
Ph.D. Thesis

Ontology-Driven
Information Extraction

Conducted for the purpose of receiving the academic title
’Doktorin der technischen Wissenschaften’

Supervisor
Silvia Miksch

Institute of Software Technology & Interactive Systems [E188]

Submitted at the Vienna University of Technology
Faculty of Informatics

by

BURCUYILDIZ
9926103

Vienna, March 27, 2007

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

In loving memory and dedication to Hasan Yildiz
my grandfather and best friend ...

i

Acknowledgement

All praise to God ...

... and special thanks to my supervisor Prof. Dr. Mag. SilviaMiksch for her
support and encouragement during my research.

Further, to my second supervisor Prof. Dr. Dipl.Ing. GernotSalzer for leading
me towards the right direction at a critical phase of my research.

Also to my colleagues at the Information Engineering Group at the Vienna Uni-
versity of Technology for their constructive critiques andinteresting questions.

Very special thanks to my family and friends ... To my father Dr. Mag. Ramazan
Yildiz and my mother Humeyra Yildiz for raising me and caringfor me for so many
years now. To my sister Dr. Dipl. Ing. Canan Yildiz and my brother Dipl. Ing.
Ahmet Yildiz for listening to my endless speeches about my ideas and for discussing
them with me. And also to Filiz Arici, Kadriye Kaya, and Dipl.Ing. Alime Öztürk
for their invaluable friendship.

ii

Abstract

Since Berners-Lee proposed and started to endorse ontologies as the backbone of
the Semantic Web in the nineties, a whole research field evolved around the fun-
damental engineering aspects of ontologies, such as the generation, evaluation and
management of ontologies.

However, many researchers were curious about the usabilityof ontologies within
Information Systems in ’ordinary’ settings, performing ’ordinary’ information pro-
cessing tasks. To be used within Information Extraction Systems (IESs), we con-
sider ontologies as a knowledge source that can represent the task specification and
parts of the domain knowledge in a formal and unambiguous way.

In general, IESs use several knowledge sources (e.g., lexicons, parsers, etc.) to
achieve good performance. Some also require humans to generate the extraction
rules that represent the task specification of the system. However, often these re-
sources are not at hand or the dependency on them lead to compromises regarding
the scalability and performance of an IES. Therefore, we wondered whether ontolo-
gies formulated in a standard ontology representation language, such as OWL, are
suitable enough to represent the task specification and alsothe domain knowledge
to some extent, which the IES can utilise as its only knowledge resource. Our aim
is to identify the limits of such an approach, so that we can conclude that things can
only get better from that point onwards by using other resources whenever available.

In this thesis, we propose an extraction method that utilises the content and pre-
defined semantics of an ontology to perform the extraction task without any human
intervention and dependency on other knowledge resources.We also analyse the
requirements to ontologies when used in IESs and propose theusage of additional
semantic knowledge to reconcile them. Further, we propose our method to detect
out-of-date constructs in the ontology to suggest changes to the user of the IES. We
state the results of our experiments, which we conducted using an ontology from
the domain of digital cameras and a document set of digital camera reviews. After
performing the experiments with a different task specification using a larger ontol-
ogy, we conclude that the use of ontologies in conjunction with IESs can indeed
yield feasible results and contribute to the better scalability and portability of the
system.

iii

Zusammenfassung

Seitdem Berners-Lee Ontologien als das ”Rückgrat des Semantic Web” eingeführt
hat, hat sich ein ganzes Forschungsgebiet um die fundamentalen Aspekte des On-
tology Engineering gebildet, wie zum Beispiel die Erstellung, Evaluierung und das
Management von Ontologien.

Viele ForscherInnen waren jedoch neugierig was die Verwendbarkeit von On-
tologien in ’üblichen’ Informationssystemen angeht, die’übliche’ Aufgaben zur In-
formationsverarbeitung durchführen. In Informationsextraktionssystemen (IE Sys-
teme), zum Beispiel, können Ontologien als Wissensresourcen verwendet werden,
welche die Aufgabenstellung und Teile des domänspezifischen Wissens in einer
formalen und unzweideutigen Form darstellt.

Im Allgemeinen verwenden IE Systeme verschiedene Wissensressourcen (e.g.,
Lexika, Parser, etc.) um eine gute Performanz zu erzielen. Manche verlangen auch,
dass die Extraktionsregeln, die dann die Aufgabenstellungdes Systems repräsen-
tieren, von Menschen erstellt werden. Jedoch sind diese Wissenressourcen nicht
immer griffbereit oder die Abhängigkeit von ihnen führt zu Kompromissen bzgl.
der Skalierbarkeit und̈Ubertragbarkeit des Systems. Deshalb haben wir uns gefragt
ob Ontologien, die in einer Beschreibungssprache wie z.B. OWL formuliert sind,
als einzige Wissenressource des Systems verwendet werden können um brauchbare
Ergebnisse zu erzielen.

In dieser Dissertation führen wir eine Extraktionsmethode ein, welche den In-
halt und die vordefinierte Semantik einer Ontologie ausnutzt um eine Extraktion zu
ermöglichen, die keine menschliche Unterstützung oder andere Ressourcen benötigt.
Wir analysieren auch die Anforderungen auf Ontologien die in IE Systemen ver-
wendet werden sollen und die Verwendung von ergänzendem semantischen Wissen
um diesen Anforderungen zu entsprechen. Weiteres, führenwir unsere Methode zur
Ermittlung von out-of-date Konstrukten in der Ontologie ein um den BenutzerInnen
letztendlich Vorschläge bzgl. allfälliger̈Anderungen in der Ontologie zu machen.

iv

Contents

1 Introduction 1
1.1 Research Questions . 2
1.2 Contributions . 3
1.3 Publications . 4
1.4 Thesis Outline . 4

I Context and Related Work 6

2 Ontologies 7
2.1 Definition . 8
2.2 Characteristics of Ontologies .9
2.3 Why to bother about Ontologies? 10
2.4 Ontologies and Formal Logics . 11
2.5 Ontology Representation Languages13

2.5.1 RDF and RDF(S) . 14
2.5.2 OIL, DAML-ONT and DAML+OIL 15
2.5.3 OWL . 16

3 Ontology Engineering 17
3.1 Ontology Design . 18
3.2 Ontology Generation . 19

3.2.1 Some Clarifications . 20
3.2.2 Ontology Learning and Population 21

3.3 Change Management of Ontologies 24
3.3.1 Change Operations . 26
3.3.2 Representing Ontology Changes 26
3.3.3 Ontology Versioning . 27
3.3.4 Ontology Evolution . 29

3.4 Evaluation of Ontologies . 31
3.5 Ontology Visualisation . 34

3.5.1 Graphs . 34
3.5.2 Tree-Maps . 35

3.6 Conclusion . 36

v

4 Information Extraction 38
4.1 A Brief Historical Overview . 39
4.2 Architecture of an Information Extraction System 42
4.3 Approaches to Information Extraction 44
4.4 Evaluation . 48
4.5 Challenges of Information Extraction 49
4.6 Conclusion . 50

II Ontology-Driven Information Extraction 51

5 Ontology-Driven Information Systems 52
5.1 Ontologies for Information Systems53

5.1.1 Obstacles on the Way . 54
5.2 Ontologies for Information Extraction Systems 57

5.2.1 Requirements to Ontologies in IES 60

6 ontoX - An ontology-driven IES 63
6.1 Input Ontology of ontoX . 65

6.1.1 Keywords . 66
6.1.2 Constraining Properties . 67
6.1.3 Quality Properties . 67
6.1.4 Temporal Properties . 68

6.2 Ontology Management Module of ontoX 68
6.2.1 Class Elements . 69
6.2.2 Property Elements . 70

6.3 The Rule Generation Module of ontoX 73
6.4 The Extraction Module of ontoX 73

6.4.1 Preprocessing . 73
6.4.2 Extraction . 74
6.4.3 Change Detection within ontoX 78

6.5 Limitations . 79

7 Experimental Results 81
7.1 Evaluation of Performance . 82
7.2 Evaluation of Scalability and Portability 84
7.3 Evaluation of Change Detection 87

8 Summary and Future Work 89
8.1 Summary . 90
8.2 Future Work . 92

A Example Ontologies in OWL 94

B OWL Data Types 98

List of Figures 105

vi

Bibliography 106

vii

Chapter 1

Introduction

Well I left my happy home to see what I could find out
I left my folk and friends with the aim to clear my mind out

Well I hit the rowdy road and many kinds I met there
Many stories told me of the way to get there

On The Road To Find Out - Cat Stevens

The invention of computers made many things easier, for example to generate, save,
and access data. The invention of the internet was ’the’ stepto share all this data
with everyone around the world. Despite many benefits, this development gave rise
to the problem of extracting relevant information out of theoverwhelming amount
of data we are facing on a daily basis.

The Artificial Intelligence (AI) community has been dealingwith this problem
for some time now. The research field that comprises all the work in this area is
called Information Processing. One particular sub-field deals with the extraction of
certain types of relevant information from mainly text documents, which is called
Information Extraction (IE). ’What is relevant information?’ is the first question
that comes to ones mind immediately. Not only is this question hard to answer
when complicated task specifications and domains are involved, it is even harder to
communicate this answer to a computer. Ontologies, being explicit specifications
of conceptualisations[Gruber, 1993] can be used here to provide Information Ex-
traction Systems (IESs) with formal and computer-understandable representations
of relevant information.

Ontologies gained more attention lately, as many researchers began to think that
they can serve as the backbone of the Semantic Web. The Semantic Web is an
extended form of the current Web with semantics attached to the content, to make
it easier for humans and machines to locate information[Berners-Lee, 1999]. But
the application areas of ontologies are not bound to the Semantic Web. They are
knowledge bearing artifacts and hence, can be used in any application area where
a domain of interest has to be conceptualised and communicated to an Information
System (IS).

1

CHAPTER 1. INTRODUCTION 2

In this thesis we will analyse to what extent ontologies are suitable to drive the
IE process and how a classical IES has to be augmented to enable it to handle an
underlying ontology properly. Further, it has to be clarified whether there are dif-
ferent requirements to ontologies when they are going to be used for IE than for the
Semantic Web. Within this context we will also analyse what kind of management
issues regarding the ontology arise and what course of action would be appropriate
to dissolve them.

This thesis is centered around some fundamental research questions, which are
listed in the next subsection.

1.1 Research Questions

The focus in this thesis is on the use and management of ontologies when used in
conjunction with Information Extraction Systems (IESs). This scenario yields to a
set of research questions, which we will state here and address later in subsequent
parts of this thesis. The research questions can be considered in two parts: the first
part contains questions regarding how ontology usage may contribute to the quality
of IESs, and the second part contains questions regarding maintenance issues of
ontologies used within IESs.

Research questions regarding effects of ontologies on IESs

How can ontologies be utilised to address main challenges ofIESs, such as per-
formance, portability, and scalability?

Do ontologies offer the potential to facilitate the performance, scalability, and porta-
bility of IESs? If yes, how can they be concretely utilised for these purposes?

Is it possible to develop an unsupervised and automatic IE method, that utilises
no other resource but an input ontology?

Are ontologies suitable knowledge resources for IESs that have no access to other
resources, such as lexicons or linguistic processing modules?

Are there certain requirements to the content of ontologieswhen they are going
to be used in conjunction with IESs? If yes, what are they and how can they be
reconciled?

Do ontologies have to reconcile different requirements regarding their content when
they are going to be used in different settings than the Semantic Web? What if they
are going to be used in conjunction with IESs? What are the requirements in such
a scenario and what are the concrete measures that have to be taken to reconcile
them?

CHAPTER 1. INTRODUCTION 3

Research questions regarding the maintenance of ontologies within IESs

How to detect out-of-date ontological components in a domain of interest?

Is it possible to automatically detect out-of-date components in the conceptuali-
sation represented by the ontology of an IES? Are automatic approaches sufficient
or is human intervention required?

How to query/monitor the changes themselves?

In what form can suggested changes to the ontology be utilised by the system for
its future decisions? What would be the best way to representthese suggestions to
the user?

How to apply changes to the ontology? Automatically or manually?

Is it desired and feasible that the IES applies suggested changes to the ontology
on its own? What kind of pitfalls are expected with such an automatic approach?
To what extent could human intervention enhance the qualityof this task?

1.2 Contributions

Besides providing answers to the stated research questions(see Section 1.1), the
main contributions of this work can be listed as follows:

1. Analysing the requirements regarding the use and management of ontologies
when used in conjunction with IESs:Using ontologies in IESs yield to additional
requirements concerning the knowledge represented in an ontology. To reconcile
these requirements, we propose the inclusion of additionalknowledge about quali-
tative, temporal, and evolutional properties of ontological structures.

2. A method for automatically extracting information from natural language text
using an input ontology:In general IESs use several knowledge sources (e.g., lex-
icons, parsers, etc.) to achieve good performance. Some also require humans to
generate the extraction rules that represent the task specification of the system.
However, often these resources are not at hand or the dependency on them lead
to compromises regarding the scalability and performance of an IES. Therefore,
we wondered whether ontologies formulated in a standard ontology representation
language, such as OWL, are suitable enough to represent the task specification and
also the domain knowledge to some extent, which the IES can utilise as its only
knowledge resource. Our aim was to identify the limits of such an approach, so that
we can conclude that things can only get better from that point onwards by using
other resources whenever available. We propose an extraction method that utilises
the semantics of an ontology to perform the extraction task without any human in-
tervention and dependency on other knowledge resources.

CHAPTER 1. INTRODUCTION 4

3. ontoX: An ontology-driven IES:During the course of our research, we imple-
mented the mentioned automatic extraction method in Java. The system also per-
forms change detection using input data and the predicted behaviour of the ontologi-
cal constructs over time. This IES is available at the projects section of our website1.

4. Motivating the use of ontologies in conjunction with IESs:By presenting our
method and our experimental results, we undermined our claims that ontologies
can indeed be used for IE from natural language text. We conclude that ontologies
can replace knowledge and domain engineers in many cases, because it is realistic
to assume that the user of an IES can build an extraction ontology using existing
ontology development frameworks, which do not require any knowledge about the
underlying syntax and theoretical foundations of the used representation languages.

1.3 Publications

Parts of this thesis have been published in:

Yildiz B, Miksch S.Ontology-Driven Information Systems: Challenges and Re-
quirements.In: Proceedings of the International Conference on Semantic Web and
Digital Libraries (ICSD 2007), Bangalore, India, 2007.

Yildiz B, Miksch S. Motivating Ontology-Driven Information Extraction. In:
Proceedings of the International Conference on Semantic Web and Digital Libraries
(ICSD 2007), Bangalore, India, 2007.

1.4 Thesis Outline

This thesis is structured in two parts. In the first part we give an overview of the
basic terms and on the state of the art in the fields of OntologyEngineering and
Information Extraction. The second part consists mainly ofthe contributions of our
research, the results of an thorough evaluation phase, and an analysis on possible
future research directions.

Part I: Context and Related Work

Chapter 2 : Ontologies– consists of an introduction to the field of ontologies, with
basic definitions and the characteristics of ontologies. Further, it contains brief de-
scriptions of commonly used ontology representation languages and formal logical
foundations on which most of them are based on.

Chapter 3 : Ontology Engineering– deals with particular phases of the ontology
life cycle, such as generation, evolution, versioning, andevaluation. For each phase

1http://ieg.ifs.tuwien.ac.at

CHAPTER 1. INTRODUCTION 5

it defines the concrete task and points out main challenges along with some ap-
proaches that have been proposed so far to address them.

Chapter 4: Information Extraction– contains a detailed introduction to the research
field of IE. Besides giving some definitions and a historical overview, it explains the
main architecture of an IES and it introduces main approaches and challenges to IE.

Part II: Ontology-Driven Information Extraction

Chapter 5: Ontology-Driven Information Systems– explains the main benefits the
use of ontologies can bring for ISs in general and IESs in particular. Furthermore,
it contains an analysis of different requirements to ontologies when they are going
to be used in such systems and proposes methods to reconcile these additional re-
quirements.

Chapter 6: ontoX - An Ontology-driven Information Extraction System– contains
a detailed description of our proposed method for IE using ontologies and also in-
formation about the architecture and functionality of ontoX, the implementation of
our extraction method.

Chapter 7: Experimental Results– contains a detailed description of the evaluation
setting for the proposed methods and detailed experimentalresults.

Chapter 8: Conclusion and Future Work– gives an overview of the lessons learned
while doing this research and points out possible research directions for the future.

Part I

Context and Related Work

6

Chapter 2

Ontologies

So on and on I go, the seconds tick the time out
There’s so much left to know, and I’m on the road to find out

Well in the end I’ll know, but on the way I wonder
Through descending snow, and through the frost and thunder

On The Road To Find Out - Cat Stevens

Originated in early Greece, the term ’Ontology’ is a branch of philosophy that deals
with the nature and organisation of being. Philosophers like Plato and Aristotle dealt
with this branch, trying to find the fundamental categories of being and to determine
whether the items in those categories can said to ’be’. The proper naming of such
items was questioned by Plato. In his opinion, item names in an optimal world,
would refer in everybody’s minds to one and only one thing.

The computer scientists community is in general not that much interested in
philosophy, but the idea of having a means to represent fundamental categories
of a particular domain to establish a common understanding between interaction
partners was worth considering. So it happened that ontologies became very popular
in Artificial Intelligence (AI) and Knowledge Representation. Here, an ontology has
been seen as yet another ”engineering artefact, constituted by a specificvocabulary
used to describe a certain reality, plus a set of explicit assumptions regarding the
intended meaningof the vocabulary words”[Guarino, 1998].

In this section, we will first define the basic terms with regard to ontologies and
will give a short insight into possible benefits ontologies can bring. Further, we will
explain the role of formal logics in representing ontological knowledge and then
will give an overview of some well-known ontology representation languages.

7

CHAPTER 2. ONTOLOGIES 8

2.1 Definition

The literature contains many, partly contradicting definitions of an ontology1. How-
ever, the best-known and most quoted definition in the AI community became the
definition by Gruber[1993], which is also the one we will refer to in this thesis.

An ontology is an explicit specification of a conceptualization.

The termconceptualisationrefers to an abstract model, a simplified view of a
particular domain of concern. By defining the concepts, relations, and constraints
on their use in a formal way, the conceptualisation becomes explicit.

The definition by Gruber has been thoroughly analysed by Guarino and Giaretta
[1995]. First of all, they stated that it is crucial to distinguish between the ’Ontol-
ogy’ with a capital ’O’ as a branch of philosophy, which dealswith the nature and
organisation of being; and the ’ontology’ as a particular object (engineering arte-
fact). They further specified seven possible interpretations of the term ontology and
elucidate the implications of these interpretations:

• Ontology as a philosophical discipline

• Ontology as an informal conceptual system

• Ontology as a formal semantic account

• Ontology as a specification of a ”conceptualization”

• Ontology as a representation of a conceptual system via a logical
theory characterized by specific formal properties or only by its
specific purposes

• Ontology as the vocabulary used by a logical theory

• Ontology as a (meta-level) specification of a logical theory

Interested readers are also referred to the article of Zúñiga [2001], who ex-
plained, in pretty much detail, the differences between thephilosophical meaning of
ontologies and the meaning in Information Systems (ISs) by giving a deep analysis
and comparison on both, Gruber’s and Guarino’s views.

We will use the following formal definition of an ontology through the rest of this
thesis, whenever referring to ontological components.

Definition 1 An ontology is a tupleO := {C,R,HC ,HR, IC, IR,AO}, whereas

• C: represents a set of concepts.

•R: represents a set of relations that relate concepts to one another. Ri ∈ R and
Ri → C × C.

1Note that ontologies were introduced to get a clear and common view on things, and yet the
community cannot agree on the definition of the term itself.

CHAPTER 2. ONTOLOGIES 9

•HC: represents a concept hierarchy in form of a relationHC ⊆ C × C, whereas
HC(C1, C2) means thatC1 is a subconcept ofC2.

•HR: represents a relation hierarchy in form of a relationHR ⊆ R×R, whereas
HR(R1, R2) means thatR1 is a subrelation ofR2.

• IC and IR: represent two disjoint sets of concept and relation instances, respec-
tively.

•AO: represents a set of axioms.

2.2 Characteristics of Ontologies

In general, ontologies consist of a set of concepts and a description of the relation-
ships that hold between these concepts. But when examining them closer, one can
see many differences between them. Therefore, many researchers have described
characteristics of ontologies to be able to classify them. Although the names for
these characteristics vary from researcher to researcher,they can be grouped based
on the following two main characteristics.

According to their level of formality

The same conceptualisation can be defined using different ontology representation
languages, which yield ontologies with different levels offormality. Uschold and
Grueninger[1996] classified ontologies in four groups according to this character-
istic:

• Highly informal ontologies:are ontologies that are expressed in natural lan-
guage.

• Semi informal ontologies:are ontologies that are expressed in restricted and
structured natural language.

• Semi formal ontologies:are ontologies that are expressed in a semi-formal
defined language.

• Rigourously formal ontologies:are ontologies that are expressed in a rigourously
formal defined language.

If ontologies are going to be used to share knowledge betweenhumans, it is
better to have an informal or highly informal ontology. But if the interaction part-
ners are going to be computers, it would be better to provide them with at least a
semi-formal ontology.

CHAPTER 2. ONTOLOGIES 10

According to their level of generality

An ontology can contain information with different levels of detail. The classifica-
tion by Gruber [1998] reflects this thought:

• Top-level ontologies:describe very general concepts, which are independent
of a particular domain or task like as space, time, event, action, etc.

• Domain ontologies:contain a description of a vocabulary to a generic domain
like as medicine or automobiles, etc.

• Task ontologies:contain a description of vocabulary to a generic task or ac-
tivity, such as diagnosing or selling, etc.

• Application ontologies:are bound to both, a specific domain and a specific
task.

2.3 Why to bother about Ontologies?

Ontologies are means for an agreement on the meaning of ’things’ between inter-
action partners, either humans or computers. By committingto an ontology, an
interaction partner declares that it is aware of the meaningof the vocabulary words
in the ontology and that it will refer to this meaning only, guaranteeing consistency
during interaction. To commit to an ontology should not require any changes in the
working environments of the interaction partners, though.

Because ontologies can be used to share a specific conceptualisation among
communication partners, their usage is theoretically beneficial wherever an agree-
ment on the meaning of things is important. However, we can list some concrete
benefits of ontology usage as follows:

• Understanding:An ontology can serve as a documentation, using which hu-
man beings can understand the underlying conceptualisation of a domain bet-
ter.

• Communication:Ontologies can help interaction partners to communicate
over a domain of interest in an unambiguous way. For this purpose, inter-
action partners can either send their respective ontologies to one another or
commit to a shared ontology.

• Inter-operability:Computer systems can inter-operate in a consistent manner.
This enables interaction partners to inter-operate acrossorganisational and/or
international boundaries.

• Reuse:There is no need to reinvent the wheel over and over again. This
applies also to ontologies, because as knowledge bearing components, they
can be reused by others. However, Menzies[1999] stated that the reuse of
ontologies can be compared to the reuse of already programmed modules in
software engineering. In many cases it takes so much time to understand

CHAPTER 2. ONTOLOGIES 11

and integrate a software module, that in that time 60% of it could have been
written from scratch. Whether this applies to ontologies aswell, is yet to be
empirically analysed. Menzies statement could be true for relatively small
ontologies, but in the case of very large ontologies that have been developed
over many years (e.g., WordNet, MeSH) it could be hard to write them from
scratch.

There are also several researchers that take the increasinguse of ontologies crit-
ically, and doubt that ontologies will bring significant benefits as promised. A cost-
benefit analysis should be done to clarify this issue. However, there is no empirical
study available yet, because ontologies are not in use for solong.

2.4 Ontologies and Formal Logics

The term ’conceptualisation’ is not new to the computer science and AI community.
In fact, many different approaches to represent conceptualisations emerged in the
past. Their differences are due to their target groups and consequently their provided
knowledge representation constructs.

The focus of human centered approaches, for example, is on providing intuitive
representations for humans utilising natural language or visual modelling primi-
tives. Approaches that go one step further to provide computer-understandability
as well as intuitive representations for humans, formalisethe semantics of their
modelling primitives. Most popular examples for this kind are Semantic Networks
[Sowa, 1987]. They are based on graph theoretical semantics and consequently,
their main components are concepts denoted by nodes, and relations (between con-
cepts) denoted by directed arcs between nodes in the graph.

The level of formality provided by such ’human centered’ approaches is gener-
ally considered as not enough to communicate conceptualisations to computers in
an unambiguous way. So, attempts have been taken to use formal logics to represent
conceptualisations.

Formal logic is the discipline that studies the principles of inference with for-
mal content. Formal logics provideformal languagesthat have well-defined se-
mantics, which is essential to express knowledge in a transparent and computer un-
derstandable way. Thiswell defined semanticsenable a common understanding of
the expressed knowledge unambiguously, since the constructors of the language are
defined in advance that leaves no space for different interpretations.Automated rea-
sonersare needed to validate and maintain the expressed knowledge, and also to in-
fer conclusions from already existing knowledge[Grigoris and van Harmelen, 2004].

Ontologies can benefit from these three properties of formallogic. In fact, all
ontology representation languages are based on some kind oflogic (e.g., predicate
logic, frame-based logic, etc.). The differences in their underlying formal systems
constitute the differences in their expressive power and consequently their level of
complexity. On the one hand, one would wish to have a languagewith the highest
expressiveness, which unfortunately comes only with a hugeincrease of the level
of complexity. On the other hand, the level of complexity hasa direct impact on the

CHAPTER 2. ONTOLOGIES 12

computational properties of reasoning services. Because reasoning is most impor-
tant during many phases of Ontology Engineering, the level of complexity has to be
taken into account when developing a representation language, even if this yields to
compromises w.r.t the expressive power.

