
DISSERTATION

Efficent Near-Optimum Detection Algorithms

for MIMO Communication Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften

unter der Leitung von

Ao. Univ.-Prof. Dr. Franz Hlawatsch

Institut für Nachrichtentechnik und Hochfrequenztechnik

eingereicht an der Technischen Universität Wien

Fakultät für Elektrotechnik

von

Dominik Seethaler

Goldeggasse 34/8

1040 Wien

Wien, im September 2006

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 





Die Begutachtung dieser Arbeit erfolgte durch:

1. Ao. Univ.-Prof. Dipl.-Ing. Dr. F. Hlawatsch

Institut für Nachrichtentechnik und Hochfrequenztechnik

Technische Universität Wien

2. Prof. Dr. A. Gershman

Institut für Nachrichtentechnik

Technische Universität Darmstadt





Abstract

Wireless communications continue to strive for higher data rates and a better link reliability in

order to provide more advanced services. The use of multiple antennas at both the transmitter

and receiver side, i.e., multiple-input multiple-output (MIMO) communications, is one of the most

promising technologies to satisfy these demands. Indeed, MIMO systems are capable of achieving

increased data rates and an improved link reliability compared to single-antenna systems without

requiring additional bandwidth or transmit power. These improvements, however, necessitate the

use of more computationally intensive data detection algorithms at the receiver side. In particular,

optimum data detection can easily become prohibitively complex. Conventional suboptimum detection

techniques have a low computational cost but their performance is in general significantly inferior to

that of optimum data detection. Thus, there is a strong demand for computationally efficient data

detection algorithms that are able to reduce this performance gap.

In this thesis, novel algorithms for efficient near-optimum data detection in MIMO systems are

proposed and investigated. First, we show that specific “bad” realizations of the MIMO channel are

to a great extent responsible for the inferior performance of conventional suboptimum data detection

algorithms. Motivated by this insight, we then introduce an idealized model for bad channels that

enables a simplified implementation of the optimum detector. With some modifications, we then

obtain efficient detection algorithms that are robust to bad channels and that can achieve near-

optimum performance. Secondly, we focus on a popular suboptimum data detection technique based

on nulling and cancelling. The order in which the nulling and cancelling operations are performed has a

strong influence on the performance of this scheme. The conventional ordering approach merely takes

the current (static) channel realization into account. However, we propose to base the ordering also

on the current received signal vector in addition to the channel realization. The resulting “dynamic”

ordering method yields a significant performance advantage over the conventional scheme, such that

near-optimum performance can be achieved at low computational cost. Finally, we extend the proposed

concepts and algorithms to soft-output detection, which yields an additional performance improvement

in coded MIMO wireless systems.
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Kurzfassung

Drahtlose Kommunikationstechnik strebt nach immer höheren Datenraten und immer größerer Zu-

verlässigkeit der Übertragung, um immer anspruchsvollere Dienste zur Verfügung stellen zu können.

Systeme mit mehreren Sendeantennen und mehreren Empfangsantennen, d.h. multiple-input multiple-

output (MIMO)-Systeme, sind eine der vielversprechendsten Technologien, um diesen Ansprüchen

gerecht zu werden. Gegenüber Systemen mit nur einer Sende- und Empfangsantenne lässt sich

mit MIMO-Systemen bei gleicher Übertragungsbandbreite und Sendeleistung sowohl die Datenrate

steigern als auch die Übertragungszuverlässigkeit verbessern. Diese Gewinne erfordern jedoch viel

rechenaufwändigere Datendetektionsverfahren auf der Empfängerseite. Insbesondere optimale Detek-

tion kann sehr leicht zu exzessivem Rechenaufwand führen. Konventionelle suboptimale Detektionsver-

fahren hingegen sind sehr recheneffizient, liegen aber weit unter der Leistungsfähigkeit optimaler De-

tektion. Aus diesem Grund besteht ein großer Bedarf an recheneffizienten Detektionsverfahren, die

diesen Leistungsverlust reduzieren.

In dieser Dissertation werden neuartige recheneffiziente MIMO-Detektionsverfahren, welche

annähernd die Leistungsfähigkeit optimaler Detektion erreichen, vorgestellt und untersucht. Zunächst

wird gezeigt, dass der große Leistungsverlust konventioneller suboptimaler Detektionsverfahren

hauptsächlich auf “bösartige” Realisierungen des MIMO-Übertragungskanals zurückzuführen ist.

Diese Erkenntnis motiviert die Einführung eines idealisierten Modells solcher bösartiger MIMO-

Übertragungskanäle, das eine vereinfachte Ausführung des optimalen Detektors ermöglicht. Daraus

ergeben sich mit einigen Modifikationen recheneffiziente Detektionsverfahren, die robust gegenüber

bösartigen Übertragungskanälen sind und annähernd die Leistungsfähigkeit optimaler Detektion

erreichen. Der zweite Beitrag dieser Dissertation betrifft ein weit verbreitetes Detektionsver-

fahren mit Entscheidungsrückkopplung. Die Leistungsfähigkeit dieses Verfahrens wird sehr stark

durch die Reihenfolge, in der die Entscheidungen und Rückkopplungen durchgeführt werden, bee-

influsst. Für gewöhnlich ist diese Reihenfolge nur durch die Eigenschaften des (statischen) MIMO-

Übertragungskanals bestimmt. In dieser Arbeit wird nun ein Verfahren vorgeschlagen, bei dem

die Reihenfolge der Entscheidungen und Rückkopplungen auch basierend auf dem Empfangsvektor

(zusätzlich zum MIMO-Übertragungskanal) gewählt wird. Diese “dynamische” Wahl der Reihen-

folge führt zu einer erheblichen Leistungssteigerung dieses Verfahrens und erlaubt somit, auf rechen-

effiziente Weise annähernd die Leistungsfähigkeit optimaler Detektion zu erreichen. Zuletzt werden

die vorgestellten Konzepte und Methoden auf “weiche” (soft-output) Detektion erweitert, wodurch

eine zusätzliche Leistungssteigerung in codierten MIMO-Systemen ermöglicht wird.
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1

Introduction

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) systems are currently one of the most ac-

tive research areas in wireless communications. Here, both the transmitter and the receiver

employ multiple antennas, which yields great advantages over single-antenna communication sys-

tems [1–3]. In particular, with MIMO communications the link reliability can be improved and the

data rate can be increased without the need for additional bandwidth or transmit power. These

MIMO gains rely on the availability of spatial diversity and the possibility of spatial multiplexing.

Spatial diversity can be used to combat channel fading (which improves the link reliability) and spa-

tial multiplexing enables a parallel transmission of multiple data streams (which increases the data

rate). Up to a certain extent these gains can be achieved simultaneously [4]. Thus, MIMO is one of

the most promising technologies for next-generation wireless systems that have an increased demand

for data rate, quality of service, and bandwidth efficiency. This is also reflected by recent efforts to

incorporate the MIMO technology into wireless standards (such as IEEE 802.11n, IEEE 802.16, and

the high-speed downlink packet access (HSDPA) transmission mode of UMTS).

1



2 Chapter 1. Introduction

1.1 Motivation and Problem Formulation

The full potential of MIMO communications can only be achieved with increased hardware costs as

compared to single-antenna systems. This is mainly due to the requirement of multiple radio-frequency

chains as well as due to significantly more complex baseband signal processing algorithms. In partic-

ular, one of the most challenging tasks of MIMO signal processing with respect to the computational

requirements is data detection at the receiver side. Here, the transmitted data has to be detected

(recovered) with low probability of error. For high-rate MIMO transmission schemes using spatial

multiplexing, optimum data detection can easily become prohibitively complex [5] since one has to

deal with a very strong spatial interference of the multiple transmitted data streams. In general, no

algorithms are known that perform optimum detection with a computational complexity that behaves

polynomially in the number of antennas [6, 7]. Thus, in recent years considerable research effort has

been devoted to investigate and develop efficient data detection algorithms for MIMO systems with

a (comparatively) moderate complexity. This includes advanced optimum algorithms (like sphere-

decoding [7–9]) and low-complexity suboptimum detectors. Most of the suboptimum algorithms were

originally developed in the context of multi-user detection [6, 10]. In the MIMO context, however,

conventional low-complexity algorithms suffer from a significant performance degradation compared

to optimum performance [11] and parts of the MIMO gains (such as diversity) are lost. Thus, there is

a strong demand for computationally efficient suboptimum data detection algorithms that can achieve

near-optimum performance in MIMO wireless communication systems. In this thesis, such improved

detection methods are proposed and investigated.

1.2 MIMO Wireless Systems

MIMO wireless systems employ multiple antennas at the transmitter and at the receiver side. In

comparison to single-antenna communication systems, MIMO systems exhibit various significant gains

[1–3]. One can distinguish between diversity gain, multiplexing gain, and array gain [11]. The diversity

gain and the array gain can also be exploited by single-input multiple-output (SIMO) or multiple-input

single-output (MISO) wireless systems.

• Diversity gain: If multiple copies of an information signal are received through different fading

links, a diversity gain can be achieved. Through an appropriate combination of these multiple

received signals, deep channel fades (i.e. the case that the signal power drops significantly) can

be reduced and the link reliability can be improved. There are various different notions of

diversity that are just distinguished with respect to their physical interpretation. In the MIMO,

SIMO, or MISO context, we are dealing with spatial diversity since multiple copies of a signal

are obtained through multiple antennas that are spatially separated. In the SIMO case, just

receive diversity is available which can be utilized through a coherent combination of all received

signals (if channel state information is available at the receiver). Exploiting transmit diversity in

the MISO case can be more involved since the transmitter may not have accurate channel state
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information. However, via the use of appropriate space-time codes [3,12] also transmit diversity

can be exploited. In the MIMO case, both transmit and receive diversity are available.

• Multiplexing gain: The multiplexing gain refers to several spatial dimensions that can be

offered by MIMO systems. These spatial dimensions can then be used to transmit data in

parallel which results in a gain in data rate. In fact, the capacity (i.e. the ultimate limit for

the rate of reliable data transmission) of a MIMO channel can increase linearly in the minimum

number of transmit and receive antennas [1,2]. This gain is unique to MIMO, i.e. SIMO or MISO

system do not offer any multiplexing gain. A multiplexing gain can be realized by a scheme called

spatial multiplexing (SM), where independent data streams are transmitted in parallel from each

transmit antenna (i.e. they are multiplexed in space). In literature, this is also known as the

Vertical Bell Laboratories Layered Space-Time (V-BLAST) [13,14] architecture.

• Array gain: Finally, multiple-antenna systems also offer an array gain, which refers to an

increase of the average signal-to-noise ratio as compared to single-antenna systems. It can also

be realized in SIMO or MISO systems with appropriate channel state information.

It is important to note that these MIMO gains can be achieved simultaneously – but just up to a

certain extent. There is a fundamental tradeoff between the diversity gain and the multiplexing gain [4],

i.e. they cannot be maximized at the same time by a certain transmission scheme. For example, in SM

systems, a large multiplexing gain is achieved while no transmit diversity can be exploited and just

receive diversity is available. On the other hand, space-time codes intend to extract much diversity

(in particular, transmit diversity) while the exploitation of multiplexing gains is secondary.

1.3 Contributions and Outline

In this thesis, novel detection algorithms for efficient near-optimum, i.e. maximum likelihood (ML),

detection of MIMO systems are proposed and investigated. In Chapter 2 and Chapter 3, hard-output

detectors are proposed while Chapter 4 focuses on soft-output detectors in coded MIMO systems. The

detailed contributions and the outline are as follows.

• The remainder of this chapter describes the notation, the linear MIMO system model, and the

algorithm assessment. Furthermore, we also provide the state of the art with a review of the

major existing data detection techniques for MIMO systems for further reference.

• The starting point of Chapter 2 (“Geometry-Based Detectors for Spatial Multiplexing”) is

the investigation of why conventional suboptimum data detection algorithms (in particular,

linear and nulling-and-cancelling schemes) suffer from a significant performance loss compared

to (optimum) ML detection in SM systems. Here, we adopt the viewpoint that in particular

“bad” channels with a large condition number are to a great extent responsible for their inferior

performance. We then introduce a novel channel model that captures essential parts of these bad
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channels in an idealized way. It is shown that ML detection for such idealized bad channels can

be performed efficiently (i.e. with a cubic complexity in the number of antennas). Based on the

ML detector for idealized bad channels, the novel line-search detector (LSD) [15,16] is proposed.

It is able to achieve near-ML performance for general (non-idealized) channels; however, it still

turns out to be quite computationally intensive. We then focus on constant-modulus alphabets,

which yields a further reduction of computational complexity. The resulting novel algorithm

we refer to as the sphere-projection algorithm (SPA) [15, 17]. It can be seen as an efficient

non-linear add-on to conventional suboptimum detectors making them robust to bad channels.

The proposed SPA variants are shown to achieve near-ML performance with low computational

complexity. Extensions and applications of the concepts introduced in this chapter can be found

in [18–20].

• In Chapter 3 (“Dynamic Nulling-and-Cancelling”) we focus on the very popular and well-

known suboptimum data detection technique based on decision-feedback detection [21, 22] (or

often referred to as nulling-and-cancelling (NC) in the MIMO context). Here, the order in which

the nulling (detection) and cancelling (feedback) operations are carried out has a significant

influence on the overall performance. Conventional NC employs the layer-wise post-equalization

signal-to-noise ratios (PSNRs) as reliability measures to perform the layer sorting. These PSNRs

are average quantities that do not depend on the current received vector. In this chapter, we pro-

pose the novel dynamic nulling-and-cancelling (DNC) [23,24] data detection technique that uses

approximate a-posteriori probabilities (APPs) as measures of layer reliability. The approximate

APPs are obtained from the exact APPs via a Gaussian approximation for the post-equalization

interference. This results in a NC technique based on minimum mean-square error (MMSE) de-

tection with an improved “dynamic” layer-sorting rule that exploits the information contained

in the current received vector. We furthermore show that a recently proposed (also dynamic)

“LLR-based NC scheme” can also be derived by means of a Gaussian approximation for the

post-equalization interference; however, in contrast to our DNC scheme, the post-equalization

interference has to be assumed as uncorrelated. We analyze the error performance and com-

putational complexity of the DNC method [23, 25]. In particular, we derive an expression for

the symbol error probability of the first layer-decoding step of DNC based on some simplifying

assumptions. This analysis as well as experimental results show the general superiority of DNC

over conventional NC. Moreover, it reveals the conditions under which this performance advan-

tage will be most significant. We also show that DNC can achieve near-ML performance at low

computational cost. Finally, DNC is compared with the proposed geometry-based detectors of

Chapter 2 and we demonstrate that DNC is superior to LLR-based NC.

• In Chapter 4 (“Soft-Output Detection Algorithms”) soft-output detectors for MIMO bit-

interleaved coded modulation (BICM) systems are investigated and proposed. In contrast to

the hard-output detectors of Chapter 2 and Chapter 3, these soft-output detectors calculate

approximate log-likelihood ratios (LLRs) for each of the transmitted coded bits. These LLRs
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are then provided to a soft-in channel decoder. Although conceptually different, this chapter

heavily relies on the algorithms and approaches introduced in Chapter 2 and Chapter 3. In

particular, the major contribution of this chapter is the extension of the hard-output SPA of

Chapter 2 to its soft version [26]. Its efficient implementation is specifically tailored to phase-

shift keying (PSK) alphabets employing Gray labeling. The soft-output extension of the LSD

can be found in [27]. Furthermore, we will use the concept of the DNC of Chapter 3 (i.e.

the use of a Gaussian approximation for the post-equalization interference) to rederive [28] the

conventional zero-forcing (ZF) and MMSE-based soft-output detectors. This derivation shows

that MMSE-based soft-output detection can be seen as an extension of ZF-based soft-output

detection to correlated post-equalization interference, which explains MMSE’s significant perfor-

mance advantage. All the detectors are compared for orthogonal frequency division multiplexing

(OFDM) based MIMO-BICM systems, where also real-world MIMO channels are used for the

simulations. In particular, it is demonstrated that the soft-output SPA significantly outperforms

the ZF-based and MMSE-based detectors and that it can achieve a performance close to the

soft-output extension of the sphere decoding algorithm for ML detection.

1.4 Notation

A matrix, vector, and scalar are denoted with A, a, and a (or A), respectively. The element at the nth

row and mth column of A is written as (A)n,m and am denotes the mth column of A. The real and

imaginary parts of a complex number a are referred to as Re{a} and Im{a} (i.e. a = Re{a}+ jIm{a})
or sometimes as aR and aI, respectively. The transpose and the conjugate transpose of A are given

by AT and AH = AT∗, respectively. Here, A∗ denotes the element-wise complex conjugation of

A. The identity matrix is denoted as I and the nth unit vector is given by en. Furthermore, E[a]

denotes the expected value of the random variable a, and µa = E[a], Ra = E
[
aaH

]
, and Ca =

E
[
(a − µa)(a − µa)

H
]

denote the mean, the correlation matrix, and the covariance matrix of the

random vector a, respectively. Finally, ‖a‖ is the Euclidian norm of the vector a and upper-case

calligraphic letters, e.g. A, refer to sets.

1.5 System Model

Throughout this thesis, we assume a linear MIMO model with M inputs and N outputs where the

transmitted data vector d
4
= (d1 · · · dM )T of size M and the received vector r

4
= (r1 · · · rN )T of size

N ≥M are related according to

r = Hd + w (1.1)

for any given time instant (or channel use). Here, the N ×M matrix H denotes the MIMO system

matrix and w
4
= (w1 · · · wN )T denotes additive noise. The noise components wn, n = 1, . . . , N , are

assumed as zero-mean, statistically independent, and Gaussian with variance σ2
w, i.e. Rw = σ2

wI.
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The data vector components dm (here, m ∈ {1, . . . ,M} indexes the layer) are assumed zero-mean,

statistically independent with unit variance, i.e. Rd = I, and are uniformly drawn from the same

symbol alphabet A 4
= {a0, . . . , a|A|−1}. All quantities involved in (1.1) are either real- or complex-

valued. In the complex-valued case, the noise components wn are assumed as circularly symmetric

complex Gaussian.

We define the signal-to-noise ratio (SNR) associated to (1.1) as the ratio of the total received

power to the total noise power, i.e.

SNR
4
=

E
{
‖Hd‖2

}

E
{
‖w‖2

} . (1.2)

If system model (1.1) is complex-valued, it is sometimes advantageous (e.g., for nulling-and-

cancelling based MIMO detection schemes) to use an equivalent real-valued representation of (1.1)

(see, e.g., [29, 30]), that is obtained by considering real and imaginary parts separately, i.e.

(
Re{r}
Im{r}

)
=

(
Re{H} −Im{H}
Im{H} Re{H}

)(
Re{d}
Im{d}

)
+

(
Re{w}
Im{w}

)
. (1.3)

This real-valued representation can again be written in form of (1.1). The equivalent real-valued

data symbols (i.e. the components of the the real-valued data vector in (1.3)) are again statistically

independent if the symbols dm are statistically independent and if they are uniformly drawn from a

QAM symbol alphabet. Thus, for example, a complex-valued system with statistically independent

and uniformly drawn 4-QAM symbols can be reformulated as a real-valued system of double size with

statistically independent and uniformly drawn BPSK symbols.

There are many different transmission schemes that can be written in form of the linear model (1.1).

The specific choice of the transmission scheme determines the corresponding physical interpretation

and the structure of H. We now briefly describe those schemes that will appear in this thesis; our

main focus will be on SM systems.

1.5.1 MIMO Spatial Multiplexing Systems

For an SM system (e.g., [11, 14, 31]) with MT transmit antennas and MR receive antennas, the mth

data symbol dm ∈ A is directly transmitted on the mth transmit antenna (see Figure 1.1), which is

also often referred to as the V-BLAST [13,14] architecture.

For a frequency-flat channel, the input/output relation between transmit antenna m and receive

antenna n can be described by a complex-valued fading coefficient hn,m. At receive antenna n the

superposition of all transmitted data symbols dm, m = 1, . . . ,MT, corrupted by additive noise wn is

observed, i.e.

rn =

MT∑

m=1

hn,mdm + wn.

Evidently, in vector/matrix notation we obtain (1.1), where system matrix H directly corresponds

to the MIMO channel matrix with (H)n,m = hn,m, and M and N represent the number of transmit

antennas and the number of receive antennas, MT and MR, respectively, i.e. M = MT, N = MR.
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Figure 1.1: MIMO spatial multiplexing system.

For a frequency-selective channel, the input/output relation between transmit antenna m and

receive antenna n can be described by a complex-valued impulse response hn,m[l], l = 0, . . . , L−1, with

L channel taps. Thus, the simple multiplication operation of frequency-flat channels is now replaced

with a more involved time-discrete convolution. However, via the use of an orthogonal frequency

division multiplexing (OFDM) modulator at each transmit antenna and an OFDM demodulator at

each receive antenna (i.e. MIMO-OFDM), the frequency-selective MIMO channel can be decomposed

into parallel frequency-flat MIMO channels (e.g., [11, 31, 32]). In fact, by employing a MIMO-OFDM

system with K subcarriers, one obtains

rk = Hkdk + wk, k = 0, . . . ,K − 1, (1.4)

for each subcarrier k, where the elements of Hk are given by the discrete Fourier transform of the

channel impulse responses hn,m[l], i.e.

(Hk)n,m =
L−1∑

l=0

hn,m[l] e−j2π lk
K , k = 0, . . . ,K − 1.

In this case, the linear model (1.1) holds for each subcarrier separately.

1.5.2 Linear Dispersion Codes

For linear dispersion (LD) codes [33], Q complex-valued QAM data symbols are transmitted during T

consecutive channel uses during which the flat-fading channel realization is assumed to stay constant.

In contrast to SM, the data symbols are in general not directly transmitted from specific transmit

antennas. However, they are spread over time (i.e. over the T channel uses) and space (i.e. the MT

transmit antennas) using certain modulation/dispersion matrices, which can be designed such that
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the rate or the diversity is maximized. The resulting system model is real-valued and is given by (1.1)

with M = 2Q and N = 2MRT (here, similar to (1.3), the real and imaginary parts are considered

separately). The system matrix H corresponds to the so called equivalent channel matrix that depends

on the channel realization and on the considered LD code. In fact, LD codes also comprise SM systems

and linear space-time codes (e.g., [34], including orthogonal designs [35]) as special cases.

1.6 Data Detection

One of the most challenging tasks of a MIMO receiver is data detection. Our main focus will be on hard-

output detectors. Here, based on the received vector r, the transmitted data vector d (or equivalently,

each transmitted data symbol dm ∈ A) has to be detected (recovered), and the result is some hard-

decision d̂ (with d̂m ∈ A) about d. In Chapter 4, we will also consider so-called soft-output detectors

that are embedded into coded MIMO systems. Here, the data detector calculates soft-decisions (e.g.,

log-likelihood ratios) about the coded bits that are associated with the transmitted data symbols

dm ∈ A via a certain labeling. Troughout this thesis, we assume that the data detector not only has

access to the received vector r, but also has perfect knowledge about the system matrix H and the noise

variance σ2
w. In practice, corresponding estimates can be obtained via separate (e.g., training-based)

channel and noise variance estimation algorithms, which represent an important research area by itself

(see, e.g., [36–39]). For example, a study of the impact of estimation errors on the performance of

data detection algorithms can be found in [40]. However, without explicit estimation of the MIMO

channel coefficients, H may also be known by using unitary differential space-time modulation using

the Cayley transform [41], where (1.1) then corresponds to an associated “linearized” system model.

In general, a data detection algorithm has to be designed with respect to two important targets:

(i) Small error rate (i.e. good performance), and (ii) low computational complexity. However, there is

a tradeoff between these two targets. For example, the optimum detector in terms of best performance

(mimimum error probability) is known to be very computational intensive. On the other hand, subop-

timum detection algorithms (like equalization-based detectors) may be computationally very efficient;

however, their performance is in general far inferior to that of optimum detection. Thus, the task is

to design data detection algorithms that achieve a “good” – with respect to the application in mind –

tradeoff between performance and computational complexity. The suboptimum algorithms proposed

in this thesis aim at achieving near-optimum performance with a computational complexity that is

significantly smaller than that required by the optimum detector.

1.7 Algorithm Assessment

The proposed data detection algorithms will be assessed and compared in terms of error rate perfor-

mance and computational complexity. Mainly, this will be done via MATLAB simulations for various

different MIMO systems.
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1.7.1 Simulation Setup

Throughout, the presented MATLAB simulation results are based on the linear MIMO model (1.1),

where no model errors or possible implementation losses (e.g., due to fixed-point number representa-

tions [5]) are considered. Also, the knowledge about the system matrix H and the noise variance σ2
w

is considered as perfect. The main part of the simulations is carried out for identically and indepen-

dently distributed (iid) complex Gaussian MIMO fading channels (e.g., [11,42]). For an SM system, for

example, this means that the entries of the channel matrix H (i.e. the scalar fading coefficients hn,m)

are modeled as statistically independent circulary symmetric complex Gaussian random variables.

Evidently, this channel model does not capture any spatial correlations [43, 44] between the fading

coefficients of different antenna pairs, but it can be seen as an accurate model for rich scattering (e.g.,

indoor) environments with a large enough antenna spacing [42]. But we also show some simulation

results for real-world MIMO channels that were measured at Vienna International Airport [45]. Fur-

thermore, for all simulation results we considered MIMO systems with M = N ≥ 4 employing various

different symbol alphabets. For M < N , the performance difference between the various detectors is

in general less pronounced and near-optimum performance can be achieved more easily. We do not

consider the case M > N since this would imply that we have more unknowns than equations in (1.1).

1.7.2 Error Rate Performance

For the hard-output detectors, we will focus on the uncoded symbol error rate (SER) performance,

where no additional error correction (or channel) code is taken into account. For the soft-output

detectors of Chapter 4 (where we will consider coded MIMO systems) we will focus on the packet error

rate (PER) performance. Most of these error rate results are shown as curves versus the SNR (1.2),

where an important performance characteristic is the slope of the corresponding double-logarithmic

error rate curves in the high-SNR regime. It directly reflects the diversity (e.g., [11, 42]) that can

be exploited by the corresponding system (including the detection algorithm). In an uncoded SM

system, for example, the maximum spatial diversity is given by the number of receive antennas MR.

This maximum diversity is available if all channel coefficients hn,m of the channel matrix H fade

independently (which is the case for iid Gaussian channels), because then each data symbol dm is

transmitted over MR independent scalar fading channels hn,m, n = 1, . . . ,MR (cf. (1.1)). The larger

MR, the smaller is the probability that all these channels fade simultaneously, and thus the reliability

of data detection can be improved. If the available diversity in an SM system is MR, the SER of the

optimal hard-output detector decays like SNR−MR in the high-SNR regime [3,4]. This corresponds to

a slope of −MR of the double-logarithmic SER-versus-SNR curve. In general, if the error rate decays

like SNR−δ in the high-SNR regime we say that the system can exploit δth-order diversity.

1.7.3 Computational Complexity

The computational complexity of the various algorithms will be assessed in terms of the required

number of floating point operations (flops). We will provide the corresponding complexity orders of
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the algorithms and flops measurement results of specific MATLAB V5.3 implementations.

The complexity order is given by means of the “big Oh” notation O(·) (see, e.g., [46]), which

describes the complexity scaling behavior of an algorithm depending on one or more system parameters.

It means that the argument of O(·) times some constant is larger than the exact computational cost for

parameter values which are large enough. In our setting, the crucial parameters are M and N (i.e. the

size of system model (1.1)), and |A| (i.e. the size of the symbol alphabet A). Here, for simplicity, we

will always assume M = N . Both M and |A| determine the rate of the system, i.e. the bits per channel

use that are transmitted over the MIMO system, cf. (1.1). In fact, O(·) yields very general and simple

expressions that quickly reveal the basic complexity behavior of the various algorithms. However, its

practical meaning may be limited. In particular, for MIMO systems of moderate size, constants and

lower order contributions to the computational cost may also be relevant. This is the reason why we

also considered flops measurements for specific MATLAB implementations of the algorithms. With the

complexity orders and the flops measurement results a good initial estimate about the computational

complexity of the algorithms is obtained – in particular, if one is interested in floating-point digital

signal processor (DSP) implementations. However, for implementations on dedicated hardware (e.g.,

very-large-scale integration (VLSI)) [5], just limited conclusions can be drawn.

