
MASTERARBEIT

Criteria-Driven Scheduling in an

IEEE-FIPA Compliant Multi-Agent

Infrastructure

ausgeführt am

Institut für Medizinische Kybernetik und Artificial Intelligence

der Medizinischen Universität Wien

sowie am

Österreichischen Forschungsinstitut für Artificial Intelligence

unter der Anleitung von

o.Univ.-Prof. Ing. Dr. Robert Trappl

und

Univ.-Ass. Dipl.-Ing. Dr. Paolo Petta

als verantwortlich mitwirkendem Universitätsassistenten

durch

Christoph David Hermann

Kautzenerstraße 7

A-3860 Heidenreichstein

Datum Unterschrift

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Zusammenfassung

Multiagentensysteme stellen einen möglichen Ansatz zur Lösung von verteilten Pro-

blemen dar. Im Gegensatz zu klassischen verteilten Problemlösungsstrategien können

in einem Multiagentensysteme mehrere, möglicherweise konkurrierende Ziele existieren.

Die IEEE Foundation for Intelligent Physical Agents, kurz FIPA, ist bemüht einen ge-

nerellen, kommerziell nutzbaren Standard zu schaffen der klar das Verhalten einzelner

Komponenten des Multiagentensystems regelt, jedoch nicht auf die konkrete Implemen-

tierung der Teilsysteme eingeht. Zusätzlich zur Systeminfrastruktur spezifiziert FIPA

eine Menge von Interaktionsprotokollen zur Koordination von Agenten. FIPA-konforme

Multiagentensysteme bieten jedoch keine direkte Unterstützung für Multiagentenpla-

nung. Im Zuge dieser Masterarbeit wird ein neuer Ansatz zur FIPA-konformen Integra-

tion von Multiagentenplanung und Scheduling vorgestellt, der auf TÆMS und VIE-CDS

aufbaut.

Framework for Task Analysis, Environment Modeling and Simulation, kurz TÆMS,

bietet ein formales, domänenunabhängiges Modell zur Repräsentation qualitativer und

quantitativer Aspekte von Koordination ebenso wie ein Modell zur Lösung von Multi-

agentenplanungsproblemen unter weichen Echtzeitbedingungen. Vienna Criteria-Driven

Scheduler, kurz VIE-CDS, ist ein Design-to-Criteria Scheduler welcher auf TÆMS-

Strukturen arbeitet. Sogenannte Schedulingkriterien erzwingen einen Kompromiss zwi-

schen Qualität, Kosten und Dauer der Scheduleausführung.

Der im Rahmen dieser Masterarbeit spezifizierte Prozess einer geschedulten Aktions-

ausführung besteht aus fünf Phasen und nutzt wiederum nur FIPA-standardisierte Inter-

aktionsprotokolle und Systemkomponenten. Dies garantiert die Anwendbarkeit des An-

satzes auf FIPA-konformen Plattformen.

Basierend auf der ebenfalls neu entworfenen XTAEMS Kodierung von TÆMS-Strukturen

erfolgte eine exemplarische Implementierung an Hand des Java Agent Development Fra-

mework, kurz JADE, als Repräsentanten für eine FIPA-konforme Entwicklungsumge-

bung.

Abstract

Multi-agent systems provide a possible approach for solving distributed problems. Un-

like conventional distributed problem solving strategies multi-agent systems can handle

distinct and maybe competing goals in the same system. The IEEE Foundation for In-

telligent Physical Agents referred to as FIPA defines standards for multi-agent systems

by specifying system components at functional and not implementation level. Its aim is

to promote commercially usable agent-based technologies. Additionally, FIPA specifies

so called interaction protocols serving agent coordination. FIPA-compliant agent plat-

forms do not directly offer multi-agent planning facilities. This master’s thesis presents a

new approach for integrating multi-agent planning and scheduling in a FIPA-compliant

multi-agent infrastructure.

Framework for Task Analysis, Environment Modeling and Simulation referred to as

TÆMS provides a formal domain-independent framework to represent qualitative and

quantitative aspects of coordination as well as a model for solving multi-agent plan-

ning and scheduling problems under soft realtime conditions. Vienna Criteria-Driven

Scheduler referred to as VIE-CDS is a Design-to-Criteria scheduler working on TÆMS

structures. So called scheduling criteria allow to determine preferences for schedules con-

cerning quality, cost and duration of schedule execution.

In this master’s thesis, the process of scheduled action execution is defined by five phases

using only FIPA standardised interaction protocols. This approach guarantees applica-

bility to FIPA compliant multi-agent systems.

Based on the new XTAEMS encoding of TÆMS structures, an example implementation

using the Java Agent Development Framework referred to as JADE, being a representa-

tive of FIPA-compliant multi-agent infrastructures, is provided.

Table of Contents

1. Introduction 1

1.1. Intelligent Agents? . 2

1.1.1. Classification of Agent Types . 4

1.1.2. Agent Environments . 5

1.1.3. Multi-Agent Systems . 6

1.1.4. Agent Communication . 7

1.1.5. The Social Context in Multi-Agent Systems 8

1.1.6. Agent Coordination . 8

1.1.7. Subjective versus Objective Coordination 11

1.2. A Framework for Task Analysis, Environment Modeling and Simulation

(TÆMS) . 12

1.3. Generalized Partial Global Planning (GPGP) 16

1.4. VIE-CDS . 18

1.5. Java Agent Development Framework (JADE) 19

1.5.1. FIPA Specifications . 20

1.5.2. Platform Architecture . 21

2. Evolution of VIE-CDS 25

2.1. A New Encoding for TÆMS . 25

2.2. New Structure of VIE-CDS . 32

2.2.1. Parser API . 33

2.2.2. Serialisation API . 34

2.3. XTAEMS Parser . 35

2.3.1. Parser Analysis . 38

3. Design-to-Criteria Scheduling Integration 45

3.1. Conceptual Design . 45

3.1.1. Ontologies . 46

IV

3.1.2. Publish and Discover . 52

3.1.3. Scheduling Phases . 54

3.2. Integrating VIE-CDS with JADE . 70

3.2.1. Package Structure . 70

3.2.2. Implementation Concept . 71

3.2.3. XTAEMS Agent . 77

4. Example Usage 79

4.1. Implementation . 79

4.2. Scenario . 82

4.2.1. Sample Run . 83

5. Conclusions and Further Work 87

5.1. Related Work . 87

5.1.1. Distributed Sliding Window Scheduler 87

5.1.2. Parma Development Environment (PARADE) 88

5.2. Conclusion . 88

5.3. Further Work . 90

A. XTAEMS Examples 92

A.1. The Getting Dinner Example . 92

A.2. Schedules for the Getting Dinner Example 98

B. VIE-CDS Serialiser Examples 104

B.1. Short-TAEMS . 104

B.2. Graphviz . 104

C. VIE-CDS Command-Line Usage 106

V

List of Figures

1.1. Classification of agent types . 4

1.2. Minimalistic TÆMS example . 13

1.3. DTC algorithm . 19

1.4. FIPA agent platform reference architecture 21

1.5. JADE platform . 22

1.6. Possible JADE configurations . 23

1.7. Interaction protocols in JADE . 24

2.1. VIE-CDS package structure . 32

2.2. XTAEMS parser . 37

2.3. Parser run-time behaviour . 40

2.4. Parser run-time behaviour without outlier values 41

2.5. Parser run-time behaviour in a boxplot 42

2.6. Number of nodes in relation to the file size. 43

2.7. Quantile-Quantile plot for the linear model of XTAEMS 43

2.8. Quantile-Quantile plot for the linear model of TTAEMS 44

3.1. Ontology relationships . 47

3.2. TAEMSOntology overview . 48

3.3. DTCOntology overview . 49

3.4. TAEMSMetaInfOntology overview . 50

3.5. FIPA Request Interaction Protocol . 55

3.6. FIPA Query Interaction Protocol . 56

3.7. FIPA Cancel Meta-Protocol . 56

3.8. Scheduling protocol flow . 58

3.9. Reference implementation’s Java package structure 70

3.10. States and transitions of the HandleRequestBehaviour finite state machine. 72

3.11. PlanScheduleBehaviour’s states and transitions 73

VI

3.12. States and transitions of the PlanScheduleBehavior finite state machine. 74

3.13. States and transitions of the HandleResultBehaviour finite state machine. 76

3.14. States and transitions of the DTCMethodExecutionLauncher finite state

machine. 77

4.1. Example Java package structure. 79

4.2. The RequesterAgent’s graphical user interface. 81

4.3. The RequesterAgent’s possible scheduling goals browser. 81

4.4. The RequesterAgent’s criteria sliders. 81

4.5. The SchedulerAgent’s graphical user interface. 82

4.6. Partial global TÆMS structure for KneeTreatments 86

VII

Listings

2.1. Example conversion of a TTAEMS token with a single argument (left)

into XTAEMS representation (right). 28

2.2. Example conversion of a TTAEMS subtask token (left) to XTAEMS (right). 28

2.3. Example conversion of data type distribution from TTAEMS (left) to

XTAEMS (right). 28

2.4. Conversion of TÆMS methods . 30

2.5. ANOVA table for run-times without outlier values. 39

2.6. ANOVA table for run-times containing outlier values. 40

3.1. Discover an agent with TÆMS knowledge 53

3.2. Discover a DTC scheduling service . 54

3.3. Scheduling request . 59

3.4. A TÆMS knowledge request. 60

3.5. A response to the TÆMS knowledge request specified in listing 3.4. . . . 61

3.6. Commitment request . 63

3.7. Commitment response . 64

3.8. A request for commitment confirmation. 65

3.9. A confirmation of the commitment specified in listing 3.8. 66

3.10. Agree scheduling request . 67

3.11. Indicate finished method execution . 67

3.12. Indicate finished schedule execution . 68

3.13. A minimum setup for an XTAEMS Agent 78

3.14. Addition of scheduling functionality . 78

4.1. The Preparator ’s local TÆMS structure. 83

4.2. The AnkleTreatment ’s local TÆMS structure. 84

4.3. The CnemialTreatment ’s local TÆMS structure. 84

4.4. The KneeTreatment1 ’s and KneeTreatment2 ’s local TÆMS structure. . . 85

4.5. The Requester ’s local TÆMS structure. 85

VIII

4.6. The first schedule with quality 2, cost 3 and duration 4. 85

4.7. The second schedule with quality 3, cost 4 and duration 4. 85

IX

1. Introduction

Multi-agent systems can be used for distributed problem solving in more or less open

domains. In contrast to classical distributed problem solving, agents in multi-agent

systems (MAS) need not share a single top-level goal. They have their own goals and

capabilities, and the goals of different agents may well be conflicting. Furthermore,

agents are able to actively engage in interactions with one another. Problem solving

abilities of the MAS emerge from agent interaction and combination of their individual

skills.

In this master’s thesis we deal with autonomous and collaborative agents. Autonomy

means that agents are not stuck with the information provided by their designers. They

are able to adapt their knowledge according to the changing environment they live in.

Collaboration addresses the fact that agents tend to offer their capabilities to others

and do not fool one another deliberately for gaining advantage. To realise such problem

solving capabilities, it is necessary that a community of agents acts in a coherent manner

to achieve such problem solving capabilities. Hence, it follows that there must be some

form of coordination between agents to put their actions in an order supporting the

overall problem solving process.

Several techniques for coordination between agents have been developed and imple-

mented in different multi-agent system frameworks. Task Analysis, Environment Model-

ing, and Simulation (TÆMS) [Lesser et al., 2004] is a formal domain-independent frame-

work which

” . . .models problem-solving activities of an intelligent agent operating in

environments where responses by specific deadlines may be required, where

the information required for the optimal performance of a computational task

may not be available, where the results of multiple agents’ computations (to

interdependent sub-problems) may need to be aggregated together in order to

1

solve a high-level goal, and where an agent may be contributing concurrently

to the solution of multiple goals.”

[Horling et al., 1999, p.4]

Directly associated with TÆMS is Design-to-Criteria1 (DTC) scheduling

[Wagner et al., 1998] which computes custom tailored schedules for achieving high-

level goals represented by TÆMS structures. Java Agent DEvelopment Framework 2

(JADE) [Bellifemine et al., 2007] is a software framework which eases development of

multi-agent systems through an FIPA3 compliant middle-ware. It offers a compre-

hensive communication infrastructure and various coordination mechanisms but lacks

support for multi-agent planning and scheduling. Inspired by coordination as a service

[Viroli and Omicini, 2006] we present a mechanism to integrate multi-agent planning and

scheduling, namely VIE-CDS4 [Jung, 2003], with JADE.

In the remainder of this chapter further concepts and tools concerning our integra-

tion mechanism of VIE-CDS with JADE will be introduced and discussed. Chapter

2 explains our XML-based encoding of TÆMS structures, refactoring and extension of

VIE-CDS. Chapter 3 deals in detail with the integration of VIE-CDS in JADE. Chapter

4 demonstrates the key concepts of our approach in a medical care toy example. Chap-

ter 5 summarises the key issues of this master’s thesis, sketches a future perspective

of criteria-driven scheduling in JADE, proposes further investigations on this topic and

gives a review of related work.

1.1. Intelligent Agents?

There is no commonly agreed, exact definition about what an intelligent agent is. The

first reason for that state of affairs is that the term agent is not owned by AI research.

Agent is an everyday life vocable. We know human agents, such as travel agents, real

estate agents or generally speaking people in terms of salespersons or representatives.

The medical and technical sciences also have adopted the term agent for their purposes,

as in active agent, abstergent agent, adhesive agent, etc. The second reason is that

1http://dis.cs.umass.edu/research/dtc/, last visited May 2, 2007.
2http://jade.tilab.com/, last visited May 2, 2007.
3http://www.fipa.org/, last visited May 2, 2007.
4http://www.ofai.at/research/agents/projects/viecds/, last visited May 2, 2007.

2

http://dis.cs.umass.edu/research/dtc/
http://jade.tilab.com/
http://www.fipa.org/
http://www.ofai.at/research/agents/projects/viecds/

no generally accepted definition of intelligence with respect to software exists. In the

following, we want to give an impression of what makes a piece of software an agent. Ad-

ditionally, we replace the term intelligent by rational. We regard an agent as intelligent

if it acts rationally.

In the simplest case, anything perceiving its environment5 through sensors and acting

upon that environment through actuators can be viewed as an agent. Agents act rational

if they maximise their performance measure. This performance measure assesses how

successfully the agent behaves in its environment [Russell and Norvig, 2003]. In terms

of Michael Wooldrige and Nicholas R. Jennings [Wooldridge and Jennings, 1995] ratio-

nality is (roughly) the assumption that an agent will act so as to achieve its goals. They

distinguish a weak and a stronger notion of agency. A computer system must fulfil the

following properties to satisfy the weak notion of agency :

Autonomy: Agents work without human intervention and have control over their in-

ternal state and goals. This means that control of when to start action execution

lies with the executing agent; in contrast to method invocation in object oriented

languages, where the control of start lies with the caller object.

Social ability: Agents interact with other agents via some agent communication lan-

guage6.

Reactivity: As mentioned above, agents perceive their environment. Reactivity refers

to the fact that agents respond to these perceptions according to their needs and

goals.

Pro-activeness: Pro-activeness complements reactivity. Agents do not simply act in

response to changes in the environment. Instead, they are able to take the initiative

while heading for their goals.

If we concede some more human concepts like emotions or mentalistic notions like be-

liefs, desires and intentions to agents, we follow the stronger notion of agency. Indeed,

intentional notions may serve as an abstraction tool to describe, explain and predict

complex systems without requiring more detailed information about their internal de-

sign [Wooldridge and Jennings, 1995].

5For a discussion on environments please refer to section 1.1.2.
6For details on agent communication languages please refer to section 1.1.4.

3

Figure 1.1.: A classification of agent types according to the three attributes: coop-

erativeness, learning abilities and autonomy. [Nwana, 1995]

1.1.1. Classification of Agent Types

Agents can be classified according to a variety of properties. Therefore, no generally

accepted reference classification exists. We refer to a typology of agents established at

the British Telecom laboratories [Nwana, 1995].

Three basic agent attributes serve as starting point for the classification. Agents are

autonomous and they may learn and cooperate. Combinations of these properties lead

to four agent types illustrated in figure 1.1. Following this systematisation, we do not

deal with collaborative learning agents because they violate the autonomy condition of

agenthood.

Up to now, this classification only deals with how agents are. If we enrich it with what

agents do, this results in the following seven agent types. [Nwana, 1995]

Collaborative agents have social abilities. They are responsive and pro-active and can

operate in open and time-constrained multi-agent environments.

Interface agents follow the metaphor of a personal assistant. They emphasise learning

for optimal support of user interaction and collaboration.

Mobile agents can move around inside their environment.

Information/Internet agents connect to various distributed information sources and

aggregate collected data.

4

Reactive agents do not necessarily require any internal (symbolic) representation of

the world. They act in a stimulus-response manner. Intelligent behaviour emerges

from interaction with the environment and other agents.

Hybrid agents combine features of different agent types, aiming to get the best out of

all approaches mentioned above.

Smart agents would follow the stronger notion of agency.

Based on these definitions, our system core deals with hybrid agents. More specifically,

it contains a mix of collaborative and reactive agents.

1.1.2. Agent Environments

The term environment is used in a twofold but related sense. In the following classi-

fication, the notion is used in terms of the world in which an agent resides. Later on,

it additionally gets the meaning of available tools and mechanisms (infrastructure) for

acting in an environment in the former sense.

Stuart Russell and Peter Norvig propose the following classification of environments

[Russell and Norvig, 2003, p.41].

Fully observable vs. partially observable: In a fully observable environment, the

agent’s sensors detect all relevant information to decide about the next action.

In contrast, in a partially observable environment agents must maintain an inter-

nal state to keep track of the changing world.

Deterministic vs. stochastic: A deterministic environment’s next state is fully deter-

mined by the current state as perceived by the agent and the agent’s action. In a

stochastic environment this is not the case, again from the agent’s point of view.

Episodic vs. sequential: In episodic environments, future actions do not depend on

action taken in earlier episodes, which thus compartmentalise the overall evolution

of the world. In a sequential environment, any decisions taken previously may

influence all succeeding decisions.

Static vs. dynamic: Dynamic environments change even if the agent does not do any-

thing. Otherwise, an environment is called static.

5

Discrete vs. continuous: This distinction can be applied to the state of the environ-

ment, how time is handled and to the agent’s actions and percepts. Sometimes

discrete data is treated like continuous data; e.g. a video stream from digital

camera.

Single agent vs. multi-agent: A multi-agent environment accommodates multiple

agents. A single agent environment contains only one agent. This distinction

often depends on the environmental modelling. Sometimes it is possible to model

other entities as stochastically behaving objects and sometimes it is better to model

them as agents.

The hardest case is a partially observable, stochastic, sequential, dynamic, continuous

and multi-agent environment which is often referred to as open.

According to [Huhns and Stephens, 1999] multi-agent environments

• provide an infrastructure specifying communication and interaction protocols,

• are typically open and have no centralised designer and

• contain self-interested or cooperative agents that are autonomous and distributed.

Additionally, the environment should provide support for agent and service discov-

ery, certain communication protocols, concepts like ontologies and security services and

guidelines for how an agent looks like in this environment.

1.1.3. Multi-Agent Systems

Modelling an application as multi-agent system is adequate in situations where infor-

mation is distributed [Jennings, 2000]. One reason for information distribution may

be that information is inherently distributed. Another reason is that information may

be spread across (legacy) sub-systems. Further, the system as a whole need not have

one single global top-level goal. Instead, accomodating several, maybe even conflicting

goals, may be necessary for a system to be considered as successful. Therefore, some

notion of rationality is inevitable to deal with complex interrelations of information and

sub-systems. Multi-agent systems are appropriate for design and implementation of

distributed computing systems.

6

Several multi-agent frameworks exist to ease development of concrete multi-agent

system applications. For an overview over several such frameworks please refer to

[Bordini R.H. et al., 2006]. Each framework has its focus on a set of features which

makes it the framework of choice for a certain class of applications. Despite the differ-

ences, systems share some general key concepts:

A multi-agent system

” . . . contains a number of agents, which interact with one another through

communication. The agents are able to act in an environment; different

agents have different ’spheres of influence’, in the sense that they will have

control over - or at least be able to influence - different parts of the environ-

ment. The fact that these spheres of influence may coincide may give rise to

dependency relationships between the agents.”

[Wooldridge, 2002, p.105]

1.1.4. Agent Communication

Agents cannot force other agents to do something, but they can perform actions which

influence other agents. Influencing others can be done implicitly by modifying the

environment or directly by communication actions. The notion of communication as

action is based on speech act theory. This theory goes back to the work of John Austin

[Austin, 1962] and extensions by John Searle [Searle, 1970]. In human communication,

several utterances share the characteristics of actions because they change the state of

the world as shared among the peers. These types of utterances are called speech acts.

Performative verbs correspond to certain types of speech acts. Request and perform are

examples for performative verbs. Performative verbs are used in agent communication

to define several types of messages. Such message types have well defined semantics and

there is no doubt about the meaning of performative verbs.

Agent Communication Languages (ACLs) are typically message based and split into

message envelope and message content. The message envelope contains used con-

tent language, used ontology, the performative, sender and receiver. The mes-

sage content is expressed in an own language, often resembling first-order logic.

7

This splitting is done to separate the semantics of the ACL from the seman-

tics of message content [Huhns and Stephens, 1999]. Examples for such commu-

nication languages are the Knowledge Query and Manipulation Language (KQML)

[Finin et al., 1997] and the closely related FIPA Agent Communication Language

(FIPA ACL) [Foundation for Intelligent Physical Agents (FIPA), 2002a]. KQML uses

the Knowledge Interchange Format (KIF) by default for encoding message con-

tent but is not restricted to it. FIPA ACL may use SL, SL-0 (a subset of SL),

CCL, KIF or RDF content language (see [Pitt and Mamdani, 1999] for an early cri-

tique).

An ontology defines objects, concepts and their relationships. The ’vocabulary’ of an on-

tology is used in message content languages. Agents that understand or use a certain on-

tology agree on the meaning of the vocabulary in that ontology.

Another important aspect of multi-agent systems closely related to communication is co-

ordination which is discussed in greater depth in section 1.1.6.

1.1.5. The Social Context in Multi-Agent Systems

In multi-agent systems, agents get in touch either with effects of other agent’s actions or

directly with agent peers. Consequently, it is necessary to discuss multi-agent systems

from a social point of view.

Groups of directly or indirectly interrelated agents form agent organisations or soci-

eties [Huhns and Stephens, 1999]. Members in societies play on or more out of specific

roles defined in it. To each role, certain commitments are associated. An agent as-

suming a role acquires the role’s commitments, to which it is bound. The decision to

join a group is affects an agent’s autonomy. Once a group is joined, the agent it is

obligated to the rules of this group. Groups define the social context in which agents

interact.

