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Kurzfassung

Zwischenvalentes CePd3 hat einen der höchsten Seebeckkoeffizienten
unter den auf Ce basierenden intermetallischen Systemen. In Rahmen
dieser Dissertation wurden vier Probenserien (CePd3By, Ce(Pd1−xRhx)3,
Ce(Pd1−xRhx)3B0.05 und Ce(Pd0.94−xRhxAg0.06)3) hergestellt, um den Ein-
fluss von Substitution an der Pd-Seite, sowie den Effekt von B Dop-
ing am freien Zwischengitterplatz auf die Transporteigenschaften zu unter-
suchen. Mittels Röntgendiffraktometrie wurden die Proben auf Phasenrein-
heit untersucht und anschließend wurden der elektrische Widerstand ρ(T ),
die thermische Leitfähigkeit λ(T ) und der Seebeckeffekt S(T ) über einen
großen Temperaturbereich gemessen. Die Daten wurden anhand theoretis-
cher und empirischer Modelle analysiert. Durch die Auswertung von ρ(T ) und
S(T ) konnte gezeigt werden, dass die Kondotemperatur bei kleinen Rh-
Konzentrationen, nicht wie erwartet, stetig mit der Konzentration steigt,
sondern vorerst absinkt. Mit einem Rh Anteil x > 0.2 wird das System
einfach metallisch. Bei einer Zugabe von B verschiebt sich das Maximum
in ρ(T ) und S(T ) wie erwartet zu tieferen Temperaturen, wobei ρmax steigt,
während Smax abnimmt. Die verwendeten Modelle können die Messwerte
über einen breiten Temperaturbereich gut reproduzieren und die erhaltenen
fit-Parameter sind sinnvoll. Die gemessene thermische Leitfähigkeit wurde
anhand von zwei verschieden Modellen in ihren elektronischen- und ihren Git-
teranteil geteilt, wobei beide Methoden vergleichbare Resultate lieferten. Der
Gitterbeitrag wurde weiter analysiert um Aufschluss über einzelne Streumech-
anismen der Phononen zu erlangen. Durch die hohe Anzahl an fit-Parametern
sind hier nur qualitative Aussagen möglich. Die thermische Leitfähigkeit
bei tiefen Temperaturen sinkt generell bei geringfügiger Änderung der Stö-
chiometrie, wobei der Effekt bei Raumtemperatur nicht besonders stark ist.
Für den thermoelektrischen Gütefaktor ZT bedeutet das, dass eine Zugabe
von B oder eine Substitution von Pd durch Ag eine klare Verschlechterung
bringt, während kleine Substitutionen mit Rh die thermoelektrischen Eigen-
schaften verbessern. Es sollte geprüft werden, ob es möglich ist, die Ein-
buße des Seebeckeffekts durch B Doping oder Ag Substitution durch Rh Sub-
stitution zu kompensieren und bei stark verringertem Phononenbeitrag der
thermischen Leitfähigkeit ein Verbesserung von ZT zu erzielen. Bei den Se-
rien Ce(Pd1−xRhx)3B0.05 und Ce(Pd0.94−xRhxAg0.06)3 hat sich gezeigt, dass
λ(T ) weiterhin niedrige Werte aufweist, und auch ρ(T ) generell absinkt, wenn
man den Rh Anteil erhöht. Auch der Seebeckeffekt wird verstärkt und somit
wird der Gütefaktor tatsächlich größer, aber es wurde keine nennenswerte
Überhöhung erreicht. Somit erreicht der Gütefaktor bei einer Zusammenset-
zung von Ce(Pd0.9Rh0.1)3 sein Maximum, das bei Raumtemperatur etwa 12%
über dem Wert von CePd3 liegt.



Abstract

The intermediate valency compound CePd3 exhibits one of the highest See-
beck coefficients of Ce-based intermetallics. In the scope of this thesis the
effect of substitution on the Pd site and doping on the interstitial site on the
transport properties of CePd3 has been tested on four sample series, namely
CePd3By, Ce(Pd1−xRhx)3, Ce(Pd1−xRhx)3B0.05 and Ce(Pd0.94−xRhxAg0.06)3.
Phase purity of the samples was examined by employing X-Ray diffraction
as well as the electrical resistivity ρ(T ), the thermal conductivity λ(T ) and
the thermopower S(T ) were recorded over a broad temperature region. The
measured data were interpreted by means of theoretical and empirical mod-
els. The analysis of ρ(T ) and S(T ) shows, that the Kondo temperature does
not increase steadily with increasing Rh content as it was expected, rather it
shows a small degradation with small Rh-concentrations. For a Rh content
x > 0.2 the system behaves as a simple metal. Increasing doping with B
causes a shift of the maximum in ρ(T ) and S(T ) to lower temperatures, while
ρmax increases and Smax diminishes. The applied models reproduce the mea-
sured data over a broad temperature region and the attained fit-parameters
are reasonable. In terms of the analysis of thermal conductivity data two ways
of splitting the thermal conductivity into an electronic part and a lattice con-
tribution have been tested and the results of both are comparable. The lattice
contribution was tested in order to understand the contributions of the differ-
ent phonon scattering mechanisms. Due to the high count of fit-parameters
only qualitative statements are possible. Due to minor changes of the stoi-
chiometry the thermal conductivity generally decreases at low temperatures,
while it is rather unaffected at room temperature. As a consequence the
thermoelectric figure of merit ZT is diminished by the doping with B as well
as by substitution with Ag on the Pd-site, while the substitution with small
amounts of Rh enhance the thermoelectric properties. It had to be tested
if it is possible to compensate the loss of thermopower due to Ag substitu-
tion and B doping by Rh substitution and if the ZT can be improved with
a further decrease of the phonon scattering part of the thermal conductivity.
The series Ce(Pd1−xRhx)3B0.05 and Ce(Pd0.94−xRhxAg0.06)3 exhibit still low
λ(T )- values, and ρ(T ) generally decreases, with increasing Rh content. The
thermopower showed also an upward trend and therefore the figure of merit
actually increased, but no boost in comparison to CePd3 was reached. Thus
the figure of merit peak out at a composition of Ce(Pd0.9Rh0.1)3, which shows
about 12% higher values than CePd3 at room temperature.
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Introduction

Thermoelectricity is the ability of materials to directly convert thermal en-
ergy into electrical energy or the other way around enabled by the Seebeck
effect (1821) [1] and the Peltier effect (1834) [2], respectively. Benefits due to
the lack of moving parts are e.g., simplicity, reliability, soundless and vibra-
tion less operation. In reasonable applications these benefits countervail the
disadvantages of high cost and low efficiency. Examples for products which
are already on the market are e.g. camping coolers, spot cooling of electronics
or infrared detector cooling. A target for application is the waste heat conver-
sion of e.g. the engine of a car into electrical energy, to increase the efficiency.
The potential of a material for thermoelectric application is determined by
the dimensionless figure of merit ZT , given by the product of the square of
the Seebeck coefficient S(T ) and the temperature T divided by the product
of electrical resistivity and thermal conductivity, ρ(T ) and λ(T ), respectively
(ZT = S2T/ρλ).

CePd3 is a long known intermetallic system, which crystallizes in the sim-
ple AuCu3-structure. The transport properties of CePd3 show many features
which are still not understood. Although the crystal structure tolerates dif-
fering stoichiometry due to a wide stability region in the phase diagram,
the electronic structure is very sensitive to smallest off-stoichiometry and
impurities as demonstrated by M.J. Besnus et al. (1983) [3]. In 1973 it
was already found, that the thermoelectric figure of merit of this material is
anomalously large [4] and a survey of the effect of substitution with Rh on
the electronic state of Ce was published even 1972 [5]. But 30 years later
still no systematic substitution study with respect to the figure of merit has
been published. The extraordinary high thermopower of CePd3 is a conse-
quence of strong Kondo interaction due to an intense 4f-s,p,d hybridization
which is the driving parameter of the Ce valency. However the effect of sub-
stitution and doping on the Ce valency has been discussed in papers for a
variety of compositions (see e.g. [6, 7, 8]). With a substitution of Pd by
Rh the Ce valency can be shifted toward 4+, while Ag substitution tunes
the valency toward 3+. Doping the interstitial 1b site of CePd3 with ele-
ments like B, Si, Ga, In . . . also leads to a decrease of the Ce valency [9, 10]
toward 3+. For an improvement of the thermoelectric figure of merit ZT
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of CePd3 an increase of thermopower S(T ) with a simultaneous decrease of
the electrical resistivity ρ(T ) and the thermal conductivity λ(T ) would be
preferable. In the year 1982 H. Sthioul et al. [11] published thermopower and
resistivity data for Ce(Pd1−xRhx)3 and Ce(Pd1−zAgz)3-series which show for
x=0.08 a general increase of S(T ) with concurrent decrease of ρ(T ), while
an increasing z shows rather unfavorable S(T ) and ρ(T )-curves in terms of
thermoelectricity. M. Houshiar et al. [12] have presented thermopower and re-
sistivity data for CePd3By, which also looses thermoelectric performance with
increasing B content. In the scope of this thesis the material series CePd3By,
Ce(Pd1−xRhx)3, Ce(Pd1−xRhx)3B0.05 and Ce(Pd0.94−xRhxAg0.06)3 have been
synthesized and their thermoelectric properties have been measured and an-
alyzed by using models, which are common in literature. The applicability
of different models is discussed and extracted fit-parameters are presented.
In the first chapter of this thesis a survey on the theoretical background is
given. The experimental setup and techniques used for data acquisition are
described in chapter two. In chapter three the CePd3 system is specified and
the measured data for the different sample series are analyzed. In the sum-
mary the main results are outlined and in the Appendix a detailed description
of the fitting procedure is given.
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Chapter 1

Theoretical aspects

1.1 Transport Phenomena
The most important transport coefficients discussed in this thesis are the
electrical resistivity ρ, the thermal conductivity λ and the Seebeck coefficient
S. While ρ is defined as the ratio of the electrical field ~E to the parallel
current density ~I without any temperature gradient, λ is the negative ratio of
the heat flux density ~J to a temperature gradient in the same direction with
the boundary condition of ~E = 0.

~E = ρ~I and ~J = −λgradT. (1.1)

S, is an unique material specific constant, but its macroscopic effect can
only be observed in an open circuit consisting of at least two different materi-
als, where on the material junctions a temperature gradient is applied and as
a consequence an electrical field ~E is established (compare Fig. 1.1 and Eqn.
1.2)[1]. It is also possible to create a temperature gradient by applying an
electric current, due to the Peltier effect [2]. The Peltier coefficient Π, which
is related directly to S, shown in Eqn. 1.3, is the ratio of the heat exchange
~Q to the current density ~I.

~E = SgradT and ~Q = Π~I (1.2)

Π = ST (1.3)

Using the definition 1.2 in a setup like that in Fig. 1.1 results in

SAB = lim
∆T→0

(
∆V

∆T
), (1.4)

where SAB is the difference of SA and SB, the absolute Seebeck coefficients
of material A and B, respectively. Equivalent considerations hold for ΠAB.
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6 Chapter 1: Theoretical fundamentals

Figure 1.1: Thermoelectric circuit

Theoretically the transport coefficients like ρ, λ and S can be derived, in
terms of the linearized Boltzmann equation,( ∂

∂t
+ ~̇r · 5r + ~k · 5k

)
f(ν, ~r, t) =

(∂f(ν, ~r, t)

∂t

)
coll

(1.5)

which describes a dynamic equilibrium by connecting a collision term, rep-
resented by the right side of Eqn. 1.5 to a field term expressed by its left
side. f(ν, ~r, t) is the distribution function of a conduction electron dependent
on the position ~r and the wave vector ~k, which is included into the quantum
number ν as well as the band index and the spin direction. For a free electron
gas in equilibrium, this function equals the Fermi-Dirac distribution

f0(εν) =
[
exp

εν − µ

kBT
+ 1
]−1

, (1.6)

which describes the occupation of electronic states as a function of tem-
perature. εν denotes the energy of the electrons corresponding to ν and
kB = 1.381 × 10−23 J/K is the Boltzmann constant. At T = 0 the chemi-
cal potential µ equals the Fermi energy EF . Only electrons in the proximity
of the Fermi energy can contribute to transport of charge, mass and thus
energy. This electron movement is restricted by different scattering centers
like impurities, lattice imperfections, phonons, magnetic moments and even
electron-electron scattering itself. The simplest way to solve the linearized
Boltzmann equation (Eqn. 1.5) is the relaxation time approximation(∂f(ν)

∂t

)
coll

=
f(ν)− f0(εν)

τν

. (1.7)

It is assumed that the perturbed distribution function f(ν) relaxes exponen-
tially toward the equilibrium f0(εν) with τν is the half-life or relaxation-time.
Each scattering mechanism has a corresponding τi and if they are indepen-
dent, they can be combined to an average τ using Matthiessen’s rule

τ−1 =
∑

τ−1
i . (1.8)
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A further assumption uses a parabolic conduction band containing only one
type of charge carrier and the interaction between charge carriers and phonons
does not disturb the charge carrier distribution function. Then, transport
quantities can be deduced from the linearized Boltzmann equation (Eqn. 1.5),
resulting in following expressions:

ρ =
1

K0

T

e2
, (1.9)

S = ± 1

eT

(
µ− K1

K0

)
(1.10)

λe =
1

T 2

(
K2 −

K2
1

K0

)
. (1.11)

The sign of S depends on the type of charge carriers as illustrated by ±
in Eqn. 1.10 accounting for electrons or holes as primary charge carriers.
λe is the electronic thermal conductivity and e is the electronic charge. The
transport integrals Kn are given by

Kn =
k3

F

3π2m

∫
εn
k τ(εk) dεk

(
−dfk

dε

)
(1.12)

Once, the relaxation time is known for a particular interaction process, all
the transport coefficients can be calculated.

1.1.1 Electrical resistivity

According to Matthiessen’s rule (Eqn. 1.8) the electrical resistivity ρ(T ) can
be written as a sum its basic components,

ρ(T ) = ρ0 + ρph(T ) + ρe−e + ρmag(T ). (1.13)

ρ0 represents the elastic potential scattering of charge carriers by impurities,
lattice imperfections or grain boundaries, ρph denotes scattering of conduction
electrons by lattice vibrations, ρe−e denotes scattering of conduction electrons
by electrons and ρmag represents the contribution due to scattering of the
charge carrier on magnetic moments.

While ρ0 is independent on temperature (up to temperatures where dif-
fusion processes start), the temperature dependence of ρph is described by
the Bloch-Grüneisen formula (Eqn. 1.14), which is the result of a variational
type calculation in the scope of Boltzmann equation (Eqn. 1.5) assuming a
spherical Fermi surface and neglecting Umklapp processes [13, 14].

ρph =
cBG

ΘD

( T

ΘD

)5
∫ ΘD/T

0

x5dz

(ex − 1)(1− e−x)
. (1.14)
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cBG denotes a material dependent electron-phonon interaction constant,
which is temperature independent. ΘD is the Debye temperature and
x = ~ω

kBT
. Low (T � ΘD) and high temperature (T � ΘD) approximations

of Eqn. 1.14 yield

ρph ∝ T 5 and ρph ∝ T, (1.15)

respectively. For ρe−e an empirical law was first introduced by L. Landau
and I. Pomeranchuk [15] to describe the electron-electron scattering at lowest
temperatures.

ρe−e = AT 2 (1.16)

The material dependent scaling parameter A can differ a lot. For simple
metals it is about 1 fΩm/K2 (e.g. for K it is 2.2 fΩm/K2 [16]), but for heavy
fermion compounds, this parameter can grow due to the enhanced effective
mass of the charge carriers and reaches values of e.g. 23.5 nΩm/K2 for CePt3Si
[17]. This emphasized T 2-behavior is known as a crucial prove for systems to
be a Fermi-liquid.

Considering only the paramagnetic state, without crystal electric field
(CEF) splitting and any short range correlations. Then, ρmag is a tempera-
ture independent constant and can be expressed within a perturbation type
calculation in the scope of the Heisenberg model as

ρmag =
3πNm?

2~e2EF

| Γ |2 (g − 1)2J(J + 1). (1.17)

N means the number of magnetic moments in the unit cell, EF is the Fermi
energy and Γ is the exchange interaction constant between charge carriers
and localized magnetic moments. (g − 1)2J(J + 1) is the de Gennes factor
with J referring to the total angular moment of the magnetic ion and g is the
Landé - factor.

Crystal Electric Field (CEF)

The CEF is originated by the charge distribution around a magnetic ion and
contributes to its potential energy by at least partly lifting the rotational
degeneracy of the free ion multiplet according to the values of the projections
of the total angular momentum J . This contribution is described by

VCEF (~r) =

∫
ρ(~R)

| ~r − ~R |
d3R, (1.18)

where ρ(R) denotes the charge density of the surrounding electrons and nuclei.
It is a solution of Laplace’s equation and can be expanded in terms of spherical
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harmonics, assuming that the ions carry only point charges. The results can
be used in a Hamiltonian for the CEF written as

HCEF (~r) =
∑
l,m

Am
l Hlm (1.19)

with
Am

l =
4π

2l + 1

∫
d3R

ρ(R)Y m∗
l (ΩR)

Rl+1
(1.20)

and

Hlm =
l∑

m=−l

rlY m
l (δi, φi) (1.21)

Stevens [18] showed by applying the Wigner-Eckhard-theorem, that the
matrix elements of HCEF are proportional to those of equivalent operators
which are defined by simple angular momentum operators Jz or J±. Using this
so called Stevens operators Om

n (J) and the rewritten crystal field parameters
Am

l

Bm
n =

∑
n,m

Am
n 〈rn

4f〉Θn (1.22)

Θn =


αj . . . n = 2
βj . . . n = 4
γj . . . n = 6

(1.23)

the crystal electric field Hamiltonian in its simplest form can be written as
follows

HCEF =
∑
n,m

Bm
n Om

n . (1.24)

The Bm
n are usually determined experimentally and the operator equivalents

are tabulated as functions of J operators and can be found in literature, e.g.
[19].

The number of non-vanishing terms in HCEF is generally strongly re-
stricted by the local symmetry. For cubic point group symmetry the appro-
priate configuration is

Hcub = B0
4(O

0
4 + 5O4

4) + B0
6(O

0
6 − 21O4

6), (1.25)

while for a hexagonal symmetry the following is the correct operator

Hhex = B0
2O

0
2 + B0

4O
0
4 + B0

6O
0
6 + B6

6O
0
6. (1.26)

If CEF-splitting lifts the (2J +1)-fold degeneracy of the ground state and
exited levels are thermally populated, Eqn. 1.17 has to be modified as follows:
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ρmag =
3πNm?

2~e2EF

| Γ |2 (g − 1)2
∑

ms,m′
s,i,i′

〈m′
si
′ | ~s ~J | msi〉2pifii′ (1.27)

With ms and m′
s correspond to the spins of the charge carriers in initial and

final state i and i′. The relative population of CEF-levels with different energy
Ei is determined by a Boltzmann distribution

pi =
eEi/kBT∑
j e−Ej/kBT

(1.28)

The coefficients fii′ are defined as

fii′ =
2

1 + e−(Ei−E′
i)/kBT

. (1.29)

As a consequence the paramagnetic contribution to ρ(T ) is not temperature
independent anymore.

Also for long range magnetic ordered states different dependencies for
ρmag(T ) have to be considered. While a T 2 behavior is related to ferromag-
netism, a T 4 dependence is frequently found for antiferromagnetic materials
at T � Tord.

Kondo effect

Another important magnetic scattering mechanism is the Kondo effect,
caused by second order scattering of conduction band electrons by non-
interacting isolated magnetic moments. This can be realized by magnetic
impurities e.g. Mn or Fe dissolved in a host metal like Cu or by compounds
containing rare earth elements or actinides. Because the 4f- and 5f-shells are
smaller than the d-orbitals, they are shielded and therefore isolated. Such
materials are called Kondo lattices because the magnetic ions sit on regular
lattice sites. The first theoretical explanation of such scattering processes was
given by J. Kondo [20] using the Heisenberg s-d model:

H = −J ~σ · ~S (1.30)

The exchange integral J is assumed to be constant. Kondo found that using
a negative J (i.e., antiferromagnetic exchange) and taking a two stage scat-
tering process into account, a minimum in ρ(T ) of compounds with magnetic
impurities can be explained. In the first stage an electron is scattered by the
magnetic impurity and both stay in an intermediate state. A second scatter-
ing event restores the original state of the impurity and the electron is driven
to its final state. The transition probability Wa→b from the initial state a
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via the intermediate state c to the final state b can be described theoretically
using the second Born approximation, where Vij is the scattering potential
between the states i and j.