The computational complexity of each algorithm will be split into the following two components:

• The “preparation complexity” Cprep which includes all operations that only have to be performed

if H changes.

• The “vector complexity” Cvector which includes all operations that are performed once for each

received vector r.

This distinction is crucial, since the contribution of these two components to the overall computational

complexity may be very different (see also, e.g., [5]). Usually, Cvector tends to dominate the overall

complexity while Cprep is less critical. For example, for an SM system operating in a low-mobility

scenario, the channel matrix H stays in fact constant over many subsequent channel uses (i.e. subse-

quent transmissions of data vectors) and operations contributing to Cprep have to be performed much

less frequently than those contributing to Cvector. Even if H changes from one channel use to the

next one (e.g., in a MIMO-OFDM system, where each channel use corresponds to a certain subcar-

rier, see (1.4)), correlations between different realizations of H can be exploited such that Cprep is

reduced [32,47]. However, in certain packet-based applications also Cprep can be decisive [48].

Finally, some of the considered data detection algorithms have a Cvector complexity that strongly

depends on the specific realization of H. Since H is random, their Cvector is random as well. In this

case, we provide average and maximum (over many realizations of H) Cvector results. For practical

system designs the maximum Cvector complexity can be decisive. In particular, this is the case if buffer

sizes are small or if H changes too slowly to perform a complexity averaging during run-time.
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1.8 State of the Art

As a relevant background and for further reference, we will now review the most important hard-

output data detection techniques for MIMO systems. In Chapter 4, we will provide the background

on the corresponding soft-output techniques. The major hard-output detectors are linear equaliza-

tion followed by quantization (e.g., [11, 42]), nulling-and-cancelling (also known as decision-feedback

detection, successive interference cancellation, or V-BLAST detection) [13,14,22], and maximum like-

lihood (ML) detection (e.g., [6,9,11]) including sphere-decoding [8,9,49,50]. The first two techniques

are suboptimum but significantly less complex than ML detection. In fact, many algorithms that are

proposed in the literature are based on these fundamental techniques, which, to a large part, were

originally developed and proposed in the context of multiuser detection [6, 10].

1.8.1 Maximum Likelihood Detection

Maximum likelihood (ML) detection is optimal in the sense of minimizing the average probability of

error P
[
d̂ 6= d

]
when all data vectors are equally likely. For our system model (1.1) and with the

assumptions made in Section 1.5, the ML detector is given by (see, e.g., [9])

d̂ML = arg min
d∈D

{
‖r − Hd‖2

}
. (1.5)

Here, D = AM denotes the set of all possible transmitted data vectors d. The cardinality of D is

|D| = |A|M and thus grows exponentially with M .

ML detection corresponds to a nonconvex optimization problem because D is not a convex set

[51, 52]. Therefore, numerical standard algorithms for convex optimization are not applicable. For

general H and general r, there are no known algorithms that perform ML detection with a complexity

that behaves polynomially in M (e.g., [7, 53]). For example, the straightforward solution of (1.5)

by comparing ‖r − Hd‖2 for all d ∈ D (often referred to as exhaustive-search ML detection) has

a computational complexity that grows exponentially in M . In fact, its complexity may be already

excessive for moderate values of M and constellation size |A|. In general, ML detection can fully

exploit all of the available diversity [3, 4]. That is, for SM systems with iid Gaussian channels, ML

detection achieves a diversity order of MR (cf. Section 1.7.2).

A very promising and more efficient alternative to exhaustive-search ML detection is Fincke and

Phost’s sphere decoding algorithm (FPSD) [8] for ML detection and its numerous optimum [7, 9, 54,

55] as well as suboptimum [18, 56, 57] variants. With sphere decoding, the average computational

complexity (i.e., averaged over a sufficient number of realizations of H) of ML detection can be quite

low – in particular, for practical values of M , |A|, and for a sufficiently high SNR [50]. However, as

recently shown in [58], the average complexity of FPSD still grows exponentially in M for SM systems

with iid Gaussian channels. Throughout this thesis, the FPSD implementation of the ML detector

serves as a performance benchmark. A nice flowchart of the FPSD can be found in [49] (see also the

detailed discussion in [9] for finite constellations).
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1.8.2 Equalization-Based Detection

In equalization-based (or linear) detection, an estimate of the transmitted data vector d is formed as

y = Gr by using an equalizer G. The detected data vector d̂ is then obtained through componentwise

quantization d̂ = QA{y} according to the used symbol alphabet A, i.e.

d̂m = arg min
a∈A

|ym − a| , m = 1, . . . ,M. (1.6)

For the zero-forcing (ZF) detector, G is given by the pseudo-inverse [59] of H, i.e.,

GZF
4
= H# = (HHH)−1HH . (1.7)

(For the last expression, we assumed that N ≥ M and that H has full rank.) Thus, the result of ZF

equalization (before quantization) is

yZF = H#r = (HHH)−1HHr = d + w̃ , (1.8)

which is the transmitted data vector d corrupted by the transformed noise w̃ = H#w. This means

that the interference caused by H is completely removed (“forced to zero”). In general, however,

the transformed noise w̃ is larger than w (“noise enhancement”) and w̃ is correlated with correlation

matrix

Rew = σ2
w(HHH)−1. (1.9)

The ZF-equalized received vector yZF can be seen as the solution to a relaxed ML problem (cf. (1.5)),

where the data set D underlying ML detection is relaxed to the convex set C
M [52]:

yZF = arg min
y∈CM

{
‖r − Hy‖2

}
.

The noise enhancement effect plaguing the ZF equalizer can be reduced by using the minimum

mean-square error (MMSE) equalizer

GMMSE
4
=
(
HHH + σ2

wI
)−1

HH , (1.10)

which is the equalizer G minimizing the mean-square error E
{
‖Gr − d‖2

}
[60]. Thus, the result of

MMSE equalization is

yMMSE =
(
HHH + σ2

wI
)−1

HHr . (1.11)

This can again be seen as the solution to a relaxed ML problem, with the distance ‖r−Hy‖2 augmented

by a penalty term σ2
w‖y‖2 that prevents y from growing too large, i.e.

yMMSE = arg min
y∈CM

{
‖r − Hy‖2 + σ2

w‖y‖2
}
.

There also exist more sophisticated detection techniques based on the principle of relaxing the ML

problem (e.g., semidefinite relaxation techniques [52,61]).
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ZF or MMSE equalization alone does not, in general, imply a loss of information, i.e. the ML

detector (1.5) could still be based on yZF or yMMSE. For example, the ML distance ‖r−Hd‖2 can be

written in terms of yZF according to

‖r−Hd‖2 = (yZF−d)HHHH (yZF−d) + ‖r‖2− ‖HyZF‖2, (1.12)

and thus ML detection (1.5) based on yZF becomes

d̂ML = arg min
d∈D

{
(d−yZF)HHHH(d−yZF)

}
. (1.13)

This can be interpreted as the ML detector for an identity channel corrupted by noise having correlation

matrix (1.9). We may view (1.13) as “ML detection after ZF equalization” or “ML detection in the

ZF-equalized domain,” as opposed to “direct ML detection” according to (1.5). Note that (1.5) and

(1.13) are strictly equivalent. This also shows that for an orthogonal H, i.e. HHH ∝ I, the ML detector

in (1.13) becomes d̂ML = arg min
d∈D

{
‖d− yZF‖2

}
and thus is equal to the ZF solution d̂ZF = QA{yZF}.

In this special case, the ML problem is very simple and can be solved efficiently (this also motivates

the design of orthogonal space-time block codes, e.g., [34, 35]).

In general, however, ZF or MMSE equalization is strongly suboptimal due to the componentwise

quantization of yZF or yMMSE since the correlation of the transformed noise is not taken into account.

In fact, for SM systems with iid Gaussian channels, ZF or MMSE detection can only exploit a diversity

of order MR−MT+1 [4] (while ML detection can exploit all of the available diversity of MR). Thus, for

MT ≈MR their diversity gain is small. One explanation is that equalization-based detection “uses up”

the degrees of freedom that would otherwise offer diversity (e.g., [4,62]). However, their computational

complexity is very low. The task with highest complexity is the calculation of the equalizer matrix

G that just contributes to the preparation complexity Cprep (cf. Section 1.7.3). Thus, for M = N ,

Cprep behaves as O(M3). Furthermore, the vector complexity Cvector is governed by the equalization

step with complexity O(M 2). Note that MMSE detection differs from ML or ZF detection in that it

requires an estimate of the noise variance.

1.8.3 Nulling-and-Cancelling

In contrast to linear detection, nulling-and-cancelling (NC) uses a serial decision-feedback approach

to detect the layers one after another [11, 13, 14, 63]. At each decoding step, a single layer is detected

and the corresponding contribution to the received vector r is subtracted; the other layers that have

not been detected yet are “nulled out” (equalized) using a ZF or MMSE equalizer.

At the first decoding step, ZF or MMSE equalization based detection is applied to a certain layer

m1 ∈ {1, . . . ,M}, yielding d̂m1 = QA
{
(Gr)m1

}
. Then, the interference corresponding to d̂m1 is

subtracted from r:

r(2) = r − hm1 d̂m1 ,

where hm1 denotes the m1th column of the system matrix H. If the decision d̂m1 was correct, i.e.

d̂m1 = dm1 , we obtain the reduced system model

r(2) = H(2)d(2) + w . (1.14)
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Here, the reduced system matrix H(2) of size N × (M − 1) is the system matrix H with the m1th

column removed, and the reduced data vector d(2) of size M − 1 is the data vector d with the m1th

component removed. At the second decoding step, we perform a re-indexing of the remaining layers,

i.e. {1, . . . ,M} \ {m1} → {1, . . . ,M − 1}, and we detect a specific layer d
(2)
m2 with m2 ∈ {1, . . . ,M −

1}. This detection is based on the reduced system model in (1.14), i.e., d̂
(2)
m2 = QA

{(
G(2)r(2)

)
m2

}
,

where G(2) denotes the ZF or MMSE equalizer corresponding to H(2). Subsequently, the interference

corresponding to d̂
(2)
m2 is subtracted from r(2). This detection-subtraction procedure is repeated until

all M layers are detected.

It is seen that NC attempts to progressively clean r from the interference caused by the components

already detected. At each new detection step, additional degrees of diversity become available provided

that all previous decisions were correct. The performance of NC depends crucially on the order of the

layers m1, . . . ,mM . To minimize error propagation effects and to optimally support the processing of

unreliable layers by means of the additional degrees of diversity that become available in the reduced

system models, more reliable layers should be detected first. Therefore, the layers are commonly

ordered (sorted) using the layer-wise ZF or MMSE post-equalization SNRs (PSNRs) as measures of

layer reliability [13,63,64] (also known as V-BLAST ordering). Let us focus on the first decoding step

(i.e. the full system model). By gH
m denoting the mth row of the equalizer G, the mth component of

the equalized received vector y = Gr can be written as ym = gH
m(Hd + w). Here, ym is composed

of a desired signal component (due to dm), an interference term (due to dm′ , m′ 6= m), and filtered

noise. Thus, the resulting PSNR of the mth layer is given by

SNRm
4
=

E
{∣∣gH

mhmdm

∣∣2
}

E
{∣∣∑

m′ 6=m gH
mhm′dm′

∣∣2
}

+ E
{∣∣gH

mw
∣∣2
} , (1.15)

and we thus have

mNC
1 = arg max

m∈{1,...,M}
SNRm (1.16)

for the first layer in the decoding process. For ZF and MMSE equalization, respectively, (1.15) results

in (see, e.g., [65])

SNRZF,m
4
=

1

σ2
w[(HHH)−1]m,m

, and (1.17)

SNRMMSE,m
4
=

1

σ2
w[(HHH + σ2

wI)−1]m,m
− 1. (1.18)

The remaining layer-sorting steps are analogous, however, by using the corresponding reduced system

matrices (e.g., by using H(2) for the second layer decoding step). In general, NC with this PSNR-

based layer sorting significantly outperforms NC without layer sorting, although it is still far inferior

to ML detection. A completely equivalent formulation of the NC scheme can be obtained via the QR-

decomposition of H [66]. It is more efficient but has the drawback that PSNR layer sorting cannot be

performed directly. The layer sorting employed for QR-based NC is often inferior [67, 68].
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For SM systems with iid Gaussian channels, the diversity that can be exploited by NC is again

MR − MT + 1 [4, 62, 69] (i.e. the same as for equalization-based detection). This is because the

diversity exploited by NC is limited by the first step of the detection process, which is equalization-

based detection applied to the full system model and thus has diversity order MR −MT + 1. In the

practically relevant SNR regime (not extremely high SNRs), however, higher slopes of the SER-versus-

SNR curve can be achieved.

The preparation complexity Cprep of NC is dominated by the calculation of the M equalizers G(s),

s = 1, . . . ,M , that correspond to subsequently reduced system models. Thus, Cprep scales as O(M4)

assuming M = N . The vector complexity Cvector includes M equalization and detection steps (each for

a single component) and M interference cancellation steps, which gives O(M 2) for Cvector. Compared

to linear detection, in particular Cprep is increased. However, Cprep of NC can again be reduced to

O(M3) by using the recursive implementation of [70].
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2
Geometry-Based Detectors for

Spatial Multiplexing

THE starting point of the proposed geometry-based detectors [15–17], is the examination why

suboptimal detection schemes (in particular, the equalization-based and nulling-and-cancelling

(NC) schemes) fail to exploit all the diversity that is available in SM systems, cf. Section 1.8. Here,

we adopt an approach to explain their inferior performance by comparing the decision regions of these

schemes with the decision regions of the ML detector. The “improper” decision regions of suboptimal

schemes are no problem for channel realizations with a condition number near to 1 (note that for

condition number 1, zero-forcing equalization followed by componentwise quantization is equivalent

to ML detection). However, for channel realizations with a large condition number, a significant

performance degradation occurs. In fact, it turns out that these “bad”1 channel realizations with large

condition number are to a great extent responsible for the inferior average performance of suboptimal

detection algorithms.

Motivated by this insight, we introduce an idealized model for bad channels that allows a sub-

stantially simplified implementation of ML detection. When extended to nonidealized channels, this

yields the novel line-search detector (LSD). A subsequent simplification for constant modulus alpha-

bets results in the novel sphere-projection algorithm (SPA). The SPA is an efficient nonlinear add-on

to standard suboptimal detection schemes that makes these schemes robust to bad channel realiza-

tion. For SM systems of practical interest (e.g., 6 transmit antennas and 6 receive antennas), the

detection schemes obtained by this approach are demonstrated to yield excellent performance at low

computational cost.

This chapter is organized as follows. In Section 2.1, the effects of bad channels on suboptimum

detection algorithms are discussed. An idealized model for bad channels is introduced in Section

1The term “bad” refers to the poor performance of suboptimal detection schemes for SM systems. Note, however,

that these channels are not necessarily “bad” in the sense of, e.g., low channel capacity.

17
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Figure 2.1: Detector performance and channel condition number. (a) SER performance of various

detection schemes versus condition number cH of the respective channel realization for a MT = MR = 4

MIMO channel with 4-QAM modulation and a fixed SNR of 15dB. (b) Cumulative distribution function

of the condition number cH.

Section 2.2, and an efficient ML detection algorithm for this model is developed in Section 2.3. In

Section 2.4, this detection algorithm is extended to arbitrary MIMO channels that yields the LSD (for

which it will not be ML anymore). In Section 2.5, a simplification of this latter detection algorithm

yields the SPA. Finally, simulation results presented in Section 2.6 show that the proposed algorithms

(in particular the SPA schemes) can yield near-ML performance with significantly less computational

complexity than that required by the FPSD algorithm for ML detection.

2.1 The “Bad Channel” Effect

In this section, we will demonstrate that the inferior performance of suboptimal detection compared

to ML detection is mainly caused by the occurrence of bad channel realizations.

2.1.1 Detector Performance and Bad Channels

In what follows, we will use the singular value decomposition (SVD) H = UΣVH, where the diagonal

matrix Σ contains the singular values σm, m = 1, . . . ,MT, of H and the matrices U and V contain,

respectively, the left and right singular vectors of H as columns [59]. We assume that the σm are

indexed in nonincreasing order. The condition number cH = σ1/σMT
≥ 1 is the ratio of the largest to

smallest singular value. For a bad (poorly conditioned) channel, cH is large.

Experiments suggest that the performance of suboptimal detection schemes strongly depends on

the channel’s condition number cH. In Figure 2.1(a), the symbol error rate (SER) performance of

the various detection schemes is shown versus the condition number of the channel realization. In

this simulation, we used a MT = MR = 4 channel with iid Gaussian channel matrix entries, 4-QAM
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modulation, and an SNR of 15 dB. It can be seen that there is a significant performance gap between

linear (i.e., ZF or MMSE) and ML detection for cH about 4 or larger, and also between ZF-based NC

(with layer sorting using the PSNRs, cf. (1.17)) and ML detection for cH about 8 or larger.

The impact of this behavior on the average SER performance of suboptimal detection of course

depends on the probability with which bad channels occur. In Figure 2.1(b), we show the cumulative

distribution function (cdf) of cH estimated in the course of the simulation described above. It is seen

that the probability that cH exceeds a value of 8, 10 and 20 is about 50%, 30% and 9%, respectively.

This suggests that bad channels occur frequently enough to cause a significant degradation of the

average performance of suboptimal detection schemes. Theoretical investigations show that for an

increasing number of transmit and receive antennas the cdf is essentially expanded (scaled) in the

cH direction [71]. We can thus expect the bad channel effect to become even worse for an increasing

number of antennas.

While the performance of ML detection is fairly robust to bad channel realizations, it is noteworthy

that the computational complexity of the FPSD algorithm for ML detection significantly increases for

bad channels [8, 29]. Thus, bad channels either yield a poor performance of suboptimum detection

schemes or result in an increased computational complexity of ML detection. Current detection

algorithms are unable to achieve near-ML performance for bad channels at low computational cost.

2.1.2 Geometrical Analysis

The starting point for developing the following improved detection methods is a geometrical analysis

of the decision regions of suboptimal detection methods in the case of bad channel realizations.

ZF Detection

We first consider linear detection based on ZF equalization. As we also discussed in Section 1.8.2, for a

perfectly conditioned channel, i.e., cH = 1, we have HHH ∝ I, and the ML detector in (1.13) becomes

equal to the ZF detector solution d̂ZF = QA{yZF}. On the other hand, for a poorly conditioned

channel HHH is quite different from being proportional to I. Thus, the components of w̃ = H#w are

generally correlated, and the ZF solution d̂ZF must be expected to be far away from the optimal ML

solution2 d̂ML.

For a geometrical analysis, we consider the probability density function (pdf) of the ZF-filtered

Gaussian noise vector w̃. The contour surfaces of this pdf are hyperellipsoids [72]. Using H = UΣVH ,

the correlation matrix Rew = σ2
w(HHH)−1 (cf. (1.9)) of w̃ can be written as

Rew = σ2
w VΣ−2VH .

The mth principal axis of the hyperellipsoids is such that its direction is given by the mth eigenvector

2Note that even if cH > 1, it is possible that H has orthogonal columns, however, with different norms. In this case,

HHH is diagonal, which means that the components of ew are still uncorrelated and ZF detection will still be optimal.

However, simulations show that for poorly conditioned channel realizations a situation close to this case is very unlikely.
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Figure 2.2: Probability density function of yZF and ZF and ML decision regions in the ZF-equalized

domain for a MT = MR = 2 channel with BPSK modulation. (a) Channel realization with condition

number 1.3. (b) Channel realization with condition number 7.1. The ZF decision regions are the four

quadrants; the ML decision regions are indicated by dash-dotted lines.

vm of Rew, which is equal to the mth column of V, and its length is proportional to the square root

of the mth eigenvalue of Rew [72], which is equal to

σ ew,m =
σw

σm
. (2.1)

Thus, ZF equalization results in a distortion of the noise pdf with respect to the spherical geometry

of the pdf of the original noise vector w.

For illustration, Figure 2.2 shows the pdf of the received vector after ZF equalization, yZF, for

two different realizations of a real-valued MT = MR = 2 channel with condition numbers 1.3 and

7.1, respectively. The modulation format is BPSK. This figure also shows the ZF decision regions

(the four quadrants) and the ML decision regions (indicated by dash-dotted lines). The ZF and

ML decision regions are similar for the “good” channel with condition number 1.3, whereas they are

dramatically different for the “bad” channel with condition number 7.1. Indeed, in the latter case

the ML decision regions are nicely matched to the distorted noise pdf, but the ZF decision regions

are not because they correspond to simple componentwise quantization. In particular, the boundary

lines of the ML decision regions differ mainly by offsets that are orthogonal to the dominant principal

axis vMT
(corresponding to the dominant eigenvalue σ2

ew,MT
of Rew and, thus, to the dominant noise

component). This is intuitive, since any shift in the received vector in the direction of the dominant

noise component is very likely caused by noise. For bad channels, it is thus desirable that the decision

regions are approximately invariant to shifts in the direction of the dominant principal axis vMT
.

In general, the decision regions of linear detection schemes cannot have this property because their

boundary lines always go through the origin.
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Figure 2.3: Same as Figure 2.2(b), but with MMSE decision regions (a) and ZF-based NC decision

regions (b) instead of ML decision regions.

MMSE Detection

Figure 2.3(a) shows the decision regions of MMSE equalization based detection in the ZF equalized

domain3 for the bad channel realization (condition number 7.1). The angles of the boundary lines

of the MMSE decision regions are better matched to the distorted noise pdf than those of the ZF

decision regions; however, the boundary lines still go through the origin and thus cannot implement

the offsets that would allow them to become similar to the ML decision regions.

NC Detection

Finally, Figure 2.3(b) shows the decision regions (again represented in the ZF equalized domain) for

ZF-based NC. Because the first symbol is simply ZF detected, one boundary of the corresponding

decision region is fixed to the ordinate, which is again quite different from the ML decision regions.

For successive symbols, offsets can be realized only to a certain extent. As a consequence, ZF-based

NC detection performs better than ZF detection but is still significantly poorer than ML detection.

2.2 The Idealized Bad Channel Model

The previous results suggest that the average performance of suboptimal detection schemes can be

improved by making these schemes robust to bad channels. Specifically, the decision regions should

be made approximately invariant to a shift in the direction of the dominant noise axis. As a basis for

3We represent and compare the decision regions of all detectors in a common domain, namely, the domain obtained

after ZF equalization. ZF equalization by itself does not imply any loss of optimality and has the advantage that the

symbols are at the correct positions.
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Figure 2.4: Ratio of noise variances σ2
m/σ

2
m+1 in the direction of consecutive principal axes in the

ZF-equalized domain. (a) Average ratios E{σ2
m/σ

2
m+1} versus cH of the respective channel realization

for a MT = MR = 4 iid Gaussian channel. (b) cdf of the ratios σ2
m/σ

2
m+1 for cH = 70.

such a modification, we will first formulate the idealized bad channel (IBC) model. It will allow us to

derive an efficient near-ML detection algorithm for bad channels and it represents the basis for the

LSD and the SPA.

2.2.1 Formulation of the IBC

Our IBC model can be motivated as follows. According to (2.1), i.e., σ2
ew,m = σ2

w/σ
2
m, the ratios of the

noise variances in the directions of consecutive principal axes are given by σ2
ew,m+1/σ

2
ew,m = σ2

m/σ
2
m+1.

Figure 2.4(a) shows estimates of the average ratios E{σ2
m/σ

2
m+1} for a MT = MR = 4 iid Gaussian

channel versus cH = σ2
1/σ

2
4 (i.e., the E{σ2

m/σ
2
m+1} were estimated by averaging over different real-

izations of H with a given condition number cH). It can be seen that for a bad channel (i.e., large

cH), on average, σ2
3/σ

2
4 is much larger than the other ratios σ2

2/σ
2
3 and σ2

1/σ
2
2. Thus, on average, σ2

4 is

much smaller than the other singular values σ2
1, σ

2
2, σ

2
3 or, equivalently, the largest principal-axis noise

variance σ2
ew,4 = σ2

w/σ
2
4 is much larger than the other principal-axis noise variances σ2

ew,1, σ
2
ew,2, σ

2
ew,3.

Simulations show that a similar behavior is exhibited also by higher-dimensional channels. To demon-

strate that the ratios σ2
m/σ

2
m+1 are well concentrated around their mean E{σ2

m/σ
2
m+1}, Figure 2.4(b)

shows the cdf of σ2
m/σ

2
m+1 for cH = 70.

This suggests that for a bad channel, the largest noise variance (corresponding to the smallest

singular value σMT
of H and the associated principal axis vMT

) dominates all the other noise variances

(see also [73] in context of multi-user precoding) and, hence, causes the main part of the bad channel

effects that plague suboptimal detection. Therefore, we approximate a bad channel H by the IBC

model H̃ that is constructed by setting the smallest singular value equal to zero and the remaining
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singular values equal to the largest singular value:

H̃
4
= UΣ̃VH , with σ̃MT

= 0 and σ̃1 = σ̃2 = · · · = σ̃MT−1 = σ1 . (2.2)

Note that whereas the singular vectors vm of the respective channel realization H—and thus also the

principal axis directions of the ZF-domain noise w̃ as well—are maintained, the principal-axis noise

variances are modified because we use an infinite dominant noise variance σ̃2
ew,MT

= σ2
w/σ̃

2
MT

= ∞ and

equal remaining noise variances σ̃2
ew,m = σ2

w/σ̃
2
m = σ2

w/σ
2
1 = σ2

ew,1 for m = 1, . . . ,MT − 1. (Actually, we

will see presently that the values of these remaining noise variances do not matter as long as they are

finite and equal.) Indeed, approximating a channel H with the IBC H̃ is equivalent to approximating

the hyperellipsoids constituting the contour surfaces of the pdf of w̃ by hypercylinders of infinite

length whose axis is the dominant noise axis vMT
. Of course, actual channel realizations will not

conform to the IBC. In particular, iid Gaussian channels H have full rank with probability one [71].

Our IBC approximation is motivated by the desire to make the decision regions invariant to a shift in

the direction of vMT
, as described in Subsection 2.1.2.

2.2.2 ML Detection for the IBC

Although the IBC H̃ is only a rough approximation of a bad channel H, it models an essential part of

the “bad channel” effects. We now consider ML detection for the IBC (termed IML detection); this

will later serve as a basis for developing an efficient near-ML detector for bad channels. A different

application (multi-user precoding) of our IBC approximation can be found in [20].

According to (1.13), the IML decision rule is

d̂IML = arg min
d∈D

{
(d−yZF)H H̃HH̃ (d−yZF)

}
. (2.3)

Using (2.2), we have

H̃HH̃ = VΣ̃2VH = σ2
1

(
I − vMT

vH
MT

)
= σ2

1 P⊥
vMT

,

where P⊥
vMT

4
= I−vMT

vH
MT

denotes the orthogonal projector onto the space orthogonal to vMT
. Thus,

(2.3) becomes

d̂IML = arg min
d∈D

{
(d−yZF)HP⊥

vMT
(d−yZF)

}
= arg min

d∈D

{∥∥P⊥
vMT

(d−yZF)
∥∥2
}
, (2.4)

where we have used P⊥
vMT

= P⊥H
vMT

P⊥
vMT

. Because of the projector P⊥
vMT

the norm of the component

of d − yZF perpendicular to vMT
is minimized, while the component of d − yZF in the direction of

vMT
(the dominant noise direction) is completely suppressed in this minimization. Thus, as desired,

the IML decision regions are invariant to this latter component.

For an alternative formulation and geometrical interpretation of the IML decision rule (2.4), let

us define the reference line L as the straight line that is parallel to the dominant noise axis vMT
and

whose offset from the origin is yZF, i.e.

L : yL(α)
4
= αvMT

+ yZF , (2.5)
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Figure 2.5: Illustration of IML detection for a real-valued MT =MR = 2 channel and BPSK mod-

ulation. (a) pdf of yZF for the IBC corresponding to the bad channel of Figure 2.2 and Figure 2.3

and IML decision regions indicated by dash-dotted lines. (b) Reference-line geometry of IML detection

according to ( 2.7).

where α ∈ C denotes the line parameter. We maintain that the norm
∥∥P⊥

vMT
(d−yZF)

∥∥ minimized in

(2.4) is equal to the distance of d from L. Indeed, let yL(αmin(d)) denote the point of L closest to a

given data vector d, i.e.