1.1.6. Agent Coordination

Richard Jennings proposes that coordination is

8

” . . . the process by which an agent reasons about its local actions and the

(anticipated) actions of others to try and ensure the community acts in a

coherent manner.”

[Jennings, 1996, p.187]

In [Nwana et al., 1996, Jennings, 1996] we find several reasons for the necessity of coor-

dination, including the ones outlined here .

Chaos prevention: Agents only have a local view and local knowledge of the system.

They are not omniscient. Without coordination, conflicting decisions could be

taken. This may lead to chaos. In a chaotic system goal-oriented problem-solving

is not possible.

Global constraints: In most systems global constraints must be obeyed for a solution

to be considered as valid, e.g. cost constraints. Coordination of agent behaviours

is necessary to meet such global constraints.

Dependencies between actions: Dependencies between actions impose an ordering on

action execution. This ordering can only be achieved via coordination.

Distributed knowledge: Knowledge is distributed across the system. To use all knowl-

edge available in the multi-agent system, coordination is necessary.

Efficiency: Information gathered by one agent may be used by another agent and there-

fore redundant work can be avoided. Such redundancy avoidance due to coordi-

nation increases efficiency.

Further examples of coordination mechanisms are market mechanisms

[Kaihara and Fujii, 2005] and coordination media, such as tuple spaces

[Denti and Omicini, 1999] (Linda [Carriero and Gelernter, 1989] being a prominent

example).

[Nwana et al., 1996] proposes a basic classification of coordination strategies. The fol-

lowing four categories are taken from this paper.

Organisational structuring: The system designer takes care of coordination via prede-

fined roles, responsibilities and dependencies between agents. These relationships

are often expressed as hierarchical structures. An exponent for this kind of coor-

dination is the typical master/slave relationship.

9

Contracting: The concrete organisational structure is determined during run-time via

contracting mechanisms, like in the popular contract net protocol [Smith, 1988].

In contrast to organisational structuring this approach is completely distributed.

Multi-agent planning: Multi-agent planning can be further differentiated into cen-

tralised and distributed multi-agent planning. In the centralised approach, a dedi-

cated coordination agent collects all plans and constructs a global multi-agent plan.

This plan is then analysed. Conflicts and dependencies are resolved. In the dis-

tributed approach, each agent maintains its own plans and models of other agents’

plans. Through communication, agents exchange these plans and refine their in-

dividual plans and remove inconsistencies. Through this exchange mechanism, a

global complete plan results out of individual plans.

Negotiation: Negotiation is a major coordination mechanism and is nearly always used

in the three coordination techniques mentioned above. Negotiation is considered

a category of its own, because it is studied also in different academic disciplines.

Andrea Omicini and Sascha Ossowski study common principles of different co-

ordination models and extract their similarities from an abstract point of view

in [Omicini and Ossowski, 2003]. The following remarks are based on their

work.

Coordination can be considered as the management of dependencies between goals, ac-

tions and plans of agents, that are considered as entities, which need to be coordinated.

Coordination is a two step process. First, it is necessary to detect dependencies and

second, possibly several coordination actions have to be taken to satisfy the detected

dependencies. The TÆMS framework explicitly models coordination requirements in

the form of hierarchical task decompositions.7 Resolving dependencies and actions for

goal achievement often results in complex interwoven interactions of agents inside the

multi-agent system. The set of all possible interactions of one agent is often called

interaction space. Another approach to coordination is to consider an agent as a sit-

uated entity in an environment. For achieving a goal it is necessary to execute some

actions. Actions can be considered as altering the environment. Consequently, it is

possible to influence agents’ interactions by engineering the environment. The provided

agent infrastructure can be designed to diminish the size of interaction space. This

is where the notion of coordination as a service [Viroli and Omicini, 2006] comes into

7For details on TÆMS framework please refer to section 1.2.

10

play. Multi-agent system infrastructures may provide different coordination services.

Once the agent has committed itself to a certain coordination service it is bound to the

service’s rules and laws. This commitment to a coordination service enables specific

kinds of run-time control over agent behaviour. Centralised coordination mechanisms

often go hand in hand with design-time coordination. They are most appropriate for

closed environments whereas decentralised mechanisms and run-time coordination are

better suited for open environments.

In our work, we deal with multi-agent planning and contracting, and use the TÆMS

framework to address qualitative (dependencies between tasks) as well as quantitative

(quality description through probability distribution) aspects of coordination. Our

approach is a multi-centric one where certain agents provide planning and schedul-

ing services via TÆMS structures. FIPA interaction protocols8 are used for negoti-

ation and run-time definition of coordination structures. We do not want to change

how FIPA compliant multi-agent systems are engineered. We rather want to provide

an important additional coordination mechanism to complement the range of existing

ones.

1.1.7. Subjective versus Objective Coordination

There are basically two ways to examine coordination in a multi-agent system

[Omicini and Ossowski, 2003]. The first one is from an agent’s point of view and called

subjective coordination. An agent observes the behaviours of other agents as well as the

evolution of the environment over time. This information is filtered and interpreted by

the agent. The result corresponds to an approximation of the agents’ interaction space.

An agent’s coordination actions within a multi-agent system are driven by its own per-

ception and understanding of the other agents’ behaviours, capabilities and goals, as

well as the environment state and its dynamics. Richard Jennings’ definition mentioned

above (see section 1.1.6) closely resembles this viewpoint of coordination. The second

class, called objective coordination, adopts a bird’s eye view on multi-agent systems:

An external observer tries to affect agent interaction in a way that the progression

of several agents’ actions gears towards accomplishing one or more of the observer’s

goals. The observer must have a priori knowledge of agents’ aims, capabilities and

behaviours, as well as a means to anticipate foreseeing of the global behaviour of the

8http://www.fipa.org/repository/ips.php3, last visited May 2, 2007.

11

http://www.fipa.org/repository/ips.php3

multi-agent system to reach effective coordination over time from the observer’s point

of view. Affecting agents by objective coordination does not necessarily imply that

agents are manipulated directly. For example, affecting an agent could be achieved

by systematically modifying (limiting, removing,...) resources this or other agents rely

on.

To summarise, subjective coordination deals with coordination from an agent’s point of

view inside the multi-agent system whereas objective coordination is about influencing

interaction among agents and the environment from the outside. Subjective coordination

focuses on individuals in a multi-agent system. Objective coordination has its emphasis

on the multi-agent system as a whole.

Andrea Omicini and Sascha Ossowski state that

”. . . objective coordination would conceivably take on the form of a collection

of suitably expressive coordination abstractions, provided as run-time coordi-

nation services by the agent infrastructure.

[. . .]

. . . coordination as a service, that is, coordination provided as a service to

agents by the infrastructure through a run-time coordination abstraction.”

[Omicini and Ossowski, 2003, p.191, p.192]

Objective and subjective coordination are not mutually exclusive; rather they are com-

plementary. Coordination as a service combines objective with subjective coordina-

tion. Here, objective coordination is the explicit representation of coordination laws

outside of agents while subjective coordination addresses an agent’s internal usage of

these coordination laws provided at run-time by the multi-agent system infrastruc-

ture.

1.2. A Framework for Task Analysis, Environment

Modeling and Simulation (TÆMS)

Task Analysis, Environment Modeling and Simulation (TÆMS) is a formal, domain-

independent modelling language to represent hierarchical task structures. TÆMS

can be understood as a model of an agent’s partial view of a distributed goal tree

12

[Lesser et al., 2004]. This modelling framework offers language constructs for describ-

ing multiple ways to achieve a certain goal. The two main abstractions of TÆMS are

tasks and methods. The root of a goal tree is called taskgroup. In TÆMS, structures of

multiple taskgroups may exist. A taskgroup is further decomposed into sub-goals which

can be again tasks or methods. Leaf nodes of the goal tree represent atomic actions and

are always methods. Additionally, TÆMS provides support for interrelationships (IRs)

between tasks that do not stand in a task decomposition relationship. Consequently,

TÆMS structures are not tree structures. Rather, they are digraphs and represent

heterarchical decompositions. An agent’s impact on its environment is modeled via

resources.

Clean-Kitchen
q_sum

Put-Away-Dishes
q_exactly_one

Clean-Floor
q_max

Wash-Counters

Quick-And-Dirty Slow-And-Safe

Vacuum-Floor

Wash-Floor

Vacuum-Cleaner

consumes

hinders

Figure 1.2.: A TÆMS example based on the small cleaning kitchen example from

[Horling et al., 1999, p.71]

The most noteworthy property of TÆMS is not task decomposition. It is the

fact that TÆMS addresses aspects of relevance for (soft) real-time requirements,

handles uncertainty via probability distributions [Horling et al., 1999], and models

worth-oriented domains, where goals can be reached to a different degree of success

[Lesser, 1998, Zlotkin and Rosenschein, 1996]. Each method comes with a triple of dis-

crete probability distributions describing quality, duration and cost of method execution.

Therefore, TÆMS does not only support finding a way for achieving the goal. It rather

13

offers ways and means for finding certain paths to achieve a goal to a certain degree,

depending e.g. on how much time is available for goal-achievement. The way of how to

aggregate qualities from subtasks is defined by so-called quality accumulation functions

(QAFs).

The main elements of TÆMS are [Jung, 2003]:

Agent: Definition of an agent. Multiple agent definitions in one TÆMS structure are

possible.

Taskgroup: In principle, this is the root node of the goal tree; an agent’s top-level goal.

Task: A task is an abstract activity that can be split into further tasks or methods.

Method: A method is an atomic, executable action. Method execution takes a certain

amount of time and the result has certain cost and quality.

Quality Accumulation Function (QAF): QAFs define how quality of sub-tasks is ag-

gregated to quality of the parent task. Additionally, they may impose ordering

constraints on sub-tasks.

Interrelationship (IR): IRs are used to express influence of execution of one method on

the execution of another method. IRs also connect methods with resources.

Resource: Explicit environmental modifications can be modeled as resources. Resources

may be consumable or self-regenerating. Non self-regenerating resources can also

be produced.

Commitments: Commitments are an agent’s confirmations to do a certain action

[Jennings, 1996]. Local commitments restrict an agent to certain tasks for the

benefit of another agent, whereas non-local commitments are promises of other

agents that help a certain agent.

TÆMS has two textual encodings called TTAEMS and PTAEMS. In section 2.1 we

introduce a new XML-based encoding.

The quality accumulation functions defined in [Horling et al., 1999] are:

q min: Task quality after accumulation is the minimum quality reached by the set of

sub-tasks. All sub-tasks have to be successfully executed to reach a quality greater

than 0.

14

q max: Task quality after accumulation is the maximum quality reached by the set of

sub-tasks. At least one sub-task has to be executed.

q sum Task quality after accumulation is the sum of qualities reached by the set of

sub-tasks. Not successfully executed tasks have quality 0.

q sum all: Task quality after accumulation is the sum of qualities reached by the set of

sub-tasks. All sub-tasks have to be executed, no matter whether any of them fails.

q seq min: Task quality after accumulation is equal to q min. Additionally, sub-tasks

have to be executed in a specific order.

q seq max: Task quality after accumulation is equal to q max. Additionally, sub-tasks

have to be executed in a specific order.

q seq sum: Task quality after accumulation is equal to q sum. Additionally, sub-tasks

have to be executed in a specific order.

q seq last: Task quality after accumulation is equal to the last executed sub-task qual-

ity. Additionally, sub-tasks have to be executed in a specific order.

q exactly one: Exactly one sub-task must be executed. Quality after accumulation

equals the quality of this task. If more than on task is executed, accumulated

quality equals 0.

q last: Task quality after accumulation is equal to the last executed sub-task quality.

The order of execution does not matter.

q sigmoid: This QAF is mentioned but not specified in any detail.

The development of TÆMS is closely related to the evolution of the Java Agent

Framework 9 (JAF) which uses it as its main data structure for problem repre-

sentation and communication, as well as to GPGP and DTC-scheduling, both be-

ing discussed in the next sections. For further details on TÆMS please refer to

[Horling et al., 1999] and [Lesser et al., 2004]. For a critical discussion of TÆMS see

[Jung, 2003, Jung and Petta, 2003, Jung and Petta, 2004].

9http://dis.cs.umass.edu/research/jaf/, last visited May 2, 2007.

15

http://dis.cs.umass.edu/research/jaf/

1.3. Generalized Partial Global Planning (GPGP)

Generalized Partial Global Planning has its roots in Partial Global Planning (PGP)

[Durfee and Lesser, 1991] used in Distributed Vehicle Monitoring Testbed (DVMT)

[Lesser and Corkill, 1983]. The main idea is to enrich an agent’s local knowledge for

solving problems with knowledge of other agents. In PGP, an agent uses partial infor-

mation about other agent’s goals to construct a partial global view of the problem to be

solved. This partial global view can be used by an agent for planning and scheduling

actions to accomplish its own goals. The representation of information to share unfor-

tunately is domain-dependent. The idea behind GPGP remains the same like in PGP,

but GPGP:

”. . . tries to extend the PGP approach by communicating more abstract and

hierarchically organized information, detecting in a general way the coordina-

tion relationships that are needed by the partial global planning mechanisms,

and separating the process of coordination from local scheduling.”

[Decker and Lesser, 1992, p.321]

TÆMS is the formal domain-independent framework for representation of coordination

issues. GPGP assumes a local scheduler at each agent. Information for the scheduler

can be represented by local and non-local commitments to tasks in the task structure

or by altering and extending the local task structure. The main field of application for

GPGP and TÆMS is worth oriented [Lesser et al., 2004].

GPGP defines the following five coordination mechanisms [Decker and Lesser, 1995]

to provide more information to the local scheduler for construction of better sched-

ules.

Updating Non-Local Viewpoints

The detection of coordination relationships is highly domain specific and cannot be

handled in a generic fashion. But the result of detection always is a TÆMS structure

describing the local beliefs of an agent. Updating non-local viewpoints means finding

other agents with overlapping beliefs and further gathering information about them. For

the present purposes, we can equate a belief with a task in the local TÆMS structure. An

agent α wants to update its tasks and it finds an agent β with a overlapping task t. Let us

assume that agent β has further tasks associated with task t. According to its willingness,

16

agent β can tell agent α about all, some or none of the associated task with task t. Agent

α may include these additional tasks in its task structure and thus has updated its local

subjective viewpoint with non-local information.

Communicating Results

Three policies for an agent to communicate results exist in GPGP:

• Communicate only results to satisfy commitments with other agents;

• Like the first policy, but communicate also the final result associated with a task

group;

• Communicate all results obtained.

Handling Simple Redundancy

Redundancy may occur if multiple agents provide the same method. If multiple agents

want to execute a method, the simplest way to deal with this problem is to randomly

choose an agent and let it execute the method. After method execution has finished,

the result must be sent to all other agents also wanting to execute this method. This

approach does not provide any support for load balancing. It also does not take any

quality considerations into account. General redundancy detection is domain-dependent

and resolution is difficult.

Handling Hard Coordination Relationships

Hard coordination relationships apply a strict temporal ordering to the execution of

methods or tasks. Since this mechanism is a pro-active one and only implemented for

the enables relationship, the challenge is to find the earliest possible start time for a

task t1 under the condition that the dependent task t2 still has positive quality. The

calculated value for the start time of t1 is used for a local and non-local commitment to

t1. Committing to the earliest start time of t1 allows the agent executing t2 more slack

time. The local commitment has low negotiability.

Handling Soft Coordination Relationships

In principle, soft coordination relationships are handled in the same way as hard coor-

dination relationships. The only difference is that local commitments have high nego-

tiability.

17

1.4. VIE-CDS

VIE-CDS [Jung, 2003, Jung and Petta, 2004] implements the Design-to-Criteria10 (DTC)

scheduling algorithm developed at the Multi-Agent Systems Laboratory11 of the Depart-

ment of Computer Science of the University of Massachusetts Amherst.

DTC scheduling offers a flexible and domain-independent approach to task scheduling.

DTC scheduling constructs an ordering of methods based on TÆMS structures that

suffices

• Restrictions of task decomposition,

• Temporal constraints,

• Commitments of agents,

• Resource usage, and

• Relative preferences for solutions according to quality, cost and duration.

These relative preferences distinguish DTC scheduling from other scheduling strategies.

DTC scheduling does not only find valid schedules. It is possible to tell the algorithm

to prefer solutions with a certain trade-off between quality, cost and duration to reach a

goal. In [Wagner et al., 1998] the slider metaphor is introduced to define the relative im-

portance of quality, cost and duration via so called importance sliders. Another feature of

DTC scheduling is that no backtracking is involved in the scheduling process. Figure 1.3

illustrates control flow in the DTC scheduling algorithm.

In [Jung, 2003] Bernhard Jung discusses several shortcomings and inaccuracies of TÆMS

design and the associated JAF-DTC scheduler. He proposes a number of clarifications

and related approaches, which are implemented in the VIE-CDS12 scheduler.

VIE-CDS is written in the Java programming language. It uses several features of

object oriented programming and dynamic binding to realise a modular and extensible

software architecture. It offers full support for PTAEMS and TTAEMS encodings of

TÆMS structures. Since DTC uses TÆMS as representation language for coordination

10http://dis.cs.umass.edu/research/dtc/, last visited May 2, 2007.
11http://dis.cs.umass.edu/, last visited May 2, 2007.
12http://www.ofai.at/research/agents/projects/viecds/, last visited May 2, 2007.

18

http://dis.cs.umass.edu/research/dtc/
http://dis.cs.umass.edu/
http://www.ofai.at/research/agents/projects/viecds/

Figure 1.3.: High-level control-flow in the DTC scheduling algorithm,

[Wagner et al., 1998, p.95]

issues, VIE-CDS also provides a TÆMS implementation. VIE-CDS offers a command-

line and a graphical user interface for interaction. In chapter 2 we address internals of

VIE-CDS.

1.5. Java Agent Development Framework (JADE)

JADE is a FIPA 2000 compliant [Bellifemine et al., 2001] software framework for de-

velopment of agent-based applications. It can be obtained from the JADE homepage13.

JADE’s main purpose is to ease development of multi-agent systems by

• Following FIPA standards,

• Being designed as a distributed agent platform,

• Providing ready to use implementations of agent interaction protocols,

• Providing graphical user interfaces for platform management,

• Providing a framework for agent construction,

13http://jade.tilab.com, last visited May 2, 2007.

19

http://jade.tilab.com

• Hiding complex intra- and inter-platform communication issues behind a simple

API and

• Using Java as the programming language of choice.

JADE was introduced at the time FIPA 97 was the current reference architecture. At the

time of writing, JADE has reached version 3.4.1 and is a mature, FIPA 2000 compliant

agent development framework. JADE is free software and licensed under the terms and

conditions of LGPL version 2. Telecom Italia Lab (TILAB)14 is the copyright holder.

Since May 2003, the JADE Board consisting of TILAB, Motorola15 and Whitestein Tech-

nologies AG16 supervises management of the JADE project.

In this master’s thesis we refer to JADE version 3.4.1 released on November 17, 2006.

1.5.1. FIPA Specifications

The Foundation for Intelligent Physical Agents (FIPA)17 is an IEEE Computer Society

Standards organisation. It consists of several companies and organisations aiming to

promote agent-based technologies. FIPA does not define technologies at implementation

level. Instead, it specifies general, domain-independent requirements for agent-based

systems.

At their core FIPA 97 specifications identify three necessary agent roles. The Agent

Management System (AMS) is responsible for control over access to the agent platform

and its use. The AMS is responsible for maintaining a directory of all agents inside the

agent platform. The Agent Communication Channel (ACC) provides the default mes-

sage routing service. The ACC must speak the Internet Inter ORB Protocol (IIOP) to

enable communication with other FIPA compliant platforms. The Directory Facilitator

(DF) is an agent that provides a yellow pages service. An agent is defined as a funda-

mental actor that aggregates several service capabilities to form a unified and integrated

execution model. [Bellifemine and Rimassa, 2001]. These fundamentals are still valid

for the FIPA 2000 specification. Since FIPA 2000 is more elaborate and extensive than

FIPA 97, the definition of ACC has moved from agent management specification to a

14http://www.telecomitalialab.com/, last visited May 2, 2007.
15http://www.motorola.com/, last visited May 2, 2007.
16http://www.whitestein.com/, last visited May 2, 2007.
17http://www.fipa.org, last visited May 2, 2007.

20

http://www.telecomitalialab.com/
http://www.motorola.com/
http://www.whitestein.com/
http://www.fipa.org

separate message transport specification. Figure 1.4 illustrates the FIPA 2000 agent

platform reference model.

Figure 1.4.: FIPA agent platform reference architecture

[Foundation for Intelligent Physical Agents, 2004, p.5].

Additionally, FIPA standardises general conditions for the communication infrastruc-

ture. The Agent Communication Language (ACL) resembles KQML but has formally

defined semantics. For inter-platform communication FIPA defines a textual encod-

ing of messages; no specific transportation mechanisms are specified for intra-platform

communication. FIPA defines the usage of certain Content Languages (CL) like Knowl-

edge Interchange Format (KIF), Resource Description Framework (RDF) and Semantic

Language (SL), but does not constrain the programmer to them. Common forms of

inter-agent conversations are supported by so called Interaction Protocols which are

patterns of messages exchanged by two or more agents.

1.5.2. Platform Architecture

The JADE distributed agent platform is built around the concept of containers. Each

container is run by one Java Virtual Machine (VM). A container is a fully fledged run-

time environment for agents. The agent platform consists of several containers where

different containers may reside on different hosts. Inside a container several agents can

exist. The main-container, also called front-end container, is a special container. It

maintains the Agent Global Descriptor Table, which contains references to all agents on

21

the platform, and the Agent Container Table, which stores a reference to each container

in the platform. When the main-container boots, it automatically instantiates ACC,

AMS and DF services. Inside a container communication occurs via Java event mecha-

nisms. Basically, this is done by exchanging references to Java objects. Inter-container

messaging uses Java Remote Method Invocation (RMI). In principle, a container is a

RMI server and the main-container is the RMI registry. Figure 1.5 shows a schema of a

JADE agent platform distributed over several hosts.

Figure 1.5.: Schema of a JADE platform distributed over several containers on dif-

ferent hosts. [Bellifemine et al., 2006a, p.8]

At the expense of communication overhead it is possible to use main container replica-

tion. This mechanism allows multiple main-containers to exist, but one is always the

master main-container (and the others are slave main-container). Agent registration

is possible at each main-container. If one main-container should crash another main-

container takes over its functionality (even in the case of a master main-container fault).

Figure 1.6 contrasts a single main-container layout with a main-container replication lay-

out. JADE makes extensive use of caching techniques to avoid iterated look-ups for agent

or container references [Bellifemine and Rimassa, 2001, Bellifemine et al., 2006b].

Generally speaking, JADE tries to map all FIPA concepts to the object oriented paradigm.

Messages, message content, agents, behaviours, ontologies, transportation mechanisms,

etc., are represented by native Java objects. If JADE needs to communicate with agents

22

Figure 1.6.: The connected graph to the left illustrates a single main-container lay-

out, whereas the right one shows a fault tolerant replicated layout.