Wa→b =
2π

~

(
VabVba +

∑
c 6=a

VabVbcVca

Ea − Ec

+ c.c.

)
. (1.31)

The first term within the brackets is the first Born approximation, yielding a
temperature independent scattering, while the summation inherits the nature
of the unusual scattering. The energy Ea equals Eb but is different from Ec.
If during the first scattering a spin flip of the electron and the impurity takes
place, which is compensated with the second scattering event, the magnetic
ion can have an intermediate spin state m′

s = ms + 1 or m′
s = ms − 1. These

different intermediate states have different probabilities and energies. As a
consequence, the electrical resistivity becomes temperature dependent and
exhibits a logarithmic contribution. Calculations end up in

ρimp =
3πmJ 2S(S + 1)

2e2~EF

[
1− 4JN(EF ) ln

(
kBT

D

)]
(1.32)

D is a cut-off parameter and exchange coupling is assumed to be negative, i.e.
antiferromagnetic (J < 0). For intermediate valence compounds the relation
kBTK � ∆CEF is fulfilled, therefore the ground state degeneracy Nf reaches
its maximum. In such a case the CEF split levels are strongly hybridized and
individual levels can no longer be distinguished. As a result the individual
peaks in neutron diffraction data are smeared out and a broad maximum with
Γ/2 ≈ TK remains. For Ce-compounds this leads to Nf = 2J + 1 = 6. Due
to a valence shift toward 3+, however, TK decreases and the ground state of
a J = 5

2
cubic system is split into a doublet and a quartet.

4f-contribution to ρ(T ): An empirical model

A. Freimuth [21] showed an empirical expression to describe the enhanced re-
sistivity due to an unstable 4f-shell. The fluctuation temperature Tf which is
proportional to TK is correlated to the quasielastic linewidth ΓQE of the neu-
tron spectra by ΓQE = kBTf and for mixed valence compounds like CePd3 it
is independent of temperature in contrast to heavy Fermion compounds where
Tf may be approximated by Tf = k1 + k2 ∗

√
T . Using a temperature de-

pendent effective scattering width W (T ) and the temperature T0 which is
interpreted as energy difference between the energy of the "f-band" (ef ) and
the Fermi energy Ef (kBT0 = (ef − Ef )) the expression of the resistivity
reads:

W (T ) = Tfexp(−Tf/T ) (1.33)
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ρf (T ) = bJ2
sf

W (T )

T 2
0 + W (T )2

(1.34)

The parameter b follows from comparison of the Drude-formula leading to
b = m∗kB/ne2~ with m∗ is the effective mass and n is the charge carrier
concentration. Jsf is interpreted as hybridization integral taking the overlap
of the sd- and the f-wavefunctions into account.

1.1.2 Thermal conductivity

The total thermal conductivity of solids is the sum of an electronic contribu-
tion λe and a phonon part λph.

λtot = λe + λph (1.35)

In a first approximation each contribution to the thermal resistivity Wi can
be separated according to Matthiessen’s rule (Eqn. 1.8). The electronic
thermal resistivity We is similar to the electrical resistivity and consists of
different contributions due to impurity scattering, electron phonon scattering
and electron magnon scattering, We,0, We,ph and We,mag, respectively.

We ≡ λ−1
e = We,0 + We,ph + We,mag (1.36)

The electronic part of the thermal conductivity is related to the electrical
resistivity via the Wiedemann-Franz law, i.e.,

λe = L0σT. (1.37)

L0 = π2

3

(
kB

e

)2
= 2.45×10−8 WΩK−2 is the Lorenz number, and the electrical

conductivity σ ≡ ρ−1. For real metals the Lorenz number is temperature
dependent and defined as Le = λel

σT
. But for T > θD

2
, Le normally does not

deviate more than 20% from L0.
For more accuracy one can treat We,0 and We,ph separately. We,0 can

simply be expressed by applying the Wiedemann Franz law (Eqn. 1.37) to
the residual resistivity.

We,0 =
ρ0

L0T
(1.38)

We,ph caused by electron scattering on phonons can be deduced similarly to
the Bloch-Grüneisen equation 1.14 and is known as Wilson equation [22].

We,ph =
4R

L0T

(
T

θD

)5
{[

1 +
3

π2

(
kF

qD

)2(
θD

T

)2
]

J5(θD/T )− 1

2π2
J7(θD/T )

}
(1.39)
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R is a material dependent constant, kF is the wave vector at the Fermi energy
and qD is defined by the dispersion relation qD = ωD

νs
with ωD is the Debye

frequency and νs is the velocity of sound. The Debye-integrals are

Jn(x) =

∫ x

0

zndz

(ez − 1)(1− e−z)
with z =

θD

T
(1.40)

The first term of Wilson’s equation (Eqn. 1.39) describes horizontal scattering
processes, which determines also the electrical resistivity. The second term
accounts for vertical scattering processes which do not affect the electrical
resistivity. The last term weighs both contributions. Similar to the Bloch-
Grüneisen law for Wilson’s equation, simple high and low T approximations
exist which are:

We,ph(T ) ≈ R

L0ΘD

= const. for T � ΘD (1.41)

and

We,ph(T ) ≈ const.

(
124.4

ΘD

)3

T 2 for T � ΘD (1.42)

In analogy to Eqn. 1.17 there exists an additional paramagnetic term which
can be expressed as

Wmag =
9m∗N

2π~k2
BEF

|J |2(g − 1)2J(J + 1)
1

T
. (1.43)

For the lattice contribution to thermal conductivity, λph J. Callaway [23]
proposed a model based on the relaxation time approximation, taking a scat-
tering time τc into account which consists of different contributions τi, which
are assumed to be independent from each other and thus can be summed up
according to the Matthiesens rule (Eqn. 1.8). τN stands for normal three
phonon scattering processes, τD, τB, τU and τph−el denote point defect scat-
tering, boundary scattering, Umklapp processes and scattering of phonons by
electrons, respectively which depend on T and x = ~ω/kBT .

τ−1
c = τ−1

N + τ−1
U + τ−1

D + τ−1
B + τ−1

ph−el (1.44)

λph =
kB

2π2νs

(kBT

~

)3[∫ ΘD/T

0

τc
x4ex

(ex − 1)2
dx +

I2

I1

]
(1.45)

with νs standing for the velocity of sound and I1 and I2 abbreviating the
integrals,

I1 =

∫ ΘD/T

0

τc

τN

x4ex

(ex − 1)2
dx and

I2 =

∫ ΘD/T

0

1

τN

(
1− τc

τN

) x4ex

(ex − 1)2
dx (1.46)
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respectively. The first term within the squared brackets of equation 1.45 is
usually a good approximation for the lattice thermal conductivity as long as
normal three-phonon interactions are negligible. With increasing τN the term
I1/I2 must be taken into account. For interpretation of the experimental data
this formulae are put together like it is shown in the appendix section A.3
and the νs is replaced by its equivalent using Debye theory.

νs = ωD

(
6π2N

V

)− 1
3

(1.47)

The temperature and ω-dependence of the different scattering mechanisms
has been discussed in various papers and textbooks. For point defect and
boundary scattering the calculated therms are the same but for τU and τph−el

the estimations differ a lot. P.G. Klemens [24] calculates τU in the low tem-
perature limit (T � θD) as

τ−1
U ∝ ω2e−

θD
2T

[
1 + 6

T

θD

+ 24

(
T

θD

)2

+ 48

(
T

θD

)3
]

. (1.48)

M.G. Holland gives a summary of different estimations for τU in Ref. [25] and
G.A. Slack et al. [26] proposed an empirical approach writing

τ−1
U ∝ ωα

(
T

θD

)β

e−
θD
bT (1.49)

and use α = 2, β = 1 and b = 3 for their fitting, which should be a working
approximation for T ≥ θD. Additional a variety of estimations can be found
in articles and books by J.M. Ziman, R.Berman and J.E. Parrott [27, 28, 29].

For the scattering of phonons by electrons especially for valence fluctua-
tions I.A. Smirnov et al. [30] introduced a relaxation time as follows,

τ−1
ph−el =

U2
0 m∗2

2π~3ρ∗
k (1.50)

where U0 is the deformation potential, ρ∗ the material density and k is the
phonon wave vector. On the bases of this formula J. Kitagawa et al. as well
as Y. Aoki et al. [31, 32] assumed τ−1

ph−el ∝ Tx (k = ω/νs ∝ Tx). In an resent
article of J. Yang [33] a theoretical foundation of the scattering of phonons by
electrons is presented. Referring to Ziman [34, 35] he specified a relaxation
time for the scattering of phonons by conduction electrons:

τ−1
ph−el =

ε2m∗3νs

4π~4d

(
2kBT

m∗ν2
s

){
~ω

kBT
− ln[Ψ]

}
(1.51)

Ψ =
1 + exp[(1

2
m∗ν2

s − EF )/kBT + ~2ω2/8m∗ν2
skBT + ~ω/2kBT ]

1 + exp[(1
2
m∗ν2

s − EF )/kBT + ~2ω2/8m∗ν2
skBT − ~ω/2kBT ]
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where ε is the electron-phonon interaction constant or deformation potential
and d is the mass density. Comparing Eqn. 1.50 and Eqn. 1.52 they are
identities despite the ln[Ψ]-term, which can be neglected for elevated temper-
atures. An other expression for the scattering of phonons by electrons in a
bound state is presented in a paper of Griffin and Carruthers [36].

τ−1
ph−el =

Gω4

[ω2 − (4∆/~)2]2[1 + r2
0ω

2/4ν2
s ]

8
(1.52)

where G is a proportionality constant containing the number of scattering
centers, ∆ is the chemical shift related to the splitting of the electronic states
and r0 is the mean radius of the localized state. It has to be emphasized
that these formulae are based on the adiabatic principle and perturbation
theory. Ziman has argued that this is only valid if the mean free path of
the electrons Le is longer than the wave length Lp = 2π/k of the phonon it
scatters (kLe > 1). Pippard [37] developed a model to describe the ultrasonic
attenuation in metals and found relaxation times over the whole range of kLe.

τ−1
ph−el =

4nm∗vF Leω
2

15dν2
s

for kLe � 1 (1.53)

τ−1
ph−el =

πnm∗vF ω

6dνs

for kLe � 1 (1.54)

One can see that all models result in a dependence of τ−1
ph−el ∝ w for kLe � 1.

For kLe � 1 the τ−1
ph−el ∝ w2. According to [30, 31, 32] we assume that the

first condition is fulfilled. Thus, in this thesis the following terms will be used
to account for the different scattering mechanisms.

τ−1
U = AT 3x2e−

θD
3T (1.55)

τ−1
D = Dx4T 4 (1.56)

τ−1
B = B (1.57)

τ−1
ph−el = CTx (1.58)

The single scattering contributions to the phonon part of the thermal con-
ductivity and resistivity are mapped in the right and the left panel of Fig.1.2,
respectively. θD is assumed to be 220 K and the scattering constants where
chosen corresponding to an average fit within this thesis. The single contri-
bution due to point defect scattering can not be calculated by simply putting
the other parameters zero, because this results in a diverging integral. It was
extracted by inverting all results into resistances and subtracting the other
curves from the total thermal lattice resistivity. At low temperatures this
procedure may lead to large errors due to the numerical cut off and there-
fore leads to artificial features in the curve, but generally it may give a clue
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Figure 1.2: The left diagram shows the different scattering contributions as
delimiters of λph. The right panel maps the corresponding values in terms of
thermal resistances.

how τD effects λph. Modifying a theory by A. Einstein [38], D. G. Cahill and
R. O. Pohl [39] found an expression for a minimal thermal conductivity not
distinguishing between longitudinal and transverse acoustic phonon modes,
which is written as

λmin =

(
3n

4π

) 1
3 k2

BT 2

~θD

∫ θD/T

0

x3ex

(ex − 1)2
dx (1.59)

where n = N/V is the number of atoms per unit volume. This expression is
a lower limit of λph , which is achieved by glass-like or amorphous systems
especially at high temperatures.

Other possible contributions to the thermal conductivity are the so called
"rattling modes", which are resonant scattering processes of the phonons by
localized modes of loose bound atoms within the crystal-structure (e.g rare
earth atoms in cage-compounds like Clathrates or Skutterudites). Such pro-
cesses are defined by an Einstein temperature θE and a damping factor α. M.
Wagner [40] introduced an analytical expression for the according relaxation
time which was used by C.T. Walker and R.O. Pohl [41] to describe their
experimental data.
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τ−1
rattle = Ef(x, T )g(x, T ) (1.60)

f(x, T ) =

(
kBθE

~

)2 (
1− Tx

θE

)2

e

(
θE
T
−x

)
(ex−1)(

e
θE
T − 1

)[
e

(
θE
T
−x

)
− 1

]

g(x, T ) =

(
1 +

4ανs~
kBθE

)
ln

1 +

Tx
θE

(
1− Tx

θE

)
4ανs~
kBθE

− 4

[
Tx

θE

(
1− Tx

θE

)]
A fit function taking into account the rattling modes is also presented in
appendix section A.3.

1.1.3 Thermopower

In the scope of a relaxation time approximation using the linearized Boltz-
mann equation, as for ρ and λ a general expression for the Seebeck effect can
be written as

S =
1

eT

∫∞
0

σ(E)(E − EF )df0

dE
dE∫∞

0
σ(E)df0

dE
dE

(1.61)

σ(E) is the energy dependent electrical conductivity, EF is the Fermi energy
and df0

dE
is the slope of the electronic density of states (DOS). In general

the total Seebeck coefficient of a metal is the sum of different contributions,
which are the diffusion term Se, originated by the movement of electrons due
to a temperature gradient, the phonon-drag term Sph, which represents the
electron drag due to phonons and finally Smag, which is caused by the electron
drag caused by magnons. Usually the drag terms are second order effects and
are frequently neglected. In contrast to ρ and λ, for Se the application of
Matthiessen’s rule is not possible. Nevertheless using a variational procedure
it can finally be expressed by the Kohler rule (Eqn. 1.62), which correlates
the product of Se and the total electronic thermal resistivity We to the sum
of We,i and Seebeck coefficient Se,i over the particular scattering mechanisms
i.

SeWe =
n∑
i

We,iSe,i (1.62)

Applying the Wiedemann-Franz law (Eqn. 1.37) to the Kohler rule results in
the Nordheim-Gorter rule

Se =
∑

i

ρi

ρ
Se,i, (1.63)

serving as a first approximation.
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Figure 1.3: The diagrams show the dependence of the equations by Freimuth
(Eqn.1.64) and Koterlyn (Eqn.1.65) model on T0, keeping the other parame-
ters constant (c1 = 0, c2 = 60, Tf = 200 K and Nf = 6).

4f-contribution to S(T ): Empirical models

Together with the formula for resistivity (Eqn. 1.34) also an empirical formula
for the 4f-contribution to the thermopower was introduced by Freimuth [21]
bringing the temperature dependence into correlation with Tf and T0 like
follows

Sf (T ) = c1 ∗ T + c2 ∗
TT0

T 2
0 + W (T )2

. (1.64)

c1 and c2 are material constants and W (T ) is explained as for the resistivity,
compare Eqn. 1.33. An other approach was proposed by Koterlyn et al.
[42]. Using the case of strong orbital degeneracy NF = 2J + 1 = 6, which
normally takes place for intermediate valent Ce, he obtained the temperature
dependent thermopower as follows,

Sf (T ) =
2π2kB

3|e|
∗ TT0

π2

3
T 2 + (1 + π2

N2
f
)T 2

0

. (1.65)

Although the models of Freimuth (Eqn. 1.64) and Koterlyn (Eqn. 1.65) look
alike and produce also fit curves with same features, they result in varying
fit-parameters which lead to different interpretation of the measured data.
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Figure 1.4: These diagrams show S(T )-curves generated by using Eqn.1.64.
While the left panel shows data for variable Tf keeping the other parameters
constant (c1 = 0, c2 = 60 and T0 = 60 ), the right panel shows curves for a
constant ratio Tf/T0 = 4 with variable T0 (c1 = 0 and c2 = 60).

Figure 1.3 shows the drastic discrepancy between the two models with respect
to the interpretation of T0. Tf is the second characteristic temperature which
Freimuth uses for scaling and the effect of this parameter on the structure of
S(T ) is denoted in the left panel of Fig.1.4, while the right panel shows the
performance if the ratio Tf/T0 is kept constant (Tf/T0 = 4 which is about
the ratio we get from a fit of CePd3).

1.2 Thermoelectric energy conversion, the
figure of merit

For the application of thermoelectric materials in heat pumps or for electric
power generation, one has to consider terms like efficiency and performance.
Detailed description and calculations can be found e.g. in Ref. [43, 44]. The
most important facts will be treated here. In Fig.1.5 an idealized thermoelec-
tric couple is schemed, which consists of a p-type (hole conductor with positive
S) and an n-type (electron conductor with negative S) branch connected by
idealized conductors with λ(T ) = S(T ) = 0. The branches are arranged in
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an electric serial and a thermal parallel assembly. Neglecting thermal or elec-
trical contact resistances between the branches and the connector material
and also heat losses due to radiation and convection, the coefficient of per-
formance for Peltier cooling can be obtained. First the heat flows Qp,n for
each branch due to the Peltier effect (using equation 1.2 and 1.3) and the
particular thermal conductivity λp,n has to be taken into account, with Ap,n

denoting the cross section of each branch.

Qp = SpIT − λpAp
dT

dx
and Qn = −SnIT − λnAn

dT

dx
(1.66)

The second term takes into account the Joules heat production due to the
resistivity ρp,n, which produces a non constant thermal gradient.

−λp,nAp,n
d2T

dx2
=

I2ρp,n

Ap,n

(1.67)

At this point all coefficients are assumed to be temperature independent.
Applying the boundary conditions T = TH at the heat source (x = 0) and
T = TC at the heat sink (x = Lp,n), equation 1.67 reads as

λp,nAp,n
dT

dx
= −

I2ρp,n(x− Lp,n

2
)

Ap,n

+
λp,nAp,n∆T

Lp,n

(1.68)

 

Figure 1.5: Thermocouple for heat pumping or power generation.
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with ∆T = (TH − TC). The total heat flow from the heat source QC =
(Qp + Qn) |x=0, which is in fact the cooling power, can now be expressed by

QC = (Sp − Sn)ITC −K∆T − I2R

2
, (1.69)

with the total thermal conductance K and the electrical resistance R

K =
λpAp

Lp

+
λnAn

Ln

, R =
Lpρp

Ap

+
Lnρn

An

. (1.70)

For dQC

dI
= 0 the maximum cooling power is obtained corresponding to optimal

current Imax.

QC,max =
(Sp − Sn)2T 2

C

2R
−K∆T and Imax =

(Sp − Sn)TC

R
(1.71)

For a positive cooling effect ∆T may not exceed the value limited by QC,max ≥
0. Using the definition

Z =
(Sp − Sn)2

KR
(1.72)

and Eqn. 1.71, the maximum achievable temperature gradient ∆Tmax is given
by

∆Tmax = (TH − TC)max =
1

2
ZT 2

C . (1.73)

Z defined in Eqn. 1.72 is the property of a specific thermocouple taking into
account the relative dimensions of the thermoelements. For material science
an absolute definition would be preferable. To maximize the figure of merit in
equation 1.72 the factor KR has to be minimized according to its geometry.
This results in the following relation

LnAp

LpAn

=

(
ρpλn

ρnλp

)1/2

(1.74)

Now Z becomes independent of the geometric dimensions and describes the
thermoelectric figure of merit for a pair of materials in the following way.

Z =
(Sp − Sn)2

[(λpρp)1/2 + (λnρn)1/2]2
(1.75)

To estimate the thermoelectric quality of a single material the equation above
is modified as follows

Zp,n =
S2

p,n

ρp,nλp,n

, (1.76)
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but only in the special case when p- and n- branch are very similar in S, ρ and
λ this value can be related to the general Z from definition 1.75. Z has the
dimension K−1 and it has become common to use ZT , as it is a dimension-less
parameter for the characterization of thermoelectric materials.

