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Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der Analyse von Prozeduren zur Knotenisolation sowie mar-
kierungsbasierten Parametern in verschiedenen Baummodellen. Bäume können zur Modellierung der un-
terschiedlichsten Sachverhalte verwendet werden. Obwohl die meisten unmittelbaren Anwendungen von
Bäumen immer noch in der Informatik liegen, hat es sich gezeigt, dass Bäume ebenso gewinnbringend zur
Modellierung von Pyramidenspielen, Ausbreitungen von Infektionen und dergleichen verwendet werden
können. Da Bäume zu den einfachsten rekursiv definierten Objekten zählen, können in den durch Bäume
modellierten Anwendungen oftmals Beweise für ein bestimmtes Verhalten des Modells gegeben werden,
welche bei komplexerer Modellierung viel schwerer zu erhalten sind.
Die zur Analyse der Baummodelle bzw. der darin relevanten Parameter angewandte Vorgangsweise ist die
folgende. Zunächst werden unter der Vorraussetzung, dass jeder Baum der Größe n einer gewissen Baum-
familie mit gleicher Wahrscheinlichkeit auftritt, Rekursionen für die zu untersuchenden Parameter auf-
gestellt. Mittels passend definierter erzeugender Funktionen lassen sich diese Rekursionen in Funktional-
bzw. Differentialgleichungen übersetzen. Aus den Funktional- bzw. Differentialgleichungen gewinnt man,
falls möglich, explizite Lösungen, anhand welcher mittels Koeffizientenablesens exakte Ergebnisse er-
zielbar sind. Andernfalls läßt sich oft hinreichende Information über das asymptotische Verhalten der
untersuchten Parameter aus der Struktur der Funktional- bzw. Differentialgleichungen gewinnen. Um
Grenzverteilungen von Zufallsvariablen zu erhalten werden der Stetigkeitssatz von Lévy sowie die soge-
nannte Methode der Momente (Satz von Fréchet und Shohat) angewandt.

Diese Arbeit ist drei Themenbereichen gewidmet. Die ersten vier Kapiteln beschäftigen sich mit verschie-
denen Algorithmen zur Knotenisolierung in Bäumen. Dabei wird in einem zufälligen Baum der Größe n
einer gewissen Baumfamilie zufällig eine Kante entfernt (ein Zufallsschnitt). Dadurch entstehen zwei neue
Teilbäume. Nun wird je nach Algorithmus in einem oder beiden Teilbäumen diese Prozedur fortgesetzt,
bis eine gewisse Auswahl an Knoten isoliert ist. Die hier vorgestellten Algorithmen zur Knotenisolierung
verallgemeinern die bisher untersuchten Verfahren. Unter anderen untersuchen wir die benötigte Anzahl
an Zufallsschnitten bis der Knoten n eines rekursiven Baumes der Größe n isoliert ist.

Der zweite Schwerpunkt dieser Arbeit liegt auf der Analyse von markierungsbasierten Parametern. Wir
untersuchen in der Baumfamilie der Increasing Trees (strikt aufsteigend markierte Bäume) Parameter
welche von der Knotenmarkierung abhängen. Im Gegensatz zu den globalen (extremalen) Parametern
erhalten wir unterschiedliches Verhalten des Parameters je nach Abhängigkeit der Knotenmarkierung
von der Baumgröße. Wir untersuchen unter anderem Knotengrad, Unterbaumgröße, Aststruktur, etc.,
des Knoten j in einem Baum der Größe n. Für die entsprechend definierten Zufallsvariablen erhalten wir
explizite Resultate für die Wahrscheinlichkeitsverteilungen, die (faktoriellen) Momente sowie die Grenz-
verteilungen. Dabei verwenden wir einen rekursiven Zugang, welchen wir zu einer allgemeinen Methode
zur Untersuchung von markierungsbasierten Parametern ausbauen.
Weiters untersuchen wir die Baumfamilie der Scale free trees. Es wird der Zusammenhang mit der Baum-
familie der Increasing Trees gezeigt und es werden wiederum markierungsbasierte Parameter untersucht.

Der dritte Teil beschäftigt sich mit gewichteten Parametern, welche nicht so einfach durch Rekursionen
beschreibbar sind, da Ummarkierungsargumente nur schwer verwendet werden können. Diese gewichte-
ten Parameter stellen eine Verallgemeinerung der zuvor untersuchten markierungsbasierten Parameter
dar. Mittels der Resultate über markierungsbasierte Parameter sind wir dennoch in der Lage mittels
probabilistischer Methoden eine Vielzahl an Ergebnissen zu erlangen.

ii



KURZFASSUNG iii

Diese Dissertation basiert auf mit Prof. Alois Panholzer verfassten Forschungsarbeiten, welche im Rahmen
des FWF-Projekt P18009, Analyse von Datenstrukturen und baumartigen Strukturen, sowie des National
Research Network S9600 Analytic Combinatorics and Probabilistic Number Theory, Teilprojekt S9608 -
Combinatorial Analysis of Data Structures and Tree-Like Structures, erstellt wurden.



Abstract

This thesis is dedicated to the analysis of node isolation procedures and label-based parameters in several
tree models. Most of the applications of trees are found in computer science. Nevertheless they are also
used in other scientific areas, e.g. for modelling the spread of epidemics, pyramid schemes, growth of
networks such as the internet, etc. Trees are some of the easiest recursive structures. Modelling with
trees often leads to explicit results concerning the behavior of the model. In contrast when more complex
structures are used for modelling it is most likely harder to prove explicit results.
We will use mainly the following approach for obtaining results. Under the assumption that any tree of
size n of a certain tree family is picked equally likely, we can set up recurrences for the parameters of
interest by using the recursive structure of the examined tree family. By using suitably defined generating
functions these recurrences can be translated into either functional equations or differential equations,
depending on the recursive structure of the tree family. Most of the times when the arising equations
can be explicitly solved, exact results can be obtained by extraction of coefficients. Sometimes we can
directly deduce asymptotic results from the functional equations or differential equations. In order to get
limiting distribution results for the considered parameters we will rely on two methods. Lévy’s continuity
theorem and the so-called “Method of moments” will be our main tools.

This thesis is divided into three parts. In the four beginning chapters we will analyze algorithms for node
isolation by random cuttings in rooted trees: Pick at random an edge e in a random rooted tree T of size
n. Now remove the edge e. This splits T into two rooted subtrees T̂ and T̃ , where w.l.o.g. T̂ is rooted
at the original root and T̃ is rooted at the node adjacent to e. Apply this procedure recursively on one
or both subtrees T̂ and T̃ , depending on the algorithm, until a prescribed set of nodes is isolated.
The algorithms analyzed here generalize the known procedures for node isolation. Among others we
analyze the number of random cuts necessary to isolate node n in a recursive tree of size n.

The second part is devoted to the analysis of label-based parameters in increasing tree families. Phase
transitions occur for label-based parameters depending on the growth of the considered label. We analyze
parameters like node degree, subtree size, branching structure, distance, etc.; furthermore we obtain
explicit results for both the distribution and the factorial moments of the corresponding random variables.
Also limiting distribution results are readily obtained. We use a recursive approach for the description
of label-based parameters, which will be turned into a general method for studying arbitrary label-based
parameters.
We extend our studies of label-based parameters to the tree family of Scale free trees. After establishing a
combinatorial description of this tree family it will turn out that Scale free trees are non-simple increasing
trees. Nevertheless we are able to reduce the study of parameters in Scale free trees to the study of a
subclass of simple increasing trees.

The third part is devoted to the analysis of weighted parameters in labelled rooted trees. These pa-
rameters are generalizations of label-based parameters. It is difficult to get recursive descriptions of the
parameters of interest using a combinatorial approach because we cannot use relabelling arguments to
obtain recurrences. A probabilistic approach allows us to obtain results for weighted depths and distances
and various kinds of weighted node degrees.

This thesis is based on several research papers jointly written with Prof. Alois Panholzer. Most of the
work was done within two research projects: FWF-project P18009, “Analyse von Datenstrukturen und
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baumartigen Strukturen” and National Research Network S9600 “Analytic Combinatorics and Proba-
bilistic Number Theory”, project S9608 - “Combinatorial Analysis of Data Structures and Tree-Like
Structures”.
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Chapter 0

Mathematical Preliminaries

We will give a thorough introduction to the mainly considered tree families, for which different parameters
will be analyzed in the next chapters. Some special tree families like the family of non-crossing trees will
be presented in the corresponding chapter.

0.1 Tree families

0.1.1 Simply generated trees

Simply generated trees were introduced in [57] and they include several important tree families as special
instances, e. g. binary trees, unordered labelled trees (Cayley trees), and ordered trees (= planted plane
trees). Moreover, they are strongly related to Galton-Watson branching processes, since it is well known
(see [2]), that random simply generated trees are essentially the same as conditioned Galton-Watson trees
obtained as the family tree of a Galton-Watson process conditioned on the given total size.
A class T of simply generated trees can be defined in the following way. A sequence of non-negative real
numbers (ϕk)k≥0 with ϕ0 > 0 (ϕk can be seen as the multiplicative weight of a node with out-degree k) is
used to define the weight w(T ) of any ordered tree T by w(T ) :=

∏
v ϕd(v), where v ranges over all vertices

of T and d(v) is the out-degree (the number of children) of v. In order to avoid degenerate cases we
always assume that there exists a k ≥ 2 such that ϕk > 0. The family T consists then of all trees T with
w(T ) 6= 0 together with their weights w(T ). It follows further that for a given degree-weight sequence
(ϕk)k≥0 the generating function T (z) :=

∑
n≥1 Tnz

n of the quantity total weights Tn :=
∑

|T |=n w(T ),
where |T | denotes the size of the tree T , satisfies the functional equation

T (z) = zϕ
(
T (z)

)
, (1)

where the degree-weight generating function ϕ(t) is given by ϕ(t) =
∑

k≥0 ϕkt
k.

The asymptotic behavior of T (z) as solution of (1) is discussed in detail in [24] and we collect some
of their results concerning T (z) and the growth of its coefficients Tn, where we have to make only few
restrictions on ϕ(t). We will suppose that ϕ(t) has a positive radius of convergence R > 0 and assume
that there exists a minimal positive solution τ < R of the equation tϕ′(t) = ϕ(t).
Defining the period p := gcd{k : ϕk > 0}, it follows that equation (1) has exactly p solutions of smallest
modulus given by τj = ωjτ for 0 ≤ j ≤ p− 1, where ω is a primitive p-th root of unity. This leads to p
dominant singularities of T (z) at z = ρj with ρj = ωjρ and ρ = τ

ϕ(τ) = 1
ϕ′(τ) (T (z) is analytic for |z| ≤ ρ

except at z = ρj).
The local expansion around the singularity z = ρj is given by the following equation, where κj denotes
a certain constant:

T (z) = τj − ωj

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρj
+ κj

(
1− z

ρj

)
+O

((
1− z

ρj

) 3
2
)
. (2)

1
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By applying singularity analysis one obtains the asymptotic expansion

Tn = p

√
ϕ(τ)

2πϕ′′(τ)
ρ−nn−

3
2
(
1 +O(n−1)

)
, (3)

provided that n ≡ 1 (mod p). (For n 6≡ 1 (mod p) Tn = 0 always holds.)
We want to mention further that it is often advantageous to describe a simply generated tree family T
by the formal recursive equation

T = ©×
(
ϕ0 · {ε} ∪̇ ϕ1 · T ∪̇ ϕ2 · T × T ∪̇ ϕ3 · T × T × T ∪̇ · · ·

)
= ©× ϕ(T ), (4)

with {ε} an empty tree, © a node, × the cartesian product, and ϕ(T ) the substituted structure (see e. g.
[72]).

0.1.2 Increasing trees

Increasing trees are labelled trees where the nodes of a tree of size n are labelled by distinct integers
of the set {1, . . . , n} in such a way that each sequence of labels along any branch starting at the root
is increasing. As the underlying tree model we use the simply generated trees but, additionally, they
are equipped with increasing labellings. We will thus speak about simple families of increasing trees. A
thorough study of families (= varieties) of increasing trees was conducted in [6].
A class T of a simple family of increasing trees can thus be defined in analogy to the definition of simply
generated tree families in the following way. A sequence of non-negative numbers (ϕk)k≥0 with ϕ0 > 0 is
used to define the weight w(T ) of any ordered tree T by w(T ) =

∏
v ϕd(v), where v ranges over all vertices

of T and d(v) is the out-degree of v (again, we always assume that there exists a k ≥ 2 with ϕk > 0).
Furthermore, L(T ) denotes the set of different increasing labellings of the tree T with distinct integers
{1, 2, . . . , |T |}, where |T | denotes the size of tree T , and L(T ) :=

∣∣L(T )
∣∣ denotes its cardinality. Then

the family T consists of all trees T together with their weights w(T ) and the set of increasing labellings
L(T ).
For a given degree-weight sequence (ϕk)k≥0 with a degree-weight generating function ϕ(t) :=

∑
k≥0 ϕkt

k,
we define now the total weights by Tn :=

∑
|T |=n w(T ) · L(T ). It follows then that the exponential

generating function T (z) :=
∑

n≥1 Tn
zn

n! satisfies the autonomous first order differential equation

T ′(z) = ϕ
(
T (z)

)
, T (0) = 0. (5)

Again it is sometimes advantageous to describe an increasing tree family T by the formal recursive
equation

T = ©1 ×
(
ϕ0 · {ε} ∪̇ ϕ1 · T ∪̇ ϕ2 · T ∗ T ∪̇ ϕ3 · T ∗ T ∗ T ∪̇ · · ·

)
= ©1 × ϕ(T ), (6)

where additionally ∗ denotes the partition product for labelled objects.
Three specific increasing tree families are of particular interest:
• Recursive trees are the family of non-plane increasing trees such that all node degrees are allowed.
The degree-weight generating function is ϕ(t) = exp(t). Solving (5) gives T (z) = log

(
1

1−z

)
and thus

Tn = (n − 1)!, for n ≥ 1. Recursive trees have been introduced as simple probability models in several
areas. They are used to model the spread of epidemics [55], to aid in the construction of the family trees
of preserved copies of ancient manuscripts [61] or to model chain letter and pyramid schemes [28]. Further
they are used to model the stochastic growth of networks [11]. See also [52] for a survey of applications
and results on random recursive trees.
• Plane oriented recursive trees (also called Heap ordered trees) are the family of plane increasing trees
such that all node degrees are allowed. The degree-weight generating function is ϕ(t) = 1

1−t . Equation

(5) leads here to T (z) = 1 −
√

1− 2z and thus to Tn = (n−1)!
2n−1

(
2n−2
n−1

)
= (2n − 3)!!, for n ≥ 1. Plane
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oriented recursive trees (to be more exact a slight variation of them) are used to model the growth of the
internet. See also [52] for a survey on plane oriented recursive trees.
• Binary increasing trees (also called tournament trees) have the degree-weight generating function
ϕ(t) = (1 + t)2. This model is of special importance, since it is isomorphic to the model of binary
search trees (see [6] and the references therein for binary increasing trees and e. g. [50] for binary search
trees). Thus it must follow T (z) = z

1−z and Tn = n!, for n ≥ 1.

Driven from the inspection that all these important increasing tree families satisfy the equation Tn+1
Tn

=
c1n+ c2, with fixed constants c1, c2, for all n ≥ 1, we will consider such trees in more detail. It turns out
from the characterization given below that the defining degree-weight generating functions ϕ(t) are the
same as obtained in [63].
We will give now an exact answer to the question, which degree-weight generating functions are actually
fulfilling Tn+1

Tn
= c1n+ c2.

Lemma 1. The total weights Tn of trees of size n in an increasing tree family satisfy for all n ∈ N the
equation

Tn+1

Tn
= c1n+ c2, (7)

if and only if the degree-weight generating function ϕ(t) =
∑

k≥0 ϕkt
k is given by one of the following

three formulæ.

Case A : ϕ(t) = ϕ0e
c1t
ϕ0 , for ϕ0 > 0, c1 > 0,

Case B : ϕ(t) = ϕ0

(
1 +

c2t

ϕ0

)d

, for ϕ0 > 0, c2 > 0, d :=
c1
c2

+ 1 ∈ {2, 3, 4, . . . },

Case C : ϕ(t) =
ϕ0

(1 + c2t
ϕ0

)−
c1
c2
−1
, for ϕ0 > 0, 0 < −c2 < c1.

In applications the subclass of simple families of increasing trees, which can be constructed via an insertion
process or a probabilistic growth rule, is of particular interest. Such tree families T have the property that
for every tree T ′ of size n with vertices v1, . . . , vn there exist probabilities pT ′(v1), . . . , pT ′(vn), such that
when starting with a random tree T ′ of size n, choosing a vertex vi in T ′ according to the probabilities
pT ′(vi) and attaching node n+1 to it, we obtain a random increasing tree T of the family T of size n+1.
It is well known that the tree families mentioned above, i. e. recursive trees, plane-oriented recursive trees
and binary increasing trees, can be constructed via an insertion process. In [68] a full characterization of
those simple families of increasing trees, which can be constructed by an insertion process, is given.

Lemma 2 (Panholzer & Prodinger, 2005). The following three properties of a simple family of increasing
trees T are equivalent:

1. The total weights Tn of trees of size n of T satisfy the equation

Tn+1

Tn
= c1n+ c2, (8)

with fixed constants c1, c2, for all n ∈ N .

2. Starting with a random increasing tree T of size n ≥ j of T and removing all nodes larger than j
we obtain a random increasing tree T ′ of size j of T .

3. The family T can be constructed via an insertion process respectively a probabilistic growth rule.

Thus the tree families of interest are described by their degree weight generating function as given in
Lemma 1. We will call the tree families covered by Lemma 2 throughout this work grown simple families
of increasing trees.



CHAPTER 0. MATHEMATICAL PRELIMINARIES 4

Solving either the differential equation (5) or using (1) one obtains the following explicit formulæ for the
exponential generating function T (z):

T (z) =


ϕ0
c1

log
(

1
1−c1z

)
, Case A,

ϕ0
c2

(
1

(1−(d−1)c2z)
1

d−1
− 1
)
, Case B,

ϕ0
c2

(
1

(1−c1z)
c2
c1
− 1
)
, Case C.

(9)

Furthermore the coefficients Tn are given by the following formula, which holds for all three cases of very
simple increasing tree families (setting c2 = 0 in Case A and d = c1

c2
+ 1 in Case B):

Tn = ϕ0c
n−1
1 (n− 1)!

(
n− 1 + c2

c1

n− 1

)
. (10)

Next we are going to describe in more detail the tree evolution process which generates random trees (of
arbitrary size n) of grown simple families of increasing trees. This description is a consequence of the
considerations made in [68]:

• Step 1: The process starts with the root labelled by 1.

• Step i+1: At step i+1 the node with label i+1 is attached to any previous node v (with out-degree
d+(v)) of the already grown tree T of size i with probabilities proportional to the weight ω(d+(v))

ω(d+(v)) =
(d+(v) + 1)ϕd+(v)+1

ϕd+(v)
,

hence the probability of attaching the new node to node v is given be the weight of d+(v) divided
by the total weight of T .

p(v) =
ω(d+(v))∑

u∈T ω(d+(u))
. (11)

I. e.

p(v) =



1
i
, for Case A,
d− d+(v)

(d− 1)i+ 1
, for Case B,

d+(v) + α

(α+ 1)i− 1
, with α := −1− c1

c2
> 0, for Case C.

Thus we see that from a probabilistic point of view one could completely reduce the considerations for
Case A and Case B to recursive trees (ϕ0 = c1 = 1) and d-ary trees (ϕ0 = c2 = 1, c1 = d − 1). For
Case C we observe that plane-oriented recursive trees are contained due to ϕ0 = 1, c1 = 2, and c2 = −1
(leading to α = 1), but we have the possibility of choosing an arbitrary α > 0, such that this case can
indeed be seen as a generalization of plane-oriented recursive trees.

0.2 Probabilistic tools

We will briefly introduce the main probabilistic tools used in this thesis. The part concerning with the
method of moments is based on an article of Hwang and Neininger [34].
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0.2.1 Lévy’s continuity theorem

Let X be a random variable with characteristic function φ(t). Assume that X has a continuous distribu-
tion function. Further let (Xn)n∈N be a sequence of random variables with characteristic functions φn(t),
n ∈ N.

Xn
(d)−−→ X ⇐⇒ lim

n→∞
φn(t) = φ(t) for all t ∈ R. (12)

The corresponding theorem for the moment generating function was proven by Curtiss in [14]. It is
sometimes also called Lévy’s continuity theorem due to the similarity of the results.

0.2.2 Curtiss’ theorem

Let Mn(t) be the moment generating function of a distribution function Fn(x) such that for each n,
Mn(t) exists for |t| < t1. Suppose that there is a real function M(t) such that limn→∞Mn(t) = M(t) for
|t| ≤ t2 < t1 with t2 > 0. Then there is a distribution function F (x) such that limn→∞ Fn(x) = F (x) at
each continuity point of F and the moment generating function of F is M(t) for |t| < t2.

0.2.3 Method of moments

The method of moments is one of the most classical ways of deriving limit distributions. It has been
widely applied to problems in diverse fields. It consists in first computing the mean and variance. After
properly scaling the random variable, the higher moments of the scaled random variable X are computed
by induction. Carleman’s criterion provides that the moment sequence (E(Xs))s uniquely characterizes
a distribution if

∑
s E(X2s)−1/2s = ∞. Then one can obtain the convergence in distribution and of all

moments (or convergence in Lp for all p > 0) by the Fréchet-Shohat moment convergence theorem (see
Loève [49]).

0.2.4 Poisson Approximation

In Chapter 6 we are able to use Poisson Approximation technics to obtain limit laws for the considered
random variables by following closely the approach of Dobrow and Smythe [18], which is based on results
in [4]. The total variation distance dTV of two probability measures P and Q over Z+ is defined by

dTV(P,Q) =
1
2

∑
k≥0

|P ({k})−Q({k})|. (13)

We denote with Po(λ) a probability distribution of a Poisson distributed random variable with parameter
λ. Further we use the notation L(X) for the distribution law of the r.v. X. Let Xn be a sequence of
random variables for which

dTV(L(Xn),Po(λn)) → 0 and λn →∞, (14)

then it holds
Xn − λn√

λn

(d)−−→ N (0, 1). (15)
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Chapter 1

Isolating a single node in recursive
trees

1.1 Introduction

In [55] Meir and Moon considered the following edge-removal procedure (= cutting-down procedure) for
a rooted tree with n vertices. Pick one of the n − 1 edges of the tree at random and remove it. This
separates the tree into a pair of rooted trees; the tree containing the root of the original tree retains its
root, while the tree not containing the root of the original tree is rooted at the vertex adjacent to the edge
that was cut. Now the subtree that does not contain the original root is discarded and the procedure
is continued recursively for the remaining subtree until the original root is isolated. In paper [55] the
random variable Xn is studied, which counts the number of edges that will be removed from a randomly
chosen recursive tree of size n by above edge-removal procedure until the root, i. e., the node labelled by
1, is isolated. This problem was studied in the context of the spread of contamination in an organism,
where it is assumed that the first node is the source of all the contamination. By separating nodes from
the source by successively removing edges one eventually isolates the source node. It was shown in [55]
the following asymptotic equivalent of the expectation: E(Xn) ∼ n

log n . Thus on average ∼ n
log n random

edges have to be removed from a random size-n recursive tree before the root node is isolated.
Recently Javanian and Vahidi-Asl [38] have studied a modification of above edge-removal procedure,
motivated by considerations concerning the hierarchy of a workforce of a company: at each stage after
removing a random edge, the subtree containing the node with the largest label, i. e., label n, is kept
and the other subtree is discarded. Thus finally the node labelled by n will be isolated. Again one is
interested in a study of the random variable Yn, which counts the number of edges that will be removed
from a randomly chosen recursive tree of size n until node n, i. e., the last recent entry, is isolated. It
was shown in [38] the following asymptotic equivalent of the expectation: E(Yn) ∼ n

2 log n . Therefore on
average ∼ n

2 log n random edges have to be removed from a random size-n recursive tree before node n is
isolated.
But isolating node 1 and isolating node n in a tree by removing random edges can be considered as special
instances of a natural generalization of the edge-removal procedures described above. In order to isolate
via random cuttings the node with a specified label λ, with 1 ≤ λ ≤ n, in a tree T with nodes labelled
by 1, 2, . . . , n we consider the following procedure:

1. Pick one of the n− 1 edges of the tree at random and remove it. This separates the tree T into two
subtrees T̂ and T̃ . Let us assume that λ ∈ T̂ .

2. Continue the edge-removal procedure recursively for the subtree T̂ , which contains the node labelled
by λ, until node λ is isolated.

We are going to study this general edge-removal procedure by analyzing the random variable Xn,λ, with
1 ≤ λ ≤ n, which counts the number of edge-cuts that are necessary to isolate the node labelled by λ in a

7
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random recursive tree of size n. Of course, the margin cases Xn (isolating the root) and Yn (isolating the
largest node) are contained as the special instancesXn,1 andXn,n, respectively. This general edge-removal
procedure has a natural interpretation in the model for the spread of a contamination in an organism
mentioned above: instead of assuming that the root node is the contamination source we assume that a
certain node λ is the contamination source, which one wants to isolate. Figure 1.1 and Figure 1.2 give
examples of isolating certain nodes via the edge-removal procedure considered here.
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Figure 1.1: Isolating the root in a size-8 recur-
sive tree with 5 cuts.
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Figure 1.2: Isolating the largest node in a size-8
recursive tree with 3 cuts.

We will analyze the random variable Xn,λ from “both ends”, i. e., we are studying Xn,λ for small labels:
λ = l, with l ≥ 1 fixed and n → ∞, and for large labels: λ = n + 1 − l, with l ≥ 1 fixed and n → ∞.
By using a recursive approach we are able to give asymptotic expansions of the moments of the random
variables Xn,l and Xn,n+1−l, for l fixed and n → ∞. For the instance of large labels we can apply
the Theorem of Fréchet and Shohat and characterize the limit law of the normalized random variable
log n

n Xn,n+1−l by its moments. It turns out that the random variable Xn,n+1−l, which counts the number
of edge cuts necessary for isolating the l-th largest node, is (after scaling with log n

n ) asymptotically, for
l fixed and n → ∞, uniformly distributed on [0, 1). For the instance of small labels we can show that
log n

n Xn,l converges, for l fixed and n → ∞, in probability to 1, but it turns out that a zero-mean and
unit-variance normalization of Xn,l has (for s ≥ 2) s-th moments of order log

s
2−1 n. Thus existence of

the limit law (and in the affirmative case a characterization of the limit law) of this normalized random
variable cannot be shown by the method of moments. This was already observed for the special instance
of isolating the root, i. e., for Xn,1, in [65].
Remarks:
(i) We want to remark that for the problem of isolating the root node of a tree via random cuttings
Janson [37] gave an alternative approach by establishing a very useful connection between the number
of cuts to isolate the root and the number of records when assigning random values to the edges of the
tree. We want to sketch in the following that one can extend the arguments used in [37] to give also a
connection between the number of cuts and the number of records for the problem of isolating a specified
label λ. We consider a randomly chosen recursive tree of size n and attach to each edge e a random value
γe, where we assume that the values γe are i. i. d. with an arbitrary continuous distribution. For a given
label λ, with 1 ≤ λ ≤ n, we call a value γe a record if it is the largest value in the path from the node
labelled by λ to the edge e. Then it holds that the number of records is again distributed as Xn,λ.
(ii) Furthermore we want to remark that the cutting-down procedure for isolating the root node of a
random recursive tree has also been used to give an alternative representation of the so called Bothausen-
Sznitman coalescent (see [29]).

1.2 Results and outline of the proof

1.2.1 Results

For the s-th moments of the random variables Xn,l and Xn,n+1−l we get the following asymptotic expan-
sions, for l ≥ 2 fixed and n→∞, stated as Theorem 1 and Theorem 2.

Theorem 1. The s-th moments E
(
Xs

n,l

)
of the number of random cuts necessary to isolate node l in a
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random recursive tree of size n are, for l, s ≥ 1 fixed and n→∞, asymptotically given by

E
(
Xs

n,l

)
=

ns

logs n
+

γl,s n
s

logs+1 n
+O

( ns

logs+2 n

)
, (1.1)

where the constants γl,s appearing in above expansion are given by

γl,s = (s+ 1)Hs − sHl+s−1 −
1
2
(
H2

l−1 −H
(2)
l−1

)
−HsHl−1 + sΨ(l + s) +

l−1∑
k=1

Hs+k

k
−

l−1∑
k=1

1
k2
(
s+k

k

) .
Theorem 2. The s-th moments E

(
Xs

n,n+1−l

)
of the number of random cuts necessary to isolate node

n+ 1− l in a random recursive tree of size n are, for l, s ≥ 1 and n→∞, asymptotically given by

E
(
Xs

n,n+1−l

)
=

ns

(s+ 1) logs n
+O

( ns

logs+1 n

)
. (1.2)

From these asymptotic expansions of the s-th moments we obtain the following results for the limiting
behavior of Xn,l and Xn,n+1−l, for l fixed and n→∞, given as Corollary 1 and Theorem 3.

Corollar 1. The s-th centered moments E
([
Xn,l − E

(
Xn,l

)]s) of the number of random cuts necessary
to isolate node l in a random recursive tree of size n are, for l ≥ 1, s ≥ 2 fixed and n→∞, asymptotically
given by

E
([
Xn,l − E

(
Xn,l

)]s) =
δl,s n

s

logs+1 n
+O

( ns

logs+2 n

)
, (1.3)

where the constants δl,s appearing in above expansion are given by

δl,s =
(−1)s

s

(
Hl+s−1 −Hs

)
+

(−1)s

s2(s− 1)
+

(−1)s

s2
(
l+s−1

l−1

) .
Thus the scaled random variable log n

n Xn,l converges, for l ≥ 1 fixed and n→∞, in probability to 1 with
convergence of all moments.

Theorem 3. The limiting distribution of the normalized random variable log n
n Xn,n+1−l is, for l ≥ 1

fixed and n→∞, a standard uniform distribution U1 with support [0, 1):

log n
n

Xn,n+1−l
(d)−−→ X, X

(d)
= U1. (1.4)

1.2.2 Outline of the proof

In order to show our results we will basically use a recursive approach, which allows to describe the number
of random cuts necessary to isolate label l in a random recursive tree of size n via the corresponding
quantities for smaller tree sizes k < n and labels r not larger than l, i. e., r ≤ l. Such a recursive approach
is amenable, since it is well known (see [29; 65]) that random recursive trees satisfy a certain randomness-
preservation property, which is stated in Subsection 1.3.1. Using this property we can easily give a
distribution recurrence for Xn,l (and Xn+1−l), where the behavior of the random variables considered
are determined by the splitting probabilities p(n,l),(k,r) (and p(n,l),(k,r)), which give the probability that
when starting with a random size-n recursive tree and removing a random edge the subtree containing
node l (node n + 1 − l) is of size k and where furthermore node l (node n + 1 − l) is the r-th smallest
(the r-th largest) node in this subtree. Using a bijective argument we can give exact formulæ for these
splitting probabilities. They are computed in Subsection 1.3.2 and given as Lemma 3.
From the distribution recurrences for Xn,l and Xn+1−l we easily obtain recurrences for the s-th mo-
ments E

(
Xs

n,l

)
and E

(
Xs

n,n+1−l

)
. In order to treat these recurrences we use a generating functions
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approach, which allows to translate these recurrences into linear differential equations for suitably in-
troduced generating functions Ml,s(z) and Nl,s(z). Since we are able to determine the general solutions
of the corresponding homogeneous differential equations it is possible to describe the solutions of these
differential equations rather “explicitly”. To determine the asymptotic growth behavior of E

(
Xs

n,l

)
and

E
(
Xs

n,n+1−l

)
, and thus essentially of the coefficients of the generating functions Ml,s(z) and Nl,s(z), we

use singularity analysis (see [25]), i. e., we study the growth behavior of the functions in a neighborhood
of the dominant singularity, together with certain lemmata for singular differentiation and integration;
the corresponding Lemma 4 is stated in Subsection 1.4.1. Since, for a given pair (l, s), all generating
functions Mr,j(z) (and Nr,j(z)), with r ≤ l, j ≤ s and (r, j) 6= (l, s), appear in the inhomogeneous
part of the differential equations determining Ml,s(z) (and Nl,s(z)), we are forced to “pump out” the
asymptotic expansions of the generating functions Ml,s(z) (and Nl,s(z)) around the dominant singularity
via induction on both parameters l and s. The corresponding computations for small labels (labels l ≥ 1
fixed) are carried out in Section 1.4, whereas the computations for large labels (labels n + 1 − l, with
l ≥ 1 fixed) are given in Section 1.5.

1.3 The recursive approach

1.3.1 Recurrences

As already mentioned in Lemma 2 it has been observed that random recursive trees satisfy the follow-
ing “randomness-preservation” property, which will allow a recursive approach for the analysis of the
parameter considered.

Choose a random recursive tree of size n and then one of its n−1 edges uniformly at random.
Cutting this edge produces a pair of trees of size k and n−k. Then, after an order preserving
relabelling of the subtrees with labels {1, . . . , k} and {1, . . . , n − k}, the subtrees themselves
are random recursive trees of size k and n− k.

An important step for the recursive description of the probabilities P{Xn,l = m} is to introduce the
splitting probabilities p(n,l),(k,r): they give the probability that when starting with a random size-n
recursive tree and removing a random edge the subtree containing node l is of size k and where furthermore
node l is the r-th smallest node in this subtree.
When we treat the analogous problem of isolating the node n + 1 − l it is convenient to introduce the
splitting probabilities p(n,l),(k,r): they give the probability that when starting with a random size-n
recursive tree and removing a random edge the subtree containing node n+ 1− l is of size k and where
furthermore node n + 1 − l is the r-th largest node in this subtree. Of course, these quantities are
connected via the trivial relation

p(n,l),(k,r) = p(n,n+1−l),(k,k+1−r). (1.5)

From the recursive nature of the problem together with the randomness-preservation property imme-
diately follows the distribution recurrence for the number of random cuts necessary to isolate the l-th
smallest node in a random recursive tree of size n given below.

P{Xn,l = m} =
l∑

r=1

n−1∑
k=r

p(n,l),(k,r)P{Xk,r = m− 1}, n ≥ 2, (1.6)

with initial value P{X1,1 = 0} = 1. Furthermore, the distribution recurrence for the number of random
cuts necessary to isolate the l-th largest node, i. e., node n + 1 − l, in a random recursive tree of size n
is given by:

P{Xn,n+1−l = m} =
l∑

r=1

n−1∑
k=r

p(n,l),(k,r)P{Xk,k+1−r = m− 1}, n ≥ 2, (1.7)
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with initial value P{X1,1 = 0} = 1.
The splitting probabilities p(n,l),(k,r) appearing in (1.6) are given by Lemma 3, which also determine the
splitting probabilities p(n,l),(k,r) appearing in (1.7) due to equation (1.5).

1.3.2 The splitting probabilities

We obtain the following explicit formulæ for the splitting probabilities p(n,l),(k,r) appearing in (1.6).

Lemma 3. The splitting probabilities p(n,l),(k,r) are, for 1 ≤ l ≤ n, 1 ≤ r ≤ k, 1 ≤ k ≤ n− 1 and n ≥ 2,
given as follows:

p(n,l),(k,r) =


[
(l − 1)

(
n−l
n−k

)
+
(

n−l+1
n−k+1

)] (k−1)!(n−k−1)!
(n−1)(n−1)! , r = l,[(

l−1
r

)(
n−l
k−r

)
+
(

l−1
r−2

)(
n−l
k−r

)] (k−1)!(n−k−1)!
(n−1)(n−1)! , r < l.

Proof. If we remove an edge e of a size-n recursive tree we split the tree into two subtrees: we denote
with T ′ the subtree containing the original root, i. e., label 1, and with T ′′ the other subtree, which is
rooted at the vertex adjacent to the edge e that was cut. After an order preserving relabelling with labels
{1, . . . , |T ′|} and {1, . . . , |T ′′|} both subtrees can be considered as recursive trees. Furthermore we denote
with B the arising subtree, which contains the node labelled by l in the original tree; we assume that
this subtree has size k, with 1 ≤ k ≤ n− 1. We distinguish now the cases r = l and r < l.
If r = l then it follows that B = T ′. We want to determine the number of possibilities of removing an
edge e of a recursive tree of size n leading (after an order preserving relabelling) to the pair (T ′, T ′′) of
subtrees. To do this we count the number of different ways of distributing the labels {1, . . . , n} order
preserving to T ′ and T ′′ and adjoining the root of T ′′ to a node of T ′ (by inserting edge e), such that
the resulting tree is a recursive tree. We consider now the node of T ′ incident with e: if the node of T ′

incident with e has label j, with 1 ≤ j ≤ k, then it follows that the labels of T ′′ must all be larger than
j. For 1 ≤ j ≤ l we can choose n− k of the labels l+ 1, l+ 2, . . . , n and distribute them order preserving
to T ′′, whereas the remaining labels are distributed order preserving to T ′, leading to

(
n−l
n−k

)
possibilities.

For l+1 ≤ j ≤ k we can choose n−k of the labels j+1, j+2, . . . , n and distribute them order preserving
to T ′′, whereas the remaining labels are distributed order preserving to T ′, leading to

(
n−j
n−k

)
possibilities.

Thus this quantity is independent of the actual choice of T ′ with |T ′| = k and T ′′ with |T ′′| = n − k.
Since there are Tk = (k − 1)! and Tn−k = (n − k − 1)! different recursive trees of size k and n − k, this
leads together with the fact that there are n− 1 ways of selecting an edge e for any of the Tn = (n− 1)!
recursive trees of size n to the following formula:

p(n,l),(k,l) =

l(n− l

n− k

)
+

k∑
j=l+1

(
n− j

n− k

) (k − 1)!(n− k − 1)!
(n− 1)(n− 1)!

=
[
(l − 1)

(
n− l

n− k

)
+
(
n− l + 1
n− k + 1

)]
(k − 1)!(n− k − 1)!

(n− 1)(n− 1)!
,

appealing to a well known identity.
If r < l we have to distinguish further between the two cases B = T ′ and B = T ′′. If B = T ′ and we
distribute the labels {1, . . . , n} order preserving to T ′ and T ′′ we have the restriction that exactly l − r
nodes of the nodes 2, . . . , l−1 have to be in T ′′. If B = T ′′ then we have the restriction that exactly r−1
nodes of the nodes 2, . . . , l− 1 have to be in T ′′. Proceeding the same way as before we obtain eventually
the following formula.

p(n,l),(k,r) =

( n− l

n− k − (l − r)

) r−1∑
j=1

(
l − 1− j

l − r

)
+
(
n− l

k − r

) l−r∑
j=1

(
l − 1− j

r − 1

) (k − 1)!(n− k − 1)!
(n− 1)(n− 1)!

=
[(

l − 1
r − 2

)(
n− l

k − r

)
+
(
l − 1
r

)(
n− l

k − r

)]
(k − 1)!(n− k − 1)!

(n− 1)(n− 1)!
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1.4 Isolating nodes with small labels

1.4.1 Singular differentiation and integration

In order to treat the recurrences for the s-th moments of Xn,l and Xn,n+1−l that will be obtained in the
sequel we use a generating functions approach, which leads “in principle” to exact formulæ for suitably
introduced generating functions. To obtain asymptotic information for the s-th moments we will basically
use singularity analysis of generating functions, i. e., the transfer lemmata of Flajolet and Odlyzko [25] to
“translate” the asymptotic growth behavior of a generating function in the neighborhood of its dominant
singularity into the growth behavior of its coefficients. For the functions studied in here the unique
dominant singularity is always located at z = 1, thus we will specialize the considerations given below to
this case. In order to apply singularity analysis it is necessary that the functions involved are analytic for
a domain larger than the circle of convergence, namely the functions have to be analytic for indented discs
∆ := ∆(φ, η) = {z : |z| < 1 + η, |Arg(z − 1)| > φ}, with η > 0, 0 < φ < π

2 . Such functions are called
∆-regular (see [22]). We want to point out that the functions considered here are always ∆-regular,
since they are generated from ∆-regular functions via basic arithmetical functions and the operations
differentiation and integration.
We will require the following O-transfer lemma for a ∆-regular function with a certain growth estimate
in a neighborhood of z = 1:

f(z) = O
( 1

(1− z)a logb
(

1
1−z

)), for z → 1 =⇒ [zn]f(z) = O
( na−1

logb n

)
. (1.8)

together with an asymptotic expansion of the coefficients of the following functions:

f(z) =
1

(1− z)a logb
(

1
1−z

) =⇒ [zn]f(z) =
na−1

Γ(a) logb n

(
1 +

bΨ(a)
log n

+O
( 1
log2 n

))
, (1.9)

where both formulæ (1.8) and (1.9) hold (at least) for a > 0 and b ≥ 0 (see [25]).
However, for a study of the functions appearing we also require lemmata, which describe the asymptotic
behavior of the derivative f ′(z) and the antiderivative

∫ z

0
f(t)dt of a ∆-regular function f(z) in the

neighborhood of the dominant singularity z = 1, supposing that the asymptotic behavior around z = 1
of the function f(z) itself is of a certain kind. Such theorems are known as theorems for singular
differentiation and integration and can be found, e. g., in [22]. But in the sequel we will require slightly
more general theorems than given there, which are stated in Lemma 4. The proof of this lemma is omitted,
since one can essentially “repeat” the arguments used in the proof of the corresponding theorems given
in [22].

Lemma 4 (Singular differentiation and integration). Let f(z) be a ∆-regular function (see [22]), an
analytic function in the domain ∆ := ∆(φ, η),

∆(φ, η) = {z : |z| < 1 + η, |Arg(z − 1)| > φ},

with η > 0, 0 < φ < π
2 , satisfying, for z → 1, the expansion

f(z) = O
( 1

(1− z)a logb
(

1
1−z

)),
for a > 1 and b ≥ 1. Then

∫ z

0
f(t)dt and f ′(z) are also ∆-regular and they admit, for z → 1, the
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expansions∫ z

0

f(t)dt = O
( 1

(1− z)a−1 logb
(

1
1−z

)), and f ′(z) = O
( 1

(1− z)a+1 logb
(

1
1−z

)).
1.4.2 Expectations

The first step in our proof of Theorem 1 is to show the special case s = 1, i. e., asymptotic expansions of
the expectations E(Xn,l), for l fixed and n→∞, given as Lemma 5.

Lemma 5. The expectations E(Xn,l) of the number of random cuts necessary to isolate node l in a
random recursive tree of size n are, for l ≥ 1 fixed and n→∞, asymptotically given by

E(Xn,l) =
n

log n
+
(
4− 2Hl −

1
l

+ Ψ(l + 1)
) n

log2 n
+O

( n

log3 n

)
.

The proof of this lemma will be carried out by a generating functions approach using induction on l. The
recurrences for the expectations E(Xn,l) are obtained easily from the distribution recurrence (1.6) and
are given by

E(Xn,l) = 1 +
l∑

r=1

n−1∑
k=r

p(n,l),(k,r)E(Xk,r), (1.10)

with splitting probabilities given by Lemma 3.
We introduce for l ≥ 1 the generating functions

Ml(z) :=
∑
n≥l

(n− 1)l−1E(Xn,l)zn−l, (1.11)

which allow to translate recurrence (1.10) into the following first order linear differential equation for
Ml(z), where the functions Mr(z), with r < l, are appearing in the inhomogeneous part Rl(z):

(1− z) log
( 1
1− z

) d
dz
Ml(z) +

(
(l − 1)− l log

( 1
1− z

))
Ml(z) = Rl(z), (1.12)

with inhomogeneous part

Rl(z) =
(l − 1)!(l − 1 + z)

(1− z)l+1
+

l−1∑
r=1

[(
l − 1
r

)
+
(
l − 1
r − 2

)]
(l − r − 1)!
(1− z)l−r

Mr(z),

and initial condition Ml(0) = (l − 1)! E(Xl,l).
The homogeneous differential equation corresponding to (1.12) has the following general solution with C
being an arbitrary constant:

M
[h]
l (z) =

C

(1− z)l logl−1
(

1
1−z

) .
The method of variation of constants leads then to the following particular solution of (1.12):

M
[p]
l (z) =

1
(1− z)l logl−1

(
1

1−z

) ∫ z

0

(1− t)l−1 logl−2
( 1
1− t

)
Rl(t)dt, (1.13)

and it can be shown that this particular solution matches with the initial condition and is thus the wanted
function, so Ml(z) = M

[p]
l (z).

It will suffice to show the following asymptotic expansion of Ml(z) around the dominant singularity z = 1,
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since a direct application of the transfer lemmata (1.8) and (1.9) leads then to Lemma 5:

Ml(z) =
l!

(1− z)l+1 log
(

1
1−z

) +
(l − 1)!(4l − 1− 2lHl)
(1− z)l+1 log2

(
1

1−z

) +O
( 1

(1− z)l+1 log3
(

1
1−z

)). (1.14)

The proof of the expansion (1.14) will be done by induction. The case l = 1 gives the following solution,
which already appeared in [55]:

M1(z) =
1

1− z

∫ z

0

t

(1− t)2 log
(

1
1−t

)dt. (1.15)

Integration by parts together with an application of Lemma 4 for singular integration leads then from
(1.15) to the expansion (1.14) for the instance l = 1.
Now we assume that the functions Mr(z) satisfy for all r < l and a given l > 1 the asymptotic expansion
(1.14). Plugging these expansions into the formula for the remainder term Rl(z) given above easily leads
to the expansion

Rl(z) =
l!

(1− z)l+1
+

(l − 1)!(l2 + 2l − 1− 2lHl)
(1− z)l+1 log

(
1

1−z

) +O
( 1

(1− z)l+1 log2
(

1
1−z

)),
and furthermore to∫ z

0

(1− t)l−1 logl−2
( 1
1− t

)
Rl(t)dt =

l! logl−2
(

1
1−z

)
1− z

+
(l − 1)!

(
4l − 1− 2lHl

)
logl−3

(
1

1−z

)
1− z

+O
( logl−4

(
1

1−z

)
1− z

)
.

Due to formula (1.13) for Ml(z) = M
[p]
l (z) expansion (1.14) is also shown for l. Thus (1.14) and as a

consequence Lemma 5 is shown for all l ≥ 1.

1.4.3 Higher moments

In order to show Theorem 1 for the asymptotic behavior of the moments E(Xs
n,l) we will continue our

generating functions approach, where we will now use double induction on both parameters: the label
l considered and the order s of the moments. To obtain a recurrence for the s-th moments of Xn,l we
multiply the distribution recurrence (1.6) with ms =

∑s
j=0

(
s
j

)
(m−1)j and sum up for m ≥ 1. This leads

to the following recurrence valid for 1 ≤ l ≤ n and n ≥ 2 (with splitting probabilities given by Lemma 3).

E
(
Xs

n,l

)
=

s∑
j=0

(
s

j

) l∑
r=1

n−1∑
k=r

p(n,l),(k,r)E
(
Xj

k,r

)
. (1.16)

We proceed as before and introduce for l ≥ 1 and s ≥ 1 the generating functions

Ml,s(z) :=
∑
n≥l

(n− 1)l−1 E
(
Xs

n,l

)
zn−l. (1.17)

Thus it holds Ml,1(z) = Ml(z) for the functions Ml(z) introduced in Subsection 1.4.2. Again we can
translate above recurrence (1.16) into the following first order differential equation for Ml,s(z), where the
functions Mr,j(z), with r ≤ l, j ≤ s and (r, j) 6= (l, s), appear in the inhomogeneous part Rl,s(z):

(1− z) log
( 1
1− z

) d
dz
Ml,s(z) +

(
(l − 1)− l log

( 1
1− z

))
Ml,s(z) = Rl,s(z), (1.18)
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with inhomogeneous part

Rl,s(z) =
s−1∑
j=1

(
s

j

)[(
z − (1− z) log

( 1
1− z

)) d
dz
Ml,j(z) + l log

( 1
1− z

)
Ml,j(z)

]

+
(l − 1)!(l − 1 + z)

(1− z)l+1
+

s∑
j=1

(
s

j

) l−1∑
r=1

[(
l − 1
r

)
+
(
l − 1
r − 2

)]
(l − r − 1)!
(1− z)l−r

Mr,j(z),

and initial condition Ml,s(0) = (l− 1)! E
(
Xs

l,l

)
. Since the homogeneous differential equations correspond-

ing to (1.18) and (1.12) coincide, we already know the shape of the general solution of (1.18):

Ml,s(z) =
C

(1− z)l logl−1
(

1
1−z

) +
1

(1− z)l logl−1
(

1
1−z

) ∫ z

0

(1− t)l−1 logl−2
( 1
1− t

)
Rl,s(t)dt.

It turns out that the particular solution obtained for C = 0 matches with the initial condition and we
get thus

Ml,s(z) =
1

(1− z)l logl−1
(

1
1−z

) ∫ z

0

(1− t)l−1 logl−2
( 1
1− t

)
Rl,s(t)dt. (1.19)

Again it suffices to show the following asymptotic expansion around the dominant singularity z = 1 for
the generating functions Ml,s(z), since basic singularity analysis immediately leads from this expansion
and (1.17) to Theorem 1.

Ml,s(z) =
(l + s− 1)!

(1− z)l+s logs
(

1
1−z

) +
αl,s

(1− z)l+s logs+1
(

1
1−z

) +O
( 1

(1− z)l+s logs+2
(

1
1−z

)), (1.20)

with constants

αl,s = (l + s− 1)!
[
(s+ 1)Hs − sHl+s−1 −

1
2
(
H2

l−1 −H
(2)
l−1

)
−HsHl−1 +

l−1∑
k=1

Hs+k

k
−

l−1∑
k=1

1
k2
(
s+k

k

)].
To show expansion (1.20) for all l, s ≥ 1 we use induction on both parameters. The case s = 1 with
arbitrary l ≥ 1 was already treated in Subsection 1.4.2, where we computed the following expression,
which matches with (1.20):

Ml,1(z) = Ml(z) =
l!

(1− z)l+1 log
(

1
1−z

) +
(l − 1)!(4l − 1− 2lHl)
(1− z)l+1 log2

(
1

1−z

) +O
( 1

(1− z)l+1 log3
(

1
1−z

)).
Now we assume that for all pairs (r, j) < (l, s), which means for r ≤ l, j ≤ s and (r, j) 6= (l, s), the
functions Mr,j(z) have in a neighborhood of the dominant singularity z = 1 the asymptotic expansion
(1.20). We want to show that (1.20) also holds for the pair (l, s), where we may assume s > 1, since the
case s = 1 is already shown. Plugging the expansions of the functions Mr,j(z) into the formula for the
inhomogeneous part Rl,s(z) we obtain the expansion

Rl,s(z) =
s(l + s− 1)!

(1− z)l+s logs−1
(

1
1−z

) +
βl,s

(1− z)l+s logs
(

1
1−z

) +O
( 1

(1− z)l+s logs+1
(

1
1−z

)),
with

βl,s = s(l + s− 1)αl,s−1 + (l + s− 1)!
[
l − 2− (s+ 1)(Hl+s−1 −Hs+1)

]
+ (l − 1)!(s− 1)!

((
l+s−1

s

)
− 1
)
− s(s− 1)(l + s− 2)!.
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This further leads by an application of singular integration to the following expansion around z = 1:∫ z

0

(1− t)l−1 logl−2
( 1
1− t

)
Rl,s(t)dt =

(l + s− 1)!
(1− z)s logs−l+1

(
1

1−z

) +
(l + s− 1)!(s− l + 1) + βl,s

s(1− z)s logs−l+2
(

1
1−z

)
+O

( 1
(1− z)s logs−l+3

(
1

1−z

)).
Using equation (1.19) leads for Ml,s(z) to the expansion

Ml,s(z) =
(l + s− 1)!

(1− z)l+s logs
(

1
1−z

) +
(l + s− 1)!(s− l + 1) + βl,s

s(1− z)l+s logs+1
(

1
1−z

) +O
( 1

(1− z)l+s logs+2
(

1
1−z

)),
and thus to the following recurrence for the coefficients αl,s:

αl,s =
(l + s− 1)!(s− l + 1) + βl,s

s

= (l + s− 1)αl,s−1 +
(l + s− 1)!

[
s− 1− (s+ 1)(Hl+s−1 −Hs+1)

]
s

+
(l − 1)!(s− 1)!

((
l+s−1

s

)
− 1
)

s
− (s− 1)(l + s− 2)!,

with initial value αl,1 = (l − 1)!(4l − 1 − 2lHl). It is not hard to check that the coefficients αl,s defined
in equation (1.20) satisfy this recurrence. Thus expansion (1.20) and also Theorem 1 are shown for all
l, s ≥ 1.

1.4.4 The centered moments

It remains to prove Corollary 1 for the centered moments of Xn,l. To show (1.3) we use the corresponding
expansion for the ordinary moments as given by Theorem 1. This leads to

E
([
Xn,l − E

(
Xn,l

)]s) =
s∑

j=0

(
s

j

)
(−1)s−jE

(
Xj

n,l

)(
E
(
Xn,l

))s−j

=
( s∑

j=0

(
s

j

)
(−1)s−j

)
ns

logs n
+

δl,s n
s

logs+1 n
+O

( ns

logs+2 n

)
, (1.21)

with constants

δl,s =
s∑

j=0

(
s

j

)
(−1)s−jfl,s(j),

where the functions fl,s(j) are given as follows:

fl,s(j) = (j + 1)Hj − jHl+j−1 −
1
2
(
H2

l−1 −H
(2)
l−1

)
−HjHl−1 +

l−1∑
k=1

Hj+k

k
−

l−1∑
k=1

1
k2
(
j+k

k

) + jΨ(l + j)

+ (s− j)
[
4−Hl −

1
l

+ Ψ(l + 1)
]
.

Since it holds that
∑s

j=0

(
s
j

)
(−1)s−j = 0, for all s ≥ 1, the first term of (1.21) vanishes. To show

Corollary 1 it only remains to simplify the expression for the constants δl,s. One can do this, for instance,
by using the calculus of higher order differences (see, e. g., [30]). Below we give two identities that can
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be shown by this method, which are required to obtain a closed form expression for δl,s.

s∑
j=0

(
s

j

)
(−1)s−j

l−1∑
k=1

Hj+k

k
= (−1)s−1

( 1
s2
− 1
s2
(
l+s−1

l−1

)),
s∑

j=0

(
s

j

)
(−1)s−j

l−1∑
k=1

1
k2
(
j+k

k

) =
(−1)s

s

(
Hl−1 −Hl+s−1 +Hs

)
.

This eventually leads to Corollary 1.

1.5 Isolating nodes with large labels

1.5.1 Isolating node n

Now we are studying the random variable Xn,n+1−l, for l ≥ 1 fixed. First we will consider the special
case l = 1, i. e., the instance of isolating the node with largest label n in a size-n recursive tree. We show
the following lemma and prove thus the case l = 1 of Theorem 2.

Lemma 6. The s-th moments E
(
Xs

n,n

)
of the number of cuts necessary to isolate node n in a random

recursive tree of size n are, for s ≥ 1 and n→∞, asymptotically given by

E
(
Xs

n,n

)
=

ns

(s+ 1) logs n
+O

( ns

logs+1 n

)
.

An asymptotic equivalent of the expectation E(Xn,n) together with a O-bound for the variance of Xn,n

was already given in [38].
After simplifying the expressions for the splitting probabilities p(n,1),(k,1) as computed in Section 1.3 we
can write the distribution recurrence (1.5) as follows:

P{Xn,n = m} =
n−1∑
k=1

p(n,1),(k,1)P{Xk,k = m− 1}

=
1

n− 1

n−1∑
k=1

(
1
k

+
k − 1

(n− k)(n+ 1− k)

)
P{Xk,k = m− 1}, n ≥ 2,

(1.22)

with P{X1,1 = 0} = 1. For computing the s-th moments of Xn,n we multiply (1.22) with ms =∑s
j=0

(
s
j

)
(m− 1)s and sum up for m ≥ 1, which leads to the following recurrence:

E
(
Xs

n,n

)
=

1
n− 1

s∑
j=0

(
s

j

) n−1∑
k=1

(1
k

+
k − 1

(n− k)(n+ 1− k)

)
E
(
Xj

k,k

)
. (1.23)

We treat (1.23) by introducing the generating functions

N1,s(z) :=
∑
n≥1

1
n

E
(
Xs

n,n

)
zn. (1.24)

In the sequel we will obtain the following asymptotic expansion of the generating function N1,s(z), which
leads, after applying basic singularity analysis, to Lemma 6.

N1,s(z) =
(s− 1)!