[Bellifemine et al., 2006b, p.20]

or platforms that cannot deal with Java objects, it automatically translates Java objects

to a representation the other side understands, presumed that JADE knows about an

appropriate encoding. Services like the automatic translation and other platform specific

services can be extended by plug-in mechanisms called kernel-level services which must

not be confused with the services provided by agents.

Agent Model

In principle, JADE agents are Java threads inside a VM representing a container. Agent

autonomy and social abilities push for concurrency inside an agent. Due to the fact that

only a limited number of threads per VM are possible, JADE introduces the Behaviour

abstraction. A behaviour represents an ability of an agent which needs to be executed in

parallel to other behaviours. Behaviours are the major building blocks of agent function-

ality. Even for sending and receiving messages behaviours are used. Incoming messages

are stored in the agent’s message queue. When a receiver behaviour is scheduled it can

read a message from the message queue. Behaviours are scheduled cooperatively. This

means that there is no support for pre-emption: behaviours are self-dependent for return-

ing control to the scheduler. To preserve the illusion of concurrency, it is inevitable that

any slice of behaviour execution takes only a short amount of time. At return of control

to the scheduler, a behaviour can indicate when it should not have finished its work. This

behaviour then becomes re-scheduled. In that case, the behaviour itself is responsible

for saving and restoring its internal state. JADE offers the possibility to split behaviours

23

Figure 1.7.: JADE’s implementation abstraction for FIPA interaction protocols,

[Bellifemine et al., 2006a, p.35]. Each interaction protocol following the

Achieve Rational Effect pattern may reply to a message with a certain

performative with a not-understood, refuse or agree message. After the

agree message a failure or inform message must follow. JADE allows

by-passing the agree message and sending a failure or inform message

in direct response.

into sub-behaviours. In addition, it is still possible to use Java threads inside agents, but

this limits the maximum number of concurrent agents, and it is the programmer who

must deal with synchronisation of agent and threaded behaviours. For further details

on agent design please refer to [Bellifemine et al., 2006a].

Interaction Protocols

Since all FIPA interaction protocols have a resembling structure and are geared to achieve

a rational effect, JADE provides a common implementation abstraction. The initiator

role is represented by behaviour AchieveREInitiator, the behaviour AchieveRERespon-

der serves the responder role. Figure 1.7 illustrates the procotol structure used by

JADE. The initiator sends a message containing a certain performative. The responder

may answer with NOT-UNDERSTOOD, REFUSE or AGREE. After having agreed, sending an

INFORM or a FAILURE message is mandatory. Against FIPA specifications, the AGREE

state is optional. Instead, the agent may send instantaneously an INFORM or a FAILURE

message.

24

2. Evolution of VIE-CDS

The main goal of this master’s thesis is the integration of criteria-driven scheduling with

FIPA-compliant multi-agent infrastructures. During the analysis of VIE-CDS concerning

our DTC planning and scheduling integration approach, it turned out that having a new

TÆMS encoding, abstracting away the strong relationship of TTAEMS to JAF would be

advantageous. This section documents the design of our new encoding called XTAEMS

and its relation to the TTAEMS encoding, as well as the integration of XTAEMS with

VIE-CDS.

VIE-CDS has been designed by Bernhard Jung with the design goals of flexibility and

modularity [Jung, 2003, Jung and Petta, 2004]. Even so, for the present efforts some

refactoring of source code was necessary to ease extensibility concerning various in-

put and output formats. In section 2.1, the new XML-based XTAEMS encoding of

TÆMS is introduced. Section 2.2 presents the related updates to the internal struc-

ture of VIE-CDS, including the parser API (see section 2.2.1) and the serialisation

API (see section 2.2.2). We end this chapter with an evaluation of the new XTAEMS

parser.

2.1. A New Encoding for TÆMS

In section 1.2 we have given an introduction to TAEMS. We now present the encoding

for TAEMS structures published in [Horling et al., 1999] and also used in [Jung, 2003],

followed by an explanation of the reasons that led us to develop a new XML-based

encoding, XTAEMS.

The TTAEMS encoding features a LISP-like syntax [Horling et al., 1999]. As in LISP

nearly everything is wrapped with a pair of parentheses. Most elements in TTAEMS

follow roughly this attribute/value form:

25

(field name field data)

The token field name must be of data type symbol. It describes the content of the ele-

ment, whereas field data is the actual data or value associated with that name. Gener-

ally, in TTAEMS the following basic data types are defined:

Symbol: A word composed of the characters [A-Za-z0-9] and the symbols ” ” or ”-”.

The word must not contain whitespaces.

Agent Symbol: This data type follows the same rules like symbol. Additionally, it

should match the name of an agent in the multi-agent system.

Predefined Symbol: This data type follows the same rules like symbol, but the list of

allowed symbols is predefined and must be specified explicitely by the field.

Integer: An integer value, e.g. -27

Float: A float value, e.g. 0.333

Distribution: A series of pairs of floats. The first value of a pair represents a data point

and the second one the associated probability.

List: A series of whatever type is given seperated by whitespaces.

Special: The data type is field-specific and must be defined seperately.

None: A field of this type has no data.

A TTAEMS description consists of a number of objects, where each object is described

within a self-contained (spec * ...) block, and has a label unique within the struc-

ture [Horling et al., 1999]. As in LISP, a line starting with a semicolon is treated as a

comment line. For further details on TTAEMS please refer to [Horling et al., 1999].

Since we wanted an encoding that could be managed with state of the art standard

technologies and tools, we developed an XML-based encoding for TÆMS structures,

called XTAEMS. We identify the following advantages for using XML over the LISP-

like format:

• The XML format is standardised by the World Wide Web Consortium1. This

facilitates tool development because of the documented well-known syntax.

1http://www.w3.org/, last visited May 2, 2007.

26

http://www.w3.org/

• XML comes with the well defined Document Object Model (DOM) which defines

an in-memory model for XML data. This eases manipulation of TÆMS structures.

• The Simple API for XML 2 (SAX) is a de facto standard for high-performance

parsing. It supports all features necessary for parsing TÆMS structures encoded

in XTAEMS.

• XML can be easily transformed into other (text based) formats with so called

XSLT-stylesheets.

• XML-namespaces offer the possibility to embed XTAEMS into other XML-based

formats such as the Resource Description Framework 3 (RDF) or the Web Ontology

Language4 (OWL).

• Well tested and really high-performance tools for manipulating XML exist. We

use Apache’s Xerces5 parser and Xalan6 XSLT stylesheet processor.

XTAEMS is designed to be as close as possible to TTAEMS. The following rules have

been used to derive the XML encoding of XTAEMS from the LISP-like TTAEMS en-

coding.

• XTAEMS has a document element called taems.

• The encapsulating structure of of TTAEMS was preserved.

• Each TTAEMS-token starting with spec_#name# is mapped to an XTAEMS tag

called #name#, e.g. spec_task becomes <task>. #name# is a placeholder for special

token types named equally in TTAEMS and XTAEMS.

• Each TTAEMS-token having only one argument is added to its parent token as an

attribute. This applies to the TTAEMS data types symbol, agent symbol, integer

or float. Listing 2.1 provides an example for such a conversion.

• TTAEMS task_groups are treated like tasks (see below).

• supertasks have no corresponding tag in XTAEMS (see below).

• The leading q_ of quality accumulation function names is removed.

2http://www.saxproject.org/, last visited May 2, 2007.
3http://www.w3.org/RDF/, last visited May 2, 2007.
4http://www.w3.org/TR/2003/WD-owl-ref-20030331/, last visited May 2, 2007.
5http://xerces.apache.org/, last visited May 2, 2007.
6http://xalan.apache.org/, last visited May 2, 2007.

27

http://www.saxproject.org/
http://www.w3.org/RDF/
http://www.w3.org/TR/2003/WD-owl-ref-20030331/
http://xerces.apache.org/
http://xalan.apache.org/

(spec_task

(agent anyAgent) becomes <task agent =" anyAgent"/>

)

Listing 2.1: Example conversion of a TTAEMS token with a single argument (left)

into XTAEMS representation (right).

<subtask ref="t1"/>

(subtask t1 t2 t3) becomes <subtask ref="t2"/>

<subtask ref="t3"/>

Listing 2.2: Example conversion of a TTAEMS subtask token (left) to XTAEMS

(right).

• The TTAEMS-token label is renamed to id, because DOM allows searching for

XML tags according to their id tag.

• The TTAEMS-token subtasks is mapped to multiple XTAEMS tags named subtask

with an attribute named ref. Listing 2.2 shows an example of this conversion.

• The data type distribution of TTAEMS is represented by a tag with the name of the

distribution, e.g. quality. Each point/probability pair becomes a distribution

tag with an attribute called point containing a data point and an attribute called

probability containing the probability at this point. Listing 2.3 gives an example

for this conversion.

• The Attribute density in distribution is replaced by probability, because

TÆMS deals with discrete probability distributions.

<quality >

<distribution point ="0"

probability ="0.7"/ >

(quality 0 0.7 0.5 0.2 1 0.1) becomes <distribution point ="0.5"

probability ="0.2"/ >

<distribution point ="1"

probability ="0.1"/ >

</quality >

Listing 2.3: Example conversion of data type distribution from TTAEMS (left) to

XTAEMS (right).

28

• Optional TTAEMS-tokens also remain optional in XTAEMS.

• Agent definitions become optional (see below).

• TTAEMS-tokens of data type none become an attribute of the parent tag with

the name of this token. The attribute’s value is true if this token is present in

TTAEMS representation. Otherwise it is false or not even added as a XTAEMS

attribute.

• For each TTAEMS-token including an underscore, the underscore is removed and

the letter right after the underscore is changed to upper case.

• Outcomes do not have names. Their order is important. References to outcomes

are made according to their rank. Counts starts with 0. Listing 2.4 exemplifies this

conversion on a method with two outcomes and a facilitates interrelationship

referencing one of this outcomes.

• If no model is specified in an interrelationship then duration_independent is

assumed.

• outcome tags are not encapsulated by outcomes like indicated by the rules above.

They are direct children of the method tag.

The most prominent changes are the removal of task_group and supertasks and set-

ting the agent-field to be optional. task_group has been removed because the only

difference to task is that no subtask relation to this task exists. Through subtask

relations all task_groups can be calculated. The same idea has prompted the removal of

supertasks. Through the subtask relationship all supertasks can be calculated. The

agent field has been removed because we assume that owners of certain methods can

be resolved via something similar to a yellow pages service provided by the underlying

multi-agent infrastructure.

XTAEMS features human readability, but we argue this can be achieved better through

graphical representations. In contrast to TTAEMS, XTAEMS is not intended to be used

as internal data structure for multi-agent applications. We rather conceive XTAEMS as

an abstract language to describe a problem’s inherent structure.

In the TÆMS white paper ([Horling et al., 1999]) in section 5, three different ways of rep-

resenting coordination and negotiation issues are discussed.

29

<method id="m1">

<outcome probability="0.7">

<quality >

<distribution point="0" probability="1"/>

</quality >

<cost>

<distribution point="0" probability="1"/>

</cost>

<duration >

<distribution point="0" probability="1"/>

</duration >

</outcome >

<outcome probability="0.3">

<quality >

<distribution point="10" probability="1"/>

</quality >

<cost>

<distribution point="10" probability="1"/>

</cost>

<duration >

<distribution point="10" probability="1"/>

</duration >

</outcome >

</method >

<facilitates id="fac1" from="m1" to="m4" fromOutcome="0">

<quality >

<distribution point="1" probability="1"/>

</quality >

<cost>

<distribution point="1" probability="1"/>

</cost>

<duration >

<distribution point="1" probability="1"/>

</duration >

</facilitates >

Listing 2.4: Method m1 has two possible outcomes. The facilitates interrelationship

fac1 references the first of these outcomes.

30

heterogeneous agent fields The agent field is used to determine who is responsible for

this task or method.

non-local methods This is a further abstraction in TÆMS and a possible point of

extension in the TÆMS structure. An agent has knowledge about the existence of

this method but not about who is providing it.

explicit representation Coordination issues are directly modelled as methods being

scheduled like other methods. This has the advantage of clarity and offers the

possibility to express special characteristics of coordination.

Because XTAEMS has been developed with our approach of integrating VIE-CDS with

JADE in mind we opt for a mixture of non-local methods and explicit representation.

We assume that an agent is able to perform a method unless it marks the method as

non-local in its own TÆMS structures. We also assume that a yellow pages service

provides our coordination mechanism with information about who is responsible for

which method. Also for local scheduling without non-local methods an agent field is not

needed. It should be quite clear that only the scheduling agent’s abilities are referred

to. Resolving redundancy and interrelationships is done by our coordination module

which alters the TÆMS structures provided by the agents. It uses domain knowledge

to explicitly insert coordination relationships. Our coordination module is discussed in

great depth in chapter 3.

The appendix to the TÆMS White Paper defines a TTAEMS encoding for schedules.

Schedule representation has also been mapped to XTAEMS using the rules above. Sched-

ules may reside in a separate file or be embedded into a TÆMS representation. A

TTAEMS encoding for commitments offering a method to represent the quantitative

aspects of negotiation is also proposed in the White Paper’s appendix. We leave this

uncovered, because we want to use dedicated multi-agent system communication infras-

tructure facilities for negotiation.

We propose .xtaems as standard file extension for XTAEMS-encoded TÆMS structures

and .sxtaems for XTAEMS encoded schedules. We also provide a XSLT stylesheet for

easy conversion from XTAEMS to TTAEMS. If there are methods or tasks without an

agent reference, this stylesheet defines an agent called anyAgent and assigns all these

methods and tasks to this agent. Supertask relationships, task_groups and outcome

names are also calculated. Outcome names consist of Outcome_ followed by the rank of

the outcome. Appendix A contains a number of XTAEMS examples.

31

2.2. New Structure of VIE-CDS

VIE-CDS up to revision 0.2 is composed of a solid kernel for TÆMS in-memory struc-

tures, parsing and DTC-computations. Interaction is done via a command-line interface

written in BeanShell7 and shell scripts. Additionally, VIE-CDS has a graphical user

interface. In our work, the BeanShell dependency has been removed. BeanShell scripts

are replaced by additional classes in VIE-CDS and the command line parsing has been

extended using JSAP8. VIE-CDS is intended to be delivered as a single jar-file to ease

integration. In conjunction with the new parser and serialisation interface these changes

induce the need for some code refactoring. Figure 2.1 illustrates the new package struc-

ture of VIE-CDS.

dtc taems

parser

serialiser

graphviz shorttaems ttaems xtaems

viewer

ptaems ttaems xtaems

viecds

Figure 2.1.: The new VIE-CDS package structure

Our new packaging arranges classes into semantically coherent groups. The package

viecds is the top-level package containing all sub-packages VIE-CDS consists of. VieCDS

is the one and only class in this package. This class contains the main-method and

provides the command line interface for VIE-CDS. Package viecds.dtc encapsulates

all classes specific to the DTC-algorithm. Package viecds.taems includes all classes for

in-memory representation of TÆMS structures. Package viecds.serialiser contains

classes and sub-packages for serialising the in-memory TÆMS representation to various

7http://www.beanshell.org/, last visited May 2, 2007.
8http://www.martiansoftware.com/jsap/, last visited May 2, 2007.

32

http://www.beanshell.org/
http://www.martiansoftware.com/jsap/

textual formats. Package viecds.viewer provides the graphical user interface already

known from the former VIE-CDS.

2.2.1. Parser API

The Parser API resides in package viecds.taems.parser. It consists of the following

seven classes:

Parser is an interface defining the method parse() with return type TAEMS. Every

class implementing this interface can be used as a parser. We strongly advise to

implement parsers as sub-packages of this package.

ParserFactory is the only recommended way to create Parser instances. It provides

the createTAEMSParser() method. This method expects a ParserType object as

first parameter and a File, InputStream or String object containing the TÆMS

structure as second parameter.

ParserType is an enumeration. It provides the three fields TTAEMS, PTAEMS and

XTAEMS, representing all parsers available in the system. This information is

also used in the usage message of the command-line interface.

ParseException is a class created by the Java Compiler Compiler 9 (JavaCC). As this

and the following three classes are shared by all created parsers, we have placed it

here to avoid duplication.

SimpleCharStream is an implementation of the interface CharStream, where the stream

is assumed to contain only ASCII characters.

Token is also a class created by JavaCC. It describes the input token stream.

TokenMgrError represents a lexical error.

The TTAEMS and PTAEMS parsers are unchanged over the former version of VIE-

CDS and have only been rebuilt with JavaCC version 4.0. They have been moved to

the packages viecds.taems.parser.ttaems and viecds.taems.parser.ptaems. The

PTAEMS parser basically runs a pre-processor on the input and expands it to normal

TTAEMS. Then the standard TTAEMS parser is started on expanded input. The

XTAEMS parser is discussed in detail in section 2.3.

9https://javacc.dev.java.net/, last visited May 2, 2007.

33

https://javacc.dev.java.net/

2.2.2. Serialisation API

The idea behind the new serialisation API is to define a standard interface for the

transformation of in-memory TÆMS structures to various output formats. This API

resides in the package viecds.serialiser. It is strongly recommended to implement

concrete serialisers as sub-packages.

The following five classes form the serialisation API:

ISerialisationResult is an interface representing the result of a serialisation process. It

defines a write() method for a PrintStream or File object. Its main purpose is

to offer a generalised way of writing the serialisation result to an operating system

resource.

ISerialiser is the interface all serialisers must implement. It defines a serialise()

method for a TAEMS, a SetOfSchedules or a Schedules object with return type

ISerialisationResult.

SerialisationException is the exception expected to be thrown if an error during the

serialisation process occurs.

SerialiserFactory is the only recommended way to instantiate Serialisers. It defines

the createSerialiser() method for an object of type SerialiserType. This

method returns an serialiser object corresponding to the SerialiserType.

SerialiserType is an enumeration providing the fields XTAEMS, TTAEMS, SHORT

and GRAPHVIZ. This enumeration describes all available serialisers and is used

for the usage message of the command-line interface.

XTAEMS Serialiser

The XTAEMS serialiser is implemented in the package viecds.serialiser.xtaems. It

consists of the classes XTAEMSSerialiser implementing ISerialiser and XTAEMSResult

implementing ISerialisationResult. This serialiser iterates over each in-memory

TÆMS object and builds a XTAEMS conforming XML representation using DOM and

the serialisation API from Apache.

34

TTAEMS Serialiser

TTAEMS Serialiser is implemented in package viecds.serialiser.ttaems. It consists

of the class TTAEMSSerialiser implementing ISerialiser and TTAEMSResult imple-

menting ISerialisationResult. It does not introduce any new functionality but uses

the TTAEMS export methods of the former VIE-CDS.

Short-TAEMS Serialiser

The Short-TAEMS serialiser is implemented in package viecds.serialiser.

shorttaems. It consists of classes ShortTAEMSSerialiser implementing ISerialiser

and ShortTAEMSResult implementing ISerialisationResult. Short-TAEMS is a hu-

man readable schedule-only representation introduced with VIE-CDS. Short-TAEMS

outputs only the best rated schedule. It contains the number of methods, the methods

themselves with their abstract probabilistic quality descriptions and a quality description

of the whole schedule. For an example, see appendix B.1.

Graphviz Serialiser

The Graphviz10 serialiser is implemented in package viecds.serialiser.graphviz.

It consists of the classes GraphvizSerialiser implementing ISerialiser and

GraphvizResult implementing ISerialisationResult. Graphviz output is not in-

tended for direct use. Graphviz is an open source graph description language for use

with several graph layouting tools developed by AT&T. A command-line tool like dot

takes this description as input and produces (hierarchical) drawings of directed graphs

in various graphical formats. This schedule serialiser takes the three best rated schedules

into account. For examples, see appendix B.2.

2.3. XTAEMS Parser

The XTAEMS parser is implemented in package viecds.taems.parser.xtaems. It

consists of only one class called XTAEMSParser which extends DefaultHandler from

org.xml.sax.helpers and implements our parser interface and ErrorHandler from

10http://www.graphviz.org/, last visited May 2, 2007.

35

http://www.graphviz.org/

org.xml.sax. This means that this class implements all callback functions for the SAX

parser. The most important callbacks are the following:

startDocument is called at the beginning of the XML document and is used for some

initialisation.

endDocument is called after the last closing element. At this point the XTAEMS parser

starts resolving references between objects.

startElement is called every time a start element is found. This callback provides the

name and attributes of the element. At this point the XTAEMS parser constructs

a TÆMS object corresponding to the element’s name and sets all information

available through the attributes. Then the object is put on the parse stack and

registered in an internal object registry. Not all tags have corresponding TÆMS

objects. In that case information provided by these tags can be added directly to

the object on the top of the stack.

endElement is called every time a closing tag is found. This callback provides only

the element’s name. At this point the parser knows that all information for the

corresponding TÆMS object has been read.

The parser’s main functional units are parseStack, registry,

taskOrMethodReferenceRegistry, taskOrMethodReferencePool, agentReference-

Pool, and resourceReferencePool.

parseStack keeps track of objects to be refined by child elements in the

XML description. Figure 2.2 illustrates this idea. registry is a hashtable

containing references to all XTAEMS objects having an id attribute serving

as the key. taskOrMethodReferenceRegistry stores all subtask relationships.

taskOrMethodReferencePool is a set containing the ids of all tasks or methods

which have been referenced. agentReferencePool is a set containing the ids of

all agents which have been referenced. resourceReferencePool is a set containing

the ids of all resources which have been referenced. The main purpose of the lat-

ter three entities is detection of referenced but never defined tasks, agents, and re-

sources.

We have added a method finishDefinition() to all TÆMS objects. This method is

called when the end element of the XML description for this object has been reached. At

this point the object is removed from the stack. This method is the right place to carry

36

Figure 2.2.: Parser while parsing a XTAEMS structure. The red arrow indicates the

position of the parser. The box to the right illustrates the objects on

the parse stack.

out initial calculations performed by the constructor in the former version of VIE-CDS.

This has to be deferred until this time because the bulk of information for a TÆMS

object is unknown until its end tag has been reached.

When the endDocument() callback is called the parser starts resolving references between

objects. This process iterates over all objects stored in the registry and performs the

following steps:

1. If the object is a method, then check if it is also referenced and check if the

referenced agent is also defined.

2. If the object is a task, check if the referenced agent is also defined. Then, iterate

over all references in taskOrMethodReferenceRegistry and assign the appropri-

ate objects, found in the registry via the ids, to this object. If this object is not

referenced in taskOrMethodReferencePool assume it is a task_group.

3. If the object is a resource, check the resourceReferencePool if it also gets refer-

enced. Then check if the referenced agent is also defined.

4. If the object is an interrelationship, check if it interrelates only objects which exist

and can be interrelated by an interrelationship of this type. Check if only defined

agents are referenced.

5. If the object is an agent definition, check if this agent is also referenced.

Upon successful completion of all steps, a valid in-memory TAEMS structure has been

constructed.

