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•
Kurzfassung

In dieser Arbeit beschäftigen wir uns mit zwei Modellgleichungen von Syste-
men geladener Teilchen: das erste Modell ist das kinetische Transportmod-
ell, das die Ablenkung von Teilchen in einem Kometenschweif behandelt,
während das zweite Modell Generation und Rekombination von Elektronen
und Löchern in Halbleitern behandelt.

In Kapitell untersuchen wir folgende Gleichung (die als 'Cometary flow'-
Gleichung bekannt ist):

(1)

•

Die Teilchenverteilungsfunktion f(t, x, v) ist eine nichtnegative Funktion
von Zeit, Ort und Geschwindigkeit. Wir schreiben QUI (J) für das Streuin-
tegral, mit einem nichtlinearen Projektionsoperator PUl auf die Menge der
isotropen Verteilungsfuntionen um die mittlere Geschwindigkeit uf (Sd-l ist
die Einheitskugel in ]Rd).

PUI(J)(V) = IS~-llld-1f(uf + Iv - uflw) Œ...;. (2)

Die Menge der Gleichgewichtsverteilungen mit Q(J) = a ist unendlichdi-
mensional und besteht aus allen isotropen Geschwindigkeitsverteilungen um
eine beliebige mittlere Geschwindigkeit. Es existiert unendlich viele Streuin-
varianten, aber nur drei von diesen ergeben makroskopische Erhaltungssätze.
Aus diesem Grund können Limiten von Lösungen von (1) für lange Zeiträume
nicht eindeutig aus den Anfangsbedingungen indentifiziert werden. Als Kon-
sequenz daraus beschränken wir uns auf die linearisierte Version der Gle-
ichung (1). Für den linearisierten Kometenfluss wenden wir die Entropie-
Entropie Dissipations Methode von Desvillettes und Villani (siehe [la] und
[12] von Kapitell) an, die starke Konvergenz mit algebraischer Rate gewährleistet.

Für die linearisierte 'Cometary flow'- Gleichung folgt die Konvergenz
gegen einen eindeutigen Gleichgewichtzustand aus zwei Komponenten: einer-
seits den dissipativen Effekten des Streuoperators, der die Lösung gegen einen
die Entropie minimierenden lokalen Gleichgewichtszustand streben lässt, und
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andererseits den Transportoperator und die periodischen Randbedigungen,
die die Lösung von der Menge der lokalen Gleichgewichtszustände abstoßen,
solange der angestrebte lokale Gleichgewichtzustand nicht global ist.

Unser wesentliches Konvergenzresultat wird im Abschnitt 1.2 vorgestellt
und in den Abschnitten 1.3 und 1.4 bewiesen. Im Abschnitt 1.4 wird dieses
Verhalten quantifiziert in einem System von Differentialungleichungen von
relativen Entropien bezüglich verschiedener (Teii)-mengen von lokalen bzw.
globalen Gleichgewichtszuständen. Wir führen Projektionsoperatoren ein,
um eine handhabbare Schreibweise zu erlangen. Im Abschnitt 1.5 wird ein
Modell mit drei Geschwindigkeiten betrachtet, das einige Problemstellun-
gen der 'Cometary flow'- Gleichung reproduziert. Dieses Modell zeigt, dass
die Entropie Dissipations Methode mit einem analogen Resultat ausgeführt
werden kann, jedoch ergibt die Spektralanalyse eine exponentielle Konver-
genzgeschwindigkei t.

In Kapitel 2 betrachten wir ein Modell zur Beschreibung der Statistik
der Generation-Rekombination von Löchern und Elektronen in Halbleitern.
Dieses Modell wurde im Jahre 1952 durch Shockley und Read [22] bzw. Hall
[14] eingeführt. Der Sprung zwischen dem Valenzband und dem Leitungs-
band ist für Halbleiter sehr groB, daher ist zum Übergang von Elektronen vom
Valenzband zum Leitungsband viel Energie nötig. Dieser Prozess wird als
Generation von Elektron-Loch-Paaren bezeichnet, während der umgekehrte
Prozess als Rekombination von Elektron-Loch- Paaren bezeichnet wird. Zustände,
die durch Verunreinigungen im Kristall hervorgerufen werden, existieren in-
nerhalb des verbotenen Bandes. Da der Sprung in zwei kleineren Schritten
zurückgelegt werden kann, wird er wahrscheinlich.

Wir betrachten zwei Verallgemeinerungen des klassischen SRH Modells:
1) Statt einem einzigen erlaubten Zustand existiert eine Verteilung solcher
Zustände über das verbotene Band, 2) ein semiklassisches kinetisches Modell
unter Berücksichtigung der Fermionen-Natur der Ladungsträger.

Das ist (nach meinem Wissensstand) der erste Versuch ein 'kinetisches
SRH Modell' einzuführen, obwohl die direkte Band-zu-Band Rekombination-
Generation und StoBionisation bereits vorher auf dem kinetischen Niveau
betrachtet wurden (siehe z.B. [20], [6], [7] von Kapitel 2). Wir zeigen Existenz
von Lösungen und begründen den quasistationären Limes rigoros für des
Drift- Diffusions und das kinetische SRH Modell.
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Abstract

In this work we are considering two models of charged particles; first model
is a kinetic transport model which describes wave-particle interaction in
cometary flows, and the second model describes the flow of electrons and
holes through the trapped state.

In Chapter 1 we are investigating the following equation (called the
cometary flow equation)

(3)

The particle distribution function f(t, x, v) is a nonnegative function,
which depends on time, space, and on velocity. We denote with QUf U)
the collision operator, with a nonlinear projection operator PUf onto the set
of distribution functions isotropic around the mean velocity uf (Sd-l is the
unit sphere in ]Rd)

PUfU)(v) = ISLllld-l f(uf + Iv - uflw) d~. (4)

The set of equilibiium distributions satisfying QU) = 0 is infinite dimen-
sional, and consists of all velocity distributions isotropic around an arbitrary
mean velocity. There are infinitely many collision invariants, but out of those
only three produce macroscopic conservation laws. For this reason large time
limits of solutions of (1) can not be identified uniquely from the initial data.
As a consequence, we restrict our attention on the linearized version of (1).
For the linearized cometary flow equation we apply the entropy-entropy dissi-
pation approach developed by Desvillettes and Villani (see [10] and [12] from
Chapter 1) which provides strong convergence at algebraic rates as time tends
to infinity.

For linearized cometary flow equation, the convergence to a unique equi-
librium state is the interplay between, firstly, the dissipative effects of the
collision operator, which morphs the solution towards an entropy minimizing
local equilibrium state, and secondly, the transport operator as well as the
imposed periodic boundary conditions, which repulse the solution from the
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set of local equilibria as long as the approached local equilibrium is not the
globalone.

Our main convergence result is stated in section 1.2, and proved in sec-
tions 1.3 and 1.4. In section 1.4 this behaviour is quantified in a system of dif-
ferential inequalities of relative entropies with respect to different (sub )classes
of local equilibria, respectively, the global equilibrium. We introduce projec-
tion operators leading to a convenient notation. In 1.5, a three velocity model
which reproduces some of the difficulties found in the linearized cometary
flow equation is considered. This model shows that the entropy dissipation
approach can be carried out with an analogous result, however, a spectral
analysis proves exponential convergence to equilibrium.

In Chapter 2 we are considering a model which describes the statistics
of recombination and generation of holes and electrons in semiconductors
occuring through the mechanism of trapping. This model was first introduced
in 1952 by Shockley and Read [22], and Hall [14]. The bandgap between
the valence and the conduction band is very large for semiconductors which
means that a lot of energy is needed to transfer electrons from valence to the
conduction band. This process is referred to as the generation of electron-hole
pairs, whereas the inverse process is termed recombination of electron-hole
pairs. Trap levels within the forbidden band are present, they are caused by
crystal impurities. Since the jump can be split into two parts, each of them
is 'cheaper' in terms of energy.

We consider two generalizations of the classical SRH model: 1) Instead of
a single trapped state, a distribution of trapped states across the forbidden
band is allowed, 2) a semiclassical kinetic model including the fermion nature
of the charge carriers is introduced.

This is (to my knowledge) the first attempt to derive a 'kinetic SRH
model', altough direct band-to-band recombination-generation and impact
ionization have been done on the kinetic level before (see, e.g. [20], [6], [7]
from Chapter 2).

We prove existence of solutions, and rigorously justify the quasistationary
limit for both the drift-diffusion and the kinetic SRH model.
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Chapter 1

Convergence to Equilibrium for
the Linearized Cometary Flow
Equation

1.1 Introduction
We are interested in the following kinetic transport model called the cometary
flow equation:

ad + v. \lxI = ISLII hd-l I(uf + Iv- uflw) dfJJ - I =: QU) , (1.1)

where I( t, x, v) is a nonnegative particle distribution function depending
on time t > 0, on position x E 1rd (the d-dimensional torus with periodic
boundary conditions), and on velocity v E ]Rd. The collision operator Q is
used in quasi-linear plasma theory as a simplified model for wave-particle
interaction in cometary flows (see e.g. [7] and the references therein). The
first term is a projection (with Sd-I and lSd-II denoting the unit sphere in
]Rd and its (d - I)-dimensional Lebesgue measure, respectively) onto the set
of distribution functions isotropic around the mean velocity uf(t, x), which
is defined as the fraction of the momentum density mf(t, x) and the mass
density Pf(t, x):

Pf = ( I dv,
JIR.d

(1.2)

Existence and uniqueness of solutions of initial value problems for (1.1)
have been investigated in [7] and in [15], where also the long time behaviour
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is investigated. A weak convergence result on compact time intervals shifted
to infinity is proven similarly to the corresponding result by Desvillettes [9]
for the gas dynamics case. By entropy dissipation arguments it is shown that
in the limit both the left hand side and the right hand side of (1.1) vanish.

The set of equilibrium distributions satisfying Q(J) = 0 is infinite dimen-
sional. It consists of all velocity distributions which are isotropic around an
arbitrary mean velocity. Thc: collision invariants are the components of v as
well as all functions of the form 1/J(lv - ufl), i.e.

