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Abstract

Phase transitions not only occur in physics but also in many problems in com-
puter science. Among the problems from computer science, there are many
NP-complete ones. An especially important problem is the satisfiability prob-
lem, SAT, for Boolean formulas. When phase transitions of SAT problems are
studied, the corresponding formulas are usually restricted to conjunctive nor-
mal form, i.e., the formula is a set of clauses. K-SAT is the problem, where all
clauses consists of exactly K literals. When the density of clauses (i.e., the ratio
between the number of clauses and the number of variables) is increased in ran-
dom K-SAT problems, there is an abrupt change in the probability from being
satisfiable to being unsatisfiable. Numerous experimental results are available,
but the exact location of the phase transition is not known for the random K-
SAT problem with K > 2. There are only lower and upper bounds which are
rigorously proven.

In this thesis, we consider formulas with more structure, namely the model
of fixed balanced shapes introduced by Navarro and Voronkov in 2005. They
experimentally studied different shapes and provided first upper bounds for the
critical value, i.e., the location where the phase transition occurs. These upper
bounds were obtained by using the first moment method (FMM).

We uniformly improve their upper bounds by a method which is based on
locally maximal solutions. This method has been proposed by Creignou and
Daudé in 2007. Since this method requires a sensitivity polynomial as an input,
we show how such polynomials can be computed for shapes, and how the upper
bounds are obtained. We discuss the limitations of the method by comparing
the upper bounds computed with the FMM with the upper bounds computed
by the new method for shapes with increasing size or depth.
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Chapter 1

Introduction

In everyday life, optimization problems appear everywhere. In terms of time
and cost, the processes should be minimized, and the gain should be maximized.
On many occasions, the aim is to find the best way to execute several tasks.
These problems have been abstracted and studied in mathematics and some-
times an elegant algorithm to solve them has been found. Such algorithms are
implemented on computers in order to take advantage of the power of speed
of a machine. However, there are some problems that, even with the fastest
machine, take a long time to be solved.

Problems with different levels of difficulty are separated into classes. One
of the most prominent classes is the class NP. This class contains all problems
which can be solved by a non-deterministic Turing machine in polynomial time.

It was Stephen Cook in 1971 who introduced the notion of completeness.
NP-complete problems are those in NP that are the hardest to solve. Cook
showed in [3] that the satisfiability problem SAT and some other problems are
NP-complete.

The classification of problems to complexity classes like NP and the proof
of completeness always refer to the complexity in the worst case. For practical
purposes, average case complexity is even more interesting. However, obtaining
results for the average case is not an easy task. An important question one
has to answer is how the problems are distributed. A pragmatic approach
is to consider each problem as equally probable and to investigate randomly
generated problem instances.

Pioneering work by Erdös and Rényi [7] describes the behaviour of randomly
chosen samples of graphs with respect to some properties. Given a parameter
p, 0 ≤ p ≤ 1, and a set of n vertices, an edge is added with probability p.
Defining p = c/n, a structural change on the graph is observed exactly at the
point c = 1, and a giant component connecting most of the vertices appears.
When the process is shown on a chart, one can observe that the change is not
smooth but actually has the form of an abrupt phase transition.

In the last years, it has been experimentally observed that many problems
show a phase transition. Interesting for us here is the 2-SAT problem, i.e., the
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Figure 1.1: The SAT/UNSAT transition for 2-SAT for n1 < n2 < n3 variables.
Given a number of clauses m, the ratio between clauses and variables, α = m/ni,
is the crucial parameter by which we can observe a phase transition in the
probability to satisfy a randomly generated formula.

satisfiability problem where any clause has exactly two literals. This problem
is in the complexity class P, i.e., it can be solved by a deterministic Turing ma-
chine in polynomial time. Figure 1.1 shows three curves (for increasing integer
numbers n1, n2 and n3) for the random 2-SAT problem, i.e., each instance of
the problem is randomly chosen. The curves display, for each value of α, the
fraction of satisfiable formulas (or, in other words, the “chance” of a randomly
chosen 2-SAT formula to be satisfiable).

The parameter α is the ratio between the number of clauses and the number
of variables; it is the crucial parameter for determining the phase transition. In
the figure, we see that these phase transitions occur around the critical value
α = 1. Contrary to many other SAT problems, for which only upper and lower
bounds are known, the critical value for α in 2-SAT has been rigorously proven
by Chávatal and Reed [2] and independently by Goerdt [12].

The phenomenon where properties show an abrupt change has not only been
observed for SAT problems but also for many other ones. The root of the studies
of phenomena related to phase transition is physics. In the area of statistical
physics, many tools have been developed which are useful in studying “non-
physical” phase transitions. Nowadays, the study of threshold phenomena has
attracted people from at least three different communities, namely (statistical)
physics, mathematics and computer science (see, e.g., [6]).

From a point of view of computer science, not only the phase transition
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itself is interesting, but also computational properties of the underlying problem.
Since it is extremely hard to obtain rigorous proofs for the critical value where
the phase transition occurs, only lower and upper bounds can be provided at
the moment. Using implementations to compute randomly chosen instances and
analyze the property under consideration (e.g., use a SAT solver on randomly
generated clause sets, where each clause has exactly three literals), empirical
values can be obtained. The hope is that such empirical values can be used to
“guide” the mathematical proofs.

During early experiments with K-SAT, it was observed that there is a re-
lationship between the phase transition and the computational cost to solve
a set of randomly chosen problem instances. In the area close to the empiri-
cally observed phase transition, the time required to solve the problems strongly
increases. The order of the increase depends on the underlying problem; for K-
SAT with K ≥ 3 (and other NP-complete problems), the empirically evaluated
increase is exponential. Therefore, the “hard” problems are located around the
phase transition. On the other hand, problems located at the beginning and at
the end of the curves are easy; thus, an “easy-hard-easy” pattern in the diffi-
culty of the problem has been observed. More details of the phase transition
and its relation with the easy-hard-easy pattern will be presented in Chapter 2.

The K-SAT decision problem discussed so far is just a subset of the more
general SAT problem. It reduces the nesting of operators to a degree of two and
it requires a reduction of the representation of the problem to conjunctive normal
form (CNF), with negation occurring only in front of variables. However, many
logical representations of real problems result in formulas which have much more
structure than just clauses, and a translation step into CNF is required, which
is well-known to be problematic.

The aim is to have more general formulas which allow deeper levels of nesting
and therefore more structure. A proposal for generalized formulas is presented in
[18]. In this paper, Navarro and Voronkov perform some experiments resulting
in satisfiability curves (like the ones in Figure 1.1) together with associated
computational cost curves. They also observed an easy-hard-easy pattern for
the satisfiability problem of shapes.

1.1 Overview and Results

We investigate balanced shapes which can be viewed as a generalization of
clauses. For such shapes, Gonzalez and Voronkov provided first upper bounds
for the critical value of the phase transition using the first moment method. An
important input parameter for this method is the number of satisfying assign-
ments that a randomly chosen shape has.

In order to improve the known upper bounds (i.e., in order to get lower
ones), we investigate an approach which is based on locally maximal solutions
from [4]1.

1This method was analyzed, for K-SAT only, in [5] under the name of negatively prime

solutions and it is the best upper bound found for general K-SAT.
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The set of all solutions (satisfying assignments) is partitioned following [4]
and the sensitivity polynomial is calculated. This calculation is based on the
sensitivity of variables. In order to avoid complicated computations by hand,
we use a program to compute the coefficients of the polynomial according to the
recursive formula we develop in Chapter 3. Similar to the number of solutions in
the first moment method, the sensitivity polynomial is an input parameter into
the new method. The calculation of the new upper bound means then solving a
rather complicated equation which is performed with a small program in MAPLE.
We obtain� a general method to compute the sensitivity polynomial for balanced

shapes,� a general method (from [4]) to solve the equations, and� new (and better) upper bounds for all the shapes proposed in [18].

Moreover, we show some absolute and relative improvements of the new method
compared to the first moment method.

The structure of the thesis is as follows. In Chapter 2, we introduce some
basic definitions and notations. We review some examples (especially random
graphs and the travelling salesman problem) for phase transitions from the
literature. In Section 2.3, we explain the fundamental ideas underlying the first
moment method. The fixed shape model together with balanced shapes are
discussed in Section 2.4. Also in Section 2.4, we show how to the first moment
method is applied to balanced shapes.

In Chapter 3, we formally introduce the notions of locally maximal solutions
and the sensitivity polynomial. We then establish in Section 3.2 the number
of solutions for a given shape and continue with the investigation of the sensi-
tivity polynomial in Section 3.3. Theorem 3.4.1 in Section 3.4 summarizes the
approach to obtain improved upper bounds for the shapes.

In Chapter 4, we report the results for the shapes discussed in [18] and
discuss limitations of the improvement of the chosen method. We present also
experimental results with different shapes and remark the presence of some
patterns.

In Chapter 5, we conclude with a summary and a discussion about future
work.
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Chapter 2

Preliminaries

We present definitions and notations which are used later. Next, we discuss
phase transitions and review some examples from the literature. Moreover, the
first moment method is introduced in detail. Finally, we review the concept of
balanced shapes.

2.1 Definitions and Notations

We will follow the standard notation of propositional logic. Let A be the set of
propositional (Boolean) variables. The set of connectives we consider consists
of ¬ (negation), ∧ (conjunction) and ∨ (disjunction). We define the syntax and
semantics of propositional logic relative to A.