37

2.3.1. Parser Analysis

As specified in the list of design goals at the beginning of this chapter, processing speed

was included as a criterion, so as to provide a tool of practical relevance. In concrete

terms, we wanted the XTAEMS parser to be at least as fast as the previous TTAEMS

parser. Here, we present a short performance comparison of the TTAEMS and XTAEMS

parsers.

For parser analysis, we have built a tool that creates random heterarchical XTAEMS

structures with a fixed number of tasks, methods, resources, and interrelationships. Then

it creates a TTAEMS structure via the XSLT stylesheet. After that, the time from the

call of the parser’s parse() method until it returns an in-memory TÆMS structure is

clocked. This clocking is done for TTAEMS and the corresponding XTAEMS encoding.

The following information into a tab-separated text file:

date: timestamp of the entry

run-time: time elapsed between the call of parse() and its return with an in-memory

TÆMS structure.

type: the parser used. Possible values are XTAEMS or TTAEMS

tasks: number of tasks

methods: number of methods

cResources: number of consumable resources

ncResources: number of non consumable resources

produces: number of produces interrelationships

consumes: number of consumes interrelationships

interrelations: number of interrelationships consisting of enables, disables, facilitates,

and hinders which are equally distributed in the structure

avgChildren: the average number of subtasks a task has

minChildren: the minnimum number of subtasks a task must have

maxChildren: the maximum number of subtasks a task may have

filesize: number of characters in the file (including whitespaces)

38

d$type 2 2.6192e+10 1.3096e+10 21118 < 2.2e-16 ***

Residuals 1824 1.1311e+09 6.2012e+05

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’’ 1

Listing 2.5: ANOVA table for run-times without outlier values.

We used R11 to carry out statistical analysis. Figure 2.3 gives an overview of how the

number of nodes in a TÆMS structure is interrelated with the run-times of the used

parser. We define a node as everything in TÆMS which has an id in XTAEMS or a label

field in TTAEMS. Triangles represent TTAEMS run-times and circles XTAEMS run-

times. Run-time is measured in micro seconds. Two things catch our eyes. The first is,

the significant number of outliers for both parsers. Even though we could not determine

a correlation of our measured attributes and the outliers. Our hypothesis is that the

larger the number of nodes, the more susceptible the run-time gets to scheduling issues

of the underlying operating system. It might be the case that the operating system

scheduler suspends the Java Virtual Machine more often and therefore the run-time

increases. For the time being, we consider all instances with a run-time above 5000

µs as outliers and remove it from our data set. After this removal the plot looks as

illustrated in figure 2.4. It shows that XTAEMS run-times spread more than TTAEMS

run-times, but there is definitely a large amount of runs where the XTAEMS parser is

faster than the TTAEMS parser. This observation gets confirmed by the boxplot in

figure 2.5. The median of run-times of the XTAEMS parser is definitely smaller than

the median of run-times of the TTAEMS parser. The whiskers in the plot also confirm

that the XTAEMS parser run-times spread more than the TTAEMS parser run-times.

Additionally, we have performed an ANOVA to determine wheter the used parser is

an important factor. Listing 2.5 shows R’s ANOVA table. Even if we do not remove

the outliers the picture is the same as indicated by R’s ANOVA table shown in listing

2.6.

The runtime differences of TTAEMS and XTAEMS parsers are statistically relevant. In

conjunction with the information from the plots we conclude that the XTAEMS parser

is faster than the TTAEMS parser and we therefore reached our goal to at least match

the performance of the TTAEMS parser.

Apart from the run-time comparison, another interesting aspect would be to estimate the

11http://www.r-project.org/, last visited May 2, 2007.

39

http://www.r-project.org/

Df Sum Sq Mean Sq F value Pr(>F)

d$type 2 4.9769e+11 2.4884e+11 538.45 < 2.2e-16 ***

Residuals 4318 1.9955e+12 4.6215e+08

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’’ 1

Listing 2.6: ANOVA table for run-times containing outlier values.

●

●

●

●●
●

●

●

●

●●

●●●

●

●
●
●●
●●●

●

●
●●
●
●●●

●

●●
●
●
●
●●●●●●●

●
●●●
●
●
●
●●

●
●●●●●
●●
●

●
●
●
●
●●●

●

●
●●●
●●●
●
●

●

●●
●
●●
●●●
●●●●●●●●
●
●●●

●

●●
●
●

●
●
●●●
●
●
●●●●
●
●●●

●

●
●
●●●●●
●●●●●●●●●
●●●●●

●●

●

●
●●

●

●●●●●●●
●
●
●●●●

●
●●●●●●●
●●

●

●●●
●
●
●
●●

●●
●
●
●●●

●

●
●
●●●●●

●
●●●
●

●
●
●●●●●●
●●
●
●●
●●●
●
●●●●

●
●

●●

●

●●●●
●
●

●●●●●
●

●

●

●
●

●●
●●●●●
●
●
●
●●●●●●
●●

●

●

●
●
●●●
●

●●●●●
●●
●●●●●●

●

●●●
●
●●
●
●●

●
●

●●
●
●
●●
●
●●●
●●
●●

●

●●●●●
●
●●●
●
●●

●
●●
●●
●
●●
●
●●●●
●●
●●
●●
●●●●

●●
●●●●●●●
●
●●●●
●●

●

●●
●●●●●
●
●●●●●●●
●
●
●●●●

●●●●
●
●●●
●●●●●
●●

●●●●●●●
●
●●●●●●●●●
●

●●
●●●●●●●●
●●●●●
●
●●●
●●●●●
●
●

●
●●●●

●

●●●●
●
●●
●●●●
●
●
●●

●●●

●

●
●
●●●●●●●●●
●
●
●●
●●●
●●●●●●●
●●

●

●●●
●●
●●●●●

●

●
●●●●●
●
●●●●●●

●

●
●

●●●●
●
●●●●●
●
●
●●
●●●●
●
●

●
●●
●
●
●
●●
●
●●●
●●●●●●●

●

●●●●●●●
●●●●●●
●
●●●●●
●

●

●
●●●●
●
●●
●
●
●●
●
●
●

●

●
●●●
●

●

●●●●
●●●●●●●●●●●
●●●●●●●

●
●●●

●

●
●●●●
●

●

●●
●●●●

●●●●

●

●●●
●●●
●

●

●●

●

●
●
●●●●●
●●●●●
●
●
●●●●
●
●●

●●
●

●

●
●
●
●
●●●
●●●●
●●●●●●●●

●●●

●

●●●
●
●●●●
●

●

●●●●●●
●●
●●●●●
●
●
●

●
●

●●
●
●
●

●●
●
●●●●●
●●●
●
●●●●●●
●
●

●●●●
●
●
●
●●●●●
●●●●●
●

●

●
●
●
●●
●●●●●●
●●●
●
●
●●●●●●●●

●
●●
●●●●

●
●

●●●●●
●●●

●
●●●●
●
●●●
●
●

●●
●
●
●●
●●●●
●
●
●●

●

●●●
●
●●
●
●●
●●●
●
●●

●●●
●
●
●
●
●
●
●
●
●●●●●
●
●●●●●

●
●●
●●●●●●●
●
●●●●●●●●●●

●●●●●●
●
●
●●●●
●
●●
●●●●●●●●●

●●
●
●●●●

●

●●●●●
●
●●●
●
●
●

●
●
●●
●
●●●●
●●●
●
●●●
●●●●
●
●

●

●●●●

●

●●
●●●

●●
●
●●

●

●
●
●●●●
●
●
●
●
●●●●

●

●●●●●
●●●●●●●●●●●
●
●●
●●●
●
●●●
●

●

●
●
●

●

●
●●●
●
●●

●
●●
●
●
●
●●●

●

●●●●●●●●●●●●
●

●

●
●●●●●●
●●●●●●●

●
●●●
●
●●●●
●●●●●
●●●●
●
●●●

●

●●●

●
●●

●

●●●●
●
●●●●●●●●●●●●●●

●●
●●
●

●

●
●
●●●●●

●

●●●
●●

●

●
●

●

●
●
●●●●●●
●●

●
●●●●●●
●
●●●
●●●●●
●●●●●●

●
●●
●
●●
●

●

●

●
●●●●

●

●
●
●●
●●●
●●●●●●
●●

●
●

●
●●
●●●●

●

●

●●●●●●●
●

●●●
●
●●●●

●●
●●●●●●

●

●●●●●●●
●●●●

●

●
●●
●●
●●●
●●
●●●
●
●
●●●●

●
●
●
●●●
●●●●●●
●●
●●●●●●●

●●●
●●

●●
●

●

●
●●●
●●
●●●
●●●●●●●
●
●
●●●●●●●●●●●
●●●●●●

●

●

●●

●

●
●●

●●

●
●●
●
●●●●●●

●●●
●●
●
●
●●

●
●

●

●

●
●

●
●●

●
●

●
●
●●●●●●●
●●

●

●●●●

●

●●
●●
●

●

●●

●

●●
●
●●●●●●

●●

●

●●
●●

●
●

●●
●

●

●●

●●

●●●

●

●
●●●●●●●
●

●

●
●
●

●
●●
●●●●●

●
●●
●
●
●●●●●
●
●
●●●●●●●

●
●●●●●●●
●
●●●
●●●
●●

●●

●●
●
●
●●●●●●
●●
●●●●

●

●
●

●
●●●

●

●

●

●

●●
●
●
●●●
●●●●
●

●

●●

●

●
●
●
●●●

●●

●
●●●
●
●
●

●

●
●●●

●

●●
●●●●●

●●●●

●

●

●

●

●●●
●●●●●●
●●
●●●●
●●●●●
●●●●

●●●
●●
●●●●●●●

●

●●●
●●

●

●●
●●●●
●●●●●●

●

●
●●●●

●●●

●

●●●●●●●●
●●●●●●●●

●
●●●●●●●●●
●●●●

●

●●●●●●●

●
●

●●●●

●

●
●
●●
●●●●●

●

●
●●

●

●●●●

●

●●●●
●●●●

●●

●
●●

●
●●●
●●●●●
●

●●

●

●●●●●●
●●●●●●●●

●
●

●●●●

●

●
●●●
●

●●●●
●●●
●
●●●●
●
●●●
●●●
●

●
●
●●●●●●●
●●●●
●
●
●●
●●
●●

●

●●

●

●
●●●●●
●
●●●●
●●

●

●●●●●
●●

●

●
●
●●●●●●●●●●●

●●●●●
●●●●

●

●
●●●●
●
●●
●●●
●

●

●
●●●

●

●●●
●●●
●●
●●

●
●●●

●●●●
●●●●●●●●
●●●
●●●

●
●
●●●●●●●●●●
●
●●●●

●●●●

●●●
●
●●

●

●
●
●
●●
●●●●●
●●

●

●
●
●

●

●●●●

●●

●

●

●●●●
●●
●●●●●●●●

●●●●●

●

●●
●
●●●
●●

●●●●●●

●

●●●
●●●●●●
●
●

●●

●●●
●●●●●
●●●●●●
●
●●●
●●●

●
●
●
●●●●●
●
●●●
●

●●●●●●●●●
●
●●●●
●

●

●●●
●●

●

●●
●

●●

●

●
●●●
●●●●●●●●
●●
●●●●

●
●●●
●
●●●

●

●●
●●
●●●●●

●
●

●●●●●●●●●●
●●●●
●●●
●
●

●

●
●
●●
●●●●
●●●●●
●●●●
●●●

●
●●●●●●●●
●
●
●●
●●
●
●●
●

20 30 40 50 60

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Number of nodes

ru
nt

im
e

● XTAEMS
TTAEMS

Figure 2.3.: Comparison of the run-time behaviour of the XTAEMS and the

TTAEMS parsers in relation to the number of nodes in the TÆMS

structure definition file. The run-time is given in micro-seconds.

40

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●
●

●
●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

20 30 40 50 60

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Number of nodes

ru
nt

im
e

● XTAEMS
TTAEMS

Figure 2.4.: Comparison of the run-time behaviour of the XTAEMS and the

TTAEMS parsers in relation to the number of nodes in the TÆMS

structure definition file without outlier values. The run-time is given in

micro-seconds.

41

TTAEMS XTAEMS

20
00

25
00

30
00

35
00

40
00

45
00

50
00

type

ru
nt

im
e

Figure 2.5.: Comparison of run-time behaviour in a boxplot. The run-time is given

in micro-seconds.

number of nodes in a TÆMS structure from file size. If this was possible it would allow

further optimisations in our XTAEMS parser and maybe also on the TTAEMS parser:

If the number of nodes could be estimated in advance, the size the hashtables could be

adjusted avoiding the need to rehash, with related performance enhancements. Figure

2.6 shows a plot of the number of nodes in relation to the file size. Circles represent

XTAEMS files and triangles TTAEMS files. The dashed lines are the two linear models

estimating the number of nodes. We can see that both estimations are quite good, even

though the bigger XTAEMS files spread more. The Quantile-Quantile plots in figure 2.7

and 2.8 prove that the residuals of both data sets are normally distributed. Therefore

it is in fact possible to predict the number of nodes from the file size, which opens the

door for further optimisations.

42

● ●●● ● ●● ●●● ●●●● ●● ●●●●
●●●● ● ●●● ●● ●●●●●●●● ● ●

●● ●●●● ●● ●●● ● ●●●●● ● ●●●● ●●●●● ●● ●●● ●● ●● ●● ●●
●●●● ●●● ●●● ●● ●● ● ●●● ● ●

●●●● ●● ●●● ●●●● ●● ●●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●●●
●● ●●●●● ●● ●●● ● ●●●● ●●●

●●●● ●● ●● ● ●●●●●●● ● ●● ●

●●●●●● ●●●●● ●●● ●●● ● ●●
● ● ●● ●● ● ●● ●●● ●●●● ●● ●●
● ● ●●● ● ●●● ●●●●● ● ●● ● ●● ●●●● ●● ●● ●● ●● ● ●●● ●● ●●

● ●●●●●●●● ●●● ●● ●● ●● ●●
●● ●●● ●● ● ● ●●●● ●●● ●●● ●● ●●●●● ● ●●● ●●● ●● ●●●● ●
●● ●● ●●● ●●●●● ● ●●● ●● ●●

●● ● ●● ●●●●● ● ●●● ● ●●● ● ●

● ●●● ●●●● ● ●● ● ●●●● ●● ●●
●●●●● ●● ● ●●● ●●● ●●●● ● ●

●● ●● ●● ●●●●●●● ●● ●● ●● ● ●●● ●●● ●●●●● ●●●●●● ●●●
●● ●● ● ●●● ● ●●● ●● ●●● ●● ●

●●●● ●●● ●● ● ●●● ● ●● ●●● ● ●●●● ● ●●● ● ●● ●●●● ●●●● ●
●● ●●● ●●● ●● ●● ●● ● ●● ●● ●

● ●●● ●●●● ●●● ● ●●●● ●●●●

●● ●●●●● ●●●●● ●●●●● ●● ●
●●● ● ●●●● ●●● ●● ●● ●● ●● ●

●●● ●●● ●● ●● ●● ●●● ● ●● ●●● ●●●● ●●●● ● ● ●●● ● ●●● ● ●
●● ●● ● ●●● ● ● ●● ●●● ●●●●●

●●● ●●● ● ●●● ● ●●● ●● ●● ●●● ● ●● ●●●● ●● ●●● ● ●●● ●●●
● ●●●●●● ●●● ● ●●● ●● ●●● ●

●● ●● ●●●● ●● ●● ●●● ●●● ●●

● ●● ●●● ●●● ●●● ● ●●●● ●● ●
●● ●●●● ●●● ● ●●● ●●●● ●●●

● ●●● ●● ●● ●●● ●●●● ●●●●●● ●●● ●●●● ●● ● ●●● ●● ●●● ●
●●● ● ●●●● ● ● ●●● ● ●● ●● ●●

●●● ● ●●●●● ●●● ●●●● ●●●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●
●●● ● ●● ●● ●●● ●●●●●● ●● ●

● ●● ●●● ●● ●● ●● ●● ●●●● ●●

● ●● ●●● ● ●● ● ●●● ●●● ●● ● ●
● ●●● ● ●●● ●●● ●●● ● ●●●●●

●●● ●●●●●● ●●● ●● ●●● ● ●● ●● ●● ●● ●●● ● ●●●● ●●●● ●●
●● ●●●● ●● ●● ●●●●● ● ●●● ●

● ●●●● ●●● ●●● ●●● ●●●● ●● ●● ●● ●● ● ●● ●● ●● ●●●●● ●●
● ●● ●●● ●● ●● ●●● ●● ●● ●●●

● ●● ●●● ●●●● ●●●●●●●●● ●

●● ●●●● ●●●● ●●● ●● ●●●●●
●● ●●●● ●●●●●● ●● ●●●●● ●

●●● ●● ● ●●●●● ●●● ●● ●●●●● ●● ● ●●● ●●●●●● ● ●●● ●● ●
●●● ●●●●●●● ●●● ●● ●● ●●●
●● ●● ●●●●● ●● ●●● ● ●● ●●● ●● ●●● ●● ● ●●●● ●●● ●●● ●●

●●● ● ●● ●● ●●● ●● ●● ●●● ●●
●● ●●● ●● ●●● ●●●● ●● ●● ●●

●● ●● ●●●● ●● ●●●●● ●●●●●
●●● ● ●● ●● ●● ●● ●●●● ●●●●

●● ●●● ●●●● ●● ●● ●●●● ●●● ●●● ● ●● ●●●● ● ●●● ●●●● ● ●
●● ●● ●●● ●● ●●● ●●● ●● ●● ●

● ●●●●● ●●● ● ●● ● ●● ● ●●●● ●●● ● ●●● ● ●● ● ●●●● ●● ● ● ●
●●● ●● ●●●●●●● ● ●●●● ●●●

●●●●● ● ●●● ●● ●● ●● ●● ●●●

● ●●●●● ●●●● ●●●● ●●● ●●●
●● ●●● ● ●●●●●● ●● ● ●●●● ●

● ●●● ●● ● ●● ●● ●● ●●● ●●●●● ●●● ●●●● ●● ●●● ●●● ●● ●●
●●● ●● ●●● ●● ● ●● ●●● ●● ●●

● ●●● ● ● ● ●●●● ●● ●●●●● ●● ●●● ●● ● ● ●●●● ●●● ●● ●● ●●
● ●●●● ●●●●● ●●● ●●● ● ● ●●

●● ●● ●● ● ●●● ●● ● ● ●●●● ● ●

● ● ●●● ● ●● ●● ●● ●● ● ●● ●● ●
● ●● ●●●● ●●●● ●●● ●● ●●●●

●●●●● ● ●●● ● ●● ●●● ●●●● ●●●● ●● ● ●● ●● ●● ● ● ●●●● ● ●
●● ● ●●●● ● ● ●●● ●● ●●● ● ●●

● ●●● ●● ● ● ●●● ●●● ● ●●● ●● ● ●●●●● ●● ● ●●●●● ●● ●●●●
●● ●●●● ●● ● ●●●● ●●●● ●● ●

● ●●●● ● ●●● ●● ●●● ●●●● ●●

● ●●●●● ● ●●● ●● ●●●●● ●●●
●● ●● ●●● ●●●●●●● ●●● ●● ●

●●●●● ● ●●● ●● ●●●● ●●● ●● ●● ● ● ●●●● ●●●● ●●● ● ●●● ●
●● ●●● ●● ●●● ● ●●● ●●●●●●

●● ● ●●●●●● ●●● ●●● ● ●●● ●● ●●● ●●● ●● ●● ●● ● ●● ●● ●●
●●● ●● ● ●●●● ●● ●●● ●●●● ●

● ● ●●●● ● ●● ●● ●●●● ●●● ● ●

●●●● ●● ●●● ●● ●● ● ●●● ●● ●
● ●●● ●●● ●● ●● ●● ●● ●● ●● ●

● ●● ●● ●●● ●● ●● ● ●●● ●●● ●●●●● ●● ●●● ●● ●●● ●●●●● ●
●●●● ●●● ● ●● ●●●● ●● ● ●● ●

●● ●●●● ●●●● ●●● ● ●●● ●●● ●●● ● ●● ● ●●● ● ●●● ●●● ● ●●
●●●● ● ●● ●●● ●●●● ●●● ● ●●

●● ● ●●●●● ●●●● ●●●● ●●● ●

10000 20000 30000 40000 50000

20
30

40
50

60

filesize

nu
m

be
r

of
 n

od
es

●

●

TTAEMS
XTAEMS
model

Figure 2.6.: Number of nodes in relation to the file size. The file size is given in

bytes.

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●
●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●
●●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

−3 −2 −1 0 1 2 3

−
10

−
5

0
5

10
15

Normal Q−Q Plot XTAEMS

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 2.7.: Quantile-Quantile plot for the linear model of XTAEMS

43

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●

●

●●
●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
10

−
5

0
5

10

Normal Q−Q Plot TTAEMS

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 2.8.: Quantile-Quantile plot for the linear model of TTAEMS

44

3. Design-to-Criteria Scheduling

Integration

JADE is the multi-agent platform of choice for our reference implementation. As

mentioned in the introduction, JADE is a FIPA compliant multi-agent framework.

Accordingly, our aim was also to design the integration of a scheduling component

in as generic a way as possible, so as to ideally enable all FIPA compliant agent

frameworks to adopt our approach and thereby even enable inter-platform schedul-

ing.

Section 3.1 introduces the generic design common for all FIPA compliant platforms. In

section 3.2 we discuss our implementation of these generic concepts in JADE.

3.1. Conceptual Design

In the design phase, numerous trade-offs between flexibility and usability had be taken.

In particular, we do not aim to answer the question wheter it is better to use dedicated

planning, scheduling and execution monitoring agents or to provide these abilties to each

agent. Therefore, we rather speak about agent roles than concrete agents in the following.

Interaction protocols are the glue between these roles.

One major design decision is to treat planning, scheduling and execution monitoring as

one big building block. Consequently, these tasks cannot be distributed among different

agents. This approach restricts the multi-agent system designer, but saves communica-

tion costs. It avoids sending large string representations of TÆMS structures multiple

times over the communication channel.

With our approach it is possible to build centralised (only one agent plays the planning,

scheduling, and execution monitoring role), multi-centric (several agents have planning,

45

scheduling, and execution monitoring abilities) as well as fully distributed (resembling

GPGP: each agent has planning, scheduling, and execution monitoring abilites) infras-

tructures. This is our contribution to flexiblity. For usability, we require each agent to

offer a mechanism for manipulating its local TÆMS structures. This mechanism has to

take care of properly proclaiming local TÆMS knowledge (see section 3.1.2), as well as

implementing all scheduling related interaction protocols (see sections 3.1.1 and 3.1.3).

To summarise, we do not want the agent programmer to be confronted with internals

of the scheduling and method execution process, but still provide the greatest possible

degree of control.