(s+ 1)(1− z)s logs
(

1
1−z

) +O
( 1

(1− z)s logs+1
(

1
1−z

)). (1.25)
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To show (1.25) we will use induction on s. First we have to consider the case s = 1. Plugging s = 1 into
the recurrence (1.23) leads after multiplying with (n−1)zn−1 and summing up for n ≥ 2 to the following
second order linear differential equation for the generating function N1,1(z):

(1− z) log
( 1
1− z

) d2

dz2
N1,1(z)−

1
1− z

N1,1(z) =
z

(1− z)2
, (1.26)

with initial conditions N1,1(0) = 0 and
(

d
dzN1,1(z)

)
|z=0 = E(X1,1) = 0. The solution of the homogeneous

differential equation corresponding to (1.26) is given by

N
[h]
1 (z) = C1N

[h1]
1 (z) + C2N

[h2]
1 (z) = C1 log

( 1
1− z

)
+ C2 log

( 1
1− z

) ∫ z

α

dt

log2
(

1
1−t

) , (1.27)

where we may choose an arbitrary 0 < α < 1. Since the Wronski determinant of the two homogeneous
solutions equals one,

N
[h1]
1 (z)

d

dz
N

[h2]
1 (z)−N

[h2]
1 (z)

d

dz
N

[h1]
1 (z) = 1, (1.28)

a particular solution of (1.26) is given by

N
[p]
1,1(z) = N

[h1]
1 (z)

∫ z

0

−b1,1(t)N
[h2]
1 (t)dt+N

[h2]
1 (z)

∫ z

0

b1,1(t)N
[h1]
1 (t)dt

= log
( 1
1− z

)(∫ z

α

dt

log2
(

1
1−t

) ∫ z

0

t

(1− t)3
dt−

∫ z

0

t

(1− t)3

∫ t

α

1
log2

(
1

1−u

)du dt), (1.29)

with b1,1(z) = z

(1−z)3 log
(

1
1−z

) . Using integration by parts we can simplify the particular solution as

follows:

N
[p]
1,1(z) = log

( 1
1− z

) ∫ z

0

t2

2(1− t)2 log2
(

1
1−t

)dt. (1.30)

It turns out that the particular solution (1.30) satisfies also the initial conditions of (1.26) and is thus
the required solution, i. e., N1,1(z) = N

[p]
1,1(z). An application of singular integration, Lemma 4, shows

then the instance s = 1 of expansion (1.25).
Now we assume that expansion (1.25) is valid for all values j < s, with an arbitrary s > 1. To show the
expansion also for s we again translate recurrence (1.23) by multiplying with (n− 1)zn−1 and summing
up for n ≥ 2 into the following inhomogeneous second order linear differential equation:

(1− z) log
( 1
1− z

) d2

dz2
N1,s(z)−

1
1− z

N1,s(z) = R1,s(z), (1.31)

with inhomogeneous part

R1,s(z) =
z

(1− z)2
+

s−1∑
j=1

(
s

j

)[(
z − (1− z) log

( 1
1− z

)) d2

dz2
N1,j(z) +

N1,j(z)
1− z

]
,

and initial conditions N1,s(0) = 0 and
(

d
dzN1,s(z)

)
|z=0 = E

(
Xs

1,1

)
= 0. Since we have already computed

the general solution of the corresponding homogeneous differential equation we can immediately state
the particular solution of this differential equation:

N
[p]
1,s(z) = N

[h1]
1 (z)

∫ z

0

−b1,s(t)N
[h2]
1 (t)dt+N

[h2]
1 (z)

∫ z

0

b1,s(t)N
[h1]
1 (t)dt, (1.32)

where the homogeneous solutions N [h1]
1 (z) and N

[h2]
1 (z) are given by (1.27) and furthermore b1,s(z) =

R1,s(z)

(1−z) log( 1
1−z ) . Again via integration by parts we can simplify the particular solution and obtain the
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following formula:

N
[p]
1,s(z) = log

( 1
1− z

) ∫ z

0

(∫ t

0

R1,s(u)
1− u

du
) dt

log2
(

1
1−t

) . (1.33)

It can be checked easily that (1.33) also satisfies the initial conditions and is thus the solution of (1.31),
i. e., N1,s(z) = N

[p]
1,s(z).

Plugging the expansions (1.25) of N1,j(z), for j < s, into the formula for R1,s(z) we obtain the following
expansion of the inhomogeneous part in a neighborhood of z = 1:

R1,s(z) =
s!

(1− z)s+1 logs−1
(

1
1−z

) +O
( 1

(1− z)s+1 logs
(

1
1−z

)).
This gives by applying singular integration, Lemma 4,(∫ t

0

R1,s(u)
1− u

du
) 1

log2
(

1
1−t

) =
s!

(s+ 1)(1− t)s+1 logs+1
(

1
1−t

) +O
( 1

(1− t)s+1 logs+2
(

1
1−t

)),
and eventually leads, after a further application of Lemma 4, due to (1.33) also for s to expansion (1.25).
Thus (1.25) and as a consequence Lemma 6 are shown for all s ≥ 1.

1.5.2 Expectations for large nodes

Next we show the following asymptotic expansion of the expectation E(Xn,n+1−l), for l fixed. Lemma 7
gives thus the special case s = 1 of Theorem 2.

Lemma 7. The expectations E(Xn,n+1−l) of the number of random cuts necessary to isolate node n+1−l
in a random recursive tree of size n are, for l ≥ 1 fixed and n→∞, asymptotically given by

E(Xn,n+1−l) =
n

2 log n
+O

( n

log2 n

)
.

To show this lemma we study the following recurrence for E(Xn,n+1−l), which is obtained from the
distribution recurrence (1.7) after multiplying with m = (m− 1) + 1 and summing up for m ≥ 1:

E(Xn,n+1−l) = 1 +
l∑

r=1

n−1∑
k=r

p(n,l),(k,r)E(Xk,k+1−r). (1.34)

After simplifying the expressions of the splitting probabilities p(n,l),(k,r) as given by (1.5) and Lemma 3
we obtain

p(n,l),(k,r) = [[k ≤ n+ r − l]]

(
l−1
r−1

)
(n− 1)(n− 1)l−1

[
(k − 1)r−2(n− k − 1)l−r + (k − 1)r(n− k − 1)l−r−2

]
+ [[k = n+ r − l]]

(
l

r − 1

)
(l − r − 1)!

(n− 1)(n− 1)l−r
, r ≤ l,

(1.35)

where we use the convention (j − 1)−p := (jp)−1, p ∈ N, see e. g. [30].
To treat recurrence (1.34) we introduce for l ≥ 1 the following generating functions:

Nl,1(z) :=
∑
n≥l

(n− 1)l−2 E(Xn,n+1−l)zn+1−l. (1.36)

Note that this definition also holds for l = 1, where it matches with the definition of N1,1(z) given by
(1.24). Again, due to an application of basic singularity analysis, it suffices to show that Nl,1(z) admits
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the following expansion in a neighborhood of the dominant singularity z = 1, which proves Lemma 7.

Nl,1(z) =
(l − 1)!

2(1− z)l log
(

1
1−z

) +O
( 1

(1− z)l log2
(

1
1−z

)). (1.37)

We will show expansion (1.37) by induction on l. The case l = 1 was treated already in Subsection 1.5.1,
where it turned out that (1.37) holds.
Above recurrence (1.34) can be translated into the following second order linear differential equation for
Nl,1(z), where the functions Nr,1(z), with r < l, are all appearing in the inhomogeneous part Rl,1(z).
Rl,1(z) is now a bit “unpleasant”, since one had to consider separately the four cases r = 1, 1 < r < l−1,
r = l − 1 and r = l. One obtains

(1− z) log
( 1
1− z

) d2

dz2
Nl,1(z) + (l − 1)

d

dz
Nl,1(z)−

1
1− z

Nl,1(z) = Rl,1(z), (1.38)

with inhomogeneous part

Rl,1(z) =
(l − 1)!(l − 1 + z)

(1− z)l+1
+

l−1∑
r=1

∑
n≥l

[ n−1∑
k=r

(n− 1)(n− 1)l−1p(n,l),(k,r)E(Xk,k+1−r)
]
zn−l

=
(l − 1)!(l − 1 + z)

(1− z)l+1
+

l−2∑
r=1

(
l − 1
r − 1

)[
(l − 2− r)!
(1− z)l−1−r

( d2

dz2
Nr,1(z)− 1

)
+Nr,1(z)

(l − r)!
(1− z)l+1−r

]

+ (l − 1)
[
log
( 1
1− z

) d2

dz2
Nl−1,1(z) +

Nl−1,1(z)
(1− z)2

]
+

l−1∑
r=1

(
l

r − 1

)
(l − r − 1)!

d

dz
Nr,1(z),

and initial conditions Nl,1(0) = 0,
(

d
dzNl,1

)∣∣
z=0

= (l − 1)! E(Xl,1). One gets that the homogeneous
differential equation corresponding to (1.38) has the general solution

N
[h]
l (z) = C1N

[h1]
l (z) + C2N

[h2]
l (z) (1.39)

= C1

(
l − 1 + log

( 1
1− z

))
+ C2

(
l − 1 + log

( 1
1− z

)) ∫ z

α

dt

logl−1
(

1
1−t

)[
l − 1 + log

(
1

1−t

)]2 ,
where we may choose an arbitrary 0 < α < 1. This leads to the particular solution

N
[p]
l,1 (z) = N

[h1]
l (z)

∫ z

0

−bl,1(t)N [h2]
l (t)

Dl(t)
dt+N

[h2]
l (z)

∫ z

0

bl,1(t)N
[h1]
l (t)

Dl(t)
dt,

with bl,1(z) = Rl,1(z)

(1−z) log
(

1
1−z

) , and where

Dl(z) = N
[h1]
l (z)

d

dz
N

[h2]
l (z)−N

[h2]
l (z)

d

dz
N

[h1]
l (z) =

1
logl−1

(
1

1−z

) (1.40)

is the Wronski determinant of the two homogeneous solutionsN [h1]
l (z) andN [h2]

l (z). Again via integration
by parts we can write the expression of the particular solution as follows:

N
[p]
l,1 (z) =

(
l − 1 + log

( 1
1− z

))
× (1.41)

×
∫ z

0

(∫ t

0

logl−2
(

1
1−u

)(
l − 1 + log

(
1

1−u

))
Rl,1(u)

1− u
du
) 1

logl−1
(

1
1−t

)(
l − 1 + log

(
1

1−z

))2 dt.
It turns out that (1.41) matches the initial conditions of (1.38) and is thus the required solution, i. e.,
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Nl,1(z) = N
[p]
l,1 (z).

Using the explicit description (1.41) of the generating function Nl,1(z) we can show the required expansion
(1.37). We assume that expansion (1.37) of Nr,1(z) holds, for all r < l with an arbitrary l > 1. Plugging
these expansions into the formula of the inhomogeneous part Rl,1(z) given above we obtain, after a heavy
use of singular differentiation, the following expansion around z = 1:

Rl,1(z) =
(l + 1)!

2(1− z)l+1
+O

( 1
(1− z)l+1 log

(
1

1−z

)). (1.42)

Singular integration leads then to the expansion∫ t

0

logl−2
(

1
1−u

)(
l − 1 + log

(
1

1−u

))
Rl,1(u)

1− u
du =

l! logl−1
(

1
1−t

)
2(1− t)l+1

+O
( logl−2

(
1

1−t

)
(1− t)l+1

)
,

and eventually also to (1.37) for l > 1. Thus expansion (1.37) and as a consequence Lemma 7 are shown
for all l ≥ 1.

1.5.3 Higher moments for large nodes

The method applied in Subsection 1.5.1-1.5.2 for a study of the s-th moments ofXn,n and the expectations
of Xn,n+1−l can be extended naturally to show Theorem 2, leading to an asymptotic expansion of the
s-th moments of the number of random cuts necessary to isolate the l-th largest node in a random size-n
recursive tree.
Again we use the distribution recurrence (1.7) to give a recurrence for the s-th moments of Xn,n+1−l.
After multiplying with ms =

∑s
j=0

(
s
j

)
(m− 1)j and summing up for m ≥ 1 we obtain:

E
(
Xs

n,n+1−l

)
=

s∑
j=0

(
s

j

) l∑
r=1

n−1∑
k=r

p(n,l),(k,r)E
(
Xj

k,k+1−r

)
. (1.43)

It is now appropriate to introduce for l, s ≥ 1 the generating functions

Nl,s(z) :=
∑
n≥l

(n− 1)l−2 E
(
Xs

n,n+1−l

)
zn+1−l, (1.44)

which are generalizations of N1,s(z) and Nl,1(z) as used in Subsection 1.5.1-1.5.2. It is again sufficient to
show that Nl,s(z) admits the following expansion in a neighborhood of the dominant singularity z = 1:

Nl,s(z) =
(l + s− 2)!

(s+ 1)(1− z)l+s−1 logs
(

1
1−z

) +O
( 1

(1− z)l+s−1 logs+1
(

1
1−z

)), (1.45)

which will be done by induction on both parameters, l and s. Basic singularity analysis leads then directly
to Theorem 2. The margin cases l = 1, s ≥ 1 and l ≥ 1, s = 1 are already shown in Subsection 1.5.1-1.5.2.
We proceed by translating the recurrence (1.43) into the following second order linear differential equation
for Nl,s(z):

(1− z) log
( 1
1− z

) d2

dz2
Nl,s(z) + (l − 1)

d

dz
Nl,s(z)−

1
1− z

Nl,s(z) = Rl,s(z), (1.46)

with inhomogeneous part

Rl,s(z) =
(l − 1)!(l − 1 + z)

(1− z)l+1
+

s−1∑
j=1

(
s

j

)∑
n≥l

[ n−1∑
k=l

(n− 1)(n− 1)l−1p(n,l),(k,l)E(Xj
k,k+1−l)

]
zn−l
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+
s∑

j=1

(
s

j

) l−1∑
r=1

∑
n≥l

[ n−1∑
k=r

(n− 1)(n− 1)l−1p(n,l),(k,r)E(Xj
k,k+1−r)

]
zn−l

=
(l − 1)!(l − 1 + z)

(1− z)l+1
+

s−1∑
j=1

(
s

j

)[
Nl,j(z)
1− z

− (1− z) log
( 1
1− z

) d2

dz2
Nl,j(z) +

d2

dz2
Nl,j(z)

]

+
s∑

j=1

(
s

j

) l−2∑
r=1

(
l − 1
r − 1

)[
(l − 2− r)!
(1− z)l−1−r

( d2

dz2
N(r,j)(z)− 1

)
+Nr,j(z)

(l − r)!
(1− z)l+1−r

]

+
s∑

j=1

(
s

j

)
(l − 1)

[
log
( 1
1− z

) d2

dz2
Nl−1,j(z) +Nl−1,j(z)

1
(1− z)2

]

+
s∑

j=1

(
s

j

) l−1∑
r=1

(
l

r − 1

)
(l − r − 1)!

d

dz
Nr,j(z),

and initial conditions Nl,s(0) = 0 and
(

d
dzNl,s

)∣∣
z=0

= (l − 1)! E(Xs
l,1).

Since the homogeneous solution corresponding to (1.45) was already computed in Subsection 1.5.2 we
obtain again a particular solution by applying the method of variation of constants. We get after simpli-
fications

N
[p]
l,s (z) =

(
l − 1 + log

( 1
1− z

))
× (1.47)

×
∫ z

0

(∫ t

0

logl−2
(

1
1−u

)(
l − 1 + log

(
1

1−u

))
Rl,s(u)

1− u
du
) 1

logl−1
(

1
1−t

)(
l − 1 + log

(
1

1−z

))2 dt.
Now we assume that for all pairs (r, j) < (l, s), which means for r ≤ l, j ≤ s and (r, j) 6= (l, s), the
functions Nr,j(z) admit the asymptotic expansion (1.45) in a neighborhood of the dominant singularity
z = 1. We want to show that (1.45) also holds for the pair (l, s), where we may assume s > 1 and l > 1,
since the margin cases are already treated. Plugging the expansions of the functions Nr,j(z) into the
formula for the inhomogeneous part Rl,s(z) and using singular differentiation we obtain that the main
contributions in the expansion of Rl,s(z) around z = 1 are stemming from the terms

(
s

s−1

)
d2

dz2Nl,s−1(z)

and
(
s
s

)
(l − 1) log

(
1

1−z

)
d2

dz2Nl−1,s(z). This gives

Rl,s(z) =

(
s

s−1

)
(l + s− 1)!

s(1− z)l+s logs−1
(

1
1−z

) +
(l − 1)(l + s− 1)!

(s+ 1)(1− z)l+s logs−1
(

1
1−z

) +O
( 1

(1− z)l+s logs
(

1
1−z

))
=

(l + s)!
(s+ 1)(1− z)l+s logs−1

(
1

1−z

) +O
( 1

(1− z)l+s logs
(

1
1−z

)). (1.48)

One further obtains the expansion∫ t

0

logl−2
(

1
1−u

)(
l − 1 + log

(
1

1−u

))
Rl,s(u)

1− u
du

=
(l + s− 1)!

(s+ 1)(1− t)l+s logs−l
(

1
1−t

) +O
( 1

(1− t)l+s logs−l+1
(

1
1−t

)),
which eventually leads to (1.45) also for pairs (l, s), with l > 1 and s > 1. Thus (1.45) is shown for all
l ≥ 1 and s ≥ 1, which completes the proof of Theorem 2.

1.5.4 The limiting distribution

From the asymptotic expansion of the s-th moments of Xn,n+1−l as given by Theorem 2 we obtain for
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the s-th moments of the scaled random variable X̃n,n+1−l := log n
n Xn,n+1−l, for l ≥ 1, s ≥ 0 and n→∞:

E
(
X̃s

n,n+1−l

)
→ 1

s+ 1
.

If we consider a random variable X, which has a standard uniform distribution U1 with support [0, 1)
then the s-th moments of X are, for s ≥ 0, given as follows:

E(Xs) =
1

s+ 1
.

A direct application of the Theorem of Fréchet and Shohat (the second central limit theorem, see, e. g,
[49]) proves then Theorem 3.

1.6 Conclusion

Using a generating functions approach in combination with singularity analysis and lemmata for singular
differentiation and integration we obtain distribution results for the number of random cuts necessary
to isolate large nodes and small nodes in random recursive trees via random cuttings. Although the
recurrences obtained in our analysis could be applied to treat the parameter studied for arbitrary labels l
and tree sizes n, it turns out that for general growth rates of l compared to n (e. g., when isolating nodes
in the central region l/n ∼ ρ, with 0 < ρ < 1) it seems considerably more difficult to attack the problem.



Chapter 2

Multiple Isolation of nodes in
recursive trees

2.1 Introduction

It turns out that the edge-removal procedure, isolating a node with specified label λ, with 1 ≤ λ ≤ n, in
a tree T with nodes labelled by 1, 2, . . . , n, as considered in Chapter 1, is a special case of an even more
general edge-removal procedure. We consider the following edge-removal procedure in a size n labelled
rooted tree T for isolating the nodes (vλ1 , vλ2 , . . . , vλi) labelled 1 ≤ λ1 < λ2 < · · · < λi−1 < λi ≤ n: for
1 ≤ i ≤ n.

• Pick one of the n− 1 edges of the tree at random and remove it. This separates the tree T into two
subtrees T̂ and T̃ . Let us assume that λj1 , . . . , λjk

∈ T̂ and λjk+1 , . . . , λji
∈ T̃ , with 1 ≤ k ≤ i and

{λj1 , . . . , λjk
} ∪ {λjk+1 , . . . , λji} = {λ1, . . . , λi} .

• Continue the edge-removal procedure recursively in subtree T̂ , which contains the nodes λj1 , . . . , λjk
,

and T̃ containing the nodes λjk+1 , . . . , λji
until the nodes labelled by λ1, . . . , λi are isolated.

We study this procedure for isolating the nodes labelled 1, 2, . . . , l, nodes near the root, and n+1−l, . . . , n,
the last l inserted nodes. Further we isolate pairs 1, l, n+ 1− l, n and 1, n.
We denote with Xn;λ1,λ2,...,λl

the random variable which counts the number of random cuts necessary
to isolate the nodes labelled λ1, λ2, . . . , λl in a random size n recursive tree. Further we denote with
Yn;λ1,λ2,...,λl

the random variable which counts the number of random cuts necessary to isolate the nodes
labelled n+ 1− λl, n+ 1− λl−1, . . . , n+ 1− λ1 in a random size n recursive tree. Thus Xn;λ1,λ2,...,λl

=
Yn;n+1−λl,n+1−λ2,...,n+1−λ1 .
For writing convenience we use the abbreviations l := 1, . . . , l, thus Xn;l = Xn;1,...,l and Yn;l = Yn;1,...,l =
Xn;n+1−l,...,n.
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Figure 2.1: Isolating the nodes 1,2 and 3 in a size 8 recursive tree with 5 cuts.

24



CHAPTER 2. MULTIPLE ISOLATION OF NODES IN RECURSIVE TREES 25

1

2 3

4

5

6

8

7

1

3 5

8

7

5

8

7

82

4 6

6 5

7

6 876

Figure 2.2: Isolating the nodes 6, 7 and 8 in a size 8 recursive tree with 5 cuts.

2.2 Results

For the moments of the random variables Xn;l, Xn;1,l, Yn;l, Yn;1,l and Xn;1,n we obtain the following
results.

Theorem 4. The s-th E(Xs
n;l), s ≥ 1 of the number of cuts necessary to isolate nodes l = 1, . . . , l in a

random recursive tree of size n is for fixed l and n→∞ asymptotically given by

E(Xs
n;l) =

ns

logs n
+O

( ns

logs+1 n

)
.

Theorem 5. The s-th moment E(Xs
n;1,l), s ≥ 1 of the number of cuts necessary to isolate the nodes (1, l)

in a random recursive tree of size n is for fixed l and n→∞ asymptotically given by

E(Xs
n;1,l) =

ns

logs n
+O

( ns

logs+1 n

)
.

Theorem 6. The s-th moment E(Y s
n;l), s ≥ 1 of the number of cuts necessary to isolate the nodes

n+ 1− l, . . . , n in a random recursive tree of size n is for fixed l and n→∞ asymptotically given by

E(Y s
n;l) =

lns

(s+ l) logs n
+O

( ns

logs+1 n

)
.

Theorem 7. The s-th moment E
(
Y s

n;1,l

)
of the number of cuts necessary to isolate nodes (n+ 1− l, n)

in a random recursive tree of size n is for s ≥ 1 and n→∞ asymptotically given by

E
(
Y s

n;1,l

)
=

2ns

(s+ 2) logs n
+O

( ns

logs+1 n

)
,

Theorem 8. The s-th moment E
(
Xs

n;1,n

)
of the number of cuts necessary to isolate nodes (1, n) in a

random recursive tree of size n is for s ≥ 1 and n→∞ asymptotically given by

E
(
Xs

n;1,n

)
=

ns

logs n
+O

( ns

logs+1 n

)
,

thus the dominant asymptotic part is the same as for the random variable Xn;1.

By using the method of moments we obtain from Theorem 6 and 7 immediately the following Theorems.

Theorem 9. The the random variable log n
n Yn;l converges in distribution to the continuous random vari-

able Yl, which has the density fYl
(z) = lzl−1 with support [0, 1] and the distribution function Fl(z) = zl,

log n
n

Yn;l
(d)−−→ Yl.

Note that if we take the limit l→∞ of the random variable Yl, it converges in distribution to the random
variable Y∞, with P{Y∞ = 1} = 1. Below you see the distribution functions of Y1, Y2 and Y5.
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Figure 2.3: F1(z) Figure 2.4: F2(z) Figure 2.5: F5(z)

Theorem 10. The normalized random variable log n
n Yn;1,l converges to the continuous random variable

Y2 with support [0, 1], where the density fYl
(z) = 2z, for 0 ≤ z ≤ 1,

log n
n

Yn;1,l
(d)−−→ Y2.

2.3 The recursive approach

We will rely on the same approach as in Chapter 1. The most important step for the recursive description
of the considered probabilities is again to setup splitting probabilities.

2.3.1 The recurrences

We use the splitting probabilities p(n,l),(k,r), as given by Lemma 3, which give the probability that when
starting with a random size-n recursive tree and removing a random edge the subtree containing node
l is of size k and where furthermore node l is the r-th smallest node in this subtree. We also use the
splitting probabilities p(n,l),(k,r), covered by (1.5).
From the recursive description of the problem we immediately obtain the following recurrences for isolating
the nodes labelled l = 1, . . . , l and n + 1 − l = n + 1 − l, . . . , n respectively. For isolating the nodes
labelled 1, . . . , l we get the recurrence

P{Xn;l = m} =
l∑

r=1

n−1∑
k=r

p(n,l),(k,r)

m−1∑
s=0

P{Xk;r = s}P{Xn−k;l−r = m− 1− s}, (2.1)

for n ≥ l, m ≥ l − 1, with initial value P{X1;1 = 0} = P{X1;1 = 0} = 1 and where the splitting
probabilities p(n,l),(k,r) are given in Lemma 3. It is obvious that P{Xl;l = l − 1} = 1. Further we have
for isolating the nodes labelled n+ 1− l, . . . , n

P{Yn;l = m} =
l∑

r=1

n−1∑
k=r

p(n,l),(k,r)

m−1∑
s=0

P{Yk;r = s}×

× P{Yn−k;l−r = m− 1− s},

(2.2)

for n ≥ l, m ≥ l−1 with initial value P{Y1;1 = 0} = P{X1;1 = 0} = 1 and where the splitting probabilities
p(n,l),(k,r) are given in Lemma 3 by using (1.5). In (2.1) we use the convention P{Xn−k,0 = m− 1− s} =
[[s = m− 1]], and in (2.2) P{Yn−k,0 = m− 1− s} = [[s = m− 1]], where we have used the Iverson bracket
notation.
Moreover for isolating the pair 1, l we need the auxiliary probabilities p̃(n,l),(k,r) and q̃(n,k),(r,l). p̃(n,l),(k,r)

denotes the probability that after a random cut in a random recursive tree Tn of size n the tree T
containing both node 1 and l is of size k, where l is the r-st smallest node in T . Further we denote
with q̃(n,k),(r,l) the probability that after a random cut the accruing subtree T ′ containing node l is of
size k, where l is the r-st smallest node in T ′ and the root (node 1) is not in T ′. It is obvious that
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p̃(n,k),(r,l) + q̃(n,l),(k,r) = p(n,k),(r,l), with p(n,l),(k,r) as given in Lemma 3.

P{Xn;1,l = m} =
l∑

r=1

n−1∑
k=r

(
p̃(n,l),(k,r)P{Xk;1,r = m− 1}+

+ q̃(n,l),(k,r)

m−1∑
s=0

P{Xk;r = s}P{Xn−k;1 = m− 1− s}
)
,

(2.3)

for n ≥ l, m ≥ 1, with initial value P{X1;1 = 0} = 1, and where the splitting probabilities p̃(n,k),(r,l) and
q̃(n,l),(k,r) are given in Lemma 8.
We denote with p̃(n,n+1−l),(k,r) the probability that after a random cut in a random recursive tree Tn of
size n the tree T containing both node n and n + 1 − l is of size k, where n + 1 − l is the r-th largest
node in T . Further we denote with q̃(n,n+1−l),(k,r) the probability that after a random cut the accruing
subtree T ′ containing node n + 1 − l is of size k, where n + 1 − l is the r-th largest node in T ′ and the
last node (node n) is not in T ′. It is obvious that p̃(n,n+1−l),(k,r) + q̃(n,n+1−l),(k,r) = p(n,n+1−l),(k,r), with
p(n,n+1−l),(k,r) as given in Lemma 3 and relation (1.5).

P{Xn;n+1−l,n = m} =
l∑

r=1

n−1∑
k=r

(
p̃(n,n+1−l),(k,r)P{Xk;k+1−r,k = m− 1}+

+ q̃(n,n+1−l),(k,r)

m−1∑
s=0

P{Xk;k+1−r = s}P{Xn−k;n−k = m− 1− s}
)
,

(2.4)

for n ≥ l, m ≥ 1, with initial value P{X1;1 = 0} = 1, and where the splitting probabilities p̃(n,n+1−l),(k,r)

and q̃(n,n+1−l),(k,r) are given in Lemma 9.
For isolating the nodes labelled 1,n we need the probabilities pn,k and qn,k, where pn,k gives the probability
that after a random cut the subtree containing both nodes is of size k and qn,k gives the probability that
the subtree containing the root 1 is of size k.

P{Xn;1,n = m} =
n−1∑
k=2

pn,kP{Xk,;1,k; = m− 1}

+
n−1∑
k=1

qn,k

m−1∑
s=0

P{Xk;1 = s}P{Xn−k;n−k = m− 1− s}, n ≥ 2, (2.5)

with initial value P{X1;1 = 0} = 1 and where the splitting probabilities pn,k and qn,k are given in
Lemma 10.
We will use a generating functions approach to turn these recurrences into differential equations for
suitable defined generating functions. Solving the arising differential equations leads to an explicit form
for the generating functions, thus extracting coefficients is possible by using a complex analysis technic
called singularity analysis. Further we will use induction to prove our theorems.
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2.3.2 The splitting probabilities

Lemma 8. The splitting probabilities p̃(n,l),(k,r) and q̃(n,l),(k,r) are for 1 ≤ l ≤ n, 1 ≤ r ≤ k, 1 ≤ k ≤ n−1
and n ≥ 2 given as follows:

p̃(n,l),(k,r) =


p(n,l),(k,l) =

[
(l − 1)

(
n−l
n−k

)
+
(

n−l+1
n−k+1

)] (k−1)!(n−k−1)!
(n−1)(n−1)! , r = l,(

l−1
r−2

)(
n−l
k−r

) (k−1)!(n−k−1)!
(n−1)(n−1)! , 1 < r < l,

0, r = 1,

q̃(n,l),(k,r) =

 0, r = l,(
l−1
r

)(
n−l
k−r

) (k−1)!(n−k−1)!
(n−1)(n−1)! , 1 ≤ r < l.

(2.6)

The proof is omitted, for details see the proof of Lemma 3.

Lemma 9. The splitting probabilities p̃(n,n+1−l),(k,r) and q̃(n,n+1−l),(k,r) are for 2 ≤ l ≤ n, 1 ≤ r ≤ k,
1 ≤ k ≤ n− 1 and n ≥ 2 given as follows:

p̃(n,n+1−l),(k,r) =


p(n,n+1−l),(k,l) =

[(
n−l

k−l−1

)
+
(

n−l
k−l+1

)] (k−1)!(n−k−1)!
(n−1)(n−1)! , r = l,(

l−2
r−2

)[(
n−l

k−r−1

)
+
(

n−l
k−r+1

)]
+ δk,n+r−l

(
l−1

l−r+1

) (n+r−l−1)!(l−r−1)!
(n−1)(n−1)! , 1 < r < l,

0, r = 1,

q̃(n,n+1−l),(k,r) =


0, r = l,(

l−2
r−1

)[(
n−l

k−r−1

)
+
(

n−l
k−r+1

)]
+ δk,n+r−l

(
l−1
l−r

) (n+r−l−1)!(l−r−1)!
(n−1)(n−1)! , 1 ≤ r < l.

(2.7)

Proof. The cases r = l and r = 1 are obvious. Now lets turn to 1 < r < l. We cut a random edge e
in a random recursive tree of size n. We denote with T the subtree arising after the random cut which
contains the root, and with T ′ the other one. Further let B denote the size k subtree containing the
node n + 1 − l and B′ the subtree containing the node n. At first we calculate p̃(n,n+1−l),(k,r). Assume
B = B′ = T . There are r−2 nodes out of the set {n+2− l, . . . , n−1} in T . We can build the tree T ′ the
following way. For cutting at j, with 1 ≤ j ≤ k − r, we have

(
l−2
l−r

)
ways to select l − r nodes out of the

set {n+ 2− l, . . . , n− 1} (thus leaving r − 2 for B = T ), and
(

n−j−l
n−k−(l−r)

)
ways to choose the remaining

n− k − (l − r) nodes of T ′ out of the set {j + 1, . . . , n− l}. Of course this is only valid if k < n+ r − l.
If k = n + r − l we can also cut at j = n + 1 − l, . . . , n + r − 1 − l and choose the remaining k − j − 1
nodes out of the set {j + 1, . . . , n − 1}. This is equivalent to building up the tree T ′ by choosing n − k
nodes out of the set {j + 1, . . . , n− 1}. The case k > n+ r − l is not possible since then n+ 1− l could
not be the r-th largest node in T . If B = B′ = T ′, thus j ≤ n− l, we choose r − 2 nodes out of the set
{n + 2 − l, . . . , n − 1} for T ′. Hence we have

(
n−j−l
k−r

)
ways to choose the remaining k − r nodes of T ′

out of the set {j + 1, . . . , n − l}, which gives us the probabilities p̃(n,n+1−l),(k,r). For q̃(n,n+1−l),(k,r) we
investigate the cases B = T , B′ = T ′ and B = T ′, B′ = T . In the first case we choose l − 1 − r nodes
out of the set {n+ 2− l, . . . , n− 1} (thus leaving r− 1 for B = T ) Further there are

(
n−j−l

n−k−(l−r)

)
ways to

choose the remaining n−k−(l−r) nodes of T ′ out of the set {j+1, . . . , n− l}. If k = n+r− l we can also
cut at j = n+ 1− l, . . . , n+ r− l and choose the remaining k− j nodes out of the set {j + 1, . . . , n− 1}.
In the second case we have

(
l−2
r−1

)
to choose r − 1 nodes to make sure that n + 1 − l is the r-th largest

node in T ′ and n /∈ T ′. Further we have
(
n−j−l
k−r

)
ways to choose the remaining nodes for T ′. This proves

the shape of q̃(n,n+1−l),(k,r).

Lemma 10. The splitting probabilities pn,k and qn,k for isolating the nodes labelled 1, n are for n ≥ 2
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given as follows:

pn,k =
k − 1

(n− 1)(n− k + 1)(n− k)
, qn,k =

1
(n− 1)(n− k)

.

Proof. We remove a random edge e of a random size-n recursive tree Tn, thus splitting Tn into two
subtrees. We denote with T the subtree of size k, which contains the 1st node after the removal, and
with T ′ the other one. Further we denote with B the arising subtree containing the n-th node. If the
node of T incident with e has label j, then the labels of T ′ must all be larger than j. Now assume that
B = T . For 1 ≤ j ≤ k − 1 we can select the remaining nodes of T in

(
n−j−1
k−j−1

)
ways out of the set

{j+1, j+2, . . . , n−2, n−1} of nodes, since the nodes 1, . . . , j and n are all in T . The nodes which where
not selected for T are then used for building up the tree T ′. Next assume B = T ′. For 1 ≤ j ≤ k we
can select the remaining nodes of T in

(
n−j−1

k−j

)
ways. Having selected the nodes for T and T ′ there are

Tk = (k − 1)! and Tn−k = (n− k − 1)! ways to form the trees T and T ′ so that when the node labelled j
in T is attached by edge e to the smallest labelled node in T ′ the resulting configuration (after an order
preserving relabelling) is a random recursive tree of size n. There are n − 1 ways to select the edge e,
further Tn = (n− 1)!. Thus we get

pn,k =
TkTn−k

(n− 1)Tn

k−1∑
j=1

(
n− j − 1
k − j − 1

)
=

(k − 1)!(n− k − 1)!
(n− 1)(n− 1)!

(
n− 1

n− k + 1

)
=

k − 1
(n− 1)(n− k + 1)(n− k)

,

and

qn,k =
TkTn−k

(n− 1)Tn

k∑
j=1

(
n− j − 1
k − j

)
=

(k − 1)!(n− k − 1)!
(n− 1)(n− 1)!

(
n− 1
n− k

)
=

1
(n− 1)(n− k)

,

appealing to a well known identity.

2.4 Isolating the nodes l = 1, . . . , l for fixed l

By further simplifying the probabilities p(n,k),(r,l) we get for 1 ≤ l ≤ n, 1 ≤ r ≤ k, 1 ≤ k ≤ n − 1 and
n ≥ 2 the following.

p(n,l),(k,r) =


[
l − 1 + n−l+1

n−k+1

]
(k−1)l−1

(n−1)(n−k)(n−1)l−1 , r = l,[(
l−1
r

)
+
(

l−1
r−2

)] (k−1)r−1(n−k−1)l−r−1

(n−1)(n−1)l−1 , r < l.
(2.8)

Defining for l ≥ 1 the generating functions

Ml(z, v) :=
∑
n≥l

∑
m≥l−1

(n− 1)l−1P{Xn;l = m}zn−lvm, (2.9)

the recurrence (2.1) can be translated by multiplication with (n−1)(n−1)l−1zn−lvm and summation over
n ≥ l and m ≥ l − 1 into the following first order differential equation for Ml(z, v) (where the functions
Mr(z, v) with r < l are appearing in the inhomogeneous part):

(1−z)v log
( 1
1− z

) ∂
∂z
Ml(z, v)+

(
(l−1)− lv log

( 1
1− z

))
Ml(z, v)+z(1−v) ∂

∂z
Ml(z, v) = R(z, v), (2.10)
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with inhomogeneous part

R(z, v) = v
l−1∑
r=1

[(
l − 1
r

)
+
(
l − 1
r − 2

)]
Mr(z, v)Ml−r(z, v),

and initial condition Ml(0, v) = vl−1(l − 1)!. Note that it is possible to get an explicit solution of
(2.10), which is quite involved. In order to prove Theorem 4 we are interested at first at the expectation
of Xn,l, so we differentiate (2.10) once with respect to v and evaluate at v = 1 (we are applying the
operator EvDv to (2.10)). We will use the abbreviation Ml,s(z) = EvD

s
vMl(z, v). Further we have

Ml,0(z) = Ml(z, 1) = (l−1)!
(1−z)l and ∂

∂zMl,0(z) = ∂
∂zMl(z, 1) = l!

(1−z)l+1 . We get the following inhomogeneous
differential equation for Ml,1(z)

(1− z) log
( 1
1− z

) d
dz
Ml,1(z) +

(
(l − 1)− l log

( 1
1− z

))
Ml,1(z) = Rl,1(z), (2.11)

with inhomogeneous part

Rl,1(z) =
zl!

(1− z)l+1
+

l−1∑
r=1

[(
l − 1
r

)
+
(
l − 1
r − 2

)]( (r − 1)!(l − r − 1)!
(1− z)l

+ 2
Mr,1(z)(l − r − 1)!

(1− z)l−r

)
, (2.12)

and initial condition Ml,1(0) = E(Xl,l)(l−1)! = (l−1)(l−1)! The corresponding homogeneous differential
equation has the general solution

M
[h]
l,1 (z) =

C

(1− z)l logl−1
(

1
1−z

) .
Variation of the constants method leads then to the particular solution

M
[p]
l,1 (z) =

1
(1− z)l logl−1

(
1

1−z

) ∫ z

t=0

(1− t)l−1 logl−2
( 1
1− t

)
Rl,1(t)dt, (2.13)

and it can be shown by checking the initial values that this particular solution is already the wanted
function, i. e. it matches with the initial value, so Ml,1(z) = M

[p]
l,1 (z). It remains to show the following

asymptotic expansion around the dominant singularity z = 1:

Ml,1(z) =
l!

(1− z)l+1 log
(

1
1−z

) +O
( 1

(1− z)l+1 log2
(

1
1−z

)),
which can be done by induction. The case l = 1 gives the solution (already computed in [55]):

M1,1(z) =
1

1− z

∫ z

t=0

t

(1− t)2 log
(

1
1−t

)dt,
and expanding gives the statement for l = 1. Assuming that for all r < l the expectations Mr,1(z) have
the given asymptotic expansion, then we can obtain easily the expansions

Rl,1(t) =
l!

(1− t)l+1
+O

( 1
(1− t)l+1 log

(
1

1−t

)),
and thus ∫ z

t=0

(1− t)l−1 logl−2
( 1
1− t

)
Rl,1(t)dt =

l! logl−2
(

1
1−z

)
1− z

+O
( logl−3

(
1

1−z

)
1− z

)
. (2.14)
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Consequently we arrive at the following.

Ml,1(z) =

∫ z

t=0

(1− t)l−1 logl−2
( 1
1− t

)
Rl,1(t)dt

(1− z)l logl−1
(

1
1−z

) =
l!

(1− z)l+1 log
(

1
1−z

) +O
( 1

(1− z)l+1 log2
(

1
1−z

)).
(2.15)

In (2.14) we used Singular differentiation and Integration as stated in Subsection 1.4.1.
Now an application of singularity analysis [25] finishes the prove of the case s = 1 of Theorem 4. Now
we turn to case s ≥ 2. We differentiate (2.10) s times with respect to v and evaluate at v = 1. We get
the following inhomogeneous differential equation for Ml,s(z)

(1− z) log
( 1
1− z

) d
dz
Ml,s(z) +

(
(l − 1)− l log

( 1
1− z

))
Ml,s(z) = Rl,s(z), (2.16)

with inhomogeneous part

Rl,s(z) = sl log
( 1
1− z

)
Ml,s−1(z)− s(1− z) log

( 1
1− z

) d
dz
Ml,s−1(z) + sz

d

dz
Ml,s−1(z)

+
l−1∑
r=1

[(
l − 1
r

)
+
(
l − 1
r − 2

)](
s

s−1∑
i=0

(
s− 1
i

)
Mr,i(z)Ml−r,s−1−i(z)

+
s∑

i=0

(
s

i

)
Mr,i(z)Ml−r,s−i(z)

)
,

(2.17)

with initial condition Ml,s(0) = E(Xs
l,l)(l− 1)! = (l− 1)s(l− 1)!. Since we already know the shape of the

general solution of (2.16), it remains to show the following asymptotic expansion around the dominant
singularity z = 1:

Ml,s(z) =
(l + s− 1)!

(1− z)l+s logs
(

1
1−z

) +O
( 1

(1− z)l+s logs+1
(

1
1−z

)),
which can be done by induction. The cases s = 1, 1 ≤ r ≤ l were computed before and the cases
s > 1, l = 1 where already shown in [65]. Assuming that for all pairs (r, j) < (l, s), which means either
r ≤ l, j < s or r < l, j ≤ s, the functions Mr,j(z) have the given asymptotic expansion, then we can
obtain the expansion

Rl,s(t) =
s(l + s− 1)!

(1− t)l+s logs−1
(

1
1−t

) +O
( 1

(1− t)l+s logs
(

1
1−t

)),
were only the term sz d

dzMl,s−1(z) of (2.17) contributed to the main asymptotic part. Thus we get∫ z

t=0

(1− t)l−1 logl−2
( 1
1− t

)
Rl,s(t)dt =

(l + s− 1)! logl−s−1
(

1
1−z

)
(1− z)s

+O
( logl−s−2

(
1

1−z

)
(1− z)s

)
.

Consequently we arrive at the following.

Ml,s(z) =

∫ z

t=0

(1− t)l−1 logl−2
( 1
1− t

)
Rl,s(t)dt

(1− z)l logl−1
(

1
1−z

) =
(l + s− 1)!

(1− z)l+s logs
(

1
1−z

)(1 +O
( 1

log
(

1
1−z

))). (2.18)
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Since an application of singularity analysis [25] provides

E(Xs
n,l) =

ns

logs n
+O

( ns

logs+1 n

)
,

we get

E(Xs
n,l) = E(Xs

n,l) +O
( ns−1

logs n

)
=

ns

logs n
+O

( ns

logs+1 n

)
,

which finishes the prove of Theorem 4.

2.5 Isolating the pair 1, l for fixed l

Now we will briefly show how to prove Theorem 5. Defining for l ≥ 1 the generating functions

Al(z, v) :=
∑
n≥l

∑
m≥0

(n− 1)l−1P{Xn;1,l = m}zn−lvm, (2.19)

and
Bl(z, v) :=

∑
n≥l

∑
m≥0

(n− 1)l−1P{Xn,l = m}zn−lvm, (2.20)

the recurrence (2.3) can be translated (see (2.8)) by multiplication with (n − 1)(n − 1)l−1zn−lvm and
summation over n ≥ l and m ≥ l−1 into the following first order differential equation for Al(z, v) (where
the functions Ar(z, v) with r < l are appearing in the inhomogeneous part):

(1− z)v log
( 1
1− z

) ∂
∂z
Al(z, v)+

(
(l−1)− lv log

( 1
1− z

))
Al(z, v)+ z(1− v) ∂

∂z
Al(z, v) = Rl(z, v), (2.21)

with inhomogeneous part

Rl(z, v) = v

l−1∑
r=2

(
l − 1
r − 2

)
(l − r − 1)!
(1− z)l−r

Ar(z, v) + v

l−1∑
r=1

(
l − 1
r

)
Br(z, v)

∂l−r−1

∂zl−r−1
B1(z, v),

and initial values Al(0, v) = (l − 1)!
∑l−1

m=0 P{Xl,(1,l) = m}vm. Again it is possible to get an explicit
solution of (2.21). In order to prove Theorem 5 we calculate the expectation of Xn,(1,l), so we apply
the operator EvDv to (2.21). We will use the abbreviation Al,s(z) = EvD

s
vAl(z, v) resp. Bl,s(z) =

EvD
s
vBl(z, v). We have Al,0(z) = Bl,0(z) = Ml,0(z) = (l−1)!

(1−z)l and d
dzAl,0(z) = d

dzMl,0(z) = l!
(1−z)l+1 . We

already know from [65] and [43] the expansion

Bl,s(z) =
(l + s− 1)!

(1− z)l+s logs
(

1
1−z

) +O
( 1

(1− z)l+s logs+1
(

1
1−z

)).
We get the following inhomogeneous differential equation for Al,1(z)

(1− z) log
( 1
1− z

) d
dz
Al,1(z) +

(
(l − 1)− l log

( 1
1− z

))
Al,1(z) = Rl,1(z), (2.22)

with initial condition Al,1(0) = E(Xl;1,l)(l − 1)! and where the inhomogeneous part is given by

Rl,1(z) =
zl!

(1− z)l+1
+

l−1∑
r=2

(
l − 1
r − 2

)[ (r − 1)!(l − r − 1)!
(1− z)l

+
(l − r − 1)!
(1− z)l−r

Ar,1(z)
]

+
l−1∑
r=1

(
l − 1
r

)[ (r − 1)!(l − r − 1)!
(1− z)l

+Br,1(z)
(l − r − 1)!
(1− z)l−r

+
(r − 1)!
(1− z)r

dl−r−1

dzl−r−1
B1,1(z)

]
.

(2.23)
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Now it is obvious that we can use again induction to prove the case s = 1 of Theorem 5, since the case
l = 2 was carried out in [44] and Rl,1 allows the expansion

Rl,1(t) =
l!

(1− t)l+1
+O

( 1
(1− t)l+1 log

(
1

1−t

)).
For s ≥ 2 it is sufficient to see that

Rl,s(t) =
s(l + s− 1)!

(1− t)l+s logs−1
(

1
1−t

) +O
( 1

(1− t)l+s logs
(

1
1−t

)),
where only the term sz d

dzAl,s−1(z) contributes to the dominant asymptotic part. Thus singularity analysis
finishes the proof of Theorem 5.

2.6 Isolating the nodes n + 1− l, . . . , n for fixed l

We further simplify the binomial coefficients of the splitting probability given by Lemma 3 using (1.5),
which leads to

p(n,l),(k,r) = [[k ≤ n+ r − l]]

(
l−1
r−1

)
(n− 1)(n− 1)l−1

[
(k − 1)r−2(n− k − 1)l−r + (k − 1)r(n− k − 1)l−r−2

]
+ [[k = n+ r − l]]

(
l

r − 1

)
(l − r − 1)!

(n− 1)(n− 1)l−r
, r ≤ l,

(2.24)

where we use the convention (j − 1)−p := (jp)−1, p ∈ N, see e. g. [30]. For l ≥ 4 we always have to
distinguish between the four cases r = 1, 1 < r < l− 1, r = l− 1 and r = l when translating (2.2) into a
differential equation. Defining for l ≥ 1 the generating functions

Nl(z, v) :=
∑
n≥l

∑
m≥l−1

(n− 1)l−2 P{Yn,l = m}zn+1−lvm, (2.25)

where for l = 1 we have (n − 1)−1 = 1
n , the recurrence (2.2) can be translated by multiplication with

(n−1)(n−1)l−1zn−lvm and summation over n ≥ l and m ≥ l−1 into a second order differential equation
for Nl(z, v) (where the functions Nr(z, v) with r < l are appearing in the inhomogeneous part). Since
(n− 1)l−1/(n− 1)l−r = (n+ r − l − 1)r−1, we get

(l − 1)
∂

∂z
Nl(z, v)− v

1
1− z

Nl(z, v) + v(1− z) log
(

1
1− z

)
∂2

∂z2
Nl(z, v) + (1− v)z

∂2

∂z2
Nl(z, v) = Rl(z, v),

(2.26)
with initial conditions Nl(0, v) = 0,

(
∂
∂zNl(z, v)

)
|z=0 = (l − 1)!(l − 1)vl−1 and inhomogeneous part

Rl(z, v) = v
l−1∑
r=1

(
l − 1
r − 1

)(
Nr(z, v)

∂2

∂z2
Nl−r(z, v) +Nl−r(z, v)

∂2

∂z2
Nr(z, v)

)
+

l−1∑
r=1

(
l

r − 1

)
(l − r − 1)!vl−r ∂

∂z
Nr(z, v)

= v
l−1∑
r=1

(
l

r

)
Nr(z, v)

∂2

∂z2
Nl−r(z, v) +

l−1∑
r=1

(
l

r − 1

)
(l − r − 1)!vl−r ∂

∂z
Nr(z, v)

(2.27)
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To prove Theorem 6, we have to show that Nl,s(z) admits the following expansion

Nl,s(z) =
l(l + s− 2)!

(s+ l)(1− z)l+s−1 logs
(

1
1−z

) +O
( 1

(1− z)l+s−1 logs+1
(

1
1−z

)), (2.28)

where we use the abbreviation Nl,s(z) = EvD
s
vNl(z, v), which will be done by induction with respect to

l and s.
First we turn to s = 1. For the getting the expectation we differentiate once with respect to v and
evaluate at v = 1. Further we have N1,0(z) = log

(
1

1−z

)
, Nl,0(z) = Nl(z, 1) = (l−2)!

(1−z)l−1 − (l− 2)! for l ≥ 2,
d
dzNl,0(z) = Ml,0(z) = (l−1)!

(1−z)l and d2

dz2Nl,0(z) = d
dzMl,0(z) = l!

(1−z)l+1 . This leads to the following.

(l − 1)
d

dz
Nl,1(z)−

1
1− z

Nl,1(z) + (1− z) log
(

1
1− z

)
d2

dz2
Nl,1(z) = Rl,1(z), (2.29)

with inhomogeneous part

Rl,1(z) =
1

1− z
Nl,0(z)− (1− z) log

(
1

1− z

)
d2

dz2
Nl,0(z) + z

d2

dz2
Nl,0(z)

+
l−1∑
r=1

(
l

r

)(
Nr,0(z)

d2

dz2
Nl−r,0(z) +Nr,1(z)

d2

dz2
Nl−r,0(z) +Nr,0(z)

d2

dz2
Nl−r,1(z)

)
+

l−1∑
r=1

(
l

r − 1

)
(l − r − 1)!

(
(l − r)

d

dz
Nr,0(z) +

d

dz
Nr,1(z)

)
,

(2.30)

and initial conditions Nl,1(0) = 0,
(

d
dzNl,1(z)

)
|z=0 = (l − 1)!E(Yl,l) = (l − 1)(l − 1)!. The corresponding

homogeneous differential equation has the general solution

N
[h]
l,1 (z) = C1N

[h1]
l,1 (z) + C2N

[h2]
l,1 (z)

= C1

(
l − 1 + log

( 1
1− z

))
+ C2

(
l − 1 + log

( 1
1− z

)) ∫ z

α

dt

logl−1
(

1
1−t

)[
l − 1 + log

(
1

1−t

)]2 ,
(2.31)

where we may choose any real 0 < α < 1. This leads to the particular solution

N
[p]
l,1 (z) = N

[h1]
l,1 (z)

∫ z

0

−bl(t)N [h2]
l,1 (t)

Dl(t)
dt+N

[h2]
l,1 (z)

∫ z

0

bl(t)N
[h1]
l,1 (t)

Dl(t)
dt, (2.32)

where bl(z) = Rl,1(z)

(1−z) log
(

1
1−z

) and

Dl(z) = N
[h1]
l,1 (z)

∂

∂z
N

[h2]
l,1 (z)−N

[h2]
l,1 (z)

∂

∂z
N

[h1]
l,1 (z) =

1
logl−1

(
1

1−z

) (2.33)

is the Wronski determinant of the two homogeneous solutions N [h1]
l,1 (z) and N

[h2]
l,1 (z). Using integration

by parts we can simplify the particular solution as follows:

N
[p]
l,1 (z) =

(
l − 1 + log

( 1
1− z

))
× (2.34)

×
∫ z

0

(∫ t

0

logl−2
(

1
1−u

)(
l − 1 + log

(
1

1−u

))
Rl,1(u)

1− u
du
) 1

logl−1
(

1
1−t

)(
l − 1 + log

(
1

1−z

))2 dt.
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It turns out that the particular solution (2.34) also satisfies the initial conditions of (2.29) and is thus
the required solution, i. e., Nl,1(z) = N

[p]
l,1 (z). Assuming that the induction hypothesis (2.28) holds for

s = 1 and 1 ≤ k ≤ l − 1 the main term of Rl,1(z) is given by

Rl,1(z) = z
d2

dz2
Nl,0(z) +N1,0(z)

d2

dz2
Nl−1,1(z)

=
l!

(1− z)l+1
+
(
l

1

)
(l − 1)(l − 1)!

(1− z)l+1
+O

( 1
(1− z)l+1 log

(
1

1−z

))
=

l · l!
(1− z)l+1

+O
( 1

(1− z)l+1 log
(

1
1−z

)).
(2.35)

By plugging (2.35) into (2.34) and using Singular integration one obtains

Nl,1(z) =
l · l!

l(l + 1)(1− z)l log
(

1
1−z

) +O
( 1

(1− z)l log2
(

1
1−z

)). (2.36)

Thus the induction step is completed and the part s = 1, l ≥ 1 is proven for Theorem 6. Now we turn
to the cases s > 1, l > 1, because the case l = 1, s ≥ 1 was already shown in [43]. Applying the operator
EvD

s
v to (2.26) gives

(l − 1)
d

dz
Nl,s(z)−

1
1− z

Nl,s(z) + (1− z) log
(

1
1− z

)
d2

dz2
Nl,s(z) = Rl,s(z), (2.37)

with inhomogeneous part

Rl,s(z) =
s

1− z
Nl,s−1(z)− s(1− z) log

(
1

1− z

)
d2

dz2
Nl,s−1(z) + sz

d2

dz2
Nl,s−1(z)

+
l−1∑
r=1

(
l

r

)( s∑
j=0

(
s

j

)
Nr,j(z)

d2

dz2
Nl−r,s−j(z) +

s−1∑
j=0

(
s− 1
j

)
Nr,j(z)

d2

dz2
N ′

l−r,s−1−j(z)
)

+
l−1∑
r=1

(
l

r − 1

)
(l − r − 1)!

s∑
j=0

(
s

j

)
(l − r)j d

dz
Nr,s−j(z, v),

(2.38)

and initial conditions Nl,s(0) = 0,
(

d
dzNl,s(z)

)
|z=0 = (l − 1)!E(Y s

l,l) = (l − 1)s(l − 1)!. Since the homoge-
neous solution corresponding to (2.37) was already computed before we obtain again a particular solution
by applying the method of variation of constants. We get after simplifications

N
[p]
l,s (z) =

(
l − 1 + log

( 1
1− z

))
× (2.39)

×
∫ z

0

(∫ t

0

logl−2
(

1
1−u

)(
l − 1 + log

(
1

1−u

))
Rl,s(u)

1− u
du
) 1

logl−1
(

1
1−t

)(
l − 1 + log

(
1

1−z

))2 dt.
Assuming that for all pairs (r, j) < (l, s), which means either r ≤ l, j < s or r < l, j ≤ s the functions
Nr,j(z) have the given asymptotic expansion (2.28), then we can obtain the expansion

Rl,s(z) = sz
d2

dz2
Nl,s−1(z) +

(
l

1

)(
s

0

)
N1,0(z)

d2

dz2
Nl−1,s(z) +O

( 1
(1− z)l+s logs

(
1

1−z

))
=

l(l + s− 1)!
(1− z)l+s logs−1

(
1

1−z

) +O
( 1

(1− z)l+s logs
(

1
1−z

)). (2.40)
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By plugging (2.40) into (2.39) and using Singular integration we get the following result.

Nl,s(z) =
l(l + 1− s)!

(l + s)(l + s− 1)(1− z)l+s−1 logs
(

1
1−z

) +O
( 1

(1− z)l+s−1 logs+1
(

1
1−z

)). (2.41)

This finishes the proof of Theorem 6.