Definition 2.1.1. The set LA of well-formed Boolean formulas is the smallest
set that fulfills the following properties:

1. If A is a variable, A ∈ A, then A ∈ LA.

2. If F ∈ LA then (¬F ) ∈ LA.

3. If F ∈ LA and G ∈ LA then (F ∧ G) ∈ LA and (F ∨ G) ∈ LA.

In order to save parenthesis, we use the following ranking of binding strength:
¬, ∧ and ∨. This means that ¬ binds stronger than ∧ which in turn binds
stronger than ∨.

A literal is either a variable or the negation of a variable.
A clause is a disjunction of literals. A set or collection of formulas is often

associated with the conjunction of its elements.
After having defined the syntax of propositional logic, we turn our attention

to the semantics.
Let 0 and 1 be two truth values representing false and true respectively. The

semantics of propositional logic is based on interpretation functions.
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Definition 2.1.2. Let A be a set of propositional variables. The interpretation
function for A is a mapping

I : A 7→ {0, 1} .

Interpretation functions are often called variable assignments because vari-
ables get a truth value under I. The interpretation function is extended to all
elements of LA as follows.

I(F ) =







I(F ) if F ∈ A;

1 − I(G) if F is of the form ¬G;

min(I(G), I(H)) if F is of the form G ∧ H ;

max(I(G), I(H)) if F is of the form G ∨ H .

Assignments I which make a formula F true are called models of F, satisfying
assignments for F or simply solutions for F . If every assignment for F is a
solution, then F is a tautology. Conversely, if every assignment for F is non-
satisfying, then F is called a contradiction. If at least one assignment is a
solution, then F is satisfiable.

Now let us introduce the basic notions of complexity and the SAT problem.

2.1.1 O-notation

The complexity of a problem is a very important concept in theory and in
practice. An intuitive definition given in [11] of the time complexity of an
algorithm is:

“The time complexity function for an algorithm expresses its time
requirements by giving, for each possible input length, the largest
amount of time needed by the algorithm to solve a problem instance
of that size.”

Definition 2.1.3. [19] Let f(n), g(n) be two non-negative functions defined for
all positive integers.

1. It is said that
f(n) = O(g(n))

if there exist constants c and n0 such that, for all n > n0, f(n) ≤ c · g(n).

2. It is said that
f(n) = Θ(g(n))

if there exist constants c1, c2 and n0 such that, for all n > n0, c1g(n) ≤
f(n) ≤ c2g(n) holds.
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O-notation denotes an upper bound that may not be asymptotically tight.
Θ-notation is used for denoting upper or lower bounds that are asymptotically
tight. For example, if an algorithm needs 3n2 +5n steps, it runs in time Θ(n2).

Some problems encountered in practice are solvable with an algorithm asso-
ciated with a polynomial function. However, there are also many other problems
where the time complexity is an exponential function of the input size. This
means that, for some real problems, even a computer can spend too much time
looking for the solution, even when the size of the input is not large, say, less
than hundreds of thousands of elements. There are also problems for which the
order Θ is not known to be polynomial or exponential.

A problem from the complexity class NP (or an NP-complete problem for
short) is a problem that can be solved in polynomial time by a non-deterministic
Turing machine (NDTM). Informally a NDTM is a machine that “guesses” in
each step of the computation between a tree of possible outputs. As a model
of computation, it is unrealistic but useful to determine the nature of some
difficult problems. For more details about deterministic and non-deterministic
TM, consult [11] and [19].

An NP-complete problem is an NP problem whose complexity is such that
any other NP-complete problem can be reduced to it in polynomial time.

2.1.2 SAT Problem

SAT is a decision problem associated to the satisfiability of formulas in propo-
sitional logic. This problem is well known and, in fact, it was the first problem
shown to be NP-complete [3].

The general SAT problem consists of whether, for a given Boolean formula
F (x1, ..., xn), there is an assignment I of variables xi to truth values 0 (false)
or 1 (true), leading to I(F (x1, ..., xn)) = 1. This is, F is evaluated to true in
propositional logic.

2.1.3 K-SAT and Random K-SAT

Satisfiability problems are often restricted in the sense that only formulas of a
specific type are considered. K-SAT (for K an integer greater than 0) is a family
of such restricted SAT problems. For the problem K-SAT, the only formulas
that are considered, are in conjunctive normal form and the clauses consist of
exactly K-literals.

Random K-SAT is the generation of instances of the K-SAT problem in a
specific way such that randomness of the instance is guaranteed. In this way, we
can analyze properties of the average case rather than the worst case. In general,
for random K-SAT, we have a predefined number n of variables, a predefined
number K for the size of any clause and a predefined number m of clauses.
Therefore, there are 2n literals. The K-clauses are generated by choosing each
time randomly and with replacement a literal, with the restriction that an atom
cannot be chosen twice in the same clause. The clauses are, as usual, joined by
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conjunction thus having:

F =

m∧

i=1

Ci,

where Ci is a clause with exactly K literals. Although this is a standard gener-
ation, sometimes it can be different, depending on the properties that are being
proved. Hereafter, this will be the method of random generation if we do not
specify otherwise.

2.2 Phase Transition

In several combinatorial optimization problems, a phenomenon of structural
change in the problem is observed at a certain critical point. In physics, this
phenomenon often occurs and has been studied using different approaches. For
example, in statistical physics, several analytical and numerical methods have
been developed in order to understand the properties of such phenomenon, for
example, to analyze the macroscopic thermodynamic behaviour of models.

In a more formal way, one can say that phase transition is “a drastic change in
the properties of a system when some external parameter is slightly modified”
[13]. This phenomenon has been observed during a long time in the area of
statistical mechanics. A common example of a phase transition is the states of
matter. For example, in water, at certain critical points for some parameter
—in this case the temperature— phase transitions occur; T = 100◦ C stands
for the critical value of the liquid-gas transition and T = 0◦ C for the critical
value of the solid-liquid transition.

2.2.1 Phase Transition by a Structural Parameter

The phase transition phenomenon does not only occur in natural events; it can
also be observed when studying more abstract concepts and constructions. We
will present here an example in random graph theory.

In this area of mathematics, the behaviour of a typical graph is studied.
First, a random graph is generated from a set of vertices. The idea of this
ensemble is that an edge is added every time. In this way, a typical graph is
studied (instead of a particular instance of a graph) using tools from probability
theory. Using this approach, it is easier to see under what conditions a graph
with particular properties appears.

The simplest idea [7] consists of a graph G(N, p) with |N | = n vertices and
an associated probability p. Every edge is drawn independently according to
this probability. This means that a random number r, 0 ≤ r ≤ 1, is assigned to
every edge er. If r < p, then this instance of the graph G will contain er. Thus,
for p = 0, the graph has no edges and for p = 1, the graph is complete (i.e.,
every vertex is directly connected with all the others).

To imagine the graph construction as an evolutionary process is more intu-
itive; this process goes on as follows. For all i, j ∈ N, i < j, a random number
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xi,j is obtained. The increasing function p(t) represents the probability p at
time t, starting from 0 at time t = 0. Then t —and therefore p(t)— starts to
increase. Whenever p(t) exceeds a number xi,j , an edge between vertices i and
j is added.

It has been proven by Erdős and Rényi [7] that, for a given constant c > 0, as
long as c < 1, the graph G(N, c/n) contains components of order up to O(ln n).
Then, for c > 1, a giant component appears, connecting a finite fraction of
vertices such that all the other components are still small, with only O(ln n)
vertices.

It is observed that the system undergoes a phase transition at c = 1. The
number of random graphs where a giant component appears connecting a frac-
tion of all vertices goes from very low to very high at this point. In contrast
to physical phenomena, the transition is not induced by an external control pa-
rameter like the temperature, but by a structural parameter of the graph. If we
make a chart with the percentage of graphs that present a giant component at
each point c, we observe a sharp curve at the critical value c = 1.

One of the characteristics of phase transition in this example is that the
curve becomes sharper when the size of the randomly generated instances is
increased. The fraction of vertices that are connected by the giant component
grows linearly in c < 1 and exponentially in c > 1. It approaches the limes of a
function that just starts to grow at c = 1, as it is explained in [13].

2.2.2 Phase Transition in Combinatorial Optimization
Problems

Here we present another example, the travelling salesman problem (TSP) [13],
or more specifically, the Euclidean TSP. A special definition based on a random
ensemble is used. Let a plane of area size A = Lx × Ly be given. The random
instances consist of n cities, which are randomly placed in the plane. The
coordinates (xi, yi) ∈ [0, Lx] × [0, Ly] denote the position of the city i. The
range for xi is from 0 to Lx and the range for yi is from 0 to Ly. All positions
are equally probable. The distance between pairs of cities is the Euclidean
distance, i.e.,

d(i, j) =
√

(xi − xj)2 + (yi − yj)2.

For each random instance, the following question is asked: Is the shortest
round trip through all cities shorter than a given length l?. In this way, TSP
becomes a decision problem.

The probability p that a tour of length less than l exists is thus presented
as a function of the length Φ = l/

√
nA. Note that the area A is a constant in

the whole system. There is a strong increase in p when l is increased close to
Φ = 0.78, hence a phase transition occurs. This property is independent from
the number of cities, as it can be seen in Figure 2.1.

It has been observed as well that close to the point where half of the in-
stances have a shorter length than l, the running time grows to its maximum.
This is, the difficulty of the problem increases in the region close to the phase
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Figure 2.1: Probability p that the minimum tour is shorter than Φ = l/
√

nA
for n cities. It can be observed that the phase transition becomes sharper when
the number of cities is increased. (Figure taken from [13].)

transition. Intuitively, in this specific problem, for the region with small values
of l, even the closest cities are a larger distance apart than the given value of l
and then the algorithm stops almost immediately. On the other hand, for large
l, several permutations of cities have a total distance smaller than l, and then
the algorithm stops quickly as well. The region with the phase transition is in
the middle of these two. The property to have these three regions is called the
easy-hard-easy pattern.

