor Devices and Integrated Cir-
cuits, volume I, pages 65-93, Dublin, 1979. Boole Press.

t59] W.L. Engl and H. Dirks. Functional Device Simulation by Merging Numerical Building Blocks. In
B.T. Browne and J.J. Miller, editors, Numerical Analysis of Semiconductor Devices and Integrated
Circuits, volume II, pages 34-62, Dublin, 1981. Boole Press. .

[60] M. Galassiet al. GNU Scientific Library Reference Manual. Network Theory Limited, 2002.

[61] M.A. Heroux et al. An Overview of the Trilinos Package Architecture. Sandia National Laboratories,
2003. :

[62] Fachbereich Elektrotechnik Hochschule fiir Technik und Wirtschaft Dresden (FH). SIMBA -
Dreidimensionale numerische Simulation elektronischer Bauelemente 2005 http://www.htw-
dresden.de/~ klix/simba/welcome.html.

[63] R.D. Falgout, J.E. Jones, and U.M. Yang. The Design and Implementation of Hypre, a Library of
Parallel High Performance Preconditioners. In Numerical Solution of Partial Dzﬂerentzal Equations
on Parallel Computers. Springer, 2004. (to.appear).

[64] S. Flllppone and M. Colajanni. PSBLAS: A Library for Parallel Linear Algebra Cbmputation on
Sparse Matrices. ACM Trans.Mathematical Software, 26(4):527=550, 2000.

[65] C. Fischer. Bauelementsimulation in einer Computergestiitzten Entwurfsumgebung. Dissertation,
Technische Universitdt Wien, 1994. http://www.iue.tuwien.ac.af]

[66] C. Fischer and S. Selberherr. Optimum Scaling of Non-Symmetric Jacobian Matrices for Threshold
Pivoting Preconditioners. In Intl. Workshop on Numerical Modeling of Processes and Devices for
Integrated Circuits NUPAD V, pages 123-126, Honolulu, 1994.

[67] International Technology Roadmap for Semiconductors. International Technology Roadmap for
Semiconductors - 2001 Edition, 2001. fhttp://public.itrs.nef]

(68] G. Freeman, B. Jgannathan, S.J. Jeng, J.-S. Rieh, AD Stricker, D.C. Ahlgren, and S. Subbanna.
Transistor Design and Application Considerations for >200-GHz SiGe HBTs. IEEE Trans.Electron
Devices, 50(3):645-655, 2003.

[69] G. Freeman, J.-S. Rieh, B. Jagannathan, Z. Yang, F. Guarin, A. joseph, and D. Ahlren. SiGe HBT
Performance and Reliability Trends Through fr of 350 GHz. In Proc. International Reliability
Physics Symposium, pages 332-338, Dallas, TX, 2003. ‘

[70] A. Gehring and H. Kosina. Wigner-Funcfien Based Simulation of Classic and Ballistic Transport
in Scaled DG-MOSFETs Using the Monte Carlo Method In Internatzonal Workshop on Computa-
tional Electronics, Purdue, 2004.

[71] A. George and J.W.H. Liu. An Automatic Nested Dissection Algorithm for Irregular Finite Element
Problems. SIAM J Numer.Anal., 15(5):1053-1069, 1978.

165


http://www.iue.tUwien.ac.at.
http://public.itrs.net.

[72] A. George and D.R. McIntyre. On the Application of the Minimum Degree Algorithm to Finite
Element Systems. SIAM J.Numer.Anal., 15(1):90-112, 1978.

[73] Gesellschaft fiir Computer Simulationstechnik GmbH, Darmstadt. Maxwell’s Equations by Finite
Integration Algorithms (MAFIA), January 2005. ftftp//Www.cst.de/]

[74] 1. Getreu. Modeling the Bipolar-Transistor. Elsev1er Amsterdam, 1978.

[75] N.E. Gibbs, W.G. Poole, and P.K. Stockmeyer An Algorithm for Reducing the Bandw1dth and
Profile of a Sparse Matrix. SIAM J.Numer.Anal., 13(2):236-250, 1976.

[76] R. Girvan. Partial “Differential Equations - Differential Apnroachés, December 2001.
Rttp:/7www.sCientific-computing. Com/reviewa. tml} - ‘

[77] B.V. Gokhale. Numerical Solutions for a One- D1mens1ona1 SlllCOl‘l n-p-n. Tran51stor IEEE
Trans Electron Devices, 17(8):594-602, 1970. '

[78] G.H. Golub and C.F. Van Loan Matrix Computatzons J ohn Hopkms University Press, second
edition, 1989.

[79] N.I.M. Gould and J.A. Scott A Numerical Evaluation of HSL Packages for the Direct Solution
of Large Sparse Symmetrlc Linear Systems of Equations. ACM Trans.Mathematical Software,
30(3):300-325, 2004. ’

[80] H. Grad. On the Kinetic Theory of Rarified Gases. Comm. Pure and Appl.Math., 2:311-407, 1949.

[81] T. Grasser. Mixed- Mode Devzce Simulation. Dissertation, Technische Universitit Wien, 1999.
[nttp: TTWWW.lue.ftuwien.ac. at}

- [82] T. Grasser. Non- Parabollc Macroscoplc Transport Models for Semiconductor Dev1ce Slmulatlon
Physica A, 349(1/2) 221-258, 2005.

[83] T. Grasser, C. Jungemann, H Kosina, B. Memerzhagen and S. Selberherr Advanced Transport
~ Models for Sub-Micrometer Devices. In Proc. Simulation of Semiconductor Processes and Devices,
Munich, Germany, September 2004. '

[84] T. Grasser, R. Kosik, C. Jungemann, H. Kosina, and S. Selberherr. Non-Parabolic Macroscopic
Transport Models for Device Simulation Based on Bulk Monte Carlo Data. JAppl. Phys pages
1 10, 2005. (in print).

[85] T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr. Using Six AMoments of Boltzmann’s Transport
Equation for Device Simulation. J.Appl. Phys., 90(5):2389-2396, 2001.