2.7 Isolating the pair n + 1− l, n for fixed l

Again we will only outline the proof very briefly since it is basically the same as for Theorem 6. Defining
for l ≥ 1 the generating functions

Fl(z, v) :=
∑
n≥l

∑
m≥l−1

(n− 1)l−2P{Xn,(n+1−l,n) = m}zn−l+1vm,

Gl(z, v) :=
∑
n≥l

∑
m≥l−1

(n− 1)l−2P{Xn,n+1−l = m}zn−l+1vm,
(2.42)

the recurrence (2.4) can be translated (see (2.24)) by multiplication with (n − 1)(n − 1)l−1zn−lvm and
summation over n ≥ l and m ≥ 1 into the following first order differential equation for Fl(z, v) (where
the functions Fr(z, v) with r < l are appearing in the inhomogeneous part):

(l − 1)
d

dz
Fl(z, v)− v

1
1− z

Fl(z, v) + v(1− z) log
(

1
1− z

)
d2

dz2
Fl(z, v) + (1− v)z

d2

dz2
Fl(z, v) = Rl(z, v),

(2.43)
with initial condition Fl(0, v) = 0 and where the inhomogeneous part is given by

Rl(z, v) = v

l−1∑
r=2

(
l − 2
r − 2

)
Fr(z, v)

(l − r)!
(1− z)l−r+1

+ v

l−2∑
r=2

(
l − 2
r − 2

)
(l − r − 2)!
(1− z)l−r−1

∂2

∂z2
Fr(z, v)

+ v

(
l − 2
l − 3

)
log
( 1
1− z

) ∂2

∂z2
Fl−1(z, v) + v

l−1∑
r=2

(
l − 1

l − r + 1

)
(l − r − 1)!

∂

∂z
Fr(z, v)

+ v
l−1∑
r=1

(
l − 2
r − 1

)(
Gr(z, v)

dl−r+1

dzl−r+1
G1(z, v) +

∂2

∂z2
Gr(z, v)

∂l−r−1

∂zl−1−r
G1(z, v)

)
+

l−1∑
r=1

(
l − 1
l − r

)
(l − r − 1)!

l−r−1∑
i=0

vi+1 ∂

∂z
Gr(z, v)P{Xl−r,l−r = i}

(2.44)

We will use the abbreviation Fl,s(z) = EvD
s
vFl(z, v). In order to prove Theorem 7 we have to show that

Fl,s(z) admits the following expansion.

Fl,s(z) =
2(l + s− 2)!

(s+ 2)(1− z)s+l−1 logs
(

1
1−z

) +O
( 1
(1− z)s+1 logs+1

(
1

1−z

)). (2.45)

First we turn to the case s = 1, l ≥ 2. For the getting the expectation we differentiate once with respect
to v and evaluate at v = 1.

(l − 1)
d

dz
Fl,1(z)−

1
1− z

Fl,1(z) + (1− z) log
(

1
1− z

)
d2

dz2
Fl,1(z) = Rl,1(z), (2.46)
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where the inhomogeneous part is given by

Rl,1(z) = z
d2

dz2
Fl,0(z) +

1
1− z

Fl,0(z)− (1− z) log
(

1
1− z

)
d2

dz2
Fl,0(z)

+
l−1∑
r=2

(
l − 2
r − 2

)
Fr,0(z)

(l − r)!
(1− z)l−r+1

+
l−1∑
r=2

(
l − 2
r − 2

)
Fr,1(z)

(l − r)!
(1− z)l−r+1

+
l−2∑
r=2

(
l − 2
r − 2

)
(l − r − 2)!
(1− z)l−r−1

d2

dz2
Fr,0(z) +

l−2∑
r=2

(
l − 2
r − 2

)
(l − r − 2)!
(1− z)l−r−1

d2

dz2
Fr,1(z)

+
(
l − 2
l − 3

)
log
( 1
1− z

) d2

dz2
Fl−1,1(z) +

(
l − 2
l − 3

)
log
( 1
1− z

) d2

dz2
Fl−1,0(z)

+
l−1∑
r=2

(
l − 1

l − r + 1

)
(l − r − 1)!

d

dz
Fr,0(z) +

l−1∑
r=2

(
l − 1

l − r + 1

)
(l − r − 1)!

d

dz
Fr,1(z)

+
l−1∑
r=1

(
l − 2
r − 1

)(
Gr,0(z)

dl−r+1

dzl−r+1
G1,0(z) +

d2

dz2
Gr,0(z) ·

dl−r−1

dzl−1−r
G1,0(z)

)
+

l−1∑
r=1

(
l − 2
r − 1

)(
Gr,0(z)

dl−r+1

dzl−r+1
G1,1(z) +Gr,1(z)

dl−r+1

dzl−r+1
G1,0(z)

)
+

l−1∑
r=1

(
l − 2
r − 1

)( d2

dz2
Gr,0(z) ·

dl−r−1

dzl−r−1
G1,1(z) +

d2

dz2
Gr,1(z) ·

dl−r−1

dzl−r−1
G1,0(z)

)
+

l−1∑
r=1

(
l − 1
l − r

)
(l − r − 1)!

l−r−1∑
i=0

(
(i+ 1)

d

dz
Gr,0(z)P{Xl−r,l−r = i}+

d

dz
Gr,1(z)P{Xl−r,l−r = i}

)
.

(2.47)

We use the following expansion of Gr,j(z), j ≥ 1, around the dominant singularity z = 1:

Gr,j(z) =
(r + j − 2)!

(j + 1)(1− z)r+j−1 logj
(

1
1−z

) +O
( 1

(1− z)r+j−1 logj+1
(

1
1−z

)), (2.48)

as shown in Chapter 1([44]). We have already proven Theorem 7 for l = 2, s ≥ 1 in Theorem 6 before
and in Chapter 1([44]). Under the induction hypothesis that (2.45) holds for all 2 ≤ r ≤ l−1, with s = 1,
we get the expansion

Rl,1(z) = z
d2

dz2
Fl,0(z) +

(
l − 2
l − 3

)
log
( 1
1− z

) d2

dz2
Fl−1,1(z) +

(
l − 2
l − 2

)
Gl−1,1(z)G1,0(z)

+
(
l − 2

0

)
G1,0(z)

dl

dzl
G1,1(z)

=
l!

(1− z)l+1
+

2l!(l − 2)
3(1− z)l+1

+
2l!

2(1− z)l+1
+O

( 1
(1− z)l+1 log

(
1

1−z

))
=

2l!(l + 1)
3(1− z)l+1

+O
( 1
(1− z)l+1 log

(
1

1−z

)).
(2.49)

Thus we get the solution by plugging the expansion above into (2.32) and using (2.35). We obtain the
following.

Fl,1(z) =
2l!(l + 1)

3l(l + 1)(1− z)l log
(

1
1−z

) +O
( 1
(1− z)l log2

(
1

1−z

)). (2.50)
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Thus an application of singularity analysis proves the part s = 1 of Theorem 7. For s > 1 we will use
induction with respect to s and l.

(l − 1)
d

dz
Fl,s(z)−

1
1− z

Fl,s(z) + (1− z) log
(

1
1− z

)
d2

dz2
Fl,s(z) = Rl,s(z), (2.51)

where the inhomogeneous part is given by

Rl,1(z) = sz
d2

dz2
Fl,s−1(z) +

s

1− z
Fl,s−1(z)− s(1− z) log

(
1

1− z

)
d2

dz2
Fl,s−1(z)

+ s
l−1∑
r=2

(
l − 2
r − 2

)
Fr,s−1(z)

(l − r)!
(1− z)l−r+1

+
l−1∑
r=2

(
l − 2
r − 2

)
Fr,s(z)

(l − r)!
(1− z)l−r+1

+ s
l−2∑
r=2

(
l − 2
r − 2

)
(l − r − 2)!
(1− z)l−r−1

d2

dz2
Fr,s−1(z)

+
l−2∑
r=2

(
l − 2
r − 2

)
F ′′r,s(z)

(l − r − 2)!
(1− z)l−r−1

+ s

(
l − 2
l − 3

)
log
( 1
1− z

) d2

dz2
Fl−1,s−1(z)

+
(
l − 2
l − 3

)
log
( 1
1− z

) d2

dz2
Fl−1,s(z) + s

l−1∑
r=2

(
l − 1

l − r + 1

)
(l − r − 1)!

d

dz
Fr,s−1(z)

+
l−1∑
r=2

(
l − 1

l − r + 1

)
(l − r − 1)!

d

dz
Fr,s(z)

+
l−1∑
r=1

(
l − 2
r − 1

) s−1∑
j=0

(
s− 1
j

)(
Gr,j(z)

dl−r+1

dzl−r+1
G1,s−1−j(z) +

d2

dz2
Gr,j(z)

dl−r−1

dzl−1−r
G1,s−1−j(z)

)

+
l−1∑
r=1

(
l − 2
r − 1

) s∑
j=0

(
s

j

)(
Gr,j(z)

dl−r+1

dzl−r+1
G1,s−j(z) +

d2

dz2
Gr,j(z)

dl−r−1

dzl−r−1
G1,s−j(z)

)

+
l−1∑
r=1

(
l − 1
l − r

)
(l − r − 1)!

l−r−1∑
i=0

i+1∑
j=0

(
s

j

)
(i+ 1)j d

dz
Gr,s−j(z)P{Xl−r,l−r = i}.

(2.52)

Assuming that for all pairs (r, j) < (l, s), which means either r ≤ l, j < s or r < l, j ≤ s, the functions
Gr,j(z) have the given asymptotic expansion, then we can obtain the expansion

Rl,s(z) = szF ′′l,s−1(z) +
(
l − 2
l − 3

)
log
( 1
1− z

) d2

dz2
Fl−1,s(z) +G1,0(z)

∂l

∂zl
G1,s(z) +

d2

dz2
Gl−1,s(z)G1,0(z)

=

(
2s

s+1 + 2(l−2)
s+2 + 2

s+1

)
(l + s− 1)!

(1− z)l+s logs−1
(

1
1−z

) +O
( 1

(1− z)l+s logs
(

1
1−z

))
=

2(l + s)(l + s− 1)!
(s+ 2)(1− z)l+s logs−1

(
1

1−z

) +O
( 1

(1− z)l+s logs
(

1
1−z

)).
(2.53)

Thus we get the solution by plugging the expansion above into (2.32) and using (2.35).

Fl,s(z) =
2(l + s)(l + s− 1)!

(s+ 2)(l + s)(l + s− 1)(1− z)l+s−1 logs
(

1
1−z

) +O
( 1
(1− z)s+l−1 logs+1

(
1

1−z

)). (2.54)

This completes the proof of Theorem 7.
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2.8 Isolating the pair 1, n

We will use a generating functions approach to get the desired result. We define the bivariate generating
function

P (z, v) :=
∑
n≥2

∑
m≥1

P{Xn;1,n) = m}zn−1vm. (2.55)

Further we use the generating functions M1(z, v) and N1(z, v) as defined in (2.9) and (2.25). By mul-
tiplying (2.5) with (n − 1)zn−1vm and summing up over n ≥ 2, m ≥ 1 we get the following functional
equation.

z
∂

∂z
P (z, v) = vz log

( 1
1− z

) ∂
∂z
P (z, v)− v log

( 1
1− z

) ∂
∂z
P (z, v) + vz

∂

∂z
P (z, v) + vM1(z, v)N1(z, v).

(2.56)

This leads to

∂

∂z
P (z, v) =

vM(z, v)N(z, v)
z(1− v) + v(1− z) log

(
1

1−z

) . (2.57)

We already know asymptotic equivalents of M1,s(z) = EvD
s
vM1(z, v) and Ns,1(z) = EvD

s
vN1(z, v). Now

we will compute asymptotical results for the factorial moments and deduce then the ordinary moments of
Xn;1,n. The factorial moments E(Xs

n;1,n) can be obtained by extracting coefficients from EvD
s
v

∂
∂zP (z, v):

E
(
X

s
n;1,n

)
=

1
n− 1

[zn−2]EvD
s
v

∂

∂z
P (z, v). (2.58)

First we need the following result.

EvD
s
v

∂

∂z
P (z, v) = EvD

s
v

vM1(z, v)N1(z, v)
z(1− v) + v(1− z) log

(
1

1−z

)
=

s∑
j=0

(
s

j

)
EvD

j
v

(
vM1(z, v)N1(z, v)

)
EvD

s−j
v

1
z(1− v) + v(1− z) log

(
1

1−z

)
=

s∑
j=0

(
s

j

)[ j∑
l=0

(
j

l

)
EvD

l
v

(
vM1(z, v)

)
EvD

l−j
v N1(z, v)

]
×

× Ev

(−1)s−j(s− j)!(−z + (1− z) log
(

1
1−z

)
)s−j(

z(1− v) + v(1− z) log
(

1
1−z

))s−j+1

=
s∑

j=0

(
s

j

)[ j∑
l=0

(
j

l

)(
lM1,l−1(z) + vMl,1(z)

)
N1,l−j(z)

]
×

×
(−1)s−j(s− j)!(−z + (1− z) log

(
1

1−z

)
)s−j(

(1− z) log
(

1
1−z

))s−j+1
.

(2.59)

Using the expansions known from [65] and Chapter 1 together with M1,0(z) = M1(z, 1) = 1
1−z and

N1,0(z) = N1(z, 1) = log
(

1
1−z

)
we see that the main asymptotic contribution in (2.59) comes from the

terms
s∑

j=0

(
k

j

)
M1,j(z)N1,0(z)

zs−j(s− j)!(
(1− z) log

(
1

1−z

))s−j+1
=

s∑
j=0

(
s

j

)
M1,j(z)zs−j(s− j)!

(1− z)s−j+1
(

log
(

1
1−z

))s−j
. (2.60)
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Thus an application of singularity analysis (see [25]) leads to Theorem 8.

2.9 Comments

2.9.1 Searching the limit distribution for nodes with small labels

Unfortunately it seems to be difficult to derive a non degenerate limit distribution for the random variables
Xn;l. Note that even in the case l = 1, e.g. the random variable Xn;1, no non-degenerate limit law is
known. Although in the case of Xn;1, one can derive the bivariate generating function explicitly, the limit
law seems to out of reach at present.

Lemma 11.

M1(z, v) = e

∫ z

t=0

v log
(

1
1−t

)
t− v

(
t− (1− t) log

(
1

1−t

))dt
. (2.61)

Proof. The splitting probabilities p(n,1),(k,1) for isolating the root were already calculated in [55]:

p(n,1),(k,1) =
1

(n− 1)(n− k)(n− k + 1)
, 1 ≤ k ≤ n, n ≥ 2. (2.62)

This immediately gives the following recurrence:

P{Xn,1 = m} =
n−1∑
k=1

n

(n− 1)(n− k + 1)(n− k)
P{Xk,1 = m− 1} for n ≥ 2 and m ≥ 1 (2.63)

with initial value P{X1,1 = 0} = 1. Using the bivariate generating function M1(z, v) above recurrence
translates by multiplying with (n − 1)zn−1vm and summing up for n ≥ 2 and m ≥ 1 into the following
first order linear differential equation:

∂

∂z
M1(z, v) =

v log
(

1
1−z

)
z − v

(
z − (1− z) log

(
1

1−z

))M1(z, v), (2.64)

with initial condition M1(0, v) = 1. Solving this differential equation finishes the proof of Lemma 11.

Note that the function appearing in the integrand of M1(z, v) is itself a bivariate p.g.f.,

M(z, v) =
v log

(
1

1−z

)
t− v

(
z − (1− z) log

(
1

1−z

)) , (2.65)

which appears if one introduces a slightly modified destruction procedure for recursive trees by counting
the number of label comparisons until the root is found.

2.9.2 Isolating nodes by node removal

Instead of removing random edges, randomly selected nodes are removed now. The procedure works as
follows. In a size n recursive tree we select at random a node and look if it’s label equals one (if we have
find the root). If we have picked the root we have done one label comparison and the procedure stops. If
not, we remove the selected node together with the subtree rooted at the chosen node and continue the
procedure in the subtree containing the original root until the root is found. It turns out that for root
isolation the procedure behaves the same way as if for the edge-cutting procedure. For isolating several
nodes it should be the same. This node removal procedure was described by Janson [37] where it was
shown that indeed the two procedures obey asymptotically the same distribution law.
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We denote with Xn,1 the random variable counting the number of necessary label comparisons until the
root is found in a random size n recursive tree.
The splitting probability πn,k, which is the probability that after choosing a random node and comparing
its label to the root’s label and discarding the subtree rooted at the selected node, if the label is not
equal to 1, the remaining subtree containing the root is of size k. It is clear, that πn,0 = 1/n since we
pick the root with probability 1/n, and then there is no tree left containing the root. With probability
(n− 1)/n we choose another node and remove it. This removal is equivalent to a random edge cut. Since
we already know that

p(n,1),(k,1) =
n

(n− 1)(n− k)(n− k + 1)
, (2.66)

we get

Lemma 12. The splitting probability πn,k is given by the following formula.

πn,k = [[1 ≤ k ≤ n− 1]]
n− 1
n

p(n,1),(k,1) +
[[k = 0]]

n
=

[[1 ≤ k ≤ n− 1]]
(n− k)(n− k + 1)

+
[[k = 0]]

n
. (2.67)

Hence it holds the following recurrence.

P{Xn,1 = m} =
n−1∑
k=1

πn,kP{Xk,1 = m− 1} =
n−1∑
k=1

1
(n− k)(n− k + 1)

P{Xk,1 = m− 1}, (2.68)

for n ≥ 2, m ≥ 2 with P{Xn,1 = 1} = πn,0 = 1/n for all n ≥ 1. We introduce the bivariate generating
function

M(z, v) =
∑
n≥1

∑
m≥1

P{Xn,1 = m}zn−1vm. (2.69)

By multiplying with znvm and summing up over n ≥ 2 and m ≥ 2 we get the functional equation

zM(z, v) = M(z, v)
(
v(z − 1) log

( 1
1− z

)
+ vz

)
+ v log

( 1
1− z

)
, (2.70)

which can be simplified to

M(z, v) =
v log

(
1

1−z

)
v(1− z) log

(
1

1−z

)
+ z(1− v)

. (2.71)

We rewrite M(z, v) the following way.

M(z, v) =
v log

(
1

1−z

)
z + v

(
(1− z) log

(
1

1−z

)
− z
) =

v log
(

1
1−z

)
z(1− v

(
(z − 1)

log
(

1
1−z

)
z + 1

)
= v

log
(

1
1−z

)
z

∑
m≥0

vm
(
(z − 1)

log
(

1
1−z

)
z

+ 1
)m
.

(2.72)

Thus we can get a closed formula for the probabilities.

Proposition 1.

P{Xn,1 = m} =
1
n

[[m = 1]] + [[1 < m ≤ n]]
m−1∑
k=0

(
m− 1
k

) k∑
l=0

(
k

l

)
(−1)k−l

[
n+k−l

k+1

]
(k + 1)!

(n+ k − l)!
. (2.73)

For the moments we will use the following identity to obtain the factorial moments.

EvD
s
vM(z, v) = s![ws]M(z, v), where w := v − 1. (2.74)
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M(z, v) =
1

(1− z)(1 + z(1−v)

v(1−z) log
(

1
1−z

) ) =
1

(1− z)(1− zw

(w+1)(1−z) log
(

1
1−z

) )
=
∑
m≥0

zmwm

(w + 1)m(1− z)m+1 logm
(

1
1−z

) =
∑
m≥0

zmwm

(1− z)m+1 logm
(

1
1−z

) ∑
k≥0

(
k +m− 1

k

)
(−1)kwk.

(2.75)

Extraction of coefficients gives

[ws]M(z, v) =
1

(1− z)s+1 logs
(

1
1−z

) +O
( 1

(1− z)s logs−1
(

1
1−z

)). (2.76)

Thus we get by using singularity analysis

Proposition 2.

E
(
Xs

n,1

)
=

ns

logs n
+O

( ns−1

logs−1 n

)
.

2.9.3 Phase changes

When isolating only one node labelled λ, with 1 ≤ λ ≤ n, at least two phase changes occur:

log n
n

Xn;l
(d)−−→ 1,

log n
n

Xn;n+1−l
(d)−−→ U1, (2.77)

for fixed l ∈ N. Unfortunately for the interesting region λ = ρn, 0 < ρ < 1, e.g. the r.v. Xn;ρn , it seems
to be difficult to obtain results using the recursive approach.
Now if one looks closer at the behavior of the random variables Xn;l and Yn;l it is obvious that analogous
phase changes must occur. We get for fixed l ≥ 1

log n
n

Xn;l
(d)−−→ 1,

Xn;n+1−l

n

(d)−−→ 1. (2.78)

and

log n
n

Yn;l
(d)−−→ Yl,

Yn;n+1−l

n

(d)−−→ 1, (2.79)

where fYl
= lzl−1. As for (2.77) the cases Xn;ρn and Yn;ρn seem to be out of reach.

Theorem 11. For fixed l ≥ 1 it holds Yn;n+1−l

n

(d)−−→ 1 and Xn;n+1−l

n

(d)−−→ 1.

Proof. It is obvious that Xn,n
(d)
= Xn,n−1

(d)
= Yn;n

(d)
= Yn,n−1

(d)
= n − 1. It holds for fixed l ≥ 1 the

following recurrences (2.80) and (2.81).

P{Xn;n+l−1 = m} =
l∑

r=1

n−1∑
k=r

p(n,l),(k,r)

m−1∑
s=0

P{Xk;k+1−r = s}P{Xn−k;n−k−(l−r) = m− 1− s}, (2.80)

for n ≥ l, m ≥ n+ 1− l, and where the splitting probabilities p(n,l),(k,r) are given in Lemma 3 by using
(1.5).

P{Yn;n+1−l = m} =
l∑

r=1

n−1∑
k=r

p(n,l),(k,r)

m−1∑
s=0

P{Yk;k+1−r = s}×

× P{Yn−k;n−k−(l−r) = m− 1− s},

(2.81)

for n ≥ l, m ≥ l − 1, where the splitting probabilities p(n,l),(k,r) are given in Lemma 3.
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Although one could use again generating functions to derive explicit results for the probabilities P{Xn;n+l−1 =
m}, P{Yn;n+1−l = m} the distribution can be done by hand. Since for l > 1 it takes at least n + 1 − l
edge cuts to isolate the nodes 1, . . . , n+ 1− l or l, . . . , n one proceeds for the moments of Xn;n+l−1 and
Yn;n+1−l as follows.

E(Xs
n;n+1−l) =

n−1∑
m=n+1−l

msP{Xn;n+1−l = m} =
l∑

m=2

(n− 1− (l −m))sP{Xn;n+1−l = m}

= (n− 1)s +O((n− 1)s−1).

(2.82)

The same computation holds for Yn;n+1−l. Further the variance is always constant V(Xn;n+l−1) = cl ≥ 0
and V(Yn;n+l−1) = dl ≥ 0 for fixed l ≥ 1.



Chapter 3

Isolating a leaf in rooted trees via
random cuttings

3.1 Introduction

We consider the following edge-removal procedure in a size n rooted tree for isolating a leaf. Pick one of
the n− 1 edges of the tree at random and remove it. This separates the tree into a pair of rooted trees;
the tree containing the root of the original tree retains its root while the tree not containing the root of
the original tree is rooted at the vertex adjacent to the edge that was cut. Now we discard the subtree
containing the original root and continue this procedure in the other subtree, until we end at a size 1
subtree, which contains a leaf. For several tree families under the random tree model we are going to
study a random variable Zn, which counts here the number of edges that will be removed from a randomly
chosen tree of size n by this edge-removal procedure until a leaf is isolated. Since all analyzed tree families
can be considered as weighted trees, this means that for starting the edge-removal procedure we choose a
tree of size n with probability proportional to its weight. We can give limiting distribution results of Zn

for general simply generated tree families and some classes of increasing tree families. Surprisingly the
multiple zeta function and it’s finite counterpart show up in the limit distribution for certain increasing
trees.
This edge-removal procedure can be considered as the counterpart of the cutting down edge-removal
procedure considered by Meir and Moon, [55] (the edge removal procedure considered in Chapter 1 with
λ = 1). In the latter procedure the subtree containing the original root of the tree is kept, while the
other subtree is discarded (thus it can be seen as the opposite version of the procedure studied here) and
then the procedure is continued recursively on the subtree containing the root until the original root is
isolated.
We want to mention that also the following two-sided variant of the edge-removal procedure was consid-
ered in recent papers: after removing the randomly chosen edge one continues the procedure recursively
on both of the obtained subtrees. Of course, when starting with a tree of size n, this two-sided variant
leads to n isolated nodes after n − 1 cuts, but one was interested in the total costs when isolating all
nodes in the tree, if one assumes that the cost incurred for selecting an edge and splitting the tree is
given by a toll function tn. For toll functions tn = nα with α > 0, asymptotic results for all moments
are obtained in [65] and limiting distribution results for some classes of simply generated tree families
are given in [21]. For Cayley trees this procedure is equivalent to a probabilistic model involved in the
Union–Find (or equivalence-finding) algorithm, which was analyzed first by Knuth and Schönhage [39].
Basically, to obtain our limiting distribution results for Zn we treat the recurrences appearing for the
probabilities P{Zn = m} via bivariate generating functions. This leads to exact solvable differential
equations. Extracting coefficients of the solutions appearing asymptotically is performed via singularity
analysis (see [25]), a complex-analytic technique that relates asymptotics of sequences to the local behavior
of their generating functions in a neighborhood of the dominant singularities.

44
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3.1.1 The recursive approach

We will study the random variable Zn for the tree families considered by treating the recurrence

P{Zn = m} =
n−1∑
k=1

qn,k P{Zk = m− 1}, for n ≥ 2, m ≥ 1, (3.1)

with initial values P{Z1 = 0} = 1 and P{Zn = 0} = 0, for n ≥ 2. Here the transition probabilities qn,k

are given as follows: qn,k denotes the probability that by choosing a random tree of size n from the given
tree family and removing a random edge the resulting subtree, which does not contain the original root
of the tree, is of size k.
An analogous approach, with transition probabilities qn,n−k, was used in [63] for simply generated tree
families to study the random variable Xn, i. e. the number of cuts to isolate the root of the tree. There
one had to make a strong assumption on the tree family in order to justify this recursive approach: it was
necessary that randomness is preserved by cutting off a random edge, which means that starting with a
random tree of size n and removing a random edge, the remaining subtree of size k containing the root
is actually a random tree of size k in this tree family. It turned out that exactly those tree families with
ϕ(t) given by Lemma 1 have this property and could be treated with the recursive approach. In [63] such
tree families are called very simple tree families (in the context of simply generated trees). As already
mentioned before in the preliminaries part we call increasing tree families with ϕ(t) given by Lemma 1
grown simple families of increasing trees, due to the fact that they can be described by a probabilistic
growth rule.
For the random variable Zn studied here, things are easier. For the tree families considered it always
holds that randomness is preserved by cutting off a random edge: after removing a random edge from a
random tree of size n, the subtree which does not contain the original root is always a random tree of
this tree family. This follows immediately from the formal recursive equations (4) and (6).

3.2 Results

We state here our findings for simply generated tree families and grown simple families of increasing trees
with ϕ(t) satisfying the assumptions made in Subsection 0.1.1 and Subsection 0.1.2, respectively. The
proof of these results are given in Section 3.3 and Section 3.4.

Theorem 12. For simply generated tree families with degree-weight generating function ϕ(t), with period
p and τ the minimal positive solution of the equation tϕ′(t) = ϕ(t), the random variable Zn, which counts
the number of random cuts that are required to isolate a leaf from a randomly chosen tree of size n with
the edge-removal procedure considered, converges in distribution, for n → ∞ with n ≡ 1 (mod p), to a
shifted Poisson distributed random variable Z, which has the distribution

P{Z = m} =
mλm−1

m!
e−λ, for m ≥ 0,

with parameter λ := log
(ϕ(τ)

ϕ0

)
.

Moreover, the r-th factorial moments E
(
Z

r
n

)
have the asymptotic expansion

E
(
Zr

n

)
= λr−1(λ+ r) +O(n−1).

In particular, we get for the expectation E(Zn) and the variance V(Zn):

E(Zn) = λ+ 1 +O(n−1), and V(Zn) = λ+O(n−1).

Theorem 13. For grown simple families of increasing trees (with degree-weight generating function ϕ(t)
given by Lemma 1 and thus Tn+1

Tn
= c1n+ c2, for all n ≥ 1) let Zn be the random variable, which counts
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the number of random cuts that are required to isolate a leaf from a randomly chosen tree of size n with
the edge-removal procedure considered. Then, for a grown simple increasing tree family, Zn converges for
n→∞ in distribution to a discrete random variable Z. The probabilities P{Z = m} are for m ≥ 0 given
as the coefficients of the probability generating function p(v) :=

∑
m≥0 P{Z = m}vm as given below.

p(v) =
∞∏

k=1

(
1 +

(c1 + c2)(v − 1)
k(c1k + c2)

)
=

Γ(1 + c2
c1

)

Γ
( 2c1+c2−

√
(2c1+c2)2−4c1(c1+c2)v

2c1

)
Γ
( 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1

) .
Moreover, the r-th factorial moments E

(
Z

r
n

)
are given by the following exact formula.

E
(
Zr

n

)
= r!(c1 + c2)r

n−1∑
k1=1

1
k1(c1k1 + c2)

n−1∑
k2=k1+1

1
k2(c1k2 + c2)

· · ·
n−1∑

kr=kr−1+1

1
kr(c1kr + c2)

.

From Theorem 13 one gets the following corollaries, which contain results for particular increasing tree
families.

Corollar 2. Using the notation of Theorem 13, we give the following closed formulæ for the probabilities
P{Z = m} for recursive tree and binary increasing trees. For recursive trees we get

P{Z = m} = (−1)m
∑
k≥m

(−1)k π2k
(

k
m

)
(2k + 1)!

, (3.2)

which leads to the first few values P{Z = 1} = 1/2, P{Z = 2} = 3/8, P{Z = 3} = 5/16 − π2/48. For
binary increasing trees we obtain

P{Z = m} =
∑

k≥m+1

(−1)k π2k

22k(2k)!

k∑
j=m+1

(
k

j

)(
j − 1
m

)
(−1)j8j , (3.3)

which gives in particular P{Z = 1} = 1/3.

Note that the values given for P{Z = 1} are just as expected, since the average number of leaves in
recursive trees is ∼ n

2 for recursive trees and ∼ n
3 for binary increasing trees (see e. g. [6]).

Corollar 3. Using the notation of Theorem 13, we give for the instance c2 = 0 the following closed
formulæ for the r-th factorial moments of Zn resp. Z. In the context of the multiple zeta functions

ζ(a1, . . . , al) :=
∑

1≤n1<n2<···<nl

1
na1

1 n
a2
2 . . . nal

l

, ζN (a1, . . . , al) :=
∑

1≤n1<n2<···<nl≤N

1
na1

1 n
a2
2 . . . nal

l

, (3.4)

the factorial moments E
(
Z

r
n

)
can be expressed for c2 = 0 as follows:

E
(
Zr

n

)
= r!ζn−1(2, . . . , 2). (3.5)

Furthermore we obtain for c2 = 0 the following expression for the factorial moments E
(
Zr
)
:

E
(
Zr
)

= r!ζ(2, . . . , 2) = r!
π2r

(2r + 1)!
. (3.6)

Further we can decompose the limit distribution of the number of random cuts necessary to isolate a leaf
Z as follows.

Corollar 4.

Z
(d)
=

∞∑
k=1

Bk, (3.7)
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where the Bk are Bernoulli distributed random variables Bk
(d)
= Be( c1+c2

k(c1k+c2)
), for k ∈ N.

Remark 1. Note that our computations of E
(
Zr
)

give thus a further proof of the identity ζ(2, . . . , 2︸ ︷︷ ︸
r times

) =

π2r

(2r+1)! , which was shown first in [32].

In Table 3.1 and 3.2 we collect some results of the limiting distribution of Zn for a few interesting simply
generated tree families and grown simple families of increasing trees.

Table 3.1: Limiting distribution results of Zn for some important simply generated tree families.

Tree family
Degree-weight

generating function ϕ(t)
Zn → Z, shifted Poisson distributed

with parameter λ, E(Zn) ∼ λ+ 1, V(Zn) ∼ λ

Cayley trees ϕ(t) = et λ = 1

d-ary trees ϕ(t) = (1 + t)d, d ≥ 2 λ = d log
(

d
d−1

)
Ordered trees ϕ(t) = 1

1−t λ = log(2)

Motzkin trees ϕ(t) = 1 + t+ t2 λ = log(3)

Strict binary trees ϕ(t) = 1 + t2 λ = log(2)

Table 3.2: Limiting distribution results of Zn for some important grown simple families of increasing
trees. Hn :=

∑
k≥1

1
k resp. H(2)

n :=
∑

k≥1
1
k2 denote the first and second order harmonic numbers.

Tree family ϕ(t) Tn+1
Tn

Zn → Z, with
p(v) =

∑
m≥0 P{Z = m}vm E(Zn)

Recursive trees et n p(v) = sin(π
√

1−v)

π
√

1−v

H
(2)
n−1

∼ π2

6 ≈ 1.6449

Binary increasing
trees (1 + t)2 n+ 1 p(v) = cos( π

2

√
9−8v)

2π(v−1) 2− 2
n ∼ 2

Plane oriented recursive trees 1
1−t 2n− 1 p(v) =

Γ( 1
2 )

Γ( 3−
√

9−8v
4 )Γ( 3+

√
9−8v
4 )

2(H2n−2 −Hn−1)
∼ 2 log 2 ≈ 1.3863

3.3 Simply generated tree families

3.3.1 The transition probabilities

The required transition probabilities qn,k as defined in Subsection 3.1.1 were already computed in [63] by
a generating functions approach, which is also sketched here. We can define the value qn,k equivalently
as the probability that the number of descendants of a node (where the node itself is counted) that was
chosen at random from one of the n− 1 non-root nodes in a random tree of size n is k. We require also
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the auxiliary values q̃n,k, which denote the probability that the number of descendants of a randomly
chosen node in a random tree of size n is k.
Introducing the generating functions

G(z, u) =
∑
n≥1

∑
k≥0

nTn q̃n,k z
nuk, H(z, u) =

∑
n≥1

∑
k≥0

(n− 1)Tn qn,k z
nuk,

we can directly translate the formal equation (6) or the recurrences

q̃n,k =
1
n

[[k = n]] +
1
n

∑
r≥1

rϕr

∑
k1 + · · ·+ kr = n− 1,

k1, . . . , kr ≥ 1

q̃k1,kTk1 · · ·Tkm

Tn
,

qn,k =
1

n− 1

∑
r≥1

rϕr

∑
k1 + · · ·+ kr = n− 1,

k1, . . . , kr ≥ 1

qk1,kTk1 · · ·Tkm

Tn
,

(3.8)

into the equations

G(z, u) = T (zu) + zϕ′
(
T (z)

)
G(z, u), H(z, u) = zϕ′

(
T (z)

)
G(z, u),

which imply

H(z, u) = T (zu)F (z), with F (z) :=
1

1− zϕ′
(
T (z)

) − 1. (3.9)

Extracting coefficients from (3.9) gives

Fn := [zn]F (z) =

{
[Tn]

(
ϕ(T )

)n
, for n ≥ 1,

0, for n = 0.
(3.10)

Thus the required transition probabilities qn,k for 1 ≤ k ≤ n− 1 are given as follows:

qn,k =
[znuk]H(z, u)

(n− 1)Tn
=

TkFn−k

(n− 1)Tn
, (3.11)

with Fn defined by equation (3.10).

3.3.2 Solving the recurrence

Using (3.1) we have to study the recurrence

P{Zn = m} =
n−1∑
k=1

TkFn−k

(n− 1)Tn
P{Zk = m− 1}, (3.12)

with P{Z1 = 0} = 1 and P{Zn = 0} = 0, for n ≥ 2.
We will perform a generating functions approach using the bivariate generating function

M(z, v) :=
∑
n≥1

∑
m≥0

TnP{Zn = m}znvm. (3.13)

Multiplying (3.12) with (n− 1)Tnz
nvm and summing up for n ≥ 2 and m ≥ 1 leads to the following first

order linear differential equation

z
∂

∂z
M(z, v)−M(z, v) = vF (z)M(z, v),
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with initial conditions M(0, v) = 0 and
(

∂
∂zM(z, v)

)
|z=0 = T1 = ϕ0, and the function F (z) given by (3.9).

Solving this differential equation leads to the solution

M(z, v) = ϕ0z exp
(
v

∫ z

0

F (t)
t
dt
)
. (3.14)

Then by using T ′(z) = ϕ(T (z))
1−zϕ′(T (z)) , which follows from the functional equation (5), and a change of

variables, we obtain:∫ z

0

F (t)
t
dt =

∫ T (z)

0

1
1−tϕ′(T (t)) − 1

t

dT

T ′(t)
=
∫ T (z)

0

ϕ′
(
T (t)

)
T ′(t)

(
1− tϕ′

(
T (t)

))dT =
∫ T (z)

0

ϕ′(T )
ϕ(T )

dT

= logϕ
(
T (z)

)
− logϕ(0) = log

ϕ
(
T (z)

)
ϕ0

.

Thus we get from (3.14) the following explicit formula for M(z, v):

M(z, v) = ϕ0z exp
(
v log

ϕ
(
T (z)

)
ϕ0

)
= ϕ0z

(ϕ(T (z)
)

ϕ0

)v

. (3.15)

3.3.3 Characterizing the limiting distribution

Extracting coefficients from (3.15) immediately leads to

[vm]M(z, v) = ϕ0z

(
log ϕ(T (z))

ϕ0

)m
m!

. (3.16)

In our asymptotic study of the coefficients [znvm]M(z, v) (and thus of the probabilities P{Zn = m})
via singularity analysis, which is given below, we will only carry out the instance that the degree-weight
generating function ϕ(t) is aperiodic, i. e. p = 1. But for functions ϕ(t) with period p > 1 the proof is
fully analogous: then we have to consider the contributions of all p dominant singularities, which must
be added. This shows Theorem 12 also for p > 1.
Using the singular expansion (2) of T (z) we obtain the following local expansion around the dominant
singularity z = ρ, with certain constants κ̃1, κ̃2:

ϕ
(
T (z)

)
ϕ0

=
T (z)
ϕ0z

=
τ

ρϕ0
− 1
ϕ0ρ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+ κ̃1

(
1− z

ρ

)
+O

((
1− z

ρ

) 3
2
)
,

and further

log
ϕ
(
T (z)

)
ϕ0

= log
ϕ(τ)
ϕ0

− 1
τ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+ κ̃2

(
1− z

ρ

)
+O

((
1− z

ρ

) 3
2
)
. (3.17)

Via (3.17) we obtain thus from (3.16) for m ≥ 1 the following expansion around z = ρ (again with a
certain constant κ̃):

[vm]M(z, v) =
∑
n≥1

TnP{Zn = m}zn

=
ϕ0ρ

m!

(
log

ϕ(τ)
ϕ0

)m

− ϕ0

ϕ(τ)(m− 1)!

(
log

ϕ(τ)
ϕ0

)m−1

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+ κ̃
(
1− z

ρ

)
+O

((
1− z

ρ

) 3
2
)
.

(3.18)
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Applying singularity analysis to (3.18) gives then

[znvm]M(z, v) = TnP{Zn = m} =
ϕ0

ϕ(τ)(m− 1)!

(
log

ϕ(τ)
ϕ0

)m−1

√
ϕ(τ)

2πϕ′′(τ)
ρ−nn−

3
2
(
1 +O(n−1)

)
,

and, together with (3), for m ≥ 1 the asymptotic expansion

P{Zn = m} =
ϕ0

ϕ(τ)

(
log ϕ(τ)

ϕ0

)m−1

(m− 1)!
(
1 +O(n−1)

)
. (3.19)

Thus the probabilities P{Zn = m} converge for all m ≥ 1 to the probabilities P{Z = m} of a shifted
Poisson distributed random variable Z. This shows the first part of Theorem 12.

3.3.4 Computing the moments

From the generating function M(z, v) as given by (3.15) we can also compute easily the r-th factorial
moments E

(
Zr
)
.

Evaluating the r-th derivative with respect to v of M(z, v) at v = 1 gives

EvD
r
vM(z, v) = Ev

[
ϕ0z

(
log

ϕ
(
T (z)

)
ϕ0

)r

ev log
ϕ(T (z))

ϕ0

]
= zϕ

(
T (z)

)(
log

ϕ
(
T (z)

)
ϕ0

)r

(3.20)

= T (z)
(

log
ϕ
(
T (z)

)
ϕ0

)r

. (3.21)

We further get by using (2) and (3.17) the asymptotic expansion (with a certain constant κ̂)

T (z)
(

log
ϕ(T (z))
ϕ0

)r

= τ
(

log
ϕ(τ)
ϕ0

)r

−
(

log
ϕ(τ)
ϕ0

)r−1(
r + log

ϕ(τ)
ϕ0

)√2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ

+ κ̂
(
1− z

ρ

)
+O

((
1− z

ρ

) 3
2
)
.

(3.22)

Singularity analysis leads then from (3.21) and (3.22) to the asymptotic expansion

[zn]EvD
r
vM(z, v) =

(
log

ϕ(τ)
ϕ0

)r−1(
r + log

ϕ(τ)
ϕ0

)√ ϕ(τ)
2πϕ′′(τ)

ρ−nn−
3
2
(
1 +O(n−1)

)
,

and by using (3) thus to

E
(
Zr

n

)
=

[zn]EvD
r
vM(z, v)
Tn

=
(

log
ϕ(τ)
ϕ0

)r−1(
r + log

ϕ(τ)
ϕ0

)(
1 +O(n−1)

)
.

This completes the proof of Theorem 12.

3.4 Grown simple families of increasing trees

3.4.1 The transition probabilities for general increasing trees

First we show for general increasing tree families an expression for the transition probabilities qn,k as
defined in Subsection 3.1.1. We can do this analogous to Subsection 3.3.1 for simply generated tree
families: we use the interpretation of the value qn,k as the probability that the number of descendants
of a node that was chosen at random from one of the n− 1 non-root nodes in a random tree of size n is
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k, and define the auxiliary value q̃n,k as the probability that the number of descendants of a randomly
chosen node in a random tree of size n is k.
Introducing the generating functions

G(z, u) =
∑
n≥1

∑
k≥0

nTnq̃n,k
zn

n!
uk, H(z, u) =

∑
n≥1

∑
k≥0

(n− 1)Tnqn,k
zn

n!
uk,

we obtain from the formal equation (6) or by setting up recurrences for q̃n,m and qn,k

q̃n,k =
1
n

[[k = n]] +
1
n

∑
r≥1

rϕr

∑
k1 + · · ·+ kr = n− 1,

k1, . . . , kr ≥ 1

q̃k1,kTk1 · · ·Tkm

Tn

(
n− 1

k1, k2, . . . , kr

)
,

qn,k =
1

n− 1

∑
r≥1

rϕr

∑
k1 + · · ·+ kr = n− 1,

k1, . . . , kr ≥ 1

qk1,kTk1 · · ·Tkm

Tn

(
n− 1

k1, k2, . . . , kr

)
,

(3.23)

the following differential equations:

∂

∂z
G(z, u) = uϕ

(
T (zu)

)
+ ϕ′

(
T (z)

)
G(z, u), G(0, u) = 0,

∂

∂z
H(z, u) = ϕ′

(
T (z)

)
G(z, u), H(0, u) = 0.

These differential equations have the solutions

G(z, u) = uϕ
(
T (z)

) ∫ z

0

ϕ
(
T (tu)

)
ϕ
(
T (t)

) dt, H(z, u) = ϕ
(
T (z)

) ∫ z

0

T (tu)ϕ′
(
T (t)

)
ϕ
(
T (t)

) dt. (3.24)

Equation (3.24) gives immediately

[znuk]H(z, u) =
(n− 1)Tnqn,k

n!
= [zn]

Tk

k!
ϕ
(
T (z)

) ∫ z

0

tkϕ′
(
T (t)

)
ϕ
(
T (t)

) dt,

and thus

qn,k =
n!Tk

(n− 1)Tnk!
[zn]ϕ

(
T (z)

) ∫ z

0

tkϕ′
(
T (t)

)
ϕ
(
T (t)

) dt. (3.25)

For arbitrary degree-weight generating functions ϕ(t) one cannot hope to obtain explicit formulæ for the
probabilities qn,k, but for the subclass of grown simple families of increasing trees, as given by Lemma 1,
we will get an easy expression as is shown in Subsection 3.4.3.

3.4.2 Characterization of grown simple families of increasing trees

Proof of Lemma 1. We will show here Lemma 1, which characterizes increasing tree families that satisfy
the equation Tn+1

Tn
= c1n+ c2, with arbitrary but fixed constants c1, c2, for all n ≥ 1.

We remark that due to the demand Tn > 0 for all n ≥ 1 we get the a priori restrictions: c1 ≥ 0 and
c2 > −c1 (otherwise there would exist n ≥ 1 such that Tn+1

Tn
= c1n+ c2 < 0).

• Now we consider the case c1 6= 0 and c2 6= 0 and get for Tn (where we use T1 = ϕ0):

Tn = T1

n−1∏
k=1

(c1k + c2) = ϕ0c
n−1
1

n−1∏
k=1

(c2
c1

+ k
)

=
ϕ0c

n
1

c2

(c2
c1

+ n− 1
)n =

ϕ0c
n
1n!
c2

( c2
c1

+ n− 1
n

)



CHAPTER 3. ISOLATING A LEAF IN ROOTED TREES VIA RANDOM CUTTINGS 52

=
ϕ0(−c1)nn!

c2

(
− c2

c1

n

)
,

and further

T (z) =
∑
n≥1

Tn
zn

n!
=
ϕ0

c2

∑
n≥1

(
− c2

c1

n

)
(−c1z)n =

ϕ0

c2

( 1

(1− c1z)
c2
c1

− 1
)
. (3.26)

In order to decide which values of c1, c2 are indeed possible choices we have to compute the correspond-
ing degree-weight generating functions and check whether they are admissible (ϕk ≥ 0 for all k ≥ 0).
Differentiating (3.26) gives

T ′(z) =
ϕ0

(1− c1z)
c2
c1

+1
= ϕ0

(
1 +

c2
ϕ0
T (z)

) c1
c2

+1

. (3.27)

We obtain [Tn]ϕ(T ) = ϕn and by using (3.24)

[Tn]T ′(z) = [Tn]ϕ0

(
1 +

c2
ϕ0
T
) c1

c2
+1 = ϕ0

( c1
c2

+ 1
n

)( c2
ϕ0

)n

.

Since T ′(z) = ϕ
(
T (z)

)
this gives

ϕn = ϕ0

( c1
c2

+ 1
n

)( c2
ϕ0

)n
, (3.28)

resp.

ϕ(t) =
∑
n≥0

ϕnt
n = ϕ0

(
1 +

c2t

ϕ0

) c1
c2

+1

. (3.29)

By considering (3.28) we can now check whether the conditions ϕn ≥ 0, for all n ≥ 0, with ϕ0 > 0, are
satisfied.
(i) We consider first the case c2 > 0: if 1 + c1

c2
6∈ N, then it follows that there exists n ∈ N such that(

1+
c1
c2

n

)
< 0 and, since c1 > 0, thus that ϕn < 0. Therefore we get that this case is not admissible. But

if 1 + c1
c2

=: d ∈ N, then it follows that
( c1

c2
+1
n

)
= 0, for all n > d and thus that ϕn > 0, for all 0 ≤ n ≤ d

and ϕn = 0, for all n > d. Such degree-weight generating functions are admissible and are covered by
Case B in Lemma 1.
(ii) We have to consider also the case c2 < 0: since c1+c2 > 0 it follows that c1

c2
< −1 resp. n− c1

c2
−2 > n−1

and thus that

ϕn = ϕ0

( c1
c2

+ 1
n

)
(−1)n

(
− c2
ϕ0

)n = ϕ0

(
n− c1

c2
− 2

n

)(
− c2
ϕ0

)n
> 0,

for all n ≥ 0. Therefore such degree-weight generating functions are also admissible and are covered by
Case C in Lemma 1.
• Next we will consider the case c2 = 0 (and c1 > 0), which gives

Tn = T1

n−1∏
k=1

(c1k) = ϕ0c
n−1
1 (n− 1)!,

and

T (z) =
∑
n≥1

Tn
zn

n!
=
ϕ0

c1

∑
n≥1

(c1z)n

n
=
ϕ0

c1
log
( 1
1− c1z

)
. (3.30)

Since (3.30) gives

T ′(z) =
ϕ0

1− c1z
= ϕ0e

c1T (z)
ϕ0 , (3.31)
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we obtain

ϕn = [Tn]ϕ(T ) = [Tn]T ′(z) = [Tn]ϕ0e
c1T (z)

ϕ0 =
ϕ0

(
c1
ϕ0

)n
n!

, (3.32)

and
ϕ(t) =

∑
n≥0

ϕnt
n = ϕ0e

c1t
ϕ0 . (3.33)

Since c1 > 0, we obtain from (3.33) that ϕn > 0, for all n ≥ 0, and thus that all degree-weight generating
functions (3.33) are admissible. They are covered by Case A in Lemma 1.
• The remaining case is c1 = 0 (and thus c2 > 0), which leads to Tn = ϕ0c

n−1
2 and to

T (z) =
∑
n≥1

Tn
zn

n!
=
ϕ0

c2

∑
n≥1

(c2z)n

n!
=
ϕ0

c2

(
ec2z − 1

)
. (3.34)

Since (3.34) gives
T ′(z) = ϕ0e

c2z = ϕ0 + c2T (z), (3.35)

this leads to
ϕ(t) = ϕ0 + c2t. (3.36)

This degenerate case (all trees are “chains”) is excluded from our further considerations due to the
demand that there exists a k ≥ 2 with ϕk > 0.

3.4.3 The transition probabilities

Now we are going to calculate the probabilities qn,k for grown simple families of increasing trees. Using
(5) from (3.25) we get

qn,k =
n!Tk

(n− 1)Tnk!
[zn]ϕ

(
T (z)

) ∫ z

0

tkϕ′
(
T (t)

)
ϕ
(
T (t)

) dt =
n!Tk

(n− 1)Tnk!
[zn]T ′(z)

∫ z

0

tkT ′′(t)
(T ′(t))2

dt. (3.37)

If c2 6= 0 then we obtain from (3.37) via integration by parts

T ′(z)
∫ z

0

tkT ′′(t)
(T ′(t))2

dt =
ϕ0

(1− c1z)
c2
c1

+1

∫ z

0

tkϕ0(c1 + c2)(1− c1t)
2c2
c1

+2

ϕ2
0(1− c1t)

c2
c1

+2
dt

=
c1 + c2

(1− c1z)
c2
c1

+1

∫ z

0

tk(1− c1t)
c2
c1 dt =

ϕ0(c1 + c2)

(1− c1z)
c2
c1

+1

[
k!
Tk+2

−
k∑

l=0

klzk−l(1− c1z)
c2
c1

+1+l

Tl+2

]

= (c1 + c2)

[
k!T ′(z)
Tk+2

− ϕ0

k∑
l=0

klzk−l(1− c1z)l

Tl+2

]
. (3.38)

For n > k, combining (3.37) and (3.38) leads to

qn,k =
n!Tk

(n− 1)Tnk!
[zn]T ′(z)

∫ z

0

tkT ′′(t)
(T ′(t))2

dt =
n!Tk

(n− 1)Tnk!
[zn]

(c1 + c2)k!T ′(z)
Tk+2

=
n!Tk

(n− 1)Tnk!
(c1 + c2)k!Tn+1

Tk+2n!
=

(c1 + c2)(c1n+ c2)
(n− 1)(c1(k + 1) + c2)(c1k + c2)

. (3.39)

It turns out that this formula also holds for c2 = 0, thus covering all cases of grown simple families of
increasing trees.
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3.4.4 Solving the recurrence

Using (3.1) we obtain therefore for n ≥ 2 and m ≥ 1 the recurrence

P{Zn = m} =
n−1∑
k=1

(c1 + c2)(c1n+ c2)
(n− 1)(c1(k + 1) + c2)(c1k + c2)

P{Zk = m− 1}, (3.40)

with P{Z1 = 0} = 1 and P{Zn = 0} = 0, for n ≥ 2. We simplify this full history recursion by multiplying
with n−1

c1n+c2
and taking differences. (3.40) leads then for n ≥ 1 and m ≥ 1 to

n

c1(n+ 1) + c2
P{Zn+1 = m}− n− 1

c1n+ c2
P{Zn = m} =

c1 + c2
(c1(n+ 1) + c2)(c1n+ c2)

P{Zn = m−1}. (3.41)

Introducing the generating function

M(z, v) :=
∑
n≥1

∑
m≥0

P{Zn = m} zn−1

(c1(n+ 1) + c2)(c1n+ c2)
vm,

recurrence (3.41) leads to the following homogeneous second order linear differential equation:

z(1− z)
∂2

∂z2
M(z, v) +

3c1 + c2
c1

(1− z)
∂

∂z
M(z, v)− (c1 + c2)v

c1
M(z, v) = 0, (3.42)

with initial conditions M(0, v) = 1
(2c1+c2)(c1+c2)

and ∂
∂zM(z, v)

∣∣
z=0

= v
(3c1+c2)(2c1+c2)

. Since the hyper-
geometric differential equation with parameters a, b, c is given by

z(1− z)F ′′(z) + (c− (a+ b+ 1)z)F ′(z)− abF (z) = 0,

M(z, v) satisfies the hypergeometric differential equation with parameters

a = 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
, b = 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
, and c = 3c1+c2

c1
.

A solution basis of (3.42) is thus given by the following two functions (see e. g. [3]):

2F1

(
a, b
c

∣∣∣z) = 2F1

( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
,

2c1+c2+
√

(2c1+c2)2−4c1(c1+c2)v

2c1
3c1+c2

c1

∣∣∣z),
z1−c

2F1

( a+ 1− c, b+ 1− c
2− c

∣∣∣z)
= z−

2c1+c2
c1 2F1

( −(2c1+c2)−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
,
−(2c1+c2)+

√
(2c1+c2)2−4c1(c1+c2)v

2c1

− c1+c2
c1

∣∣∣z),
where 2F1

( a, b
c

∣∣∣z) :=
∑

n≥0
anbn

cn
zn

n! denotes the Gauss hypergeometric series.

Since M(z, v) has a power series expansion around z = 0 (and v = 0) it must follow that

M(z, v) = C(v) 2F1

( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
,

2c1+c2+
√

(2c1+c2)2−4c1(c1+c2)v

2c1
3c1+c2

c1

∣∣∣z), (3.43)

with a certain function C(v), since the other base function is not analytic at z = 0. After adapting (3.43)
to the initial conditions we obtain the solution

M(z, v) =
1

(2c1 + c2)(c1 + c2)
2F1

( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
,

2c1+c2+
√

(2c1+c2)2−4c1(c1+c2)v

2c1
3c1+c2

c1

∣∣∣z).
(3.44)
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3.4.5 Characterizing the limiting distribution

To obtain a limiting distribution result we will apply the following instance of the z to 1−z transformation
(see e. g. [3]) with m ∈ {1, 2, 3, . . . }:

2F1

( a, b
a+ b+m

∣∣∣z) =
Γ(m)Γ(a+ b+m)
Γ(a+m)Γ(b+m)

m−1∑
n=0

anbn

n!(1−m)n
(1− z)n

− Γ(a+ b+m)
Γ(a)Γ(b)

(z − 1)m
∞∑

n=0

(a+m)n(b+m)n

n!(n+m)!
(1− z)n

×
(

log(1− z)−Ψ(n+ 1)−Ψ(n+m+ 1) + Ψ(a+ n+m) + Ψ(b+ n+m)
)
,

and get from equation (3.44) the following local expansion of M(z, v) around the dominant singularity
z = 1 in a complex neighborhood of v = 1 (with certain functions C0(v), C1(v), and C2(v)):

M(z, v) =
1

(2c1 + c2)(c1 + c2)
Γ(3 + c2

c1
)

Γ( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
)Γ( 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
)

× (z − 1) log
1

1− z
+ C0(v) + C1(v)(1− z) + C2(v)(1− z)2 +O

(
(1− z)2 log

1
1− z

)
.

