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Kurzfassung
Das Verständnis der Dynamik verkabelter Satellitensysteme (engl. tethered satellite systems)
ist von großer Bedeutung für die Raumfahrt. Besonders interessant sind Systeme von zwei
Satelliten, bei denen ein kleiner Subsatellit von einem massiven Space-Shuttle an einem bis
zu hundert Kilometer langen visko-elastischen Kabel ausgesetzt wird. Um die Bewegungsgle-
ichungen solcher Systeme genauer zu untersuchen, werden diese durch mechanische Modelle
ähnlicher Struktur beschrieben. Darüber hinaus lassen sich numerische und analytische As-
pekte der Modellierung mittels des Fadenpendel-Modell genauer untersuchen.
In der vorliegenden Arbeit wird das Fadenpendel-Modell in vertikaler Lage diskutiert, wobei
die Herleitung der entsprechenden Bewegungsgleichung auf die partiellen Differentialgleichung

(1)

•
mit é 2: 0 führt. Diese partielle Differentialgleichung wird in der Literatur als stark gedämpfte
Wellengleichung (engl. strongly damped wave equation) bezeichnet. Sie ist für Dämpfungspa-
rameter é > 0 von hyperbolisch-parabolischen Charakter .
In der Literatur ist bisher keine numerische Analysis für den Fall é> 0 zu finden, vorhandene
Resultate beschränken sich auf die Wellengleichung, d.h. é = O. Die vorliegende Arbeit
schließt diese Lücke. Zur numerischen Lösung wird (1) dabei als System erster Ordnung in
der Variablen u = (y, iJ) formuliert,

ü+Au = F. (2)

Aufgrund der analytischen Eigenschaften des Operators A lässt sich die eindeutige Lösbarkeit
von (2) in einem Hilbert-Raum 'Ji beweisen. Die Diskretisierung von (2) erfolgt mit Galerkin-
Verfahren in Ort und Zeit für beide Komponenten von u. Die Orts-Diskretisierung basiert auf
stückweise affinen bzw. stückweise kubischen Ansatzfunktionen. Für die Zeitdiskretisierung
verwenden wir stetige und unstetige Galerkin-Verfahren cG(l) bzw. dG(q) mit q = 0,1.
In Rahmen dieser Arbeit werden die vorgeschlagenen Diskretisierungsverfahren im Zeit-Orts-
Raum analytisch untersucht. In Kapitel 2 beweisen wir zunächst die eindeutige Existenz
diskreter Lösungen für alle vorgeschlagenen Diskretisierungsverfahren. Der Schwerpunkt liegt
hiernach auf der a priori und a posteriori Analysis des Diskretisierungsfehlers in der Energie-
norm.
Unter einer a priori Abschätzung des Fehlers versteht man dabei im wesentlichen eine Ab-
schätzung, bei der die rechte Seite von der exakten Lösung u, aber nicht von der diskreten
Lösung U abhängt, sodass man (unter Regularitätsannahmen an u) die Konvergenzordnung
des Verfahrens erhält. Im Gegensatz dazu hängt die rechte Seite einer a posteriori Abschätzung
von U aber nicht von u ab, d.h. die Fehlerschranke ist explizit berechenbar. A posteriori
Fehlerabschätzungen werden daher zur effizienten Netzgenerierung in adaptiven Algorithmen
verwendet.
Unsere Fehleranalysis basiert im wesentlichen auf drei verschiedenen Beweistechniken: der
Energie-Methode in Kapitel 3, der dualen Methode in Kapitel 4 und der zielorientierten
Methode in Kapitel 5. Die Vorteile und Schwierigkeiten der drei Techniken werden heraus-
gearbeitet und im Einzelnen diskutiert. Die analytischen Resultate verallgemeinern Arbeiten
von ERIKSSON-JOHNSON für den Fall é = 0 auf den Fall é 2: O. Teilweise werden dabei sub-
optimale a priori Abschätzungen verbessert, und wir erhalten optimale Konvergenzordnungen
in den Netzschrittweiten h für die Ortsdiskretisierung und k für die Zeitdiskretisierung.
Abschließende numerische Experimente in Kapitel 6 belegen die bewiesene Analysis.
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Introduction

Motivation

During the last decade a new space technology, called tethered satellite systems (TSS), which
are a system oftwo or more satellites (rigid bodies) in orbit around the Earth connected by thin
flexible visco-elastic cables, has been of great interest. For instance, there were space flights
where one of the satellites was a space-shuttle and the other one a satellite of significantly less
mass. The length of the connecting tether can be up to 100 km, see KRUPA et al. [48]. An
overview concerning the practically important applications of TSS, can be found in [34, 76, 77].

The mathematical model of a TSS involves continuous and discrete bodies and hence the
equations of motion are a set of coupled nonlinear partial and ordinary differential equations.
The nonlinearities follow from finite geometry of the large displacement. The equations are
stiff in the sense that motions are present, i.e. axial and transversal motions, which evolve
on different time scales. An efficient numerical simulation of such systems and a reliable
approximation requires an appropriate implicit time integration. The spatial discretisation
is successfully conducted by the finite element method [63, 70, 74]. In order to express the
property that the equations are stiff already in their formulation, instead of the usual dis-
placement coordinates of the deformation of the tether, the orientation of the tangent vector
to the deformed tether as slow variable and the axial strain of the tether as fast variable are
used. Then the resulting string equations separate into a fast and a slow part and are named
after Minakov. It is referred to [12, 36, 58] for an integration of the resulting tether equations
without any systematic analysis of efficiency. Especially problems in the numerical simulation
arise if, for large amplitude motions, the tether force becomes zero and hence the tether is
not strained but slack POTH et al. [58]. Hence one important question is how is it possible
to achieve high accuracy in simulations of such motions which include the case of slack string
configuration.

For a mathematical investigation all essential properties and difficulties of the equations of a
TSS are already given by the model of a string pendulum, [47, 62]. There, one point mass
is connected by a massive visco-elastic string and with this model in KUHN et al. [49] the
numerical calculations in the displacement formulation are validated. If the restriction to the
vertical position of the string is made, the equation of motion for the string pendulum in
the space-fixed non-rotating frame reduces to the strongly damped scalar wave equation [49].
This equation is of the hyperbolic-parabolic character due to the presence of the damping
parameter é ~ O. This thesis emphasises the analysis of the strongly damped wave equation
in which é = 0, i.e., the analysis of the wave equation, is included.

11
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The strongly damped wave equation
Given some arbitrary external force f, the strongly damped wave equation reads

EPy â2y â3y '.
ât2 (t, x) - âx2 (t, x) -E âx2ât (t, x) = f(t, x) III [0, T] x o. (3)

A more general overview on the spatial boundary and initial conditions in time will be given
in Section 1.3 with Dirichlet conditions in x = 0,1 or mixed Dirichlet-Neumann boundary
conditions.
The initial condition in time describes the initiallength and the initial velocity.
Apart from the choice of the boundary conditions, the initial problem (3) allows the conversion
into an equivalent vector formulation, typical for the hyperbolic-type problem, see HUGHES-
HULBERT [38]. Indeed, for u=(y,y), the problem (3) is equivalent to

Therein, A is some maximal monotone operator. This vector setting takes place in the Hilbert
space 1i=H1(O)xL2(O), cf. NEVES [54]. The problem (4) can be also defined with respect to
L2(O)xL2(n) scalar product, cf. BANGERTH [9]. Here, however we rely on the first formulation
with 1i. This allows us also to define and analyse the energy behaviour of the continuous as
well as of the discrete solution. Namely, the energy, given as a sum of the potential and kinetic
energy of the solution is defined through the 1i norm, namely,

u+Au=F. (4) •

Furthermore, use of 1i serves as a better basis for the analysis of the solvability, i.e. the
uniqueness and the existence of the solution. We prove that according to the properties of
the operator A, there exists a unique solution of the problem (4).

Discretisation in space and time
Within this work we present a study of the certain approximation techniques, applied to the e
vector form of the strongly damped wave equation (4) in a way that the analysis of the error
becomes much more efficient and an optimal or nearly optimal a posteriori and a priori error
estimates can be obtained.
In particular, we consider the numerical approximation of both components of the vector solu-
tion separately but using the same time-space discrete ansatz. Time approximation is done by
applying the discontinuous Galerkin scheme dG(q) of order q=O, 1 as well as the continuous
Galerkin cG(l) method. We also apply the semi-discretisation in space, so-called Method of
Lines. The use of finite elements to discretise the temporal as well as the spatial domain was
first proposed in [4, 31, 56].
Most time-dependent problems use the semidiscrete methods for designing the algorithms for
the computation of the approximative solution, cf. SÜLI-WILKINS [67], for the analysis of the
damped wave equation and BABUSKA et al. [6] where the class of evolution problems has been
solved. In these references, the convergence results concerning the a priori and a posteriori
error estimates obtained with aid of the dual technique are provided. The method of lines
is favourable when approximating the solutions which are smooth. It is also easy to perform
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since the solvability of the discrete solution relies onto the solvability of the system of the
ordinary differential equations. It retains the energy as the cG(l) method, when comparing
the continuous and discrete solution. However, their performance is less satisfactory when
solving problems with discontinuities or sharp gradients in the solution. One other disadvan-
tage of the method of lines is that the corresponding space-time discretisation is structured,
cf. HUGHES-HULBERT [38]. This disables the adaptive mesh refinement.
The method which seems to cover these difficulties is the discontinuous Galerkin method.
First introduced for 1D hyperbolic problems, cf. [45, 51, 59], this method yields an A-stable,
higher-order accurate method, cf. [51, 44]. Furthermore, this time discretisation framework
seems to be conducive to the establishment of the rigorous convergence proofs and error es-
timates for other evolution equations, cf. [19, 25, 37, 43, 66, 69]. For the strongly damped
wave equation as well as the wave equation, the analysis of the convergence of the error is

. given in e.g. JOHNSON [42] and LARSSON-THOMÉE- WAHLBIN [50]. In JOHNSON [42], the
wave equation with Dirichlet boundary conditions is discussed. The methods of proofs for the
establishment of the a posteriori and a priori error bounds rely on the dual method technique.
If the mesh does not change from one time slab to another, then the convergence result can
be found very satisfactory. In LARSSON-THOMÉE- WAHLBIN [50], the strongly damped wave
equation has been discussed whereby the derivation of the error bounds for several discretisa-
tion methods has been conducted with aid of the semi-group theory.
Another approach towards space-time discretisation is the cG(l) method in which the unknown
quantities are assumed to be globally continuous, piecewise affine in time. This method allows
the use of unstructured space-time grid, but the problems may be effective discretisation of
the solution which are less smooth in time. See [5, 9, 8, 10, 11, 30, 29] for some examples
of continuous time space finite element discretisation. In BANGERTH [9], the acoustic wave
equation has been discussed, whereby the a posteriori error analysis has been conducted with
aid of the goal-oriented arguments. The analysis presented by FRENCH-JENSEN [29] refers to
the strongly damped wave equation for which the long time behaviour has been analysed. In
FRENCH-PETERSON [30], the a priori error estimates have been proved for the wave equation
by using the energy arguments. The a priori error estimates in the negative as well as in the
1i norm have been proved for the wave equation in BALES-LASIECKA [8].
For the hyperbolic problems in general, the main difficulty occurs in the interpretation of the
time derivative in case of non-smooth problems. For first order hyperbolic problems, this can
be solved by modifying some finite element methods, in order to improve the convergence,
we refer to JOHNSON [43]. For the wave equation as well as for the strongly damped wave
equation, some authors propose so-called shock-capturing artificial viscosity, c.f. [42, 71], but
this wont be discussed within this work.

The approximation of the spatial variable follows by means of the conforming PI elements
(linear splines) as well as of the Hermite cubic splines (Cl elements), respectively. The Cl
elements provide a better basis for construction of the a priori and a posteriori error bounds
due to the continuity in the first derivative when the discrete function is concerned. This is
obvious when the derivation of the a posteriori error estimates by using the energy techniques
is discussed.

Outline of the thesis and some results
An outline of the thesis reads as follows:
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• In Chapter 1, we first introduce the mechanical model of the string pendulum. In its
vertical position this model can be described by the strongly damped wave equation
where the damping parameter ê 2: 0 characterises the visco-elastic property of the string.
The subsequent Section 1.2 provides some backup facilities needed for the understanding
of the mathematical theory for observed model. This assumes the introduction of the
Sobolev spaces, distributions etc. In Section 1.3, we analyse the strongly damped wave
equation from the mathematical point of view. Furthermore, we introduce the vector
formulation in the Hilbert space 1£ which enable us to define an energy and energy scalar
product which will be frequently used in the error analysis. Finally, we recapitulate the
analytical theory by proving the existence and the uniqueness of the solution of the
strongly damped wave equation. The stability of the continuous solution is also showed
within this section .

• In Chapter 2 we introduce the discrete model for each time discretisation ansatz in
particular and derive the stability estimates for the same. We also provide the proof of
the unique solvability for each time-space discrete ansatz. _

• In Chapter 3 we first introduce the necessary techniques needed for the error analysis
in general. This implies the definition of the interpolation and projection operators and
their approximation properties, see Section 3.1. In the following we analyse a derivation
of the a priori and a posteriori error bounds for the full discrete problems, see Section
3.2 and 3.3, respectively. Techniques used here are new. In the a priori error analysis,
see Table 1, the estimates for IlellvXl(ll) when cG(I)@CI and MoL@CI are optimal when

dG(O) O(h+k-I/2h+k) O(h3+k-I/2h3+k)

cG(1) -
O(h3+k2), £=0

h-quasi uniform spatial mesh

MoL - O(h3), £=0 or (DD)
h-quasi uniform spatial mesh

Table 1: Proven a priori error estimates; energy method.

restricted to the wave equation, i.e. of order O(h3 + k2) and O(h3), respectively. For
dG(O) method we prove a convergence order O(hP + k-I/2hP + k) where p= 1 for pI and
p=3 for Cl elements. These estimates are nearly optimal, due to the presence of factor
O(k-I/2hP).

In case of the residual-based a posteriori error analysis, see Table 2 for dG(O)@CI and
MoL@CI time-space ansatz, the proven error bound retain the optimal convergence
of the exact error, i.e. O(h3 + k) and O(h3), respectively. For dG(O) we additionally
assume that the spatial meshes are hierarchical in time. Also note that the ayosteriori
error ':.nalysis for dG (Q2!n time, relies on the use of the affine approximation U, bilinear
form B and residual Res. All a posteriori error bounds proved within this Chapter are
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dG(O) O(h3+k) si-l ç;s;
O(h3+k-Ih3+k) otherwise

dG(I) O(h3+k) S;-1 Ç;S;

O(h3+k-Ih3+k) otherwise

cG(l) O(h3+k)

MoL O(h3)

Table 2: Proven a posteriori error estimates; energy method.

computable, i.e. the constants are known. This analysis can be also easily extended to
the 2D case .

• The previous chapter motivates the further analysis on the error by use of the duality
technique, cf. Chapter 4. We first introduce the adjoint problem and derive the strong
stability estimates, cf. Section 4.1. Then we analyse a derivation of the a priori and
a posteriori error bounds for each time-space ansatz in particular, see Section 4.2 and
4.3, respectively. The analysis in case of dG(q), q=O, 1 method relies on the arguments
used in JOHNSON[42], where the dG(1)Q9PI finite element discretisation of the 2D wave
equation has been studied. Here however, we proved an error bounds when dG(O) and
cG(1) method in time additionally.
The proved a a priori error bounds for the strongly damped wave equation, see Table 3,

ê=O

dG(O) O(hP+k) S;-1=S;

o (hP+k-I/2 hP+I +k) otherwise

dG(I)

~ &(1) ~

O(hP+k2) S;-1=S;

O(hP+k-I/2hP+k2) otherwise

O(hP+k3) S;-1 =S;

O(hP+k-I/2hP+k3) otherwise

Table 3: Proven a priori error estimates; dual method.

are of the optimal order when dG(O) method in time and pI or Cl discretization in
space. Namely, for pI (p=1) and Cl (p=3) we have IlleN-lIIll=O(hP+k). This assumes
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also that the spatial mesh does not change in time. When wave equation is discretized
by dG(I) resp. cG(I) method we proved the optimal convergence order O(hP+k3) and
O(hP+k2), respectively. Our estimates when dG(I) in time generalize and improve those
of JOHNSON[42]oforder O(hl/2) when k=h3, when restricted to the ID case. The result
for cG(I) in time is new.
As far as the a posteriori error bound is concerned, see Table 4, we analyse a derivation

8=0 - O(h3+k), (DD*), Si-1 çsi,

O(h3+k-Ih3+k) otherwise

dG(O)
8=1

O(h+k) si-1 çSi, O(h4+k), Si-1 çSi,

O(h+k-Ih2+k) otherwise O(h4+k-Ih4+k) otherwise

8=0 - O(h3+k3), £=0, (DD*), Sj-1=Si

O(h3+k-Ih3+k3) otherwise

dG(1) O(h+k3), £=0, Si-1=Si, O(h4+k3), (DD*), si-1=Si
8=1 O(h+k-Ih+k3) otherwise O(h4+k-Ih4+k3) otherwise

8=0 -

cG(1) O(hs+3+k2), (DD*)

8=1 O(h+k2)

Table 4: Proven a posteriori error estimates; dual method.

ofthe a posteriori error bounds for IlleN-III1l (8=0) and lIIeN-lIIil (8=1). The bounds of
optimal order are proved for all three time discretisation methods and Cl functions in
space with the restriction to the (DD) boundary conditions (f(O) =fD(n)). For dG(I)
method in time, the optimal order O(h3 + k3) is proved only for the wave equation,
whereby in case of the dG(O) and cG(I) method in time, we proved the optimal order
for the case £ > 0 also. Case pI elements in space does not allow us to obtain an optimal
error estimates since in ID we can not make necessary requirements on the mesh as in
2D, cf. [42]. There, the error bound of order O(h + k3) was proved for the dG(I)Q9pl
discrete model of the 2D wave equation with the Dirichlet boundary conditions.

• Chapter 5 is devoted to the goal oriented a posteriori error analysis. We first introduce
the general idea of the goal-oriented method and describe the possible ansatz when the
strongly damped wave equation is considered. This implies the definition of the target
functional and its linearised version, as well as the proposed approximation method when
dual solution is considered. In the following, we deduce the a posteriori error estimates
for dG(q), q = 0, 1 and cG(I) ansatz in time combined with PI or Cl ansatz in space.

•
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This theory is generalisation of the one presented in [9, 10, 11], where the cG(l)@Pl
discretisation of the acoustic wave equation is treated. However, a detailed numerical
discussion concerning the strongly damped wave equation is not included here.