3.1.1. Ontologies

According to the FIPA specifications each content language token has to have a certain

ontology type. This is necessary to define a content language’s formal semantics. Here,

we relate to the semantics of SL. An ontology item must then have one of the following

types [Bellifemine et al., 2007].

Predicates say something about the status of the world an may evaluate to true or

false.

Terms are expressions identifying entities (abstract or concrete) that ”exist” in the

world. Agents may reason about them. They are further classified into:

Primitives are basic types like string, integer, and float.

Concepts are structured entities. They can be best thought of as ”things” which

have names and certain characteristics described by so-called slots. Concepts

do not make sense as sole content of an ACL message.

Agent actions are special concepts. They indicate the actions that can be per-

formed by an agent.

Aggregates are groups of entities, such as sequences or sets.

Identifying referential expressions identify entities for which a given predicate is

true.

46

We refer to an ontology as a group of semantically coherent predicates, and terms.

It is possible to extend or refine an existing ontology by another, resembling the in-

heritance mechanism of object oriented modelling. We have developed three such

ontologies to provide the vocabulary necessary for integrating scheduled task execu-

tion in an FIPA compliant multi-agent architecture. Figure 3.1 gives an overview of

the relationships between these ontologies which we discuss in the following in greater

depth.

Based on ideas taken from [Cranefield and Purvis, 1999], we use the well-known UML

formalism to visualise ontology structures: Packages refer to an ontology in our sense.

Arrows with hollow heads define generalisation relationships. Dashed arrows indicate

dependency relationships. Solid lines define associations. A hollow diamond indicates

an aggregation (this means that an entity mainly consists of another entity). The UML

class symbol is used to describe an entity. Stereotypes are used to indicate entity

types. The attributes field is used to describe the slots of a concept. The plus sign

marks a slot value as mandatory, whereas a minus sign declares a slot value to be

optional.

BasicOntology

TAEMSOntology

DTCOntology

TAEMSMetaInfOntology

<<access>>

<<access>>

Figure 3.1.: Relationships between TAEMSOntology, DTCOntology and

TAEMSMetaInfOntology.

BasicOntology is the root ontology we extend. We assume it to contain all primitive

concept and aggregate definitions. Inspired by JADE’s ontology mechanism, we

expect the multi-agent infrastructure to provide us with this ontology. Our on-

47

Figure 3.2.: Actions, concepts, and predicates contained in TAEMSOntology.

48

D
T
C
O
n
t
o
l
o
g
y

<
<
A
c
t
i
o
n
>
>

D
T

C
S

ch
ed

u
le

d
A

ct
io

n

+
g
o
a
l
:

S
t
r
i
n
g

+
d
o
m
a
i
n
:

D
o
m
a
i
n

-
e
a
r
l
i
e
s
t
S
t
a
r
t
T
i
m
e
:

D
a
t
e

-
d
e
a
d
l
i
n
e
:

D
a
t
e

-
c
r
i
t
e
r
i
a
:

D
T
C
C
r
i
t
e
r
i
a

-
m
e
t
a
i
n
f
:

T
A
E
M
S
M
e
t
a
I
n
f
O
n
t
o
l
o
g
y

<
<
C
o
n
c
e
p
t
>
>

D
T

C
C

ri
te

ri
a

-
c
e
r
t
a
i
n
t
y
:

D
T
C
S
l
i
d
e
r

-
c
e
r
t
a
i
n
t
y
T
h
r
e
s
h
o
l
d
s
:

D
T
C
B
o
u
n
d
s

-
m
e
t
a
:

D
T
C
M
e
t
a

-
r
a
w
G
o
o
d
n
e
s
s
:

D
T
C
S
l
i
d
e
r

-
t
h
r
e
s
h
o
l
d
s
A
n
d
L
i
m
i
t
s
:

D
T
C
B
o
u
n
d
s

<
<
C
o
n
c
e
p
t
>
>

D
T

C
S

lid
er

+
q
u
a
l
i
t
y
:

F
l
o
a
t

+
c
o
s
t
:

F
l
o
a
t

+
d
u
r
a
t
i
o
n
:

F
l
o
a
t

<
<
C
o
n
c
e
p
t
>
>

D
T

C
B

o
u

n
d

s

+
q
u
a
l
i
t
y
L
o
w
e
r
:

F
l
o
a
t

+
q
u
a
l
i
t
y
U
p
p
e
r
:

F
l
o
a
t

+
c
o
s
t
L
o
w
e
r
:

F
l
o
a
t

+
c
o
s
t
U
p
p
e
r
:

F
l
o
a
t

+
d
u
r
a
t
i
o
n
L
o
w
e
r
:

F
l
o
a
t

+
d
u
r
a
t
i
o
n
U
p
p
e
r
:

F
l
o
a
t

<
<
C
o
n
c
e
p
t
>
>

D
T

C
M

et
a

+
c
e
r
t
a
i
n
t
y
:

F
l
o
a
t

+
c
e
r
t
a
i
n
t
y
T
h
r
e
s
h
o
l
d
s
:

F
l
o
a
t

+
r
a
w
G
o
o
d
n
e
s
s
:

F
l
o
a
t

+
t
h
r
e
s
h
o
l
d
s
A
n
d
L
i
m
i
t
s
:

F
l
o
a
t

<
<
P
r
e
d
i
c
a
t
e
>
>

D
T

C
R

es
u

lt

+
s
t
a
r
t
:

D
i
s
t
r
i
b
u
t
i
o
n

+
f
i
n
i
s
h
:

D
i
s
t
r
i
b
u
t
i
o
n

+
q
u
a
l
i
t
y
:

D
i
s
t
r
i
b
u
t
i
o
n

+
c
o
s
t
:

D
i
s
t
r
i
b
u
t
i
o
n

+
d
u
r
a
t
i
o
n
:

D
i
s
t
r
i
b
u
t
i
o
n

<
<
P
r
e
d
i
c
a
t
e
>
>

D
T

C
E

rr
o

r

+
m
e
s
s
a
g
e
:

S
t
r
i
n
g

<
<
A
c
t
i
o
n
>
>

D
T

C
C

o
n

fi
rm

C
o

m
m

it
m

en
t

+
s
t
a
r
t
:

D
i
s
t
r
i
b
u
t
i
o
n

+
f
i
n
i
s
h
:

D
i
s
t
r
i
b
u
t
i
o
n

+
q
u
a
l
i
t
y
:

D
i
s
t
r
i
b
u
t
i
o
n

+
c
o
s
t
:

D
i
s
t
r
i
b
u
t
i
o
n

+
d
u
r
a
t
i
o
n
:

D
i
s
t
r
i
b
u
t
i
o
n

+
c
o
m
m
i
t
m
e
n
t
I
D
:

S
t
r
i
n
g

<
<
P
r
e
d
i
c
a
t
e
>
>

D
T

C
M

et
h

o
d

E
xe

cu
ti

o
n

R
es

u
lt

+
c
o
m
m
i
t
m
e
n
t
I
D
:

S
t
r
i
n
g

+
f
i
n
i
s
h
e
d
:

I
n
t
e
g
e
r

1

*

1

*

1

*

Figure 3.3.: Actions, concepts, and predicates contained in DTCOntology.

49

TAEMSMetaInfOntology

<<Concept>>

TAEMSMetaInformation

Figure 3.4.: The TAEMSMetaInfOntology contains only one concept. It is designed

to be refined with application specific meta-information.

tologies require the three primitive types integer, float, and string, as well as the

aggregate type sequence.

TAEMSOntology mainly deals with wrapping TÆMS structures, defining the vocab-

ulary for TÆMS structure exchange and providing a predicate to refine a given

TÆMS structure. Figure 3.2 provides an overview of this ontology’s structure.

TAEMSStructure is the heart of this ontology. This concept wraps TÆMS structures,

allowing to use them in content languages. The slot containsTaskOrMethod con-

tains the name of a TÆMS task or method. The slot content contains a string

representation of a TÆMS structure encoded as defined by the slot encoding.

This structure must contain the TÆMS task or method referenced in the slot

containsTaskOrMethod. The slot metainf allows the specification of further

meta-information about the wrapped TÆMS structure.

TAEMSSend is the action used to exchange TÆMS structures. The slot structure

contains the TAEMSStructure to be sent.

TAEMSKnowledgeAbout is a predicate that wraps the concept TAEMSStructure. The

special thing about this predicate is that it expects a TÆMS method definition

with all execution qualities and nothing else, whereas in TAEMSSend any other

TÆMS information can be included the sending agent considers important.

TAEMSDomain is a concept that defines a field of knowledge. Each TÆMS structure

is assigned to such a domain.

Distribution is a concept that extends BasicOntology. It offers the possiblity to use the

discrete probability distributions omnipresent in TÆMS.

50

DTCOntology adds DTC-specific predicates and terms to TAEMSOntology. Its main

purpose is to define the vocabulary necessary for requesting scheduled method

execution, as well as providing VIE-CDS with scheduling criteria. Figure 3.3 gives

an overview of the structure of DTCOntology.

DTCScheduledAction is an action that allows requesting a DTC scheduled task ex-

ecution. The slot goal must contain a TÆMS task or method from the TÆMS

domain specified in the slot domain. It is possible to specify an earliest start time

and a deadline for execution in the slots earliestStartTime and deadline as

well as additional meta-information in the slot metainf. The slot criteria allows

the definition of scheduling criteria.

DTCCriteria is a concept that aggregates the scheduling criteria for a certain scheduling

request following the slider metaphor. For the meaning of these values, please

refer to [Wagner et al., 1998, Jung, 2003]. If no scheduling criteria are specified

the default ones of the scheduler are used.

DTCMeta is a concept that wraps values for the relative importance of raw goodness,

thresholds and limits, certainty, and certainty thresholds.

DTCSlider is a concept that defines a value for quality, cost, and duration.

DTCBounds is a concept that defines an upper and a lower bound for quality, cost and

duration.

DTCConfirmCommitment is an action that request, an agent to confirm a commitment

to a certain TÆMS method execution. The slots start and finish define the

possible start and finish time distributions calculated by the scheduler. The slots

quality, cost and duration describe the expected qualities of TÆMS method

execution. The slot commitmentID contains an ID identifying this commitment.

DTCResult is a predicate that describes the expected or real characteristics of schedule

execution. This includes start time of execution, finish time, as well as the expected

schedule execution qualities.

DTCMethodExecutionResult is a predicate that indicates that the method defined by

the commitment ID in the slot commitmentID has been successfully executed and

finished at the time provided in the slot finished.

DTCError is a predicate used to describe an error which occured during scheduling.

51

TAEMSMetaInfOntology contains only one concept called TAEMSMetaInformation,

as illustrated in figure 3.4. This ontology is intended to be refined by application

specific ontologies which provide meta-information about information encoded in a

TÆMS structure. For example, this ontology could be used to provide information

about how to resolve redundancies.

3.1.2. Publish and Discover

FIPA compliant multi-agent infrastructures must provide a yellow pages service called

directory facilitator (DF). On the one hand, we make standard use of it to register

the planning, scheduling, execution monitoring service, and on the other hand we also

exploit it to publish an agent’s local TÆMS knowledge. To avoid the DF to be a

single point of failure, we recommend to use techniques such as DF replication and

federation.

A DF can administer multiple service descriptions per agent. Each service descrip-

tion must have a name and a type. It may have multiple additional properties spec-

ified as key-value pairs, as well as a set of known ontologies and interaction proto-

cols.

TÆMS Knowledge

We expect each agent owning local TÆMS structures to announce the contained TÆMS

tasks and methods with the DF. We expect the agent to publish only methods which

it also can execute. To be able to distinguish standard service definitions from TÆMS

information, we introduce the new service type taems. For each known TÆMS domain,

the agent must register a service of type taems. The service name must be equal to the

domain name. Each unique type-name pair contains a set of properties. The property’s

value may be task or method. Its name corresponds to a TÆMS tasks or method name.

Another special property with name encoding exists. It indicates the agent’s preferred

TÆMS encoding. This feature allows the mapping of TÆMS tasks or methods to FIPA

compliant agents using standard FIPA DF mechanisms.

Listing 3.1 shows the content of an ACL message which asks the DF for TÆMS method

Treatment1 in domain ClinicalCentre with xtaems as the preferred encoding.

52

((action

(agent -identifier

:name df@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc))

(search

(df -agent -description

:services

(set

(service -description

:name ClinicalCentre

:type taems

:properties

(set

(property

:name Treatment1

:value method)

(property

:name encoding

:value xtaems)))))

(search -constraints

:max -results -1))))

Listing 3.1: Request (in FIPA-SL) from the yellow pages service all agents having

TÆMS knowledge about TÆMS method Treatment1 in domain Clini-

calCentre which support encoding TÆMS structures in XTAEMS.

53

((action (agent -identifier

:name df@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc))

(search

(df -agent -description

:services

(set

(service -description

:name DTCScheduling

:type TAEMSPlanScheduleMonitor

:protocols (set DTCSchedule)

:ontologies (set DTCOntology))))

(search -constraints

:max -results -1))))

Listing 3.2: Request (in FIPA-SL) from the yellow pages service all agents providing

a design-to-criteria scheduling service and speaking the DTCSchedule

protocol.

Design-to-Criteria Scheduling Service

An agent having DTC planning, scheduling and execution monitoring abilities has to reg-

ister this service with the DF as service of type TAEMSPlanScheduleMonitor and name

DTCScheduling. It also must declare to speak the DTCSchedule interaction protocol

and knows the DTCOntology.

Listing 3.2 shows the content of an ACL message querying the DF for a plann, scheduling,

and execution monitoring service.

3.1.3. Scheduling Phases

Our scheduling integration approach does not comprise a single component to be added

to a FIPA compliant agent platform. We specify it as an orchestration of well defined

FIPA interaction protocols, namely FIPA Request Interaction Protocol (see figure 3.5)

and FIPA Query Interaction Protocol (see figure 3.6), as well as FIPA Cancel Meta-

Protocol (see figure 3.7). We also make use of the slight modification proposed by

the JADE community, to make the AGREE message optional if the INFORM message is

immediately available.

54

Figure 3.5.: FIPA Request Interaction Protocol,

[Foundation for Intelligent Physical Agents (FIPA), 2002b, p.1]

55

Figure 3.6.: FIPA Query Interaction Protocol,

[Foundation for Intelligent Physical Agents (FIPA), 2002c, p.1]

Figure 3.7.: FIPA Cancel Meta-Protocol,

[Foundation for Intelligent Physical Agents (FIPA), 2002b, p.2]

56

Figure 3.8 provides an overview of the protocol flow of our approach. We use an UML-like

formalism as proposed in [Odell et al., 2001]: Requester, Plan/Schedule/Monitor execu-

tion and TAEMS Provider do again refer to roles an agent can play during scheduled

action execution. The duplicate occurrence of TAEMS Provider with dots in-between

should illustrate that multiple TAEMSProvider roles could be involved during one sched-

uled action execution.

The whole scheduling process is triggered by a schedule request. If the planning, schedul-

ing, and execution monitoring role accepts to coordinate the scheduling process, it runs

through three phases delineated by the first three grey rectangles on the right. After that

it can inform the requester about the expected scheduling qualities and execution time.

According to the start times calculated by the scheduler each agent involved in sched-

uled action execution starts self-dependently TÆMS method execution and indicates its

result to the plan, schedule, execution monitoring role.

When all TÆMS methods have been executed successfully, the requester is informed

about the finished schedule execution and the final qualities achieved.

Each scheduling phase has been given a protocol name: DTCSchedule, TAEMSSend,

TAEMSKnowledge, and DTCMethodExecution. We do not propose new interaction pro-

tocols, rather, this approach allows filtering out messages by the scheduling component,

freeing the agent programmer from the responsibility of not handling these messages.

We now discuss the scheduling phases in more detail.

Request Scheduled Action Execution

The request for scheduled action execution triggers the whole planning, scheduling and

action execution monitoring process. It is implemented as FIPA Request Interaction

Protocol. We call this protocol DTCSchedule. The requester queries the DF for an

agent providing a planning, scheduling, and execution monitoring service as shown

in listing 3.2. Then it requests a scheduled action execution with a message like the

one given in listing 3.3. A REQUEST message in protocol DTCSchedule is expected

to

• contain a DTCScheduledAction action,

• indicate that it uses DTCOntology,

57

Figure 3.8.: Protocol flow for scheduled action execution

58

(REQUEST

:sender (agent -identifier

:name Requester@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.hospital.Requester)

:receiver (set

(agent -identifier

:name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)))

:content "(

(action

(agent -identifier

:name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc))

(DTCScheduledAction

:criteria (DTCCriteria

:certainty (DTCSliders :quality 50.0 :cost 50.0 :duration

50.0)

:certaintyThresholds (DTCBounds :qualityLower 0.0 :qualityUpper

50.0

:costLower 0.0 :costUpper 50.0 :durationLower 0.0 :

durationUpper 50.0)

:meta (DTCMetaSliders :certainty 50.0 :certaintyThresholds 50.0

:rawGoodness 50.0 :thresholdsAndLimits 50.0)

:rawGoodness (DTCSliders :quality 50.0 :cost 50.0 :duration

50.0)

:thresholdsAndLimits (DTCBounds :qualityLower 0.0 :

qualityUpper 50.0 :costLower 0.0 :costUpper 50.0 :

durationLower 0.0 :durationUpper 50.0))

:domain (TAEMSDomain :name ClinicalCentre)

:goal FullTreatment)))"

:language fipa -sl

:ontology DTCOntology

:protocol DTCSchedule

:conversation -id ScheduleID267907171175078654618)

Listing 3.3: A sample scheduling request message.

59

(REQUEST

:sender (agent -identifier

:name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.planner.PlannerAgent)

:receiver (set

(agent -identifier

:name Orthopaedics@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)))

:content "((action

(agent -identifier

:name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc))

(TAEMSSend

:structure (TAEMSStructure

:containsTaskOrMethod FullKneeCheck

:domain (TAEMSDomain :name ClinicalCentre)

:encoding xtaems))))"

:reply -with R1175078656775_0

:language fipa -sl

:ontology TAEMSOntology

:protocol TAEMSSend

:conversation -id C446196_1175078656775)

Listing 3.4: A TÆMS knowledge request.

• indicate DTCSchedule as protocol, and

• have a unique conversation-ID which will be used to reference this scheduling

request.

If one of the conditions above is not met, the planning, scheduling, and execution mon-

itoring agent answers with a NOT-UNDERSTOOD message. If all conditions are met, the

planning, scheduling, and execution monitoring agent can REFUSE the request, or it con-

tinues with the first three phases of scheduled method execution. These phases form the

core of design-to-criteria scheduling integration.

60

:sender (agent -identifier

:name Orthopaedics@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.hospital.StationAgent)

:receiver (set

(agent -identifier

:name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.p lanner.PlannerAgent))

:content "((action

(agent -identifier

:name Orthopaedics@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc))

(TAEMSSend

:structure (TAEMSStructure

:containsTaskOrMethod FullKneeCheck

:content \"<?xml version =\\"1.0\\"

encoding =\\"UTF -8\\"? > <taems >

<task id=\\" FullCnemialTreatment \\" qaf =\\" sum_all \\">

<subtask ref =\\" doCnemialTreatment \\"/>

</task >

<task id=\\" doCnemialTreatment \\" qaf =\\" max\\">

<subtask ref =\\" Cnemial2 \\"/>

</task >

<method id=\\" Cnemial1 \\"/>

</taems >\"

:domain (TAEMSDomain :name ClinicalCentre)

:encoding xtaems))))"

:reply -with Planner1@arwen :1099/ JADE1175078656846

:in -reply -to R1175078656775_0

:language fipa -sl

:ontology TAEMSOntology

:protocol TAEMSSend

:conversation -id C446196_1175078656775)

Listing 3.5: A response to the TÆMS knowledge request specified in listing 3.4.

61

Updating Non-Local Viewpoints

In the majority of cases, the planning, scheduling, and execution monitoring agent does

not have enough local TÆMS knowledge to build a TÆMS structure achieving the de-

sired goal. Therefore, it updates its non-local viewpoints and builds a partial global

TÆMS structure which we also refer to as partial global plan, even though we know

the term multi-plan would be more appropriate. This updating occurs as the planning,

scheduling, and execution monitoring agent looks at its already built partial global plan

and queries DF (see listing 3.1) for all tasks and methods in this TÆMS structure for

agents having TÆMS knowledge about these tasks or methods. Afterwards, it requests

these agents to send TÆMS knowledge they consider important for the requested task

or method. Requesting is done with the FIPA Request Interaction Protocol, omitting

the intermediate agree step. We call this protocol TAEMSSend. Listing 3.4 shows a

sample request for partial TÆMS structures and listing 3.5 gives the corresponding re-

ply. The received message is expected to contain the predicate TAEMSKnowledgeAbout

and use the ontology TAEMSOntology. In this phase, agents are not expected to send

quality, cost, or duration information of methods. This step only serves exploring the

problem structure. Then, the receiver agent merges the received TÆMS structures into

the existing stub. It continues with this until no tasks or methods arrive which could

be refined further. During this merging operation, the merging component has to take

care that no unnecessary tasks or methods are refined. If the requester specifies an

earliest start time or a deadline, these values are set at the goal node of the TÆMS

structure as attributes earliestStartTime and deadline (in case of XTAEMS encod-

ing).

The following guidelines guarantee a goal directed task and method refinement:

• Treat the whole TÆMS structure as a tree with the scheduling goal as root of it;

• Delete all supertasks of the scheduling goal;

• Treat enables, disables, facilitates, and hinders as a parent-child interrelationships

with the to-node as parent and the from-node as child;

• Treat all resources as nodes in the goal tree;

• Treat all consumes and produces as parent-child interrelationships with the from-

node (method) as parent and the to-node (resource) as child;

62

(QUERY -REF

:sender (agent -identifier

:name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.planner. PlannerAgent)

:receiver (set

(agent -identifier

:name Treatment1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)))

:content "((TAEMSKnowledgeAbout

(TAEMSStructure

:containsTaskOrMethod Treatment1

:domain (TAEMSDomain :name ClinicalCentre))))"

:reply -with R1175078657082_0

:language fipa -sl

:ontology TAEMSOntology

:protocol TAEMSKnowledge

:conversation -id C16586768_1175078657082)

Listing 3.6: Request for a method execution commitment proposal.

• Remove all nodes and interrelationships not used in the tree.

Goal directed task and method refinement does not imply the existence of only a single

top-level tasks. It is still possible that multiple top-level tasks are contained in the

TÆMS structure, but all except the goal task are connected with the main goal tree

through enables, disables, facilitates, or hinders interrelationships. We assume that the

scheduler used on these structures groups the top-level tasks under a meta top-level task,

using the quality accumulation function sum all.

Scheduling

The resulting partial global plan is passed to the scheduling part of the planning, schedul-

ing, and execution monitoring component. If the scheduling request message contains

scheduling criteria, the DTC scheduler is configured with them. Since so far only the

problem structure has been determined it is now time to fetch proposals for concrete

TÆMS method execution. Here, we use the FIPA Query Interaction Protocol omit-

ting the intermediate agree step, and call it TAEMSKnowledge. The message content

63

:sender (agent -identifier :name Treatment1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.hospit al.