{ Q(J)v dv = ( Q(J)1/J(lv - ufl) dv = 0,JRd JRd
for all f. Out of those, only l,v, and Ivl2 = Iv - ufl2 + 2v. uf - IUfl2 are
independent of f and, thus, produce macroscopic conservation laws. For this
reason it is not known how to identify large time limits of solutions of (1.1)
uniquely from the initial data. This in twin prevents the applicability of the
entropy dissipation approach for inhomogenous kinetic equations recently
developed by Desvillettes and Villani [10], [12] (see also [14]) which provides
strong convergence at algebraic rates as time tends to infinity.

As a consequence, we restrict our attention in this work to a linearized
version of (1.1), which still posseses an infinite dimensional set of equilibrium
distributions, but however also posseses enough macroscopic conservation
laws such that the limit as t ---+ 00 can be uniquely determined from the
initial data. For the linearized cometary flow equation, presented in the
following section, the Desvillettes- Villani approach is carried out. Our main
convergence result is stated in section 1.2 and proved in sections 1.3 and 1.4.
In section 1.3 a system of differential inequalities is derived for a number of
relative entropies with respect to certain partial equilibria. In section 1.4 it is
proved that these inequalities imply convergence to equilibrium at arbitrary
algebraic rates.

Finally, in section 1.5, a simple three velocity model is considered which
reproduces some of the difficulties found in the linearized cometary flow equa-
tion. The entropy dissipation approach can also be carried out with an anal-
ogous result. A spectral analysis, however, proves exponential convergence
to equilibrium. This example is an extension of the two velocity model con-
sidered in [14].

1.2 The Linearized Cometary Flow Equation
We linearize (1.1) around an equilibrium steady state of the form F(lvI2/2),
normalized such that JRd Fdv = 1. Denoting the perturbation by g, the
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cometary flow equation becomes (see e.g. [6])

8tg + v. \Jxg = P(g) - 9 =: LQ(g) ,

with thé projection
P(g) = P(g) - F' v.mg,

and the spherical average

- 1 r
P(g)(v) = lSd-II JSd-l g(lvlw) dw.

(1.3)

(1.4)

(1.5 )

In (1.3) LQ denotes the linearized collision operator. It is easily seen that the
components of v and all functions of the form 7jJ(lvl) are collision invariants,
l.e.,

r LQ(g)vdv = r LQ(g)7jJ(lvl) dv = 0,JRd JRd
providing (with 7jJ(lvl) = J(lvl - Ivai) ) the global conservation laws

d
d r r vg(t,x,v)dvdx=O, (1.6)
t JTd JRd

d
d r r g(t, x, Ivolw) dw dx = 0, (1.7)
t JTd JSd-l

for every Ivai ~ O.
The kernel of the collision operator LQ consists of all velocity distribu-

tions of the form G(lvI2/2) - F'(lvI2/2) v. m with an arbitrary function G
of one variable and an arbitrary vector m E }Rd. Thus, we assume that, as
t ---+ 00, 9 converges to an equilibrium distribution

(1.8)

It is a consequence of the stationary version of (1.3) that goo is x-independent:

Lemma 1.2.1. Assume that Goo and moo are smooth and that goo, given by
(2.61), solves (1.3) subject to periodic boundary conditions in x. Then Goo
and moo are independent of x.

Proof. Substituting (2.61) into (1.3) yields

(1.9)

Now we set v = Ivlwand obtain

w.\JxGoo - F'Jvlwtr.\Jxmoo'w = 0,

10
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implying that 'VxGoo = 0 holds and that 'Vxmoo is skew-symmetric. Now,
a result of Desvillettes [8] implies that moo(x) = Ax + C, which can only
satisfy periodic boundary conditions iff A = O. 0

We consider (1.3) for t > 0, x E yd, V E ]Rd, subject to the initial
conditions

g(O,x,v) = gJ(x,v), (1.11)

where, without loss of generality, we assume vanishing initial total momen-
tum, i.e.

r r vgJ(x,v)dvdx=O. (1.12)JTd JRd
Then, the conservation of momentum (1.6) implies vanishing total momen-
tum for all t > 0 and, together with the family of conservation laws (1.7),
uniquely determines the global equilibrium goo as

(1.13)

However, the smoothness assumption in lemma 1.2.1 cannot be proven in
general although it is necessary: Formally, a distribution goo(x, v) = p(x)<5(v)
with an arbitrary x-periodic function p(x) is also a stationary solution of
(1.3). Moreover, we conjecture that even for smooth solutions, which are close
to a delta distribution centered at the origin in velocity space, convergence
to equilibrium can be arbitrarily slow. In order to avoid this problem, we
make strong assumptions on the data:

Assumption 1.2.1. There exists a lower "cutoff-velocity" Vo > 0 such that

F' C~2) = 0 , gJ (x, v) = 0 , for lvi< vo, (1.14)

and
for lvi> vo. (1.15)

Furthermore, IF'I has moments of all orders, i.e. In~.d IvlklF'(lvI2/2)ldv < 00,

for all k ~ O.

It is an immediate consequence of (1.14) that g(t, x, v) = 0 for lvi <
vo, i.e., no perturbation of the nonlinear equilibrium distribution F(lvI2/2)
occurs around v = O.
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We remark that assumption (1.15) is needed for the definition of an en-
tropy: Introducing the measure

(1.16)

on the phase space R = ']['d X {v E !Rd : lvi > va} , an easy computation
shows - provided (1.15) - the basic entropy inequality

( 1.17)

which is the starting point of our analysis below.
Our main convergence result is proven under assumptions of boundedness

and smoothness of solutions, which we are unable to prove. Nevertheless,
similar properties have been shown recently for simpler models ([14], [17]).

Assumption 1.2.2. The initial value problem (1.3), (1.11) has a unique
solution satisfying

for t > 0 and (x, v) E R, and uniformly in t for all multiindices (k1, ... , kd)

Theorem 1.2.2. Let the initial data 91(X, v) satisfy (1.12) and suppose that
the assumptions 1.2.1 and 1.2.2 hold. Let 900 denote the global equilibrium
given by (1.13). Then, for every ê > 0 there exists C(ê, va, F) > 0 such that
for all t > 0

1.3 The Entropy Dissipation Approach
The basic entropy equality (1.17) suggests to introduce the scalar product
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and the corresponding weighted L2-space with the induced norm II .llw We
also introduce the relative entropy of f with respect to 9 by

HUlg) := Ilf - gll~.
In particular, the following entropy dissipation equality is derived analogously
to (1.17) as a consequence of the symmetry of LQ with respect to (., .)J! :

d
-1 H(glgoo) = -2H(gIP(g)) .
et

(1.18)

(1.19)

In this context we use the terminology 'global equilibrium' for goo and 'local
equilibrium' for P(g). Equation (1.18) already shows the basic difficulty of
the entropy dissipation approach for inhomogenous kinetic equations: The
decay of the entropy tends to stop, whenever the solution is approaching
local equilibrium even without having reached the global equilibrium yet.
The central idea of the method introduced in [10], [12] is to quantify how
9 cannot stay close to a local equilibrium as long as this is not the unique
global equilibrium.

This was done in [10], [14], [18] for models with a single conservation law
by deriving a second order differential inequality for H(gIP(g)) of the form

d2

dt2 H(gIP(g)) ~ KH(glgoo) - C(E)H(gIP(g))l-~ ,

with positive constants K and C(E). Note that, whenever 9 is sufficiently close
to P(g) in relative entropy, (1.19) implies convexity in time and H(gIP(g))
will return to dissipate entropy in (1.18) as long as global equilibrium is not
reached.

In the present situation, as for the Boltzmann equation [12], such an in-
equality does not hold, since (see below) an intermediate equilibrium between
P(g) and goo has to be quantified as well.

However, we start by calculating the second order time derivative of the
relative entropy with respect to the local equilibrium

~
dt2 H(gIP(g)) -2(LQ(v. \lxg), v. \lxg)J! + 4H(gIP(g)) (1.20)

-6(LQ(g), v. \lxg)J! + 2(LQ(\lxg) .v, v. \lxg)w

Note that if 9 is in local equilibrium, i.e. when we set 9 = P(g) in the right
hand side of (1.20), then all the terms vanish, except for the first, which we
rewrite as

-(LQ(v. \lxg), v. \lxg)J! = lI\lx.LQ(vg)lI~
= II\lx . LQ(vP(g)) II~ + (\lx. LQ(v(g - P(g))), \lx. LQ(v(g + P(g)))~1.21)
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Considering the first term in the right-hand-side of (1.21), we denote the
energy eg(t, x) = JRd Ivl2 P(g) dv = In~d Ivl2gdv and recall (1.4) to derive the
following identities :

P(vP(g)) = _lvd
2 mgF' - ~F'eg ,

LQ(vP(g)) = (v (6) v - Ivd
2
) mgF' - vP(g) - ~F'eg, (1.22)

\lx.LQ(vP(g)) = (v (6) v - ~) :AF' - \lx' (vP(g) + ~F'eg) ,

where

A = {\lxmg} = ~(\lxmg + \lxm:) -1(\lx.mg)Id.

Hence, since the two terms of the last identity in (1.22) are orthogonal with
respect to (-, .) IJ'

II". LQ(vP(q))ll; ~ II (v @ v - Ij') APl!: + II" ". (P(g) + d p) Il:
(1.23)

For the first term on the right-hand side of (2.5), we use Iijk = JJRd Vivjv~IF'1dv
and lijk = 0 for i i- j, liik = ~ for i i- k, hkk = ¥, where eF = JRd Ivl2 Fdv:

II (V 0 v - IVJ2): AF'I12 = e; id [3 LAi? + 2 ~ AiiAjj + 2 ~ Ai] dx
IJ T t t<J t<J

= e; id [I:Ai/ + 2 ~ Ai? + ~ AiiAjj] dx
t,J t t.,...J

= e; id [I:Ai/ + 2 LAi? - LAi?] dx
t,) 1 t

2: e; hd IA12dx.

Collecting these estimates, we have

d
2

2eF r II (- e ,) 11
2

dt2 H(gIP(g))Ig=p(g) 2: d jTd I {\lxmg}12 dx + 2 v. \lx P(g) + : F IJ .