[86] T. Grasser, H. Kosina, C. Heitzinger, and S. Selborhérr. Characterization of the Hot Electron Dis-
tribution Function Using Six Moments. J. Appl. Phys., 91(6):3869-3879, 2002.

[87] T. Grasser, H. Kosina, and S. Selberherr. On the Validity of the Relaxation Time Approximation
for Macroscopic Transport Models. In Proc. Simulation of Semiconductor Processes and Devices,
Munich, Germany, September 2004.

[88] T. Grasser and S. Selberherr. Fully-Coupled Electro-Thermal Mixed-Mode Device Simulation of
SiGe HBT Circuits. IEEE Trans.Electron Devices, 48(7):1421-1427, 2001.

[89] T. Grasser, T.-w. Tang, H.. Kosina, and S. Selberherr. A Review of Hydrodynamic and Energy-
Transport Models for Semiconductor Device Simulation. Proc.IEEE, 91(2):251-274, 2003.

166



http://www.cst.de/.
http://www.scientifit-computing.comlreview4.html.
http://www.iue.tuwien.ac.at.

[90] M.A. Green and J. Shewchun. Application of the Small-Signal Transmission Line Equivalent Cir-
cuit Model to the A.C., D.C. and Transient Analy51s of Semiconductor Devices. Solid-State Elec-
tron., 17(9):941-949,1984. -

[91] M. Gritsch. Numerical Modeling of Silicon-on-Insulator MOSFETs. Dissertation, Technische
Universitit Wien, 2002. http://www.1ue.tuw1en.ac.at/phd/grltschl

[92] M.]. Grote and T. Huckle. Parallel Precondltlonmg with Sparse Approx1mate Inverses. SIAM
J.Sci.Comput., 18(3):838-853, 1997.

[93] A. Gupta. Recent Advances in Direct Methods for Solving Unsymmetric Sparse Systems of Linear
Equations. ACM Trans.Mathematical Software, 28(3):310-324, 2002.

[94] M.S. Gupta. Power Gain in Feedback Amplifiers, a Classic Revisited. IEEE Trans.Microwave
Theory and Techniques, 40(5):864-879, 1992.

[95] M.S. Gupta. What Is RF? IEEE Microwave Magazine, pages 12-16, December 2001.

[96] O. Heinreichsberger. Transzente Simulation von Sllzzmm-MOSFETs Dissertation, Technische Uni-
versitdt Wien, 1992,

[97] K.A. Hennacy, Y.-J. Wu, N. Goldsman, and I. Mayergoyz. Deterministic MOSFET Simulation Us-
ing a Generalized Spherical Harmonic Expansion of the Boltzmann Equation. Solid-State Electron.,
38(8):1489-1495, 1995.

" [98] Hewlett Packard. Test and Measurement Af)plication Note 95-1, S-Parameter Techniques, 1995.

[99] C.W. Ho, A.E. Ruehli, and P.A: Brennan. The Modified Nodal Approach to Network Analysis.
IEEE Trans.Circuits and Systems, CAS-22(6):504-509, 1975.

[100] H. Hofmann. Das elektromagnetische Feld. Springer, 1986.

[101] P. Huguet, P. Auxemery, G. Pataut, P. Fellon, D. Geiger, and H. Jung. Spéce Evaluation of P-HEMT
MMIC Process PH15. In Proc. European Space Components Conf., pages 199-204, Noordwijk,
2000:

[102] M. Ida, K. Kurishima, N. Watanabe, and T. Enoki. InP/InGaAs DHBTs with 341-GHz fr at High
Current Density of over 800 kA/cm?. In IEDM Tech.Dig., pages 776-779, Washington, D.C., 2001.

[103] L. Ingber. Very Fast Simulated Re-Annealing. Mathematical Computer Modelling, 12:967-973,
1989. fttp7//Www.ingber.com/asag9_vist.ps.gz} . :

[104] Institut fiir Grundlagen der Elektrotechnik und Elektronik, Technische Universitit Dresden. DE-
VICE, 2000. mm-dresden.deFschroter/Device/Doc/device_descr.

- [105] Institut fiir Mlkroelektromk Technische Universitdt Wien, Austria. Minimos-NT 2 1 User’s Guide.
hftp//www.1ue.tuwien.ac. aﬂsoffware7m1n1mos nt] 2004. :

[106] Institut National de Recherche en Informatique et en Autorhatique, Rocquencourt. Scilab - A Sci-
entific Software Package, January 2005. |http://scilabsoft.inna.ir/}

[107] Intel. Intel Math Kernel Library 7.2, January 2005. http://www.intel.com/software/products/mkl/]

[108] inuTech - Innovative Numerical Technologies, 'Nﬁmberg. ' DIFFPACK, January 2005.
[ttp:77www.diffpack.com/}

167


http://www.iue.tuwien.ac.at/phdlgritsch.
http://www.ingber.comlasa89_vfsr.ps.gz.
http://www.iee.et.
http://www.iue.tuwien.ac.at/software/minimos-nt.
http://scilabsoft.inria.frl.
http://www.intel.comlsoftware/products/mkll.
http://www.diffpack.coml.

[109] B.M. Irons. A Frontal Solution Program for Finite Element Analysis. Int.J.Numer.Meth.Eng., 2:5—
32, 1970. A

[110] ISE Integrated Systems Engmeermg AG, Zurlch Switzerland. DIOS- ISE, ISE TCAD Release 8.0,
July 2002.

[111] ISE Integrated Systems Engineering AG, Ziirich, Switzerland. DESSIS-ISE, ISE TCAD Release
9.0, August 2003.

[112] C.Jacoboni and P. Lugli. The Monte Carlo Method for Semiconductor Device Simulation. Springer,
Wien-New York, 1989.