2.3 The First Moment Method (FMM)

As mentioned earlier, probability theory is useful in studying the characteristics
of the behaviour of the phase transition. When we study a random instance,
we have the advantage of knowing that it will present well-studied properties,
and the tools of probability theory become available. These tools provide a
deeper understanding of the features of the parameters that characterize a phase
transition. One of the main tools supplied by probability theory is the first
moment method (FMM).

The first moment or expected value of a random variable can be seen as the
average of all the values that the variable can take. It is actually the sum of
the probabilities of each possible outcome of the the variable multiplied by the
outcomes themselves [17].

Putting it more formally, in the case of a discrete random variable X that
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can take values x1, ..., xn with the corresponding probabilities p1, ..., pn, the
expected value is

E(X) =
∑

i

xipi.

The core of the first moment method consists of two simple inequalities based
on the expected value. The First Moment Principle claims the following:

If E(X) ≤ t, then Pr(X ≤ t) > 0, (2.1)

with Pr standing for “probability”.
Now, how can we justify (2.1). The proof is rather insightful. Since the

expected value of X can be seen as an average, if every possible outcome of the
random variable X is greater than t, then the average is greater than t. In other
words, assuming Pr(X ≤ t) = 0 holds, then xi > t holds for all xi, and E(X) =
∑

i,xi>t xipi. This establishes the implication Pr(X ≤ t) = 0 → E(X) > t;
therefore, by contraposition, the statement (2.1) follows.

The other important statement for the first moment method, the Markov’s
Inequality, asserts that, for any non-negative random variable X,

Pr(X ≥ t) ≤ E(X)

t
(2.2)

holds. What is the justification for (2.2)? Again, we have E(X) =
∑

i xipi.
Since X is non-negative, if we remove the values below t, then we obtain the
inequality E(X) ≥ ∑

xi≥t xipi. Now, the lowest xi is t and we can say that
∑

xi≥t xipi ≥ t
∑

xi≥t pi. Observe that
∑

xi≥t pi is the same as Pr(X ≥ t), so
we obtain

E(X) ≥ t · Pr(X ≥ t)

from which (2.2) follows immediately.
The first moment method in general consists of judiciously applying these

useful inequalities to prove the probability of some property for a particular
problem. In order to do so, it is important to make the right choice of the
random variable X . It is usually straightforward to find the expected value
E(X). So, for X being a non-negative integer value, if E(X) is shown to be less
than 1, then, by the inequality (2.1) and the fact that X is a non-negative and
discrete variable, Pr(X = 0) is positive. Markov’s inequality is also frequently
used for X discrete and E(X) < 1. If we know that Pr(X > 0), then the
inequality Pr(X ≥ 1) ≤ E(X) becomes significant.

Another property of the expected value is its linearity, i.e.,

E(X1 + · · · + Xt) = E(X1) + · · · + E(Xt)

holds.
In fact, in the K-SAT problem, the computation of the expected value be-

comes a key calculation to improve the upper bound of the location where the
phase transition occurs. This will be seen in more detail later with an illustrative
example, to which the first moment method is applied.
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Figure 2.2: The SAT/UNSAT transition for 3-SAT. The relation between the
probability of satisfiability Psat and the ratio α is compared to the time required
by the DPLL algorithm to solve the randomly generated SAT problems.

According to [13], K-SAT was the first combinatorial decision problem in
which experiments showed the presence of a phase transition from satisfiability
to unsatisfiability, connected to an easy-hard-easy pattern [16, 14]. The ex-
periments were performed with random instances of the K-SAT problem (we
described the random K-SAT in Section 2.1.3). As an example, consider the
results shown in Figure 2.2 for 3-SAT and observe the occurring easy-hard-easy
pattern.

It has been observed that, using the parameter α = m/n, the decrease
of probabilities from close to 1 to close to 0 is not given by a slowly varying
function of α. That is to say that the ratio between the number of clauses and
variables is a key value. In the case of K = 3, this region of the sharp drop
is close to α ∼= 4.26. The drop becomes increasingly sharper if the number
of variables is increased. The instances in the critical region are usually hard
to solve, creating an easy-hard-easy pattern. The standard algorithm for SAT
is the Davis-Putnam-Logemann-Loveland (DPLL) algorithm which is a branch
and bound algorithm that selects a variable and assigns 0 and 1 to it, trying
recursively all possible assignments. It uses some heuristics to bound the tree
when a formula is known to be unsatisfiable after a partial assignment. A
detailed explanation of the DPLL algorithm can be found in [13].

It should be noted that there is only an empirical critical value for K-SAT
with k > 2; there is no proof, until yet, of where this critical value is exactly
located. What is known are upper and lower bounds. The example below
consists of the first upper bound obtained for the interval of α where the phase
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transition occurs. The example is mostly taken from [15], but this approach
is well known and is due to Franco and Paull [9] amongst others. Before we
compute the upper bound, we need some preliminaries.

According to [1], the following conjecture, the Satisfiability Threshold Con-
jecture, was formulated first in [2], and has become since then an open problem.

Conjecture 2.3.1. Let Fk(n, αn) be a random K-SAT formula with n variables
and αn = m clauses. Let Sk(n, α) = Pr(Fk(n, αn) is satisfiable). For every
k ≥ 2, there is a constant αk such that, for all ǫ > 0,

lim
n→∞

Sk(n, αk − ǫ) = 1, and lim
n→∞

Sk(n, αk + ǫ) = 0

hold.

This conjecture has been stated taking observations from experiments into
account. However, there is already a weaker result that was proved by Friedgut
[10].

Theorem 2.3.1. (Friedgut). Let Sk(n, α) = Pr(Fk(n, αn) is satisfiable). For
every k ≥ 2, there is a sequence αk(n) such that, for any ǫ > 0,

lim
n→∞

Sk(n, αk(n) − ǫ) = 1, and

lim
n→∞

Sk(n, αk(n) + ǫ) = 0

hold.

This theorem tells us that at least there exists a threshold for K-SAT such
that Fk has a satisfying assignment with probability tending to 0 for α > 2k.
By analyzing simple algorithms that obtain satisfying truth assignments with
some probability, Franco [8] found a lower bound of α located at 0.9(2k/k); the
details of the proof are, however, beyond the scope of this thesis. Nevertheless,
the precise point where the phase transition occurs is not known for k > 2. The
proof that the threshold is a constant has not been found yet. It is possible that
the threshold is not a constant, it could even oscillate as a function of n.

Even though it is not yet possible to find a proof of the location of the critical
value of α that represents a constant threshold, upper and lower bounds can be
obtained.

Let us now consider the example computation of an upper bound for K-SAT.
The first proof of a general upper bound uses the first moment method. It was
presented first by Franco and Paull in [9].

Let w1
n(F ) be the number of satisfying assignments of a formula F randomly

chosen over n variables. There are two approaches here. One of them is to choose
a random formula and count the number of variable assignments and the other
is to select a random assignment and count the number of formulas it satisfies.
Let us here follow the first approach. Using this method, w1

n(F ) can be seen as
a random variable, if n, m and K are fixed. From now on, we will write just w1

n

instead of w1
n(F ) when it refers to the random variable for an arbitrary formula

F constructed as explained above.
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The expected value E(w1
n) of the random variable w1

n is

E(w1
n) =

∑

F

(Pr(F ) · w1
n(F )), (2.3)

where Pr(F ) represents the value of the probability that F occurs.
The probability for a random formula of being satisfiable, denoted by PF , is

given by

PF =
∑

F

(Pr(F ) · IF ), (2.4)

where

IF =

{

1 if F is satisfiable,

0 otherwise.

From (2.3), (2.4) and Pr(w1
n ≥ 1) = PF , we get a Markov inequality

PF ≤ E(w1
n) = w1

n(F ). (2.5)

The overbar denotes the average over all the instances of K-SAT.
It is not difficult to evaluate the value of w1

n(F ). First we see that each clause
forbids 1 of 2K configurations of the K variables the clause contains. Therefore,

the probability that a random assignment I satisfies a clause is
(

2K−1
2K

)

. Since

clauses are drawn independently, the probability to satisfy m = αn clauses is
just the multiplication of the probability that I satisfies each clause. Finally,

there are 2n possible assignments so we obtain the formula 2n
(

2K−1
2K

)αn

for

w1
n(F ).

We need to know at what point the random variable E(w1
n) tends to 0. Since

it is a discrete variable, we can just redefine the inequality as E(w1
n) < 1. Hence,

we get then the value of α by setting w1
n(F ) to 1, i.e.,

1 = 2n

(
2K − 1

2K

)αn

.

Now we obtain the value for α, i.e.,

α = − log 2

log(1 − 2−K)
.

This defines a first upper bound for the ratio.
This approach using the FMM was the first successful attempt to get the

upper bound of the satisfiability threshold. For K = 3, the ratio obtained
is α = − log 2

log 7−log 8 = 5.191. Refinements reducing the number of satisfying
assignments, like considering only maximal solutions, bring results much closer
to 4.26. However, the method is the same, so this proof was presented here in
order to get a deeper understanding of this method, which will be used later.
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2.4 The Fixed Shape Model

The model presented here has been proposed in [18]. Up to now, our formula
is in CNF and is represented as a set of clauses. We introduce in the following,
more general formulas.

Definition 2.4.1. A shape is a propositional formula S such that

1. S is built using the conjunction and disjunction connectives only; and

2. every variable appearing in S has exactly one occurrence in it.

In general, the generation of the random formulas follows the same idea as
in K-SAT. There is a predefined shape and an instance of the shape is obtained
by choosing atoms at random, together with their sign (which can be positive
or negative).