(1.24)
The first term can be estimated from below by '¥ JYd l\lxmgldx using a Korn
inequality (see [12, proposition 11]), which shows that this term only van-
ishes for x-independent mg. The second term, instead of controlling \lxP(g),
contains the projection

(1.25)
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and therefore vanishes whenever (I - Po)(P(g)) is x-independent, which al-
lows still an x-dependent contribution Po(P(g)) and (1.24) is not sufficient
to conclude convergence to the equilibrium goo (1.13). A similar difficulty oc-
curs also for the Boltzmann equation in [12], which motivates the following
procedure.

Our strategy is to decompose P(g) as

(1.26)

and then to introduce an intermediate (between local and global) equilibrium,
defined as

P(g) = Po(g) + PI (goo) ,
which can alternatively be written as

(1.27)

which will be used below.

Lemma 1.3.1.

- 1 -
H(P(g)lgoo) 2: 2H(glgoo) - H(gIP(g)).

Proof. The proof is immediate from the fact that

H(P(g)lgoo) = H(glgoo) + H(gJP(g)) - 2(g - goo, 9 - P(g))Il.

We now estimate the second term on the right hand side of (1.24)

(1.29)

o

(1.30)

At this point we need assumption 1.2.1 in order to prevent that (1.30)
vanishes in case of 9 concentrating around v = O. By the lower bound lvi 2: Vo
on the phase space R, we continue to estimate
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by a Poincare inequality on ']['d, using that fYd(P - Pa)(g - goo) dx = 0, point-
wise in v. Similarly, fYd l'Yxmgl2 dx ~ C fTd Imgl2 dx holds since f1fd mg dx =
o by the conservation of momentum. Thus, from (1.24) and (1.31) it follows
with Pl(g) = (P - Pa)(g) - mg.vF' (and these two terms being orthogonal)
for a constant KI depending on Va and F that

(1.32)

•

•

since, for 9 = P(g), we have by (1.28) that 9 - P(g) = 9 - goo - Pa(g - goo) =
PI (g - goo).

In the following, we apply the same strategy as for (1.18):... first compute
the second derivative of the relative entropy with respect to P,

J2 -
dt2 H(gIP(g)) = 2((1 - Pa)(v. 'Yxg - LQ(g)), (1 - Pa)(v. 'Yxg) - LQ(g))jj

+2(g - P(g), 'Yx.(v(v.'Yxg) - vLQ(g)) (1.33)
-LQ(v.'Yxg) + LQ(g) + 'Yx.Pa(-v(v.'Yxg) + vLQ(g)))jj

and then consider (1.33) for 9 = P(g) with P(g)(x, v, t) = eg~,x) F'(lvl2 /2) +
Pl (goo)(lvI2 /2)

J2 -
dt2H(gIP(g))lg=p(g) =

(1.34)

Finally by the Poincare inequality on ']['d, we obtain

J2 - -
dt2H(gIP(g))lg=p(g) ~ C H(P(g)Jgoo). (1.35)

Thus, at least formally, the entropy equation (1.18) and the inequalities
(1.32) and (1.35) imply that the decay of H(glgoo) can only stop when global
equilibrium is reached. In order to quantify this formal information, we
generalize (1.32) and (1.35) to all 9 i= P(g) and 9 i= P(g), respectively.
Herein, we will use the following lemma:
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Lemma 1.3.2. Let Assumption 1.2.1be satisfied. Then the operators P, Po, PI,
and, consequently, P - defined in (1.5), (1.25), (1.26), and (1.4) - are
bounded with respect to 11.11 w

Proof. The operator P(g) is bounded by Jensen 's inequality:

As for the operator Po,

we obtain the desired estimate with the Cauchy-Schwartz inequality

IlPo(g)ll~ ~ JlRd';'1 dv id id Ivl4JP'J dv ld ~~( dv dx

= CIIP(g)lI~ ~ ClIglI~.
In order to show that P is bounded, we apply again the Cauchy-Schwartz
inequality:

IIF'v'mgll~ < L lF'IIvl21mgl2 dvdx = C id (ld V9dV) 2 dx

< id Ivl21F'I dv L I~I dv dx = C IIgll~. (1.37)

Finally, the equations (1.36) and (1.37) bound P, and, thus, Pl' 0

Theorem 1.3.3. Let assumptions 1.2.1 and 1.2.2 be satisfied. Then,

holds for arbitrarily sm all I > é > 0, and fJ > 0, and for positive constants
KI, and Cl(é).

Proof. From (1.20) und (1.21),

d2

dt2H(gIP(g)) = 211V'x.LQ(vP(g))II~ - 6(LQ(g),v'V'xg)

-2 (V'x.LQ(vLQ(g)), V'x.LQ(v(g + P(g)))1'
+4H(gIP(g)) + 2(v. LQ(V'xg), V. V'xg) I'

= Il + 12 + 13 + 14 + Is.
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•

•

For the first term, it follows from (1.32) that II ~ K.IH(gIP(g)).
As for the remaining terms, we begin by estimating 13, and for the other

integrals similar arguments will apply. For 13, the x-independence of goo and
integration by parts yields

13 = 2("YxC'Vx.LQ(vLQ(g))), LQ(v(1 + P)(g - goo)))Jl. (1.39)

Before we are going to apply Hölder's inequality for (1.39), we estimate the
two factors as (with "Y; denoting the gradient tensor product)

ILQ("Y;LQ(g)v)1 ~ lvi ((1 + P)(I"Yx2 LQ(g)l)

+dlF'III"Y;LQ(g)IIJl)' (1.40)

ILQ(v(1 + P)(g - goo))1 < lvi ((1 + P)(1 + P)(lg - gool)
+dlF'lllg - gooIIJl). (1.41)

Note that for the right hand side of (1.41) assumption 1.2.2 implies Igl, Igool ~
CV1 + IvI21F'1, and, thus, (1+P)U+P)(lg-gool) ~ CVl + Iv121F'1. There-
fore, splitting (1.41) = (1.41)~' (1.41)1-~' for all 1 > c' > 0 :

Ihl ~ C L1v12(1+ IvI2)~ IF'I~

x IFr'il ((1 + P)U + P)(lg - gool) + dlF'llig - gooIlJlr-~1

x lF'1-4 (U + P)(I"Y;LQ(g)l) + dlF'III"Y;LQ(g)IIJl) dvdx

and Hölder's inequality with the exponents ~, I~~" and 2 yields (with

J lvi? (1 + IvI2)IF'1 dv < 00 by assumption 1.2.2) :

1131 ~ C(c') Ilu + P)U + P)(lg - gool) + d 1F'llig - gooIIJlII:-~1

x Ilu + P)(I"Y;LQ(g)1) + d lF'III"Y;LQ(g)IIJlIIJl.

Furthermore, by lemma 1.3.2 and Young's inequality with exponents I~~I

and 11~,
1131 < C(c')lIg - gooll~-~III"Y; LQ(g)II/Ll

< (8H(glgoo) + C(c')8~ 1I"Y;(LQ(g))IIF ) ,
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for all & > O. Finally, the global smoothness assumption 1.2.2 permits (com-
pare [10]) to control the derivatives of LQ(g) = P(g) - 9 by the interpolation

2
for n>-

ë'

•

d . h I-E'an WIt I+E' = 1 - E :

In the same manner, we estimate the terms h and Is as

Ihl ::; C(E') (Ivll\7xLQ(g)1, Ig - gool)Jl'
IIsI ::; C(E') (IvI21\7;LQ(g)1, Ig - gool)Jl'

and we interpolate the derivatives as above for 13 to match (1.38).
Finally for 14, we note that H(gIP(g) ::; CH(gIP(g))I-E holds by the

bounds of assumption 1.2.2. 0

Theorem 1.3.4. Let assumptions 1.2.1 and 1.2.2 be satisfied. Then,

holds for arbitrarily small1 > E > 0, and for positive constants "'2 and C2(E).

Proof. Wc rewrite (1.33) with respect to (1.34) as

d2 _

dt2H(gIP(g)) = 211(/ - Po)(v.\7xP(g))II~

+2(v. \7xPo(g - goo), (I - Po)(v. \7x(g - P(g)))Jl
+2((1- Po)(v.\7x(g - P(g))),v.\7xg - \7x.po(vg))Jl
+2H(gIP(g)) - 4((1- Po)(v. \7xg), LQ(g))Jl
+2(g - P(g), \7x.(v(v.\7xg)) - \7x.(vLQ(g))
-LQ(v.\7xg) + LQ(g) - \7x.po(v(v.\7xg) - vLQ(g)))Jl

(1.43)
i=I

and estimate II with (1.35) and lemma 1.3.1 as :
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Analogously to the previous proof we estimate 12:

1121 < C llvl2lPo(g - goo)II\7/(g - P(g))1 dJl,

< <5H(glgoo) + C(E)<5E:-l/_/(gIP(g))I-E:. (1.44)

For 13, we apply Hölder's inequality similarily to (1.41) and (1.40) after
estimating the factors

1(1 - Po) (\7;(g - ?(g))v)1 ~ C(lvll\7/(g - ?(g))1

, J 2 - 2 dv )+IF I l\7x (g - P(g))1 lF'ï '
1(1 - Po)(v(g - goo)) I ~ C(lvllg - gool + IF'I J Ig - gooI21~1) ,

and the second order derivatives are controlled using the same interpolation
idea with the global smoothness assumption 1.2.2 as in the previous proof.

Moreover, 1141 ~ H(gl?(g)) is a consequence of lemma 1.3.5 below. All
the remaining terms Is-110 are estimated with similar arguments as in the
proof of the previous theorem and yield bounds of the form (1.44). The proof
is completed by choosing <5 small enough. 0

Lemma 1.3.5. Let assumptions 1.2.1 and 1.2.2 be satisfied. Then, the in-
equalities

H(gl?(g)) - H(gIP(g)) > 0, (1.45)

~ (H(gl?(g)) - H(gIP(g))) < C(E) H(glgoo)l-E: , (1.46)

hold for arbitrarily small1 > E > 0 with a positive constant C(E).

Proof. The identity H(gl?(g)) - H(gIP(g)) = IIP1(g- goo)ll; ~ 0 proves the
first inequality. Differentiation with respect to time gives

which is estimated in the same way as in the previous two proofs. 0
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1.4 A System of Ordinary Differential Inequal-
ities

We introduce x := H(glgoo), Y := H(gIP(g)), z := H(gIP(g)), and w := z-y
in (1.18), (1.38), (1.42), (1.45), and (1.46), and denote time-derivatives by
d _ '.di .