[113] B. Jgannathan, M. Khater, F. Pagette, J.-S. Rieh, D. Angell, H. Chen, J. Florkey, F. Golan, D.R.
Greenberg, R. Groves, S.J. Jeng, J. Johnson, e. Mengistu, K.T. Schonenberg, C.M. Schnabel,
P. Smith, D.C. Ahlgren, G. Freeman, K. Stein, and S. Subbanna. Self-Aligned SiGe NPN Transistor
-With 285 GHz fnax and 207GHz frina Manufacturable Technology IEEE Electron Device Lett.,
23(5):258-260, 2002.

[114] J. S Rosen. General ANSYS Overview, January 2005. http: /Twww.andrew.cmu.edu/user/jsrosen] ‘
thermalFL/overview.htm.

[115] C. Jungemann and B. Meinerzhagen. Hierarchical Device Simulation: The Monte-Carlo Perspec-
- tive. Springer, Wien-New York, 2003.

[116] C. Jungemann, B. Neinhiis, and B. Meinérzhagen. Full-Band Monte Carlo Device Simulation ofa
SiGe/Si HBT with a Realistic Ge Profile. IEICE Trans.Electron., E83-C(8):1228-1234, 2000

[117] G. Karypis and V. Kumar. A Fast and High Qualxty Multilevel Scheme for Partmonmg Irregular
Graphs SIAM Journal on Scientific Computing, 20(1):359-392, 1998

[118] R. Klima, T. Grasser, and S. Selberherr. The Control System of the Device Simulator Minimos-
NT. In Proc. 2nd WSEAS Intl. Conf. on Simulation, Modellmg and Optlmzzatlon pages 281-284,
Skiathos, Greece, September 2002.

[119] C.H. Koelbel, G.L. Steel Jr., and M.E. Zosel. The High Performance Fortran Handbook. Scientific
and Engineering Computatlonal MIT Press, Cambrldge MA, 1994,

[120] S.J. Koester, K.L. Saenger, J.O. Chu, Q.C. Ouyang, J.A. Ott, K.A. Jenkins, D.F. Canaperi, J.A.
Tornello, C.V. Jahnes, and S.E.Steen. Laterally Scaled Si-Sip7Geg s n-MODFETs with fi.x >
200 GHz and Low Operating Bias. IEEE Electron Device Lett., 26(3):178-180, 2005.

[121] S.J. Koester, K.L. Saengér, J.O. Chu, Q.C. Ouyang, J.A. Ott, M.A. Rooks, D.F. Canaperi, J.A.
Tornello, C.V. Jahnes, and S.E.Steen. 80 nm gate-length Si/Sig 7Geo.3 n-MODFET with 194 GHz
fmax. Electron.Lett., 39(23):1684-1685, 2003.

[122] H. Kosina, M. Nedjalkov, and S. Selberherr. Theory of the Monte Carlo Method for Semiconductor
Device Simulation. IEEE Trans.Electron Devices, 47(10):1898—1908, 2000.

[123] H. Kosina and S. Selberherr. A-Hybrid Device Simulator that Combines Monte Carlo and Drift-
Diffusion Analysis. /EEE Trans.Computer-Aided Design, 13(2):201-210, 1994.

[124] H. Kosina and Ch. Troger. SPIN — A Schrodinger-Poisson Solver Including Nonparabélic Bands.
VLSI Design, 8(1-4):489-493, 1998.

[125] K.S. Kundert. Introduction to RF Slmulatlon and Its Appllcatlon IEEE J.Solid-State Circuits,
34(9):1298-1319, 1999.

168


http://www.andrew.cmu.eduJuser/jsrosenl

[126] H.P. Langtangen. Computational Partial Differential Equations, Numerical Methods and Diffpack
Programming, Lecture Notes in Computational Science and Engineering. Springer Verlag, 1999.

[127] S.E.Laux. Techniques for Small-Signal Analysis of Semiconductor Devices. IEEE Trans.Electron
Devices, ED-32(10):2028-2037, 1985. -

[128] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods., October 1997.

{129] C.D. Levermore. Moment Closure Hierarchies for Kinetic Theories. J.Stat. Phys., 83(1):1021-1065,
1996.

[130] B. Li, S. Prasas, L.-W. Yang, and S.C. Wang. A Semianalytical Parameter-Extraction Procedure
for HBT Equivalent Circuits. IEEE Trans. Mzcrowave Theory and Techniques, 46(10):1427-1435,
1998.

[131] N. Li, Y. Saad, and E Chow. Crout Versions of ILU for General Sparse Matrices. SIAM
J.Sci.Comput., 25(2):716-728, 2003.

[132] J.J. Liou and F. Schwierz. RF MOSFET: Recent Advances, Current Status and Future Trends.
Solid-State Electron., 47(11):1881-1895, November 2003. .

[133] Livermore Software Technology Corporation Corp., Livermore, CA LS-DYNA, January 2005.
- AP/ WWW.ISTC.comv}

[134] M. Lundstrom. Fundamentals of Carrier Transport. Cambridge University Press, 2000.

[135] W. Ma, S. Kaya, and A. Asenov. Scaling of RF Linearity in DG and SOI MOSFETs. In Proc.
Intl. Symp. on Electron Devices for Microwave and Optoelectronlc Applications, pages 255-260,
Orlando, FI, 2003.

(136] P.A. Markowich, C.A: nghofer and C. Schmelser Semiconductor Equations. Springer Verlag,v
1990.

[137] A.H. Marshak and K.M. van Vliet. Electrical Current in Solids with Position-Dependent Band
Structure. Solid-State Electron., 21:417—427 1978.

[138] A.H. Marshak and C.M. VanVliet. Electrical Current and Carrier Density in Degenerate Materials
with Nonuniform Band Structure. Proc. IEEE, 72(2):148-164, 1984.

[139] Mathematical and Computational Sciences Division - Information ~ Technology Lab-
oratory, National Institute of Standards and Technology. The Matrix Market.
[nttp://math.nist.gov/Matrix Market/info.html} '

[140] Mathematics and  Engineering  Analysis  Unit, =~ Boeing  Phantom Works.
SParse  Object Oriented Linear Equations Solver (SPOOLES), January 1999.
htip:77www.netliblorg/linalg/spooles/spooles.2.2.html.