Given an ontologyO (see Definition 2.1), with an instancei ∈ C1, and two
conceptsC1 andC2 we can describe the most important reasoning services in the
context of ontology-based systems as follows:

• Subsumption (also known as class consistency):The task of determining
whether a conceptC1 is a subconcept of a conceptC2. Many other more
complex reasoning tasks can be formulated in terms of subsumption. There-
fore, this service is considered as the central reasoning service in many logics.

• Instance Checking (also known as class membership):The task of determin-
ing whether an instancei is an instance of a conceptC1.

• Consistency Checking:The task of determining whether the represented knowl-
edge in the ontologyO is coherent or not. This task is important, because in-
ferencing on an inconsistent ontology is meaningless. Thisservice requires a
formal definition of ’consistency’, because it can differ from model to model.

• Equivalence of Concepts:The task of determining whether two conceptsC1

andC2 are equivalent.

• Querying:The task of querying the contents of an ontologyO. For example,
querying all instances of a particular conceptC1.

• More specific services:There are more specific services such as determining
the least common subsumer to enable bottom-up ontology generation, etc.

These reasoning services differ in terms of their run-timesdepending on their
underlying logical systems (e.g., some of them can be decided in polynomial time)
[Donini et al., 1996]. Therefore, it is important for representation language design-
ers to analyse where and for what purposes their proposed representation language
is going to be used and what reasoners can be provided for thatlanguage.

In order to be useful, reasoners have to be sound and complete. Soundnessen-
sures that it is not possible to infer false knowledge with defined inferencing rules.
Completenessensures that all possible true statements can be derived from given
knowledge with the defined inferencing rules. Unfortunately, not all ontology rep-
resentation languages can be provided with sound and complete reasoners. In the
next subsection, we will take a look at the most popular ontology representation lan-
guages and will examine, among other things, the reasoning support they have been
given. Those languages are mainly influenced by two knowledge representation
paradigms, namely Frame-based Systems and Description Logics. To understand
the potentials and limitations of different languages, we have to understand their
underlying logical foundations first.

CHAPTER 2. ONTOLOGIES 13

Frame-based Systems

As the name implies, frame-based systems are centered around Frames. Frames
were first introduced by Minsky[1975] as a data structure for representing domain
knowledge. They have components called slots (in general attribute-value pairs) and
slots in turn have components called facets that describe their respective properties.
Slots and facets are used to state value restrictions on Frames.

Typical Frame-based systems provide constructs to organise Frames into hierar-
chies allowing multiple inheritance as well. In such hierarchies, classes can inherit
from their super-classes’ features, such as slot definitions and default values accord-
ing to some inheritance strategy which can differ from system to system. The central
inference mechanism in Frame-based systems is inheritance[Kifer et al., 1995].

The semantics of Frames were specified only operationally and attempts for
formalising their declarative part yield to the development of Description Logics.

Description Logics

Description Logics (DL) is a knowledge representation formalism that extends Frames
with formal semantics and can be seen as a specialisation of first-order logic. As
Frames, it is suitable to represent knowledge that is centered around classes (con-
cepts), properties (roles), and objects (instances or individuals).

Based on the allowed constructors, different DLs can be defined, which are de-
noted by several literals (see Figure 2.1[Baaderet al., 2003]). Besides well-defined
syntax, the constructors have also formal, well-defined semantics.

ALC denotes the minimal description language. The more constructors a DL
allows, the harder the reasoning tasks are to solve. Brachman and Levesque[1984]
showed that forFL− the subsumption problem can be solved in polynomial time,
whereas adding the role restriction constructor makes it coNP-hard.

DL-systems have two components: an intensional component,called TBox; and
an extensional component, called ABox. The TBox can be seen as a general schema
for the concepts and individuals to be represented, whereasthe ABox contains the
individuals[Donini et al., 1996].

2.5 Ontology Representation Languages

Depending on the particular task at hand we will need to represent different kinds
of knowledge. Therefore, we will have to look for a language with just the right
level of expressive power. Neither less nor more expressiveness would do us any
good. With the former we would not be able to represent the knowledge we want,
and with the latter we would have to face a much more higher complexity than
necessary, making life (that is reasoning) harder than it already is. Therefore, the
right choice of an ontology representation language is an important decision, as it
inevitably affects all forthcoming phases of the ontology life-cycle.

Grigoris and van Harmelen[2004] state the following main requirements for
ontology languages one should look for:

• well-defined syntax

CHAPTER 2. ONTOLOGIES 14

Figure 2.1: Description Logics constructors

• well-defined semantics

• convenience of expression

• efficient reasoning support

• sufficient expressive power

In this section, we will give an overview of some ontology representation lan-
guages, all of which equipped with well-defined syntax and well-defined semantics.
They differ in terms of their convenience of expression (because some of them have
more human-friendly syntax than others), in terms of their expressive power, and
consequently in terms of whether efficient reasoning support is available for them
or not.

2.5.1 RDF and RDF(S)

The Resource Description Framework (RDF) cannot be considered as a language
itself. It is a graph-based data model to represent knowledge that can be stated in
form of predicate-subject-object triples, which are called statements and where the
predicate relates the subject to an object[Grigoris and van Harmelen, 2004]. A typ-
ical fact that could be stated as a predicate-subject-object triple is:

CHAPTER 2. ONTOLOGIES 15

Prof. Baron is lecturer of the Algebra course.

Since the model is language independent (labelled directedgraph) such a state-
ment can either be represented visually (see Figure 2.2) or using any computer
understandable language (in general an XML based syntax is being used for that
purpose).

Figure 2.2: Visual representation of a typical RDF statement

What distinguishes RDF from other formalisms is its abilityto make statements
about statements. This is calledreificationand it is a very powerful means to repre-
sent knowledge. A typical example would look like:

The curriculum states that Prof. Baron is lecturer of the Algebra course.

However, RDF cannot be used for generating ontologies, as itdoes not offer any
other construct then binary predicates[Grigoris and van Harmelen, 2004]. There-
fore, RDF Schema (RDFS) has been introduced as an extension to RDF, which pro-
vides additional constructs with fixed semantics. Using these constructs, concepts
and properties can be defined and organised as hierarchies tosupport inheritance.

RDF Schema is considered as a primitive language, because the kind of knowl-
edge that can be represented using these constructs is very limited. For example it
is not possible to state cardinality restrictions on properties or the disjointness of
classes, etc. But, there are several ontology representation languages that can be
seen as extensions of RDF Schema, such as DAML+OIL.

2.5.2 OIL, DAML-ONT and DAML+OIL

The Ontology Inference Layer (OIL) is a language that is based on three roots:
Frame-based systems, Description Logics, and several Web standards[Fenselet al., 2001].
The idea behind its development was to provide a language with well-defined for-
mal semantics (Description Logics) that is highly intuitive for humans (Frame-based
systems) and has a proper link to existing Web languages suchas XML and RDF
[Horrockset al., 2003].

DAML-ONT is another ontology representation language which is tightly inte-
grated with RDF Schema, extending it with constructors fromFrame-based repre-
sentation languages.

Because of the same objectives DAML-ONT and OIL shared with each other,
it was decided to combine the efforts, which resulted in the DAML+OIL language.
DAML+OIL is equivalent to a very expressive DL (SHIQDL) with the addition of

CHAPTER 2. ONTOLOGIES 16

existentially defined classes and datatypes. This equivalence implies that subsump-
tion reasoning is decidable in DAML+OIL. It largely discards the Frame-based
structure of OIL[Horrockset al., 2003].

2.5.3 OWL

The Web Ontology Language (OWL) is a markup language for publishing and shar-
ing ontologies on the Web. It is derived from DAML+OIL and is therefore also
based on Description Logics.

The OWL working group claim that a language that fulfills all requirements for
ontology representation languages is unobtainable. Therefore, they decided to de-
fine OWL as three different sublanguages, each aiming to reconcile different subsets
of those requirements[Grigoris and van Harmelen, 2004]:

• OWL Full: uses all knowledge representation constructs of OWL without any
restriction. It is fully upward compatible with RDF and is sopowerful that it
is undecidable.

• OWL DL: is a sublanguage of OWL Full corresponding to a description logic.
It restricts how the constructors of OWL and RDF may be used and is there-
fore no longer fully compatible with RDF. However, these restrictions make
efficient reasoning possible, which is often more importantthan compatibility
with RDF.

• OWL Lite: is a syntactic subset of OWL DL excluding the use of enumerated
classes, disjointness statements, and arbitrary cardinality. These restrictions
make OWL Lite easier to understand and easier to implement.

Chapter 3

Ontology Engineering

I listen to the wind come howl, telling me I have to hurry
I listen to the robin’s song saying not to worry

So on and on I go, the seconds tick the time out
There’s so much left to know, and I’m on the road to find out

On The Road To Find Out - Cat Stevens

Ontology Engineering (OE) can be defined as the research fieldthat comprises all
phases of an ontology life cycle. The life cycle of an ontology can be considered
roughly in terms of the following tasks: design, generation, evaluation, and manage-
ment, which involves the whole life cycle. Although this life cycle can be refined
by dividing the tasks further in subtasks, we will examine them under the men-
tioned basic rubrics. We will describe what constitutes these tasks, and point out
the research efforts taken so far to address the difficultiesrelated to them.

E v a l u a t i o n
D e s i g n

G e n e r a t i o n
M a n a g e m e n t

Figure 3.1: Ontology Life Cycle

17

CHAPTER 3. ONTOLOGY ENGINEERING 18

3.1 Ontology Design

Since the AI community showed interest in ontologies, many ontologies have been
designed and implemented. However, detailed documentations concerning the gen-
eration process of these ontologies are rare. This makes it harder to derive a standard
methodology for building ontologies. Such a standard wouldbe helpful for both,
beginners and advanced ontology builders. For beginners, it would serve as a step
by step ’how-to’ description, whereas for advanced researchers it would serve as a
check-list or guideline to improve the quality of their ontologies.

Gruber[1993] proposed some design criteria to guide the development process
of ontologies for knowledge-sharing purposes. He stated that these criteria can-
not be seen as guidelines for ontology generating theory, whereas more knowledge
about the design process of ontologies would make it possible to evolve these crite-
ria to working design principles:

• Clarity: The definitions of concepts and relations should be formulated in an
objective and clear manner. If possible, the definitions should be stated as
logical axioms.

• Coherence:The ontology should be internally consistent.

• Extendibility: It should be easy to extend the ontology with new ontological
components (i.e. concepts and relations).

• Minimal encoding bias:The conceptualisation should be generated on a
knowledge-level without depending too much on a particularsymbol-level.

• Minimal ontological commitment:The ontology should only define neces-
sary terms for the intended purpose, in order to left free space for further
specialisations and instantiations.

Uschold and King[1995] took a further step and proposed a skeleton methodol-
ogy for building ontologies. They stated that a comprehensive methodology should
include the following stages, and additionally a set of techniques, methods, princi-
ples and guidelines to perform the required actions in thesestages:

• Identifying purpose and scope

• Building the ontology

– Ontology capture

– Ontology coding

– Integrating existing ontologies

• Evaluation

• Documentation

CHAPTER 3. ONTOLOGY ENGINEERING 19

The identification of the purpose and scopeof an ontology is an essential step,
because it has a great impact on the rest of the generation process. If the purpose is
not clear, you may end up with an ontology that does not fit yourrequirements. And
if the scope is not clearly stated, you may easily miss the right level of generality.

In order to build the ontology, you first have tocapture your ontology, that is
to capture the information you like to have in your ontology.This information
includes the key concepts and relations of the domain, unambiguous definitions of
these concepts and relations, and terms to refer to these concepts and relations.

The identification of concepts and relations in a domain should follow also some
method. You can either start by identifying the most specificconcepts and then
group them in categories (bottom-up) or you can start from the most general con-
cepts and then build the underlying categories (top-down).A third way was pro-
posed by Uschold and Grüninger[1996], that is to start with the most important
concepts first, and then defining higher concepts (middle-out). Whereas the level
of detail the ontology will have at the end is not predictablewith the bottom-up
and top-down approaches, the middle-out approach guarantees that the produced
ontology will have at least the most relevant components youwant.

Once you have captured the information you want in your ontology, you have
to code the ontologyin a formal language. Thus, you have to choose an ontology
representation language (see Section 2.5), whereas the decision might not be so
easy, because of the many languages that exist, each with itsown advantages and
disadvantages. The identified purpose and scope of the ontology will be helpful at
this stage.

Ontologies as knowledge bearing artifacts, serve as a backbone module in most
of their application areas. The quality of an ontology, thus, affects the performance
of the whole application. This makes it necessary toevaluate your ontologyin order
to increase the acceptance of it by a large community. For more detailed information
about the research field of Ontology Evaluation, you are referred to Section 3.4 .

Often ontologies are hard to understand by human beings who were not involved
in the generation process. This is mainly because ontologies are being coded in a
formal language rather than in natural language and becausemany of them are about
not so well-known domains where the terms used to refer to concepts and relations
are hard to understand as well (e.g. medical ontologies with’very’ Latin disease
names, etc.). Therefore, adocumentation of your ontologywould help interested
people immensely in overlooking and understanding the ontology better.

3.2 Ontology Generation

The efforts that have been taken so far to formulate a standard methodology for
ontology generation imply that it is not easy to build an ontology. According to the
means used for the generation process, we can differentiatebetween the manual,
the semi-automatic, and the automatic approach.

With the manual approachan ontology engineer builds the ontology by hand.
It is time consuming, but the involvement of a domain expert guarantees that the
ontology itself and its level of granularity is most probably correct for the aimed

CHAPTER 3. ONTOLOGY ENGINEERING 20

purpose. Today, many tools to aid ontology engineers duringthe ontology genera-
tion process exist (e.g., Protégé, OntoEdit, etc.). Theycan help with the technical
part of Ontology Generation, because using such a tool, an ontology engineer does
not have to bother about the underlying formal language anymore and syntax errors
can be avoided as well. However, we cannot assume that the quality of the concep-
tualisations themselves can be improved by the mere fact that such a tool is being
used, unless the tool provides on-the-fly reasoning services to check the consistency
at run time or services to spot redundancies in the ontology.

With thesemi-automatic approacha computer system assists the ontology engi-
neer by recommending the addition of new ontological components depending on
some sort of analysis on domain related data. The ontology engineer can then accept
or discard these recommendations or can add components by herself if considered
necessary.

With the automatic approachthere is no human intervention at all. The sys-
tem extracts ontology components from a data corpus with domain related data and
builds the ontology. Whereas it is certainly less time consuming, it may lead to qual-
ity losses, because it is not guaranteed that all relevant concepts of the domain really
occur in the corpus or that the extraction algorithms are good enough to extract all
of the relevant components correctly.

The selection of related work in this subsection does not contain manual ap-
proaches and approaches for learning from other sources than natural language text,
but only automatic and semi-automatic approaches to Ontology Learning from nat-
ural language text.

3.2.1 Some Clarifications

There is a lack of consensus upon the basic terms related to the generation process.
That is why we have used the more general term ’Ontology Generation’ as the head-
ing of this section. we will state our interpretation of those terms before addressing
the main techniques that are available to approach them. It should be stated be-
forehand, that one can differentiate between the intensional part (e.g., concepts and
relations) and the extensional part of an ontology (e.g., instances of concepts and
relations).

• Ontology Learningis the task of learning intensional components of an on-
tology (C,R,HC,HR,AO as in Definition 2.1). For example to learn that the
domain contains concepts ’Camera’ and ’Digital Camera’ andthat there is
a hierarchical relation between these two concepts (’Digital Camera’ is sub-
concept of ’Camera’).

• Ontology Population (also known as Ontology Enrichment)is the task of ex-
tracting and assigning extensional knowledge to the intensional components
of an ontology (IC, IR as in Definition 2.1). For example to learn that ’Canon
A430’ is an instance of the concept ’Digital Camera’.

• Ontology Extensionis the task of adding intensional components to an already
existing ontology (C,R,HC,HR,AO as in Definition 2.1). For example to

CHAPTER 3. ONTOLOGY ENGINEERING 21

learn that the domain also contains a concept ’Film Camera’ and that this
concept is also a subconcept of ’Camera’.

In the rest of this section, we will address the research fields of Ontology Learn-
ing and Population, discarding Ontology Extension, which can be seen as a deriva-
tion of the former two.

3.2.2 Ontology Learning and Population

As mentioned before, Ontology Learning is about acquiring intensional knowl-
edge, whereas Ontology Population is about enriching the ontology with exten-
sional knowledge, that is with instances of concepts and relations defined by the
ontological components in the intensional part of the ontology. Many workshops
dedicated to the field of Ontology Learning alone (e.g., ECAI2000, IJCAI 2001,
ECAI 2002, ECAI 2004) indicate that it is a very active field ofresearch. Unfortu-
nately, it is not yet agreed upon what exact tasks comprise Ontology Learning.

According to Maedche[2002], the Ontology Learning process comprises four
phases (see Figure 3.2): import/reuse, extract, prune, andrefine. Toimport an ex-
isting ontology can cause several problems, because the available ontology might
contain different knowledge representation constructorsthan the ontology model of
the learning framework. A learning framework can either simply ignore such con-
structors or define importing strategies to determine the way of how to transform
them. Either way will yield to an ontology for which it cannotbe guaranteed any-
more that the imported knowledge is identical to the original. Theextractionphase
is the phase where the actual learning happens. This phase requires a description
of the kind of knowledge that should be learned from the sources and appropriate
algorithms that can identify and extract such knowledge. Inmost cases the resulted
ontology will not be tailored for the intended particular application, so it will in-
evitably have toprunedbe andrefinedaccording to the intended task at hand.

D o m a i nO n t o l o g y
P r u n e

R e f i n e
I m p o r t/ R e u s e

E x t r a c t
Figure 3.2: Ontology Learning Life Cycle

CHAPTER 3. ONTOLOGY ENGINEERING 22

The Ontology Learning Layer Cake (see Figure 3.3) represents an attempt to
classify the subtasks of Ontology Learning as a layered cake, where the complexity
increases from bottom to top[Buitelaaret al., 2005].

T a sk C ompl e xi t y
Figure 3.3: Ontology Learning Layer Cake

In their work, Buitelaar and colleagues[2005] give an overview of the state-of-
the-art of the related work, which they categorise according to the layers of their
proposed layered cake. Such a categorisation is necessary whenever a somehow or-
ganised comparison of different approaches is aimed. This is mainly because learn-
ing approaches can differ along too many dimensions, makinga direct comparison
of two randomly chosen approaches almost impossible. For instance, according
to Shamsfard and Barforoush[2003], there are six main dimensions along which
Ontology Learning approaches can differ from one another:

• Elements learned: Often approaches are tailored to learn only some kind of
ontological components, that is concepts and concepts instances, relations
(taxonomic or non-taxonomic), or axioms.

• Starting point: Approaches can differ in terms of their required knowledge
for starting the actual learning process: prior knowledge (e.g., base ontol-
ogy, base lexicon, etc.), input data (e.g., structured or unstructured text, etc.).
Learning from natural language text will require differentmethods than learn-
ing from dictionaries or data schemas, which are much more structured.

• Preprocessing: Most approaches perform some kind of linguistic processing
(deep vs. shallow semantic processing) on their input data before starting
with their actual learning process.

• Learning method: Different approaches use different learning methods, which
can in turn also be classified along the following four dimensions:

– Learning category: supervised vs. unsupervised, online vs. offline.

– Learning approach: statistical vs. logical, linguistic based, pattern match-
ing, or hybrid methods.

CHAPTER 3. ONTOLOGY ENGINEERING 23

– Learning task: classification, clustering, rule learning,concept forma-
tion, ontology population.

– Degree of automation: manual, semi-automatic (differing again in terms
of type and level of user intervention), automatic.

• Result: Different approaches return different outcomes, for example they can
return a particular ontology (type, representation language, structure) or rep-
resent their learned ontological components in an intermediate structure.

• Evaluation method: Some researchers evaluate the applied learning methods
and some evaluate the final outcomes of their approaches.

We will organise our selection of related work according to the elements learned
by the proposed semi-automatic or automatic generation methods, because obvi-
ously different methods have to be applied to learn different ontological compo-
nents.

Learning Concepts and Instances

Learning concepts and instances is the most addressed task among existing learning
approaches and are also the easiest ontological componentsto learn. It is mainly
the task of finding and classifying words that are related to the particular domain of
interest at hand.

Most approaches for concept learning are based on statistical methods and means,
such as frequency measures. Frequency measures are used to identify relevant terms
based on the assumption that when a term appears often in a text it is most likely
relevant.

Given a corpusD with documents{d1, ..., d|D|} and a termi, the most common
frequency measures are:

• Term frequencytfi,j : The number of times the termi occurs in documentdj .

• Document frequencydfi: The number of documents in a corpus that the term
i occurs in.

• Inverse document frequencyidfi: A measure indicating the general impor-
tance of the termi relatively to the corpus.

idfi = log
|D|

dfi

• Term frequency-inverse document frequencytfidf : A balanced measure of
the importance of the term in a corpus.

tfidf = tfi · idfi

Instance learning on the other hand, can be seen as a classification problem.
Most approaches perform clustering on the concepts of an ontology and then use
similarity measures to identify the correct cluster for an instance at hand.

CHAPTER 3. ONTOLOGY ENGINEERING 24

Learning Relations

Often, learning approaches only address the task of learning taxonomical relations
to build a hierarchy of concepts. The ’isA’ relation is the most common relation in
that context, whereas ’a isA b’ implies that ’a’ is a subconcept of ’b’ (hyponymy).
Other common relations are ’partOf’ relations and several linguistic relations such
as synonymy relations, etc.

Predefined lexico-syntactic patterns can be used to detect and extract particular
kinds of relations from text. To get an idea of how such patterns may look like,
the patterns proposed by Hearst[1998] to detect hyponymy relations from text are
stated below, where NP stands for any noun phrase in the text.

suchNP as{NP,}*{or | and)} NP

NP{, NP}*{,} or otherNP

NP{, NP}*{,} and otherNP

NP{,} including{NP ,}*{or | and} NP

NP{,} especially{NP ,}*{or | and} NP

It is obvious that such approaches are very limited, not onlyin terms of the
domain language, but also in terms of the kind of relations that are covered by the
set of rules. All relations that are not covered by the definedpatterns (mostly non-
taxonomical relations) will be completely neglected.

An approach to overcome this limitation has been proposed bySchutz and
Buitelaar[2005]. The main idea behind their work is that verbs can be good in-
dicators for related concepts. Building on top of that they first identify relevant
terms and verbs from a domain-specific text collection and then automatically com-
pute highly relevant triples consisting of a pair of concepts connected by a relation
using linguistic and statistical methods.

Apart from linguistic approaches, clustering approaches can also be applied on
concepts and relations in order to acquire concept and relation taxonomies. An
example for that is the ASIUM system proposed by Faure and Nedellec [1999].
They build basic clusters of words using semantic similarity measures and propose
the results to an ontology developer who then either acceptsor discards the learned
clusters.

3.3 Change Management of Ontologies

As mentioned earlier (see Section 2.1), ontologies are abstract views of specific
fields of concern. These abstract views cannot be consideredas static, because
there are several occasions that can make it necessary to change the ontology. Such
occasions may be corrections in the conceptualisation, adapting the ontology to
changing facts in the real world in order to catch up with the current reality, etc.

CHAPTER 3. ONTOLOGY ENGINEERING 25

Klein and Noy[2003] define several tasks that have to be provided for a complete
change management support, as follows:

• Data Transformation:A change in the intensional part of an ontology (i.e.,
C, R, HC, HR in Definition 2.1) may require other changes in the exten-
sional part of the ontology (i.e.,IC , IR in Definition 2.1). For example if two
concepts A and B are merged, then the instances of these classes have to be
merged as well.

• Data Access (Compatibility):It should be possible to access data that is
confirm with the old version via the changed new version. Thisbrings the
question of ’What kind of data we want to preserve?’ to the forefront, be-
cause there are several dimensions to compatibility between ontology ver-
sions[Noy and Klein, 2004]:

– Instance-data preservation: to make sure that no data is lost during the
transformation from the old version to the new one.

– Ontology preservation: to make sure that a query result obtained by
using the new version is a subset of the same query result obtained by
the old version.

– Consequence preservation: to make sure that all the facts that could be
inferred using the old version can still be inferred using the new version.

• Ontology Update:In a distributed environment, where an ontology is dis-
tributed to many users, it should be possible for users to update their local
ontologies when the corresponding remote ontology changes.

• Consistent Reasoning:The consistency of an ontology should be maintained
after changes occur. This will ensure that reasoning is still possible on the
changed ontology.

• Verification and Approval:Interfaces to enable and simplify the validation
and verification of proposed changes to an ontology by ontology developers
should be provided.

Change management in ontologies can take several forms:

• Ontology Modification: changing the ontology without bothering about its
consistency.

• Ontology Versioning: building and managing different versions of an ontol-
ogy and providing access to these versions.

• Ontology Evolution: changing the ontology while keeping it consistent.

The terms ’ontology versioning’ and ’ontology evolution’ have been adopted by
the ontology engineering community, as many researchers thought that these fields
are similar to the fields of schema evolution and versioning in the database commu-
nity. Although, many other researchers stated that there are fundamental differences

CHAPTER 3. ONTOLOGY ENGINEERING 26

between those two fields and it is not possible to strictly distinguish between ontol-
ogy versioning and evolution[Noy and Klein, 2004], the terms remained and are
being used widely still.

In this section, we will introduce the research fields of Ontology Versioning
and Ontology Evolution in more detail. We will also examine different kinds of
change operations that are likely to occur in the life cycle of an ontology and ways
to represent those changes.