,
-2y, (1.47)x -

" > KIZ - fJx - fJ~II-1 C1(Ey) yl-~11 , (1.48)y

" > C ( ) l-~. (1.49)Z K2X - 2 E:z Z ,• Iw'l < C (E: )Xl-~w (1.50)3 w ,

where 1 > E:y, E:z, E:w > 0 and fJ > 0 are arbitrarily small, x, y, Z, w 2: 0, and
KI, K2, CI, C2, and C3 are positive constants.

We want to deduce decay of x(t) with an arbitrarily high algebraic rate
according to arbitrarily small E:y, E:z, E:w > O. Note that the first three in-
equalities could be seen as a 'closed' system for x, y, and z. However, the,
additional information contained in the fourth inequality shall be needed.

The presented proof is quite particular in quantifing different regimes of
(1.47)-(1.49) and using (1.50) to prevent rapid oscillations inbetween.

As a preliminary technical result on second-order differential inequalities,
we reformulate [12, Lemma 12], which discusses time-averages of the entropy
production:

Lemma 1.4.1. Let h E C2([0, L]) be nonnegative and satisfy

h"(t) + C h(t)l-~ 2: a, for 0::; t ::; L,

with positive constants C, a and E: E (0, 110). Then,
1 <

• either L is small: L::; 50 C-2(1-<) a2(i-<) ,

L _1

• or h is large on the average: (h)(O,L) = t Jo h(t) dt 2: Ibo (~) 1-< •

Proof. By introducing the resealing T = tVA, a' = ~,we obtain

where T E [0, LVA] and LVA = L'. It then follows from [12, Lemma 12]
that
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• either L' is small,

• or h is large on the average,

<L' ::;50a/2(1-<}

( ) 1 I 1
h (0 U) > -0' ï=< ., - 100

The result now follows by returning to the original variables.
o

Our main result theorem 1.2.2 is a direct consequence of

Theorem 1.4.2. Let x, y, z, and w = z - y ~ 0 be smooth and, for t > 0,
satisfy (1.41)-(1.50), where 1 > éy, éz, éw > 0, and<5 > 0 are arbitrarily
small. Then, for every sufficiently small é > 0, there exists a constant C(é) >
o such that

(1.51)

Proof. We view (1.51) in the following way: let to > 0 be arbitrary with
0'0 = x(to). The aim is to find an upper bound of the form

(1.52)

on a time To such that x(to + To) = ,0'0, where, < 1 is given.
Once such a bound is proven, (1.51) follows as in [10], [12].
At first, we consider (1.48) using z = w + y ~ w :

(1.53)

The idea of the following is to deduce 'big' (y)(O,L)-aVerages from lemma 2.81,
where we distinguish between the cases where w is 'big' in (1.53), and the
cases where w is 'small' but y is close to z = y + wand lemma 1.4.1 is used
for (1.49). However, the realization of this concept requires some care.

Step 1: We define the set Oz (quantifying w 'small') by

(1.54)

where w(ao) and J.L(ao) are to be chosen later. On the interval [to, to + To],
the set Oz and its complement devide into unions of intervals: Oz = U/z and
[to, to + To]\Oz = U/y (where w is 'big'), and lemma 1.4.1 will be applied to
(1.48) and (1.49) for ly and lz, respectively.

22



Moreover on ly, we quantify W 'big' using (1.50), which controls the
derivative Iw'l in terms of x ~ x(to) = 0:0 (by (1.47))

w > w(O:o) - fL(ao) sup Iw'(r)1
to<-r<to+To

> w(O:o) - C3 O:OI-€w fL(O:o) =: w(O:o) > O. (1.55)

Step 2: For nonempty intervals ly, we have by construction of Oz (1.54)
that the length R(I y) ~ m.in {fL( 0:0), To}. The following three cases are possi-
ble :

Case 1) [to, to + To] = Oz and there are no intervals ly,

Case 2) To ~ fL(O:o) will satisfy (1.52) for suitable fL(O:O) to be chosen below,

Case 3) P(Iy) ~ fL(O:o) : Firstly, we consider 6 = 6(0:0) to be fixed below,
for which estimate with 0:(0:0) to be chosen below

"'lW - 6x ~ ",}'w(O:o) - 6(0:0)0:0 =: 0:(0:0) > O. (1.56)

Then, for (1.48), lemma 1.4.1 applies with C = Cd6(0:0)1-€II, 0: =
0:(0:0), and L = R(Iy). Moreover, due to R(Iy) ~ fL(O:o), we rule out the
first case in lemma 2.81 by setting

(1.57)

Therefore, the second case of lemma 1.4.1 yields

(Y)J
II

~ 1~0 (CI6€II-lfl-I'1I 0'(0:0)1-1'11.

Step 3: Next, for the intervals lz ç Oz, it follows by (1.47) that

Then, applying lemma 1.4.1 to (1.49) yields

1

• or: (z) > _1 (K21'00) 1-••.
J. - 100 C2
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I

In the second case, equation (1.54) implies with the constant al = Ibo ('71) I-.z

I

where we have chosen w(oo) = TO~-'z. Moreover, we set in the definition
of nz (1.54) and in (1.56) the choices

(1.58)

By inserting (1.58) into (1.57) we get the constraint

(1.59)

where - for small Ey, Ez, and Ew - the constant a2 can be chosen to depend
only on " /'i,1, /'i,2, C2, and C3. In the following, we choose Ey ~ ~ and
Ez = Ew = ~. Thus the exponent on the right-hand-side of (1.59) is positive,
and (1.59) can be satisfy for all possible values of 00 E [0, x(t = 0)] by making
Cl bigger if necessary (which does not conflict with (1.48)).

We summarize step 2 and step 3 that for every Iy

(1.60)

and for every lz that either

(1.61)

Step 4: We continue by combining pairs of intervals (ly, lz) to their union
7 := /y U /z, where we restrict to the above case 3) : f(ly) 2: 1J.(00). Then,

and we consider the two cases according to (1.61) :

1. In the first case in (1.61), e(lz) ~ 50002(1:.'.z) implies
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with a constant a4 (and all constants aj=5, ... from now on) being inde-
pendent from 0'0, éy, éz, and éw• Consequently,

e(1y)
e(1y) + e(Iz)

(1.64)

and, neglecting the last term in (1.62), we obtain with an exponent
él(éy,éz,éw) > 0 tending to zero as éy,éz,éw --+ a that

(yh ~ a6 O'OHEI . (1.63)

2. For the second case in (1.61) and (1.60), both the mean values on ly
and lz satisfy already estimates of the form (1.63).

Step 5: Finally, we regard the complete interval [to, to + To], where we
detail further the cases 1) - 3) from step 2 :

la) [ta, ta + Ta] = Oz and Ta ~ 500'0 2(t.:<z).

lb) [ta, ta + Ta] = Oz and

( ) >al ~ l+EI
Y Ito,to+To] _ 20'0 2,1-<zl= a70'0 .

Integration of (1.47) yields 0'0(1 - ,) = 2To (y) Ito,to+Tol and, thus, for an
é2(éy, éz, éw) > 0 tending to zero as éy, éz, éw --+ 0,

(1.65)

2) To ~ J.L(0'0) immediately implies an estimate of the form (1.65).

3a) e(Iy) ~ J.L(0'0) for all ly, and #ly ~ #lz, (where #ly and #lz denote
the numbers of ly and, respectively, lz). We can split [to, to + To] into
intervals I = 7 = ly U Tz or T = Ty, where

(y) I ~ ag O'oHq,

holds by (1.60) and (1.63), which further implies (1.64) and, thus,
(1.65).

3b) e(Iy) ~ J.L(0'0) for all ly and #lz = #ly + 1. According to the two cases
in (1.61) for the one extra lz, we either have the situation of case 3a),
or

e(1z) ~ 500'02(t.:,z) ==* To -T:(Iz) ~ alO O'~I ,

sinceTo-e(Iz) ~ J.L(0'0), Bysplitting [to,to+To] = {[to,to+To]\fz)Ulz
as in (1.62) we again obtain (1.64).

Thus, all cases lead to estimates of the form (1.65), which completes the
proof. 0
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1.5 A Discrete Velocity Model
In this section, we introduce a one-dimensionallinear discrete velocity model,
for which the entropy dissipation approach leads to the same system of or-
dinary differential inequalities as for the linearized cometary flow equation.
However, the discrete velocity model can be solved explicitly by Fourier ex-
pansion, which proves actually exponential convergence to equilibrium. It
is interesting to compare the three-velocity model below to the two-velocity
model discussed in [?], in which the entropy dissipation approach controls
local equilibria already by one second order differential inequality like (1.19).

We consider the equation

with

af af-a +V-a= Lf,t :1:
(1.66)

(1.67)

periodic boundary conditions in x E [0,1), and initial condition f(t = 0) =
fI. We use a matrix-vector notation, and collect the discrete velocities 1,0
and -1 in the diagonal matrix

V=(~~ ~).o 0 -1

For the collision operator L, we choose

(1.68)

(

-1/6 1/3
L = 1/3 -2/3

-1/6 1/3

-1/6 )
1/3 ,

-1/6
(1.69)

which can be written as L = Po + PI - I = 7/Jo 07/Jo + 7/JI 07/JI - I, with

-1 )o .
1

1
7/Jo = yI3(l, 1, 1) ,

1
7/JI = yI2(I,O, -1),

1(111)Po=- 111,
3 1 1 1

1 ( 1 0H=- 0 0
2 -1 0
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Pointing out the similarities between (1.66) and the linearized cometary flow
equation, we define - in analogy to section 1.3 - the entropy for (1.66)

where II . II denotes the norm induced by the scalar product

(I, g) := 11f. 9 dx .

Note that 'l/;o and 'l/;1 are collision invariants since

Multiplying (1.66) by 'l/;i, i = 0, 1 yields the conservation laws

where i = 0 corresponds to the conservation of mass, and z = 1 to the
conservation of momentum.