{141] MathWorks, Natick, MA. MATLAB and Simulink Products, February 2005.
Ittp://www.mathworks.comy/|

(142] H. Mau. Anpassung und Implementation des Energietransportmodells zur vergleichenden Simula-
tion mit dem Drift-Diffusions-Modell an SzGe-Heterobzpolartranszstoren Dissertation, Technische
Universitét Ilmenau, 1997.

169


http://www.lstc.coml.
http://math.nist.gov/MatrixMarket/info.html.
http://www.netlib.
http://www.mathworks.coml.

[143] C.C. McAndrew, J.A. Seitchik, D.F. Bowers, M. Dunn, I. Getreu, M. McSwain, S. Moinian,
J. Parker, D.J. Roulston, M. Schroter, P. van Wijnen, and L.F. Wagner. VBIC95, The Vertical
Bipolar Inter-Company Model. IEEE J.Solid-State Circuits, SC-31(10):1476-1483, 1996.

[144} J.R.F. McMacken and S.G. Chamberlain. CHORD: A Modular Semiconductor Device Simulation
Development Tool Incorporating External Network Models.. IEEE Trans. Computer-Aided Design,
8(8):826-836, 1989. ' :

[145] R. Menon and L. Dagum. OpenMP: An Industry-Standard API for Shared-Memory Programming.
IEEE Computational Science & Engineering, pages 1:46-55, 1998.

[146] M.S. Mock. An Initial Value Problem from Semic‘onducfor Device Theory. SIAM J.Math.Anal.,
- 5(4):597-612, 1974.

[147] L.W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits. Technical Report
UCB/ERL M520, University of California, Berkeley, 1975.

{148] Nanoelectronics Group at Raytheon TI Systems. Nemo, 1999. http://www.ctdrc.com/nemo/

[149] M. Nedjalkov, R. Kosik, H. Kosina, and S. Selberherr. A Wigner Equation for Nanometer and
Femtosecond Transport Regime. In Proc. Ist IEEE Conference on Nanotechnology, pages 277~
281, Maui, USA, October 2001. IEEE.

[150] M. Nedjalkov, R. Kosik, H. Kosina, and S. Selberherr. Wigner Transport through Tunneling Struc-
tures — Scattering Interpretation of the Potential Operator. In Proc. Simulation of Semiconductor
Processes and Devices, pages 187-190, Kobe, Japan, September 2002. -

{151] M. Nedjalkov, H. Kosina, S. Selberherr, and 1. Dimov. A BackWard Monte Carlo Method for
Simulation of the Electron Quantum Kinetics in Semicondubtors. VLSI Design, 13(1-4):405-411,
2001. '

[152] netlib. The Netlib Reposiz_‘ory — Netlib, 2005. |ﬁ't'fp:77www.néf115.orgl »

[153] Network for Computational Nanotechno'logy. nanoHub, 2005. hifp:77www.nanohub.org}

[154] P. G. Neudeck. SiC Technology. In The VLSI Handbook, The Electrical Engineering Handbook
Series, W.-K. Chen, Ed. Boca Raton, Florida: CRC Press and IEEE Press, pages 6.1-6.24, 2000.

. [155] Numerical Algorithms Groups. Numerical Algorithms Group, September 2004,
pttp77www.nag.cojuk/main_engineering.asp.

[156] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations. Wiley, Chichester, 1992. ~

[157] Open Systems Laboratory, Indiana University Bloomington. Blitzz++ - Object-Oriented Scientific
Computing, November 2004. hfip://www.oonumerics.org/blitz/} :

[158] T. Ottmann and P. Widmayer. Algorithmen und Datenstrukturen. Wissenschaftsverlag, Mannheim—
Leipzig—Wien—Ziirich, 1993. ) '

[159] P.S. Pacheco. Parallel Programming with MPI. Morgan Kaufman, San Francisco, 1997.

[160] V. Palankovski and R. Quay. Analysis and Simulation of Heterostructure Devices. Springer, Wien,
New York, 2004. '

[161] V. Palankovski, S. Wagner, T. Grasser, R. Schultheis, and S. Selberherr. Direct S-Parameter Extrac-
tion by Physical Two-Dimensional Device AC-Simulation. In Proc. International Symposium on
Compound Semiconductors, pages 303-306, Lausanne, Switzerland, 2002.

170


http://www.cfdrc.conlJnemo/.
http://www.netlib.org.
http://www.nanohub.org.
http://www.nag.co.
http://www.oonumerics.org/blitz/.

[162] V. Palankovski, S. Wagner, and S. Selberherr. Numérical Analysis of Compound Semiconductor
RF Devices. In Proc. GaAs IC Symposium, pages 107-110, San Diego, CA, 2003. (invited).

[163] Parallel Algorithms and Optimization Group, Ecole Nationale Supérieure d’Electrotechnique,
d’Electronique, d’Informatique, d’Hydraulique et des Télécommunications, Toulouse.
MUMPS: A  Multifrontal Massively Parallel Sparse Direct Solver, July 2003.
[nttp://www.enseeiht. tr/llma/apo/MUMPb/I

[164] A. Prechtl. Vorlesungen iiber die Grundlagen der Elektrotechmk Band 2. Sprmger Wien—-New
York, 1995.

[165] W. H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery Numerical Recipes in C. Cam-
bridge University Press, 1997.

[166] W. L. Pribble, J. W. Palmour, S. T. Sheppard, R. P. Smith, S. T. Allen, T. J. Smith, Z. Ring, J. J.
Sumarkeris, A. W. Saxler, and J. W. Milligan. Applications of SiC MESFETs and GaN HEMT in
Power Amplifier De31gn IEEE MTT-S Digest, 3:1819-1822, 2002.

[167] Python Software Foundation. Python, January 2005.