3.3.1 Change Operations

To define change operations for ontologies is not easy, because one has to take into
account all the possible effects a change can have on the components of an ontology.
According to Klein[2004] one can distinguish between three kinds of changes:

• Conceptual changes:represent changes in the conceptualisation itself.

• Specification changes:represent changes with regard to the specifications of
the conceptualisations.

• Representation changes:represent changes regarding the used ontology rep-
resentation language.

3.3.2 Representing Ontology Changes

One issue in the context of change management is the proper representation of
changes. The easiest and the most straight-forward way might be to keep track
of changes in form of a change log that contains the exact sequence of changes ap-
plied to an ontology. Although easy, it might be a problem to make such change logs
available to a distributed community of ontology developers and/or users. However,
it can be useful for local ontology development, hence the change-log support pro-
vided by several ontology-editing tools, such as Protégéor OntoEdit.

According to Klein[2004] a comprehensive change specification should consist
of at least the following information:

• an operational specification of a change,

• the conceptual relation between the old and new versions of the changed con-
structs,

• meta-data about the change,

• the evolution relation between constructs in the old and newversion,

• and information about task or domain specific consequences of changes.

Besides change logs, Klein and Noy[2003] mention three more possibilities to
access and represent changes between versions of ontologies: performing a ’struc-
tural diff’, representing differences in form of conceptual changes, or representing
differences in form of a transformation set. The first way is to perform astructural

CHAPTER 3. ONTOLOGY ENGINEERING 27

diff as described in the work of Noy and Musen[2002]. They draw a comparison
to the field of software code versioning, where the code also changes often and dif-
ferences between two versions can be accessed using a process called’diff ’ , which
returns a list of lines that are different in the two versions. The authors state, how-
ever, that this approach cannot be inherited for comparing two ontology versions,
because the form of representation and the form of generating ontologies is com-
pletely different than with software code. So, it is possible that two ontologies are
identical in terms of their conceptualisations, but differimmensely in terms of their
internal representation. They propose an algorithm calledPROMPTDIFF1 for com-
paring two ontologies w.r.t. their structure and not their text representation. For
each ontological structure in the old version of an ontology, it looks for possible
corresponding structures in the new version. If there are some structures for which
no direct counterparts can be found, it applies several heuristics in search for possi-
ble matches. It then tries to merge these results using a fixed-point algorithm. The
authors claim that PROMPTDIFF can achieve an average recallvalue of 96% and
an average precision value of 93%.

The second way is to represent differences between ontologies in form ofcon-
ceptual changes. Such changes specify the conceptual relation between ontological
structures in the old version and the new version. For example, a conceptual change
may state that a concept A was a subconcept of B in the old version before being
moved to its place in the new version.

The third way is to represent differences between ontologies in form oftransfor-
mation sets, which contain change operations that specify how (i.e. applying which
changes) the old version of an ontology can be transformed into the new version.
Transformation sets differ from simple change logs, as theyonly contain necessary
operations to achieve the intended (changed) version and not every single change
applied to the ontology as in simple change logs. Furthermore, transformation sets
may not contain changes in the same order as they were really applied. For exam-
ple, adding new components can be grouped together, becausethey do not affect
the rest of the ontology like as delete operations.

We think, that ontology changes can also be integrated into the ontology itself as
instances of a general concept ’change’. These instances, then, can be used to save
information about affected ontological components. One may think of many other
ways to represent ontological changes. The important thingis to choose a way that
serves the purpose of its application best.

3.3.3 Ontology Versioning

Klein [2002] definesOntology Versioningas ”the ability to manage ontology changes
and their effects by creating and maintaining different variants of the ontology”.

Ontology Versioning should enable the management of different versions of the
same ontology at the same time. This functionality is essential in scenarios where
developers or users of an ontology are going to access an ontology in a distributed
manner. Considering that one of the major benefits of ontologies is the re-use and

1This algorithm is available as a plugin for the Protégé 2000 ontology-editing environment.

CHAPTER 3. ONTOLOGY ENGINEERING 28

inter-operabilty they can provide, such a scenario is more than a theoretical one.
Currently no sophisticated versioning mechanisms are available. Often, ontolo-
gies change and the old versions are lost forever, because only the latest version is
accessible. Sometimes, old and new versions of ontologies are archieved, but no
mechanisms are provided to highlight the differences between versions.

The first attempt to address this problem has been taken by Heflin and Hendler
[2000] with introducing the Simple HTML Ontology Extensions (SHOE) as an ex-
tension to HTML to represent ontology-based knowledge using additional tags. One
important facility of SHOE is that it enables ontology developers to state whether
a version is backward-compatible with an old version or not.In a distributed ap-
plication field where many interaction partners (e.g., applications, agents, etc.) use
the same ontology, this information is essential, because it determines whether they
can continue with their work as usual or they have to update their versions in order
to maintain agreed-upon interaction. The work of Heflin and Hendler[2000] is also
important in terms of its long-standing contribution, by starting the discussion about
the problem of Ontology Versioning in dynamic, distributed, and heterogeneous en-
vironments.

However, the current trend of the Semantic Web makes more sophisticated ap-
proaches to Ontology Versioning necessary. Klein[2002] impose the following
requirements on an Ontology Versioning framework:

• Identification: The intended definitions of ontological components have to
be made clear in advance, because they represent prerequisites for change
specifications.

• Change specification:Possible changes have to be specified according to
the identification of ontological components. Since different representation
paradigms provide different components, the change specifications will also
differ.

• Transparent evolution:It should be clear what the actions are that have to
be taken when particular changes occur. For that purpose, change specifi-
cations will be used to translate and relate different versions of ontological
components.

• Task awareness:Because there are different dimensions to compatibility (e.g.,
preservation of instance data, preservation of query results, preservation of
consequence, etc.), a framework have to be aware of the concrete task in or-
der to provide appropriate transformations between versions.

• Support for untraced changes:It is often the case, that there is no track
of changes that represent the steps from one version to the new one. In
such cases, a versioning framework should provide mechanisms to determine
whether two versions are compatible or not.

The main objectives of a versioning framework that reconcile the above men-
tioned requirements can also be found in Klein’s work[2002]. The first objective is
surely to providedata accessibilitythrough different versions of an ontology. This

CHAPTER 3. ONTOLOGY ENGINEERING 29

can be achieved, either by restricting allowed changes to only those that do not af-
fect the interpretation of data, or by providing translations between the versions so
that user queries can be translated back in order to access the data in the old version.

Consistent reasoningis another objective, as it aims to ensure that reasoning
over the ontologies is not affected. In that way, it can be guaranteed that the answers
to at least a specific set of queries will remain the same with different versions.

In a distributed environment, it is also important to providesynchronisationand
data translationsupport. Whereas, the former enables the update of local ontologies
with a remotely changed ontology, the latter enables the automatic translation of
affected data sources to be conform with a newer version of anontology.

Versioning is also important w.r.t. collaborative ontology development, where
more than one developer wants to make changes on an ontology (management of
development). For such a scenario, step-by-step verification and authorisation have
to be supported.

3.3.4 Ontology Evolution

Stojanovic and colleagues[2002] define Ontology Evolution as follows:

Ontology Evolution is the timely adaptation of an ontology to changed
business requirements, to trends in ontology instances andpatterns of
usage of the ontology-based application, as well as the consistent man-
agement/propagation of these changes to dependent elements.

They further state a set of design requirements for proper Ontology Evolution
[Stojanovicet al., 2002]:

• It has to enable resolving the given ontology changes and to ensure the con-
sistency of the underlying ontology and all dependent artefacts;

• It should be supervised allowing the user to manage changes more easily;

• It should offer the user advice for continual ontology refinement.

According to them the ontology evolution process can be considered in six
phases (see Figure 1)[Stojanovicet al., 2002]:

• Change capturing :This phase encapsulates the process of deciding to apply a
change on an ontology. This might be forced by explicit requirements (the on-
tology engineer decides to make a change) or by results of automatic change
discovery methods. The first kind of changes are called top-down changes,
whereas the second one are called bottom-up changes. Bottom-up changes
can be proposed by three different approaches to change discovery: structure-
driven, data-driven, and usage-driven change discovery[Stojanovic and Motik, 2002].

• Change representation:In order to resolve changes, they should be identified
and represented clearly and in a suitable format (see Section 3.3.2). They can
be represented in form of elementary or complex changes.

CHAPTER 3. ONTOLOGY ENGINEERING 30B u s i n e s sr e q u i r e m e n t sD i s c o v e r i n g
1 . C a p t u r i n g

2 . R e p r e s e n t a t i o n
3 . S e m a n t i c s o f c h a n g e4 . I m p l e m e n t a t i o n

5 . P r o p a g a t i o n 6 . V a l i d a t i o n

Figure 3.4: Phases of Ontology Evolution

• Semantic of changes:How a change can affect the ontology’s consistency
must be understood in advance, where the meaning of consistency depends
on the underlying ontology model.

• Change propagation:To preserve consistency, affected artefacts should be
handled appropriately as well. In a distributed environment, affected arte-
facts are not bound to local components of the changed ontology, but contain
also distributed ontologies that reuse or extend the changed ontology, or even
applications that are based on the changed ontology.

• Change implementation:Before applying a change, all implications of it have
to be presented to the user, who then can accept or discard it.If the user
agrees with these implications, all activities to apply thechange have to be
performed.

• Change validation:It should be possible for a user to validate performed
changes and to reverse the effects of them when necessary.

It is essential to discover the types of changes that can occur, because they have
to be handled differently. We distinguish between basic (orelementary) changes,
such as deleting or adding a concept, and complex (or composite) changes that are
composed of multiple basic change operations.

More important is the distinction between changes that can lead the ontology
into an inconsistent state and changes that cannot. Whereasthe latter class of
changes do not cause any problems, the former class of changes requires special
treatment. Such a treatment can be in form of anEvolution Strategy, set by the user

CHAPTER 3. ONTOLOGY ENGINEERING 31

in advance to define how to resolve critical changes unambiguously. Stojanovic and
Motik [2002] stated the following situations in which an Evolution Strategy could
help to determine the further course of action:

• how to handle orphaned concepts

• how to handle orphaned properties

• how to propagate properties to the concept whose parent changes

• what constitutes a valid domain of a property

• what constitutes a valid range of a property

• whether a domain of a property can contain a concept that is atthe same time
a subconcept of some other domain concept

• the allowed shape of the concept hierarchy

• the allowed shape of the property hierarchy

• whether instances must be consistent with the ontology

Stojanovic and colleagues[2002] introduced also the term ofAdvanced Evolution
Strategy. It represents a mechanism that automatically combines available elemen-
tary evolution strategies and relieves users from choosingthem individually. They
defined the following set of advanced evolution strategies:

• Structure-driven strategy:resolves changes according to criteria based on the
structure of the resulting ontology.

• Process-driven strategy:resolves changes according to the process of changes
itself.

• Instance-driven strategy:resolves changes to achieve an explicitly given state
of instances.

• Frequency-driven strategy:applies the most used or last recently used strat-
egy.

3.4 Evaluation of Ontologies

The AI community is used to have some standard measures to value the results
of new approaches. In the Information Extraction (IE) and Information Retrieval
(IR) community, for example, measures like Precision and Recall have emerged
after conferences like the Message Understanding Conferences (MUCs) or the Text
Retrieval Conferences (TRECs). Unfortunately, there was no such development in
the field of Ontology Evaluation. This might be the main obstacle to the widely
usage of ontologies in different fields.

CHAPTER 3. ONTOLOGY ENGINEERING 32

As we stated earlier, ontologies can play a major role in knowledge sharing
and reuse. If you cannot value the usefulness of an ontology for your purposes
by using some standard measure, you will not going to risk theperformance of
your application by sharing or reusing the knowledge it offers. There are several
questions to be answered to get a clear view of the evaluationprocess of ontologies.

Which measures to use?

We have to state, right at the beginning, that we cannot compare the evaluation
of ontologies with the evaluation of tasks in IE and IR, because the measures of
Precision and Recall cannot be directly applied. You may tryto definePrecision
as the amount of knowledge correctly identified with respectto all the knowledge
in the ontology; andRecallas the amount of knowledge correctly identified with
respect to all the knowledge it should identify. Brewster and colleagues[2004]
argued, that this is not so easy, because you have to define first what the ’knowledge
to be acquired’ actually is, as the same set of facts can be interpreted in several
ways, hence can lead to different kinds of ’knowledge’.

Whereas there are no standard measures for evaluating an ontology, Gómez-
Pérez[1995] stated the following three criteria:

• Consistency:To which extent the ontology is incapable of getting inconsis-
tent results from valid input data.

• Completeness:To which extent the ontology covers the information of the
real world.

• Conciseness:To what extent the information in the ontology is useful and
precise.

The first and third criteria are important without a doubt. But the second one,
about completeness, left room for speculations. This criterion is, on the one hand
hard to determine, because an ontology is a subjective view of the world, and what
is complete for one observer might not be complete for an other. At the other
hand, it is questionable whether a real complete ontology isneeded for ones specific
purpose. It also contradicts with the ’minimal ontologicalcommitment’ criterion of
Gruber’s[1993] Ontology Generation criteria, which states that the ontology should
contain only the essential terms in order to let space for further specialisation by the
interaction partners.

What to evaluate?

Another major problem is, that it is not clear whether the ontology as an end product
should be evaluated or intermediate products too, such as the conceptualisation as
an abstract model of the real world, etc.

• Real world - Conceptualisation: To what extent fits the conceptualisation the
real world or a field of concern?

CHAPTER 3. ONTOLOGY ENGINEERING 33

• Conceptualisation - Ontology: To what extent is the chosen representation
language able to express the intended meaning of the conceptualisation?

• Ontology - Application: To what extent is the ontology correctly used in a
specific application?

Further it is important on which components of an ontology the evaluation
should be carried out. Gómez-Pérez[1995] listed the following components that
could be the subject for evaluation:

• Every individual definition and axiom

• Explicitly stated collections of definitions and axioms

• Definitions imported from other ontologies

• Definitions that can be inferred from other definitions and axioms

The documentation is another component of an ontology that probably should
be evaluated. Since ontologies tend to be huge in terms of concepts and relations
and are not always about well-known fields of concern, a documentation would help
immensely to better understand the ontology. In this point of view, we can say that
the visualisation of an ontology is also an important component that should be eval-
uated. There are many ways to represent an ontology visually. Unfortunately, not
all of them give the user the needed insights into the ontology as they are supposed
to. The evaluation of visualisations is, however, worth a research task on its own
and thus will not be further explored here.

When to evaluate?

The right time for evaluation is another important issue. Should the whole ontology
be evaluated at the end of the building process? Or would it bebetter to evaluate
it after each insertion of a definition in order to change it immediately in case of a
bad evaluation result? Is it more straightforward to evaluate after each phase of the
building process?

We can see, how the chosen methodology for Ontology Generation can affect
forthcoming actions, like here the evaluation, as the phases of the generation pro-
cess would differ from one methodology to another, leading to different demands
regarding evaluation.

How to evaluate?

As in any other field in AI, there is a need to automate processes. However, this
is a delicate issue, especially for the evaluation task as the results are being seen
as quality measures for the approaches and thus have to be correct and precise.
The case of Ontology Evaluation is even harder, because boththe manual and the
automatic methods can guarantee neither correctness nor preciseness. During the
manual evaluation the question arise by whom the evaluationshould be carried on.
As we stated earlier, an ontology is a subjective artefact. This led us to a position

CHAPTER 3. ONTOLOGY ENGINEERING 34

in which someone could recommend the ontology as a ’good’ one, whereas another
one could say that is completely ’useless’. This measurement will also depend on
the purpose of the ontology. The case of using it as a knowledge sharing artefact
will differ from using it as part of an application. So, it is possible that an ontology
is ’useful’ for one purpose and useless for another. Whetherthe ontology should
be evaluated by the authors, by ’objective’ outsiders, or bythe end-users is yet to
answer.

Automatic evaluation of an ontology is a recent research issue. It is assumed that
ontology learning methods can be used for this purpose. One approach is thedata-
driven ontology evaluationapproach by Brewster and colleagues[2004]. It aims
to automate the process by comparing ontologies with a corpus. Assume that you
have an ontology about a specific field of interest at hand. Since you know what
the ontology is about you can build a corpus of related documents. Having this
scenario, one approach could be to apply automated term extraction on the corpus
and to simply count the number of terms that overlap between the ontology and the
corpus.

3.5 Ontology Visualisation

To graphically visualise an ontology is a challenging task and relatively little re-
search has been done in this field. However, appropriate visualisation means are
necessary to enhance the understanding of ontologies by users, and to support users
during their ontology engineering tasks.

So far we examined several stages of the ontology life cycle and have seen that
they differ in terms of their respective tasks and challenges. According to Fluit and
colleagues[2004] they also differ in terms of the capabilities they require from vi-
sualisation methods to assist users performing these tasks. Forontology generation
detailed a visualisation of concepts and their relationships is needed to enable the
full understanding of the generated ontology by the user. Typically a small num-
ber of concepts and relationships will have to be visualisedat the beginning of this
stage, but as the ontology grows, more sophisticated visualisation methods will be
needed that enable the zooming into particular parts of the ontology and that enable
to visualise only certain aspects of the ontology. The task of ontology instantiation
requires visualisation methods that differentiate between the intensional and the ex-
tensional part of an ontology andontology deploymentrequires methods that enable
querying and navigation of ontological information spaces.

In this section we will state two well-known visualisation methods that have
been used to visualise ontologies, Graphs and Tree-Maps. However, we can not say
that these methods are tailored especially for the use with ontologies, in fact as far
as we know there is no such method.

3.5.1 Graphs

Graphs are used in many research fields to visualise information that is structured
somehow in classes and relations. Because, ontologies alsoconsist of classes and

CHAPTER 3. ONTOLOGY ENGINEERING 35

relations between them, graphs are the first visualisation methods that came into
mind to visualise ontologies.

Mutton and Golbeck[2003] visualise ontologies by generating graphs of on-
tologies and instance data. Their focus is on graph drawingswhere related classes
(i.e., classes that are connected through properties) are placed near to each other
whereas other nodes are evenly distributed aiming to give the user insight into the
structure of the ontology.

In particular, they use thespring embeddinggraph drawing method that en-
ables automatic generation of drawings with these properties. The spring embed-
ding method distributes nodes in a two-dimensional plane, whereas nodes related to
each other are placed closed to each other (see Figure 3.5). The method is based on
a force model that actually computes the values for the placement of nodes. Mut-
ton and Golbeck[2003] use the force model of Fruchterman and Reingold[1991]
because it is widely used, effective, and relatively easy toimplement. With their
implementation, Mutton and Golbeck[2003] reached good results on graphs with
up to several hundred nodes.

Figure 3.5: A Spring Embedding of a Graph

3.5.2 Tree-Maps

Opposed to the traditional represenatation of tree structures as rooted, directed
graphs Shneiderman[1992] introduced a ”two-dimensional space filling approach

CHAPTER 3. ONTOLOGY ENGINEERING 36

in which each node is a rectangle whose area is proportional to some attribute such
as node size”. In Figure 3.6 we can see a traditional representation of a tree struc-
ture, whereas Figure 3.7 shows the corresponding tree-map representation (both
pictures from[Shneiderman, 1992].

Figure 3.6: Typical 3-level tree structure with numbers indicating the size of each leaf node

Tree-maps aim to visualise complex traditional tree structures and as such are
applicable on ontologies as well. Baehrecke and colleagues[2004] use them to
visualise highly complex genome data available in the Gene Ontology2 and to facil-
itate queries by presenting attributes of genes by size (RNAlevel) and color-coding
(p-value).

3.6 Conclusion

A lot of work is still to be done in the field of Ontology Engineering, namely in
each one of the subfield that is part of the ontology life cycle.

In the sub-field of Ontology Generation, standard methodologies have to be de-
fined. We have seen that it is not easy to build a large ontologyand that it requires,
in general, highly skilled specialists if the ontology haveto be built by hand. Since
they are not always affordable, methodologies would help tostandardise the gener-
ation process.

2http://www.geneontology.org/

CHAPTER 3. ONTOLOGY ENGINEERING 37

Figure 3.7: Tree map of Figure 3.6

Another issue is co-operative and multi-user Ontology Generation. Usually
there are more than one human beings involved in the generation process. The prob-
lems that are present and well known in each multi-authoringenvironment apply
also here. The different communities affected by these problems should co-operate
in order to find feasible solutions.

Change management with respect to ontologies is another issue. It is clear that
an ontology may not remain the same forever, because the underlying conceptu-
alisation may change over time. In order to have an updated ontology, first the
different change types and ways to handle these have to be defined. At the moment,
little research is done about how to keep track of changes in ontologies.

The evaluation of ontologies is another very important sub-field. The commu-
nity still lacks of a common way to evaluate ontologies. There are too many ques-
tions regarding the evaluation of ontologies starting withthe choice of the measure
to use, over to decide when to evaluate, to the question of what exactly to evaluate
and how.

Chapter 4

Information Extraction

So on and on I go, the seconds tick the time out
There’s so much left to know, and I’m on the road to findout

On The Road To Find Out - Cat Stevens

Information Extraction (IE) is defined as a form of natural language processing
in which certain types of information must be recognised andextracted from text
[Riloff, 1999]. For the sake of completeness, we have to state that the data in which
the information is sought, do not have to be text. The data canalso consist of images,
sound, video, etc. But most of the research is done in the fieldof Text Extraction,
so we will use the term IE only in this sense later on.

IE attained much interest within the last three decades fostered by the Message
Understanding Conferences (MUCs) started in 1987. Since then, many Information
Extraction Systems (IESs) have been developed by differentsites, both from the
research and the business area. This is not surprising, since both of these fields have
to handle more data than ever in a fast and effective manner. What could be then
more straight-forward than seek the aid of the computers to automate the process of
finding relevant information from available data?

IE is a part of Information Processing (IP), which comprisesthe whole field re-
lated to gathering, manipulating, storing, retrieving, and classifying information.1

Many of the sub-tasks of IP seem to be similar, due to the used methods and ap-
proaches they share, but they are different in their intended functionalities. For
example, IE is often mentioned along with Information Retrieval (IR), Text Under-
standing (TU) or even Text Summarisation (TS). Even a MUC hasthe term ’Mes-
sage Understanding’ in its name, although there was no real message understanding
carried out at the conferences. The usage of these terms should not confuse or
irritate the reader.

IR describes the task of finding relevant documents within a corpus of docu-
ments and not the relevant information within a document like IE does. TU aims to
understand the meaning of the text in a document and is therefore not at all directly
comparable with IE. TS tries to understand the meaning and togenerate a short
summarisation of the document or set of documents. TU and TS differ not only in

1http://www.thefreedictionary.com

38

CHAPTER 4. INFORMATION EXTRACTION 39

terms of the intended functionalities from IE, but also in terms of the kind of eval-
uation. These two fields cannot be evaluated using the well established measures
of IE, because one have to read the returned results in order to decide whether the
system had worked properly or not. Or they can be evaluated bytesting whether
they can give answers to questions about this document. Further, these two fields
consider all the text in document as relevant, whereas in IE most of the document is
considered irrelevant.

The question of what ’relevant information’ actually is comes to ones mind im-
mediately. Unfortunately, the answer cannot be given so easily because it depends
highly on the current task specification. In a task specification where we are inter-
ested in person names the relevant information is clear for any human being and she
would be able to identify this kind of information in a document with ease. But if
your task is to extract relevant information for patient treatment for a specific de-
cease and your input documents are medical guidelines, thenit would be harder to
decide which sentence in a guideline is relevant for the treatment, especially if one
is not familiar with this domain. Additionally there is the problem that what is rele-
vant for someone, is irrelevant for someone else. Thus, the clear and unambiguous
definition of ’relevant’ information is very important in IE.

In this chapter we will explore the aims, techniques and challenges of this inter-
esting field of research starting with a brief history.

4.1 A Brief Historical Overview

When talking about the history of IE one can nothing but mention the Message
Understanding Conferences (MUCs), a series of conferencesaimed to evaluate and
compare the works and results of different research groups and to foster the re-
search in this field. We can say that these aims were reached, because a significant
improvement of the developed IESs can be observed over the conferences.

The procedure at the MUCs was as follows: each participant worked on a given
scenario with a set of annotated documents, the training or tuning corpus, and a
set of templates which described the kind of information thedeveloped IES has
to find. After a certain amount of time (one to six months), theparticipants were
given a new set of documents (i.e. test corpus) with which they had to test their
IESs without making any changes to the systems. The extracted templates for these
test set were then send to the conference organiser who compared them with his
own, manually build answer keys which led to the evaluation results of each IES.
At the conference itself the works and the results were presented to give the other
participants an insight in the works of the others.

Over the years the following extraction tasks were introduced to the conferences
[Marsh and Perzanowski, 1998]:

• Named-Entity Recognition Task (NE):This task corresponds to the lowest
level of IE tasks and it is domain independent. It involves the identification
and categorisation of proper names (organisations, persons, and locations),
temporal data (dates and times) or numbers (currency, percentage).

CHAPTER 4. INFORMATION EXTRACTION 40

• Multi-lingual Entity Task (MET): The task is the same as in NE, but for
Chinese and Japanese.

• Template Element Task(TE):In this task an output template is given, which
has slots for basic information related to organisations, persons, and artefact
entities. An IES has to draw evidence from anywhere in the text to fill these
slots.

• Template Relation Task (TR):This task is about extracting relational infor-
mation among entities. Examples for such relations are, employeeof, manu-
facturerof or locationof relations.

• Scenario Template Task (ST):This task represents the top-level of IE tasks.
In this task the focus is on the extraction of pre-specified events, whereas the
system has to relate the event information to particular organisation, person,
or artefact entities involved in the event.

• Co-reference Task (CO):This task is about capturing information on co-
referring expressions (i.e. all mentions of a given entity).

The used scenarios and the complexity of the tasks at the conferences changed
over time. In the following there is a short overview of the several conferences
based on the survey of Grishman and Sundheim[1996].