The global equilibrium foo is given by

The local equilibrium is denoted by P f, where P f = Paf + Pd.
The time-derivative of the relative entropies with respect to the global

equilibrium 1H(llfoo) = -2J-l(J1 PI) ,

leads, as in section 1.3, to consider the second time-derivatives of the relative
entropies with respect to the local equilibrium

cf
dt2H(J1P1)

(1.70)

which has the same structure as (1.20) for cometary flow equation.
If we assume that f is in local equilibrium (i.e., f = PI), only the first

term on the right hand side of (1.70) contributes, since v( -L)v = kP1 :
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(1.71)

However, as for the linearized cometary flow equa.00n, this term may vanish
without f = foc" and w!::introduce the projection Pf = PoL+Plfoo, with the
matrix representation P = PO+PI +PIPO. Note that (P- P)f = PlU - foo),
whence

~22HUI P J) = :2 HUI P J) + 211 PI V ~~ 11
2- 2 \ PI ~~ ' v2~~) .

By setting f = Pf in (1.71), it immediately follows that

:2HUIP J)lf=Pf = 11 (:x U+ + f-)) 2 dx = ~ II:X Pofl12 ~ CHUlfoo),
(1.72)

which vanishes if and only if f is in global equilibrium. Now, arbitraily fast
algebraic convergence to equilibrium follows from theorems analog to 1.3.3
and 1.3.4 as well as lemma 1.3.5, which can be proven analog to section 1.4.

On the other hand, exponential convergence is shown directly by Fourier
expanSlOn,

00

f(x, t) = L ck(t)ei21Tkx.

k=-oo

(1. 73)

(1.74)

Substituting (1.73) into (1.66), the coefficients compare to

ßtCk = (L - i27rkv)Ck,

and it follows from the definition of L and v that

(

-1/6 - i27rk 1/3 -1/6 )
L - i27rkv = 1/3 -2/3 1/3 .

-1/6 1/3 -1/6+i27rk

The characteristic polynomial of (1.74) is given by

Pk(,~) = À3 + À2 + 47r2k2(À + 2/3) .

For k = 0 (and, thus, J1.k = 0) we recover the double zero eigenvalue cor-
responding to the two dimensional set of equilibrium distributions. The
third eigenvalue for k = 0 is À = -1. For k =F 0, an application of the
Routh-Hurwitz criterion shows that all remaining eigenvalues have negative
real parts. It is easily shown that, as Ikl ~ 00, the three zeroes of Pk are
approximated by

2 1. 1.
Àkl ~ -3' Àk2 ~ -6 + 27rh, Àk3 ~ -6 - 27rh.

This proves the existence of a spectral gap and, thus, exponential convergence
to equilibrium for (1.66).
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Chapter 2

On the Shockley-Read-Hall
Model:
Generation- Recombination
Semicond uctors

2.1 Introduction

•
In

•

The Shockley-Read-Hall (SRH- )model was introduced in 1952 [22], [141 to
describe the statistics of recombination and generation of holes and electrons
in semiconductors occurring through the mechanism of trapping.

The transfer of electrons from the valence band to the conduction band
is referred to as the generation of electron-hole pairs (or pair-generation pro-
cess), since not only a free electron is created in the conduction band, but also
a hole in the valence band which can contribute to the charge current. The
inverse process is termed recombination of electron-hole pairs. The bandgap
between the upper edge of the valence band and the lower edge of the conuc-
tion band is very large in semiconductors, which means that a big amount
of energy is needed for a direct band-to-band generation event. The pres-
ence of trap levels within the forbidden band caused by crystal impurities
facilitates this process, since the jump can be split into two parts, each of
them 'cheaper' in terms of energy. The basic mechanisms are illustrated in
Figure 2.1: (a) hole emission (an electron jumps from the valence band to the
trapped level), (b) hole capture (an electron moves from an occupied trap
to the valence band, a hole disappears), (c) electron emission (an electron
jumps from trapped level to the conduction band), (d) electron capture (an
electron moves from the conduction band to an unoccupied trap).
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Figure 2.1: The four basic processes of electron-hole recombination.

•

Models for this process involve equations for the densities of electrons in
the conduction band, holes in the valence band, and trapped electrons. Basic
for the SRH model are the drift-diffusion assumption for the transport of elec-
trons and holes, the assumption of one trap level in the forbidden band, and
the assumption that the dynamics of the trapped electrons is quasistation-
ary, which can be motivated by the smallness of the density of trapped states
compared to typical carrier densities. This last assumption leads to the elim-
ination of the density of trapped electrons from the system and to a nonlinear
effective recombination-generation rate, reminiscent of Michaelis-Menten ki-
netics in chemistry. This model is an important ingredient of simulation
models for semiconductor devices (see, e.g., [16], [21]).

In this work, two generalizations of the classical SRH model are con-
sidered: Instead of a single trapped state, a distribution of trapped states
across the forbidden band is allowed and, in a second step, a semiclassical ki-
netic model including the fermion nature of the charge carriers is introduced.
Although direct band-to-band recombination-generation (sec, e.g., [20]) and
impact ionization (e.g., [6], [7]) have been modelled on the kinetic level be-
fore, this is (to the knowledge of the authors) the first attempt to derive a
'kinetic SRH model'.

For both the drift-diffusion and the kinetic models with self consistent
electric fields existence results and rigorous results concerning the quasis-
tationary limit are proven. For the drift-diffusion problem, the essential
estimate is derived similarly to [12], where the quasineutral limit has been
carried out. For the kinetic model Degond's approach [8] for the existence of
solutions of the Vlasov-Poisson problem is extended. Actually, the existence
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theory already provides the uniform estimates necessary for passing to the
quasistationary limit.

In the following section, the drift-diffusion based model is formulated
and nondimensionalized, and the SRH-model is formally derived. Section 3
contains the rigorous justification of the passage to the quasistationary limit.
Section 4 corresponds to Section 2, dealing with the kinetic model, and in
Section 5 existence of global solutions for the kinetic model is proven and the
quasistationary limit is justified.

2.2 The drift-diffusion Shockley-Read-Hall model
We consider a semiconductor crystal with a forbidden band represented by
the energy interval (Ev, Ee) with the valence band edge Ev and the conduc-
tion band edge Ee. The constant (in space) number density of trap states
Ntr is obtained by summing up contributions across the forbidden band:

(2.1 )

Here Mtr(E) is the energy dependent density of available trapped states. The
position density of occupied traps is given by

(2.2)

•
where ftr(x, E, t) is the fraction of occupied trapped states at position x E D,
energy E E (Ev, Ee), and time t ~ O. Note that 0 ~ ftr ~ 1 should hold
from a physical point of view .

The governing equations are given by

1
Sn = -N [noftr - n(l - ftr)]

Tn tr

(2.3)

lEe

Rn = SnMtrdE
Ev

(2.4 )

lEe

Rp = SpMtr dE
Ev

(2.5)
(2.6)
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•

Here n(x, t) ~ 0 denotes the density of electrons in the conduction band,
whereas p(x, t) ~ 0 is the density of holes in the valence band, with electrons
and holes being oppositely charged. For the current densities ln, lp we use the
simplest possible model, the drift diffusion ansatz, with constant mobilities
Jln, /l,p, and with thermal voltage UT. Moreover, since the trapped states
have fixed positions, no flux appears in (2.3).

By Rn and Hp we denote the recombination-generation rates for nand
p, respectively. The rate constants are Tn(E), Tp(E), no(E), Po(E), where
no(E)Po(E) = ni2 with the energy independent intrinsic density ni.

In the Poisson equation (2.6), V(x, t) is the electrostatic potential, Es the
permittivity of the semiconductor material, q the elementary charge, and
C = C(x) the given doping profile.

Note that if Tn, Tp, nO, Po are independent from E, or if there exists only one
trap level Etr with Mtr(E) = Ntr8(E - Etr), then Rn = J...[no!lli:.Nn- n(l- !lli:.N

n)],
'Tn tr tr

Hp = 1- [Po(1 - !lli:.Nn) - p!lli:.N
n], and the system for n,p, and ntr is closed by

~ tr tr

integration of (2.3):
ßtntr = Hp - Rn. (2.7)

By adding equations (2.4),(2.5),(2.7), we obtain the continuity equation

(2.8)

•

with the total charge density p - n - ntr and the total current density ln + lp.
We now introduce a scaling of n, p, and ftr in order to render the equations

(2.4)- (2.6) dimensionless:

Scaling of parameters:

. M ~M
1. tr ---+ Ec-E" tr'

ii. Tn,p ---+ fTn,p, where f is a typical value for Tn and Tp.

iii. /ln,p ---+ fi,/ln,p, where fi, is a typical value for /ln,p'

iv. (nO,PO,ni,C) ---+ C(no,po,ni'C), where ë is a typical value of C.

Scaling of unknowns:

v. (n,p) ---+ C(n,p).

vii. V ---+ UT V.

vi ii. ftr ---+ ftr'
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Scaling of independent variables:

x. x ~ vpDrf x, where the reference length is a typical diffusion length
before recombination.

xi. t ~ ft, where the reference time is a typical carrier life time.

Dimensionless parameters:

xii. >. = ...j cé
•__ = ~...j é"UCT is the scaled Debye length.

q jlT X q

xiii. é = ~ is the ratio of the density of traps to the typical doping density,
and will be assumed to be small: é « 1.

The scaled system reads:

>.2~V = n + éntr - p - C, ntr(Jtr) = 11 ftrMtr dE, (2.12)

with no(E)po(E) = n~ and Jo1 MtrdE = 1.
By letting é ~ 0 in (2.9) formally, we obtain ftr = Tn(P:;~o:.,:(~+no)'and

the reduced system has the following form

1
Sn = - [noftr - n(l - ftr)],

Tn

(2.9)

Rn = 11SnMtr dE ,

(2.10)

Hp = 11SpMtr dE ,

(2.11)

•
atn = \7 . Jn + R(n,p),
atp = -\7. Jp + R(n,p),

R - ( .2 _ ) t Mtr(E) dE
. - n. np Jo Tn(E)(p + po(E)) + Tp(E)(n + no(E)) ,

>.2~V = n - P - C.

(2.13)
(2.14)

(2.15)

(2.16)

Note that if Tn, Tp, nO, Po are independent from E or if there exists only one
trap level, then we would have the standard Shockley-Read-Hall model, with
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(2.20)•

R = (+ lli)2;n( + )' Existence and uniqueness of solutions of the limiting
Tn P PO Tp n nO

system (2.13)-(2.16) under the assumptions (2.21)-(2.25) stated below is a
standard result in semiconductor modelling. A proof can be found in, e.g.,
[16].