KneeTreatmentAgent)

:receiver (set (agent -identifier

:name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.planner.PlannerAgent)

)

:content "((TAEMSKnowledgeAbout (TAEMSStructure :containsTaskOrMethod

Treatment1

:content \"<?xml version =\\"1.0\\" encoding =\\"UTF -8\\"? > <taems >

<method id=\\" Treatment1 \\">

<outcome probability =\\"1.0\\" >

<quality >

<distribution point =\\"1.0\\" probability =\\"1.0\\"/ >

</quality >

<cost >

<distribution point =\\"1.0\\" probability =\\"1.0\\"/ >

</cost >

<duration >

<distribution point =\\"1.0\\" probability =\\"1.0\\"/ >

</duration >

</outcome >

</method >

</taems >

\"

:domain (TAEMSDomain :name ClinicalCentre) :encoding xtaems)))"

:reply -with Planner1@arwen :1099/ JADE1175078657140 :in -reply -to

R1175078657082_0

:language fipa -sl :ontology TAEMSOntology :protocol TAEMSKnowledge

:conversation -id C16586768_1175078657082)

Listing 3.7: A response to the method execution commitment proposal request given

in listing 3.6.

64

(REQUEST

:sender (agent -identifier :name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.planner. PlannerAgent)

:receiver (set (agent -identifier :name Treatment1@arwen :1099/ JADE))

:content "((action (agent -identifier :name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc))

(DTCConfirmCommitment

:start (Distribution :points (sequence 1.175078657 E9) :

probabilities

(sequence 1.0))

:finish (Distribution :points (sequence 1.175078658 E9) :

probabilities

(sequence 1.0))

:quality (Distribution :points (sequence 1.0) :probabilities (

sequence 1.0))

:cost (Distribution :points (sequence 1.0) :probabilities (sequence

1.0))

:duration (Distribution :points (sequence 1.0) :probabilities (

sequence 1.0))

:commitmentID C16586768_1175078657082)))"

:reply -with R1175078657345_0 :language fipa -sl

:ontology DTCOntology :protocol DTCConfirmCommitment

:conversation -id C14043096_1175078657345)

Listing 3.8: A request for commitment confirmation.

is expected to be encoded in ontology TAEMSOntology. The used conversation-ID is

very important because it is taken as identifier for this commitment proposal. List-

ings 3.6 and 3.7 show a request for commitment proposal and the corresponding re-

ply.

Subsequently, the scheduler schedules this TÆMS structure and provides a set of possible

schedules which is passed on to the next phase.

Schedule Selection

The schedule selection phase is realised with the protocol DTCConfirmCommitment,

which is based on the FIPA Request Interaction Protocol. The planning, scheduling,

and execution monitoring component takes the a first schedule out of the set and iterates

65

(INFORM

:sender (agent -identifier :name Treatment1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.hospit al.

KneeTreatmentAgent)

:receiver (set (agent -identifier :name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.p lanner.PlannerAgent))

:reply -with Planner1@arwen :1099/ JADE1175078657404

:in -reply -to R1175078657345_0 :language fipa -sl

:ontology DTCOntology :protocol DTCConfirmCommitment

:conversation -id C14043096_1175078657345)

Listing 3.9: A confirmation of the commitment specified in listing 3.8.

over each method of the schedule. For each item, it requests the commitment provider

for this method to confirm its commitment at the start and finish times calculated by the

scheduler. If the commitment provider refuses this request, the schedule containing the

corresponding method is treated as not executable, and the whole procedure restarts with

the next schedule candidate. If all commitment providers confirm their commitment, a

feasible schedule has been found. Confirming a commitment means that the confirming

agent is expected to execute the method within the right timeslot. A valid request

for confirmation contains the predicate DTCConfirmCommitment. A valid answer is

an empty INFORM message in the ontology DTCOntology in reply to the request, with

matching conversation-IDs. Listings 3.8 and 3.9 show a confirmation request and the

corresponding answer message.

Communicate Expected Result Qualities

After a feasible schedule has been found, the planning, scheduling, and execution mon-

itoring agent replies to the requester of the scheduled action execution with an AGREE

message containing the predicate DTCResult providing information about expected start

time, finish time, quality, cost, and duration. Listing 3.10 gives an example of such a

reply to the REQUEST message shown in listing 3.3.

66

(AGREE

:sender (agent -identifier :name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.planner. PlannerAgent)

:receiver (set (agent -identifier :name Requester@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples. hospital.Requester))

:content "((DTCResult

(Distribution :points (sequence 1.175078657 E9) :probabilities (

sequence 1.0))

(Distribution :points (sequence 1.175078658 E9) :probabilities (

sequence 1.0))

(Distribution :points (sequence 1.0) :probabilities (sequence 1.0))

(Distribution :points (sequence 1.0) :probabilities (sequence 1.0))

(Distribution :points (sequence 1.0) :probabilities (sequence 1.0))))

"

:reply -with Requester@arwen :1099/ JADE1175078657449

:language fipa -sl

:ontology DTCOntology :protocol DTCSchedule

:conversation -id ScheduleID267907171175078654618)

Listing 3.10: Agree on the scheduling request in reply to the request in listing 3.3

(INFORM

:sender (agent -identifier :name Treatment1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.hospital.

KneeTreatmentAgent)

:receiver (set (agent -identifier :name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.p lanner.PlannerAgent))

:content "((DTCMethodExecutionResult C16586768_1175078657082

1175078658))"

:language fipa -sl :ontology DTCOntology :protocol

DTCMethodExecution

)

Listing 3.11: Indicate finished method execution

67

(INFORM

:sender (agent -identifier :name Planner1@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples.planner. PlannerAgent)

:receiver (set (agent -identifier :name Requester@arwen :1099/ JADE

:addresses (sequence http :// arwen :7778/ acc)

:X-JADE -agent -classname ofai.jade.examples. hospital.Requester))

:content "((DTCResult

(Distribution :points (sequence 1.175078657 E9) :probabilities (

sequence 1.0))

(Distribution :points (sequence 1.175078658 E9) :probabilities (

sequence 1.0))

(Distribution :points (sequence 1.0) :probabilities (sequence 1.0))

(Distribution :points (sequence 1.0) :probabilities (sequence 1.0))

(Distribution :points (sequence 1.0) :probabilities (sequence 1.0))))

"

:reply -with Requester@arwen :1099/ JADE1175078657449

:language fipa -sl :ontology DTCOntology :protocol DTCSchedule

:conversation -id ScheduleID267907171175078654618)

Listing 3.12: An indication of finished schedule execution in reply to the request in

listing 3.3.

Execution Monitoring

During this phase the planning, scheduling, and execution monitoring agent waits for

INFORM messages from schedule executing agents marked with protocol name DTCMeth-

odExecution and specified in the ontology DTCOntology containing the predicate

DTCMethodExecutionResult. If these messages arrive in the right order at the right

times, it can proceed with informing the requester of the scheduled action execution

that execution is proceeding as planned. Listing 3.11 shows an example of such an

INFORM message.

Result Notification

The planning, scheduling, and execution monitoring agent can send an INFORM message

in reply to the scheduled action execution request to the scheduled action requester

according to the FIPA Request Interaction Protocol, indicating that schedule execution

68

has finished successfully. This reply message must contain the predicate DTCResult.

According to the actual finish time it may alter the expected result qualities and send

them as final result qualities. Listing 3.12 shows an example result notification in reply

to the request specified in listing 3.3.

Exceptions to Protocol Flow

This scheduling protocol could be regarded as a three-layered hierarchical architecture,

with the scheduled execution requesting layer on top, the planning, scheduling, and ex-

ecution monitoring layer in the middle, and the method execution layer at the bottom.

Successfull protocol flow across these layers is well defined via FIPA interaction pro-

tocols. It must also be possible to propagate failures through these layers. Errors in

the top-down direction are propagated via the FIPA Cancel Meta-Protocol. REQUEST

messages also flow in the top-down direction. CANCEL messages are expected to be iden-

tical to the corresponding REQUEST messages except for the performative that is changed

from REQUEST to CANCEL. Therefore, cancellations are always non-ambiguous. INFORM

messages are always sent in the bottom-up direction. If an error in the bottom-up di-

rection has to be reported, the INFORM performative is simply replaced by a FAILURE

performative. Consequently, FAILURE messages can also be always assigned unequivo-

cally.

Failures at the method execution level occur when the executing agent is not able to

meet the requested execution requirements. Such an error could be recovered by the

planning, scheduling, and execution monitoring layer. For example, it could switch to

another schedule or use slack times. If the error is not recoverable, a FAILURE message

has to be sent to the scheduled execution requesting layer.

Cancellations may occur in scheduled execution requesting layer if the requester agent

does not need the action to be performed any more, or at planning, scheduling, and

execution monitoring level. There, CANCEL messages are used to dissolve commit-

ments. Cancellations can be common during schedule selection, if an agent refuses

to confirm its earlier commitment, and also during execution monitoring, if an agent

fails to execute its TÆMS method (either altogether, or within expected performance

bounds).

69

3.2. Integrating VIE-CDS with JADE

In this section, we outline our reference implementation for JADE. We do not go into

great detail, because the javadoc generated documentation is better suited to provide

implementation specifics. Here, we mainly want to point out the sometimes complex

interrelationships between behaviours.

The appraoch taken is to describe scheduling functionality in the form of Java interfaces.

On the one hand, this has the advantage that agents can use scheduling features, but still

be part of another inheritance hierarchy. On the other hand, scheduling functionality

does not depend on a particular TÆMS encoding. We provide an implementation of

these interfaces for XTAEMS, because of its standard compliance and our familiarity

with XML related tools.

3.2.1. Package Structure

ofai

jade

core exceptions onto proto util

behaviours xtaems dtc taems

Figure 3.9.: Java package structure for our JADE reference implementation.

We make extensive use of Java’s packaging mechanism to structure our code into seman-

tically coherent groups, as illustrated in figure 3.9. Package ofai.jade is our top-level

package and encapsulates all other sub-packages. It does not directly contain any Java

classes. In the following, we shortly describe the package structure below the top-level

package.

core contains interfaces that must be implemented. These interfaces define callback

methods necessary to indicate scheduling specific events.

70

core.behaviours consists of abstract behaviours which must be subclassed by concrete

implementations for a certain TÆMS encoding. Encoding independent classes

are also contained but not declared as abstract. None of the behaviours in this

package are communication related.

core.xtaems provides XTAEMS implementations for all interfaces defined in the pack-

age core and for all abstract classes defined in the package core.behaviours.

exceptions contains application specific exceptions.

onto provides ontology definitions.

onto.dtc contains the classes implementing DTCOntology.

onto.taems contains classes implementing TAEMSOntology.

proto consists of communication-specific behaviours.

util groups recurrent tasks not directly related to scheduler integration. It mostly con-

tains conversion methods.

3.2.2. Implementation Concept

Managing TÆMS structures

In the same manner that every standard JADE agent has an associated content man-

ager, every agent which wants to participate in DTC-scheduled action execution must

own a TAEMSManager. This manager is defined through the interface TAEMSManager

allows the registering and unregistering of TÆMS structures at DF. Without requiring

any further agent interaction, it publishes the agent’s TÆMS knowledge with the Yellow

Pages service. When an agent requests a commitment proposal, a commitment confirma-

tion, or a method execution cancellation the manager communicates with the agent via

callback functions defined in TAEMSProviderCallbacks.

Another important point is the way how TÆMS methods and JADE’s action model are

brought together. Here again TÆMSManager comes into play. After each local TÆMS

structure modification, it asks the agent which behaviour a certain TÆMS method

should be mapped to. If the agent does not provide a behaviour for a given TÆMS

method, this method is treated as non-local and therefore not published with the Yellow

Pages service.

71

Request Scheduled Action Execution

A scheduling request is triggered by adding an DTCScheduleInitiator behaviour to the

agent’s behaviour queue. This behaviour subclasses JADE’s SimpleAchieveREInitiator

behaviour. When the behaviour is scheduled by the agent, it automatically queries

the directory facilitator for a DTC scheduling service. It then randomly chooses one

agent providing this service and sends a scheduling request message, as described in

section 3.1.3. Afterwards, it waits for responses and notifies the agent about the cur-

rent state of handling of the scheduling request via the callback functions defined in

DTCRequesterCallbacks.

Planning, Scheduling, Execution Monitoring

This task corresponds to the responsiblities of the planning, scheduling, execution mon-

itoring role illustrated in figure 3.8. It is implemented as nested finite state machine be-

haviours triggered by the listener behaviour DTCScheduleRequestResponder which pro-

vides an implementation of JADE’s AchieveREResponder behaviour. This responder be-

haviour again uses two behaviours: one for handling scheduling requests, and one for pro-

viding the result messages. The result message providing behaviour is discussed later on,

because it corresponds to the Execution Monitoring protocol phase.

initalisation

send
REFUSE
messagerefuse scheduling

responsibility

send
NOT-

UNDERSTOOD
message

malformed request

start
PlanScheduleBehaviour

take scheduling
responsiblity send

AGREE
message

inform about
result qualities

send
FAILURE
message

no schedule found

Figure 3.10.: States and transitions of the HandleRequestBehaviour finite state

machine.

72

Our scheduling request handling behaviour is implemented by HandleRequestBehaviour.

This behaviour is a finite state machine behaviour. Its states and transitions are illus-

trated in figure 3.10. The initialisation state carries out some JADE-specific initialisa-

tions and asks the agent whether a valid scheduling and execution monitoring request

should be accepted. If so, then a PlanScheduleBehaviour is added to the agent’s be-

haviour queue. This behaviour is again a finite state machine behaviour with the states

and transitions illustrated in figure 3.11. If this behaviour can find a feasible schedule, an

AGREE message to the scheduled action execution requester is sent. Otherwise a FAILURE

message is sent.

launch
TAEMSPlanBuilder

behaviour

schedule with
VIE-CDS

schedule
partial global

TAEMS structure

finding schedule
 failed

updating non-local
viewpoints failed

select schedule

find feasible
schedule

scheduling
failed

finding schedule
succeeded

feasible schedule
found

no feasible
schedule found

Figure 3.11.: PlanScheduleBehaviour’s states and transitions

PlanScheduleBehaviour firstly starts the behaviour TAEMSPlanBuilder which deals

with the task of updating non-local viewpoints. After a partial global TÆMS structure

has been built, this structure is fed to VIE-CDS. VIE-CDS returns a set of possible

schedules. Running VIE-CDS is part of the Scheduling protocol phase. Out of this set

the state select schedule tries to select a feasible schedule according to the protocol phase

Schedule Selection described in section 3.1.3. After that, an AGREE message is sent to

the requester.

Behaviour TAEMSPlanBuilder deals with protocol phase Updating Non-Local Viewpoints

and partially with phase Scheduling (see section 3.1.3). TAEMSPlanBuilder again is a

73

request
TAEMS
structure

merge structures

find task or
method to

query

 leaf tasks
exist

handle redundancy

 no more
 leaf tasks

1. replace
method by task

updating
non-local

viewpoints
finished

no methods
to query
remain

request commitment
proposals

2. query each
 method provider

Figure 3.12.: States and transitions of the PlanScheduleBehavior finite state ma-

chine.

74

finite state machine behaviour with its states and transistions illustrated in figure 3.12.

State request TAEMS structure implements AchieveREInitiator to query other agents

for partial TÆMS structures. At the very first call it requests structures describing the

scheduling goal. Afterwards all retrieved partial TÆMS structures get merged following

the guidelines of Updating Non-Local Viewpoints in section 3.1.3. The next state searches

TÆMS tasks having no child tasks or methods in the already built TÆMS structure.

If such tasks or methods are found, the finite state machine returns to the first state

and requests partial TÆMS structures containing these tasks or methods. If no tasks or

methods to be requested remain, this behaviour deals with redundant TÆMS method

providers. Each method m in the already built partial global TÆMS structure is replaced

by a task t having the same ID as method m. Then it queries each method provider for

a commitment proposal for method m. Each returned proposal for method m is added

as a child method mi of task t, where 0 ≤ i < n, i ∈ N0 and n is the number of returned

proposals. We use the quality accumulation function exactly one expressing that only

one method provider can be selected. To ensure uniqueness of method IDs, the created

methods mi are labelled after the schema

<globally unique method provider ID>#<method ID>

where the globally unique method provider ID is the string representation of JADE’s

agent ID and method ID is the method’s original ID.

The agent playing the TAEMS Provider role must add the be-

haviours TAEMSSendResponder, TAEMSKnowledgeAboutResponder, and

DTCConfirmCommitmentResponder to its behaviour queue for handling protocol

phases Updating Non-Local Viewpoints, Scheduling, and Schedule Selection. Each

one of these three behaviours implements JADE’s AchieveREResponder behaviour.

TAEMSSendResponder directly communicates with TAEMSManager to retrieve necessary

TÆMS structures without involving the agent. TAEMSKnowledgeAboutResponder and

DTCConfirmCommitmentResponder communicate with the agent through callback func-

tions defined in the interface TAEMSProviderCallbacks.

Scheduled Action Execution

The phases Execution Monitoring and Result Notification are implemented in

HandleResultBehaviour for the agent role planning, scheduling, and execution monitor-

75

ing. This behaviour is a handler behaviour for JADE’s AchieveREResponder behaviour.

It is a simple finite state machine behaviour, illustrated in figure 3.13. This behaviour

periodically searches the agent’s incoming message queue for messages pertaining to the

Execution Monitoring phase. If all notifications about TÆMS method executions ar-

rive in the right order and their finish times fall within the temporal boundaries set by

VIE-CDS, this finite state machine behaviour switches to state send INFORM message

and sends an INFORM message according to the Result Notifaction phase. Otherwise, a

FAILURE message is sent.

wait for
method execution

wait for next message
send

FAILURE
message

schedule execution failed

send
INFORM
message

schedule execution succeeded

Figure 3.13.: States and transitions of the HandleResultBehaviour finite state ma-

chine.

Execution of TAEMS methods occurs in the agent role TAEMS Provider. When the

behaviour DTCConfirmCommitmentResponder receives a request for commitment confir-

mation, it adds the behaviour DTCMethodExecutionLauncher to the agent’s behaviour

queue. The first state is a WakerBehaviour which blocks the launcher behaviour until

the commited TÆMS method’s execution start time. Then the agent is asked via a

callback function defined in the interface DTCExecutionCallbacks if the start should

be delayed. The check delay state checks whether the delayed start lies past the last

possible start time. The last possible start time is the greatest point in the start time

distribution. If the delay is acceptable the behaviour returns to the delay state. If

the last possible start time has passed a FAILURE message according to the Execution

Monitoring phase is sent. If no further delay is requested and no error has occured, the

behaviour registered at TAEMSManager for a the specific TÆMS method is scheduled.

If the behaviour terminates successfully, the executing agent sends the expected INFORM

message to the planning, scheduling, and execution monitoring agent. Otherwise, it

sends a FAILURE message.

76

delay
start

check
delayexecuting agent

requests delay

runexecute
method

failure
last possible
start elapsed

error during
method execution

success
method execution

succeeded

Figure 3.14.: States and transitions of the DTCMethodExecutionLauncher finite

state machine.

3.2.3. XTAEMS Agent

The class XTAEMSAgent in package ofai.jade.core.xtaems provides an agent imple-

mentation with all functionality necessary to participate in DTC scheduled action ex-

ecution. Listing 3.13 shows an excerpt of this agent class. This is the minimum setup

work necessary for an agent to be able to deal with TÆMS structures. If we want the

agent to be able to carry out the scheduling task, we only need to add the code snippet

shown in listing 3.14 to the agent’s setup method.

One way of using our reference implementation is to inherit from class XTAEMSAgent.

If the agent is already involved in another inheritance hierarchy, it is still possible to

use DTC scheduled action execution with XTAEMS, by simply adding all necessary

behaviours to the agent’s setup method, as shown in listings 3.13 and 3.14 to the agent’s

setup method. The behaviour constructors require some callback objects to be passed.

The easiest way is to implement them directly in the agent class, but in principle it is up

to the agent designer where to implement these callbacks.

77

@Override

protected void setup() {

super.setup();

logger = jade.util.Logger.getMyLogger(getAID ().toString ());

TAEMSManager manager = new XTAEMSManager(logger);

manager.setTAEMSCallbackHandler(this);

setTAEMSManager(manager);

getContentManager ().registerOntology(ontologyTAEMS);

getContentManager ().registerOntology(ontologyDTC);

DFService.register(this , getDFAgentDescription ());

registerTAEMS ();

addBehaviour(new TAEMSSendResponder(this));

addBehaviour(new TAEMSKnowledgeAboutResponder(this));

addBehaviour(new DTCConfirmCommitmentResponder(this , this , this));

addBehaviour(new TAEMSCancelListener(this , this));

}

Listing 3.13: A minimum setup for an XTAEMS Agent without exception handling.

// Add DTC Scheduling capabilites

try {

addBehaviour(new DTCScheduleRequestResponder(this , this));

} catch (TAEMSAgentRequiredException e) {

e.printStackTrace ();

doDelete ();

}

Listing 3.14: Addition of scheduling functionality

78

4. Example Usage

Accompanying to the reference implementation, a small example application to demon-

strate the elementary functionality of DTC scheduling integration has been developed.

Beforehand, we want to emphasise that this example only serves demonstration purposes

and does not claim any medical correctness or completeness, nor any other immediate

suitability for real-word application. The main intention is to demonstrate how even dur-

ing scheduled action execution an agent keeps full control over its behaviours, despite

the complex communication flow in the background.

4.1. Implementation

All agents in this example are direct subclasses of the XTAEMS agent discussed in section

3.2.3. Figure 4.1 illustrates where the example code is located in our package structure.

Agents offering a graphical user interface make use of behaviour SWTGUIBehaviour,

which gives access to the SWT1 graphics toolkit. In this way, we consistently apply

JADE’s principle to implement everything an agent does as a behaviour.

gui

guiofai jade

examples

hospital

scheduler

Figure 4.1.: Java package structure for our example.

The following three agent types are implemented:

1http://www.eclipse.org/swt/, last visited May 2, 2007.

79

http://www.eclipse.org/swt/

TreatmentAgent owns TÆMS structures describing medical procedures and provides

no graphical user interface. It resides in package ofai.jade.examples.hospital.

RequesterAgent owns TÆMS structures, knows how to query DF for available TÆMS

tasks, and implements the initiator role of the DTCSchedule protocol. It also

provides a graphical user interface for monitoring schedule execution status. Re-

questerAgent is also implemented in package ofai.jade.examples.hospital.