Singularity analysis gives then the following expansion of the probability generating function pn(v) :=∑
m≥0 P(Zn = m)vm of Zn.

pn(v) = (c1n+ c2)(c1(n+ 1) + c2)[zn−1]M(z, v)

=
Γ(1 + c2

c1
)

Γ( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
)Γ( 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
)

(
1 +O(n−1)

)
. (3.45)

Thus it follows from (3.45) that the moment generating function (= Laplace transform)

E(eZns) =
∑
m≥0

P{Zn = m}ems = pn(es) (3.46)

of Zn converges in a neighborhood of s = 0 to the moment generating function E(eZs) = p(es) of a
discrete random variable Z with probability generating function p(v) :=

∑
m≥0 P{Z = m}vs given by

p(v) =
Γ(1 + c2

c1
)

Γ( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
)Γ( 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
)
. (3.47)

We want to remark that by using the reflection law of the Gamma function

Γ(x)Γ(1− x) =
π

sin(πx)
,

one can further simplify the formula of p(v) for binary increasing trees and recursive trees; see Table 3.2.
Extracting coefficients leads then for these tree families to expressions for the probabilities P{Z = m} as
given in Corollary 2.
Furthermore, we can give a representation of p(v) as an infinite product, where we simply use repeatedly
the functional equation Γ(x) = Γ(x+1)

x for the Gamma function expressions in (3.47). One obtains after



CHAPTER 3. ISOLATING A LEAF IN ROOTED TREES VIA RANDOM CUTTINGS 56

n iteration steps and some simplifications:

p(v) =
Γ(1)Γ(1 + c2

c1
)

Γ( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
)Γ( 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
)

= f(n)
n∏

k=1

(
1 +

(c1 + c2)(v − 1)
k(c1k + c2)

)
, (3.48)

with

f(n) =
Γ(n+ 1)Γ(n+ 1 + c1

c2
)

Γ(n+ 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
)Γ(n+ 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
)
.

Since it holds f(n) → 1 for n → ∞, as can be shown e. g. via Stirling’s asymptotic formula for the
Gamma function, we obtain from (3.48) the representation

p(v) =
∞∏

k=1

(
1 +

(c1 + c2)(v − 1)
k(c1k + c2)

)
=

∞∏
k=1

(k(c1k + c2)− (c1 + c2)
k(c1k + c2)

+
v(c1 + c2)
k(c1k + c2)

)
. (3.49)

By an application of the continuity theorem for the Laplace transform (see e. g. [13]) we obtain from
equations (3.47) and (3.49) immediately the first part of Theorem 13. Further we can immediately deduce
Corollary 4 from (3.49).

3.4.6 Computing the moments

From the explicit formula (3.44) for the generating functionM(z, v) we can also compute exact expressions
for the r-th factorial moments E

(
Z

r
n

)
of Zn. To do this we will give first an exact formula for the

probability generating function pn(v). By easy manipulations we obtain

pn(v) = (c1(n+ 1) + c2)(c1n+ c2)[zn−1]M(z, v)

=
(c1(n+ 1) + c2)(c1n+ c2)

(
2c1+c2−

√
(2c1+c2)2−4c1(c1+c2)v

2c1

)n−1( 2c1+c2+
√

(2c1+c2)2−4c1(c1+c2)v

2c1

)n−1

(2c1 + c2)(c1 + c2)
(

3c1+c2
c1

)n−1

(n− 1)!

=
(c1(n+ 1) + c2)(c1n+ c2)

∏n−2
k=0

(
k2 + (2 + c2

c1
)k + (1 + c2

c1
)− (1 + c2

c1
)(1− v)

)
(2c1 + c2)(c1 + c2)

(
3 + c2

c1

)n−1

(n− 1)!

=

∏n−1
k=1

(
k(c1k + c2)− (c1 + c2)(1− v)

)
∏n−1

k=1

(
k(c1k + c2)

) =
n−1∏
k=1

(
1 +

(c1 + c2)(v − 1)
k(c1k + c2)

)
. (3.50)

Evaluating the r-th derivative of pn(v) at v = 1 as given by (3.50) then leads to:

E
(
Zr

n

)
= EvD

r
vpn(v) =

∑
1≤k1<k2<···<kr≤n−1

r!(c1 + c2)r∏r
i=1

(
ki(c1ki + c2)

)
= r!(c1 + c2)r

n−1∑
k1=1

1
k1(c1k1 + c2)

n−1∑
k2=k1+1

1
k2(c1k2 + c2)

· · ·
n−1∑

kr=kr−1+1

1
kr(c1kr + c2)

, (3.51)

which shows also the second part of Theorem 13. We remark that this result for the r-th factorial moments
can also be obtained directly from the recurrence (3.41) by using elementary means. We multiply on
both sides with mr = (m − 1)r + r(m − 1)r−1 and sum up for m ≥ 1. Thus we easily get the following
Lemma.



CHAPTER 3. ISOLATING A LEAF IN ROOTED TREES VIA RANDOM CUTTINGS 57

Lemma 13. If n ≥ 1 we have the following recursion for τr(n) = E(Zr
n):

τr(n+ 1) = τr(n) + r
c1 + c2

n(c1n+ c2)
τr−1(n). (3.52)

Iteration of this result leads directly to

τr(n) = r!(c1 + c2)r
n−1∑
k1=1

1
k1(c1k1 + c2)

k1−1∑
k2=1

1
k2(c1k2 + c2)

· · ·
kr−1−1∑
kr=1

1
kr(c1kr + c2)

. (3.53)

If c2 = 0 we get by using (3.4) the following result

E
(
Zr

n

)
= r!ζn−1(2, . . . , 2). (3.54)

Using the probability generating function p(v) for c1 = 1, c2 = 0

p(v) = lim
n→∞

pn(v) =
sin(π

√
1− v)

π
√

(1− v)
=
∑
k≥0

π2k(−1)k(1− v)k

(2k + 1)!
, (3.55)

we obtain the r-th factorial moment of Z by differentiating r times with respect to v and evaluating at
v = 1:

E(Zr) = EvD
r
vp(v) =

r!π2r

(2r + 1)!
. (3.56)

Since (3.5) yields E(Zr) = r!ζ(2, 2, . . . , 2︸ ︷︷ ︸
r times

), the proof of Corollary 3 is finished.



Chapter 4

Non-crossing-trees: Isolating a leaf
and Climbing depth

4.1 Introduction

A non-crossing tree is a tree drawn on the plane having as vertices a set of points on the boundary
of a circle, whose edges are straight line segments that do not cross. We consider the vertices labelled
clockwise from 1 to n, where the root of the tree is vertex 1.

1

2

4

3

5

67

8

9

10

11

12

Figure 4.1: A non-crossing tree of size 12.

In this chapter we will consider two procedures to reach an endnode (a leaf) in a non-crossing tree of size
n.

4.1.1 Isolating a leaf in non-crossing trees via random cuttings

We consider as before the following version of an edge-removal procedure: after removing a random edge
of the tree we discard the subtree containing the original root of the tree and continue the procedure
recursively with the other subtree. Thus we will finally isolate a leaf of the original tree and the procedure
stops. Under the random tree model we are going to study the random variable Zn, which counts here
the number of edges that will be removed from a randomly chosen non-crossing tree of size n by this
edge-removal procedure until a leaf is isolated. This removal procedure was analyzed in Chapter 3 for
simply generated trees and a subfamily of increasing trees. We can state the limiting distribution of Zn.

4.1.2 Climbing depth of non-crossing trees

We are considering here the following procedure to “climb” rooted trees. We start with a non-crossing
tree T of size n rooted at node r0, where the size measures as usual the number of nodes of T . If n > 1
then we choose at random one of the edges e in T which are incident with the root r0 and proceed along

58
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e (say e = (r0, r1)) to r1. Then we iterate this procedure with the subtree of T rooted at node r1. After
m ≤ n− 1 steps (= number of used edges), we will reach an endnode of T and stop. This procedure was

1

2

4

3

5

67

8

9

10

11

12

r0

r1

r2

r3

Figure 4.2: Climbing a non-crossing tree of size 12 in 3 steps.

studied in [62] for a wide range of random rooted trees.

4.2 Mathematical Preliminaries

For the analysis of the two considered parameters we will use a generating functions approach. The
basic decomposition of non-crossing trees, which is described in [23], can be translated into equations for
suitable chosen generating functions for the considered parameters. Following [23] a non-crossing tree
consists of a root, which is attached to a (possible empty) sequence of butterflies, where a butterfly is a
(ordered) pair of non-crossing trees, that share a common root.

1

...

Figure 4.3: The combinatorial description of a non-crossing tree.

The arising formal combinatorial decompositions

T = ©×
(
{ε} ∪̇ B ∪̇ B × B ∪̇ B × B × B ∪̇ · · ·

)
= ©× SEQ(B),

©×B = T × T ,
(4.1)

can be translated immediately into the following system of equations for the generating functions T (z) =∑
n≥1 Tnz

n and B(z) =
∑

n≥1Bnz
n of the number Tn of non-crossing trees of size n resp. the number

Bn of butterflies of size n:

T (z) =
z

1−B(z)
, B(z) =

T 2(z)
z

. (4.2)

Thus the number Tn of different non-crossing trees of size n can be calculated by an application of the
inversion formula of Lagrange - Bürmann:

Lemma 14 (Lagrange - Bürmann inversion formula). Let Φ(z) be a formal power series with Φ0 6= 0.
Further let T (z) denote the only formal power series solution of T (z)

Φ(T (z)) = z, thus T [−1](z) = z
Φ(z) . Then
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the coefficient of Ψ(T (z)) =
∑

n≥0 dnz
n for arbitrary power series Ψ(z) is given by

dn = [zn]Ψ(T (z)) =
1
n

[zn−1]Ψ′(z)(Φ(z))n, (4.3)

where Ψ′(z) := d
dz Ψ(z).

This was done in [23]. The number Tn also follows due to the fact that Tn is equal to the number of
ternary trees of size n− 1, [67]. We arrive at the following.

Tn =
1

2n− 1

(
3n− 3
n− 1

)
. (4.4)

From (4.2) follows also that B(z) = z
(1−B(z))2 , and thus that the family of the butterflies (but not the

non-crossing trees) are simply generated trees (see Subsection 0.1.1) with the degree generating function
ϕ(t) = 1

(1−t)2 . This means that the family B resp. the corresponding generating function B(z) fulfills the
identity

B = ©× ϕ(B), B(z) = zϕ(B(z)). (4.5)

Using (4.3) one gets easily that the number of butterflies of size n are given by

Bn =
1
n

(
3n− 2
n− 1

)
. (4.6)

To obtain our limiting distribution results for Yn and Zn we treat the recurrences appearing for the
probabilities P{Yn = m} and P{Zn = m} via bivariate generating functions. This leads to exact solvable
differential equations resp. functional equations and extracting coefficients of the solutions appearing
asymptotically is performed via singularity analysis (see [25]), a complex-analytic technique that relates
asymptotics of sequences to the local behavior of their generating functions in a neighborhood of the
dominant singularities.

4.3 Results

Theorem 14. For non-crossing trees the random variable Zn, which counts the number of random cuts
that are required to isolate a leaf from a randomly chosen non-crossing tree of size n with the edge-
removal procedure considered, converges in distribution, for n → ∞, to a shifted Poisson distributed
random variable Z, which has the distribution

P{Z = m} =
mλm−1

m!
e−λ, for m ≥ 0,

with parameter λ := log
(ϕ(τ)

ϕ0

)
, where τ is the minimal positive solution of the equation tϕ′(t) = ϕ(t),

where ϕ(t) is the degree generating function of the butterflies. Moreover, the r-th factorial moments
E
(
Z

r
n

)
have the asymptotic expansion

E
(
Zr

n

)
= λr−1(λ+ r) +O(n−1).

In particular, we get for the expectation E(Zn) and the variance V(Zn):

E(Zn) = λ+ 1 +O(n−1), and V(Zn) = λ+O(n−1).

Note that as expected the considered parameter behaves the same way as for the butterfly tree family B.

Theorem 15. For non-crossing trees the random variable Xn, which counts the number of steps that are
required to climb a random non-crossing tree of size n with the climbing procedure considered, converges
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in distribution, for n→∞, to a discrete mixed distribution which consist of a geometric distribution with
parameter p = ρ/τ and a negative binomial distribution with the same parameter p, it has the distribution

P{X = m} = τ · ρ
τ

(
1− ρ

τ

)m−1

+ (1− τ) ·
(
1− ρ

τ

)m−2 (m− 1)ρ2

τ2
, for m ≥ 1,

and P{X = 0} = 0. τ is the minimal positive solution of the equation tϕ′(t) = ϕ(t), where ϕ(t) is the
degree generating function of the butterflies. Moreover, the r-th factorial moments E

(
Z

r
n

)
have for r ≥ 2

the asymptotic expansion

E
(
Zr

n

)
= r!τ

τ r

ρr

(
1− ρ

τ

)r−1

+ r!(1− τ)
τ r

ρr

(
1− ρ

τ

)r−1

(r + 1− 2p) +O(n−1).

In particular, we get for the expectation E(Zn) and the variance V(Zn):

E(Zn) = τ
τ

ρ
+ 2(1− τ)

τ

ρ
+O(n−1), and V(Zn) =

τ2

ρ2

(
2 + ρ− 2− ρ

τ
τ2) +O(n−1).

Note that for butterfly tree family only the negative binomial distribution is appearing in the limit distri-
bution for Xn.

4.4 Proof for the isolation of a leaf in non-crossing trees via
random cuttings

Since the butterflies are simply generated trees, we already know the behavior of the edge-removal pro-
cedure for this kind of trees from [43]. We denote here by Zn resp. Z̃n the random variables that count
the number of cuts to isolate a leaf in a random non-crossing tree resp. a random butterfly of size n.
Now we turn to the analysis of non-crossing trees. After removing an edge of a non-crossing tree, the two
resulting subtrees can be interpreted as a non-crossing tree which contains the root and a butterfly. The
transition probabilities pn,k, where pn,k denotes the probability that by choosing a random non-crossing
tree of size n and removing a random edge, the remaining subtree containing the root is of size k, were
already computed in [64]. They are given by

pn,k =
(3k − 2)TkBn−k

(n− 1)Tn
, for 1 ≤ k ≤ n− 1.

4.4.1 Solving the recurrence

Now we have to treat the recurrence

P(Zn = m) =
n−1∑
k=1

(3(n− k)− 2)Tn−kBk

(n− 1)Tn
P(Z̃k = m− 1),

with the initial values P{Z1 = 0} = 1 and P{Xn = 0} = 0 for n ≥ 2. We will use the following generating
function

M(z, v) =
∑
n≥1

∑
m≥0

TnP(Zn = m)znvm. (4.7)

In addition to M(z, v) we have to use the bivariate generating function

N(z, v) =
∑
n≥1

∑
m≥0

BnP(Z̃n = m)znvm.
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The recurrence can be translated into the following equation.

z
∂

∂z
M(z, v)−M(z, v) = vN(z, v)

(
3
∂

∂z
T (z)− 2T (z)

)
, (4.8)

with initial conditions M(0, v) = 0 and ∂
∂zM(z, v)

∣∣
z=0

= 1.

Since butterflies are a simply generated tree family (with degree generating function ϕ(t) = 1
(1−t)2 ) we

can use the a result of [43] and get the explicit formula

N(z, v) = ϕ0z exp
(
v logϕ(B(z))

)
=

z(
1−B(z)

)2v .

Since the solution of the homogeneous differential equation corresponding to (4.8) is given by Cz, we use
the variation of the parameters method and start with M(z, v) = C(z, v)z. This gives

∂

∂z
C(z, v) =

v

(1−B(z))2v

3zT ′(z)− 2T (z)
z

.

Since it holds that
3zT ′(z)− 2T (z)

z
= B′(z),

which is checked easily, we obtain
∂

∂z
C(z, v) =

vB′(z)
(1−B(z))2v

.

This leads to the following general solution of (4.8):

M(z, v) = vz

∫ z

0

B′(t)
(1−B(t))2v

dt+K(v)z =
vz

2v − 1

( 1
(1−B(z))2v−1

− 1
)

+K(v)z,

with a function K(v). Adapting to the initial values gives then the required solution

M(z, v) =
z

2v − 1

( v

(1−B(z))2v−1
+ v − 1

)
. (4.9)

4.4.2 Characterizing the limiting distribution

Extracting coefficients leads for n ≥ 2 and m ≥ 1 to

[vm]M(z, v) = [vm−1]
z

(2v − 1)(1−B(z))2v−1
= [vm−1]

z(1−B(z))
(2v − 1)(1−B(z))2v

= z(B(z)− 1)2m−1
m−1∑
k=0

(
log 1

1−B(z)

)k
k!

.

We require the following local expansion of B(z) around the dominant singularity ρ = 4
27 , with τ = 1

3
and ϕ(t) = 1

(1−t)2 :

B(z) = τ −

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+O(1− z

ρ
). (4.10)

This gives the local expansions

1
1−B(z)

=
1

1− τ

(
1− 1

1− τ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+O(1− z

ρ
)
)
, (4.11)
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log
1

1−B(z)
= log

1
1− τ

− 1
1− τ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+O(1− z

ρ
), (4.12)

and finally

m−1∑
k=0

(
log 1

1−B(z)

)k
k!

=
m−1∑
k=0

(
log 1

1−τ

)k
k!

−
m−1∑
k=1

(
log 1

1−τ

)k−1

(k − 1)!
1

1− τ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+O(1− z

ρ
).

This gives due to some cancellations the expansion

z(B(z)− 1)2m−1
m−1∑
k=0

(
log 1

1−B(z)

)k
k!

= 2m−1ρ
(
τ − 1−

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+O(1− z

ρ
)
)

×
(m−1∑

k=0

(
log 1

1−τ

)k
k!

−
m−1∑
k=1

(
log 1

1−τ

)k−1

(k − 1)!
1

1− τ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+O(1− z

ρ
)
)

= 2m−1ρ(τ − 1)
m−1∑
k=0

(
log 1

1−τ

)k
k!

− 2m−1ρ

√
2ϕ(τ)
ϕ′′(τ)

(
log 1

1−τ

)m−1

(m− 1)!

√
1− z

ρ
+O(1− z

ρ
).

Singularity analysis leads thus to

[znvm]M(z, v) = TnP{Zn = m} − 2m−1ρ

√
2ϕ(τ)
ϕ′′(τ)

(
log 1

1−τ

)m−1

(m− 1)!
n−

3
2

ρnΓ(− 1
2 )

(
1 +O(

1√
n

)
)
.

Together with

Tn = [zn]
z

1−B(z)
=

ρ

1− τ
− ρ

(1− τ)2

√
2ϕ(τ)
ϕ′′(τ)

n−
3
2

ρnΓ(− 1
2 )

(
1 +O(

1√
n

)
)
, (4.13)

we obtain

P{Zn = m} = (1− τ)22m−1

(
log 1

1−τ

)m−1

(m− 1)!
(
1 +O(

1√
n

)
)

=
1

ϕ(τ)

(
logϕ(τ)

)m−1

(m− 1)!
(
1 +O(

1√
n

)
)
.

4.4.3 Computing the moments

From the generating function M(z, v) as given by (4.9) we can also easily compute the r-th factorial
moments E(Zr

n). Evaluating the r-th derivative w. r. t. v of M(z, v) at v = 1 gives

EvD
r
vM(z, v) = EvD

r
v

z

2v − 1

( v

(1−B(z))2v−1
+ v − 1

)
= EvD

r
v

z

2(2v − 1)

( (2v − 1) + 1
(1−B(z))2v−1

+ (2v − 1)− 1
)

=
z

2
EvD

r
v

( 1
(1−B(z))2v−1

+
1

(2v − 1)(1−B(z))2v−1
+ 1− 1

2v − 1

)
=
z

2

(2r logr
(

1
1−B(z)

)
1−B(z)

+
r∑

k=0

(
r

k

)2k(−1)kk!2r−k logr−k
(

1
1−B(z)

)
1−B(z)

− 2r(−1)rr!
)
. (4.14)



CHAPTER 4. NON-CROSSING-TREES: ISOLATING A LEAF AND CLIMBING DEPTH 64

Using (4.11) and (4.12) leads to the local expansions

logj
( 1
1−B(z)

)
= logj

( 1
1− τ

)
− logj−1

( 1
1− τ

) j

1− τ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+O(1− z

ρ
)

and

logj
(

1
1−B(z)

)
1−B(z)

=
logj

(
1

1−τ

)
1− τ

− logj−1
( 1
1− τ

) 1
(1− τ)2

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ

(
log
( 1
1− τ

)
+ j
)

+O(1− z

ρ
).

Thus we get

EvD
r
vM(z, v) = 2r−1z

( logr
(

1
1−τ

)
1− τ

− (−1)rr! +
r−1∑
k=0

(
r

k

) (−1)kk! logr−k
(

1
1−τ

)
(1− τ)

+
r!(−1)r

1− τ

− 1
(1− τ)2

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ

[
r logr−1

( 1
1− τ

)
+ logr

( 1
1− τ

)
+

r−1∑
k=0

(
r

k

)
(−1)kk!

(
(r − k) logr−k−1

( 1
1− τ

)
+ logr−k

( 1
1− τ

))
+ r!(−1)r

]
+O(1− z

ρ
)
)
. (4.15)

Since we can use telescope summation to see

r−1∑
k=0

(
r

k

)
(−1)kk!

(
(r − k) logr−k−1

( 1
1− τ

)
+ logr−k

( 1
1− τ

))
+ r!(−1)r = logr

( 1
1− τ

)
, (4.16)

for r ≥ 1, we get by using (4.13) for n→∞ the following result

E(Zr
n) =

1
Tn

[zn]EvD
r
vM(z, v)

=
1
Tn

[zn−1]− 2r−1

(1− τ)2
logr−1

( 1
1− τ

)√2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ

(
r + 2 log

( 1
1− τ

))
=
(
r2r−1 logr−1

( 1
1− τ

)
+ 2r logr

( 1
1− τ

))
+O(

1
n

)

=
(
r logr−1(ϕ(τ)) + logr(ϕ(τ))

)
+O(

1
n

), (4.17)

and thus the same asymptotic expansion as obtained for the butterflies. Therefore it holds that non-
crossing trees behave for this parameter also like butterflies.

4.5 Proof for the climbing depth of non-crossing trees

Since butterflies are simply generated trees, we already know the climbing depth for this kind of trees
from [56]. We denote here by Xn resp. X̃n the random variables that counts the number steps until a leaf
is reached in a random non-crossing tree resp. a random butterfly of size n. Now we turn to the analysis
of non-crossing trees. The probability that a random non-crossing tree is climbed in m steps satisfies

P{Xn = m} =
n−1∑
k=1

∑
n1+···+nk=n−1

P{d(root) = k ∧ |B1| = n1 ∧ · · · ∧ |Bk| = nk}×

× P{X̃n1 = m− 1}+ · · ·+ P{X̃nk
= m− 1}

k
, (4.18)
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for n ≥ 2 and m ≥ 1 with initial values P{X1 = 0} = 1 and P{Xn = 0} = 0 for n ≥ 2. The recurrence
is obtained by distinguishing the trees, where the degree d(root) of the root of the non-crossing tree is k
and the sizes of the subtrees B1, . . . , Bk are n1, . . . , nk respectively.

4.5.1 Solving the recurrence

We introduce the bivariate generating functions

M(z, v) =
∑
n≥1

∑
m≥0

TnP(Xn = m)znvm, (4.19)

and
N(z, v) =

∑
n≥1

∑
m≥0

BnP(X̃n = m)znvm. (4.20)

Using

P{d(root) = k ∧ |B1| = n1 ∧ · · · ∧ |Bk| = nk} =
Bn1 . . . Bnk

Tn
, (4.21)

we get from (4.18) the following equation.

M(z, v)− z =
zv

1−B(z)
N(z, v). (4.22)

We know from [56] that Nm(z) :=
∑

n≥1BnP(X̃n = m)zn is given by

Nm(z) = z
(
1− z

B(z)

)m

, for m ≥ 0. (4.23)

Multiplication with vm and summing up over m ≥ 0 leads directly to the following result.

N(z, v) =
z

1− v
(
1− z

B(z)

) . (4.24)

Thus we have the following explicit representation for M(z, v):

M(z, v) =
z2v

(1−B(z))(1− v
(
1− z

B(z)

)
)

+ z. (4.25)

4.5.2 Characterizing the limiting distribution

We further get for n ≥ 2

P{Xn = m} =
1
Tn

[znvm]M(z, v) =
1
Tn

[zn−2]
1

1−B(z)

(
1− z

B(z)

)m−1

. (4.26)

We use again the local expansion (4.11) and

1
Bk(z)

=
1
τk

(
1 +

k

τ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+O(1− z

ρ
)
)
, (4.27)

which leads to another expansion

(
1− z

B(z)

)m−1

=
m−1∑
k=0

(
m− 1
k

)
(−1)k zk

Bk(z)
=

m−1∑
k=0

(
m− 1
k

)
(−1)k ρk

Bk(z)
+O(1− z

ρ
)
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=
(
1− ρ

τ

)m−1

+

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ

m−1∑
k=0

(
m− 1
k

)
(−1)kk

ρk

τk+1

=
(
1− ρ

τ

)m−1

− (m− 1)ρ
τ2

(
1− ρ

τ

)m−2

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
. (4.28)

Thus we finally get

1
1−B(z)

(
1− z

B(z)

)m−1

=
1

1− τ

(
1− ρ

τ

)m−1

−
(
1− ρ

τ

)m−2 1
1− τ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
×

×
(

1− ρ
τ

1− τ
+

(m− 1)ρ
τ2

)
. (4.29)

Together with (4.13) we get the following result.

P{Xn = m} =
(
τ · ρ

τ

(
1− ρ

τ

)m−1

+ (1− τ) ·
(
1− ρ

τ

)m−2 (m− 1)ρ2

τ2

)(
1 +O(

1√
n

)
)
. (4.30)

4.5.3 Computing the moments

From the generating function M(z, v) as given by (4.25) we can also easily compute the r-th factorial
moments E(Xr

n). Evaluating the r-th derivative w. r. t. v of M(z, v) at v = 1 gives

EvD
r
vM(z, v) = EvD

r
v

( z2v

(1−B(z))(1− v
(
1− z

B(z)

)
)

+ z
)

=
z2

1−B(z)
Ev

( (
1− z

B(z)

)r
r!

(1− v
(
1− z

B(z)

)
)r+1

+ r

(
1− z

B(z)

)r−1(r − 1)!

(1− v
(
1− z

B(z)

)
)r

)
=

r!z2

1−B(z)
Br+1(z)
zr+1

(
1− z

B(z)
)r−1

.

(4.31)

Using (4.10) we get the expansion

Bk(z) = τk − kτk−1

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+O(1− z

ρ
). (4.32)

By combining (4.29) and (4.32) we get for r ≥ 2

Br+1(z)
1−B(z)

(
1− z

B(z)

)r−1

= − τ r

1− τ

(
1− ρ

τ

)r−2

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
×

×
(
τ
[1− ρ

τ

1− τ
+

(r − 1)ρ
τ2

]
+ (r + 1)(1− ρ

τ
)
)

+O(1− z

ρ
), (4.33)

where for r = 1 we simply have

B2(z)
1−B(z)

= − τ

1− τ

(
1− ρ

τ

)r−2

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ

(
2− τ

1− τ

)
+O(1− z

ρ
). (4.34)

Since we known that

E(Zr
n) =

1
Tn

[zn]EvD
r
vM(z, v) =

r!
Tn

[zn+r−1]
Br+1

1−B(z)

(
1− z

B(z)

)r−1

, (4.35)
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we get for for n→∞ the following result for r ≥ 2

E(Zr
n) = r!τ

τ r

ρr

(
1− ρ

τ

)r−1

+ r!(1− τ)
τ r

ρr

(
1− ρ

τ

)r−1

(r + 1− 2p) +O(
1
n

), (4.36)

and the expectation is given by

E(Zn) = τ
τ

ρ
+ 2(1− τ)

τ

ρ
+O(

1
n

). (4.37)

Remark 2. Our studies of non-crossing trees were motivated by the following fact. Let Tn,k denote
the number of non-crossing trees with k butterflies. We use the bivariate generating function T (z, v) =∑

n≥1

∑
k≥0 Tn,kz

nvk. The combinatorial description of the non-crossing trees can be turned into the
following equation.

T (z, v) =
z

1− vB(z)
.

Extracting coefficients by an application of (4.3) leads to the result

Tn,k =
k

n− 1

(
3n− k − 4

2n− 3

)
.

Let Yn denote the random variable, that counts the number of non-crossing trees with k butterflies and
let tn,k = P(Yn = k) denote the probability, that a non-crossing tree has k butterflies.

tn,k =
Tn,k

Tn
=

(2n− 1)k
(
3n−k−4
2n−3

)
(n− 1)

(
3n−3
n−1

) .

Thus we get

E(Yn) = 2
n− 1
n

.

Using Stirling’s formula we can calculate the limit distribution of Yn. We get the following result.

Corollar 5. The limit distribution of the random variable that counts the number of non-crossing trees
with k butterflies is given by

lim
n→∞

tn,k =
4k

3k+1
.
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Chapter 5

Label-based parameters in increasing
trees

5.1 Introduction

In this chapter we present a unifying approach for studying several label-based parameters for increasing
trees. In contrast to global parameters like height, width, etc., which depend on the whole tree, label-
based parameters depend on a specific sub-structure of the tree which depends itself on the label j. Let
Xn,j denote the random variable, which counts a certain label-based parameter of a specified node j in
a random size-n tree, where 1 ≤ j ≤ n. We use a recursive approach, which leads for all simple families
of increasing trees (not only those which can be described via an insertion process) to a closed formula
for suitable trivariate generating functions of the probabilities P{Xn,j = m}. We obtain formulæ for
the probabilities P{Xn,j = m} and the s-th factorial moments E

(
(Xn,j)s

)
=
∑

m≥0m
sP{Xn,j = m} for

grown simple families of increasing trees.

1
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7
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9

3

4

5

10

6

,
6

,
6

Figure 5.1: A size n=11 increasing tree with j = 6: the outdegree of node 6 equals 2, the subtree size of
node 6 equals 4 and the branches consists of one size 2 tree and one leaf.

This approach has already been successfully carried out for several parameters, e.g. level of node j or
number of descendants of node j in a grown simple increasing tree of size n, see [46] and [68]. We
illustrate this approach here for several parameters like branching structure, subtree size, node degree,
distance between specified nodes.
In order to state our results concerning arbitrary label-based parameters we introduce the following
generating functions. For the root we set up

M(z, v) =
∑
n≥1

∑
m≥1

P{Xn,1 = m}Tn
zn

n!
vm, (5.1)

where for j ≥ 1 we use a trivariate generating function,

N(z, u, v) :=
∑
k≥0

∑
j≥1

∑
m≥0

P{Xk+j,j = m}Tk+j
zj−1

(j − 1)!
uk

k!
vm. (5.2)
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5.2 Results for label-based parameters

Theorem 16. The function N(z, u, v) as defined in equation (5.1), which is the trivariate generating
function of the probabilities P{Xn,j = m}, which give the probability that a certain label-based parameter,
which depends only on the subtree rooted at node j, in a randomly chosen size-n tree of a simple family of
increasing trees with degree-weight generating function ϕ(t), equals m, is given by the following formula:

N(z, u, v) =
ϕ
(
T (z + u)

)
∂

∂uM(u, v)
ϕ
(
T (u)

) , (5.3)

where M(z, v) is defined by (5.1).

Corollar 6. For grown simple families of increasing trees the probability distribution and the factorial
moments of Xn,j, where the parameter depends only on the subtree rooted at node j, are given by

P{Xn,j = m} =
cj−1
1

( c2
c1

+j−1

j−1

)
(
n−1
n−j

)
ϕ0c

n−1
1

(n−1+
c2
c1

n−1

) [un−jvm]
∂

∂uM(u, v)
(1− c1u)j−1

, (5.4)

and

E
(
X

s
n,j

)
=

cj−1
1

( c2
c1

+j−1

j−1

)
(
n−1
n−j

)
ϕ0c

n−1
1

(n−1+
c2
c1

n−1

) [un−j ]
M ′

s(u)
(1− c1u)j−1

, (5.5)

were we use the abbreviation with Ms(z) = EvD
s
vM(z, v). For Case A we set c2 = 0 and for Case B

d = c1
c2

+ 1.

Remark 3. For the depth Dn,j the trivariate generating function has a slightly different form because
the depth depends on the ascendants of j. See [68] for results concerning the depth.

Remark 4. For grown simple families of increasing trees one can also obtain the probabilities P{Xn,j =
m} by conditioning on Zn,j , the size of the subtree rooted at node j:

P{Xn,j = m} =
n+1−j∑

k=1

P{Xn,j = m|Zn,j = k}P{Zn,j = k} =
n+1−j∑

k=1

P{Xk,1 = m}P{Zn,j = k}, (5.6)

given the probabilities P{Xn,1 = m} and P{Zn,j = k}. See Section 5.4 ([46]) for explicit formulæ for
P{Zn,j = k}.

5.3 Deriving the generating function for the probabilities

We consider in this section the random variable Xn,j , which counts a certain label j based parameter
in a size n increasing tree. We will present two approaches for deriving the generating functions for the
probabilities P{Xn,j = m}.

5.3.1 A recurrence for the probabilities

We consider in this section the random variable Xn,j , which counts a certain label-based parameter for
the node labelled j in a size n increasing tree. In the following we give a general recurrence for the
probability P{Xn,j = m}. At first we setup a bivariate generating function M(z, v) for the probabilities
P{Xn,1 = m} as follows:

M(z, v) =
∑
n≥1

∑
m≥1

P{Xn,1 = m}Tn
zn

n!
vm. (5.7)
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For increasing trees of size n with root-degree r and subtrees with sizes k1, . . . , kr, enumerated from left to
right, where the node labelled by j lies in the leftmost subtree and is the i-th smallest node in this subtree,
we can reduce the computation of the probabilities P{Xn,j = m} to the probabilities P{Xk1,i = m}, when
the label based parameter does only depend on the subtree of node j. Note that for the depth of node
j we have the dependence on P{Xk1,i = m − 1}, since the depth increases by one after attaching the
subtree of size k1 to the root.
We get as factor the total weight of the r subtrees and the root node ϕrTk1 · · ·Tkr

, divided by the total
weight Tn of trees of size n and multiplied by the number of order preserving relabellings of the r subtrees,
which are given here by (

j − 2
i− 1

)(
n− j

k1 − i

)(
n− 1− k1

k2, k3, . . . , kr

)
:

the i−1 labels smaller than j are chosen from 2, 3, . . . , j−1, the k1−i labels larger than j are chosen from
j + 1, . . . , n, and the remaining n − 1 − k1 labels are distributed to the second, third, . . . , r-th subtree.
Again due to symmetry arguments we obtain a factor r, if the node j is the i-th smallest node in the
second, third, . . . , r-th subtree. Summing up over all choices for the rank i of label j in its subtree, the
subtree sizes k1, . . . , kr, and the degree r of the root node gives the following recurrence (5.8).

P{Xn,j = m} =
∑
r≥1

rϕr

∑
k1 + · · ·+ kr = n− 1,

k1, . . . , kr ≥ 1

Tk1 · · ·Tkr

Tn
×

×
min{k1,j−1}∑

i=1

P{Xk1,i = m}
(
j − 2
i− 1

)(
n− j

k1 − i

)(
n− 1− k1

k2, k3, . . . , kr

)
, (5.8)

for n ≥ j ≥ 2.
To treat this recurrence (5.8) we set n := k + j with k ≥ 0 and define the trivariate generating function

N(z, u, v) :=
∑
k≥0

∑
j≥1

∑
m≥0

P{Xk+j,j = m}Tk+j
zj−1

(j − 1)!
uk

k!
vm. (5.9)

Multiplying (5.8) with Tk+j
zj−2

(j−2)!
uk

k! v
m and summing up over k ≥ 0, j ≥ 2 and m ≥ 0 gives then

∂
∂zN(z, u, v) and ϕ′

(
T (z + u)

)
N(z, u, v) for the left and right hand side of (5.8), respectively. Note

that for the depth we get vϕ′
(
T (z + u)

)
N(z, u, v), where the extra factor v is due to the usage of

P{Xk1,i = m − 1} instead of P{Xk1,i = m}. Since these are essentially straightforward, but lengthy
computations, they are omitted here; similar considerations are done in [68]. We obtain the following
differential equation

∂

∂z
N(z, u, v) = ϕ′

(
T (z + u)

)
N(z, u, v), (5.10)

together with the initial condition

N(0, u, v) =
∑
k≥0

∑
m≥0

P{Xk+1,1 = m}Tk+1
uk

k!
vm = M ′(u, v). (5.11)

The general solution of equation (5.10) is given by

N(z, u, v) = C(u, v) exp
(∫ z

0

ϕ′
(
T (t+ u)

)
dt
)
, (5.12)

with some function C(u, v). Adapting to the initial condition (5.11) gives the required solution

N(z, u, v) =
∂

∂u
M(u, v) exp

(∫ z

0

ϕ′
(
T (t+ u)

)
dt
)
. (5.13)
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Due to the equation T ′(z) = ϕ(T (z)) we further get the simplifications∫ z

0

ϕ′
(
T (t+ u)

)
dt =

∫ z

0

ϕ′
(
T (t+ u)

)
T ′(t+ u)

ϕ
(
T (t+ u)

) dt =
∫ T (z+u)

T (u)

(
logϕ(w)

)′
dw = log

(ϕ(T (z + u)
)

ϕ
(
T (u)

) )
,

which leads from (5.13) to the following main result. From (5.3) we easily get the probability distribution
and the factorial moments of Xn,j by extracting coefficients. For grown simple families of increasing trees
it holds

ϕ
(
T (z + u)

)
ϕ
(
T (u)

) =
1(

1− c1z
1−c1u

) c2
c1

+1
, [zj−1]

ϕ
(
T (z + u)

)
ϕ
(
T (u)

) =
( c2

c1
+ j − 1
j − 1

)
cj−1
1

(1− c1u)j−1
, (5.14)

where for Case A c2 = 0 and Case B d = c1
c2

+ 1. Hence by using (10) we obtain Corollary 6.

5.3.2 A combinatorial approach

It is also possible to derive Theorem 16 in a combinatorial way. This was done in [68] Panholzer and
Prodinger where they established a description for the depth of node j, which also holds for all label-based
parameters of node j. Their approach is summarized as follows.
It is convenient to think of specifically tricolored increasing trees, where the coloring is as follows: exactly
one node is colored red, all nodes with a smaller label than the red node are colored black, and all nodes
with a larger label than the red node are colored white. We are interested in a parameter, e.g. depth,
node degree, subtree size, etc., depending on the red node. Let us consider such a tricolored increasing
tree and assume that the out-degree of the root node of T is r ≥ 1.
We further assume that the red node of T is not the root node. Then the red node is located in one of
the r subtrees of the root of T ; let us assume that it is in the r-th subtree. Let us now consider these r
subtrees. After order preserving relabellings, each subtree T1, . . . , Tr is an increasing tree by itself. The
r-th subtree is again a tricolored increasing tree with one red, j1 black and k1 white nodes, whereas the
remaining r−1 subtrees are only bi-colored in such a way that the nodes with the ji smallest labels (with
2 ≤ i ≤ r and 0 ≤ ji ≤ Ti) are colored black and the remaining ki nodes in the subtrees are colored white.
Then such a specific r-tuple T1, . . . , Tr of colored increasing trees appears exactly

(
j1+···+jr

j1,...,jr

)(
k1+···+kr

k1,...,kr

)
times, where the labels of the j1 + · · ·+ jr black nodes and the k1 + · · ·+ kr white nodes are distributed
over the black and white nodes in T1, . . . , Tr in an order preserving fashion.
Of course this corresponds to a tricolored increasing tree T of size |T | = j + k + 1 with j = j1 + · · ·+ jr
black nodes and k = k1 + · · ·+ kr white nodes.
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Figure 5.2: Decomposition of a tricolored size 11 tree with root degree 4.

We introduce generating functions which are exponential in both variables z and u, where z marks the
black nodes and u marks the white nodes, f(z, u) =

∑
j,k≥0 fj,k

zjuk

j!k! for sequences fj,k and f(z, u, v) =∑
j,k,m≥0 fj,k,m

zjuk

j!k! v
m for sequences fj,k,m, where v marks the depth of the red ball.

With this setting, the total weight of all suitably tricolored increasing trees with j black and k white
nodes, where the parameter of the red node is exactly m, is given by P{Xj+k+1,j+1 = m}Tj+k+1, and
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thus its generating function is

∑
k≥0

∑
j≥0

∑
m≥0

P{Xk+j+1,j+1 = m}Tk+j+1
zjuk

j!k!
vm = N(z, u, v), (5.15)

whereas the total weight of suitably bi-colored increasing trees with j black and k white nodes is Tk+j

and its generating function is

∑
k≥0

∑
j≥0

Tk+j
zjuk

j!k!
=
∑
l≥0

Tl

l!

l∑
k=0

l!
k!(l − k)!

zkul−k = T (z + u). (5.16)

The r − 1 bi-colored trees and the tricolored tree lead to T (z + u)r−1N(z, u, v). Since the red ball
can be in the first, second, . . . , r-th subtree, we additionally get a factor r. Furthermore, according
to (2), the event that the root has out-degree r leads to a factor ϕr. Summing over r ≥ 1 leads to∑

r≥1 rϕrT (z + u)r−1N(z, u, v) = ϕ′(T (z + u))N(z, u, v).
Since the root node labelled by 1 is colored black the formal description leads now to

∂

∂z
N(z, u, v) = vϕ′(T (z + u))N(z, u, v). (5.17)

Remark 5. The fact that the depth of the red node in the subtree is one more than the depth of the red
node in the subtree leads to the additional factor v on the right hand side of (5.17). The equation (5.17)
without the additional factor v holds for all parameters depending only on the subtree of the red node.

5.3.3 Combinatorial description for several nodes

Let Xn;j1,...,jr
denote the random vector (Xn;j1 , . . . , Xn;jr

), which counts a certain parameter depending
on the labels j1, . . . , jr in a random grown increasing tree of size n.
We have r different colors c1, . . . , cr. Further we have r + 1 tones of grey g1, . . . , gr+1, where one can
think of g1 as black and gr+1 as white. Now one has to think of specifically 2r + 1 colored increasing
trees, where the coloring is as follows: for 1 ≤ i ≤ r exactly one node is colored ci. The smallest labelled
node of the r chosen nodes is colored c1 and in general the i-th smallest node is colored ci, 1 ≤ i ≤ r.
All nodes with labels smaller than the label of node colored c1 are colored black, and the all nodes with
labels bigger than the label of node colored cr are colored white. The nodes with a label between the
label of the node colored ci and the label of the node colored ci+1 are colored gi+1.

1

6

2

8

7

11 10

9

3

4

5

2

1

3

1

4 3

2

1

2

1
1

6

8

4

5

23

10 7 9

2

3

1

2

11

4 3 4

11

5

Figure 5.3: Two different decompositions of a 5-colored size 11 tree.

Let us consider such a 2r + 1 increasing tree and assume that the out-degree of the root node of T is
s ≥ 1.
We further assume that root node is colored black. Then the nodes colored c1, . . . , cr are located in the
s subtrees of the root of T ;

• At first let us assume that nodes with colors c1, . . . , cr are all in the first subtree of T . After order
preserving relabellings, each subtree T1, . . . , Tr is an increasing tree by itself. The first subtree is
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again a (2r + 1)-colored increasing tree with r nodes with colors c1, . . . , cr and j
[gi]
1 nodes colored

gi, for 1 ≤ i ≤ r + 1.

In contrast the remaining s− 1 subtrees are only (r + 1)-colored in such a way that j[gi]
l nodes are

colored gi, with 2 ≤ l ≤ s, 0 ≤ j
[gi]
l ≤ Tl and

∑r+1
i=1 j

[gi]
l = Tl.

Then such a specific s-tuple T1, . . . , Ts of colored increasing trees appears exactly(
j
[g1]
1 + · · ·+ j

[g1]
s

j
[g1]
1 , . . . , j

[g1]
s

)(
j
[g2]
1 + · · ·+ j

[g2]
s

j
[g2]
1 , . . . , j

[g2]
s

)
. . .

(
j
[gr+1]
1 + · · ·+ j

[gr+1]
s

j
[gr+1]
1 , . . . , j

[gr+1]
s

)
(5.18)

times. The labels of the j[gi]
1 + · · · + j

[gi]
r , 1 ≤ i ≤ r + 1, grey nodes in the original 2r + 1 colored

tree are distributed over the gi colored grey nodes in T1, . . . , Ts in an order preserving fashion.

Let zr+1 denote the random vector (z1, . . . , zr+1) and jr+1 the random vector (j1, . . . , jr+1). Further
we use the compact notation jr+1! = j1! . . . jr+1!. We introduce generating functions which are
exponential in all variables zi, where zi marks the i-th shade of grey gi, 1 ≤ i ≤ r + 1,

f(zr+1) =
∑

jr+1≥0

fjr+1

zjr+1
r+1

jr+1!
(5.19)

for sequences fjr+1 = fj1,...,jr+1 and

f(zr+1,vr) =
∑

jr+1≥0

∑
mr≥0

fjr+1,mr

zjr+1
r+1

jr+1!
vmr

r (5.20)

for sequences fjr+1,mr
= fj1,...,jr+1,m1,...,mr

, where vi marks the ball colored ci.

In the following we will use the notations Jr+1 =
∑r+1

k=1 jk, Jr = (J1, . . . , Jr) and r = (1, . . . , r).
With this setting, the total weight of all suitably 2r+1 colored increasing trees with ji nodes colored
gi, where the parameters of the colored nodes are exactly m1, . . . ,mr, is given by

P{XJr+1+r;J1+1 = m1, . . . , XJr+1+r;Jr+r = mr}TJr+1+r = P{XJr+1+r;Jr+r = mr}TJr+1+r, (5.21)

and thus its generating function is

N(zr+1,vr) :=
∑

jr+1≥0

∑
mr≥0

P{XJr+1+r;Jr+r = mr}TJr+1+r

zjr+1
r+1

jr+1!
vmr

r , (5.22)

whereas the total weight of suitably r + 1 colored increasing trees with colors g1, . . . , gr+1 is TJr+1

and its generating function is

T (z1 + · · ·+ zr+1) =
∑

jr+1≥0

TJr+1

zjr+1
r+1

jr+1!
. (5.23)

The s − 1 trees equipped with r + 1 colors and the 2r + 1 colored tree lead to T (z1 + · · · +
zr)r−1N(zr+1,vr). Since the 2r + 1-colored tree can be the first, second, . . . , s-th subtree, we
additionally get a factor s. The event that the root has out-degree s leads to a factor ϕs. Summing
over s ≥ 1 leads to

∑
s≥1 sϕsT (z1 + · · · + zr)s−1N(zr+1,vr) = ϕ′(T (z1 + · · · + zr))N(zr+1,vr).

Since the root is colored by g1 (black) one obtains the inhomogeneous differential equation

∂

∂z1
N(zr+1,vr) = ϕ′(T (z1 + · · ·+ zr))N(zr+1,vr) +Rr(zr+1,vr), (5.24)

where the inhomogeneous part Rr(zr+1,vr) corresponds to the cases where the r nodes colored
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c1, . . . , cr are not in the same subtree.

• Let us now consider the cases where the nodes colored c1, . . . , cr are distributed over at least two
subtrees of the root. We have to consider all different partitions of the set {j1, . . . , jr} or equivalently
all partitions of the set {1, . . . , r}, because every partition corresponds to a different distribution of
the nodes j1, . . . , jr to the subtrees of the root. We denote with Π the set containing all partitions
of {1, . . . , r} and with Πl the set of all partitions of {1, . . . , r} into l non-empty subsets. Further
for p ∈ Πl we get

p =
l⋃

i=1

pi =
l⋃

i=1

{pi,1, . . . , pi,si}, (5.25)

where |pi| = si and
∑l

i=1 si = r. Let N(zr+1,vpi
) be defined analogous to (5.22),

N(zr+1,vpi
) = N(zr+1, vpi,1 , . . . , vpi,si

). (5.26)

Now we slightly overload the notations Jr+1 =
∑r+1

k=1 jk and Jr = (J1, . . . , Jr) by using Jpi,t
=∑pi,t

k=1 jk and Jpi
= (Jpi,1 , . . . , Jpi,si

),

N(zr+1,vpi
) :=

∑
jr+1≥0

∑
mpi

≥0

P{XJr+1+si;Jpi
+si

= mr}TJr+1+si

zjr+1
r+1

jr+1!
v

mpi
pi , (5.27)

where si = (1, 2 . . . , si) and mpi
= (mpi,1 , . . . ,mpi,si

). The definition (5.27) is a generalization of
(5.22) because if all nodes {j1, . . . , jr} are in the same subtree, then p = {1, 2, . . . , r} and

N(zr+1,vp) := N(zr+1,vr). (5.28)

Thus we can explicitly specify the right hand side of (5.24):

ϕ′(T (z1+· · ·+zr))N(zr+1,vr)+Rr(zr+1,vr) =
r∑

l=1

∑
p∈Πl

p=∪l
i=1pi

l!ϕ(l)
(
T (z1+· · ·+zr)

) l∏
i=1

N(zr+1,vpi
).

(5.29)
Thus the inhomogeneous part Rr(zr+1,vr) is given by

Rr(zr+1,vr) =
r∑

l=2

∑
p∈Πl

p=∪l
i=1pi

l!ϕ(l)
(
T (z1 + · · ·+ zr)

) l∏
i=1

N(zr+1,vpi). (5.30)

Remark 6. Although the differential equation for N(zr+1,vr) is quite involved, it can be used for
successive calculations of solutions for r = 2, 3, . . . . At least in some cases it should be possible to guess
a general solution for N(zr+1,vr), which should be proved by induction with respect to r.

Remark 7. It seems to be more difficult to get the inhomogeneous part Rr(zr+1,vr), (5.30), of the
differential equation by setting up a recurrence for P{XJr+1+r;Jr+r = mr}, because the recurrence turns
out to be more and more involved.

5.3.4 Specific description of recursive trees

For some grown simple families of trees like recursive trees there are alternatives to the description by
the recurrence (5.8). When considering a random recursive tree of size n for n ≥ 2 we can decompose
the tree into the subtree rooted at the vertex labelled 2 and the rest of the tree, which is then rooted at
the root of the original tree.
It is known, see Smythe and Mahmoud [52] and Dobrow and Fill [17], or also [46] that the cardinality Jn

of the subtree rooted at the vertex labelled 2 is uniformly distributed on {1, . . . , n−1} for n ≥ 2. Further
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Figure 5.4: Decomposition of a size 11 recursive tree with J11 = 5.

it holds that the subtree rooted at the vertex labelled 2 is again a random recursive tree of cardinality
Jn, which is independent of rest of the tree, which is also a random recursive tree of size n − Jn. By
conditioning on the value of Jn (the size of the subtree rooted at node 2) we get for n ≥ j ≥ 3 the
following recurrence for an arbitrary label-based parameter.

TnP{Xn;j = m} = 2
n−1∑
k=2

TkTn−k

min{j−1,k}∑
i=2

P{Xk;i = m}
(
j − 3
i− 2

)(
n− j

k − i

)
. (5.31)

5.3.5 Specific description of plane oriented recursive trees

When considering a random plane oriented recursive tree of size n we can decompose the tree into the
first subtree of the root with cardinality Jn and the rest of the tree with cardinality n−Jn, which is then
rooted at the root of the original tree.
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Figure 5.5: Decomposition of a size 11 PORT with J11 = 4.

P{Jn = m} =
(n− 1)!
Tn

[zn−1vm]
∂

∂z
Aj(z, v) =

TmTn−m(n− 1)!
Tnm!(n−m− 1)!

, (5.32)

where Tn is given by (10) with c1 = 2, c2 = −1 and ϕ0 = 1:

Tn = 2n−1(n− 1)!
(
n− 3

2

n− 1

)
. (5.33)

Remark 8. These alternative recursive descriptions can also be used for other parameters which are not
label-based.

Remark 9. Recently there has been some interest in a continuous time increasing tree. The setting in
[70] for the continuous time increasing trees is the following. Given a weight function w : N → R+, let
N(t) be a Markovian pure birth process with N(1) = 1 and birth rates

P{Nt+∆t = n+ 1|Nt = n} = w(n)∆t + o(∆t), (5.34)

Under several mild conditions on w(k) (see [70]) it is assured that the Markov chain does not blow up in
finite time.
The discrete random variable Xn,j has a continuous analogue, the random variable ξt,j , which counts the
size of a certain variety of the node labelled j at the time t, t ≥ 1, in a continuous time random increasing
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tree. If we inspect only at the stopping times (τn)n∈N, where τn = inf{t ≥ 1 : Nt = n}, we have

ξτn,j
(d)
= Xn,j . (5.35)

Thus we have a generalization of the random variables studied before. It is possible to use results of
the discrete time model for linear weight functions w(n) (“grown simple families of increasing trees”) to
obtain results for the continuous time case for linear weight functions by using the basic relation

P{ξt,j = m} =
∞∑

n=1

P{ξt,j = m|Nt = n}P{Nt = n} =
∞∑

n=1

P{Xn,j = m}P{Nt = n}. (5.36)

Furthermore it is obvious that the limit laws must be the same. It is now obvious how we can use explicit
formulæ for P{Xn,j = m} to derive results for ξt,j because it is well known that

P{Nt = n} = pt,n =
n∑

i=1

A(i)
n e−w(i)t for n ∈ N, where A(i)

n =

n−1∏
k=1

w(k)

n∏
k=1
k 6=i

(
w(k)− w(i)

) , (5.37)

and w(i) 6= w(j) for i 6= j.



CHAPTER 5. LABEL-BASED PARAMETERS IN INCREASING TREES 78

5.4 Subtree size of node j

Let Xn,j be the size of the subtree rooted node j in a random grown simple increasing tree of size n, with
Xn,n = 1. The subtree size of the root in any random grown simple increasing tree of size n equals n, so
we get

∂

∂u
M(u, v) =

∑
k≥0

∑
m≥0

P{Xk+1,1 = m}Tk+1
uk

k!
vm =

∑
k≥0

Tk+1
uk

k!
vk+1 = vT ′(uv) = vϕ

(
T (uv)

)
. (5.38)

5.4.1 Results for the subtree size of node j

Theorem 17. The probabilities P{Dn,j = m}, which give the probability that the node with label j in a
randomly chosen size-n tree of a very simple family of increasing trees as given by Lemma 1 (Chapter 1),
has exactly m descendants, are, for m ≥ 1 given by the following formula:

P{Xn,j = m} =

(j−1+
c2
c1

j−1

)(m−1+
c2
c1

m−1

)(
n−m−1

j−2

)
(
n−1
j−1

)(n−1+
c2
c1

n−1

) . (5.39)

The s-th factorial moments E
(
(Xn,j)s

)
=
∑

m≥0m
sP{Xn,j = m} are for s ≥ 1 given by the following

formula:

E
(
(Xn,j)s

)
= s!

(n−j
s

)(
s+

c2
c1

s

)(
j−1+

c2
c1

+s
s

) +

(
n−j
s−1

)(s−1+
c2
c1

s−1

)
(j−1+

c2
c1

+s−1

s−1

)
 . (5.40)

In particular we obtain the following results for the expectation E(Xn,j) and the variance V(Xn,j):

E(Xn,j) =
(c1 + c2)n− c2(j − 1)

c1j + c2
, (5.41)

V(Xn,j) =
c1(c1 + c2)(c1n+ c2)(j − 1)(n− j)

(c1j + c2)2(c1j + c1 + c2)
. (5.42)

Theorem 18. The limiting distribution behavior of the random variable Xn,j, which counts the number
of descendants of the node with label j in a randomly chosen size-n tree of a grown simple family of
increasing trees as given by Lemma 1, is, for n→∞ and depending on the growth of j, characterized as
follows.

• The region for j fixed. The normalized random variable Xn,j

n is asymptotically Beta-distributed,
DXn,j

n

(d)−−→ β( c2
c1

+ 1, j − 1), i. e. Xn,j

n

(d)−−→ X, where the s-th moments of X are for s ≥ 0 given by

E(Xs) =

(
c2
c1

+ 1
)s(

c2
c1

+ j
)s .

• The region for small j: j → ∞ such that j = o(n). The normalized random variable j
nXn,j is

asymptotically Gamma-distributed, j
nXn,j

(d)−−→ γ( c2
c1

+ 1, 1), i. e. j
nXn,j

(d)−−→ X, where the s-th
moments of X are for s ≥ 0 given by

E(Xs) =
(c2
c1

+ 1
)s
.

• The central region for j: j → ∞ such that j ∼ ρn, with 0 < ρ < 1. The shifted random variable

Xn,j − 1 is asymptotically negative binomial-distributed, Xn,j − 1
(d)−−→ NegBin( c2

c1
+ 1, ρ), i. e.
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Xn,j − 1
(d)−−→ X, where the probability mass function of X is given by

P{X = m} =
(
m+ c2

c1

m

)
ρ

c2
c1

+1(1− ρ)m, for m ≥ 0.