[168] T. Quarles, A.R. Newton, D.O. Pederson, and A. Séngioyanni-Vincentelli. SPICE 3 Version 3F5
User’s Manual. Department of Electrical Engineering and Computer Sciences, University of Cali-
fomia, Berkeley, March 1994.

[169] R. Quay. Analysis and Simulation of High Electron Mobility Transistors. Dissertation, Technische
Universitit Wien, 2002, htip: //www we.tuwien.ac.a/phd/quay]

[170] R. Quay, R. Kiefer, F. van Raay, H. Massler, S. Ramberger, S. Muller, M. Dammann, M. Mikulla,
M. Schlechtweg, and G. Weimann. Integration of a 0.13-pum CMOS and a High Performance
Self-Aligned SiGe HBT Featuring Low Base Re51stance In Intl. Electron Devices Meetmg, pages
673—676 San Francisco, 2002.

[171] B. Razavi. CMOS Technology Characterisation for Analog and RF Design. IEEE J.Solid-State
Circuits, 34(3):268-276, 1999.

[172] J.-S. Rieh, B. Jagannathan, H. Chen, K. Schonenberg, D. Angell, A. Chinthakindi, J. Florkey,
F. Golan, D. Greenberg, S.-J. Jeng, M. Khater, F. Pagette, C. Schnabel, P. Smith, A. Stricker,

K. Vaed, R. Volant, D.C. Ahlgren, G. Freeman, K. Stein, and S. Subbanna. SiGe HBTs with Cut-

- off Frequency of 350 GHz. In Intl.Electron Devices Meeting, pages 771-774, San Francisco, 2002.

[173] J.-S.Rieh, B. Jagannathan, H. Chen K. Schonenberg, S.-J. Jeng, M. Khater, D.C. Ahlgren, G. Free-
' man, and S. Subbanna. Performance and Design Considerations for High Speed SiGe HBTSs of
ST/ fmax=375GHz/210GHz. In Proc. International Conference on Indium Phosphide and Related
Materials, pages 374-377, Santa Barbara, CA, 2003.

[174] C. Ringhofer, C. Schmeiser, and A. Zwirchmayer. Moment Methods for the Semiconductor Boltz-
mann Equation in Bounded Position Domains. SIAM J Numer.Anal., 39(3):1078-1095, 2001.

[175] J.G. Rollins and J. Choma. Mixed-Mode PISCES-SPICE Coupled Circuit and Device Solver. IEEE
Trans.Computer-Aided Design, 7:862-867, 1988.

[176] G.-C.Rota. Twelve Problems in 'Probabiiity no One Likes to Bring Up. In Algebraic 'Combinatorics
and Computer Science, pages 57-93. Springer Italia, Milan, 2001.

171


http://www.enseeiht.fr/limaJapo/MUMPS/.
http://www.iue.tuwien.ac.at/phd/quay.

[177] EM. Rotella, G. Ma, Z. Yu, and R.W. Dutton. Modeling, Analysis and Design of RF LDMOS De-
vices Using Harmonic Balance Device Simulation. IEEE Trans.Microwave Theory and Techniques,
48(6):991-999, 2002

'[178] Y. Saad.- SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations. Technical report, RIACS,
NASA Ames Research Center, Moffett Field, CA 94035 May 1990

[179] Y. Saad and M.H. Schultz. GMRES: A Generalized Minimal Re51dual Algorlthm for Solving
Nonsymmetric Linear Systems. SIAM J.Sci.Stat.Comput., 7(3): 856—869 1986.

[180] Sandia  National = Laboratories. ,The Trilinos  Project, January  2005.
http://software.sandia.gov/Trilinos/. '

[181j O. Schenk and K Girtner. Solving Unsymmetrie Sparse Systems of Linear Equations with PAR-
DISO. Future Generation Computer Systems 2003. Accepted, in press.

[182] O. Schenk K. Girtner, and W. Fichtner. Efficient Sparse LU Factorization with Left- nght Looking
Strategy on Shared Memory Multiprocessors. BIT, 40(1):158-176, 2003.

[183] O. Schenk, S. Rollin, and A. Gupta The Effects of Unsymmetric Matrix Permutations and Scalings
in Semiconductor Dev1ce and Circuit Simulation. IEEE Trans. Computer -Aided Design, 23(3) 400-
411, 2004. :

[184] I. Schnyder, M. Rohner, E. Gini, D. Huber, C. Bergamasch1 and H. Jackel. A Laterally Etched
Collector InP/InGaAs(P) DHBT Process for High Speed Power Appllcatlons In Indium Phosphide
and Related Materials, pages 477-480, Williamsburg, VA, 2000.

[185] D. Schroeder. Modellmg of Interface Carrier Transport for Devlce Slmulatzon Springer, 1994.
[186] W. Schroeder K. Martm and B. Lorensen The Vsualzzatzon Toolkit. Prentlce Hall, 1996.

[187] R. Schultheis, N. Bovolon, J.-E. Miiller, and P. Zw1cknagl. Modellmg of Heterojunction Bipolar
Transistors (HBTs) Based on Gallium Arsenide (GaAs). Intl.J. of RF and Microwave Computer-
Aided Engineering, 10(1):33-42, 2000.

[188] H.R. Schwarz. Numerische Mathematik. Teubner, Stuttgart, 1997. 4. Auﬂage.

[189] F. Schwierz and J.J. Liou. Modern Microwave Transistors: Theory, Design, and Performance.
Wiley, New Jersey, 2003.

[190] J.A. Scott. Parallel Frontal Solvers for Large Sparse Linear Systems. ACM Trans.Mathematical
Software, 29(4):395-417, 2003. - :

[191] J.A. Scott. MAS57 — A Code for the Solution of Sparse Symmetrlc Deﬁmte and Indefinitie Systems.
ACM Trans.Mathematical Software, 30(2):118-144, 2004.

[192] S. Seeger and K.H. Hoffmann. The Cumulant Method for Computational K1net1c Theory Contin-
uum Mech. Thermodyn., 12:403-421, 2000 '

[193] S. Selberherr. Analysis and Szmulatlon of Semlconductor Devices. Springer, Wien—-New York,
1984.