Definition 2.4.2. An instance of a shape is any formula obtained by replacing
every variable in the shape by a literal from the set of 2n literals.

A randomly generated instance of a shape S is a formula obtained by inde-
pendently and uniformly choosing an element from the set of literals to replace
each variable occurring in S.

We introduce balanced conjunctive shapes based on balanced trees.

Definition 2.4.3. Given d integers k1, ..., kd with d ≥ 0 and ki ≥ 2, the shapes[k1, ..., kd℄ and <k1, ..., kd> are defined recursively as follows.

1. If d = 0, then the formulas in both [℄ and <> are variables.

2. If d ≥ 1, then every formula in [k1, ..., kd℄ is a conjunction of k1 formulas
in <k2, ..., kd>. Likewise, every formula in <k1, ..., kd> is a disjunction of k1

formulas in [k2, ..., kd℄.
Later on, shapes of the form <1, k2, ..., kd> and [1, k2, ..., kd℄ will occur. Such

degenerated shapes are unified with shapes <k2, .., kd> and [k2, ..., kd℄, respec-
tively.

We use li(S) to represent the lowest index of a shape S. The value δ,
δ = d − li(S) + 1, represents the depth of a shape S.

Observe that K-SAT is a particular case of such shapes, namely the shape<k>. We will consider instances of shapes as “generalized” clauses and continue
to use terms like clause set.

Let us consider an example. The shape <3, 2> of depth 2 and with shape
variables {v1, ..., v6} can be seen as a tree of the following structure:

∨

∧

v6v5

∧

v4v3

∧

v2v1
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Using the literals of {x1, ..., x5}, examples of instances of this shape are
((x2 ∧ x4)∨ (x1 ∧¬x2)∨ (¬x3 ∧ x5)) and ((x3 ∧ x5)∨ (¬x5 ∧ x1)∨ (¬x2 ∧¬x5)).

We present here detailed versions of the proofs in [18], concerning the be-
haviour of the shapes in terms of the clauses-to-variables ratio α. They are
presented just for the shapes <k1, ..., kd> because, for conjunctive shapes, the
model is the same as <k2, ..., kd>. We use the FMM just as it is described in
Section 2.3.

Theorem 2.4.1. Let t be an arbitrary but fixed truth assignment. The proba-
bility pS that t satisfies a random instance of a shape S = <k1, ..., kd>, can be
calculated as follows.

pS =

{

1/2 for a shape S = <>,
1 − (p<k2,...kd>)k1 for a shape S = <k1, ...kd>.

Proof. In the case of a shape of the form <>, there are two possible assignments,
one of them makes the formula true. Hence p<> = 1/2.

The second case is proved by a case distinction. Note that the probability
is the number of instances of the shape satisfied by a truth assignment, divided
by the total number of instances of the shape.

Case d = 1. Let k = k1 and note that there are
(
n
k

)
· 2k instances of each

shape.
Fixing an assignment I, we obtain

(
n
k

)
· 2k − 1 instances satisfied by I. For

the shape <k>, the assignment prohibits one of the 2k configurations, i.e., the
one with all literals assigned to false. Therefore, the probability that I makes

the instance true is 2k−1
2k . It should not be surprising that this probability is the

same as the one obtained in Section 2.3 since <k> represents exactly the K-SAT
problem. Then the following chain of equalities hold:

p<k> =
2k − 1

2k
= 1 − 1

2k
= 1 − (1/2)k = 1 − (p<>)k

Another way to see p<k> = 1 − (1/2)k is to pick k literals. The probability

that the literal is false is 1/2. The probability that all of them are false is (1/2)k;
thus, the probability of at least one of them is true is the complement, namely
1 − (1/2)k.

Case d > 1. Note that the probability of some shape [k1, ..., kd℄ of being
unsatisfiable, is the same as the probability p<k1,...,kd> of the shape <k1, ..., kd> of
being satisfiable and vice versa.

In a fixed shape <k1, ..., kd>, there are k1 different instances of [k2, ..., kd℄. We
need the probability of having all of them unsatisfiable, so we use the property
mentioned above and get (p<k2,...kd>)k1 . They are multiplied k1 times because
all of them are drawn independently. Therefore, the probability of at least one
of them being unsatisfiable should be 1− (p<k2,...kd>)k1 .

For shapes, as well as for K-SAT, we know the number n of variables and
the number m of clauses of a formula. The clause set is simply a conjunc-
tion of instances of the given shape; hence the corresponding decision problem
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<k1, ..., kd>-SAT is defined as follows: Is there a satisfying assignment for a
conjunction of given instances of the shape <k1, ..., kd>? Thus, for d = 1, it
corresponds exactly to the K-SAT problem.

The density α = m/n of the formula is defined as the ratio of the number
of clauses divided by the number of variables, just as in K-SAT. Experiments
with the shape <3, 3, 2> in [18] show the presence of a phase transition between
satisfiable and unsatisfiable formulas by a change in the parameter α in a small
specific region. A first upper bound was obtained for this density for shapes in
general.

Theorem 2.4.2. The probability p that a random instance of <k1, ..., kd>-SAT,
with n variables and density α is satisfiable tends to 0 as n → ∞ for all α >
log 2/ log (1/p) with the value of p calculated as in Theorem 2.4.1.

Proof. An assignment satisfies a conjunction of α·n instances of <k1, ..., kd> with
probability pαn with p obtained by Theorem 2.4.1. The term pαn is justified
because the instances are independently chosen from each other in the random
generation procedure. Note that our random variable X is again the number of
satisfying assignments.

Since there are 2n assignments, the expected number of satisfying assign-
ments is 2npαn. This is the expected value E(X) of the random variable X .
Since X is discrete, we set the equation to 1 such that we get the value of α
for which the random variable tends to 0 by using the first moment principle
(in an analogous way to the example given in Section 2.3); hence, we obtain
2npαn = 1. Then we apply logarithm to both sides of the equation and get

log 2npαn = log 1

which implies n log 2 + αn log p = 0. Hence,

α = −n log 2

n log p
= − log 2

log p
=

log 2

log 1 − log p
=

log 2

log 1/p

as desired.
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Chapter 3

Locally Maximal Solutions
in the Fixed Shape Model

With the FMM applied to the expected number of solutions, the obtained bound
is usually far from the experimental results of the critical point where the phase
transition occurs. Better bounds can be obtained by focusing on specific solu-
tions; this results in a reduction of the expected number of solutions. A possible
approach developed in [4] is the method of locally maximal solutions. We will
analyze with this approach the fixed shape model with the balanced shapes.

3.1 Locally Maximal Solutions

In order to reduce the expected number of solutions E(Sn), we have to find a
special characteristic of such solutions. For this, we have to define the concept
of a locally maximal solution.

Given a truth assignment I for a set of variables N = {x1, ..., xn}, let Îi be
the truth assignment defined by

Îi(xj) =

{

1 − I(xi) for j = i and

I(xj) for j 6= i.

This means that we flip the value of the ith variable and let all other variables
untouched. Now, given a formula Φ, let I be a satisfying assignment, i.e.,
I(Φ) = 1. The variable xi is a sensitive variable for this assignment I with
respect to Φ, if Îi(Φ) = 0, i.e., if we flip the value of this variable, the assignment
is not satisfying anymore. Now let Ps(I, Φ) be the set of all sensitive variables
with respect to I and Φ, i.e.,

Ps(I, Φ) =
{

xi | Îi(Φ) = 0
}

.

With these notions, we can define locally maximal solutions.
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Definition 3.1.1. A solution I of a formula Φ is a locally maximal solution of
Φ if and only if Ps(I, Φ) ⊇ {xi | I(xi) = 0}.

In other words, all the variables assigned to 0 are sensitive variables.
Let wi(f) = |f−1(i)|. Since formulas can be defined as boolean func-

tions with k parameters, f : {0, 1}k → {0, 1}, the weight of the function,
w1(f) = |f−1(1)|, becomes important. Sometimes the parameter f will be
omitted from w1(f) when it is clear from the context. In order to obtain the ex-
pected value E(w1), it is necessary to estimate the number of formulas satisfied
by any randomly chosen assignment.

The information given by the weight can be refined to another parameter, the
sensitivity. This parameter provides information on how the elements of f−1(1)

are distributed on the hypercube {0, 1}k. Let sf be a sensitivity function over
a vector v of inputs for f , defined as

sf (v) = | {v′ | f(v′) 6= f(v), dist(v, v′) = 1} |,

where dist(v, v′) denotes the Hamming distance between v and v′. The Ham-
ming distance is the number of elements in the vector v that are different to
those of the vector v′. In other words, sf (v) is the number of assignments which
are obtained from v by flipping exactly one variable such that the f -value also
flips.

The set of solutions f−1(1) can be partitioned into k sets, each of them with
sensitivity j for 0 ≤ j ≤ k. Let θj(f) be the cardinality of the subset containing
all elements with sensitivity j. We get

θj(f) = | {v | f(v) = 1 and sf (v) = j} |.

Using θj(f), we define the sensitivity polynomial of a boolean function f as

Sf (y) =

k∑

j=0

θj(f) · yr.

Observe that, since
∑k

j=0 θj(f) = |f−1(1)|, also Sf (1) = |f−1(1)|.
The details on how to use the sensitivity polynomial to calculate the ex-

pected number of locally maximal solutions of a boolean function can be found
in [4]. Now we will go into details about how to obtain the number of satisfy-
ing assignments, i.e., |f−1(1)| and the sensitivity polynomial for a given fixed
balanced shape.

3.2 Expected Number of Solutions in the Fixed

Shape Model

We can compute the number of satisfying assignments for fixed shapes using the
inherent symmetry of the operators ∨ and ∧. First, we analyze the base cases
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and then we generalize them to all shapes. The ideas behind this estimation are
the duality of the operations ∧ and ∨ in propositional logic and the following
observation on the independence of subshapes.