ZT =
S2T

ρλ
, (1.77)

According to Eqn. 1.77 the ideal thermoelectric material should possess large
thermopower, low electrical resistivity and low thermal conductivity. As it
was shown in 1.1.2 ρ and λe are correlated by the Wiedemann-Franz law
(1.37) so an optimization of λ is restricted to minimizing λph.
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Experimental techniques

2.1 Sample preparation

Ce, Pd, Rh and Ag, each of 99.9% purity and 11B of 99.9999 purity were used
as starting materials. To synthesize CePd3 and CeRh3 the starting elements
were weighed roughly and molten in a high frequency induction furnace under
99.999% pure Ar atmosphere with 0.4 bar overpressure on a water-cooled
copper groove, to fumigate any volatile impurities. Then the elements were
weighed in exact stoichiometric proportions and melted together. In the
next step the resulting border phases were brought to fusion in the proper
percentage to get a sample set of Ce(Pd1−xRhx)3 with the variable grade of
substitution x. For the CePd3By- and Ce(Pd1−xRhx)3B0.05-series the suitable
amount of B was added to the finished CePd3 specimens and melted together.
The Ce(Pd0.94−xRhxAg0.06)3-samples were produce using CeRh3 as master
alloy which was brought together in one step with suitable amounts of pure
Ce, Pd and Ag. For each fusion the samples were melted several times.
Between the liquefaction the specimens were flipped over and every second
time they were fragmented into several pieces, the outer parts moved to inside
positions prior to remelting to guarantee homogeneous samples. After the
synthesis the specimens were sealed in silica capsules under vacuum and were
heat treated at 700◦C for 100 h followed by quenching in water. Afterward the
samples were cut into pieces suitable for the particular measurement setup
using either a diamond wheel saw or a diamond wire saw.

2.2 Structure analysis

Phase conditions of the samples were checked at room temperature using X-
ray powder diffraction data, which were obtained using a Huber Guinier pow-
der camera and monochromatic CuKα-radiation with an image plate record-
ing system. Precise lattice parameters were calculated by least squares fit

23
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of the indexed 4Θ-values obtained from X-ray film recordings using Ge as
internal standard (aGe=0.5657906 nm). For quantitative refinement of the
atom positions, X-ray intensities were collected in transmission from a flat
specimen in a Guinier image plate camera. Rietveld refinements were carried
out by employing the program package FULLPROF (see also [45]).

2.3 Electrical resistivity measurements

ρ(4.2− 300 K)

Calibration measurements to get absolute values of the electrical resistivity
in the temperature range from 4.2 K to room temperature were carried out in
a liquid nitrogen shielded 4He cryostat on bar-shaped samples with a length
of 5-10 mm and a cross-section of about 1 mm2. The specific resistivity was
measured via a DC four point technique realized by four gold needles, pressed
against the specimen with springs, serving as electrical contacts. The volt-
age drop is measured once in one current direction and than in the other to
compensate any thermo voltages. The temperature is detected by a thermo-
couple (AuFe0.07%/Chromel) which uses a thermos bottle filled with sludge
as reference. After the first series of Ce(Pd1−xRhx)3 and the measurement
of CePd3By the cryostat has been changed and instead of the DC four point
technique a new setup employing an AC resistance bridge 370 by LakeShore
with an additional low resistance scanner (Model 3716L) was used. For tem-
perature measurements resistive sensors of Ge and Pt for T < 30 K and
T > 30 K, respectively, were used.

ρ(0.4− 150 K) as a function of an external magnetic field

To measure ρ(T ) between 0.4 and 150 K a 3He-cryostat by Cryogenics was
used. The 3He insert is mounted in a liquid N coated 4He vessel which contains
a superconducting magnet which provides magnetic fields up to 14 T. The
samples can be contacted either by gold needles as described above or by
point welding, where wires of 99.996% Au with a diameter of 0.05 mm are
point welded using a welding unit UIP1000 by Schmidt Instrumente. The
resistance was measured via DC four point technique as described above. The
temperature was detected by a calibrated Cernox temperature sensor supplied
by Lakeshore. In the course of back fitting the calibration measurement setup,
an AC resistance bridge by LakeShore was implemented into this equipment.

ρ(1.5− 300 K) in dependence of pressure

Pressure dependent resistivity measurements between 1.5 and 300 K were
made up to about 23 kbar. The samples which were about 4 mm long had
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a cross-section of about 0.5 × 0.5 mm2 and were point welded and mounted
on the sample holder which is part of a piston cylinder cell made out of
MP35N using petroleum as pressure transmitting medium. Again a DC four
point technique was used to measure the resistivity. The sample holder is
introduced into a variable temperature insert (VTI), which is connected to a
4He bath cryostat.

ρ(300− 900 K)

For temperatures between room temperature and 800◦C a dc four point mea-
surement technique is used. Such high temperatures cause many problems in
contacting the sample properly. A method which gives very reasonable results
is to twine four contact wires around the sample and fix them with a drop
of liquid silver. The sample holder is inserted in a steel tube which is part
of a NABER R70/9 furnace and the measurement is done under vacuum, to
avoid oxidation of the samples.

2.4 Thermal conductivity

λ(4.2− 300 K)

Thermal conductivity measurements between 4 and 300 K were performed
in a flow cryostat working on 4He. The cuboid-shaped samples were ideally
≈ 10 mm long and had a quadratic cross section of 1.5 mm edge length. The
bottom of the sample was fixed onto a copper panel mounted on the heat
exchanger of the cryostat serving as heat sink. On the top of the sample a
strain gauge was glued using superglue. This strain gauge served as heater and
was powered by a constant current supply J152 Knick. Thus a temperature
difference ∆TS along the sample establishes. Measuring the voltage drop
on the strain gauge, the applied power and thus the thermal flux Q can be
deduced. The temperature gradient ∆TS over a distinct sample length l was
determined using a differential thermocouple (AuFe0.07%/Chromel) which
had its reference temperature from a Pt and Ge thermometer stacked into
a hole in the heat sink. ∆TB is the temperature gradient between the heat
sink and the lower thermocouple (see Fig. 2.1). Using these temperatures
the average sample temperature TS becomes

TS = T0 +
∆TS

2
+ ∆TB (2.1)

and the thermal conductivity λ is calculated like follows

λ =
l

A

Q

∆TS

. (2.2)
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A is the sample cross-section which is determined before measurement. Sam-
ple and copper panel are surrounded by three radiation shields, the inner most
is held on the same temperature as the heat sink. At elevated temperatures
radiation losses during the measurement process contribute in a non negligi-
ble way to the signal resulting in a seemingly higher λ-values. The heat loss
due to radiation is given by the Stefan Boltzmann law:

Q = εσSBA(T 4
S − T 4

0 ), (2.3)

where TS is the sample temperature, T0 is the temperature of the heat sink
and the surrounding radiation shield and A is the surface of the sample. The
Stefan Boltzmann constant σSB = 5.7× 10−8 Wm−2K−4 and the emissivity ε
ranges between 0 and 1. It follows that

Qrad = 2εσSBAT 3
S∆TS = aT 3

S (2.4)

and thus radiation effects manifest themselves in a T 3-dependence of λ(T ) at
elevated temperatures [46, 47]. To prove the accuracy of the method, we have
measured the thermal conductivity of an austenitic steel-standard (Standard
reference material 1461) provided by the National Bureau of Standard (NBS).
Two samples (#1 and #2) with the same cross section but different tapping-
length (0.728 and 0.145 cm) were tested and the results are plotted in Fig.

 

heater 

T0                   heat sink   

∆TB 

∆TS 

sample 

Figure 2.1: This is a sketch of the λ-measurement setup.
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2.2. The distance between the thermal contacts is measured under microscope
using a cross table with digital length measurement unit. With decreasing
tapping length the absolute error increases and therefore one sees in Fig. 2.2
that the measured curve for sample #2 lies lower than the reference data. As-
suming an offset of -12% the curve is shifted to fit the reference. The curves
of blue circles, which show the difference between the measured λ(T )-values
and the reference data, were fitted according to Eqn. 2.4 and the resulting
curve are plotted as purple solid. It is evident that the radiation losses are
smaller for shorter tapping lengths. The fit-parameters a are 1.47*10−6 and
0.44*10−6 mW/cmK4 for sample #1 and #2, respectively. For easy sam-
ple handling and in order to keep the absolute error small a tapping length
of about 0.5 cm is recommended and all samples of a series should have a
comparable length.
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Figure 2.2: The diagram shows measured λ(T )-curves of NBS-steel samples
#1 and #2 with a taping-distance of 0.728 and 0.145 cm, respectively. The
data are compared to the reference data. Additionally the differences between
the standard values and the measured are plotted (blue circles) and fit curves
according to Eqn. 2.4 are shown (purple solid).
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λ(300− 900 K)

The Xenon flash system Flashline 3000 by Anter Corporation was used to
achieve thermal diffusivity α and heat capacity cp data at elevated temper-
atures. λ can be computed from measured values of α and cp, with the
additional knowledge of material density ρ according to

λ = αρcp. (2.5)

2.5 Thermopower
S(4.2− 300 K)

In the low temperature range from 4 to 300 K the Seebeck coefficient was
measured in a VTI which was inserted in a 4He bath cryostat. In contrast
to ρ- and λ-measurements where an accurate determination of the sample
dimensions is necessary, the sample shape has no effect on the thermopower.
The only restriction by our measurement setup is that the specimen should
have two parallel plane faces with about 6 mm distance. The samples were
clamped between two Au-plates. Each of these plates are contacted to two
different thermocouples, one pair of Pb and AuFe0.07% for temperatures
below 10 K the other for T ≥ 10 made from Chromel/Pb. On the bottom
of the sample holder a heater provides the necessary temperature gradient
(see Fig. 2.3a). The voltages between the thermocouple wires of the same

 

a b

Figure 2.3: The left picture shows a sketch of the old fashioned S-
measurement setup using a two point measurement technique (the black
zigzag line on top symbolizes a spring). Figure b is a scheme of the new
four point technique setup. In both sketches the heaters are marked orange.
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sort were measured in both directions and averaged. The sample temperature
was measured with Pt and Ge sensors. With the acquired data the Seebeck
coefficient can be calculated using the following equation:

Sx = SA −
VA

VA − VB

(SA − SB) (2.6)

SA is the absolute thermopower of AuFe0.07% or Chromel and SB repre-
sent the absolute thermopower of Pb and VA and VB are the voltages along
the AuFe0.07% or Chromel and Pb circuits, respectively. This technique is
a two point technique where the temperature gradient has always the same
direction; this is comparable to a resistivity measurement with the current
always flowing in one direction (DC-mode). A second measurement setup
was revitalized in the scope of this work which is using a four point tech-
nique. This setup has two heaters which can raise a temperature gradient
in two directions (comparable to the AC-mode in resistivity measurement).
The sample holder is made of Cu where two strain-gauges are glued on two
detached spots, in a distance of 3 mm, serving as heaters (see Fig. 2.3b).
Bar-shaped samples with at least 5 mm length are needed. On each end of
the sample a Constantan/Chromel thermocouple is fixed (either soldered or
glued with epoxy-silver paste). The samples were glued on the heating panels
using G.E.-varnish. A problem is that the wires of the thermocouples tend
to distort the temperature on the measurement spot. Therefore the sample
should be mounted in a way that the thermocouple contacts also touch the
heaters. The measured voltages are averaged over both temperature gradient
directions and Eqn. 2.6 is used to determined Sx. The sample temperature
is determined using a Pt100 between 30 K and room temperature and a Ge
resistive sensor for T < 30 K.

S(300− 900 K)

With the high temperature setup data from 300 to 1000 K can be acquired.
The measurement arrangement follows the same principle as that described
for the two point method in the low T range (see Fig. 2.3a). The difference is
that only one sort of thermocouple (Pt/PtRh10%) was welded onto Pt plates,
which both measure the absolute temperature in reference to 0◦C provided
by sludge in a thermo flask. The heater was realized by a thermo coax wire.
With this arrangement the thermopower can be calculated by

Sx = SPt(T )− VPt,x

∆T
. (2.7)

SPt denotes the absolute thermopower of platinum and VPt,x the thermally
induced voltage across the sample depending on a temperature difference
∆T .
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The CePd3 system

CePd3 crystallizes in the cubic AuCu3 structure (Pm3m), where Ce occupies
the 1a site and Pd the 3c sites (compare Fig. 3.1). It is an intermetallic com-
pound with intermediate Ce valence of about 3.45 [48] and exhibits one of
the highest Seebeck coefficients (up to 110 to 120 µV/K at a broad maximum
around 150 K) [49] within Ce based intermetallics. Such strongly enhanced
S(T ) values are referred to an intense Kondo interaction responsible for a
characteristic temperature TK of about 240 K [50]. Enhanced values of TK

Figure 3.1: Crystal structure of CePd3, where Ce is symbolized by yellow and
Pd by blue balls.

30
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are a fingerprint of a strong 4f -s, p, d hybridization which in turn promotes
an intermediate electronic configuration of the Ce ion. Simultaneously, a high
electron density of states at the Fermi level, associated with the Abrikosov
Suhl resonance, provides the base requisite for an extraordinarily large See-
beck effect. Theoretically, this relationship follows within the scope of the
single impurity Anderson model, which says that the density of states at the
Fermi energy, expressed by the Sommerfeld value, is the relevant parame-
ter driving the Seebeck effect in Kondo type materials. The resistivity of
CePd3 resembles the behavior of a Kondo lattice and exhibits a pronounced
sensitivity for smallest deviations in the Ce/Pd-ratio as described manifold in
literature (e.g. [48, 51, 3]). From the Ce-Pd phase diagram one can learn, that
there is an extended stability region around the ratio 1:3 which also allows
non-stoichiometric compounds like CePd3+ε to build a single phase AuCu3-
structure, in which Pd enters Ce-places and vice versa. Sthioul et al. [11]
tested CePd3+ε and found, that ρ(4.2 K) varies from about 10 to 170 µΩcm
with ε from -0.08 to +0.08. A decrease of thermopower was reported also
for increasing ε. Another crucial point is the thermal treatment after syn-
thesis which also can have an enormous effect on the transport properties as
Schneider et al. (1981) [51] have demonstrated. Contrary to that stands a
publication by Besnus et al. (1983) [3] in which no effects of heat treatment on
the resistivity are reported. Data from this paper are used in Fig. 3.2 to point
out the effect of smallest deviations in stoichiometry on ρ(4.2 K). The Ce
concentrations taken from the paper are corrected by subtraction of 0.5 at%
as it was described in the discussion of the same paper. From this data one
can see the change of ρ(T ) with respect to the Ce concentration and that in
Pd rich samples ρ(4.2 K)-values even become larger than ρ(300 K). Substi-
tutions of Pd in CePd3 by elements as Rh and Ru further enlarge the Kondo
temperature TK via enhanced hybridization and thus trigger significant devi-
ations from integer valency. This was demonstrated quantitatively for CeRh3

from a resonant inverse photo emission study, locating the position of the
4f 1 peak at about 1 eV [52]. Since the maximum contribution in S(T ) oc-
curs at a temperature roughly proportional to TK [53], the substitution of
Pd by Rh was expected to tune Smax(T ) over a broad range of temperatures.
This group of materials exhibits generally good electric conduction as well
as good thermal conductivity because the thermal conductivity part arising
from the charge carriers can be directly related to the electrical conductivity
via the Wiedemann-Franz law. The phonon part of the thermal conductiv-
ity can be reduced toward the theoretical minimum value via three major
mechanisms: i) simple substitution introducing atom disorder; ii) phonon
scattering on almost each lattice site by inserting atoms in the large cages
of the structure thereby allowing extraordinary large thermal displacement
parameters (rattling modes); iii) scattering of the heat carrying phonons on
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valence fluctuating electrons of atoms with valence instabilities (breathing
modes). The AuCu3-structure, which is, in fact, an unfilled perovskite, pro-
vides the opportunity of filling the interstitial 1b site with rattling atoms like
B, C, Si, Al and Ga. Such an atom insertion shifts the Fermi level and as
a result, the Seebeck coefficient alters. A decrease of thermopower was ob-
served for CePd3By by Houshiar et al. [12], but for CePd3Gax an increase
of ZT was published [54]. Other studies have shown that pressure applied
to CePd3By regains the high absolute thermopower values of CePd3 [55] and
thus compensates the reduction due to the insertion of B. A similar observa-
tion was made for Ce(Pd1−zAgz) [11] where this recovery is attributed to a
continuous pressure induced transition to a more intermediate valence (IV)
state. It is possible that the substitution of Pd by Rh in the context of the
insertion of B, C, Si . . .may keep the charge carrier count unchanged, thus
we expected that the absolute thermopower values recover at zero pressure.
All effects outlined in i) to iii), the transition metal substitution, the rattling
mode of the inserted B atoms as well as possible additional phonon scatter-
ing due to valence fluctuations of the Ce, should act together efficiently to
minimize the thermal conductivity. With a thermopower nearly unchanged
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Figure 3.2: The picture shows data taken from Besnus et al. [3] (1983) to
point out the effect of deviations in the Ce concentration on the resistivity at
4.2 and 300 K. The dotted and dashed lines are guides for the eye.
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and a slightly reduced electrical resistivity a increase of ZT seems possible.
The following chapters will elucidate the effect of substitution and doping on
the thermoelectric properties on CePd3.

3.1 CePd3 sample series
In the scope of sample preparation five sample series were synthesized.

• CePd3By

with B concentrations y = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40

• Ce(Pd1−xRhx)3

with Rh concentrations x = 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1

• Ce(Pd1−xRhx)3

with Rh concentrations x = 0.00, 0.03, 0.06, 0.09, 0.15

• Ce(Pd1−xRhx)3B0.05

with Rh concentration of x = 0.00, 0.03, 0.06, 0.09, 0.15

• Ce(Pd0.94−xRhxAg0.06)3

with Rh concentration of x = 0.00, 0.03, 0.06, 0.09
and an additional CePd3 sample

Three different CePd3 samples were synthesized as border phases for the dif-
ferent sample series. X-ray diffraction measurements were used to test the
samples for phase purity and from that data the three samples are nearly
identical as evidenced from the extracted lattice parameters. Nevertheless
ρ(T ), λ(T ) and S(T ) differ a lot as it is shown in Fig.3.3. The left panel of
that figure shows the measured values of λ(T ), which revels at temperatures
T > 150 K an oversized increase due to radiation losses. The λph-curves
are calculated by applying the Wiedemann-Franz law (1.37) and subtracting
the radiation losses assuming a T 3-dependence (a detailed description of this
procedure can be found in chapter 3.2). At low temperatures the resistivity
of CePd(3)

3 has a more significant shoulder than CePd(1)
3 and the maximum

is slightly increased and shifted to lower temperatures. Also the S(T ) val-
ues are slightly higher at lower temperatures and the maximum is shifted
to lower temperatures as well. λmax stays at the same temperature, but its
value is halved due to a significant decrease of λph. CePd(2)

3 is characterized
by a much higher ρ(T ) over the entire temperature range and S(T ) is signifi-
cantly decreased. A λ(T ) measurement of CePd(2)

3 was not possible, because
the sample broke. The reason for this large deviations is the sensitivity of
CePd3 to smallest changes in the stoichiometry as it is described above. From
weighing the samples before and after the synthesis no preparation mistakes
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Figure 3.3: ρ(T ), S(T ) and λ(T ) data for the different CePd3 samples.

became evident and all samples were heat treated in a similar manner. To
investigate the deviations between the different sample compositions electron
probe micro-analysis (EPMA) were performed employing a Carl Zeiss DSM
962. It was found, that all samples have the same composition of CePd3,
within the accuracy of the equipment, but in sample CePd(2)

3 small precipi-
tations of a Ce-rich phase, most probably CeO2 were found, which can be a
reason for the discrepancy of the transport properties. Micrographs of met-
allurgically prepared surfaces of representative samples of the different series
are mapped in Fig. 3.4, where one can see the Ce-rich precipitations as dark
points in the lower left panel. CePd(1)

3 shows large areas of differently colored
phases separated by a darker phase. From the analysis no difference between
the large phases can be deduced, but the dark border phase is Pd enriched.
Because the absolute values of the compositions deduced by this method were
not granted, a second test was performed using a Philips XL-30 ESEM. With
this instrument the overall surface of the selected samples was analyzed to re-
assure that the Ce/Pd ratio has not changed during the preparation. Within
the accuracy of the method the samples are not distinguishable and show a
Ce/Pd ratio of 1:3.
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#1 #2a 

#2b #3 

Figure 3.4: Micrographs taken with a Carl Zeiss DSM 962 show metallurgi-
cally prepared surfaces of three samples, representing the different samples
series. CePd(1)

3 shows large areas of differently colored phases with similar
Ce/Pd ratio separated by a darker Pd-rich phase. CePd(2)

3 has very homo-
geneous regions (see panel #2a) but also Ce rich phases like in panel #2b.
CePd(3)

3 shows the most homogeneous sample surface

3.2 CePd3By

The introduction of boron into CePd3 causes an increase of the lattice con-
stant a and the Ce valence is tuned from about 3.45 to its 3+ state [56].
Regarding the X-ray diffraction data the samples are single phased and the
extracted lattice constants (compare Fig. 3.5) are in good agreement with
data from literature [9], where it is assumed that the B enters most likely
the 1b site of the crystal structure. The fact that the lattice constant doesn’t
change above B concentrations of y ≥ 0.25 can either mean that a small boron
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Figure 3.5: Lattice constants of CePd3By in dependence of the B concen-
tration y. The doted line is a guidance for the eye following the data from
literature.

concentration expands the lattice so much that additional B has enough space
within the lattice. A second description could be that the solubility of B in
CePd3 is restricted, like it is for the other elements of group 13, and the resid-
ual B is accumulated between grain boundaries. The second interpretation
stands in contrast to conclusions by Dhar et al. [9], but X-ray diffraction
has not the resolution to point out the B position and no neutron diffraction
data were collected up to now, which could clarify this matter. On sample
CePd3B0.4 an additional investigation using a Philips CM 200 transmission
electron microscope (TEM) operating at 200 kV, has been made to find out
if there exists a superstructure like it has been found for CeRh3B0.5 (tetrag-
onal system, space group I4/mmm) by K. Yubuta et al. [57]. We observed
neither superlattice reflections at 1/2 1/2 1/2 positions nor satellites around
the Bragg reflections, therefore we conclude that CePd3B0.4 still adheres to
space group Pm3m.
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3.2.1 Electrical resistivity

In the range of small B content the resistivity data show impressively how
TK decreases and vanishes for a boron content of about y = 0.2. At concen-
trations y ≤ 0.2, where the system can be described using the Kondo lattice
model, the right shoulder of the maximum was approximated with the sum of
a residual resistance ρ0, a phonon scattering term ρph calculated using Bloch
Grüneisen equation 1.14 and a logarithmic temperature dependent term com-
ing from Eqn. 1.32, like in the following equation with c denoting a scaling
constant.