2.3 Rigorous derivation of the drift-diffusion
Shockley-Read-Hall model

We consider the system (2.9)-(2.12) with the position x varying in a bounded
domain n E R3 (all our results are easily extended to the one- and two-
dimensional situations), the energy E E (0,1), and time t > 0, subject to
initial conditions

n(x,O) = nI(x), p(x,O) = PI (x), ftr(x, E, 0) = ftr,I(x, E) (2.17)

and mixed Dirichlet-Neumann boundary conditions

n(x, t) = nD(x, t), p(x, t) = pv(x, t), V(x, t) = VD(x, t) x E anD can
(2.18)

and

on op oV
01/ (x, t) = 01/ (x, t) = 01/ (x, t) = 0 x E anN :=on \ anD, (2.19)

where 1/ is the unit outward normal vector along anN. We permit the special
cases that either anD or anN are empty. More precisely, we assume that
either anD has positive (d - I)-dimensional measure, or it is empty. In the
second situation (anD empty) we have to assume total charge neutrality, i.e.,

1(n + Entr - P - C) dx = 0 ,

The potential is then only determined up to a (physically irrelevant) additive
constant.

The following assumptions on the data will be used: For the boundary
data

nD,PD E WI~OO(n x Rn, VD E L~c(Rt, wI•6(n)), (2.21)

for the initial data

nI, PI E HI (n) n LOO(n), 0 ~ ftr,I ~ 1, (2.22)

fn(nI + Entr(Jtr,I) - PI - C) dx = 0, if on = anN, (2.23)
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for the doping profile
(2.24)

for the recombination-generation rate constants

(2.25)

We shall first prove local existence of solutions for fixed positive E by a
contraction argument, following the lines of [11], [16]. We define the fixed
point map F : {n, P, ftr} --+ {7L, v, ntr} by the following:

Step 1: For n,p, ftr given (satisfying (2.20) if an = anN), we obtain V
by solving the problem (2.12),(2.18), (2.19); if anD has a positive measure,
the solution exists and it is unique for all t. For empty anD the assumption
(2.20) implies solvability and uniqueness up to a constant, whose value is
unimportant for the following.

Step 2: We obtain the new trap occupancy ntr from

Eatntr = ';p [po(1- Utr) - PUtr] - 'T~ [nOUtr - n(1 - Utr)] ,

Utrlt=O = ftr,! ,

the new electron density U from

atU = V' . (J1.n(V'V, - n V'V)) + R"" (n, ntr) ,
ulanD = nD, ~~ lanN = 0, ult=o = nI ,

and the new hole density v from

at'll = V' . (J.tp(V'v + pV'V) + Rp(p, Utr) ,
vianD = PD, ~~ lanN = 0, Vlt=o = PI .

For the fixed point argument we shall use the following norm:

(2.26)

(2.27)

(2.28)

(

T ) 1/2

+ [(IIVn(tllll.,(nl + IIVp(tllll.,(nl) dt (2.29)

Note that the property (2.20) is preserved in case of a pure Neumann problem.
We now show that the map F is contractive for a sufficiently small time
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(2.31)

•

interval (0, T) on a ball with sufficiently large radius a around the initial
data (considered as constant functions of time):

Ma:= {(n,p,ftr): 0:::; ftr:::; 1, lI(n-nl,p-PI,ftr - ftr,l)IIT:::; a}. (2.30)

First, let us show that F maps Ma into itself. We observe that the equa-
tion for Utr preserves the natural bounds for the initial data: 0 :::;Utr :::;1.
Multiplication of (2.26) by Utr - ftr,1 and straightforward estimation gives

TÎ(a) a
max IIUtr - ftr,lIlL2(nx(o,I» :::;-- :::;-5 '
[D,TI é

for any a by choosing T small enough.
Multiplication of (2.27) by u-nD (nD = 0 for the pure Neumann problem)

and integration by parts gives

~ dd {(U - nD)2 dx = -J.Ln {1\7uI2 dx + /ln { \7u. (n\7V + \7nD)
2 t ln ln ln

- P.n { n\7V . \7nD dx + {(u - nD)(JÎn - 8tnD) dx
ln ln

(2.32)

For estimating the right hand side we use the Cauchy-Schwarz inequality,
the assumptions on boundary and initial data, the estimate IRn(n, utr)1 :::;
C(n + 1), and the fact that (n,p, ftr) E Ma:

~ ~ Ilu - nDlli2(n) :::;- ~n 11\7(u - nI )IIi2(n) + Ch(a) + Iln\7Vlli2(n) + Ilu - nDlli2(n)) .
(2.33)

For estimating the nonlinear term n \7V we employ the Hölder inequality,
the Gagliardo-Nirenberg inequality, the Poisson equation, and the Sobolev
imbedding theorem:

IIn\7VIIL2(n) :::; IlnIIL3(n)II\7VIIL6(n)
:::; (C(c5)IInIIL2(n) + c511\7nllL2(n))(IIn+ pIIL2(n) + IlftrIIL2(nx(o,I») + 1) (2.34)

for any 15> 0, which leads to the estimate (using the definition of Ma)

(2.35)

As a consequence, the Gronwalllemma applied to (2.33) implies

max IIu - nDlli2(n) :::;IInl - nDlli2(n) + ,(a)(r(T)C(c5) + 15), (2.36)
[D,TI
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with r(T) - 0 for T - 0, and, therefore,

where the last inequality is achieved by first choosing a big enough, then c5
small enough, and then T small enough.

Analogously, we prove

amax Ilv - PIIIL2(n) ~ -.
[D,TI 5

(2.38)

As for the integral terms in the norm, we obtain from (2.33) after inte-
gration with respect to time

such that

(iT 11\7(u _ nl)lli2(n)dt) 1/2 ~ ~. (2.39)

Note that again a has to be chosen big enough, and T small enough. The
same estimate holds for \7(v - PI)' Combining it with (2.31), (2.37), (2.38),
and (2.39), F: Ma - Ma has been proven.

The next step is to prove that F is a contraction. For the components of
the difference

we obtain the problems

é8tc5utr = -",c5utr + Anc5n + Apc5p,
c5utrlt=o = 0,

(2.41)

with", = ~ + no+n! A = l-Utr,2 A = - Utr,2 c5n = n - n etc. for c5u
Tp Tn' n Tn' p Tp , 1 2 , tr,

8tc5u = \7 . (J1n(\7ou - nI\7c5V - c5n\7V2)) + Rn(nl, Utr,l) - Rn(n2, Utr,2) (2.42)

c5ulanD = 0, a:;- lanN = 0, c5ult=o = 0,

for Ou, and

8toV = \7. (J1p(\7c5v + Pl \7oV + op\7V2)) + Rp(Pl, Utr,l) - Rp(P2, Utr,2) (2.43)
c5vlanD = 0, ~: lanN = 0, c5vJt=o = 0,
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•

for ov.
The following estimates are very similar to the above. Multiplication of

(2.41) by OUtr and a simple estimation shows that

r(T)maxlloutrllu(Hx(oI» ~ -1I(on,op,o!tr)llr, (2.44)
~~ 'E

with limr-+o r(T) = O.
Multiplying (2.42) with ou, integrating with respect to x and t, we obtain

1 12 j1'n it ()1122I1ou(t) IL2(H)+"2 0 lI'Vou s L2(0) ds

~ C it (lIon'V\I2I1I2(H) + Iini 'VoVIII2(H) + lIonIII2(H) + IIO!trIlI2(H) + IlouIlI2(H») ds.

(2.45)

The first two terms on the right hand side we estimate analogously to (2.34),
leading to

it (lIon'VV2I1I2(H) + Iini 'VoVIII2(H) + lIonIII2(H) + 1I0!trIlI2(H») ds

~ (r(T)C(o) + o)lI(on, 8p, o!tr)lIr.

Application of the Gronwalilemma to (2.45), the analogous estimate for OV,
and a combination of these results with (2.44) finally lead to

(
r(T)C(O) )

lI(ou,ov,outr)lIr~ t: +0 )11(on,op,o!tr)lIr. (2.46)

By choosing first 0 and then T sufficiently small, F can be made contractive
in Ma. Summarizing, the following local existence result has been proven.

Theorem 2.3.1. Let the assumptions (2.21)-(2.25) hold. Then there exists
T > 0, such that the problem (2.9)-(2.12), (2.17)-(2.19) has a unique solu-
tion with n, p E C([O, Tl, L2(0)) n L2((0, T), 1/1(0)), !tr E C([O, Tl, L2(0 X

(0,1))), 0 ~ !tr ~ 1.

It is obvious from (2.46) that the local existence result does not come with
a uniform in t: estimate. Even the guaranteed existence time tends to zero
with E. The following global existence result with uniform (in E) bounds is a
generalization of [12, Lemma 3.1], where the case of homogeneous Neumann
boundary conditions and vanishing recombination was treated. Our proof
uses a similar approach.
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Lemma 2.3.2. Let the assumptions of Theorem 2.3.1 be satisfied. Then,
the solution of (2.9)-(2.12), (2.11)-(2.19) exists for all times and satisfies
n, p E L~((O, (0), £<,O(n)) n £;""((0, (0), H1(n))) uniformly in é as é -+ 0 as
well as 0 ::; ftr ::; 1.

Proof. Global existence will be a consequence of th£ following estimates.
Introducing the new variables ri = n-nD, P = P-PD, C = C -éntr -nD+PD
the equations (2.10)-(2.12) take the following form:

atTi = \7 . Jn + Rr, - atnD' Jn = /ln [\7Ti + \7nD - (Ti + nD)\7V], (2.47)

atP = - \7 Jp + Hp - atPD, Jp = -/lp [\7p + \7PD + (p + PD)\7V], (2.48)

).2 ßV = Ti - P - C. (2.49)

As a consequence of 0 ::; ftr ::; 1, CE Loo((O, (0) x n) holds. For q ~ 2 and
even, we multiply (2.47) by Tiq-l / /ln, (2.48) by pq-l / /lp, and add:

d 1[Tiq jJI ] 1-- - 1- - + - dx = -(q - 1) nq 2\7n\7ndx - (q - 1) fJl-2\7fJ\7pdx
dt n q/ln q/lp n n

+ (q - 1)i [Tiq-2n\7Ti - fJl-2p\7p] \7V dx

+ r Tiq-l (R" _ atnD) + r iJI-I (14 - atPD)
ln /Ln ln /lp

=: h + 12 + 13 + 14 + Is.
(2.50)

Using the assumptions on nD, PD and 1R,.I ::; C(n + 1), 1141 ::; C(p + 1), we
estimate

14 ::; C i ITilq-l(n + 1) dx ::; C (i Tiqdx + 1), Is::; C (i iJI dx + 1) .