MUC-1 (1987)

The set of documents were naval operation reports. Neither aspecific task descrip-
tion nor a specific output format for the extracted information was defined. The
conference served just as a platform for comparison of the different IESs without
any defined evaluation criteria.

MUC-2 (1989)

The documents were again naval operation reports. The task was defined as to
extract events by filling a template with ten slots for information about the event,
such as the type, the agent, the time and place, and the effectof the event.

These two conferences had been initiated and carried out by Beth Sundheim un-
der the auspices of the U.S. Navy. After the second conference, the conferences had
been carried out under the auspices of the TIPSTER Text Program.

MUC-3 (1991)

The documents were articles about terrorist activities in Latin America. The defined
template became more complex and had 18 slots. Formal evaluation criteria were
introduced. A semi-automatic scoring program was available for the participants
during the development, but the official scoring was done by the organisers.

CHAPTER 4. INFORMATION EXTRACTION 41

MUC-4 (1992)

Only the template complexity increased to 24 slots. The domain and the task de-
scription stayed the same as in MUC-3.

MUC-5 (1993)

A jump regarding the task complexity can be noticed at this MUC, as the task doc-
umentation over 40 pages indicated. This time documents from two different do-
mains were used: financial newswire stories about international joint ventures and
product announcements of electronic circuit fabrication.The documents were in
English and Japanese. Nested templates were used for the first time and new evalu-
ation metrics were included in the scoring system.

In all the prior MUCs a clear trend was observed, namely that it took too much
time (in general 6 months or even more) to adopt a system for a new scenario. As
a reaction to the trends in the prior MUCs, a meeting was held in December 1993
during which a set of objectives for the forthcoming MUCs were defined. Among
the identified goals were:

• Demonstrate task-independent component technologies of IE which would be
immediately useful.

• Encourage work to make IESs more portable.

• Encourage work on ’deeper understanding’ of the texts.

MUC-6 (1995)

The documents were articles about management changes. Fourtasks were included
in the specification: NE, CO, TE, and ST.

MUC-7 (1998)

Additionally to the task at MUC-6 the TR task was added. The documents were
news articles about space vehicle and missile launches.

After this brief overview of the MUCs, we should look how wellthe participating
sites performed for the several tasks. Table 4.1 contains the evaluation results for
the different tasks through the conferences[Chincor, 1998].

A clear performance decrease in the evaluation results can be observed as the
tasks became more complex, whereas an increase for almost every task can be ob-
served from conference to conference. These values should serve as a basis of
comparison for other IES developers to value the performance of their IESs.

CHAPTER 4. INFORMATION EXTRACTION 42

NE CO TE TR ST Multilingual
MUC-3 R <50%

P <70%
MUC-4 F <56%
MUC-5 EJV: F<53% JJV: F<64%

EME: F <50% JME: F<57%
MUC-6 F <97% R <63% F <80% F <57%

P <72%
MUC-7 F <94% F <62 % F <87% F <76% F <51%

Table 4.1: Maximum Results Reported in MUC-3 through MUC-7 by Task

EJV = English Joint Venture, JJV = Japanese Joint Venture, EME = English Micro-
electronics, JME = Japanese Microelectronics, R = Recall, P= Precision, F = Fallout

4.2 Architecture of an Information Extraction Sys-
tem

Whereas IESs developed by different persons or groups differ in terms of the in-
tended application field and used approaches, they are similar in terms of the under-
lying architecture.

IESs work in a sequential mode by splitting the whole processinto their sub-
tasks, whereas there is a module for each task. These modulesprocess their respec-
tive incoming data and hand over their results to the next module in the architecture.
Depending on the specific task, the needed modules can differfrom IES to IES. In
Figure 4.1[Appelt and Israel, 1999] we can see the main components of an IES,
where the components on the left side are the ones which are present in almost
each IES, and the components on the right side are the ones which can be added
depending on the current task specification.

Tokenisation

In this module the text is tokenised into its structural components such as sen-
tences and words. This might be relatively straight-forward for languages like
English where the words are separated by white spaces. But for many languages
like Japanese or Chinese where the words are not separated bywhite spaces, an
additional segmentation module is needed.

Morphological and Lexical Processing

This module is highly language dependent and the internal structure may differ
from system to system according to the language of the input data it processes.
Whereas morphological analysis might not be necessary for many languages with
simple inflectional morphology (e.g., English), other languages with more complex
morphologic characteristics (e.g., German) will require special handling.

CHAPTER 4. INFORMATION EXTRACTION 43

T o k e n i s a t i o n W o r dS e g m e n t a t i o n
P a r t o f S p e e c hT a g g i n g

F u l l P a r s i n g

M e r g i n g P a r t i a lR e s u l t s

M o r p h o l o g i c a l a n dL e x i c a l P r o c e s s i n g
S y n t a c t i cA n a l y s i s

D o m a i n A n a l y s i s

W o r d S e n s eT a g g i n g

C o r e f e r e n c e
Figure 4.1: Architecture of an IES

In this module sentences are analysed in order to identify the part-of-speeches
(POS) and the inflection (e.g. singular, plural, gender) of the words. The part-of-
speech tagger identifies noun groups, verb groups, etc. in the sentences. This can
help to disambiguate ambiguous words or to extract information where the position
of a word in a sentence matters. It takes some time to train a part-of-speech tagger
for a particular language and the tagging process itself takes also some time. So it
is recommended to analyse the expectations from a POS-tagger and to examine if
there are other, preferably cheaper ways to accomplish these.

The lexical processing is taking place in form of lexical lookup where a lexicon
is being conducted that contain (domain-specific) words of the language the IES has
to process. Although, one may wish to cover the language as much as possible, this
very fact may lead to unintended consequences because of theincreasing ambiguity
in the lexicon. The preferred way is therefore to use a lexicon that contains only

CHAPTER 4. INFORMATION EXTRACTION 44

domain-specific and task related words.

Syntactic Analysis

In this module the sentences are going to be syntactically analysed. A differentiation
can be made between IESs using full parsing and IESs using shallow parsing.Full
parsing means, that each sentence in the text is going to be analysed and its parse
tree is going to be generated.Shallow parsing means that only a subset of the
sentences in the text are going to be analysed. The decision of which of these should
be chosen depends on the requirements of the current specification. Full parsing
will give certainly a deeper grammatical insight in the text, but it is not quite clear
whether the amount of time it will take is justifiable in termsof the performance
increase of the system. In practice shallow parsing seems tobe adequate, hence
most of the IESs use this method.

Domain Analysis

This is the module in which the domain-specific processing isbeing done. Here,
the system extracts the information which is defined as relevant for the current task
specification. Some task specifications may require the information in a more com-
plex format. For example, they may require to find coreferring expressions of en-
tities in the text or some relational information between entities. In these cases a
coreference module or a module for merging the partial results would be necessary.

4.3 Approaches to Information Extraction

For building an IES one has to choose between two approaches.The first one is the
knowledge engineering approach, where the rules with which the IES extracts the
information are build by a knowledge engineer by hand. The second is the(semi-)
automatic training approach, where the system has to learn extraction rules by itself
from annotated documents. In the following a more detailed explanation of these
approaches can be found.

Knowledge Engineering Approach

As the name implies, a knowledge engineer is the backbone of this approach (see
Figure 4.2). She has to be familiar with the rule-making process, the specific domain
and task, and the IES itself in order to be able to generate therules with which the
IES then will extract information from documents. It is clear that it takes a plenty
of time to generate these rules, because it is an iterative process. The knowledge
engineer generates first a set of rules, applies these rules on a document set (tuning
set), and if necessary changes the rules again to get a bettercoverage of the domain.
Generally, many iterations are needed to get a satisfying set of rules with the correct
level of generalisation. The knowledge engineer has to lookwhether the generated
rules over- or under-fit the specific task after each iteration step. However, at the
end you can be sure that the IES covers your interests at a satisfying level.

CHAPTER 4. INFORMATION EXTRACTION 45

D o m a i nK n o w l e d g eT a s kK n o w l e d g e
R u l e � m a k i n gK n o w l e d g e

M a y b e o t h e rs t u f f a s w e l l
Figure 4.2: Knowledge engineering approach to Information Extraction

(Semi-) Automatic Training Approach

The focus within this approach is on automating the rule generation process fully
or partially, in order to decrease the development time and the dependency upon
a knowledge engineer who might not always be at hand. However, such systems
require a large document set of documents from a particular domain of interest,
whereas relevant information in the documents has to be annotated by a domain
expert. Using these annotations the system can then derive extraction rules on its
own. In general, someone who is familiar with the domain and the task will be
sufficient to make these annotations (see Figure 4.3).

Grishman and Yangarber[2000] differentiate between the following four levels
of human intervention within (semi-) automatic training approaches:

• Learning from fully annotated data: The human interventioninvolves the an-
notation of all the relevant information in a test document set.

• Active learning: Based on a small set of basic rules, the system selects suit-
able candidates for annotation and proposes them to the userwho has to fi-
nally decide whether to accept or discard them.

• Learning from relevance-marked data: The human intervention involves only
the annotation of relevant parts in text, for example in terms of marking whole
paragraphs as relevant.

• Learning from unannotated data: Based on a very small basic rule set, the
system uses a bootstrapping method to learn patterns on its own.

CHAPTER 4. INFORMATION EXTRACTION 46

I E S
O u t p u t

I n p u t D a t a
R u l e s

M a y b e o t h e rs t u f f a s w e l l R u l eG e n e r a t i o nM o d u l e
A n n o t a t e d C o r p u s

R u l e ¼ m a k i n gK n o w l e d g eT a s kK n o w l e d g e

D o m a i nK n o w l e d g eT a s kK n o w l e d g e A n n o t a t o r

Figure 4.3: Semi-automatic approach to Information Extraction

Which approach to choose?

Theknowledge engineering approachyield a set of rules that is likely to cover the
domain and task very well. This is actually the main advantage of this approach and
makes it the approach of choice in applications where highest possible precision is
crucial. But a knowledge engineer might not always be at handto generate the rules
and sometimes they are not affordable. Further, it is hard toadopt the rule set by
hand when a new domain or task has to be supported by the IES. Such a change
in the task specification can require a completely new rule set, what makes this
approach not that scalable and portable.

With the (semi-) automatic training approachplenty of time can be saved, be-
cause the rule generation process is automated. Furthermore, there is no dependency
to a knowledge engineer. The one thing the system requires for sure is enough train-
ing data and often a domain expert to do the annotations.

Unfortunately, it is possible that the system generates a rule set that is tailored
exactly for the given annotated document set. In such a case the IES will work fine
for the documents it was trained on, but will simply fail whenprocessing unseen
documents. This is a typical example for over-fitting of the rules to the training
documents. It is also possible that, as usual with corpus based approaches, the
annotated corpus does not contain all the needed relevant information of the domain.
Therefore, the corpus of documents should be selected very carefully to increase the
likelihood that the rules will fit a large portion of the domain. But to ensure this,
either again human intervention or good document retrievalsystems are needed.

CHAPTER 4. INFORMATION EXTRACTION 47

Appelt and Israel[1999] suggest to use the knowledge-based approach, when
resources like lexicons and rule writers are available, training data is scarce or ex-
pensive to obtain, extraction specifications are likely to change, and highest possi-
ble performance is critical. However, to use the automatic training approach when
resources and rule writers are not available, training datais cheap and plentiful, ex-
traction specifications are stable, good performance is adequate for the task. They
also suggest that different modules of an IES can be developed according to dif-
ferent paradigms. For example, one can develop a rule-basedname recognizer that
learns domain rules, or a statistical name recognizer that operates on hand-generated
domain rules when data is scarce.

As you can see, both approaches have their advantages and disadvantages. There-
fore, as a developer of an IES, you have to analyse a priori thesetting in which your
system is going to be used and to clarify your expectations from the system. The
two main properties of an IES, which are going to be affected by this fundamental
decision are:

• Portability: describes the ease with which a system can be adopted to a new
domain or task.

The portation of an IES to a new domain is considered to be hardfor both
approaches, because, in both cases, the rule set has to be generated from
scratch.

The portation of an IES to a new task, on the other hand, yieldsto different
kinds of inconveniences with the two approaches. For the knowledge engi-
neering approach this means that the rule set has to be adopted by adding or
removing some rules, which are capable of performing the newtask, while
preserving the rules about the domain. For the (semi-) automatic training ap-
proach this means that the annotator has to go through all thedocument set
in order to annotate parts that represent relevant information according to the
new task at hand.

• Scalability:describes the ease with which a system can be adopted to changes
in the task specification.

Different changes in the task specification have to be addressed differently
with the two approaches. A change like ’besides city names doalso extract
organisation names’ requires the addition of a few rules with the knowledge
engineering approach, but requires the annotation of all organisation names
in the document set with the (semi-) automatic training approach.

Appelt and Israel[1999] wrote ”Although the core of an extraction system con-
tains some domain independent components, domain-dependent modules are the
rule. This domain dependence arises through the incorporation of domain-specific
extraction rules, or the training of the system on a corpus ofdomain-relevant texts.”

Because of these possible effects, the following aspects should be well examined
before choosing one of the approaches. Such an examination will help to see with
which one of these you would be better of[Appelt, 1999].

CHAPTER 4. INFORMATION EXTRACTION 48

• Available training data:How much training data is necessary to get a good
working rule set for a particular task and how much is available?

• Available resources:Are linguistic resources (e.g., lexicon, parser) as well as
personal resources (e.g., knowledge engineer, annotator)available?

• Stability of final specification:Is it predictable whether or what kind of changes
in the task specification will appear? If yes, which approachwould make it
easier to adopt or scale the system to cover a changed specification?

• Required performance level:Is a very high performance crucial for the sys-
tems’ application?

4.4 Evaluation

A quantitative way to evaluate the performance of a system isalways desired but
cannot always be found, because of the very nature of its respective tasks. We
have seen that the first attempt of performing a quantitativeevaluation of IESs is
introduced at the MUC-3. The conference organisation had a set of answer keys
and had to compare these with the results of the IESs to measure the performance
of a system. The nature of the IE task makes it possible to define input-output sets,
which in turn makes it possible to carry out a quantitative evaluation over the IESs.

A lot of evaluation measures emerged over the years for evaluating different as-
pects of an IES[Lavelli et al., 2004]. However, only two of them have been widely
accepted: Recall and Precision.

Recallis a measure for evaluating the completeness of an IES, that is to deter-
mine how much of the relevant or correct information has beenactually extracted.
WhereasPrecisionis a measure for evaluating the correctness of an IES, that isto
determine to which extent the extracted data is actually relevant or correct.

Recall=
correct answers

total of possible correct answers

Precision=
correct answers

answers produced

High Recall means that most of the available relevant information in the input
data has been extracted. High Precision means that most of the extracted informa-
tion was really relevant.

It is hard to optimise both values at the same time. If you worktowards a high
precision value, it is possible that relevant information in the input data will be
missed or ignored. On the other hand, if you work towards a high recall value, it
is possible that non-relevant parts of the input data will beextracted, too. There-
fore, you have to decide on which aspect (completeness or correctness) you need to
concentrate for your particular task.

CHAPTER 4. INFORMATION EXTRACTION 49

Further, we cannot say that there are agreed-upon thresholdvalues for these two
measures that indicate the ’usefulness’ of an IES, rather they differ according to
different tasks. However, Cowie and Lehnert[1996] suggest that 90% Precision
will be necessary for IESs to satisfy information analysts.

To weight the impact of the Recall and Precision values on thefinal evaluation
the F-Scorehas been introduced that combines Recall and Precision in a single
measure.

F-Score=
(α + 1) ∗ Precision ∗ Recall

(α ∗ Precision + Recall)

The F-Score where Recall and Precision are evenly weighted is also called theF1

measure and is computed as follows:

F1 =
2 ∗ Precision ∗ Recall

(Precision + Recall)

4.5 Challenges of Information Extraction

We have seen so far many aspects of IE and that decisions by theselection of mod-
ules and approaches for the IES can affect the end results immensely. Unfortunately,
there are other factors as well that make IE even harder[Appelt and Israel, 1999]:

• Language: The language of the texts can make it necessary to include an
additional module to capture the orthography and morphology of the language
(e.g. German).

• Text: The structure of the input data itself can be a big obstacle. Textual data
can be unstructured, semi-structured or structured, each of these require dif-
ferent handling. Sometimes the input data contains tabulardata from which
it is also very hard to extract information. The length of theinput data is an-
other issue. If the input text is too long than IR techniques might be necessary
in order to identify the relevant parts to apply further IE processing on these
parts only.

• Genre: The genre of the input data should be analysed before starting to
build the IES, because data from different genres will require different han-
dling. Whereas e-mails are free text and thus have no structure at all, scientific
papers will have a specific format, which could be utilised.

• Task: As we have seen earlier, there are different tasks an IES can be build
for. Whereas the entity identification is relatively simplethe scenario template
task or the coreference task will require additional modules in the IES.

The challenges that IES have to face can be summarised as follows[Yildiz, 2004]:

CHAPTER 4. INFORMATION EXTRACTION 50

• Higher Precision or Recall Values:Since the IESs are evaluated with these
two measures, every developer wants to achieve high recall or precision val-
ues. It is hard to optimise both, Recall and Precision at the same time. Some-
times it might be more important to extract all the information relevant with-
out bothering that some of the extracted information is not relevant. In this
case Recall has to be optimised. But if one wants that the extracted informa-
tion is relevant without bothering much that some relevant parts will not be
extracted, then Precision has to be optimised.

• Portability: IESs are in general developed for a specific task. Because in-
terests can change over time, it could be necessary to adopt an IES to a new
field of interest. An adaptation could be required in terms ofthe domain, the
language, the text genre or the type of data.

• Scalability: The scalability problem can be examined further in two dimen-
sions. First, an IES should be scalable in terms of the amountof data the IES
is able to process. Second, an IES should be scalable in termsof the data
sources it can handle.

4.6 Conclusion

The Message Understanding Conferences (MUCs) can serve as astarting point
for any researcher in IE because of their educational potential, by giving a good
overview of which obstacles the participant sites had to face over the years and how
they had overcome them. Another thing that makes the MUCs so important is that
the evaluation criteria and procedure commonly used in the IE community today
originated from these conferences.

Two main approaches are common to build an IES: knowledge engineering
approach and automatically learning approach. Theknowledge engineering ap-
proach requires a knowledge engineer with the domain and task knowledge to build
a set of rules. It takes much time, but the generated rule set will likely cover most
dimensions of the task and the domain. To make the process less time-consuming,
theautomatically training approach tries to automate some or all parts of the rule
generating process. It is perhaps less efficient, because the generated rules may not
cover the domain and task as with the other approach, but the system depends not
on the skills of a knowledge engineer anymore.

We can conclude that IE is not a trivial task at all and many factors have to be
kept in mind before starting to build an IES in order to get a good one.

Part II

Ontology-Driven Information
Extraction

51

Chapter 5

Ontology-Driven Information
Systems

But sometimes you have to moan when nothing seems to suit yer
But nevertheless you know you’re locked towards the future

So on and on I go, the seconds tick the time out
There’s so much left to know, and I’m on the road to findout

On The Road To Find Out - Cat Stevens

In the first part of this thesis, we have stated that ontologies can be used to establish
a common understanding about conceptualisations between interaction partners, en-
abling inter-operability between them and further the reuse of knowledge by third
parties. We also examined several issues related to ontological engineering tasks
that arise because of the nature of the ontology life cycle. In that context we exam-
ined existing approaches that address those tasks and theirlimitations.

It has to be stated that most of the available research regarding ontologies had
the Semantic Web as their application field in mind. We know that the Semantic
Web is an extended form of the current Web, where machine readable semantics
are added to the content available on the Web[Berners-Lee, 1999]. As such, it
represents a largely distributed and heterogeneous application field. However, these
properties are not shared by many application fields where ontologies can be useful
as well. Therefore, it has to be analysed where and how ontologies can be used
and how the requirements to ontologies differ from the ones examined during the
research done so far for ontologies in the Semantic Web.

Ontologies, being explicit specifications of conceptualisations[Gruber, 1993],
can play a major role in many of todays Information Systems (ISs) as knowledge
bearing artifacts. Hence their increased use in several application fields, which
makes it possible to observe requirements for their smooth integration in several
kinds of ISs.

In this chapter, we will examine how ontologies can be utilised to generate scal-
able and portable Information Systems (ISs) in general and Information Extraction
Systems (IESs) in particular.

52

CHAPTER 5. ONTOLOGY-DRIVEN INFORMATION SYSTEMS 53

5.1 Ontologies for Information Systems

When we are going to build an IS we will have to provide the IS with some kind of
domain and task knowledge. We cannot expect that the IS predicts what we want
and just works like that.

If we want, for example, an application that can compute graph drawings with
as little edge crossings as possible, we would have to tell the IS what a graph is,
what kind of graphs we want to process (e.g. planar, non-planar), how an edge
crossing is defined, etc. All this information will be, in general, implicitly coded in
the systems’ architecture. This implies, that other people, who want to build similar
applications cannot make use of this implicit knowledge, unless they examine the
code of the application.

Sometimes the required knowledge cannot be coded easily. Ontologies can
help out here, because they are appropriate for representing many kinds of com-
plex knowledge. Further, we have seen that ontologies are means for making this
knowledge explicit, and so sharable and reusable.

So, it is not surprising that ontologies are in use in many ISsby now. But before
using an ontology in an IS just because it is trendy, we shouldlook whether it is
adequate or necessary for the systems’ intended purposes.

Guarino[1998] analysed the roles ontologies can play in ISs. By looking at
the impact an ontology can have on an IS, he distinguishes between a temporal and
astructural dimension. Thetemporal dimensiondescribes whether an ontology is
used at development time or run-time, whereas thestructural dimensiondescribes
in which way an ontology can affect the components of an IS (i.e., application
programs, information resources, and user interfaces).

Temporal dimension

Using an ontologyat development timemeans that we have an ontology and that we
have to build our system according to the conceptualisationrepresented by this on-
tology. Whether the ontology was an already existing one or we had to build it from
scratch is not important here. The point is, that by using an ontology, the system
developer has been freed from making conceptual analysis onhis own (i.e., knowl-
edge reuse) and that consistency is guaranteed among other systems that committed
to the same ontology.

Using an ontologyat run timecan take two forms: ontology-aware IS and
ontology-driven IS. Anontology-awareIS is a system that is aware of the ontol-
ogy and can use it whenever needed. Anontology-drivenIS, on the other hand, is a
system where the ontology is yet another component of the system that co-operates
with the other components[Guarino, 1998].

Structural dimension

Going further to the structural component, we can see that ontologies can be used in
connection with theapplication program componentas we have seen in the exam-
ple about graph drawings. Most of such components contain the domain knowledge
coded implicitly. At development time the ontology can helpto generate these parts

CHAPTER 5. ONTOLOGY-DRIVEN INFORMATION SYSTEMS 54

where the knowledge was coded implicitly. At run time we can use the explicit
knowledge in an ontology as a knowledge component for the system (compare to
knowledge-based systems) which would increase the systems’ maintainability, scal-
ability and portability.

Ontologies can also be used in connection withinformation resources, such as
databases. At development time they can help, for example, to generate database
schemas, since they represent also a conceptualisation of adomain. At run time
they can be used for information integration as a mediator between the incoming
information and the database.

Their usage in connection with theuser interface componentmay not be that
obvious. If we see the user interface as a component that reflects the conceptualisa-
tion to the user, ontologies may help by building the user interfaces at development
time. At run time the ontology could be made accessible to theuser through the
interface enabling the user to query and browse the ontology[Guarino, 1998].

5.1.1 Obstacles on the Way

Despite the benefits ontologies apparently can offer, it is not yet a common ap-
proach amongst IS developers to integrate and use ontologies in their systems. The
main reason for that is perhaps that it still takes more time for a developer to build
an ontology-driven application than a usual application. There are several factors
related to the ontology life cycle (see Figure 3.1) that cause the additional time and
costs required to build an ontology-driven IS:

• Obtaining an ontology:The first thing that has to be clarified before devel-
oping an ontology-driven IS, is how to obtain the ontology itself. Either, the
developer will have to look for already existing ontologiesin that domain or
to generate a new ontology.

– Ontology Import and Reuse: Although a large set of ontologies have
been developed and made publicly available for many domainsby now,
the developer still has to understand the ontology in order to refine it for
the particular task at hand.

– Ontology Generation: If there are no appropriate ontologies available
to integrate or to reuse, the developer will have to generatean ontology
by hand or using (semi-) automatic ontology generation methods (see
Section 3.2).

• Maintaining an ontology:It is most likely that the application field of an IS
will undergo some changes over time. One may decide to eithersupport a
new domain or to support additional services, causing changes in the task
specification. Such changes will make it necessary to changethe underlying
ontology as well.

To reduce the integration and run-time costs of ontologies in ISs, an Ontology Man-
agement Module (OMM) should be integrated into the IS that provides ontology

CHAPTER 5. ONTOLOGY-DRIVEN INFORMATION SYSTEMS 55

D o m a i nK n o w l e d g e
D o m a i nK n o w l e d g e

Figure 5.1: General architecture of an ontology-driven Information System

generation methods and accurate ontology management services. The general ar-
chitecture of such an IS could be as in Figure 5.1.

The responsibilities of the OMM regarding the phases of the ontology life cy-
cle differ from the general responsibilities for ontology management in conjunction
with the Semantic Web. In a scenario where an ontology is usedto capture the
domain knowledge needed for an IS and where the focus is on portability and scal-
ability, the requirements that the OMM has to reconcile are different.

By examining existing work in that field, one can observe thatin many cases
additional knowledge about components in the ontology is needed to perform the
task at hand more accurately. Often researchers use an abstract ontology model
to integrate existing ontologies and to enrich this knowledge with their proposed
additional knowledge.