ρ(T � Tmax) = ρ0 + ρph + c ∗ ln[T ] (3.1)

Theoretically the logarithmic term is proportional to ln[ T
TK

] (compare Eqn.
1.32), but the TK can not be figured out by this method, because mathemat-
ically (ln[ T

TK
] = ln[T ]− ln[TK ]) it enters into ρ0, which can’t be split. While

ρ(T ) of CePd3 can also be fitted applying Eqn. 1.34, this model can not
produce a satisfying match of the ρ(T )-behavior of the CePd3By-series. With
higher doping (y > 0.2) the ρ(T ) curves show a linear increase for T > 10 K
and the straight lines are parallel so that they fall on one line when normal-
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Figure 3.6: The left panel shows the temperature dependent resistivity ρ(T ) in
dependence of the B concentration y. Solid lines are fit-curves based on Eqn.
3.1. The right panel shows the data normalized to the resistance at 290 K.
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ized to ρ(290 K) as it is mapped in the left panel of Fig. 3.6. With increasing
y the offset declines. At lowest temperatures T < 10 K the slope of ρ(T ) de-
creases more rapidly, as it is depicted in the inset of Fig. 3.6, which could
be due to a spin-glass transition also reported in [58]. The magnetic field
dependence of the resistivity down to 0.5 K was also tested, but there is no
remarkable change with external fields up to 12 T.

3.2.2 Thermopower

Absolute values of the characteristic temperatures T0 and Tf , which corre-
spond to TK , can be extracted from the thermopower data. Fig. 3.7 displays
the measured S(T )-curves with additional solid black lines which represent fit
curves according to the formula by M. Koterlyn (M.K-model see Eqn. 1.65)

CePd3By

T [K]
0 200 400 600 800 1000

S
 [µ

V
/K

]

0

20

40

60

80

100

120

0 100 200 300 400
0

1

2

3

4
y=0.00

y=0.05

y=0.1
y=0.15

y=0.2

y=0.25 y=0.3

y=0.4

Figure 3.7: Thermopower of CePd3By for various concentrations of B. The
solid black lines are fit curves obtained from Koterlyn’s equation. The green
dashed lines are the result of a fit according to the model by Freimuth.
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where a further dimensionless scaling parameter k was multiplied to the term,
to reproduce the magnitude of the values, while Nf was kept constant 6. The
dashed green lines in the diagram represent curves generated by the model
by A. Freimuth (A.F-model compare Eqn. 1.64). A feature which can not be
reproduced by both procedures is the negative Seebeck coefficient at lowest
temperatures. Data have been collected between 4.2 to 900 K where at about
300 K the measurement setup is changed. Therefore some points are missing
and the connection of the curves is not completely smooth. The decrease of
S(T ) due to B doping as well as the shift of T S

max to lower temperatures is
associated with the crossover from intermediate to integer valence (3+) for
y ≥ 0.25. The S(T )-behavior of CePd3B0.2 is depicted in the inset of Fig.
3.7. Its low temperature dependence is similar to that of the samples with
lower B content; the distinct maximum is followed by a decrease of S(T ), but
there is a shoulder at the right flank of the peak, which is absent at the other
samples. At about 300 K a shallow minimum establishes and for tempera-
tures above 500 K the thermopower increases almost linearly. The extracted
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characteristic temperatures are depicted in Fig. 3.8 together with the scaling
parameter c. It becomes evident that T0 from the M.K-model coincide rather
with Tf from the A.F-model although both use the same definition for T0.
The application of the M.K-model results in a linear decrease of both, T0 and
the scaling parameter c up to a B concentration of 20%. The very special cur-
vature and the increase of thermopower at high temperatures for CePd3B0.2

can not be reproduced by the M.K-model. The A.F-model also reflects the
decrease of the characteristic temperatures and the scaling parameters, but
the extracted values are not in line, which may be mainly due to the lack of
high temperature data for some samples and therefore an improper extrapo-
lation. The M.K-model, however, seems not to be distinctly effected by this
problem. On the other hand the A.F-model is able to emulate tendencies of
the complicated S(T )-behavior of CePd3B0.2 (compare Fig. 3.8).

3.2.3 Thermal conductivity

The temperature dependence of the thermal conductivity has also been mea-
sured for the complete sample set and the results are displayed in Fig. 3.9.
The change in thermal conductivity is not continuously with increasing B con-
centration as it has been observed for the ρ(T ) or the S(T ) measurements.
It has been expected that the B is loosely bound in the center of the AuCu3-
structure and increases scattering of phonons due to so called rattling modes.
Indeed λtot(T ) shows a distinct decrease with increasing B concentration up
to 10%. Most notably is the suppression of the maximum at about 50 K.
But for y ≥ 0.10 no further dramatic changes in the behavior of λtot(T ) oc-
curs. For y=0.15 and 0.2 the total thermal conductivity is higher than for
the sample with y=0.10. This increase is due to a enhancement of λph with
increasing B content which is opposite to the expected behavior. The lowest
lying λ(T )-curve shows CePd3B0.3. The left panel of Fig. 3.9 shows the mea-
sured data with an oversized slope of the curves at higher temperatures due
to radiation losses. As discussed in the experimental part the losses can be
compensated using Eqn. 2.4. λtot(T ) can be separated into the lattice and
the electronic part, λph(T ) and λe(T ), respectively, according to formula 1.35.
The standard approach uses the Wiedemann-Franz law (WF-l Eqn. 1.37) to
deduce the electronic thermal conductivity λe(T ) from the electrical resistiv-
ity ρ(T ). By subtracting λe(T ) from λtot(T ) the phonon contribution λph(T )
is obtained and further interpreted by using the model from Callaway, Eqn.
(1.45). The right panel of Fig. 3.9 shows fit-curves of λtot(T ) derived using the
WF-l and corrected with respect to radiation losses. A second model based
on Wilson’s equation (W-Eqn 1.39) is introduced to fractionate λtot(T ) and
therefore cross check the reliability of the results. This was done by simple
adding Eqn. 1.39 to Callaway’s term and fitting λtot(T ) within one step. As
discussed above an additional T 3-term was introduced in both procedures
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to estimate the radiation losses. Figure 3.10 shows the measured λtot(T ) of
CePd(1)

3 and how the applied models reproduce the different contributions.
The W-Eqn doesn’t take into account Kondo effect or other magnetic contri-
butions to λe, therefore it generates a structureless curve at low temperatures
and underestimates λe(T ) compared to the WF-l which produces a distinct
shoulder below 100 K. This lowered λe(T ) is compensated by an inflated
λph(T ) emulated by W-Eqn. Both models independently estimate nearly the
same radiation losses. Even at room temperatures λph is 3.6 times larger than
λmin. In the upper panels of Fig. 3.12 fitting results of the λe(T ) data sets,
based on the W-Eqn (right panel) and the WF-l (left panel) are displayed.
It is remarkable, that both models provide comparable values. For y=0.25
and 0.3 the curves derived by WF-l are completely different to the rest of the
data, which is due to the small electrical resistivity of these compounds. The
more astonishing is that for y=0.3 even this change of the curvature is repro-
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Figure 3.9: The left panel displays the measured thermal conductivity of
CePd3By in dependence of the B concentration y. The right panel shows
fit-curves of λtot(T ) derived using the WF-l and corrected with respect to
radiation losses.
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duced by the fit using W-Eqn. Inspecting the data, compared for λph(T ) in
Fig. 3.12, the lower panels, reveals again a general agreement. Both models
clearly point out a substantial decrease of λph(T ) with rising B content.The
curvature of λph(T ) for y ≥ 0.15 is changed in comparison to y < 0.15 if one
uses the WF-l, while an interpretation applying the W-Eqn produces only
two different shaped λ(T )-curves for y = 0.15 and 0.2.

From this insight it can be concluded, that with B doping the maximum
of λph(T ) at about 50 K is reduced by a factor of approximately 3.5, at 150 K
λph is halved after all, while at room temperature in some cases it is even
increased. Keeping in mind the bisection of S(T ) with 10% B content, this
results will bring no improvement of thermoelectric properties. Nevertheless
an analysis of λph(T ) in terms of different scattering contributions can give
an interesting insight on the dominating mechanisms. As both fit procedures
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Figure 3.10: The picture shows the measured λ(T ) and the different con-
tributions λph(T ), λe(T ) with an additional share related to radiation losses
evaluated using Wiedemann-Franz law or Wilson’s equation. The dark green
line corresponds to λmin (see Eqn. 1.59)
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Figure 3.11: The Debye temperature θD in dependence of the B concentration
y in CePd3By evaluated applying Wilson’s equation or Wiedemann-Franz
law, denoted by black and white circles, respectively, in combination with
Callaway’s model.

were based on the Callaway’s theory [23, 59] described in detail in section
1.1.2, the derived fit parameters should reflect, at least, tendencies how the
doping affects λph(T ). We have used the relaxation time approximation with
an averaged relaxation time τ−1

c = τ−1
U + τ−1

D + τ−1
B + τ−1

ph−el, where τU , τD,
τB and τph−el denote Umklapp processes, point defect scattering, boundary
scattering and scattering of phonons by electrons. For every scattering mech-
anism one fit parameter has been taken into account, further more the Debye
temperature θD and an additional parameter regarding the radiation losses
are necessary. Thus six fit-parameters are used, which can result, of course, in
rather vague results. Nevertheless developments in the governing scattering
processes due to the doping can be deduced. For the matching procedure the
program TableCurve 2D 5.01 was used (a detailed description of the proce-
dure is given in A.3). For θD both approaches gave reasonable results, which
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B concentrations y in CePd3By show a remarkably good agreement.
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are reported in Fig. 3.11. θD tends to decrease with increasing B content.
Interesting is the inflated value of about 350 K of pure CePd3 which is re-
produced by both procedures. θD calculations by C.-K. Loong et al. [60],
who used the phonon density of states, resulted in a temperature dependent
behavior, where θD decreases from ≈ 320 K at 0 K to ≈ 220 K at 70 K. From
heat capacity measurements published by M.J. Besnus et al. [3] θD ≈ 300 K.
The large discrepancy of θD at y=0.05 for the different models can not be ex-
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model. The black circles represent values gained from treatment with W-Eqn,
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Figure 3.14: The thermoelectric figure of merit ZT of CePd3By for various
B concentrations y in dependence of the temperature. The solid symbols
represent transport data taken from measurement, while the dotted lines
regard a λ(T ) correction due to radiation losses data.

plained yet. We tried also to apply Wilson’s model with starting values gained
by WF-l and vice versa, but the parameters were rather unstable. This prob-
lem was faced several times, although a general analogy is found comparing
WF-l with W-Eqn. The effect of B doping on the four principal scattering
contributions is shown in Fig. 3.13, where arbitrary units are used to keep up
convenience. The curvature of λph gained by applying WF-l on the measured
data of y=0.15, 0.2 and 0.25 refers to a minor contribution of τU as it is also
confirmed by Wilson’s model for the two samples with lower B content. For
y = 0.25 the parameters again become unstable. The data were fitted several
times and it was not possible to reproduce the result of WF-l. Possibly this
is a problem originated from the large number of fitting parameters. The
fitting procedure results in a mathematically best match, which may be a



3.3 Ce(Pd1−xRhx)3 47

unphysical solution. A further uncertainty of both is that in fact WF-l is not
valid for Kondo-systems especially not for IV systems [30, 28, 27] and that
W-Eqn also does not take any magnetic or IV interactions into account.

3.2.4 Figure of merit

Finally the thermoelectric figure of merit ZT was calculated by applying
equation 1.77 to the measured values of S(T ), ρ(T ) and λ(T ). Whereupon
a second evaluation was done, using radiation corrected λ(T ) values. All
data are illustrated in Fig. 3.14 and it becomes evident that doping with
boron has no positive effect on the thermoelectric performance of CePd3 as
it was already anticipated from the Seebeck data. An improvement seems
only possible by keeping the thermopower on a high level which means in
this case to stay in the intermediate valence regime. Generally the figure of
merit of CePd3 exhibits a flat slope at lowest temperatures followed by an
upturn, which shifts to lower temperatures as the Rh content increases. For
the curve which is not corrected with respect to radiation losses, a maximum is
formed at about 170 K. The introduction of B lowers the amplitude of ZT and
shifts the maximum to lower temperatures. The corrected ZT -values increase
monotonously with a slightly reduced slope without reaching a maximum up
to room temperature. It has to be mentioned that there are several attempts
with various dopants. Most of the group 13 and 14 elements form a super-
structure of (CePd3)8M (M=Al, Ga, In, Si, Ge, Sn, Pb)[61] and a doping
with Ga even increases ZT [54].

3.3 Ce(Pd1−xRhx)3

To examine the effects of substitution on the Pd site by Rh two sample sets
where synthesized. In a first step the Rh concentration x was increased in
steps of 0.2 with additional samples of x = 0.1 and x = 0.9. As thermo-
electric interesting behavior was observed only for samples with x < 0.2
a second series with smaller Rh contents x = 0.00, 0.03, 0.06, 0.09, 0.15 was
prepared. The pure CePd3 sample was synthesized for the reason of com-
parability. In section 3.1 the differences between CePd(1)

3 and CePd(2)
3 have

already been discussed. The series shows a large discrepancy in the absolute
values of transport properties as well as in parts of their curvature. Neverthe-
less a comparison of the samples and conclusions regarding the thermoelectric
properties should be possible. By the substitution of Pd by Rh the Ce valence
shifts toward 4+ [6], which drastically affects the thermoelectric properties
of the compound. As mentioned earlier, the differences can not be figured
out by X-Ray diffraction data, from which all samples are single phased and
the lattice constants suit nicely together. One observes in Fig. 3.15 that the
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Figure 3.15: Lattice constant of Ce(Pd1−xRhx)3 in dependence of the Rh
concentration x. The solid lines are a guidance for the eye.

extracted lattice parameter is reduced with increasing Rh content, but it does
not follows Vergard’s law of linearity, but shows a kink at a concentration of
about x=0.2, which separates the line into two linear sections. This kink is a
signature for reaching the 4+ valency of the Ce ion [8]. For samples with con-
centrations x > 0.2 transport properties evidence simple metallic behavior.
ρ(T ) looses its Kondo-lattice peak and follows strictly a Bloch-Grüneisen law
(eqn. 1.14). S(T ) decreases to normal metallic values and λ(T ) also shows a
distinct change with concentrations higher than 0.2.

3.3.1 Electrical resistivity

The measured resistivity curves from 4.2 to 300 K for both sample sets as
well as the fit curves generated by the A.F-model are depicted in Fig. 3.16.
As the stoichiometry of the CePd3-basic material for the second sample set
(from now on marked CePd(2)

3 ) is not ideal, its resistivity is generally higher
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Figure 3.16: Temperature dependent resistivity ρ(T ) of Ce(Pd1−xRhx)3 for
various concentrations of Rh. The left panel shows data from the first sample
set. The right one displays the results of sample set #2. The solid lines are
fit curves according to the A.F-model.

than that of CePd(1)
3 and the temperature dependence is slightly changed.

The most evident difference is that for CePd(2)
3 ρ(290 K) < ρ(4.2 K), while

for CePd(1)
3 ρ(290 K) is about 3 times larger than ρ(4.2 K). Furthermore,

the maximum in ρ(T ) at 123 K for CePd(1)
3 is slightly shifted down to 105 K

for CePd(2)
3 . On the other hand, the resistivity data from the sample with

x = 0.09, belonging to the second series, suits nicely to the one with x = 0.1
of the first set. Thus it can be concluded that the general effect of substitution
can be attained using data from the second series. With lowest concentra-
tions of Rh the resistivity is effectively reduced, T ρ

max shifts to higher tem-
peratures, while the amplitude of the peak diminishes and the negative slope
of ρ(T ) above T ρ

max becomes flatter. At lower temperatures a new minimum
emerges and the resistivity increases with decreasing temperature. This neg-
ative slope at very low temperatures decreases with larger Rh content. The
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Figure 3.17: ρ(T ) measured at four constant magnetic fields on samples of
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logarithmic temperature scale.

sample with x = 0.09 exhibits a positive slope of ρ(T ) above T ρ
max and the for-

mer maximum forms only a weak shoulder. At Rh concentrations of x ≥ 0.2
the curvature of ρ(T ) is suppressed, but the behavior does yet not follow the
Bloch-Grüneisen-law. For concentrations x ≥ 0.4 this law is applicable, but
the slopes and residual resistances do not evolve according to the increasing
Rh content. The increase of T ρ

max, which should be proportional to the char-
acteristic temperature TK , was expected as the valence shifts toward 4+, but
by fitting with the A.F-model, decreasing characteristic temperatures T0 and
Tf are extracted. The characteristic temperatures and scaling parameters
achieved by the procedure are depicted in Fig. 3.20, where they are compared
to values extracted from thermopower data fitting.
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Magnetic field dependence of the electrical resistivity

The influence of an external magnetic field B up to 12 T on the resistivity
ρ(T ) down to 0.5 K was also measured for the first series. The effect, which
is rather small, is depicted in Fig. 3.17 for the samples with x=0, 0.1, 0.6 and
1. The electrical resistivity of CePd3 (left upper panel) is almost unaffected
by the magnetic field over the whole temperature range. The ρ(T )-curvature
of Ce(Pd0.9Rh0.1)3 (right upper panel) is reduced. T ρ

min keeps approximately
35 K and the value of ρmin increases; furthermore the resistivity decreases at
temperatures below 10 K with increasing magnetic field. From 4.2 to 300 K
the sample with x = 0.6 shows a simple metallic behavior, but below 2 K
some ordering takes place (lower left panel), which was not observed so far
for any other sample. The magnetic field has only small influence on the
ρ(T )-curvature of this sample. Pure CeRh3 also follows Bloch-Grüneisen-law
over the whole temperature range, but below 35 K the sample has a positive
magneto resistance (lower right panel), as it can be expected for a simple
metal.

Pressure dependence of the electrical resistivity

External pressure should reduce the elementary cell volume and therefore
drive the Ce valency toward the 4+ state, consequently the ρ(T ) behavior
under increasing pressure is estimated to resemble the performance with in-
creasing Rh content. Pressure dependent measurements are very elaborate
and often the experiment fails. Two samples with concentrations of x = 0.1
and x = 1 where measured successfully over the complete attainable pressure
range. The achieved data are displayed in Fig. 3.18 where one can see the
ρ(T ) behavior of CeRh3 in the left panel. The resistivity curves follow Bloch-
Grüneisen-law and by fitting ρ0(p) was extracted. The inset in the left panel
of Fig. 3.18 visualizes the linear decrease of ρ0 with increasing pressure. The
structure of ρ(T ) of Ce(Pd0.9Rh0.1)3 keeps unchanged with increasing pres-
sure, but ρmin at about 30 K and ρ0 are diminished relative to ρ(290 K)
(Fig. 3.18 right panel).