The term 13 can be rewritten as follows:

h = i [Tiq-I\7Ti - jJ1-1 \7p] \7V dx

+1[Tiq-2\7Ti] (nD \7V) dx - 1[jJ1-2\7p] (PD\7V) dx

= - _1_ r [Tiq- jJ1](Ti - p - C) dx
).2q ln

- ).2(ql_ 1)iTiq-l (\7nD \7V + nD(Ti - P - C)) dx

+ ).2(ql_ 1) i jJ1-1 (\7PD \7V + PD(Ti - p - C)) dx.
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The second equality uses integration by parts and (2.49). The first term on
the right hand side is the only term of degree q + 1. It reflects the quadratic
nonlinearity of the problem. Fortunately, it can be written as the sum of
a term of degree q and a nonnegative term. By estimation of the terms
of degree q using the assumptions on nD and PD as well as II\7VIILq(l1) ~
C(IITiIILQ(l1) + IIPlILQ(!l) + IICIILQ(l1)), we obtain

13 ~ - À~q Il[Tiq - ]rI] (Ti - ji) dx + C (1(Tiq + ]11) dx + 1)

~ C (1(Tiq + ]11) dx + 1) .
The integral II can be written as

Il = -1Tiq-21\7nI2dx +1Tiq-2\7nD\7ndx.

By rewriting the integrand in the second integral as

(2.51)

and applying the Cauchy-Schwarz inequality, we have the following estimate
for (2.51):

Il ~ -1Tiq-21\7nI2dx + 1TiQ-21\7nI2dx 1TiQ-21\7nDI2dx

~-~1TiQ-21\7nI2dx + CIiTilll~2 ~ -~ 1TiQ-2l\7nl2dx + C (1TiQdx + 1) .
(2.52)

For 12, the same reasoning (with nand nD replaced by P and PD, respectively)
yields an analogous estimate. Collecting our results, we obtain

(2.53)

Since q ~ 2 is even, the first two terms on the right hand side are nonpositive
and the Gronwall lemma gives
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A uniform-in-q-and-é estimate for IlnllLq, IIpllLqfollows, and the uniform-in-é
bound in LI:((O, (0), Loo(n)) is obtained in the limit q ~ 00. The estimate
in Lfoc((O, (0), H1(n)) is then derived by returning to (2.53) with q = 2. 0

Now we are ready for proving the main result of this section.

Theorem 2.3.3. Let the assumptions of Theorem 2.3.1 be satisfied. Then,
as é ~ 0, for every T > 0, the solution (Jtr,n,p, V) of (2.9)-(2.12), (2.17)-
(2.19) converges with convergence of ftr in Loo((O, T) x n x (0,1)) weak*, n
and pin £2((0, T) x n), and V in L2((0, T), H1(n)). The limits ofn, p, and
V satisfy (2.13)-(2.19)

Proof. The Loo-bounds for ftr, n, and p, and the Poisson equation (2.12)
imply V'V E L2((0, T) x n). From the definition of ln,lp ( see (2.4),(2.5) ),
it then follows that ln, lp E L2((0, T) x n). Then (2.10) and (2.11) together
with Rn, Hp E Loo((O, T) x n) imply Otn,OtP E £2((0, T), H-1(n)). The
previous result and the Aubin lemma (see, e.g., Simon [23, Corollary 4, p.
85]) gives compactness of nand p in £2((0, T) x n).

We already know from the Poisson equation that V'V E Loo((O, T), H1(n)).
By taking the time derivative of (2.12), one obtains

with the consequence that (JtV'V is bounded in L2((0, T) x n). Therefore,
the Aubin lemma can again be applied as above to prove compactness of V'V
in £2((O,T) x n).

These results and the weak compactness of ftr are sufficient for passing
to the limit in the nonlinear terms nV'V, pV'V, nftr, and Pftr' By the
uniqueness result for the limiting problem (mentioned at the end of Section
2), the convergence is not restricted to subsequences. 0

2.4 A kinetic Shockley-Read-Hall model
In this section we replace the drift-diffusion model for electrons and holes by
a semiclassical kinetic transport model. It is governed by the system

q
odn + vn(k) . V'xfn + IiV'xV . V'kfn = Qn(Jn) + Qn,r(Jn, ftr),

q
odp + vp(k). V'xfp -1iV'xv. V'kfp = Qp(Jp) + Qp,r(Jp,ftr),

Odtr = Qtr,r = Qtr,p(Jp, ftr) - Qtr,n(Jn, ftr),
és~xV = q(n + ntr - P - C),
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where fi(X, k, t) represents the particle distribution function (with i = n for
electrons and i = p for holes) at time t ~ 0, at the position x E ~3, and
at the wave vector (or generalized momentum) k E ~3. All functions of k
have the periodicity of the reciprocal lattice of the semiconductor crystal.
Equivalently, we shall consider only k E B, where B is the Brillouin zone,
i.e., the set of all k which are closer to the origin than to any other lattice
point, with periodic boundary conditions on BB.

The coefficient functions vn(k) and vp(k) denote the electron and hole
velocities, respectively, which are related to the electron and hole band dia-
grams by

(2.58)

where Ii is the reduced Planck constant. The elementary charge is denoted
by q.

The collision operators Qn and Qp describe the interactions between the
particles and the crystal lattice. They involve several physical phenomena
and can be written in the general form

Qn(Jn) = JB ~n(k, k')[Mnf~(l - fn) - M~fn(1 - f:J]dk',
Qp(Jp) = JB ~p(k, k')[Mpf;(l - fp) - M;fp(l - f;)]dk',

(2.59)

(2.60)

with the primes denoting evaluation at k', with the nonnegative, symmetric
scattering cross sections ~n(k, k') and ~p(k, k'), and with the Maxwellians

where kBT is the thermal energy of the semiconductor crystallattice and the
constants en, Cp are chosen such that

L Mn dk = L Mp dk = 1.

The remaining collision operators Qn,r(Jn, ftr) and Qp,r(Jp, ftr) model the
generation and recombination processes and are given by

with

and

(2.61)

(2.62)
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with

and where Mtr(:E, E) is the density of available trapped states as for the
drift diffusion model, except that we allow for a position dependence now.
This will be commented on below. The parameter Ntr is now determined as
Ntr = SUPxEIR3 Jal Mtr(x, E)dE.

The right hand side in the equation for the occupancy Itr(x, E, t) of the
trapped states is defined by

Qtr,n(Jn, Itr) = L Sn dk = Àn[noMn(1 - In)Jftr - Àn[Jn](1 - Itr), (2.63)

with Àn[gJ = Ja <Png dk, and

Qtr,p(Jp,Itr) = L Spdk = Àp[PoMp(1- Ip)](I- Itr) - Àp[JpJftr, (2.64)

with Àp[gJ = Ja <Pp9 dk.
The factors (1 - In) and (1 - Ip) take into account the Pauli exclusion

principle, which therefore manifests itself in the requirement that the values
of the distribution function have to respect the bounds 0 ~ In, Ip ::S 1.

The position densities on the right hand side of the Poisson equation
(2.57) are given by

The following scaling, which is strongly related to the one used for the drift-
diffusion model, will render the equations (2.54)- (2.57) dimensionless:

Scaling of parameters:

iL (En, Ep) ---+ kaT(En, Ep), with the thermal energy kaT,

iii. (<prl1 <Pp, (i;n, (i;p) ---+ r-l(<pn, <Pp, (i;n, (i;p), where T is a typical carrier life
time,

IV. (no, Po, C) ---+ C(no, Po, C), where C is a typical value of ICI,
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Scaling of independent variables:

vi. x ---t kBTTC-1/
3

/i-l x,

vii. l ---t Tl,

... k C1/3kVlll. ---t ,

Scaling of unknowns:

X. Un, fp, ftr) ---t Un, fp, ftr),

xi. V ---t UTV, with the thermal voltage UT = kBT/q.

Dimensionless parameters:

•• \ Ii [fi;Xli. ,,= _-1/6 ~,
qrG B

xiii. E:= lf,where again we shall study the situation E:« 1.

Finally, the scaled system reads

at/n + vn(k) . \l xfn + \lxV. \l dn = Qn(Jn) + Qn,r(Jn, ftr),
at/p + vp(k). \lxfp - \lxV. \lkfp = Qp(Jp) + Qp,rUp, ftr),
E:at/tr = Qtr,r = Qtr,p - Qtr,n,
,\2~xV = n + E:ntr - P - C = -p,

(2.65)
(2.66)
(2.67)
(2.68)

with Vn = \l kE:n, Vp = - \l kêp, with Qn and Qp still having the form (2.59)
and, respectively, (2.60), with the scaled Maxwellians Mn(k) = en exp( -ên(k)),
Mp(k) = Cr> exp( -E:p(k)), and with the recombination-generation terms

with

Sn = <pn[noMnftr(l- fn)- fn(1- ftr)]' Sp = <pp[PoMp(l- ftr)(l- fp)- fpftr].
(2.70)

The right hand side of (2.67) still has the form (2.63), (2.64). The position
densities are given by

(2.71)
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The system (2.65)-(2.67) conserves the total charge p = P + C - n - éntr'

With the definition

of the current densities, the following continuity equation holds formally:

Setting formally é = 0 in (2.67) we obtain

Substitution 7tr into (2.69) leads to the kinetic Shockley-Read-I-Iall recombination-
generation operators

with

gn

Tn =

gp

Tp

11 <pnMnno (poÀp[Mp(l - Ip)] + Àn[Jn]) Mtr
-----------------dE

o POÀp[Mp(l - Ip)] + Àp[Jp] + Àn[Jn] + noÀn[Mn(1 - In)]

t <Pn (Àp[Jp] + noÀn[Mn(1- In)]) Mtr
Jo PoÀp[lIJp(l - Ip)] + Àp[Jp] + Àn[Jn] + noÀn[Mn(1 - ln)] dE,

11 <Pp MpPo (noÀn[Mn(1 - In)] + Àp[Jp]) Mtr
-----------------dE

o PoÀp[Mp(l - Ip)] + Àp[Jp] + Àn[Jn] + noÀn[Mn(l - In)]

t <Pp (Àn[Jn] + PoÀp[Mp(l - Ip)]) Mtr
Jo POÀp[Mp(l - Ip)] + Àp[Jp] + Àn[Jn] + noÀn[Mn(1 - ln)] dE.