αmin(d)
4
= arg min

α∈C

{∥∥d − yL(α)
∥∥2
}

= arg min
α∈C

{∥∥d − (αvMT
+ yZF)

∥∥2
}

= vH
MT

(d − yZF). (2.6)

Then, the distance of d from L is given by
∥∥d− yL(αmin(d))

∥∥, and this distance can easily be shown

to be equal to
∥∥P⊥

vMT
(d−yZF)

∥∥:

∥∥d − yL(αmin(d))
∥∥ =

∥∥d − yL
(
vH

MT
(d − yZF)

)∥∥ =
∥∥d − vH

MT
(d−yZF)vMT

− yZF

∥∥

=
∥∥(I − vMT

vH
MT

)(d−yZF)
∥∥ =

∥∥P⊥
vMT

(d−yZF)
∥∥ .

Thus, as claimed, ML detection for the IBC is equivalent to finding the data vector d ∈ D that

minimizes the distance
∥∥d − yL(αmin(d))

∥∥ from the reference line L:

d̂IML = arg min
d∈D

{∥∥d − yL(αmin(d))
∥∥2
}
. (2.7)

Therefore, d̂IML is the data vector closest to the reference line L. This formulation will be essential

for developing an efficient ML detection algorithm in Section 2.3.

To continue the example of Figure 2.2 and Figure 2.3, Figure 2.5(a) depicts the pdf of yZF for the

IBC associated with the bad channel realization with cH = 7.1. The IML decision regions are also

shown. The geometry of the reference-line formulation of IML detection (2.7) is illustrated in Figure

2.5(b) for one specific realization of yZF.
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2.3 An Efficient ML Detector for the IBC

In this section, we develop an efficient ML detection algorithm with complexity O(M 3
T) for the IBC.

Thus, it turns out that ML detection for the IBC is not exponentially complex in the number of

transmit antennas MT. This is possible, since the structure induced by the IBC is very strong. We

first show that the reference-line formulation of the IML detector derived in the previous section allows

a significant reduction of the search set D.

2.3.1 The Reduced Search Set

Let Zr be the ZF decision region (in the ZF-equalized domain) corresponding to a data vector d(r) ∈ D.

That is, for any y ∈ Zr the ZF decision is d̂ZF = d(r). Because in the ZF-equalized domain the ZF

decision is a simple componentwise quantization, every y ∈ Zr is closer to d(r) than to any other data

vector d(r′) ∈ D, r′ 6= r. We shall also say that d(r) is “the data vector corresponding to Zr”, where

Zr
4
=
{
y | ‖d(r) − y‖2 ≤ ‖d(r′) − y‖2, r 6= r′

}
. (2.8)

THEOREM 1. The ML detector for the IBC in (2.4) is equivalent to

d̂IML = arg min
d∈ eD

{∥∥P⊥
vMT

(d−yZF)
∥∥2
}
, (2.9)

where the reduced search set D̃ ⊂ D is given by all data vectors d(r) ∈ D that correspond to ZF decision

regions Zr pierced by the reference line L in (2.5).

Proof. As before, let yL(αmin(d)) denote the point of L closest to d, so that
∥∥d − yL(αmin(d))

∥∥
expresses the distance between d and L (cf. (2.6)). Assume (proof by contradiction) that d̂IML does

not correspond to any ZF decision region that is pierced by L, i.e., no point of L lies in the ZF decision

region of d̂IML. Hence, in particular, yL(αmin(d̂IML)) does not lie in the ZF decision region of d̂IML,

and thus it must lie in the ZF decision region Zr of some other data vector d(r) ∈ D, d(r) 6= d̂IML.

That is, yL(αmin(d̂IML)) is closer to d(r) than to d̂IML, i.e.,

∥∥d(r) − yL(αmin(d̂IML))
∥∥ <

∥∥d̂IML − yL(αmin(d̂IML))
∥∥.

For this other data vector d(r), we also have

∥∥d(r) − yL(αmin(d
(r)))

∥∥ ≤
∥∥d(r) − yL(αmin(d̂IML))

∥∥

because yL(αmin(d
(r))) is the point of L closest to d(r), and thus yL(αmin(d̂IML)) cannot be closer to

d(r) than yL(αmin(d
(r))). Combining the two inequalities from above yields

∥∥d(r) − yL(αmin(d
(r)))

∥∥ <
∥∥d̂IML − yL(αmin(d̂IML))

∥∥,

which means that d(r) is closer to L than d̂IML. But we know from (2.7) that d̂IML is the data vector

closest to L. Hence, we have a contradiction, and the proof is complete.
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Thus, the reduced search set D̃ consists of all data vectors d ∈ D whose ZF decision regions are

pierced by the reference line L. To characterize D̃, it is sufficient to specify for each d ∈ D̃ an arbitrary

point y of the decision region corresponding to d, since d can easily be recovered from y by using

componentwise quantization according to the symbol alphabet A, i.e. d = QA{y}. The idea behind

the algorithm proposed next is that these points can be found in L, and thus the search for D̃ can be

restricted to L.

2.3.2 Partitioning of the Reference Line

The intersection of the ZF decision regions with the reference line L induces a partitioning of L. We

will now show that for a wide class of symbol alphabets, this partitioning can be calculated easily.

Subsequently, this will serve as a basis for an efficient determination of the reduced search set D̃.

We assume that the symbol alphabet A is “line-structured”. By this we mean that the boundaries

of the symbol decision regions that are associated with the quantization operation QA{y} of some

complex value y ∈ C (cf. (1.6)) are given by straight lines. Examples of line-structured alphabets are

QAM and PSK alphabets but not, e.g., an hexagonal alphabet. The boundary lines of the symbol

decision regions for the 4-QAM and the 8-PSK alphabet are illustrated in Figure 4.2(a) and Figure

4.3(a), respectively.

Let P denote the number of these boundary lines. The pth boundary line in the complex-valued

symbol domain can be written as

b(p)(β) = β u(p) + o(p) , β ∈ R, p = 1, . . . , P , (2.10)

where u(p) ∈ C and o(p) ∈ C define direction and offset, respectively. For given u(p) and o(p) we move

along b(p) by varying β. For example, the 4-QAM alphabet A = 1/
√

2 {1+ j,−1+ j,−1− j, 1− j} has

P = 2 orthogonal boundary lines that are given by the real and imaginary axis described by u(1) = 1,

o(1) = 0, and u(2) = j, o(2) = 0, respectively (cf. Figure 4.2(a)).

We now consider the partitioning of the reference line L that is induced by the ZF decision regions

Zr (cf. (2.8)), which are bounded by MTP hyperplanes. The (m, p)th hyperplane is obtained by

setting the mth component of a vector y equal to the pth boundary line (2.10). The partitioning of L
is induced by the intersection of L with all hyperplanes. The intersection with the (m, p)th boundary

hyperplane yields a straight boundary line B(m,p) ⊂ C for the line parameter α that can be calculated

by equating (2.10) and the mth component of (2.5), i.e., yL,m(α) = b(p)(β). This gives

α vMT,m + yZF,m = β u(p) + o(p),

and we obtain

B(m,p) : α = α(m,p)(β) = β
u(p)

vMT,m︸ ︷︷ ︸
a(m,p)

+
1

vMT,m
(o(p) − yZF,m)

︸ ︷︷ ︸
b(m,p)

= β a(m,p) + b(m,p), (2.11)

which describes a straight line in C with direction a(m,p) and offset b(m,p). If we parameterize the

reference line yL(α) by α = α(m,p), the mth component of yL(α) is equal to the pth boundary line
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j
α

I

αR

MT = MR = 8, 4-QAM

specific cell

Figure 2.6: Boundary lines B(m,p) in the line paramater α = αR + jαI of the reference line L for

a MT = MR = 8 channel and 4-QAM modulation. (The boldface line segment will be addressed at a

later point.)

(2.10) of the symbol decisions regions. Thus, the pth boundary line appears rotated and shifted in

the parameter α of the reference line yL(α), which corresponds to the intersection of the (m, p)th

hyperplane of the ZF decision regions with yL(α). Furthermore, it is easy to verify that the angles

between the P boundary lines B(m,p), p = 1, . . . , P corresponding to the mth component are equal to

the angles between the boundary lines b(p)(β) in the symbol domain.

The superposition of all the MTP boundary lines B(m,p), m = 1, . . . ,MT, p = 1, . . . , P partition

the line parameter α (and thus the reference line L) into cells, and each of these cells correspond to

the intersection of a ZF decision region with L. In Figure 2.6, this cell partitioning of α is illustrated

for a MT = MR = 8 channel and 4-QAM modulation; we obtain MTP = 16 boundary lines. As shown

in Section 2.3.1, the reduced search set D̃ consists of all data vectors d ∈ D whose ZF decision regions

are pierced by L. Thus, we have |D̃| elementary cells C(r) ⊂ C, r = 1, . . . , |D̃|, where the specific cell

C(r) corresponds to the intersection of the ZF decision region Zr with L. Thus, all points of a given

C(r) will lead to the same ZF-quantized data vector. More specifically, for any α ∈ C(r) the ZF decision

(quantization) of the corresponding vector yL(α) leads to the same result d(r), i.e.,

d(r) = QA{yL(α)}, for any α ∈ C(r).

The data vector d(r) then belongs to the reduced search set D̃ because it corresponds to a ZF decision

region that is pierced by L. Therefore, any collection of arbitrary cell points—one point for each

cell—defines the reduced search set D̃. Note that the ZF equalized received vector yZF = H#r is

obtained for α = 0, see (2.5). Thus, the result of ZF detection, d̂ZF = QA{yZF}, also belongs to the

reduced search set D̃.
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2.3.3 Size of Reduced Search Set

The results of the previous section allow us to derive an upper bound on the size |D̃| of the reduced

search set (this upper bound will be tight for BPSK and 4-QAM alphabets). To find this upper bound,

recall that the cell partitioning is defined by the MTP boundary lines in (2.11). Assuming that k − 1

boundary lines are given, it is easy to verify that each additional boundary line yields at most k new

cells. The additional boundary line will yield exactly k new cells if and only if it intersects at different

points with all the k − 1 previous lines. Thus,

|D̃| ≤ |D̃|max = 1 +

MTP∑

k=1

k =
(MTP )2

2
+
MTP

2
+ 1 . (2.12)

This upper bound is tight, i.e. |D̃| = |D̃|max, for BPSK and 4-QAM alphabets, since there will be no

parallel boundary lines and only two boundary lines will intersect in a particular point. If there are

parallel boundary lines (e.g., 16-QAM) and/or if more than two boundary lines intersect in the same

point (e.g., 8-PSK), then |D̃| < |D̃|max.

Comparing |D̃|max with |D| = |A|MT, we see that for reasonably large |A| and MT we have |D̃| ¿
|D|. For example, for a MT = MR = 8 channel and 4-QAM modulation we obtain |D̃| = |D̃|max = 137

pierced decision regions (i.e. data vectors in D̃) out of a total of |D| = 48 = 65536 possible transmitted

data vectors. One of these |D̃| data vectors is the ML solution for the IBC (cf. (2.9)). This illustrates

the reduction of complexity achieved by the reduced search set D̃.

Of course, the problem remains to find all the data vectors in D̃ efficiently. The next section

provides a solution to this problem.

2.3.4 Efficient Determination of Reduced Search Set

According to the previous section, the reduced search set D̃ can be determined by finding an arbitrary

point α out of each cell C(r) ⊂ C, since the corresponding vector yL(α) for α ∈ C(r) defines the data

vector d(r) ∈ D̃ associated to C(r) by d(r) = QA{yL(α)}. To find points α out of each cell in an

efficient manner, we suggest to systematically search the reference line along each boundary line.

To search along the (m, p)th boundary line B(m,p) (2.11), we calculate the intersection points

α
(m,p; m′,p′)
int of B(m,p) with all B(m′,p′), (m′, p′) 6= (m, p) that are not parallel to B(m,p). Equating

α(m,p)(β) = β a(m,p) + b(m,p) with α(m′,p′)(β′) = β′a(m′,p′) + b(m
′,p′) and solving for β yields

β(m,p; m′,p′) =
a

(m′,p′)
R b

(m′,p′)
I + a

(m′,p′)
I

(
b
(m,p)
R − b

(m′,p′)
R

)

a
(m′,p′)
R a

(m,p)
I − a

(m,p)
R a

(m′,p′)
I

,

where the subscripts R and I denote the real and imaginary parts of a and b, respectively, and the

intersection point of B(m,p) and B(m′,p′) is obtained as

α
(m,p; m′,p′)
int = β(m,p; m′,p′) a(m,p) + b(m,p). (2.13)
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jαI

αR

αstart

α
(m,p,m1,p1)
int step 2

step 1

B(m,p)

Figure 2.7: Algorithm for determining the data vectors d(r) ∈ D̃ corresponding to all cells bounded by

the (m, p)th boundary line B(m,p) (cf. the boldface line in Figure 2.6). Based on the first intersection

point α
(m,p; m1,p1)
int , the first cell point αstart and the associated first data vector d(1) are calculated.

All remaining data vectors d(r) ∈ D̃ associated with B(m,p) are uniquely determined by the remaining

intersection points, using the hops indicated by the dotted and dashed arrows.

As we move along B(m,p), the intersection points with the other boundary lines (calculated pre-

viously) tell us where we cross the border from one cell to the next.4 We can sort these intersection

points according to, e.g., monotonically increasing real parts, and let α
(m,p; m1,p1)
int be the intersection

point with the smallest real part, i.e.

(m1, p1) = arg min
m′,p′

α
(m,p; m′,p′)
int,R .

Figure 2.7 shows B(m,p) (this could be the boldface line depicted in Figure 2.6) and the intersection

point α
(m,p; m1,p1)
int . To move from α

(m,p; m1,p1)
int into the first cell, we add a small offset αoffset and obtain

the new point αstart = α
(m,p; m1,p1)
int + αoffset. The vector in C

MT on the reference line L corresponding

to αstart is given by y(1) = yL(αstart) = αstartvMT
+yZF. We then obtain our first data vector d(1) ∈ D̃

associated with B(m,p) as d(1) = QA{y(1)}.
The remaining data vectors d(r) ∈ D̃ along B(m,p) are now determined by alternately “hopping”

over B(m,p) and an intersecting boundary line as illustrated in Fig. 2.7. At each intersection, we

perform one step consisting of two hops. The first hop (indicated by the dotted arrow) is over B(m,p),

i.e., the current search line; this corresponds to an update of the mth data vector component across

the pth boundary. The second hop (indicated by the dashed arrow) is over B(m1,p1), i.e., our first

intersecting boundary line; this corresponds to an update of the m1th data vector component across

the p1th boundary.

These data vector component updates can be performed without calculating new α values or

corresponding yL(α) vectors (i.e., no hops are actually implemented). Suppose we just obtained a

specific data vector d(r) ∈ D̃ and wish to determine the next data vector d(r+1) ∈ D̃ corresponding

to the cell we would reach by hopping over the intersecting boundary line B(m′,p′). Now by definition,

4For simplicity of exposition, we assume that the intersection points of any two boundary lines are different. This

holds for arbitrary QAM constellations; however, it does not hold for PSK constellations with |A| > 4 because there all

the P boundary lines in the symbol plane intersect at the origin, and this geometry is maintained in P. For example,

for 8-PSK we obtain MT intersection points, each of which is the intersection of P = 4 boundary lines. However, these

points are known a priori and the following algorithm can easily be extended to this situation.
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B(m′,p′) corresponds to the intersection of the (m′, p′)th boundary hyperplane of the ZF decision regions

with the reference line L. If the line parameter α crosses B(m′,p′), the m′th component of yL(α) crosses

the p′th boundary line of the symbol decision regions (all other components of yL(α) remain in the

same symbol decision region). Thus, to determine d(r+1) we just have to update the m′th component

of d(r) according to the p′th boundary line of the symbol decision regions. Using d(r), this update for

d(r+1) can be written as

d(r+1)
m =




d

(r)
m , if m 6= m′,

d
(r)
m′ + ∆d

(r)
m′,p′ , if m = m′,

for m = 1 . . .MT, or equivalently

d(r+1) = d(r) + ∆d
(r)
m′,p′em′ , (2.14)

where em′ refers to the m′th unit vector. Here, the update value ∆d
(r)
m′,p′ depends on the m′th compo-

nent of d(r) and on the p′th boundary line. For example, for 4-QAM we have

∆d
(r)
m′,p′ =




−2j d

(r)
m′,I , if p′ = 1 ,

−2 d
(r)
m′,R , if p′ = 2 .

Here, the update simply amounts to flipping the imaginary part (for p′ = 1) or the real part (for

p′ = 2) of the m′th component of d(r).

If we perform this systematic search along arbitrary MTP−1 boundary lines B(m,p), it is guaranteed

that all fundamental cells C(r) for α are taken into account and thus all data vectors in D̃ are found.

It is evident that several data vectors will be multiple obtained. The search along B(m,p) yields at

most 2MTP different data vectors, which results in a total maximum of 2MTP (MTP − 1) obtained

data vectors. Compared with |D̃|max = (MTP )2/2 +MTP/2 + 1 (cf. (2.12)), we see that on average

each data vector d ∈ D̃ is approximately found 4 times. For example, for a MT = MR = 8 channel

and a 4-QAM alphabet we find 480 data vectors, of which 137 are different. But most of the multiply

checked data vectors are obtained through efficient single component updates according to (2.14).

This, in particular, enables an efficient recursive calculation of the corresponding distances.

2.3.5 Efficient Calculation of Distances

According to Theorem 1, we have to minimize the distance

ψ2
IML

(
d(r)

) 4
=
∥∥P⊥

vMT
(d(r)−yZF)

∥∥2
(2.15)

over all data vectors d(r) ∈ D̃ to find the ML solution for the IBC. Using P⊥
vMT

= I − vMT
vH

MT
and

ξ(d(r))
4
= vH

MT
(d(r) − yZF), this distance can be written as

ψ2
IML

(
d(r)

)
=
∥∥d(r) − yZF − ξ(d(r))vMT

‖2,

which has a computational effort of O(MT). In the previous section, we have shown how to determine

D̃ efficiently. We now present an efficient recursive algorithm for calculating ψ2
IML

(
d(r)

)
based on the

single component update according to (2.14).



2.3 An Efficient ML Detector for the IBC 31

Again, we systematically search along the boundary line B(m,p). Suppose that ψ2
IML

(
d(r)

)
and

ξ(d(r)) has already been determined, and that the next data vector d(r+1) corresponds to a hop over

the intersecting boundary line B(m′,p′) (cf. Figure 2.7). As was shown, d(r+1) is a neighbor of d(r) that

differs from d(r) only in the m′th component, namely, by ∆d
(r)
m′,p′ . Thus, the distance for d(r+1) is

ψ2
IML

(
d(r+1)

)
=
∥∥P⊥

vMT

(
d(r) + ∆d

(r)
m′,p′em′ − yZF

)∥∥2

=
∥∥P⊥

vMT

(
d(r)−yZF

)∥∥2
+
∥∥P⊥

vMT
∆d

(r)
m′,p′em′

∥∥2

+ 2 Re
{(

d(r)−yZF

)H
P⊥H

vMT
P⊥

vMT
∆d

(r)
m′,p′em′

}

= ψ2
IML

(
d(r)

)
+ ∆(r) (2.16)

with

∆(r) =
(
1 − |vMT,m′ |2

)∣∣∆d(r)
m′,p′

∣∣2 + 2 Re
{(
d

(r)
m′ − yZF,m′ − vMT,m′ξ(d(r))

)
∆d

(r)∗
m′,p′

}
. (2.17)

Furthermore, ξ(d(r)) can be updated as ξ(d(r+1)) = ξ(d(r)) + v∗MT,m′∆d
(r)
m′,p′ . This recursion is ini-

tialized by calculating ψ2
IML

(
d(r)

)
and ξ(d(r)) in a straightforward manner. The two updates, i.e. the

calculation of ψ2
IML

(
d(r+1)

)
and ξ(d(r+1)), have a complexity that is independent from MT.

2.3.6 Summary of ML Detection for the IBC

We have now developed the main elements of our efficient ML detection algorithm for the IBC.

Note that we still assume that the actual channel has IBC structure, i.e. H = H̃ (cf. (2.2)). In an

implementation of this algorithm, the recursive procedure described in Section 2.3.4 and Section 2.3.5

has to be performed for all MTP boundary lines except for the last one (whose data vectors have all

been processed before), so that all data vectors d ∈ D̃ are taken into account and the ML solution

according to (2.9) is obtained.

The principal steps of our algorithm can finally be summarized as follows.

• Preparation steps:

– Determine the right singular vector vMT
corresponding the zero singular value of H̃. For

general (non-IBC) channels, this step will be adressed in more detail in Section 2.4.

– Calculate the ZF equalizer GZF = H̃#.

• Calculate the ZF equalized received vector yZF = GZFr.

• Determine all MTP boundary lines B(m,p) in L (see (2.11)).

• Calculate all intersection points (2.13) and order them for each B(m,p), e.g., according to

increasing real parts.

• For each B(m,p), determine the associated data vectors d(r) ∈ D̃ and their distances ψ2
IML

(
d(r)

)

as discussed in Section 2.3.4 and Section 2.3.5. The processing associated to B(m,p) is summa-

rized in Figure 2.8.

• Find d̂IML ∈ D̃ that has minimum distance ψ2
IML

(
d(r)

)
, r = 1, . . . |D̃|.
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section with B(m′,p′)

For each point of inter-

Initialization: calculation of d
(1), ψ2

IML(d(1))

Update d and ψ2
IML to hop over B(m′,p′)

Update d and ψ2
IML to hop over B(m,p)

Update d and ψ2
IML to hop over B(m,p)

Figure 2.8: Processing associated to the (m, p)th boundary line B(m,p).

2.3.7 Computational Complexity

As discussed in Section 1.7.3, we split the computational complexity into two components: (i) Prepa-

ration complexity Cprep, and (ii) vector complexity Cvector. For MT = MR, we now analyze how the

complexity of the proposed ML detector for the IBC depends on the parameters |A| and MT that

determine the transmission rate. The preparation complexity Cprep is caused by the computation of

GZF and vMT
, which has the dominant complexity of O(M 3

T) (see, e.g., [59] when the SVD of H̃ is

employed). The vector complexity Cvector is composed as follows:

• Determination of all MTP boundary lines in L: complexity O(MTP ).

• Calculation of all intersection points: complexity O(M 2
TP

2).

• Calculation of MTP initial data vectors and their associated distances: complexity O(M 2
TP ).

• Calculation of roughly 2M 2
TP

2 distance updates according to (2.16): complexity O(M 2
TP

2).

Hence, the overall vector complexity Cvector of our algorithm is O(M 2
TP

2). This is quadratic in the

number of transmit antennas MT and, since usually P ∝ |A|, quadratic in the symbol alphabet size

|A|. Thus, in contrast to ML detection for an arbitrary realization H, ML detection for the IBC H̃ is

not exponentially complex in the number of antennas MT. This is due to the strong structure induced

by the IBC model.

2.4 The Line Search Detector

The algorithm presented in the last section performs ML detection for the IBC. This detector is only

of theoretical interest because actual channel realizations will not conform to the IBC. Thus, we now
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extend our algorithm to an arbitrary, i.e. non-IBC, MIMO channel H.

2.4.1 Algorithm Statement

Specifically, we propose to use the IBC approximation H̃ of H to find the reduced search set D̃, and

then to minimize the “true” ML distance

ψ2
ML

(
d(r)

) 4
= ‖r − Hd(r)‖2

over all data vectors d(r) in the reduced search set D̃. The resulting algorithm we refer to as the line

search detector (LSD). The corresponding detected data vector d̂LSD is given by

d̂LSD
4
= arg min

d(r)∈ eD
ψ2

ML

(
d(r)

)
. (2.18)

Note that d̂LSD is not guaranteed to be equal to the ML decision d̂ML since we minimize ψ2
ML not over

the whole data set D of size |A|MT (which would have a computational complexity that is exponential

in MT) but over the reduced set D̃. On the other hand, the complexity of our algorithm is only O(M 3
T)

as will be shown presently.

The algorithm consists of similar steps as the ML detector for the IBC (cf. Section 2.3.6) but with

some important differences:

• Calculate GZF = H# = DZF HH , where DZF
4
= (HHH)−1, and yZF = GZFr. That is, yZF is

now calculated via the true non-IBC channel realization H which is assumed to have full column

rank.

• Determine the dominant eigenvector vMT
of DZF. The vector vMT

is the right singular vector

corresponding to the smallest singular vector of H. Furthermore, vMT
is also the eigenvector

of the inverse Gram matrix DZF associated to its largest singular value. Thus, vMT
can be

efficiently approximated by means of a few iterations of the power method [59], which is given

by the following recursive formula:

v
(z)
MT

=
DZF v

(z−1)
MT∥∥DZF v
(z−1)
MT

∥∥ , z = 1 . . . Z. (2.19)

Here, v
(z)
MT

denotes an approximation to vMT
obtained at the zth iteration of the power method.

This recursion is intitialized with a random vector for v
(0)
MT

. For the determination of the reduced

search set D̃ we simply set vMT
= v

(Z)
MT

. As we will demonstrate in Section 2.6, a few iterations

(e.g., Z = 4) are completely sufficient. In particular, for a bad channel realization with only one

small singular value (i.e., when the IBC is a good model for bad channel realizations) the power

method just requires very few iterations to yield very good approximations to vMT
. In all other

cases (e.g., σ1 ≈ σ2 · · · ≈ σMT
), the power method performs rather poor, i.e. with a few iterations

no accurate approximation to vMT
is obtained. This, however, has no significant impact on the

performance of the LSD, since a very inaccurate IBC model for determining D̃ does not require
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a very accurate vMT
. Thus, for the preparation steps of the LSD no SVD is required. The only

additional preparation effort compared to ZF equalization is the approximation of vMT
via the

power method.

• Using the IBC approximation of H, find the reduced search set D̃ as explained in Section 2.3.4.

• Search D̃ for the data vector minimizing ψ2
ML. Here, we can again calculate the distances

efficiently by means of a recursion similar to (2.16). Recall that through hopping over the

intersecting boundary line B(m′,p′) the data vector d(r+1) is obtained from d(r) via the update

(2.14) of the m′th component by ∆d
(r)
m′,p′ . The associated distance update results in

ψ2
ML

(
d(r+1)

)
= ψ2

ML

(
d(r)

)
+ ∆(r), (2.20)

where the update term ∆(r) is given by

∆(r) = ‖hm′‖2
∣∣∆d(r)

m′,p′

∣∣2 − 2 Re
{

ξ(d(r))Hhm′∆d
(r)
m′,p′

}
. (2.21)

Here, the vector ξ(d(r))
4
= r − Hd(r) can be calculated recursively by using

ξ(d(r+1)) = ξ(d(r)) − hm′∆d
(r)
m′,p′ ,

and ‖hm′‖2 can be precalculated.

2.4.2 Discussion

There are two cases where the LSD is optimum, i.e. d̂LSD in (2.18) and the ML solution d̂ML in (1.5)

coincide:

1. An orthogonal channel: Here, ZF detection is optimum, i.e. d̂ML = d̂ZF, and because d̂ZF ∈ D̃
(see Section 2.3.2) also d̂LSD = d̂ZF.

2. An IBC: Here, d̂LSD = d̂IML = d̂ML.

We can thus expect near-ML performance for very good channels and for bad channels with a single

dominant noise axis. Evidently, for good channel realizations, the LSD (including the determination

of D̃, etc.) is superfluous, and close-to optimum performance can already be achieved with any conven-

tional suboptimum detector (like the simple ZF detector). This could motivate to perform the LSD

just for bad channel realizations and not for every channel realization, which would allow to reduce

the average (over many channel realization) computational complexity of the LSD.

2.4.3 Computational Complexity

For MT = MR, we now study the complexity order of the LSD. Again, the preparation complexity

Cprep and the vector complexity Cvector are treated separately (cf. Section 1.7.3).