3.3.2 Thermopower

The thermopower data S(T ) are visualized in Fig. 3.19 and again the dif-
ference between the two production series is evident. The S(T )-values of the
second charge, which are depicted in the right panel, are lower, than that of
the first (left panel). Smax ≈ 106 µV/K of CePd(1)

3 at T S
max ≈ 135 K while

CePd(2)
3 has its maximum at approximately the same temperature but only

with Smax ≈ 92 µV/K. Most remarkable is the fact that with a substitu-
tion of x = 0.03 the Smax;(x=0.03) ≈ 112 µV/K, which is even higher than
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Figure 3.18: Pressure dependent ρ(T ) of Ce(Pd1−xRhx)3 for x = 0.1 and 1

the value of the pure CePd(1)
3 . Assuming that substitution has in percentage

the same enhancement on more stoichiometric samples Smax-values of about
125 µV/K would result. The shift of T S

max toward lower temperatures, as it
was measured for increasing Rh concentrations up to x = 0.06 is unexpected,
as it points to decreasing TK values, but also the analysis of the resistivity
data gives comparable results. Applying the A.F-model as well as the M.K-
model reveals slightly decreasing characteristic temperatures for increasing
Rh concentrations up to 0.09 followed by a steep increase for x = 0.15 as it
is depicted in Fig. 3.20. Due to this boost of the characteristic temperatures
the maximum in S(T ) shifts to about 620 K for x = 0.2. The inset of the left
panel of Fig. 3.20 maps the S(T )-behavior from 4 to 900 K of the three sam-
ples with lowest Rh concentration of the first series. One sees that for x=0.2,
T S

max is shifted to 600 K. The models show a good agreement of thermopower
and resistivity data. With higher Rh concentrations (x ≥ 0.4) the magnitude
of S(T ) becomes very small and negative over the whole measured temper-
ature range with many structures in the curvature. Further increasing the
Rh concentration enhances the S(T )-values and for CeRh3 the thermopower
becomes positive for T > 30 K.
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Second peak extension to A.F-model

The low temperature behavior of S(T ) is not well described by both, the
A.F-model and the M.K-model. In fact the data from low temperatures were
not used for the fit procedure. Examining the ascending curves of the ther-
mopower of the different Ce(Pd1−xRhx)3 samples (Fig. 3.19) one might guess
that the distinct shoulder of CePd(1)

3 and CePd(2)
3 is shifted to higher tem-

peratures and exhibits an enhanced amplitude with increasing Rh content.
It seems as there sits a second maximum in the proximity of the main one.
As there exist studies which propose two energy scales in CePd3 [62, 63], we
have tried to interpret the data as two superimposed peaks due to two char-
acteristic temperatures. Following the A.F-model, we introduced formulae as
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Figure 3.19: S(T ) of Ce(Pd1−xRhx)3 for various concentrations of Rh. The
left panel denotes the results for the first sample series. The inset displays
S(T ) of the three lowest Rh concentrations from 4 to 900 K. The right figure
shows the data for the second series. The dashed green lines are fit curves
based on the A.F-model.
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Figure 3.20: These three diagrams show the characteristic temperatures
and scaling parameters extracted by applying the M.K-model and the A.F-
model to thermopower and electrical resistivity data.

follows:

Wi(T ) = Tf,iexp(−Tf,i/T ) (3.2)

Sf (T ) = c1 ∗ T + c2,1 ∗
TT0,1

T 2
0,1 + W1(T )2

+ c2,2 ∗
TT0,2

T 2
0,2 + W2(T )2

(3.3)

In Fig. 3.21 the results of this attempt are displayed. It is evident that
one can fit the thermopower over the whole temperature region. The right
shoulder of S(T ) is not affected by this method and the left is reproduced
nicely. Inspecting the contributions of the three terms in Eqn. 3.3 to the
total thermopower of x = 0.0 and x = 0.06 one detects, that a negative
value of c1 is essential to compensate the increasing values of thermopower
due to the second and third term. The fit by the simple A.F-model generates
even more negative linear contributions. By comparing the fit-parameters
of both fit procedures as they are depicted in Fig. 3.22 one can learn, that
taking a second peak into account does not change the general behavior of the



3.3 Ce(Pd1−xRhx)3 55

S
 [µ

V
/K

]

0
20
40
60
80

100
120

measured data
double peak fit
linear term 
peak 1
peak 2
single peak fit
linear term
peak

T [K]
0 50 100 150 200 250 300

S
 [µ

V
/K

]

-100

0

100

200 x=0.06

x=0.0

Figure 3.21: The upper and lower diagram show the results of fitting sample
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Additionally the contributions due to the three terms of Eqn. 3.3 are depicted.

parameters describing the main peak and also the second peak parameters
tend to follow the dependence of the main peak with reduced amplitude.
It has to be emphasized again that also by interpreting the data using this
method leads to a diminishing characteristic temperature Tf with increasing
Rh content up to 6%, while T0 stays rather constant. We have also tried
to apply double peak fitting on the resistivity data but no improvement of
reproducibility was gained.

3.3.3 Thermal conductivity

The acquired data of the thermal conductivity does not show differences of
the sample sets due to dissimilar stoichiometry, as the curves of both series
match each other nicely. Therefore the data were put together in Fig. 3.23.
The left panel displays all curves as they were measured, while the right dia-
gram denotes the λph(T )-curves of samples with x ≤ 0.2 which were achieved
by applying WF-l. With increasing Rh content up to x = 0.1 the maximum
of λ(T ) at about 50 K is effectively suppressed, while the curvature beyond
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Figure 3.22: The four figures give a comparison of the evolution of fit-
parameters according to Eqn. 1.64 and Eqn. 3.3 with increasing Rh content.

10 K keeps more or less unchanged. Still, λmin, which is mapped in the right
panel of Fig. 3.23, is about three times smaller at room temperatures and
at T λ

max it lies even 60 times lower. Additional Rh substitution results in a
steep increase of λ(T ) and a general change of the behavior. For x > 0.2
the magnitude of the curves decreases again, but like for the electrical resis-
tivity a distinct tendency is missing. The data of the first series have been
treated using both fit-procedures, which are based on the WF-l and W-Eqn,
in addition to Callaway’s model. The second sample set has only been ana-
lyzed in terms of WF-l. The extracted scattering parameters were normalized
according to their value at x = 0 and are depicted in Fig. 3.24. The most ap-
parent feature seen in this figure is the high congruence of the data for point
defect scattering. The scattering rate due to this mechanism grows rapidly
with increasing Rh content up to about 10% and with more Rh substitution
this scattering contribution is reduced again. Also the boundary scattering
parameter is well reproduced for both series and the different models. The
oversized value for x = 0.03 may be a artificial compensation of the steep
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decay produced for the electron phonon scattering. Only by the fitting ac-
cording to WF-l such a decline of this scattering mechanism is produced.
However, the analysis in the scope of W-Eqn construes an shallow upward
trend. From this data a theory, that valence fluctuations should significantly
increase the electron-phonon scattering [31] can not be proven. Also for the
umklapp processes the two models exhibit a different development with in-
creasing Rh percentage. A possible explanation for this behavior may be that
in Wilson’s model this parameters have to compensate a misinterpretation of
the electronic contribution to the thermal conductivity. The smaller values
of the umklapp processes at 3 and 6% Rh content may be due to an oversized
interpretation of radiation losses for this samples, because in the left panel of
Fig. 3.23 one sees that the λtot(T )-curves fall together at high temperatures
but on the right panel the λph(T )-curves for x = 0.03 and 0.06 do not follow
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Figure 3.23: The left panel shows the measured data λtot(T ) of
Ce(Pd1−xRhx)3 in dependence of the Rh concentration x (not radiation loss
corrected). The right panel pictures λph(T ) curves generated by applying the
WF-l including a radiation loss correction. The solid line corresponds to the
calculated λmin for CePd3.
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the trend. Despite some trials with changing starting values, the fit-algorithm
always ended at this values. In Fig. 3.25 the dependence of θD to the Rh
concentration is marked. A general agreement can be found comparing the
two fit-models and also the data for the second sample set suits nicely into
the picture. The high θD-value for CePd3 is reproduced for all curves and a
general decrease is construed consistently.
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Figure 3.24: The four diagrams denote clockwise the scaling parameters of
electron-phonon, point defect and boundary scattering and umklapp processes
in dependence of the Rh concentration x. The green and black lines represent
data from the first and second sample set, respectively, fitted according to
WF-l. The red curves mark parameters of the first series on the bases of
W-Eqn.
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3.3.4 Figure of merit

For all samples the temperature dependence of the figure of merit ZT was
calculated according to Eqn. 1.77. First, the measured data were put into
the formula without radiation correction of λ(T ), then the corrected values
were also used. The results are drawn in Fig. 3.26, where it is evident,
that ZTmax of CePd(1)

3 (left panel) is about twice than that of CePd(2)
3 (right

figure). Generally the figure of merit exhibits a flat slope at lowest temper-
atures followed by an upturn, which shifts to lower temperatures as the Rh
content increases. For the curves which are not corrected to radiation losses,
a maximum is formed at about 170 K. The corrected ZT -values of most of
the samples increase monotonously with a slightly reduced slope until a max-
imum around 300 K is reached. Ce(Pd0.9Rh0.1)3, which belongs to the first
sample set, reaches ZTmax=0.255 at T=260 K. This maximum is the highest
measured ZT for the whole sample set. Focusing on the second sample set
one sees that for x ≥ 0.9, ZT (T ) increases steadily for rising Rh concentra-
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Figure 3.25: The green and black lines of this figure show the calculated values
of θD according to WF-l for the first and second sample set, respectively. The
red curves plots the parameters of the first series on the bases of W-Eqn.
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Figure 3.26: The left and the right diagram show the temperature dependence
of ZT for sample set one and two, respectively. The lines with loose points
denote the ZT taking a radiation correction of λ(T ) into account.

tion. For x=0.9 the room temperature value is almost doubled, but due to
the low initial value it is still lower then ZTmax. For the samples x=0.1 and
0.09 the electrical resistivity and the thermal conductivity were nearly the
same (compare Fig. 3.16 and Fig. 3.23, and only the absolute S(T ) values
were different, while in relation to their CePd3 base, the x=0.9 sample has
a slightly higher thermopower (see Fig. 3.19). Having this in mind one con-
cludes with caution that a substitution of Pd by Rh with x ≈ 0.09 has the
optimum effect on ZT .

3.4 Ce(Pd1−xRhx)3B0.05

Conducted by the results of the previous sections a sample-set of
Ce(Pd1−xRhx)3B0.05 was synthesized. It will be examined if it is possible to
compensate the loss of thermopower due to B doping by the substitution of
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Figure 3.27: The diagram depicts the lattice constants of the
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lines for Ce(Pd1−xRhx)3 and Ce(Pd1−xRhx)3B0.05 are nearly exact parallel
linear fits.

Pd by Rh without changing the low thermal conductivity. In other words the
shift of Ce valency toward 3+ as a result of the B insertion should be reversed
due to the Rh substitution. The series was synthesized using CePd(2)

3 as basic
material, thus the results are directly comparable to the results of the second
Ce(Pd1−xRhx)3 series. On the basis of the X-ray diffraction data the samples
are single phased and the lattice parameter shows a nearly linear decrease
with increasing x as it is mapped in Fig. 3.27. The value for x=0 equals
the value of CePd3B0.05 for the first sample set and the downward slope with
increasing x is nearly exactly parallel to the decrease of the Ce(Pd1−xRhx)3-
series. From this affinity it seems true, that the B doping acts really as an
negative offset of the Ce valency, which is again increased with increasing Rh
content.



62 Chapter 3: The CePd3 material system

3.4.1 Electrical resistivity

The measured ρ(T ) behavior of this sample set is displayed in Fig. 3.28 where
additionally the resistivity curves of CePd(1)

3 , CePd3B
(1)
0.05 and CePd(2)

3 are
mapped to enable comparison. As expected the electrical resistivity of the
plain CePd3B0.5 sample belonging to this sample set (CePd3B

(2)
0.05) is higher

than the corresponding sample of the CePd3By-series, but the relation be-
tween the resistivity curves of CePd3B

(1)
0.05 to CePd(1)

3 is equal to CePd3B
(2)
0.05

to CePd(2)
3 . With increasing substitution of Pd by Rh T ρ

max is shifted to lower
temperatures and ρmax is diminished in size. Normally this behavior can
be interpreted by a decreasing Kondo temperature as it has been observed
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Figure 3.28: This diagram shows the measured ρ(T ) of the
Ce(Pd1−xRhx)3B0.05-series. Additional the curves of CePd(1)
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in the Ce(Pd1−xRhx)3-series. With x=0.03 the room temperature resistivity
is increased about 20%, but a further enlargement of the Rh content leads
to decreasing ρ(T ) values over the complete measured temperature range.
Ce(Pd0.85Rh0.15)3B0.05 exhibits a resistivity curve which strongly resembles
Ce(Pd0.91Rh0.09)3 as can be seen in the inset of Fig. 3.28. This similarity in
ρ(T ) may originate from a comparable Ce valency, which is also confirmed
by the nearly equal lattice parameters of the samples. This would also cor-
roborate the idea that the Ce valency which is lowered by the B doping is
shifted back to higher values by the substitution with Rh. The slope of ρ(T )
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Figure 3.29: In the left panel the colored pointed lines show the S(T )-behavior
of the Ce(Pd1−xRhx)3B0.05-series. Additionally the fit curves generated with
the M.K-model model are denoted as colored dashed lines, while the blue
dashed curves represent fit-curves by the A.F-model. For comparison the data
for CePd(2)
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are depicted. The right panel denotes the S(T )-curves of the Ce(Pd1−xRhx)3-
series
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Figure 3.30: The left figure shows the effect of shifting the starting tem-
perature of the data used for fitting. The diagrams on the right show the
contributions of the single fit terms according to Eqn. 1.64 and Eqn. 3.3 .

with rising temperature decays logarithmically and can be fitted according to
Eqn.3.1 for samples with x ≤ 0.06, but the A.F-model is not applicable, as it
was not for the CePd3By-series.

3.4.2 Thermopower

In Fig. 3.29 it can be observed that the thermopower of Ce(Pd1−xRhx)3B0.05 is
enhanced over the whole temperature range with increasing Rh content up to
x = 0.09 as it was expected. The S(T ) of Ce(Pd0.85Rh0.15)3B0.05 is strongly
reduced in comparison to lower Rh concentrations, but it is larger than that
of the corresponding sample without B doping. It shows a steep increase at
low temperatures followed by a plateau from 120 K up to room temperature,
were it reaches a value comparable to the sample with x = 0.15 without
B doping (the resistivity of this sample resembled rather that of x=0.09).
At temperatures below about 150 K the S(T )-curves for x ≤ 0.09 are even
higher than that of the corresponding CePd(2)

3 , but up to room tempera-
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Figure 3.31: The diagrams show the development of the characteristic tem-
peratures Tf and T0 as well as the scaling parameter c1 and c2 the according
to the M.K-model and theA.F-model using single- and double peak fitting .

ture the pure sample has the highest thermopower. A general comparison
to the Ce(Pd1−xRhx)3-series shows, that Smax is successively increased with
increasing Rh content for Ce(Pd1−xRhx)3B0.05 and recovers the values of pure
CePd3 nearly for x=0.09, while in the Ce(Pd1−xRhx)3-series the thermopower
is increased with the lowest prepared Rh concentration to the absolute maxi-
mum and only decreases over the whole temperature range with increasing Rh
content and reaches the level of CePd3at a concentration of about x = 0.09.
It remains an open question if the real maximum in S(T ) occurs at x < 0.03
or between 0.03 < x < 0.06. The evolution of the S(T )-curves with increas-
ing Rh content of Ce(Pd1−xRhx)3B0.05 exhibits some peculiar features. With
10% Rh substitution the slope at T = 0 is nearly the same as for x = 0.00
and T S

max is shifted to higher temperatures. A further enhancement of Rh
increases the slope at T = 0 and T S

max is reduced while the width of the max-
imum is increased. One sees indications that the same double peak structure
as described in the section 3.3.2 is present in this sample series, too. The low
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Figure 3.32: The diagrams show the development of the characteristic tem-
peratures Tf and T0 as well as the scaling parameter c1 and c2 the according
to the M.K-model and theA.F-model using single- and double peak fitting .

temperature shoulder observed at CePd3 may still be present for the other
samples. It is not clearly evident from the data, but the shoulder seems to be
next to Smax creating nearly a double maximum. It looks as if the shoulder
shifts to higher temperatures with increasing Rh content up to x = 0.03 and
then again to lower T for x = 0.06 and 0.09, while the maximum due to
Kondo interaction monotonously shifts to higher temperatures with increas-
ing Rh concentration. This would be an interpretation for the widening of the
total maximum. First we have interpreted the data according to the simple
A.F-model and the M.K-model, for which the fit curves are depicted in Fig.
3.29. As in the former series the data at lowest temperature are not repro-
duced and for Rh concentrations of more than 3% the M.K-model gives only
poor fit-curves. To generate good fit curves the low temperature data had to
be skipped before the fit process. In some cases the achieved fit parameters
strongly depend on the temperature from which the data were used for fitting,
as it is visualized in the left panel of Fig. 3.30. The fit curves in Fig. 3.29
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Figure 3.33: The diagrams show the development of the characteristic tem-
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take into account the whole measured temperature interval and the extracted
fit parameter T0 (pictured in Fig. 3.31 shows the same tendency for both
models. TF decreases for concentrations up to 6% and stays then constant,
while T0 is rather unaffected at low Rh concentrations and increases distinctly
for x = 0.15. A second fit procedure was started following the description in
section 3.3.2. A comparison of the curves for x = 0.00 and x = 0.06 is denoted
in the right panels of Fig. 3.30. One sees that the curvature is reproduced
much better by the double peak structure, than by the single A.F-model.
Of course this is to expected if three more fit-parameter are used, but there
seems to be a real physical background. A comparison of the evolution of the
fit-parameters according to an increasing Rh content (see Fig. 3.31 evidences
that the introduction of a second peak generally decreases the linear term
and smoothes its dependence to x. Of course c2,1 is also generally smaller,
but the tendency with increasing Rh content is comparable to c2 as it is for
Tf and T0. The very low values of c2,2 at x = 0 and 0.03 damp the rather
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high T0,2 values at this concentrations. Looking at the development of the
peaks with enhanced Rh percentage pictured in Fig. 3.32 the assumption
made above, that the main maximum (peak 1) is shifted to higher temper-
atures successively, while peak 2 dominates the low temperature behavior
and for Rh concentrations higher than 3% peak 2 also shows higher values
then peak 1 at high temperatures. Finally we want to compare the behavior
of fit-parameters for the Ce(Pd1−xRhx)3- and Ce(Pd1−xRhx)3B0.05-series for
which the obvious difference in the development of the maximum in S(T ) is
also reflected in the evolution of the characteristic temperatures. For com-
parison the fit-parameters of both series are plotted in Fig. 3.33 and one
sees that the linear coefficient c1 has a comparable response to an enhance-
ment of Rh. For the Ce(Pd1−xRhx)3-series the ratio between c2,1 and c2,2 is
generally much larger than it is for Ce(Pd1−xRhx)3B0.05 that means that for
Ce(Pd1−xRhx)3 peak 1 is more dominant than for Ce(Pd1−xRhx)3B0.05. A
peculiar feature in the development of the different Tf,i with increasing Rh
content is that for Ce(Pd1−xRhx)3 the curvature of Tf,1 vs. x looks similar
to the curvature of Tf,2 vs. x of the Ce(Pd1−xRhx)3B0.05-samples. But the
development of Tf,2 of Ce(Pd1−xRhx)3 has a comparable structure as Tf,1 vs.
x of Ce(Pd1−xRhx)3B0.05. This peculiarity is not originated by the double
peak fitting because as described above the Tf,1-values strongly correlate to
the values of Tf generated by single A.F-model. In contrast to that the evo-
lution of T0,i is very similar for both sample series even with respect to the
absolute values. T0,1 and T0,2 are nearly constant and show comparable val-
ues for both series with increasing Rh percentage. Only for x = 0.15 of the
Ce(Pd1−xRhx)3-series both values are enhanced according to the change of
its S(T )-behavior.