Given a shape S∧
1,d = [k1, ..., kd℄, it is formed by a k1-fold conjunction of the

shapes S∨
2,d = <k2, ..., kd>. The number of satisfying assignments, w1(S), for a

shape S is computed by

w1(S∧
1,d) = w1(S∨

2,d)
k1 . (3.1)

The reason is that these shapes contain different variables in the leaves since we
are dealing with shapes and not with instances of them. Therefore, the w1(S∨

2,d)

satisfying assignments of the first branch S∨
2,d, can be combined with w1(S∨

2,d)
possibilities in each of the remaining k1 − 1 branches, so we have to multiply
w1(S∨

2,d) with itself k1 times in order to obtain a satisfying assignment of the
whole shape S∧

1,d.

In the same way, given a shape S∨
1,d = <k1, ..., kd> with w0 non-satisfying

assignments and S∧
2,d = [k2, ..., kd℄, the number of non-satisfying assignments of

S∨
1,d is

w0(S∨
1,d) = w0(S∧

2,d)
k1 . (3.2)

Again we can use the argument that w0(S∧
2,d) non-satisfying assignments of

the first branch S∧
2,d can be combined with w0(S∧

2,d) possible non-satisfying

assignments in each of the remaining k1 − 1 branches. We multiply w0(S∧
2,d)

with itself k1 times in order to obtain a non-satisfying interpretation of the
whole shape S∨

1,d.
In the following, we often use the fact that, for any shape S with v variables,

the equation
2v = w0(S) + w1(S) (3.3)

holds. Now we can prove our argument of duality.

Lemma 3.2.1. Let S∨
1,d = <k1, ..., kd> and S∧

1,d = [k1, ..., kd℄ be two shapes.

Let v =
∏d

i=1 ki be the number of variables of S∨
1,d and S∧

1,d. The weight w1(S)

denotes the number of satisfying assignments of S and w0(S) denotes the number
of non-satisfying assignments of S. Then, for all i ∈ {0, 1},

wi(S∨
1,d) = w1−i(S∧

1,d). (3.4)

Proof. The proof is by induction on the depth of the formula, δ = d− li(S) + 1
where li(S) is the lowest index of the shape S. For the special case of <> and [℄,
where d = 0, we have li(S) = 1 and δ = (d − 1 + 1) = 0.

Base Case: δ = 0. In this case, the shapes S∧ = [℄ and S∨ = <> represent
only one variable. Hence, there are two possible interpretations, one of them is
a solution and the other is not, thus

wi([℄) = 1 = w1−i(<>)
holds.
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Induction Step. Suppose δ > 0 and assume that, for all δ′ < δ, (3.4) hold
for i ∈ {0, 1}. Recall that a shape of the form S∨

1,d or S∧
1,d with v variables has

2v possible truth assignments. By the induction hypothesis we have

wi(S∨
2,d) = w1−i(S∧

2,d) (3.5)

where d − 2 + 1 = δ − 1.
We perform a case distinction according to the value of i.
Case 1: i = 1. Recall that the shape S∨

1,d is a k1-fold disjunction of k1

subshapes of the form S∧
2,d.

Consider w1(S∨
1,d). With (3.3) and (3.2), we obtain

w1(S∨
1,d) = 2v − w0(S∨

1,d)

= 2v − (w0(S∧
2,d))

k1 .

Applying the induction hypothesis with i = 1, we get

w1(S∨
1,d) = 2v − (w1(S∨

2,d))k1

and by (3.1)

w1(S∨
1,d) = 2v − w1(S∧

1,d).

Therefore, by (3.3),

w1(S∨
1,d) = w0(S∧

1,d). (3.6)

Case 2. i = 0. Analogously to Case 1, we just need to apply the equations
(3.1), (3.2) and (3.3) and the induction hypothesis appropriately.

Consider w0(S∨
1,d). With (3.2) and (3.3) we obtain

w0(S∨
1,d) = (w0(S∧

2,d))k1

= (2v − w1(S∧
2,d))

k1 .

Applying the induction hypothesis with i = 0, we get

w0(S∨
1,d) = (2v − w0(S∨

2,d))
k1 .

Finally, with (3.3) and (3.1),

w1(S∨
1,d) = (w1(S∨

2,d))
k1

= w0(S∧
1,d).

This concludes the proof of all cases and thus, of the lemma.

Next, we compute w1(S) for a shape S.
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Lemma 3.2.2. Let S∨
1,d = <k1, ..., kd> be a shape of depth δ with v =

∏d

i=1 ki

variables. Then the weight of S∨
1,d is given by

w1(S∨
1,d) =

{

1 if S∨
1,d = <>, i.e., δ = 0;

2k − w1(<k2, ..., kd>)k1 if δ > 0.

Proof. For S∨
1,d = <> (i.e., δ = 0), we have w1(S∨

1,d) = 1.
For δ > 0, let S∨

1,d = <k1, ..., kd>. By (3.3) we have

w1(S∨
1,d) = 2v − w0(<k1, ..., kd>).

By applying Lemma 3.2.1, we get

w1(S∨
1,d) = 2v − w1([k1, ..., kd℄).

Finally, with (3.1), we get

w1(S∨
1,d) = 2v − w1(<k2, ..., kd>)k1

as desired.

Next we establish the sensitivity polynomial on which the calculation of the
new upper bound is based.

3.3 Sensitivity Polynomial for the Fixed Shape
Model

So far, we can compute the number of solutions, the weight, for a shape. It is
important to refine this information in order to obtain the distribution of the
solutions in {0, 1}k

, as it has been mentioned in Section 3.1.
Before considering the computation of the sensitivity polynomial for the

shapes in a general form, we analyze some simple shapes in order to illustrate
how to compute the sensitivity polynomial.

Example 3.3.1. Let S = <3>, i.e., the shape represents clauses with exactly
three literals. There are 23−1 = 7 satisfying assignments given below (♯1 is the
number of 1’s occurring in the assignment). We perform for each assignment
an analysis of the sensitivity.

No x1 x2 x3 ♯1 Sensitivity
1 0 0 1 1 1-sensitive
2 0 1 0 1 1-sensitive
3 1 0 0 1 1-sensitive
4 1 1 0 2 0-sensitive
5 1 0 1 2 0-sensitive
6 0 1 1 2 0-sensitive
7 1 1 1 3 0-sensitive
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Consider the first assignment. When we flip the assignment for x3 to 0, then
the resulting assignment is no longer satisfying. Since this 1 is the only one in
the assignment, this first interpretation is 1-sensitive. This is true, by symmetry,
for all assignments with ♯1 = 1, i.e., for the second and the third. For all the
other assignments, flipping a bit has no impact on the valuation of the formula;
the resulting assignments remain satisfying. Hence, all the 23 − 1 − 3 = 4
assignments are 0-sensitive.

Summarizing the discussion, we obtain

S<3>(y) = 3y1 + 4y0

as a sensitivity polynomial for S = <3>.
The disjunction behaves similarly when k is increased. Next, we analyze the

behaviour of the conjunction.

Example 3.3.2. Consider S = [3℄, i.e., a conjunction of three variables. Then,
only the assignment which sets all variables to 1 is satisfying. If we flip any of
these occurrences of 1, the resulting assignment is no longer satisfying. Hence,
this assignment is 3-sensitive and the sensitivity polynomial is

S[3℄(y) = y3.

With the following examples, the behaviour of shapes with more than one
level of nesting is illustrated.

Example 3.3.3. Consider the shape S = <2, 2>, i.e., the shape has the form
(x1∧x2)∨(x3∧x4). This shape has four variables x1, ..., x4 and 24 assignments.
With Lemma 3.2.2, we compute w1(S) recursively as follows:

w1(S) = 24 − w1(<2>)2
= 24 − (22 − 1)2

= 16 − 9

w1(S) = 7.

We summarize the investigation of the sensitivity for each of the seven as-
signments in the following table.

No x1 x2 x3 x4 Sensitivity
1 1 1 0 0 2-sensitive
2 1 1 0 1 2-sensitive
3 1 1 1 0 2-sensitive
4 1 1 1 1 0-sensitive
5 0 0 1 1 2-sensitive
6 0 1 1 1 2-sensitive
7 1 0 1 1 2-sensitive
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Hence, the sensitivity polynomial for S is

S<2,2>(y) = 6y2 + 1y0.

Observe that we have a twofold disjunction, for which we examine all com-
binations of assignments for the immediate subshapes. In the case here, the
subshape is [2℄. This subshape has one satisfying assignment and three non-
satisfying assignments. We combine all these assignments in order to obtain
satisfying assignments for <2, 2>. Whenever we have exactly at one position of
the disjunction a satisfying assignment (and at all other positions non-satisfying
ones), then the sensitivity of the satisfying assignment of [2℄ is “inherited” to
the sensitivity of <2, 2>. Since we have one satisfying and three non-satisfying
assignments, which can occur at k2 = 2 places, we have 6 assignments which
are 2-sensitive. The remaining satisfying assignment is 0-sensitive.

Example 3.3.4. As a final example, we consider the shape S = [3, 2℄. This
shape has 6 variables x1, ..., x6 and 26 assignments. With (3.3), Lemma 3.2.1
and Lemma 3.2.2, we compute w1(S) as follows:

w1([3, 2℄) = w0(<3, 2>)
= 26 − w1(<3, 2>)
= 26 − (26 − (w1(<2>))3)
= 26 − (26 − (22 − (w1(<>))2)3)
= 26 − 26 + (4 − 1)3

w1([3, 2℄) = 27

Observe that the shape S is a conjunction of three shapes <2>. We have to
consider the satisfying assignments of <2>, which are

A = {(1, 0), (0, 1), (1, 1)} .