• The region for large j: j →∞ such that l := n− j = o(n). The random variable Xn,j converges to

a random variable, which has all its mass concentrated at 1, i. e. Xn,j
(d)−−→ X, with

P{X = 1} = 1.

From Theorem 5.3 and Corollary 6 we can easily compute explicit formulæ for the probabilities P{Xn,j =
m} for grown simple increasing tree families, i. e. increasing tree families, which can be constructed via
an insertion process. We will figure out only the Case C and omit the analogous computations for Case
A and Case B.
Using Lemma 1 and equation (9) we get

ϕ
(
T (z)

)
=

ϕ0

(1− c1z)
c2
c1

+1
,

and thus from equation (5.3):

N(z, u, v) =
vϕ0(1− c1u)

c2
c1

+1

(1− c1uv)
c2
c1

+1(1− c1(z + u))
c2
c1

+1
=

vϕ0

(1− c1uv)
c2
c1

+1(1− c1z
1−c1u

) c2
c1

+1
. (5.43)

Extracting coefficients from (5.43) gives then by using (5.3) and (10):

P{Xk+j,j = m} =
(j − 1)!k!
Tk+j

[zj−1ukvm]N(z, u, v)

=
(j − 1)!k!ϕ0

(k + j − 1)!ϕ0c
k+j−1
1

(k+j−1+
c2
c1

k+j−1

) [zj−1ukvm−1]
1

(1− c1uv)
c2
c1

+1(1− c1z
1−c1u

) c2
c1

+1

=

(j−1+
c2
c1

j−1

)
ck1
(
k+j−1

j−1

)(k+j−1+
c2
c1

k+j−1

) [ukvm−1]
1

(1− c1uv)
c2
c1

+1(1− c1u)j−1

=

(j−1+
c2
c1

j−1

)(m−1+
c2
c1

m−1

)
ck−m+1
1

(
k+j−1

j−1

)(k+j−1+
c2
c1

k+j−1

) [uk]
um−1

(1− c1u)j−1

=

(j−1+
c2
c1

j−1

)(m−1+
c2
c1

m−1

)(
k−m+j−1

j−2

)
(
k+j−1

j−1

)(k+j−1+
c2
c1

k+j−1

) . (5.44)

It turns out that this formula (5.44) is indeed valid for all three cases of very simple families of increasing
trees. Thus we obtain the first part of Theorem 17 after the substitution n := k + j.

5.4.2 An exact formula for the factorial moments

To obtain the s-th factorial moments of Dn,j we use (6), we differentiate N(z, u, v) s times w. r. t. v and
evaluate it at v = 1. For Case C this gives

EvD
s
vN(z, u, v) =

ϕ0c
s
1u

s
(

c2
c1

+ 1)s

(1− c1u)
c2
c1

+s+1(1− c1z
1−c1u

) c2
c1

+1
+

sϕ0c
s−1
1 us−1

(
c2
c1

+ 1)s−1

(1− c1u)
c2
c1

+s(1− c1z
1−c1u

) c2
c1

+1
. (5.45)
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Extracting coefficients of (5.45) leads then by using (10) to

E
(
(Xk+j,j)s

)
=
∑
m≥0

msP{Dk+j,j = m} =
(j − 1)!k!
Tk+j

[zj−1uk]EvD
s
vN(z, u, v)

=
1

ϕ0c
k+j−1
1

(
k+j−1

j−1

)(k+j−1+
c2
c1

k+j−1

)[ϕ0c
s+j−1
1

(c2
c1

+ 1
)s(j − 1 + c2

c1

j − 1

)
[uk]

us

(1− c1u)
c2
c1

+s+j

+ sϕ0c
s+j−2
1

(c2
c1

+ 1
)s−1

(
j − 1 + c2

c1

j − 1

)
[uk]

us−1

(1− c1u)
c2
c1

+s+j−1

]

=

(j−1+
c2
c1

j−1

)
(
k+j−1

j−1

)(k+j−1+
c2
c1

k+j−1

)[(c2c1 + 1
)s(k + j + c2

c1
− 1

k − s

)
+ s
(c2
c1

+ 1
)s−1

(
k + j + c2

c1
− 1

k − s+ 1

)]

=
s!
(j−1+

c2
c1

j−1

)
(
k+j−1

j−1

)(k+j−1+
c2
c1

k+j−1

)[(s+ c2
c1

s

)(
k + j − 1 + c2

c1

k − s

)
+
(
s− 1 + c2

c1

s− 1

)(
k + j − 1 + c2

c1

k − s+ 1

)]
,

which can be slightly simplified and we get

E
(
(Xk+j,j)s

)
= s!

 (
k
s

)(
s+

c2
c1

s

)(
j−1+

c2
c1

+s
s

) +

(
k

s−1

)(s−1+
c2
c1

s−1

)
(j−1+

c2
c1

+s−1

s−1

)
 . (5.46)

Since formula (5.46) is valid also for Case A and Case B, the second part of Theorem 17 follows after
substituting n := k + j.

5.4.3 The case j fixed

We will show via the method of moments that Xn,j/n
(d)−−→ β( c2

c1
+ 1, j − 1), where β(a, b) denotes the

Beta-distribution with parameters a and b. If X is a Beta-distributed random variable, X
(d)
= β(a, b),

then the s-th moment of X is given by

E(Xs) =
s−1∏
k=0

a+ k

a+ b+ k
=

as

(a+ b)s
. (5.47)

Using Stirling’s formula for the Gamma function

Γ(z) =
(z
e

)z
√

2π√
z

(
1 +

1
12z

+
1

288z2
+O(

1
z3

)
)
, (5.48)

we obtain for j and s fixed: (
n− j

s

)
=
ns

s!
(
1 +O(n−1)

)
.

Thus we get from equation (5.40) the following asymptotic expansion of the s-th factorial moment of
Xn,j :

E
(
(Xn,j)s

)
=

(
s+

c2
c1

s

)(
j−1+

c2
c1

+s
s

)ns
(
1 +O(n−1)

)
.

The ordinary moments of Xn,j can be expressed by the factorial moments of Xn,j , where the Stirling
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numbers of the second kind
{

n
k

}
are appearing. We obtain then

E
(
(Xn,j)s

)
= E

(
(Xn,j)s

)
+

s−1∑
k=1

{
s

k

}
E
(
(Xn,j)k

)
=

(
s+

c2
c1

s

)(
j−1+

c2
c1

+s
s

)ns
(
1 +O(n−1)

)
+O(ns−1) =

(
s+

c2
c1

s

)(
j−1+

c2
c1

+s
s

)ns
(
1 +O(n−1)

)
.

(5.49)

Thus, for n→∞ and j fixed, the s-th moments of the normalized random variable Xn,j/n converge for
all integers s ≥ 1 to the s-th moments of a Beta-distributed random variable:

E
((Xn,j

n

)s)→ (
s+

c2
c1

s

)(
j−1+

c2
c1

+s
s

) =

(
c2
c1

+ 1
)s(

c2
c1

+ j
)s , (5.50)

which shows together with the Theorem of Fréchet and Shohat (see e. g. [49]) the first part of Theorem 18.

5.4.4 The case j →∞ such that j = o(n)

For this region of j we consider the normalized random variable jXn,j/n and will show via the method

of moments that jXn,j/n
(d)−−→ γ( c2

c1
+ 1, 1), where γ(a, λ) denotes the Gamma-distribution with shape

parameter a and scale parameter λ. If X is a Gamma-distributed random variable, X
(d)
= γ(a, λ), then

the s-th moment of X is given by

E(Xs) =
1
λs

s−1∏
k=0

(a+ k) =
as

λs
. (5.51)

Again by using Stirling’s formula (5.48) for the Gamma function we obtain for s fixed:(
n− j

s

)
=
ns

s!

(
1 +O

( j
n

))
, and

(
j − 1 + c2

c1
+ s

s

)
=
js

s!

(
1 +O

(1
j

))
,

and thus from equation (5.40) the following expansion of the s-th factorial moments of Xn,j :

E
(
(Xn,j)s

)
= s!

(
s+ c2

c1

s

)(n
j

)s(1 +O
(1
j

)
+O

( j
n

))
. (5.52)

Again, by expressing the ordinary moments of Xn,j by its factorial moments, we obtain

E
(
(Xn,j)s

)
= s!

(
s+ c2

c1

s

)(n
j

)s(1 +O
(1
j

)
+O

( j
n

))
. (5.53)

Thus, for n → ∞ and j → ∞ such that j = o(n), the s-th moments of the normalized random variable
jXn,j/n converge for all integers s ≥ 1 to the s-th moments of a Gamma-distributed random variable:

E
(( j
n
Xn,j

)s)→ s!
(
s+ c2

c1

s

)
=
(c2
c1

+ 1
)s
. (5.54)

This proves the second part of Theorem 18.

5.4.5 The case j →∞ such that j ∼ ρn

For the central region of j we compute an asymptotic equivalent of the probabilities P{Xn,j = m} under
the assumption that j ∼ ρn with 0 < ρ < 1 and show by convergence of the probability mass function
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that Xn,j − 1
(d)−−→ NegBin( c2

c1
+ 1, ρ), where NegBin(r, p) denotes the negative binomial distribution with

parameters r and p. If X is a negative binomial-distributed random variable, X
(d)
= NegBin(r, p), then

the probability mass function of X is given by

P{X = m} =
(
m+ r − 1

m

)
pr(1− p)m, for m ≥ 0. (5.55)

We start with the following form of P{Xn,j = m} equivalent to (5.39):

P{Xn,j = m} =
(j − 1)

(j−1+
c2
c1

j−1

)(
n−j
m−1

)(m−1+
c2
c1

m−1

)
m
(n−1+

c2
c1

n−1

)(
n−1
m

) , (5.56)

and apply Stirling’s formula (5.48). This leads to

P{Xn,j = m} =
(
m− 1 + c2

c1

m− 1

)( j
n

) c2
c1

+1(1− j

n

)m−1
(
1 +O

( 1
n

)
+O

(1
j

)
+O

( 1
n− j

))
. (5.57)

Thus, for n → ∞ and j → ∞ such that j ∼ ρn with 0 < ρ < 1, the probabilities P{Xn,j − 1 = m} =
P{Xn,j = m+ 1} of the shifted random variable Xn,j − 1 converge for all m ≥ 0 to the probabilities of a
negative binomial-distribution:

P{Xn,j − 1 = m} →
(
m+ c2

c1

m

)
ρ

c2
c1

+1(1− ρ)m. (5.58)

Thus the third part ot Theorem 18 follows.

5.4.6 The case l := n− j = o(n)

Substituting l := n− j, the probabilities P{Xn,j = m} given by (5.56) can be written as follows:

P{Xn,j = m} =

(n−l−1+
c2
c1

n−l−1

)
(n−1+

c2
c1

n−1

) (
l+1
m

)(
n−1
m

) n− l − 1
l + 1

(
m− 1 + c2

c1

m− 1

)
. (5.59)

In the sequel we want to obtain a suitable bound for the probabilities P{Xn,j = m}, which holds uniformly
for all m ≥ 2. Since we are only interested in the case l := n − j = o(n) we make in the following
computations the assumptions l ≤ n

3 and n ≥ 3.
First we consider for 2 ≤ m ≤ l + 1:(

l+1
m

)(
n−1
m

) =
(l + 1)l

(n− 1)(n− 2)

m−2∏
k=1

l − k

n− 2− k
. (5.60)

Using the assumptions l ≤ n
3 and n ≥ 3 we further get the bounds

(l + 1)l
(n− 1)(n− 2)

≤ 9 l2

n2
, and

l − k

n− 2− k
≤ l

n
, for 1 ≤ k ≤ l. (5.61)

Combining (5.60) and (5.61) leads to the estimate(
l+1
m

)(
n−1
m

) ≤ 9
( l
n

)m
, (5.62)

which holds for all m ≥ 2, since
(
l+1
m

)
= 0 for m > l + 1.
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For the following estimates we use the bound | c2
c1
| ≤ 1, which follows from the characterization of very

simple families of increasing trees as given by Lemma 1. Together with l ≤ n
3 we get(n−l−1+

c2
c1

n−l−1

)
(n−1+

c2
c1

n−1

) =
(n− 1)(n− 2) · · · (n− l)

(n− 1 + c2
c1

)(n− 2 + c2
c1

) · · · (n− l + c2
c1

)
≤ (n− 1)(n− 2) · · · (n− l)

(n− 2)(n− 3) · · · (n− l − 1)

=
n− 1

n− l − 1
≤ 2.

(5.63)

Analogously we compute:(
m− 1 + c2

c1

m− 1

)
=
(
m− 1 +

c2
c1

) (m− 2 + c2
c1

)(m− 3 + c2
c1

) · · · (1 + c2
c1

)
(m− 1)(m− 2) · · · 2

≤ m− 1 +
c2
c1
≤ m. (5.64)

Together with the trivial bound
n− l − 1
l + 1

≤ n

l
,

we finally get from (5.59) by using (5.62), (5.63) and (5.64) the following estimate, which holds uniformly
for all m ≥ 2:

P{Xn,j = m} ≤ 18m
( l
n

)m−1
. (5.65)

Equation (5.65) leads then (for l ≤ n
3 ) to the bound

∑
m≥2

P{Xn,j = m} ≤ 18
∑
m≥2

m
( l
n

)m−1 =
18l
n

2− l
n

(1− l
n )2

≤
36 l

n

(1− l
n )2

≤ 81 l
n
. (5.66)

Thus, for n→∞ and j →∞ such that l := n− j = o(n), we have∑
m≥2

P{Xn,j = m} → 0, which implies P{Xn,j = 1} → 1.

Thus also the last part of Theorem 18 is shown.

5.4.7 Auxiliary results concerning subtree sizes

Let πn;m1,...,mj
denote the probability that in a random plane oriented recursive tree the first subtree has

size m1, the second m2, and so on. Let Mj =
∑j

l=1ml. Hence by definition it holds for generalized plane
oriented recursive trees

Tnπn;m1,...,mj
=
∑

r≥j+1

ϕr

∑
kj+1 + · · ·+ kr = n−Mj − 1,

kj+1, . . . , kr ≥ 1

Tm1 . . . Tmj
Tkj+1 · · ·Tkr

(
n− 1

m1, . . . ,mj , kj+1, . . . , kr

)

+ [[n = m1 + · · ·+mj + 1]]ϕjTm1 . . . Tmj

(
n− 1

m1, . . . ,mj

)
.

(5.67)

By defining

Aj(z, v1, . . . , vj) =
∑

n≥j+1

∑
m1,...,mj≥1

Tnπn;m1,...,mj

zn

n!
vm1
1 . . . v

mj

j , (5.68)

we get
∂

∂z
Aj(z, v1, . . . , vj) =

ϕ
(
T (z)

)
−
∑j−1

k=0 ϕjT (z)k

T (z)j

j∏
l=1

T (zvl). (5.69)
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For PORTs one has ϕ(t) = 1/(1− t), ϕ(T (z)) = 1/(1− T (z)) = T ′(z) and consequently

∂

∂z
Aj(z, v1, . . . , vj) =

1√
1− 2z

j∏
l=1

(1−
√

1− 2zvl). (5.70)

Thus for j = 1 one obtains πn,m = P{Jn = m} be extracting coefficients from ∂
∂zAj(z, v).

P{Jn = m} =
(n− 1)!
Tn

[zn−1vm]
∂

∂z
Aj(z, v) =

TmTn−m(n− 1)!
Tnm!(n−m− 1)!

, (5.71)

where Tn = 2n−1(n− 1)!
(
n− 3

2
n−1

)
= (2n− 3)!!.

Remark 10. A simple application of Stirling’s formula shows the probabilities P{Jn = m} converge
without convergence of any integral moment. This was already pointed out by Hwang. A related phe-
nomena occurs for the probabilities P{X [R]

n = m} for all grown simple families of increasing trees. Here
X

[R]
n denotes the random variable counting the subtree size of a randomly chosen node in a grown simple

increasing tree of size n.

Theorem 19. The probabilities P{X [R]
n = m} are for all grown simple families of increasing trees given

by the following explicit formula.

P{X [R]
n = m} =

[[m = n]]
n

+ [[m < n]]

(
c2
c1

+ 1
)(

c2
c1

+ n
)

n(m+ 1 + c2
c1

)(m+ c2
c1

)
. (5.72)

The limit distribution of X [R]
∞ = X [R] is given by

P{X [R] = m} =
c2
c1

+ 1
(m+ 1 + c2

c1
)(m+ c2

c1
)
, (5.73)

where X [R]
n converges without convergence of any integral moment.

By using the explicit formula for the probabilities P{Xn,j = m} as given in [46]

P{Xn,j = m} =

(j−1+
c2
c1

j−1

)(m−1+
c2
c1

m−1

)(
n−m−1

j−2

)
(
n−1
j−1

)(n−1+
c2
c1

n−1

) , (5.74)

we obtain the probabilities P{X [R]
n = m} by summation.

P{X [R]
n = m} =

[[m = n]]
n

+
1
n

n∑
j=2

P{Xn,j = m} =
[[m = n]]

n
+

1
n

n−m+1∑
j=2

P{Xn,j = m}. (5.75)

We get further

n−m+1∑
j=2

P{Xn,j = m} =

(m−1+
c2
c1

m−1

)
(n−1+

c2
c1

n−1

) n−m+1∑
j=2

(j−1+
c2
c1

j−1

)(
n−m−1

j−2

)(
n−1
j−1

) =

(m−1+
c2
c1

m−1

)
(n−1+

c2
c1

n−1

) n−m−1∑
j=0

(j+1+
c2
c1

j+1

)(
n−m−1

j

)(
n−1
j+1

)
=

(m−1+
c2
c1

m−1

)
(n−1+

c2
c1

n−1

) n−m−1∑
j=0

(j + 1)
(n− 1)

(j+1+
c2
c1

j+1

)(
n−2−j
m−1

)(
n−2
m−1

)
=

(m−1+
c2
c1

m−1

)
(n− 1)

(n−1+
c2
c1

n−1

)(
n−2
m−1

) n−m−1∑
j=0

(j + 1)
(
j + 1 + c2

c1

j + 1

)(
n− 2− j

m− 1

)
.

(5.76)
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The arising sum can be simplified as follows

n−m−1∑
j=0

(j + 1)
(
n− 2− j

m− 1

)(
j + 1 + c2

c1

j + 1

)
=
(c2
c1

+ 1
) n−m−1∑

j=0

(−1)j

(
n− 2− j

m− 1

)(
− c2

c1
− 2
j

)

=
(c2
c1

+ 1
)
(−1)m+m−3

(
− c2

c1
− 2−m

n−m− 1

)
=
(c2
c1

+ 1
)
(−1)m+m−3(−1)n−m−1

(
n+ c2

c1

n−m− 1

)
=
(c2
c1

+ 1
)( n+ c2

c1

n−m− 1

)
. (5.77)

Thus we finally get

P{X [R]
n = m} =

[[m = n]]
n

+

(m−1+
c2
c1

m−1

)(
c2
c1

+ 1
)( n+

c2
c1

n−m−1

)
n(n− 1)

(n−1+
c2
c1

n−1

)(
n−2
m−1

) =
[[m = n]]

n
+ [[m < n]]

(
c2
c1

+ 1
)(

c2
c1

+ n
)

n(m+ 1 + c2
c1

)(m+ c2
c1

)
.

(5.78)
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5.5 Degree of node j

Let Xn,j count the degree of node j in a random increasing tree of size n. From the work of Bergeron,
Flajolet and Salvy [6] we get

M(z, v) =
∫ z

0

ϕ
(
vT (t)

)
dt, (5.79)

and thus
∂

∂u
M(u, v) = ϕ

(
vT (u)

)
. (5.80)

Hence Theorem 16 gives

N(z, u, v) =
ϕ
(
vT (u)

)
ϕ
(
T (z + u)

)
ϕ
(
T (u)

) . (5.81)

Using the characterization of the degree-weight generating function in Lemma 1 we easily get

ϕ(vT (u)) =



ϕ0

(1− c1u)v
= ϕ0

∑
k≥0

vk

k!
logk

( 1
1− c1u

)
, Case A,

ϕ0

(
1 + v

( 1

(1− (d− 1)c2u)
1

d−1
− 1
))d

, Case B,

ϕ0(
1 + v

(
1

(1−c1u)
c2
c1
− 1
)− c1

c2
−1
) , Case C.

(5.82)

5.5.1 Results for the degree of node j

Theorem 20. The probabilities P{Xn,j = m}, which give the probability that the node with label j in
a randomly chosen size-n tree of a grown simple family of increasing trees as given by Lemma 1, has
outdegree m, are, for m ≥ 1, given by the following formula:

P{Xn,j = m} =



1(
n−1
j−1

) n−j∑
k=m

(
n− k − 2
j − 2

)[ k
m

]
k!

, Case A,(
d

m

) m∑
k=0

(
m

k

)
(−1)m−k

Γ(n− 1 + k 1
d−1 )Γ(j + 1

d−1 )

Γ(j − 1 + k 1
d−1 )Γ(n+ 1

d−1 )
, Case B,(

m− 2− c1
c2

m

) m∑
k=0

(
m

k

)
(−1)k

Γ(n− 1 + k c2
c1

)Γ(j + c2
c1

)
Γ(j − 1 + k c2

c1
)Γ(n+ c2

c1
)
, Case C.

(5.83)

The s-th factorial moments E
(
(Xn,j)s

)
=
∑

m≥0m
sP{Xn,j = m} are for s ≥ 1 given by the following

formula:

E(Xs
n,j) =



s!(
n−1
j−1

) n−j∑
l=0

(
n− l − 1
j − 1

)[l
s

]
l!
, Case A,

ds
( 1

d−1+j−1

j−1

)
(n+ s

d−1 − 2)n−j(
n−1
j−1

)(n−1+ 1
d−1

n−1

)
(n− j)!

, Case B,

Γ(s− 1− c1
c2

)
Γ(−1− c1

c2
)

s∑
k=0

(
s

k

)
(−1)k

Γ(n− c2
c1

(s− 1− k))Γ(j + c2
c1

)
Γ(j − c2

c1
(s− 1− k))Γ(n+ c2

c1
)
, Case C.

(5.84)

Theorem 21. The limiting distribution behavior of the random variable Xn,j, which counts the outdegree
of the node with label j in a randomly chosen size-n tree of a grown simple family of increasing trees of
Case A as given by Lemma 1, is, for n→∞ and depending on the growth of j:
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• The region j = o(n). The centralized and normalized random variable X∗
n,j is asymptotically gaus-

sian distributed,

X∗
n,j =

Xn,j − (log n− log j)√
log n− log j

→ N (0, 1). (5.85)

• The region j: j → ∞ such that j = ρn. The random variable Xn,j is asymptotically poisson
distributed with parameter λ = − log ρ.

Xn,j
(d)−−→ Xj , P{Xj = m} =

ρ(− log ρ)m

m!
. (5.86)

• The region j: l := n− j = o(n). P{Xn,j = 0} → 1.

Theorem 22. The limiting distribution behavior of the random variable Xn,j in a randomly chosen size-
n tree of a grown simple family of increasing trees of Case B as given by Lemma 1, is, for n → ∞ and
depending on the growth of j

• The regions for j fixed and small j with j →∞ such that j = o(n): P{Xn,j = d} → 1.

• The region j: j →∞ such that j = ρn.

Xn,j
(d)−−→ Xj , P{Xj = m} =

(
d

m

)
ρ1+ 1

d−1
(
ρ−

1
d−1 − 1

)m
. (5.87)

• The region j with l := n− j = o(n): P{Xn,j = 0} → 1.

Theorem 23. The limiting distribution behavior of the random variable Xn,j in a randomly chosen size-
n tree of a grown simple family of increasing trees of Case C as given by Lemma 1, is, for n → ∞ and
depending on the growth of j

• The region for j fixed. For general c1 and c2 we have

n
c2
c1Xn,j

(d)−−→ Xj , E(Xs
j ) =

Γ(s− 1− c1
c2

)Γ(j + c2
c1

)

Γ(−1− c1
c2

)Γ(j − (s−1)c2
c1 )

. (5.88)

The density fj(x) of Xj is given by

fj(x) =
Γ(j + c2

c1
)

Γ(1 + c2
c1

)Γ(j − 1)

∫ 1

0

t2
c2
c1 (1− t)j−2f1

(
xt

c2
c1
)
dt dx, (5.89)

where

f1(x) =
−Γ( c2

c1
)x−2− c1

c2

Γ(−1− c1
c2

)π

∫ ∞

0

e−(r
− c1

c2 )r−
c1
c2
−1e−xr cos(

c2
c1

π) sin
(
xr sin(−c2

c1
π)
)
dr. (5.90)

For plane oriented recursive trees (c1 = 2, c2 = −1) we get by specialization the following result.
For j = 1, Xn,1 is asymptotically Rayleigh distributed with parameter σ =

√
2.

n
c2
c1Xn,1

(d)−−→ X1, fX1(x) =
x

2
e−

x2
2 . (5.91)

For j > 1 we get the following

n−
1
2Xn,j

(d)−−→ Xj , fXj (x) =
2j − 3

22j−3(j − 2)!

∫ ∞

x

(t− x)2j−4e−
t2
4 dt. (5.92)
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For j ≥ 1 the moments of Xj are given by

E(Xs
j ) =

(2j − 2)!2ss!Γ(j + s
2 )

(j − 1)!(s+ 2j − 2)!
. (5.93)

• The region small j: j → ∞ such that j = o(n). n
c2
c1Xn, j is asymptotically Gamma-distributed

Xj
(d)−−→ γ(a, λ), with parameter a = −1− c1

c2
and λ = 1, where the moments of Xj are given by

E(Xs
j ) =

as

λs
= (−c1

c2
− 1)s =

Γ(s− 1− c1
c2

)
Γ(−1− c1

c2
)
. (5.94)

• The region j: j →∞ such that j = ρn. We have a negative binomial distribution NegBin(r, p) with
parameters r = −1− c1

c2
and p = ρ−

c2
c1 :

Xn,j
(d)−−→ Xj , P{Xj = m} =

(
m− 2− c1

c2

m

)
ρ1+

c2
c1
(
1− ρ−

c2
c1
)m
. (5.95)

• The region j: l := n− j = o(n). P{Xn,j = 0} → 1.

5.5.2 An exact formula for the probabilities

From Proposition 5.81 we can easily compute explicit formulæ for the probabilities P{Xn,j = m} for
grown simple families of increasing trees, i. e. increasing tree families, which can be constructed via an
insertion process. We will figure out Case A and Case B, Case C follows from an analogous computation.
We observe that

N(z, u, v) =



ϕ0

(1− c1u)v(1− c1z
1−c1u )

, Case A,

ϕ0

(
1 + v

(
1

(1−(d−1)c2u)
1

d−1
− 1
))d

(
1− (d−1)c2z

1−(d−1)c2u

) d
d−1

, Case B,

ϕ0(
1 + v

(
1

(1−c1u)
c2
c1
− 1
))− c1

c2
−1(

1− c1z
1−c1u

) c2
c1

+1
, Case C.

(5.96)

For Case A we obtain for the probability

P{Xn,j = m} =
1

cn−1
1

(
n−1
j−1

) [un−jvm]
cj−1
1

(1− c1u)v+j−1

=
1(

n−1
j−1

) n−j∑
k=0

[un−j−k]
1

(1− c1u)j−1
[ukvm]

cj−1
1

(1− c1u)v+j−1
,

(5.97)

which leads with the generating function identity for the first order Stirling numbers

∑
n≥0

m∑
m=0

[
n

m

]
zn

n!
vm =

1
(1− z)v

(5.98)
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to the desired result. For Case B we proceed as follows.

P{Xn,j = m} =

( 1
d−1+j−1

j−1

)
cn−j
1

(
n−1
j−1

)(n−1+ 1
d−1

n−1

) [un−jvm]

(
1 + v

(
1

(1−(d−1)c2u)
1

d−1
− 1
))d

(1− (d− 1)c2u)j−1

=

( 1
d−1+j−1

j−1

)(
d
m

)
cn−j
1

(
n−1
j−1

)(n−1+ 1
d−1

n−1

) [un−j ]
m∑

k=0

(
m

k

)
(−1)m−k

(1− (d− 1)c2u)j−1+ k
d−1

=

( 1
d−1+j−1

j−1

)(
d
m

)
(
n−1
j−1

)(n−1+ 1
d−1

n−1

) m∑
k=0

(
m

k

)
(−1)m−k

(
n− 2 + k

d−1

n− j

)

=
(
d

m

) m∑
k=0

(
m

k

)
(−1)m−k

Γ(n− 1 + k 1
d−1 )Γ(j + 1

d−1 )

Γ(j − 1 + k 1
d−1 )Γ(n+ 1

d−1 )
.

(5.99)

An analogous computation to Case B leads to Case C.

5.5.3 An exact formula for the factorial moments

We only present the calculations for Case C, the other cases are completely analogous. To obtain the
s-th factorial moments of Xn,j we use (5.81), but differentiate s times w. r. t. v and evaluate it at v = 1.
For Case C this gives

EvD
s
vN(z, u, v) =

ϕ0(− c1
c2
− 1)s(1− (1− c1u)

− c2
c1 )s

(1− c1u)
1− c2

c1
(s−1)

(
1− c1z

1−c1u

) c2
c1

+1
. (5.100)

Extracting coefficients of (5.100) leads then by using (10) to

E
(
(Xn,j)s

)
=

(j − 1)!(n− j)!
Tn

[zj−1un−j ]EvD
s
vN(z, u, v)

=
(− c1

c2
− 1)sϕ0c

j−1
1

(j−1+
c2
c1

j−1

)
ϕ0c

n−1
1

(
n−1
j−1

)(n−1+
c2
c1

n−1

) [un−j ]
(1− (1− c1u)

− c2
c1 )s

(1− c1u)
j− c2

c1
(s−1)

=
Γ(s− 1− c1

c2
)
(j−1+

c2
c1

j−1

)
Γ(−1− c1

c2
)cn−j

1

(
n−1
j−1

)(n−1+
c2
c1

n−1

) s∑
k=0

(
s

k

)
(−1)k 1

(1− c1u)
j− c2

c1
(s−k−1)

=
Γ(s− 1− c1

c2
)

Γ(−1− c1
c2

)

s∑
k=0

(
s

k

)
(−1)k

(j−1+
c2
c1

j−1

)(n−1− c2
c1

(s−k−1)

n−j

)
(
n−1
j−1

)(n−1+
c2
c1

n−1

)
=

Γ(s− 1− c1
c2

)
Γ(−1− c1

c2
)

s∑
k=0

(
s

k

)
(−1)k

Γ(n− c2
c1

(s− 1− k))Γ(j + c2
c1

)
Γ(j − c2

c1
(s− 1− k))Γ(n+ c2

c1
)
.
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5.5.4 Proofs of the limit distribution results

5.5.5 Case A

First we turn our attention to the region j = o(n). For the expectation and the second factorial moment
we get by using

[zn]
log
(

1
1−z

)
(1− z)j+1

=
(
n+ j

j

)
(Hn+j −Hj), [zn]

log2
(

1
1−z

)
(1− z)j+1

=
(
n+ j

j

)(
(Hn+j −Hj)2 − (H(2)

n+j −H
(2)
j )
)
,

(5.101)
the following result

E(Xn,j) =
1

ϕ0c
n−j
1

(
n−1
j−1

) [un−j ]
M ′

1(u)
(1− c1u)j−1

=
[un−j ]

cn−j
1

(
n−1
j−1

) log
(

1
1−c1u

)
(1− c1u)j

= Hn−1 −Hj−1 = log n− log j +O(1),

E(X2
n,j) =

1
ϕ0c

n−j
1

(
n−1
j−1

) [un−j ]
M ′

2(u)
(1− c1u)j−1

=
[un−j ]

cn−j
1

(
n−1
j−1

) log2
(

1
1−c1u

)
(1− c1u)j

= (Hn−1 −Hj−1)2 − (H(2)
n−1 −H

(2)
j−1),

(5.102)

and thus for the variance

V(Xn,j) = E(X2
n,j)+E(Xn,j)−E(Xn,j)2 = Hn−1−Hj−1−(H(2)

n−1−H
(2)
j−1) = log n− log j+O(1). (5.103)

We will use the abbreviations µn,j = σ2
n,j = log n − log j. Since we want to apply Lévys continuity

theorem to the moment generating function of X∗
n,j we calculate first the probability generating function

pn,j(v) of Xn,j . We get

pn,j(v) = E(vXn,j ) =
∑
m≥0

P{Xn,j = m}vm =
1

cn−j
1

(
n−1
j−1

) [un−j ]
1

(1− c1u)v+j−1
=

(
n+v−2
v+j−2

)(
n−1
j−1

) =

(
n+v−2

n−1

)(
j+v−2

j−1

)
=

Γ(n+ v − 1)Γ(j)
Γ(n)Γ(j + v − 1)

.

(5.104)

The moment generating function Mn,j(t) of X∗
n,j = (Xn,j − µn,j)/σn,j is then given by

Mn,j(t) = E(etX∗
n,j ) = e

−
µn,j
σn,j

tE(e
Xn,j
σn,j

t) = e−σn,jtpn,j(e
t

σn,j ). (5.105)

Using Stirling’s formula for the Gamma function

Γ(z) =
(z
e

)z
√

2π√
z

(
1 +

1
12z

+
1

288z2
+O(

1
z3

)
)

(5.106)

we get
Γ(n+ v − 1)

Γ(n)
= nv−1

(
1 +O(

1
n

)
)

= e(v−1) log n
(
1 +O(

1
n

)
)
. (5.107)
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We begin considering the region j = o(n), such that j ≤ log n. It holds for fixed t

e−σt = e−
√

log nt
(
1+O( log j

log n )
)

= e−
√

log nt
(
1+O( log log n

log n )
)

= e−
√

log nt
(
1 +O(

log log n√
log n

)
)
,

1
σn,j

=
1

√
log n

√
1− log j

log n

=
1√

log n

(
1 +O(

log j
log n

)
)
,

e
t

σn,j = e
t√

log n

(
1 +O(

log j

log
3
2 n

)
)

= e
t√

log n

(
1 +O(

log log n

log
3
2 n

)
)
,

(5.108)

and consequently

e
t

σn,j − 1 =
(
1+

t√
log n

+
t2

2 log n
+O(

1

log
3
2 n

)
)(

1+O(
log log n

log
3
2 n

)
)
− 1 =

t√
log n

+
t2

2 log n
+O(

log log n

log
3
2 n

).

(5.109)
We get

Γ(j + e
t

σn,j − 1)
Γ(j)

= 1 +O(
log log n√

log n
), (5.110)

by applying the trivial estimate

Γ(k)(j)
Γ(j)

≤ k!(log log n)k, k ≥ 2 (5.111)

to
Γ(j + e

t
σn,j − 1)

Γ(j)
=

∞∑
k=0

Γ(k)(j)
k!Γ(j)

(e
t

σn,j − 1)k. (5.112)

By combining the previous results we obtain

pn,j(e
t

σn,j ) = ne
t

σn,j −1
(
1 +O(

log log n√
log n

)
= e

(
e

t
σn,j −1

)
log n

(
1 +O(

log log n√
log n

)
)

= e

(
t
√

log n+ t2
2 +O( log log n√

log n
)
)(

1 +O(
log log(n)√

log n

)
.

(5.113)

This leads to the required expansion

Mn,j(t) = e−σn,jtpn,j(e
t

σn,j ) = e−
√

log nte

(
t
√

log n+ t2
2 +O( log log n√

log n
)
)(

1 +O(
log log n√

log n
)
)

= e
t2
2

(
1 +O(

log log n√
log n

)
)
.

(5.114)

For j: j →∞ such that j = o(n) we simply observe

Γ(j + v − 1)
Γ(j)

= jv−1
(
1 +O(

1
j
)
)

= e(v−1) log j
(
1 +O(

1
j
)
)
, pn,j(v) = e(v−1)µn,j (1 +O(

1
j
)). (5.115)
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Further

Mn,j(t) = e−σn,jtpn,j(e
t

σn,j ) = e−σn,jte(e
t

σn,j −1)µn,j (1 +O(
1
j
))

= e−σn,jte
( t

σn,j
+ t2

2µn,j
+O( 1

σ3
n,j

))µn,j

(1 +O(
1
j
)) = e

t2
2 +O( 1

σn,j
)(1 +O(

1
j
))

= e
t2
2 (1 +O(

1
j
))(1 +O(

1
σn,j

)) = e
t2
2 (1 +O(

1
j
) +O(

1
σn,j

)).

(5.116)

For the region j = ρn we use (5.115) to obtain the desired result

pn,j(v) = e−(v−1) log ρ(1 +O(
1
n

)) −−−−→
n→∞

pj(v) = e−(v−1) log ρ. (5.117)

For the region j: l := n− j = o(n):

P{Xn,j = 0} =

(
n−2
j−2

)(
n−1
j−1

) =
j − 1
n− 1

=
n− 1− l

n− 1
= 1− l

n− 1
= 1− o(1). (5.118)

5.5.6 Case B

For Case B we proceed as follows. For fixed j we get

P{Xn,j = d} = 1 +
d−1∑
k=0

(
d

k

)
(−1)d−k

Γ(n− 1 + k 1
d−1 )Γ(j + 1

d−1 )

Γ(j − 1 + k 1
d−1 )Γ(n+ 1

d−1 )

= 1 +
d−1∑
k=0

(
d

k

)
(−1)d−k

Γ(j + 1
d−1 )

Γ(j − 1 + k 1
d−1 )

O(
1

n1− k−1
d−1

) = 1 +O(
1

n
1

d−1
),

(5.119)

and for j: j →∞ such that j = o(n)

P{Xn,j = d} = 1 +
d−1∑
k=0

(
d

k

)
(−1)d−k

Γ(n− 1 + k 1
d−1 )Γ(j + 1

d−1 )

Γ(j − 1 + k 1
d−1 )Γ(n+ 1

d−1 )

= 1 +
d−1∑
k=0

(
d

k

)
(−1)d−kO(

j1−
k−1
d−1

n1− k−1
d−1

) = 1 +O
(
(
j

n
)

1
d−1

)
.

(5.120)

The same approach also works for j: j →∞ such that j = ρn

P{Xn,j = m} =
(
d

m

) m∑
k=0

(
m

k

)
(−1)m−k

Γ(n− 1 + k 1
d−1 )Γ(ρn+ 1

d−1 )

Γ(ρn− 1 + k 1
d−1 )Γ(n+ 1

d−1 )

=
(
d

m

) m∑
k=0

(
m

k

)
(−1)m−kρ1− k−1

d−1 (1 +O(
1
n

))

=
(
d

m

)
ρ1+ 1

d−1

m∑
k=0

(
m

k

)
(−1)m−kρ−

k
d−1 +O(

1
n

) =
(
d

m

)
ρ1+ 1

d−1 (ρ−
1

d−1 − 1)m +O(
1
n

).

(5.121)

For the region j: l := n− j = o(n):

P{Xn,j = 0} =
Γ(n− 1)Γ(j + 1

d−1 )

Γ(j − 1)Γ(n+ 1
d−1 )

=
(n− 2)l

(n− 1 + 1
d−1 )l

≥ (n− 2)l

(n− 1)l
=
j − 1
n− 1

= 1− l

n− 1
. (5.122)
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5.5.7 Case C

Since we already know the factorial moments from Subsection 5.5.3, we can express the ordinary moments
by the using the Stirling numbers of the second kind

{
n
k

}
.

E
(
Xs

n,j

)
= E

(
X

s
n,j

)
+

s−1∑
k=1

{
s

k

}
E
(
X

k
n,j

)
. (5.123)

Using again Stirling’s formula for the Gamma function (5.106) we get from the explicit result for the
factorial moments in Theorem 20 the asymptotic expansion

E(Xs
n,j) =

Γ(s− 1− c1
c2

)Γ(j + c2
c1

)

Γ(−1− c1
c2

)Γ(j − (s−1)c2
c1 )

n−
c2
c1

s +O(n−
c2
c1

(s−1)), (5.124)

which leads by (5.123) to an asymptotic expansion of the ordinary s-th moment. Thus the moments of
n

c2
c1Xn,j converge to a random variable Xj with s-th moment

E(Xs
j ) =

Γ(s− 1− c1
c2

)Γ(j + c2
c1

)

Γ(−1− c1
c2

)Γ(j − (s−1)c2
c1 )

. (5.125)

For the region j → ∞ such that j = o(n) we proceed exactly as before arriving at n
c2
c1

j
c2
c1
Xn,j

(d)−−→ Xj
(d)
=

γ(a, λ), where Xj is Gamma distributed with parameters a = − c1
c2
− 1 and λ = 1.

E(Xj) =
Γ(s− 1− c1

c2
)

Γ(−1− c1
c2

)
. (5.126)

For the region j → ∞ such that j = ρn we get after applying (5.106) to P{Xn,j = m) the asymptotic
expansion

P{Xn,j = m} =
(
m− 2− c1

c2

m

)
ρ1+

c2
c1
(
1− ρ−

c2
c1
)m +O(

1
n

), (5.127)

which proves the result. The result corresponding to the region l = n − j = o(n) follows by a similar
observation.

5.5.8 Density appearing in Case C

At first we show that f1(x) is a density with the required moments

Γ(s− 1− c1
c2

)Γ(1 + c2
c1

)

Γ(−1− c1
c2

)Γ(1− (s−1)c2
c1 )

. (5.128)

The density f1(x) can be derived by using Hankel contour technics similar to [10; 66]. Then we sketch
how to obtain the density fj(x) by combining a previous result ([46]) about the random variable Dn,j ,
which counts the size of the subtree attached to node j in a random increasing tree of size n, and the
shape of f1(x). First we turn to the root j = 1:

f1(x) =
−Γ( c2

c1
)x−2− c1

c2

Γ(−1− c1
c2

)π

∫ ∞

0

e−(r
− c1

c2 )r−
c1
c2
−1e−xr cos(

c2
c1

π) sin
(
xr sin(−c2

c1
π)
)
dr. (5.129)
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We proceed as follows.∫ ∞

0

xsf(x)dx =
−Γ( c2

c1
)

Γ(−1− c1
c2

)π

∫ ∞

0

e−(r
− c1

c2 )r−
c1
c2
−1
∫ ∞

0

xs−2− c1
c2 e−xr cos(

c2
c1

π) sin
(
xr sin(−c2

c1
π)
)
dx dr

= =
( −Γ( c2

c1
)

Γ(−1− c1
c2

)π

∫ ∞

0

e−(r
− c1

c2 )r−
c1
c2
−1
∫ ∞

0

xs−2− c1
c2 e−xr cos(

c2
c1

π)eixr sin(− c2
c1

π)dx dr

)
= =

( −Γ( c2
c1

)
Γ(−1− c1

c2
)π

∫ ∞

0

e−(r
− c1

c2 )r−
c1
c2
−1
∫ ∞

0

xs−2− c1
c2 e−xr(e

i
c2
c1

π
)dx dr

)
.

(5.130)

Using the substitution u = xrei
c2
c1

π, du
dx = rei

c2
c1

π we get further∫ ∞

0

xsf1(x)dx = =
( −Γ( c2

c1
)

Γ(−1− c1
c2

)π

∫ ∞

0

e−(r
− c1

c2 )r−
c1
c2
−1
∫ ∞

0

(ue−i
c2
c1

π

r

)s−2− c1
c2 e−u e

−i
c2
c1

π

r
du dr

)

= =
(−Γ( c2

c1
)e−

c2
c1

πi(s−1− c1
c2

)

Γ(−1− c1
c2

)π

∫ ∞

0

e−(r
− c1

c2 )r−s

∫ ∞

0

us−2− c1
c2 e−udu dr

)
=
−Γ( c2

c1
) sin(1− c2

c1
(s− 1))Γ(s− 1− c1

c2
)

Γ(−1− c1
c2

)π

∫ ∞

0

e−(r
− c1

c2 )r−sdr

=
−Γ( c2

c1
) sin(1− c2

c1
(s− 1))Γ(s− 1− c1

c2
)(− c2

c1
)Γ( c2

c1
(s− 1))

Γ(−1− c1
c2

)π

=
Γ(s− 1− c1

c2
)Γ(1 + c2

c1
)

Γ(−1− c1
c2

)Γ(1− (s−1)c2
c1 )

,

(5.131)

where we have used the identity π
sin(πx) = Γ(x)Γ(1− x). For the density fj(x) we can proceed as follows.

We know (see [46] for details) that for fixed j it holds Dn,j

n

(d)−−→ β( c2
c1

+ 1, j − 1), where β(a, b) denotes a
Beta distribution with parameter a and b, and thus

lim
n→∞

nP{Dn,j

n
= t} =

t−
c2
c1 (1− t)j−2

B( c2
c1

+ 1, j − 1)
, (5.132)

where B(p, q) = Γ(p)Γ(q)
Γ(p+q) denotes the Beta function of p and q. By conditioning on the size of the subtree

rooted at node j the r.v. Zn,j we get

P{Xn,j = m} =
∑
k≥0

P{Xk,1 = m|Zn,j = k}P{Zn,j = k} =
∑
k≥0

P{Xk,1 = m}P{Zn,j = k}. (5.133)

A standard argument leads then to (5.134).

fj(x) =
Γ(j + c2

c1
)

Γ(1 + c2
c1

)Γ(j − 1)

∫ 1

0

t2
c2
c1 (1− t)j−2f1

(
xt

c2
c1
)
dt dx, (5.134)

where f1(x) is given by (5.129). Using the substitution u = xt
c2
c1 it can easily be seen that the density

fj(x) has the required moments.
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5.6 The branching structure

Let Xn,j,a denote the random variable, which counts the number of size a branches (subtrees) attached
to node j in a random grown simple increasing tree of size n. This was studied by Hu, Feng and Su in
[33] for random recursive trees: they derived the distribution of Xn,1,a and a limit law for it. Further
they stated the joint distribution of Xn,1,1Xn,1,2 . . . Xn,1,n.
By using our approach we can extend their results to arbitrary grown simple families of increasing trees.
We can give closed formulæ for the probability distribution and factorial moments. The joint distribution
is computed for all grown simple families of increasing trees. Furthermore limiting distribution results
are given for the full region of j, 1 ≤ j ≤ n.

5.6.1 Results for the probabilities

Theorem 24. The probability that there are m size a branches in the subtree rooted at node j, for every
j ≥ 1,

• Case A (recursive trees): we obtain the following exact formula.

P{Xn,j,a = m} =
1

ama!
(
n−1
j−1

) bn−j−am
a c∑

l=0

(−1)l

all!

(
n− 1− a(m+ l)

j − 1

)
. (5.135)

• Case B (d-ary increasing trees): we obtain the following exact formula.

P{Xn,j,a = m} =

(
d
m

)( d
d−1+j−2

j−1

)
(
n−1
j−1

)(n−1+ 1
d−1

n−1

) min{d−m,bn−j−am
m c}∑

i=0

(
d−m

i

)
(−1)i

((a−1+ 1
d−1

a−1

)
a(d− 1)

)i+m

×

×
(
n− 2− a(i+m) + d−m−i

d−1

n− j − a(i+m)

)
.

(5.136)

• Case C (Generalized plane oriented recursive trees): For the root j = 1 it holds

P{Xn,1,a = m) =
(
m− 2− c1

c2

m

)( ϕ0c1a

(−c2)
(a−1+

c2
c1

a−1

))− c2
c1

(1− c2
c1

(m− 1))
n

+O(
1

n1− c2
c1

), (5.137)

and for j > 1

P{Xn,j,a = m) =
( c2

c1
+ j − 1
j − 1

)(
m− 2− c2

c1

m

)( ϕ0c1a

(−c2)
(a−1+

c2
c1

a−1

))− c2
c1
−1 (j − 1)Γ(1 + c2

c1
)

n1− c2
c1

+O(
1

n1−2
c2
c1

).

(5.138)

5.6.2 Explicit formulæ for the factorial moments

Theorem 25. The factorial moments of the random variable Xn,j,a counting the number of size a subtrees
attached to node j in a size n random grown simple increasing tree is given as follows.

• Case A (recursive trees):

E(Xs
n,j,a) =

1
as

(
n−as−1

j−1

)(
n−1
j−1

) . (5.139)
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• Case B (d-ary increasing trees):

E(Xs
n,j,a) =

((a−1+ 1
d−1

a−1

)
a(d− 1)

)s
(j−1+ 1

d−1
j−1

)(n−as−2+ d−s
d−1

n−j−as

)
(
n−1
j−1

)(n−1+ 1
d−1

n−1

) . (5.140)

• Case C (Generalized plane oriented recursive trees):

E(Xs
n,j,a) =

(−c2(a−1+
c2
c1

a−1

)
c1a

)s Γ(s− 1− c1
c2

)
Γ(−1− c1

c2
)

(j−1+
c2
c1

j−1

)(n−as−1− c2
c1

(s−1)

n−j−as

)
(
n−1
j−1

)(n−1+
c2
c1

n−1

) . (5.141)

5.6.3 Joint distributions

Theorem 26. The joint distribution of the random variables Xn,1,1 . . . Xn,1,n is for all Cases A,B and
C given as follows.

P{Xn,1,1 = m1, . . . , Xn,1,n−1 = mn−1} =
ϕPn−1

i=1 mi
ϕ

Pn−1
i=1 mi−1

0 (
∑n−1

i=1 mi)!(n−1+
c2
c1

n−1

) n−1∏
k=1

(k−1+
c2
c1

k−1

)
kmkmk!

, (5.142)

for all sequences of non-negative integers satisfying
∑n−1

k=1 kmk = n− 1, where one has c2 = 0 for Case A
and c2

c1
= 1

d−1 for Case B. Further for Case B (d-ary increasing trees) we have the additional constraint∑n−1
k=1 mk ≤ d.

Corollar 7. The joint distribution of the random variables Xn,j,1 . . . Xn,j,n is for all Cases A,B and C
given as follows.

P{Xn,j,1 = m1, . . . , Xn,j,n−j = mn−j} = P{Zn,j = 1 +
n−j∑
i=1

imi}×

× P{X1+
Pn−j

i=1 imi,1,1 = m1, . . . , X1+
Pn−j

i=1 imi,1,n−j = mn−j},
(5.143)

where Zn,j denotes the r.v. counting the subtree size of node j.

5.6.4 Limit distribution results

Theorem 27. For Case A (recursive trees) we get

• for n→∞, j = o(n) and a fixed: the random variable Xn,j,a is asymptotically Poisson distributed
with parameter 1/a:

Xn,j,a
(d)−−→ Xa, P{Xa = m} =

e−
1
a

amm!
. (5.144)

• for n → ∞, j = ρn with 0 < ρ < 1 and a fixed: the random variable Xn,j,a is asymptotically
Poisson distributed with parameter (1− ρ)/a:

Xn,j,a
(d)−−→ Xρ,a, P{Xρ,a = m} =

e−
1−ρ

a (1− ρ)m

amm!
. (5.145)

• for n→∞ and all other cases of j and a it holds

Xn,j,a
(d)−−→ X, P{X = 0} = 1. (5.146)
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Theorem 28. In the Case B (d-ary increasing trees) we obtain the following characterization.

• for n→∞, j = o(n) and 1 ≤ a ≤ n− 1 fixed the random variable Xn,j,a is asymptotically zero.

Xn,j,a
(d)−−→ X, P{X = 0} = 1. (5.147)

• for n→∞, j = ρn with 0 < ρ < 1 and a fixed the random variable Xn,j,a is asymptotically binomial
distributed Bin(N, p) with parameter N = d and p = p(a, d) =

(a−1+ 1
d−1

a−1

)ρ(1−ρ)a

a(d−1) :

Xn,j,a
(d)−−→ Xρ,a, P{Xρ,a = m} =

(
d

m

)
pm(1− p)d−m (5.148)

• for n→∞, l = n− j = o(n) and 1 ≤ a ≤ n− 1 fixed the random variable Xn,j,a is asymptotically
zero.

Xn,j,a
(d)−−→ X, P{X = 0} = 1. (5.149)

Theorem 29. For Case C (Generalized plane oriented recursive trees) we obtain the following charac-
terization.

• For fixed a ≥ 1, fixed j ≥ 1 and n→∞ we get

n
c2
c1Xn,j

d−→ X, E(Xs) =
Γ(j + c2

c1
)Γ(s− 1− c1

c2
)

Γ(j − c2
c1

(s− 1))Γ(−1− c1
c2

)

( (−c2)
(a−1+

c2
c1

a−1

)
c1a

)s

. (5.150)

• The region j: j →∞ such that j = o(n) and fixed a ≥ 1 we get a gamma distribution γ(k, λ) with
parameters k = − c1

c2
− 1 and λ = ac1

(−c2)(a−1+
c2
c1

a−1
)

(n
j

) c2
c1
Xn,j

d−→ X, X
d= γ(k, λ), E(Xs) = (−c1

c2
− 1)s

( (−c2)
(a−1+

c2
c1

a−1

)
c1a

)s

. (5.151)

• The region j: j → ∞ such that j = ρn and fixed a ≥ 1: The r. v. Xn,j,a is asymptotically
negative binomial distributed NegBin(r, p) with parameters r = −1 − c1

c2
and p = p(ρ, c1, c2, a) =

(1 + (1− ρ)aρ
c2
c1
(a−1+

c2
c1

a−1

) (−c2)
c1a )−1.

Xn,j,a
(d)−−→ Xρ,a, with P{Xρ = m} =

(
m− 2− c1

c2

m

)
p1+

c2
c1
(
1− p

)m
. (5.152)

• The region j: n− j = l = o(n)

Xn,j,a
(d)−−→ X, P{X = 0} = 1. (5.153)

Remark 11. As mentioned earlier the result concerning recursive trees (basically Case A) and j = 1 in
the Theorems 24, 26 and 27 already appeared in Hu, Feng & Su; 2005, which motivated this research.

Remark 12. For Cases B and C the limit laws of Xn,j,a resemble the limit laws of the out-degree Yn,j

of node j (compare with [47]). This is no coincidence since

Yn,j
(d)
= Xn,j,1 + · · ·+Xn,j,n−j . (5.154)

For Case A the limit law is different from the behavior of the node degree. Note that the random variable
Xn,a, which counts the number of size a trees on the fringe of a size n random grown simple increasing
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tree is related to Xn,j,a by

Xn,a
(d)
= Xn,1,a +Xn,2,a + · · ·+Xn,n+1−a,a. (5.155)

5.6.5 Results for a randomly chosen node

We denote with X [R]
n,a = Xn,Un,a the random random variable which counts the number of size a branches

of a randomly chosen node in a size n grown simple increasing tree.

Theorem 30. The limit law of the r. v. X [R]
n,a counting the number of size a branches in a size n grown

simple increasing tree is given as follows.

• Case A (recursive trees): for fixed a it holds

X [R]
n,a

(d)−−→ Xa, P{Xa = m} = a
(
1− e−

1
a

m∑
k=0

1
k!ak

)
=

∑
k≥m+1

ae−
1
a

k!ak
. (5.156)

• Case B (d-ary increasing trees):

X [R]
n,a

(d)−−→ Xa, P{Xa = m} =
d−m∑
k=0

(−1)k

(
d
m

)(
d−m

k

)(a−1+ 1
d−1

a−1

)m+k

am+k(d− 1)m+k((m+ k)(d+ 1) + 1)
(
(d+1)(m+k)

m+k

) .
(5.157)

Remark 13. For Case C we were not able to obtain an explicit formula for the probability P{Xa = m},
although we have the closed formula P{Xa = m} =

∫ 1

0
P{Xρ,a = m}dρ.

5.6.6 Deriving the generation function for the root

In order to use the approach (5.3) developed here to characterize Xn,j,a one has to calculate at first
∂
∂zM(z, v). By definition one gets the following explicit characterization for the probabilities P{Xn,1,a =
m}:

P{Xn,1,a = m} =
∑
r≥m

ϕr

(
r

m

) ∑
k1+···+kr=n−1
ki=a for 1≤i≤m

kj 6=a for m+1≤j≤r

Tk1 . . . Tkr

Tn

(
n− 1

k1, . . . , kr

)
(5.158)

for n ≥ 1 and m ≥ 0. By multiplying with Tnz
n−1vm/(n− 1)! and summing up over n ≥ 1, m ≥ 0 this

can be turned into the an explicit formula for ∂
∂zM(z, v).

∂

∂z
M(z, v) =

∑
n≥1

∑
m≥0

ϕn

(
n

m

)
(Taz

av)m(T (z)− Taz
a)n−m =

∑
n≥1

ϕn(Taz
av + T (z)− Taz

a)n

= ϕ(T (z) + Taz
a(v − 1)).

(5.159)

This leads for grown simple families of increasing trees to

∂

∂z
M(z, v) =



ϕ0

1− c1z
exp

(c1Ta

ϕ0a!
za(v − 1)

)
, Case A,

ϕ0

(c2Ta

ϕ0a!
za(v − 1) +

1

(1− (d− 1)c2z)
1

d−1

)d

, Case B,

ϕ0(
1

(1−c1z)
c2
c1

+ c2Ta

ϕ0a! z
a(v − 1)

)− c1
c2
−1

Case C,

(5.160)
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where Ta = ϕ0c
a−1
1 (a− 1)!