3.4.3 Thermal conductivity

At low temperatures the thermal conductivity of CePd3B0.05 is somewhat in-
creased by the substitution of Pd by Rh but for T > 150 K all λtot(T )-curves
for 0.06 ≤ x < 0.15 fall together. The analysis according to WF-l shows, that
the decreasing electrical resistivity and therefore increasing λe(T ) compen-
sates the reduction of λph(T ). Only Ce(Pd0.97Rh0.03)3B0.05 exhibits a smaller
λtot at high temperatures due to the increased ρ(T ). The sample with x = 0.15
shows an enhanced λtot(T ) due to the high electronic contribution and an
increased peak in λph. In Fig. 3.35 a comparison of the λph(T )-curves, ac-
cording to WF-l, of the Ce(Pd1−xRhx)3- and the Ce(Pd1−xRhx)3B0.05-series
below 150 K is given. At x = 0 the low temperature peak in λph(T ) of
the B doped material is more than halved. But with Pd/Rh substitution
λmax for Ce(Pd1−xRhx)3 is decreased monotonically up to x = 0.09, while
for Ce(Pd1−xRhx)3B0.05 the peak increases by about 50% with x = 0.03 and
then is downsized again. At x = 0.09 λmax of Ce(Pd1−xRhx)3 is less then



3.4 Ce(Pd1−xRhx)3B0.05 69

40% higher than that of Ce(Pd1−xRhx)3B0.05. At temperatures around 150
K the differences are even smaller. In Fig. 3.36 the fit-parameters according
to WF-l are plotted for both sample sets. The parameters were normalized
to the values at x = 0 and show the development of the phonon scattering
mechanisms with increasing Rh content. It has to be kept in mind that the
doping with B enhances the point defect scattering of pure CePd3 about a
factor eight, decreases the boundary scattering and the scattering due to umk-
lapp processes and keeps the electron-phonon contribution constant (see Fig.
3.13). From the evolution of the scattering parameters and the Debye tem-
perature one can see that the increase of λph,max due to the Rh substitution
of 3% is a result of decreased point defect scattering accompanied by reduced
boundary and electron-phonon scattering. While the first and second of these
scattering contributions generally scale down with enhanced Rh content, the
point defect scattering is successively enhanced with increasing Rh content up
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Figure 3.34: The left diagram shows the measured λ(T )-behavior with addi-
tionally solid lines denoting radiation loss corrected λtot(T ) curves. By ap-
plying the WF-l and the Callaway model the λph(T )-curves of the left panel
were generated, here solid lines also present radiation corrected data.
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to 9% and the electron phonon term shows a drastic enhancement of a factor
of five for x = 0.06 and 0.09 and is finally decreased to a value of about 1.5
times the starting point. For θD the fit algorithm shows the tendency to run
to unphysical low values (about 150 K) so we limited the minimum to 200 K).
This minimum value was reached for all samples except for x = 0.03, where
a stable value of 226 K was found. This increased value may be a reason for
the break down of the fit-parameter of the electron phonon interaction.

3.4.4 Figure of merit

Finally the figure of merit was calculated according to Eqn. 1.77 using the
measured transport data. For λ(T ) the radiation loss corrected data were
employed also. The results are plotted in the left panel of Fig. 3.37, which
in the right diagram shows results for Ce(Pd1−xRhx)3 for comparison. In
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Figure 3.35: The left and right diagram contrast the λph(T )-curves (according
to WF-l) of the Ce(Pd1−xRhx)3- and the Ce(Pd1−xRhx)3B0.05-series, respec-
tively.
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Figure 3.36: Clockwise, the diagrams show the development of the fit-
parameters in terms of the WF-l according to point defect, boundary and elec-
tron phonon scattering and umklapp processes. The red curves are the behav-
ior of Ce(Pd1−xRhx)3B0.05and the green plots are related to Ce(Pd1−xRhx)3.
The solid lines are a guide to the eyes.

both series ZT is positively affected by small substitutions of Pd by Rh. For
x ≤ 0.09 the figure of merit is enhanced continuously, followed by a decrease
for x = 0.15. It seems that for Ce(Pd1−xRhx)3 the maximum ZT is reached in
the range of 9% Rh, but for Ce(Pd1−xRhx)3B0.05 the value at x = 0.15 is still
very high so we assume that the maximum will be between x = 0.09 and 0.15,
but looking at the single components of ZT this maximum will not outbalance
the value for Ce(Pd1−xRhx)3 by far, if at all. The improvement of ZT with
increasing Rh content in Ce(Pd1−xRhx)3B0.05 is mainly due to the enhanced
thermopower, because for x = 0.03 λ(T ) and ρ(T ) are even sized up. Contrary
to that in Ce(Pd1−xRhx)3 the thermopower is decreased for x > 0.03 but still
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Figure 3.37: The two figures display the dependence of ZT on the Rh concen-
tration in Ce(Pd1−xRhx)3B0.05 and Ce(Pd1−xRhx)3. The lines with sporadic
marks represent curves on the basis of radiation loss corrected λ(T ), while
the dense data lines denote values due to pure measured data.

ZT exhibits growing values particularly due to the steady diminishing of ρ(T ).
The changes of λ(T ) in dependence of the Rh concentration have only minor
effects on ZT for x ≤ 0.09 in both series. For x = 0.15 the extinct boost in
λ(T ) accompanied by the diminished S(T ) is responsibly for the draw back of
the figure of merit. It has to be concluded that B doping with simultaneous
Rh substitution on CePd3 shows no improvement of the thermoelectric figure
of merit compared to pure Rh substitution.

3.5 Ce(Pd0.94−xRhxAg0.06)3

As Ag has one electron more than Pd the substitution of Pd by Ag
shifts the Ce valency toward 3+ [6]. Based on the same idea as for the
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Ce(Pd1−xRhx)3B0.05-series it should be tested, if the simultaneous introduc-
tion of Ag and Rh can improve the thermoelectric performance. In literature
[11] a maximum solubility of about 40% has been found and it is assumed
that the integer valence 3+ is reached at 13% Ag substitution [64]. We have
synthesized a series of Ce(Pd0.94−xRhxAg0.06)3 with x=0, 0.03, 0.06 and 0.09
using newly synthesized CePd(3)

3 as starting material. In section 3.1 the prop-
erties of CePd(3)

3 were discussed already. From X-ray diffraction no secondary
phases were determined. By the substitution of 6% Pd by Ag the lattice
parameter is increased about twice that much as due to a doping with 5% B.
The introduction of Rh decreases the lattice parameter linearly, but the slope
seems to be steeper than for Ce(Pd1−xRhx)3 or Ce(Pd1−xRhx)3B0.05 as it can
be seen in Fig. 3.38. Thus we can conclude that the lowered Ce valency due
to the Ag-introduction is actually increased by the substitution of Pd by Rh.
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3.5.1 Electrical resistivity

The temperature dependent curvature of the electrical resistivity due to the
substitution of Pd by Ag is comparable to the behavior of B doped CePd3.
The broad maximum in ρ(T ) at about 110 K is shifted to a very pronounced
maximum at about 14 K reaching ρmax ≈ 530 µΩcm. But in contrast to the
CePd3By-series the effect is more drastic, which means that ρmax is higher
and T ρ

max is lower than for a comparable B concentration, but the curve of
Ce(Pd0.94Ag0.06)3 strongly resembles the one of CePd3B0.1, which also has
a similar lattice parameter and therefore probably the same Ce valence. A
comparison of the resistivity behavior of the different sample sets is plotted in
Fig. 3.39. One can see in the left upper panel that with increasing Rh content
in Ce(Pd0.94−xRhxAg0.06)3 the maximum is shifted to lower temperatures and
we just see its right flank within the measurement range of 4.2 to 300 K. The
attempt to fit the curvature of this series using the A.F-model failed as it did
at the Ce(Pd1−xRhx)3B0.05-series and the decay also does not follow a purely
logarithmic law like Eqn. 3.1 and therefore can not be interpreted as simple
Kondo system. The room temperature resistivity is steadily decreased with
enhanced Rh content in contrast to the Ce(Pd1−xRhx)3B0.05 series and the
development of the curvature with increasing x shows also large differences
between these sample sets.

3.5.2 Thermopower

The thermopower of CePd3 is reduced significantly due to the insertion of Ag
as it has been shown already by Sthioul et al. [11]. The data therein fit very
nicely to the measured curves of the samples measured in the scope of this the-
sis. In contrast to the ρ(T ) curves the thermopower data of Ce(Pd0.94Ag0.06)3

are more comparable to the sample with x = 0.5 of CePd3By than to the
one with 10% B content. An introduction of Rh enhances the thermopower
at room temperature, but T S

max and Smax are not affected as much as in
the sample sets (compare Fig. 3.41, which gives a comparison of the S(T )-
curves of all discussed sample-series). As the appearance of the S(T )-curves
of Ce(Pd0.94−xRhxAg0.06)3 Ce(Pd1−xRhx)3 and Ce(Pd1−xRhx)3B0.05 is rather
dissimilar, it is astonishing that by using the double peak A.F-model one
obtains fit parameters which suit the parameters for Ce(Pd1−xRhx)3 and
Ce(Pd1−xRhx)3B0.05. In Fig. 3.40 the evolution of the fit-parameter of the
three sample series derived by the double peak A.F-model are compared. The
parameters T0,1 and T0,2 of the three series are more or less in line with each
other and show a linear dependence on x for x ≤ 0.09. The parameters c2,1

and c2,2 of Ce(Pd0.94−xRhxAg0.06)3 and Ce(Pd1−xRhx)3B0.05 behave also very
similar. Tf,1 and Tf,2 in principle exhibit the same tendency, but the values
of the first are generally a little smaller for Ce(Pd0.94−xRhxAg0.06)3, while the
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Figure 3.39: The four panels show the temperature dependent resistivity of
the discussed sample series.
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latter have lower values for x ≤ 0.03 and enhanced values at higher Rh con-
centrations. Also misfitting has to be taken into account, because specially
on this sample-set the fit-algorithm tended to produce unphysical fits, which
didn’t even follow the curvature, but due to the consistency of the T0,1- and
T0,2-values we think that we have found a reasonable set of values describing
the thermopower of the different substitution and doping series.

3.5.3 Thermal conductivity

The low temperature maximum of λ(T ) of CePd3 is completely suppressed
by the substitution of 5% Pd by Ag, but above 150 K λtot(T ) of CePd(3)

3 even
is a little smaller than that of the Ag substituted derivate due to the higher
electrical resistivity which decreases λe(T ). The additional substitution of Rh
does not change the behavior effectively. λtot(T ) is decreased marginally due
to a small reduction of λph(T ) which is not completely compensated by the en-
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Figure 3.40: The diagrams show the development of characteristic tempera-
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hanced λe(T ). A comparison of the measured λtot(T )-curves for the discussed
sample-sets is plotted in Fig. 3.42. It can be seen, that the introduction
of 6% Ag has about the same effect as a 10% B doping, but the scattering
mechanisms seem to be completely different because the analysis resulted in
very disparate scattering parameters as can be seen in Fig. 3.43, which gives
a comparison of all evaluated fit-parameters of the four sample series in the
scope of the WF-l and the Callaway model taking into account the T 3-law for
radiation losses. The single cyan point marks the fit-parameters for CePd(3)

3

so that one can see that the substitution with Ag leads to an reduction of
the ph-el scattering, which is exactly the opposite as for B doping. The
suppression of the low temperature maximum is mainly due to the sharply
enhanced point defect scattering. While boundary scattering and umklapp
processes are effectively reduced in Ce(Pd0.94Ag0.06)3 the subsequent substi-
tution of Pd by Rh again increases this parameters as it is observed also in
the Ce(Pd1−xRhx)3B0.05-series. Also the ph-el-interaction is increased with
enhanced Rh content. The point defect scattering seems to grow further for
x = 0.03 and then shows a slight reduction for higher Rh contents.

3.5.4 Figure of merit

Finally the figure of merit was calculated and the results are plotted in the
upper right diagram of Fig. 3.44, which gives a comparison of the thermo-
electric figure of merit of all sample sets. The curves of dense points are
calculated by applying Eqn. 1.77 on the pristine measured data, while the
dotted lines are corrected with respect to radiation losses. According to the
decreased thermopower due to the substitution of Pd by Ag, ZT is dimin-
ished over the whole temperature range. At room temperature it is reduced
about 70%, taking into account the radiation loss corrected values. The intro-
duction Rh results in an enhancement of ZT and for x = 0.09 the measured
curve looks alike that of the CePd(3)

3 , but the radiation loss correction makes
the pure CePd3-sample still having the highest thermoelectric figure of merit
at room temperature. It can be concluded that the thermoelectric properties
can not be improved by this method. The best thermoelectric properties of
all samples has Ce(Pd0.9Rh0.1)3 of the first sample series, but the achieved
performance is far from being useful in technical applications.

3.6 Summary

Lattice-parameter and transport properties of five sample series based on
CePd3 have been measured and the achieved data have been presented and
analyzed in the previous chapters. Gambke et al. published several sample
sets in Ref. [8] where either Ce was substituted by Y, Sc and La or Pd was
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Figure 3.43: The diagrams show the derived scattering parameters accord-
ing to ph-el, point defect- and boundary scattering as well as to umklapp
processes for the four discussed sample sets

exchanged partially by Rh or Ag. They showed that the lattice parameters
of these substitution series don’t follow Vergard’s law, but the dependence
of the lattice constant to the grade of substitution is divided into two linear
parts. At a critical concentration, which is dependent on the substituent,
the slope of the function is changed unsteadily. It has been shown that the
regression lines for concentrations larger than the critical one meet in one
point at the y-axis. This value can be interpreted as lattice parameter for
virtual Ce4+Pd3 in the case of Y, Sc or Rh or Ce3+Pd3 for substituents like
Ag. For concentrations below criticality the regression lines join at the lattice
constant of CePd3. Thus it is assumed that the changing of slope is originated
by the intermediate valency of the Ce. We have plotted the lattice constants
of our samples in the same way as it was done in [8] and additionally included
the digitized regression-lines from therein in Fig. 3.45. Furthermore data for
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CePd3By by Dhar et al. [9] is mapped for comparison. The measured lattice
constants are in good agreement with the data from literature. Only the
curve of Ce(Pd0.94−xRhxAg0.06)3 exhibits a systematic positive offset off the
lattice parameter we can not explain yet, but a failure of Ag and Rh weighting
can be excluded because of the systematicness of the offset. We can estimate
νCe by constructing a parallel of the line toward the integer valency through
a data point of intermediate valence. The intercept of this straight line lies
between the Ce 3+ and 4+ state. We assume a continuous scaling of νCe

between the virtual integer valency points and thus the respective valency
can be assessed. The lattice-parameters and the estimated Ce valency as well
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Figure 3.45: This diagram shows the dependence of the lattice-parameter
on the grade of substitution or doping with Rh, Ag or B. The solid colored
lines are regression curves digitized from [8] pointing out the behavior of
Ce(Pd1−xRhx)3 and Ce(Pd1−yAgy)3 assuming saturated integer Ce-valence of
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concentrations of Ag or Rh the Ce has intermediate valence (green or dark
blue line).
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as the data of the maxima of the temperature difference are listed in table 3.1.
Additionally the parameters T0,1 and Tf,1 from the double peak A.F-model
are reported. We assessed 3.51 as a value for νCe for CePd3 which is in good
agreement with values from the literature (νCe = 3.45 [5], νCe = 3.5 [11]). We
searched for a relation between the representative values of the sample series
by plotting the different parameters in dependence of the lattice constant
a (see Fig. 3.47) and tested if the estimated Ce valency serves as a better
scaling parameter (see Fig. 3.48). The diagrams reveal some kind of scaling
of ρmax and T ρ

max with lattice parameter and Ce valence except the values of
the Ce(Pd1−xRhx)3B0.05 samples. Generally ρmax is enhanced, while T ρ

max is
diminished with increasing a. The thermopower maxima seem also to scale
with the lattice parameter. Only the T S

max-values of Ce(Pd0.94−xRhxAg0.06)3

are not in line, but here the maxima are very broad and the overlap of the
discussed double peak structure so that no definite assertion can be made.
With increasing lattice parameter T S

max is strongly reduced and the maximal
thermopower of S = 111 for all samples is reached for a = 4.121 Å at≈ 108 K.
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The evolution of the maxima in relation to νCe does not reveal such a
distinct scaling as it can be found with the development with a. On the
other hand T λ

tot,max seems to scale rather with νCe than with a. For a valence
smaller than 3.43 no local maximum is build, but λtot(T )steadily increases
with temperature. For higher valences the maximum is shifted to lower tem-
peratures. The λtot,max-value neither scales with a nor with νCe. The lowest
diagrams of Fig. 3.47 and 3.48 map the dependence of T0,1 and Tf,1 on a and
νCe, respectively, but no scaling can be evidenced.

Further investigations were made to find out if there are any interrelations
of the different T i

max or if these temperatures are correlated to their maximum
values. For the resistivity maxima, there certainly exist such a scaling as can
be seen in the right diagram of Fig. 3.46. With increasing T ρ

max the value
for ρmax is decreased. The left panel points out a relation between T ρ

max and
T S

max. It shows a proportionality, which was expected because both temper-
atures should be correlated with TK . The comparison of other values listed
in table 3.1 has not revealed more of such general relations. Specially the
λmax-values neither exhibit a relation to the lattice constant nor to the Ce
valence. We plotted the fit-parameters presented in Fig. 3.43 versus the
lattice parameter and the Ce-valency, to investigate if single scattering mech-
anisms can be related to a or νCe. The results can be found in Fig. 3.49 and
3.50. The data of phonon-electron scattering reveal no evidence for scaling,
actually the points are scattered over a large area seemingly without system-
atic. The plots of point defect scattering show data points, which are also
unaffected by the different x-coordinates. Due to the enhanced values of the
Ce(Pd0.94−xRhxAg0.06)3-series the antithetic development of the single series
is not apparent. The boundary scattering of the CePd3By-series has high
variability and the peak of the Ce(Pd1−xRhx)3-data is maybe oversized. The
rest of the boundary scattering data fits more or less together, but neither a
nor νCe seem to be a scaling parameter. However the umklapp processes show
a distinct dependence on the lattice parameter; they are generally diminished
with increasing a, but the curves of each series are somehow separated. By
plotting the same values versus νCe the curves coincide and reveal that the
umklapp processes are enhanced with increasing Ce-valence and build a local
peak for pure CePd3. For the sample of Ce(Pd1−xRhx)3B0.05 with x = 0.09
and a νCe ≈ 3.76 a second peak is build then the data-lines join and build a
plateau as νCe → 4. From this examinations we can say, that the Ce-valency
is a driving parameter for some important mechanism affecting electrical re-
sistivity, thermal conductivity and thermopower of the CePd3-derivatives.
Still there have to be other scaling parameters to explain the whole variety
of physical effects in this material system.
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Figure 3.47: The diagrams visualize the relation between the parameters
presented in table 3.1 and the lattice constants of the different sample series.
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Figure 3.48: The diagrams visualize the relation between the parameters
presented in table 3.1 and the estimated Ce valency of the different sample
series.
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Conclusion

The aim of this thesis was to investigate the effect of substitution and doping
on the thermoelectric properties of CePd3. Five sample series with Ag and
Rh as a substitute for Pd and B as dopant where prepared, namely CePd3By,
Ce(Pd1−xRhx)3, Ce(Pd1−xRhx)3B0.05 and Ce(Pd0.94−xRhxAg0.06)3. Using X-
ray diffraction the phase purity of the composites were checked and the lat-
tice parameters were evaluated. The thermoelectric properties were measured
and analyzed in the scope of theoretical and empirical models. Finally the
thermoelectric figure of merit has been calculated. The X-ray diffraction pat-
terns do not reveal any secondary phases and the achieved lattice parameters
are in good agreement to data in literature. However the transport proper-
ties of three different CePd3-productions show large deviations, because the
electronic structure of CePd3 is very sensitive to smallest changes in the sto-
ichiometry. From the lattice constants we estimated a Ce-valency νCe ≈ 3.51
which is in good agreement with literature. While a substitution of 20% of
Pd by Rh tunes νCe → 4, 13% of Ag shift Ce toward its 3+ state. The doping
with B also results in a 3+ state for more than 20% of filled elementary cells.
The shift of the intermediate valence state has enormous consequences on all
transport properties. In literature resistivity and thermopower data for the
first two series already exist and our data are in good agreement. By the in-
troduction of B or Ag the Kondo temperature is generally shifted downward
because νCe → 3 and as a consequence T ρ

max decreases while ρmax is enhanced.
Above the critical B concentration of about 25% the physics changes com-
pletely. The S(T )-values are effectively decreased over the whole temperature
range and additionally T S

max is steadily reduced. However, the substitution
with Rh causes an increase of TK , due to the shift of νCe → 4. Hence T ρ

max is
enhanced, accompanied by a reduction of ρmax. T S

max should be also increased,
but due to an overlap with a second maximum at lower temperatures the av-
erage T S

max sometimes is even reduced with increasing νCe. The Smax-value
of Ce(Pd1−xRhx)3 was increased by a substitution of 3% and decreased for
higher Rh concentration. In the Ce(Pd1−xRhx)3B0.05-series Smax is steadily
enhanced with increasing x. However, the Smax of Ce(Pd0.94−xRhxAg0.06)3

increases up to x = 0.06 and sinks for higher Rh concentrations.
It was demonstrated that the measured thermal conductivity data can

90
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be separated into its phonon and electronic contributions by applying
Wiedemann-Franz law or Wilson’s formula. While the first procedure has
to be favored, the second still achieves reasonable results and can be used if
no electrical resistivity data are at hand. The obtained λph(T )-curves were
analyzed according to Callaway’s model using common fit functions for the
relaxation times of umklapp-processes, point defect scattering, boundary scat-
tering and phonon electron scattering. While the latter two determine the
behavior of λph(T ) at lowest temperatures the first noted scatter mechanism
dominates the high temperature region. The maximum value is mainly af-
fected by the point defects. The umklapp processes are the only component
of the lattice thermal conductivity which seem to be governed by the valence
change. On the contrary phonon-electron scattering seems to be of minor
importance in these series of compounds. The thermoelectric figure of merit
has been calculated from the measured transport coefficients. The largest
enhancement of ZT was found for Ce(Pd0.91Rh0.09)3 to be about 70% com-
pared with pure CePd3 of the second Ce(Pd1−xRhx)3-series. However sample
Ce(Pd0.9Rh0.1)3 of the first sample set exhibits the highest ZT (≈ 0.23) at
room temperature. It has about 15% better performance than the corre-
sponding CePd3-material, nevertheless it is far from industrial applicability.