The preparation complexity Cprep is composed as follows:
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• Calculation of DZF = (HHH)−1 and GZF = DZFHH : complexity O(M3
T).

• Calculation of vMT
via the power method (cf. (2.19)): complexity O(M 2

T).

• Calculation of ‖hm‖2 for m = 1, · · ·,MT (cf. (2.21)): complexity O(M 2
T).

Thus, the dominant complexity of the preparatory steps is O(M 3
T). The following steps account to

the vector complexity Cvector.

• Determination of all MTP boundary lines in L and their intersection points: complexity

O(M2
TP

2).

• Calculation of MTP initial data vectors and their associated distances: complexity O(M 3
TP ).

• Calculation of roughly 2M 2
TP

2 distance updates according to (2.20) and (2.21): complexity

O(M3
TP

2).

Hence, the overall vector complexity Cvector of the LSD is O(M3
TP

2). This is cubic in the number of

transmit antennas MT and, since usually P ∝ |A|, quadratic in the symbol alphabet size |A|. The

increased Cvector complexity of the LSD compared to the Cvector complexity of the ML detector for the

IBC (cf. Section 2.3.7) is due to the computationally more intensive distance calculations (cf. (2.17)

and (2.21)).

2.5 The Sphere Projection Algorithm

Although the LSD has a complexity order that is just cubic in the number of antennas, flops mea-

surements will show that the LSD is still computationally rather intensive for SM systems of practical

interest. In particular, the construction of the reduced search set involves many computations. In this

section, we will achieve a substantial reduction of complexity through a further reduction of the data

search set. Therefor we constrain the employed symbol alphabet to have constant modulus property,

i.e. |dm| = 1, m = 1, . . . ,M , (including arbitrary PSK constellations like 4-QAM and BPSK). For

an efficient construction of a reduced search set, we explicitly take this property into account. The

resulting sphere-projection algorithm (SPA) [15,17] can be viewed as a simple nonlinear add-on to an

existing suboptimal scheme such as ZF, MMSE, or NC detection. This add-on improves the error-rate

and diversity-gain performance of the suboptimal detector by making it robust to the bad channel

effect discussed in Section 2.1.1.

The add-on construction of the SPA is as follows. Let d̂ denote the result of any conventional

suboptimal detector. This result can be expected to be reasonably good for a good channel. In

order to improve the performance for bad channels, we consider a suitably chosen additional search

set D+ ⊂ D of valid data vectors d that are potentially better than d̂ in the sense of a smaller ML

distance ‖r − Hd‖2. We then minimize ‖r − Hd‖2 over the search set DSP that consists of d̂ and all

data vectors in D+:

d̂SP
4
= arg min

d∈DSP

‖r − Hd‖2, with DSP
4
= {d̂} ∪ D+ . (2.22)
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Figure 2.9: Geometry underlying the SPA. (a) Some boundary lines intersect the intersection circle

I (only possible for Case 1), (b) No boundary line intersects I (possible for Case 1 and Case 2). The

shaded regions indicate (some of) the cells corresponding to data vectors in D+.

The SPA is an add-on to the given suboptimal detector because d̂ is calculated and included in the

total search set DSP.

Due to the constant modulus property of the symbol alphabet, all data vectors d are located on an

MT-dimensional “data hypersphere” H about the origin, with radius R =
√
MT. This geometry will

allow a simple construction of D+ that uses a projection onto the data hypersphere H (this explains

the name SPA).

2.5.1 Construction of the Additional Search Set

The additional search set D+ has to be constructed such that it improves the detector performance

in the bad channel case. Therefore, let us consider a bad channel whose dominant noise component

in the direction of vMT
(i.e., of the reference line L) is much larger than all other noise components.

This channel can again be approximated by an IBC. Because the ML detector for the IBC chooses

the data vector with minimum distance from L (see Section 2.2.2), it makes sense to construct D+

as a set of data vectors that are close to L. On the other hand, we know that all data vectors are

located on the data hypersphere H. With the SPA, we attempt to combine these two properties by

choosing data vectors for D+ that are close to the intersection L∩H. However, this intersection does

not always exist. Therefore, we have to distinguish between two cases:

• Case 1 : If L intersects H, we choose D+ to consist of data vectors d ∈ H located at or at least

close to the intersection L ∩H.

• Case 2 : If L does not intersect H, we choose D+ to consist of data vectors d ∈ H that are close

to L.

In the following, we shall elaborate on both cases.
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Case 1: L intersects H

By using the decomposition yZF = yvMT
+ y⊥

vMT
, where yvMT

= (vH
MT

yZF)vMT
is colinear with vMT

and y⊥
vMT

= P⊥
vMT

yZF is orthogonal to vMT
, the reference line L in (2.5) can be rewritten as

L : yL(α̃) = α̃vMT
+ y⊥

vMT
, with α̃ = α+ vH

MT
yZF ∈ C . (2.23)

The intersection L ∩H corresponds to the equation
∥∥yL(α̃)

∥∥2
= R2 or, equivalently,

|α̃|2 +
∥∥y⊥

vMT

∥∥2
= R2. (2.24)

This defines an intersection circle I for the transformed line parameter α̃ with radius R̃
4
=√

R2 −
∥∥y⊥

vMT

∥∥2
(note that R2 −

∥∥y⊥
vMT

∥∥2 ≥ 0 because we assumed that the intersection L ∩ H
exists).

Next, we find all cells C ⊂ L that are pierced by the intersection circle I. We first calculate all

MTP boundary lines B(m,p). Afterwards, we calculate the intersection points—if they exist—of each

B(m,p) (see (2.11)) with I (defined by (2.24)), i.e.,
∣∣α(m,p)(β) + vH

MT
yZF

∣∣2 = R̃2, (2.25)

where α(m,p)(β) = β a(m,p)+b(m,p). These intersection points are illustrated in Figure 2.9(a). (Here, we

assume that at least one boundary line intersects I. If no such intersection exists although L intersects

H—cf. Figure 2.9(b)— the processing for Case 2 described further below has to be performed.) The

intersection points are then sorted according to their angle. Starting with angle φ = 0 we have

α̃ = R̃ and the first data vector in D+ is obtained as d(1) = QA{yL(R̃)}. Now we move along I
from one intersection point to the next, which again corresponds to hops over subsequent boundary

lines. In this process, we apply the data component update procedure from Section 2.3.4 to obtain the

remaining data vectors d(r) ∈ D+, and we use the recursion (2.20) to efficiently calculate the distances

ψ2
ML

(
d(r)

)
= ‖r − Hd(r)‖2 in (2.22).

In Case I where L intersects H, the size of the resulting additional search set D+ is bounded as

|D+| ≤ 2MTP because each one of the MTP boundary lines B(m,p) has 0 or 2 intersection points with

I. The worst case, |D+| = 2MTP , occurs if and only if all boundary lines intersect I.

Case 2: L does not intersect H

If R2 ≤ ‖y⊥
vMT

‖2, L and H do not intersect (see Figure 2.9(b)). Evidently, y⊥
vMT

(which according

to (2.23) corresponds to α̃ = 0) is the point of L with minimum distance from H. We thus take

d(1) = QA{y⊥
vMT

} as the first data vector in D+. Simulation results indicate that it is advantageous

to include also the nearest neighbors of d(1) in D+. These additional data vectors can easily be

found by substituting the nearest-neighbor symbols for the individual components of d(1). For PSK

constellations with P ≥ 2 (like 4-QAM and 8-PSK), we obtain 2 nearest neighbors for each data vector

component, yielding |D+| = 2MT + 1. For BPSK data modulation (P = 1) we have |D+| = MT + 1.

The distances ψ2
ML

(
d(r)

)
= ‖r−Hd(r)‖2 in (2.22) can again be calculated recursively by using (2.20).

The same procedure is used if L and H intersect but no boundary line intersects the intersection

circle I (cf. the discussion of Case 1 above).
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Discussion

In both Case 1 and Case 2, an important aspect of the SPA is that we look for the point(s) on the

data hypersphere H that is/are closest to the reference line L. In a certain sense, this corresponds

to a projection onto the hypersphere H, which explains the name “sphere-projection algorithm.” In

Case 1 where L and H intersect, the projection points are given by the intersection circle I.

Note that the reduced search DSP
4
= {d̂} ∪ D+ used in (2.22) contains at most 2MTP + 1 data

vectors. Thus, in the worst case |DSP| increases just linearly in the number of transmit antennas

and, since usually P ∝ |A|, linearly in the symbol alphabet size |A|. In contrast, the size of the

reduced search set D̃ used for the LSD increases quadratically in both MT and P (cf. (2.12)). For

example, for a MT = MR = 8 channel and 4-QAM modulation (P = 2) we obtained |D̃| = 137 out of

a total of |D| = 48 = 65536 possible transmitted data vectors. For the SPA, we now have |DSP| ≤ 33.

This illustrates the significant reduction of complexity achieved by exploiting the constant modulus

property of the symbol alphabet. Note however that – in contrast to the LSD – the SPA is not

guaranteed to be optimum for the IBC.

2.5.2 Algorithm Summary and Complexity

Having explained the efficient construction of the additional search set D+, we now summarize the

use of the SPA as an add-on to a suboptimal detector and discuss its computational complexity. The

principal steps of the SPA are as follows.

• Calculate d̂, the result of any given suboptimal detector, and the associated distance ‖r−H d̂‖2.

• Calculate DZF = (HHH)−1 and yZF = DZFHHr.

• Calculate the dominant eigenvector vMT
of DZF using several iterations of the power method

according to (2.19).

• Calculate all boundary lines B(m,p) in L.

• Determine the additional search set D+ and calculate the corresponding distances

– by considering all data vectors whose cells are pierced by the intersection circle I

– or, if I does not exist or if no boundary line intersects I, by considering d(1) = QA{y⊥
vMT

}
and its nearest neighbors.

• Find the minimal distance (including the distance obtained for d̂).

Here, d̂ may be the result of ZF detection, MMSE detection, ZF-based NC, or MMSE-based NC (see

Section 1.8); the resulting SPA variants will be referred to as SPA-ZF, SPA-MMSE, SPA-NC-ZF, and

SPA-NC-MMSE detection, respectively.

The computational complexity of the SPA add-on (not counting the calculation of d̂) can be

assessed as follows. The preparation complexity Cprep has the dominant complexity of O(M 3
T) due
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to the calculation of GZF = DZFHH . The vector complexity Cvector is essentially composed of yZF

calculation with complexity O(M 2
T), two distance calculations with complexity O(M 2

T) and, in the

worst case, of 2MTP − 1 efficient distance updates with total complexity O(M 2
TP ). Hence, the vector

complexity of O(M3
TP

2) for the LSD is reduced to O(M 2
TP ) for the SPA, which is due to the smaller

reduced search set of the SPA. An experimental assessment of SPA’s complexity will be provided in

Subsection 2.6.2.

2.5.3 SPA Variants

To use the SPA as an add-on to ZF detection, we choose d̂ = QA{yZF}. The resulting SPA-ZF

algorithm is the most efficient SPA variant because calculation of yZF is already part of the SPA.

To use the SPA as an add-on to MMSE detection, we choose d̂ = d̂MMSE = QA{yMMSE} where

yMMSE =
(
HHH + σ2

wI
)−1

HHr is the result of MMSE equalization. Furthermore, we replace the

reference line L in (2.23) by the “MMSE-based reference line”

L′ : y(α̃) = α̃vMT
+ P⊥

vMT
yMMSE, with α̃ = α+ vH

MT
yMMSE ∈ C.

This reference line L′ is again parallel to the dominant principal axis vMT
but its offset is the

component of yMMSE (rather than of yZF) perpendicular to vMT
. The resulting SPA-MMSE al-

gorithm can be obtained simply by replacing in the SPA-ZF algorithm DZF = (HHH)−1 with

DMMSE
4
=
(
HHH + σ2

wI
)−1

. The rationale for the SPA-MMSE algorithm is that on average yMMSE

will be closer to the transmitted data vector d than yZF. Note that applying the power method to

DMMSE instead of DZF requires slightly more iterations in order to obtain accurate results for vMT
.

This is because the “regularization term” σ2
wI decreases the ratio of the largest to the second largest

singular value of
(
HHH + σ2

wI
)−1

as compared to (HHH)−1, which slows down the convergence of

the power method [59].

Finally, to combine the SPA with NC detection (either ZF-based or MMSE-based), we propose to

execute the SPA-ZF or SPA-MMSE algorithm, respectively, except for the use of the NC detection

result for d̂. As we will demonstrate in the next section, the SPA-NC-MMSE algorithm is able to

yield near-ML performance with significantly less computational cost than that required by the FPSD

algorithm for ML detection.

2.6 Simulation Results

We now present simulation results in order to assess the error-rate performance and computational

complexity of the proposed LSD and SPA variants in comparison to the conventional ZF, MMSE, NC,

and ML schemes. In our simulations, we considered SM systems with iid Gaussian channels (see also

Section 1.7) employing 4-QAM symbols. In Section 3.7.5 we will also show some performance results

using 8-PSK symbols.
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Figure 2.10: SER versus the number of power method iterations Z, for a MT = MR = 6 channel

and 4-QAM modulation at an SNR of 20 dB. Z = 0 corresponds to a randomly chosen axis vMT
.

2.6.1 SER Performance

We now investigate the uncoded symbol error rate (SER) performance of the various detection schemes.

SER versus Number of Power Method Iterations

First, we study the dependence of the SER on the number of power method iterations Z that is used

to approximate vMT
(cf. (2.19)).

Fig. 2.10 shows the SER versus Z performance for LSD, SPA-ZF, and SPA-MMSE for a MT =

MR = 6 SM system at an SNR of 20 dB. For comparison, the SER achieved with conventional ZF

and MMSE detection is indicated by the horizontal lines. It is seen that for Z ≥ 1, the proposed

detectors yield significant performance improvements. For Z = 0, we used a randomly chosen vMT
; as

can be expected, in this case just negligible performance improvements over ZF or MMSE detection

are achieved. We also can observe that due to the regularization of the MMSE equalizer, SPA-MMSE

requires more iterations of the power method than the SPA-ZF and the LSD. Increasing Z beyond

4 does not yield any additional performance improvement. Thus, we chose Z = 4 in all simulations

presented below.

SER versus SNR Performance

Figure 2.11 and Figure 2.12 show the SER versus SNR performance of the various proposed and

standard detectors for a MT = MR = 4 and a MT = MR = 6 SM system, respectively. For the NC

algorithms, we used layer sorting maximizing the post-equalization SNRs at each detection step (see

Section 1.8.3 and, in particular, (1.16)). The following conclusions can be drawn from these results.

• The LSD performs substantially better that the standard suboptimal detectors.
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Figure 2.11: SER versus SNR performance of the various proposed and standard detectors for a

MT = MR = 4 channel using 4-QAM modulation.

• The SPA add-on significantly improves the performance of the standard suboptimal detectors.

• The SPA schemes using ZF or MMSE detection outperform their respective NC counterparts.

• The MMSE-based schemes (lin., NC, or SPA) outperform their respective ZF-based counterparts.

Note that the MMSE-based schemes are different from the ZF-based schemes in that they require

knowledge about the noise variance.

• For the MT = MR = 4 channel (see Figure 2.11), the SPA-MMSE, SPA-NC-MMSE, and the

LSD perform practically as well as the ML detector (the corresponding SER curves in Figure

2.11 are indistinguishable), and the SPA-ZF detector achieves a performance that is very close

to ML performance. The proposed detectors perform better than the conventional schemes.

• For the MT = MR = 6 channel (see Figure 2.12), the SPA-NC-MMSE detector achieves a per-

formance that is very close to ML performance. The LSD outperforms the NC-MMSE detector

whose performance is intermediate between that of the SPA-MMSE detector (which performs

slightly better) and that of the SPA-ZF detector (which performs slightly worse).

• The performance of the SPA-ZF and SPA-MMSE detectors is close to that of the LSD. This

shows that our strategy for constructing D+ works well.

• A comparison of the results obtained for the MT = MR = 4 and MT = MR = 6 channels suggests

that for increasing channel size, the performance of the proposed algorithms degrades (compared

to ML performance). This is due to the IBC approximation underlying our algorithms. Specif-

ically, for increasing channel size the probability that two or more principal axes are dominant
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Figure 2.12: SER versus SNR performance of the various proposed and standard detectors for a

MT = MR = 6 channel using 4-QAM modulation.

(rather than just one as assumed for IBCs) increases, so that the IBC approximation becomes

less accurate.

2.6.2 Computational Complexity

The complexity order O(·) results of the proposed LSD and the SPA were presented in Section 2.4.3

and Section 2.5.2, respectively. Essentially, the overall complexity of both detectors scales with M 3
T.

Thus, due to the exponential scaling in MT of the ML detector, for large enough MT the LSD and

the SPA are less computational intensive than the ML detector. To provide more insight about

the computational complexity of the various algorithms than the O(·) results, we performed kflops

measurements of specific MATLAB implementations (cf. Section 1.7.3). We considered three different

SM systems (MT = MR = 4, 6, 8) with 4-QAM modulation. The corresponding kflops estimates are

displayed in Table 2.1. ML detection was performed efficiently by means of the FPSD algorithm [8,49]

that is based on the equivalent real-valued system model (1.3). Its complexity was measured at an

SNR of 8 dB. The complexity of the other schemes is independent of the SNR. NC was implemented

using the efficient recursive matrix inversion algorithm of [70] (see also the more detailed discussion

in Section 3.4.2 of Chapter 3).

The computational complexity is split into preparation complexity Cprep (Table 2.1(a)) and vector

complexity Cvector (Table 2.1(b)). Each table presents only one value for both linear detectors (ZF and

MMSE; denoted as “lin.”) and only one value for both linear detectors combined with the SPA (SPA-

ZF and SPA-MMSE; denoted as “SPA-lin.”), because there is virtually no difference in complexity.

The preparation complexity of the FPSD is due to the QR-decomposition [59] of the equivalent real-
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measured kflops – preparation complexity Cprep

channel FPSD LSD lin. NC SPA-lin. SPA-NC

(4, 4) 1.9 2.3 1.7 1.9 2.3 2.6

(6, 6) 6.1 6.2 4.7 5.3 6.2 6.8

(8, 8) 14.0 12.7 10.2 11.4 12.7 14.0

measured kflops – vector complexity Cvector

FPSD SPA-lin. SPA-NC
channel

av. max.
LSD lin. NC

av. max. av. max.

(4, 4) 2.6 18.2 12.9 0.3 0.6 1.5 2.4 1.9 2.7

(6, 6) 11.0 79.2 40.3 0.7 1.5 2.8 4.8 3.9 5.9

(8, 8) 44.1 364 91.8 1.2 3.2 4.5 7.9 7.0 10.4

(a)

(b)

Table 2.1: Measured complexity in kflops for (a) preparation complexity Cprep and (b) vector com-

plexity Cvector.

valued channel matrix.

The complexity of FPSD is random and strongly depends on the channel realization H; in par-

ticular, for a bad channel realization, the maximum complexity exceeds the average complexity by a

large amount. Thus, in addition to the average FPSD complexity, Table 2.1(b) shows the maximum

FPSD complexity obtained during 1000 simulation runs. A maximum complexity is also provided for

SPA-lin. and SPA-NC; it refers to the case where all boundary lines intersect the intersection circle I
(cf. Case 1 in Section 2.5.1).

From Table 2.1, the following conclusions can be drawn.

• The complexity of the SPA detectors is much lower than that of the FPSD and the LSD. In partic-

ular, for theMT = MR = 6 SM system, SPA-NC-MMSE requires significantly less computational

effort than FPSD and LSD, even though SPA-NC-MMSE achieves near-ML performance.

• The overall complexity of the SPA detectors is higher than that of the standard suboptimal

detectors. Of course, the computational cost is increased due to the SPA add-on.

• On average, the complexity of FPSD is very low. As a comparison, the overall complexity

of exhaustive-search ML detection is 43 kflops and 1425 kflops for the MT = MR = 4 and

MT = MR = 6 SM system, respectively. However, the maximum complexity of FPSD is much

larger than its average complexity. For practical system designs the maximum vector complexity

can be decisive.

• In contrast to FPSD, the LSD has a fixed complexity independent of the channel realization.

According to Table 2.1(b), the vector complexity of the LSD is larger than the average complexity
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of FPSD and smaller that the maximum complexity of FPSD. Thus, on average, the LSD is more

computationally intensive than the FPSD implementation of ML detection; however, LSD’s worst

case complexity is smaller. The reason for this is as follows. In contrast to the LSD, the FPSD

trades complexity with the condition number of the channel realization. If the channel is good,

the complexity of the FPSD is very low. If the channel is bad, the computational complexity of

FPSD is very high. Indeed, the maximum Cvector result of the FPSD in Table 2.1(b) corresponds

to a bad channel realization. Contrary, the LSD performs ML detection for a bad channel (i.e.

the IBC) irrespective of the actual channel realization. Even if the channel realization is good

(and simple ZF detection is sufficient to perform ML detection), the LSD performs ML detection

for the IBC. This results in a higher average complexity of the LSD compared to the FPSD.

However, for bad channel realization the LSD is more efficient than the FPSD, which is indicated

by the smaller complexity of the LSD compared to the maximum complexity of the FPSD.

• All detectors have a similar Cprep. For LSD and the SPA detectors, Cprep is slightly higher than

that for the other suboptimum detectors due to the additional calculation of vMT
.

• For the SPA-lin. detectors, the average Cvector is about twice that of the NC detectors but

significantly lower than that of the FPSD.

• The Cvector complexity of the LSD and the SPA variants scales much slower with increasing

number of antennas that the Cvector complexity of the FPSD. For twice the system size (going

from the MT = MR = 4 system to the MT = MR = 8 system), the LSD and the SPA variants

require about 7.2 and 3.5 times more computations, respectively, while the FPSD requires about

17 times more computations on average.

2.6.3 Discussion

The error-rate and computational complexity results demonstrate that the proposed algorithms can

achieve near-ML performance with a much lower computational complexity than that required by the

FPSD. In particular, the FPSD suffers from a random complexity that can be very large in the worst-

case. The LSD, on the other hand, has the advantage that it has a predetermined complexity that

is smaller than the worst-case complexity of the FPSD. However, the LSD suffers from suboptimum

performance (in particular for large MIMO systems) and a quite large average complexity (in particular

for small MIMO systems) as compared to the average complexity of the FPSD. As discussed above,

this due to the fact that the FPSD is able to trade complexity with the condition number of the channel

realization while the LSD always performs data detection for a bad channel irrespective of the actual

channel realization. However, this disadvantage of the LSD could be circumvented by the following

strategy. If the channel condition number lies above a threshold, we perform the LSD (here we can

expect near-ML performance); if the channel condition number lies below a threshold, we perform

conventional suboptimum (e.g., ZF) detection. The resulting algorithm has a random complexity

with a worst-case complexity given by the predetermined complexity of the LSD, but has a much
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smaller (depending on the choice of the threshold) average complexity. Another interesting extension

of the LSD principle can be found in [18, 19]. Here, the LSD is directly incorporated into the FPSD

algorithm, which allows to achieve the complexity advantages of both algorithms simultaneously.

The SPA is clearly more attractive than both the FPSD and the LSD. It allows to get close to

ML performance with significantly less average and worst-case complexity. The SPA-lin. detectors

also outperform their NC counterparts using layer-sorting. However, this is achieved with a larger

computational cost (about a factor of two to three). For the MT = MR = 6 MIMO system, for

example, the larger complexity of SPA-MMSE compared to NC-MMSE may not pay off, since the

performance gains are moderate. However, for smaller systems (e.g., MT = MR = 4) or for the ZF-

based schemes, SPA-lin. yields huge performance gains over NC. Finally, combining the SPA with NC

is very attractive, since near-ML performance can be achieved efficiently also for the MT = MR = 6

SM system.

2.7 Summary and Conclusions

The starting point of this chapter was an analysis of the effect of bad (poorly conditioned) channels

on suboptimal detectors for SM systems. The performance of standard suboptimal detection schemes

severely degrades compared to the performance of the ML detector when bad channel realizations

occur. We found that this inferior performance is due to the inability of linear detectors to properly

adapt their decision regions to the noise statistics in the ZF domain. In addition, bad channels lead

to a high computational complexity of the sphere-decoding algorithm for ML detection.

Based on an idealized bad channel (IBC) model we then presented new detection methods that

are robust to bad channels. The IBC captures bad channel effects in a simplified form in that it just

models a single small singular value of the channel realization. The initial form of the new detection

approach was an efficient ML detector for the IBC model. Subsequently, we extended this detector

to be suitable for arbitrary (nonidealized) channels. This detector we referred to as the line search

detector (LSD). The LSD is optimum for good (i.e. orthogonal) as well as idealized bad channels.

Although its complexity scales just cubically with the number of antennas, we found that it still can

be computationally intensive. In particular, for SM systems of moderate size, the complexity of the

LSD was demonstrated to be smaller than the worst-case complexity (over many channel realizations)

required by the sphere decoding algorithm, but larger than its average complexity. A significant re-

duction of the computational complexity was achieved with the sphere-projection algorithm (SPA)

that is a computationally efficient, nonlinear add-on to standard suboptimal detectors. Here, a con-

stant modulus symbol alphabet is required. The SPA add-on significantly improves the error-rate and

diversity-gain performance of a suboptimal detector by making it robust to bad channel realizations.

Simulations showed that the LSD and the SPA outperform ZF-based and MMSE-based nulling-

and-cancelling and that they can achieve near-ML performance. Their performance is best for SM

systems of moderate size, while for increasing system size their performance degrades compared to

the performance of ML detection. For example, for an SM system with 6 transmit antennas and 6
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receive antennas, the SPA is able to yield near-ML performance with significantly less computational

complexity than that required by the sphere-decoding algorithm for ML detection.



3

Dynamic Nulling-and-Cancelling

IN the previous chapter about geometry-based detectors for SM systems we observed that NC with

layer sorting using the layerwise post-equalization SNRs (PSNRs) as a reliability criterion [63, 64]

(see also Section 1.8.3) is an attractive suboptimum data detection technique. NC is computationally

very efficient with a performance that is much better than that of the equalization-based (linear)

techniques. However, its performance is far inferior to that of ML detection and it also suffers from a

performance loss compared to geometry-based detection. It is interesting to observe that the PSNRs

are just average quantities that do not depend on the received vector—more specifically, they depend

on the channel realization and on the noise variance, but neither on the transmitted data vector nor

on the noise realization.

In this chapter, we propose an improved NC technique that we term dynamic nulling-and-cancelling

(DNC) [23–25]. The basic idea of the DNC scheme is to use the layerwise a-posteriori probabili-

ties (APPs) as reliability measures to perform the layer sorting. To keep the complexity low, we

use approximate APPs that are constructed by means of a Gaussian approximation for the residual

post-equalization interference. This approach is inspired and motivated by [74], where an iteratively

updated Gaussian approximation for the post-equalization interference was used in the context of

multiuser detection. As we will show, the Gaussian approximation results in an MMSE-based nulling

technique with a significantly improved yet very simple layer-sorting rule that is “dynamic” in that it

depends on the current received vector, in contrast to the “static” (average) PSNR-based layer sorting

employed by conventional NC.

DNC is in general more complex than conventional NC because the layers are sorted anew for

each received vector and not just for an entire data block during which the system matrix is constant.

To keep the extra complexity small, we use an efficient recursive technique for matrix inversion that

was proposed for conventional NC in [70]. We will demonstrate that the resulting efficient DNC

implementation can yield near-ML performance for a wide range of system sizes and SNRs with a

47
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computational cost that is much smaller than that required by the sphere-decoding algorithm for ML

detection.

Furthermore, we investigate and compare the performance of NC and DNC both analytically and

experimentally. We study the conditions under which the performance gains of DNC over NC can

be expected to be substantial or rather small. We show that the performance gains will be strongest

when conventional PSNR-based sorting fails to exploit all degrees of freedom that are available for

layer sorting. On the other hand, we also show that dynamic layer sorting will almost reduce to

conventional PSNR sorting when PSNR sorting has a strong preference for a specific layer.

A layer-sorting rule that also depends on the current received vector was recently proposed in [75].