For the case of ontology learning from text documents for example, Cimiano
and Völker[2005] argued in a similar way and attached a probability (confidence
level) to ontological components learned by their system. Doing this, they aim
to enhance the interaction with the user by presenting him the learned structures
ranked according to their confidence level or by presenting him only results above
a certain confidence threshold.

CHAPTER 5. ONTOLOGY-DRIVEN INFORMATION SYSTEMS 56

Tamma and Bench-Capon[2002] motivated an extended ontology model to
characterise precisely the concepts properties and expected ambiguities, including
which properties are prototypical of a concept and which areexceptional, as well
as the expected behaviour of properties over time and the degree of applicability of
properties to subconcepts. The authors claim that this enriched semantics is useful
to describe what is known by agents in a multi-agent system. Since we are dealing
with ISs in general and IESs in particular, not all of their proposed meta-properties
are of interest for us. We use only the property describing the properties’ expected
behaviour over time, for it can help during the ontology management phase when
the ontology has to be adapted to changes in the domain.

In the following we will take a look at the requirements to an OMM w.r.t. the
phases of the ontology life cycle. Hereby, we think that the main challenge in
the case of ontology-driven ISs is, that often all of these requirements have to be
reconciled at the same time to provide the needed services, whereas in the context
of the Semantic Web often only few of them are demanded.

Ontology Generation

It should not be hard to generate an ontology for a particulartask specification at
hand, if the ontology is not that large. However, changes in the task specification
would require the adaptation of the ontology if not the generation of a new on-
tology. For an IS to be fully portable and scalable the generation process of an
ontology should be automated. No matter how an ontology for an IS has been
build, it is necessary to mark the ontological components with additional semantic
knowledge indicating the level of confidence (property:confidencelevel) the gen-
erator has in a particular ontological component. If the ontology is being generated
by hand, the ontology developer has to model this kind of knowledge into the on-
tology. Whereas, if the ontology has been generated automatically, the generation
module has to compute the level of confidence. Other modules of the system will
likely use this kind of knowledge to base their decisions on.

Ontology Integration

To provide maximum flexibility, a scalable and portable IS should be able to react
to new-coming standards. Further, it certainly should be able to combine different
ontologies in different representation languages. To easethis procedure, the OMM
should be based on an abstract ontology model, rather than ona particular represen-
tation language.

Change Management

An ontology used in conjunction with an IS should not be considered as a static arti-
fact, because the changes in the task specification or the domain have to be reflected
on the ontology as well. To automate the change detection in the domain, the OMM
should preferably provide data-driven change detection. This can be achieved by
providing the OMM with a file corpus of relevant documents to the domain. This

CHAPTER 5. ONTOLOGY-DRIVEN INFORMATION SYSTEMS 57

process would be further eased by marking components of the ontology with addi-
tional semantic knowledge indicating their estimated behaviour over time. In their
proposed extended ontology model, Tamma and Bench-Capon[2002], propose an
attribute (property:valuechangefrequency), which indicates whether a component
is allowed to change its value over time or not, by marking them with a value like
’final’, ’frequent’, etc.

There are two other additional components that are needed toallow automatic
change detection from a file corpus: source-link componentsand change compo-
nents. Source-link componentsrepresent links between the ontological structures
in the ontology and their respective occurences in the file corpus. If documents
are added to or removed from the file corpus, these links can beused to detect
which components in the ontology are affected by the change.Change components
represent actual changes in the ontology. Every addition, deletion, or edition can
be represented in form of additional change instances, withappropriate properties
about the kind of change, the date of change, etc. These change components also
allow to keep track of the evolution of the ontology over time.

To provide some of these functionalities a developer may usethe existing work
of Cimiano and Völker[2005]. They present a framework for data-driven change
discovery with several integrated ontology learning approaches. They represent the
learned knowledge at a meta-level, using an abstract ontology model, which they
call Probabilistic Ontology Model (POM). The integrated learning approaches in the
ontology are able to learn is-a, instance-of, part-whole, and equivalence relations
and restrictions on the domain and range of relations. TheirPOM also contains
links of the ontological structures to corresponding documents from which they
were derived; allowing the user to understand the context ofa particular structure
and allowing the system do react to changes in the document corpus. We think
that both of these additions to the components of an ontologyare essential for the
use of ontologies in ISs. Further, they claim that systems that want to support data-
driven change discovery have to keep track of all changes to the data. Such a system
should also allow for defining various change strategies, which specify the degree
of influence changes to the data have on the ontology or the POMrespectively.

Having explored the requirements to ISs and related ontologies that have to be
reconciled when ontologies are going to be used in ISs in general, we are going
over to our actual focus, namely IESs. In the next section, wewill examine how
ontologies can be utilised to generate more scalable and portable IESs.

5.2 Ontologies for Information Extraction Systems

Information Extraction (IE) is currently an important and popular research field, for
it tries to extract relevant information from the overwhelming amount of data we
are facing on a daily basis. In Chapter 4, we defined the term ofIE and gave a little
bit of historical background information to the research field and its challenges.

CHAPTER 5. ONTOLOGY-DRIVEN INFORMATION SYSTEMS 58

In Section 4.3 of the mentioned chapter, we have seen that there are two ap-
proaches to IE, namely the knowledge engineering approach and the (semi-) au-
tomatic training approach. Ontologies can be used in conjunction with both ap-
proaches as a specification of the conceptualisation of the current domain and task,
that is the specification of the relevant information the system actually has to find.

With the knowledge engineering approach, the knowledge engineer provides
the system with extraction rules that cover the domain and task of the IES. Using an
existing ontology, the developer can commit to the ontologyby generating the rules
(compare Figure 5.2), and does not have to perform a domain analysis by her own,
unless she has to develop the ontology by herself as well. Using an ontology in
combination with this approach can increase interoperability between systems that
commit to the same ontology.

K n o w l e d g e E n g i n e e rT a s kK n o w l e d g eR u l e ë m a k i n gK n o w l e d g e

O u t p u t
I n p u t D a t a

R u l e sM a y b e o t h e rs t u f f a s w e l l

D o m a i nK n o w l e d g eD o m a i nK n o w l e d g e c o m m i t s t o

Figure 5.2: Knowledge engineering approach to IE using an ontology

With the (semi-) automatic training approach the aim is to automate some or all
parts of the rule generation process to decrease the human intervention and thus to
decrease the development time of an IES. For this approach, one or more human
annotators had to mark relevant pieces of data in a large document set, from which
the system then can learn extraction rules to extract also information from unseen
data. However, annotators often do not agree among themselves about the relevancy
of pieces of data. Ontologies can be used here (compare Figure 5.3) to achieve a
consensus about relevant data by specifying the task knowledge in an unambiguous
way. It is clear that neither the time needed to do the annotations, nor the time to

CHAPTER 5. ONTOLOGY-DRIVEN INFORMATION SYSTEMS 59

adapt the annotations when the specification or the domain changes is reduced just
because using an ontology. O n t o l o g y D o m a i nK n o w l e d g ec o m m i t s t o

I E SO u t p u t
I n p u tD a t aR u l e s

M a y b e o t h e rs t u f f a s w e l l R u l eG e n e r a t i o nM o d u l e
A n n o t a t e dC o r p u s

D o m a i nK n o w l e d g eT a s kK n o w l e d g e A n n o t a t o r
T a s kK n o w l e d g eR u l e K m a k i n gK n o w l e d g e

Figure 5.3: (Semi-)automatic training approach to IE using an ontology

Aitken [2002] presents an approach to learn information extraction rulesfrom
natural language data using Inductive Logic Programming (ILP). He proposes the
use of an ontology as a reference to which an annotator can commit to while anno-
tating the data with ontology terms. The supervised induction algorithm then uses
the annotations to generate extraction rules.

Besides the two mentioned scenarios where an ontology can beused to which
either the knowledge engineer or the annotator can commit to, one more scenario
could be of interest. Namely, to automate the rule generation process fully by using
an ontology as a source of domain knowledge and task specification (see Figure
5.4).

This scenario particularly aims to facilitate the portability and scalability of an
IESs. Portability and scalability are important challenges, IES developers have to
face. As we have seen, the whole generation process is not easy and takes time.
Therefore it is understandable that changes in the domain orthe task specification
are not at all welcome. In the worst case, such a change would mean that the rule
generation process has to be performed again. IESs that follow the fully automatic
approach using ontologies are much more easier to adopt to changing specifications
and domains. However, the nonexistent human intervention will most likely yield
to a decrease of the system performance. To compensate this effect, the ontology

CHAPTER 5. ONTOLOGY-DRIVEN INFORMATION SYSTEMS 60

F a c t s

F i l eC o r p u s
R u l e sR u l eG e n e r a t i o nM o d u l eR u l e k m a k i n gK n o w l e d g eT a s kK n o w l e d g e E x t r a c t i o nM o d u l e

O n t o l o g yM a n a g e m e n tM o d u l e
I n p u tD a t a

D o m a i nK n o w l e d g e

Figure 5.4: Fully automatic approach to IE using an ontology

that is being used has to reconcile several requirements, which are stated in the next
section.

5.2.1 Requirements to Ontologies in IES

The IE community has made already the attempt in the direction of ontology-based
IE. However, existing work differs, as usual, along severaldimensions:

• What kinds of ontologies are used?
The question of which kind of ontology should be used in an IE process is not
easy to answer, because the different ontology types are useful for different
scenarios. The level of detail of an ontology is very important for the perfor-
mance of an IE tool. It is not always necessary that the ontology models the
domain of interest with all its relations to full extent. Therefore, the intended
function of an IE tool should be analysed before an ontology type is chosen.

• How the ontologies were generated?
Ontologies can be generated either manually, semi-automatically or automat-
ically. As with the rule generation process the manual approach would take
more time, but the generated ontology would be likely at the right level of
generality. The semi-automatic and automatic approaches would take less

CHAPTER 5. ONTOLOGY-DRIVEN INFORMATION SYSTEMS 61

time, but we could not be sure that the generated ontology would contain all
the information we wanted it to contain. Again, the intendedfunction and
the required level of performance of the IE tool has to be keptin mind while
choosing the way in which the ontology should be generated.

• At which state in the whole IE process are the ontologies used?
As we have seen, an ontology, can be used as a specification of the relevant
conceptualisation to aid human beings involved in the IES generation process.
An ontology can also be used at run-time, whereas several components of the
IES can access the ontology to utilise its content for their tasks.

To enable the smooth integration of ontologies within IESs several requirements
have to be reconciled. The components of the input ontology should contain few
additional properties, which are essential for the Rule Generation Module (RGM)
to produce accurate rules to be used to extraction information from input data.

• Quality Properties:We mentioned before (see Section 5.1.1) that it is impor-
tant for ISs to have knowledge about the confidence level of the components
in the ontology (property: confidencelevel). In the case of IESs this be-
comes even more important, because the levels are needed to compute the
confidence levels of the rules themselves. These computed levels are used to
choose between rules, when more than one rule can be applied on a certain
part of data.

• Value Constraint Properties:Value constraints are used to restrict property
values such as the data type or cardinality. It is already possible to state this
kind of knowledge in ontology representation languages such as OWL. This
additional information will be used in an IES to state the rule conditions under
which the rule can be applied.

• Temporal Properties:In many settings the components of an ontology have to
be marked with temporal values such as the transaction time (property:trans-
action time), or valid time (property:valid time beginandvalid time end)
of the component. These properties are especially useful inconnection with
changing ontologies where out-of-date components are not deleted from the
ontology but marked as such. Because, in a common scenario where the IES
has to be able to extract information from new and relativelyold data alike, a
completely up-to-date ontology would not serve the purpose.

In existing work about ontology-driven IE approaches, we can see this trend of
enriching ontological components with additional semantic knowledge in order to
perform the extraction task more accurately.

Embley[2004] presents an approach for extracting and structuring information
from data-rich unstructured documents using extraction ontologies. He proposes
the use of the Object-oriented Systems Model (OSM)[Embleyet al., 1992] to rep-
resent extraction ontologies, because it allows regular expressions as descriptors for
constants and context keywords. Both, the generation of theontology and the gen-
eration of the regular expressions are being done manually.The ontology is then

CHAPTER 5. ONTOLOGY-DRIVEN INFORMATION SYSTEMS 62

parsed to build a database schema and to generate extractionrules for matching
constants and keywords. After that, recognisers are invoked which use the extrac-
tion rules to identify potential constant data values and context keywords. Finally,
the generated database is populated using heuristics to determine which constants
populate which records in the database. For the extraction of relevant information
from car advertisements, the presented approach achieved recall ratios in the range
of 90% and precision ratios near 98%. For domains with more complex content and
where the relevant records (e.g., car advertisements) are not clearly separated from
one another, the performance decreases, though.

However, our aim is to provide an unsupervised ontology-driven IES, that is able
to exploit the content of its underlying ontology on its own for extracting relevant
information from natural language texts.

Chapter 6

ontoX - An ontology-driven IES

Then I found my head one day when I wasn’t even trying
And here I have to say, ’cause there is no use in lying, lying

Yes the answer lies within, so why not take a look now?
Kick out the devil’s sin, pick up, pick up a good book now

On The Road To Find Out - Cat Stevens

In this section, we will explain our method for IE from natural language text,
which tries to utilise the knowledge in an ontology. The input ontology is being used
as a knowledge bearing artifact that represents the conceptualisation of a domain of
interest and the task specification for the extraction task.Our aim by developing
this method is to provide a means for ’common’ people to perform IE in a way
that requires neither skills in particular rule representation languages, nor any other
resource but the ontology, such as lexicons, etc.

Although our method can be applied to any other representation language, our
implementation supports ontologies formulated in the Web Ontology Language
(OWL) version 1.0[Horrockset al., 2003] [Grigoris and van Harmelen, 2004]. We
decided ontoX to process OWL ontologies because of several reasons:

• Well-defined semantics:OWL has been provided with a well-defined seman-
tics. This semantics assures the unambiguous specificationof a conceptuali-
sation of interest, which is essential for IESs.

• Predefined data types:Several built-in XML Schema data types can be used
in OWL, which makes it possible to formulate extraction rules that can cap-
ture values of these data types.

• Popularity: OWL became a W3C (World Wide Web Consortium) Recom-
mendation in 2004 and enjoys a large-scaled popularity among the Semantic
Web research community. This popularity led to the development of several
ontology generation tools that support OWL and also to many OWL ontolo-
gies about different domains.

63

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 64

• Tool support:As mentioned before, many tools for the generation of ontolo-
gies have been developed, allowing the more-or-less user friendly develop-
ment of OWL ontologies. This makes it easier for ontoX users to develop
their own ontologies representing their own domains of interest.

The main idea behind our approach is that ontology representation languages
are in general provided with pre-defined semantics and that this semantics can be
exploited to ’understand’ the conceptualisation they convey, whereas the concep-
tualisation represents the task and domain knowledge that is needed by an IES to
perform actual extraction on texts.

The main architecture of our IES, ontoX, is depicted in Figure 6.1. Here, the
user of the system has to provide the IES with an ontology thatrepresents her do-
main of interest and at the same time contains the task specification as well. The
Ontology Management Module (OMM) takes this ontology and tries to exploit the
knowledge in it to determine what exactly has to be extractedfrom the input data.
The Rule Generation Module (RGM) uses the output of the OMM and performs
several steps to formulate rules (in our case regular expressions) to locate candidate
values that are relevant according to the input ontology. The Extraction Module
(EM) takes these rules and determines candidate values in the input texts and ap-
plies several heuristics to choose the most accurate valuesfrom them. This module
finally returns the extracted values and also suggestions tothe user regarding possi-
ble changes in the ontology.

F a c t s
R u l e sR u l eG e n e r a t i o nM o d u l eR u l e � m a k i n gK n o w l e d g eT a s kK n o w l e d g e E x t r a c t i o nM o d u l e

O n t o l o g yM a n a g e m e n tM o d u l e
I n p u tD a t a

U s e r T a s kK n o w l e d g eM a y b e o t h e rs t u f f a s w e l l
D o m a i nK n o w l e d g eT a s kK n o w l e d g e D o m a i nK n o w l e d g e

C h a n g e s u g g e s t i o n s f o r t h e o n t o l o g y

b u i l d s /i m p o r t s

Figure 6.1: Main architecture of ontoX

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 65

To support the understandability of our extraction method and its implementa-
tion ontoX, we are going to explain them on an example. For that purpose we have
chosen the domain of digital cameras, because the domain is known to many people
and its characteristics are suitable for extraction.

Figure 6.2 shows a possible conceptualisation of the domaincontaining only
relevant aspects of the domain we are interested in, that is the model name, the
number of megapixels, the optical zoom factor, the digital zoom factor, and the
screen size. In this sense, we can think of the ontology as thetask specification
where the properties of concepts represent the properties for which the extraction
method has to determine appropriate values from input data.

Figure 6.2: Basic digital camera ontology

To evaluate our extraction method, we also collected a set ofdigital camera
reviews from the Web1. Below, you can see how a typical review looks like. The
depicted review contains all relevant data we are interested in and is therefore a good
example to explain our method with. The digital camera ”D-595 Zoom” apparently
is a 5.0 megapixel camera with an 3x optical zoom lens, supports 4x digital zoom,
and has a 1.8-inch LCD screen.

Although our method can process any valid ontology that is conform with OWL
1.0, several requirements have to be reconciled by the ontology to get acceptable
results (compare Section 5.2.1). In the following we will take a look at those re-
quirements and their implementation in a concrete ontologyfor the digital camera
domain.

6.1 Input Ontology of ontoX

In the previous chapter we defined different requirements that have to be reconciled
by ISs to provide accurate services based on ontologies. We also stated several ad-
ditional requirements on ontologies when they are going to be used in IESs. In this

1http://www.steves-digicams.com/

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 66T h e 5 . 0 Æ m e g a p i x e l D Æ 5 9 5 Z o o m c o m b i n e s t h e p o w e r o f m a n u a l c o n t r o lw i t h t h e c o n v e n i e n c e o f a n e a s y Æ t o Æ u s e d e s i g n f o r i n c r e d i b l er e s u l t s . F e a t u r i n g m a n u a l c o n t r o l o f s h u t t e r s p e e d a n d a p e r t u r eo p t i o n s , a 3 x o p t i c a l z o o m a n d 1 9 s h o o t i n g m o d e s , t h e D Æ 5 9 5 Z o o mc o m b i n e s m a n u a l s e t t i n g s w i t h t h e e a s e o f a p o i n t Æ a n d Æ s h o o t ,p a c k i n g h i g h Æ e n d a d v a n c e d f e a t u r e s i n t o a n a f f o r d a b l e , e a s y Æ t o Æu s e c o m p a c t c a m e r a .T h e 3 x o p t i c a l z o o m l e n s (3 8 Æ 1 1 4 m m e q u i v a l e n t i n 3 5 m m p h o t o g r a p h yf 2 . 8 Æ f 4 . 9) c o m b i n e s w i t h a 4 x d i g i t a l z o o m t o d e l i v e r a t o t a l1 2 x z o o m s o v i r t u a l l y n o p h o t o o p p o r t u n i t y i s o u t o f r e a c h . A n dw i t h t h e s u p e r m a c r o m o d e i t i s p o s s i b l e t o c a p t u r e a m a z i n g l ys m a l l d e t a i l s , a s t i n y a s t h e d a t e o n t h e b a c k o f a p e n n y , f r o ma s c l o s e a s 0 . 8 i n c h e s .T r u e P i c T U R B O i s a s u p e r Æ c h a r g e d i m a g e p r o c e s s o r t h a ts i g n i f i c a n t l y e n h a n c e s i m a g e q u a l i t y a n d p r o c e s s i n g s p e e d . U s e r sw i l l e x p e r i e n c e r a p i d s t a r t u p , s h u t t e r r e l e a s e a n d p l a y b a c k , a sw e l l a s c a p t u r e s h a r p e r , m o r e r e a l i s t i c i m a g e s . O n e o f t h eg r e a t e s t b e n e f i t s o f d i g i t a l p h o t o g r a p h y i s t h e a b i l i t y t oc o m p o s e a n d r e v i e w i m a g e s o n t h e L C D , a s i t a l l o w s u s e r s t oa c c u r a t e l y f r a m e t h e i r p h o t o g r a p h s a n d m a k e o n Æ t h e Æ s p o t d e c i s i o n sa b o u t s a v i n g o r d e l e t i n g t h e m . T o e n s u r e t h a t u s e r s c a n e a s i l yv i e w t h e i r s u b j e c t a n d f r a m e t h e b e s t Æ s h o t p o s s i b l e , t h e D Æ 5 9 5Z o o m h a s a , 8 5 , 0 0 0 p i x e l 1 . 8 Æ i n c h S e m i Æ T r a n s m i s s i v e T F T L C D Æ f o re a s y v i e w i n g e v e n i n b r i g h t s u n l i g h t .
Figure 6.3: Sample input data representing a digital camera review

section, we will see how these additional requirements can be reconciled by extend-
ing ontologies with additional properties. All these properties can be attached to
ontological constructs in OWL using theowl:AnnotationProperty element.

6.1.1 Keywords

The most important requirement to enable ontology-based IEis to enrich the onto-
logical constructs with keywords (i.e., trigger words) that indicate the presence of
relevant information in the input text.

Although there is no explicit ontology construct to formulate this kind of knowl-
edge in OWL 1.0, our implementation utilises comma-separated words in the ’com-
ment’ section (rdfs:comment) of ontological constructs as keywords. If the user
does not provide a property with corresponding keywords, our system tries to ex-
tract appropriate values considering frequent terms in theneighbourhood of other
properties’ keyword occurrences. Note, that this can only return feasible results
when enough properties co-exist and not more than one such unknown property has
the same data type.

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 67

6.1.2 Constraining Properties

Constraining properties are required to narrow the search range of possible values
of properties that have to be find. In our method, this is possible as far as the OWL
1.0 specification allows it. This means, that our extractionsystem only takes the
XML Schema data types into account whose usage is legal in OWL1.02.

To increase the performance of the system, the user should state the data type
with the minimal data range. For example, for a propertymegapixel, she should
not state the data type to be merely axsd:string, but should state that it is a
xsd:float. In that way the system can rule out many candidates, resulting in
more accurate values.

It would be much better to have means for stating more complexconstraints on
the values of properties, such as minimal or maximal values,etc. In fact the next
version of OWL (OWL 1.1) will provide means to state user specified data types.

6.1.3 Quality Properties

Previously we mentioned that a property stating the confidence of the ontology en-
gineer in a particular ontological construct (confidencelevel) could be useful for
several reasons and in context with different purposes. In the context of IE this
property represents the confidence level of the ontology engineer w.r.t. the correct-
ness of the ontological component. The difficulty with such aconfidencelevel for
a whole ontological construct is that it is not clear to whichaspect of the construct
it refers. Is it now the level of confidence of the ontology engineer that this concept
is really relevant, or does it reflect the certainty of the ontology engineer about the
details of the concept (e.g., place in ontology in terms of hierarchical order, etc.)?

In our particular method we think of this property in its former sense and allow
the user to enrich the constructs in the ontology by the property confidencelevel,
which can take values from[0, 1]. This property helps our extraction method to
make decisions when the same value is tried to be assigned to two different prop-
erties. In such a case, the property with the higher confidence level would be the
winner.

Another property that can be attached to ontological constructs is therelevance
property, which can take two values{true, false}. By marking a construct with
this property the user can tell the system that she is not interested in the construct
as far as the task specification is concerned, but rather thatthe construct is part
of the domain of interest. An ontology that consists of the main concepts of a
domain, although not all of them are relevant for extraction, can help the system
to ’understand’ the context of the task specification better. For such constructs, the
system is going to find appropriate values just as if they wererelevant, decreasing
the risk that their values could be assigned to other constructs. The only difference
to other constructs in the ontology is, that assigned valueswill not be presented to
the user. If the ontological construct whoserelevanceproperty is said to be false
is a property, its value will not be presented to the user; whereas if it is a concept,
none of the values assigned to its properties will be presented to the user.

2For a full list of OWL 1.0 data types see Appendix B

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 68

6.1.4 Temporal Properties

Temporal properties can be useful in the context of IESs to enable two kinds of
services. The first one is to enable temporal extraction and the second is change
management. With the first one, a user can state that she wantsher input data to be
extracted using ontological components that were valid at acertain point of time.
With the second one, the user can be provided with suggestions regarding out-of-
date concepts because they did not appear in the input texts anymore, so that she
could adopt the ontology if necessary.

To enable both kinds of services, we suggest the use ofvalid time beginand
valid time endproperties that can be stated for every construct in the ontology. By
doing this, the input data will be analysed using only ontological constructs that are
valid at the given point of time, which must be provided by theuser of the system
in a way that is conform with thexsd:Date data type. If no date is supplied all
constructs in the ontology will be used for extraction.

To enable change management we also provide the user with thepropertyvalue
changefrequencywhich can have two values: stable and frequent. The user can
mark ontological components with this property in order to indicate that the com-
ponent will appear in the input text consequently (i.e., stable) or not (i.e., frequent).
Using this value, an IES can compute accuracy levels for eachcomponent after each
extraction looking at whether the component had appeared inthe input or not.

6.2 Ontology Management Module of ontoX

An ontology that can be used to extract information from digital camera reviews
and that reconciles the requirements we just mentioned, canbe seen in Figure 6.4.
This ontology includes data types of the concept propertiesand additionally trigger
words that might indicate the occurrence of appropriate values of the properties in
the input text. The OWL document that represents this ontology can be found in
Appendix A.

The Ontology Management Module (OMM) in our system is responsible for
processing the input ontology to determine attribute-value pairs that constitute the
actual extraction task. For that purpose, the OMM, loads theontology into its intern
ontology model and tries to exploit the pre-defined semantics of the underlying rep-
resentation language (OWL 1.0). The used ontology model is the one provided by
the Jena Semantic Web Framework3, which provides a programmatic environment
for RDF, RDFS, and OWL.