[194] S. Selberherr. Device Modeling and Physics. Physica Scripta, T35:293-298, 1991.
[195] S. Selberherr, A. Schiitz, and H.W. P6tzl. MINIMOS—A ’I\vo-Dimensipnal MOS Transistor Ana-
lyzer. IEEE Trans.Electron Devices, ED-27(8):1540-1550, 1980.

172



[196] G. Sewell. TWODEPEP, a Small General Purpose Finite Element Program. Angewandte Infor-
matik, 4: 249-253, 1982

[197] G. Sewell. PDE2D: Easy -to-Use Software for General Two- Drmensronal Partial leferentral Equa-
tions. Advances in Engineering Software, 17(2):105-112, 1993. -

[198] K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K. Hikosaka, T. Matsui, T. Mimura, and
S. Hiyamizu. 550 GHz ft Pseudomorphic InP-HEMTSs with Reduced Source-Drain Resistance. In
Proc. 61st Device Research Conference, pages 145-146, Salt Lake City, UT, 2003.

[199] K. Shinohara, Y. Yamashita, A. Endoh, L. Watanabo K. Hikosaka, T. Matsui, T. Mimura, and
S. Hiyamizu. 547-GHz fr Ing7Gag 3As-Ing. 52Alo 48As HEMTs with Reduced Source and Drain
Resistance. IEEE Electron Devzce Lert., 25(5):241-243, 2004.

'- [200] Silvaco, Santa Clara California. Atlas User s Manual - Devzce Szmulatzon Sofrware December
2002.

[201] T. Simlinger.v Simularion von Heterostruktur-Feldeffekttransistoren. Dissertation, Technische Uni- -

- versitdat Wien, 1996. HW_'_Wﬂp: WWW.1Ue.[uwien.ac.

[202} B.T. Smith, J.M. Boyle, and J.J. Dongarra. Matrix Etgensystem Routines - EISPACK Guide.
Springer, 1976. .

[203] Software & Analysis of Advanced Materials Processing Centér, University of Fiorida. FLOODS
and FLOOPS, 2002, hitp://www.swamp.tec.ull.edw/ nooxs/| ' :

[204] A. Stach. Slmulatron von MOSFET- Schaltungen Diplomarbeit, Techmsche Universitdt Wien,
1995.

[205] Stanford TCAD Group PISCES 2ET Stanford - University, Stanford CA, 1994, http [www- .
tcad.stanford. edu/tcad html.

[206] Stanford TCAD Group PISCES-2H-B. Stanford University, Stanford CA, June 1997. http://www-
tcad.stanford.edu/tcad.html.

[207] Stanford TCAD Group. Stanford TCAD Tools, Wmmm

[208] M.B. Steer, J.W. Brandler, and C.M. Snowden. Computer-Aided Design of RF and-Microwave
' Circuits and Systems. IEEE Trans Microwave Iheory and Techniques, 50(3):996-1005, 2002.

[209] R. Stratton. Diffusion of Hot and Cold Electrons in Semrconductor Barriers. Physzcal Review,
- 126(6):2002-2014, 1962. » :

[210] D. Streit, R. Lai, A. Oki, and A. Gutierrez-Aitken. InP HEMT and HBT Tecfmology and Appli-
cations. In Proc. Intl.Symp. on Electron Devices for Microwave and Optoelectronic Applications,
pages 14—-17, Manchester, UK, 2002.

[211] A.D. Stricker, J.B. Johnson, G. Freeman, and J.-S. Rieh. -Design and Optimization of 'a 200 GHz
- Sige HBT Collector Profile by TCAD. Applied Surface Science, 224/1-4:324-329, 2004.

[212] B. Stroustrup. C++ Programming Language. Addison-Wesley, 1997.

[213] K. Stiiben and T. Clees. SAMG User’s Manual Release 21c. Fraunhofer Institute for Algorithms
and Scientific Computing, 2003.

[214] Synopsis, Freemont, CA. Davinci, Three-Dimensional Device Simulation Program, -Version 2002.4,
February 2003. :

173



http://www.iue.tuwien.ac.at.
http://www.swamp.tec.ufl.edurflooxs/.
http://2004.http://www-tcad.stanford.edultcad.html.

[215] Synopsis, Freemont, CA. HSpice Circuit Simulator, February 2003.

[216] Synopsis, Freemont, CA. Medici, Two-Dimensional Devicé'Sirhulation Program, Version 2002.4,
February 2003.

[217] S.M. Sze. Physics of Sémiconductér Devices. Wiley,. New York, Second edition, 1981.

[218] V. Temple and J. Shewchun. Exact Frequency Dependent Complex Admittance of the MOS Diode

Including Surface States. Solid-State Electron., 16(1):93-113, 1973.

[219] R. Thoma, A. Emunds, B. Meinerzhagen, H.J. Peifer, and W.L. Engl. Hydrodynamic Equations
for Semiconductors with Nonparabohc Band Structure IEEE Trans.Electron Devices, 38(6):1343—
1353, June 1991.

[220] B. Troyanovsky. Frequency Domain Algorithms for Simulating Large Signal Distortion in Semi-
conductor Devices. Dissertation, Stanford University, 1997.

[221] B. Troyanbvsky, F. Rotella, Z: Yu, R. W. Dutton, and J. Sato-Iwanaga. Large Signal Analysis
of RF/Microwave Devices with Parasitics Using Harmonic Balance Device Slmulatlon In Proc.
SASIMI, Fukuaoka, Japan, pages 178-179, 1996.

[222] R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid. Official Aztec User’s Guide:
Version 2.1. Sandia National Laboratories, December 1999.

[223] University of California Berkeley. SuperLU - Sparse Gaussian Elimination on High Performance
Computers, January 2005. ﬁmm demmel/SuperLU.html.