Here, log-likelihood ratios (LLRs) are considered for layer sorting of ZF-based NC. The resulting LLR-

based NC scheme can be seen as a ZF analogue of our (MMSE-based) DNC algorithm. In addition

to that, we will demonstrate that LLR-based NC, too, can be derived with a Gaussian approximation

for the post-equalization interference; however, in contrast to our DNC scheme, the interference is

assumed to be uncorrelated. Thus, DNC can also be seen as an extension of LLR-based NC to

correlated post-equalization interference, which explains its significant performance advantage.

This chapter is organized as follows. In Section 3.1, we formulate the basic principle of the novel

DNC technique. The two stages of DNC—data detection and layer sorting—are then developed in

Section 3.2 and Section 3.3, respectively. In Section 3.4, a statement of the overall DNC algorithm is

provided, an efficient method for recursive matrix inversion is discussed, and the algorithm’s compu-

tational complexity is analyzed. The error performance of DNC is studied for a simple special case in

Section 3.5. In Section 3.6 the relation between DNC and LLR-based NC is established and discussed.

Finally, in Section 3.7 we assess the SER performance and computational complexity of DNC through

numerical simulations carried out for SM systems and for MIMO systems using LD codes. Within

Section 3.7, DNC is also compared to LLR-based NC and to the geometry-based data detectors that

were proposed in the previous chapter.

3.1 Fundamentals of Dynamic Nulling-and-Cancelling

We now describe the basic principle of the novel DNC technique, namely, the construction of the

approximate APP and its use for symbol detection and “dynamic” layer sorting. We will consider the

linear MIMO model described in Section 1.5. In contrast to the geometry-based detectors (see Chapter

2), the proposed DNC algorithm is not specifically tailored to SM systems. Thus, the matrix H of

model (1.1) denotes the system matrix (and not necessarily the channel matrix as for SM systems)

and has dimension M ×N .

We will look at the first decoding step, where we detect a layer m1 in favor of a symbol d̂m1 with

high reliability. Layer m1 is then used to perform the interference cancellation as in conventional

NC (see Section 1.8.3). The subsequent detection and interference-cancellation steps are analogous,

however with a reduced number of active layers. A complete statement of the DNC algorithm will be

provided in Section 3.4.
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3.1.1 MAP Approach to Detection and Layer Sorting

For the mth layer, m ∈ {1, . . . ,M}, the optimum decision on the data symbol dm ∈ A is given by the

maximum a-posteriori (MAP) rule that maximizes the APP1 P[dm =a|yZF] [76]:

d̂m
4
= arg max

a∈A
P[dm =a|yZF] . (3.1)

The resulting maximum APP P[dm = d̂m|yZF] characterizes the reliability of the symbol decision d̂m.

Recall that for NC more reliable layers should be detected before less reliable ones (cf. Section 1.8.3).

Therefore, the layers are commonly sorted using the ZF or MMSE PSNRs (see (1.17) and (1.18),

respectively) as measures of layer reliability [13, 63, 64]. Our approach to layer sorting now is to

first calculate the optimum symbol d̂m for each layer m and then choose the layer m for interference

cancellation for which the reliability of this optimum symbol decision (APP for dm = d̂m) is maximum,

i.e.

m1
4
= arg max

m∈{1,...,M}
P[dm = d̂m|yZF] . (3.2)

For conventional NC, (1.16) is used for layer sorting. Decoding layer m1 in favor of d̂m1 has maximum

reliability at this stage, and we subsequently use this result for interference cancellation.

The complexity of calculating the APP P[dm = a|yZF] required in (3.1) is exponential in M . A

significant reduction of complexity can be obtained by an approximation. We first observe that by

Bayes’ rule, the APP can be rewritten in terms of the conditional pdf f(yZF|dm =a) as

P[dm =a|yZF] =
f(yZF|dm =a)∑

a′∈A f(yZF|dm =a′)
, (3.3)

where it has been assumed that all data symbols are transmitted equally likely, i.e., P[dm =a] = 1/|A|
for all a ∈ A. We have

f(yZF|dm =a) ∝
∑

d∈D(a,m)

f(yZF|d) , (3.4)

where D(a,m) denotes the set of all d ∈ D for which dm = a. Because according to yZF = d + w̃ (see

(1.8)) f(yZF|d) is a Gaussian pdf, it follows from (3.4) that f(yZF|dm =a) is a Gaussian mixture pdf.

Under the condition that dm = a, we can reformulate yZF = d + w̃ as

yZF = a em +
M∑

m′=1
m′ 6=m

dm′ em′ + w̃ , for dm = a , (3.5)

where em denotes the mth M -dimensional unit vector. This shows that for dm = a, yZF is equal (up

to a shift by aem) to the post-equalization interference2 for the mth layer,
∑

m′ 6=m dm′ em′ + w̃.

1The APP can equivalently be conditioned on the result of ZF equalization yZF = H#r rather than on the received

vector r since ZF equalization without quantization does not imply any loss of information (cf. Section 1.8.2).
2Note that the mth layer yZF,m of the ZF equalized received vector is commonly referred as interference free since

the corresponding data symbol dm is just corrupted by additive noise, i.e. yZF,m = dm + ewm, and not by any other data

symbols dm′ , m′ 6= m. However, here we adopt the viewpoint that yZF,m interferes with yZF,m′ , m′ 6= m, since ew is

correlated. We consider yZF,m′ = dm′ + ewm′ , m′ 6= m, and ewm as the post-equalization interference for the mth layer.
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3.1.2 Gaussian Approximation

We now use a Gaussian approximation for the post-equalization interference to obtain a computa-

tionally efficient approximation to (3.3). More specifically, we approximate the Gaussian mixture pdf

f(yZF|dm =a) by the Gaussian pdf 3 [72]

f̃m(yZF|dm =a)
4
=

1

πMdet(Cm)
e−(yZF−µm)HC−1

m (yZF−µm). (3.6)

Here, the mean µm and the covariance Cm are chosen consistent with the true pdf f(yZF|dm =a), i.e.,

µm
4
= E[yZF|dm =a] and Cm

4
= E[(yZF − µm)(yZF − µm)H |dm =a]. From (3.5), we obtain

µm = a em , Cm = I − emeT
m + Rew . (3.7)

The Gaussian pdf f̃m(yZF|dm =a) is now completely determined, and the APP in (3.3) is approximated

by

P[dm =a|yZF] ≈ f̃m(yZF|dm =a)
∑

a′∈A f̃m(yZF|dm =a′)
.

Using this Gaussian approximation, the maximization in (3.1) that yielded the optimum symbol for

the mth layer is replaced with

d̂m
4
= arg max

a∈A

{
f̃m(yZF|dm =a)

∑
a′∈A f̃m(yZF|dm =a′)

}
= arg max

a∈A
f̃m(yZF|dm =a) . (3.8)

Furthermore, the maximization in (3.2) that yielded the optimum layer is replaced with4

m1
4
= arg max

m∈{1,...,M}

{
f̃m(yZF|dm = d̂m)

∑
a∈A f̃m(yZF|dm =a)

}
. (3.9)

In what follows, these new definitions for d̂m and m1 will be used rather than the original definitions

(3.1) and (3.2).

The equations (3.8) and (3.9) define, respectively, the data-detection stage and layer-sorting stage

of DNC. In the next two sections, we will develop the calculations corresponding to these two stages.

3.2 Data-Detection Stage

Using the Gaussian approximation (3.6) together with (3.7), we can write the approximate MAP

decision (3.8) as

d̂m = arg max
a∈A

{
1

πMdet(Cm)
e−(yZF−aem)HC−1

m (yZF−aem)

}

3We assume that Cm = I − emeT
m + Rew is nonsingular (this is guaranteed if σ2

w 6= 0 and H has full rank).
4Whereas the denominator in (3.3),

P
a∈A f(yZF|dm = a) = |A| f(yZF), does not depend on the layer index m, the

denominator in (3.9),
P

a∈A f̃m(yZF|dm =a) = |A| f̃m(yZF), depends on m.
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= arg max
a∈A

{
−(yZF − aem)HC−1

m (yZF − aem)
}

= arg max
a∈A

{
2 Re

{
yH

ZFC−1
m ema

}
− |a|2eT

mC−1
m em

}
. (3.10)

The matrix inversion lemma [59] applied to C−1
m =

(
I − emeT

m + Rew

)−1
yields

C−1
m = W

(
I +

emeT
mW

1−Wm,m

)
, (3.11)

with

W
4
= (I + Rew)−1 =

(
I + σ2

w(HHH)−1
)−1

(3.12)

and Wm,m ∈ R denoting the mth diagonal element of W. The M ×M matrix W is termed Wiener

estimator in [77]; it converts ZF equalization (1.8) into MMSE equalization (1.11) [77]:

WyZF = yMMSE .

Using this result and (3.11), we obtain

yH
ZFC−1

m em = yH
ZFWem

(
1 +

eT
mWem

1−Wm,m

)

= y∗MMSE,m

(
1 +

Wm,m

1−Wm,m

)

=
y∗MMSE,m

1−Wm,m
(3.13)

and

eT
mC−1

m em = eT
mWem

(
1 +

eT
mWem

1−Wm,m

)

= Wm,m

(
1 +

Wm,m

1−Wm,m

)

=
Wm,m

1−Wm,m
. (3.14)

Thus, the maximization in (3.10) simplifies to

d̂m = arg max
a∈A

{
1

1−Wm,m

(
2 Re

{
y∗MMSE,m a

}
−Wm,m|a|2

)}
. (3.15)

The eigenvalues λW,m of W satisfy 0 ≤ λW,m < 1. Because Wm,m can be written as a quadratic form

induced by W and this quadratic form is bounded by the minimum and maximum eigenvalues of W,

we obtain the following two (equivalent) inequalities:

0 ≤Wm,m < 1 , 1 ≤ 1

1−Wm,m
<∞ .

Assuming that Wm,m 6= 0 for m = 1, . . . ,M (which holds if H has full rank), we can rewrite (3.15) as

d̂m = arg max
a∈A

{
Wm,m

1−Wm,m

(
2

Re
{
y∗MMSE,m a

}

Wm,m
− |a|2

)}
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= argmin
a∈A

{
|yMMSE,m|2
W 2

m,m

− 2
Re
{
y∗MMSE,m a

}

Wm,m
+ |a|2

}

= argmin
a∈A

η2
m(a) , (3.16)

with the “unbiased distance”

ηm(a)
4
=

∣∣∣∣
yMMSE,m

Wm,m
− a

∣∣∣∣ . (3.17)

The minimization in (3.16) is known as unbiased MMSE detection [78]; it will hereafter be denoted as

d̂m = QA,u{yMMSE,m} . (3.18)

The terms “unbiased distance” and “unbiased MMSE detection” reflect the fact that, in contrast to the

MMSE estimate yMMSE,m, the scaled MMSE estimate
yMMSE,m

Wm,m
is conditionally unbiased given dm, i.e.,

E
{yMMSE,m

Wm,m
− dm

∣∣dm

}
= 0 or equivalently E

{yMMSE,m

Wm,m

∣∣dm

}
= dm [78]. In general, the error probability

of unbiased MMSE detection (3.18) is slightly smaller than that of conventional MMSE detection (see,

e.g., [5]). (Recall that for conventional MMSE detection, each component yMMSE,m of the MMSE-

equalized received vector yMMSE is quantized according to (1.6).) Unbiased and conventional MMSE

detection are however fully equivalent for constant-modulus signaling, i.e., when |a| is equal for all

symbols a ∈ A.

Thus, our development in this section has shown that the data-detection stage of DNC—that is,

approximate MAP detection using the Gaussian approximation for the post-equalization interference—

is equivalent to unbiased MMSE detection, which is computationally simple.

3.3 Layer-Sorting Stage

We now develop the calculations corresponding to the layer-sorting stage. This stage is the determi-

nation of the most reliabe layer according to (3.9), with d̂m = QA,u{yMMSE,m} according to (3.18).

3.3.1 Dynamic Layer Sorting

With (3.6) and (3.7), the maximization in (3.9) becomes

m1 = arg max
m∈{1,...,M}

{
exp
(
−(yZF − d̂mem)HC−1

m (yZF − d̂mem)
)

∑
a∈A exp

(
−(yZF − aem)HC−1

m (yZF − aem)
)
}
. (3.19)

Using (3.13) and (3.14), this can be shown to be equivalent to

m1 = arg min
m∈{1,...,M}

∑

a∈A\{d̂m}

e g(a,m),

where A\{d̂m} refers to the set of all symbols a ∈ A that are not equal to d̂m and

g(a,m)
4
=

2 Re
{
y∗MMSE,m(a−d̂m)

}
−Wm,m

(
|a|2− |d̂m|2

)

1−Wm,m
.
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Taking the logarithm of the expression to be minimized and applying the log-max approximation

(e.g., [79, 80])

log

(
∑

i

exi

)
≈ max

i
xi, (3.20)

we obtain

m1 = arg min
m∈{1,...,M}



log

(
∑

a∈A\{d̂m}

e g(a,m)

)
 ≈ arg min

m∈{1,...,M}

{
max

a∈A\{d̂m}
g(a,m)

}
.

This simplifying approximation will be used in the following, and accordingly m1 is considered to be

redefined by the last expression. We can reformulate this expression in terms of the unbiased distance

η2
m(·) in (3.17):

m1 = arg max
m∈{1,...,M}

{
Wm,m

1−Wm,m
Im

}
, (3.21)

with the instantaneous reliability factor (IRF)

Im
4
= min

a∈A\{d̂m}

{
η2

m(a)
}
− η2

m(d̂m) . (3.22)

To obtain an illuminating reformulation of this result, we consider the layerwise MMSE PSNR (see

(1.18))

SNRMMSE,m =
1

MSEm
− 1 (3.23)

of the mth layer, where MSEm is the minimum MSE of the mth layer [60,72], i.e.,

MSEm
4
= E

{
|yMMSE,m − dm|2

}
= σ2

w

((
HHH + σ2

wI
)−1
)

m,m
,

which can be written as

MSEm = σ2
w

(
M∑

m′=1

1

σ2
m′ + σ2

w

vm′vH
m′

)

m,m

= σ2
w

M∑

m′=1

1

σ2
m′ + σ2

w

|(vm′)m|2.

Here, the σ2
m′ ’s and vm′ ’s denote, respectively, the eigenvalues and eigenvectors of HHH. MSEm can

be related to Wm,m as follows. We first note that I + σ2
w(HHH)−1 =

∑M
m′=1

(
1 + σ2

w

σ2
m′

)
vm′vH

m′ . From

(3.12), we then have

Wm,m =

(
M∑

m′=1

σ2
m′

σ2
m′ + σ2

w

vm′vH
m′

)

m,m

=
M∑

m′=1

σ2
m′

σ2
m′ + σ2

w

|(vm′)m|2

=
M∑

m′=1

|(vm′)m|2 − σ2
w

M∑

m′=1

1

σ2
m′ + σ2

w

|(vm′)m|2

= 1− MSEm .

Inserting this into (3.23), we obtain SNRMMSE,m in terms of Wm,m:
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yMMSE,m

Wm,m
Re{yMMSE,m}

Wm,m

Im{yMMSE,m}

Wm,m

a0

d̂m

η2
m

(d̂m)

min
a∈A\{d̂m}

η2
m(a)

Figure 3.1: Situation where the IRF can lead to a significant performance improvement of dynamic

layer sorting over conventional layer sorting.

SNRMMSE,m =
Wm,m

1−Wm,m
. (3.24)

Thus, (3.21) can be written in terms of SNRMMSE,m as

m1 = arg max
m∈{1,...,M}

{
SNRMMSE,m Im

}
. (3.25)

For constant-modulus (in particular, PSK) symbol alphabets, (3.25) can be shown to simplify as

m1 = arg max
m∈{1,...,M}

{
SNRMMSE,m min

a∈A\{d̂m}
Re

{
y∗MMSE,m

Wm,m
(d̂m−a)

}}
. (3.26)

3.3.2 Discussion

The quantity maximized in (3.25), SNRMMSE,m Im, is the proposed reliability measure of the detected

symbol d̂m = QA,u{yMMSE,m} of the mth layer. This quantity consists of two factors:

• The first factor is the MMSE PSNR, which expresses the average reliability of the mth layer.

This factor depends on the channel realization H and on the noise variance σ2
w, but neither on

the transmitted data vector d nor on the noise realization w.

• The second factor is the IRF in (3.22), which can be rewritten as

Im = min
a∈A\{d̂m}

{
η2

m(a)
}
− min

a∈A

{
η2

m(a)
}

≥ 0 .

The IRF is seen to compare the smallest unbiased distance, η2
m(d̂m) = mina∈A

{
η2

m(a)
}
, with the

second smallest unbiased distance, mina∈A\{d̂m}
{
η2

m(a)
}
. Thus, it expresses the instantaneous

reliability of the mth layer decision d̂m. It depends on d and w via yMMSE,m (cf. (3.17)).

With conventional NC, the layers are sorted simply according to maximum SNRMMSE,m or, equiva-

lently (see (3.23)), according to minimum MSEm. That is, instead of (3.25) one has (cf. (1.16))
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Figure 3.2: IRF Im as a function of yMMSE,m/Wm,m for various symbol alphabets. (a) BPSK, (b)

4-QAM, (c) 8-PSK, and (d) 16-QAM.

mNC
1 = arg max

m∈{1,...,M}
SNRMMSE,m = arg min

m∈{1,...,M}
MSEm .

The new DNC layer-sorting rule (3.25) additionally takes into account the IRF Im. Whereas

SNRMMSE,m and MSEm merely measure the average reliability of MMSE equalization, the IRF mea-

sures the instantaneous reliability of the subsequent detection (quantization) process. To appreciate

the beneficial influence of the IRF, consider the situation shown in Figure 3.1 for a 4-QAM symbol

alphabet. We assume that SNRMMSE,m is large but, for a specific received vector r, yMMSE,m/Wm,m

happens to be close to a boundary of the symbol decision regions. This means that layer m is very

unreliable because the unbiased distance for the detected symbol d̂m (cf. (3.17)) is close to the unbi-

ased distance for some other symbol a0 6= d̂m, i.e., η2
m(d̂m) ≈ η2

m(a0). It follows that the IRF is small,

and hence DNC correctly treats this layer as unreliable. In contrast, because of the large SNRMMSE,m,

conventional NC would erroneously treat this layer as reliable.

In Figure 3.2, the IRF is depicted as a function of yMMSE,m/Wm,m for some symbol alphabets.

It is seen that the IRF is a piecewise linear function of yMMSE,m/Wm,m. Furthermore, as discussed

above, the IRF is small if yMMSE,m/Wm,m is close to a boundary of the symbol decision regions; it is

zero on these boundaries.
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3.4 The DNC Algorithm

In the previous two sections, we developed the calculations of the DNC algorithm for the first decoding

step. We now present a formal statement of the complete DNC algorithm, discuss its efficient imple-

mentation using a recursive matrix inversion technique, and analyze its computational complexity.

3.4.1 Algorithm Statement

The calculations to be performed at the sth decoding step of DNC, where s ∈ {1, . . . ,M}, are sum-

marized below (cf. the review of conventional NC in Section 1.8.3). In what follows, let H(s) and r(s)

denote, respectively, the reduced system matrix and the interference-cleaned received vector obtained

from the previous ((s−1)th) decoding step, with initialization according to H(1) = H and r(1) = r.

1. Precalculations: Calculate

D
(s)
MMSE

4
=
(
H(s)HH(s) + σ2

wI
)−1

, (3.27)

and perform MMSE equalization:

y
(s)
MMSE = D

(s)
MMSEH(s)Hr(s).

Next, for all active layers m = 1, . . . ,M− s+1, calculate

SNR
(s)
m,MMSE =

1

MSE
(s)
m

− 1 , W (s)
m,m = 1 − MSE(s)

m ,

where MSE
(s)
m = σ2

w

(
D

(s)
MMSE

)
m,m

.

2. Data detection: Perform unbiased MMSE detection for all active layers, i.e., calculate

d̂(s)
m = Q(s)

A,u

{
y

(s)
MMSE,m

}
= arg min

a∈A
η(s)2

m (a) , m = 1, . . . ,M− s+1 ,

with η
(s)
m (a) =

∣∣∣y
(s)
MMSE,m

W
(s)
m,m

− a
∣∣∣.

3. Layer sorting : Determine the most reliable layer index ms ∈ {1, . . . ,M− s+1} according to

ms = arg max
m∈{1,...,M−s+1}

{
SNR

(s)
MMSE,m I(s)

m

}
,

where I
(s)
m = min

a∈A\{d̂(s)
m }
{
η

(s) 2
m (a)

}
− η

(s) 2
m

(
d̂

(s)
m

)
.

4. Decoding and interference cancellation: Decode layer ms in favor of d̂
(s)
ms and use this result for

interference cancellation:

r(s+1) = r(s) − h(s)
ms
d̂(s)

ms
,

where h
(s)
ms denotes the msth column of H(s). Finally, form H(s+1) by removing h

(s)
ms from H(s),

and re-index the remaining active layers, i.e., {1, . . . ,M− s+1} \ {ms} → {1, . . . ,M− s}. The

vector r(s+1), matrix H(s+1), and active-layer index set {1, . . . ,M− s} then form the input of

the next (s→ s+1) decoding step.
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3.4.2 Efficient Implementation

The computational complexity of DNC is dominated by the calculation of the matrices D
(s)
MMSE, s =

1, . . . ,M in (3.27). Whereas D
(1)
MMSE depends only on H and σ2

w, the subsequently calculated matrices

D
(s)
MMSE for s = 2, . . . ,M depend on the received vector r via ms. Thus, the calculation of D

(1)
MMSE

contributes to the preparation complexity Cprep, whereas the calculation of D
(s)
MMSE, s = 2, . . . ,M ,

contribute to the vector complexity Cvector (cf. Section 1.7.3). With conventional MMSE-based NC,

on the other hand, layer sorting just depends on the system matrix H, and hence the calculation of

all matrices D
(s)
MMSE, s = 1, . . . ,M , contribute to Cprep. For example, in the case of a SM system

and a block-fading channel model, H (the MIMO channel matrix) does not change during a block of

consecutive channel uses. In such cases, Cvector is more decisive than Cprep, and thus, DNC is more

complex than NC.

Fortunately, the complexity of computing the matrices D
(s)
MMSE for a given received vector r can be

significantly reduced by means of a recursive algorithm that was proposed for conventional NC in [70]

(see also [81]). Indeed, D
(s+1)
MMSE can be calculated from D

(s)
MMSE as

D
(s+1)
MMSE =

(
A1 A2

A3 A4

)
− 1

α

(
a1

a2

)(
aH

1 aH
2

)
, (3.28)

where A1 through A4, a1 and a2, and α are parts of D
(s)
MMSE as shown below:

ms

ms

D
(s)
MMSE =

α

A4a2

A2a1A1

A3

a
H

2a
H

1

The recursion (3.28) is initialized by D
(1)
MMSE =

(
HHH + σ2

wI
)−1

.

3.4.3 Computational Complexity

We will now determine the complexity order O(·) of Cprep and Cvector for the DNC technique, assuming

N = M for simplicity. In Section 3.7.3, the complexity of the DNC will be assessed by means of

measurements.

The preparation complexity Cprep is caused by the computation of the M ×M matrix D
(1)
MMSE =

(HHH + σ2
wI)−1, and thus Cvector = O(M3). The vector complexity Cvector is composed as follows:

• The complexity of calculating the M − 1 matrices D
(s)
MMSE of size (M − s + 1) × (M − s + 1),

s = 2, . . . ,M is O(M4) when a direct calculation is used and O(M 3) when the recursive algorithm

of the previous section is used.
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• We have to perform M equalization, detection, and layer-sorting steps for system models of size

(M − s+ 1) × (M − s+ 1), s = 1, . . . ,M ; the complexity of these operations is O(|A|M 3).

• Finally, the M interference cancellation steps have a complexity of O(M 2).

Thus, the overall vector complexity Cvector of DNC using the efficient recursive calculation of the

matrices D
(s)
MMSE is O(|A|M3). This is cubic in the number of layers M and linear in the symbol

alphabet size |A|. This complexity order of Cvector is larger than that of the SPA and conventional

NC (both have a Cvector that scales quadratically in the number of layers, cf. Section 2.5.2 and Section

1.8.3). As will be demonstrated in Section 3.7.3, for SM systems of practical interest, the vector

complexity Cvector of DNC turns out to be twice as large as Cvector of NC.

In general, with DNC, Cvector is much more significant relative to Cprep than with NC. Fortunately,

the recursive calculation of the matrices D
(s)
MMSE yields a strong reduction of Cvector and the result-

ing overall complexity of DNC is significantly smaller than that required by the FPSD (see Section

3.7.3). We note that the recursive calculation of the D
(s)
MMSE’s yields larger benefits for DNC than for

conventional NC, since for NC only Cprep is reduced.

3.5 Error Performance of DNC

In Section 3.3.2, we argued that dynamic layer sorting based on the IRF should lead to a performance

advantage of DNC over conventional MMSE-based NC. We will now demonstrate this performance

advantage by studying the error performance of the first layer-decoding step of DNC. The first layer-

decoding step is important because it has a decisive impact on the overall error performance of NC

schemes.

3.5.1 Symbol Error Probability of a Two-Layer BPSK System

For mathematical tractability, we consider the simple special case of two layers using BPSK mod-

ulation. The two components of yMMSE are assumed statistically independent and Gaussian. (Our

numerical simulations in Section 3.7.1 will demonstrate that the results obtained under these simplify-

ing assumptions are consistent with the performance observed when the assumptions are not satisfied.)

The system matrix H is considered fixed.

For BPSK modulation, dynamic layer sorting (3.26) simplifies to

m1 = arg max
m∈{1,...,M}

{
SNRMMSE,m d̂m zm

}
, with zm

4
=

Re{yMMSE,m}
Wm,m

, (3.29)

where d̂m denotes the result of conventional MMSE detection, i.e.,

d̂m = QA{yMMSE,m} = sgn(Re{yMMSE,m}) = sgn(zm) . (3.30)

It follows that

m1 = arg max
m∈{1,...,M}

{
SNRMMSE,m |zm|

}
. (3.31)
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To calculate the symbol error probability for the mth layer, we note that

zm = dm + nm (3.32)

where nm is statistically independent of dm. Under the Gaussian approximation for the post-

equalization interference, nm is Gaussian with zero mean and variance σ2
nm

= 1/(2 SNRMMSE,m).

Thus, the error probability of MMSE detection for the mth layer is given by [21]

P[d̂m 6= dm] = Q
(√

2 SNRMMSE,m

)
, (3.33)

where Q(·) denotes the Q-function. This result is valid for both NC and DNC. For NC, it motivates

layer sorting according to the maximum PSNR, since the decoding process for the first layer should be

most reliable. Thus, the error probability of the first layer-decoding step of conventional NC is given

by

PNC,1[E ] = Q
(√

2 SNRMMSE,max

)
, (3.34)

where SNRMMSE,max
4
= maxm∈{1,...,M}SNRMMSE,m denotes the maximum PSNR.

For DNC, calculation of the error probability cannot be based on (3.33) because of the dynamic

layer sorting employed. In the following, we derive the error probability of the first layer-decoding

step of DNC, PDNC,1[E ], for the case of two statistically independent layers using BPSK modulation

(d1, d2 ∈ {−1, 1}). Because of symmetry, PDNC,1[E ] is equal to the conditional error probability given

any specific choice of transmitted symbols d1 and d2, e.g., d1 =d2 =1:

PDNC,1[E ] = PDNC,1[E | d1 =d2 =1] . (3.35)

To simplify notation we define the PSNR ratio ρ2,1
4
=

SNRMMSE,2

SNRMMSE,1
. Using (3.31) and (3.30), an error in

the first layer-decoding step occurs either if DNC decodes in favor of layer 1 (|z1| ≥ ρ2,1|z2|) and makes

a detection error (d̂1 6= 1 or equivalently z1 ≤ 0), or if DNC decodes in favor of layer 2 (|z2| ≥ 1
ρ2,1

|z1|)
and makes a detection error (d̂2 6= 1 or equivalently z2 ≤ 0). Thus, the conditional error event given

that d1 = d2 = 1 is

Ec =

[(
|z1| ≥ ρ2,1|z2|

)
∧ (z1 ≤ 0)

]
∨
[(

|z2| ≥
1

ρ2,1
|z1|
)
∧ (z2 ≤ 0)

]
.