• Some numerical experiments are discussed in Chapter 6. Here we also provide a full
algorithm for the computation of the finite element solution using the Galerkin methods
in time and space, cf. Section 6.1. Section 6.4 is more theoretically inclined. We also
discuss some possible ways of solving the equation by relying on some of the adaptivity
techniques. As a basis we take the a posteriori error estimates obtained by using the
energy techniques where adaptivity applies only to the temporal mesh.

The presented study due to simplicity of the observed mathematical model, denotes the plat-
form for the future investigations.
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Chapter 1

Satellite Beam Equation

We consider the sting pendulum as a simple version of the mechanical model of TSSs, which is
believed to convey all the difficulties in the mathematical and numerical treatment. We derive
the equations of motion for the string pendulum in the vertical position where the length of
the string is set to some constant value. This results in a partial differential equation which
is often referred to as the strongly damped wave equation.
The second part of the chapter deals with the mathematical aspect of the strongly damped
wave equation, cf. Section 1.3. Here we introduce some necessary definitions and formulations
and derive the main result which provides the uniqueness and existence of the continuous
solution.

I

1.1 Physical model
The string pendulum, see Figure 1.1, consists of a visco-elastic massive string with an end
mass ms, modeled as a mass point, moving in the constant gravitational field with g being the
gravitational acceleration. Notice that the deformations of the string pendulum, described by

ey

8"=0

Figure 1.1: Mechanical model of the string pendulum.

the position vector r(8",T) are given with respect to the inertial frame (ex, ey).

19
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Here T denotes time and B the unstrained arclength which is a material coordinate along
the string and 0 :::;B :::; f for f the total length of the longitudinally unstrained string. The
unit tangential vector is denoted by t whereby € stands for the strain. If dB and ds are the
unstrained and strained element lengths, then

ds - dB
€:=---

ds
The large amplitude motion of the string pendulum system are described by a field equation

a2r an
fl aT2 = as - flg, (1.1)

which is a nonlinear hyperbolic partial differential equation. Here fl denotes the mass of the
unstrained string per unit arc length and n is the axial string force given by

n = Nt where N = EA(€+a;;), (1.2)

where E stands for Young's modulus, A is the area of the cross-section of the string, N the e
axial tension and a is a damping constant which describes the viscosity.
The equation (1.1) arises from the application of the principle of conservation of linear mo-
mentum to a particular string element, whereby the constitutive law gives the relationship
(1.2).
The boundary condition at the suspension point B =0 is given by

r(O, T) = O. (1.3a)

The boundary condition at B = f follows from the equation of motion of the end mass ms, i.e.

a2r
ms aT20 = n(f) + m(T)g. (1.3b)

from which the cable force n(f) = -N(f)(ar(f)/aB)/II~~1I can be obtained. For a more de-
tailed description, we refer to KUHN et al. [49].

In the mechanical formulation above we considered the string equation with respect to un- e
strained coordinate s (Lagrange's description). The advantage of the use of the coordinate s
is that the boundary conditions can be taken at s= 0 and s= f.

1.1.1 Problem statement for the vertical state of the string
Subsequently, we consider the simple state of our mechanical model, i.e. the vertical position
of the string pendulum which yields a less complicated formulation of the equation of motion.
If the string is in vertical position, then it is obvious that the position vector r(s, T) to the
characteristic point of the string can be decomposed in the following form

r= O. ex + (s + U(s,T))(-ey).

Here u(s, T) denotes the string displacement.
Using the scalar form of the vector r=s + u(s, T) it is easy to see that

a2r a2u
- -aT2 aT2'

(1.4)

(1.5)
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(1.6)

(1.7)

Moreover, an asymptotic expansion of the function u(s, t) for ds -t 0 yields

1
. ds - ds

E= lm ---
ds-+O ds

1. ds + u(s + ds, T) - u(s, T) - ds= lm -----------
ds-+O ds

. u (s, T) + ds ~~+ ... - u (s, T)= hm s
ds-+O ds

= lim (aa~ + O(ds)) = aa~.
ds-+O S s

For the string in the vertical position the axial string force and the tangential vector have the
same direction, i.e. the scalar part ofaxial force and axial tension coincide

n=N.
From (1.2), (1.5), (1.6) and (1.7), the equation (1.1) reads

a2u an
[t aT2 = as -[tg

= E A a_(E +a aE ) _ [tg
as aT
a2u [f3u

= EA as2 + aEA aS2aT - [tg. (1.8)

Moreover, if we substitute a pair of new variables (x, t) := (s(EA)-1/2, T[t-1/2) in (1.8), for
c :=a[t-1/2 and f(x, t):= -[tg, the equation simplifies to

a2u a2u a3u
ßt2 (x, t) = ax2 (x, t)+c ax2ßt (x, t)+ f(x, t). (1.9)

From the boundary condition (1.3a), we have for s = 0

O=r(O, T)=U(O, t). (1.10)

Similarly, if we assume that the intensity of the axial force at the end mass suspension equals
zero (free end), the second boundary condition (1.3b) is equivalent to

O=n(e, T) =N(e, T).

For e= yEA according to (1.2), the last equation simplifies to

( aE) ~(aU a2U)O=EA E(e,T)+aaT(e,T) =yEA ax(l,t)+caxßt(l,t) . (1.11)

Finally, from (1.9), (1.10) and (1.11) it is obvious that the displacement of the string u(x, t)
satisfies the following system of equations

a2u a2u a3u
at2 (x, t) = ax2 (x, t)+c ax2ßt (x, t)+ f(x, t) (1.12a)

au au ~u
u(O, t) = 0, ßt (0, t) = 0 and ax (e, t)+c axat (e, t) = 0, (1.12b)

au
u(x, 0) =uo(x) and at u(x, 0) = U1(X). (1.12c)

Here function uo(x) is set to be a function which represents the initiallength of the strain and
accordingly U1(X) is the initial velocity. Moreover, the equation (1.12a) is of the hyperbolic-
parabolic type due to the presence of c 2: O.
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1.2 Mathematical foundations
In this section, we recall the definitions of some familiar function spaces, including the theory
of distributions. For proofs and further details, we refer to ALBERTY [2], GRIFFEL [33], EVANS

[27]. Let in the following D be some open set in ~n .

1.2.1 Spaces of continuous functions
Definition 1.2.1.1 (Multi-index). Let No denote the set of all natural numbers. An n-
tuple a = (al,"" an) E ~ is called multi-index of length lai := lall + ... + lanl such
that

DO< - ~l ~O<n h a a/a- UI ... un' were j = Xj, for all j = 1, ... , n. o

Definition 1.2.1.2 (Ck space). For kEN, we denote by Ck(D) the set of all continuous
real-valued functions u, defined on D, such that DO<u is continuous on D for every multi-index
a, lai::; k. In case k = 00, COO(D) is defined as intersection nk>O Ck(D). e
By Ck(n), we also denote the space of all u E Ck(D) such that DO<u can be continuously
extended from D to n for every multi-index a, lai ::; k. COO(n) and CO(n) are defined
analogously.
In case of n being a bounded open set in ~n, the linear space Ck(n), kEN is a Banach space
equipped with a norm

o

Definition 1.2.1.3 (Support, C~ space). The support of a continuous function u E Ck(D)
is defined by

supp u := {x E D I u(x) =1= a}.
For all kEN, C~(D) is defined as a set of all u E Ck(D), whose support is a compact subset
ofD. 0

1.2.2 Spaces of integrable functions
Definition 1.2.2.1 (LV space). (LP(D), 11.IILP(w)) on a Lebesgue measurable subset D E ~n

is a Banach space of Lebesgue integrable functions equipped with a norm

II II .- { (Jn lulPdD) lip, p< 00,
U LP(n) .-

supessxEnlu(x)I, p = 00.

In particular, for p = 2, (L2(D), (.; .)) is a Hilbert space with the inner product

(u; v) := Luv dD.

Definition 1.2.2.2 (Locally integrable). Let a ::;p ::; 00. We denote by

Lfoc(D) := {JIJ E LP(K) for all compact K eint D},

the space of alllocally integrable LP functions.

o

o
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o

o

Lemma 1.2.2.1 (Hölder inequality). Let u E £P(n) and v E Lq(n), where l/p+ l/q = 1,
1 :S p, q :S 00. Then uv E LI (n) and

IluVdnl :S IluIILP(!1}llvIILQ(!1}.

For p = q = 2, this is referred to as the Cauchy-Schwarz inequality.

Proof. See EVANS[27, Appendix B.2].

1.2.3 Theory of Distributions
Let (H, (. ; .» be some Hilbert space with corresponding scalar product.

Definition 1.2.3.1 (Piecewise). Given the partition Uf=l Ij = I of some arbitrary domain
I we say that function f has some property piecewise on I if for each Ij, the restriction fil;
has the same property. Note that the function f does not have to satisfy the property on the
whole interval I. 0

Definition 1.2.3.2 (Space of test functions). Let Coo(n; H) =: ven; H) denote the space
of infinitely differentiable functions cjJ: H ---t R with compact support in n. We say that the
function belonging to ven; H) is a test function and ven; H) is a test space. 0

Definition 1.2.3.3 (Distribution). A linear, sequentially continuous functional

f: ven; H) ---t R

is called distribution on ven; H).
For the definition of the convergence of sequence in the locally convex vector space, see
McLEAN [53, Chapter 3]. 0

Remark 1.2.3.1. In one-dimensional case, n ç IR, we use the followingnotation

ven; H) =: ven) and accordingly v*(n; H) =: Ven),

where H denotes the usual L2(n) Hilbert space with a corresponding scalar product. 0

Example 1.2.1 (Dirac delta distribution 6). The Dirac delta distribution 15E V*(R) is
defined by

(15;cjJ):= cjJ(O), for all cjJE VCR).

Example 1.2.2 (Shifted Dirac distribution). For some a E R and all cjJE VCR) test
functions, distribution Ja with a property (oa; cjJ)= cjJ(a) for all cjJE VCR) is called shifted
Dirac distribution.

Definition 1.2.3.4 (Distributional derivative, weak derivative). Suppose u E LtocCn; H)
and a is a multi index of order lai := al + ... + an. If there exists some distribution
v E v*(n; H) such that

l (v; cjJ)dn = (_1)101 L(u; D°cjJ)dn for all cjJE ven; H),

we say that v is a distributional derivative of u with respect to a, where
ßO

D°cjJ := (ßfl ... ß;:n)cjJ

with DO := v ath weak partial derivative of u.
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Remark 1.2.3.2. If u E Lfoc is m times continuously differentiable, then we may replace v
from the previous definition with DO:u in case when lai::; m. 0

Example 1.2.3 (Distributional derivative of Heaviside function). For the Heaviside
function lHI: IR4 IR, defined as

lHI(t) := {O, t::; 0
1, t> 1

and Dirac distribution <5 E V*(IR), the following result is valid

lHI' = <5 in the distributional sense.

The proof is by integration by parts, if we take some test function cp E V (IR) such that
supp(cp) = (-n, n), then

- L lHI(t) ~~ dt = -ln ~~dt = -4>(n) + 4>(0) = 4>(0) = (<5; cp).

Definition 1.2.3.5 (Derivative of distribution). The derivative of some distribution u E
v*(n; H) is also distribution v E v*(n; H) such that

o

1.2.4 Sobolev Spaces
Let k be some nonnegative integer and 1 ::; P ::;:00.

Definition 1.2.4.1 (Sobolev space). We define Sobolev space Wk,p(n) as

Wk,p(n):= {u E Lfoc(n) I for all lai::;: k : DO: exists in a weak sense and IIDO:uIILP(fI) < oo}.
o

Definition 1.2.4.2 (Sobolev norm). If u E W;(n), we define its norm to be

o

Remark 1.2.4.1. For alII::;: p ::; 00, (Wk,P; II . Ilwk,P(fI») is a Banach space, whereas in case
of p = 2, (Wk,2, (.; 'h,fI) is a Hilbert space equipped with a scalar product defined as

We will henceforth write Hk(n) := Wk,2(n) and accordingly for the corresponding norm.
In particular, HO(n) := L2(n) and II. IIHO(fI) := II. IIL2(fI). 0
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1.3 Mathematical model

25

Suppose that n is a one dimensional spatial domain, n := (0,1) and T> O. In time-space
domain Q:=(O, T)xn for ß:=D2, Dm:=ôm/ôxm and () := ô/ôt, Ö := Ô2/ôt2 and given data

with a damping parameter é 2 0, the continuous problem reads: Find y := Q -+ lR such
that

jj - ßy - éßy = !on Q,

subject to the initial conditions

y(O, x) = Yo(x), y(O, x) = YI (X) on n,

and homogenous mixed Dirichlet-Neumann boundary conditions

(1.13a)

(1.13b)

y(t,O) = 0, Dy(t, 1)+éDiJ(t, 1) = 0, on [0,T]

or Dirichlet boundary conditions

y(t,O) = 0, y(t, 1) = 0, on [0,T]

(DN),

(DD).

(1.13c)

(1.13d)

We refer to continuous problem as Problem (DN) when (1.13a)-(1.13b)-(1.13c) hold and Prob-
lem (DD) provided (1.13a)-(1.13b)-(1.13d). Here D designates Dirichlet and N Neumann.

Remark 1.3.0.2. For the visco-elastic parameter é = 0, (1.13) is the wave equation. For
é > 0, (1.13) is called strongly damped wave equation. 0

Remark 1.3.0.3. Note that the consistency condition (Yo, yd E ~(A) in Definition 1.3.0.7
below requires further conditions on the data Yo and YI. 0

In the following, we introduce the steady state equation corresponding to the strongly damped
equation (1.13). Namely, let z be the unique solution of

-ßz=! on n,

subject to the homogenous boundary conditions

zlrD =0, DzirN =0.

(1.14a)

(1.14b)

Here the boundary f := ôn = {O,I} and fD = f \ fN such that for (DN) we have fD =
{O},fN={I} and in case of (DD) fD={O, 1}=f, fD=0.

Remark 1.3.0.4. Given! EL2(0), the existence of a unique solution z E H2(n) of (1.14) is
proven, e.g. in AFEM [16, Chapter 1, Theorem 1.5]. 0
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Let here and in the following
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a(u; v):= LDuDv dx and (u; v):= Luv dx

for all u, v from H1(O) and L2(O), respectively.

We define H1(O) := {w E H1(O) I wirD = a}. Because of rD =1= 0, lIuIIHb(f2) := (a(u, U))1/2
defines a Hilbert norm on H1(O) and we write II. IIHl(f2) instead of II . IIHb(f2).
Moreover, let H-1(O) be the dual space of H1(O) equipped with the usual norm

(1.15)

Here the duality brackets (.,.) extend the L2 scalar product. In the following we introduce
some definitions needed for the analysis of the long time behavior of the initial equation (1.13). e
Definition 1.3.0.3 (Energy scalar product, Energy norm, Hilbert space 1£). Let 1£
be the Hilbert space

(1.16)

equipped with the canonical inner product defined for all u = (Ul, U2), v = (v!, V2) in 1£ by

(1.17)

The scalar product (- ; -)1£ is often referred to as the energy scalar product and the correspond-
ing energy norm is accordingly defined for all u = (Ul, U2) E 1£ by

(1.18)
o

Definition 1.3.0.4 (Energy). The energy of the continuous solution of Problem (1.13) at a
time point t E [0, T] is the halved sum of potential and kinetic energy, i.e.

£(y(t)):= ~ L IDy(t, x)12 dx + ~L Iy(t, X)12 dx. o

Remark 1.3.0.5. From the definition of the energy norm, cf. (1.18), it is obvious that
111(y, y)(t)lll~=2£(y). 0

Lemma 1.3.0.1 (Conservation of Energy). The energy of the continuous solution y of
the homogenous strongly damped wave equation (1.13) for é > a dissipates in time

£(y(t))=£(y(O))-é it IIDy(r) IIL2(f2)dr for all tE [O,T]. (1.19)
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Proof. To prove this, we multiply the equation (1.13a) by if with respect to the inner product
in L2(0). Together with the boundary conditions, an integration by parts by proves

(ij(t); y(t)) +a(y(t); y(t)) +ca(if(t); y(t)) =O.

An integration over (0, T) leads to

and the main theorem of calculus concludes the proof. 0

Definition 1.3.0.5 (Operator 1C). For given fE H-1(0), there is a unique weak solution
u E Hb(O) of the problem (1.14), i.e. a(u, v) = (I, v) for all v E Hb(O), as follows from the
fundamental Riesz theorem. Hence we may define the operator K : H-1(0) ~ Hb(O) which
maps f onto the solution Kf=u of (1.14). 0

Lemma 1.3.0.2. Since Hb(O) C L2(0) c H-1(0), we may consider the restricted operator
K : L2(0) ~ L2(0). This restriction satisfies

(a) K is self-adjoint, positive semi-definite and compact from L2(0) to L2(0),

(b) Therefore, Kl/2 : L2(0) ~ L2(0) is well-defined, self-adjoint, compact and positive
semi-definite.

(c) Kl/2 can be extended to an operator J(}/2 : H-1(0) ~ L2(0) and there holds

(1.21)

i.e. Kl/2 is an isometry.

Proof. (a) We first show that K is self-adjoint: For fE L2(0) there holds a(Kf; v) = (I, v)
for all VEHb(O) according to the definition of K. Thus, f,gEL2(0) implies

(I, Kg) =a(Kf; Kg) =a(Kg; KI) = (g; KI).

The same argument implies

(Kf; I) =a(Kf; KI) = IIKfll~l(n)2:0.

(1.22)

i.e. K is positive semi-definite.
It remains to prove that K is continuous from L2(0) to Hb(O) which would yield the com-
pactness according to the Rellich theorem, cf. ZEIDLER [75, Band II, Theorem 19.25].
Due to Kf E Hb(O) a Friedrich's inequality yields

This concludes the proof for (a).

(b) The existence of a positive, self-adjoint and compact square root Kl/2 is proven e.g. ln

WERNER [73, Theorem VI.3.4].
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(c) For the proof of (1.21), recall the definition of II . IIH-l(f!) from (1.15).

First, let fE L2(0), f =I o. Obviously, there holds II/CfIIHl(f!) = a(/Cf; /Cf)1/2 = (f; /Cf)1/2 =
II/CI/2fIIL2(f!). Thus, the Cauchy inequality yields

Ilfll
(f; v) a(/Cf; v) < II/CfIIHl(f!)llvIIHl(f!) II/CI/2fll

H-l(f!) = sup II II - sup II II sup II II = £2(f!).vEH1(f!) V Hl(f!) VEH1(f!) V Hl(f!) -vEHb(f!) V Hl(f!)

In particular /CI/2f =I o. Therefore, we mayalso conclude that

llfll - (f.) (f; /Cf) - (f; /Cf) -11/CI/2fll
H-l(f!) -~~~ ' v 2: II/CfIIHl(f!) - (f; /Cf)1/2 - L2(f!).