Because the ontology is going to be used for extraction purposes, not all mod-
eling primitives of OWL are relevant for us. In this section,we will take a look at
the relevant modeling primitives of OWL and how they are going to be interpreted
by ontoX. For a more detailed description of OWL’s modeling primitives, you are
referred to the excellent book by Antoniou and van Harmelen[2004].

3http://jena.sourceforge.net/

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 69

D i g i t a lC a m e r a

M o d e l N a m e : : x s d : N a m et r i g g e r w o r d s : M e g a p i x e l : : x s d : f l o a tt r i g g e r w o r d s : m e g a p i x e l ,m i l l i o n p i x e l
O p t i c a l Z o o m : : x s d : d e c i m a lt r i g g e r w o r d s : o p t i c a l z o o mD i g i t a l Z o o m : : x s d : d e c i m a lt r i g g e r w o r d s : d i g i t a l z o o m

D i s p l a y s i z e : : x s d : f l o a tt r i g g e r w o r d s : l c d , d i s p l a y ,i n c h

Figure 6.4: Graphical digital camera ontology used for extraction

6.2.1 Class Elements

Class elements are the basic ontological components that represent relevant con-
cepts in a domain of interest. The OMM takes each defined classin the ontology
as a particular concept and tries to identify attribute-value pairs to cover the task
specification by determining all properties that are definedfor this class. There are
different ways to define a class in OWL. Some of these ways enable the definition of
anonymous classes and are neglected by our OMM, because theyapparently cannot
have properties.

Direct Definition

A class can be defined directly using theowl:Class element and by stating its
identification using therdf:ID element.

<owl:Class rdf:ID = "digital_camera">
<rdfs:comment> concept of a digital camera </rdfs:comment>

</owl:Class>

Subclass Declaration

It can be stated that a class is a subclass of an already definedclass with the
rdfs:subClassOf element. In this case, the OMM generates the same attribute-
value pairs for this class as for its superclass.

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 70

<owl:Class rdf:ID = "digital_camera">
<rdfs:subClassOf rdf:resource="#camera" />

</owl:Class>

Equivalence Declaration

It can also be stated that a class is the equivalent of an already defined class. Again,
the OMM generates the same attribute-value pairs for this class as for its equivalent
class.

<owl:Class rdf:ID = "Digicam">
<owl:equivalentClass rdf:resource="#DigitalCamera" />

</owl:Class>

Enumeration Boolean Combinations

In OWL, a class can further be defined using theowl:oneOf element to enumer-
ate all its elements or by boolean combinations of already existing classes. For
example, it is possible to state that an instance of the class’MovieFormat’ can be
one of the mentioned formats. Having such an enumeration of elements, our system
simply has to look whether the input text contains any of these terms.

<owl:Class rdf:ID = "MovieFormat">
<owl:oneOf rdf:parseType = "Collection">

<owl:Thing rdf:about = "#QuickTime" />
<owl:Thing rdf:about = "#AVI" />
<owl:Thing rdf:about = "#MPEG" />

</owl:oneOf>
</owl:Class>

6.2.2 Property Elements

Property elements are components to define the characteristics of class elements.
Therefore, they are the main constructs of interest of our OMM. In OWL, two kinds
of properties can be defined: object properties to relate objects with each other, and
data type properties to relate objects with data types.

Object properties can be defined usingowl:ObjectProperty elements. The
domain and range of both kind of properties can be defined using rdfs:domain
andrdfs:range elements. For each object property, our OMM collects defined
instances of the class that is stated as the properties’ range (i.e.,rdfs:range) and
use them as search strings in the input text.

<owl:ObjectProperty rdf:ID = "movie_format">
<rdfs:domain rdf:resource="#DigitalCamera" />
<rdfs:range rdf:resource="#MovieFormat" />

</owl:Class>

Data type properties can be defined usingowl:DatatypeProperty elements.
The range of such properties have to be one of the allowed XML Schema data types

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 71

(see Appendix B) in OWL 1.0. Our OMM generates for each data type property
an attribute-value pair as part of the task specification where the attribute is the
name of the property and the value is the allowed data type forthat property (e.g.,
<megapixel, xsd:float>).

<owl:DatatypeProperty rdf:ID = "megapixel">
<rdfs:domain rdf:resource="#DigitalCamera" />
<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema/#float" />
</owl:Class>

Property Restrictions

Property restrictions can be used to define subclasses of classes that satisfy cer-
tain conditions regarding some of their properties, usingowl:Restriction el-
ements. These restriction are interpreted by ontoX to assign correct values to prop-
erties.
Theowl:hasValue element can be used to state that a property has to have a
certain value.

<owl:Class rdf:ID = "SonyDigicam">
<rdfs:comment>

SonyDigicam is a Digicam that has a Memory Stick as
storage medium.

</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Digicam" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#storage_medium" />
<owl:hasValue rdf:resource = "#MemoryStick" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Theowl:allValuesFrom element can be used to state that all values of a prop-
erty must be from the specified class.

<owl:Class rdf:ID = "LithiumIonCamera">
<rdfs:comment>

LithiumIonCameras are cameras that support Lithium Ion accus.
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Camera" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasBattery" />
<owl:allValuesFrom rdf:resource="#LithiumIonAccu" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The owl:someValuesFrom element can be used to state that the values of a
property can be from a specified class.

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 72

<owl:Class rdf:ID = "VideoDigicam">
<rdfs:comment>

VideoDigicams are Digicams that support some movie format.
</rdfs:comment>
<rdfs:subClassOf rdf:resource = "#Digicam" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#movie_format" />
<owl:someValuesFrom rdf:resource = "#MovieFormat" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

In OWL 1.0 it is also possible to state constraints on the cardinality of values of
properties using theowl:minCardinalityelement, theowl:maxCardinality
element and theowl:cardinality element. For example, we can state that a
digital camera has to support at least on storage medium.

<owl:Class rdf:about = "DigitalCamera">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasStorageMedium" />
<owl:minCardinality rdf:datatype=http://www.w3.org/

2001/XMLSchema/#nonNegativeInteger">
1

</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Special Properties

In OWL 1.0 properties can also have properties. For instance, we can state that
a property is transitive using theowl:TransitiveProperty element, or the
owl:SymmetricProperty element to state that a property is symmetric.

An important property for ontoX is the one to state that a property is functional, that
is that it has at most one value for each object. Such properties are specified using
theowl:FunctionalProperty element. It can also be stated that two objects
cannot have the same value for a property using theowl:InverseFunctional
Property element.

<owl:FunctionalProperty rdf:about = "megapixel" />

<owl:InverseFunctionalProperty rdf:about = "model" />

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 73

6.3 The Rule Generation Module of ontoX

The Rule Generation Module (RGM) of ontoX is responsible forthe generation of
extraction rules that can be used to identify candidate values for the attribute-value
pairs generated by the OMM. Because, OWL 1.0 supports only a pre-defined set
of data types, at the present this module merely has to look upappropriate regular
expressions for the stated data types.

However, for other ontology representation languages the RGM would have to
do a lot more. For the oncoming standard OWL 1.1, which will support user-defined
data types using a set of pre-defined data types, for example,the RGM would have
to parse the data type definitions in order to generate corresponding extraction rules.

6.4 The Extraction Module of ontoX

The Extraction Module (EM) of ontoX is responsible for applying the rules gener-
ated by the RGM and using them to identify candidate values for properties in the
ontology. The steps that are taken by the EM can be consideredin two main parts:
preprocessing step and extraction step. In the following wewill explain the partic-
ular tasks that are being performed by our method during these two main steps.

6.4.1 Preprocessing

As in any other text processing task, several steps have to betaken to eliminate
noisy data from the input, which could affect the performance of the algorithm.
Further, preprocessing is needed to transform the input data into a format that can
be processed more easily by successive modules. The preprocessing phase of our
extraction method comprises the following particular steps.

Removing stop words

Natural language texts are usually loaded with words, called stop-words, which do
not convey relevant information but occur frequently in thetext, because they are
needed to build grammatically correct sentences. Because of their high frequency,
they often cause outliers in term frequency histograms and have to be eliminated
from the input text before starting the actual extraction phase.

As we evaluate our method with texts in English we determinedthe stop words
commonly used in English. Our stop word list contain the following: ’a’, ’an’,
’and’, ’are’, ’as’, ’at’, ’be’, ’but’, ’by’, ’for’, ’if’, ’i n’, ’into’, ’is’, ’it’, ’no’, ’not’,
’of’, ’on’, ’or’, ’s’, ’such’, ’t’, ’that’, ’the’, ’their’, ’then’, ’there’, ’these’, ’they’,
’this’, ’to’, ’was’, ’will’, ’with’.

Locating Data Type Occurrences

We stated earlier that data type properties represent our main interest w.r.t. ex-
traction, for they define the actual values of interest to be extracted. Therefore,
our whole method is centered around these ontological components. However, the

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 74

XML Schema data types have different value spaces, which ranges from integers,
bytes, floats to more general data types such as strings. It isclear, that the more
constraints stated about a property the easier will it be to identify a particular text as
a value of that property. In order to rule out cases where the data types with wider
value spaces overlap data types with narrower value spaces,we begin with locating
occurrences of the narrower ones. For example, we first identify xsd:float’s
and thenxsd:decimal’s in order to avoid cases where parts of a token ’5.0’
could be identified asxsd:decimal values (i.e., ’5’ and ’0’), whereas it should
be identified as a whole to be axsd:float value (i.e., ’5.0’).

Values of data types derived from xsd:string are much more harder to identify
then numbers and other data types that have fixed formats. Therefore, simple pattern
matching methods cannot be applied on them. For these data types, especially for
the data type xsd:Name, we use a heuristic that computes thenamedentity probability
of a string. To compute this value, we consider the anomaliesin the string that could
indicate that the string at hand is not a proper word, like as numbers and characters
appearing in the same string, or mixed lower and upper case usage of characters.

Algorithm 1 Compute Named Entity Probability
Input: a setI = {s1, ...sn} of strings that matches the definition of the data type

xsd:Name
Output: sorted setI

′

= {s′1, ...s
′

2
}

1: for each string s inI do
2: p := 0
3: for eachcharacter c in string sdo
4: if c is an upper case characterthen
5: p := p + 1
6: else ifc is a digitthen
7: p := p + 2
8: end if
9: end for

10: end for
11: I

′

← sort strings inI according to theirp value
12: return I

′

In the next section we will see, how our algorithms and heuristics approach the
task of extracting the kind of information as it was formulated in the input ontology.

6.4.2 Extraction

The extraction phase is the actual phase where the located data type values are
going to be assigned to corresponding properties in the ontology. Figure 6.5 depicts
the sample input data we used (compare Figure 6.3) after the preprocessing phase.
As you can see, all the stop words have been removed and all occurrences of data
type values that are allowed in OWL 1.0 are underlined. We took a step further and

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 75

highlighted also the keywords that were present in the text by underlining them with
two lines (i.e., ’megapixel’, ’optical zoom’, ’digital zoom’, ’inch’, ’LCD’).5 . 0 m e g a p i x e l D 5 9 5 Z o o m c o m b i n e s p o w e r m a n u a l c o n t r o l c o n v e n i e n c ee a s y t o u s e d e s i g n i n c r e d i b l e r e s u l t s . F e a t u r i n g m a n u a l c o n t r o ls h u t t e r s p e e d a p e r t u r e o p t i o n s , 3 x o p t i c a l z o o m 1 9 s h o o t i n g m o d e s ,D 5 9 5 Z o o m c o m b i n e s m a n u a l s e t t i n g s e a s e o f p o i n t a n d s h o o t ,p a c k i n g h i g h e n d a d v a n c e d f e a t u r e s a f f o r d a b l e , e a s y t o u s e c o m p a c tc a m e r a .3 x o p t i c a l z o o m l e n s (3 8 1 1 4 m m e q u i v a l e n t 3 5 m m p h o t o g r a p h y f 2 . 8 f 4 . 9) c o m b i n e s 4 x d i g i t a l z o o m d e l i v e r t o t a l 1 2 x z o o m s o v i r t u a l l yp h o t o o p p o r t u n i t y o u t o f r e a c h . s u p e r m a c r o m o d e p o s s i b l e c a p t u r ea m a z i n g l y s m a l l d e t a i l s , t i n y d a t e b a c k p e n n y , f r o m c l o s e 0 . 8i n c h e s .T r u e P i c T U R B O s u p e r c h a r g e d i m a g e p r o c e s s o r s i g n i f i c a n t l y e n h a n c e si m a g e q u a l i t y p r o c e s s i n g s p e e d . U s e r s e x p e r i e n c e r a p i d s t a r t u p ,s h u t t e r r e l e a s e p l a y b a c k , c a p t u r e s h a r p e r , m o r e r e a l i s t i c i m a g e s .O n e g r e a t e s t b e n e f i t s d i g i t a l p h o t o g r a p h y a b i l i t y c o m p o s e r e v i e wi m a g e s L C D , a l l o w s u s e r s a c c u r a t e l y f r a m e p h o t o g r a p h s m a k e o n t h e s p o t d e c i s i o n s a b o u t s a v i n g d e l e t i n g t h e m . e n s u r e u s e r s c a n e a s i l yv i e w s u b j e c t f r a m e b e s t s h o t p o s s i b l e , D 5 9 5 Z o o m h a s , 8 5 , 0 0 0p i x e l 1 . 8 i n c h S e m i T r a n s m i s s i v e T F T L C D e a s y v i e w i n g e v e nb r i g h t s u n l i g h t .

Figure 6.5: Sample input data after preprocessing

Now we have to assign appropriate values to the properties inthe ontology that
the identified keywords belong to. For that purpose, we are looking for values that
are conform with the predefined data type of the property. In fact, we are looking
for the first such value at the left side and the right side of a keyword occurrence,
because it is more likely that the values are located near thekeywords. For the
keyword ’megapixel’ that must have a value conform with xsd:float, we have the
value ’5.0’ at its left and no appropriate value at its right,because there is a sentence
boundary between the keyword and the next valid value (’3’).So we can add the
value ’5.0’ into our list of candidate values for the property ’megapixel’ in our
input ontology. The heuristic used to choose appropriate candidate values for each
keyword occurrence is formulated in Algorithm 2.

A property may have been provided with more than one keyword,in which case
every occurrence of each keyword would be encountered to collect candidate values
in the input text. While collecting candidate values, our method marks them with a
level ofevidencethat is computed as

evidence =

{

1

d
if d >0

1 if d = 0
(6.1)

whereasd is the distance of the candidate value from the keyword occurrence in
terms of the words that lie between them. This inverse distance function is used to
favour data type values that are near to the keyword over values that are more far

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 76

Algorithm 2 Select Candidate Values
Lk → List of all keyword occurrences inInput
Ld → List of all data type occurrences inInput

1: for each keywordk in Lk do
2: r ← k.datatype ⊲ look up the data type of keywordk, e.g., xsd:float
3: dp← k.property ⊲ look up propertydp to which keywordk belongs
4: repeat
5: cl ← next token at the left
6: until cl is a valid value or a sentence boundary

7: repeat
8: cr ← next token at the right
9: until cr is a valid value or sentence boundary

10: if cl == sentence boundary andcr is not then
11: candidatevalue= cr

12: else ifcr == sentence boundary andcl is notthen
13: candidatevalue= cl

14: else ⊲ both,cl andcr are valid values
15: cl.evidence = compute evidence forcl

16: cr.evidence = compute evidence forcr

17: if cl.evidence > cr.evidence then
18: candidatevalue= cl

19: else ifcr.evidence > cl.evidence then
20: candidatevalue= cr

21: else ⊲ both values have the same evidence
22: if r == xsd:string or a derivative of xsd:stringthen
23: candidatevalue= cr

24: else
25: candidatevalue= cl

26: end if
27: end if
28: end if
29: add candidatevalue to the list of candidate values ofdp
30: end for

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 77

away. If a keyword and an appropriate value are part of the same token in the input
text, the distance is0 and the evidence would be1. The token ’5.0-megapixel’ is an
example for this case, as the appropriate value ’5.0’ and the keyword ’megapixel’
are part of the same token. If a value with an evidence of1 has been found, the
algorithm would not look any further and will assign the value to the property in the
ontology to which the keyword belonged.

If the same data type value appears more than one as a candidate for a certain
property, the level of evidence of this value is being changed to the maximum be-
tween them:

evidence = max(evidenceold, evidencenew) (6.2)

After having identified all candidate values for a certain property in the ontology,
we have to choose the final result from these. We already mentioned that OWL al-
lows the definition of functional properties (i.e.,owl:FunctionalProperty)
that is, properties that can have only one value. For these kinds of properties our
method chooses the candidate value with the highest computed evidence. For other
properties it presents all candidate values whose evidenceare above a user defined
threshold.

For our sample input text in Figure 6.5 we would have the following attribute-
value pairs and their candidate values with decreasing order of their computed evi-
dence.

<Model Name, xsd:Name>

Candidates:D-595 Zoom, Semi-Transmissive TFT, TruePic TURBO

Final Decision:D-595 Zoom

<Megapixel, xsd:float>

Candidates:5.0, 1.8

Final Decision:5.0

<Display size, xsd:float>

Candidates:1.8, 0.8

Final Decision:1.8

<Optical Zoom, xsd:decimal>

Candidates:3, 19, 4

Final Decision:3

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 78

<Digital Zoom, xsd:decimal>

Candidates:4, 12

Final Decision:4

6.4.3 Change Detection within ontoX

In the previous section we described our method to extract appropriate values for
our properties in the ontology. But as many application fields and domains have
a dynamic nature, it is possible that parts of the ontology will become out-of-date
after a certain amount of time. We think that it is essential to provide ontology-
driven systems with means, which are able to detect such changes in the concep-
tualisation. Therefore, we stated earlier (see Section 5.1.1) that ontologies have to
be enriched with several additional components, like assourcelink components,
changecomponents, andvaluechangefrequency.

In the context of our ontology-driven IESs we do not perform ontology learn-
ing, therefore we do not needsourcelink componentsthat represent links between
ontological structures and input files in a data corpus from which they had been
extracted. Such link components are useful in settings where the used ontology is
being generated (semi-) automatically, because changes inthe file corpus, like as
the removal of files, can be used to change the ontology in a waythat it reflects the
information in the updated file corpus.

In many application fields, it may be required to adopt the ontology to changes
in the environment by looking at the input files provided by the user. Our aim
by developing our extraction method, however, was not to provide sophisticated
change management support that covers, for example, undo/redo functionality for
changes. We think that such a functionality is not suitable with the nature of IE,
because the ontology itself represents besides the conceptualisation of the domain
of interest also the task specification. Although, it is possible to change parts of the
ontology that do not contribute to the task specification (i.e., ontological constructs
whoserelevanceproperty is stated to befalse) automatically we think that it is
more appropriate to leave this task to the ontology engineer, because the effects of
an automatic change in the ontology on the task specificationis not foreseeable.
There would be always the danger, that the system would tailor the ontology to a
certain amount of input data at hand, leading to a bad overallperformance of the
system for unseen input data.

Therefore, we think that in our setting it would be sufficientto generate a log-file
that shows which ontological constructs became out-of-date over time to suggest to
the user to change the ontology because it apparently contains constructs that do not
occur in the input files anymore.

Our heuristic to detect out-of-date constructs works in a way that incorporates the
propertyvaluechangefrequencyand the amount of time over which a property in
the ontology did not occur in the input files. There are two values that the property

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 79

valuechangefrequencycan have:frequentandstable. Properties that are marked
asfrequentare properties that may or may not occur in input files. It would be in-
correct to suggest that such a property became out-of-date because it did not appear
in the input files over a short amount of time, because the ontology engineer told
the system in advance that such a thing could happen.

However, if a property is marked asstableit conveys the information that values
of this property will most likely appear in input files consequently. So it would be
correct to suggest that such a property became out-of-date if it did not appear in
input files over a short amount of time. If an ontological construct is not given a
value for its’valuechangefrequencyproperty, our system assumes per default that
it is stable.

The first idea was to decrease the value that indicates the probability that a cer-
tain construct in the ontology is still accurate (propertyaccurate) for let’s say 20%
every time a construct did not appear in the input data. It is clear that such a course
of action would not lead us to satisfactory results, becauseit does not encounter the
predicted value change frequency of the construct and also not the confidence level
of the construct, which indicated the level of confidence theontology had for this
construct at the first place. Therefore, we adjusted our ideaand defined our function
to determine the value of accuracy as follows:

accuracynew = accuracyold−
(accuracyold/5) ∗ value change frequency

confidence level
(6.3)

This function ensures that the value of accuracy decreases at a faster pace for
constructs that are said to be ’stable’ than for constructs that are predicted to be
’frequent’ anyway. The function also ensures that the valuedecreases at a slower
pace for constructs of which the ontology engineer was more certain.

Having the accuracy computed for each construct after everyextraction, the
system generates a log file where it lists the constructs in the ontology according to
their accuracy value in increasing order, so that the ontology engineer may take a
look and decide whether to change the ontology or not.

6.5 Limitations

Our focus in this work was on providing an extraction method that can extract in-
formation from natural language text without using any knowledge resource but an
input ontology. We thought that such a system would be usefulfor people with
light-weight extraction demands and who are not familiar with generating all kinds
of knowledge resources (e.g., gazetteer lists, extractionrules, etc.) or do not have
access to linguistic processing resources (e.g., part-of-speech tagger, etc.) some
other state-of-the-art IESs require to perform feasible IE.

Because, of these decision at the beginning of our work, we have to live with
some limitations, which can be overcome if several requirements on the input on-
tologies are reconciled.

CHAPTER 6. ONTOX - AN ONTOLOGY-DRIVEN IES 80

• The provided keywords have to be chosen carefully, because they are the trig-
ger words using which our method locates candidate values. If the user pro-
vides the properties in the ontology with inappropriate keywords, the system
can not extract correct values.

• The ontology should contain as much information as possibleregarding the
constraints on property values that could decrease their possible value space.
For example, if it is known that values of a particular property can have only
values greater than 1, then its datatype should bexsd:positiveInteger
instead of justxsd:integer or other data types with a wider value space.

So we can say, that the performance of our proposed method highly depends
on the quality of the input ontology. If the user can provide the system with an
ontology that reconciles the requirements stated above, the results of the system
will be as outlined in the next section of our experimental results.

Chapter 7

Experimental Results

You can’t bargain with the truth
’Cause whether you’re right or you’re wrong

We’re going to know what you’ve done
We’re going to see where you belong -

in the end
...

And good’s going high,
And evil’s going down - in the end

In The End - Yusuf Islam

In this chapter, the evaluation results of our proposed method to extract information
from natural language text using ontologies formulated in OWL 1.0 (Web Ontol-
ogy Language) are presented. Fortunately, the IE communitycan look back on a
relatively long history of evaluation research (see Section 4.1), which resulted in a
variety of evaluation measures that became a standard over the years, such as pre-
cision and recall (see Section 4.4). So, we will use these standards and will present
the extraction results of the developed system in terms of its recall and precision
values.

We stated earlier (see Section 5.2) that the use of ontologies in conjunction
with IESs will increase not only the performance of the systems, but also their
scalability and portability. To prove that the system is resistant to changes in the
task specification (i.e., the ontology), we change the ontology we used for the first
part of our evaluation to extract also additional information and present the results.

Another aspect of our proposed method is that it suggests that constructs are ei-
ther not relevant anymore or that they are not provided with appropriate keywords,
when they do not occur in the input data for a certain amount oftime. These sug-
gestions are then presented to the user and she can decide to perform changes on the
ontology or not. In this chapter we also state some results weencountered during
the evaluation of performance regarding our change detection functionality.

81

CHAPTER 7. EXPERIMENTAL RESULTS 82

7.1 Evaluation of Performance

In the first part of our conducted evaluation we will focus on the performance of our
proposed extraction method that utilises only a relativelysmall ontology to extract
relevant facts from natural language text documents.

We have chosen the domain of digital cameras, because of its popularity nowa-
days and the fact that its nature can be captured using ontologies. We collected a
set of 137 digital camera reviews from the Web1 in natural language text, with over
57,000 words. The ontology that we have generated for our evaluation and which
represents our task specification is depicted in Figure 7.12 and states that we are in-
terested in the model name, the number of megapixel, the optical and digital zoom
factor, and the display size of a digital camera.

D i g i t a lC a m e r a

M o d e l N a m e : : x s d : N a m et r i g g e r w o r d s : M e g a p i x e l : : x s d : f l o a tt r i g g e r w o r d s : m e g a p i x e l ,m i l l i o n p i x e l
O p t i c a l Z o o m : : x s d : d e c i m a lt r i g g e r w o r d s : o p t i c a l z o o mD i g i t a l Z o o m : : x s d : d e c i m a lt r i g g e r w o r d s : d i g i t a l z o o m

D i s p l a y s i z e : : x s d : f l o a tt r i g g e r w o r d s : l c d , d i s p l a y ,i n c h

Figure 7.1: Graphical representation of our digital camera ontology

Our aim with this evaluation is to see whether it is sufficientfor an IES to know a
few keywords and the correct data type of a property to be ableto extract appropriate
values for them from natural language text documents. Therefore, our ontology con-
tains two properties with the data typexsd:float (i.e., ’megapixel’ and ’display
size’), two properties with the data typexsd:decimal, and finally one property
with the datatypexsd:Name. Whereas,xsd:float andxsd:decimal can
have only predefined values that lie in the value space of their definitions, things are
different forxsd:string derived data types asxsd:Name. Strings can have any
value, because they are defined as sequels of characters. In our extraction method

1http://www.steves-digicams.com/
2The corresponding OWL 1.0 document for this ontology can be found in Appendix A.