Although all these assignments are satisfying, they behave quite differently with
respect to sensitivity. We partition A into two disjoint subsets, namely

A1 = {(0, 1), (1, 0)}

and
A11 = {(1, 1)} .

The elements of A1 are 1-sensitive, (1,1) is 0-sensitive. We have to consider
all possibilities for the three conjuncts from A1 and A11. We have

1. 1 possibility where all elements come from A11.

2. 3 · 2 = 6 possibilities where exactly one element comes from A1.

3. 3 · 1 · 2 · 2 = 12 possibilities where exactly two elements come from A1.
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4. 2 · 2 · 2 = 8 possibilities where three elements come from A1.

The only element of case 1. is 0-sensitive, the 6 possibilities of case 2. are
1-sensitive, the 12 possibilities of case 3. are 2-sensitive and the remaining 8
possibilities are 3-sensitive. Therefore, the sensitivity polynomial is

S[3,2℄(y) = 8y3 + 12y2 + 6y + 1.

The following lemma generalizes the simplest cases (Examples 3.3.1 and
3.3.2) to shapes with arbitrary k and with depth less than 2.

Lemma 3.3.1. Given a shape S with depth less than 2, the sensitivity polyno-
mial for S is the following:

SS(y) =







y if S = <> or S = [℄,
ky + (2k − k − 1) if S = <k>,
yk if S = [k℄.

Proof. The first case is very simple. There is only one satisfying assignment for
the variable, and, by flipping its value, it becomes unsatisfiable. There are no
more variables, therefore θ1(S) = 1 and this implies SS(y) = 1 · y1 = y.

The second case is the disjunction. Observe that a satisfying assignment
with two or more variables assigned to 1 has no neighbors (x1, ..., xk) within
distance 1 on which f(x1, ..., xk) = 0. There are 2k assignments, from which
one is non-satisfying and k have only one variable assigned to 1. Therefore, there
are 2k −k−1 satisfying assignments that are 0-sensitive. The other k satisfying
assignments are within distance 1 from {0}k

, so all of them are 1-sensitive, and
we get SS(y) = ky1 + (2k − k − 1)y0 = ky + (2k − k − 1).

The third case of a conjunction follows a similar analysis. There is only one
satisfying assignment, and it has k neighbors within distance 1 that are already
non-satisfying. Therefore, it is k-sensitive and SS(y) = 1 · yk = yk.

From the examples and Lemma 3.3.1, we can generalize to any shape. The
description of the sensitivity as a polynomial will prove useful. For the case of a
conjunction, let us recall the definition of the multiplication of two polynomials
which will be needed later on.

Definition 3.3.1. Given two polynomials

P (y) = p0y
0 + · · · + pnyn and

Q(y) = q0y
0 + · · · + qmym,

the multiplication of them is given by

P (y) · Q(y) =

m+n∑

i=0





i∑

j=0

pj · qi−j



 · yi.
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The multiplication is naturally extended to the exponential operation in the
usual way, for example (P (y))2 = P (y) · P (y).

We will also use the well known Binomial Theorem of combinatorics.

Theorem 3.3.1. Given a non-negative integer n, the following holds.

(x + y)n =

n∑

k=0

(
n

k

)

xn−kyk.

Now we can proceed with the computation of S(y) for a general shape. The
main idea is the analysis of the behaviour of ∧ and ∨. In the case of ∧ in the
top-most level, one has to analyze only the case where all the lower levels are
satisfied. Somehow, it “inherits” the sensitivities from the lower levels like in
Example 3.3.3. In the case of ∨, it is necessary to take into account two cases:
either there is one satisfiable branch and all the others are unsatisfiable or there
is more than one satisfiable branch. In the first case, the sensitivity depends on
lower levels, and in the second, there is no sensitive variable at all. We need to
use some combinatorics in order to obtain the number of assignments for each
case. From now on, let us call the conjunctive shapes S∧

i,j = [ki, ki+1, ..., kj℄
and the disjunctive shapes S∨

i,j = <ki, ki+1, ..., kj>.
Lemma 3.3.2. Given a shape S with v variables and depth δ > 0, the sensitivity
polynomial S(y) is computed recursively as follows:

SS(y) =







(SS∨

2,d
(y))k1 if S = S∧

1,d,

k1w
0(S∧

2,d)
k1−1 · SS∧

2,d
(y)+

∑k1

j=2

(
k1

j

)
· w1(S∧

2,d)
j · w0(S∧

2,d)
k1−j if S = S∨

1,d.

Proof. Recall that δ = d − li(S) + 1. The proof is by induction on the depth δ
of the shape.

Base Case: δ = 1. By Lemma 3.3.1, we can prove the base cases as follows.
For S = [k1℄, we have SS = yk1 and for S = <k1>, we have:

S<k1>(y) = k1w
0([℄)k1−1 · S[℄(y) +

k1∑

j=2

(
k1

j

)

· w1([℄)j · w0([℄)k1−j

= k1 · 1k1−1 · y +

k1∑

j=2

(
k1

j

)

· 1j · 1k1−j

= k1y +

k1∑

j=2

(
k1

j

)

= k1y +

k1∑

j=0

(
k1

j

)

−
(

k1

1

)

−
(

k1

0

)

S<k1>(y) = k1y + (2k1 − k1 − 1).
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Induction Step. Let δ > 1 and assume that, for all δ′ < δ, the lemma holds.
Consider a shape of depth δ. We perform a case distinction according to the

type of the shape.
Case 1. Consider S∧

1,d. We want to show that

SS∧

1,d
(y) = (SS∨

2,d
(y))k1

holds. We perform an inner induction proof on k1.
Base Case (for Case 1): k1 = 1. Let the shape S∧

1,d be [1, ..., kd℄ which is, by
definition, equivalent to S∨

2,d = <k2, ..., kd>. Therefore, we immediately obtain

SS∧

1,d
(y) = SS∨

2,d
y = (SS∨

2,d
(y))1.

Induction Step (for Case 1). Let k1 > 1 and assume that

S[k1−1,...,kd℄(y) = SS∨

2,d
(y)k1−1.

Consider the shape S∧
1,d = [k1, ..., kd℄ with v =

∏d

i=1 ki variables. Let vU

be the number of variables for S∨
2,d. Let J be a partial assignment for the first

vT = v − vU variables and let J ′ be the partial assignment for the last vU

variables. Note that vT = (k1 − 1) · vU . Let I(x) = J(x), if x is one of the first
vT variables and let I(x) = J ′(x) if x is one of the last vU variables. S∧

1,d can
be seen as the formula [k1 − 1, ..., kd℄ ∧ S∨

2,d. Let us call

T (y) = S[k1−1,...,kd℄(y) = t0y0 + · · · + tvT
yvT

and
U(y) = SS∨

2,d
(y) = u0y0 + · · · + uvU

yvU .

For an arbitrary but fixed I, we have two cases.
Subcase 1.1. The assignments J or J ′ are non-satisfying. In this case, I is

non-satisfying and is not taken into account for the sensitivity polynomial for
S∧

1,d.
Subcase 1.2. Both J and J ′ are satisfying. In this case, let J be j-sensitive

and J ′ be j′-sensitive. Obviously, our interpretation I will be i-sensitive, for
i = j + j′. Moreover, note that there are tj j-sensitive interpretations and
uj′ j′-sensitive interpretations defined by the sensitivity polynomials T (y) and
U(y). Note that, for a fixed J , there are then uj′ possible assignments to extend
it to some I, and conversely, there are tj possible different extensions for a fixed
J ′. Therefore, we get tj · uj′ i-sensitive interpretations.

In order to count how many interpretations of this type exist, note that we
can express i as i + 1 different sums of the form

i∑

j=0

j + (i − j).

We can express the number of i-sensitive interpretations as the sum
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i∑

j=0

tj · ui−j .

This holds for every i from 0 to v = vT + vU because the sensitivity is at
most v. Therefore, we get

v∑

i=0

(

i∑

j=0

tj · ui−j)y
i,

which is nothing but T (y) · U(y). Now, since by the induction hypothesis for
the inner induction, T (y) = (SS∨

2,d
(y))k1−1, and by definition U(y) = SS∨

2,d
(y),

it follows that T (y) · U(y) = SS∨

2,d
(y)k1 .

This concludes the inner induction and therefore the proof for Case 1.
Case 2. Consider S∨

1,d. In order to prove

SS∨

1,d
(y) = k1w

0(S∧
2,d)

k1−1 · SS∧

2,d
(y) +

k1∑

j=2

(
k1

j

)

· w1(S∧
2,d)

j · w0(S∧
2,d)

k1−j ,

we perform an inner induction on k1 like in the previous case.
Base Case (for Case 2). k1 = 1. Let the shape S∨

1,d be <1, ..., kd>. We
have only one branch in the top-most disjunction implying that this shape is
equivalent to S∧

2,d = [k2, ..., kd℄ by definition. Also note that the second term of
the formula SS∨

1,d
(y) is equal to 0 because k1 < j. We have

SS∨

1,d
(y) = k1w

0([k2, ..., kd℄)k1−1 · S[k2,...,kd℄(y) + 0

= 1 · (w0([k2, ..., kd℄))0 · S[k2,...,kd℄(y)

= S[k2,...,kd℄(y).

Induction Step (for Case 2). Let k1 > 1 and assume that

S[k1−1,...,kd℄(y) =(k1 − 1)w0(S∧
2,d)

k1−2 · SS∧

2,d
(y)

+

k1−1∑

j=2

(
k1 − 1

j

)

· w1(S∧
2,d)

j · w0(S∧
2,d)k1−1−j.