Appendix A

Fitting procedure

Within the scope of this thesis the experimentally obtained transport data
were interpreted using theoretical and empirical formulae as fit functions. In
this section a summary of the used formulas is given. Generally the fitting
was executed using TableCurve 2D v.5.01 within this program so called user
defined functions (*.udf) were programmed and the appropriate limits for the
fit-parameters were set. The program then searches for the best least square
fit within these limits. Of course the uncertainty rises with an increasing
count of fit-parameters especially if one parameter cancels the other and a
good mathematical fit does not always give a good physical description. Nev-
ertheless some good and physical reasonable results have been gained by this
method as it has been shown in the discussion of the experimental data.

A.1 Electrical resistivity ρ(T )

The electrical resistivity data ρ(T ) (in units of [µΩcm]) were fitted for tem-
peratures T � Tmax by using Eqn. 1.14 and Eqn. 3.1.

ρph =
cBG

ΘD

( T

ΘD

)5
∫ ΘD/T

0

x5dz

(ex − 1)(1− e−x)
(A.1)

ρf (T � Tmax) = ρ0 + ρph + c ∗ ln[T ] (A.2)

The first equation is the theoretical deduced Bloch-Grüneisen formula where
cBG denotes a material dependent constant, ΘD is the Debye temperature
and x = ~ω

kBT
. The second equation is an empirical fit formula according to the

Kondo impurity model Eqn. 1.32 with a scaling parameter c. Alternatively
formula 1.34 was used, which bases on a model by A. Freimuth. Using a
temperature dependent effective scattering width W (T ) he wrote:

W (T ) = Tfexp(−Tf/T ) (A.3)
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ρf (T ) = bJ2
sf

W (T )

T 2
0 + W (T )2

(A.4)

This formula can reproduce the maximum of ρ(T ) of CePd3, but not its behav-
ior at lowest temperatures. The parameter b follows from a comparison of the
Drude-formula leading to b = m∗kb/ne2~ with m∗ is the effective mass and n
is the charge carrier concentration. Jsf is interpreted as hybridization integral
taking the overlap of the sd- and the f -wavefunctions into account. W (T ) is a
temperature dependent effective scattering width W (T ) = Tfexp(−Tf/T ) at
the fluctuation temperature Tf which is proportional to TK . The temperature
T0 is interpreted as energy difference between the energy of the "f-band" ef

and the Fermi energy εf (kbT0 = (ef − εf )), where kb = 1.3807 ∗ 10−23 J/K is
the Boltzmann constant. These formulas were transformed into a user defined
functions as follows:

User defined function corresponding to Eqn. A.2
#F1=$^5/(EXP(-$)+EXP($)-2)
#F2=#D/X
Y=#A+#B*LN(X)+#E*#D*AI(1,0,#F2)/#F2^5

’integrand ρph

’θD devided by T
’ρ(T ) = ρ0 + c ∗ ln[T ] + ρph

User defined function corresponding to Eqn. A.4
#F1=#C*EXP(-#C/X)
Y=#A*#F1/(#B^2+#F1^2)

’W (T ) = Tfexp(−Tf/T )
’ρf (T ) = bJ2

sfW (T )/(T 2
0 + W (T )2)

A.2 Seebeck coefficient S(T )

As described in chapter 1.1.3 two empirical models where found in literature
to describe the thermopower of IV compounds. The first formula by M.
Koterlyn [42] has only two adjustable parameters T0 as defied above and Nf ,
denoting the orbital degeneracy. In this model T0 has only influence on the
position of Smax, while Nf determines the magnitude of it. So we introduced
a further scaling parameter k as a multiplication factor, because the orbital
degeneracy was fixed to NF = 2J + 1 = 6.

Sf (T ) = k
2π2kb

3|e|
∗ TT0

π2

3
T 2 + (1 + π2

N2
f
)T 2

0

. (A.5)

The second formula was presented by A. Freimuth [21] together with Eqn.
A.4 for the description of the ρ(T )-behavior.

Sf (T ) = c1 ∗ T + c2 ∗
TT0

T 2
0 + W (T )2

. (A.6)
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c1 and c2 are material constants and W (T ) and T0 are explained as for the
resistivity. In order to fit the double peak structure a formula was introduced
(Eqn. 3.3) in which the second term of Equ. A.6 was split and we used two
different fluctuation temperatures Tf,i and also two different T0,i. Thus the
used fit formula reads like:

Wi(T ) = Tf,iexp(−Tf,i/T ) (A.7)

Sf (T ) = c1 ∗ T + c2,1 ∗
TT0,1

T 2
0,1 + W1(T )2

+ c2,2 ∗
TT0,2

T 2
0,2 + W2(T )2

(A.8)

Here the user defined functions for the Seebeck fit procedure are presented:

User defined function corresponding to Eqn. A.5
#F1=#B*10^6*2*PI^2*...
...*1.38065E-23/3/1.60217E-19
#F2=PI^2/3
#F3=1+PI^2/6^2
Y=#F1*X*#A/(#F2*X^2+#F3*#A^2)

’scaling factor k ∗ 106 ∗ 2 ∗ π2 ∗ . . .
. . . ∗ kb/(3 ∗ |e|)
’π2/3
’1 + π2/Nf = 6
’Sf (T ) = #F1 ∗ T ∗ T0/ . . .
. . . /(#F2 ∗ T 2 + #F3 ∗ T 2

0 )

User defined function corresponding to Eqn. A.6
#F1=#D*EXP(-#D/X)
Y=#A*X+#B*X*#C/(#C^2+#F1^2)

’W (T ) = Tfexp(−Tf/T )
’Sf (T ) = c1 ∗T +c2 ∗T ∗T0/(T 2

0 +W (T )2)

User defined function corresponding to Eqn. A.8
#F1=#D*EXP(-#D/X)
#F1=#E*EXP(-#E/X)
Y=#A*X+#B*X*#C/(#C^2+#F1^2)+...
...+#F*X*#G/(#G^2+#F2^2)

’W1(T ) = Tf,1fexp(−Tf,1/T )
’W2(T ) = Tf,2fexp(−Tf,2/T )
’Sf (T ) = c1 ∗ T + c2,1 ∗ T ∗ T0,1/(T 2

0,1 +
W1(T )2) + c2,2 ∗ T ∗ T0,2/(T 2

0,2 + W2(T )2)

A.3 Thermal conductivity λ(T )

The fitting of thermal conductivity data is a very elaborate procedure. The
applied theories were introduced in the theoretical section 1.1.2 where the
Wiedemann-Franz law (WF-l, Eqn. 1.37) and Wilson’s equation (W-Eqn,
1.39) are presented to split the total thermal conductivity λtot into an electron
contribution λe and a phonon contribution λph. It is assumed that λtot =
λe + λph. Following WF-l one has to calculate λe(T ) according to

λe = L0σT. (A.9)

with L0 = π2

3

(
kB

e

)2
= 2.45 × 10−8 and then subtract the λe(T )-values from

the λtot(T )values. As one has different temperature scaling normally, spline
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values of λe(T ) according to temperature values of λtot(T ) have to be gen-
erated, which can be subtracted consequently. The obtained λph(T )-curves
were analyzed in terms of the formula according to a relaxation time approach
proposed by J. Callaway [23] (Eqn. 1.45).

λph =
kB

2π2νs

(kBT

~

)3[∫ ΘD/T

0

τc
x4ex

(ex − 1)2
dx] (A.10)

Because we neglect normal three-phonon interactions, the term I1/I2 of Eqn.
1.45 is dropped. The sound velocity νs is substituted by its equivalent ac-
cording to Debye theory (Eqn. 1.47) and τ−1

c is expressed according to
Matthiessen’s rule (Eqn. 1.8)

νs = ωD

(
6π2N

V

)− 1
3

(A.11)

τ−1
c = τ−1

U + τ−1
D + τ−1

B + τ−1
el−ph + τ−1

rattle (A.12)

τD, τB, τU , τel−ph and τrattle denote point defect scattering, boundary scat-
tering, Umklapp processes, scattering of phonons by electrons and scattering
by loose bound atoms, respectively. The explicit expressions of the inverse
relaxation times are given by:

τ−1
U = AT 3x2e−

θD
3T (A.13)

τ−1
D = Dx4T 4 (A.14)

τ−1
B = B (A.15)

τ−1
el−ph = CTx (A.16)

τ−1
rattle = Ef(x, T )g(x, T ) (A.17)

using

f(x, T ) =

(
kBθE

~

)2 (
1− Tx

θE

)2

e

(
θE
T
−x

)
(ex−1)(

e
θE
T − 1

)[
e

(
θE
T
−x

)
− 1

] (A.18)

g(x, T ) =

(
1 +

4ανs~
kBθE

)
ln

1 +

Tx
θE

(
1− Tx

θE

)
4ανs~
kBθE

− 4

[
Tx

θE

(
1− Tx

θE

)]
The factor before the integral of the Callaway term can be calculated as
follows.

kB

2π2νs

(kBT

~

)3

=
~

2π2

(
6π2N

V

) 1
3
(kB

~

)3 T 3

ΘD

= 4.6729 ∗ 10−2 ∗
(N

V

) 1
3 (A.19)
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For CePd3 the number of atoms per unit cell N is 4 and with a lattice pa-
rameter a of 0.4128 nm one gets a unit cell volume V of about 7.032∗10−29 m3

which leads to a ratio N/V = 5.69 ∗ 1028 m−3. Taking into account, that the
data has a dimension of [mW/cmK], while the described parameters are cal-
culated for [W/mK], one has to multiply the factor with 10. Finally the
coefficient of the Callaway term for CePd3 equals 1.7970 ∗ 109. Of course this
coefficient changes with the grade of doping and substitution, but the maxi-
mum deviations for CePd3B0.4 and CeRh3 are smaller than 3% and therefore
neglected. On the CePd3By-series we have studied if changing of this factor
by about one order of magnitude has an effect on the evolution of the other
fit parameters according increasing y. It can be assumed that the tendencies
are specified correctly with minor changes in detail as can be seen in Fig.
A.1, where the fit-parameters according to the W-Eqn and the WF-l using
K = 2.8526 ∗ 108 are compared to a fit-series using K = 1.7970 ∗ 109 and the
WF-l. It is evident that the differences between the interpretation according
to WF-l and W-Eqn are larger, than that between WF-l using two different
K-values. Only the boundary scattering parameter shows strong deviations.

User defined function corresponding to Eqn. A.10
K=4.6729e-2;
N=4;
V=7.032e-29;
F = 10*K*(N/V)^(1/3);
F1=#A*$^4*X^4;
F2=#B*$^2*X^3*EXP(-#E/(3*X));
F3=#C;
F4=#D*X*$;
F5=1/(F1+F2+F3+F4)
F9=($^4*EXP($)/(EXP($) - 1)^2)*F5
Y=(F*X^3*#E/X)*AI(9,0,(#E/X))+#F*X^3

’factor using Debye and Callaway
’atoms per unit cell
’unit cell volume
’dimension correction*K ∗ (N/V )^(1/3)
’point defect scattering
’umklapp processes
’boundary scattering
’electron phonon scattering
’τc = 1/(τ−1

D + τ−1
U + τ−1

B + τ−1
el−ph)

’integrand
’factor*T3/ΘD*Integral+radiation losses

For the six fit-parameters physical reasonable borders have to be found.
To do this the coefficients of the scattering times are set zero. Based on the
resistivity data we assumed 200 K for ΘD,min and also based on literature
data (ΘD < 350 K [60] ΘD,max was fixed at 400 K. The radiation loss coef-
ficient was found by experience in an interval of [5e-7,1e-5]. The maximum
of a scattering parameter was determined by setting all other scattering de-
pendent factors zero, the radiation losses to maximum and ΘD to 250 K.
Then the test-parameter was increased until the generated curve touches the
measured curve. This has to be the maximum value for the according scatter-
ing parameter, because further enhancement would lead to smaller thermal
conductivity values as that which were measured.

The model by Wilson describes the thermal resistivity of the electrons, by
two additive terms. The first term expresses the scattering of electrons on
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imperfections, follows the WF-l according to Eqn. 1.38 and can be written
as:

We,0 =
ρ0

L0T
(A.20)

We,ph caused by electron scattering on phonons can be deduced similarly to
the Bloch-Grüneisen equation 1.14 and is known as Wilson equation.

We,ph =
4R

L0T

(
T

θD

)5
{[

1 +
3

π2

(
kF

qD

)2(
θD

T

)2
]

J5(θD/T )− 1

2π2
J7(θD/T )

}
(A.21)

R is a material dependent constant, kF is the wave vector at the Fermi energy
and qD is defined by the dispersion relation qD = ωD

νs
with the Debye frequency
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Figure A.1: Comparison of the generated fit-parameters according to the
W-Eqn and the WF-l using two different scaling constants K
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ωD. The formulae for We,0 and We,ph according to W-Eqn and λph derived
by Callaway can be combined into one general fit-function including eight
fit-parameters.

User defined function corresponding to Wilson’s model
F1=#A/X;
F2=#B/X;
F3=#C/X;
F4=$^5/(EXP(-$)+EXP($)-2);
F5=$^7/(EXP(-$)+EXP($)-2);
F6=F3*F1^-5*((1+(3*F1^2/(4*PI^2)))*...
...*AI(4,0,F1)-AI(5,0,F1)/(2*PI^2));
F7=F2+F6;
K=1797025870;
F8=#D*$^4*X^4+#E*$^2*X^3*...
...*EXP(-#A/(3*X))+#F+#G*X*$;
F9=$^4*EXP($)/(EXP($)-1)^2/F8
Y=(K*X^3/#A)*AI(9,0,F1)+1/F7+#H*X^3

’ΘD/T
’We,0 = α/T
’4R/(L0.T )
’J5
’J7
’We,ph

’We,tot

’Callaway factor
’τ−1

c = (τ−1
D + τ−1

U + τ−1
B + τ−1

el−ph)

’integrand Callaway
’λtot = faktor ∗ (T 3/θD) ∗
integral + λe+radiation losses



Bibliography

[1] Seebeck, T. J. In Abhandlungen der Königlichen Akademie der Wis-
senschaften zu Berlin, 289. (1821).

[2] Peltier, J. Ann. Chim 89, 371 (1834).

[3] Besnus, M., Kappler, J., and Meyer, A. J. Phys. F: Met. Phys. 13,
597–606 (1983).

[4] Gambino, R., Grobman, W., and Toxen, A. Appl. Phys. Lett. 22(10),
506–507 (1973).

[5] Harris, I. R., Norman, M., and Gardner, W. E. Journal of the Less
Common Metals 29(3), 299–309 (1972).

[6] Mihalisin, T., Scoboria, P., and Ward, J. A. Phys. Rev. Lett. 46(13),
862–865 Mar (1981).

[7] Culverhouse, S. R., Rainford, B. D., and Paul, D. M. Journal of Mag-
netism and Magnetic Materials 108(1-3), 121–122 (1992).

[8] Gambke, T., Elschner, B., Schaafhausen, J., and Schaffer, H. In Va-
lence Fluctuations in Solids, Falicov, L., editor, 447–450. North Holland,
(1981).

[9] Dhar, S., Malik, S., and Vijayaraghavan, R. Phys. Rev. B 24(10), 6182–
6184 Nov (1981).

[10] Gordon, R. A., Jones, C., Alexander, M., and DiSalvo, F. J. Physica B:
Condensed Matter 225(1-2), 23–32 (1996).

[11] Sthioul, H., Jaccard, D., and Sierro, J. In Valence Instabilities,
P.Wachter and H.Boppart, editors, 443–445. North Holland, (1982).

[12] Houshiar, M., Adroja, D. T., and Rainford, B. D. Physica B 223-224,
268–270 (1996).

99



100

[13] Grimvall, G. The Electron-Phonon Interaction in Metals, volume XVI
of Series of Monographs on Selected Topics in the Solid State Physics.
North Holland, (1981).

[14] Grüneisen, E. Ann. Physik 16, 530 (1933).

[15] Landau, L. and Pomeranchuk, I. Phys. Z. Sowjet. 10, 649–59 (1936).

[16] Zhao, J., Bass, J., Jr., W. P., and Schroeder, P. J. Phys. F: Met. Phys.
16, L271–L274 (1986).

[17] Bauer, E., Hilscher, G., Michor, H., Paul, C., Scheidt, E. W., Gribanov,
A., Seropegin, Y., Noël, H., Sigrist, M., and Rogl, P. Phys. Rev. Lett.
92(2), 027003 Jan (2004).

[18] Stevens, K. Proc. Phys. Soc. A 65, 209 (1952).

[19] Jensen, J. and Mackintosh, A. Rare earth magnetism. Clarendon Pr.,
Oxford, (1911).

[20] Kondo, J. Progr. Theor. Physics 32, 37 (1964).

[21] Freimuth, A. J. Magn. Magn. Mater. 68, 28 (1987).

[22] Wilson, A. H. Proc. Cambridge Phil. Soc. 33, 371 (1937).

[23] Callaway, J. Phys.Rev. 113, 1046 (1959).

[24] Klemens, P. Proc. Roy. Soc. A 208, 108 (1951).

[25] Holland, M. G. Phys. Rev. 132(6), 2461–2471 Dec (1963).

[26] Slack, G. A. and Galginaitis, S. Phys. Rev. 133(1A), A253–A268 Jan
(1964).

[27] Ziman, J. M. Electrons and phonons : the theory of transport phenom-
ena in solids, volume XIV of The international series of monographs on
physics. Clarendon Pr., Oxford, (1960).

[28] Berman, R. Thermal conduction in solids, volume XI of Oxford studies
in physics. Clarendon Pr., Oxford, (1958).

[29] Parrott, J. and Stuckes, A. Thermal Conductivity of Solids. Pion Lim-
ited, London, (1975).

[30] Smirnov, I., Oskotskii, V., and Parfenev, L. Journal of the Less Common
Metals 111(1-2), 353–357 (1985).



101

[31] Kitagawa, J., Sasakawa, T., Suemitsu, T., Echizen, Y., and Takabatake,
T. Phys. Rev. B 66(22), 224304 Dec (2002).

[32] Aoki, Y., Chernikov, M. A., Ott, H. R., Sugawara, H., and Sato, H.
Phys. Rev. B 62(1), 87–90 Jul (2000).

[33] Yang, J. Thermal conductivity, chapter 1.1 Theory of Thermal Conduc-
tivity. Springer (2004).

[34] Ziman, J. M. Phil. Mag. 1, 191–198 (1956).

[35] Ziman, J. M. Phil. Mag. 2, 292 (1957).

[36] Griffin, A. and Carruthers, P. Phys.Rev. 131, 1976–1992 (1963).

[37] Pippard, A. Phil. Mag. 46, 1104–1114 (1955).

[38] Einstein, A. Ann. Phys. (Leipzig) 35, 679 (1911).

[39] Cahill, D. and Pohl, R. Solid State Communications 70(10), 927–930
(1989).

[40] Wagner, M. Phys.Rev. 131(4), 1443–1455 (1963).

[41] Walker, C. and Pohl, R. Phys.Rev. 131(4), 1433–1442 (1963).

[42] Koterlyn, M., Babych, O., and Koterlyn, G. Journal of Alloys and Com-
pounds 325(1-2), 6–11 (2001).