From the latter two inequalities we obtain IlfIIH-l(f!) = II/CI/2fIIL2(f!) for fE L2(0). In particular,
/CI/2 is an isometric operator from (L2(0), II . IIH-l(f!)) to L2(0). Continuity allows to extend
/CI/2 to the whole of H-I(O), since L2(0) y H-I(O), see ODEN-REDDY [57, Section 4.5] ..
This concludes the proof. D e
Definition 1.3.0.6 (Hilbert space il). Let fi be the Hilbert space

equipped with the inner products defined for all U = (UI, U2), v = (VI, V2) by

(u;vlfi: = (uI;vd + (/CI/2u2;V2).

Here /C is an operator from Definition 1.3.0.5.
The corresponding norm is defined for all U = (UI, U2) E fi through

lIIulll~ := (u; ulfi = IluIili2(f!) + II/CI/2u21Ii2(f!).

(1.24)

(1.25)

(1.26)
D

In the following we introduce the vector notation, in order to present initial equation as the
evolution equation.

Definition 1.3.0.7 (Vector formulation, Operator A). For the solution ofthe initial prob- e
lem (1.13) let

u(t, x) := (y(t, x), y(t, x)), uo(x) = (Yo(x), YI(X)), F(t, x) := (0, f(t, x)),

and define the 2 x 2 operator matrix A: 1£-* 1£ by

[
0 - 1 ]A:= -ß -éß .

The problem (1.13) is equivalent to: Find U E HI(O, T; 1£) such that

ü+Au=F, on Q,
u(O, x) = uo(x) on 0,

(1.27)

(1.28a)
(1.28b)

for A : g&(A) c 1£-+ 1£ where

g&(A) := {(UI, U2) C H1(0) x H1(0) I UI + éU2 E H2(0) and D(UI + éU2)lrN = O}. D
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Lemma 1.3.0.3. The operator A is maximal monotone.

29

Proof. First we need to prove the monotonicity. Let u = (Ui, U2) and V = (Vi, V2) belong to
~(A). An integration by parts in space using the boundary conditions yields to

(U - V; Au - AV)ll = a(ui - Vi; -U2 + V2) - (U2 - V2; ß(Ui - Vi) + eß(U2 - V2))
= -a(Ui - Vi; U2 - V2) + a(U2 - V2; Ui - Vi) + ea(U2 - V2; U2 - V2)

- [(U2-V2)(D(Ui-Vi +c(U2-V2))]Ö=e l (D(U2-V2))2dx ~ O.

This shows that the operator A is a monotone operator.
By definition it remains to prove that the range of A + 1satisfies R(A + 1) = 1£ with 1the
identity operator on 1£.
For arbitrary (e, g) E 1£, we consider the following ODE problem

z - (1 + e)ßZ = e + (1 + e)g,
zlrD = 0, DzirN = O.

(1.29a)
(1.29b)

According to AFEM [16, Chapter 1, Theorem 1.5], there exists a unique solution z E H2(O) n
H1(O) of (1.29).
Accordingly e E H1(O) and the functions

1 1
m := --(z + ce) and n:=--(z - e)

l+e l+e

satisfy m, nE H1(O), m + en = z E H2(O), D(m + en)lrN = 0, and

m-n=e,
n - ß(m + en) = g.

The system (1.30a) is equivalent to

[1+ A] [ : ] = [ ; ] .

(1.30a)
(1.30b)

(1.31)

Hence 1£ ç R(A+1) and from R(A+1) ç 1£, which is obvious due to the definition of ~(A),
we may conclude the proof of lemma. 0

Lemma 1.3.0.4. 1£ is separable Hilbert space as a product of two separable Hilbert spaces
H1(O) and L2(O).

Proof. Follows directly from the definition of separable spaces. o

Theorem 1.3.0.1 (ZEIDLER [75, Band II, Section 31.1, Theorem 31.A]). IfA:~(A)Ç
1£---+ 1£ is a maximal monotone operator with respect to domain ~(A) and F E Hi(O, T; 1£),
then problem (1.28) has exactly one solution U E Hi(O, T; 1£).

Proof. The proof follows since 1£ is a real separable space and A maximal monotone opera-
~. 0
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Remark 1.3.0.6. The motivation to use the above introduced vector formulation (Definition
1.3.0.7 and 1.3.0.3) comes from the analytical study of the strongly damped wave equation
with parameter c = 1, cf. NEVES [54]. 0

Lemma 1.3.0.5 (H2 stability of continuous solution). For the solution y of (1.13) with
1=0, we have

Proof. According to Theorem 1.3.0.1, there is a unique solution u of Problem (1.28) for
uo = (Yo,YI) E 9?(A). This solution is the unique solution of the problem (1.13) too, meaning
u= (y, y) for Y the solution of (1.13).
The proof follows by multiplying the initial equation (1.13a) with -ß(y+cy) with respect
to L2 scalar product in space and further integrating over time interval [0, t] where t is the
arbitrary point in time. Namely

(1.32)

The partial integration in space in case of the first term on the LHS of (1.32) shows

0= it a(:ii; y+cy)dT+ it (ß(y+cy); ß(y+cy))dT

= ~it ~IIY(T)II~l(O)dT+C it IIY(T)II~l(o)dT+~ it :tIIß(y+cY)(T)lli2(o)dT (1.33)

Here we used the boundary conditions (1.13c) as well as (1.13d). Moreover, owing to the main
theorem in calculus, the last expression is equivalent to

Ily(t) II~l(o)+ IIß(y+cy)(t) Ili2(O)+2cit

IIY(T) II~l(O)dT= IIYIII~l(o)+ IIß(Yo+cyd Ili2(O)' (1.34)

From (1.34) and the fact that y=ß(y+cy) we additionally have

IIY(t) Ili2(o)~ IIYIII~l(o)+ IIß(Yo+CYI) Ili2(O)'

The proof follows by summing (1.34) and (1.35).

(1.35)

o

In case of the norms and normed spaces defined on the whole domain Q, we shorten the
notation and write e.g. II. 11£1(L2)instead of II. 1I£1(o,T;L2(O»and proceed similarly in case of
Sobolev norms.



Chapter 2

Discrete model

For the numerical simulation of the strongly damped wave equation and a proof of a sharp a
priori and a posteriori error estimates, we developed several approximation schemes which re-
sult in a fully discrete analogon ofinitial problem (1.13). The proposed discretisation methods
are applied to the vectorised form of the initial equation (1.28), such that both components of
the solution vector belong to the same discrete space. The usage and approximation of the vec-
torised form instead of the initial form of equation (1.13) is motivated by the fact that across
from very few known methods for the discretisation of the second time derivative, the variety
of numerical methods for solving differential equations of first order is widely used and fully
discussed. This also yields to the better approximation of the second variable iJ (velocity) and
is therefore favourable. As an example for both approaches, we refer to HUGHES-HuLBERT
[38,41].

In case of spatial discretisation, due to the presence of a second order differential operator
in space, we employ globally continuous finite elements, e.g. linear splines (PI conform fi-
nite elements) and cubic splines (Cl finite elements), respectively, cf. Section 2.1. A time
discretisation is carried out with aid of the discontinuous Galerkin methods of order O,las
well as the continuous Galerkin method of order 1, see Section 2.2. As a successful tool for
the analysis of the long time behaviour of the initial equation and its discrete counterpart,
we also concern the spatial semi-discrete version of the strongly damped wave equation. Each
of these methods are explained in the following, along with a detailed overview concerning
the implementation, cf. Section 6.1. We will also show that each discrete model provides the
unique existence of a discrete solution, see Section 2.4.

First, let us introduce the time-space partition of the domain Q = [0,T] x O.

Definition 2.0.0.8 (Partition in time and space). Let f/ be a partition of the time in-
terval [0,Tl,

f/ :0 = to < tl = to + kl < t2 = tl + k2 < ... < tN = tN-I + kN = T,

where Ij := (tj-l, tj], kj := IIjl and k E LOO(O, T) is defined by kl1j := kj for each j = 1, ... , N.
With each time interval Ij, we associate a triangulation '0 of the spatial domain 0 = [0,1]

'0 : Xo = 0< Xl < X2 < ... < Xn-l < Xn = 1.

As above we write Tk = (Xk-l, Xkl, hk
k = 1, ... ,n.

.- ITkl and define hE LOO(O) by hlTk := hk for each
o

31
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The space discretisation may vary in both space and time, but the time steps are only variable
in time, not in space so that the corresponding time-space mesh is not fully optimal. This
variation of spatial domain arises when coercing/refinement procedure in space is applied.
For different ways of discretisation where the triangulation of temporal domain is not fixed as
a reference for space discretisation we refer to RICHTER [61].
Moreover, when the mesh varies in space, we need to find a way of transferring information
from one time level to the next, so that we can approximate the numerical solution at a
point of the previous spatial mesh, which may not have been a node. This can be done in
a several ways: Some authors, e.g. BANGERTH[9] propose the usage of hierarchical meshes
(important for a continuous Galerkin ansatz in time) and some introduce the idea of a global
£2 projection, see SÜLI-WILKINS [67]. In this work, we deal with the one-dimensional spatial
domain and accordingly the straight-forward interpolation can be used.

Remark 2.0.0.7 (Additional time step control, CFL condition). Depending on the
time discretisation, an additional time-space-step control may be needed for the stability of the
discrete method. This is the case when, e.g. explicit methods are used for the discretisation e
in time, cf. COURANT et al. [21]. However, in this work only the implicit methods in time
are considered and therefore the additional time-space step control is not necessary. 0

2.1 Discretisation in space

The spatial discretisation follows by means of linear splines and Hermite cubic splines, respec-
tively.
With respect to the partition of the whole domain Q = [0,T] x n from Definition 2.0.0.8, for
each j and the corresponding time slab Ii x n we may define a spatial conforming FE space
Si cH1(n) such that in case of linear splines

. 1
S3 := S D (Tj) = span {</>1, ... , </>n} C CD (n),

and when the discretisation in space is by Hermite cubic finite elements

(2.1a)

The number n + 1 is the number of nodes in triangulation of the spatial domain n.
In case of (2.1b), {</>eli=1 are chosen to be piecewise Hermite cubic finite elements and they
are defined on each space interval separately, cf. Subsection 2.1.2. Both ansatz spaces consist
of globally continuous functions and therefore conforming elements.
We choose the linear finite elements because the theory derived for the proof of a posteriori
error bound can easily be extended to the case of the strongly damped wave equation with
two-dimensional space variable. They also decrease the computational cost compared to the
use of the cubic splines. On the other hand, we rather use cubic elements because their
improved accuracy yields a much sharper a posteriori error bound. This will be shown in
Chapter 3 and Chapter 4.
Note that the structure of the FE spaces Si with respect to the number of elements in the
corresponding triangulation Ti may vary between two neighbouring time slabs.
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2.1.1 Linear Splines (PI)
In case of piecewise affine ('Pd, globally continuous functions which are often referred to as
linear splines, we consider the following basis for the discrete space Si, namely for k = 1, ... , n

{

(x - xk-d/hk, for x E Tk,
4Jk(X) := (Xk+1 - X)/hHI, for x E THI,

0, elsewhere.

These functions are also called hat functions, see Figure 2.1.

(2.2)

• o

Figure 2.1: Basis function 4JI, linear splines.

x

2.1.2 Piecewise Hermite cubic finite elements (Cl)
Globally continuous Cl cubic polynomials, so-called cubic splines are defined on each space
interval separately. Namely, if ( E [-1,1] denotes the local coordinate relative to the interval
Tk = (Xk-l, Xk], where

• then the basis functions read

4JI (() := ~(1 - ()2(2 + (),

4J3(() := ~(1 + ()2(2 - (), (2.3)

Accordingly, the discrete solution on the kth element, U E SilTk can be represented as

Remark 2.1.2.1. The Hermite cubic finite elements are continuous in first derivative and
therefore admissible for the incorporation of Neumann boundary condition (1.13c) in the
computation ofthe discrete solution in case ofProblem (DN). For details we refer to Subsection
6.1.4. 0
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Time discretisation •
In case of time discretisation we apply the following methods, namely

• Discontinuous Galerkin method, abbreviated dG(q), for q = 0,1 polynomial degree,

• Continuous Galerkin method, abbreviated by cG(q) for q = 1,

• Method of lines, abbreviated by MaL.

The discontinuous Galerkin method generates an implicit A-stable time-stepping schemes of
order q + 1 in time, where the super convergence of order 2q + 1 occurs at the nodal points
tj from !Y. The approximate solution is sought on each time level separately. Although the
dG methods are strongly dissipative, due to the smoothing effects which cause the additional
energy loss, see Remark 2.3.3.4, they can be understood as a general method for solving time-
dependent problems adaptively. Namely, the jumps of dG functions can be regarded as a
proper refinement or coarsening indicators. One of the first applications of dG methods for
the second order hyperbolic problems was by Hulbert and Hughes, see [38, 41]. Note that •
in the case q = 0, the dG(O) method coincides with the backward Euler scheme up to the
computation of the right-hand side (RHS).

Another very useful method for solving linear as well as nonlinear wave problems is the contin-
uous Galerkin method where the discretisation is carried out with aid of globally continuous
functions. These methods where first introduced in context of ordinary differential equations
in HULME [39,40]. There was also shown that cG methods are closely related to Runge-Kutta
schemes based on Gauss-Legendre quadrature rules with a convergence rate k2q, where k is
the step size and q is the polynomial degree. With this approach, methods of any desired
order of accuracy can be easily formulated. The advantage of using this particular method for
the time discretisation is that it conserves the energy in the same way as the continuous prob-
lem, see Remark 2.3.4.2. We will only consider the case cG(I), i.e. time discretisation with
globally continuous piecewise linear functions. Note that in case of a homogenous problem
and equidistant time-stepping, the cG(I) method coincides with an A-stable implicit mid-
point scheme of convergence order 2. The subsequent analysis from Section 2.3.4 is based on
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•

some standard ideas from BANGERTH[9],FRENCH-JENSEN[29]and FRENCH-PETERSON[30].

A very important method for the analysis of the space discretisation as well as the long time
behavior of initial equation is the vertical method of lines. This technique converts the initial
hyperbolic problem (1.28) to a system of ordinary differential equations which can be solved
by very efficient solvers for large systems of ordinary differential equations. These solvers, e.g.
Matlab solvers ode23,ode45,ode113,. .. (for details, we refer to [60]), possess a high accuracy
and therefore can be considered as relatively reliable. The disadvantage of using this method
is that this approach compared to dG method does not enable us to detect the discontinuities
of sharp gradients in the discrete solution. Therefore an effective time adaptive scheme can
be developed here. The related analysis is based on some general ideas from BABUSKAet al.
[6] and SÜLI-WILKINS[67].

Note that the stability of all methods mentioned above, is independent of the choice of the
time and space mesh increment, recall Remark 2.0.0.7 and HARTMANN[37] as well as the
references therein .

In order to illustrate the respective time approximation properties, in Figure 2.3 we present
the energy distribution of the discrete function in time, obtained for the application of four
different methods in time and cubic splines in space in case of Example 6.2.2. The Figure 2.4
displays the same values only with different scaling where only the the method of lines, cG(l)
and dG(l) method in time are represented.
In Figure (2.3), the dissipation of dG(O) method is apparent, whereas the dissipation of dG(l)
method is much more visible in the Figure (2.4).

'.0
.... mIChod 01 ...
-- caCl)
+dQ(0)
.... 1

t
I·
i

0.0

'.0 2.5.... ...

Figure 2.3: Energy of discrete solution in time IIIUIII1ijMoL, cG(l), dG(O), dG(l) in time and
Cl in spacej Example 6.2.2, ê = 0, (DN), T = 1.
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Figure 2.4: Energy of discrete solution IIIUIII1lon time interval [0,4]; MoL, cG(l), dG(l) in
time and Cl in space; Example 6.2.2, €=O, (DN), T=1.

2.3 Fully discrete model •
In the subsequent section we introduce the fully discrete model obtained by approximating
the initial problem (1.28) in time and space. This will be done first by introducing the general
formulation ofthe weak form and some related terms such as the residual, cf. Subsection 2.3.1.
In Subsection 2.3.2 the error of the time-space discretisation is defined. The remainder of the
section is devoted to the formulation and the stability analysis of the fully discrete problem
for each ansatz in time in particular. This includes the formulation of the weak form for the
corresponding time approximation method and analysis of the appropriate discrete space.

2.3.1 Weak form
Due to the choice of the time-space discrete scheme, let Q and W be the corresponding fully
discrete spaces with corresponding indices for each method in time, whereby Q denotes the
space of trial functions and W is referred to as the space of test functions.
Henceforth, we seek to find some approximation U := (UI, U2) E Q of the continuous problem •
(1.28) such that

B(U, V) = ~(V) for all V = (Vi, 112) E W, (2.5)

with an initial condition noted by U(O) or Uo- in dependence on the time approximation
method. Moreover, the initial solution denotes the discrete variant of the continuous initial
solution uo, cf. (1.28b), i.e. U(O) =IIuo. Here II denotes a spatial multi projection which will
be introduced in the following.
We suppose that B is a bilinear form

ß(.,.) : HI(f7; 11.) x L2(0, T; HMO) x H1(o)) -+ ]R,

where f7 stands for some arbitrary partition of the time interval introduced in Definition
2.0.0.8. HI(f7; 11.) is the space of all f7-piecewise HI functions on [0,T] which are not neces-
sary in HI(O, T).
The linear functional ~ is defined such that
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The definition of the bilinear form B and the functional.z will differ for different fully discrete
spaces due to the different choice of time discretisation. This will be explicitly explained in
Subsections 2.3.3-2.3.5.

Remark 2.3.1.1 (Local discrete form, dG(q), cG(1) time discretisation). In case of
the Galerkin time discretisation, we define by Bj := BIIj' .zj := .zIIj the jth contributions
of Band .z respectively, which are related to the time interval Ij. Then, the weak form (2.5)
reads: Find U E QIIj such that for given UIIj_l

Bj (U, V) = .zj (V) for all V E WIIj and j = 1, ... ,N. (2.6)

The formulation (2.6) is equivalent to (2.5) and can be obtained through decoupling of time
steps, using the fact that for each time step Ij we may choose a test function V E W such that
Vlh = 0 for all k =1= j and since the test functions in Galerkin time discretisation method,
include the characteristic functions. D

Definition 2.3.1.1 (Consistency). The solution u of initial vector problem (1.28) is called
strong solution. A solution U of weak problem (2.5) is called weak solution .
We also say that the bilinear form B is consistent with the strong formulation (1.28) if strong
and weak solution coincide. D

Definition 2.3.1.2 (Residual). Let for any v = (VI, V2) E £2(!y; Ji) the residual be defined
as

Res(v) := .z(v) -B(U, v),

where U denotes the discrete solution from (2.5).