(3.7)

Consider the shape S∨
1,d = <k1, ..., kd> with v =

∏d

i=1 ki variables. Let vU

be the number of variables for S∧
2,d. Let J be a partial assignment for the first

vT = v−vU variables and let J ′ be a partial assignment for the last vU variables.
We have I(x) = J(x), if x is one of the first vT variables, and I(x) = J ′(x) if x
is one of the last vU variables. The shape we analyze is <k1 − 1, ..., kd> ∨ S∧

2,d.
Let

T (y) = S<k1−1,...,kd>(y) = t0y0 + · · · + tvT
yvT

and
U(y) = SS∧

2,d
(y) = u0y0 + · · · + uvU

yvU .
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We have to consider four subcases for a fixed I. All of them except Subcase
2.1 contribute to the sensitivity polynomial.

Subcase 2.1. J and J ′ are non-satisfying. In this case, we do not add
anything to the polynomial SS∨

1,d
.

Subcase 2.2. J is satisfying and J ′ is non-satisfying.
In this case, the sensitivity of I is the sensitivity of J , i.e., T (y) because J ′

is non-satisfying; thus, J ′ does not contribute to the sensitivity. Therefore, for
this case, the number of i-sensitive interpretations is exactly ti, so we just have
to multiply them by the number of possible non-satisfying assignments J ′.

From now on, we call w1
T = w1(<k1 − 1, ..., kd>) and w1

U = w1(S∧
2,d). Con-

versely, let w0
T = w0(<k1 − 1, ..., kd>) and w0

U = w0(S∧
2,d). By the induction

hypothesis of the inner induction (3.7), the sensitivity polynomial for this case
is

w0
U · T (y) = w0

U

(

(k1 − 1)(w0
U )k1−2 · U(y)

+

k1−1∑

j=2

(
k1 − 1

j

)

· (w1
U )j · (w0

U )k1−1−j

)

.

Now we simplify this equation so that it can be used later on.

w0
U · T (y) = (k1 − 1)(w0

U )k1−1 · U(y) + w0
U

k1−1∑

j=2

(
k1 − 1

j

)

(w1
U )j(w0

U )k1−1−j

= (k1 − 1)(w0
U )k1−1 · U(y) +

k1−1∑

j=2

(
k1 − 1

j

)

(w1
U )j(w0

U )k1−j

= (k1 − 1)(w0
U )k1−1 · U(y) +

k1−1∑

j=0

(
k1 − 1

j

)

(w1
U )j(w0

U )k1−j−
(

k1 − 1

1

)

(w1
U )1(w0

U )k1−1 −
(

k1 − 1

0

)

(w1
U )0(w0

U )k1−0

= (k1 − 1)(w0
U )k1−1 · U(y) +

k1−1∑

j=0

(
k1 − 1

j

)

(w1
U )j(w0

U )k1−j−

(k1 − 1)w1
U (w0

U )k1−1 − (w0
U )k1

= (k1 − 1)(w0
U )k1−1 · U(y) + w0

U

k1−1∑

j=0

(
k1 − 1

j

)

(w1
U )j(w0

U )k1−1−j−

(k1 − 1)w1
U (w0

U )k1−1 − (w0
U )k1 .

By the Binomial Theorem 3.3.1, we have

w0
U · T (y) = (k1 − 1)(w0

U )k1−1 · U(y) + w0
U (w1

U + w0
U )k1−1−

(k1 − 1)w1
U (w0

U )k1−1 − (w0
U )k1 .
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Subcase 2.3. J is non-satisfying and J ′ is satisfying. In this case, the sensi-
tivity of I is given by J ′. We use (3.2) to obtain the sensitivity polynomial in
this case, i.e.,

w0
T · U(y) = (w0

U )k1−1U(y).

Subcase 2.4. J and J ′ are satisfying. In this case, since we have a disjunctive
shape, we find that the sensitivity of I is 0, because if we flip any of its variables,
the result of the evaluation will not be affected.

Recall that w1
T = 2vT − w0

T . By (3.2), w1
T = 2vT − (w0

U )k1−1. Thus, the
number of possibilities of this type are

w1
T · w1

U = (2vT − (w0
U )k1−1)w1

U

= (2vU (k1−1) − (w0
U )k1−1)w1

U

= ((2vU )k1−1 − (w0
U )k1−1)w1

U

= ((w1
U + w0

U )k1−1 − (w0
U )k1−1)w1

U

= w1
U (w1

U + w0
U )k1−1 − w1

U (w0
U )k1−1.

Now we sum up all the different cases in order to obtain the new polynomial:

S(y) = (k1 − 1)(w0
U )k1−1 · U(y)

︸ ︷︷ ︸

A1

+w0
U (w1

U + w0
U )k1−1−

(k1 − 1)w1
U (w0

U )k1−1 − (w0
U )k1+

(w0
U )k1−1U(y)

︸ ︷︷ ︸

A2

+

w1
U (w1

U + w0
U )k1−1 − w1

U (w0
U )k1−1.

Observing that the final equation we want to obtain is of the form A·U(y)+B,
we marked terms that will correspond to part A · U(y) and the rest forms part
B. Now we sum up A1 + A2:

A · U(y) = (k1 − 1)(w0
U )k1−1U(y) + (w0

U )k1−1U(y) = k1(w
0
U )k1−1U(y)

The rest forms part B of our goal expression:

B = w0
U (w1

U + w0
U )k1−1 − (k1 − 1)w1

U (w0
U )k1−1 − (w0

U )k1+

w1
U (w1

U + w0
U )k1−1 − w1

U (w0
U )k1−1.

By factorizing (w1
U + w0

U )k1−1 from the first and fourth term, we get

B = (w1
U + w0

U )k1−1(w0
U + w1

U ) − (k1 − 1)w1
U (w0

U )k1−1−
(w0

U )k1 − w1
U (w0

U )k1−1

= (w1
U + w0

U )k1 − k1w
1
U (w0

U )k1−1 − (w0
U )k1 .
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Applying the Binomial Theorem 3.3.1 yields

B =





k1∑

j=0

(
k1

j

)

(w1
U )j · (w0

U )k1−j



 − k1w
1
U (w0

U )k1−1 − (w0
U )k1

=





k1∑

j=0

(
k1

j

)

(w1
U )j · (w0

U )k1−j



 −
(

k1

1

)

(wU )1(w0
U )k1−1−

(
k1

0

)

(w1
U )0(w0

U )k1−0

=

k1∑

j=2

(
k1

j

)

(w1
U )j · (w0

U )k1−j

Now we just sum up A · U(y) and B and we get exactly S(y).
This concludes the inner induction for the second case, and thus, the proof

of the lemma

3.4 A Better Upper Bound of K-SAT

The basic idea in the calculation of the new upper bound is that, instead of
focusing on the whole set of solutions expressed as En,cn(Sol), it applies the
FMM to the set of locally maximal solutions En,cn(MaxSol).

The following theorem, shows how the upper bound is computed when the
sensitivity polynomial S(y) is known. S′(y) is used to denote the (first) deriva-
tive of a polynomial S(y).

Theorem 3.4.1. [4, Theorem 4.4] Let F be a finite multi-set of Boolean con-
straint functions of arity k, and SF(y) be its sensitivity polynomial. Let γF and
ΦF be functions defined on (1,2] by� γF (y) = ln

(
y

2(y−1)

)

· SF (y)
S′

F
(y)� ΨF(y) = (y − 1) ln (y − 1) − y ln(y

2 ) + γF(y) · ln
(

SF (y)
2k·|F|

)

The probability of satisfiability of a random F-formula with n variables and c ·n
constraints tends to 0 for every c > c∗F , where c∗F = γF (y∗

F ) and y∗
F is the unique

number such that for every y < y∗
F , ΨF(y) < 0.

It is proven in [4] that this threshold is always strictly smaller than the usual
threshold with the FMM.

The theorem can be applied to any CSP. The equation stated for ΨF has to
be solved, with k the number of variables in each clause. We use the theorem
together with the calculation of the sensitivity polynomial for shapes in order to
obtain upper bounds for the critical values of different SAT problems for shapes.
The solutions are computed with a small Maple program. Several experiments
with different shapes are included in Chapter 4.
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Chapter 4

Results and Experiments

In this chapter, we show the sensitivity polynomials for several shapes; some
taken from [18] and some new ones. We compute and compare two upper bounds
for each shape. The first upper bound is obtained by the first moment method
(FMM), the second one by the method of locally maximal solutions (LMSM).
We consider absolute and relative improvements of the new method over the
first moment method and discuss the limitations.

4.1 Computing New Upper Bounds

In order to avoid the manual computation of the sensitivity polynomial, we use
a program (coded in C) to perform the calculation. This calculation is based
on Lemma 3.3.2. The equations in Figure 4.1 represent the polynomials for
several shapes. Since our focus is disjunctive shapes, the computation of their
sensitivity polynomial is sufficient here.

On “usual” computers, the size of an integer is restricted to 32 or 64 bits. In
order to be able to handle shapes with more than 64 variables (having more than
264 different interpretations), the bignum package gmp1 has been used. With
such a package, it is possible to deal with integers of arbitrary length.

In order to compute the upper bounds by the first moment method (FMM)
and the locally maximal solutions method (LMSM), we use a MAPLE program
provided by H. Daudé. The parameter that represents the upper bound obtained
by the FMM is called dd, while the parameter obtained with the LMSM is
represented by cc. In Table 4.1, we compare dd and cc for the shapes from
Figure 4.1.