Figure 4.2 shows the graphical user interface of RequesterAgent. It maintains

a list of requested scheduled action executions since start-up. A requested sched-

ule may have one of four possible status codes, where 1 means a schedule has

been requested, 2 indicates that a feasible schedule has been found, and 3 marks

successfully executed schedules. Status code 4 reports an error. RequesterAgent

allows to browse TÆMS domains and the tasks registered with the DF, as illus-

trated in figure 4.3. The criteria sliders shown in figure 4.4 allow the specification

of scheduling criteria for a certain scheduling request.

SchedulerAgent does not own any TÆMS structures but provides the plan-

ning, scheduling, and execution monitoring service. It resides in package

ofai.jade.examples.scheduler. Figure 4.5 pictures the SchedulerAgent’s

graphical user interface. It allows browsing all requested scheduled action exe-

cutions. For each scheduling request, it provides the corresponding partial global

XTAEMS and TTAEMS structures, their graphical representation, all possible

schedules for this structure, and the schedule selected.

Since we did not specify where to take TÆMS knowledge from, we simply read local

TÆMS structures at agent start-up from a file. It would also be possible for a domain

specific problem-solver to generate local TÆMS structures which would be registered

with the agent’s TAEMSManager.

TÆMS and our integration approach do not explicitely specify how time should be

encoded. In our sample scenario we use UNIX timestamps. Therefore, our schedule

resolution is one second. The class JadeSchedulerHelper in package ofai.jade.util

provides methods to convert between Java’s internal time representation in milliseconds,

Java Date objects, and UNIX timestamps.

80

Figure 4.2.: The RequesterAgent’s graphical user interface.

Figure 4.3.: The RequesterAgent’s possible scheduling goals browser.

Figure 4.4.: TheRequesterAgent’s criteria sliders.

81

Figure 4.5.: The SchedulerAgent’s graphical user interface.

4.2. Scenario

We assume our application to be part of a hospital-wide multi-agent system using JADE

as development framework. Each medical care unit has a networked computer sys-

tem assigned running a JADE agent platform. Inside this platform several agents

with TÆMS knowledge, several agents with DTC scheduling capabilities and a DF

exist. TÆMS knowledge agents are interconnected with surgeries and administrative

staff.

TÆMS agents have knowledge about medical procedures encoded in TÆMS structures.

They provide no graphical interface because they gain necessary information from other

hospital information resources. The desk personnel is provided with a graphical user

interface for ordering medical treatments and monitoring their progress. TÆMS agents

with scheduling capabilities also have a graphical user interface, which is accessible for

administrative purposes only.

In our scenario, we instantiate five TreatementAgents called Preparator, AnkleTreat-

ment, CnemialTreatment, KneeTreatment1 and KneeTreatment2, two SchedulerAgents

82

<?xml version ="1.0" encoding ="UTF -8"?>

<taems >

<task id=" TreatmentPreparations" qaf="min">

<subtask ref=" transportToOrthopaedics" />

<subtask ref=" prepare" />

</task >

<enables from=" transportToOrthopaedics" to=" prepare"

id=" bringBeforePrepare" />

<method id=" transportToOrthopaedics" />

<method id=" prepare" />

</taems >

Listing 4.1: The Preparator ’s local TÆMS structure.

called Scheduler1 and Scheduler2, and one RequesterAgent called Requester. Prepara-

tor has knowledge about how to transport patients to the orthopaedics care unit and

how to prepare them for treatment. Listing 4.1 shows its local TÆMS structure. Listings

4.2, 4.3, 4.4 and 4.5 list the local TÆMS structures of the AnkleTreatment, CnemialTreat-

ment, KneeTreatment1, KneeTreatment2 and Requester agents.

4.2.1. Sample Run

We want the TÆMS task KneeTreatments to be scheduled twice. The first time, we set

all criteria sliders to value 50. Then we press the button Schedule. Scheduler2 takes over

scheduling responsibilities. It builds the partial global TÆMS structure shown in figure

4.6. The schedule shown in listing 4.6 with quality 2, cost 3 and duration 3 is selected.

The second time, we set quality to 90, cost to 30, and duration to 30 in the raw goodness

of scheduling criteria, because we want the quality of scheduled action execution to be

more important than cost or duration. This time Scheduler1 does the scheduling and

execution monitoring job. It builds the same partial global TÆMS structure as in the

first run, but this time the selected schedule shown in listing 4.7 is different. The schedule

has quality 3, cost 4, and duration 4. As expected, this schedule trades in longer duration

and higher costs for improved quality.

83

<?xml version ="1.0" encoding ="UTF -8"?>

<taems >

<task id=" AnkleTreatments" qaf="sum">

<subtask ref="AT1" />

<subtask ref="AT2" />

</task >

<method id="AT1" />

<method id="AT2" />

<task id=" TreatmentPreparations" qaf="min" />

<enables from=" TreatmentPreparations" to="AT1"

id=" enableAT1" />

<enables from=" TreatmentPreparations" to="AT2"

id=" enableAT2" />

</taems >

Listing 4.2: The AnkleTreatment ’s local TÆMS structure.

<?xml version ="1.0" encoding ="UTF -8"?>

<taems >

<task id=" CnemialTreatments" qaf="sum">

<subtask ref="CT1" />

<subtask ref="CT2" />

</task >

<method id="CT1" />

<method id="CT2" />

<task id=" TreatmentPreparations" qaf="min" />

<enables from=" TreatmentPreparations" to="CT1"

id=" enableCT1" />

<enables from=" TreatmentPreparations" to="CT2"

id=" enableCT2" />

</taems >

Listing 4.3: The CnemialTreatment ’s local TÆMS structure.

84

<?xml version ="1.0" encoding ="UTF -8"?>

<taems >

<task id=" KneeTreatments" qaf="sum">

<subtask ref="KT1" />

<subtask ref="KT2" />

</task >

<method id="KT1" />

<method id="KT2" />

<task id=" TreatmentPreparations" qaf="min"/>

<enables from=" TreatmentPreparations" to="KT1"

id=" enableKT1" />

<enables from=" TreatmentPreparations" to="KT2"

id=" enableKT2" />

</taems >

Listing 4.4: The KneeTreatment1 ’s and KneeTreatment2 ’s local TÆMS structure.

<?xml version ="1.0" encoding ="UTF -8"?>

<taems >

<task id=" FullCheck" qaf=" sum_all">

<subtask ref=" KneeTreatments" />

<subtask ref=" AnkleTreatments" />

<subtask ref=" CnemialTreatments" />

</task >

</taems >

Listing 4.5: The Requester ’s local TÆMS structure.

1. Preparator@arwen :1099/ JADE#transportToOrthopaedics at 1176192116

2. Preparator@arwen :1099/ JADE#prepare at 1176192117

3. KneeTreatment2@arwen :1099/ JADE#KT1 at 1176192118

Listing 4.6: The first schedule with quality 2, cost 3 and duration 4.

1. Preparator@arwen :1099/ JADE#transportToOrthopaedics at 1176192188

2. Preparator@arwen :1099/ JADE#prepare at 1176192189

3. KneeTreatment2@arwen :1099/ JADE#KT2 at 1176192190

4. KneeTreatment2@arwen :1099/ JADE#KT1 at 1176192191

Listing 4.7: The second schedule with quality 3, cost 4 and duration 4.

85

K
T

1
q_

ex
ac

tl
y_

on
e

K
ne

eT
re

at
m

en
t1

@
ar

w
en

:1
09

9/
JA

D
E

#K
T

1
K

ne
eT

re
at

m
en

t2
@

ar
w

en
:1

09
9/

JA
D

E
#K

T
1

tr
an

sp
or

tT
oO

rt
ho

pa
ed

ic
s

q_
ex

ac
tl

y_
on

e

pr
ep

ar
e

q_
ex

ac
tl

y_
on

e

en
ab

le
s

P
re

pa
ra

to
r@

ar
w

en
:1

09
9/

JA
D

E
#t

ra
ns

po
rt

T
oO

rt
ho

pa
ed

ic
s

K
ne

eT
re

at
m

en
ts

q_
su

m

K
T

2
q_

ex
ac

tl
y_

on
e

P
re

pa
ra

to
r@

ar
w

en
:1

09
9/

JA
D

E
#p

re
pa

re

K
ne

eT
re

at
m

en
t2

@
ar

w
en

:1
09

9/
JA

D
E

#K
T

2
K

ne
eT

re
at

m
en

t1
@

ar
w

en
:1

09
9/

JA
D

E
#K

T
2

T
re

at
m

en
tP

re
pa

ra
ti

on
s

q_
m

in

en
ab

le
s

en
ab

le
s

Figure 4.6.: Partial global TÆMS structure for KneeTreatments

86

5. Conclusions and Further Work

This chapter overviews related work with similar goals, but different approaches. It

summarises what we have done so far and additionally outlines what could or should

be done in the future to improve the integration of criteria-driven scheduling with FIPA

compliant multi-agent platforms.

5.1. Related Work

5.1.1. Distributed Sliding Window Scheduler

Scott Logie et al. have developed a sliding window scheduling method [Logie et al., 2003]

based on the recursive propagation technique presented in [Hino et al., 2001]. The main

idea of the recursive propagation technique is to send schedule changes from one agent

owning tasks included in the schedule to another. When no agents to be notified remains,

the cumulative result of changes is sent back to the change message initiator. In contrast

to [Hino et al., 2001], to save save computation and communication costs notifications

of task re-ordering are only propagated inside a time window [t1, t2), where t1 denotes

the window’s start time and t2 the window’s end time.

In [Logie et al., 2004] an integration approach of sliding window scheduling with JADE

is proposed. A scheduling agent (JSA) is a multi-threaded Java application outside

the JADE agent platform. This scheduling agent communicates through sockets with a

JADE agent. Together, these two agents together form a so called composite scheduling

entity (CSE). The JSA is again divided into sub-agents carrying out the scheduling job

or exchanging messages with the assigned JADE agent.

This model provides a fully distributed multi-agent scheduling approach. The real

scheduling work is done outside JADE, which allows moving computation intensive

87

scheduling tasks to powerful computers. It introduces a new communication depen-

dency not covered by any platform specification.

5.1.2. Parma Development Environment (PARADE)

The PARADE (Parma Development Environment) toolkit

” is providing the agent developer with a hybrid agent architecture capable of

promoting inter-operability and supporting autonomy exploiting the seman-

tics of FIPA ACL. Such an architecture is basically goal-oriented but it also

integrates reactive behaviours.”

[Bergenti and Poggi, 2001, p.633]

PARADE provides semantic inter-operability based on already defined FIPA interaction

protocols which originally only allow syntactic inter-operability. The main idea is to

describe agents in terms of mental states, a set of possible actions, and a set of FIPA

interaction protocols. Beliefs, persistent goals, and transient goals are all described by

propositions composing the mental state of an agent.

The planning engine must be provided with all actions an agent playing a certain role

can be requested to execute and all interaction protocols supported by this agent. Each

action and protocol has pre-conditions and post-conditions expressed as propositions

assigned. When an agent wants to achieve a certain persistent goal the planning engine

tries to find a sequence of actions and interaction protocols sufficing pre-conditions and

post-conditions of used actions and protocols. Standard planning techniques can be used

for that task.

In principle, PARADE relies on FIPA-only mechanisms and could be used on all FIPA

compliant multi-agent platforms. At present only a version for JADE is implemented.

5.2. Conclusion

GPGP provides an elaborate framework which inspired the integration of criteria-driven

scheduling in FIPA compliant multi-agent infrastructures. Since GPGP is tightly re-

lated to JAF, it was not possible to transfer all ideas from it to our integration concept.

88

JADE is a well-known FIPA-compliant multi-agent development framework. The def-

inition of a XML-based encoding of TÆMS structures provides the basis for our inte-

gration work. It alters TÆMS from the main data and communication structure used

in JAF to an abstract description language for problem decomposition in multi-agent

planning and scheduling scenarios. VIE-CDS has been extended to understand this en-

coding. Furthermore, VIE-CDS gained a new API making it easier to support multiple

TÆMS encodings as well as an API allowing the implementation of multiple output

formats.

The whole integration process is driven by the idea to use FIPA defined platform features

where possible and to reduce TÆMS’ function to problem structure definition. This

leads to the definition of scheduled action execution as a pre-determined sequence of

ACL-messages based on FIPA standardised interaction protocols. TÆMS knowledge is

published at the Directory Facilitator. Ontologies for TÆMS and DTC scheduling are

developed to provide the vocabulary necessary for ACL message exchange. Scheduling

protocol flow is structured in five phases:

1. Scheduling request: An agent selects a scheduling service and requests scheduled

action execution.

2. Updating non-local viewpoints: During this phase, a partial global TÆMS

structure describing the problem structure is built.

3. Scheduling: A design-to-criteria scheduler processes the partial global TÆMS

structure and tries to find a set of possible schedules. In our case, this is VIE-

CDS.

4. Schedule Selection: In this phase, the scheduling service tries to find a feasible

schedule out of the possible schedules.

5. Execution monitoring: The scheduling service waits for notification of finished

TÆMS method executions.

The scheduling request (first phase) is based on the FIPA Request Interaction Protocol.

This protocol wraps all other phases. Since agreeing on a request and result notification

are part of this interaction protocol, we directly use these protocol states to communi-

cate expected and final schedule execution qualities. Failures in protocol flow are prop-

agated back to the scheduled action execution requester agent. This back-propagation

89

is already defined by FIPA through the exceptions to protocol flow in their interaction

protocols.

The probably largest differences to the scheduling approaches presented in section 5.1 are

the explicit representation of qualitative (coordination dependencies) and quantitative

(probability distributions) aspects of coordination, as well as, and this is maybe the

most important one, criteria-driven schedule selection. The scheduler is able to make

trade-offs between quality, cost, and duration of schedule execution according to user

preferences.

In software development terms, this integration approach would be classified as pre-

alpha. It should be treated as a first step towards really usable criteria-driven scheduling

in an FIPA compliant multi-agent infrastructure.

5.3. Further Work

One big disadvantage of our integration approach at conceptual level is the embedding of

TÆMS structures in ACL-messages as non-accessible blocks for standard FIPA content

language manipulation mechanisms. Consequently, a next required step would be to de-

fine an ontology which allows the definition of TÆMS structures using standard content

language mechanisms. Generally speaking, it would be nice to better exploit the seman-

tics of FIPA SL. The maybe tightest integration of VIE-CDS with JADE possible would

be making VIE-CDS run on top of JADE’s objects implementing the TÆMS ontology.

Instead of providing a set of possible schedules it could provide an already instantiated

finite state machine behaviour realising the schedule selection and execution monitoring

jobs.

Another disadvantage at implementation level is given by the fact that an agent can-

not deal with multiple scheduling requests concurrently. The behaviour providing the

planning, scheduling, and execution monitoring services must wait for the currently

processed schedule to be finished to be able to handle a new request. This could be

solved by altering the implementation to support multiple scheduling request sessions.

Section 5.4.1 in [Bellifemine et al., 2007] indicates a possible solution path for this prob-

lem.

90

Concerning the integration with JADE, moving criteria-driven scheduling support from

agent level to kernel-service level should also be considered. This could improve per-

formance, but would probably break interoperability with other FIPA-compliant frame-

works.

91

A. XTAEMS Examples

Here we present some XTAEMS examples in direct comparison to their corresponding

TTAEMS encodings.

A.1. The Getting Dinner Example

This is the Getting Dinner example from the TÆMS white paper [Horling et al., 1999].

Agent Me is not declared in XTAEMS. For a detailed explanation see section 2.1.

<?xml version="1.0" encoding="UTF -8"?>

<taems >

<!--

(spec_agent

(label Me)

)

(spec_task_group

(label Get -Dinner)

(agent Me)

(subtasks Get -Delivery Eat -Out Make -Dinner)

(qaf q_exactly_one)

)

-->

<task id="Get -Dinner" qaf="exactly_one">

<subtask ref="Get -Delivery" />

<subtask ref="Eat -Out" />

<subtask ref="Make -Dinner" />

</task>

<!--

(spec_task

(label Get -Delivery)

(agent Me)

(subtasks Call -Restaurant)

92

(supertasks Get -Dinner)

(qaf q_exactly_one)

)

-->

<task id="Get -Delivery" qaf="exactly_one">

<subtask ref="Call -Restaurant" />

</task>

<!--

(spec_task

(label Eat -Out)

(agent Me)

(subtasks Go -To -Restaurant Order -Dinner)

(supertasks Get -Dinner)

(qaf q_seq_sum)

)

-->

<task id="Eat -Out" qaf="seq_sum">

<subtask ref="Go-To-Restaurant" />

<subtask ref="Order -Dinner" />

</task>

<!--

(spec_task

(label Make -Dinner)

(agent Me)

(subtasks Obtain -Ingredients Prepare -Food Cook -Food)

(supertasks Get -Dinner)

(qaf q_seq_sum)

)

-->

<task id="Make -Dinner" qaf="seq_sum">

<subtask ref="Obtain -Ingredients" />

<subtask ref="Prepare -Food" />

<subtask ref="Cook -Food" />

</task>

<!--

(spec_method

(label Call -Restaurant)

(agent Me)

(supertasks Get -Delivery)

(outcomes

(Outcome_1

(density 1.0)

93

(quality_distribution 5.0 1.0)

(duration_distribution 30 0.7 45 0.3)

(cost_distribution 10 1.0)

)

)

)

-->

<method id="Call -Restaurant">

<outcome probability="1">

<quality >

<distribution point="5" probability="1" />

</quality >

<duration >

<distribution point="30" probability="0.7" />

<distribution point="45" probability="0.3" />

</duration >

<cost>

<distribution point="10" probability="1" />

</cost>

</outcome >

</method >

<!--

(spec_method

(label Go -To -Restaurant)

(agent Me)

(supertasks Eat -Out)

(outcomes

(Outcome_1

(density 1.0)

(quality_distribution 1.0 1.0)

(duration_distribution 10.0 1.0)

(cost_distribution 0 1.0)

)

)

)

-->

<method id="Go-To-Restaurant">

<outcome probability="1">

<quality >

<distribution point="1" probability="1" />

</quality >

<duration >

94

<distribution point="10" probability="1" />

</duration >

<cost>

<distribution point="0" probability="1" />

</cost>

</outcome >

</method >

<!--

(spec_method

(label Order -Dinner)

(agent Me)

(supertasks Eat -Out)

(outcomes

(Outcome_1

(density 1.0)

(quality_distribution 10 0.6 8 0.4)

(duration_distribution 60 0.8 40 0.2)

(cost_distribution 20.0 1.0)

)

)

)

-->

<method id="Order -Dinner">

<outcome probability="1">

<quality >

<distribution point="10" probability="0.6" />

<distribution point="8" probability="0.4" />

</quality >

<duration >

<distribution point="60" probability="0.8" />

<distribution point="40" probability="0.2" />

</duration >

<cost>

<distribution point="20" probability="1" />

</cost>

</outcome >

</method >

<!--

(spec_method

(label Obtain -Ingredients)

(agent Me)

(supertasks Make -Dinner)

95

(outcomes

(Outcome_1

(density 1.0)

(quality_distribution 1.0 1.0)

(duration_distribution 10.0 1.0)

(cost_distribution 6.0 1.0)

)

)

)

-->

<method id="Obtain -Ingredients">

<outcome probability="1">

<quality >

<distribution point="1" probability="1" />

</quality >

<duration >

<distribution point="10" probability="1" />

</duration >

<cost>

<distribution point="6" probability="1" />

</cost>

</outcome >

</method >

<!--

(spec_method

(label Prepare -Food)

(agent Me)

(supertasks Make -Dinner)

(outcomes

(Outcome_1

(density 1.0)

(quality_distribution 3.0 1.0)

(duration_distribution 15.0 1.0)

(cost_distribution 0.0 1.0)

)

)

)

-->

<method id="Prepare -Food">

<outcome probability="1">

<quality >

<distribution point="3" probability="1" />

96

</quality >

<duration >

<distribution point="15" probability="1" />

</duration >

<cost>

<distribution point="0" probability="1" />

</cost>

</outcome >

</method >

<!--

(spec_method

(label Cook -Food)

(agent Me)

(supertasks Make -Dinner)

(outcomes

(Outcome_1

(density 1.0)

(quality_distribution 3.0 1.0)

(duration_distribution 30.0 1.0)

(cost_distribution 0.0 1.0)

)

)

)

-->

<method id="Cook -Food">

<outcome probability="1">

<quality >

<distribution point="3" probability="1" />

</quality >

<duration >

<distribution point="30" probability="1" />

</duration >

<cost>

<distribution point="0" probability="1" />

</cost>

</outcome >

</method >

</taems >

97

A.2. Schedules for the Getting Dinner Example

These are possible schedules generated by VIE-CDS for the Getting Dinner example in

XTAEMS encoding.