The residual has the orthogonality property,

Res(V) = 0, for all V E Q.

2.3.2 Error

(2.7)

D

(2.8)

Definition 2.3.2.1 (Error). Given the exact solution u of (1.28) and the discrete solution
U E Q of (2.5), we define the error

e := (el, e2) = u - U E HI(!y; Ji). D

In view of (2.5) and Remark 2.3.1.1, e satisfies so-called Galerkin orthogonality

B( e, V) = 0 for all V E Q. (2.9)

Remark 2.3.2.1. In case of a consistent discretisation scheme, see Definitions 2.3.1.1, 2.3.1.2,
we may find that

B(e, v) = Res(v) for all v E £2(0, T; 1-£). (2.10)
D

Definition 2.3.2.2. Let E(t) := £(e(t)) denote the energy of the error e= (el, e2) at time t,
1.e.

E(t) = ~ lIDel(t)12 dx + ~lle2(t)12 dx.

Note that the energy of the error is defined according to the Definition 1.3.0.4 with e instead
of the exact solution u. D
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2.3.3 Discontinuous Galerkin time discretisation
On the basis of the main properties of discontinuous Galerkin methods, we design a class of
discrete functions as set of piecewise polynomials such that on each time interval Ij E :7 a
discrete function belongs to Pq(Ij) with the coefficients in spatial discrete space sj. Moreover,
the discrete functions are not globally continuous, i.e. on the whole time interval [0,Tl, and
trial and test spaces coincide (W = Q) which refers to Ritz-Galerkin methods.
The concept of distributional time derivatives of discontinuous dG(q) function arises in the
formulation of the weak form.

Definition 2.3.3.1 (dG(q) space, q=O, 1, full discretisation). For each Ij E :7 from
Definition 2.0.0.8, let Q~ be defined by

Q{ : = { U : Ij x n --+]Ii2 I U(t,.) E sj x sj, U(', x) E Pq(Ij)} ç Hl(Ij; 1£). (2.11a)

Accordingly, we may define

Qq : = { U : Q --+]Ii2 I UI1;xf2 E Q{, for all Ij E:7} ç Hl(:7; 1£), (2.11b) •

as a set ofpolynomials in time U, such that for each interval Ij E:7, U11; := uj is a polynomial
of degree q with coefficients in sj x sj. The space sj takes a form due to the choice of spatial
discrete functions.
We say that Qq defines the dG(q) space with full discretisation in space. The functions in Qq
are called dG(q) functions, q=O, 1. 0

Definition 2.3.3.2. Let:7 be a partition of the domain [0,T] introduced in Definition 2.0.0.8
and U E Qq a piecewise smooth function on each interval Ij, j = 1, ... , N. For given UO-,

(which stands for the initial condition), we may define the extension of function U onto the
entire space ]Ii as

{

Uo-
U(t) := U(t)',

U(T),

tE (-00,0)
tE [O,T]
tE (T, +00).

(2.12)

On account of this, the one-sided' limits exist for all j = 0, ... , N and are defined by •

U# := lim U(t). (2.13)
t-+t~

1

Accordingly, we introduce the jumps

[UP := Ui+ - uj-. (2.14)

In particular, our definition implies [U]o=Uo+ - Uo- and [U]N = O. 0

Lemma 2.3.3.1 (ALBERTY [2, Lemma 3.13]). Let U E Qq be an arbitrary dG function and
lHI,Heaviside function from Example 1.2.3 and eSt;, the distributional derivative of Heaviside
function, cf. Example 1.2.2. Owing to the definition of one-sided limits, cf. Definition 2.3.3.2,
we have for t E Ij

:t (uj (t)lHI(t-tj_1)) = uj-1+ eSt;_l +(;i (t)lHI(t-tj_l)

:t (U(t)lHI(tj -t)) = - uj- eSt; +Uj(t)lHI(tj -t).

(2.15a)

(2.15b)
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dG(q) functions with space discretisation by linear splines

39

q=O

dG(q) functions with space discretisation by cubic splines

q=O U(t, X«())lljxTk:= u1 (x«()) = ULI4>I«() +hk/2DULI4>2«()+u14>3«() +hk/2DU14>4«(),
Uk-11k := (Uk-llk,l' Uk-llk,2)' DUk-llk := (DUk-llk,l' DUk-llk,2) E ]R2

•
q=l U(t, x«()) !1-xTk:=u1 (t, x«()) = (t-tj-d/kj (uL~ 4>1«()+hk/2DuL~ 4>2«()+U1'o4>3«()

+hk/2Du1,O~4«()) +(tj-t)jkj (uLi 4>1«() +hk/2DULi 4>2«() +Ue4>3«() +hk/2De4>4«())'

Uj,Oll (Uj,OII Uj,OII ) DUj,oll (DUj,oll DUj,oll ) 1!:D2k-llk:= k-llk,l' k-llk,2' k-llk := k-llk,l' k-llk,2 E ~

Table 2.1: dG(q) functions for different ansatz in space, u1 =Uj(Xk), m=n-1,n. For the
definition of basis functions 4>£, see Subsections 2.1.1 and 2.1.2.

Lemma 2.3.3.2 (Distributional time derivative of dG(q) function). Due to the prop-
erties of discrete space Qq, if the piecewisetime derivative is defined by UTllj := Ùj then the
distributional time derivative may be seen as

•
N

Ù = UT + L[UP-18tj_1,

j=1

where 8tj denotes the delta distribution supported in tj.

(2.16)

Proof. The proof followsby using the followingrepresentation of dG (q) function U E Qq,

N-l

""' . N °U(t) = L.,.. UJ (t)lHl(t - tj_l)lHl(tj - t) + U (t)lHl(t - tN-I) -U -lHl(to -t).
j=1

According to the definition of the distributional derivative, cf. Definition 1.2.3.4 and results
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from Lemma 2.3.3.1, we have

CHAPTER 2. DISCRETE MODEL

To obtain the weak formulation in terms of weak bilinear form B, we multiply the initial
equation (1.28) with test function V E Wq with respect to 1l scalar product from Definition
1.3.0.3. An integration with respect to each interval Ij and sum over all j = 1, ... , N yield

N-l

V(t) = L vj (t)H(t - tj-dH(tj - t) +VN (t)H(t - tN-d
j=l

N-l

+ L (Uj-1+<5ti_1H(tj - t) - Uj-H(t - tj-1)<5ti) +UN-1+<5tN_1 -UO-<5to

j=l

N-l

=u +""' (Uj-1+<5. -Uj-<5.)+UN-1+<5 -UO-<5T ~ tJ-l tJ tN-l to
j=l

N-l

=UT + L[Ulj<5ti.

j=O

This concludes the proof of lemma. o

(2.17)

•
For discrete function U E Qq instead of smooth u in (2.17), the time derivative V is to be
interpreted in distributional sense, see (2.16). By extending the equation (2.17) in terms of
1l scalar product, we may formulate the discrete problem: Find U = (U1, U2) E Qq such that
U solves (2.5) where

N N N N
B(U, V) :=Li a(U1,T; Vi)dt+ Li (U2,T; V2)dt- Li a(U2; V1)dt+ Li a(U1; 1;2)dt

j=l Ii j=l Ii j=l Ii j=l Ii

N N N
+éLi a(U2; V2)dt+ La([U1P-\ v!-1+)+ L([U2P-l; V!-1+), (2.18)

j=l Ii j=l j=l

and the functional Z is defined by

N

Z(V) := Li (f; 1;2)dt,
j=l Ii

(2.19)

for all V := (Vb 1;2) E Qq and given initial solution Uo- = IIuo.

Definition 2.3.3.3 (Affine appro~imation). Given U E Qq, we define a globally contin-
uous and piecewise affine function U with respect to triangulation g- of time interval [0,Tl
such that

U-( )1 '- t-tj-1Uj( ) tj-tUj-1( )t,x Ii'- k. tj,x +~ tj-bX
J J

for all (t, x) E Ij x nand j =1, ... , n. o
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•

On the basis of Definition 2.3.3.3, we notice that in case q = 0, for all U, V E Qo, the bilinear
form B (2.18) is equivalent to

N. N. N

B(U, V) := ~ 1
i
a(if1; Vi)dt +~ 1

i
(if,; V,)dt - ~ 1,a(U,; V1)dt

N N

+ L! a(U1; V2)dt + é L! a(U2; V2)dt. (2.20)
j=l Ii j=l Ii

. .
This follows from the fact that ([UP; Vj-1+)1£dt=kj(U; Vj)1£ =IIi (U; V)1£dt if U, V E ~.

Remark 2.3.3.1. The bilinear form B, cf. (2.18), coincides with the bilinear form 13 (2.18)
only on a space of test functions (piecewise constant in time). The bilinear form B is also
consistent with a strong formulation unlike 13, cf. Definition 2.3.1.1. D

Consequently, we define for all v E L2(0, T; 1l)- -Res(v) := 2(v) -B(U, v). (2.21)
where the linear functional 2 is defined as in (2.19). Furthermore, the identity (2.21) can
also be written as

N N N

&:;(v) =~ 1,a(i;l; vl)dt + ~ 1
i
(i;,; v,)dt - ~ 1,a(e,; vddt

N N

+ L! a(el; v2)dt + é L! a(e2; v2)dt. (2.22)
j=l Ii j=l Ii

Notice that this residual retains the orthogonality property, namely for V E Qo

(2.23)Res(V) = 2(V) - B(V) = 2(V) - B(V) = Res(V) = O.

Lemma 2.3.3.3. For U E Qq, the following two identities are valid

!(Ur; U)1£dt = !IIIUj-III~_!IIIUj-1+III~ and
I. 2 2
]

• ([UP-l; Uj-1+)1£ = ~IIIUj-1+III~+~III[U]j-llll~_~IIIUj-l-III~.
Proof. For the first identity we have

!(Ur; U)1£dt=! a(U1,r; U1)dt+! (U2,r; U2)dt=-2
1
! aa IIUlI111(0)dt+! aa IIU21Ii2(0)dt

I. I. I. I. t I. t
] ] ] ] ]

= Ilut 1111(0)-IIU{-1+1111(0)+IIU4-lli2(0)-llut1+lli2(0)'
In case of the second identity,

([UP-l ;Uj-1+)1£ = ~(Uj-1+ _Uj-l-; Uj-1+)1£+~(Uj-1+ -uj-1+; uj-1+ -Uj-l-)1£

+~(Uj-1+ -uj-1+ 'Uj-l-)
2 ' 1£

= ~IIIUj-1+III~_~(Uj-l-; Uj-1+)1£+~III[UP-llll~

+~(Uj-1+; Uj-l-)1£-~IIIUj-l-lIIt.
Owing to the symmetry of the 1l scalar product, we conclude the proof of Lemma. D
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Before we establish the stability estimate for U in terms of initial data UO-, where U is the
solution of (2.5), we introduce the discrete operator Kh, i.e. a discrete variant of operator K
from Definition 1.3.0.5.

Definition 2.3.3.4 (Discrete operator ICh). For given fE H-l(n), there is a unique so-
lution U E S of the weak problem

a(U, V) = (J; V) for all V E S, (2.25)

where S denotes a finite dimensional subspace of Hi>(n). Hence we may define the operator
Kh: H-1(n)-7S which maps fEH-1(n) onto the unique solution U=Khf E S of (2.25). 0

Lemma 2.3.3.4. Since ScHi> C £2(0,) c H-1(n), we may consider the restricted operator
Kh : £2(0,) -7S from Definition 2.3.3.4. This restriction satisfies

a) Kh is self-adjoint, positive semi-definite and compact operator from £2(0,) onto £2(0,),

b) K~/2: £2 (0,) -7 £2 (0,) is well-defined, positive, self-adjoint, compact operator.

c) K~/2 can be extended to an operator K~/2 : H-1(n) -7 £2(0,). There holds

•
(2.26)

. yl/2 . . tl.e. "'h IS an Isome ry.

d) The restriction Kh : S -7 S is injective and hence invertible. In particular, there exists
Kh1:S-7S with

(Kh1U; V) :=a(U; V) for all V ES. (2.27)

Proof. The proof for a),b),c) follows analogously as the proof of Lemma 1.3.0.2 with Kh
instead of K. •
To see that Kh: S -7 S is injective, let U E S satisfy KhU =O. By definition (2.25), there holds
O=a(KhU; V)=(U; V) for all YES. If V=U we have IIUlli2(O)=0 whence U=O. 0

Remark 2.3.3.2. The operator KhI is often referred to as discrete Laplacian, c.f. ERIKSSON-
JOHNSON [23]. 0

Remark 2.3.3.3. The operator Kh can be seen as Galerkin projection of the operator K from
Definition 1.3.0.5, i.e. Kh = QK where Q is defined in Definition 3.1.0.3. This results from the
following identity. Namely, if U is the discrete solution of problem (2.25) and u a continuous
solution of (1.14), then for each V ES

a(Khf; V) =a(U; V) = (J; V) =a(u; V) =a(Kf; V) =a(QKf; V). (2.28)

Meaning, the discrete and continuous operator Kh and K, respectively, coincide on the space
of discrete functions. 0
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Lemma 2.3.3.5 (Stability of dG solution). Let U be the dG(q), q = 0, 1 solution of the
homogeneous problem (2.5), i.e. 1=0 with B defined in (2.18). Then there holds for all ê2:O
and l~n~N

n n

lIIun-III~+2êL jIIU2(t)1111(fl)dt+ L III[UPIII~=IIIUo-III~.
j=l 0 j=l

Moreover, in case when q= 1

where additionally for ê = 0 there holds

(2.2ga)

(2.29b)

(2.2gc)

Proof. In order to prove the basic stability estimate (2.2ga), we chose V = U in the weak
form (2.5), where 2(U) = 0 to obtain

N N N

O=B(U, U) = L j a(U1,T;Uddt + LI (U2,T;U2)dt + ê LI a(U2;U2)dt
j=l Ii j=l Ii j=l Ii

N N

+ L a([UIP-I; ut1+) + L([U2P-1; ut1+)
j=l j=l

N N N

=f;1, (UT; U)"dt+ f;([U]i-l; Ui-H)" +£ f;1, !U,(t)iH'(n)dt. (2.30)

According to the results of Lemma 2.3.3.3, this is equivalent to

N N N N

0= ~ L IIIUj-III~-~ L lIIutl-III~+~ L 111[U2P-IIII~+êL jIIU2(t)1I11(fl)dt.
j=l j=l j=l j=l Ii

Hence, we conclude the proof of (2.2ga).

In case of (2.29b), let V E QI be chosen such that

for Kh, the discrete variant of operator K defined in Definition 2.3.3.4.

A substitution of V into the homogeneous weak form (2.5) with B from (2.18) yields

0= 1a(U1,T;(t-tj-dKhUI,T)dt-l a(U2;(t-tj-dKhUl,T)dt
o 0

=1 (t-tj-d(U1,T; U1,T)dt-l (U2(t-tj-I); U1,T)dt (2.31)
o 0
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In the second equality above we used the identity (2.25), cf. Definition 2.3.3.4.
The equation (2.31) is now equivalent to

kI IIUf,TIli2(rl) = 1.(U2(t-tj-d; U1,T)dt
]

~ IIUf,TIIL2(rl) 1.(t-tj-dIIU2(t)IIL2(rl)dt~~ IIU{A£2(rl)IIU21IVXl(£2).
]

The discrete function U1 is piecewise affine in time and therefore

(2.32)

where the first stability estimate (2.29a) was used for the second inequality.

To prove the third stability estimate (2.29c), we need to bound IIU2,-rIIL<Xl(H-l). Let V E QI be
defined as e

V(t):= { (éKhU2,T(t-tj-l)O',KhU2,T(t-tj-d), tE Ij,
t et Ij.

Hence, the homogeneous weak problem 8(U, V) =0 reads

0= é!(U1,T; U2,T(t-tj-d)dt+ ! (U2,T; KhU2,T(t-tj-1))dt-é! (U2; U2,T(t-tj-1))dt
~ ~ ~

+1.(U1; U2,T(t-tj-1))dt+é 1.(U2; U2,T(t-tj-1))dt
] ]

= !(U2,T; KhU2,T(t-tj-d)dt -!(U1; u2,T(t-tj-1))dt-é! (U1,T; U2,T(t-tj-l))dt.
~ ~ ~

On account of the definition of the identity of the dual norm II.IIH-l(rl) and IIK~/2(')IIL2(rl)' cf.
(2.26), by applying the Hölder inequality in space the last equation can be recast to

~ IIU4,Tllt-l(rl) = ~ IIK~/2U4,Tlli2(rl) = 1.(U2,T;KhU2,T(t-tj-d)dt
]

= -!(U1; u2,T(t-tj-1))dt-é! (U1,T; U2,T(t-tj-d)dt
Ij Ij

k; j k; j
~ 2"IIU1I1VXl(Hl) IIU2,TIIH-l(rl) + 2"dU1,TIlVXl(Hl) IIU2,TIIH-l(rl)'

From the fact that U2,T is piecewise constant in time and the stability estimate (2.29a), there
holds

Obviously, we need to estimate term dUl,TIILOO(Hl) such that the RHS of the estimate (2.33)
depends only on IIIUo-IIIH. We will show that this is in general possible only in case when é=O.
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First, let V E QI be a test function

such that the weak form 8(U, V) =0 reads

o=c j a(U1,T;UI,T(t-tj-d)dt+j(U2,T; UI,T(t-tj-d)dt-cja(U2; U1,T(t-tj_I))dt
Ii Ii Ii

+!a(UI; U1,T(t-tj-I))dt+c !a(u2; U1,T(t-tj-d)dt.
] ]

This simplifies to
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• The discrete function U is piecewise affine in time and therefore the RHS orthe equality (2.34)
can be estimated such that

(2.35)

Hence, by means of (2.29a)

(2.36)

Obviously, from (2.36) and (2.32) we can not obtain the estimate for IIU2,TllvXl(H-l) when c > O.
On that basis, we conclude from (2.32) that for c=O the following estimate is valid

This concludes the proof of the estimate (2.29c) and lemma also.