CHAPTER 7. EXPERIMENTAL RESULTS 83

we used a heuristic to determine a value that might indicate how likely a string is
actually a named entity.

Another aspect we want to evaluate with this first phase, is the usage of onto-
logical relations for the extraction process. For that reason, we did not provide the
property ’Model’ with any keywords that would indicate the presence of an appro-
priate value in the text. In such a case, our method had to lookin the neighbourhood
of occurrences of other properties’ keywords for appropriate values.

Table 7.1 depicts the results of our extraction method for our collected data
corpus and the ontology as in Figure 7.2 in terms of the standard evaluation metrics
Recall and Precision:

Recall =
C

N
(7.1)

Precision =
C

C + I
(7.2)

, whereasN is the number of how many times a property was actually present in
the document,C is the number of correctly extracted values, andI is the number of
incorrectly extracted values.

Number Correctly Incorrectly Recall Precision
of Identified Facts Identified Facts

Facts

Model 137 110 28 0,79 0,79
Megapixel 137 70 63 0,51 0,52
Optical zoom 124 105 22 0,84 0,82
Digital zoom 13 6 6 0,46 0,46
Display size 113 93 23 0,82 0,80

Table 7.1: Evaluation results for the digital camera ontology in Figure 7.1

Analysing the results, we must admit that we had expect better results for the
property ’Megapixel’ because the keywords for that property are relatively clear and
occur consistently in input documents and its value space isalso narrow. However,
we figured that the cause for these results was that some reviews contained the
megapixel information as decimals and sometimes as floats (e.g., ’5-megapixel’ vs.
’5.0-megapixel’) and sometimes even in letters (e.g., ’five’). Therefore, we think
that it is essential for the generation of extraction ontologies to have more means to
define data types of properties.

On the other hand, the results for the property ’Model’ were apleasant surprise.
We did not expect our method to locate appropriate values forthis property that
well, which was not even provided with any keywords. The reason for this, must
be that the model name of a digital camera appears relativelyoften in the text and
therefore falls more often in the neighbourhood of other keywords occurrences.

The number of incorrectly assigned values for the ’Digital Zoom’ property is
due to data type occurrences that could not be assigned to their original properties.

CHAPTER 7. EXPERIMENTAL RESULTS 84

For example, often when the megapixel of a camera was given as’5’, it was not
assigned to the property ’Megapixel’ but to the property ’Digital Zoom’ if its key-
word was near this value occurrence, because the data type of’Digital Zoom’ is
owl:decimal. Again, better means to state data types can decrease the number
of incorrect values, leading to better precision results.

We stated earlier that the use of ontologies in conjunction with IESs can increase
not only the performance of IESs, but also their scalabilityand portability. To eval-
uate this statement we changed our ontology in Figure 7.2 to represent the task
specification where we are interested in three more properties of the same concept.

7.2 Evaluation of Scalability and Portability

To evaluate how our method reacts to changes in the task specification, we changed
our task specification that we used for the evaluation of the systems’ performance in
the previous section. The new specification states, that thesystem has to extract also
the type of storage medium a digital camera supports (e.g., xD-Picture Card, etc.),
the kind of power supply it has (e.g., Lithium Ion Battery, etc.), and also information
about supported video formats (e.g., MPEG format, etc.). The ontology that covers
this specification is depicted in Figure 7.23.

D i g i t a lC a m e r a
M o d e l N a m e : : x s d : N a m et r i g g e r w o r d s : M e g a p i x e l : : x s d : f l o a tt r i g g e r w o r d s : m e g a p i x e l ,m i l l i o n p i x e l O p t i c a lZ o o m : : x s d : d e c i m a lt r i g g e r w o r d s : o p t i c a l z o o mD i g i t a lZ o o m : : x s d : d e c i m a lt r i g g e r w o r d s : d i g i t a l z o o m

D i s p l a y s i z e : : x s d : f l o a tt r i g g e r w o r d s : l c d , d i s p l a y ,i n c h
B a t t e r y : x s d : N a m et r i g g e r w o r d s : b a t t e r y , p o w e rM o v i e F o r m a t : x s d : N a m et r i g g e r w o r d s : m o v i e

S t o r a g e M e d i u m : x s d : N a m et r i g g e r w o r d s : s t o r a g e , c a r d
Figure 7.2: Graphical representation of our extended digital camera ontology

3The corresponding OWL 1.0 document for this ontology can be found in Appendix A.

CHAPTER 7. EXPERIMENTAL RESULTS 85

Table 7.2 contains the results of our extraction method for the same data corpus
and the changed ontology as in Figure 7.3 in terms of the standard evaluation metrics
Recall and Precision:

Number Correctly Incorrectly Recall Precision
of Identified Facts Identified Facts

Facts

Model 137 110 28 0,79 0,79
Megapixel 137 70 63 0,51 0,52
Optical zoom 124 105 22 0,84 0,82
Digital zoom 13 6 6 0,46 0,46
Display size 113 93 23 0,82 0,80

Storage 61 15 56 0,25 0,22
Movie Format 56 41 59 0,73 0,41
Power Source 60 26 64 0,43 0,28

Table 7.2: Evaluation results for the extended digital camera ontology in Figure 7.2

As you can see from the first five rows in Table 7.2 that the values for the first
five properties mainly have not changed during this second part of our evaluation.
We think that this would have been different, if the properties with which we ex-
tended our first ontology would have contained properties with the same data types
as the already existing ones. In such a case, the number of incorrectly assigned
values could have decreased, because our method would have to face less confusion
regarding all the appropriate values at hand.

The relatively bad results for the property ’Storage’ showshow the choice of
inappropriate keywords for properties can affect the performance of the system. On
the other hand, we had not that much options to choose from. Wefigured that the
keyword ’storage’ is used apparently in another context as well, leading to a lot of
incorrectly identified values, which was fostered further by the rather large value
space that the data typexsd:Name was allowing. The same can be said for the
large number of incorrectly assigned values for the properties ’Movie Format’ and
’Power Source’. The fact that all of them allow values from thexsd:Name value
space, lead to a lot of candidate values, with some of them apparently very close to
the keywords.

However, the aim with this phase in our evaluation was to lookhow difficult
it is to make the system extract information for a different task specification. As
such a change only requires the change of the input ontology and not the IES itself,
we conclude that the scalability and portability of ontology-driven IESs are indeed
much better than of regular IESs.

As a concluding remark regarding the extraction performance of our method, we
can say that the performance highly depends on the quality ofthe input ontology.
With quality we mean the right choice of keywords for the properties and the right
choice of data type value. Obviously it is helpful to know a little bit about how
relevant properties appear in the input text in order to generate an ontology that
represents the right level of generality.

CHAPTER 7. EXPERIMENTAL RESULTS 86

To make it clear how changes in the ontology can affect the resulted output, we
changed our input ontology as in Figure 7.3 where we stated that a movie format can
be one of ’Quicktime’, ’AVI’, or ’MPEG’ by defining ’MovieFormat’ as a class and
the three mentioned movie formats as its instances. Further, we stated that storage
medium can be one of ’SD card’, ’xD card’, or ’MemoryStick’ bydefining ’Stor-
ageMedium’ as a class and the three mentioned memory cards asits instances. Even
with these minor changes we can see a significant improvementin the performance
of our IESs for these properties as can be seen in Table 7.3.

D i g i t a lC a m e r a
M o d e l N a m e : : x s d : N a m et r i g g e r w o r d s : M e g a p i x e l : : x s d : f l o a tt r i g g e r w o r d s : m e g a p i x e l ,m i l l i o n p i x e lO p t i c a l Z o o m : : x s d : d e c i m a lt r i g g e r w o r d s : o p t i c a l z o o mD i g i t a l Z o o m : : x s d : d e c i m a lt r i g g e r w o r d s : d i g i t a l z o o m

D i s p l a y s i z e : : x s d : f l o a tt r i g g e r w o r d s : l c d , d i s p l a y ,i n c h

B a t t e r y : x s d : N a m et r i g g e r w o r d s : b a t t e r y , p o w e r
M o v i e F o r m a tQ u i c k T i m eA V I M P E G S t o r a g eM e d i u m S D à C a r dx D à C a r dM e m o r yS t i c k

Figure 7.3: Graphical representation of our digital camera ontology

Number Correctly Incorrectly Recall Precision
of Identified Facts Identified Facts

Facts

Storage 61 51 6 0,83 0,89
Movie Format 56 56 0 1 1
Power Source 60 26 64 0,43 0,28

Table 7.3: Evaluation results for the corrected digital camera ontology in Figure 7.3

CHAPTER 7. EXPERIMENTAL RESULTS 87

7.3 Evaluation of Change Detection

Another aspect of our method was the ability of basic change detection in the extrac-
tion interests of the user. We stated the heuristic our method applies to determine
the probability of accuracy of properties to identify properties or concepts that do
not appear in the input text over a certain amount of time. After every extraction,
the user will be given a list of all ontological constructs inincreasing order of their
accuracy level, so that she can change the ontology if necessary.

Low accuracy levels can mean either that the interests of theuser has changed
with regard to the relevant data that she wants to be extracted from the text, or that
the ontological construct is not appropriately defined in the ontology, so that the
extraction method cannot make use of it to identify the intended kind of information
in the text. One example for the latter case could be that a property is provided with
keywords that are not appropriate to locate relevant valuesfor it.

During the course of our evaluation phase we looked at the accuracy levels of
our ontological constructs at certain points of time. As canbe seen in Table 7.1 and
Table 7.2, values for the ’Digital zoom’ property appear rather infrequently in the
input texts. So we assume that this property will be at the topof the level at most of
the times we look at the suggestions of our method.

Normally the accuracy of an ontological construct is computed using its old
accuracy, its value change frequency, and its confidence level. The value change
frequency and the confidence level are both properties of an ontological construct
that have to be stated by the ontology engineer during the generation process of the
extraction ontology. For the case where the ontology engineer does not state values
for these properties, default values are used instead. The default value change fre-
quency is ’stable’, assuming that the construct really represents relevant information
and therefore will be present in the input texts. The defaultvalue for the confidence
level is 1, assuming that the ontology engineer is sure aboutthe presence of this
construct in the ontology. These default values are being used for our extraction
ontology as well, because we choose not to state values for those properties of our
ontological constructs.

Starting to use an extraction ontology for the first time, theconstructs in the
ontology are being marked with an accuracy of 1. After that, each extraction will
initiate the re-computation of this value, using the beforementioned properties.
Every time a property does not occur in the input text, its accuracy will decrease
with a pace related to its value change frequency and confidence level.

After the first ten input texts had been extracted, our methodreturned the fol-
lowing accuracy list:

0, 129 accuracy of ’Digital zoom’

0, 36 accuracy of ’Optical zoom’

0, 6 accuracy of ’Megapixel’

1 accuracy of ’Model’

1 accuracy of ’Display size’

CHAPTER 7. EXPERIMENTAL RESULTS 88

Looking at such a list, the user can see that the ’Digital Zoom’ property is not
well represented in the input texts, indicating either thatthe property lost its rel-
evance over time (i.e., the domain of interest had changed over time) or that the
keywords or the data type of this property are not suitable toextract the desired
information. Both cases require the user to look at the inputtexts and the ontology
to figure out which one of these is actually true.

We think that this approach to change detection is necessaryand sufficient for
the use within IESs. More sophisticated approaches, for example to change the
ontology automatically, is not an issue within IESs. This ismainly because the
input ontology represents the interests of the user, and changing it would be like
imposing the systems’ views on the user. Such automatic adaptations would also
yield to an ontology that is tailored just for the input textsat hand, whereas it could
have been already at the correct level of generality to extract as much information
as possible and a change would only worsen the overall performance of the system.

Chapter 8

Summary and Future Work

Maybe there’s a world that I’m still to find
Open up o world and let me in, then there’ll be

a new life to begin

Maybe There’s A World - Yusuf Islam

In this work, we presented our approach towards ontology-driven IES that takes an
ontology as input and utilises its pre-defined semantics to exploit as much infor-
mation as possible of the underlying conceptualisation of the ontology. Using this
information it is able to extract information from natural language text.

The system as it is, can be seen as a scalable and portable IES,because to adopt
the system to a changed specification or a new domain, only theontology has to be
changed. This task is easier for an ontology-driven approach then for the knowledge
engineering approach or the semi-automatic training approach to IE. Because in the
case of the former, a human knowledge engineer has to adopt the extraction rules
given in a rule representation language that is known to him.And in the case of the
latter, a human annotator has to annotate the whole data corpus from scratch or has
to go through all the documents in the corpus to change her annotations.

Some domains require better performing IESs and therefore it is likely that some
IES developers will tailor their systems for only a particular domain at hand. But
although this would cause a decrease in the portability of the system, it still would
be easier to scale, compared to the other approaches to IE. Further, many domains
have similar characteristics. In such cases the portability should also be not a real
problem (e.g., digital cameras vs. digital video cameras).

It should also be stated that generating ontologies today ismuch more eas-
ier then generating extraction rules or making annotationson large data corpora.
Whereas, the generation of extraction rules requires a knowledge engineer who is
familiar with the particular rule representation language, ontologies can be gener-
ated using ontology editing tools which require no knowledge about the underlying
syntax of the ontology representation languages. As such, ontologies can be gener-
ated by a larger community of people, widening the application field of ontology-
driven IESs.

89

CHAPTER 8. SUMMARY AND FUTURE WORK 90

8.1 Summary

In the introduction of this thesis we stated our research questions to be addressed
in the course of our work. In this section we will summarise what we were able to
discover in our quest for satisfying answers.

Research questions regarding effects of ontologies on IESs

How can ontologies be utilised to address main challenges ofIESs, such as per-
formance, portability, and scalability?

Ontologies can be used to represent the context in which the relevant kind of in-
formation is naturally embedded in. So, they can serve as both, a specification of
relevant information the system has to look for and a conceptualisation of the do-
main of interest. By providing the IES with such context knowledge, the system
is able to rule out incorrect answers and thus increase its performance. Further,
by putting the specification and domain knowledge in an ontology, which can be
seen as an external and independent component from the system, it is achieved
that application-specific knowledge became explicit. Changes in the specification
require only changes in the ontology and not the system itself, yielding to better
scalable IESs. The same fact can also yield better portability, because to provide
extraction for a different domain, the ontology can be changed so that it represents
the new specification and the new domain.

Is it possible to develop an unsupervised and automatic IE method, that utilises
no other resource but an input ontology?

Given the well defined semantics of existing ontology representation languages it
is indeed possible to utilise ontologies to develop automatic IESs. Our experimen-
tal results (see Chapter 7) showed that an IES can yield feasible results even if it
uses only an input ontology and no other knowledge resource that ordinary IESs
use, such as lexicons, parsers, etc. The only thing that has to be provided to the
system is apparently the input ontology. When this is generated by a human, it will
be more likely at the right level of generality. However, this cannot be compared to
other approaches to IESs where the human intervention takesthe form of generat-
ing extraction rules using a particular rule representation language, or of annotating
large amounts of data. Rather, the user has to develop a smallontology represent-
ing her interests with respect to a certain domain and can thereby use well-known
ontology development frameworks. In that way, the application field of our method
is widened, because it enables the ’common’ user to state extraction specifications
that goes beyond simple keyword search.

Are there certain requirements to the content of ontologieswhen they are going
to be used in conjunction with IESs? If yes, what are they and how can they be
reconciled?

CHAPTER 8. SUMMARY AND FUTURE WORK 91

In the course of our work we encountered that for many application fields, re-
searchers propose the use of additional knowledge that helpthe system to perform
its task more accurately. The field of IE turns out to be one of these application
fields, because of its complexity and because of the complexity of the ontology life-
cycle itself. In our case we had to provide the system, first ofall, with trigger words
(i.e., keywords) for the sought after components in the ontology. The second im-
portant thing, was to specify value constraints so that the system could narrow its
search range from almost everything to, for example, integer numbers.

We also encountered that it can be very useful to mark ontological components
with confidence levels. For example, when the same value is assignable to two
components at the same time, the component will be chosen of which the ontology
engineer was more certain. The system uses these confidence levels also to predict
whether the extraction interests of the user has changed over time or not. Our system
makes use of a method that decreases the accuracy of an ontological component
when it does not appear in the input files according to a mathematical function
that uses the pre-defined confidence level and information about the components’
predicted behaviour over time.

Research questions regarding the maintenance of ontologies within IESs

How to detect out-of-date ontological components in a domain of interest?

As mentioned before, the detection of out-of-date ontological components can take
several forms depending on the type of the ISs at hand. In our case, where we have
an IES, the most straight forward way to detect that an ontological component is not
relevant anymore is to monitor its appearance in the input files over time. However,
during our work we encountered that pre-defined knowledge about the predicted
behaviour of a component can be very helpful to decide whether a change in the
appearance frequency is really an indicator that the component became out-of-date
or not. Therefore, we suggest that the user of our system should mark the com-
ponents in the ontology as ’stable’ or ’frequent’ indicating that the component will
likely occur in the input files consequently (i.e., stable) or that its appearance in the
input files are rather unpredictable (i.e., frequent). Considering this value change
frequency and the confidence level of an ontological construct, our system com-
putes theaccuracyof each component after a extraction is being performed on an
input text. If theaccuracyof a component reaches a given threshold the system can
suggest that it became out-of-date.

How to query/monitor the changes themselves?

As mentioned in Section 3.3.2 there are several ways to represent ontology changes.
In our context, we decided that it is not desirable to change the ontology automat-
ically. Rather, we present the user suggestions of changes that could be performed
on the ontology, because either the conceptualisation havechanged or the extraction
interest of the user has changed.

CHAPTER 8. SUMMARY AND FUTURE WORK 92

How to apply changes to the ontology? Automatically or manually?

In cases where the ontology is being generated using a corpusof domain relevant
documents, changes can be detected by monitoring changes inthe corpus itself and
applied automatically. In our case, however, we use alreadyexisting ontologies to
extract information form input documents and do not performany automatic ontol-
ogy learning. So, our only source that represents the domainof interest are the input
files the user provides us to extract information from. One might think that the on-
tology could be changed when certain components are not present in the input files
over a certain time anymore. However, we think that this is not that good an idea in
the context of IESs, because it would adopt the ontology to the input files causing
over-fitting. Therefore, we decided that the ontology, mainly because it represents
the task specification, should not be changed by the system, but only by the user.

The only changes in the ontology performed automatically byour IESs is to
compute new values for properties such asaccuracy. These changes only affect the
displayed results of the extraction process and do not change the conceptualisation
represented by the ontology. The system then lists the components of the ontology
by their accuracy in increasing order and suggests that components with a low ac-
curacy should be changed in the ontology. However, the end decision is going to be
made by the user of the system.

8.2 Future Work

In this section, we want to point out directions for future work in the field of
ontology-based IE that resulted from the research we have done in the course of
this thesis, because we think that a lot of work has to be done in this field to con-
vince users that it is indeed beneficial to use ontologies in conjunction with IESs.

Developing an extension to OWL for IE

In this thesis we proposed several properties that should beused to enrich the ex-
isting components of OWL to represent conceptualisations.However, we did not
developed an extension to OWL that covered these properties. The reason for that
was mainly because this work aims to give insights in the usability and benefits of
ontologies when used in conjunction with IESs. To develop anextension for a par-
ticular ontology representation language would thereforebe out of the scope of our
work.

However, we think that the more OWL becomes the quasi standard for repre-
senting ontologies among the AI community, such an extension could be useful
for researchers interested in IE and thus worth the effort. The difficulty of such
an attempt should not be underestimated, because the development of an extension
would require the development of appropriate reasoners that can handle the new
components. Further, it would also require the extension ofexisting APIs or the
development of new APIs to make the integration of ontologies in IESs possible.

CHAPTER 8. SUMMARY AND FUTURE WORK 93

An extension to OWL for IE should contain means for the following:

• User-defined data types

• Quality properties

• Temporal properties

• Linguistic properties

Incorporating linguistics

Another possible direction for future work would be the incorporation of linguistics
into the extraction process. For that, the ontological components could have to be
enriched with linguistic information, for example the part-of-speech tag for possible
values of a certain property. Of course, the IESs would have to be developed in a
way that it can process this kind of knowledge. Further, it would be necessary to pre-
process the input files of the system linguistically, to at least assign part-of-speech
tags to the words in the input files.

Such an attempt would especially be useful for domains wherethe data types of
the relevant information are mainly strings.

Utilising intentional knowledge for better extraction results

In our proposed method we focused only on the extensional knowledge present in
ontologies but merely neglected the intensional knowledge(i.e., instances) if they
were not directly related to properties of interest (i.e.,owl:ObjectProperty).
However, intentional knowledge could turn out to be useful as well. An IES could
compare its identified candidate values with existing values of instances and could
make decisions based on some similarity measurement.

Appendix A

Example Ontologies in OWL

OWL Representation of the Basic Digital Camera Ontology

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

]>

<rdf:RDF
xmlns ="&owl;"
xmlns:owl ="&owl;"
xml:base ="http://www.w3.org/2002/07/owl"
xmlns:rdf ="&rdf;"
xmlns:rdfs="&rdfs;"

>

<owl:Ontology rdf:about="">
<rdfs:comment> An ontology representing my interests with regard to
digital cameras.

</rdfs:comment>
</owl:Ontology>

<owl:Class rdf:ID = "digital_camera">
<rdfs:comment> digital camera </rdfs:comment>

</owl:Class>

<owl:DatatypeProperty rdf:ID="model">
<rdfs:comment></rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;Name" />

</owl:DatatypeProperty>

94

<owl:DatatypeProperty rdf:ID="display">
<rdfs:comment>lcd, LCD, display, screen, inch, liquid, crystal
</rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;float" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="megapixel">
<rdfs:comment>megapixel, Megapixel, MegaPixel million pixel</rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;float" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="optical_zoom">
<rdfs:comment>optical zoom, Optical, optical, zoom</rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;decimal" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="digital_zoom">
<rdfs:comment>digital zoom</rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;decimal" />

</owl:DatatypeProperty>

</rdf:RDF>

95

OWL Representation of the Extended Digital Camera Ontology

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

]>

<rdf:RDF
xmlns ="&owl;"
xmlns:owl ="&owl;"
xml:base ="http://www.w3.org/2002/07/owl"
xmlns:rdf ="&rdf;"
xmlns:rdfs="&rdfs;"

>

<owl:Ontology rdf:about="">
<rdfs:comment> An ontology representing my interests with regard to

digital cameras.
</rdfs:comment>

</owl:Ontology>

<owl:Class rdf:ID = "digital_camera">
<rdfs:comment> digital camera </rdfs:comment>

</owl:Class>

<owl:DatatypeProperty rdf:ID="model">
<rdfs:comment></rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;Name" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="display">
<rdfs:comment>lcd, LCD, display, screen, inch, liquid, crystal
</rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;float" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="megapixel">
<rdfs:comment>megapixel, Megapixel, MegaPixel, million, pixel
</rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;float" />

</owl:DatatypeProperty>

96

<owl:DatatypeProperty rdf:ID="optical_zoom">
<rdfs:comment>optical zoom, optical, Optical, zoom</rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;decimal" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="digital_zoom">
<rdfs:comment>digital zoom</rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;decimal" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="battery">
<rdfs:comment>battery, power, Battery</rdfs:comment>
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="&xsd;Name" />

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="storage_type">
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="#StorageMedium" />

</owl:ObjectProperty>

<owl:Class rdf:ID ="StorageMedium"/>

<StorageMedium rdf:ID ="SD"/>

<StorageMedium rdf:ID ="CF"/>

<StorageMedium rdf:ID ="xD"/>

<StorageMedium rdf:ID ="MemoryStick"/>

<owl:ObjectProperty rdf:ID="movie_format">
<rdfs:domain rdf:resource = "#digital_camera" />
<rdfs:range rdf:resource ="#MovieFormat" />

</owl:ObjectProperty>

<owl:Class rdf:ID ="MovieFormat"/>

<MovieFormat rdf:ID ="QuickTime"/>

<MovieFormat rdf:ID ="AVI"/>

<MovieFormat rdf:ID ="MPEG"/>

</rdf:RDF>

97

Appendix B

OWL 1.0 Data Types

Allowed XML Schema data types in OWL 1.0 as defined in XML Schema Part
2: Datatypes1

xsd:string represents character strings in XML. Set of finite-length sequences
of characters.

xsd:boolean has the value space required to support the mathematical concept
of binary-valued logic:{true, false}.

xsd:decimal represents arbitrary precision decimal numbers. The valuespace
of decimal is the set of the values i x10−n, where i and n are integers such that n
>= 0.

xsd:float corresponds to the IEEE single-precision 32-bit floating point type
[IEEE 754-1985]. The basic value space offloat consists of the values m x2e

where m is an integer whose absolute value is less than224, and e is an integer be-
tween -149 and 104, inclusive. In addition to the basic valuespace described above,
the value space offloat also contains the following special values: positive and
negative zero, positive and negative infinity and not-a-number. The order-relation
on float is: x< y iff y - x is positive. Positive zero is greater than negativezero.
Not-a number equals itself and is greater than all float values including positive in-
finity.

xsd:double corresponds to IEEE double-precision 64-bit floating pointtype
[IEEE 754-1985]. The basic value space ofdouble consists of the values m x
2e, where m is an integer whose absolute value is less than253, and e is an integer
between -1075 and 970, inclusive. In addition to the basic value space described
above, the value space ofdouble also contains the following special values: posi-
tive and negative zero, positive and negative infinity and not-a-number. The order-
relation on double is: x< y iff y - x is positive. Positive zero is greater than negative
zero. Not-a-number equals itself and is greater than all double values including pos-
itive infinity.

1http://www.w3.org/TR/2003/WD-owl-semantics-20030203/syntax.html

98

xsd:dateTime represents a specific instant of time. The value space ofdateTime
is the space of combinations of date and time of day values as defined in 5.4 of [ISO
8601]2.