<?xml version="1.0" encoding="UTF -8"?>

<schedules >

<!--

(spec_schedule

(schedule_elements

(Order -Dinner

(start_time_distribution 0.0 1.0)

(finish_time_distribution 40.0 0.2 60.0 0.8)

(quality_distribution 8.0 0.4 10.0 0.6)

(cost_distribution 20.0 1.0)

(duration_distribution 40.0 0.2 60.0 0.8)

)

(Go -To -Restaurant

(start_time_distribution 40.0 0.2 60.0 0.8)

(finish_time_distribution 50.0 0.2 70.0 0.8)

(quality_distribution 1.0 1.0)

(cost_distribution 0.0 1.0)

(duration_distribution 10.0 1.0)

)

)

(start_time_distribution 0.0 1.0)

(finish_time_distribution 50.0 0.2 70.0 0.8)

(quality_distribution 9.0 0.4 11.0 0.6)

(cost_distribution 20.0 1.0)

(duration_distribution 50.0 0.2 70.0 0.8)

(rating 0.6666666666666666)

)

-->

<schedule rating="0.6666666666666666">

<start >

<distribution point="0.0" probability="1.0" />

</start >

<finish >

<distribution point="50.0" probability="0.2" />

<distribution point="70.0" probability="0.8" />

</finish >

<quality >

98

<distribution point="9.0" probability="0.4" />

<distribution point="11.0" probability="0.6" />

</quality >

<cost>

<distribution point="20.0" probability="1.0" />

</cost>

<duration >

<distribution point="50.0" probability="0.2" />

<distribution point="70.0" probability="0.8" />

</duration >

<element id="Order -Dinner">

<quality >

<distribution point="8.0" probability="0.4" />

<distribution point="10.0" probability="0.6" />

</quality >

<cost>

<distribution point="20.0" probability="1.0" />

</cost>

<duration >

<distribution point="40.0" probability="0.2" />

<distribution point="60.0" probability="0.8" />

</duration >

<start >

<distribution point="0.0" probability="1.0" />

</start >

<finish >

<distribution point="40.0" probability="0.2" />

<distribution point="60.0" probability="0.8" />

</finish >

</element >

<element id="Go-To-Restaurant">

<quality >

<distribution point="1.0" probability="1.0" />

</quality >

<cost>

<distribution point="0.0" probability="1.0" />

</cost>

<duration >

<distribution point="10.0" probability="1.0" />

</duration >

<start >

<distribution point="40.0" probability="0.2" />

99

<distribution point="60.0" probability="0.8" />

</start >

<finish >

<distribution point="50.0" probability="0.2" />

<distribution point="70.0" probability="0.8" />

</finish >

</element >

</schedule >

<!--

(spec_schedule

(schedule_elements

(Obtain -Ingredients

(start_time_distribution 0.0 1.0)

(finish_time_distribution 10.0 1.0)

(quality_distribution 1.0 1.0)

(cost_distribution 6.0 1.0)

(duration_distribution 10.0 1.0)

)

(Cook -Food

(start_time_distribution 10.0 1.0)

(finish_time_distribution 40.0 1.0)

(quality_distribution 3.0 1.0)

(cost_distribution 0.0 1.0)

(duration_distribution 30.0 1.0)

)

(Prepare -Food

(start_time_distribution 40.0 1.0)

(finish_time_distribution 55.0 1.0)

(quality_distribution 3.0 1.0)

(cost_distribution 0.0 1.0)

(duration_distribution 15.0 1.0)

)

)

(start_time_distribution 0.0 1.0)

(finish_time_distribution 55.0 1.0)

(quality_distribution 7.0 1.0)

(cost_distribution 6.0 1.0)

(duration_distribution 55.0 1.0)

(rating 0.5897435897435898)

)

-->

<schedule rating="0.5897435897435898">

100

<start >

<distribution point="0.0" probability="1.0" />

</start >

<finish >

<distribution point="55.0" probability="1.0" />

</finish >

<quality >

<distribution point="7.0" probability="1.0" />

</quality >

<cost>

<distribution point="6.0" probability="1.0" />

</cost>

<duration >

<distribution point="55.0" probability="1.0" />

</duration >

<element id="Obtain -Ingredients">

<quality >

<distribution point="1.0" probability="1.0" />

</quality >

<cost>

<distribution point="6.0" probability="1.0" />

</cost>

<duration >

<distribution point="10.0" probability="1.0" />

</duration >

<start >

<distribution point="0.0" probability="1.0" />

</start >

<finish >

<distribution point="10.0" probability="1.0" />

</finish >

</element >

<element id="Cook -Food">

<quality >

<distribution point="3.0" probability="1.0" />

</quality >

<cost>

<distribution point="0.0" probability="1.0" />

</cost>

<duration >

<distribution point="30.0" probability="1.0" />

</duration >

101

<start >

<distribution point="10.0" probability="1.0" />

</start >

<finish >

<distribution point="40.0" probability="1.0" />

</finish >

</element >

<element id="Prepare -Food">

<quality >

<distribution point="3.0" probability="1.0" />

</quality >

<cost>

<distribution point="0.0" probability="1.0" />

</cost>

<duration >

<distribution point="15.0" probability="1.0" />

</duration >

<start >

<distribution point="40.0" probability="1.0" />

</start >

<finish >

<distribution point="55.0" probability="1.0" />

</finish >

</element >

</schedule >

<!--

(spec_schedule

(schedule_elements

(Call -Restaurant

(start_time_distribution 0.0 1.0)

(finish_time_distribution 30.0 0.7 45.0 0.3)

(quality_distribution 5.0 1.0)

(cost_distribution 10.0 1.0)

(duration_distribution 30.0 0.7 45.0 0.3)

)

)

(start_time_distribution 0.0 1.0)

(finish_time_distribution 30.0 0.7 45.0 0.3)

(quality_distribution 5.0 1.0)

(cost_distribution 10.0 1.0)

(duration_distribution 30.0 0.7 45.0 0.3)

(rating 0.2083333333333333)

102

)

-->

<schedule rating="0.2083333333333333">

<start >

<distribution point="0.0" probability="1.0" />

</start >

<finish >

<distribution point="30.0" probability="0.7" />

<distribution point="45.0" probability="0.3" />

</finish >

<quality >

<distribution point="5.0" probability="1.0" />

</quality >

<cost>

<distribution point="10.0" probability="1.0" />

</cost>

<duration >

<distribution point="30.0" probability="0.7" />

<distribution point="45.0" probability="0.3" />

</duration >

<element id="Call -Restaurant">

<quality >

<distribution point="5.0" probability="1.0" />

</quality >

<cost>

<distribution point="10.0" probability="1.0" />

</cost>

<duration >

<distribution point="30.0" probability="0.7" />

<distribution point="45.0" probability="0.3" />

</duration >

<start >

<distribution point="0.0" probability="1.0" />

</start >

<finish >

<distribution point="30.0" probability="0.7" />

<distribution point="45.0" probability="0.3" />

</finish >

</element >

</schedule >

</schedules >

103

B. VIE-CDS Serialiser Examples

In appendix A we have already seen example output of the XTAEMS and TTAEMS seri-

alisers. Here, we illustrate two additional output formats of VIE-CDS.

B.1. Short-TAEMS

This is the Short-TAEMS output for the Getting Dinner example: the four lines specify

the number of methods; the two methods along with their abstract probabilistic qual-

ity descriptions; and a quality description of the whole schedule (see ”Short-TAEMS

Serialiser”, section 2.2.2).

2

Order -Dinner 0.0 56.0 9.2 20.0 56.0

Go -To -Restaurant 56.0 66.0 1.0 0.0 10.0

10.2 20.0 66.0

B.2. Graphviz

This is Graphviz output for an extended version of the Clean-Kitchen example taken

from the TÆMS white paper. The created text files can be processed by the Graphviz dot

program to render graphical representations in various image formats.

digraph TAEMS {

"Clean -Kitchen"[label=<<TABLE BORDER="0">

<TR><TD>Clean -Kitchen </TD></TR>

<TR><TD>q_sum </TD></

TR>

</TABLE > >];

"Put -Away -Dishes"[label=<<TABLE BORDER="0">

104

<TR><TD>Put -Away -Dishes </TD></TR>

<TR><TD>q_exactly_one

</TD></TR>

</TABLE > >];

"Clean -Floor"[label=<<TABLE BORDER="0"><TR><TD><FONT POINT -SIZE="12.0

">Clean -Floor</TD></TR>

<TR><TD>q_max </TD></

TR>

</TABLE > >];

"Quick -And -Dirty"[shape=box , label=<Quick -And

-Dirty >];

"Wash -Counters"[shape=box , label=<Wash -

Counters >];

"Vacuum -Floor"[shape=box , label=<Vacuum -Floor

 >];

"Wash -Floor"[shape=box , label=<Wash -Floor</

FONT> >];

"Slow -And -Safe"[shape=box , label=<Slow -And -

Safe >];

"Vacuum -Cleaner"[shape=invtriangle];

"Clean -Kitchen" -> "Clean -Floor"[arrowhead=none];

"Clean -Kitchen" -> "Wash -Counters"[arrowhead=none];

"Clean -Kitchen" -> "Put -Away -Dishes"[arrowhead=none];

"Put -Away -Dishes" -> "Slow -And -Safe"[arrowhead=none];

"Put -Away -Dishes" -> "Quick -And -Dirty"[arrowhead=none];

"Clean -Floor" -> "Vacuum -Floor"[arrowhead=none];

"Clean -Floor" -> "Wash -Floor"[arrowhead=none];

"Vacuum -Floor" -> "Vacuum -Cleaner" [color=gray , label=<<FONT COLOR="

gray" POINT -SIZE="10.0">consumes >];

"Wash -Floor" -> "Vacuum -Floor" [color=gray , label=<<FONT COLOR="gray"

POINT -SIZE="10.0">hinders >, style=dashed];

}

105

C. VIE-CDS Command-Line Usage

VIE-CDS is distributed in a jar-file called viecds.jar. To launch VIE-CDS, it is neces-

sary to have all other jar-files VIE-CDS depends on in classpath as well as the VIE-CDS

jar-file. VIE-CDS relies on

• JSAP,

• serializer.jar from the Apache XML Project and

• the Java API for XML-Processing1. We recommend to use Xerces and Xalan as

backend drivers.

After all prerequisites are met, VIE-CDS can be started with java viecds.VieCDS.

Calling VIE-CDS with wrong or without parameters results in the following usage mes-

sage:

Usage: java viecds.VieCDS

[(-f|--format) <output format >] [(-i|--input) <input

format >] [(-o|--output) <output file>] [-c|--

convert] [(-s|--settings) <settings >] <taems file>

[(-n|--number) <schedule number >]

[(-f|--format) <output format >]

The output format for the schedule. Possible values are [XTAEMS

, TTAEMS ,

SHORT , GRAPHVIZ] (default: XTAEMS)

[(-i|--input) <input format >]

The input format of the TAEMS structure. This will override the

format

deduced by the file extension. Possible values are: [XTAEMS ,

TTAEMS ,

PTAEMS]

1http://java.sun.com/webservices/jaxp/dist/1.1/docs/api/index.html, last visited May 2, 2007.

106

http://java.sun.com/webservices/jaxp/dist/1.1/docs/api/index.html

[(-o|--output) <output file>]

Write result to this file.

[-c|--convert]

Convert the TAEMS structure defined by <taems file> to the

format

defined by <output format >. No scheduling will be done.

[(-s|--settings) <settings >]

Configure VIE -CDS with a Java properties file.

<taems file>

A file containing a TAEMS structure. This may be a .ttaems , .

ptaems or

.xtaems file.

[(-n|--number) <schedule number >]

The n-th schedule in the set of found schedules will be printed

.

Counting starts at 0. (default: -1)

The graphical user interface is called via viecds.viewer.MainWindow. At the time it

does not yet support saving TÆMS structures in the XTAEMS encoding.

107

Bibliography

[Austin, 1962] Austin, J. L. (1962). How to Do Things with Words. Oxford University

Press, Oxford.

[Bellifemine et al., 2007] Bellifemine, F., Caire, G., and Greenwood, D. (2007). Devel-

oping Multi-Agent Systems with JADE. In Wiley Series in Agent Technology. John

Wiley & Sons, Ltd.

[Bellifemine et al., 2006a] Bellifemine, F., Caire, G., Trucco, T., and Rimassa, G.

(2006a). Jade Programmer’s Guide. Telecom Italia S.p.A.

[Bellifemine et al., 2006b] Bellifemine, F., Caire, G., Trucco, T., Rimassa, G., and

Mungenast, R. (2006b). Jade Administrator’s Guide. , Telecom Italia S.p.A.

[Bellifemine et al., 2001] Bellifemine, F., Poggi, A., and Rimassa, G. (2001). JADE:

A FIPA2000 Compliant Agent Development Environment. In Müller, J., André, E.,

Sen, S., and Frasson C, editors, AGENTS ’01: Proceedings of the fifth international

conference on Autonomous agents, pages 216–217. ACM Press, New York NY USA.

[Bellifemine and Rimassa, 2001] Bellifemine, F. and Rimassa, G. (2001). Developing

Multi-Agent Systems with a FIPA-Compliant Agent Framework. Softw. Pract. Exper.,

31(2):103–128.

[Bergenti and Poggi, 2001] Bergenti, F. and Poggi, A. (2001). A Development Toolkit

to Realize Autonomous and Inter-operable Agents. In AGENTS ’01: Proceedings of

the fifth international conference on Autonomous agents, pages 632–639. ACM Press,

New York NY USA.

[Bordini R.H. et al., 2006] Bordini R.H., Braubach L., Dastani M., Seghrouchni A.E.F.,

Gomez-Sanz J.J. Leite J., O’Hare G., Pokahr A., and Ricci A. (2006). A Survey of

Programming Languages and Platforms for Multi-Agent Systems. Informatica, The

108

Second AgentLink III Technical Forum: Main Issues and Hot Topics in European

Agent Research II, 30(1):33–44.

[Carriero and Gelernter, 1989] Carriero, N. and Gelernter, D. (1989). Linda in context.

In Communications of the ACM, volume 32, pages 444–458. ACM Press, New York

NY USA.

[Cranefield and Purvis, 1999] Cranefield, S. and Purvis, M. (1999). UML as an On-

tology Modelling Language. In Fensel, D. e. a., editor, Proceedings of the IJCAI-99

Workshop on Intelligent Information Integration. CEUR (Sun SITE Central Europe)

Publications, Stockholm Sweden.

[Decker and Lesser, 1992] Decker, K. and Lesser, V. (1992). Generalizing the Partial

Global Planning Algorithm. International Journal on Intelligent Cooperative Infor-

mation Systems, 1(2):319–346.

[Decker and Lesser, 1995] Decker, K. and Lesser, V. (1995). Designing a Family of Co-

ordination Algorithms. In Lesser, V. and Gasser, L., editors, Proceedings of the First

International Conference on Multi-Agent Systems (ICMAS-95), June 12-14, 1995,

San Francisco CA USA, pages 73–80. AAAI Press, Menlo Park CA USA.

[Denti and Omicini, 1999] Denti, E. and Omicini, A. (1999). An architecture for tuple-

based coordination of multi-agent systems. In Software: Practice and Experience,

volume 29, pages 1103–1121. John Wiley & Sons, Ltd.

[Durfee and Lesser, 1991] Durfee, E. and Lesser, V. (1991). Partial Global Planning: A

Coordination Framework for Distributed Hypothesis Formation. IEEE Transactions

on Systems, Man, and Cybernetics, 21(5):1167–1183.

[Finin et al., 1997] Finin, T., Labrou, Y., and Mayfield, J. (1997). Software Agents,

chapter KQML as an Agent Communication Language, pages 291–316. AAAI

Press/The MIT Press, Menlo Park CA, Cambridge MA, London England.

[Foundation for Intelligent Physical Agents, 2004] Foundation for Intelligent Physical

Agents (2004). FIPA Agent Management Specification. FIPA Agent Management

SC00023K.

[Foundation for Intelligent Physical Agents (FIPA), 2002a] Foundation for Intelligent

Physical Agents (FIPA) (2002a). FIPA ACL Message Structure Specification. FIPA

TC Communication SC00061G.

109

[Foundation for Intelligent Physical Agents (FIPA), 2002b] Foundation for Intelligent

Physical Agents (FIPA) (2002b). FIPA Request Interaction Protocol Specification.

FIPA TC Communication SC00026H.

[Foundation for Intelligent Physical Agents (FIPA), 2002c] Foundation for Intelligent

Physical Agents (FIPA) (2002c). FIPA Request Interaction Protocol Specification.

FIPA TC Communication SC00027H.

[Hino et al., 2001] Hino, R., Izuhara, K., and Toshimichi, M. (2001). Message Exchange

Method for Decentralized Scheduling. In Proc. of the 4th IEEE International Sympo-

sium on Assembly and Task Planning, Fukuoka, Japan.

[Horling et al., 1999] Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A., Zhang,

S., Decker, K., and Garvey, A. (1999). The TAEMS White Paper, Multi-Agent Sys-

tems Lab Technical Report 182, Department of Computer Science, University of Mas-

sachusetts at Amherst, Amherst MI USA.

[Huhns and Stephens, 1999] Huhns, M. N. and Stephens, L. M. (1999). Multiagent sys-

tems and societies of agents. In Weiss, G., editor, Multiagent Systems: A Modern

Approach to Distributed Artificial Intelligence, pages 80–120. The MIT Press, Cam-

bridge, MA, USA.

[Jennings, 1996] Jennings, N. R. (1996). Coordination Techniques for Distributed Ar-

tificial Intelligence,. In O’Hare, G. M. P. and Jennings, N. R., editors, Foundations

of Distributed Artificial Intelligence, pages 187–210. Wiley, Chichester/London/New

York.

[Jennings, 2000] Jennings, N. R. (2000). On Agent-Based Software Engineering. Artifi-

cial Intelligence, 177(2):277–296.

[Jung, 2003] Jung, B. (2003). VIE-CDS: A Modular Architecture for Criteria-Driven

Scheduling. Master’s thesis, Vienna University of Technology.

[Jung and Petta, 2003] Jung, B. and Petta, P. (2003). An Assessment of the TAEM-

S/DTC framework in the context of coordinated scheduling and directions for im-

provements. In D’Inverno, M. e. a., editor, The First European Workshop on Multi-

Agent Systems (EUMAS 2003), Dec. 18-19, 2003, St. Catherine’s College, Oxford

University, University of Oxford.

110

[Jung and Petta, 2004] Jung, B. and Petta, P. (2004). Improving upon the TAEM-

S/DTC framework in the context of coordinated scheduling. In Trappl, R., editor,

Cybernetics and Systems 2004, pages 624–629. Austrian Society for Cybernetic Stud-

ies, Vienna.

[Kaihara and Fujii, 2005] Kaihara, T. and Fujii, S. (2005). A Proposal of Multi-agent

Negotiation Mechanism Based on Dynamic Market Concept for Pareto Optimal So-

lution. In Holonic and Multi-Agent Systems for Manufacturing, volume 3593/2005 of

Lecture Notes in Computer Science. Springer, Berlin/Heidelberg.

[Lesser, 1998] Lesser, V. (1998). Reflections on the Nature of Multi-Agent Coordination

and Its Implications for an Agent Architecture. Autonomous Agents and Multi-Agent

Systems, 1:89–111.

[Lesser and Corkill, 1983] Lesser, V. and Corkill, D. (1983). The Distributed Vehicle

Monitoring Testbed: A Tool for Investigating Distributed Problem Solving Networks.

AI Magazine, 4(3):15–33.

[Lesser et al., 2004] Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Hor-

ling, B., Neiman, D. Podorozhny, R., Prasad, M., Raja, A., Vincent, R., Xuan, P.,

and Zhang, X. (2004). Evolution of the GPGP Domain-Independent Coordination

Framework. Autonomous Agents and Multi-Agent Systems, 9(1-2):87–143.

[Logie et al., 2003] Logie, S., Sabaz, D., and Gruver, W. A. (2003). Combinatorial Slid-

ing Window Scheduling for Distributed Systems. In Proc. of the 2003 IEEE Inter-

national converence on Systems, Man and Cybernetics, October 5-8, 2003, volume 1,

pages 630–635. IEEE Press, Washington, DC USA.

[Logie et al., 2004] Logie, S., Sabaz, D., and Gruver, W. A. (2004). Sliding Window Dis-

tributed Combinatorial Scheduling using JADE. In Proc. of 2004 IEEE International

Conference on Systems, Man and Cybernetics, October 10-13, 2004, The Hague, The

Netherlands.

[Nwana, 1995] Nwana, H. S. (1995). Software Agents: An Overview. Knowledge Engi-

neering Review, 11(2):205–244.

[Nwana et al., 1996] Nwana, H. S., Lee, L. C., and Jennings, N. R. (1996). Coordination

in Software Agent Systems. The British Telecom Technology Journal, 14(4):79–88.

111

[Odell et al., 2001] Odell, J., Van Dyke Parunak, H., and Bauer, B. (2001). Representing

Agent Interaction Protocols in UML. In Ciancarini, P. and Wooldridge, M., editors,

Agent-Oriented Software Engineering: First International Workshop, AOSE 2000,

Limerick, Ireland, June 10, 2000. Revised Papers., Lecture Notes in Computer Science

Volume 1957, pages 201–218. Springer-Verlag, Berlin.

[Omicini and Ossowski, 2003] Omicini, A. and Ossowski, S. (2003). Intelligent Informa-

tion Agents: The AgentLink Perspective, volume 2586/2003 of Lecture Notes in Com-

puter Science, chapter Objective versus Subjective Coordination in the Engineering

of Agent Systems, pages 179–202. Springer-Verlag Berlin Heidelberg.

[Pitt and Mamdani, 1999] Pitt, J. and Mamdani, A. (1999). Some remarks on the se-

mantics of fipa’s agent communication language. Autonomous Agents and Multi-Agent

Systems, 2(4):333–356.

[Russell and Norvig, 2003] Russell, S. and Norvig, P. (2003). Artificial Intelligence: A

Modern Approach. Prentice Hall Series in Artificial Intelligence. Prentice Hall, Pearson

Education, Inc., Upper Saddle River, New Jersey, 2nd edition edition.

[Searle, 1970] Searle, J. R. (1970). Speech Acts: An Essay in the Philosophy of Language.

Cambridge University Press.

[Smith, 1988] Smith, R. G. (1988). The Contract Net Protocol: High-Level Communi-

cation and Control in a Distributed Problem Solver. Distributed Artificial Intelligence,

pages 357–366.

[Viroli and Omicini, 2006] Viroli, M. and Omicini, A. (2006). Coordination as a service.

Fundamenta Informaticae, 73(4):507–534.

[Wagner et al., 1998] Wagner, T. A., Garvey, A. J., and Lesser, V. R. (1998). Crite-

ria Directed Task Scheduling. Journal for Approximate Reasoning (Special Issue on

Scheduling), 19:91–118.

[Wooldridge, 2002] Wooldridge, M. (2002). An Introduction to Multiagent Systems. John

Wiley & Sons, Chichester, England.

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. R. (1995). Intelligent

Agents: Theory and Practice. Knowledge Engineering Review, 10(2):115–152.

112

[Zlotkin and Rosenschein, 1996] Zlotkin, G. and Rosenschein, J. (1996). Mechanisms for

Automated Negotiation in State Oriented Domains. Journal of Artificial Intelligence

Research, 5:163–238.

113

	1 Introduction
	1.1 Intelligent Agents?
	1.1.1 Classification of Agent Types
	1.1.2 Agent Environments
	1.1.3 Multi-Agent Systems
	1.1.4 Agent Communication
	1.1.5 The Social Context in Multi-Agent Systems
	1.1.6 Agent Coordination
	1.1.7 Subjective versus Objective Coordination

	1.2 A Framework for Task Analysis, Environment Modeling and Simulation (TÆMS)
	1.3 Generalized Partial Global Planning (GPGP)
	1.4 VIE-CDS
	1.5 Java Agent Development Framework (JADE)
	1.5.1 FIPA Specifications
	1.5.2 Platform Architecture

	2 Evolution of VIE-CDS
	2.1 A New Encoding for TÆMS
	2.2 New Structure of VIE-CDS
	2.2.1 Parser API
	2.2.2 Serialisation API

	2.3 XTAEMS Parser
	2.3.1 Parser Analysis

	3 Design-to-Criteria Scheduling Integration
	3.1 Conceptual Design
	3.1.1 Ontologies
	3.1.2 Publish and Discover
	3.1.3 Scheduling Phases

	3.2 Integrating VIE-CDS with JADE
	3.2.1 Package Structure
	3.2.2 Implementation Concept
	3.2.3 XTAEMS Agent

	4 Example Usage
	4.1 Implementation
	4.2 Scenario
	4.2.1 Sample Run

	5 Conclusions and Further Work
	5.1 Related Work
	5.1.1 Distributed Sliding Window Scheduler
	5.1.2 Parma Development Environment (PARADE)

	5.2 Conclusion
	5.3 Further Work

	A XTAEMS Examples
	A.1 The Getting Dinner Example
	A.2 Schedules for the Getting Dinner Example

	B VIE-CDS Serialiser Examples
	B.1 Short-TAEMS
	B.2 Graphviz

	C VIE-CDS Command-Line Usage