(2.37)

o

Remark 2.3.3.4 (Strong energy dissipation by dG(q) method). Due to the definition
of the energy, see Definition 1.3.0.4, it is obvious that in case of dG(q), q = 0,1 time approxi-
mation, the energy of the discrete solution dissipates more than the energy of the continuous
solution. For the continuous model, there holds

according to Lemma 1.3.0.1 and Remark 1.3.0.5.
Contrary to that, the discrete solution satisfies

lIIuj-lIIt = Illuj-I-lIIt -111[U]j-111It-2c 1. IIU2(t)llk1(f!)dt.
]

(2.38)

For the proof of (2.38), we proceed similarly as in case of the Lemma 2.3.3.5, but substitute
V = U in the jth contribution of the homogeneous weak form, cf. Remark 2.3.1.1. The
equation (2.38) clearly indicates that IIIUj-lIIll decreases compared to Illuj-llllll' 0
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(2.42)
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2.3.4 Continuous Galerkin time discretisation
In the following we consider another concept of time discretisation by use of affine and globally
continuous functions, abb. cG(I). The discretisation in space remains as in the case of the
dG method, i.e. by using the linear or cubic splines.
Note that in case of a continuous Galerkin approximation in time, the test functions are one
degree lower in time to account for the fact that the discrete solution is fixed a priori by
continuity at each time node, i.e. for t=tj where j =0, ... , N. Such a method, where test and
trial functions do not belong to the same discrete space, is called Petrov-Galerkin method.
Petrov-Galerkin methods also comprise the inverse choice of trial and test functions, namely
when U E W is one degree lower than the test function V E Q. For more details we refer to
HARTMANN [37], even if this inverse choice will not be discussed within this work.
On the basis of the definition of the continuous Galerkin method, where the approximative
solution is globally continuous, and the fact that the spatial refining method assumes arbitrary
refinement on each time step, we restrict here to so called hierarchical meshes in space. These
meshes allow the continuity condition to be satisfied, i.e. Sj-I ç Sj for all j =1, ... , N.

Definition 2.3.4.1 (cG(I) space, full discretisation). Let Qc be denoted in the follow-
ing as cG(I) space, i.e. space of piecewise affine globally continuous functions in time with
coefficients in sj on each time interval Ij E !Y, cf. Definition 2.0.0.8. Then,

Accordingly, let

denote the space of piecewise constant functions on [0,Tl with respect to !Y. This space will
be further referred to as the test space. To abbreviate the notation, we write in the following
Qcllj =: Q~ etc.

The form ofpiecewise continuous discrete function in time, abb. cG(I) function, U := (Ut, U2),

is presented in Table 2.2 below. D

Hereby, from the Definition 2.3.4.1, the discrete problem reads: Find U = (UI, U2) E Qc such
that U solves (2.5) where

B(U, V):= iT a(UI; Vi)dt+ i
T

(U2; V2)dt-i
T

a(U2; VI)dt

+ iT a(UI; V2)dt+ê iT a(U2; V2)dt,

and the linear functional Z is defined by

Z(V) := iT (J, V2)dt,

for all V = (VI, V2) E Wc and given initial solution U(O)=IIuo.

Remark 2.3.4.1. Notice that the bilinear form B (2.41) is consistent with the strong formu-
lation, cf. Remark 2.3.1.1. D
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cG(l) functions with space discretisation by linear splines

47

U(t x)1 '=Uj(t x)=,",m ((t-tj-d/k.Uj+(tj-t)/k.Uj-l)"'k(X) Ujlj-l=(Ujlj-l Ujlj-l)ElR2, Ir ' L...k=l J k J k 'fJ , k k,l' k,2

cG(l) functions with space discretisation by cubic splines

U(t, x«(» II.XTk :=ul (t, x) = (t-tj-d/kj (uLl 4Jl «() +hk/2DULl 4J2«()+ul4J3«() +hk/2Dul4J4«(»)
+(tj-t)/kj (Ut~/4Jl «() +hk/2DUt/4J2«() +Utl4J3«() +hk/2DUtl (t)4J4«(»)'

Uj1j-l (ujlj-l uj1j-l) DUj1j-l (DUj1j-l DUj1j-l) l!ll2klk-l= klk-l,l' klk-l,2' klk-l= klk-l,l' klk-l,2 Ell\\.

Table 2.2: cG(l) functions for different ansatz in space, Sj-l ç Sj, ul = U(tj, Xk), m=n-l, n.
For the definition of basis functions 4Je, see Subsection 2.1.1 and Subsection 2.1.2.

Lemma 2.3.4.1 (Stability of eG(l) solution). Let U be the cG(l) solution of the homo-
geneous problem (2.5), i.e. f 0 with B defined in (2.41). Then, there holds for all é20 and
15:n5:N

Moreover, if é=O, then

IIIU(tn)IIJ~+2éitn

IIUl(t)ll~l(n)dt= IIIU(O)III~,

IIUlll£'IO(£2)5: IIIU(O)III'H'

(2.43a)

(2.43b)

(2.43c)

Proof. We start with the proof of the first stability estimate (2.43a).
Given the bilinear form B defined in (2.41) and a test function V = (IChU2-éUl, -Ud for ICh,
discrete operator from Definition 2.3.3.4, then the homogeneous weak problem (2.5) reads

O=B(U, V) = iTa(Ul; IChU2)dt-é iTa(Ul; Uddt-i'(U2; Ul)dt-1
T

a(U2; IChU2)dt

+é iTa(U2; Uddt-iTa(Ul; Ul)dt-é iT a(U2; Uddt

= l'(ul; U2)dt-é iTa(Ul; Ul)dt-i'(u2; Ul)dt-1
T

(U2; U2)dt

+é lTa(U2; Ul)dt-iTa(Ul; Uddt-é iT a(U2; Uddt.

This simplifies to
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By means of the main theorem in calculus we conclude the proof of (2.43a).

In case of (2.43b), we choose a test function V = (JChÙI, 0) in (2.5) in order to bound Ùl in
terms of U2. This leads to

Furthermore, the discrete function Ul is piecewise affine in time. This implies

(2.44)

where we used the same arguments as in the proof of (2.32) and stability estimate (2.43a).

We continue with the proof of (2.43c). To bound IIÙ21IvX>(L2)we choose V = (éJChÙ2, JChÙ2).
For this choice of test function, the homogeneous discrete problem (2.5) reads

0= él:(Ùl, JChÙ2)dt+ 1(Ù2, JChÙ2)dt-cl:(U2; JChÙ2)dt+ l:(Ul; JChÙ2)dt+é 1:(U2; JChÙ2)dt

= él(ÙI, Ù2)dt+ 1(Ù2, JChÙ2)dt-é 1(U2; Ù2)dt+ l(Ul; Ù2)dt+é 1(U2; Ù2)dt.

Moreover, from (2.26), cf. Lemma 2.3.3.4 we have

The Hölder inequality in time and space leads to

(2.45)

Obviously, to apply the stability estimate (2.43a) to the RHS of (2.45) we need to assume
that c=O similar as in (2.29c). Then

This concludes the proof.

(2.46)

o

Remark 2.3.4.2 (Energy conservation by cG(l) method). Due to the definition ofthe
energy, see Definition 1.3.0.4 and the stability estimate (2.43a) it is obvious that in case é=0,
cG(l) time approximation conserves the energy. 0

2.3.5 Method of Lines
The method of lines approach applies to the semi-discretisation in space only, where time
remains continuous. The discretisation in space follows by using the already known approx-
imation methods such as linear or cubic splines. Here we also distinguish between the trial
and test space. On account to the fact that time is continuous, we pass on the usual notation
valid in case of Galerkin methods which comprises the indexing j related to triangulation of
time interval.
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Definition 2.3.5.1 (MaL space, semi-discretisation). Let 5 be a finite dimensional sub-
space of H1(0.) which consists of linear or cubic splines, see (2.1). We denote by Qs a MoL
space, i.e. a space of functions globally continuous in time with coefficients in 5, i.e.

Qs : = {U : Q -+ lR2 I U(t,.) E 5 x 5, U(., x) E Cl(O, T)} ç Hl(O, T; 1£). (2.47)

Let also Ws be the appropriate test space

Ws : = {V: Q -+ lR2 I V(t,.) E 5 x 5, V(., x) E L2(0, T)} ç DXl(O, T; 1£). (2.48)

Discrete functions belonging to the discrete space Qs are called the semi-discrete or MoL
functions and their structure is presented in Table 2.3 below. 0

MoL functions with space discretisation by linear splines, tE [0,Tl

MoL functions with space discretisation by cubic splines, t E [0,Tl

U(t, x«())ITk :=Uk(t, x«()) =Uk-l (t)cPl «() +hk/2DUk-l (t)cP2«() +Uk(t)cP3«() +hk/2DUk(t)cP4«(),
Uk-11k = (Uk-llk,l, Uk-llk,2), DUk-llk = (DUk-llk,l, DUk-llk,2) E lR2

Table 2.3: Semi-discrete functions for different ansatz in space, Uk(t) = U(t, Xk), m=n-1, n.
For the definition of basis functions cP£, see Subsection 2.1.1 and Subsection 2.1.2.

The discrete problem reads: Find U = (Ul, U2) E Qs such that U solves the discrete problem
(2.5) where

and the linear functional 2 is defined by

2(V) := (J(t), Y;),

(2.49)

(2.50)

for all V = (VI, Y;) E Ws and U:= U(t) and V := V(t) for each t E [0, Tl.
Additionally, U is imposed to satisfy the initial condition U(O,x)=lluo(x) for all xE0..

Remark 2.3.5.1. The bilinear form B from (2.49) is consistent with a strong formulation,
cf. Remark 2.3.1.1. 0

2.4 Existence and uniqueness of the discrete solution
Within this section we present a proof for the uniqueness of the discrete solution.
In case of the Galerkin time approximation, the idea is to show that for each time interval
Ij, the reduced homogeneous equation (2.6) has only trivial solution uj 0 provided that the
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solution from the previous time interval is zero, i.e. Uj-1 = O. Existence of the discrete solu-
tion follows then directly from the uniqueness owing to the fact that the weak problem (2.5)
is linear, discrete and therefore finite-dimensional problem. In case of the method of lines,
the existence and uniqueness follow directly from the matrix formulation. Here the discrete
solution is the solution of the system of ordinary differential equations (ODE system).
The point of departure is the discretisation in space, namely, the proofs will be derived by
considering the spatial discretisation first, and thereon combining the same with time discreti-
sation. For the sake of clarity, we adopt the notation i.e. the abbreviations for various fully
discrete problems from Table 2.4.

~ linear splines in space I cubic splines in space ~
discontinuous Galerkin in time dG(q)@Pl dG(q)@C1

continuous Galerkin in time cG(1)@P1 cG(1)@C1

method of lines MoL@P1 MoL@Cl

Table 2.4: Abbreviations for different time-space discretisation.

2.4.1 Linear splines (PI)
Recall the definition of the discrete space S with respect to n given in (2.1) and definition
of basis functions {<pdi=o from Subsection 2.1.1. Thereafter, one may introduce the stiffness
matrix

B, a (n+ 1) x (n+ 1) matrix with the entries Bk,l :=a(<Pk; <Pi),

and the mass matrix

M, a (n+1) x (n+1) matrix with the entries Mk,l := (<Pk; <Pi).

(2.51)

(2.52)

Note that these matrices are symmetric, tridiagonal and positive definite and therefore invert-
ible.

In Subsection 2.1.1 we restricted the number of the basic functions <Pl(X) with respect to
spatial boundary conditions i.e. Dirichlet boundary condition in x = o. Therefore, we left
out the definition of <Po. Here however, we consider rather the general formulation where
the Dirichlet boundary conditions are not embedded in the definition and dimension of the
vector formulations of the discrete functions as well as of the stiffness and mass matrices. The
incorporation of the Dirichlet boundary conditions follows afterwards and will be explained
in detail in Subsection 6.1.3.

In the following, we introduce a vector notation needed for the definition of the vector variant
of the discrete function. Its structure depends on the time discretisation. Recall the defini-
tions of discrete functions from Tables 2.1- 2.3, case linear splines in space.

•
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•

For each j = 1, ... , N or tE [0,T] we may define UJi and lU(t), respectively, such that their
structure for particular time discretisation method corresponds to the one from Table 2.5.

dG(O),cG(l) UJi '- [~ ] 1U{12:= (U6,112' ... , U~,112f.-

[~,o]
dG(l) UJi '-

1U{,1
1Œ,011 '_ (Ui,o Ui,O)T.- ~,o 112 .- 0,1' ... , n,l

~,l

MoL lU(t) .= [ lUI (t) ] lUll2 (t):= (Uo,112(t), ... , Un,112(t)f. lU2 (t)

Table 2.5: Vector notation with respect to PI space discretisation and different time approx-
imation. Here Ut,l = ut (Xk) and ut:~l~= Ufl~ll(Xk) for each k = 0, ... , n. Moreover, for cG(l)

in time, UL'2 =UlI2(ti, Xk).

In the following we apply the particular time discretisation and deduce the resulting theorem
for each case.

2.4.1.1 Existence and uniquence, dG(q)(g)Pt, q = 0,1

For the understanding ofthe analysis below, recall the notation and definitions from Subsection
2.3.3 and Subsection 2.1.1 where dG(q) method and linear splines are introduced.

Theorem 2.4.1.1 (Existence of dG(q)@P1 discrete solution, q=O, 1). There exists a
unique function UE Qq such that U solves the weak problem (2.5), where B,.2 take the form
of (2.18) and (2.19), respectively.

Proof. In the following, we provide only the proof for the case q = 1. The case q = 0 can be
shown easily by using similar arguments.
From (2.18) and (2.19), for Ui E Qi, a discrete solution of the reduced weak form (2.6) and
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arbitrary test function vj E Q{, a weak problem (2.6) reads

n n~I" Uj,l(v:j,O+ t-tj-lv:j,l)a('" . 4> )dt+~1 " Uj,l(v:j,O+ t-tj-lv:j,l)(", . '" )dtk. ~ k,l i,l k. i,l 'Pk, i k. ~ k,2 i,2 k. i,2 'Pk,<pi
J Ij k,i=O J J Ij k,i=O J

n_I "(Uj,o + t-tj_l Uj,l) (v:j,o + t-tj-l v:j,l)a( 4>k;4>i)dt~ k,2 k. k,2 i,l k. i,l
Ij k,i=O J J

n
+1 "(Uj,o + t-tj_l Uj,l) (v:j,o + t-tj-l v:j,l)a(4) . '" )dt

~ k,l k. k,l i,2 k. i,2 k, 'Pi
Ij k,i=O J J

n
+cl "(Uj,o + t-tj_l Uj,l)(v:j,O + t-tj_l v:j,l)a(4)k' 4>i)dt~ k,2 k. k,2 i,2 k. i,2 ,

Ij k,i=O J J

n n

+ L ut:~V!.i°a(4)k; 4>i)+ L Ut:~V/,20(4)k; 4>i)
k~~ k~~

n

=1 L(V/'20 + t-:~-l V/,2l)(J; 4>i)dt
Ij i=O J

n

+" ((uj-l,O+uj-l,l)v:j,Oa('" . '" )+(Uj-l,O+Uj-l,l)v:j,O(", . '" ))
~ k,l kl i,l 'Pk, 'Pi k,2 k,2 i,2 'Pk, 'Pi .
k,i=O

(2.53)

•
Note that for j = 1, Uj-l,o + Uj-l,l = IIuo. Here we added the zero components, i.e. compo-
nents of the discrete functions U, V whose indices correspond to the indices of the Dirichlet
nodes.

In order to prove uniquence let f 0, Uj-l 0 and vj = Uj. Recall the vector notation from
Table 2.5. Hence, the equation (2.53) simplifies to

Since S is symmetric, we have E3 + E4 = O. Also E5 2:: 0 because of c 2:: O.
It is left to estimate El, E2, E6, E7' Let

From the main theorem of calculus we have
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The same holds for E2 + E7 by use of the function h(t) instead of g(t). This implies 0 =
2:;=1 Ei ~ 0 which is valid only if 1rP - O. This concludes the proof. 0

2.4.1.2 Existence and uniquence, cG(I)@P1

In case of the cG(I) time discretisation and linear splines in space, recall the notation and
definitions from Subsection 2.3.4 and Subsection 2.1.1 where cG(I) method and linear splines
are introduced. There holds the following theorem.

Theorem 2.4.1.2 (Existence of cG(l)@1'l discrete solution). There is a unique fun-
ction U E Qc which solves the weak problem (2.5), where ß, Z take the form as in (2.41) and
(2.42), respectively.

Proof. Due to the definition of the test space Wc, we choose V E Wc to be constant on each
time interval Ii, i.e. VI1j(t,x) = Vi(x) = 2:;=0 VI(h(x), where vi = (V/'l' V/'2) E ~2. Note
that here as in the Subsection 2.4.1.1, we add the zero components which correspond to the
Dirichlet boundary conditions. For U E Qc and V as above, the weak problem (2.6) simplifies
to

(2.54)

Note that the initial condition reads U(O) = IIuo. It suffices to show that for each j = 1, ... , N,
the weak solution Ui(t, x) of the homogeneous equation (2.54) (J 0 and Ui-l = 0), equals
zero. Let also Vi =Ui. Hence, owing to the vector notation from Table 2.5, the homogeneous
equation (2.54) reads

5

O=(lU{)TSlU{+(~)TM~ - i (~fslU{ + i (lU{)Ts~+E:i (~fs~ =:LEi.
i=l

Since S, M are symmetric, we have El, E2 ~ 0 and E3 + E4 = O. Because of E: ~ 0, we also
have E5 ~ O.
This yields 0 =2:~=1Ei ~ 0 which implies 1rP = O. This concludes the proof. 0
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2.4.1.3 Existence and uniquence, MoLfl/Pl

Before we start with a proof of the main theorem, recall the notation and definitions from Sub-
section 2.3.5 and Subsection 2.1.1 where the method of lines and linear splines are introduced.
Thereafter, we derive the following theorem.

Theorem 2.4.1.3 (Existence of M oL@'Pl semi-discrete solution). There exists a
unique function UE Qs which solves the weak problem (2.5), where B,2 take the form as in
(2.49) and (2.50), respectively. This function also satisfies the following initial conditions

(2.55)

defined owing to (1.13b) and the notation from Table 2.5.

Proof. Given the weak problem (2.5), let V := ((h,O) and V := (0, CPt.) for £ E {O, ... , n},
respectively. Then the weak problem (2.5) simplifies to the following two equations

n n

I:Uk,l(t)a(CPk; CPt.)- I:Uk,2(t)a(CPk; CPt.)=0,
k=O k=O

n n n
I:Uk,2(t)(CPk; CPt.)+I:a(cpk; CPt.)+e I:Uk,2(t)a(CPk; CPt.)= (J(t); CPt.),
k=O k=O k=O

where £= 1, ... , n and tE [0,T]. With

F(t) := ((J (t); CPo), ... , (J(t); CPn)) T,

and notation from Table 2.5, (2.56) becomes the linear system of ODE

[SO ] [ UI(t)] [0 - S ] [l[h (t) ] [0]o M U2(t) + S eS 1U2(t) = F(t)

(2.56a)

(2.56b)

(2.57)

which satisfies the initial conditions (2.4.1.3). According to the theory of ordinary differential
equations, there exists a unique vector function 1U(t) defined as in Table 2.5 which solves the
initial value problem stated above. This concludes the proof. 0

Remark 2.4.1.1. The proof of Theorem 2.4.1.3 imposes also the existence of the discrete
solution. In addition to that, it comprises the algorithm for the calculation of the discrete
solution in each time point t E (0, T] which is obvious from (2.57). 0

2.4.2 Hermite cubic splines (Cl)
We proceed in the following by discretising in space by means of the Hermite cubic finite
elements.
Let Sk and Mk denote the 4 x 4 element defined stiffness and mass matrix respectively, defined
for each k = 1, ... , n, where k stands for the number of elements in space.
If CPl, ... , CP4 are the basic functions from (2.3) related to each space interval Tk E 7;, we have

for p,g odd,
for p + 9 odd,
for p, 9 even,

(2.58)
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(2.59)
{

hk/2 I~l <pp<pqd( for p, 9 odd,
Mk,p,q := h%/4 I~l <pp<pqd( for p + 9 odd,

hf/a I~l <pp<pqd( for p, 9 even.