1Information can be found on the project web page http://gmplib.org.
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S<3>(y) = 4 + 3 y

S<4>(y) = 11 + 4 y

S<5>(y) = 26 + 5 y

S<3,2>(y) = 10 + 27 y2

S<2,4,2>(y) = 6911 + 2800 y + 8400 y2 + 11200 y3 + 5600 y4

S<6,3>(y) = 43653 + 100842 y3

S<2,2,2,2>(y) = 2815 + 4968 y2 + 14904 y4

S<2,2,3,2>(y) = 2419561 + 2945160 y2 + 3975966 y4

S<3,3,2>(y) = 104709 + 24642 y + 49284 y2 + 32856 y3

S<2,2,4,2>(y) = 1251321583+ 1010463984 y2 + 814403808 y4

S<2,5,3>(y) = 315163377 + 122580480 y + 183870720 y2 + 137903040 y3 +

51713640 y4 + 7757046 y5

S<2,2,2,2,2>(y) = 2245537151+ 482779360 y + 625072224 y2 + 284585728 y3 +

142292864 y4

S<2,2,2,2,3>(y) = 254296788108031+ 14873496696000 y + 7436103021000 y2 +

1393906320000 y3 + 261357435000 y4

S<3,3,3,3>(y) = 9690944106639854579830+ 10720444695878647674252 y3 +

71632062286098236732502 y6 +

159544138728127890904209 y9

Figure 4.1: Sensitivity polynomials SS(y) for disjunctive shapes S.
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S v w1(S) dd cc<3> 3 7 5.1908930697 4.6424761577<4> 4 15 10.7400536663 10.2168796332<5> 5 31 21.8323023417 21.3202500034<3, 2> 6 37 1.2649475142 1.0436294188<2, 4, 2> 16 34911 1.1005871282 1.0071276700<6, 3> 18 144495 1.1636838197 1.0713962003<2, 2, 2, 2> 16 22687 0.6534146441 0.5620828127<2, 2, 3, 2> 24 9340687 1.1835681431 1.1201671090<3, 3, 2> 18 211491 3.2282718641 3.1418610777<2, 2, 4, 2> 32 3076189375 2.0768310115 2.0311970470<2, 5, 3> 30 818988303 2.5592963773 2.5044459763<2, 2, 2, 2, 2> 32 3780267327 5.4300936720 5.3866728906<2, 2, 2, 2, 3> 48 278261651580031 60.3698019631 60.3476830278<3, 3, 3, 3> 81 251587589816744629890793 0.3063168922 0.2773786031

Table 4.1: Upper bounds obtained by the FMM (dd) and the LMSM (cc) for
the shapes S with v variables and w1(S) satisfying assignments. All numbers
are rounded to 10 decimals.

4.2 Comparing the LMSM with the FMM

A further interesting aspect is a more detailed comparison between both meth-
ods, as well as the analysis of the behaviour of the phase transition in general
with respect to the operators ∧ and ∨. Experiments show the evolution of
phase transition when the size of the formulas is increased by modifying one
parameter.

Figure 4.2 shows both upper bound for a shape <k>. The chart shows the
exponential growth of the upper bound when k is increasing.

In Figure 4.3, the gain of the LMSM with respect to the FMM shows that
the larger k is, the smaller the difference between the FMM upper bound and
the LMSM upper bound becomes. Observe that the difference decreases until
it reaches an (experimental) asymptotic value in the axis Y , namely Y = 0.5.
Figure 4.4 shows the relative gain with respect to the FMM. For smaller k, there
is a considerable improvement with the LMSM. With increasing k, the relative
improvement is decreasing.

Let us turn our attention to shapes with more structure. Figures 4.5 and 4.6
show the upper bound, the absolute improvement and the relative improvement
of the LMSM over the FMM for the shapes of the form <k1, 2>. In these shapes,
two levels of operation nesting are present. In this case, the arity of the top-most
∨ is increased.

With the shapes of the form <2, k2>, we investigate the behaviour of the
shapes when the number of subformulas of the conjunction (and not those of
the disjunction) is increased. In this case, the upper bound decreases for larger
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k2 (Figure 4.7) and we also see that the relative improvement increases (Figure
4.8). This is in contrast to the two former cases.

Results for the shapes of the form <2, 2, k3> are represented in Figures 4.9,
4.10 and 4.11. There are three levels of nesting in these shapes, and the num-
ber of subformulas of the disjunction is increased in this case. However, the
disjunctive operator whose arity is changing is not the top-most operator. The
experiments in Figure 4.10 show that the absolute improvement goes asymp-
totically down to a constant Y = 0.125. In our experiments, besides these and<k>-shapes, no other shapes show a tendency to decrease the absolute difference
among the FMM upper bound and the LMSM upper bound to an asymptotic
value Y = c, c > 0.

The next results presented are for shapes of the form <2, k2, 2>. The connec-
tive that increases its arity is the conjunction. In this case, however, the arity
of the middle connective is changing. The upper bound decreases (Figure 4.12)
and the relative improvement increases (Figure 4.13), similarly to the shapes<2, k2>. From the experimental data, one possible conclusion is that the number
of locally maximal solutions decreases considerably if the arity of the conjunc-
tion connectives is increased. Therefore, the upper bound based on the LMSM
improves when the number of conjuncts is increased.

In the shapes of the form <2, 2, k3, 2>, we are changing the number of dis-
junctives in a level that is neither the upper nor the lowest in the nesting. The
results for such shapes are shown in Figures 4.14, 4.15 and 4.16. The results are
very similar to those for the shapes <2, 2, k3> and <k>. However, the difference
between dd and cc seems to approach zero.

Finally, we present shapes of the form <21, ..., 2d> for varying d. In this
case, the increment is on the depth of nesting. The results show two different
tendencies, one for shapes with d being an even number and one for d being an
odd number. Shapes with its last operator being an ∨ behave quite different,
its upper bound grows with higher depths. Shapes with ∧ as its last operator
have a decreasing upper bound when the depth increases.

The experiments shown here give some insight and ideas for further research
in order to generalize results for arbitrary shapes.
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Figure 4.2: Upper bound with the FMM (dd) and the LMSM (cc) for the shapes<k>.
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Figure 4.4: Relative gain of the LMSM (cc) with respect to the FMM (dd) for
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Figure 4.5: Upper bound with the FMM (dd) and the LMSM (cc) for the shapes<k1, 2>.
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Figure 4.14: Upper bound with the FMM (dd) and the LMSM (cc) for the
shapes <2, 2, k3, 2>.
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Figure 4.16: Relative gain of the LMSM (cc) with respect to the FMM (dd) for
the shapes <2, 2, k3, 2>.
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Figure 4.17: Upper bound with the FMM (dd) and the LMSM (cc) for the
shapes of the form <21, ..., 2d> with depth d.
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Chapter 5

Conclusions

In this thesis, we considered a generalization of the well known K-SAT prob-
lems. In such K-SAT problems, the formulas consist of a conjunction (or set)
of clauses. In our more general framework, the formulas consist of conjunctions
(or sets) of balanced shapes. These shapes have the following properties:� The only connectives occurring in the shapes are ∧ and ∨.� If the shape is represented as a tree, the tree is balanced and the connec-

tives are alternating along each branch in the tree.� The starting connective, i.e., the top-most in the tree, is ∨.� The leafs represent variables and each variable occurs only once in the
shape.

As in the K-SAT problem, we consider a set of randomly chosen shape
instances. Since we are interested in shapes of the form <k1, ..., kd>, we call
the corresponding random satisfiability problem, random <k1, ..., kd>-SAT. As
in random K-SAT, the random <k1, ..., kd>-SAT problem shows a SAT/UNSAT
threshold observed with the help of the ratio α between the number of clauses
and the number of variables. First upper bounds computed with the first mo-
ment method were taken from the literature [18].

With a refined method, developed in [4], we improved all the upper bounds
for different SAT problems for different shapes from [18]. This method uses
as an input a sensitivity polynomial. Given a shape with v variables, this
polynomial represents the distribution of the solutions in the {0, 1}v

hypercube.
The core of the method is to reduce the number of solutions to those that are
“locally maximal”. The last step of the method is to solve an equation using
the sensitivity polynomial, a task that can be solved with the help of software
for mathematics.

Experimental results with shapes of different forms have produced new ideas
that can guide to further research. A comparison of the two upper bounds,
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obtained by the traditional first moment method and the new method, was
presented.

The behaviour of shapes has shown to be different when we modify param-
eters of the shape like the number of disjunctives, conjunctives, or the depth.
In summary, we have the following observations.� If the arity of a conjunction increases, then the upper bound tends to

decrease.� If the arity of a disjunction increases, then the upper bound tends to
increase.� If the depth is increased, then the upper bound increases for odd depth
and slightly decreases for even depth.

There are several lines of research for future work. One of them is to find
properties of a solution which allow to consider a smaller set of solutions (like
the locally maximal solutions with respect to the total number of solutions).
The decrease of the number of considered solutions would result in smaller
upper bounds. Another issue to be solved is a characterization that allows to
find lower bounds for the critical value for shapes. This characterization has
to be general enough to be applied to any shape. Finally, a further task is
to perform more experiments in order to obtain empirical critical values for
different shapes.
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[4] N. Creignou, H. Daudé, and O. Dubois. Expected number of locally max-
imal solutions for random boolean CSPs. In Conference on Analysis of
Algorithms 2007, Juan-les-Pins, France, June 2007. Discrete Mathematics
and Theoretical Computer Science.

[5] O. Dubois and Y. Boufkhad. A general upper bound for the satisfiability
threshold of random r-SAT formulae. J. Algorithms, 24(2):395–420, 1997.

[6] O. Dubois, R. Monasson, B. Selman, and R. Zecchina. Editorial. Theoretical
Computer Science, 265(1–2), 2001.
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