(a−1+
c2
c1

a−1

)
.

5.6.7 Deriving the probabilities

We will restrict ourselves to Case A and Case C, Case B is fully analogous. By simply applying (5.4) we
get for Case A

P{Xn,j,a = m} =
(j − 1)!(n− j)!

Tn
[un−jvm]

cj−1
1

(1− c1u)j−1

∂

∂u
M(u, v)

=
1(

n−1
j−1

)
cn−j
1

[un−jvm]
exp

(
− c1Ta

ϕ0a!u
a
)

(1− c1u)j
exp

(
v
c1Ta

ϕ0a!
ua
)

=
cam
1

amm!
(
n−1
j−1

)
cn−j
1

[un−j−ma]
exp

(
− ca

1
a u

a
)

(1− c1u)j

=
1

amm!
(
n−1
j−1

) bn−j−am
a c∑

l=0

(−1)l

all!

(
n− 1− a(m+ l)

j − 1

)
.

(5.161)

For Case B we get

P{Xn,j = m} =
(c2(d− 1))j−1

(j−1+ 1
d−1

j−1

)
(
n−1
n−j

)
ϕ0(c2(d− 1))n−1

(n−1+ 1
d−1

n−1

) [un−jvm]
ϕ0

(
c2Ta

ϕ0a! z
a(v − 1) + 1

(1−(d−1)c2z)
1

d−1

)d

(1− c2(d− 1)u)j−1

=

(j−1+ 1
d−1

j−1

)(
d
m

)(
c2Ta

ϕ0a!

)m(
n−1
j−1

)
(c2(d− 1))n−j

(n−1+ 1
d−1

n−1

) [un−j−am]
d−m∑
i=0

(
d−m

i

) (−1)i
(

c2Ta

ϕ0a!

)i
uai

(1− (d− 1)c2u)j−1+ d−m−i
d−1

=

(
d
m

)( d
d−1+j−2

j−1

)
(
n−1
j−1

)(n−1+ 1
d−1

n−1

) min{d−m,bn−j−am
m c}∑

i=0

(
d−m

i

)
(−1)i

((a−1+ 1
d−1

a−1

)
a(d− 1)

)i+m

×

×
(
n− 2− a(i+m) + d−m−i

d−1

n− j − a(i+m)

)
.

(5.162)

For Case C we observe the following

P{Xn,j,a = m} =
(j − 1)!(n− j)!

Tn
[un−jvm]

( c2
c1

+j−1

j−1

)
cj−1
1

(1− c1u)j−1
M ′(u, v)

=
(j − 1)!(n− j)!

Tn
[un−jvm]

ϕ0

( c2
c1

+j−1

j−1

)
cj−1
1

(1− c1u)j−1
(

1

(1−c1u)
c2
c1

+ c2Ta

ϕ0a!u
a(v − 1)

)− c1
c2
−1

=
(j − 1)!(n− j)!

Tn
[un−jvm]

ϕ0

( c2
c1

+j−1

j−1

)
cj−1
1

(1− c1u)j−1
(
C(u)

)− c1
c2
−1
(
1 +

c2Ta
ϕ0a! uav

C(u)

)− c1
c2
−1
,

(5.163)

where C(u) is defined as

C(u) :=
1

(1− c1u)
c2
c1

− c2Ta

ϕ0a!
ua. (5.164)
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Thus we get further

P{Xn,j,a = m} =
(j − 1)!(n− j)!

Tn
[un−j ]

ϕ0

( c2
c1

+j−1

j−1

)
cj−1
1

(1− c1u)j−1
(
C(u)

)− c1
c2
−1

( c1
c2

+ 1
m

)(c2Ta

ϕ0a!

)m uam

(C(u))m
. (5.165)

Now we expand 1

(C(u))
m− c1

c2
−1

around u = 1/c1.

1

(C(u))−
c1
c2
−1+m

=
1(

(1− c1u)
− c2

c1 − c2Ta

ϕ0a!u
a
)− c1

c2
−1+m

=
1(

−c2Ta

ϕ0a! u
a
)− c1

c2
−1+m

1(
1− ϕ0a!

uac2Ta
(1− c1u)

− c2
c1

)− c1
c2
−1+m

=
1(

−c2Ta

ϕ0a!ca
1

)− c1
c2
−1+m

(
1 +

c1
c2

+ 1−m
−c2Ta

ϕ0a!ca
1

(1− c1u)
− c2

c1 +O((1− c1u)
− 2c2

c1 )
)
.

(5.166)

For the root,j = 1, we proceed from (5.165) as follows.

P{Xn,1,a = m} =
(n− 1)!
Tn

[un−1]ϕ0

( c1
c2

+ 1
m

)(c2Ta

ϕ0a!

)m uam

(C(u))−
c1
c2
−1+m

=
(n− 1)!
Tn

[un−1−am]ϕ0

( c1
c2

+ 1
m

)(c2Ta

ϕ0a!

)m ( c1
c2

+ 1−m)(1− c1u)
− c2

c1(
−c2Ta

ϕ0a!ca
1

)− c1
c2

+m

=
(n− 1)!
Tn

[un−1−am]ϕ0

( c1
c2

+ 1
m

)
(−1)mcam

1

(−c2Ta

ϕ0a!ca1

) c1
c2 (

c1
c2

+ 1−m)(1− c1u)
− c2

c1 ,

(5.167)

while for j > 1 we have

P{Xn,j,a = m} =
(j − 1)!(n− j)!

Tn
[un−j−am]

ϕ0

( c2
c1

+j−1

j−1

)
cj−1
1

(1− c1u)j−1

( c1
c2

+ 1
m

) (
c2Ta

ϕ0a!

)m

(
−c2Ta

ϕ0a!ca
1

)− c1
c2
−1+m

=
(j − 1)!(n− j)!

Tn
[un−j−am]

ϕ0

( c2
c1

+j−1

j−1

)
cj−1
1

(1− c1u)j−1

( c1
c2

+ 1
m

)
(−1)mcam

1

(−c2Ta

ϕ0a!ca1

) c1
c2

+1

.

(5.168)

Now we use singularity analysis and Stirling’s formula for the Gamma function

Γ(z) =
(z
e

)z
√

2π√
z

(
1 +

1
12z

+
1

288z2
+O(

1
z3

)
)
, (5.169)

to get an asymptotic expression for n→∞. This leads directly to the stated results.

5.6.8 Deriving the factorial moments

We evaluate (5.5) using (5.160) which leads for Cases A, B and C to the desired results. We derive
exemplary M ′

s(u) for Case A and Case C. We get for Case A

M ′
s(u) = EvD

s
v

∂

∂u
M(u, v) = EvD

s
v

ϕ0

1− c1u
exp

(c1Ta

ϕ0a!
ua(v− 1)

)
=
ϕ0

(
uac1Ta

ϕ0a!

)s
1− c1u

=
ϕ0u

as
( ca

1
a

)s
1− c1u

, (5.170)
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and Case C

M ′
s(u) =

ϕ0( c1
c2

+ 1)s
(

c2Ta

ϕ0a!

)s

uas

(1− c1u)
1− c2

c1
(s−1)

=
ϕ0Γ(s− 1− c1

c2
)
(−c2ca−1

1 (a−1+
c2
c1

a−1
)

a

)s

uas

Γ(−1− c1
c2

)(1− c1u)
1− c2

c1
(s−1)

. (5.171)

5.6.9 Joint distributions

We observe

TnP{Xn,1,1 = m1, . . . , Xn,1,n−1 = mn−1} = ϕPn−1
i=1 mi

(
n− 1

1, . . . , 1︸ ︷︷ ︸
m1

, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . ,mn−1

)
×

×
( ∑n−1

i=1 mi

m1, . . . ,mn−1

) n−1∏
k=1

Tmk

k .

(5.172)

The factor ϕPn−1
i=1 mi

corresponds to the root degree, the factor
( n−1
1, . . . , 1︸ ︷︷ ︸

m1

,2, . . . , 2︸ ︷︷ ︸
m2

,...,mn−1

)
to the choices

for the labels and the factor
( Pn−1

i=1 mi

m1,...,mn−1

)
to the different positions of the subtrees. By using (10) we get

the desired result.

5.6.10 Limit distribution results

The results for Case A simply follows by an application of Stirling’s formula:

P{Xn,j,a = m} =
1

ama!
(
n−1
j−1

) bn−j−am
a c∑

l=0

(−1)l

all!

(
n− 1− a(m+ l)

j − 1

)
∼ 1
ama!

bn−j−am
a c∑

l=0

(−1)l

all!

(
1 +O(

1
n

)
.

(5.173)
For j = ρn we get an additional factor (1− ρ)m+l.
The Case B is proved by application of Stirling’s formula to either the probabilities P{Xn,j,a = m} or the
factorial moments E(Xs

n,j,a). An asymptotic expansion of the factorial moments leads to an asymptotic
expansion of the ordinary moments by using the Stirling numbers of the second kind

{
n
k

}
.

E
(
Xs

n,j

)
= E

(
X

s
n,j

)
+

s−1∑
k=1

{
s

k

}
E
(
X

k
n,j

)
. (5.174)

For the degenerate cases we use the Method of moments. For Case C we simplify the factorial moments.

E
(
X

s
n,j

)
=

(−c2)s
(a−1+

c2
c1

a−1

)s
cs1a

s

Γ(j + c2
c1

)(n− j)!Γ(n− as− c2
c1

(s− 1))
Γ(j − c2

c1
(s− 1))(n− j − as)!Γ(n+ c2

c1
)
. (5.175)

For fixed a and fixed j application of Stirling’s formula to (5.175) leads by using (5.174) to

E
(
Xs

n,j

)
=

Γ(j + c2
c1

)Γ(s− 1− c1
c2

)
Γ(j − c2

c1
(s− 1))Γ(−1− c1

c2
)

( (−c2)
(a−1+

c2
c1

a−1

)
c1a

)s(
n−

c2
c1
)s(1 +O(

1

n−
c2
c1

)). (5.176)

For j : j →∞, j = o(n) one gets similarly

E
(
Xs

n,j

)
=

Γ(s− 1− c1
c2

)
Γ(−1− c1

c2
)

( (−c2)
(a−1+

c2
c1

a−1

)
c1a

)s(n
j

)−s
c2
c1 (1 +O(

( j
n

)− c2
c1 )). (5.177)
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For j = ρn, 0 < ρ < 1 one obtains an expansion of the factorial moments

E
(
X

s
n,j

)
=

Γ(s− 1− c1
c2

)
Γ(−1− c1

c2
)

( (−c2)
(a−1+

c2
c1

a−1

)
c1a

)s

ρs
c2
c1 (1− ρ)as(1 +O(

1
n

)), (5.178)

which are asymptotically the factorial moments of a negative binomial distribution Xρ
(d)
= NegBin(r, p),

E(Xs
ρ) =

Γ(r + s)
Γ(r)

(
1
p
− 1)s, (5.179)

with parameters r = −1− c1
c2

and p = (1 + (1− ρ)aρ
c2
c1
(a−1+

c2
c1

a−1

) (−c2)
c1a )−1.

5.6.11 Results for a randomly chosen node

We use the limiting distribution results for the central region of Xn,j,a, i. e. j = ρn, with 0 < ρ < 1,
to derive result for the number of size a branches X [R]

n,a of a randomly chosen node in a grown simple

increasing tree. Since Xn,j,a
(d)−−→ Xρ,a we obtain X [R]

n,a
(d)−−→ Xa, where the probabilities P{Xa = m} of the

discrete r. v. Xa can be obtained via

P{Xa = m} =
∫ 1

0

P{Xρ,a = m} dρ. (5.180)

We obtain for Case A and Case B closed formulæ for these integrals. We present the computations for
Case A:
Case A (recursive trees):

P{X = m} =
∫ 1

0

e−
1−ρ

a (1− ρ)m

m!am
dρ =

a

m!

∫ 1
a

0

e−uumdu = a−
m∑

k=0

ae−
1
a

am−k(m− k)!
, for m ≥ 0.
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5.7 Number of leaves of node j

5.7.1 Short introduction

We denote with Xn,j the number of leaves in the subtree rooted at node j in a size n random grown
simple increasing tree. We will use the following Lemma provided in [6].

Lemma 15. M(z, v) is implicitly characterized by the following equation.∫ M

0

dt

(u− 1)ϕ0 + ϕ(t)
= z, (5.181)

or explicitly by the following differential equation.

M ′(z, v) = ϕ
(
M(z, v)

)
− ϕ0(1− v), (5.182)

with M(0, v) = 0. This leads to explicit formulæ for M(z, v).
Binary increasing trees

M(z, v) = ξ
ξ tan(zξ) + 1
ξ − tan(zξ)

− 1, ξ := (v − 1)1/2, (5.183)

Recursive trees
M(z, v) = log

1− v

1− vez(1−v)
, (5.184)

Plane recursive trees

M(z, v) =
C(ve−vez(v−1)2)− C(ve−v)

v − 1
, where C(z) =

∑
n≥1

nn−1 z
n

n!
(5.185)

is the Cayley function C(z) exp
(
C(z)

)
= z.

5.7.2 Results

Theorem 31. For recursive trees, binary increasing trees and plane oriented recursive trees the limiting
distribution behavior of the random variable Xn,j, which counts the number of leafs in the subtree root at
the node with label j in a randomly chosen size-n tree, is, for n→∞ and depending on the growth of j,
characterized as follows.

• The region for j fixed. The normalized random variable c · Xn,j/n converges for fixed j ≥ 2 in
distribution to a random variable X, which is Beta distributed with parameter 1 and j − 1 for
recursive tree and Beta distributed with parameters 2 and j − 1 for binary increasing trees. For
plane oriented recursive trees we obtain a beta distribution with parameters 1/2 and j − 1,

cXn,j

n

(d)−−→ Xj , Xj
(d)
=


β(1, j − 1), recursive trees,
β(2, j − 1), binary increasing trees,
β( 1

2 , j − 1), plane oriented recursive trees
(5.186)

where c = 2 for recursive trees, c = 3 for binary increasing trees and c = 3/2 for plane oriented
recursive trees.

• The region for small j: j → ∞ such that j = o(n). The normalized random variable j
nXn, j

is asymptotically Gamma-distributed γ(a, λ), with parameter a = 1 and λ = 2 for recursive tree,
parameters a = 2 and λ = 3 for binary increasing trees and a = 1

2 and λ = 3
2 for plane oriented
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recursive trees.

jXn,j

n

(d)−−→ X, X
(d)
=


γ(1, 2), recursive trees,
γ(2, 3), binary increasing trees,
γ( 1

2 ,
2
3 ), plane oriented recursive trees.

(5.187)

5.7.3 Proofs for the region j fixed

First we turn to the proof of the case j fixed. We will use the Method of moments the prove these results.

If X is a Beta-distributed random variable with parameters a and b, X
(d)
= β(a, b), then the s-th moment

of X is given by

E(Xs) =
s−1∏
k=0

a+ k

a+ b+ k
=

as

(a+ b)s
. (5.188)

Further the ordinary moments of Xn,j can be expressed by the factorial moments of Xn,j , where the
Stirling numbers of the second kind

{
n
k

}
are appearing. We obtain then

E
(
(Xn,j)s

)
= E

(
(Xn,j)s

)
+

s−1∑
k=1

{
s

k

}
E
(
(Xn,j)k

)
. (5.189)

In both cases we will use the following identity to obtain the factorial moments.

EvD
s
vM(z, v) = s![ws]M(z, v), where w := v − 1. (5.190)

For recursive trees we have the following calculation.

E(Xs
k+j,j) =

(j − 1)!k!
(k + j − 1)!

[zj−1uk]EvD
s
vN(z, u, v) =

(j − 1)!k!
(k + j − 1)!

[uk]
1

(1− u)j−1
EvD

s
vM

′(u, v)

=
(j − 1)!k!s!
(k + j − 1)!

[ukws]
1

(1− u)j−1
M ′(u, v) =

(j − 1)!k!s!
(k + j − 1)!

[ukws]
1

(1− u)j−1

v(1− v)eu(1−v)

1− veu(1−v)

=
(j − 1)!k!s!
(k + j − 1)!

[ukws]
1

(1− u)j−1

v(v − 1)
v − eu(v−1)

=
(j − 1)!k!s!
(k + j − 1)!

[ukws]
1

(1− u)j−1

(w + 1)w
w + 1− euw

=
(j − 1)!k!s!
(k + j − 1)!

[ukws]
1

(1− u)j−1

(w + 1)w

w(1− u)−
∑

l≥2
(uw)l

l!

=
(j − 1)!k!s!
(k + j − 1)!

[ukws]
1

(1− u)j−1

w + 1
(1− u)

(
1−

∑
l≥2

ulwl−1

l!(1−u)

)
=

(j − 1)!k!s!
(k + j − 1)!

[uk]
1

(1− u)j

( 1
2s(1− u)s

+O(
1

(1− u)s−1

))
,

(5.191)

by setting k = n− j this further simplifies to

E(Xs
n,j) =

(j − 1)!(n− j)!s!
2s(n− 1)!

[un−j ]
( 1

2s(1− u)s+j
+O(

1
(1− u)s+j−1

))
=

ns(j − 1)!s!
2s(j + s− 1)!

+O(ns−1)

=
(n

2

)s 1s

js
+O(ns−1),

(5.192)
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which proves the first part concerning the recursive trees. For binary increasing trees we proceed as
follows.

E(Xs
k+j,j) =

(j − 1)!k!s!
(k + j)!

[ukws]
j

(1− u)j−1
M ′(u, v) =

j!k!s!
(k + j)!

[ukws]
w(w + 1)(1 + tan2(u

√
w))

(1− u)j−1(
√
w − tan(u

√
w))2

=
j!k!s!

(k + j)!
[ukws]

1
(1− u)j−1

(w + 1)(1 + tan2(u
√
w))

(1− tan(u
√

w)√
w

)2

=
j!k!s!

(k + j)!
[ukws]

1
(1− u)j−1

(w + 1)(1 + tan2(u
√
w))

(1− u)2(1−
∑

n≥2
tnu2n−1wn−1

1−u )2

=
j!k!s!

(k + j)!
[uk]

1
(1− u)j+1

( (s+ 1)ts2
(1− u)s

+O(
1

(1− u)s−1

))
,

(5.193)

with

tan z =
∑
n≥1

(−1)n−1 22n(22n − 1)B2n

(2n)!
z2n−1 =

∑
n≥1

tnz
2n−1, (5.194)

where B2n denotes the 2n-th Bernoulli number. Since t2 = 1/3 this finishes the proof of Theorem. For
the plane oriented recursive trees we proceed differently by using induction. We start with the differential
equation as given in Lemma 15.

M ′(z, v) =
1

1−M(z, v)
+ v − 1, (5.195)

with M(0, v) = 0. Applying the operator EvD
s
v to this differential equation leads to

M ′
s(z) = EvD

s
v

1
1−M(z, v)

+ δs,1

=
Ms(z)
1− 2z

+
s−1∑
k=0

(
s− 1
k

)
Mk+1EvD

s−1−k
v

1
(1−M(z, v))2

+ δs,1

=
Ms(z)
1− 2z

+Rs(z),

(5.196)

with Ms(0) = 0. It can easily be seen that the dominant term in the singular expansions of Ms(z) and
EvD

s
v

1
(1−M(z,v))2 around z = 1/2 are given as follows

Ms(z) =
ms

(1− 2z)
2s−1

2

+O
( 1

(1− 2z)s−2

)
, EvD

s
v

1
(1−M(z, v))2

=
fs,2

(1− 2z)s+1
+O

( 1
(1− 2z)s

)
,

(5.197)

We will show that ms = 2s−1

3s

(
1
2

)s−1, which is equivalent to

E(Xs
n,j) =

(2n
3

)s
(

1
2

)s
(j − 1

2 )s
+O(ns−1). (5.198)

It holds that fs,1, which is the leading coefficient of the singular expansion of EvD
s
v1/(1 −M(z, v)), is

given by (2s− 1)ms due to (5.196) and (5.197). The equation

EvD
s
v

1
(1−M(z, v))2

=
s∑

k=0

(
s

k

)
EvD

k
v

1
1−M(z, v)

EvD
s−k
v

1
1−M(z, v)

(5.199)
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translates into the following equation concerning fs,1 and fs,2

fs,2 =
s∑

k=0

(
s

k

)
fk,1fs−k,1 =

s∑
k=0

(
s

k

)
(2k − 1)mk,1(2s− 2k − 1)ms−k,1. (5.200)

Since the solution of (5.196) is given by

Ms(z) =

∫ z

0

Rs(t)
√

1− 2tdt
√

1− 2z
, (5.201)

we obtain the recurrence

ms =
1

2(s− 1)

s−2∑
l=0

(
s− 1
l

)
ml+1

s−l∑
k=0

(
s− l

k

)
(2k − 1)mk,1(2s− 2k − 2l − 1)ms−l−k,1, (5.202)

with initial value m1 = 1
3 . Assuming ms has the suggested shape for all k < s, we easily get that

fs,2 = s! 2
s

3s and consequently by (5.202) the induction step.

5.7.4 Proofs for the region j →∞ such that j = o(n)

For the region j: j →∞ such that j = o(n) we consider the normalized random variable jXn,j/n and will

show via the method of moments that jXn,j/n
(d)−−→ γ(1, c), where γ(a, λ) denotes the Gamma-distribution

with shape parameter a and scale parameter λ, and c is the same constant as for in the case j fixed. If

X is a Gamma-distributed random variable, X
(d)
= γ(a, λ), then the s-th moment of X is given by

E(Xs) =
1
λs

s−1∏
k=0

(a+ k) =
as

λs
. (5.203)

From (5.191) we obtain

E(Xs
n,j) =

(j − 1)!(n− j)!s!
2s(n− 1)!

[un−j ]
( 1

2s(1− u)s+j
+

s+j−1∑
l=0

Kl

(1− u)l

)
, (5.204)

where Kl are certain constants which do not depend explicitly on n. Thus we get further

E(Xs
n,j) =

(j − 1)!(n− j)!s!
2s(n− 1)!

((n+s−1
n−j

)
2s

+
s+j−1∑

l=0

Kl

(
n− j + l − 1

n− j

))
=
s!(n+ s− 1)s

2s(j + s− 1)s

(
1 +O(

1
j
) +O(

j

n
)
)

=
s!ns

2sjs

(
1 +O(

1
j
) +O(

j

n
)
) (5.205)

which finishes the proof for recursive trees. For binary increasing trees we proceed as before which leads
to

E(Xs
n,j) =

(s+ 1)!ns

3sjs

(
1 +O(

1
j
) +O(

j

n
)
)
. (5.206)

For plane oriented recursive trees we proceed analogously.
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5.8 Subtrees on the fringe of plane oriented recursive trees

5.8.1 Short introduction

We denote with Xn,a the number of size a trees on the fringe of a plane oriented increasing tree. Note
that for a = 1 the r. v. Xn,a just counts the number of leaves. This random variable was studied in
[20] by an analytic approach. For grown simple families of increasing trees we can set up the following
recurrence.

P{Xn,a = m} =
∑
r≥1

ϕr

∑
n1 + · · ·+ nr = n− 1,

n1, . . . , nr ≥ 1

Tn1 · · ·Tnr

Tn

(
n− 1

n1, n2, . . . , nr

)
×

×
∑

m1 + · · ·+ mr = m,

m1, . . . , mr ≥ 1

P{Xn1,a = m1} · · ·P{Xnr,a = mr}, for n > a,
(5.207)

with initial values P{Xa,a = 1} = 1 and P{Xn,a = 0} = 1 for n < a. Introducing the bivariate generating
function

Ma(z, v) =
∑
n≥1

TnE(vXn,a)
zn

n!
=
∑
n≥1

∑
m≥1

TnP{Xn,a = m}z
n

n!
vm, (5.208)

recurrence (5.207) can be translated into

∂

∂z
Ma(z, v) = ϕ

(
Ma(z, v)

)
+ (v − 1)

Tk

(k − 1)!
za−1, (5.209)

with initial condition Ma(0, v) = 0.

5.8.2 Results

Theorem 32. In a random plane oriented recursive tree of size n the number Xn,a of subtrees of size a
for fixed a satisfies

E(Xn,a) =
2n− 1

(2a− 1)(2a+ 1)
,

V(Xn,a) = n
( 8a2 − 4a− 8

(2a− 1)2(2a+ 1)2
−

(
(2a− 3)!!

)2(
(a− 1)!

)222a−2a(2a+ 1)

)
− 4a2 − 2k − 2

(2a− 1)2(2a+ 1)2

+

(
(2a− 3)!!

)2(
(a− 1)!

)222a−1a(2a+ 1)
+O

( 1
n

5
2

)
.

(5.210)

Theorem 33. The random variable Xn,a satisfies for fixed a and n→∞ the limit law

Xn,a − µn√
σ2n

=
X∗

n,a√
σ2n

(d)−−→ N (0, 1), (5.211)

where µn = 2n
(2a−1)(2a+1) ∼ E(Xn,a) and σ2n = n

(
8a2−4k−8

(2a−1)2(2a+1)2 −
(
(2a−3)!!

)2(
(a−1)!

)2
22a−2a(2a+1)

)
∼ V(Xn,a).

5.8.3 Deriving the expectation and the variance

We start with the differential equation obtained from (5.209) using ϕ(t) = 1/(1− t)

∂

∂z
Ma(z, v) =

1
1−Ma(z, v)

+ (v − 1)za−1 Ta

(a− 1)!
, (5.212)
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with Ma(0, v) = 0. We will use the abbreviation M [s]
a (z) = EvD

s
vMa(z, v). Applying the operator EvD

s
v

to this differential equation leads to

d

dz
M [s]

a (z) = EvD
s
v

1
1−Ma(z, v)

+ δs,1z
a−1 Ta

(a− 1)!
= EvD

s−1
v

∂
∂vMa(z, v)

(1−Ma(z, v))2
+ δs,1z

a−1 Ta

(a− 1)!

=
M

[s]
a (z)

1− 2z
+

s−2∑
l=0

(
s− 1
l

)
M [l+1]

a (z)EvD
s−1−l
v

1
(1−Ma(z, v))2

+ δs,1z
k−1 Tk

(a− 1)!

=
M

[s]
a (z)

1− 2z
+Rs(z),

(5.213)

with M [s]
a (0) = 0. The solution of (5.213) is given by

M [s]
a (z) =

∫ z

0

Rs(t)
√

1− 2tdt
√

1− 2z
. (5.214)

At first we will calculate the expectation and the variance. For the expectation we get

d

dz
M [1]

a (z) =
M

[1]
a (z)

1− 2z
+ za−1 Ta

(a− 1)!
, (5.215)

which leads to the solution

M [1]
a (z) =

Ta

∫ z

0

√
1− 2t ta−1dt

(a− 1)!
√

1− 2z
. (5.216)

Since we obtain by partial integration∫ z

0

√
1− 2t tNdt =

N !(N + 2)!2N+2

(2N + 4)!
−

N∑
l=0

(N + 2− l)!2N+2−l

(2N + 4− 2l)!
NN−lzl(1− 2z)

2(N−l)+3
2

=
N !

(2N + 3)!!
−

N∑
l=0

NN−l

(2N − 2l + 3)!!
zl(1− 2z)

2(N−l)+3
2 ,

(5.217)

or by expanding around t = 1/2,∫ z

0

√
1− 2t tNdt =

1
2N

N∑
l=0

(
N

l

)
(−1)l

∫ z

0

(1− 2t)l+ 1
2 dt

=
1

2N

N∑
l=0

(
N

l

)
(−1)l

2l + 3
− 1

2N

N∑
l=0

(
N

l

)
(−1)l (1− 2z)l+ 3

2

2l + 3
,

(5.218)

where

1
2N

N∑
l=0

(
N

l

)
(−1)l

2l + 3
=

(−1)N

2N+1

N∑
l=0

(
N

l

)
(−1)N−l

l + 3
2

=
(−1)N

2N+1

( N∑
l=0

(
N

l

)
(−1)N−lEl 1

x

)∣∣∣
x= 3

2

=
(−1)N

2N+1

(
∆N 1

x

)∣∣∣
x= 3

2

=
N !

2N+1
(

3
2

)N+1
=

N !
(2N + 3)!!

,

(5.219)
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and ∆ denotes the ordinary difference operator, we can refine our previous result by setting N = a− 1:

M [1]
a (z) =

Ta

(2a+ 1)!!
√

1− 2z
− 1

2a−1

a−1∑
l=0

(
a− 1
l

)
(−1)l (1− 2z)l+1

2l + 3
. (5.220)

This leads to

E(Xn,a) =
n!
Tn

[zn]
1

(2a− 1)(2a+ 1)
√

1− 2z
=

n!
(2n− 3)!!(2a− 1)(2a+ 1)

(
− 1

2

n

)
(−2)n

=
2n− 1

(2a− 1)(2a+ 1)
.

(5.221)

For the variance we get
d

dz
M [2]

a (z) =
M

[2]
a (z)

1− 2z
+

2
(
M

[1]
a (z)

)2
(1− 2z)

3
2
, (5.222)

which leads to the solution

M [2]
a (z) =

2
∫ z

0

(
M

[1]
a (t)

)2
1− 2t

dt

√
1− 2z

. (5.223)

We will use the expression

(
M [1]

a (t)
)2 =

T 2
a(

(a− 1)!
)2(1− 2t)

(∫ t

0

√
1− 2xxa−1dt

)2

, (5.224)

with (∫ t

0

√
1− 2xxa−1dt

)2

=
( (a− 1)!
(2a+ 1)!!

)2 − 2(a− 1)!
2a−1(2a+ 1)!!

a−1∑
l=0

(
a− 1
l

)
(−1)l (1− 2t)l+ 3

2

2l + 3

+
1

22a−2

a−1∑
l=0

(
a− 1
l

)
(−1)l

a−1∑
i=0

(
a− 1
i

)
(−1)i (1− 2t)i+l+3

(2i+ 3)(2l + 3)
,

(5.225)

which leads to(
M

[1]
a (t)

)2
1− 2t

=
T 2

a(
(a− 1)!

)2(( (a− 1)!
(2a+ 1)!!

)2 1
(1− 2t)2

− 2(a− 1)!
2a−1(2a+ 1)!!

a−1∑
l=0

(
a− 1
l

)
(−1)l (1− 2t)l− 1

2

2l + 3

+
1

22a−2

a−1∑
l=0

(
a− 1
l

)
(−1)l 1

2l + 3

a−1∑
i=0

(
a− 1
i

)
(−1)i (1− 2t)i+l+1

2i+ 3
,

)
.

(5.226)
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This leads to an expansion of M [2]
a (z) around z = 1/2:

M [2]
a (z) = 2

T 2
a(

(a− 1)!
)2 [( (a− 1)!

(2a+ 1)!!
)2 1

2(1− 2z)
3
2

+
2(a− 1)!

2a−1(2a+ 1)!!

a−1∑
l=0

(
a− 1
l

)
(−1)l (1− 2z)l

(2l + 1)(2l + 3)

− 1
22a−2

a−1∑
l=0

(
a− 1
l

)
(−1)l

a−1∑
i=0

(
a− 1
i

)
(−1)i (1− 2z)i+l+ 3

2

(2i+ 3)(2l + 3)(2i+ 2l + 4)

]

+ 2
T 2

a(
(a− 1)!

)2√1− 2z

[
−
( (a− 1)!
(2a+ 1)!!

)2 1
2
− 2(a− 1)!

2a−1(2a+ 1)!!

a−1∑
l=0

(
a− 1
l

)
(−1)l

(2l + 1)(2l + 3)

+
1

22a−2

a−1∑
l=0

(
a− 1
l

)
(−1)l

a−1∑
i=0

(
a− 1
i

)
(−1)i

(2i+ 3)(2l + 3)(2i+ 2l + 4)

]
.

(5.227)

Now we use partial fraction decomposition to obtain a simplified form of the coefficient of 1/
√

1− 2z:

− 1
(2a+ 1)(2a− 1)2

− T 2
a(

(a− 1)!
)222a−2

a−1∑
l=0

(
a− 1
l

)
(−1)l

(2l + 1)(2l + 3)(l + 2)
(
l+2+a

a

)
= − 1

(2a+ 1)(2a− 1)2
−

(
(2a− 3)!!

)2(
(a− 1)!

)222a−1k(2a+ 1)
. (5.228)

Now we get by extracting coefficients the result.

E(X2
n,a) =

(2n+ 1)(2n− 1)
(2a− 1)2(2a+ 1)2

− 2n− 1
(2a+ 1)(2a− 1)2

−
(2n− 1)

(
(2a− 3)!!

)2(
(a− 1)!

)222a−1k(2a+ 1)
+O

( 1
n

5
2

)
. (5.229)

The variance can now be obtained from

V(Xn,a) = E(X2
n,a) + E(Xn,a)− E(Xn,a)2 = E(X2

n,a) +
2n− 1

(2a− 1)(2a+ 1)
− 4n2 − 4n+ 1

(2a− 1)2(2a+ 1)2

= n
( 8a2 − 4ak − 8

(2a− 1)2(2a+ 1)2
−

(
(2a− 3)!!

)2(
(a− 1)!

)222a−2k(2a+ 1)

)
− 4a2 − 2a− 2

(2a− 1)2(2a+ 1)2

+

(
(2a− 3)!!

)2(
(a− 1)!

)222a−1a(2a+ 1)
+O

( 1
n

5
2

)
.

(5.230)

Combining (5.221) and (5.230) proves Theorem 32.

5.9 Higher moments

It can easily be seen that the dominant term in the singular expansions of M [s]
a (z) and EvD

s
v

1
(1−Ma(z,v))2

around z = 1/2 are given as follows

M [s]
a (z) =

ms

(1− 2z)
2s−1

2

+O
( 1

(1− 2z)s−2

)
, EvD

s
v

1
(1−Ma(z, v))2

=
fs

(1− 2z)s+1
+O

( 1
(1− 2z)s

)
,

(5.231)

Proposition 3. The coefficient of the leading term in the asymptotic expansion of M [s]
a (z) around z = 1/2
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is given as follows.

ms =
2s−1

(2a− 1)s(2a+ 1)s

(1
2
)s−1

. (5.232)

Proof. It holds that the leading coefficient es of the singular expansion of EvD
s
v1/(1−Ma(z, v)) is given

by es = (2s− 1)ms due to (5.213) and (5.231). The equation

EvD
s
v

1
(1−Ma(z, v))2

=
s∑

l=0

(
s

l

)
EvD

l
v

1
1−Ma(z, v)

EvD
s−l
v

1
1−Ma(z, v)

(5.233)

translates into the following equation concerning fs

fs =
s∑

l=0

(
s

l

)
eles−l =

s∑
l=0

(
s

l

)
(2l − 1)ml(2s− 2l − 1)ms−l. (5.234)

Since the solution of (5.213) is given by

M [s]
a (z) =

∫ z

0

Rs(t)
√

1− 2tdt
√

1− 2z
, (5.235)

we obtain the recurrence

ms =
1

2(s− 1)

s−2∑
l=0

(
s− 1
l

)
ml+1

s−l−1∑
i=0

(
s− l − 1

i

)
(2i− 1)mi(2(s− l − 1− i)− 1)ms−l−1−i, (5.236)

with initial value m1 = 1
(2a−1)(2a+1) . Assuming ms has the suggested shape for all i < s, we easily get

fs =
2s

(2a− 1)s(2a+ 1)s

s∑
l=0

(
s

l

)
(
1
2
)l(

1
2
)s−l =

2s

(2a− 1)s(2a+ 1)s
s!

s∑
k=0

[zk]
1√

1− z
[zs−l]

1√
1− z

=
2s

(2a− 1)s(2a+ 1)s
s![zs]

1
1− z

= s!
2s

(2a− 1)s(2a+ 1)s
,

(5.237)

and consequently by (5.236)

ms =
2s−2

(2k − 1)s(2k + 1)s(s− 1)

s−2∑
l=0

(
s− 1
l

)
(
1
2
)l(s− 1− l)! =

2s−2

(2k − 1)s(2k + 1)s
(s− 2)!

s−2∑
l=0

( 1
2 )l

l!

=
2s−2

(2k − 1)s(2k + 1)s
(s− 2)![zs−2]

1
(1− z)

3
2

=
2s−2

(2k − 1)s(2k + 1)s
(
3
2
)s−2

=
2s−1

(2k − 1)s(2k + 1)s

(1
2
)s−1

,

(5.238)

the induction step.

Introducing the random variable Xn,j,a, which counts the number of fixed size a trees in the subtree
rooted at the node with label j in a randomly chosen size-n tree, we can deduce immediately that

E(Xs
n,j,a) =

( 2n
(2a− 1)(2a+ 1)

)s
(

1
2

)s
(j − 1

2 )s
+O(ns−1), (5.239)

by applying the approach for label-based parameters. The expansion (5.239) leads to the following
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corollary.

Corollar 8. For plane oriented recursive trees the limiting distribution behavior of the random variable
Xn,j,a, which counts the number of fixed size k trees in the subtree rooted at the node with label j in a
randomly chosen size-n tree, is, for n→∞ and depending on the growth of j, characterized as follows

• The region j fixed:

(2a− 1)(2a+ 1)Xn,j,a

2n
(d)−−→ Xj,a Xj,a

(d)
= β(

1
2
, j − 1), (5.240)

• The region for small j: j → ∞ such that j = o(n). The normalized random variable j
nXn,j,a is

asymptotically Gamma-distributed γ(a, λ)

jXn,j,a

n

(d)−−→ Xa, Xa
(d)
= γ(

1
2
,

2
(2a− 1)(2a+ 1)

) (5.241)

5.9.1 Shifting the mean

To get the limit law of the normalized and centralized random variable Xn,a, we shift the random variable
Xn,a by its mean X∗

n,a = Xn,a−E(Xn,a) = Xn,a−µn, where µ = 2
(2a−1)(2a+1) . Introducing the bivariate

generating function Na(z, v) =
∑

n≥1 TnE(vX∗
n,a) zn

n! = Mk(zv−µ, v) leads to the differential equation

∂

∂z
Na(z, v) =

v−µ

1−Na(z, v)
+

Ta

(a− 1)!
za−1v−aµ, (5.242)

with Na(0, v) = 0. Now we extract higher moments where we will use the abbreviation N
[s]
a (z) =

EvD
s
vNa(z, v). Differentiating (5.242) s times with respect to v and evaluation at v = 1 leads to

d

dz
N [s]

a (z) =
N

[s]
a (z)

1− 2z
+

s−1∑
i=0

(
s

i

)
(−µ)s−iEvD

i
v

1
1−Na(z, v)

+
s−2∑
l=0

(
s− 1
l

)
N [l+1]

a (z)EvD
s−1−l
v

1
(1−Na(z, v))2

+ s(aµ)s−1Ta

a!
za−1 =

N
[s]
a (z)

1− 2z
+Rs(z),

(5.243)

with N [s]
a (0) = 0. The solution of (5.243) is given by

N [s]
a (z) =

∫ z

0

Rs(t)
√

1− 2tdt
√

1− 2z
. (5.244)

In order to prove the gaussian limit law with the method of moments we have to show the expansions

N [2s]
a (z) =

(2s)!σ2sΓ( 2s−1
2 )

2s+1s!Γ( 1
2 )(1− 2z)

2s−1
2

+O
( 1
(1− 2z)s−1

)
,

N [2s+1]
a (z) = O

( 1

(1− 2z)
2s−1

2

)
,

(5.245)

which are equivalent to

E
(
(X∗

n,a)2s
)

=
(2s)!nsσ2s

2ss!
+O(ns− 1

2 ), E
(
(X∗

n,a)2s+1
)

= O(ns). (5.246)
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We will use induction to prove the expansions stated in (5.245). We need the auxiliary expansions

EvD
2s
v

1
1−Na(z, v)

=
(2s)!σ2sΓ( 2s+1

2 )

2ss!Γ( 1
2 )(1− 2z)

2s+1
2

+O
( 1
(1− 2z)s

)
, EvD

2s+1
v

1
1−Na(z, v)

= O
( 1

(1− 2z)
2s+1

2

)
.

(5.247)
The expansions (5.247) lead to

EvD
2s
v

1
(1−Na(z, v))2

=
2s∑

i=0

(
2s
i

)
EvD

i
v

1
1−Na(z, v)

EvD
2s−i
v

1
1−Na(z, v)

, (5.248)

where we split the sum into two parts.

EvD
2s
v

1
(1−Na(z, v))2

=
s∑

i=0

(
2s
2i

)
EvD

2i
v

1
1−Na(z, v)

EvD
2(s−i)
v

1
1−Na(z, v)

+
s−1∑
i=0

(
2s

2i+ 1

)
EvD

2i+1
v

1
1−Na(z, v)

EvD
2s−2i+1
v

1
1−Na(z, v)

(5.249)

By proceeding as in (5.237) we get further

EvD
2s
v

1
(1−Na(z, v))2

=
1

(1− 2z)s+1

s∑
i=0

(
2s
2i

)
(2i)!σ2iΓ( 2i+1

2 )
2ii!Γ( 1

2 )
(2s− 2i)!σ2s−2iΓ( 2s−2i+1

2 )
2s−i(s− i)!Γ(1

2 )

+O
( 1

(1− 2z)
2s+1

2

)
=

(2s)!
2s(1− 2z)s+1

+O
( 1

(1− 2z)
2s+1

2

)
.

(5.250)

It also holds
EvD

2s+1
v

1
(1−Na(z, v))2

= O
( 1

(1− 2z)
2s+1

2

)
. (5.251)

We already know that (5.245) holds for N [1]
a (z) and N

[2]
a (z). Assuming that for all 1 ≤ a ≤ 2s − 1 the

expansions (5.245) hold, it also holds (5.247) and (5.248) in the required range, and we get according to
(5.243) the result

d

dz
N [2s]

a (z) =
N

[2s]
a (z)

1− 2z
+

2s−2∑
l=0

(
2s− 1
l

)
N [l+1]

a (z)EvD
2s−1−l
v

1
(1−Na(z, v))2

+O
( 1

(1− 2z)
2s−1

2

)
=
N

[2s]
a (z)

1− 2z
+

s−2∑
l=0

(
2s− 1
2l + 1

)
(2l + 2)!σ2l+2Γ( 2l+1

2 )(2s− 2l − 2)!σ2s−2l−2

(1− 2z)s+ 1
2 2l+2(l + 1)!Γ(1

2 )2s−l−1
+O

( 1

(1− 2z)
2s−1

2

)
=
N

[2s]
a (z)

1− 2z
+

(2s)!σ2s(s− 1)Γ( 2s−1
2 )

s!2s(1− 2z)s+ 1
2 Γ( 1

2 )
+O

( 1

(1− 2z)
2s−1

2

)
, (5.252)

which proves after using the solution (5.244) the result. The other case 1 ≤ a ≤ 2s to 2s + 1 can easily
be seen to be true

N [2s+1]
a (z) = O

( 1

(1− 2z)
2s−1

2

)
. (5.253)

Thus it holds that
Xn,a − µn√

σ2n

(d)−−→ N (0, 1), (5.254)

which proves Theorem 33.



Chapter 6

The distribution of distances in
increasing trees

6.1 Introduction

Recently there have been a lot of studies devoted to a distributional analysis of distances between random
nodes in a lot of tree families of interest. We mention here Mahmoud and Neininger [51] for binary search
trees, Christophi and Mahmoud [12] for the digital data structure called Tries, and Panholzer [65] for
simply generated trees (= Galton Watson trees).
Considerably less studies are made to analyze the distribution of distances between specified nodes in
labelled tree structures. “Exceptions” are the work of Dobrow [16] and Dobrow and Smythe [18], who have
shown a central limit theorem for the distance between the nodes labelled by j and n (= the largest node),
respectively, in a random recursive tree of size n for all sequences (n, j(n))n∈N, with 1 ≤ j = j(n) < n,
and the work of Devroye and Neininger [15], who have shown a central limit theorem for the distance
between the nodes labelled by j1 and j2 in a random binary search tree of size n for all sequences
(n, j1(n), j2(n))n∈N with 1 ≤ j1 = j1(n) < j2 = j2(n) ≤ n, provided that j2 − j1 →∞.
In this chapter we “continue” the work of [16; 18] by extending the results from recursive trees to a
larger class of tree families: we give a distributional analysis (by showing a central limit theorem) of the
r. v. ∆n,j , which counts the distance, measured by the number of edges lying on the connecting path
between node j and node n in a random grown simple increasing tree of size n.

6.2 Results for grown simple families of increasing trees

6.2.1 Exact formulæ

Here we give the exact formulæ for the distribution, the expectation and the variance of the random
variable ∆n,j . In the following formula for the probabilities P{∆n,j = m} we have to distinguish between
the case of plane-oriented recursive trees (c1 = −2c2) and the other instances of grown simple families of
increasing trees (c1 6= −2c2).

Theorem 34. The probabilities P{∆n,j = m}, which give the probability that the distance between the
node with label j and the node with label n in a randomly chosen size-n tree of a grown simple family of
increasing trees as given by Lemma 1, is m, are, for m ≥ 1 and 1 ≤ j < n given by the following formula.
• Case C with instance c1 = −2c2 (Plane-oriented recursive trees): it holds

P{∆n,j = m} =
22n−3

(n− 1)
(
2n−2
n−1

)(
n−2
j−1

) m−1∑
k=0

1
2m−1−k

( j−1∑
l=0

[
l

k

]
1
l!

(
j − l − 3

2

j − l − 1

))
×
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×
( n−j−1∑

l=0

[
l

m− 1− k

]
1
l!

(
n− 2− l

j − 1

))
. (6.1)

• Case A, Case B, and Case C with instance c1 6= −2c2: it holds

P{∆n,j = m} =

(j−1+
c2
c1

j−1

)
(1 + c2

c1
)

(n− 1)
(
n−2
j−1

)(n−1− c2
c1

n−1

)
(

n−j−1∑
l=0

(
n− l − 2
j − 1

)(
1 +

c2
c1

)m−1 1
l!

[
l

m− 1

]

+
c1

c1 + 2c2

n−j−1∑
k=0

(
n− k − 2
j − 1

)m−2∑
l=0

2l(c1 + c2)l

(c1 + 2c2)l

(
1 +

c2
c1

)m−2−l 1
k!

[
k

m− 2− l

])

− 1

(n− 1)
(
n−2
j−1

)(n−1− c2
c1

n−1

) m−2∑
l=0

2m−2−l(c1 + c2)m−1−l

(c1 + 2c2)m−1−l

l∑
k=0

(( j−1∑
i=0

(
j − 2− i− c2

c1

j − 1− i

)
2k
(
1 +

c2
c1

)k 1
k!

[
i

k

])
×

×
( n−j−1∑

i=0

(
n− 2− i

j − 1

)(
1 +

c2
c1

)l−k 1
(l − k)!

[
i

l − k

]))
. (6.2)

Theorem 35. The expectation and the variance of the random variable ∆n,j, which counts the distance
between the node with label j and the node with label n in a randomly chosen tree of size n, are for all
grown simple families of increasing trees as given by Lemma 1 (and 1 ≤ j < n) given by

E(∆n,j) =
(
1 +

c2
c1

)(
Hn+

c2
c1
−1 +Hj+

c2
c1
− 2H1+

c2
c1

+
1 + 2c2

c1

j + c2
c1

)
− 2

c2
c1
.

V(∆n,j) =
(
1 +

c2
c1

)
Hn+

c2
c1
−1 +

((
1 +

c2
c1

)
− 4

(
1 + 2c2

c1

)(
1 + c2

c1

)2
j + c2

c1

)
Hj+

c2
c1

− 2
((

1 +
c2
c1

)
− 2

(
1 + 2c2

c1

)(
1 + c2

c1

)2
j + c2

c1

)
H1+

c2
c1
−
(
1 +

c2
c1

)2(
Hn+

c2
c1

+12 + 3Hj+
c2
c1

2− 4H c2
c1

+12
)

+ 2
(
1 +

c2
c1

)(
1 +

2c2
c1

)
−
(
1 + 2c2

c1

)(
1 + c2

c1

)
j + c2

c1

−
(
1 + 2c2

c1

)2(1 + c2
c1

)2
(j + c2

c1
)2

.

(6.3)

We explicitly give the formulæ for the three most prominent members of grown simple tree families. The
result for recursive trees already appears in [58].

Corollar 9. The expectation and the variance of the random variable ∆n,j (for 1 ≤ j < n) are for
plane-oriented recursive trees (ϕ0 = 1, c1 = 2, c2 = −1) given by

E(∆n,j) = H2n−2 −
1
2
Hn−1 +H2j −

1
2
Hj − 1,

V(∆n,j) = H2n−2 −
1
2
Hn−1 +H2j −

1
2
Hj −H2n−22 +

1
4
Hn−12− 3H2j2 +

3
4
Hj2 + 2.

(6.4)

The expectation and the variance of the random variable ∆n,j (for 1 ≤ j < n) are for recursive trees
(ϕ0 = 1, c1 = 1, c2 = 0) given by

E(∆n,j) = Hn−1 +Hj +
1
j
− 2,

V(∆n,j) = Hn−1 +Hj −Hn−12− 3Hj2−
4
j
Hj + 4 +

3
j
− 1
j2
.

(6.5)

The expectation and the variance of the random variable ∆n,j (for 1 ≤ j < n) are for binary increasing
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trees (ϕ0 = 1, c1 = c2 = 1, and thus d = 1 + c2
c1

= 2) given by

E(∆n,j) = 2Hn + 2Hj+1 +
6

j + 1
− 8,

V(∆n,j) = 2Hn + 2Hj+1 − 4Hn2− 12Hj+12−
48
j + 1

Hj+1 + 26 +
66
j + 1

− 36
(j + 1)2

.
(6.6)

6.2.2 Distribution laws

We can easily reprove a result of [18].

Corollar 10 ([18]). The random variable ∆n,j satisfies the following distribution law.

∆n,j
(d)
= ∆j+1,j ⊕

n−1⊕
k=j+1

Bk, for j < n (6.7)

where the Bk’s are Bernoulli distributed random variables

Bk
(d)
= Be(pk), pk =

1 + c2
c1

k + c2
c1

, for j + 1 ≤ k ≤ n− 1. (6.8)

Note that in [18] an interpretation for the probabilities pk appearing in Corollary 10 where given: pk is
the probability that node k + 1 is attached (a child) of node k.
Now we are going to calculate the distribution law of ∆j+1,j . In [18] the law ∆j+1,j for recursive trees
was given. We extend this result to arbitrary grown increasing tree families.

Theorem 36. The distribution law of ∆j+1,j is given as follows. For c1 6= −2c2:

∆j+1,j
(d)
=

ηj∑
k=1

B̃k, (6.9)

where B̃k
(d)
= Be(p̃k), p̃0 = p̃1 = 1 and p̃k = 1

k−1+
c2
c1

for 3 ≤ k ≤ j. Further P{ηj = 1} =
1+

c2
c1

j+
c2
c1

and

P{ηj = m} = 1
j+

c2
c1

for 2 ≤ m ≤ j.

For c1 = −2c2 we find an even simpler decomposition:

∆j+1,j
(d)
=

j⊕
k=1

B̃k = 1⊕
j−1⊕
k=1

11(Ak), (6.10)

where B̃1
(d)
= 1 and B̃k

(d)
= Be( 2

2k−1 ) for 2 ≤ k ≤ j. Note that B̃k+1 = 11(Ak), 1 ≤ k ≤ j − 1 where Ak

denotes the event that node k is on the path from j + 1 to j.

6.2.3 Limiting distribution results

In the following we give the main theorem this chapter, i. e. the central limit theorems for the r. v. ∆n,j

and ∆n;j1,j2 , respectively.

Theorem 37. The centralized and normalized random variable ∆∗
n,j, where ∆n,j counts the distance

between the nodes with the label j and the label n in a randomly chosen size-n tree of a grown simple family
of increasing trees as given by Lemma 1, is, for arbitrary sequences (n, j(n))n∈N, with 1 ≤ j = j(n) < n,
asymptotically for n→∞ Gaussian distributed,

∆∗
n,j :=

∆n,j − µn,j

σn,j

(d)−−→ N (0, 1), (6.11)
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where µn,j :=
(
1 + c2

c1

)
(log n+ log j) and σ2

n,j :=
(
1 + c2

c1

)
(log n+ log j).

Corollar 11. The centralized and normalized random variable ∆∗
n;j1,j2

, where ∆n;j1,j2 counts the distance
between the nodes with the label j1 and the label j2 in a randomly chosen size-n tree of a grown simple
family of increasing trees as given by Lemma 1, is, for arbitrary sequences (n, j1(n), j2(n))n∈N, with
1 ≤ j1 = j1(n), j2 = j2(n) < n, provided that max(j1, j2) → ∞, asymptotically for n → ∞ Gaussian
distributed,

∆∗
n;j1,j2 :=

∆n,;j1,j2 − µn;j1,j2

σn;j1,j2

(d)−−→ N (0, 1), (6.12)

where µn;j1,j2 :=
(
1 + c2

c1

)
(log j1 + log j2), σ2

n;j1,j2
:=
(
1 + c2

c1

)
(log j1 + log j2).

6.3 A recurrence for the probabilities

By using the combinatorial description of increasing trees as stated in the Preliminaries (6) we will obtain
a recursive description of ∆n,j and thus of the probabilities P{∆n,j = m} for simple families of increasing
trees. For these considerations we also have to introduce the r. v. Dn,j , which counts the depth (=
the number of edges lying on the path connecting the root, i. e. the node with label 1, with the node
considered) of node j in a random size-n tree of a simple family of increasing trees. One may thus also
define Dn,j := ∆n;j,1. We will use an approach similar to Chapter 5 Section 5.3 to obtain a recurrence
for the probabilities.
For increasing trees of size n with root-degree r and subtrees with sizes k1, . . . , kr, enumerated from left
to right, we will distinguish between two cases that cover all possible cases by symmetry arguments . For
the first case we assume that node j and node n are both lying in the leftmost subtree of the root, where
the node labelled by j is the i-th smallest node in this subtree. We can then reduce the computation of
the probabilities P{∆n,j = m} to the probabilities P{∆k1,i = m}. For the second case we assume that
node j is lying in the leftmost subtree and is the i-th smallest node in this subtree, whereas node n is
lying in the second subtree (from left to right). We can thus reduce the computation of the probabilities
P{∆n,j = m} to the probabilities of the depths P{Dk1,i = t} and P{Dk2,k2 = m− 2− t}.
In the first case we get as factor the total weight of the r subtrees and the root node ϕrTk1 · · ·Tkr , divided
by the total weight Tn of trees of size n and multiplied by the number of order preserving relabellings of
the r subtrees, which are given here by(

j − 2
i− 1

)(
n− 1− j

k1 − 1− i

)(
n− 1− k1

k2, k3, . . . , kr

)
:

the i − 1 labels smaller than j are chosen from 2, 3, . . . , j − 1, the k1 − 1 − i labels larger than j but
different from n are chosen from j + 1, . . . , n− 1, and the remaining n− 1− k1 labels are distributed to
the second, third, . . . , r-th subtree. Due to symmetry arguments we obtain a factor r, if the node j is
the i-th smallest node in the second, third, . . . , r-th subtree.
Analogously, in the second case we get the factor ϕrTk1 · · ·Tkr

divided by the total weight Tn of trees of
size n and multiplied by the number of order preserving relabellings of the r subtrees, which are given
here by (

j − 2
i− 1

)(
n− 1− j

k1 − i

)(
n− 2− k1

k2 − 1, k3, . . . , kr

)
:

the i − 1 labels smaller than j are chosen from 2, 3, . . . , j − 1, the k1 − i labels larger than j are chosen
from j + 1, . . . , n− 1 (since node n must be in the second subtree), and the remaining n− 2− k1 labels
are distributed to the second, third, . . . , r-th subtree. Again due to symmetry arguments we obtain a
factor r(r − 1).
Summing up over all choices for the rank i of label j in its subtree, the subtree sizes k1, . . . , kr, and the
degree r of the root node gives the following recurrence (6.13).
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P{∆n,j = m} =
∑
r≥1

rϕr

∑
k1 + · · ·+ kr = n− 1,

k1, . . . , kr ≥ 1

Tk1 · · ·Tkr

Tn
×

×
min{k1,j−1}∑

i=1

P{∆k1,i = m}
(
j − 2
i− 1

)(
n− 1− j

k1 − 1− i

)(
n− 1− k1

k2, k3, . . . , kr

)
+
∑
r≥1

r(r − 1)ϕr

∑
k1 + · · ·+ kr = n− 1,

k1, . . . , kr ≥ 1

Tk1 · · ·Tkr

Tn
×

×
min{k1,j−1}∑

i=1

m−2∑
t=0

P{Dk1,i = t}P{Dk2,k2 = m− 2− t}
(
j − 2
i− 1

)(
n− 1− j

k1 − i

)(
n− 2− k1

k2 − 1, k3, . . . , kr

)
, (6.13)

for 2 ≤ j ≤ n− 1, with P{∆n,1 = m} = P{Dn,n = 1} and P{∆n,n = m} = δm,0.
To treat this recurrence (6.13) we set n := k+ j with k ≥ 0 and define the trivariate generating functions

M(z, u, v) :=
∑
k≥1

∑
j≥1

∑
m≥0

P{∆k+j,j = m}Tk+j
zj−1

(j − 1)!
uk−1

(k − 1)!
vm,

N(z, u, v) :=
∑
k≥0

∑
j≥1

∑
m≥0

P{Dk+j,j = m}Tk+j
zj−1

(j − 1)!
uk

k!
vm.