Besides, we will also use the full form of 2(n + 1) x 2(n + 1) block mass and stiffness matrix,
noted as M and B. The structure of both element matrices Bk and Mk is explained in detail
in Section 6.1 where the algorithm for the calculation of FE solution is introduced, cf. (6.6)
and (6.7).
In the following, we introduce the vector notation which depends on time discretisation and
corresponds to the discrete functions from Table 2.1-2.3, case cubic splines in space. On
account to the definition of the cubic splines we first define the local vectors for each Tk space
interval and thus the global (full) vectors related to the whole space domain O.
For each time-space slab Ii xTk where (k, j) E {I, ... , n} x {I, ... , N}, or each t E [0, Tl, these
vectors take form as in Table 2.6.

dG(O), cG(1) V:= [~ ]
1U{,112:. (UL1,.112' DUt~1,112' Ut,112' I?Ut,112)T,

~12 := (UÖ,112'DUÖ,112'... , DU~,112)T

[WO] lOt,Oll (Ui DUi Ui DUi )TlUt,l
dG(1) V:= ~,o

k,112.- k-l,112' k-l,112' k,112' k,112'
1U!,011._ (Ui,oll DUi,oll DUi,oll)T

œ,l 112.- 0,112' 0,112' ... , n,112
2

MoL 1U(t).= [llh (t)] 1Uk,112(t):= (Uk-I,112(t), DUk-l,112(t), Uk,112(t), DUk,112(t))T,
. 1U2 (t) 1U112(t):= (Uo,112(t), DUO,112(t), ... , DUn,112(t))T,

Table 2.6: Full and local vector notation with respect to Cl space discretisation and different
t. . t. H Ui,oll Ui,oll ( ) d DUi,oll DUi,oll ( ) C h k 1lme apprOXlma lOn. ere k,112= 112 Xk an k,112= 112 Xk lor eac =, ... , n.
Moreover, if cG(l) in time, Ut,112:= UlI2(ti, Xk) and DUt,112 =DUlI2(ti, Xk).

We continue by applying the corresponding time discretisation methods to the local k-contribution
ofthe weak problem, cf. Remark 2.3.1.1. Ifwe denote by BiITk=:B~ and 2'iITk=:21, then
there holds

n n

L B~(U, V) = Bi(U, V) = 2i(U, V) = L2'1(U, V) for all j=l, ... , N.
k=l k=l

(2.60)

2.4.2.1 Existence and uniquence, dG(q)0Cl, q=O,1

The related definitions and notation are taken over from Subsection 2.1.2, where cubic splines
are introduced and Subsection 2.3.3 where disountinous Galerkin method for time discretisa-
tion is described.
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Theorem 2.4.2.1 (Existence of dG(q)@C1 discrete solution, q=O, 1). There exists a
unique function U E Qq such that U solves the weak problem (2.5), where where B,2 take
the form as in (2.18) and (2.19), respectively.

Proof. In the proof we restrict to the case q = o. The case q = 1 can be shown by following the
ideas from Subsection 2.4.1.1 where the proof for uniqueness of dG(l)~PI discrete solution is
derived.

The approximated weak problem (?6) <?n kth element Tk of the triangulation 7j can be
rewritten in form of contributions BL 21 such that

Note that for j = 1, Ui-I = IIuo. Given the Galerkin form (2.4), by means of the notation
from Table 2.6 and definitions of Bk and Mk, cf. (2.58) and (2.59), respectively, the weak form
above reads

(2.62)

The structure of the 4 x 1 element forcing vector Fi and the element mass vectors G{ l' G{ 2

is explained in detail in Subsection 6.1.1.2. The corresponding full formulations are als'o give~
there.
From (2.60) and (2.62) by using the full vector and matrix form, we obtain

(2.63)

In order to prove the uniqueness of the discrete solution in each time step, it is sufficient to
show that the weak solution 1[Ji of the homogeneous problem (2.63) (Fi _ 0, 1[Ji-I = 0, and
therefore Gi, G~=0) is 1[Ji - O.
To verify this, let Vi 1[Ji and since M and B are also symmetric matrices, the equation (2.63)
simplifies to

(2.64)

From é 2: 0 and the positive definiteness of B, M, we conclude that the LHS of (2.64) must be
positive. Then the equality (2.64) holds only if 1[Ji = O. This concludes the proof. D

2.4.2.2 Existence and uniquence, cG(l)~Cl

In case of cG(l) time approximation, we refer to the notation and definitions from Subsection
2.3.4. Furthermore, the definition of Cl elements, i.e. Hermite cubic splines, can be found in
Subsection 2.1.2. Thereafter, we derive the following theorem.
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Theorem 2.4.2.2 (Existence of cG(1)@C1 discrete solution). There exists a unique func-
tion UE Qc which solves the weak problem (2.5), where E,.z take the form as in (2.41) and
(2.42), respectively.

Proof. On account to the definition of the test space Wc, we choose a test function V to be
constant in time. Then, on each time-space slab Ij x Tk, where Tk denotes arbitrary element
of the space triangulation '0, there holds

(2.65)

(2.66)

(2.67)

Note that for j = 1, Uj-l = IIuo. By expanding discrete function Uj, vj in terms of basic
functions, see (2.4), and using the notation from Table 2.6, (2.65) can be rewritten such that

. T . kj - . T kj. kj.
(~,l) (Sk~,l - 2Sk~,2)+ (~,2) (2Sk~,1 +(Mk+ê2Sk)~,2)

. . T' . T .=F1 +(~,l) Gl,l + (~,2) Gl,2'

The structure of the 4 x 1 element forcing vector Fi and mass vectors G{,112' which depends
on V-I, is explained in detail in the Subsection 6.1.2.2. The corresponding full formulations
are also given there.
From (2.60) and (2.66), using the full vector and matrix form we obtain

. . k.. - T k-. k-... T' . T .
(V{)T(SU{- ~S~)+(~) (~SlU{+(M+ê ~S)~)=FJ+(V{) G{+(~) G~.

In order to prove the uniqueness of the discrete solution it is sufficient to show that the solution
V of the homogeneous problem (2.67) where Fj _ 0, V-I = 0, and therefore G{, G~ = 0, is
V O.
To verify this, let vj = lIP and since M and S are also symmetric matrices, the equation (2.67)
simplifies to

. T . . T . kj - T . _
(lU{) SlU{ +(~) M~+ê2(~) S~ -O. (2.68)

From ê ~ 0 and positive definiteness of S, M, we conclude that the LHS of (2.68) must be
positive. This holds only if lIP 0 and the proof of theorem follows. 0

2.4.2.3 Existence and uniquence, M oLfi!}C1

Notation and definitions used below are taken over from the Subsection 2.3.5 and Subsection
2.1.2 where the method of lines and the Hermite cubic splines, respectively, are introduced.
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Theorem 2.4.2.3 (Existence of M oL@C1 semi-discrete solution). There exists a uni-
que function U E Qs which solves the weak problem (2.5), where B,.!£ take the form of (2.49)
and (2.50), respectively. This function also satisfies the following initial conditions,

hk/2 J~l Yo4>ld(
h~/4 J~l Yo4>2d(
hk/2 J~l yo4>3d(
h%j4 J~l Y04>4d(

defined owing to (1.13d) and the notation from Table 2.6,

hk/2 J~l YI4>ld(
h%j4 J~l YI4>2d(
hk/2 J~l YI4>3d(
h~/4 J~l YI4>4d(

(2.69)

Proof. From (2.49) the approximated weak form (2.5) on kth element Tk of the triangulation
T can be rewritten in form of contributions such that

r DUI(t)DVtdx+ r U2(t)V2dx- r DU2(t)DVldx
J~ J~ J~

+ r DUI (t)DV2dx+é 1r DU2(t)DV2dx'
JTk Ij JTk

= r f(t)V2dx for all t E [0, T].
JTk

If we set in the equation above a constant function in time V E 5 x 5, by use of (2.4) and
notation from Table 2.6, we obtain for all t E [0, T]

Fk (t) is the 4 x 1 element force function vector defined by

hk/2 J~l f(t)4>1 d(
h~/4 J~l f(t)(/J2 d(
hk/2 J~l f(t)4>3 d(
h%j4J~l f(t)4>4 d(

(2.71)

If we choose a discrete function V such that

then for all k = 1, ... , n, Vk,112 E {el, e2, e3, e4} E ~4. By summing the contributions (2.70)
over k = 1, ... , n we obtain two systems of equations. Namely,

1. for V = (4)p,O), 1 5:: p 5:: 4

n

L Sk1Uk,1 (t) - Sk1Uk,2(t) = 0,
k=l

2. for V = (0, 4>p), 1 5:: p 5:: 4

n n

L Sk1Uk,1 (t) + éSk1Uk,2 (t) + Mk1Uk,2 = LFk(t).
k=l k=l
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Given the global mass and stiffness matrices M, S and similarly defined 2(n+l)xl block vector
F(t), cf. (2.71), two systems above can be written in form of the system of ODEs such that

with the initial condition

lU(O) = [ lU! (0) ]lU2(0) .

(2.72a)

(2.72b)

From the theory of ordinary differential equations, there exists an unique vector function lU(t)
who solves the initial value problem stated above. 0

Remark 2.4.2.1. The proof of Theorem 2.4.2.3 imposes also the existence of the discrete
solution. Above that, it comprises the algorithm for the calculation of the discrete solution in
each time point t E (0, T). This is obvious from (2.72).



Chapter 3

Energy Method

In the following chapter the main focus will be posed on derivation and analysis of a priori
and a posteriori error estimates by using the energy techniques.
The proof of both a priori and a posteriori error bound has the similar structure. Namely,
it is based on the representation of the error in terms of the residual (a posteriori error
analysis) or in terms of the exact solution (a priori error analysis) combined with the Galerkin
orthogonality. It also assumes the usage of some interpolation and projection operators and
appropriate estimates. The following analysis will be conducted for a priori and a posteriori
error bounds separately. We start first by introducing the time discretisation, i.e. Galerkin
discretisation methods (dG (q), q =0, 1, cG (1)) and method of lines and then by coupIing it
with two space ansatz, linear and cubic splines. Thereafter we analyse the error bounds with
respect to the corresponding fully discrete form.
Note that the realization and construction of adaptive refinement strategy is based on a
posteriori error estimates. This will be further emphasised in Chapter 6.4.

u
U
U
e
e
e
B
B
~
Res(v)
Res(v)
II
I
ç
£.
.:J
Dh,m
(- ; .)Y' III . 1111i

exact solution
discrete solution
affine interpolant of the discrete solution U
error, e=u-U
error, ë=u-U
error, ~=u-fj
weak bilinear form
weak bilinear form, dG(O) in time
RHS in the variational formulation
residual, ~(v) =B(u, v)-~(U, v)
residual, Res( v) =B( u, v) - B(U, v)
spatial multi projection
nodal or cubic Hermite interpolation operator
spatial Hl projection, Galerkin projection
spatial L2 projection
temporal projection
discrete variant of Laplace operator
energy scalar product, energy norm

solution of (1.28)
solution of (2.5)
Definition 2.3.3.3
Definition 2.3.2.1
definition (3.89)
definition (3.51)
Subsection 2.3.1
definition (2.20)
Subsection 2.3.1
Definition 2.3.1.2
definition (2.21)
Definition 3.1.0.5
Definition 3.1.0.1, 3.1.0.2
Definition 3.1.0.3
Definition 3.1.0.4
Definition 3.1.0.9
Definition 3.1.0.7
Definition 1.3.0.3

Table 3.1: Notation used in Chapter 3.
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3.1 Preliminaries
Within this section some general remarks concerning the finite element method, interpolation
and projection operators together with appropriate bounds are introduced. We also provide
some basic theory results such are trace theorem and Friedrics and Cauchy inequality. These
theoretical results denote the main tool for the subsequent error analysis and therefore need
to be explained in detail.
We do this by following the definitions of cf. BRENNER-SCOT [15], CIARLET [20], EVANS [27]
as well as by developing some of the ideas which will be referred in particular while introducing
the corellative theorem, lemma or definition.

Definition 3.1.0.1 (Nodal interpolant). Let Sj be the spatial discrete space related to the
time interval Ij E f/, cf. Definition 2.1 which consists of piecewise linear globally continuous
functions. Then for any given function u E C(0), we define nodal interpolant by

n

Tu(x) := L u(Xj)c/>j(x), for all xE 0,
j=o

where (c/>j)~ are the basis functions introduced in Subsection 2.1. D

Definition 3.1.0.2 (Hermite cubic interpolant). The Hermite cubic interpolant to u E
H2(O) is the unique polynomial Tu defined such that for each interval Tk, k = 1, ... , n from
the spatial triangulation 7;, j = 1, ... , N, see Definition 2.0.0.8, Tk := Tb satisfies

(u - TkU)(X«()) = 0, and D(u - TkU)(X«()) = 0 for each X E Tk and ( E {-I, I}. D

Lemma 3.1.0.1 (Friedrichs inequality in ID, AFEM [16, Section 5]). On the bounded
interval 0 = (a, b) for all functions u E HJ (a, b) there holds

b-a
IluIIL2(a,b) ::; --lluIIHl(a,b)'

7r

Moreover, if u E Hl(a, b) vanishes somewhere on the compact interval [a, b], then

IluIIL2(a,b) ::; _2(_b_-_a_) IluIlHl(a,b)'
7r

Lemma 3.1.0.2 (Approximation properties of Nodal Interpolation). Given u E H1(O)
and its nodal interpolant Tu, there holds

Moreover, if UEH2(O) then additionally holds

Ilu- TuIlL2(rl) ::; ~ IIh2 ßuIlL2(rl)'

I
IID(u-Tu)IIL2(rl) ::; J2llhßull£2(rl)'

(3.la)

(3.lb)

(3.lc)



3.1. PRELIMINARIES 63

Proof. We provide only the proof for the first estimate (3.1a) is provided. For the other two
estimates we refer to AFEM [16, Theorem 2.4].

Let us assume that there exists a constant C such that

(3.2)

The idea is to find an optimal one for the case 0 = (0,1). The Friedrichs inequality, restricted
to the interval Tk yields for some u E H1(O)

(3.3)

Here we used the fact that u and I coincide in each hk, k = 1, ... , n.
Owing to the properties of discrete functions we have that a( u - I u; I u) =O. This implies

Ilu-Iulltl(Tk) = Ilulltl(Tk) -IIIulltl(Tk)'

From (3.3) and (3.4) there holds for each Tk

hk
Ilu-IuIIL2(Tk) ~ -lluIIHl(Tk)'n

The last inequality is equivalent to

(3.4)

1
Ilu-IuIIL2(!1) ~ -llhuIIHl(!1)'n

According to (3.2), we have that C ~ l/n.
Notice that the equality is satisfied with the function u(x) = sin(xn/h) where h is the uniform
space step. This proves that the constant C = 1/ n is optimal. 0

Lemma 3.1.0.3 (Trace Identity in ID, AFEM [16, Chapter II, Claim 3.1.1]). For some
function u E HI (a, b), the following estimate holds

max lu(x)1 ~ (b - a)-I/2I1ull£2(ab) + (b - a)I/21IDuIIL2(ab)'
a~x~b ' ,

Lemma 3.1.0.4 (Inverse estimate, CIARLET [20, pp. 142]). Let Sc H1(O) be a finite
element space and h the step size with respect to triangulation of the domain O. Then there
exists a positive constant Cinv, such that for all U E 5,

(3.5)

Lemma 3.1.0.5 (ODEN-REDDY [57, Theorem 6.8, Section 8.5]). Given u E H4(O) on
some bounded interval 0 and its Hermite cubic interpolation operator I from Definition
3.1.0.2, there exists a constant C independent of u and h such that for all 0 ~ m ~ 4 there
holds

(3.6a)

Moreover, if u is not smooth enough e.g. uEHrO for r<4, then

(3.6b)

where O~m~r.
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Remark 3.1.0.2. For interpolation operator I, there hold the local interpolation estimates.
Namely, for each element Tk from the arbitrary triangulation of the spatial domain 0 there
exists a constant e such that for all functions u E HP+! (Tk)

where p is the polynomial order of the discrete functions, i.e. p= 1 for linear splines and p=3
for cubic Hermite splines. For details, see CIARLET [20, THEOREM 3.1.6]. D

Definition 3.1.0.3 (Galerkin projection). We consider Q to be a Galerkin (elliptic) pro-
jection operator onto the space of discrete functions in space. Then for each Ii element
of triangulation !Y from Definition 2.0.0.8 and corresponding discrete space Si, see (2.1),
Q!Ij : Hb(O) --+ Si is defined by

a(Qu; v) = a(u; v) for all v E Si and j = 1 ... , N. D

Lemma 3.1.0.6 (HACKBUSCH [35, Theorem 8.5.1, Remark 8.5.2]). There exists a con-
stant e independent of u and h such for Q, Galerkin projection from Definition 3.1.0.3 and
all u E Hb(O) nHS(O), 0:::;r:::; 1:::;s:::;p + 1 there holds

where p= 1 in case of pI elements and p=3 for Cl elements in space.

Remark 3.1.0.3. Let Th be an arbitrary triangulation of 0 = [0, 1] C R with a step size h.
In ID, the Galerkin projection Q and the nodal interpolation operator I coincide, since there
holds the Galerkin orthogonality for I, i.e.

a(u-Iu; v)= LD(u-Iu)Dvdx=Dv LD(u-Iu)dx=O for all VEScPI(Th)nC(O),

i.e. Q =I by uniqueness of the orthogonal projection. _
The idea is to show that the nodal interpolation operator is not continuous with respect to
the L2 norm, i.e.