It can be shown that this is equivalent to the event z1 ≤ −ρ2,1z2. Hence, (3.35) becomes

PDNC,1[E ] = P
[
z1 ≤ −ρ2,1 z2

∣∣ d1 =d2 =1
]
.

Using (3.32) and assuming that z1 and z2 are statistically independent and Gaussian, we obtain further

PDNC,1[E ] =
1

2π σn1σn2

∫ ∞

−∞

∫ −ρ2,1z2

−∞
exp

(
− 1

2

(z1−1

σn1

)2)
exp

(
− 1

2

(z2−1

σn2

)2)
dz1 dz2

=
1√

2π σn2

∫ ∞

−∞
Q

(
ρ2,1z2 + 1

σn1

)
exp

(
− 1

2

(z2−1

σn2

)2)
dz2

=
1√
2π

∫ ∞

−∞
Q

(√
SNRMMSE,2

SNRMMSE,1
x +

√
2

SNRMMSE,1
(SNRMMSE,1+ SNRMMSE,2)

)
e−x2/2dx,
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where we used σnm = 1/
√

2 SNRMMSE,m and ρ2,1 =
SNRMMSE,2

SNRMMSE,1
. Finally, by applying the identity

(e.g. [6])
1√
2π

∫ ∞

−∞
Q (λx+ µ) e−x2/2 dx = Q

(
µ√

1 + λ2

)
,

we obtain the final expression

PDNC,1[E ] = Q
(√

2 (SNRMMSE,1 + SNRMMSE,2)
)
. (3.36)

3.5.2 Discussion

Comparing (3.34) and (3.36), we see that the error probability of NC is determined by the maximum

of the two PSNRs whereas the error probability of DNC is determined by the sum of the two PSNRs.

We can draw the following conclusions.

• Since SNRMMSE,1 +SNRMMSE,2 ≥ max{SNRMMSE,1, SNRMMSE,2}, the error probability of DNC

is upper bounded by the error probability of NC:

PDNC,1[E ] ≤ PNC,1[E ] .

• In the limiting cases ρ2,1 → ∞ and 1
ρ2,1

→ ∞, the two error probabilities become equal, i.e.,

PDNC,1[E ] → PNC,1[E ]. Hence, the error performance of DNC is similar to that of NC if one of

the PSNRs is very dominant. In fact, in that case DNC effectively decodes in favor of the layer

with maximum PSNR, and thus it becomes equivalent to NC.

• The performance advantage of dynamic layer sorting is most significant for equal PSNRs, i.e.,

when ρ2,1 = 1. Here, PNC,1[E ] = Q
(√

2 SNRMMSE,1

)
and PDNC,1[E ] = Q

(√
4 SNRMMSE,1

)
,

corresponding to a 3-dB SNR advantage of DNC over NC. In fact, for equal PSNRs NC randomly

selects some layer and thus does not exploit the possibility of layer sorting. DNC exploits this

degree of freedom, and thus achieves better performance.

The simulation results in Section 3.7.1 suggest that these conclusions are approximately true also

when the simplifying assumptions under which they were derived are not satisfied.

In [82] it has been shown that for an increasing size of the system matrix, all MMSE PSNRs

associated with an iid system matrix converge to the same deterministic value. In the case of SM

systems (where the system matrix equals the channel matrix), we can thus expect that the performance

advantage of DNC over NC is stronger for a larger number of transmit and receive antennas. For a

small system, on the other hand, the variations in the PSNRs will be large, and thus there may be

channel realizations for which the performance advantage of DNC is only marginal (see Section 3.7.1).

Finally, we expect strong average performance advantages of DNC over NC if for each realization of

the system matrix H the PSNRs are grouped into subsets of equal PSNRs. In such a case, NC merely

performs a sorting between these subsets; within each subset a layer is randomly selected. This again

corresponds to an effective loss of degrees of freedom in performing the layer sorting. Examples are

the equivalent real-valued system model of SM systems using QAM signaling (see (1.3)) and systems

using certain LD codes (cf. Section 1.5.2).
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3.6 LLR-based NC

We now show that LLR-based NC proposed in [75] can also be derived by means of a Gaussian approxi-

mation for the post-equalization interference. However, different to the DNC, the post-equalization in-

terference is assumed to be uncorrelated. That is, the matched covariance matrix Cm = I−emeT
m+Rew

in (3.7) is replaced with C̃m, where

(C̃m)i,m′
4
=





(Cm)i,m′ , for i = m′,

0, otherwise.
(3.37)

We now develop the data detection stage (cf. Section 3.2) and the layer-sorting stage (cf. Section 3.3)

using C̃m instead of Cm. As it was done for the development of the DNC in Section 3.2 and Section

3.3, we again just focus on the first layer decoding step.

3.6.1 Data Detection Stage

Similar to (3.10), we have

d̂m = arg max
a∈A

{
2 Re

{
yH

ZFC̃−1
m ema

}
− |a|2eT

mC̃−1
m em

}
,

which can be further simplified as

d̂m = arg max
a∈A

{
2 Re

{
y∗ZF,m(Rew)m,m a

}
− |a|2(Rew)m,m

}

= arg max
a∈A

{
2 Re

{
y∗ZF,m a

}
− |a|2

}

= arg min
a∈A

γ2
m(a),

where γm(a)
4
= |yZF,m − a|. Thus, the data detection stage with the correlations in yZF being neglected

is equivalent to ZF detection

d̂m = QA{yZF,m}. (3.38)

3.6.2 Layer-Sorting Stage

Using C̃m instead of Cm and d̂m = QA{yZF,m}, (3.19) becomes

m1 = arg max
m∈{1,...,M}

{
exp
(
−(yZF − d̂mem)HC̃−1

m (yZF − d̂mem)
)

∑
a∈A exp

(
−(yZF − aem)HC̃−1

m (yZF − aem)
)
}
.

Using the log-max approximation (3.20), this can be equivalently written as

m1 = arg max
m∈{1,...,M}

{SNRZF,m Im} , (3.39)

where SNRZF,m is the ZF post-equalization SNR (see (1.17)), and where the IRF Im is now given by

Im = min
a∈A\{d̂m}

{
γ2

m(a)
}
− γ2

m(d̂m).
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3.6.3 Discussion

The obtained data detection and layer-sorting stage in (3.38) and (3.39), respectively, is the “simplified

LLR-based V-BLAST detector” of [75]. Evidently, LLR-based NC can be seen as a ZF-analogue of

the proposed DNC scheme; it can be formally obtained by replacing all MMSE-based quantities

(equalizer, unbiased distance, post-equalization SNR) with their respective ZF-based counterparts.

Our derivation using the Gaussian approximation for the post-equalization interference also reveals

that the proposed DNC detector is an extension of the LLR-based NC detector to correlated post-

equalization interference. This provides an explanation of the significant performance advantage of

DNC over LLR-based NC, which will be demonstrated in Section 3.7.4. This performance advantage

is in fact obtained with no increase in computational complexity. However, in contrast to DNC, the

result of LLR-based NC is invariant to the value of the noise variance, i.e. SNRZF,m in (3.39) can

be replaced with 1/
(
(HHH)−1

)
m,m

(cf. (1.17)). Thus, LLR-based NC has the advantage that no

knowledge about the noise variance is required.

Our use of the recursive calculation of D
(s)
MMSE, s = 1, . . . ,M , (see Section 3.4.2) to reduce the

computational complexity of DNC can also be applied to reduce the complexity of LLR-based NC in a

straightforward way. The same recursive algorithm can be used for calculating D
(s)
ZF

4
= (HH (s)H(s))−1

instead of D
(s)
MMSE = (HH (s)H(s) + σ2

wI)−1. Furthermore, our investigation of the error performance

of the first layer decoding step of DNC (see Section 3.5) applies similarly to LLR-based NC. In

(3.36), the MMSE PSNRs SNRMMSE,1 and SNRMMSE,2 are simply replaced by their corresponding ZF

counterparts SNRZF,1 and SNRZF,2, respectively.

3.7 Simulation Results

We will now present simulation results to assess the SER performance and computational complexity

of the proposed DNC technique. At the beginning, we compare DNC with conventional MMSE-based

NC using PSNR sorting (see Section 1.8.3, referred to as NC-MMSE) and with ML detection. In

Section 3.7.4 we then compare DNC with LLR-based NC, and finally, in Section 3.7.5 we compare

DNC and LLR-based NC with the geometry-based detectors that were proposed in Chapter 2. In our

simulations, we used iid Gaussian MIMO channels.

3.7.1 SER Performance for Spatial Multiplexing Systems

For an SM system (see Section 1.5.1), the system matrix H is the MIMO channel matrix and the size

of the system model is given by the numbers of transmit and receive antennas, i.e., M = MT and

N = MR.

SER Performance of First Layer-Decoding Step

We first corroborate our theoretical error probability results about the error performance of the first

layer-decoding step of Section 3.5. We considered a MIMO system with MT = MR = 8 and a 4-QAM
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Figure 3.3: Simulation results demonstrating the performance of the first layer-decoding step for DNC

and conventional MMSE-based NC, for an SM system with MT = MR = 8, 4-QAM symbol alphabet,

and an SNR of 15 dB. (a) SER versus the PSNR ratio ρ (see text) corresponding to the respective

channel realization, (b) estimated pdf of ρ.

symbol alphabet. This system does not comply with the simplifying assumptions made in Section 3.5.

Figure 3.3(a) shows the simulated SER (at a channel SNR of 15 dB) of the first layer-decoding step

for DNC and for conventional MMSE-based NC with layer sorting according to maximum PSNR. The

SER is plotted versus the ratio of the largest PSNR to the second largest PSNR (this ratio is denoted

as ρ). It can be seen that the performance advantage of DNC over NC is largest when the two largest

PSNRs are nearly equal, i.e., for ρ ≈ 1. In that case, DNC achieves an SER reduction by a factor

of about 20. On the other hand, the SER reduction becomes quite small when one of the PSNRs is

dominant (e.g., for ρ = 3 the SER is reduced by just a factor of about 2). This behavior is consistent

with our theoretical results in Section 3.5.

The impact of this behavior on the average SER performance of the first layer-decoding step of

course depends on the pdf of the PSNR ratio ρ. In Figure 3.3(b), we show an estimated pdf that

has been computed in the course of the simulation described above. It can be seen that small values

of ρ are most likely. Thus we can expect that for the first layer-decoding step, the average SER of

DNC is significantly smaller than the average SER of NC-MMSE. This is important since the first

layer-decoding step has a decisive impact on the overall SER performance.

Overall SER Performance

We now investigate the overall SER performance of the DNC scheme. The performance of DNC

and NC-MMSE was evaluated for both the (standard) complex-valued system model (1.1) and the

corresponding equivalent real-valued system model (1.3). The real schemes will be denoted as DNC-

R and NC-MMSE-R, respectively. For (D)NC schemes, other than for ML detection and linear

equalization based detection, the complex and real implementations generally exhibit different SER
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Figure 3.4: SER performance of the proposed DNC detectors (DNC, DNC-R) and of NC-MMSE, NC-

MMSE-R, and ML detection for SM systems using 4-QAM symbols. (a) SER-versus-SNR performance

for MT = MR = 8, (b) SER versus MT = MR performance at an SNR of 15 dB.

performance. This is because in the real implementation, the layer sorting can be done independently

for the real part and the imaginary part (see, e.g., [30] for conventional NC).

For an SM system of size MT = MR = 8 and with 4-QAM symbols, Figure 3.4(a) shows the SER-

versus-SNR performance of the DNC and DNC-R detectors and of NC-MMSE, NC-MMSE-R, and

ML. Figure 3.4(b) shows the SER versus MT = MR performance at an SNR of 15 dB. The following

conclusions can be drawn from these results.

• DNC-R achieves near-ML performance over a wide range of SNRs (see Figure 3.4(a)) and over

a wide range of system sizes (see Figure 3.4(b)).

• DNC-R performs significantly better than DNC. To understand this behavior, consider the case

where, e.g., the real part of a given layer is reliable but the imaginary part is very unreliable

(such a situation has been shown in Figure 3.1). Because DNC-R performs reliability estimation
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and layer sorting separately for the real part and the imaginary part, it is able to correctly adapt

to this situation. In contrast, DNC does not distinguish between the reliabilities of the real part

and the imaginary part, and thus the layer sorting is the same for both parts.

• NC-MMSE-R performs only slightly better than NC-MMSE. This can be understood as follows.

For NC-MMSE-R, at the first decoding step, the estimated reliabilities (PSNRs) are the same for

the real and imaginary parts of a given layer. Thus, the layer sorting at the first decoding step

cannot be done differently for the real and imaginary parts. However, interference cancellation

is performed separately, which may result in different layer orders for the real and imaginary

parts in subsequent detection and interference cancellation steps. In contrast, with NC-MMSE

the real and imaginary parts are always canceled jointly. This explains the slight performance

advantage of NC-MMSE-R over NC-MMSE (see [30] for ZF-based NC).

• DNC-R performs substantially better than NC-MMSE-R and NC-MMSE. This is because DNC-

R employs dynamic layer sorting which, moreover, is carried out separately for the real and

imaginary parts.

• DNC outperforms NC-MMSE-R and NC-MMSE for MT = MR ≥ 6.

• The performance advantage of DNC over NC-MMSE is greater for larger system sizes. As

explained in Section 3.5, for increasing system size the PSNRs of the various layers become more

similar, and thus NC-MMSE is increasingly unable to perform an appropriate layer sorting.

3.7.2 SER Performance for Systems Using Linear Dispersion Codes

Next, we consider a MIMO system using a linear dispersion (LD) code (see Section 1.5.2). We used

the LD code in [33, equation (31)] with MT = MR = T = 3, Q = 9, and 4-QAM symbols (here

referred to as LDC1), and the LD code discussed in [33, p. 1818] with MT = 8, MR = 4, T = 8,

Q = 32, and 16-QAM symbols (here referred to as LDC2). The size of the equivalent channel matrices

associated with LDC1 and LDC2 is 18 × 18 and 64 × 64, respectively. Fig. 3.5(a) and (b) shows the

SER-versus-SNR performance of DNC, NC, and ML detection using LDC1 and LDC2, respectively.

The following conclusions can be drawn from these results.

• DNC can achieve near-ML performance. At an SER of 10−2, the SNR loss of DNC compared

to ML detection is just about 0.8 dB for LDC1 and 1.5 dB for LDC2.

• DNC performs substantially better than NC-MMSE. This can be explained by the structure of

the system matrix H. Indeed, at the first decoding step, the MMSE PSNRs of all layers are

exactly equal for LDC1 and very similar for LDC2 (99 % of all realizations of H have ρ < 1.5).
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Figure 3.5: SER-versus-SNR performance of the proposed DNC detector and of NC-MMSE and ML

for MIMO systems using LD codes. (a) First LD code (see text) with MT = MR = 3 and 4-QAM

symbols, (b) second LD code with MT = 8, MR = 4, and 16-QAM symbols. (The SER curve for the

ML detector in part (b) was adapted from [33, Figure 9] via the approximate relation SER ≈ 4 ·BER.)

3.7.3 Computational Complexity

Next, we complement the complexity analysis of Section 3.4.3 by presenting empirical estimates of

the computational complexity of DNC, NC, and ML detection. For SM systems with equal numbers

of transmit and receive antennas MT = MR ∈ {4, 6, 8} and 4-QAM symbols, Table 3.1 shows kflop

estimates that were measured using MATLAB (the corresponding SER performance was shown in

Figure 3.4). We again distinguish between the preparation complexity Cprep (Table 3.1(a)) and the

vector complexity Cvector (Table 3.1(b)). As for the results in Table 2.1 in Section 2.6.2, FPSD was

used for ML detection and the efficient recursive matrix inversion algorithm (discussed in detail in

Section 3.4.2) was used for conventional NC (thus the numbers for FPSD and NC in Table 3.1 are the

same as in Table 2.1). The following conclusions can be drawn from Table 3.1.

• The vector complexity Cvector of DNC-R is significantly smaller than both the average and

maximum Cvector of FPSD (even though DNC-R achieves near-ML performance).
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measured kflops – preparation complexity Cprep

channel FPSD DNC-R DNC NC-R NC

(4, 4) 1.9 2.5 1.7 2.7 1.9

(6, 6) 6.1 7.9 4.8 8.8 5.3

(8, 8) 14.0 18.1 10.2 20.2 11.4

measured kflops – vector complexity Cvector

FPSD
channel

av. max.
DNC-R DNC NC-R NC

(4, 4) 2.6 18.2 1.4 1.2 0.7 0.6

(6, 6) 11.0 79.2 4.4 3.3 2.3 1.5

(8, 8) 44.1 364 10.1 6.9 5.1 3.2

(a)

(b)

Table 3.1: Measured computational complexity (in kflops) of the various detection techniques for SM

systems. (a) Preparation complexity Cprep, (b) vector complexity Cvector.

• For DNC(-R), Cvector is about twice as large as for NC(-R). The complexity of DNC-R is about

three times larger than that of NC.

• The computational complexity of the real implementations (DNC-R, NC-R) is larger than that

of the complex-valued counterparts (DNC, NC). This is due to the double system size, even

though some savings are made possible by the real calculations. This additional computational

complexity of DNC-R yields a substantial performance improvement over DNC while the per-

formance improvement of NC-R over NC is only marginal (cf. Figure 3.4). Thus, for NC, the

real-valued implementation may be not be justifiable.

• Cprep is slightly smaller for DNC(-R) than for NC(-R), because with DNC(-R) a part of Cprep

is transferred to Cvector.

• In contrast to FPSD, the complexity of DNC(-R) and NC(-R) is predetermined; it does not

depend on the specific channel or noise realization.

3.7.4 DNC versus LLR-based NC

We now compare the performance of DNC to LLR-based NC [75] (see also Section 3.6). We consider

a MT = MR = 6 SM system with 4-QAM symbols. Both, DNC and LLR-based NC were applied

to the equivalent real-valued system model according to (1.3) (denoted as DNC-R and LLR-NC-R,

respectively). As a reference, we also show the results for ML detection and conventional NC-ZF and

NC-MMSE (both employing PSNR sorting). In fact, LLR-NC-R requires the same computational

effort as DNC-R (thus, the results for DNC(-R) in Table 3.1 also hold for LLR-NC(-R)); however, in

contrast to DNC, LLR-based NC does not require any knowledge about the noise variance.
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Figure 3.6: SER versus SNR performance of DNC-R and LLR-NC-R for a MT = MR = 6 SM

system using 4-QAM symbols.

The following conclusions can be drawn from Figure 3.6.

• LLR-NC-R outperforms conventional NC-ZF. This is due to dynamic layer sorting employed by

LLR-NC.

• DNC-R performs significantly better than LLR-NC-R. As discussed in Section 3.6, DNC can be

seen as an extension of LLR-NC to correlated post-equalization interference. This explains its

significant performance advantage.

• In the low SNR regime LLR-NC-R performs slightly better than conventional NC-MMSE. In

the high SNR regime NC-MMSE performs significantly better than LLR-NC-R.

3.7.5 DNC versus Geometry-Based Detection

In the previous sections we observed that DNC can achieve near-ML performance with low compu-

tational effort. In Chapter 2 this was also claimed for the proposed geometry-based detectors (in

particular for the SPA). We now summarize and discuss the performance and complexity results of

DNC and geometry-based detection. Exemplary, Figure 3.7 summarizes the SER-versus-SNR perfor-

mance results for the MT = MR = 6 SM system with 4-QAM symbols. Here, the results are shown

separately for ZF-based (see Figure 3.7(a)) and MMSE-based (see Figure 3.7(b)) schemes. Further-

more, for the ZF-based schemes, LLR-NC-R as the ZF analogue of DNC-R is considered, and, in

addition, we also implemented the SPA as an add-on to LLR-NC-R (denoted as SPA-LLR-NC-R).

As a reference, ML performance is shown in both figures. Apart from the computational complexity

of SPA-LLR-NC-R, all corresponding complexity results can be found in Table 2.1 and Table 3.1,

respectively. Note that LLR-NC-R has virtually the same computational complexity as DNC-R.
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Figure 3.7: SER versus SNR performance of various standard and proposed detectors (DNC and

geometry-based detectors) for a MT = MR = 6 SM system using 4-QAM symbols. (a) ZF-based

schemes, (b) MMSE-based schemes.

The following conclusions can be drawn from Figure 3.7 .

• Both SPA-NC-MMSE and DNC-R achieve (roughly the same) near-ML performance (cf. Figure

3.7(b)) with much lower computational cost than FPSD and LSD. SPA-NC-MMSE has a larger

maximum Cvector but a smaller average Cvector than DNC-R.

• For the ZF schemes, only the SPA add-on to LLR-NC-R is able to achieve near-ML performance

(cf. Figure 3.7(a)).

• DNC-R performs significantly better than SPA-MMSE. Here, DNC-R has a complexity similar

to the maximum Cvector of SPA-MMSE, but, on average, SPA-MMSE is much more efficient.

(For the MT = MR = 4 system, however, both algorithms achieve near-ML performance, cf.

Figure 2.11 and Figure 3.4(b), but with DNC-R having a slight advantage in complexity.)

• SPA-ZF outperforms LLR-NC-R in the high SNR regime and suffers from a small performance

degradation in the low SNR regime (cf. Figure 3.7(a)). In particular, SPA-ZF achieves a higher

diversity than LLR-NC-R while having a smaller average complexity than LLR-NC-R.

Discussion and Further Results

For moderate sized SM systems (which are of greatest practical interest), both the DNC and the SPA

algorithms are a very good choice to achieve near-ML performance at low computational cost. They

are also superior to the LSD, whose computational complexity is much larger than that of the DNC

and the SPA algorithms. Furthermore, the DNC has a slight complexity advantage over the SPA

algorithms and for larger MIMO systems the performance of DNC will even improve relative to the

SPA algorithms. This is due to the fact that the IBC approximation (the basis for the SPA) becomes
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Figure 3.8: SER versus SNR performance of DNC and various SPA schemes for a MT = MR = 6

SM system using 8-PSK symbols. Here, DNC-R cannot be performed since 8-PSK symbols do not

allow for a separate decoding of real and imaginary parts of the data symbols.

less accurate while DNC-R can still achieve near-ML performance. Note however that DNC requires

the knowledge of the noise variance; the ZF analogue of DNC-R (the LLR-NC-R algorithm) is in

general not able to achieve near-ML performance, and the ZF variants of the SPA are superior to

LLR-NC-R.

Up to now, we considered QAM symbol alphabets that allow for a separate decoding of the real

and imaginary parts of the data symbols. The corresponding DNC implementation was based on the

equivalent real-valued system model. We showed that in this case, DNC (i.e. DNC-R) can achieve

near-ML performance and outperforms the SPA-lin. detectors. Figure 3.4 shows that the performance

improvement of DNC over conventional NC can be quite small if this separate decoding is not utilized.

For an 8-PSK symbol alphabet, for example, such a separate decoding is not possible and DNC cannot

be expected to achieve near-ML performance (since DNC-R cannot be performed). This is supported

by Figure 3.8, which shows DNC and SPA performance results for a MT = MR = 6 SM system

employing 8-PSK symbols. The following conclusions can be drawn.

• Indeed, DNC cannot achieve near-ML performance and it has just a slight performance advantage

over conventional NC. Thus, even by exploiting dynamic layer sorting, near-ML performance

cannot be achieved in this case.

• In contrast to DNC, SPA-NC-MMSE can achieve near-ML performance.

• The SPA-MMSE detector outperforms DNC.

Thus, the SPA and the DNC show a different performance relative to each other depending on the

considered system model. In addition to that, they exhibit the following different features:
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• The SPA is specifically tailored to SM systems while the DNC is a very general algorithm that

can be used for any type of a linear MIMO model (including, e.g., LD codes).

• The DNC is not restricted to any type of symbol alphabet while the SPA can only be used for

constant modulus alphabets. However, DNC achieves best performance if the real and imaginary

parts of the data symbols can be decoded separately, which, e.g., is not possible for |A|-PSK

alphabets with |A| > 4.

• In contrast to the DNC, the SPA is an add-on to any suboptimum data detection algorithm.

The SPA itself can be combined with DNC or LLR-NC (e.g., to achieve near-ML performance,

the SPA was employed as an add-on to LLR-NC-R in Figure 3.7(a)).

• By construction, the DNC operates on symbol level while the SPA add-on operates on data

vector level.

• The computational complexity of the DNC is predetermined (i.e. it does not depend on the

specific channel, data, or noise realization), while the complexity of the SPA is random.

3.8 Summary and Conclusions

In this chapter we proposed the dynamic nulling-and-cancelling (DNC) technique for MIMO detection.

DNC is based on the principle that at each decoding step, the symbol and layer with maximum approx-

imate a-posteriori probability (APP) is detected and canceled. The approximate APP is constructed

via a Gaussian approximation for the post-equalization interference. This results in an MMSE nulling

technique and a “dynamic” layer-sorting rule that is superior to conventional layer sorting based on

the “static” (average) post-equalization SNRs because it also exploits the information contained in the

current received vector. We also showed that a recently proposed NC technique using log-likelihood

ratios (LLRs) for layer sorting, too, can be derived with a Gaussian approximation for the post-

equalization interference; however, in contrast to our DNC scheme, the interference is assumed to be

uncorrelated. Thus, our DNC scheme can be seen as an extension of LLR-based NC to correlated

post-equalization interference.

The performance advantages of DNC over conventional MMSE-based NC were demonstrated both

analytically and numerically. Specifically, we showed that the largest performance gains are obtained

when the post-equalization SNRs of all layers are similar. Whereas in this case NC cannot perform a

meaningful layer sorting (it effectively selects some layer at random), DNC exploits the information

provided by the instantaneous-reliability factor for layer sorting and thus achieves better performance.

This advantage of DNC is particularly pronounced in the case of large SM systems, in the case of MIMO

systems using certain linear dispersion codes, and in the case of QAM symbols that allow for a separate

decoding of the real and imaginary parts of the data symbols. The additional computations required

by dynamic layer sorting were strongly reduced by a recursive calculation of the MMSE equalizer

matrices.
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Our simulation results showed that DNC significantly outperforms LLR-based NC and that it can

yield near-ML performance for a wide range of system sizes and channel SNRs with a much smaller

computational complexity than that required by the sphere-decoding algorithm for ML detection.

However, if the real and the imaginary parts of the data symbols cannot be decoded separately (in

particular for higher-order PSK alphabets), near-ML performance is in general not achieved by the

DNC technique; in this case, MMSE-based NC employing the SPA as an add-on achieves better perfor-

mance results. DNC has the advantage that it can be applied to arbitrary MIMO systems employing

arbitrary symbol alphabets while the SPA is specifically tailored to SM systems with constant modulus

alphabets. For SM systems of moderate size, DNC even turns out to be slightly more efficient (in

particular, with respect to the worst-case computational requirements) than the several SPA variants.



4
Soft-Output Detection

Algorithms

IN the previous two chapters we investigated hard-output data detection algorithms that provide hard

decisions about the transmitted data symbols and we investigated their performance for uncoded

MIMO systems, where no (outer) channel code was taken into account. However, any practical

wireless system employs some sort of channel coding to allow for a reliable communication. For MIMO

systems, the most important coding strategies are space-time trellis coding [3] and bit-interleaved coded

modulation (BICM) [83–85]. We will focus on MIMO-BICM since it is very well suited for MIMO

fading channels (including OFDM-based MIMO systems [86]), where it has been shown to outperform

space-time trellis coding [87].

Although hard-output detectors can directly be employed for MIMO-BICM systems as well, the

overall system performance can be improved by using soft-output instead of hard-output detectors [88].

In this chapter we will investigate and propose such soft-output detectors for MIMO-BICM systems.

Here, usually a two-stage receiver is employed that consists of a detector and a channel decoder that

are separated by an interleaver. The detector provides soft (or hard) decisions about the coded bits,

which then form the input to the channel decoder. A soft-output detector provides reliability estimates

of the coded bits, which are usually expressed as log-likelihood ratios (LLRs). This is in contrast to a

hard-output detector (e.g., any detector from Chapter 2 or Chapter 3 followed by a demapper), which

just would provide a binary hard decision. We do not consider any iterative (“turbo”) detection and

decoding processing [80,89,90], which would result in a further improvement of MIMO-BICM system

performance, however, with the drawback of an increased computational effort.