(6.14)

Multiplying (6.13) with Tk+j
zj−2

(j−2)!
uk−1

(k−1)!v
m and summing up over k ≥ 1, j ≥ 2 and m ≥ 0 gives then

∂
∂zM(z, u, v) for the left hand side and ϕ′

(
T (z+u)

)
M(z, u, v) as well as v2N(z, u, v)N(z+u, 0, v)ϕ′′

(
T (z+

u)
)

for the right hand side of (6.13). Since these are essentially straightforward, but quite lengthy
computations, they are omitted here; similar considerations are done in [68] for a study of the r. v. Dn,j ,
where the (somewhat simpler) recurrences appearing there are treated analogously. In any case we obtain
the following differential equation:

∂

∂z
M(z, u, v) = ϕ′

(
T (z + u)

)
M(z, u, v) + v2N(z, u, v)N(z + u, 0, v)ϕ′′

(
T (z + u)

)
, (6.15)

together with the initial condition

M(0, u, v) =
∑
k≥1

∑
m≥0

P{∆k+1,1 = m}Tk+1
uk−1

(k − 1)!
vm =

∑
k≥1

∑
m≥0

P{Dk+1,k+1 = m}Tk+1
uk−1

(k − 1)!
vm

=
∂

∂u
N(u, 0, v).

(6.16)

As mentioned before, the random variable Dn,j was already analyzed in [68], where the following result
was obtained:

N(z, u, v) = ϕ
(
T (u)

)(ϕ(T (z + u)
)

ϕ
(
T (u)

) )v

= T ′(u)
(T ′(z + u)

T ′(u)

)v

. (6.17)

Consequently we get

N(z, 0, v) = ϕ0

(ϕ(T (z)
)

ϕ0

)v

= ϕ0

(T ′(z)
ϕ0

)v

, (6.18)

and further

M(0, u, v) =
∂

∂u
N(u, 0, v) =

∂

∂u

(
ϕ0

(T ′(u)
ϕ0

)v) = ϕ0

(T ′(u)
ϕ0

)v−1T ′′(u)
ϕ0

= vT ′′(u)
(T ′(u)

ϕ0

)v−1

. (6.19)
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Thus the differential equation (6.15) can be rewritten into

∂

∂z
M(z, u, v) = ϕ′

(
T (z + u)

)
M(z, u, v) +

v2ϕ′′
(
T (z + u)

)(
T ′(z + u)

)2v(
T ′(u)

)v−1
ϕv−1

0

, (6.20)

with initial condition M(0, u, v) = vT ′′(u)
(

T ′(u)
ϕ0

)v−1

. The corresponding homogeneous differential equa-
tion has the solution

M [h](z, u, v) = C(u, v) exp
(∫ z

0

ϕ′
(
T (t+ u)

)
dt
)

= C(u, v)
ϕ
(
T (z + u)

)
ϕ
(
T (u)

) = C(u, v)
T ′(z + u)
T ′(u)

, (6.21)

with some function C(u, v). Variation of the constants method leads to the particular solution

M [p](z, u, v) =
v2T ′(z + u)

ϕv−1
0

(
T ′(u)

)v−1

∫ z

0

ϕ′′
(
T (t+ u)

)(
T ′(t+ u)

)2v−1
dt. (6.22)

Adapting to the initial condition leads to C(u, v) = M(0, u, v) = vT ′′(u)
(

T ′(u)
ϕ0

)v−1

, and therefore to the
following proposition.

Proposition 4. The function M(z, u, v) as defined in equation (6.14), which is the trivariate generating
function of the probabilities P{∆n,j = m}, which give the probability that the distance (measured by the
number of edges on the connecting path) between the node with label j and the node with label n in a
randomly chosen size-n tree of a simple family of increasing trees with degree-weight generating function
ϕ(t), is m, is given by the following formula:

M(z, u, v) = vT ′′(u)
(T ′(u)

ϕ0

)v−1T ′(z + u)
T ′(u)

+
v2T ′(z + u)

ϕv−1
0

(
T ′(u)

)v−1

∫ z

0

ϕ′′
(
T (t+ u)

)(
T ′(t+ u)

)2v−1
dt. (6.23)

This immediately has the following consequence.

Corollar 12. The trivariate generating function M(z, v, u) is for all grown simple families of increasing
trees as given by Lemma 1 given by the following formula:

M(z, u, v) =
ϕ0(c1 + c2)v

(
1− vc1

(c1+c2)(2v−1)−c2

)
(1− c1u)

(
c2
c1

+1)(v−1)+1(1− c1(z + u))
c2
c1

+1

+
ϕ0c1(c1 + c2)v2(1− c1u)

(
c2
c1

+1)(v−1)(
(c1 + c2)(2v − 1)− c2

)
(1− c1(z + u))(

c2
c1

+1)(2v−1)+1
, (6.24)

where we have to set c2 = 0 for Case A and d = c1
c2

+ 1 for Case B.

Next we will distinguish between two cases, namely c1 = −2c2, and c1 6= −2c2. In the former case it
holds

vc1
(c1 + c2)(2v − 1)− c2

=
vc1

c1
2 (2v − 1) + c1

2

= 1, (6.25)

and thus we are able to refine Corollary 12 for this instance.

Corollar 13. For grown simple families of increasing trees of Case C as given by Lemma 1 that are
satisfying c1 = −2c2, and therefore in particular for plane-oriented recursive trees (ϕ0 = 1, c1 = 2, c2 =
−1), the generating function M(z, u, v) simplifies to

M(z, u, v) =
ϕ0c1v(1− c1u)

v−1
2

2(1− c1(z + u))v+ 1
2
. (6.26)
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Remark 14. As in Chapter 5 Section 5.3 we can also use a combinatorial approach to derive the
differential equation (6.15) for M(z, u, v). Think of a specifically 4-colored increasing tree T . Exactly
one node is colored red, all nodes with a smaller label than the red node are colored black, and nodes
with larger label than the red node are colored white except the node with the largest label in T , which
is colored green. Assume that the red node of T is not the root node.
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Figure 6.1: Two decompositions of size n=11 increasing trees.

Then the red node is located in one of the r subtrees of the root of T ; let us assume that it is in the r-th
subtree. Furthermore assume that the green node is also in the r-th subtree. Then the r-th subtree is
possibly itself a 4-colored increasing tree (after order preserving relabelling), where the remaining r − 1
subtrees of the root are only bicolored trees colored black and white. The total weight of the suitably
4-colored increasing trees with j black and k white nodes, where the parameter of the red node is exactly
m, is given by P{∆j+k+2,j+1 = m}Tj+k+2. Setting up the generating function

M(z, u, v) :=
∑
k≥0

∑
j≥0

∑
m≥0

P{∆k+j+2,j+1 = m}Tk+j+2
zj

j!
uk

k!
vm, (6.27)

we obtain by the same considerations as in Chapter 5 Section 5.3 the differential equation

∂

∂z
M(z, u, v) = ϕ′

(
T (z + u)

)
M(z, u, v) +R(z, u, v), (6.28)

where the inhomogeneous part R(z, u, v) is due to the case where the red and the green node are not in
the same subtree. Let’s consider this case in more detail. Assume that the red node is in the r-th subtree
whereas the green node is in the r − 1-th subtree. The r-th subtree is possibly a tricolored increasing
tree with colors black, red and white. The r− 1-th subtree is also a tricolored increasing tree with colors
black, white and green. By introducing the generating functions for the total weights

N(z, u, v) :=
∑
k≥0

∑
j≥0

∑
m≥0

P{Dk+j+1,j+1 = m}Tk+j+1
zj

j!
uk

k!
vm, (6.29)

the generating functions of the total weights of the r − 1-th subtree is given by

∑
k≥0

∑
j≥0

∑
m≥0

P{Dk+j+1,k+j+1 = m}Tk+j+1
zj

j!
uk

k!
vm =

∑
l≥0

l∑
i=0

∑
m≥0

P{Dl+1,l+1 = m}Tl+1
zi

i!
ul−i

(l − i)!
vm

=
∑
l≥0

∑
m≥0

P{Dl+1,l+1 = m}Tl+1
(z + u)l

l!
vm = N(z + u, 0, v).

Finally we obtain the inhomogeneous part :

R(z, u, v) = v2ϕ′′
(
T (z + u)

)
N(z, u, v)N(z + u, 0, v), (6.30)

where the additional factor v2 is due to the fact that the depth of the red and the green node increase
by one in the original tree T .
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6.4 Closed formulæ for the probabilities

For extracting coefficients from the trivariate g. f. M(z, u, v) as given by Corollary 12 it is convenient to
split M(z, u, v) into two parts M(z, u, v) = M1(z, u, v)+M2(z, u, v), where the first part, i. e. M1(z, u, v),
disappears for trees characterized by Corollary 13. Furthermore we use the well known relation for the
Stirling numbers of the first kind

∑
n≥0

m∑
m=0

[
n

m

]
zn

n!
vm =

1
(1− z)v

. (6.31)

We only present the calculations for the trees characterized by Corollary 13. The general case, c1 6= −2c2,
can be treated by the same method; the calculations become a bit lengthier, but are only slightly more
complicated. We extract coefficients according to (6.14).

P{∆n,j = m} =
(j − 1)!(n− j − 1)!

Tn
[zj−1un−j−1vm]M(z, u, v)

=
(j − 1)!(n− j − 1)!

Tn
[zj−1un−j−1vm]

ϕ0c1v(1− c1u)
v−1
2

2(1− c1(z + u))v+ 1
2

=
(j − 1)!(n− j − 1)!ϕ0c

n−1
1

2Tn
[zj−1un−j−1vm−1]

(1− u)
v−1
2

(1− z − u)v+ 1
2

=
(j − 1)!(n− j − 1)!

2(n− 1)!
(
n− 3

2
n−1

) [zj−1un−j−1vm−1]
1

(1− u)
v
2 +1(1− z

1−u )v+ 1
2
,

(6.32)

where we have used [zn]f(c1z) = cn1 [zn]f(z). We get further

P{∆n,j = m} =
22n−3(j − 1)!(n− j − 1)!

(n− 1)!
(
2n−2
n−1

) [un−j−1vm−1]

(v+j− 3
2

j−1

)
(1− u)

v
2 +j

=
22n−3

(n− 1)
(
n−2
j−1

)(
2n−2
n−1

) [vm−1]
(
v + j − 3

2

j − 1

)( v
2 + n− 2
n− j − 1

)
.

(6.33)

The remaining part of the proof follows by using (6.31) and

∑
l≥0

(
v +K + l − 1

l

)
zl =

1
(1− z)v+K

, [vm]
(
v + j − 3

2

j − 1

)
= [zj−1vm−1]

1
(1− z)v+ 1

2
. (6.34)

6.5 Closed formulæ for expectation and variance

To avoid lengthy computations we restrict ourselves again to the case covered by Corollary 13, i. e.
c1 = −2c2. We basically use

E(∆n,j) =
(j − 1)!(n− j − 1)!

Tn
[zj−1un−j−1]EvDvM(z, u, v),

E(∆2
n,j) =

(j − 1)!(n− j − 1)!
Tn

[zj−1un−j−1]EvD
2
vM(z, u, v).

(6.35)

For the calculation of the expectation we begin with

EvDvM(z, u, v) =
ϕ0c1

2(1− c1(z + u))
3
2

(
1− 1

2
log
( 1
1− c1u

)
+ log

( 1
1− c1(z + u)

))
. (6.36)
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Now we use the relations

1
(1− c1(z + u))α

=
1

(1− c1u)α(1− c1z
1−c1u )α

, logα
( 1
1− c1(z + u)

)
=
(

log
( 1
1− c1u

)
+ log

( 1
1− c1z

1−c1u

))α

(6.37)
and

[zn]
log
(

1
1−z

)
(1− z)α+1

=
(
n+ α

n

)
(Hn+α −Hα), (6.38)

to obtain

[zj−1un−j−1]EvDvM(z, u, v) =
ϕ0c

n−1
1

2

(
n− 3

2

n− j − 1

)(
j − 1

2

j − 1

)(1
2
Hn− 3

2
+

1
2
Hj− 1

2
−H 1

2
+ 1
)
. (6.39)

Together with

(j − 1)!(n− j − 1)!
Tn

=
(j − 1)!(n− j − 1)!

ϕ0c
n−1
1 (n− 1)!

(
n− 3

2
n−1

) =
2

ϕ0c
n−1
1

( n− 3
2

n−j−1

)(j− 1
2

j−1

) , (6.40)

and by converting into “integer” harmonic numbers we get the desired result for E(∆n,j).
For the second factorial moment we get

EvD
2
vM(z, u, v) =

ϕ0c1

8(1− c1(z + u))
3
2

(
− 4 log

( 1
1− c1u

)
+ 8 log

( 1
1− c1(z + u)

)
+ log2

( 1
1− c1u

)
− 4 log

( 1
1− c1u

)
log
( 1
1− c1(z + u)

)
+ 4 log2

( 1
1− c1(z + u)

))
.

(6.41)

For extracting coefficients we use again (6.37) and (6.38) together with

[zn]
log2

(
1

1−z

)
(1− z)α+1

=
(
n+ α

n

)(
(Hn+α −Hα)2 − (H(2)

n+α −H(2)
α )
)
, (6.42)

and obtain

E(∆2
n,j) =

1
4
(Hn− 3

2
−Hj− 1

2
)2 + (Hn− 3

2
−H 1

2
)(Hj− 1

2
−H 1

2
+ 1) + 2(Hj− 1

2
−H 1

2
) + (Hj− 1

2
−H 1

2
)2

− 1
4
(H(2)

n− 3
2
−H

(2)

j− 1
2
)− (H(2)

j− 1
2
−H

(2)
1
2

).

(6.43)

The variance follows then via

V(∆n,j) = E(∆2
n,j) + E(∆n,j)−

(
E(∆n,j)

)2
. (6.44)

For the general case the usage of a computer algebra system becomes handy for carrying out the simpli-
fications.
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6.5.1 Proving the distribution laws

First we turn our attention to the proof of Corollary 10. From the explicit representation of the generating
function pn(v) =

∑
m≥1 P{∆n,j = m}

pn,j(v) =
(
1 +

c2
c1

) v
(n−2+v

(
1+

c2
c1

)
n−j−1

)
(n− 1)

(n−1+
c2
c1

n−1

)(
n−2
j−1

)((1− vc1
(c1 + c2)(2v − 1)− c2

)(j − 1 + c2
c1

j − 1

)

+
vc1

(c1 + c2)(2v − 1)− c2

(
j − 1 + ( c2

c1
+ 1)(2v − 1)

j − 1

))
,

(6.45)

we immediately get

pn,j(v) = j

(
j + c2

c1

j

)
pj+1,j(v)

(n−2+v
(
1+

c2
c1

)
n−j−1

)
(n− 1)

(n−1+
c2
c1

n−1

)(
n−2
j−1

)
= j

(
j + c2

c1

j

)
pj+1,j(v)

(n− 2 + v(1 + c2
c1

))n−j−1(j − 1)!

(n− 1 + c2
c1

)n−j−1(j + c2
c1

)j

= pj+1,j(v)
n−1∏

k=j+1

( k − 1
k + c2

c1

+
v(1 + c2

c1
)

k + c2
c1

)
,

(6.46)

which proves Corollary 10. We split the proof of Theorem 36 into two parts. First we turn to the case
c1 = −2c2.

pj+1,j(v) =
v22j−1

j
(
2j
j

) (v + j − 1
2

j − 1

)
=
v22j−1j!(v + j − 1

2 )j−1

(2j)!
=
v2j−1(v + j − 3

2 )j−1

(2j − 1)!!

=
v
∏j−1

k=1(2v + 2k − 1)
(2j − 1)!!

= v

j−1∏
k=1

(2k − 1
2k + 1

+
2v

2k + 1
)
.

(6.47)

We still have to prove that B̃k+1 = 11(Ak). Due to the independence of the random variables we only
have to show B̃j = 11(Aj−1) for ∆j+1,j , which holds then for arbitrary j ≥ 1.

P{Aj−1} = P{Aj−1|∆j,j−1 = 1}P{∆j,j−1 = 1}+ P{Aj−1|∆j,j−1 > 1}P{∆j,j−1 > 1}

=
P{Aj−1|∆j,j−1 = 1}

2j − 3
+

P{Aj−1|∆j,j−1 > 1}(2j − 4)
2j − 3

=
2j − 2

(2j − 3)(2j − 1)
+

2j − 4
(2j − 3)(2j − 1)

=
2

2j − 1
.

(6.48)

Now one can proceed as follows

P{∆j+1,j = m} = P{∆j+1,j = m|Aj−1}P{Aj−1}+ P{∆j+1,j = m|Ac
j−1}P{Ac

j−1}. (6.49)

Now we use the decomposition of ∆j+1,j = 11(Aj−1)⊕∆j,j−1 and the independence of ∆j,j−1 and 11(Aj−1)
to obtain

P{∆j+1,j = m} = P{∆j,j−1 = m− 1}P{Aj−1}+ P{∆j,j−1 = m}P{Ac
j−1}. (6.50)
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For the other case c1 6= −2c2 we have

pj+1,j(v) =
(
1 +

c2
c1

) v

j
(j+ c2

c1
j

)((1− vc1
(c1 + c2)(2v − 1)− c2

)(j − 1 + c2
c1

j − 1

)

+
vc1

(c1 + c2)(2v − 1)− c2

(
j − 1 + ( c2

c1
+ 1)(2v − 1)

j − 1

))
,

(6.51)

which can be written as

pj+1,j(v) =
v(1 + c2

c1
)

(j + c2
c1

)
(
1− v

(1 + c2
c1

)(2v − 1)− c2
c1

)
+

v2(1 + c2
c1

)
(
j − 1 + ( c2

c1
+ 1)(2v − 1)

)j−1

(j + c2
c1

)
(
(1 + c2

c1
)(2v − 1)− c2

c1

)
(j − 1 + c2

c1
)j−1

)
.

(6.52)

We get further(
j − 1 + ( c2

c1
+ 1)(2v − 1)

)j−1(
(1 + c2

c1
)(2v − 1)− c2

c1

)
(j − 1 + c2

c1
)j−1

=
( c2

c1
+ 1)(2v − 1)− c2

c1
+ j − 1 + c2

c1

j − 1 + c2
c1

×

×
(
j − 2 + ( c2

c1
+ 1)(2v − 1)

)j−2(
(1 + c2

c1
)(2v − 1)− c2

c1

)
(j − 2 + c2

c1
)j−2

, (6.53)

which can be written as

aj−1 =

(
( c2

c1
+ 1)(2v − 1)− c2

c1

)
j − 1 + c2

c1

aj−2 + aj−2, aj :=

(
j + ( c2

c1
+ 1)(2v − 1)

)j(
(1 + c2

c1
)(2v − 1)− c2

c1

)
(j + c2

c1
)j
. (6.54)

Iterating this argument leads to

aj−1 =
j−2∑
k=0

(
( c2

c1
+ 1)(2v − 1)− c2

c1

)
k + 1− c2

c1

ak + a0. (6.55)

By using (6.55) we get

pj+1,j(v) =
v(1 + c2

c1
)

(j + c2
c1

)
+
v2(1 + c2

c1
)

(j + c2
c1

)

j−2∑
k=0

ak

k + 1 + c2
c1

=
v(1 + c2

c1
)

(j + c2
c1

)
+

v2

(j + c2
c1

)

j−2∑
k=0

(
k + ( c2

c1
+ 1)(2v − 1)

)k
(k + 1 + c2

c1
)k

.

(6.56)

Remark 15. Note that a decomposition of the form

∆j+1,j
(d)
= 1⊕

j−1∑
k=1

11(Ak) (6.57)

is possible for arbitrary grown simple families of increasing trees, but only in the case c1 = −2c2 the
indicators are mutually independent. E.g. for recursive trees we get

P{Aj−1} = P{Aj−1|∆j,j−1 = 1}P{∆j,j−1 = 1}+ P{Aj−1|∆j,j−1 > 1}P{∆j,j−1 > 1}

=
j − 1

(j − 1)j
+

j − 2
(j − 1)j

=
2j − 3
j(j − 1)

.
(6.58)

Assuming that the Ak’s are mutually independent we get further P{Ak} = 2k−1
k(k+1) . But it can easily be

seen that P{Aj−1}P{Aj−2} 6= P{Aj−1Aj−2}, which leads to a contradiction.
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6.6 Proving the central limit theorem

As in the previous sections we consider mainly the case covered by Corollary 13, i. e. c1 = −2c2. At the
end of this section we sketch the analogous calculations for the general case. We start with an expression
for the probability generating function pn,j(v) =

∑
m≥0 P{∆n,j = m}vm obtained from (6.33):

pn,j(v) =
(j − 1)!(n− j − 1)!

Tn
[zj−1un−j−1]M(z, u, v) =

22n−3

(n− 1)
(
n−2
j−1

)(
2n−2
n−1

)(v + j − 3
2

j − 1

)( v
2 + n− 2
n− j − 1

)
=

22n−3(n− 1)!Γ(v + j − 1
2 )Γ(n− 1 + v

2 )
(2n− 2)!Γ(v + 1

2 )Γ(v
2 + j)

.

(6.59)

The moment generating function Mn,j(t) of ∆∗
n,j := (∆n,j − µn,j)/σn,j is then given by

Mn,j(t) := E(et∆∗n,j ) = e
−

µn,j
σn,j

tE(e
∆n,j
σn,j

t) = e
−

µn,j
σn,j

t
pn,j(e

t
σn,j ). (6.60)

For our further computations we split the region 1 ≤ j < n into two cases, namely j big, such that
j ≥ log n, and j small, such that j ≤ log n. In both cases we set µn,j := (log n + log j)/2 and σ2

n,j :=
(log n+ log j)/2. In the former case j ≥ log n we get by using Stirling’s formula for the Gamma function

Γ(z) =
(z
e

)z
√

2π√
z

(
1 +

1
12z

+
1

288z2
+O(

1
z3

)
)
, (6.61)

the expansion

pn,j(v) =
√
π

2Γ(v + 1
2 )
n

v−1
2 j

v−1
2

(
1 +O(

1
n

) +O(
1
j
)
)

=
√
π

2Γ(v + 1
2 )
e(v−1)µn,j

(
1 +O(

1
n

) +O(
1
j
)
)
. (6.62)

We get further

pn,j(e
t

σn,j ) =
√
π

2Γ(e
t

σn,j + 1
2 )
e
( t

σn,j
+ t2

2!µn,j
+O( 1

σ3
n,j

))µn,j
(
1 +O(

1
n

) +O(
1
j
)
)

= etσn,j+
t2
2!

(
1 +O(

1√
log n

) +O(
1
j
)
)
,

(6.63)

where we have used
√
π

2Γ(e
t

σn,j + 1
2 )

=
√
π

2Γ( 3
2 )

(
1 +O(

1√
log n

)
)

= 1 +O(
1√

log n
). (6.64)

This leads to

Mn,j(t) = e−σn,jtpn,j(e
t

σn,j ) = e
t2
2

(
1 +O(

1√
log n

) +O(
1
j
)
)
. (6.65)

In the latter case j ≤ log n we get for pn,j(v) the asymptotic expansion

pn,j(v) =
√
π

2Γ(v + 1
2 )
n

v−1
2

Γ(v + j − 1
2 )

Γ(v
2 + j)

(
1 +O

( 1
n

))
. (6.66)
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This leads to

pn,j(e
t

σn,j ) =
√
π Γ(e

t
σn,j + j − 1

2 )

2Γ(e
t

σn,j + 1
2 )Γ( e

t
σn,j

2 + j)
e
( t

σn,j
+ t2

2!µn,j
+O( 1

σ3
n,j

))(µn,j− 1
2 log j)(

1 +O
( 1
n

))
= etσn,j+

t2
2!

(
1 +O(

log log n√
log n

)
)
,

(6.67)

where we have used (6.64) and

Γ(e
t

σn,j + j − 1
2 )

Γ( e
t

σn,j

2 + j)
= 1 +O(

log log n√
log n

). (6.68)

This leads to

Mn,j(t) = e−σn,jtpn,j(e
t

σn,j ) = e
t2
2

(
1 +O(

log log n√
log n

)
. (6.69)

Thus for 1 ≤ j < n the moment generating function Mn,j(t) of ∆∗
n,j converges in a real neighborhood of

t = 0 to the moment generating function e
t2
2 of the standard normal distribution. The continuity theorem

of Lévy shows thus convergence in distribution of ∆∗
n,j to a Gaussian distributed random variable.

Now we will sketch the proof of the general case c1 6= −2c2. We set, as stated in Theorem 35, µn,j :=(
1+ c2

c1

)
(log n+ log j) and σ2

n,j :=
(
1+ c2

c1

)
(log n+ log j). The probability generating function is given by

pn,j(v) =
(
1 +

c2
c1

) v
(n−2+v

(
1+

c2
c1

)
n−j−1

)
(n− 1)

(n−1+
c2
c1

n−1

)(
n−2
j−1

)((1− vc1
(c1 + c2)(2v − 1)− c2

)(j − 1 + c2
c1

j − 1

)

+
vc1

(c1 + c2)(2v − 1)− c2

(
j − 1 + ( c2

c1
+ 1)(2v − 1)

j − 1

))
,

(6.70)

and the moment generating function Mn,j(t) of ∆∗
n,j := (∆n,j − µn,j)/σn,j is given by

Mn,j(t) := E(et∆∗n,j ) = e
−

µn,j
σn,j

tE(e
∆n,j
σn,j

t) = e
−

µn,j
σn,j

t
pn,j(e

t
σn,j ). (6.71)

We split the region 1 ≤ j < n again into two cases j big, such that j ≥ log n, and j small, such that
j ≤ log n. Since it holds that

e
t

σn,j c1

(c1 + c2)(2e
t

σn,j − 1)− c2
= 1 +O

( 1√
log n

)
, (6.72)

it can be seen that only the second summand of pn,j(e
t

σn,j ), as given by (6.70), gives a main contribution

to the asymptotic behavior. Writing pn,j(e
t

σn,j ) as

pn,j(v) =
Γ(n− 1 + v( c2

c1
+ 1))Γ(2 + c2

c1
)

Γ(v + j( c2
c1

+ 1))Γ(n+ c2
c1

)

((
1− e

t
σn,j c1

(c1 + c2)(2e
t

σn,j − 1)− c2

)Γ(j + c2
c1

)
Γ(1 + c2

c1
)

+
e

t
σn,j c1

(c1 + c2)(2e
t

σn,j − 1)− c2

Γ(j + (2v − 1)( c2
c1

+ 1))
Γ(1 + (2v − 1)( c2

c1
+ 1))

)
,

(6.73)

using Stirling’s formula for the Gamma function (6.61) and proceeding as in the proof of the special case
c1 = −2c2 covered by Corollary 13, leads then to Theorem 37.
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Remark 16. Note that an alternative proof of the limit law of ∆n,j is available by following very closely
the approach of Dobrow and Smythe [18]. They have already outlined the benefits of using passion
approximation there, we will sketch how their proof for recursive trees can be extended to the general
case.

6.6.1 Poisson approximation of ∆n,j

As already stated in the preliminary part of this thesis, the total variation distance dTV of two probability
measures P and Q over Z+ is defined by

dTV(P,Q) =
1
2

∑
k≥0

|P ({k})−Q({k})|. (6.74)

We denote with Po(λ) a probability distribution of a Poisson distributed random variable with parameter
λ. Further we use the notation L(X) for the distribution law of the r. v. X. Let Xn be a sequence of
random variables for which

dTV(L(Xn),Po(λn)) → 0 and λn →∞, (6.75)

then it holds
Xn − λn√

λn

(d)−−→ N (0, 1). (6.76)

We will use a general setup based on [4]. For a finite or countable index set I and every k ∈ I letXk denote
a Bernoulli random variable with pk = P{Xk = 1} > 0. Further we set Y =

∑
k∈I Xk and λ = E(Y ). For

each k ∈ I we choose Uk ⊂ I such that k ∈ Uk and if i /∈ Uk then Xk and Xi are almost independent.
Define b1 =

∑
k∈I

∑
i∈Uk

pkpi, b2 =
∑

k∈I

∑
i∈Uk,i 6=k pki and b3 =

∑
k∈I E

(
|E(Xk − pk|Xi : i /∈ Uk|

)
.

Theorem 38 (Arratia, et al. [4]).

dTV(L(Y ),Po(λ)) ≤ 2
(
(b1 + b2)

1− e−λ

λ
+ b3 min{1, 1.4√

λ
}
)

When the Xk are independent , we may drop the factor 2 and b2 = b3 = 0. Further Uk = {k} and thus
b1 =

∑
k∈I p

2
k. For grown simple trees admitting c1 = −2c2 we use Theorem 38. For the other grown

simple trees we need the following result.

Theorem 39. Let Y have the mixed Poisson distribution Po(Λ), where Λ denotes a random variable.
For λ > 0 it holds:

dTV(L(Y ),Po(λ)) ≤ 1− e−λ

λ
V(Λ).

We also need the following lemma.

Lemma 16. Let X,Y, Z,W be random variables such that W,X are independent and Y, Z are indepen-
dent. Then

dTV(L(W +X),L(Y + Z)) ≤ dTV(L(W ),L(Y )) + dTV(L(X),L(Z)). (6.77)

Let’s consider first the case c1 = −2c2 (plane oriented recursive trees). From Corollary 10 and Theorem 36
we get

∆n,j
(d)
=

j∑
k=1

B̃k +
n−1∑

k=j+1

Bk, for j < n (6.78)

B̃1
(d)
= 1, B̃k

(d)
= Be( 1

k− 1
2
) for 2 ≤ k ≤ j and Bk

(d)
= Be(

1
2

k− 1
2
) for j + 1 ≤ k ≤ n − 1. If we set

λn = E(∆n,j) = H2n−2 − 1
2Hn−1 +H2j − 1

2Hj − 1 we get by using Theorem 38 the result
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Theorem 40. For plane oriented recursive trees and grown simple trees admitting c1 = −2c2 it holds
for all 1 ≤ j ≤ n− 1:

dTV(L(∆n,j),Po(λn)) ≤ 1
λn

(π2

6
+ 1
)
≤ 2

log n+ log j

(π2

6
+ 1
)
. (6.79)

In the other case c1 6= −2c2 one would need two estimates to handle the full range of j. They can be
obtained as in [18]. This also leads then by using Lemma 16 to the desired result.



Chapter 7

Scale free trees

There has been much interest in using random graphs to model complex real-world networks such as the
world-wide web. Barabási and Albert noticed that in many real-world examples the degree sequence has
a scale-free power law distribution: the fraction P (d) of vertices with degree d is proportional over a large
range to dγ , where γ is a constant independent of the size of the network. To explain this phenomenon,
Barabási and Albert [5] suggested the following random graph process as a model:

Starting with a small number m0 of vertices, at every time step we add a new vertex with
m ≤ m0 edges that link the new vertex to m different vertices already present in the system.
To incorporate preferential attachment, we assume that the probability p that a new vertex
will be connected to a vertex i depends on the connectivity kv of that vertex, so that p(ki) =
ki/
∑

j kj . After t steps the model leads to a random network with t +m0 vertices and mt
edges.

The random graph model of Barabási and Albert can be applied to model the growth of the world-wide
web, see [5]. As already known for m = 1 this process is very similar to the plane oriented recursive
tree introduced in [71], which is a well studied object in the ”combinatorial world”. As pointed out by
Bollobás and Riordan in [7], the standard definition of the Barabási and Albert model for m = 1 treats
the root differently, where the branches are plane oriented recursive trees. A further generalization for
the case m = 1 was introduced by Móri in [59] and can be defined by the following model. Starting with
a non-decreasing weight sequence (ω̃(k))k∈N we attach node i+ 1 to node v ∈ T of degree d(v), where T
is a size i tree, with a probability p̃(v) proportional to ω̃(d(v)):

p̃(v) =
ω̃(d(v))∑

u∈T ω̃(d(u))
(7.1)

Again this model (in the strict sense) treats the root differently compared to generalized plane oriented
recursive trees. We will show how to reduce the trees grown according to (7.1) to generalized plane
oriented recursive trees. To do so we will show how the trees defined by Móri are related to the class of
non-simple increasing trees. We will use the abbreviations PORTs for plane oriented recursive trees and
GPORTs for generalized plane oriented recursive trees.

7.1 Combinatorial description of scale free tree families

Formally, the class T̃ of scale free trees falls into a broader class of non-simple increasing trees, which
can be defined in the following way. Two sequences of non-negative numbers (ϕ̃k)k≥0 and (ϕk)k≥0 with
ϕ̃0 > 0 and ϕ0 > 0 (we further assume that there exists a k ≥ 2 with ϕk > 0) are used to define the

129
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weight w(T ) of any ordered tree T rooted at node r by

w̃(T ) := ϕ̃d(r)

∏
v∈T
v 6=r

ϕd(v)−1 = ϕ̃d+(r)

∏
v∈T
v 6=r

ϕd+(v), (7.2)

where v ranges over all vertices of T , d(v) denotes the degree and d+(v) the out-degree of v. Furthermore,
L(T ) denotes the set of different increasing labellings of the tree T with distinct integers {1, 2, . . . , |T |},
where |T | denotes the size of the tree T , and L(T ) :=

∣∣L(T )
∣∣ its cardinality. Then the family T̃ consists

of all trees T together with their weights w̃(T ) and the set of increasing labellings L(T ).
For given degree-weight sequences (ϕ̃k)k≥0 and (ϕk)k≥0 with the degree-weight generating functions
ϕ̃(t) :=

∑
k≥0 ϕ̃kt

k and ϕ(t) :=
∑

k≥0 ϕkt
k, we define now the total weights by T̃n :=

∑
|T |=n w̃(T ) ·L(T ).

It follows then that the exponential generating function T̃ (z) :=
∑

n≥1 T̃n
zn

n! satisfies

T̃ ′(z) = ϕ̃
(
T (z)

)
, T̃ (0) = 0, (7.3)

where
T ′(z) = ϕ

(
T (z)

)
, T (0) = 0,

and T (z) is the exponential generating function of a simple increasing tree family. We can also describe a
scale free increasing trees T̃ by the formal recursive equation, where T denotes the corresponding GPORT
family

T̃ = ©1 ×
(
ϕ̃0 · {ε} ∪̇ ϕ̃1 · T ∪̇ ϕ̃2 · T ∗ T ∪̇ ϕ̃3 · T ∗ T ∗ T ∪̇ · · ·

)
= ©1 × ϕ̃(T ), (7.4)

where again ©1 denotes the node labelled by 1, × the cartesian product, ∗ the partition product for
labelled objects, and ϕ̃(T ) the substituted structure (see, e. g., [72]).

7.1.1 Degree weight generating functions

Now we show which degree generating functions are corresponding to the scale free tree model as intro-
duced by Móri in [59]. Starting with a non-decreasing weight sequence (ω̃(k))k∈N we attach node i + 1
to node v ∈ T of degree d(v), where T is a size i tree, with a probability p̃(v) proportional to ω̃(d(v)):

ω̃(d(v)) =
(d(v) + 1)ϕ̃d(v)+1

ϕ̃d(v)
, p̃(v) =

ω̃(d(v))∑
u∈T ω̃(d(u))

We will investigate the weight function ω̃(k) = k + β, with β > −1. Since in a size i tree T the sum∑
u∈T d(u) = 2(i− 1) we get for ω̃(k) = k + β

p̃(v) =
d(v) + β

2(i− 1) + iβ
. (7.5)

The difference between the scale free trees defined by this model and the GPORTs is that for the scale
free trees the probability p̃(v) depends on the degree d(v), where for grown increasing trees p(v) depends
on the out-degree d+(v). Since for all nodes in v ∈ T except the root it holds d+(v) + 1 = d(v) we can
naturally reduce the study of this model to the study of generalized plane oriented recursive trees, since
only the root of such trees behaves differently to GPORTs. The parameter α > 0 of the probabilistic
description of GPORTs corresponds to the parameter β in the obvious relation

α = β + 1, (7.6)

e.g. for β = 0 we attach ordinary PORTs, α = 1, to the root. The weight of the GPORTs ω(k) fulfills

ω(k) = ω̃(k + 1), or equivalently
ϕkk

ϕk−1
=

(k + 1)ϕ̃k+1

ϕ̃k
for k ≥ 1, (7.7)
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with ϕ̃1 = ϕ̃0 = 1. For the GPORTs with degree weight generating function ϕ(t) = (1 − t)−α, (where
α = − c1

c2
− 1 > 0), we have ϕk =

(
k+α−1

k

)
. This leads to the recurrence

ϕ̃k+1 =
k
(
k+α−1

k

)
(k + 1)

(
k+α−2

k−1

) ϕ̃k =
k + α− 1
k + 1

ϕ̃k for k ≥ 1. (7.8)

Iteration leads to

ϕ̃k =
1
k

(
k + α− 2
k − 1

)
, for k ≥ 2. (7.9)

We finally get the degree weight generating functions ϕ̃(t).

ϕ̃(t) = 1 +
∫ t

0

ϕ(x)dx = 1 +
∫ t

0

1
(1− t)α

=

{
1 + log

(
1

1−t

)
, α = 1,

1 + 1
α−1

(
1

(1−z)α−1 − 1
)
, α 6= 1.

(7.10)

Proposition 5. The class of scale-free trees can be described as a non-simple increasing tree family,
where the degree weight generating function ϕ̃(t) is given by

ϕ̃(t) = 1 +
∫ t

0

ϕ(x)dx, (7.11)

with ϕ(t) = (1− t)−α.

By using (7.3) and T (z) covered by Case C of the grown simple families of increasing trees, where
α = − c1

c2
− 1, we obtain for the generating functions of the total weights the following result.

T̃ (z) =
∫ z

0

(
1− 1

2
log(1− 2t)

)
dt =

1
4
(2z − 1) log

( 1
1− 2z

)
+

3
2
z, α = 1, (7.12)

T̃ (z) =
∫ z

0

(
1− 1

α− 1
+

1

(α− 1)(1− (α+ 1)t)
a−1
α+1

)
dt =

α− 2
α− 1

z − (1− (α+ 1)z)
2

(α+1)

2(α− 1)
, α 6= 1. (7.13)

This leads to the following Corollary.

Corollar 14. The generating function of the Scale free trees with weight function ω̃(k) = k+α, α > −1
is given by

T̃ (z) =


1
4 (2z − 1) log

(
1

1−2z

)
+ 3

2z, α = 1,

α−2
α−1z −

(1−(α+1)z)
2

(α+1)

2(α−1) , α 6= 1.
(7.14)

Further the total weights T̃n are given as follows:

T̃n =

{
1, n = 1,∏n−1

k=2(k(α+ 1)− 2), n > 1.
(7.15)

7.1.2 Characterization of the admissibly tree families

Lemma 17. The following two properties of scale free families of increasing trees T̃ are equivalent:

1. Starting with a random scale free increasing tree T of size n ≥ j of T̃ and removing all nodes larger
than j we obtain a random scale free increasing tree T ′ of size j of T̃ .

2. The family T̃ can be constructed via an insertion process resp. a probabilistic growth rule.



CHAPTER 7. SCALE FREE TREES 132

7.1.3 Randomness preserving property

In order to find such scale free families of increasing trees we consider families of non-simple increasing
trees T with the property that when starting with a random tree of T of size n and removing all nodes
larger than j, we obtain a random tree of T of size j. By iterating the argument, it is sufficient to
show that after removing node n in a random size-n tree we get a random tree of T̃ of size n− 1. This
randomness preserving property can be described easily via the equation

w̃(T ′)
w̃(T ′′)

=

∑
T :|T |=n,T

n→T ′
w̃(T )∑

T :|T |=n,T
n→T ′′

w̃(T )
, (7.16)

which must hold for all ordered trees T ′, T ′′ of size |T ′| = |T ′′| = n − 1 and ordered trees T of size
|T | = n. Here, T n→ T ′ describes the fact that by cutting off node n from the tree T we get the tree
T ′. We assume now that T ′ is obtained from T by cutting off node n, which was originally attached at
node v. Let r′ denote the root of the tree T ′. If the root r′ has degree d(r′), there are d(r′) + 1 different
trees T that lead to the same tree T ′ when cutting off node n. In contrast if d(v) is the degree of node v,
v 6= r′, in the tree T ′, hence the out degree of v is d+(v) = d(v)− 1, there are d(v) different trees T that
lead to the same tree T ′ when cutting off node n. We obtain then the equivalent characterization

w̃(T ′)
w̃(T ′′)

=
ϕ̃d(r′)

∏
v∈T ′

v 6=r′
ϕd(v)

ϕ̃d(r′′)

∏
v∈T ′′

v 6=r′′
ϕd(v)

=
ϕ̃d(r′)

∏
v∈T ′

v 6=r′
ϕd(v)

(
(d(r′)+1)ϕ̃d(r′)+1

ϕ̃d(r′)
+
∑

v∈T ′

v 6=r′

d(v)ϕd(v)

ϕd(v)−1

)
ϕ̃d(r′′)

∏
v∈T ′′

v 6=r′′
ϕd(v)

(
(d(r′′)+1)ϕ̃d(r′′)+1

ϕ̃d(r′′)
+
∑

v∈T ′′

v 6=r′′

d(v)ϕd(v)

ϕd(v)−1

) , (7.17)

and further

(d(r′) + 1)ϕ̃d(r′)+1

ϕ̃d(r′)
+
∑
v∈T ′

v 6=r′

d(v)ϕd(v)

ϕd(v)−1
=

(d(r′′) + 1)ϕ̃d(r′′)+1

ϕ̃d(r′′)
+
∑

v∈T ′′

v 6=r′′

d(v)ϕd(v)

ϕd(v)−1
(7.18)

7.1.4 Probabilistic growth rule

We study non-simple increasing trees which can be constructed by an insertion process or a probabilistic
growth rule. Such trees have the property that for every tree T of size n − 1 with vertices v1, . . . , vn−1

there exist probabilities pT (v1), . . . , pT (vn−1), such that when starting with a random tree T of size n−1,
choosing a vertex vi in T according to the probabilities pT (vi), i. e.,

∑n−1
i=1 pT (vi) = 1, and attaching

node n to it at one of the d+(vi)+1 = d(vi) possible positions (which must be all equally likely due to the
”symmetric” recursive description of increasing tree families), we obtain a random non-simple increasing
tree T of the family T of size n.
We start with two given trees T ′ and T ′′ of size |T ′| = |T ′′| = n−1 with weights w̃(T ′) and w̃(T ′′), nodes
v′1, . . . , v

′
n−1 and v′′1 , . . . , v

′′
n−1, respectively, with probabilities pT ′(v′1), . . . , pT ′(v′n−1) and pT ′′(v′′1 ), . . . , pT ′′(v′′n−1)

fulfilling
∑n−1

i=1 pT ′(v′i) =
∑n−1

i=1 pT ′′(v′′i ) = 1. After attaching node n to a vertex v′k ∈ T ′ and v′′l ∈ T ′′ one
has to distinguish if any of the nodes v′k or v′′l is the root. If e.g. v′k = r′ node n has d(r) + 1 positions
to join the tree whereas if v′k 6= r′ there are only d(v′k) positions. One obtains in any case trees T ′k and
T ′′l which have weights

w̃(T ′k) = ϕ0

ϕd(v′k)+1

ϕd(v′k)
ϕ̃d(r′)

∏
v∈T ′

v 6=r′

ϕd(v) if v′k 6= r′, else w̃(T ′r′) = ϕ0

ϕ̃d(r′)+1

ϕ̃d(r′)
ϕ̃d(r′)

∏
v∈T ′

v 6=r′

ϕd(v);

w̃(T ′′l ) = ϕ0

ϕd(v′l)+1

ϕd(v′l)
ϕ̃d(r′′)

∏
v∈T ′′

v 6=r′′

ϕd(v) if v′′l 6= r′′, else w̃(T ′′r′′) = ϕ0

ϕ̃d(r′′)+1

ϕ̃d(r′′)
ϕ̃d(r′′)

∏
v∈T ′′

v 6=r′′

ϕd(v)

(7.19)

When starting with random non-simple increasing trees T ′ and T ′′ of size |T ′| = |T ′′| = n− 1, which are
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chosen with probability proportional to their weights, we obtain the following probabilities that the trees
T ′k resp. T ′′l are obtained by the insertion process:

w(T ′k) =
pT ′(v′k)
d(v′k)

ϕ̃d(r′)

∏
v∈T ′

v 6=r′
ϕd(v)

T̃n−1

if v′k 6= r′, else w(T ′r′) =
pT ′(r′)
d(r′) + 1

ϕ̃d(r′)

∏
v∈T ′

v 6=r′
ϕd(v)

T̃n−1

w(T ′′l ) =
pT ′′(v′′l )
d(v′′l )

ϕ̃d(r′′)

∏
v∈T ′′

v 6=r′
′ ϕd(v)

T̃n−1

if v′′l 6= r′′, else w(T ′′r′′) =
pT ′′(r′′)
d(r′′) + 1

ϕ̃d(r′′)

∏
v∈T ′′

v 6=r′′
ϕd(v)

T̃n−1

(7.20)

Since the resulting trees T ′k and T ′′l must be random increasing trees of T of size n it must hold that

w̃(T ′k)
w̃(T ′′l )

=
w(T ′k)
w(T ′′l )

,
w̃(T ′r′)
w̃(T ′′l )

=
w(T ′r′)
w(T ′′l )

,
w̃(T ′k)
w̃(T ′′r′′)

=
w(T ′k)
w(T ′′r′′)

,
w̃(T ′r′)
w̃(T ′′r′′)

=
w(T ′r′)
w(T ′′r′′)

. (7.21)

Consequently we obtain

1
pT ′(v′k)

d(v′k)ϕd(v′k)

ϕd(v′k)−1
=

1
pT ′′(v′′l )

d(v′′l )ϕd(v′′l )

ϕd(v′′l )−1
=

1
pT ′(r′)

(d(r′) + 1)ϕd(r′)+1

ϕd(r′)

=
1

pT ′′(r′′)
(d(r′′) + 1)ϕd(r′′)+1

ϕd(r′′)
:= c(n− 1),

(7.22)

for all trees T ′, T ′′ with size |T ′| = |T ′′| = n− 1, and all vertices v′k ∈ T ′ resp. v′′l ∈ T ′′ where c(n) is a
function depending only on n. Further one obtains

(d(r′) + 1)ϕd(r′)+1

ϕd(r′)
= c(n− 1)pT ′(r′) =

d(v′k)ϕd(v′k)

ϕd(v′k)−1
= c(n− 1)pT ′(v′k), (7.23)

and by summing up over all nodes in T ′ and T ′′ and dividing by c(n− 1)

(d(r′) + 1)ϕ̃d(r′)+1

ϕ̃d(r′)
+
∑
v∈T ′

v 6=r′

d(v)ϕd(v)

ϕd(v)−1
=

(d(r′′) + 1)ϕ̃d(r′′)+1

ϕ̃d(r′′)
+
∑

v∈T ′′

v 6=r′′

d(v)ϕd(v)

ϕd(v)−1
. (7.24)

For all tree families satisfying this property we can simply define the probabilities pT ′(v′) as 1
c(n−1)

d(v′)ϕd(v′)
ϕd(v′)−1

and pT ′(r′) as 1
c(n−1)

(d(r′)+1)ϕd(r′)+1

ϕd(r′)
. E.g. by choosing ϕ̃(t) = 1 + log

(
1

1−t

)
and ϕ(t) = 1/(1 − t) we

get pT ′(r′) = d(r′)
c(n−1) and pT ′(v′) = d(v′)

c(n−1) . Hence by
∑

v∈T ′ d(v
′) = 2|T ′| − 2 = 2(n − 1) − 2 we end at

c(n) = 2(n− 1). This just corresponds to the weight function ω̃(d(v)) = d(v), i.e. β = 0 (and α = 1).

7.2 Results

7.2.1 Results for the depth of node j

Theorem 41. The depth of node j in a size n ≥ j random scale free tree admits the following distribution
law.

D̃n,j
(d)
=

j−1⊕
k=1

Bk, (7.25)
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where Bk
(d)
= Be(pk) with p1 = 1 and pk = α

k(α+1)−2 for 2 ≤ k ≤ j − 1. Further D̃n,j
(d)
= D̃j,j since the

distribution does not depend on n. The expectation and the variance of D̃n,j are given as follows.

E(D̃n,j) = 1 +
j−1∑
k=2

pk = 1 +
j−1∑
k=2

α

k(α+ 1)− 2
= 1 +

α

α+ 1
(
Hj−1− 2

α+1
−H1− 2

α+1

)
,

V(D̃n,j) =
j−1∑
k=1

pk(1− pk) =
j−1∑
k=2

α

k(α+ 1)− 2
−

j−1∑
k=2

α2(
k(α+ 1)− 2

)2
=

α

α+ 1
(
Hj−1− 2

α+1
−H1− 2

α+1

)
− α2

(α+ 1)2
(
H

(2)

j−1− 2
α+1

−H
(2)

1− 2
α+1

)
.

(7.26)

For α = 1 this can be simplified to

E(D̃n,j) = 1 +
1
2
Hj−2,

V(D̃n,j) =
1
2
Hj−2 −

1
2
H

(2)
j−2.

(7.27)

Theorem 42. The probabilities P{D̃n,j = m} are for m ≥ 1 given by

P{D̃n,j = m} =
(j − 2)!(α+ 1)j−2∏j−1

l=2 (l(α+ 1)− 2)

( α

α+ 1
)m−1

j−2∑
l=0

( α
α+1 + j − 3− k

j − 2− k

)[ k
m−1

]
k!

, (7.28)

where P{D̃n,j = 0} = δj,1.

Theorem 43. The centralized and normalized random variable D̃?
n,j = D̃n,j−µj

σj
is for n ≥ j and j →∞

asymptotically gaussian distributed,

D̃∗
n,j :=

D̃n,j − µn,j

σn,j

(d)−−→ N (0, 1), (7.29)

where µj = α
α+1 log j ∼ E(D̃n,j) and σ2

j = µj ∼ V(D̃n,j).

7.2.2 Results for the distances

Theorem 44. The random variable ∆̃n,j satisfies for 1 ≤ j ≤ n− 1 the following distribution law.

∆̃n,j
(d)
= ∆̃j+1,j ⊕

n−1⊕
k=j+1

Bk, (7.30)

where Bk
(d)
= Be(pk), pk = α/(k(α+ 1)− 2) for j + 1 ≤ k ≤ n− 1

Theorem 45. The random variable ∆̃j+1,j satisfies for α 6= 1 and j ≥ 1 the following distribution law

∆̃j+1,j
(d)
=

η̃j∑
k=1

Bk, (7.31)

Bk
(d)
= Be(pk) with p1 = p2 = 1 and pk = 2α/(k(α + 1) − 2) for 3 ≤ k ≤ j; the r. v. ηj is distributed

as follows: P{η̃j = 1} = α/(j(α + 1) − 2), P{η̃j = m} = (α + 1)/(j(α + 1) − 2), 2 ≤ m ≤ j − 1 and
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P{η̃j = j} = 1/2. For α = 1 it holds a more simply decomposition.

∆̃j+1,j
(d)
=

j⊕
k=1

Bk, (7.32)

where Bk
(d)
= Be(pk) with p1 = 1, p2 = 1/2 and pk = 1/(k − 1) for 3 ≤ k ≤ j.

Theorem 46. The probability distribution of ∆̃n,j is given by the following exact formulæ.

P(∆̃n,j = m) =
(j − 2)!(n− j)!α(α+ 1)n−3∏n−1

k=2(k(α+ 1)− 2)

[
αm−1

(α+ 1)m−1

m−1∑
k=0

n−j−1∑
l=0

[
l
k

]
l!

( α
α+1 + n− 3− l

n− j − 1− l

)
×

×
(
2m−1−k

[
j−2

m−2−k

]
(j − 2)!

+
α

2(α+ 1)

j−2∑
l=0

[
l

m−2−k

]
l!

)]

+
(j − 2)!(n− j)!α(α+ 1)n−3∏n−1

k=2(k(α+ 1)− 2)

[m−2∑
k=0

αk

(α+ 1)k

( n−j−1∑
l=0

[
l
k

]
l!

( α
α+1 + n− 3− l

n− j − 1− l

))
×

×
m−2−k∑

r=0

α+ 1
1− α

( 2α
α− 1

)r( 2α
α+ 1

)m−2−k−r
( j−2∑

l=0

[
l

m−2−k−2

]
l!

−
[

j−2
m−2−k−r

]
l!

)]
.

(7.33)

Theorem 47. The expectation and the variance of ∆̃n,j are given by the following exact formulæ.

E(∆̃n,j) =
α

α+ 1
(
Hn−3+ 2α

α+1
+Hj−2+ 2α

α+1
− 2H 2α

α+1

)
+
α+ 2
α+ 1

+
α(α− 1)

(α+ 1)(j(α+ 1)− 2)
,

V(∆̃n,j) =
α

α+ 1
Hn−3+ 2α

α+1
+
( α

α+ 1
− 4α2(α− 1)

(α+ 1)2(j(α+ 1)− 2)
)
Hj−2+ 2α

α+1

+
(
− 2α
α+ 1

+
4α2(α− 1)

(α+ 1)2(j(α+ 1)− 2)
)
H 2α

α+1
− α2

(α+ 1)2
(
H

(2)

n−3+ 2α
α+1

+ 3H(2)

j−2+ 2α
α+1

− 4H(2)
2α

α+1

)
+

(2α− 1)α
(α+ 1)2

− (3α+ 1)(α− 1)α
(j(α+ 1)− 2)(α+ 1)2

− (α− 1)2α2

(α+ 1)2(j(α+ 1)− 2)2
.

(7.34)

In the following we give the main theorem of this chapter, i. e. the central limit theorems for the r. v. ∆̃n,j

and ∆̃n;j1,j2 , respectively.

Theorem 48. The centralized and normalized random variable ∆̃∗
n,j, where ∆̃n,j counts the distance

between the nodes with the label j and the label n in a randomly chosen size-n tree is, for arbitrary
sequences (n, j(n))n∈N, with 1 ≤ j = j(n) < n, asymptotically for n→∞ Gaussian distributed,

∆̃∗
n,j :=

∆n,j − µn,j

σn,j

(d)−−→ N (0, 1), (7.35)

where µn,j := α
α+1 (log n+ log j) and σ2

n,j := α
α+1 (log n+ log j).

Corollar 15. The centralized and normalized random variable ∆̃∗
n;j1,j2

, where ∆n;j1,j2 counts the distance
between the nodes with the label j1 and the label j2 in a randomly chosen size-n tree is, for arbitrary
sequences (n, j1(n), j2(n))n∈N, with 1 ≤ j1 = j1(n), j2 = j2(n) < n, provided that max(j1, j2) → ∞,
asymptotically for n→∞ Gaussian distributed,

∆̃∗
n;j1,j2 :=

∆n,;j1,j2 − µn;j1,j2

σn;j1,j2

(d)−−→ N (0, 1), (7.36)

where µn;j1,j2 := α
α+1 (log j1 + log j2), σ2

n;j1,j2
:= α

α+1 (log j1 + log j2).
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7.3 Labelbased varieties

The combinatorial description allows us to provide a general scheme for labelbased varieties such as
subtree size of node j, degree of node j or depth of node j. Let X̃n,j denote the random variable, which
counts a certain variety depending on the label j in a random scale free tree of size n. Further let Xn,j

denote the r. v. counting the same variety in the corresponding GPORT. At first we introduce a bivariate
generating function M̃(z, v) for root j = 1, which is defined as follows.