[43] Nolas, G., Sharp, J., and Goldsmid, H. Thermoelectrics - Basic Princi-
ples and New Materials Developments. Springer-Verlag, Berlin Heidel-
berg, (2001).

[44] Bhandari, C. and Rowe, D. CRC Handbook of Thermoelectrics. CRC
Press, (1995).

[45] Roisnel, T. Materials-Science-Forum 118, 378–381 (2001).

[46] Giannò, K., Sologubenko, A. V., Chernikov, M. A., Ott, H. R., Fisher,
I. R., and Canfield, P. C. Phys. Rev. B 62(1), 292–300 Jul (2000).

[47] Tritt, T. Semiconductors and Semimetals. Academic Press, (2001).
Chap.2 p.25.

[48] Scoboria, P., Crow, J. E., and Mihalisin, T. J. of Appl. Phys. 50(B3),
1895–1897 (1979).

[49] Proctor, K., Jones, C., and DiSalvo, F. Journ. of Phys. and Chem. of
Solids 60(5), 663–671 (1999).



102

[50] Kappler, J.-P., Herr, A., Schmerber, G., Derory, A., Parlebas, J.-C.,
N. Jaouen, F. W., and Rogalev, A. Eur. Phys. J. B 37, 163–167 (2003).

[51] Schneider, H. and Wohlleben, D. Zeitschrift-fur-Physik-B-Condensed-
Matter 44(3), 193–202 (1981).

[52] Kanai, K., Y.Tezuka, Terashima, T., Muro, Y., Ishikawa, M., Uozumi,
T., A. Kotani, G. S., Kappler, J., Parlebas, J., and S.Shin. Phys. Rev.
B 60(8), 5244–5250 Aug (1999).

[53] Maekawa, S., Kashiba, S., and Tachiki, M. J. Phys. Soc. Jap. 55, 3194
(1986).

[54] D. Kaczorowski, K. G. Poster presented at "IICAM Workshop on Cor-
related Thermoelectricity" (http://hvar05.ifs.hr/), Sept. (2001).

[55] Srinivasan, M., Vaidya, S., Dhar, S., and Malik, S. High Temperature -
High Pressure 20, 525 (1988).

[56] Sereni, J., Nieva, G., Kappler, J., Besnus, M., and Meyer, A. J. Phys.
F: Met. Phys. 16, 435–448 (1986).

[57] Yubuta, K., Nomura, A., Nakajima, K., and Shishido, T. J. Alloys
Comp. 426, 308–311 (2006).

[58] Dhar, S., Gschneidner, K., Bredl, C., and Steglich, F. Phys. Rev. B
39(4), 2439–2441 Feb (1989).

[59] Callaway, J. and von Baeyer, H. Phys.Rev. 120, 1149 (1960).

[60] Loong, C.-K., Zarestky, J., Stassis, C., McMasters, O., and Nicklow, R.
Phys. Rev. B 38(11), 7365–7369 Oct (1988).

[61] Jones, C., Gordon, R., Cho, B., DiSalvo, F., Kimb, J. S., and Stewart,
G. R. Physica B: Condensed Matter 262(3-4), 284–295 (1999).

[62] Lawrence, J., Thompson, J., and Chen, Y. Phys. Rev. Lett. 54(23),
2537–2540 Jun (1985).

[63] Shapiro, S., Stassis, C., and Aeppli, G. Phys. Rev. Lett. 62(1), 94–97
Jan (1989).

[64] Mihalisin, T., Scoboria, P., and Ward, J. A. In Valence Fluctuations in
Solids, Falicov, L., editor, 61–65. North Holland, (1981).



List of publications

1. H. Fillunger, M. Foitl, K. Hense, I. Kajgana, A. Kasztler, H. Kirch-
mayr, R. Lackner, J. Leoni, R. Maix, M. Müller. IEEE Transactions on
Applied Superconductivity 12(1), 1049-1051 (2002).

"Optimized Heat Treatment of Internal Tin Nb3Sn Strands"

2. H. Fillunger, M. Foitl, K. Hense, I. Kajgana, A. Kasztler, H. Kirchmayr,
R. Lackner, J. Leoni, R. Maix, T. Matthias, J. Fidler. Physica C 372-
376, 1758-1761 (2002).

"Influence of the annealing time of internal tin Nb3Sn strands on the
critical current and the magnetization losses"

3. K. Hense, H. Fillunger, I. Kajgana, H. Kirchmayr, R. Lackner, R. Maix,
M. Müller. Fusion Engineering and Design 66-68, 1103-1107 (2003).

"Optimisation of the reaction heat treatment cycle of internal tin and
bronze Nb3Sn strands for ITER"

4. K. Hense, H. Kirchmayr, P. Kovac. R. Lackner, M. Müller, W. Pachla,
J. Pitel, M. Polak, P. Usak. Physica C 392-396(2), 1007-1010 (2003).

"Preparation and characterization of Bi-2223 tapes"

5. K. Hense, M. Müller, R. Lackner, H. Kirchmayr, R. Maix, H. Fillunger.
Physica C 401(1-4), 214-217 (2004).

"Scaling behaviour for the exponents of U-I-, U-B- and U-T-
measurements"

6. M. Müller, K. Hense, H. Kirchmayr, R. Lackner Applied Supercon-
ductivity 2003, Proceedings of the 6th EUCAS, Sorrento, Italy 14-18.
Sept. 2003 Institute of Physics Conference Series Number 181, 2284-
2289 (2004).

"A model for the prediction of the exponents of U-I and U-T-
characteristics of multifilamentary Nb3Sn-strands"

103



104 List of publications

7. R. Lackner, K. Hense, H. Kirchmayr, J. Leoni,.M. Müller, L. Jansak, M.
Polak Applied Superconductivity 2003, Proceedings of the 6th EUCAS,
Sorrento, Italy 14-18. Sept. 2003 Institute of Physics Conference Series
Number 181, 2379-2385 (2004).

"Effect of filament arrangement on the transversal resistivity of Bi-2223
tapes"

8. K. Hense, M. Müller, H. Schulz Applied Superconductivity 2003, Pro-
ceedings of the 6th EUCAS, Sorrento, Italy 14-18. Sept. 2003 Institute
of Physics Conference Series Number 181, 2330-2334 (2004).

"Comparison between Nb3Sn single strands and triplets"

9. R. Lackner, E. Bauer, P. Rogl Proceedings of the 2nd European Con-
ference on Thermoelectrics, Cracow, (2004).

"Reducing lattice thermal conductivity by valence fluctuations: an ex-
perimental study on Ce(Pd1−xRhx)3"

10. D. Berardan, E. Alleno, C. Godart, M. Puyet, B. Lenoir, R. Lackner, E.
Bauer, L. Girard, D. Ravot. Journal of Applied Physics 98(3), 33710-
1-6 (2005).

"Improved thermoelectric properties in double-filled
Cey/2Yby/2Fe4−x(Co/Ni)xSb12-skutterudites"

11. E. Bauer, R. Lackner, G. Hilscher, H. Michor, M. Sieberer, A. Eichler,
A. Gribanov, Y. Seropegin, P. Rogl. Journal of Physics: Condensed
Matter 17(12), 1877-1888 (2005).

"REPt3Si (RE=La, Pr, Nd, Sm and Gd): isotypes of the heavy fermion
superconductor CePt3Si"

12. R. Lackner, M. Sieberer, H. Michor, G. Hilscher, E. Bauer, P. Sala-
makha, O. Sologub, K. Hiebl. Journal of Physics: Condensed Matter
17(11), 905-910 (2005).

"Low temperature properties of the ternary compounds CePt2B and
CePt3B"

13. R. Lackner, E. Bauer, P. Rogl Proceedings of the 3rd European Con-
ference on Thermoelectrics, Nancy, (2005).

"Transport properties of Ce(Pd1−xRhx)3 in a wide temperature range"

14. M. Nicklas, G. Sparn, R. Lackner, E. Bauer, F. Steglich Physica B
359-361, 386-8 (2005).

"Effect of hydrostatic pressure on the ambient pressure superconductor
CePt3Si"



List of publications 105

15. A. Gribanov, A. Tursina, E. Murashova, Yu. Seropegin, E. Bauer, H.
Kaldarar, R. Lackner, H. Michor, E. Royanian, M. Reissner, P. Rogl
Journal of Physics: Condensed Matter 18, 9593-9602 (2006).
"New orthorhombic modification of equiatomic CePdAl"

16. E. Bauer, I. Bonalde, A. Eichler, G. Hilscher, Y. Kitaoka, R. Lackner,
St. Laumann, H. Michor, M. Nicklas, P. Rogl, E. Scheidt, M. Sigrist,
M. Yogi in: "LOW TEMPERATURE PHYSICS: 24th International
Conference on Low Temperature Physics; LT24", AIP Conference Pro-
ceedings 850, 695-702 (2006).
"CePt3Si: Heavy Fermion Superconductivity and Magnetic Order with-
out Inversion Symmetry"

17. E. Alleno, D. Berardan, C. Godart, M. Puyet, B. Lenoir, R. Lackner,
E. Bauer, L. Girard, D. Ravot Physica B 383(1), 103-106 (2006).
"Double filling in skutterudites: A promising path to improved thermo-
electric properties"

18. E. Bauer, St. Laumann, R. Lackner. H. Michor, G. Hilscher Physica B
378-380, 386-387 (2006).
"Crystal electric field effects in Ce1−xLaxPt3Si"

19. R. Lackner, E. Bauer, P. Rogl Physica B 378-380, 835-836 (2006).
"Study of the thermoelectric properties of CePd3Bx"

20. M. Giovannini, E. Bauer, G. Hilscher, R. Lackner, H. Michor, A. Sac-
cone Physica B 378-380, 831-2 (2006).
"Structure and Kondo properties of the novel compound CeCu2Mg"

21. E. Bauer, R. Lackner, G. Hilscher, H. Michor, E.W. Scheidt, W. Scherer,
P. Rogl, A. Gribanov, A. Tursina, Y. Seropegin, G. Giester Phys.Rev.B
73(10), 104405-1-7 (2006).
"Crystal chemistry and low-temperature properties of Yb18Pt51.1Si15.1

(approximately=YbPt3Si)"

22. St. Laumann, H. Kaldarar, R. Lackner, E. Bauer Contributed in
Fukuoka Aug. 2006, IN PRESS
"Pressure-, field- and substitution studies on heavy fermion supercon-
ductor CePt3Si"

23. H. Michor, R. Lackner, H. Kaldarar, L. Fornasari, E. Bauer, G. Hilscher,
U, Schwarz, H. Rosner Contributed in Fukuoka Aug. 2006, IN PRESS
"Pressure effects upon the itinerant magnetism in RCo9Si4"



List of conference contributions

• 5th European Conference on Applied Superconductivity
(EUCAS’01), Kopenhagen, Denmark; 25-30 August 2001

Poster: "Optimized Heat Treatment of Internal Tin Nb3Sn Strands"

H. Fillunger, M. Foitl, K. Hense, I. Kajgana, A. Kasztler, H. Kirchmayr,
R. Lackner, J. Leoni, R. Maix, M. Müller

• OST Project meeting (GZ45.481/2-VII/B/8a/2000) , Warsaw,
Poland; 6-7 June 2002

Talk: "Measurement possibilities and future investigations on
Bi2223/Ag multifilament tapes"

R. Lackner, H. Kirchmayr

• US-Japan Workshop on Superconducting Magnet Technology,
MIT Plasma Fusion Centre, Cambridge, USA; 12-15 August
2002

Talk: "Optimisation of the Reaction Heat Treatment Cycle of Nb3Sn
Strands for ITER"

R. Maix, K. Hense, H. Fillunger, I. Kajgana, H. Kirchmayr, R. Lackner,
M. Müller

• SOFT 2002, Helsinki; 9-13 September 2002

Poster: "Optimisation of the Reaction Heat Treatment cycle of Internal
Tin and Bronze Nb3Sn Strands for ITER"

K. Hense, H. Fillunger, I. Kajgana, H. Kirchmayr, R. Lackner, R. Maix,
M. Müller

• ISS 2002, Yokohama, Japan; 11-13 November 2002

Poster: "Preparation and Characterization of Bi-2223 tapes"

K. Hense, H. Kirchmayr, P. Kovàc, R. Lackner, M. Müller, W. Pachla,
J. Pitel, M. Polák, P. Uask

106



List of conference contributions 107

• Topical Conference on the Voltage-Current Relation in Techni-
cal Superconductors (ICMC’03), Enschede, Netherlands; 25-
28 May 2003

Talk: "Scaling behaviour for the exponents of U-I-, U-B- and U-T-
measurements"

K. Hense, M. Müller, R. Lackner, H. Kirchmayr, R. Maix, H. Fillunger

• 6th European Conference on Applied Superconductivity
(EUCAS’03), Sept. 14th to 18th 2003, Naples, Italy,

Poster: "A model for the prediction of the exponents of U-I and U-T-
characteristics of multifilamentary Nb3Sn-strands"

M. Müller, K. Hense, H. Kirchmayr, R. Lackner

Poster: "Effect of filament arrangement on the transversal resistivity of
Bi-2223 tapes"

R. Lackner, K. Hense, H. Kirchmayr, J. Leoni,.M. Müller, L. Jansak,
M. Polak

Poster: "Comparison between Nb3Sn single strands and triplets"

K. Hense, M. Müller, H. Schulz

• 19th Workshop on Novel Materials and Superconductors, Plan-
neralm, Austria; 22-28 February 2004

Poster: "Effect of Ge and B doping on the superconductivity in CePt3Si"

E. Bauer, A. Buchsbaum, G. Hilscher, R. Lackner, H. Michor, C. Paul,
E. Scheidt, A. Gribanov, Yu. Seropegin, H. Noel, M. Sigrist, P. Rogl

Poster: "A Model for the Prediction of the Exponents of U-I- and U-T-
Characteristics of Multifilamentary Nb3Sn Strand"

M. Müller, K. Hense, H. Kirchmayr, R. Lackner, H. Schulz

Poster: "The effect of doping upon superconductivity in La3Ni2B2N3"

M. Sieberer, H. Michor, M. Della Mea, P. Hehenberger, C. Hofstätter,
R. Lackner, E. Bauer, G. Hilscher, A. Grytsiv, P. Rogl

• 20th General Conference of the Condensed Matter Division,
European Physical Society, Prag, Czech Republic; 19-23 July
2004

Poster: "Magnetic properties of RPt3Si"

H. Michor, E. Bauer, G. Hilscher, C. Hofstätter, R. Lackner, M.
Sieberer, A. Gribanov, Yu. Seropegin, P. Rogl



108 List of conference contributions

• 2nd International Symposium on Physics of Solids Under High
Pressure Using Nuclear Probes, HPNP 04, Cologne, Germany;
20-24 July 2004

Invited talk: "Ground state behaviour of Yb2Pd2(In,Sn): Possibility of
two quantum critical points"

E. Bauer, G. Hilscher, R. Lackner, H. Michor, C. Paul, Y. Aoki, H.
Sato, D.T. Adroja, J.-G. Park, P. Bonville, C. Godart, M. Giovannini,
A. Saccone

Poster: "Low temperature properties of ternary CePt3B and CePt2B"

R. Lackner, M. Sieberer, E. Bauer, G. Hilscher, H. Michor, O.L. So-
logub, K. Hiebl

• International Conference on Strongly Correlated Electron Sys-
tems (SCES’04), Karlsruhe, Germany; 26-30 July 2004

Poster: Effect of hydrostatic pressure on the ambient pressure supercon-
ductor CePt3Si

M. Nicklas, G. Sparn, R. Lackner, E. Bauer, F. Steglich

• 2nd European Conference on Thermoelectrics, Krakow,
Poland; 15-17 Sept. 2004

Talk: "Improved thermoelectric properties in the double filled skutteru-
dites (Ce-Yb)y(Fe-Co-Ni)4Sb12"

D. Berardan, E. Alleno, O. Rouleau, C. Godart, M. Puyet, B. Lenoir,
H. Scherrer, L. Girard, D. Ravot, R. Lackner, E. Bauer

Poster: Reducing lattice thermal conductivity by valence fluctuations:
an experimental study on Ce(Pd1−xRhx)3

R. Lackner, E. Bauer, P. Rogl

• 3rd European Conference on Thermoelectrics (ECT’05),
Nancy, France; 31 September - 1 October 2005

Poster: "Transport properties of Ce(Pd1−xRhx)3 in a wide temperature
range"

R. Lackner, E. Bauer, P. Rogl

• 20th Workshop on Novel Materials and Superconductors, Plan-
neralm, Austria; 12-19 February 2005

Poster: "Reducing lattice thermal conductivity by valence fluctuations:
an experimental study on Ce(Pd1−xRhx)3"

R. Lackner, E. Bauer, P. Rogl
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• International Conference on Strongly Correlated Electron Sys-
tems (SCES’05), Vienna, Austria; 26-30 July 2005

Poster: "Study of the Thermoelectric Properties of CePd3Bx"

R. Lackner, E. Bauer, P. Rogl

• IICAM Workshop on Correlated Thermoelectricity, Hvar,
Croatia; 25-30 September 2005

Poster: "Driving thermoelectricity by doping in CePd3"

R. Lackner, E. Bauer, P. Rogl

• Workshop on "Quantum Complexities in Condensed Matter",
Cambridge, UK; 04-07 July 2006

Poster: "Crystal chemistry and low temperature properties of novel
Yb18Pt51.1Si15.1 ( YbPt3Si)"

E. Bauer, R. Lackner, H. Kaldarar, E. Royanian, H. Michor, G. Hilscher,
E.-W. Scheidt, W. Scherer, A. Gribanov, A. Tursina, Yu. Seropegin, P.
Rogl, G. Giester

• 15th International Conference on Solid Compounds of Transi-
tion Elements, Krakow, Poland; 15-20 July 2006

Poster: "New orthorhombic modification of equiatomic CePdAl"

A. Gribanov, A. Tursina, E. Murashova, Yu. Seropegin, P. Rogl, H.
Kaldarar, R. Lackner, E. Bauer, G. Hilscher, H. Michor, L. Lipatov

• Novel Pressure-induced Phenomena in Condensed Matter Sys-
tems, Fukuoka, Japan; 15-19 August 2006

Invited talk: "Pressure effects upon the itinerant magnetism in
RCo9Si4"

H. Michor, R. Lackner, H. Kaldarar, L. Fornasari, E. Bauer, G. Hilscher,
U. Schwarz, H. Rosner

Poster: "Pressure-, field-, and substitution studies on heavy fermion
superconductor CePt3Si"

St. Laumann, H. Kaldarar, R. Lackner, E. Bauer



Curriculum Vitae

Dipl.-Ing. Robert Lackner
Neugasse 10; A-2453 Sommerein
Tel.: ++ 43(0) 650 9252631
e-mail: lackner@ifp.tuwien.ac.at

Persönliche Daten:

Geburtsdatum: 28.4.1977
Geburtsort: Wien
Staatsbürgerschaft: Österreich
Familienstand: verheiratet (mit Doris Lackner (ehem. Brunner) seit 31.07.2003)
Kinder: Maximilian (23.04.2003), Rebekka (30.10.2004)
Wehrdienst: abgeleistet (01/06-07/06)

Bildungsweg:

09/87-06/95 BG und BRG Neusiedl/See
07.06.1995 Reifeprüfung
10/95-01/04 Studium der Technischen Physik an der TU Wien
29.01.2004 Diplomingenieur der Technischen Physik

unter der Betreuung von o. Univ. Prof. Dr. Hans Kirchmayr
am Institut für Festkörperphysik der TU-Wien,
Diplomarbeit: "Effect of filament arrangement on the transversal
resistivity of Bi-2223 tapes"

Praxiserfahrung:

01.00 - 06.03 Projektassistent im Rahmen des EFDA-Projekts
(ITER Task TWO-T405-2/01) "Conductor Layout Optimisation"
Betreuung: o. Prof. Dipl.Ing. Dr. Hans Kirchmayr
Institut für Experimentalphysik, TU-Wien

12.03 - 01.06 Projektassistent im Rahmen des FWF-Projektes (P 16370)
"Neuer Ansatz zur Wärmeleitfähigkeit in Thermoelektika"
Betreuung: a.o. Prof. Dipl.Ing. Dr. Ernst Bauer
Institut für Festkörperphysik, TU-Wien

08.06 - 07.07 Projektassistent im Rahmen des FWF-Projektes (P 19165-N16)
"Reduktion der thermischen Leitfähigkeit in Thermoelektrika"
Betreuung: a.o. Prof. Dipl.Ing. Dr. Ernst Bauer
Institut für Festkörperphysik, TU-Wien