A single lexical representation, which is a subset of the lexical representations
allowed by [ISO 8601], is allowed fordateTime. This lexical representation is
the [ISO 8601] extended format CCYY-MM-DDThh:mm:ss where ”CC” represents
the century, ”YY” the year, ”MM” the month and ”DD” the day, preceded by an
optional leading ”-” sign to indicate a negative number. If the sign is omitted, ”+” is
assumed. The letter ”T” is the date/time separator and ”hh”,”mm”, ”ss” represent
hour, minute and second respectively. Additional digits can be used to increase the
precision of fractional seconds if desired i.e the format ss.ss... with any number of
digits after the decimal point is supported. The fractionalseconds part is optional;
other parts of the lexical form are not optional. To accommodate year values greater
than 9999 additional digits can be added to the left of this representation. Leading
zeros are required if the year value would otherwise have fewer than four digits;
otherwise they are forbidden. The year 0000 is prohibited.

This representation may be immediately followed by a ”Z” to indicate Coor-
dinated Universal Time (UTC) or, to indicate the time zone, i.e. the difference
between the local time and Coordinated Universal Time, immediately followed by
a sign, + or -, followed by the difference from UTC represented as hh:mm (note:
the minutes part is required).

For example, to indicate 1:20 pm on May the 31st, 1999 for Eastern Standard
Time which is 5 hours behind Coordinated Universal Time (UTC), one would write:
1999-05-31T13:20:00-05:00.

xsd:time represents an instant of time that recurs every day. The value space of
time is the space of time of day values as defined in 5.3 of [ISO 8601]. Specifically,
it is a set of zero-duration daily time instances.

The lexical representation fortime is the left truncated lexical representation
for dateTime: hh:mm:ss.sss with optional following time zone indicator. For ex-
ample, to indicate 1:20 pm for Eastern Standard Time which is5 hours behind
Coordinated Universal Time (UTC), one would write: 13:20:00-05:00.

xsd:date represents a calendar date. The value space ofdate is the set of
Gregorian calendar dates as defined in 5.2.1 of [ISO 8601]. Specifically, it is a set
of one-day long, non-periodic instances e.g. lexical 1999-10-26 to represent the
calendar date 1999-10-26, independent of how many hours this day has.

The lexical representation fordate is the reduced (right truncated) lexical rep-
resentation fordateTime: CCYY-MM-DD. No left truncation is allowed. An
optional following time zone qualifier is allowed as fordateTime. To accommo-
date year values outside the range from 0001 to 9999, additional digits can be added
to the left of this representation and a preceding ”-” sign isallowed. For example,
to indicate May the 31st, 1999, one would write: 1999-05-31.

2International Organization for Standardization (ISO), Dates and Times, 1988-06-15.

99

xsd:gYearMonth represents a specific gregorian month in a specific gregorian
year. The value space ofgYearMonth is the set of Gregorian calendar months
as defined in 5.2.1 of [ISO 8601]. Specifically, it is a set of one-month long, non-
periodic instances e.g. 1999-10 to represent the whole month of 1999-10, indepen-
dent of how many days this month has.

The lexical representation forgYearMonth is the reduced (right truncated)
lexical representation fordateTime: CCYY-MM. No left truncation is allowed.
An optional following time zone qualifier is allowed. To accommodate year values
outside the range from 0001 to 9999, additional digits can beadded to the left of
this representation and a preceding ”-” sign is allowed. Forexample, to indicate the
month of May 1999, one would write: 1999-05.

xsd:gYear represents a gregorian calendar year. The value space ofgYear is
the set of Gregorian calendar years as defined in 5.2.1 of [ISO8601]. Specifically,
it is a set of one-year long, non-periodic instances e.g. lexical 1999 to represent the
whole year 1999, independent of how many months and days thisyear has.

The lexical representation forgYear is the reduced (right truncated) lexical
representation for dateTime: CCYY. No left truncation is allowed. An optional
following time zone qualifier is allowed as fordateTime. To accommodate year
values outside the range from 0001 to 9999, additional digits can be added to the left
of this representation and a preceding ”-” sign is allowed. For example, to indicate
1999, one would write: 1999.

xsd:gMonthDay is a gregorian date that recurs, specifically a day of the year
such as the third of May. Arbitrary recurring dates are not supported by this datatype.
The value space ofgMonthDay is the set of calendar dates, as defined in 3 of [ISO
8601]. Specifically, it is a set of one-day long, annually periodic instances.

The lexical representation forgMonthDay is the left truncated lexical repre-
sentation for date: –MM-DD. An optional following time zonequalifier is allowed
as for date. No preceding sign is allowed. No other formats are allowed.

This datatype can be used to represent a specific day in a month. To say, for
example, that my birthday occurs on the 14th of September ever year.

xsd:gDay is a gregorian day that recurs, specifically a day of the monthsuch as
the 5th of the month. Arbitrary recurring days are not supported by this datatype.
The value space ofgDay is the space of a set of calendar dates as defined in 3 of
[ISO 8601]. Specifically, it is a set of one-day long, monthlyperiodic instances.

The lexical representation forgDay is the left truncated lexical representation
for date: —DD . An optional following time zone qualifier is allowed as for date.
No preceding sign is allowed. No other formats are allowed.

xsd:gMonth is a gregorian month that recurs every year. The value space of
gMonth is the space of a set of calendar months as defined in 3 of [ISO 8601].
Specifically, it is a set of one-month long, yearly periodic instances.

The lexical representation forgMonth is the left and right truncated lexical rep-

100

resentation for date: –MM–. An optional following time zonequalifier is allowed
as for date. No preceding sign is allowed. No other formats are allowed.

xsd:hexBinary represents arbitrary hex-encoded binary data. The value space
of hexBinary is the set of finite-length sequences of binary octets.

hexBinary has a lexical representation where each binary octet is encoded as
a character tuple, consisting of two hexadecimal digits ([0-9a-fA-F]) representing
the octet code. For example, ”0FB7” is a hex encoding for the 16-bit integer 4023
(whose binary representation is 111110110111).

xsd:base64Binary represents Base64-encoded arbitrary binary data. The
value space ofbase64Binary is the set of finite-length sequences of binary
octets.

xsd:anyURI represents a Uniform Resource Identifier Reference (URI). An
anyURI value can be absolute or relative, and may have an optional fragment iden-
tifier (i.e., it may be a URI Reference).

xsd:normalizedString represents white space normalized strings. The value
space ofnormalizedString is the set of strings that do not contain the car-
riage return (#xD), line feed (#xA) nor tab (#x9) characters. The lexical space of
normalizedString is the set of strings that do not contain the carriage return
(#xD) nor tab (#x9) characters.

xsd:token represents tokenized strings. The value space oftoken is the set
of strings that do not contain the line feed (#xA) nor tab (#x9) characters, that have
no leading or trailing spaces (#x20) and that have no internal sequences of two or
more spaces. The lexical space oftoken is the set of strings that do not contain
the line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces
(#x20) and that have no internal sequences of two or more spaces.

xsd:language represents natural language identifiers as defined by [RFC 17663].
The value space of language is the set of all strings that are valid language identifiers
as defined in the language identification section of [XML 1.0 (Second Edition)4].
The lexical space oflanguage is the set of all strings that are valid language
identifiers as defined in the language identification sectionof [XML 1.0 (Second
Edition)].

xsd:NMTOKEN represents the NMTOKEN attribute type from [XML 1.0 (Sec-
ond Edition)]. The value space ofNMTOKEN is the set of tokens that match the Nm-
token production in [XML 1.0 (Second Edition)]. The lexicalspace ofNMTOKEN
is the set of strings that match the Nmtoken production in [XML 1.0 (Second Edi-
tion)].

3H. Alvestrand, ed. RFC 1766: Tags for the Identification of Languages 1995.
4World Wide Web Consortium. Extensible Markup Language (XML) 1.0, Second Edition.

101

xsd:Name represents XML Names. The value space ofName is the set of all
strings which match the Name production of [XML 1.0 (Second Edition)]. The lex-
ical space ofName is the set of all strings which match the Name production of
[XML 1.0 (Second Edition)].

xsd:NCName represents XML ”non-colonized” Names. The value space of
NCName is the set of all strings which match the NCName production of[Names-
paces in XML5]. The lexical space ofNCName is the set of all strings which match
the NCName production of [Namespaces in XML].

xsd:integer is derived fromdecimal by fixing the value of fractionDigits
to be 0. This results in the standard mathematical concept ofthe integer numbers.
The value space ofinteger is the infinite set ...,-2,-1,0,1,2,....

integer has a lexical representation consisting of a finite-length sequence of
decimal digits (#x30-#x39) with an optional leading sign. If the sign is omitted, ”+”
is assumed. For example: -1, 0, 12678967543233, +100000.

xsd:nonPositiveInteger is derived frominteger by setting the value
of maxInclusive to be 0. This results in the standard mathematical concept of the
non-positive integers. The value space ofnonPositiveInteger is the infinite
set ...,-2,-1,0.

nonPositiveInteger has a lexical representation consisting of a negative
sign (”-”) followed by a finite-length sequence of decimal digits (#x30-#x39). If the
sequence of digits consists of all zeros then the sign is optional. For example: -1, 0,
-12678967543233, -100000.

xsd:negativeInteger is derived fromnonPositiveIntegerby setting
the value of maxInclusive to be -1. This results in the standard mathematical concept
of the negative integers. The value space ofnegativeInteger is the infinite set
...,-2,-1.

negativeInteger has a lexical representation consisting of a negative sign
(”-”) followed by a finite-length sequence of decimal digits(#x30-#x39). For ex-
ample: -1, -12678967543233, -100000.

xsd:long is derived frominteger by setting the value of maxInclusive to be
9223372036854775807 and minInclusive to be -9223372036854775808.

long has a lexical representation consisting of an optional signfollowed by a
finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, ”+” is
assumed. For example: -1, 0, 12678967543233, +100000.

xsd:int is derived fromlong by setting the value of maxInclusive to be 2147483647
and minInclusive to be -2147483648.

int has a lexical representation consisting of an optional signfollowed by a
finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, ”+” is

5World Wide Web Consortium. Namespaces in XML.

102

assumed. For example: -1, 0, 126789675, +100000.

xsd:short is derived fromint by setting the value of maxInclusive to be
32767 and minInclusive to be -32768.

short has a lexical representation consisting of an optional signfollowed by a
finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, ”+” is
assumed. For example: -1, 0, 12678, +10000.

xsd:byte is derived fromshort by setting the value of maxInclusive to be 127
and minInclusive to be -128.

byte has a lexical representation consisting of an optional signfollowed by a
finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, ”+” is
assumed. For example: -1, 0, 126, +100.

xsd:nonNegativeInteger is derived frominteger by setting the value
of minInclusive to be 0. This results in the standard mathematical concept of the
non-negative integers. The value space ofnonNegativeInteger is the infinite
set 0,1,2,....

nonNegativeInteger has a lexical representation consisting of an optional
sign followed by a finite-length sequence of decimal digits (#x30-#x39). If the sign
is omitted, ”+” is assumed. For example: 1, 0, 12678967543233, +100000.

xsd:unsignedLong is derived fromnonNegativeInteger by setting the
value of maxInclusive to be 18446744073709551615.

unsignedLong has a lexical representation consisting of a finite-length se-
quence of decimal digits (#x30-#x39). For example: 0, 12678967543233, 100000.

xsd:unsignedInt is derived fromunsignedLong by setting the value of
maxInclusive to be 4294967295.

unsignedInt has a lexical representation consisting of a finite-length se-
quence of decimal digits (#x30-#x39). For example: 0, 1267896754, 100000.

xsd:unsignedShort is derived fromunsignedInt by setting the value of
maxInclusive to be 65535.

unsignedShort has a lexical representation consisting of a finite-length se-
quence of decimal digits (#x30-#x39). For example: 0, 12678, 10000.

xsd:unsignedByte is derived fromunsignedShort by setting the value
of maxInclusive to be 255.

unsignedByte has a lexical representation consisting of a finite-length se-
quence of decimal digits (#x30-#x39). For example: 0, 126, 100.

xsd:positiveInteger is derived fromnonNegativeIntegerby setting
the value of minInclusive to be 1. This results in the standard mathematical concept
of the positive integer numbers. The value space ofpositiveInteger is the
infinite set 1,2,....

103

positiveInteger has a lexical representation consisting of an optional pos-
itive sign (”+”) followed by a finite-length sequence of decimal digits (#x30-#x39).
For example: 1, 12678967543233, +100000.

104

List of Figures

2.1 Description Logics constructors14
2.2 Visual representation of a typical RDF statement 15

3.1 Ontology Life Cycle . 17
3.2 Ontology Learning Life Cycle . 21
3.3 Ontology Learning Layer Cake . 22
3.4 Phases of Ontology Evolution . 30
3.5 A Spring Embedding of a Graph 35
3.6 Typical 3-level tree structure with numbers indicatingthe size of each leaf node 36
3.7 Tree map of Figure 3.6 . 37

4.1 Architecture of an IES . 43
4.2 Knowledge engineering approach to Information Extraction 45
4.3 Semi-automatic approach to Information Extraction 46

5.1 General architecture of an ontology-driven Information System . . . 55
5.2 Knowledge engineering approach to IE using an ontology 58
5.3 (Semi-)automatic training approach to IE using an ontology 59
5.4 Fully automatic approach to IE using an ontology 60

6.1 Main architecture of ontoX . 64
6.2 Basic digital camera ontology . 65
6.3 Sample input data representing a digital camera review 66
6.4 Graphical digital camera ontology used for extraction 69
6.5 Sample input data after preprocessing 75

7.1 Graphical representation of our digital camera ontology 82
7.2 Graphical representation of our extended digital camera ontology . . 84
7.3 Graphical representation of our digital camera ontology 86

105

Bibliography

[Aitken, 2002] J.S. Aitken. Learning information extraction rules: An inductive logic program-
ming approach. InProceedings of the 15th European Conference on Artificial Intelligence
(ECAI’02), Amsterdam, 2002. IOS Press.

[Appelt and Israel, 1999] D.E. Appelt and D.J. Israel. Introduction to information extraction
technology. InProceedings of the 16th International Joint Conference on Artificial Intelli-
gence (IJCAI), 1999.

[Appelt, 1999] D.E. Appelt. Introduction to information extraction.AI Communications,
12:161–172, 1999.

[Baaderet al., 2003] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, New York, NY, USA, 2003.

[Baehreckeet al., 2004] E. Baehrecke, N. Dang, K. Babaria, and B. Shneidermane. Visualiza-
tion and analysis of Microarray and Gene Ontology data with Treemaps.BMC Bioinformat-
ics, 5(84), 2004.

[Berners-Lee, 1999] T. Berners-Lee. Weaving the Web: The Original Design and Ultimate
Destiny of the World Wide Web by Its Inventor. Harper San Francisco, 1999.

[Brachman and Levesque, 1984] R. J. Brachman and H. J. Levesque. The tractability of sub-
sumption in frame-based description languages. InProceedings of the National Conference
on Artificial Intelligence, pages 34–37, Austin, Texas, 1984. William Kaufmann.

[Brewsteret al., 2004] Ch. Brewster, H. Alani, S. Dasmahapatra, and Y. Wilks. Data-driven
ontology evaluation. InProceedings of the 4th International Conference on Language Re-
sources and Evaluation, Lisbon, 2004. European Language Resources Association.

[Buitelaaret al., 2005] P. Buitelaar, Ph. Cimiano, and B. Magnini.Ontology Learning from
Text: An Overview, volume 123 ofFrontiers in Artificial Intelligence and Applications, pages
3–12. IOS Press, 2005.

[Chincor, 1998] N.A. Chincor. Overview of MUC-7/MET-2. InIn Proceedings of the Message
Understanding Conference MUC-7, 1998.

[Cimiano and J.Völker, 2005] Ph. Cimiano and J.Völker. Text2Onto - a framework for ontol-
ogy learning and data-driven change discovery. InIn Proceedings of the 10th International
Conference on Applications of Natural Language to Information Systems (NLDB’2005),
2005.

106

[Cowie and Lehnert, 1996] J. Cowie and W. Lehnert. Information extraction.Communications
of the ACM, 39:1:80–91, 1996.

[Donini et al., 1996] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in
description logics. InPrinciples of Knowledge Representation, pages 191–236. Center for
the Study of Language and Information, Stanford, CA, US, 1996.

[Embleyet al., 1992] D.W. Embley, B.D. Kurtz, and S.N. Woodfield.Object-oriented systems
analysis: a model-driven approac. Prentice-Hall, 1992.

[Embley, 2004] D.W. Embley. Toward semantic understanding: An approach based on infor-
mation extraction ontologies. InProceedings of the Fifteenth Conference on Australasian
Database, pages 3–12. Australian Computer Society, January 2004.

[Faure and Nedellec, 1999] D. Faure and C. Nedellec. Knowledge acquisition of predicate ar-
gument structures from technical texts using machine learning: The system ASIUM. In
Proceedings of the 11th European Workshop on Knowledge Acquisition, Modeling and Man-
agement, 1999.

[Fenselet al., 2001] D. Fensel, I. Horrocks, F. Harmelen, D. McGuinness, and D. Patel-
Schneider. OIL: Ontology infrastructure to enable the semantic web. IEEE Intelligent Sys-
tems, 16(2), 2001.

[Fluit et al., 2004] C. Fluit, M. Sabou, and F. van Harmelen. Supporting user tasks through
visualisation of light-weight ontologies. InHandbook on Ontologies. Springer Verlag, 2004.

[Fruchterman and Reingold, 1991] T.M.J. Fruchterman and E.M. Reingold. Graph drawing by
force-directed placement.Software - Practice Experience, 21(11):1129–1164, 1991.

[Goméz-Pérez, 1995] A. Goméz-Pérez. Some ideas and examples to evaluate ontologies. In
Proceedings of the 11th Conference on Artificial Intelligence for Applications, February
1995.

[Grigoris and van Harmelen, 2004] A. Grigoris and F. van Harmelen.A Semantic Web Primer.
The MIT Press, Cambridge, Massachusetts, London, England,2004.

[Grishman and Sundheim, 1996] R. Grishman and B. Sundheim. Message understanding con-
ference - 6: A brief history. InIn Proceedings of the International Conference on Computa-
tional Linguistics, 1996.

[Grishman and Yangarber, 2000] R. Grishman and R. Yangarber. Issues in corpus-trained in-
formation extraction. InIn Proceedings of International Symposium: Toward the Realization
of Spontaneous Speech Engineering, pages 107–112, February 2000.

[Gruber, 1993] T.R. Gruber. Toward principles for the design of ontologiesused for knowledge
sharing.International Journal of Human-Computer Studies, 43:907–928, 1993.

[Guarino and Giaretta, 1995] N. Guarino and P. Giaretta. Ontologies and knowledge bases:
Towards a terminological clarification. In Mars N, editor,Towards Very Large Knowledge
Bases: Knowledge Building and Knowledge Sharing, pages 25–32. IOS Press, Amsterdam,
The Netherlands, 1995.

107

[Guarino, 1998] N. Guarino. Formal ontology and information systems. In Nicola Guarino, ed-
itor, Proceedings of the First International Conference on Formal Ontologies in Information
Systems (FOIS), pages 3–15, June 1998.

[Hearst, 1998] M. Hearst. Automated discovery of WordNet relations. InWordNet: An Elec-
tronic Lexical Database. MIT Press, 1998.

[Heflin and Hendler, 2000] J. Heflin and J.A. Hendler. Dynamic ontologies on the web. In
Proceedings of the 17th National Conference on Artificial Intelligence, 2000.

[Horrockset al., 2003] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language.Journal of Web Semantics,
1(1):7–26, 2003.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages.Journal of the ACM, 42(4):741–843, 1995.

[Klein and Noy, 2003] M. Klein and N. Noy. A component-based framework for ontology evo-
lution. Technical report, Department of Computer Science,Vrije Universiteit Amsterdam,
2003.

[Klein, 2002] M. Klein. Versioning of distributed ontologies. Technicalreport, Vrije Univer-
siteit Amsterdam, 2002.

[Klein, 2004] M. Klein. Change Management for Distributed Ontologies. PhD thesis, Depart-
ment of Computer Science, Vrije Universiteit Amsterdam, 2004.

[Lavelli et al., 2004] A. Lavelli, M. Califf, F. Ciravegna, D. Freitag, C. Giuliano, N. Kushmer-
ick, and L. Romano. IE evaluation: Criticisms and recommendations. InProceedings of the
AAAI 2004 Workshop on Adaptive Text Extraction and Mining (ATEM 2004), 2004.

[Maedche, 2002] A. Maedche.Ontology Learning for the Semantic Web. Kluwer Academic
Publishers, Boston, Dordrecht, London, 2002.

[Marsh and Perzanowski, 1998] E. Marsh and D. Perzanowski. MUC-7 evaluation of IE tech-
nology: Overview of results. InProceedings of the Seventh Message Understanding Confer-
ence (MUC-7), April 1998.

[Menzies, 1999] T. Menzies. Cost benefits of ontologies.Intelligence, 10:26–32, 1999.

[Minsky, 1975] M. Minsky. A framework for representing knowledge. InThe Psychology of
Computer Vision, pages 211–277. McGraw-Hill, 1975.

[Mutton and Golbeck, 2003] P. Mutton and J. Golbeck. Visualization of semantic metadata
and ontologies. InProceedings of the Seventh International Conference on Information
Visualization, pages 300–305, July 2003.

[Noy and Klein, 2004] N. Noy and M. Klein. Ontology evolution: Not the same as schema
evolution.Knowledge and Information Systems, 6(4):428–440, 2004.

108

[Noy and Musen, 2002] N. Noy and M. Musen. PROMPTDIFF: A fixed-point algorithm for
comparing ontology versions. InProceedings of the National Conference on Artificial Intel-
ligence, 2002.

[Riloff, 1999] E. Riloff. Information extraction as a stepping stone toward story understanding.
In Understanding Language Understanding: Computational Models of Reading. MIT Press,
Cambridge, MA, USA, 1999.

[Schutz and Buitelaar, 2005] A. Schutz and P. Buitelaar. RelExt: A tool for relation extraction
in ontology extension. InProceedings of the 4th International Semantic Web Conference,
2005.

[Shamsfard and Barforoush, 2003] M. Shamsfard and A.A. Barforoush. The state of the art
in ontology learning: a framework for comparison.The Knowledge Engineering Review,
18(4):293–316, 2003.

[Shneiderman, 1992] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling
approach.ACM Transactions on Graphics, 11(1):92–99, 1992.

[Sowa, 1987] J.F. Sowa.Semantic Networks. Encyclopedia of Artificial Intelligence. Wiley,
1987.

[Stojanovic and Motik, 2002] L. Stojanovic and B. Motik. Ontology evolution within ontology
editors. InProceedings of the OntoWeb-SIG3 Workshop at the 13th International Conference
on Knowledge Engineering and Knowledge Management, pages 53–62, September 2002.

[Stojanovicet al., 2002] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven
ontology evolution management. InProceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web,
pages 285–300, October 2002.

[Tamma and Bench-Capon, 2002] V. Tamma and T. Bench-Capon. An ontology model to fa-
cilitate knowledge-sharing in multi-agent systems.The Knowledge Engineering Review,
17(1):41–60, 2002.

[Uschold and Grüninger, 1996] M. Uschold and M. Grüninger. Ontologies: Principles, meth-
ods, and applications.Knowledge Engineering Review, 11(2):93–155, 1996.

[Uschold and King, 1995] M. Uschold and M. King. Towards a methodology for building on-
tologies. InWorkshop on Basic Ontological Issues in Knowledge Sharing,held in conduction
with IJCAI-95, August 1995.

[Yildiz, 2004] B. Yildiz. Information extraction - utilizing table patterns. Master’s thesis,
Vienna University of Technology, 2004.

[Zúniga, 2001] G.L. Zúniga. Ontology: Its transformation from philosophy to information
systems. InProceedings of the International Conference on Formal Ontology in Information
Systems, pages 187–197, October 2001.

109

	Introduction
	Research Questions
	Contributions
	Publications
	Thesis Outline

	I Context and Related Work
	Ontologies
	Definition
	Characteristics of Ontologies
	Why to bother about Ontologies?
	Ontologies and Formal Logics
	Ontology Representation Languages
	RDF and RDF(S)
	OIL, DAML-ONT and DAML+OIL
	OWL

	Ontology Engineering
	Ontology Design
	Ontology Generation
	Some Clarifications
	Ontology Learning and Population

	Change Management of Ontologies
	Change Operations
	Representing Ontology Changes
	Ontology Versioning
	Ontology Evolution

	Evaluation of Ontologies
	Ontology Visualisation
	Graphs
	Tree-Maps

	Conclusion

	Information Extraction
	A Brief Historical Overview
	Architecture of an Information Extraction System
	Approaches to Information Extraction
	Evaluation
	Challenges of Information Extraction
	Conclusion

	II Ontology-Driven Information Extraction
	Ontology-Driven Information Systems
	Ontologies for Information Systems
	Obstacles on the Way

	Ontologies for Information Extraction Systems
	Requirements to Ontologies in IES

	ontoX - An ontology-driven IES
	Input Ontology of ontoX
	Keywords
	Constraining Properties
	Quality Properties
	Temporal Properties

	Ontology Management Module of ontoX
	Class Elements
	Property Elements

	The Rule Generation Module of ontoX
	The Extraction Module of ontoX
	Preprocessing
	Extraction
	Change Detection within ontoX

	Limitations

	Experimental Results
	Evaluation of Performance
	Evaluation of Scalability and Portability
	Evaluation of Change Detection

	Summary and Future Work
	Summary
	Future Work

	Example Ontologies in OWL
	OWL Data Types
	List of Figures
	Bibliography