M̃(z, v) :=
∑
n≥1

∑
m≥0

P{X̃n,1 = m}T̃n
zn

n!
vm. (7.37)

Further we set n := k + j with k ≥ 0 and define the trivariate generating function

Ñ(z, u, v) :=
∑
k≥0

∑
j≥1

∑
m≥0

P{X̃k+j,j = m}T̃k+j
zj−1

(j − 1)!
uk

k!
vm. (7.38)

Due to considerations done in [68] and [47] it holds the recurrence

P{X̃n,j = m} =
∑
r≥1

rϕ̃r

∑
k1 + · · ·+ kr = n− 1,

k1, . . . , kr ≥ 1

Tk1 · · ·Tkr

T̃n

×

×
min{k1,j−1}∑

i=1

P{Xk1,i = m}
(
j − 2
i− 1

)(
n− j

k1 − i

)(
n− 1− k1

k2, k3, . . . , kr

)
, (7.39)

for n ≥ j ≥ 2. We get

∂

∂z
Ñ(z, u, v) = ϕ̃′

(
T (z + u)

)
N(z, u, v) = ϕ

(
T (z + u)

)
N(z, u, v), (7.40)

where we already know the shape of N(z, u, v).

Lemma 18. The generating function of a variety depending only on the subtree rooted at j for GPORTs
is given by

N(z, u, v) =
ϕ
(
T (z + u)

)
∂

∂uM(u, v)
ϕ
(
T (u)

) , (7.41)

where
M(z, v) :=

∑
n≥1

∑
m≥0

P{Xn,1 = m}Tn
zn

n!
vm. (7.42)

Note that (7.41) holds for varieties such as subtree size of node j, degree of node j, subtrees of various sizes,
etc., where the variety counts a property depending only on the subtree rooted at node j. Integration
gives

Ñ(z, u, v) =
∫ z

0

ϕ̃′
(
T (t+ u)

)
N(t, u, v)dt+

∂

∂u
M̃(u, v)

=
ϕ̃
(
T (z + u)

)
∂

∂uM(u, v)
ϕ
(
T (u)

) −
ϕ̃
(
T (u)

)
∂

∂uM(u, v)
ϕ
(
T (u)

) +
∂

∂u
M̃(u, v).

(7.43)

Proposition 6. The function Ñ(z, u, v) as defined in equation (7.38), which is the trivariate generating
function of the probabilities P{X̃n,j = m} that give the probability that a certain variety of label j in a
randomly chosen size-n scale free tree with degree-weight generating function ϕ̃(t) is of size m, is given
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by the following formula:

Ñ(z, u, v) =
ϕ̃
(
T (z + u)

)
∂

∂uM(u, v)
ϕ
(
T (u)

) −
ϕ̃
(
T (u)

)
∂

∂uM(u, v)
ϕ
(
T (u)

) +
∂

∂u
M̃(u, v). (7.44)

Note that this approach can be used to determine the behavior of X̃n,j over the full range of j. We will
sketch the results concerning the node degree in the following subsection.

7.3.1 Node degree

Móri analyzed in [60] the maximal degree in a random size n scale free tree. Further he gives closed
formulæ for the r. v. X̃n,j counting the degree of the node j in a size n scale free tree using a martingale
approach. He also obtained the limit laws for X̃n,j1X̃n,j2 . . . X̃n,jk

, with 1 ≤ j1 < j2 < · · · < jk fixed. The
approach introduced in Section 7.3 enables to state the following auxiliary result (compare with [47]).

Theorem 49. The probability distribution of X̃n,j is given as follows. For the root j = 1 one gets

P{X̃n,1 = m} =



2(n− 1)
m

m∑
k=0

(
m

k

)
(−1)k

(
n− 2− k

2

n− 1

)
, for α = 1,

(α+ 1)
(
m−2+α

m

)
α− 1

m∑
k=0

(
m

k

)
(−1)k

Γ(n− 1 + k
α+1 )Γ(2− 2

α+1 )

Γ(− k
α+1 )Γ(n− 2

α+1 )
, for α 6= 1.

(7.45)

Further the s-th factorial moments E(X̃s
n,1) are given as follows.

E(X̃s
n,1) =


2(n− 1)

s∑
k=0

(
s

k

)
(−1)k Γ(s)Γ(n− 1− k

2 )
Γ(n)Γ(k

2 )
, for α = 1,

Γ(α+ s− 1)
Γ(α− 1)

s∑
k=0

(
s

k

)
(−1)k

Γ(n− s−k−2
α+1 )Γ(1− 2

α+1 )

Γ(1− s−k−2
α+1 )Γ(n− 2

α+1 )
, for α 6= 1.

(7.46)

7.4 Depth of node j

Let D̃n,j denote the random variable which counts the depth of node j in a size n scale-free tree. Further
let Dn,j denote the corresponding random variable in GPORTs. For the depth of node j, Lemma 18 does
not hold. Instead it holds the following result of [68]:

Lemma 19 (Panholzer & Prodinger, 2005+). For the family of GPORTs (ϕ(t) = (1− t)−α, ϕ0 = −c2 =
1, α = −1− c1

c2
), the generating function of the probabilities P{Dn,j = m} is given as follows.

N(z, u, v) = ϕ
(
T (u)

)(ϕ(T (z + u)
)

ϕ
(
T (u)

) )v

=
1

(1− 2u)
α

α+1

( 1− 2u
1− 2(z + u)

) vα
α+1

. (7.47)

The generating function Ñ(z, u, v) is given by

∂

∂z
Ñ(z, u, v) = vϕ̃′(T (z + u))N(z, u, v). (7.48)

Since

Ñ(0, u, v) =
∑
k≥0

∑
m≥0

P{D̃k+1,1 = m}T̃k+1
uk

k!
vm =

∂

∂u
M̃(u, v), (7.49)
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we get by using Lemma 19 the result

Ñ(z, u, v) =
∫ z

0

vϕ(T (t+ u))N(t, u, v)dt+ ϕ̃(T (u))

=
v
(
(v + 1) α

α+1 − 1
)
(1− (α+ 1)u)(v−1) α

α+1

(α+ 1)
(
1− (α+ 1)(z + u)

) vα−1
α+1

+

1− 1
2 log(1− 2u), α = 1,

1− 1
α−1 + 1

(α−1)(1−(α+1)u)
a−1
α+1

, α 6= 1.

(7.50)

Due to computational reasons extracting coefficients from (7.48) is more easy. First we will show the
following distribution law.

7.4.1 Proofs

Proof of Theorem 41. The probability generating function p̃n,j(v) can be obtained as follows.

p̃n,j(v) =
(j − 2)!(n− j)!

T̃n

[zj−2un−j ]
∂

∂z
Ñ(z, u, v)

=
(j − 2)!(n− j)!

T̃n

[zj−2un−j ]
v

(1− (α+ 1)u)
2α

α+1
(
1− (α+1)z

1−(α+1)u

) (v+1)α
α+1

=
(j − 2)!(n− j)!(α+ 1)n−2∏n−1

k=2(k(α+ 1)− 2)
v

( (v+1)α
α+1 + j − 3

j − 2

)( 2α
α+1 + n− 3

n− j

)
.

(7.51)

After simplification of the binomial coefficients one gets

p̃n,j(v) = v

j−1∏
k=2

(k(α+ 1)− 2− α

k(α+ 1)− 2
+ v

α

k(α+ 1)− 2
)
, (7.52)

which shows the distribution law. The expectation and the variance follow easily since the Bk’s are
independent.

Proof of Theorem 42. We extract coefficients of p̃n,j(v).

[vm]p̃n,j(v) =
(j − 2)!(α+ 1)j−2∏j−1

l=2 (l(α+ 1)− 2)
[vm−1]

( (v+1)α
α+1 + j − 3

j − 2

)
=

(j − 2)!(α+ 1)j−2∏j−1
l=2 (l(α+ 1)− 2)

[zj−2vm−1]
1

(1− z)
(v+1)α

α+1

.

(7.53)
Now the well known relation for the Stirling numbers of the first kind

[
n
m

]
∑
n≥0

n∑
m=0

[
n

m

]
zn

n!
vm =

1
(1− z)v

(7.54)

shows the shape of the probabilities P{Dn,j = m}.

The limit law can either be seen by applying Lévy’s continuity theorem for the moment generating
function of the normalized and centralized random variable D?

n,j or by poisson approximation.

Proof of Theorem 43 - Poisson approximation. Using Theorem 38, see the end of Chapter 6, we proceed
as follows. Let λj = E(D̃n,j).

dTV(L(D̃n,j),Po(λj)) ≤
1
λn

(π2

6
+ 1
)
≤ 1

log j

(π2

6
+ 1
)
. (7.55)
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Hence we get
dTV(L(D̃n,j),Po(λj)) → 0 and λj →∞, (7.56)

and consequently
D̃n,j − λj√

λj

(d)−−→ N (0, 1). (7.57)

Proof of Theorem 43 - Direct proof. From the proof of Theorem 41 one obtains

pn,j(v) = v(α+ 1)j−2

( (v+1)α
α+1 + j − 2

)j−2∏j−1
k=2(k(α+ 1)− 2)

= v
Γ( (v+1)α

α+1 + j − 2)Γ(2− 2
α+1 )

Γ( (v+1)α
α+1 )Γ(j − 2

α+1 )
. (7.58)

Let µj = α
α+1 log j ∼ E(D̃n,j) and σ2

j = µj ∼ V(D̃n,j). Then the moment generating function Mn,j(t) of
D̃∗

n,j := (D̃n,j − µj)/σj is given by

Mn,j(t) := E(etD̃∗
n,j ) = e

−
µn,j
σn,j

tE(e
D̃n,j
σn,j

t) = e
−

µn,j
σn,j

t
pn,j(e

t
σn,j ) = e−σn,jtpn,j(e

t
σn,j ). (7.59)

The usage of Stirling’s formula for the Gamma function

Γ(z) =
(z
e

)z
√

2π√
z

(
1 +

1
12z

+
1

288z2
+O(

1
z3

)
)
, (7.60)

leads to the expansion

pn,j(v) = vj
(v+1)α

α+1 − 2α
α+1

Γ( 2α
α+1 )

Γ( (v+1)α
α+1 )

(
1 +O(

1
j
)
)

= ve
α+1

α µj

(
(v+1)α

α+1 − 2α
α+1

) Γ( 2α
α+1 )

Γ( (v+1)α
α+1 )

(
1 +O(

1
j
)
)
. (7.61)

Setting

v = e
t

σn = 1 +
t

σ j
+

t2

2µj
+O(

1
σ3

j

) (7.62)

one gets

pn,j(e
t

σn ) = e
α+1

α µj

(
tα

(α+1)σj
+ t2α

µj(α+1)

)(
1 +O(

log log j√
log j

)
)
. (7.63)

Hence

e−σn,jtpn,j(e
t

σn,j ) = e−σn,jte
µj

(
t

σj
+ t2

µj

)(
1 +O(

log log j√
log j

)
)

= e
t2
2
(
1 +O(

log log j√
log j

)
)
. (7.64)

7.5 Distances

Let ∆̃n,j denote the random variable which counts the desistance between node n and node j in a random
scale free tree of size n. Further D̃n,j denotes as before the depth of node j in a random scale free tree of
size n. We denote with ∆n,j and Dn,j the corresponding random variables in GPORTS. We define the
trivariate generating functions of ∆̃n,j as follows.

M̃(z, u, v) :=
∑
k≥1

∑
j≥1

∑
m≥0

P{∆̃k+j,j = m}T̃k+j
zj−1

(j − 1)!
uk−1

(k − 1)!
vm. (7.65)
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It holds the following relation:

∂

∂z
M̃(z, u, v) = ϕ̃′

(
T (z + u)

)
M(z, u, v) + v2N(z, u, v)N(z + u, 0, v)ϕ̃′′

(
T (z + u)

)
,

= ϕ
(
T (z + u)

)
M(z, u, v) + v2N(z, u, v)N(z + u, 0, v)ϕ′

(
T (z + u)

)
,

(7.66)

where the corresponding generating functions of the GPORTs M(z, u, v) is given by the following Lemma.

Lemma 20. For GPORTs we get

M(z, u, v) =
vα
(
1− v(α+1)

α(2v−1)+1

)
(1− (α+ 1)u)

α
α+1 (v−1)+1(1− (α+ 1)(z + u))

α
α+1

+
α(α+ 1)v2(1− (α+ 1)u)

α
α+1 (v−1)

(α(2v − 1) + 1)(1− (α+ 1)(z + u))
α

α+1 (2v−1)+1
;

(7.67)

Note that for PORTs (α = 1) the generating function of the probabilities P{∆n,j = m} simplifies to

M(z, u, v) =
v(1− 2u)

v−1
2

(1− 2(z + u))v+ 1
2
. (7.68)

It is possible to explicitly calculate M̃(z, u, v) via

M̃(z, u, v) =
∫ z

0

(
ϕ̃′
(
T (t+u)

)
M(t, u, v)+v2N(t, u, v)N(t+u, 0, v)ϕ̃′′

(
T (t+u)

))
dt+

∂

∂u
Ñ(u, 0, v), (7.69)

but we omit the lengthy formula.

Proof of Theorem 44 and Theorem 45. The part j = 1 is already covered by Theorem 41. For obtaining
the probability generating function pn,j(v) = p

[1]
n,j(v) + p

[2]
n,j(v) one extract coefficients from ∂

∂z M̃(z, u, v)
given by (7.66) in two steps.

p
[1]
n,j(v) =

(j − 2)!(n− j − 1)!
T̃n

[zj−2un−j−1]ϕ
(
T (z + u)

)
M(z, u, v)

=
(j − 2)!(n− j − 1)!

T̃n

[zj−2un−j−1]
( vα

(
1− v(α+1)

α(2v−1)+1

)
(1− (α+ 1)u)

α
α+1 (v−1)+1(1− (α+ 1)(z + u))

2α
α+1

+
α(α+ 1)v2(1− (α+ 1)u)

α
α+1 (v−1)

(α(2v − 1) + 1)(1− (α+ 1)(z + u))
α

α+1 2v+1

)
.

(7.70)

After reading off the coefficients one obtains

p
[1]
n,j(v) =

(j − 2)!(n− j − 1)!αv(α+ 1)n−3

T̃n

( (v+1)α
α+1 + n− 3
n− j − 1

)
×

×
[(

1− v(α+ 1)
α(2v − 1) + 1

)( 2vα
α+1 + j − 3

j − 2

)
+

v(α+ 1)
α(2v − 1) + 1

( 2vα
α+1 + j − 2

j − 2

)]
=
( n−1∏

k=j+1

( l(α+ 1)− 2− α

l(α+ 1)− 2
+ v

α

l(α+ 1)− 2
))
p
[1]
j+1,j(v),

(7.71)

where

p
[1]
j+1,j(v) =

αv

j(α+ 1)− 2

(
1− v(α+ 1)

α(2v − 1) + 1

)
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+
v2α(α+ 1)(

j(α+ 1)− 2
)(
α(2v − 1) + 1

) j∏
k=3

l(α+ 1)− 2 + 2α(v − 1)
(l − 1)(α+ 1)− 2

. (7.72)

The p.g.f. p[1]
j+1,j(v) can be further simplified as follows. By defining

aj =
1(

α(2v − 1) + 1
) j∏

k=3

l(α+ 1)− 2 + 2α(v − 1)
(l − 1)(α+ 1)− 2

, (7.73)

and using the recurrence

aj =
(
1 +

α(2v − 1) + 1
(j − 1)(α+ 1)− 2

)
aj−1, (7.74)

one gets the relation

aj =
j∑

k=3

α(2v − 1) + 1
(k − 1)(α+ 1)− 2

ak−1 + a2 =
1
2α

j−1∑
k=2

k∏
l=3

l(α+ 1)− 2 + 2α(v − 1)
l(α+ 1)− 2

+
1

α(2v − 1) + 1
. (7.75)

This leads to

p
[1]
j+1,j(v) =

αv

j(α+ 1)− 2
+

v2(α+ 1)
2
(
j(α+ 1)− 2

) j−1∑
k=2

k∏
l=3

( l(α+ 1)− 2− 2α
l(α+ 1)− 2

+ v
2α

l(α+ 1)− 2

)
. (7.76)

For α = 1 we get a simpler expression for p[1]
j+1,j(v):

p
[1]
j+1,j(v) =

v

2

j∏
k=3

(k(α+ 1)− 2− 2α
k(α+ 1)− 2

+ v
2α

k(α+ 1)− 2

)
(7.77)

For the second summand one obtains

p
[2]
n,j(v) =

(j − 2)!(n− j − 1)!
T̃n

[zj−2un−j−1]v2N(z, u, v)N(z + u, 0, v)ϕ′
(
T (z + u)

)
=

(j − 2)!(n− j − 1)!
T̃n

[zj−2un−j−1]
v2α

(
1− (α+ 1)u

) (v−1)α
α+1(

1− (α+ 1)(z + u)
) 2vα

α+1+1

=
(j − 2)!(n− j)!v2α(α+ 1)n−3

T̃n

( (v+1)α
α+1 + n− 3
n− j − 1

)( 2vα
α+1 + j − 2

j − 2

)
.

(7.78)

This can be simplified to

p
[2]
n,j(v) =

( n−1∏
k=j+1

( l(α+ 1)− 2− α

l(α+ 1)− 2
+ v

α

l(α+ 1)− 2
))
p
[2]
j+1,j(v), (7.79)

where

p
[2]
j+1,j(v) =

v2

2

j∏
k=3

(k(α+ 1)− 2− 2α
k(α+ 1)− 2

+ v
2α

k(α+ 1)− 2

)
. (7.80)

This proves the distribution law.

Proof of Theorem 46. For the probabilities P{∆̃n,j = m} one proceeds by extracting coefficients in (7.71)
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and (7.78). Since the basic computations concerning (7.71) are a bit lengthy they are not presented.

(j − 2)!(n− j − 1)!
T̃n

[zj−2un−j−1vm]v2N(z, u, v)N(z + u, 0, v)ϕ′
(
T (z + u)

)
=

(j − 2)!(n− j)!α(α+ 1)n−3

T̃n

[vm]v2

( (v+1)α
α+1 + n− 3
n− j − 1

)( 2vα
α+1 + j − 2

j − 2

)
=

(j − 2)!(n− j)!α(α+ 1)n−3

T̃n

m−2∑
l=0

[vl]
( (v+1)α

α+1 + n− 3
n− j − 1

)
[vm−2−l]

( 2vα
α+1 + j − 2

j − 2

)
.

(7.81)

By using (7.54) one gets

(j − 2)!(n− j − 1)!
T̃n

[zj−2un−j−1vm]v2N(z, u, v)N(z + u, 0, v)ϕ′
(
T (z + u)

)
=

(j − 2)!(n− j)!αm−1(α+ 1)n−m−1∏n−1
k=2(k(α+ 1)− 2)

m−2∑
k=0

2m−2−k
( n−j−1∑

l=0

[
l
k

]
l!

( α
α+1 + n− 3− l

n− j − 1− l

))( j−2∑
l=0

[
l

m−2−k

]
l!

)
.

(7.82)

Proof of Theorem 47. For 2 ≤ j ≤ n − 1 the expectation and the variance can be obtained as follows.
We basically use

E(∆̃n,j) =
(j − 2)!(n− j − 1)!

T̃n

[zj−2un−j−1]EvDv
∂

∂z
M̃(z, u, v),

E(∆̃2
n,j) =

(j − 2)!(n− j − 1)!
T̃n

[zj−2un−j−1]EvD
2
v

∂

∂z
M̃(z, u, v),

(7.83)

and V(∆̃n,j) = E(∆̃2
n,j) + E(∆̃n,j)− E(∆̃n,j)2. One also makes use of the relations

[zn]
log
(

1
1−z

)
(1− z)x+1

=
(
n+ x

n

)
(Hn+x −Hx),

[zn]
log2

(
1

1−z

)
(1− z)x+1

=
(
n+ x

n

)(
(Hn+x −Hx)2 − (H(2)

n+x −H(2)
x )
)
.

(7.84)
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Chapter 8

Weighted depths and distances in
increasing trees

8.1 Introduction

Most of the usually considered parameters in rooted labelled trees like height, width, node degree, depth,
subtree size, etc., do not depend on the actual labelling of the trees. E.g. the node degrees of the roots
in the trees in Figure 8.1 are both 4, although nodes with different labels contribute to the node degree.

1

6

3 542

1

4

7 352

7 6

1

,

Figure 8.1: Two size 7 recursive trees with root degree 4.

Aguech, Lasmar and Mahmoud [1] have recently studied a weighted version of the depth in random
binary search trees. Our results were inspired by their work. We will present two weighted extensions of
parameters in rooted labelled trees.

8.1.1 Node weights

First we simply take the labelling of the node into account. For example for the weighted node degree
we count now the labels of the nodes contributing to the original node degree instead of counting only
the number of nodes. Parameters like height or depth can also be generalized this way by counting nodes
instead of edges.

8.1.2 Edge weights

Another interesting generalization is to equip the edges with weights. It seems to be most natural to
define the edge-weights as follows. If there is an edge between node vj labelled j and node vk labelled k
in a labelled rooted tree T of size n ≥ max{j, k}, e = (vj , vk), then we define the weight we of the edge e
as we := |j − k|. If there is no edge e = (vj , vk) then we := 0. Hence we get a weighted n× n adjacency
matrix (wi,j)1≤i,j≤n with entries wi,j = we=(vi,vj).
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1

6

3 542

1

4

7 352

7 6

,

1

3 542

1

7 352,

Figure 8.2: Two size 7 recursive trees. The root of the first tree has weighted node degree 14, whereas
the root of the second tree has weighted node degree 17.
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1 2 3 44 1 26

2

Figure 8.3: Two size 7 recursive trees. The root of the first tree has edge-weighted node degree 10,
whereas the root of the second tree has edge-weighted node degree 13.

Remark 17. The concept of edge weights is not at all artificial. For a size n random recursive tree there
is a nice combinatorial interpretation of the random variable Sn, counting the sum of all edge weights we.
We observe that the contribution of the weight we, where the edge e is generated by attaching node k+1
at any of the former k nodes in a size k random recursive tree, is uniformly distributed on 1, 2, . . . , k.
Hence Sn satisfies the following distribution law.

Sn
(d)
= U1 +U2 + · · ·+ Un−1, (8.1)

where Uk denotes a uniform distribution on 1, 2, . . . , k. Thus Sn counts the number of inversions in a
random permutation σ = (σ1, σ2, . . . , σn) of size n with the constraint that σn = 1. But this is just the
number of inversions of a random permutation of {1, 2, . . . , n− 1} shifted by n− 1.

Remark 18. It is of course possible to go a step further by defining even more general (f -weighted)
parameters by introducing a weight function f(x) which acts on the labels (node weights) or on the labels
of adjacent pairs of nodes (edge weights). By choosing f(x) ≡ 1 we regain the ordinary parameters. The
choice f(x) = x leads to the node-weighted and edge-weighted parameters. Hence choosing f(x) = xα

would provide a transition between ordinary and weighted parameters.

It was already seen in the work of Aguech, Lasmar and Mahmoud [1] that a weighted parameter likely leads
to Dickman limiting distribution. We will also encounter the Dickman distribution and generalizations
of it. We will collect now some facts about the Dickman distribution.

8.1.3 The Dickman distribution and generalizations

The Dickman function ρ(u), which appears in analytic number theory, is defined as the continuous solution
of the differential-difference equation

uρ′(u) + ρ(u− 1) = 0 (u > 1), (8.2)

with initial condition ρ(u) = 1 for 0 ≤ u ≤ 1 and with ρ(u) differentiable on (1,∞). It is known that the
Dickman function is positive and decreasing over the whole interval (1,∞). Note that∫ ∞

0

ρ(v)dv = eγ , (8.3)
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where γ denotes Euler’s constant. For simplicity of reference, we call the distribution with the density
function e−γρ(v) the Dickman distribution. It is known that a Dickman distributed random variable
satisfies the following distributional fixed-point identity

X
(d)
= U(1 +X), (8.4)

where U denotes a uniform distribution on [0, 1).

Penrose and Wade introduced in [69] the generalized Dickman distribution. Given θ > 0, a random
variable X has a generalized Dickman distribution with shape parameter θ, or

X
(d)
= GD(θ), (8.5)

if it satisfies the distributional fixed-point identity

X
(d)
= U1/θ(1 +X), (8.6)

where U is uniform on (0, 1] and is independent of the X on the right. Some other known properties of
the generalized Dickman distribution stated in [69] are listed as follows.

• If X
(d)
= GD(θ), then the Laplace transform of X is given by

ψ(t) = E(e−tX) = exp
(
θ

∫ t

0

e−s − 1
s

ds
)
, t ∈ R. (8.7)

• The GD(θ) distribution is infinitely divisible.

• If X
(d)
= GD(θ), then the moments E(Xk) satisfy E(X0) = 1 and for integer k ≥ 1

E(Xk) =
θ

k

k−1∑
j=0

(
k

j

)
E(Xj). (8.8)

For θ = 1 the GD(θ) distribution is just the ordinary Dickman distribution.
For more properties of the GD(θ) distribution see the paper of Penrose and Wade [69].

8.2 The weighted depth in increasing trees

As already mentioned, the depth of node v, also called the level of a node v, is usually measured by
the number of edges lying on the unique path from the root to node v. For labelled rooted trees we
consider a generalization of the depth. Let Wn,j denote the weighted depth of node j in a size n ≥ j
random grown simple increasing tree, which is the sum of the labels of the nodes encountered on the
path from j to the root labelled 1, where W1,1 = 1. For instance if the nodes labelled λ1, . . . , λk, with
1 = λ1 < λ2 < · · · < λk = j, are visited on the unique path from j to the root then the weighted depth
equals

∑k
l=1 λk.

Further we consider the weighted distance Wn,j between node j and node n in a size n random grown
simple increasing tree which is the sum of the labels of the nodes encountered on the path from n to the
node labelled j (hence Wn,1 = Wn,n).
E.g. in the tree of Figure 8.2, W9,1 = 1, W9,2 = 3, W9,3 = 4, W9,4 = 8, W9,5 = 6, W9,6 = 12, W9,7 = 8,
W9,8 = 20 and W9,9 = 17; and for instance W9,4 = 24, W9,8 = 36.
We will show that Wn,j and Wn,j , appropriately scaled, lead to generalized Dickman distributions. We
use several results concerning ordinary depths and distances, see the work of Dobrow and Smythe [18] and
[45]. We will recollect the distribution laws of the ordinary depth and distance as studied in Chapter 6.
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Figure 8.4: A size 9 recursive tree.

8.2.1 Results for grown simple families of increasing trees

Theorem 50. The weighted depth of node j in a size n ≥ j random grown simple increasing tree Wn,j

admits the following distribution law.

Wn,j
(d)
= Wj,j

(d)
= j ⊕

j−1⊕
k=1

Bk, (8.9)

where Bk = Bk(c1, c2) are a sequence of of independent random variables such that

P(Bk = k) =
1 + c2

c1

k + c2
c1

and P(Bk = 0) = 1−
1 + c2

c1

k + c2
c1

. (8.10)

Note that Bk
(d)
= k · 11(Ak), where again Ak denotes the event that node k is on the path from the root to

node j. Further the Bk’s are independent.

Corollar 16. The expectation and the variance of the random variable Wn,j are given as follows.

E(Wn,j) = (1 +
c2
c1

)(j − 1)− c2
c1

(1 +
c2
c1

)(Hj−1+
c2
c1
−H c2

c1
),

V(Wn,j) =
1 + c2

c1

2
j(j − 1)− (1 +

c2
c1

)(1 + 2
c2
c1

)(j − 1) + (1 +
c2
c1

)
c2
c1

(2 + 3
c2
c1

)(Hj−1+
c2
c1
−H c2

c1
)

− c22
c21

(1 +
c2
c1

)2(H(2)

j−1+
c2
c1

−H
(2)
c2
c1

).

(8.11)

Theorem 51. The limiting distribution of the random variable Wn,j−j
j is a generalized Dickman distri-

bution with parameter θ = 1 + c2
c1
> 0.

lim
j→∞

Wn,j − j

j

(d)
= GD(1 +

c2
c1

), (8.12)

or equivalently let ψj(t) := E(e−t(Wn,j−j)), then

lim
j→∞

ψj(
t

j
) = exp

((
1 +

c2
c1

) ∫ t

0

e−v − 1
v

dv
)
, (8.13)

for constants c1, c2 as in (1).

Corollar 17. For the three most prominent tree families we obtain the following result.

• Recursive Trees (c1 = 1, c2 = 0): The limit distribution of Wn,j−j
j is Dickman, GD(1).

lim
j→∞

P{Wn,j − j

n
< x} = e−γ

∫ x

0

ρ(v)dv, x > 0. (8.14)
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• Binary Increasing trees (c1 = c2 = 1) : The limit distribution of Wn,j−j
j is the convolution of

two Dickman distributions, GD(2).

lim
j→∞

P{Wn,j − j

n
< x} = e−2γ

∫ x

0

ρ(v)ρ(x− v)dv, x > 0. (8.15)

• Plane oriented recursive trees (c1 = 2, c2 = −1): The limit distribution of Wn,j−j
j a generalized

Dickman distribution GD(θ) with parameter θ = 1
2 .

Theorem 52. The weighted distance Wn,j between node j and node n in a size n ≥ j random grown
simple increasing tree admits the following distribution law.

Wn,j
(d)
=
(
Wj+1,j − (j + 1)

)
⊕

n−1⊕
k=j+1

Bk ⊕ n, (8.16)

where Bk = Bk(c1, c2) are a sequence of of independent random variables such that

P(Bk = k) =
1 + c2

c1

k + c2
c1

and P(Bk = 0) = 1−
1 + c2

c1

k + c2
c1

. (8.17)

Note that Bk
(d)
= k · 11(Ak), where again Ak denotes the event that node k is on the path from node n to

node j. Further the Bk’s and Wj+1,j are independent.

Theorem 53. For plane oriented recursive trees and tree families admitting c1 = −2c2 we obtain the
following distribution law for Wj+1,j.

Wj+1,j
(d)
= (2j + 1)⊕

j−1⊕
k=1

Ck
(d)
= (2j + 1)⊕

j−1⊕
k=1

k · 11(Ak), (8.18)

where Ck are a sequence of independent random variables such that

P(Ck = k) =
2

2k + 1
and P(Ck = 0) = 1− 2

2k + 1
. (8.19)

Ak denotes the event that node k is on the path from node j + 1 to node j and the 11(Ak)’s are mutually
independent.

Remark 19. Note that a representation of the form

Wj+1,j
(d)
= (2j + 1)⊕

j−1∑
k=1

k11(Ak), (8.20)

can always be achieved, but the indicator variables 11(Ak) are not mutually independent for grown simple
families of increasing trees satisfying c1 6= −2c2. Hence for this case we cannot further specify the
distribution law of Wj+1,j at the moment.

Theorem 54. For fixed j and n → ∞ the limiting distribution of the weighted distance Wn,j between
node j and node n in a size n grown simple increasing tree is a generalized Dickman distribution with
parameter θ = 1 + c2

c1
> 0.

lim
n→∞

Wn,j − j − n

n

(d)
= GD(1 +

c2
c1

), (8.21)

or equivalently E(e−t(Wn,j−n−j)) = ψn(t).

lim
j→∞

ψn(
t

n
) = exp

((
1 +

c2
c1

) ∫ t

0

e−v − 1
v

dv
)
, (8.22)



CHAPTER 8. WEIGHTED DEPTHS AND DISTANCES IN INCREASING TREES 149

for constants c1, c2 as in (1).

Theorem 55. The limiting distribution of the weighted distance Wn,j between node j and node n in a
grown simple families of increasing tree satisfying c1 = −2c2 depends on the growth of j.

• The region j = o(n): The limiting distribution is a generalized Dickman distribution with parameter
θ = 1/2.

lim
n→∞

Wn,j − j − n

n

(d)
= GD(

1
2
), (8.23)

• The region j = µn, with 0 < µ < 1. The limiting distribution can be characterized via its Laplace
transform. Let E(e−t(Wn,j−n−j)) = ψn(t).

lim
n→∞

ψn(
t

n
) = exp

(1
2

∫ µt

0

e−v − 1
v

dv +
∫ t

µt

e−v − 1
v

dv
)
, (8.24)

• The region l = n− j = o(n): The limiting distribution is a Dickman distribution.

lim
n→∞

Wn,j − j − n

n

(d)
= GD(1), (8.25)

8.2.2 Deriving the distribution laws

We already encountered all the ingredients for proving Theorem 50 and 52 in Chapter 6. Dobrow and
Smythe [18] already provided a full characterization of the depth which we reproved in Corollary 10:

Lemma 21 (Dobrow & Smythe). The depth of node j in a size n ≥ j random grown simple increasing
tree Dn,j admits the following distribution law.

Dn,j
(d)
= Dj,j

(d)
=

j−1⊕
k=1

Bk, (8.26)

where Bk
(d)
= Be(pk) with pk =

1+
c2
c1

k+
c2
c1

for 1 ≤ k ≤ j − 1. Note that Bk
(d)
= Be(pk)

(d)
= 11(Ak), where Ak

denotes the event that node k is on the path from the root to node j. Further the Bk’s are independent.

Hence we immediately obtain Theorem 50 because the structure is independent of the weights.

Remark 20. The characterization of grown simple families of increasing trees pk =
1+

c2
c1

k+
c2
c1

is due to

Panholzer and Kuba.

Dobrow and Smythe [18] also analyzed the distribution law of ∆n,j .

Lemma 22 (Dobrow & Smythe). The distance of between node j and node n in a random grown simple
increasing tree ∆n,j admits the following distribution law.

∆n,j
(d)
= ∆j+1,j ⊕

n−1⊕
k=j+1

Bk, (8.27)

where Bk
(d)
= Be(pk) with pk =

1+
c2
c1

k+
c2
c1

for j + 1 ≤ k ≤ n− 1.

Further the distribution law of ∆j+1,j is completely characterized by Theorem 36 which is stated here as
a Lemma.
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Lemma 23 (Panholzer & Kuba). The distribution law of ∆j+1,j is given as follows. For c1 6= −2c2:

∆j+1,j
(d)
=

ηj∑
k=1

B̃k, (8.28)

where B̃k
(d)
= Be(p̃k), p̃0 = p̃1 = 1 and p̃k = 1

k−1+
c2
c1

for 3 ≤ k ≤ j. Further P{ηj = 1} =
1+

c2
c1

j+
c2
c1

and

P{ηj = m} = 1
j+

c2
c1

for 2 ≤ m ≤ j. For c1 = −2c2 we find an even simpler decomposition:

∆j+1,j
(d)
=

j⊕
k=1

B̃k, (8.29)

where B̃1
(d)
= 1 and B̃k

(d)
= Be( 2

2k−1 ) for 2 ≤ k ≤ j.

Now observe that by directly translating Lemma 22 the weight of node j + 1 is counted one time too
much. This leads to Wj+1,j − (j + 1).

8.2.3 Deriving the limiting distribution for the weighted depth

The proof of Theorem 51 is an extension of a result due to Hwang and Tsai [35].

Lemma 24 (Hwang& Tsai). The limiting distribution of the random variable

Xj
(d)
=

j⊕
k=1

Bk(1, 0), (8.30)

where the Bk’s are defined as in Theorem 50, is for j →∞ asymptotically Dickman.

lim
j→∞

P{Xj

n
< x} = e−γ

∫ x

0

ρ(v)dv, (x > 0). (8.31)

We will follow the proof of Lemma 24 in [35] in order to prove Theorem 51. Let ψj(t) := E(e−t(Wn,j−j))
denote the Laplace transform of the shifted r.v. Wn,j − j.

φj(t) = E(e−t(Wn,j−j)) =
∏

1≤k≤j−1

k − 1 + e−tk(1 + c2
c1

)
k + c2

c1

=
∏

1≤k≤j−1

(
1 +

(e−tk − 1)(1 + c2
c1

)
k + c2

c1

)
. (8.32)

It suffices, by Lévy’s continuity theorem, and (8.7) to show that

lim
j→∞

φj(
t

j
) = lim

j→∞
E(e−t

(Wn,j−j)
j ) = exp

(
(1 +

c2
c1

)
∫ t

0

e−v − 1
v

dv
)
, (8.33)

for finite and real t. Now

φj(
t

j
) = exp

(
log(φj(

t

j
))
)

= exp
( j−1∑

k=1

log
(
1 +

(e−tk − 1)(1 + c2
c1

)
k + c2

c1

))

= exp
(
(1 +

c2
c1

)
j−1∑
k=1

e
−kt

j − 1
k + c2

c1

+Rj(t)
)
,

(8.34)

where

Rj(t) :=
∑
l≥2

(−1)l−1

l

j−1∑
k=1

(
(1 + c2

c1
)
)l(
e
−kt

j − 1
)l(

k + c2
c1

)l = O(
|t2|
j

). (8.35)
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Now we apply the Euler-MacLaurin summation formula shows

j−1∑
k=1

e
−kt

j − 1
k + c2

c1

=
∫ t

0

e−v − 1
v

dv +O(
|t2|
j

). (8.36)

8.2.4 Deriving the limiting distribution for the weighted distances

We only sketch the proofs for the weighted distances since they are similar to Subsection 8.2.3. Let
ψn(t) := E(e−t(Wn,j−j−n)) denote the Laplace transform of the shifted r.v. Wn,j − j − n.

φn(t) = E(e−t(Wn,j−j−n)) = E(e−t(Wj+1,j−j))
∏

j+1≤k≤n−1

k − 1 + e−tk(1 + c2
c1

)
k + c2

c1

= E(e−t(Wj+1,j−j))
∏

j+1≤k≤n−1

(
1 +

(e−tk − 1)(1 + c2
c1

)
k + c2

c1

)
.

(8.37)

Hence

φn(
t

n
) = E(e−

t(Wj+1,j−j)
n ) exp

(
(1 +

c2
c1

)
n−1∑

k=j+1

(e−tk − 1)
k + c2

c1

)
+Rn,j(t)

)
, (8.38)

where it can be seen that

Rn,j(t) := O(
|t2|
n

). (8.39)

We use again Euler-MacLaurin summation to show that

n−1∑
k=j+1

(e−
tk
n − 1)

k + c2
c1

=
∫ t

0

e−v − 1
v

dv +O(
|t2|
n

). (8.40)

For grown simple families of increasing trees satisfying c1 = −2c2 we get

φn(t) = E(e−t(Wn,j−j−n)) =
( ∏

1≤k≤j−1

(
1 +

(e−tk − 1)
k + 1

2

))( ∏
j+1≤k≤n−1

(
1 +

(e−tk − 1) 1
2

k − 1
2

))
, (8.41)

and further

φn(
t

n
) = exp

( j−1∑
k=1

(e−
tk
n − 1)

k + c2
c1

+
1
2

n−1∑
k=j+1

(e−
tk
n − 1)

k + c2
c1

+ R̂n,j(t) + R̃n,j(t)
)
. (8.42)

An application of Euler-MacLaurin summation provides then Theorem 55.

Remark 21. The edge weighted variant of the depth and the distance shows a quite different behavior.
Let Kn,j =

∑
e∈E we11(Ae) denote the random variable counting the edge-weighted depth of node j in a

size n grown simple increasing tree, where Ae denotes the event that the edge e is on the path from j to
the root. For f(x) ≡ 1 one would obtain the ordinary depth. Further we denote with Kn,j the random
variable counting the distance measured by the sum of edge-weights on the unique path from j to n. The
r. v. Kn,j satisfies the following distribution.

Kn,j
(d)
= Kj,j

(d)
= j − 1. (8.43)

Further one can easily show that

Kn,j
(d)
= (n− j − 1)⊕Kj+1,j . (8.44)
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The distribution law of Kj+1,j is non-degenerate. For recursive trees it can be specified by basic manip-
ulation and usage of the probabilities P{j <c k}, already stated in [18], which give the probability that
node j is attached (a child of) of node k. For recursive trees we get

P{Kj+1,j = 2m− 1} =

{
P{j + 1 <c j} = 1

j , m = 1,
1

(j+2−m)(j+1−m) , m = 2, . . . , j.
(8.45)



Chapter 9

A thorough study of the node degree
in recursive trees

9.1 Introduction

Let Xn,j denote the random variable which counts the node degree (i. e. the out-degree) of the node
labelled j in a size n random recursive tree. This r. v. was studied in Chapter 5 Section 5.5 ([47]) for
the family grown simple families of increasing trees which contains recursive trees as a special instance.
The results in Chapter 5 Section 5.5 are not sufficient to obtain results for the weighted node degrees in
recursive trees. We will use a simple probabilistic approach to extend the results of Chapter 5 Section 5.5
for recursive tree. We will generalize the results of [47] by specifying the limit distribution of the random
vector Xn;jr = (Xn;j1 , . . . , Xn;jr

), counting the node degree of the nodes j1, . . . , jr, and the random
variable Xn;j1,...,jr

=
∑r

k=1Xn,jk
, counting the sum of the outdegrees of nodes j1, . . . , jr in a random size

n recursive tree. It turns out that for fixed j1, . . . , jr the limiting distribution is asymptotically gaussian.
For Xn;j1,...,jr =

∑r
k=1Xn,jk

we give limiting distribution results for the full region 1 ≤ j1 < · · · < jr ≤ n.
Further we are able to give results for weighted versions of the node degree which are defined as follows.
Let Xn,j denote the r. v. counting the labels of the nodes attached to node j in a random size n recursive
tree, where each node contributing to the node degree is weighted by its label. We can specify the limit
distribution of the random vector Xn;jr = (Xn;j1 , . . . ,Xn;jr ), counting the weighted node degree of the
nodes j1, . . . , jr in a random size n recursive tree, and the random variable Xn;j1,...,jr

=
∑r

k=1 Xn,jk
. It

turns out that the limiting distributions involve Dickman’s infinitely divisible distribution as the limit.

9.2 Results

9.2.1 Result concerning the ordinary node degree

Theorem 56. The probability generating function of the random vector Xn;jr = (Xn;j1 , . . . , Xn;jr
),

counting the node degree of the nodes j1, . . . , jr in a random size n recursive tree, is for n ≥ jr > · · · >
j1 ≥ 1 given as follows.

pn;jr (vr) =
r∏

i=1

ji+1−1∏
k=ji

(k − i

k
+

i∑
l=1

vl

k

)
=

r∏
i=1

(
ji+1−1−i+

Pi
l=1 vl

ji+1−1

)
(
ji−1−i+

Pi
l=1 vl

ji−1

) , (9.1)

where jr+1 = n.

Theorem 57. The covariance of the random variables Xn;j1 and Xn;j2 , counting the node degree of nodes

153
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labelled j1 and j2 in a random recursive tree of size n is given by

Cov(Xn;j1 , Xn;j2) = −(H(2)
n−1 −H

(2)
j2−1). (9.2)

Let X∗
n;jr

denote the random vector (X∗
n;j1

, . . . , X∗
n;jr

) with components

X∗
n;ji

=
Xn;ji − µn;ji

σn;ji

, for 1 ≤ i ≤ r, (9.3)

with µn;ji
= σ2

n;ji
= log n− log ji ∼ E(Xn;ji

).

Theorem 58. For max{j1, . . . , jr} = o(n) the random vector X∗
n;jr

converges in distribution to r inde-
pendent gaussian distributions

X∗
n;jr

(d)−−→ Xr P{Xr ≤mr} = Φ(m1)Φ(m2) . . .Φ(mr). (9.4)

Let Xn;j1,...,jr
=
∑r

k=1Xn,jk
denote the random variable counting the sum of the outdegrees of nodes

j1, . . . , jr.

Corollar 18. The r. v. Xn;j1,...,jr
=
∑r

k=1Xn,jk
counting the sum of the outdegrees of nodes j1, . . . , jr

in a random size n recursive tree satisfies the following distribution law.

Yn;j1,...,jr

(d)
=

r∑
i=1

ji+1−1∑
k=ji

B
[i]
k

(d)
=

r∑
i=1

ji+1−1∑
k=ji

11(Ak), (9.5)

where jr = n − 1 and B[i]
k

(d)
= Be( i

k ). Ak denotes the event that node k is joined to any node j1, . . . , jr.
The events Ak are mutually independent.

Corollar 19. For fixed r ≥ 1 and fixed j1, . . . , jr the expectation and the variance of Xn;j1,...,jr is given
as follows.

E(Xn;j1,...,jr
) = r(Hn−1 −Hjr−1) +

r∑
i=1

i(Hji+1−1 −Hji−1),

V(Xn;j1,...,jr ) = r(Hn−1 −Hjr−1)− r2(H(2)
n−1 −H

(2)
jr−1)

+
r∑

i=1

i(Hji+1−1 −Hji−1)−
r∑

i=1

i2(H(2)
ji+1−1 −H

(2)
ji−1).

(9.6)

We get the following generalization of the theorem concerning recursive trees in [47].

Theorem 59. We get the following characterization of Xn;j1,...,jr depending on r and the growth of the
ji, 1 ≤ i ≤ r.

• Region: fixed r ≥ 1, fixed j1, . . . , jr: The distribution of normalized and centralized Xn;j1,...,jr is
asymptotically gaussian.

Xn;j1,...,jr
− E(Xn;j1,...,jr

)√
V(Xn;j1,...,jr

)
(d)−−→ N (0, 1). (9.7)

• Region: fixed r ≥ 1, 0 < j1 = ρ1n < · · · < jr = ρrn < n: The distribution of Xn;j1,...,jr is
asymptotically Poisson.

Xn;j1,...,jr

(d)−−→ Xρ1,...,ρr

(d)
= Poi(− log(ρ1 . . . ρr)), (9.8)

where Po(− log(ρ1 . . . ρr)) denotes a Poisson distribution with parameter λ = − log(ρ1 . . . ρr),

P{Xρ1,...,ρr
= m} = ρ1 . . . ρr

(− log(ρ1 . . . ρr))m

m!
. (9.9)
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• Region: r = n+ 1− l, fixed l: The distribution of Xn;j1,...,jn+1−l
satisfies

Xn;j1,...,jn+1−l

n

(d)−−→ 0, (9.10)

moreover let {λ1, . . . , λl} = {1, . . . , n} \ {j1, . . . , jn+1−l}, then the expectation and the variance are
given by

E(Xn;j1,...,jn+1−l
) = n− 1−

l∑
i=1

i(Hλi+1−1 −Hλi−1),

V(Xn;j1,...,jn+1−l
) =

l∑
i=1

i(Hλi+1−1 −Hλi−1)−
l∑

i=1

i2(H(2)
λi+1−1 −H

(2)
λi−1),

(9.11)

where λl+1 := n.

Let X [R]
n,r denote the random variable which counts the out-degree of r ≥ 1 randomly chosen nodes in a

random size n recursive tree.

Corollar 20. X [R]
n,r

(d)−−→ Xr, where the probabilities P{Xr = m} are given by

P{Xr = m} =

(
m+r−1

m

)
2m+r

,m ≥ 0. (9.12)

9.2.2 Result concerning the weighted node degree

Corollar 21. The probability generating function of the random vector Xn;jr = (Xn;j1 , . . . ,Xn;jr
),

counting the weighted node degrees of the nodes j1, . . . , jr in a random size n recursive tree, is for
n ≥ jr > · · · > j1 ≥ 1 given as follows.

pn;jr (vr) =
r∏

i=1

ji+1−1∏
k=ji

(k − i

k
+

i∑
l=1

vk
l

k

)
, (9.13)

where jr+1 = n.

Theorem 60. Let ψn(tr) denote the Laplace transform of the random vector Xn;jr . For fixed j1, . . . , jr
Xn;jrn

−1 converges in distribution to a distribution characterized by its Laplace transform

lim
n→∞

ψn(
tr

n
) = exp

(∫ 1

0

∑r
l=1 e

−tlv − r

v
dv
)
. (9.14)

Corollar 22. For fixed j1, . . . , jr the random variable Xn;j1,...,jr
=
∑r

k=1 Xn;jk
is asymptotically a gen-

eralized Dickman distribution with parameter r

Xn;j1,...,jr

n

(d)−−→ GD(r). (9.15)

Corollar 23. For r = 1 we determine the limiting distribution of Xn;j depending on the growth of j.

• Region j = o(n): Xn;j
n is asymptotically Dickman distributed (GD(1)).

lim
j→∞

P{Xn;j

n
< x} = e−γ

∫ x

0

ρ(v)dv, x > 0. (9.16)

• Region j = µn, 0 < µ < 1: The limiting distribution of Xn;j
n can be characterized via its Laplace
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transform. Let E(e−tXn;j ) = ψn(t).

lim
n→∞

ψn(
t

n
) = exp

(∫ t

µt

e−v − 1
v

dv
)
. (9.17)

The limit distribution is infinitely divisible.

• Region l = n− j = o(n):
Xn;j

n

(d)−−→ 0. (9.18)

9.3 Proofs

9.3.1 Deriving the probability generating function

Proof of Theorem 56. Theorem 56 is a generalization of a result implicitly given in [47]:

Lemma 25. The random variable Xn,j, which counts the degree of node j in a random recursive tree of
size n satisfies the following distribution law.

Xn,j
(d)
=

n−1⊕
k=j

Bk
(d)
=

n⊕
k=j+1

11(Ak), (9.19)

where the Bk are Bernoulli distributed random variables Bk
(d)
= Be( 1

k ), for j ≤ k ≤ n− 1. Ak denotes the
event that node k is attached to node j.

We will use induction on n to prove Theorem 56. For r = 1 this is just Corollary 25. The increments
are at any stage k, 1 ≤ k ≤ n, and any r ≥ 1 independent of the actual values of the node degrees
Xk−1;j1...,jr

. It only depends on j1, . . . , jr and k.
When a new node k + 1 is inserted in a size k recursive tree with ji ≤ k < ji+1, there are already i
nodes j1, . . . , ji of interest in the size k tree. Hence with probability i

k it attaches to any node j1, . . . , ji
and with probability (k − i)/k it attaches to any node in {1, . . . , k} \ {j1, . . . , ji}. If n ≥ jr node n + 1
attaches with probability r

n to any node j1, . . . , jr and with probability (n − r)/n it attaches to a node
in {1, . . . , n} \ {j1, . . . , jr}. Formally this can be expressed as

P{Xn+1;jr = mr} =
r∑

l=1

P{Xn+1;jr = mr|n+ 1 <c jl}P{n+ 1 <c jl}

+ P{Xn+1;jr = mr|n+ 1 ≮c j1, . . . , jr}P{n+ 1 ≮c j1, . . . , jr}

=
r∑

l=1

P{Xn;j1 = m1, . . . , Xn;jl
= ml − 1, . . . , Xn;jr

= mr}
1
n

+
n− r

n
P{Xn;jr = mr}, (9.20)

where we use the notation n <c k for the event that node n is a child of node k and consequently n ≮c k
for the event that node n is not a child of node k.

Corollary 18 follows immediately by setting v = v1 = · · · = vl in Theorem 56. Also Corollary 21 is easily
obtained by replacing vl by vk

l in Theorem 56.
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9.3.2 Deriving the covariances and the limiting distribution

Proof of Theorem 57. To obtain the covariances of Xn;jgXn;jh
we use

pn;jr (vr) =
r∏

i=1

(
ji+1−1−i+

Pi
l=1 vl

ji+1−1

)
(
ji−1−i+

Pi
l=1 vl

ji−1

) =
r∏

i=1

(
ji+1−1−i+

Pi
l=1 vl

ji+1−ji

)(
ji+1−1
ji−1

)
=

r∏
i=1

[uji+1−ji ](
ji+1−1
ji−1

) 1
(1− u)

Pi
l=1 vl+ji−i

.

(9.21)

Hence we get

E(Xn;jgXn;jh
) = EvrDvgDvh

pn;j1,...,jr (v1, . . . , vr) = EvrDvgDvh

r∏
i=1

[uji+1−ji ](
ji+1−1
ji−1

) 1
(1− u)

Pi
l=1 vl+ji−i

=
(
Evr

g−1∏
i=1

[uji+1−ji ](
ji+1−1
ji−1

) 1
(1− u)

Pi
l=1 vl+ji−i

)(
EvDvgDvh

r−1∏
i=g

[uji+1−ji ](
ji+1−1
ji−1

) 1
(1− u)

Pi
l=1 vl+ji−i

)
=

r∑
i=g

(Hji+1−1 −Hji−1)
r∑

l=h
l 6=i

(Hjl+1−1 −Hjl−1) +
r∑

i=h

(
(Hji+1−1 −Hji−1)2 − (H(2)

ji+1−1 −H
(2)
ji−1)

)

= (Hjh−1 −Hjg−1)(Hn−1 −Hjh−1) + (Hn−1 −Hjh−1)2 −
r∑

i=h

(Hji+1−1 −Hji−1)2

+
r∑

i=h

(
(Hji+1−1 −Hji−1)2 − (H(2)

ji+1−1 −H
(2)
ji−1)

)
= (Hn−1 −Hjg−1)(Hn−1 −Hjh−1)− (H(2)

n−1 −H
(2)
jh−1).

(9.22)

The expectation and variance was already derived in [47].

E(Xn,j) = Hn−1 −Hj−1, V(Xn,j) = Hn−1 −Hj−1 − (H(2)
n−1 −H

(2)
j−1). (9.23)

Proof of Theorem 58. Let tr = (t1, . . . , tr) and σn,r = (σn,j1 , . . . , σn,jr
). Further we use the shorthand

notations trX∗
n;jr

=
∑r

k=1 tkX
∗
n;jk

and trσn,r =
∑r

k=1 tkσn,jk
. The characteristic function ϕr(tr) of

X∗
n;jr

ϕr(tr) = E(exp
(
itrX∗

n;jr

)
) = exp

(
− itrσn,r

)
pn;jr (e

i
Xn;j1
σn,j1 , . . . , e

i
Xn;jr
σn,jr ) (9.24)

By using Stirling’s formula for the gamma function

Γ(z) =
(z
e

)z
√

2π√
z

(
1 +

1
12z

+
1

288z2
+O(

1
z3

)
)
, (9.25)

one gets for fixed v1, . . . , vr, note that jr+1 := n,

pn;jr (vr) =
r∏

i=1

(
ji+1−1−i+

Pi
l=1 vl

ji+1−ji

)(
ji+1−1
ji−1

)
= exp

(
log n(

r∑
l=1

vl − r)
)( r−1∏

i=1

(
ji+1−1−i+

Pi
l=1 vl

ji+1−ji

)(
ji+1−1
ji−1

) )(
1 +O

( 1
n

))
.

(9.26)
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Using for fixed j1, . . . , jr the expansions

e
it

σn,jl − 1 =
it√
log n

− t2

2 log n
+O

( 1

log
3
2 n

)
, (9.27)

one obtains

pn;jr (e
i

Xn;j1
σn,j1 , . . . , e

i
Xn;jr
σn,jr ) = exp

(
log n(

r∑
l=1

( itl√
log n

− t2l
log n

)
)
)(

1 +O
( log log n

log n
))
. (9.28)

Hence

exp
(
− itrσn,r

)
pn;jr (e

i
Xn;j1
σn,j1 , . . . , e

i
Xn;jr
σn,jr ) = exp

(
−

r∑
k=1

t2k
2

)(
1 +O

( log log n
log n

))
. (9.29)

Remark 22. The proof of the general case max{j1, . . . , jr} = o(n) follows easily by similar arguments.
See also [47] where this was carried out in the case r = 1.

Proof of Theorem 59. We only sketch this proof. It is a straight forward extension of the proof of Theo-
rem 21 (the case r = 1).

• Region: fixed r ≥ 1, fixed j1, . . . , jr: Poisson approximation or by application of Lévy’s continuity
theorem for the moment generating function.

• Region: fixed r ≥ 1, 0 < j1 = ρ1n < · · · < jr = ρrn < n: Apply Stirling’s formula for the Gamma
function to the probability generating function of Xn;j1,...,jr

.

• Region: r = n+ 1− l, fixed l; Method of Moments.

Proof of Corollary 20. One may use the limiting distribution results for the central region of Xn;j1,...,jr
,

i. e. 0 < j1 = ρ1n < · · · < jr = ρrn < n. Due to Xn;j1,...,jr

(d)−−→ Xρ1,...,ρr the discrete r. v. Xr can be
obtained via

P{Xr = m} =
∫ 1

0

. . .

∫ 1

0

P{Xρ1,...,ρr
= m}dρ1 . . . dρr

=
∫ 1

0

. . .

∫ 1

0

ρ1 . . . ρr
(− log(ρ1 . . . ρr))m

m!
dρ1 . . . dρr.

(9.30)

By using ∫ 1

0

ρi(log(ρi))kidρi =
ki!(−1)ki

2ki+1
, (9.31)

one further gets

P{Xr = m} =
(−1)m

m!

∑
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(
m

k1, . . . , kr
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. . .
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1
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1
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(
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m
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.

(9.32)
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Remark 23. One can immediately obtain results or edge-weighted variants of the node degree. The
results and the proofs are analogous to the proof of the weighted depth and distance and are omitted
here.

Remark 24. It seems interesting to extend the studies of weighted variants of the node degree to
arbitrary grown simple families of increasing trees. Furthermore an analysis of weighted variants of the
subtree sizes should be done. A martingale approach seems to be very promising.
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