[224] University of Tennessee. Automatically Tuned Linear Algebra Software July 2004 http /fmath-
atlas.sourceforge.net/.

[225] W.V. VanRoosbroeck. Theory of Flow of Eleétrdns and Holes in Germanium and Other Semicon-
ductors. Bell Syst.Techn.J., 29:560-607, 1950.

[226] Visual Numerics. IMSL Numerz.'cal' Libraries Family of Products, January 2005.
nttp://www.vni.com/products/imsl/index.html} :

[227] G.K. Wachutka. Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semi-
conductor Device Modeling. IEEE Trans.Computer-Aided Design, 9(11):1141-1149, November
1990.

[228] S. Wagner. The Minimos-NT Linear Equation Solving Module. Dlplomarbelt Techmsche Univer-
sitdt Wien, 2001.

' ‘[229] S. Wagner, T. Grasser, C. Fischer, and S. Selberherr. A Simulator Module for Advanced Equa-

tion Assembling. In Proc. 15th European Simulation Symposium ESS, pages 55-64, Delft, The
Netherlands, 2003.

[230] S. Wagner, T. Grasser, and S. Selberherr. Evaluation of Linear Solver Modules for Semiconductor
Device Simulation. In Proc. 5th Intl. Conference on Mathematical Problems in Engineering and
Aerospace Sciences ICNPAA, Timisoara, Romania, June 2004. (in print).

[231] S. Wagner, T. Grasser, and S. Selberherr. Mixed-Mode Device and Circuit Simulation. In Proc.
11th Intl. Conference Mixed Design of Integrated Circuits and Systems, pages 36—41, Szczecin,
Poland, June 2004. (invited).

174



http://www.cs.berkeley.edu/
http://www.vni.comlproducts/imsl/index.html.

[232] S. Wagner, S. Holzer, R. Strasser, R. Plasun, T. Grasser, and S. Selberherr. SIESTA - The Simulation
Environment for Semiconductor Technology Analysis. Institut fiir Mikroelektronik, 2003.

[233] S. Wagner, V. Palankovski, T. Grasser, G. Roéhrer, and S. Sélberherr. A Direct Extraction Feature
for Scattering Parameters of SiGe-HBTs. Applied-Surface Science, 224/1-4:365-369, 2004.

[234] M. Wall. GAlib A C++ Library of Genetic Algorithm Components. Massachusetts Institute of
Technology, 2000. http://lancet.mit.edu/ga.

[235] E.X. Wang, M. Stettler, S. Yu, and C. Maziar. Application of Cumulant Expansion to the Mod-
eling of Non-local Effects in Semiconductor Devices. In Proc. Intl. Workshop on Computational
Electronics, pages 234-237, Piscataway, NJ, USA, 1998

[236] K. Washio. ngh speed SIGC HBTs and Their Applications. Applied Surface Science, 224/1-4:306—
311, 2004.

[237] Webplex1ty nextnano3 2004. http:7/www.webplexity.de/nextnanos. pnpl

- [238] R.C. Whaley, Antoine-Petitet, and Jack J. Dongarra. Automated Empirical Optimization of Soft-
- ware and the ATLAS Project. Parallel Computing, 27(1-2):3-35, 2001.

[239] P.H. Woerlee, M.J. Knitel, R. van Langevelde, D.B.M. Klaassen, LE Tiemeijer, A.J. Scholten, and
A.T.A. Zegers van Duijnhoven. RF-CMOS Performance Trends IEEE Trans.Electron Devices,
48(8):1776-1782, August 2001.

[240] D.L. Woolard, H. Tian, R.J. Trew, M.A. Littlejohn, and K.W. Kim. Hydrodynamic Electron-
Transport Model: Nonparabolic Corrections to the Streaming Terms. Physical Review B,
44(20):11119-11132, 1991. '

[241] Z. Yu, R.W. Dutton, B. Troyanovsky, and J. Sato- IWanaga Large Signal Analysisvbf RF Circuits in
Dev1ce Simulation. IEICE Trans. Electron "E82- C(6) 908-916, 1999.

[242] A.P. Zhang, L.B. Rowland, E. B. Kaminsky, J. W. Kretchmer, R. A. Beaupre J. L. Garrett, J. B.
Tucker, B. J. Edward, J. Foppes, and A. F. Allen. Microwave Power SiC MESFETs and GaN
HEMTs. In Proceedings of the IEEE Lester Eastman Conference on High Performance Devices,
pages 181-185, 2002.

[243] O.C. Zienkiewicz. The_Finite Element Method. McGraw-Hill, 1977.
[244] O. Zinke and H. Brunswig. Hochfrequenztechnik. Svpringer,‘ 1999'.

175


http://www.webplexity.de/nextnano3.php.

Own Publications

Publications in Journals

[JO3] S. Wagner, T. Grasser, C. Fischer, and S. Selberherr, “An Advanced Equation Assembly Module,”
Engineering with Computers, 2005, (in print).

‘[JO2] J. Park, S. Wagner, T. Grasser, and S. Selberherr, “New SOI Lateral Power Devices with Trench
Oxide,” Solid-State Electron., vol. 48, no. 6, pages 1007-1015, 2004.

[JO1] S. Wagner, V. Palankovski, T. Grasser, G. Rohrer, and S. Selberherr, “A Direct Extraction Feature
for Scattering Parameters of SiGe-HBTs,” Applied Surface Science, vol. 224/1-4, pages 365-369,
2004, '

Publications in Conference Proceedings

[C18] W. Wessner, S. Wagner, T. Grasser, and S. Selberherr, “Meshing Aspects on Three-Dimensional
Fin-Fet Device Simulations,” in Proc. Asia Pacific Microwave Conference (APMC), (New Delhi,
India), 2004. (cd rom). : :

[C17] S. Wagner, T. Grasser, and S. Selberhérr “Physical Modeling of Semiconductor Devices for Mi-
- crowave Applications,” in Proc. Asia Pacific Microwave Conference (APMC), (New Delhi, India),
2004. (cd rom, invited)."