Similar to optimum hard-output detection, soft-output detection with an exact LLR calculation

is computationally very intensive and becomes prohibitive for large MIMO systems. Thus, there is a

strong demand for efficient soft-output detectors that calculate approximate LLRs. In this chapter,

we extend the algorithms and concepts of Chapter 2 and Chapter 3 to provide approximate LLRs of

73
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coded bits instead of suboptimum hard symbol decisions. In particular, we will extend the hard-output

SPA (see Section 2.5) to its soft version (which we will refer to as the soft-output SPA (SSPA) [26]).

The soft-output extension of the LSD can be found in [27]. Furthermore, we will use the concept

of the DNC (i.e. the use of a Gaussian approximation for the post-equalization interference to get a

computational efficient expression for the reliability of a certain data symbol) to re-derive [28] the very

efficient equalization-based (i.e. ZF- and MMSE-based) soft-output detectors that can also be found

in [91–93]. In fact, our derivation shows that MMSE-based soft-output detection can be seen as an

extension of ZF-based soft-output detection to correlated post-equalization interference.

The various soft-output detectors will be assessed for OFDM-based MIMO-BICM systems using

synthetic and measured MIMO channels. Our simulation results demonstrate that the SSPA can

efficiently achieve a performance close to the performance of the soft-output extension (or list exten-

sion) of Fincke-Phost’s sphere decoding algorithm (LFPSD) [80] for ML detection. Furthermore, we

will show that the equalization-based soft-output detectors suffer from a significant performance loss

compared to the SSPA and LFPSD while requiring significantly less computational complexity.

This chapter is organized as follows. In Section 4.1 we will provide some background on MIMO-

BICM and soft-output detection. In Section 4.2 we derive the ZF- and the MMSE-based soft-output

detectors using a Gaussian approximation of the post-equalization interference. Section 4.3 is devoted

to the soft-output extension of the SPA. Finally, simulation results are provided in Section 4.4.

4.1 MIMO Bit-Interleaved Coded Modulation

In this section we provide some background on MIMO-BICM systems employing soft-output detection

and soft-input channel decoding.

4.1.1 MIMO-BICM System Model

We consider a MIMO-BICM system as illustrated in Figure 4.1 (e.g., [86,87]). At the BICM transmit-

ter, a stream of information bits is passed through a standard convolutional encoder and an interleaver

Π. The resulting stream of coded and interleaved bits is then demultiplexed into M bit streams that

are partitioned into groups of log2|A| bits. At each time instant, M of these groups (each associated

to a different data stream) are mapped to the complex-valued data symbols dm ∈ A, m = 1, . . . ,M ,

which are then transmitted over the MIMO system acting as (cf. system model (1.1))

r = Hd + w. (4.1)

In this setup, the coding and interleaving is performed across subsequent channel uses, i.e. the bits

that belong to a single codeword are spread over many subsequent data transmissions, where each

just carries M log2 |A| coded bits. Thus, if the encoding length (and thus the interleaver length) is

sufficiently large, any correlation between the coded bits that belong to the same d can be neglected.

If we consider an OFDM-based MIMO system (cf. (1.4)), where (4.1) holds for each subcarrier, the

coding and interleaving is performed across the subcarriers [86, 87]. If K denotes the number of
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Figure 4.1: MIMO system using bit-interleaved coded modulation.

subcarriers, a block of KM data symbols is transmitted or, equivalently, each codeword consists of

KM log2 |A| bits.

At the MIMO-BICM receiver, the soft-output detector uses the received vector r and the knowledge

of H and σ2
w to calculate an LLR for each of the M log2 |A| coded bits that are accociated with a

transmitted data vector d. Here, no structure of the channel code is taken into account. The resulting

LLRs (from all layers and channel uses) are multiplexed into a single stream, deinterleaved (using

deinterleaver Π−1), and are then used for soft-in Viterbi decoding [88].

4.1.2 Soft-Output Detection

Let bm,i with i = 1, . . . , log2 |A| denote the coded bits of themth layer (i.e., after encoding, interleaving,

demultiplexing), to which the symbol dm ∈ A is associated via some labeling (e.g., Gray labeling).

We assume that the code bits bm,i are equally likely and statistically independent, which is a good

approximation for a sufficiently large encoder (and interleaver) length.

The LLR of bm,i is given by

Λm,i
4
= log

(
f(r|bm,i =1)

f(r|bm,i =0)

)
, (4.2)

which can be further written as

Λm,i = log




∑
d∈D1

m,i
e
− 1

σ2
w

‖r−Hd‖2

∑
d∈D0

m,i
e
− 1

σ2
w

‖r−Hd‖2


 . (4.3)
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Here, Db
m,i denotes the set of all possible transmit data vectors d whose label at layer m and bit

position i equals b ∈ {0, 1}. That is, Db
m,i consists of all data vectors d with dm ∈ Ab

i and dm′ ∈ A,

m′ 6= m, i.e.

Db
m,i

4
=
{
d
∣∣ dm ∈ Ab

i , dm′ ∈ A, m′ 6= m
}
, (4.4)

where the reduced alphabet Ab
i ⊂ A is obtained by retaining only those symbols of alphabet A whose bit

label at position i equals b. A significant complexity reduction of evaluating the exact LLR expression

(4.3) can be obtained by applying the log-max approximation (see (3.20)). We obtain

Λm,i ≈
1

σ2
w

[
λ0

m,i − λ1
m,i

]
, λb

m,i
4
= min

d∈Db
m,i

ψ2
ML(d), (4.5)

with ψ2
ML(d) = ‖r − Hd‖2. This can be expected to yield just a very small performance degradation

compared to (4.3) [83,94]. With (4.5), the LLR is expressed as a difference of minimized ML distances

ψ2
ML(d). The first term is ψ2

ML(d) minimized over all possible data vectors with dm ∈ A0
i ; the second

term is ψ2
ML(d) minimized over all possible data vectors with dm ∈ A1

i . If d with dm ∈ A0
i achieves

a smaller ψ2
ML(d) than d with dm ∈ A1

i , Λm,i is negative, which expresses the fact that bm,i is more

likely to be zero that one. If, however, d with dm ∈ A1
i achieves a smaller ψ2

ML(d), Λm,i is positive,

and bm,i is more likely to be one than zero.

The computational complexity of the soft-output detector that computes (4.5) still behaves expo-

nentially in M and can be excessive for practical values of |A| and M [80]. Thus, various efficient

MIMO-BICM soft-output detection algorithms providing approximate LLRs have been proposed, such

as the list extension of the Fincke-Phost sphere decoding (LFPSD) algorithm [80], other variants based

on sphere decoding [79,95,96], and algorithms based on ZF or MMSE equalization [92,97].

4.2 MMSE- and ZF-Based Soft-Output Detection

In the following, we re-derive [17] the MMSE-based and the ZF-based soft-output detectors by means of

a Gaussian approximation for the post-equalization interference (as it was also employed to derive the

DNC in Chapter 3). The MMSE soft-output detector can be found in [91,93,97], and the ZF-based soft-

output detector was proposed in [92]. Both detectors are now obtained under the common framework

of a Gaussian approximation for the post-equalization interference and in contrast to [91–93, 97] we

do not a-priori assume any specific equalizer structure. We will show (similar to the relation between

DNC and LLR-based NC, cf. Section 3.6) that the MMSE soft-output detector can be seen as an

extension of the ZF soft-output detector to correlated post-equalization interference, which explains

its significant performance advantage. Both algorithms exhibit a similar structure that consists of a

equalization step (ZF or MMSE, respectively) followed by a per-layer LLR calculation. This results

in a significantly reduced computational complexity. In particular, the complexity of the equalization-

based detectors is just a fraction of that required by the LFPSD. However, the resulting performance

loss is substantial (this will be demonstrated in Section 4.4).
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4.2.1 Gaussian Approximation

We start by reformulating1 the LLR in terms of yZF = GZFr instead of r. With (1.12) and Rew =

σ2
w(HHH)−1, and we can express the LLR (4.3) as

Λm,i = log



∑

d : dm∈A1
i
e−(yZF−d)HR−1

ew
(yZF−d)

∑
d : dm∈A0

i
e−(yZF−d)HR−1

ew
(yZF−d)




= log

(
f(yZF|b(i)m =1)

f(yZF|b(i)m =0)

)
.

Inserting

f(yZF|b(i)m =b) =
1

|Ab
i |
∑

a∈Ab
i

f(yZF|dm =a)

and using the log-max approximation (3.20), we obtain further

Λm,i ≈ max
a∈A1

i

log f(yZF|dm =a) − max
a∈A0

i

log f(yZF|dm =a) . (4.6)

As it was done in the derivation of the DNC (cf. Section 3.1.2), we now apply a Gaussian approximation

for the post-equalization interference. This yields a computationally efficient expression for (4.6). That

is, f(yZF|dm =a) is approximated by a Gaussian pdf f̃m(yZF|dm =a) with mean µm and covariance

matrix Cm (cf. (3.6)). Thus, the LLR in (4.6) is approximated according to

Λm,i ≈ Λ̃m,i
4
= max

a∈A1
i

log f̃m(yZF|dm =a) − max
a∈A0

i

log f̃m(yZF|dm =a) . (4.7)

4.2.2 MMSE-Based Soft-Output Detection

For MMSE-based soft-output detection the mean µm and the covariance matrix Cm of f̃m(yZF|dm =a)

(cf. (3.6)) are both matched to the mean and the covariance matrix of the post-equalization interfer-

ence, i.e. µm = a em and Cm = I − emeT
m + Rew (see (3.7)).

Using these results for µm and Cm and inserting (3.6) into (4.7), we obtain the MMSE-based

soft-output detector as

Λ̃MMSE,m,i
4
= min

a∈A0
i

qm(a) − min
a∈A1

i

qm(a) , (4.8)

where

1The following derivation could also be performed without going into the ZF domain; however, in that case the

calculations would be more involved.
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qm(a)
4
= (yZF−a em)HC−1

m (yZF−a em)

=yH
ZFC−1

m yZF − 2 Re
{
yH

ZF C−1
m ema

}
+ |a|2eT

mC−1
m em . (4.9)

The term yH
ZFC−1

m yZF does not depend on a and thus can be disregarded in (4.8). By using (3.13)

and (3.14) for the terms yH
ZF C−1

m em and eT
mC−1

m em, respectively, and by applying the identity

SNRMMSE,m =
Wm,m

1 −Wm,m

for the MMSE post-equalization SNR (cf. (3.24)), it can be easily verified that (4.8) simplifies to

Λ̃MMSE,m,i = SNRMMSE,m

[
min
a∈A0

i

η2
m(a) − min

a∈A1
i

η2
m(a)

]
, (4.10)

where ηm(a) refers to the unbiased distance

ηm(a) =

∣∣∣∣
yMMSE,m

Wm,m
− a

∣∣∣∣

as in (3.17).

4.2.3 ZF-Based Soft-Output Detection

For ZF-based soft-output detection, we again use µm = a em for f̃m(yZF|dm =a), but all correlations

in yZF are neglected, i.e. Cm is replaced with C̃m given by (3.37), where all nondiagonal elements of

Cm = I − emeT
m + Rew are set to zero.

Thus, the quadratic form qm(a) in (4.8) is now replaced with q̃m(a), i.e.

Λ̃ZF,m,i
4
= min

a∈A0
i

q̃m(a) − min
a∈A1

i

q̃m(a) , (4.11)

where

q̃m(a)
4
= (yZF−a em)HC̃−1

m (yZF−a em)

=yH
ZFC̃−1

m yZF − 2 Re
{
yH

ZF C̃−1
m ema

}
+ |a|2eT

mC̃−1
m em .

By simplifying this expression and inserting into (4.11), we obtain the ZF-based soft-output detector

as

Λ̃ZF,m,i = SNRZF,m

[
min
a∈A0

i

γ2
m(a) − min

a∈A1
i

γ2
m(a)

]
. (4.12)

Here, γm(a) = |yZF,m − a| and SNRZF,m denotes the ZF post-equalization SNR (1.17).

4.2.4 Computational Complexity and Discussion

The final expressions for MMSE-based (4.10) and ZF-based (4.12) soft-output detection, together

with the expressions for ηm(a) and γm(a) in terms of yMMSE,m and yZF,m, respectively, show that
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these detectors consist of an equalization step and subsequent per-layer LLR calculation, i.e. after

equalization each layer is processed separately. The preparation complexity Cprep is dominated by the

calculation of GZF or GMMSE, respectively, with complexity O(M 3) (again assuming M = N). The

vector complexity Cvector is mainly composed of the equalization step with complexity O(M 2).

Evidently, the structure of these soft-output detectors is very similar to that of the log-max soft-

output detector in (4.5). All three detectors compute a difference of two distances, where one distance

corresponds to the respective bit being 0 and the other corresponds to that bit being 1. However, the

distances and the pre-factors in the corresponding approximate LLR expressions are defined differently.

Finally, our derivation shows that the MMSE-based soft-output detector can be seen as an exten-

sion of the ZF-based soft-output detector to correlated post-equalization interference. This provides

an explanation of the significant performance advantage of MMSE-based over ZF-based soft-output

detection (this will be demonstrated in Section 4.4). Note that the noise variance σ2
w can be ignored

in the pre-factors of the log-max (4.5) and ZF-based (4.12) soft-output detector. For these two de-

tectors, σ2
w is an irrelevant scaling factor that has no influence on the performance of the subsequent

soft-in Viterbi decoder (that maximizes the sum over all LLRs). For the MMSE-based soft-output

detector, however, σ2
w is more than just a scaling factor (e.g., σ2

w is also used in the calculation of

the MMSE equalizer matrix). Consequently, the ZF and log-max detectors have the advantage over

MMSE detection that knowledge of the noise variance is not required.

4.3 Soft-Output SPA

In Chapter 2 we proposed (hard-output) geometry-based data detection algorithms for SM systems. In

particular, the SPA (based on constant modulus alphabets) was shown to be a very attractive detection

algorithm (see Section 2.5). For SM systems of moderate size, it can achieve near-ML performance at

low computational cost. We now extend the SPA to provide soft outputs (i.e. LLRs) instead of hard

decisions. The resulting method we refer to as the soft-SPA (SSPA) [26]. It is specifically tailored

to PSK alphabets employing Gray labeling. This labeling is most commonly used in practice and

optimum for BICM systems [84]. If one considers BICM systems employing iterative detection and

decoding, other labeling strategies (e.g., set partitioning labeling) can achieve better performance

results [98]. The soft version of the LSD (see Section 2.4) can be found in [28]. As for the SPA, we

again focus on SM systems (cf. (1.5.1)), where M = MT, and N = MR.

4.3.1 Basic Idea of SSPA

First of all, max-log soft-output detection (4.5) is closely related to the ML detector (cf. (1.5))

d̂ML = arg min
d∈D

‖r−Hd‖2 = arg min
d∈D

ψ2
ML(d) . (4.13)

Denoting the ith bit of the mth component of d̂ML as (d̂ML)m,i = b, it follows that d̂ML ∈ Db
m,i and

hence we immediately obtain

λb
m,i = ψ2

ML(d̂ML) . (4.14)
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However, the computation of d̂ML in (4.13) is computationally very intensive and one must still

compute the term λb̄
m,i in (4.5) (b̄ = 1−b denotes bit flipping).

The idea behind the SSPA is as follows. As discussed in detail in Section 2.5, the SPA is an

efficient approximation to the ML detector. It replaces D with a reduced search set DSP to obtain a

hard decision

d̂SP = arg min
d∈DSP

ψ2
ML(d) (4.15)

such that

ψ2
ML(d̂SP) ≈ ψ2

ML(d̂ML).

This together with (4.14) yields the approximation

λb
m,i ≈ λ̃b

m,i
4
= ψ2

ML(d̂SP) , for b = (d̂SP)m,i . (4.16)

It remains to calculate a similar approximation for λb̄
m,i. A comparison of (4.5) and (4.14) reveals

that such an approximation could in principle be obtained by applying the SPA with D b̄
m,i instead of

D, i.e.,

λb̄
m,i ≈ λ̃b̄

m,i
4
= arg min

d∈Db̄
SP,m,i

ψ2
ML(d) (4.17)

Here, Db̄
SP,m,i denotes the SPA reduced search set corresponding to D b̄

m,i, i.e. the SPA is performed

with the reduced alphabet Ab̄
i instead of A for layer m. In general, computing (4.17) requires a

second SPA pass. However, by employing PSK alphabets with Gray labeling we will show that such

a second SPA pass can be circumvented and λ̃b̄
m,i can be calculated with moderate additional effort

using intermediate results of the first SPA pass that is used to calculate (4.16). In fact, all vectors

d̃ ∈ Db̄
SP,m,i can be obtained by a re-quantization to Ab̄

i of the vectors d ∈ DSP and the associated

distances ψ2
ML(d̃) can be computed via simple updates of ψ2

ML(d), d ∈ DSP.

4.3.2 Re-Quantization Property of PSK with Gray Labeling

The efficient implementation of the SSPA is based on the following fundamental re-quantization prop-

erty. Here, the quantization of y ∈ C with respect to the reduced alphabet Ab̄
i , denoted as

QAb̄
i

{y} = arg min
a∈Ab̄

i

|y − a|,

remains unchanged when it is preceded by the quantization with respect to A, i.e.,

QAb̄
i

{y} = QAb̄
i

{QA{y}}. (4.18)

This means, the decision boundaries for Ab̄
i form a subset of the boundaries for A. Thus, any quanti-

zation with respect to Ab̄
i can be performed using A-quantized values.

Evidently, this property depends on the alphabet and on the labeling employed. In the following

we show that PSK alphabets whose size is a power of two (including, e.g., BPSK, 4-QAM (QPSK),

and 8-PSK alphabets) with Gray labeling have this re-quantization property. At first, we discuss that
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the data symbols in the reduced alphabet Ab̄
i ⊂ A have to satisfy a certain angular property. In fact,

the angular separation of the symbols in Ab̄
i has be an odd multiple of the basic angular separation

∆θ
4
= 2π/|A| of the data symbols in A. We subsequently show that Gray labeling yields this angular

property of the data symbols in Ab̄
i .

Re-Quantization Property of PSK: Angular Property

In the following we assume that A is a PSK alphabet with size |A| ≥ 4 that is a power of two. If

|A| = 2, i.e. A is a BPSK alphabet, re-quantization property (4.18) holds since the corresponding

reduced alphabets A0
0 and A1

0 have no boundary lines at all (since the decision region is C in each

case) and thus forms a trivial subset of the boundary line for A. We now represent the PSK data

symbols at = ejθt ∈ A, t = 0, . . . , |A| − 1, by their associated angles θt (up to arbitrary multiples of

2π), which we describe recursively using

θ(t+1)mod|A| = θt + ∆θ, (4.19)

where (·)mod|A| denotes the modulo operation with respect to |A|, i.e. we have θ1 = θ0 + ∆θ,

θ2 = θ1 + ∆θ, up to θ0 = θ|A|−1 + ∆θ. Thus, the symbols at ∈ A, t = 0, . . . , |A| − 1, are sorted

in a counter-clockwise manner on the unit circle and two subsequent symbols (in a cyclic manner,

i.e. including the last symbol a|A|−1 and the first symbols a0) are nearest neighbor symbols that are

separated by the angle ∆θ. Up to a fixed angular offset, this representation of the data symbols at ∈ A
is unique. In analogy to (4.19), the angles θ̃l (up to arbitrary multiples of 2π) of the data symbols

ãl = ejθ̃l ∈ Ab̄
i ⊂ A, l = 0, . . . , |A|/2 − 1, can be written as

θ̃(l+1)mod(|A|/2) = θ̃l + tl∆θ, (4.20)

where tl are some integers from the set {1, . . . , |A| − 1}. Thus, the symbols ãl, l = 0, . . . , |A|/2− 1, of

the reduced alphabet Ab̄
i are also sorted in a counter-clockwise manner on the unit circle, but now with

an angular separation that is a tl-multiple of ∆θ. For A and Ab̄
i the boundaries of the symbol decision

regions are straight line segments whose angles are determined by the angular mean of two subsequent

(with respect to (4.19) and (4.20), respectively) data symbols. The angles of these boundary lines are

thus given by

χt
4
= θt +

∆θ

2
and χ̃l

4
= θ̃l + tl

∆θ

2
, (4.21)

for A and Ab̄
i , respectively. For a labeling with the re-quantization property (i.e. the decision bound-

aries for Ab̄
i form a subset of the boundaries for A), we must have that each χ̃l is equal to χt for some

t. Thus, for each θ̃l and tl we must have

θ̃l + tl
∆θ

2
= θt +

∆θ

2
(4.22)

for some θt. Since θt − θ̃l can be any n-multiple of ∆θ with n ∈ N, we obtain

tl = 2n+ 1.
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It follows that tl has to be one of the odd integer numbers from the set {1, . . . , |A| − 1}. If tl is even

for some l, the decision boundaries for Ab̄
i do not form a subset of the boundaries for A. In view of

(4.20), any labeling of a PSK alphabet that allows for re-quantizations, yields reduced alphabets Ab̄
i ,

where the angles of two subsequent data symbols are separated by an odd-multiple of ∆θ.

Re-Quantization Property of PSK: Gray Labeling

We now show that the angular property for the data symbols ãl ∈ Ab̄
i holds if Gray labeling is

employed. Let bt
4
= (bt,0 · · · bt, log2|A|−1)

T , bt,i ∈ {0, 1}, denote the label associated with data symbol

at ∈ A. With Gray labeling, by definition, the labels of two nearest neighbor symbols differ in only

one of the log2|A| bit positions [99]. That is, subsequent labels bt, t = 0, . . . , |A|−1, differ only in one

bit position. Since we consider PSK alphabets with Gray labeling, this also includes the first label b0

and the last label b|A|−1 and thus, this is often referred to as a binary cyclic Gray labeling. By labeling

expansion it can be constructed recursively [99]. In fact, the cyclic Gray labels bt, t = 0, . . . , |A| − 1,

can be constructed based on the cyclic Gray labels b′
s, s = 0, . . . , |A′| − 1, of data symbols a′s ∈ A′,

where the alphabet A′ has half the size of A, i.e. |A| = 2|A′|. In the simplest case A is a QPSK

(4-QAM) alphabet and A′ is a BPSK alphabet. By labeling expansion, the labels bt for the data

symbols at ∈ A are obtained by repeating each label b′
s of a′s ∈ A′ and by augmenting a bit sequence

that consists of alternating [0, 1] and [1, 0] blocks. We have

[
b0 b1 b2 b3 b4 b5 · · · b|A|−2 b|A|−1

]
=

[
b′

0 b′
0 b′

1 b′
1 b′

2 b′
2 · · · b′

|A′|−1 b′
|A′|−1

0 1 1 0 0 1 · · · 1 0

]
. (4.23)

Obviously, cyclic Gray labels b′
s result in cyclic Gray labels bt. For example, a cyclic Gray labeling

for a QPSK (4-QAM) constellation A can be obtained via labeling expansion of the (trivial) Gray

labeling of a BPSK constellation A′, e.g., with b′
0 = 0 and b′

1 = 1 one obtains

[
b0 b1 b2 b3

]
=

[
b′

0 b′
0 b′

1 b′
1

0 1 1 0

]
=

[
0 0 1 1

0 1 1 0

]
. (4.24)

Cyclic Gray labeling also guarantees that the data symbols ãl ∈ Ab̄
i satisfy the angular property. By

looking at the structure of the labeling expansion (4.23), this can be easily shown as follows. In general,

the labels for the data symbols ãl ∈ Ab̄
i are given by certain |A|/2 columns of [b0 b1 . . .b|A|−1]. The

remaining columns are the labels for the data symbols in the complementary set Ab
i , where b = 1− b̄.

We require that two subsequent data symbols ãl ∈ Ab̄
i are separated by an odd-multiple of ∆θ (see

previous section). Equivalently, the corresponding subsequent labels for ãl ∈ Ab̄
i are given by columns

of [b0 b1 . . .b|A|−1] which are separated by an even number of labels for the complementary set Ab
i .

From the right hand side of (4.23) we observe that always neighboring pairs of labels provide the labels

for the data symbols in Ab̄
i and Ab

i , respectively. It follows that two subsequent data symbols in ãl ∈ Ab̄
i

are always separated by an odd-multiple of ∆θ. Hence, by starting with a BPSK constellation, cyclic

Gray labels for higher-order PSK alphabets are constructed via labeling expansion and it is always

guaranteed that the re-quantization property (4.18) holds.
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Figure 4.2: 4-QAM alphabet A = 1√
2
{1 + j, −1 + j, −1 − j, 1 − j} with Gray labeling. (a) A with

the corresponding labels, (b) reduced alphabets Ab̄
i = {ã0, ã1} ⊂ A, for i = 0, 1, b̄ = 0, 1. The bold line

segments are the corresponding boundaries of the symbol decision regions. Evidently, the boundaries

for Ab̄
i form a subset of the boundaries for A.

Examples

4-QAM Alphabet. The four data symbols at, t = 0, . . . , 3, of the 4-QAM constellation A =

1/
√

2 {1 + j,−1 + j,−1 − j, 1 − j} are illustrated in Figure 4.2(a). Up to a fixed angular offset, the

data symbols can be described by (4.19) using ∆θ = π/2. The boundary lines of the symbol decision

regions are given by the horizontal and vertical axis (indicated by the bold line segments). The four

angles of the associated boundary line segments are given by (cf. (4.21))

χ0 =
π

2
, χ1 = π, χ2 =

3π

2
, χ3 = 2π.

The Gray labeling of the respective symbols is also provided in Figure 4.2(a). It can be obtained using

labeling expansion of the Gray labeling employed for BPSK modulation (cf. (4.24)). Figure 4.2(b)

shows the four corresponding reduced symbol alphabets, namely, A0
0, A1

0, A0
1, and A1

1. For all reduced

alphabets, the boundaries of the decision regions form a subset (either the horizontal or vertical axis)

of the boundaries for A. Evidently, a 4-QAM constellation with Gray labeling has the re-quantization

property (4.18).

8-PSK Alphabet. The 8-PSK constellation is illustrated in Figure 4.3(a). Up to a fixed angular

offset, this alphabet can described by (4.19) using ∆θ = π/4. The boundaries of the symbol decision

regions are indicated by the bold line segments whose angles can be obtained via (4.21). The Gray

labeling of the respective symbols (also shown in Figure 4.3(a)) can be obtained using labeling ex-

pansion of the 4-QAM Gray labeling (see previous example). Figure 4.2(b) shows one corresponding
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Figure 4.3: 8-PSK alphabet A with Gray labeling. (a) A with the corresponding labels, (b) reduced

alphabet A0
0 ⊂ A. The bold line segments are the corresponding boundaries of the symbol decision

regions. The boundaries for A0
0 form a subset of the boundaries for A.

reduced symbol alphabet, namely A0
0, and its associated boundary lines. Again, the re-quantization

property (4.18) holds.

4.3.3 SSPA Details

In the following we will discuss the efficient calculation of λb̄
m,i in (4.17) based on the reduced set DSP

and the associated distance set

ΨSP
4
=
{
ψ2

ML(d), d ∈ DSP

}
. (4.25)

The sets DSP and ΨSP are both obtained via the SPA. Recall that Db̄
m,i consists of all data vectors

d with dm ∈ Ab̄
i and dm′ ∈ A, m′ 6= m (cf. (4.4)). Thus, when determining the reduced search set

Db̄
SP,m,i for (4.17), the main difference to the initial SPA pass is that quantization and nearest neighbor

search for layer m are limited to the reduced alphabet Ab̄
i . The efficient implementation of the SSPA

is based on the fundamental re-quantization property (4.18) of PSK alphabets with Gray labeling.