Of course, the limiting model still conserves charge, which is expressed by
the identity L Qn,rdk = L Qp,rdk.

Pairs of electrons and holes are generated or recombine, however, in general
not with the same wave vector. This absence of momentum conservation is
reasonable since the process involves an interaction with the trapped states
fixed within the crystal lattice.
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(2.73)

2.5 Rigorous derivation of the kinetic Shockley-
Read-Hall model

The limit é ---+ 0 will be carried out rigorously in an initial value problem
for the kinetic model with x E ~3. Concerning the behaviour for lxi ---+ 00,

we shall require the densities to be in LI and use the Newtonian potential
solution of the Poisson equation, i.e., (2.68) will be replaced by

1 x-y
E(x) = -\lxV = À-2 I 13P(Y, t) dy.

JR3 X - Y

We define Problem (K) as the system (2.65)-(2.67), (2.73) with (2.59),
(2.60), (2.69)-(2.71), (2.63), and (2.64), subject to the initial conditions

fn(x, k, 0) = fn,!(x, k), fp(x, k, 0) = fp,!(x, k) , ftr(x, E, 0) = ftrAX, E) .

We start by stating our assumptions on the data. For the velocities we
assume

(2.74)

where here and in the following, the subscript per denotes Sobolev spaces
of functions of k satisfying periodic boundary conditions on aB. Further we
assume that the cross sections satisfy

and
<Pn,<Pp ~ 0, <Pn,<PnE W~~~(B x (0,1» .

A finite total number of trapped states is assumed:

(2.75)

(2.76)

(2.78)

The £I-assumption with respect to x is needed for controlling the total num-
ber of generated particles. For the initial data we assume

o ~ fn,!, fp,l ~ 1, fn,!, fp,! E W~~~(~3 X B) n W~~~(~3x B) ,
o ~ ftr,! ~ 1, ftr,! E W~~~(~3 x (0,1» .

We also assume

no, Po E LOO((O, 1» , (2.79)

Finally, we need an upper bound for the life time of trapped electrons:

l (<pnmin{1,noMn} + <ppmin{l,poMp})dk ~ 'Y > O. (2.80)
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The reason for the various differentiability assumptions above is that we shall
construct smooth solutions by an approach along the lines of [20], which goes
back to [8].

An essential tool are the following potential theoryestimates [24]:

IIEIILoo(1R3) ~ cllplli:~R3)lIpll~~(R3)' (2.81)

11\7xEIILOO(R3) ~ C(1 + IIpllu(R3) + IlpIILoo(R3) [1 + log(1 + 11\7xpIlLoo(IR3»)]). (2.82)

We start by rewriting the collision and recombination generation operators
as

Qi(!ï) = ai[Ji](1 -!ï) - b;[fi]J;, i = n,p, (2.83)

and
(2.84)

with

ai[Ji] = l4>iMd: dk', bi[Jd = l4>iM;(1- fD dk', i = n,p (2.85)

9n[Jtr] = 11

if>nnoMnftrMtr dE, 9p[Jtr] = 11

if>pPoMp(1 - ftr)Mtr dE,

(2.86)

Tn[Jtr] =11

if>n(l- ftr)MtrdE, Tp[Jtr] =11

if>pftrMtrdE. (2.87)

In order to construct an approximating sequence U~,f~, fir: Ej) we begin
with

f?(x, k, t) = fi'/(X, k), i = n, p, ft~(x, E, t.) = ftr,/(x, E) (2.88)

• The field always satisfies

Ej(x, t) = r I x -.~3pl(y, t) dy
JIR3 X - Y

(2.89)

Let UL f~, fir, Ej) be given. Then the f/+I are defined as the solutions of
the following problem:

8 /j+l + v (k) . \7 /)+1 - Ej . \7 /)+1tn n Xn kn
= (an[J~] + 9n[Jlr])(1 - f;+I) - (bn[J;] + Tn[Jlr])f~+I,

8 f)+1 + v (k) . \7 /)+1 + Ej . \7 /)+1tp p xp kp
= (ap[J~] + 9p[Jlr])(1 - fr1

) - (bp[J~] + Tp[Jlr])frl
,

é8dt/1 = (PoÀp[Mp(1 - f~)] + Àn[J~])(1 - flr+l) - (noÀn[Mn(1 - f;)] + Àp[J~])flr+l ,
(2.90)
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subject to the initial conditions

" "+1f~+I(:c, k, 0) = fn,l(x, k) , fr\7:, k, 0) = fp,l(x, k) , flr (X, E, 0) = ftr,l(:c, E) .
(2.91)

For the iterative sequence we state the following lemma, which is very similar
to the Proposition 3.1 from [20]:

Lemma 2.5.1. Let the assumptions (2.14)-(2.19) be satisfied. Then the
sequence (J~, ft, fIr' E}), defined by (2.88)-(2.91) satisfies for any time T > 0

a) 0::; fi} ::; 1, i = n,p, tr.

b) f~ and ft are uniformly bounded with respect to j ---+ 00 and é ---+ 0 in
Loo((O, T), LI(1R3 X B).

c) E} is uniformly bounded with respect to j and é in £00((0, T) x JR3).

Proof. The first two equations in (2.90) are standard linear transport equa-
tions, and the third equation is a linear ODE. Existence and uniqueness for
the initial value problems are therefore standard results.

Note that the ai, bi, 9i, ri, and 'xi in (2.90) are nonnegative if we assume
that a) holds for j. Then a) for j + 1 is an immediate consequence of the
maximum principle.

To estimate the £I-norms of the distributions, we integrate the first equa-
tion in (2.90) and obtain

The boundedness of (î;n, <l>111 and fIr' and the integrability of Mtr imply

(2.93)

Now this is used in (2.92). Then an estimate is derived for f~ by replacing
j + 1 by j and using the Gronwall inequality. Finally, it is easily since that
this estimate is passed from j to j + 1 by (2.92). An analogous argument for
ft completes the proof of b).

A uniform-in-é (LI n Loo)-bound for the total charge density pi = n) +
enfr - pi - C follows from b) and from the integrability of Mtr. The statement
c) of the lemma is now a consequence of (2.81). 0

For passing to the limit in the nonlinear terms some compactness is
needed. Therefore we prove uniform smoothness of the approximating se-
quence.
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Lemma 2.5.2. Let the assumptions (2.74)-(2.80) be satisfied. Then for any
time T > 0:

a) f~ and ft are uniformly bounded with respect to j and é in Loo((O, T), W~~~(JR3X
B) n W~~~(JR3 x B»,

b) fIr is uniformly bounded with respect to j and é in Loo((O, T), W1,00(lR3 X

(0,1»),

c) Ej is uniformly bounded with respect to j and é in Loo((O, T), W1,00(JR3».
Proof. We start by introducing l/j = '\lx,d~ = (l/~,vt:), 7r

j = '\lx,kft =
(7r~:7rfJ, q) = '\lxflr and by differentiating the last equation in (2.90) with
respect to x:

é8tqJ+l = (-PDÀp[Mp7r~] + Àn[~])(l - flr+l) - (-noÀn[Mn~] + Àp[7r~])fl/l
-(pDÀp[Mp(l - f~)] + Àn[J~] + noÀn[Mn(1 ~ f~)] + Àp[J~])qJ+l .

The coefficient of q)+l on the right hand side is bounded below by the term
appearing in assumption (2.80) and, thus, bounded away from zero. The
maximum principle implies

sup IIqJ+llloo :::; c (sup 1I1/~lloo+ sup 117r~lloo+ 1) ,
(O,t) (D,t) (D,t)

where here and in the following we use the symbol II . 1100for the Loo-norm
on JR3, on JR3 x B and on JR3 x (0,1). The gradient of the first equation in
(2.90) with respect to x and k can be written as

where it is easily seen that, using our assumptions,

holds. The analogous treatment of the second equation in (2.90), the poten-
tial theory inequality (2.82), and the definition

lead to
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implying boundedness of Qi on arbitrary bounded time intervals (as in [8]).
This proves c) and the LOO-part of a). The equation for oEfl/l can be treated
as above completing the proof of b).

By JJR3 ntrdx :::;JJR3 Mtrdx, it is trivial that the total number of trapped
electrons is bounded. Therefore, the V-estimates in a) follow the line of [20])
since no coupling with the equation for the trapped electrons is necessary. 0

With the previous results, the first two equations in (2.90) also give uni-
form bounds for the time derivatives of f~ and f~. Thus, subsequences con-
verge strongly locally in x and t. In the same way, the right hand side of
the time derivative of the Poisson equation is bounded in V and in Loo, and
(2.81) implies boundedness of the time derivative of the field. So the field
also converges strongly. This and the (obvious) weak convergence of fir are
sufficient for passing to the limit in the quadratic nonlinearities. Existence
of a global solution of Problem (K) follows. By the same argument, however,
the limit é -+ 0 can be justified, since all estimates are also uniform in é.

Theorem 2.5.3. Let the assumptions (2.74)-(2.80) be satisfied. Then Prob-
lem (K) has a global solution Un' fp, ftr, E) with fn, fp E L~((O, 00), W;~~(lR3 X
B)), ftr E L~((O, 00), W1,00(JR3 X (0,1))), E E L~((O, 00), W1,00(JR3)). For
é -+ 0, a subsequence of solutions converges to the formal limit problem.
The convergence of fn and fp is in L~((O, 00) X JR3 X B), that of E in
L~((O, 00) x JR3) and that of ftrj in L~((O, 00) x JR3 X (0,1)) weak* .
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