[C16] T. Ayalew, S. Wagner, T. Grasser, and S. Selberherr, “Numerical Simulation of Microwave MES-
FETs in 4H-SiC Fabricated Using Epitaxial Layers-on Semi-Insulating Substrates,” in Proc. 5th
European Conference on Silicon Carbzde and Related Materzals (Bologna, Italy), pages 76-77, '
Sept. 2004.

[C15] H. Ceric, R. Sabelka, S. Holzer, W. Wessner, S. Wagner, T. Grasser, and S. Selberherr, “The Evolu-
tion of the Resistance and Current Density During Electromigration,” in Proc. Simulation of Semi-
conductor Processes and Devices, (Munich, Germany), pages 331-334, Sept. 2004.

[C14] S. Wagner, T. Grasser, and S. Selberherr, “Performance Evaluation of Linear Solvers Employed for
Semiconductqr Device Simulation,” in Proc. Simulation of Semiconductor Processes and Devices
SISPAD, (Munich, Germany), pages 351-354, Sept. 2004.

[C13] S. Wagner, T. Grasser, and S. Selberherr, “Mixed-Mode Device and Circuit Simulation,” in
Proc. 11th Intl. Conference Mixed Design of Integrated Circuits and Systems, (Szczecin, Poland),
pages 3641, June 2004. (invited).

[C12] S. Wagner, T. Grasser, and S. Selberherr, “Evaluation of Linear Solver Modules for Semiconductor
Device Simulation,” in Proc. 5th Intl. Conference on Mathematical Problems in Engineering and
Aerospace Sciences ICNPAA, (Timisoara, Romania), June 2004. (in print).

176



[C11] S. Wagner, T. Grasser, and S. Selberherr, “Benchmarking Linear Solvers with Semiconductor Sim-
ulation Examples,” in Proc. Intl. Conference on Scientific and Engineering Computatlon IC-SEC,
(Slngapore) June 2004. (cd rom).

[C10] S.Holzer, A. Sheikoleslami, S. Wagner, C. Heitzinger, T. Grasser, and S: Selberherr, “Opti_mization '
and Inverse Modeling for TCAD Applications,” in Proc. Symposium on Nano Devices Technology
- SNDT, (Hsinchu, Taiwan), pages 113-116, May 2004.‘

.[C09] S. Wagner, V. Palankovski, R. Quay, T. Grasser, and‘ S. Selberherr, “Numerical Simulation of
High-Speed High-Breakdown Indium Phosphlde HBTSs,” in Proc. Intl. Workshop on the Physics of
Semiconductor Devices, (Madras, India), pages 836-838, 2003. ’

[CO8] S. Wagner, T. Grasser, C. Fischer, and S. Selberherr, “A Generally Applicable Approach for Ad-
vanced Equation Assembling,” in Proc. International Conference on Software Engineering and
Applications SEA, (Marina del Rey, CA), pages 494-499, 2003. -

[CO0T7] S. ‘Wagner, V. Palankovski, G. Rohrer, T. Grasser, and S. Selberherr, “Numerische Berechnung -
- von Silizium-Germanium Heterostruktur-B ipolartra'nsistoren in Beitrdge zur Informationstagung
MzkroelektronszE 03, (Vienna, Austria), pages 383-388, 2003.

[CO6] S. Wagner, T. Grasser, C. Fischer, and S. Selberherr “Advanced Equation Assembling Technlques
for Numerical Simulators,” in Proc. I5th European Szmulatzon and Modeling Conference ESMC,
(Naples, Italy), pages 390-394, 2003.

[CO5] V. Palankovski, S. Wagner, and S. Selberherr' “Numerlcal Analy51s of Compound Semiconductor
RF Devices,” in Proc. GaAs IC Symposium, (San Diego, CA), pages 107-110, 2003. (invited).

. [Co4] S. Wagner T. Grasser, C. Fischer, and S. Selberherr, “A Simulator Module for Advanced Equa-
tion Assembling,” in Proc. I5th European Simulation Symposzum ESS, (Delft The Netherlands)
_pages 55-64, 2003

[CO3] S. Wagner V. Palankovsk1 T. Grasser, G. Rohrer, and S. Selberherr “A Direct Extractlon Feature
for Scattering Parameters of SiGe-HBTSs,” in Abstracts Intl. SiGe Technology and Device Meeting,
(Nagoya Japan), pages 83-84, 2003. '

[C02] V. Palankovsk1 S. Wagner T. Grasser, R. Schultheis, and S. Selberherr, “Direct S- Parameter Ex-
traction by Physical Two-Dimensional Device AC-Simulation,” in Proc. International Symposzum
on Compound Semzconductors (Lausanne Sw1tzerland) pages 303-306, 2002.

[COl] S. Wagner, V. Palankovski, R. Quay, T. Grasser and S. Selberherr “Small-Signal Analysis and
Direct S-Parameter Extraction,” in Proc. Intl. Symposium on Electron Devices for Mlcrowave and
Optoelectronic Applications EDMO, (Manchester, UK) pages 50—55 2002.

177



Curriculum Vitae

October 15, 1976
‘ May 1995
October 1995

June 1996 - January 1997
October 1998

December 1998

November 2001

November 2001
July 2003 - August 2003

January 2005

Bom in Vienna, Austria
High School Graduation, BRG XIV Wien

Enrolled in Electrical Engineering
at the Technical University of Vienna

Compulsory Military Service

Enrolled in Business Administration
at the Vienna University for Economics and Business Administration

Passed 1. Diplompriifung at the
Technical University of Vienna

Received degree of “Diplomingenieur”, comparable to
Master of Science (MSc), in Electrical Engineering

" with a concentration in Computer Technology
- from the Technical University of Vienna (with honors)

Entered doctoral program at the
Institute for Microelectronics, TU Vienna

Internship at Texas Instruments in
Dallas, TX

Passed 1. Diplompriifung (BW94) at the
Vienna University for Economics and Business Administration (with honors)

178