The basic operation to obtain a data vector d̃ ∈ Db̄
SP,m,i is the re-quantization according to the

reduced alphabet Ab̄
i of the mth component of d ∈ DSP (the other components remain unchanged):

d̃m′ =





QAb̄
i

{dm} , if m′ = m,

dm′ , if m′ 6= m.
(4.26)

On the vector level, this re-quantization of the mth component will be denoted as d̃ = QAb̄
i ,m

{d}.
Recall that DSP consists of the result of a conventional detector d̂ and of an additional search set

D+, i.e. DSP = {d̂} ∪ D+. For Db̄
SP,m,i we have Db̄

SP,m,i = {d̂b̄
m,i} ∪ Db̄

+,m,i. If d̂ is the result of ZF or
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MMSE detection, i.e. d̂ = QA{y}, where y is the corresponding equalized received vector, we have

d̂b̄
m,i = QAb̄

i ,m
{d̂} since we use the reduced symbol alphabet Ab̄

i instead of A for layer m. It remains

to determine the additional search set Db̄
+,m,i.

Construction of Additional Search Set

Again we distinguish between the two cases of SPA set construction (cf. Section 2.5.1).

Case 1: L intersects H. If L intersects H, each data vector d(r) ∈ D+ is associated to a specific

cell (for the line parameter α̃) that is pierced by the intersection circle I with radius R̃ (see (2.25)).

The intersection circle I can be described by

I : α̃I(φ)
4
= R̃ ejφ, φ ∈ [0, 2π).

The additional search set D+ consists of all data vectors that are obtained as QA{yL(α̃I(φ))} for all

possible angles φ (recall that yL(α̃) = α̃vMT
+y⊥

vMT
). According to Section 2.5.1, the first data vector

d(1) ∈ D+ is obtained with φ = 0, i.e. d(1) = QA{yL(R̃)}. The remaining data vectors are obtained

by hopping from one intersection point – between I and a boundary line B(m,p) of the symbol decision

regions for A – to the next intersection point that is obtained for increasing φ. Equivalently, the

boundary lines B(m,p) partition the angle parameter φ into certain intervals V (r), and each data vector

d(r) ∈ D+ is associated to a specific V (r). We thus have d(r) = QA{yL(α̃I(φ))} for any φ ∈ V (r).

For the construction of Db̄
+,m,i, we now use Ab̄

i instead of A for layer m. Thus, in analogy to

the construction of D+, each data vector d̃(r) ∈ Db̄
+,m,i, is obtained as d̃

(r)
m = QAb̄

i

{yL,m(α̃I(φ))}
and d̃

(r)
m′ = QA{yL,m′(α̃I(φ))}, m′ 6= m, for φ in a specific interval Ṽ(r). In general, the intervals

Ṽ(r) (obtained with Ab̄
i for layer m and A for the remaining layers) are completely different from

the intervals V(r) (obtained with A for all layers). This is due to the fact that the boundary lines

associated with Ab̄
i are different from that associated with A. However, the re-quantization property

(4.18) implies that an interval Ṽ(r) either equals an interval V (r) or is a union of adjacent intervals

V(r). The reason is that the boundary lines for Ab̄
i form a subset of the boundary lines for A, which

simply implies that some intersection points with I are no longer present for the reduced alphabet Ab̄
i .

It follows that the entire set Db̄
+,m,i can be obtained by re-quantizing every data vector d(r) ∈ D+,

i.e., d̃(r) = QAb̄
i ,m

{d(r)}. In that way, data vectors d̃(r) associated to an interval Ṽ(r) that is the union

of two or more intervals V (r) will be multiply obtained. We do not take this into account, since the

resulting complexity reduction would be insignificant.

Case 2: L does not intersect H. If L and H do not intersect, D+ consists of d(1) = QA{y⊥
vMT

}
and all its nearest-neighbor data vectors. Thus, d̃(1) ∈ Db̄

+,m,i is obtained as d̃(1) = QAb̄
i ,m

{d(1)}.
As for the construction of D+, the remaining data vectors in d̃(r) ∈ Db̄

+,m,i can be simply found by

substituting the nearest-neighbor symbols for the individual components of d̃(1). In analogy to the

Case 1 procedure we propose to construct D b̄
+,m,i by re-quantizing every data vector d(r) ∈ D+, i.e.,

d̃(r) = QAb̄
i ,m

{d(r)}. This evidently yields the nearest-neighbor data vectors d̃(r) of d̃(1) with respect
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to the components m′ 6= m but possibly misses the two nearest-neighbor data vectors of d̃(1) with

respect to component m. Note that this procedure is also used if L does intersect H but no boundary

line intersects the intersection circle I.

Efficient Calculation of Distances

To calculate λ̃b̄
m,i according to (4.17), we need the distance set Ψb̄

SP,m,i that is associated to Db̄
SP,m,i =

{d̂b̄
m,i} ∪ Db̄

+,m,i (cf. (4.25)):

Ψb̄
SP,m,i

4
=
{
ψ2

ML(d), d ∈ Db̄
SP,m,i

}
.

Similar to the efficient distance updates that were employed for the LSD and the SPA (cf. (2.20) in

Section 2.4.1), the distances ψ2
ML(d), d ∈ Db̄

SP,m,i, can be obtained via an update of ψ2
ML(d), d ∈ DSP,

provided that the vectors ξ(d) = r−Hd, d ∈ DSP, are also stored during the first SPA pass. Consider

the re-quantized data vector d̃ = QAb̄
i ,m

{d} and let ∆b̄
m,i

4
= d̃m − dm denote the difference between

the mth components of d̃ and d. Note that the re-quantization operation (4.26) just corresponds to

a simple symbol re-mapping of the mth component of d and is analogous to the update operation in

(2.14) employed for the LSD. We then have (cf. (2.20) and (2.21))

ψ2
ML(d̃) = ψ2

ML(d) + ‖hm‖2
∣∣∆b̄

m,i

∣∣2 − 2 Re
{

ξH(d)hm∆b̄
m,i

}
. (4.27)

4.3.4 Algorithm Summary and Computational Complexity

We now summarize the SSPA and discuss its computational complexity. Note that the SSPA heavily

relies on the re-quantization property of PSK alphabets with Gray labeling (see Section 4.3.2).

1. Use the conventional SPA to calculate the reduced search set DSP, the associated distance set

ΨSP, the detector output d̂SP, and ψ2
ML(d̂SP), the minimum element of ΨSP. For the SPA all

components are drawn from the same alphabet A.

2. For each coded bit bm,i, m = 1, . . . ,MT, i = 0, . . . , log2|A| − 1, perform the following steps:

• Determine b = (d̂SP)m,i and set λ̃b
m,i = ψ2

ML(d̂SP);

• calculate Ψb̄
SP,m,i = {ψ2

ML(d), d ∈ Db̄
SP,m,i} by re-quantizing each d∈ DSP and performing

the distance update (4.27);

• obtain λ̃b̄
m,i as the minimum element of Ψb̄

SP,m,i;

• finally, calculate the approximate LLR

Λ̃SP,m,i =
1−2b

σ2
w

(
λ̃b

m,i − λ̃b̄
m,i

)
,

where the factor 1−2b ∈ {−1, 1} serves to adjust the sign.

The computational complexity of the SSPA can be assessed as follows. The preparation complexity

Cprep is the same as that of the conventional hard-output SPA (cf. Section 2.5.2), which has the

dominant complexity of O(M 3
T) due to the calculation of DZF or DMMSE, respectively. The vector
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complexity Cvector is composed of Cvector of the hard-output SPA (given by O(M 2
TP ), cf. Section 2.5.2)

and of those operations carried out to provide soft instead of hard outputs (see the second item of the

SSPA summary). Here, for each of the MTlog2|A| coded bits, at most 2MTP + 1 data vectors of the

reduced search set DSP (see the discussion in Section 2.5.1) are re-quantized and the corresponding

distance updates (4.27) are performed. Since the complexity of a distance update is O(MT), we obtain

the overall vector complexity Cvector of the SSPA as O(M3
T |A| log2|A|), where P ∝ |A| is assumed.

4.4 Simulation Results

We next provide simulation results in order to assess the error-rate performance and the computational

complexity of the various soft-output detectors. We consider an OFDM-based MIMO-BICM system

for frequency-selective MIMO channels. The MIMO system operates in an SM mode, i.e. we have

M = MT and N = MR.

As soft-output detectors, we used the SSPA in conjunction with ZF and MMSE detectors (denoted

SSPA-ZF and SSPA-MMMSE, respectively) and Z = 4 power method iterations for the SPA (cf.

(2.19)), the list extension of Fincke and Phost’s sphere decoding (LFPSD) algorithm (with LLR

thresholds ±8) [80], and the ZF-based and MMSE-based soft-output detectors according to (4.12)

and (4.10), respectively. We consider LFPSD as the performance benchmark, although it does not

provide the exact LLR expressions according to the log-max soft-output detector in (4.5). However,

it is more efficient (although still exponentially complex) than computing (4.5) (or (4.3)) directly and

its associated performance loss is marginal [80]. The ZF and SSPA-ZF soft-output detectors were

considered besides the MMSE and SSPA-MMSE soft-output detectors since they have the advantage

that knowledge of the noise variance is not required.

4.4.1 Packet Error Rate Performance

We first provide simulation results for the packet error rate (PER) performance of the considered

OFDM-based MIMO-BICM system employing the various soft-output detectors. As discussed in

Section 4.1.1, the encoding and interleaving was performed over all K subcarriers of the MIMO-

OFDM system. The whole packet (corresponding to a codeword that is transmitted across the K

subcarriers) was considered as erroneous if any corresponding information bit at the output of the

soft-in channel decoder was decoded incorrectly. In practical systems, a packet error directly reduces

the effective throughput since for an erroneous packet a suitable packet re-transmission procedure has

to be invoked.

We employed K = 128 subcarriers, a standard rate-1/2 16-state convolutional code with octal

generators (23, 35), 4 bits trellis termination, random block interleavers, and Gray labeling. At the

receiver, a soft-in Viterbi decoder with a traceback depth of 25 was employed for channel decoding [88].
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Figure 4.4: PER versus SNR performance of the various soft-output detection schemes for an OFDM-

based MIMO-BICM system with a synthetic channel and 4-QAM modulation. (a) MT = MR = 4, (b)

MT = MR = 6.

PER Performance for Synthetic Channels

We first consider a synthetic frequency-selective MIMO channel with L = 3 channel taps that were

generated as spatially and temporally iid Gaussian with an uniform power-delay profile.

Figure 4.4(a) and Figure 4.4(b) show the PER versus SNR performance for a MT = MR = 4 and a

MT = MR = 6 MIMO system, respectively, with 4-QAM data modulation. LFPSD used a candidate

list containing 32 and 256 data vectors for the MT = MR = 4 and MT = MR = 6 system, respectively.

The following conclusions can be drawn from these results:

• For the MT = MR = 4 channel, the performance of the SSPA-MMSE soft-output detector is

virtually the same as that of LFPSD.

• For the MT = MR = 6 channel, the performance of SSPA-MMSE is very close to that of LFPSD.



4.4 Simulation Results 89

LFPSD

SSPA-MMSE

SSPA-ZF

MMSE

ZF

4 10 12

SNR [dB]

10−1

10−2

0 2 8 14 166

measured channel

MT = MR = 4
P

E
R

L = 20 K = 128

100

Figure 4.5: PER versus SNR performance of the various soft-output detection schemes for an OFDM-

based MIMO-BICM system for a measured MIMO channel and 4-QAM modulation.

• The SSPA-ZF and the SSPA-MMSE detectors significantly outperform their equalization-based

counterparts.

• The MMSE detector performs significantly better than the ZF detector.

• Both, the SSPA-ZF and the SSPA-MMSE detector can achieve a performance close to LFPSD

performance.

• In contrast to ZF- and MMSE-based detection, SSPA-MMSE apparently does not incur any

diversity loss.

• A comparison for the MT = MR = 4 case and MT = MR = 6 case suggests that for increasing

channel size, the performance of the SSPA schemes degrade compared to that of LFPSD. This is

similar to the behavior observed for the hard-output SPA in Section 2.6.1 and can be accounted

to the fact that the IBC approximation becomes less accurate for an increasing channel size.

PER Performance for Measured Channels

Finally, we evaluate the various soft-output detectors using indoor MIMO channel measurements

obtained at Vienna International Airport2. A detailed description of the measurement campaign can

be found in [45]. The transmitter and receiver positions were fixed and there was no line of sight.

The channel data comprised 4452 impulse response snapshots of length L = 20. Fig. 4.5 again shows

the PER versus SNR performance of the various soft-output detectors for a MT = MR = 4 MIMO

2I would like to thank N. Czink for providing the measurement data.
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measured kflops – vector complexity Cvector

LFPSD SSPA-lin.
MT = MR

av. max. av. max.
lin.

4 9.5 18.6 4.9 7.2 0.4

6 109 212 11.8 18.4 0.9

8 279 914 23.2 33.5 1.4

Table 4.1: Measured vector complexity Cvector (in kflops) of the various soft-output detectors.

system with 4-QAM data modulation. LFPSD used a candidate list containing 32 data vectors. The

following conclusions can be drawn from these results:

• The PER performance for the measured channel (specifically the coding gain) is somewhat poorer

than that for the synthetic channel (see Figure 4.4(a)).

• The performance relations of the algorithms to each other are quite similar to the synthetic case.

However, the gaps between the individual PER curves are slightly larger. In particular, the gap

between SSPA-MMSE and LFPSD now is larger, which can be attributed to spatial channel

correlations that reduce the quality of the IBC approximation underlying the SSPA.

4.4.2 Computational Complexity

We now provide MATLAB flops measurements for the individual soft-output detectors. The results

were obtained for iid Gaussian MIMO channels corresponding to a per-subcarrier complexity in the

synthetic OFDM-based MIMO-BICM transmission setup. Table 4.1 shows the obtained results for the

vector complexity Cvector. The preparation complexities are the same as for the hard-output detectors

and can thus be found in Table 2.1(a). There is virtually no difference in the complexity of the ZF-

and the corresponding MMSE-based schemes (both are denoted as “lin.”). LFPSD was implemented

with 32 candidate data vectors for the MT = MR = 4 channel and with 256 candidate data vectors

for the MT = MR = 6 and MT = MR = 8 channel. As for the (hard-output) FPSD, the complexity of

LFPSD strongly depends on the channel realization and on the SNR. Again, we used an SNR of 8 dB

and we provide the corresponding maximum and average complexities obtained within 1000 simulation

runs. The following conclusions can be drawn from Table 4.1.

• The computational complexity required by the equalization-based (i.e. “lin.”) soft-output de-

tectors is just a fraction of that required by the LFPSD and the SSPA.

• The average and the maximum complexity of the SSPA is much smaller than that required by

the LFPSD (about a factor of 10 for the MT = MR = 6 case).

• The soft-output algorithms are computationally more intensive than their hard-output counter-

parts (cf. Table 2.1(b)).
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4.5 Summary and Conclusions

In this chapter we investigated and proposed efficient soft-output detection algorithms for MIMO bit-

interleaved coded modulation (BICM) systems. The task of a soft-output detector is to calculate

(approximate) log-likelihood ratios (LLRs) that are provided to a soft-in channel decoder.

At the beginning, we applied a Gaussian approximation for post-equalization interference to re-

derive known equalization-based soft-output detectors, which consist of an equalization step (ZF or

MMSE) with a subsequent per-layer LLR calculation. Due to this per-layer processing, their computa-

tional complexity is very low. Our derivation showed that the MMSE-based detector can be seen as an

extension of the ZF-based detector to correlated post-equalization interference. This extension yields

a substantial performance improvement without an increase in computational complexity. However,

we demonstrated that both equalization-based detectors suffer from a significant performance loss as

compared to the soft-output (i.e. list) extension of the sphere-decoding algorithm.

To close the gap to sphere-decoding performance, we proposed the efficient soft sphere-projection

algorithm (SSPA). The SSPA is based on the hard-output sphere-projection algorithm (SPA) and ex-

ploits intermediate SPA results to obtain approximate LLRs with low computational effort. The basis

of the SSPA was the so-called re-quantization property, which was shown to hold for PSK alphabets

with Gray labeling. Simulation results for OFDM-based MIMO-BICM systems demonstrated that the

performance of the SSPA is similar to that of the soft-output sphere-decoding algorithm although its

computational complexity is significantly smaller.
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5

Conclusions and Outlook

FINALLY, we summarize the most important aspects and results of our work, present some con-

clusions, and provide suggestions for further research.

We proposed novel suboptimum detection algorithms for MIMO systems that are able to achieve

near-optimum performance with low computational effort. We demonstrated that standard low-

complexity approaches (such as equalization-based detection and nulling-and-cancelling) are in general

far inferior to optimum detection. As a consequence, they are unable to exploit the full potential (such

as the available diversity) of MIMO communication systems. Furthermore, optimum detection is in

general computationally very intensive. This is also the case for advanced optimum detection via

sphere-decoding, which has a high worst-case complexity (despite being quite efficient on average).

Our proposed algorithms can be seen as improvements of conventional low-complexity schemes to

reduce (or close) their gap to optimum performance. These improvements, in general, go along with

an increased computational effort, which, however, is still low (in the worst case and also on average)

as compared to sphere-decoding.

93
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5.1 Conclusions

From our work about efficient near-optimum detection algorithms for MIMO communication systems

we can draw the following conclusions.

Chapter 2 (“Geometry-Based Detectors for Spatial Multiplexing”):

• In MIMO spatial multiplexing (SM) systems, “bad” channel realizations with a large condi-

tion number are responsible for the inferior performance of conventional suboptimum detection

algorithms.

• By combating the bad channel effect, the error-rate and diversity-gain performance of conven-

tional schemes can be improved significantly.

• For moderate sized SM systems (up to six transmit and six receive antennas), modeling just

one single small singular value of bad channels is already sufficient to capture essential parts of

bad channel realizations, i.e. it is very unlikely that more than one singular value of the channel

matrix is very small.

• Optimum data detection for idealized bad channels (which have one small singular value and

the remaining singular values are all identical) can be performed efficiently, i.e. its complexity

increases cubically and not exponentially in the number of antennas.

• For moderate sized SM systems, the proposed optimum data detector for idealized bad channels

applied to arbitrary (nonidealized) channels, i.e. the line search detector (LSD), is still compu-

tationally intensive as compared to the sphere-decoding algorithm for optimum data detection

(in particular, with respect to the average computational requirements).

• A constant modulus constraint on the symbol alphabet enables a substantial reduction of LSD’s

computational complexity via some heuristics. For moderate sized SM systems, the result-

ing sphere-projection algorithm (SPA) add-on to conventional suboptimum detectors enables to

achieve near-optimum performance with significantly less computational complexity than that

required by the sphere-decoding algorithm. For example, for an SM system with six transmit

and six receive antennas the SPA achieves near-optimum performance with an average complex-

ity that is about three times smaller and a worst-case complexity that is over ten times smaller

than that needed for sphere-decoding.

• With the SPA add-on, the computational effort of the respective conventional low-complexity

schemes is increased (roughly by a factor of four).

• The idealized model for bad channels becomes less accurate for increasing system size. Here, it

is more likely that two or more singular values of the channel are small.
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• For large SM systems, idealized bad channels are not able to capture a large part of the bad

channel effects that plague conventional schemes. In this case, the SPA add-on will still im-

prove the performance of suboptimum schemes, but it will not be able to achieve near-optimum

performance anymore.

• Efficient near-optimum performance is achieved by the SPA only for moderate sized SM systems

(up to six transmit and six receive antennas) employing PSK alphabets.

Chapter 3 (“Dynamic Nulling-and-Cancelling”):

• The layerwise post-equalization SNRs (that are used by conventional NC to perform the layer

sorting) are average quantities that just depend on the channel realization but not on the received

vector.

• With maximum a-posteriori (MAP) detection and by employing the layerwise a-posteriori proba-

bilities (APPs) for layer sorting, an optimum (but computationally very intensive) NC approach

can be formulated.

• By using a Gaussian approximation for the post-equalization interference, the MAP-based NC

approach simplifies to MMSE detection with an improved yet very simple layer-sorting rule,

which is “dynamic” in that it depends on the current received vector in addition to the “static”

channel realization. In fact, for dynamic layer sorting, the post-equalization SNRs are simply

augmented by a dynamic quantity that provides the reliability of the detection (quantization)

operation.

• If the post-equalization interference is assumed to be uncorrelated and Gaussian, the “LLR-based

NC” technique (that was recently proposed in the literature) is obtained. This is an ZF-based

NC scheme that also employs dynamic layer sorting.

• With dynamic layer sorting, the performance of NC schemes can be improved significantly. The

performance gains will be largest when the post-equalization SNRs of all layers are similar.

Here, the conventional (static) approach effectively performs a random layer sorting. On the

other hand, dynamic layer sorting almost reduces to conventional layer sorting when a single

post-equalization SNR is dominating.

• Efficient near-optimum performance is achieved by the proposed dynamic nulling-and-cancelling

(DNC) scheme, i.e. MMSE-based NC with dynamic layer sorting, for SM systems (within a wide

range of system sizes and channel SNRs) and for MIMO systems using certain linear-dispersion

codes.

• A recursive calculation of the equalizer matrices enables an efficient implementation of DNC.

This recursive approach yields larger benefits for DNC than for conventional NC.
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• DNC is more complex than conventional NC (about a factor of three if DNC is applied to the

equivalent real-valued system model while NC is applied to the complex-valued one) but still

much more efficient than sphere-decoding.

• Compared to the SPA, DNC has the advantage that it can be applied to any linear MIMO

model, while the SPA is specifically tailored to SM systems employing PSK alphabets.

• The performance of DNC is best for MIMO systems employing QAM constellations, which enable

a separate detection of the real and imaginary parts of the data symbols. For moderate sized

SM systems employing 4-QAM (QPSK) symbols, DNC also shows a slight complexity advantage

over the SPA with a similar near-optimum performance.

• If, in moderate sized SM systems, a separate detection of the real and imaginary parts of the

data symbols is not utilized (or not possible, e.g., due to higher order PSK symbols), DNC

exhibits just a slight performance advantage over NC and performs worse than the SPA.

Chapter 4 (“Soft-Output Detection Algorithms”):

• Concepts and algorithms used for hard-output detection can be extended to the soft-output

case. Here, instead of performing hard symbol decisions, the detector calculates approximate

log-likelihood ratios (LLRs), which are then provided to a channel decoder. This improves the

overall system performance as compared to hard detection and decoding.

• Soft-output detection is more computationally intensive than hard-output detection. In particu-

lar, both the list (i.e. soft-output) extension of the sphere-decoding algorithm and the proposed

soft-output extension of the SPA (the SSPA) require significantly more computations than their

hard-output counterparts.

• For moderate sized OFDM-based SM systems using bit-interleaved coded modulation (BICM),

the SSPA has a similar average complexity as the hard-output sphere decoding algorithm (but

a much smaller worst-case complexity) while its performance is close to that of the soft-output

sphere-decoding algorithm.

• The Gaussian approximation for the post-equalization interference (used to derive the DNC) can

be applied to re-derive conventional equalization-based soft-output detectors, which just perform

an equalization step with a subsequent per-layer LLR calculation (i.e. all layers a processed

independently after equalization).

• The computational complexity of the equalization-based soft-output detectors is just a fraction of

that required by soft-output sphere-decoding and by the SSPA. However, the equalization-based

detectors suffer from a significant performance loss.

• The SSPA shows a similar behavior as the SPA. For increasing system size, the SSPA performance

degrades compared to that of the soft-output sphere-decoding algorithm.
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• Spatial correlations have a degrading influence on the performance of the various schemes and

they can yield an additional performance degradation of the SSPA as compared to the soft-output

sphere-decoding algorithm.

5.2 Outlook

There remain several issues and possible extensions for further research.

• Algorithm assessment: The various algorithms were compared and investigated under idealized

and simplified conditions. In particular, we assumed perfect channel state information at the

receiver and to a large part we modeled the MIMO channel as uncorrelated. Furthermore,

no implementation losses (e.g., due to fixed-point number representations or look-up tables for

specialized functions) or model errors were taken into account. This provided us with just a basic

insight into the performance and complexity behavior of the various algorithms. In practical

implementations, however, there will be channel estimation errors, the transmit and receive

antennas will be more or less correlated, and there will be an implementation loss and a model

mismatch up to a certain degree. Thus, it remains to assess and compare the various algorithms

under real-world conditions. In this thesis, a first attempt in this direction was performed

by using measured (instead of synthetic) MIMO channels for a comparison of the soft-output

detection algorithms.

• SPA for higher-order QAM: The SPA requires the symbol alphabet to have constant modulus

property. In fact, this restricts its application to PSK symbol alphabets and the SPA cannot be

applied to higher-order QAM constellations (like, e.g., 16-QAM). Since excellent performance

results can be achieved by the SPA, an extension to higher-order QAM constellations seems

to be promising. A possible approach in this direction could be to treat higher-order QAM

constellations as several nested 4-QAM constellations (e.g., a 16-QAM constellation can be

treated as two nested 4-QAM constellations), which all have the constant modulus property.

The SPA could then be applied to these 4-QAM constellations in a multi-stage way.

• Soft-input soft-output detection: A large part of this thesis was devoted to hard-output detection

algorithms. However, the overall system performance can be improved by calculating soft instead

of hard decisions about the coded bits that are then provided to a soft-input channel decoder.

Hence, in this thesis we also considered the extension of hard-output detection to soft-output

detection. Here, in particular, we extended the hard-output SPA to its soft version. A soft-

output extension of the DNC algorithm seems to be also promising and remains as open research.

Furthermore, the performance of those coded MIMO systems with soft-output detection and soft-

input decoding can be improved even further by employing the “turbo” principle of iterative

detection and decoding [80, 89, 90]. Here, the data detector and the channel decoder exchange

soft decisions about the coded bits in an iterative way. Hence, instead of just calculating soft
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decisions about certain coded bits, the detector also has to accept soft decisions (i.e. a-priori

information) as its input. The corresponding detectors can be referred to as soft-input soft-

output detectors. In fact, the iterative detection and decoding approach allows to get very close

to the capacity of MIMO systems [80]. Consequently, developing efficient soft-input soft-output

detection algorithms is a very important research area and it seems promising to extend the

various algorithms of this thesis (in particular, the SPA and the DNC) to soft-input soft-output

processing.

• Precoding based on vector perturbation is a very promising transmission technique for wireless

communications scenarios, where a transmitter uses multiple antennas to serve multiple non-

cooperative users [73, 100, 101]. (This is similar to an SM system, where the multiple receive

antennas – now corresponding to multiple users each having a single antenna – are not allowed

to perform a joint processing of the received vector.) Here, the data to be transmitted is

perturbed such that the transmit power is minimized. In fact, the calculation of the optimum

perturbation vector can be seen as the dual problem to optimum data detection at the receiver.

Consequently, optimum vector perturbation is in general very computationally intensive and

there is a strong demand for efficient (approximate) vector perturbation algorithms for multi-

antenna multi-user communication systems. Several efficient approximate techniques have been

proposed in the literature, including, e.g., Tomlinson-Harashima precoding [100, 101], which is

dual to nulling-and-cancelling at the receiver. Hence, it seems promising to apply and extend

the concepts of the near-optimum data detectors of this thesis to efficient vector perturbation.

As a first result we used the concept of idealized bad channels (see Section 2.2) to come up with

an efficient vector perturbation algorithm based on approximate integer relations [20].
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APP a-posteriori probability

BICM bit-interleaved coded modulation

BPSK binary phase-shift keying

cdf cumulative distribution function

DNC dynamic nulling-and-cancelling

FPSD Fincke and Phost’s sphere-decoding

HSDPA high-speed downlink packet access

IBC idealized bad channel

IML idealized maximum likelihood

IRF instantaneous reliability factor

LD linear dispersion

LFPSD list-extension of Fincke and Phost’s sphere-decoding

LLR log-likelihood ratio

LSD line search detector

MIMO multiple-input multiple-output

MISO multiple-input single-output

ML maximum likelihood

MMSE minimum mean-square error

NC nulling-and-cancelling

OFDM orthogonal frequency division multiplexing

pdf probability density function

PER packet error rate

PSK phase-shift keying

PSNR post-equalization signal-to-noise-ratio

QAM quadrature amplitude modulation

SER symbol error rate

SIMO single-input multiple-output

SM spatial multiplexing

SNR signal-to-noise-ratio

SPA sphere projection algorithm

SSPA soft-output sphere projection algorithm

SVD singular value decomposition

V-BLAST Vertical Bell Laboratories Layered Space-Time

VLSI very-large-scale integration

ZF zero-forcing
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