\le > 0, :lu E Hb(O)

We argue by contradiction and assume

(3.7)

In the following we introduce the counter example which contradicts (3.8).
Let Th be a uniform triangulation of interval 0 with the step size h and let the function u(x)
be defined by

u(x) ..= (~h (x - (2k -2 1)h))2n--- for all (k -l)h:::; x:::; kh, k=l, ... ,n, n=l/h.



3.1. PRELIMINARIES 65

It is clear that u(x) E Hb(O) with rD = {O}. Note that the case rD = r can be analysed
using the similar arguments and is therefore omitted in the following.
From the definition of the nodal interpolation we have

(lh (X) 2 11 ) 1/2 ( 2h) 1/2 ( 2 ) 1/2 --+IIIuIIL2(O)= 0 h dx+ h 1dx = 1- 3" = 1- 3n ~ 1.

On the other hand, for IluIIL2(O) we have

(3.9)

This shows that the assertion (3.7) is valid. o

Definition 3.1.0.4 (L2 spatial projection). Let L be the £2 projection onto the space of
the spatial discrete functions with respect to domain O. Then for each Ii E !Y, cf. Definition
2.0.0.8 and corresponding discrete space Si, cf. (2.1), the restriction of the projection Lllj :

£2(0) -+ Si is defined for each U E £2(0) by the relation

(LU; v) = (u; v) for all v E Si.

Moreover, for Si consisting OfPl functions, the projection L of an arbitrary function U E £2(0)
can be seen as

n

LU(X) := LUk<Pk(X) where (uo, ... , un) := ((U; <Po), ... , (u; <Pn»M-l E Rn+1.

k=O

For Cl functions, we define the projection only interval wise, i.e. for each Tk E '0

Uk := ~k (I: U<Pld(, ~k I: U<P2d(, I: U<P3d(, ~k I: U<P4d() M;l E R4
•

Note that M and Mk are mass matrices for linear and cubic space ansatz, defined in (2.52)
and (2.59) respectively. 0

Lemma 3.1.0.7 (Approximation properties of L2 spatial projection). Given
U E Hb(O) n HS(O) and projection L, cf. Definition 3.1.0.4, there exists a constant C inde-
pendent of U and h such that for 0 ~ s ~ p + 1 there holds

where p = 1 in case of pI elements and p = 3 for Cl elements in space.
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Proof. The inequality is obvious due to the properties of £2 projection. Namely,

for L nodal or Hermite cubic interpolant, respectively. Then, if we recall the Lemma 3.1.0.2
and Lemma 3.1.0.5, we may conclude the proof. 0

Lemma 3.1.0.8 (HI stability of projection £). Let £ be the spatial projection from
Definition 3.1.0.4. Then, there exists a constant C independent of u and h such that for
all u E H1(n) there holds

Proof. We refer to CROUZEIX-THOMÉE[22, Theorem 2], where the case of (DD) boundary
conditions has been considered and note that the similar result can be obtained for (DN)
boundary conditions. See also CARSTENSEN[17]. 0

Definition 3.1.0.5 (Spatial multi projection). Let II be a spatial multi projection onto
the product of two spatial discrete spaces, such that for each interval Ii E !!7, cf. Definition
2.0.0.8, and correponding spatial discrete space Si, see (2.1) there holds

IIIIj : 1i ~ Si xSi,

where 1i is the Hilbert space introduced in (1.16). o

Lemma 3.1.0.9. If Kh is the discrete operator from Definition 2.3.3.4 and g, I:, are the spatial
Galerkin projection and £2 projection defined in Definitions 3.1.0.3 and 3.1.0.7, respectively,
then there holds for all u E çg(Kï;l),

-(£ßu;v)=(Kï;lgu;V) for all VES,

where S is the spatial discrete space.
Moreover, there also holds

-(I:,ßu;v)=(Kï;lu;v) forall vES.

(3.lla)

(3.llb)

Proof. Recall the orthogonality properties ofprojections g, £, see Lemma 3.1.0.3 and Lemma
3.1.0.4, respectively. Thereafter we have for all v E S

-(I:,ßu; v) = -(ßu; v) = a(u; v) = a(gu; v) = (Kï;lgu; v).

The proof of (3.llb) is then obvious. o

Remark 3.1.0.4. In case of the dG(q), q=O, 1 and cG(l) time discretisation we may choose
to work with the spatial meshes which change between neighbouring time slabs. Therefore, we
have to take into account that the definition of the certain operators which map is contained
in the spatial discrete space S, must be somehow restricted to the time slab. Namely by the
definition of the discrete operator Kh, we have to differentiate between Kt and Kt-1 in case
when Si-1 #Si. Same holds for spatial projections 1:" g and interpolant L. 0
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Definition 3.1.0.6 (Jumps in space). Let U be an arbitrary piecewise affine, globally con-
tinuous function with respect to the spatial domain n and triangulation T, cf. Definition
2.0.0.8. Then [DU]k can be seen as the jump in the first derivative with respect to node Xk
such that

(3.12)

where m =n-1 for (DD) boundary conditions. Additionally, if the initial problem satisfies
the (DN) boundary conditions, then m=n and [DU]n:= -DU(l). 0

Definition 3.1.0.7. For all v E 5, where S is discrete space with respect to domain n with
a basis which consists of PI conform elements and the step size h, cf. Definition 2.0.0.8, let
Dh,l denote a discrete counterpart of Ilhf~vll£2(n) such that

m 1/2
Dh,f(V):= (I)hk)f([Dv]k)2) for £=1,2,

k=l

where m=n for (DN) boundary conditions and m=n-1 for (DD) boundary conditions. The
jump terms ([DV]k)k=1 are defined according to Definition 3.1.0.6. 0

Lemma 3.1.0.10. For Dh,f from Definition 3.1.0.7 and u E H1(n) nHf(n), £ = 1,2, there
holds

for all v E S. (3.13)

Proof. An integration by parts in space and the fact that u-£u E H1(n) yields

m

a(v; u- LU) = -(~v; u- LU) - L[Dv]k(U- £U)(Xk),
k=l

(3.14)

where m=n for (DN) and m=n - 1 for (DD) boundary conditions. Obviously, from the fact
that v is pI function, we have ~v =0. Then, the RHS of the equation (3.14) can be estimated
by means of the trace inequality such that

m

a(v; u-£u) ~ - L[Dv]k(h;I/21Iu-£uIIL2(Tk)+hk/2I1u-£uIIHl(Tk)).
k=l

Furthermore, owing to the approximation properties of the projection £, see Lemma 3.1.0.7
and the HI stability of the same, see Lemma 3.1.0.8, we have by applying the discrete Cauchy
inequality

m m

a(v; u- LU) ~ C L[Dv]khk2f-I)/21IDfUIIL2(Tk) ~ c( L(hk)2f-I([Dv]k)2)1/21IDfuIIL2(n).
k=l k=l

From the Definition of the discrete Laplace operator Dh,2f-l, cf. Definition 3.1.0.7, we conclude
the proof. 0
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Definition 3.1.0.8 (Integral mean). For some u E£2 (S-), where S- is some arbitrary tri-
angulation of the interval [0, Tl, we define the piecewise constant integral mean of the function
u by it such that

itlIj :=[ u(t)dt for each Ij E S-.
I.J

o

(3.15)

Definition 3.1.0.9 (Temporal projection). Let.:J be the projection operator on the space
of the piecewise polynomials Pq(S-), 0::; q::; 1 with respect to the arbitrary triangulation S-
of interval [0,Tl, cf. Definition 2.0.0.8, defined for each time interval Ij E g by

j(.:JU-U)Vdt=O for all V E Po(Ij).
]

We define .:J only for when the time is approximated by the Galerkin discretisation method .

cG(1), .dG(O) .:JIIj :£2(Ij) -+ Po(Ij) .:JIIjU:= h. u(t)dt,
]

dG(1)a .:Ju(t) :=u(tj_d+2(t-tj-d/kJ JI'u(S) -u(tj_I)ds
.:J: £2(Ij) -+ Pl (Ij),

]

dG(1)b .:Ju(t) :=U(tj)+2(tj-t)/kJ JI.u(s)-u(tj)ds.
]

Obviously, in case of the dG(1) time approximation, for dG(1)a variant of the operator .:J we
have (.:Ju)j -1+ =uj -1+. Similarly, in case of dG (1)b there holds (.:Ju )j - =uj - . 0

Remark 3.1.0.5. The projection operator .:J in case of dG(O) time approximation is orthog-
onal £2 projection. 0

Lemma 3.1.0.11 (Approximation properties of temporal projection 3). For projec-
tion .:J from the Definition 3.1.0.9 and all u E Hl(Ij) where i= 1 in case of cG(1) and dG(O)
and .e = 2 in case of dG(1) approximation in time, there is a constant C independent of the e
triangulation g such that there holds

Moreover, there also holds

lIu-.:Jullil(o,T) ::; Clle~:ullil(O,T)' 1::; s ::; i,

Ilu-.:Julli2(O,T) ::; CllkS~: ulli2(O,T)' 1::; s ::; i.

(3.16a)

(3.16b)

(3.16c)

Proof (sketch). Follows from the Taylor expansions of the function u, where for each Ij E g
we have

u(t) =u(tj-I)+ r ü(r)dr.JI.
]
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Then for each t E Ij,

u(t) -.Ju(t) =1 (k2~(tj-t)(s-tj_d -X[t,tj])ü(s)ds
Ij J

69

(3.17)

where X[t,tn] is the characteristic function of interval [t, tn]. The representation (3.17) is used
for the estimate when s = 1. For s = 2, we make use of the equivalent representation

u(t) -.J u(t) =1(s-t)X[t,tj] - k\ (tj -t)(S-tj_l)2 )ü(s)ds.
~ J

(3.18)
o

•
Remark 3.1.0.6. Note that the projection .J from Definition 3.1.0.9 is continuous only with
respect to £C1O norm. This follows from the estimate (3.16c). 0

Definition 3.1.0.10 (HI time projection). Let .JI denote the operator of the temporal
HI projection on the space of the piecewise polynomials Pq(!Y), q ~ 1 with respect to trian-
gulation !Y defined by

fT 8 ( ) 8Jo at .JlU-U 8tVdt=0 forall VEPq(!Y),

with the initial condition .JlU(O) =u(O).
Note that by taking V=t in (3.19) for O~t~tj and V=tj for t>tj, we conclude that

.JlU(tj) =u(tj) for all 1 ~ j ~N.

(3.19)

o

•

Lemma 3.1.0.12 (Approximation properties of HI temporal projection). Let.Jl be
the projection from th.e Definition 3.1.0.10. For all u E H8(0, T) there is a constant C inde-
pendent of the time interval such that there holds for all 0 ~ r ~ 1~ s ~ q + 1,

Proof. For the proof we recall the proof of Lemma 3.1.0.6 where the approximation properties
of Galerkin, i.e. spatial HI projection are proven. In particular, if q= 1, then .JI can be seen as
the nodal interpolant in time defined as in the Definition 3.1.0.1 for which the approximation
properties from Lemma 3.1.0.2 hold. 0

3.2 A priori energy error estimate
In the following we present and analyse the methods for the determination of the a priori
error bound TJa for the error of the fully (time-space) discrete problem. The error bound
TJa:= TJa(u, h, k) is a quantity depending on the mesh data h, k and exact solution u together
with its derivatives.
An overview concerning the accuracy order of developed estimates with respect to time and
space discretisation is presented in Table 3.2.
To ensure that TJa can be taken as an optimal or quasi-optimal bound, we also present the
results of some simple numerical experiments, see Figure 3.1-3.3. We plot the error in the
energy norm for different choice of hand k. Obviously, the dG(O) method provides the
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dG(O) O(h+k-I/2h+k) O(h3+k-I/2h3+k)
Subsection 3.2.1.1

dG(l) - -
Subsection 3.2.1.2

cG(l) - O(h3+k2), £=0
Subsection 3.2.2 h-quasi uniform spatial mesh

MoL O(h3), £=0 or (DD)-
Subsection 3.2.3 h-quasi uniform spatial mesh

Table 3.2: Proven a priori error estimates for IlellvX>(ll) in case of dG(O) and MoL and
maxtjE9IJ1e(tj)lllll in case of cG(I)j energy method. •

optimal result when expected convergence rate in time is considered, i.e. O(k). For the
space discretisation we have the nearly optimal result O(hP+k-I/2hP) where p= 1,3 for PI, Cl
elements respectively, see Figure 3.1. The expected order of accuracy in space is O(hP). In
case of the dG(I) method in time we did not succeed to derive any a priori estimate by using
the avaliable techniques. This is still an open question and discussion is provided in Subsection
3.2.1.2. Also for cG(I) in time and PI in space, a lack of continuity in the first derivative
caused that the derivation of the a priori error estimate can not be completed. On the other
hand, under certain requirements concerning the choice of parameter é, for Cl elements in

.0'.0'

.0'

10'

g
..:,.
~

10.1

10"

10"
,,/ 10' .0'

•

Figure 3.1: Convergence of IlellvX>(ll)for dG(0)0PI (left) and dG(0)0CI (right) with respect
to the number of elements in space; The a priori error bound TJa = O(hP + k-I/2hP +k) is
suboptimal for both p = 1,3. Namely for p = 1 and h = k, the exact error is of order O(h)
whereby TJa = O(hI/2). For Cl elements and k = h2 we have the best convergence order
TJa =O(h2), but stillllell£,Xl(ll)=O(h3). On the other hand, a duality approach, cf. Subsection
4.2.1.1, provides a bound with an optimal convergence order, i.e. O(hP + k); Example 6.2.5,
é=O, (DN), T= 1.
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space, the optimal results in time and space are obtained, see Figure 3.2. When the method

10'

•

10'"

10"

10'
number of elemenlS In space

10'

Figure 3.2: Convergence of maxtE$llle(tj)lllll for cG(l) ~CI with respect to the number of
elements in space; The optimal convergence order of the a priori error estimate 1}a = O(h3+k2)

with respect to the step size h, i.e. O(h3) is achieved already by k=h3/2; Example 6.2.5, é=O,
(DN), T=1.

of lines is considered, the same problems occur when 'PI discretisation in space is applied, as
it was the case in cG(l)~'P1 discretisation. For Cl elements, the optimal order of accuracy
is obtained under weaker requirements than the cG(l) time approximation allowed. For an

.example, see Figure 3.3.
Note that improved results are obtained by a different analytical technique, namely by a
duality approach, cf. Section 4.2.

10"

10'
number of elemenlS In space

10'

Figure 3.3: Convergence of Ilellv)c'(ll)for M OL~CI with respect to the number of elements in
space; The approximated error bound 1}a =O(h3) is optimal for arbitrary choice of k; Example
6.2.5, é=O, (DN), T=1.
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3.2.1 dG(q) time approximation, q=O,l
Recall the notation and definitions related to the discontinuous Galerkin method in time,
introduced in Subsection 2.3.3 as well as Section 2.1, where the particular space discretisation
methods are introduced, namely linear (PI) and cubic (Cl) elements.

Lemma 3.2.1.1 (Error representation, dG(q) time approximation). In case of dG(q)
time discretisation, for every V E Qq the following identity is valid

N N

~llleN-III~+êlle2~i2(Hl)~ ~llleO-III~+~~ Ill(e- V);-1+III~+~ 1. (er; e- V)lldt
)=1 )=1 ~

N N

- LI a(e2;e1- Vddt+ LI a(e1;e2- V2)dt
;=1 ~ ;=1 ~

N

+ê L 1a(e2;e2- V2)dt. (3.20)
;=1 Ij •

Remark 3.2.1.1. The error representation (3.20) is also valid for each 1~ n ~ N with respect
to triangulation !Y, due to the local representation of weak problem, see Remark 2.3.1.1. 0

Proof. Since e is discontinuous as a function of time, we derive from Lemma 2.3.3.3 that

(3.21)

With the definition (2.18) of the bilinear form B and the Galerkin orthogonality (2.9), there
holds, for all V E Qq,

N N N

LI (er; e)lldt= LI (er; e- V)lldt+ LI (er; V)lldt
;=1 Ij ;=1 Ij ;=1 Ij

N N

=L 1(er; e- V)lldt+ LI a(e2;Vddt
;=1 Ij ;=1 Ij

N N N

-LI a(e2;Vt)dt-ê L 1a(e2;V2)dt- L([ep-1; V;-1+)ll'
;=1 Ij ;=1 Ij ;=1

The combination of the last equality and identity (3.21) shows
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With Lemma 2.3.3.3 the last jump contribution from (3.22) reads

73

•

N N N

- L([ep-l ;ej-1+)1i=~ L Illej-1+III~_~III[eP-llll~+~ L Illej-l-III~. (3.23)
j=l j=l j=l

For the first jump contribution in (3.22), the Cauchy inequality yields

N NL ([ep-l; (e- V)j-1+)1i ::; L 111[ep-llll1illl(e-V)j-1+III1i
j=l j=l

N N::;~L lII[ep-llll~+~ L 111(e-V)j-1+III~. (3.24)2 . .
)=1 )=1 .

With (3.23)-(3.24), the equation (3.22) is equivalent to

N N

~lIleN-III~+élle21Ii2(Hl)::; ~11Ie°-III~+~L lII(e- V)j-1+III~+ Li.(eT; e- V)1idt
j=l j=l ~

N N- f;:1;a(e2; e1- Vj)dt+ f;:la(ej +£e2; e2~ Y,)dt. (3.25)

This completes the proof of lemma. o

In the following the time approximation methods, in this case dG(O) and dG(l) method,
have to be analysed separately. The space approximation assumes the use of linear (PI) and
Hermite cubic splines (Cl).

3.2.1.1 dG(O) time approximation

Theorem 3.2.1.1 (A priori energy error estimate, dG(O) time approximation). There
exists a constant C, which is independent of u and its dG(O) approximant, such that

IlelluX>(1i)::;C{ Ilkülllv>O(Hl)+ Ilkü21Iu"'(£2)+ IIhPDP+1yo 11£2(r!)+ ~hP+1DP+1ylll£2(r!)
N 1/2 N 1/2

+ (L IIhPDP+1Ul (tj) Ili2(r!)) + (L IlhP+1DP+1u2(tj) Ili2(r!))
j=l j=l

+ IlkßÜlll£l(£2) + IIhPDP+1U2 II£I (L2) + IlkÜ21I£l(Hl)+ J€llkü21IL2(Hl)

+J€llhP DP+1U21IL2(£2)+J€llkßÜ21IL2(L2)}, (3.26)

provided that uEHP+1(n? Here p=l when PI and p=3 when Cl ansatz in space is applied.
The last term on the RHS of (3.26) does not appear if the initial problem satisfies the (DD)
boundary conditions.

Remark 3.2.1.2. Note that the estimate of Theorem 3.2.1.1is of order O(hP+ k-l/2hP+k).D
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Proof. In case of dG(O) time approximation the third term on the RHS of the error repre-
sentation (3.20) can be rewritten as

Inserting (3.27) into (3.20), we estimate the energy error and dissipative term as follows

N N

~llleN-III~+élle21Ii2(Hl):::; ~11Ie°-III~+~L lII(e- V)j-III~- L!a(e2; el- Vt)dt
j=l j=l ~

N N 5

+L !a( el; e2 - V2)dt+é L!a( e2; e2 - V2)dt =:LEl,
j=l Ii j=l Ii l=l

(3.28) •
The idea in the following is to estimate the contributions El", . ,E5 on the RHS of (3.28)
with respect to Ilelllu>C'(Hl),Ile21Iv"'(L2),JElle211L2(Hl)and some terms which are priori known.
This is done in several steps formulated as Lemmas. Before we skip to the proof of the same,
we define a test function V by

(3.29)

This choice of V applies to the rest of the proof. We also use p = 1 for pI and p = 3 for Cl
elements in space in the following analysis.

Lemma 3.2.1.2. Let the discrete initial data be defined such that

(3.30)

for the interpolation operator T corresponding to the space discretisation ansatz and Uo =
(Yo, Yd the initial solution, then there exists a constant C such that

Proof. The approximation properties of the interpolant T given in Lemma 3.1.0.2 and 3.1.0.5
for PI and Cl elements in space, respectively, imply

1 12 1 2El = "2IIYo-Tyo IHl(O)+"2IIYI -TYIIIL2(O)

:::;C{llhPDP+1Yolli2(o) + IIhP+1 DP+1Yllli2(O)}'

Lemma 3.2.1.3. There is a constant C such that

N N

E2::; C {L IIhP DP+1UI(tj)lli2(O) +L IlhP+1DP+1u2(tj)lIi2(O)}'
j=l j=l

o



3.2. A PRIORI ENERGY ERROR ESTIMATE 75

o

Proof. Owing to the approximation properties from Lemmas 3.1.0.6 and 3.1.0.7 there holds
N

E2= ~L 111(e-IIe)j-lII~
j=l

1~ ._ 2 1~ ._ 2= 2"L)I(el-ged3 1IHl(0)+2" L)I(e2-ge2)1 IIL2(0)
j=l j=l

N N

:::;c{ L IIhPDP+1Ul(tj)lli2(0)+ L IlhP+1DP+1U2(tj)lli2(0)}.
j=l j=l

This concludes the proof.

Lemma 3.2.1.4. For E3 there is a constant C such that

E3 :::;Ilk~ulIlLi(£2) Ile21Iu>C>(L2)+ Ilku21lL2(Hl )€lle2(t) 11£2(Hl)
+ IIk~ u211£2(£2)€IIe2 (t) IIL2(Hl ) + C IIhPDP+1U211Li (L2) Ilelll L""(HI ). (3.31)

• The second and the third term on the RHS of (3.31) does not appear in case of the (DD)
boundary conditions.

Proof. In order to simplify the estimation, we decompose E3 such that
N N

E3 =- LI a(e2; el -e{-)dt- LI a(e2; e{- -ge{-)dt. (3.32)
j=l Ij j=l Ij

The first term on the RHS of (3.32) is independent of the choice of the multi projection II.
Since for all tElj, el(t)-e{-=u(t)-u(tj), an integration by parts in space yields

N N N-LI. a(e2; el -e{-)dt =?= 1.(e2; ~(Ul -Ul (tj)))dt- ?= 1.e2(t, l)D(Ul(t, 1) -Ul(tj, l))dt,
j=l I] 3=1 I] 3=1 I]

(3.33)

where the second term on the RHS of the equation above equals zero in case of the (DD)
boundary conditions.
On account of the properties of dG(O) functions, the following identity is valid

e(s)=ei-+ jt
j

er(T)dT=ei-+ jt
j

u(t)dt for all SElj. (3.34)

Thereafter, we may easily conclude that

11~(el-e{-)IILi(Ij;L2(O)) :::;lltj II~ul(t)lldt:::;kjll~ulIILl(Ij;L2(O)). (3.35)
Ij S

From (3.35) the first term on the RHS of (3.33) can be estimated by
N NLI (e2; ß(el-e{-))dt:::; L llle21IL2(0)IIß(el-e{-)IIL2(0)

j=l Ij j=l Ij
N

:::;Ile211L'Xl(£2)L lIIß(el-e{-)IIL2(0)
j=l Ij

:::;Ile21ILoo(L2)llkßulIILi(L2). (3.36)
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In case of the of (DN) boundary conditions, the equation (1.13c) allows us to reformulate the
second term on the RHS of (3.33) such that

N N-~l e,(t, 1)D(u](t, 1)-u](tj, 1))dt= ~ l ",,(t, 1)D(u,(t, 1) -u,(t;.1))dt (3.37)

where from e2(t, 0) =0

(3.38)

An application of the trace inequality with respect to the whole interval n= (0,1), see Lemma
3.1.0.3 and identity (3.34), which is also valid for U2 instead of e, leads to

D( U2(t, 1) - U2(tj, 1)) :::;Ilu2(t) -U2( tj) IIHl(O) + IIß( U2(t) -U2(tj)) IIL2(0)

:::;k;/21Iù2(t) 11£2(1j;Hl(O)) +k;/2I1ßù2( t) IIL2(Ij;£2(0))'

With (3.38) and (3.39), the RHS of (3.37) can be estimated by

(3.39) e

N N

- L 1e2(t, l)D( Ul(t, 1) -Ul (tj, 1))dt:::; cLk;/2 (1Iù2(t) 11£2(Ij;Hl(O)) + IIßÙ2(t)II£2(1j;£2(0))) llle2(t) IIHl(o)
j=l Ij j=l Ij

N

:::;cLkj (lIù2(t) IIL2(Ij;Hl(0)) + IIßÙ2(t) IIL2(1j;£2(0))) Ile211£2(1j;Hl(0)).
j=l

:::; (lIkù211£2(Hl) + IlkßÙ211£2(L2))clle2(t) i1L2(Hl) (3.40)

where we have used a discrete Cauchy inequality in the last estimate.
From (3.36) and (3.40) we obtain

N

- L la(e2; el-e{-)dt:::; IlkßÙl II£I (£2) lIe21ILoo(L2)
j=l Ij

+ (1Ikù211£2(Hl) + IIkßù21IL2(L2))clle2(t) 11£2(Hl). (3.41) •
This completes the estimation of the first term on the RHS of (3.32).
On account of the properties of the Galerkin projection, cf. Lemma 3.1.0.6, the second term
from (3.32) can be estimated by

N N-~ 1;a(e,; e{- - 9e{-)dt=- ~ 1;a(e, - ge,; e{-)dt:S CIhPDPHU,IL'(L') lleliL-(H'). (3.42)

The combination of (3.41) and (3.42) concludes the proof.

Lemma 3.2.1.5. There exists a constant C such that

o
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Proof. We start from the following decomposition

The first term on the RHS of (3.43) can be estimated such that

N

Lj a( el; e2- Qe2)dt::; CllhP DP+1U21I£l(£2) Ilelllv"'(Hl).
j=l Ij

In case of the second term, from the identity (3.34) applied for U2, there holds

N N

L j a(el; Qe2-Qe~-)dt::; Ilelllv"'(Hl) L Ilu2-U2(tj)II£l(Ij;Hl(S1))
j=l Ij j=l

::; Ilkù21I£l(Hl) IlellluXl(Hl).

The latter estimations combined with (3.43) complete the proof.

Lemma 3.2.1.6. For E5 there holds

where C is some positive constant.

Proof. We start from

Arguing as in E4 for the first term on the RHS of (3.46), we obtain

N

éL j a(e2; e2-Qe2)dt::; CéllhPDP+1U21IL2(£2)Ile211£2(Hl).
j=l Ij

By use of (3.34), there holds

N

éLj a(e2; Qe2-Q~-)dt::;éllkù211£2(Hl)lle21IL2(Hl).
j=l Ij

A substitution of the last two estimates in (3.46) yields the proof.

We continue with the proof of Theorem 3.2.1.1.

77

(3.43)

(3.44)

(3.45)

o

(3.46)

o
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The combination of Lemma 3.2.1.2-Lemma 3.2.1.6, the error representation (3.28) and the
Young inequality proves the following result

IlleN-III~+clle21Ii2(Hl)::; 0 {llhP DP+1Yolli2(0) + IlhP+1DP+1yllli2(0)
N N

+ L IIhPDP+lul(tj)11i2(0)+ L IlhP+1DP+lU2(tj)lli2(0)
j=l j=l
+ Ilk~üllI£l(£2) Ile21Iv"'(L2) + IIhPDP+1U21I£l(L2)Ilelllv"'(Hl)

+ Ilkü21I£l(Hl)IlelIILOO(Hl)+cllkü211i2(Hl)

+dhP DP+1U21IL2(L2)+dk~Ü21Ii2(L2)}' (3.47)

According to Lemma 3.2.1.3, the last term on the RHS of (3.47) does not appear if the initial
problem satisfies the (DD) boundary conditions.

Finally, we introduce the lemma which provides the relation between IleIILOO(1l)and IlleN-III1l' •
The motivation for the derivation of such a result stems from the fact that the RHS of the
estimate (3.47) depends on IleIILOO(1l)'

Lemma 3.2.1.7. Since e is piecewise continuous function in time with respect to triangula-
tion !Y, there is atE [0, T] with lIIe(t)1111l= IleIILOO(1l)' Let Ij be a time interval in !Y with
tE Ij. Then there holds

(3.48)

Proof. For tEIj, the representation (3.34) implies

IIle(t)III1l::;lllei-III1l+!.lIIü(T)III1ldT::; lllei-III1l+kjllüIlLoo(Iji1l)::;lIIej-III1l+lIküIILoo(1l)'
)

This completes the proof. D

To conclude the proof of the Theorem 3.2.1.1, we recall that the estimate (3.47) can be derived •
for each tj where 1 ::; j :::;N on the basis of Remark 3.2.1.1 which also applies to the error
representation (3.28). Then, the RHS of (3.47) is a global bound for each j = 1, ... , N instead
for only j=N. From Lemma 3.2.1.7 we have

N

IIe Ilioo(1l)::;0 { IIkü Ilioo(1l) + IIhPDP+1yo IIi2(0)+ IIhP+ 1DP+1Ytlli2(0) + L IIhPDP+ 1Ul (tj )IIi2(0)
j=l

N

+ L IlhP+1DP+1U2(tj) Ili2(0)+ Ilk~ütll£l(L2) Ile21ILOO(£2)
j=l
+ IIhP DP+1U21I£l(£2)IlelIILOO(Hl)+ Ilkü21I£l(Hl)IlelIILoo(Hl)+cllkü21Ii2(Hl)

+dhP DP+1U21Ii2(£2) +cllk~Ü21Ii2(£2)}' (3.49)

With the help of the Young inequality we can absorb the terms IlelIlLoo(Hl)and Ile21ILOO(L2)on
the RHS of (3.49) through the LHS. i.e. IleIILOO(1l)'This completes the proof of theorem. D
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3.2.1.2 dG(!) time approximation
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Our intention within this section was to derive an a priori error estimate for fully discrete
problem in case of the dG(I) time approximation and PI or Cl discretisation in space, by
using the similar arguments as for the dG(O) method in time, see Subsection 3.2.1.1. This
needs bounds for each Illei-lIIll' j = 1, ... , N in terms of Ilellu>O(ll) and some a priori known terms,
see (3.47). Apart from this estimate, which is very difficult to obtain for dG(I) functions, we
would need to establish a relation between Ilellu>O(ll) and Illei-lllll in a form

(3.50)

where 9 is a function depending on the exact solution and its derivatives. This relation was the
reference argument in the a priori analysis for the dG(O) approximation with g(u):= IlküllL<Xl(ll)'
see Lemma 3.2.1.7 in the proof of Theorem 3.2.1.1.
However, we did not succeed to derive the estimate of type (3.50) in this setting.

• Another possibility would be to find some error function which provides the relation (3.50)
directly owing to its properties. Obviously, if we define ~ by

e:=U-U (3.51)

then ~ is a globally continuous and piecewise affine function in time and therefore there exists
some j, 1~j ~ N such that

(3.52)

However, the application of the Galerkin orthogonality yields an additional jump term on the
RHS of the error representation. We did neither succeed to absorb this additional term nor
could we transfer it into proper a priori term.

3.2.2 cG(!) time approximation

Within this section we prove an a priori error estimate for the cG(I) time discretisation and
Cl discretisation in space when 6"=0 and the spatial mesh is h-quasi uniform.

The main argument in the following analysis is the use of the error function ~ defined by

~:=ü-U (3.53)

which is an affine, globally continuous function in time.
The idea to use ~ instead of e arises from the fact that ~ reaches its maximum in some node
of the triangulation f7, whereby for e we can not determine whether the maximum point is
an interior point of some interval from f7 or not.
For notation and definitions used in the following analysis, we refer to Chapter 2, where the
particular space discretisation methods are introduced, cf. Section 2.1 and Subsection 2.3.4
where cG(I) method is analysed.
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Lemma 3.2.2.1 (Error representation, cG(1) time approximation). In caseofcG(I)
discretisation in time, for every V E Wc, the following identity is valid

~llle(T)III~+ciIê21Ii2(Hl)= ~llle(O)III~+l(ê-ë; ê)1idt+ l(ë; ê- V)1idt

-1:(e2)1- Vl)dt+ l:(el; ê2- ~)dt+é 1:(ê2; ê2- ~)dt

+ 1:(e2-ê2; êddt+ l:(êl -el; ê2)dt

+él:(ê2-e2; ê2)dt. (3.54)

Proof. From the fundamental theorem of calculus in time and the fact that the errors e and
ê coincide in each node tj, j =1, ... , N we have

lILT:, -211Ie(T)III~-2I11e(0)1II~= 0 (e; e)1idt. (3.55)

From definition of the bilinear form B, (2.41), and the Galerkin orthogonality (2.9), we infer
for all V E Wc

With the identity (3.55), we complete the proof. D

Theorem 3.2.2.1 (A priori energy error estimate, cG(1) time approximation). There
exists a constant C, which is independent of u and its cG(l) @ Cl discrete counterpart, such
that for é=O, p=3 and the h-quasi uniform spatial mesh, there holds

IlêIIUlC'(1i)< C{ IIhPDP+1Yoll£2(rl)+ IlhP+1DP+1y1IIL2(rl)+ IIhPDP+1Ùlll£l(£2)+ IlhP+1DP+1Ù21I£l(L2)

+ Ilk2Ü11I£l(Hl)+ I!hPDP+1U211£2(£2)+ IIk2~ülll£l(Hl) + IIhPDP+1UlIIL2(£2)

+ IIhPDP+1U21IL2(L2) + Ilk2Ü21I£l(Hl)+ IIk2~ütII£l(£2) }, (3.56)

provided that U EHP+1(n)2.
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Remark 3.2.2.1. The estimate of Theorem 3.2.2.1 is of order O(hP+k2) where p=3. 0

Proof. The globally continuous and piecewise affine function ~ reaches its maximum in some
of the nodes tj from .9", i.e.

(3.57)

Owing to the fact that the representation (3.54) is also valid for this particular choice of T = tj,
(3.54) can be rewritten such that

(3.58)

•
The main idea in the following is to estimate El, ... ,Eg such that the final estimate consists
of the exact solution and its derivatives or the error contributions II~tIILOO(Hl), 1I~21ILoo(£2) and
d~21IL2([O,tj];Hl(n». The error terms can be then absorbed through the LHS of (3.58).
We assume in the following that p = 1 for PI and p = 3 for Cl elements in space.

First we choose a test function V such that

V:=.711~ E Wc, where 11=(9, .c). (3.59)

Here .7 denote the temporal projection, .7~IIj := h. ~(t)dt for each Ij E.9". The idea is to use
J

the time projection .7 in order to apply the orthogonal properties with respect to £2 norm in
time.

The term El is estimated with aid of Lemma 3.2.1.2.
We continue by estimating each of E2 + E3, E4 +Es, E6, E7, Es, Eg.

Lemma 3.2.2.2. For E2 +E3 there exists some constant C such that

(3.60)

Proof. We start from

(3.61)

Moreover, with the definition of E2 and the fact that JI. ~(t)dt = JI. ë(t)dt for each Ij E .9",
J J

there holds
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Note that .:J is here a L2 projection on piecewise constant functions in time.

For the second term on the RHS of (3.61), we have according to the properties of the projec-
tions 9 and £, see Lemma 3.1.0.6 and Lemma 3.1.0.7, respectively,

This completes the proof of Lemma. o

In the following lemma why we estimate E4 +Es only under certain requirements concerning
the parameter c, the choice of the boundary conditions and of the spatial mesh where the
spatial discretisation is carried out with aid of Cl elements in space, only. e
Lemma 3.2.2.3. For E4 +Es, provided that either c =0 or the initial problem satisfies the
(DD) boundary conditions, for p=3 and h-quasi uniform spatial mesh, there holds

E4 +Es ~ C { Ilk2ütIIL1(Hl) 11~111L'X>(Hl) + II hPDP+IU21I£l(L2) 11~111L'X>(Hl)

+ IIk2ßÜIII£l(Hl) Ilü21ILOO(L2)+IIhPDP+IUIIIL2(£2) IIhPDP+lihIIL2(L2) },

where C is some numerical constant.

Proof. We start from E4

(3.62)

(3.63)E4=_l
ti

a(e2; ~1-.:Jg~ddt=-lti a(e2; ~l-.:J~ddt _l
ti

a(e2; .:J~l-.:Jg~ddt.

With aid of the Lemma 3.1.0.9, the second term on the RHS of (3.63) can be estimated such
that

Furthermore, the first term on the RHS of (3.63) can be rewritten as

(3.64)

Moreover, the fact that u(tj) = ü(tj) for each tj from !Y and the fundamental theorem of
calculus prove

(3.65)
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and some numerical constant C> O. Then, there holds

Similarly, if Es is decomposed such that

then the first term can be rewritten as

An integration by parts in space shows

83

(3.66)

(3.67)

(3.68)

where the second term in the equality above equals zero when the initial problem satisfies the
(DD) boundary conditions.
From (3.65)

(3.70)

(3.71)

The trace and Friedrichs inequality provide the following estimate for the second term

In order to neglect the last term on the RHS of (3.68), we recall the second term from (3.64).
Because of the symmetry properties of :J, there holds

l
ti

a(~l; ~2-:J~2)dt-lti a(~l-:J~l; ~2)dt=0.

It remains to estimate the last term on the RHS of (3.67). An integration by parts in space
leads to

l
ti

a(el; :J~2-:J .c~2)dt=-lti(f1el; :J~2-:J .c~2)dt

- ri f[Del (t)]k(:J~2-:J .c~2)(t, xk)dt, (3.72)
10 k=l
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where m=n in case of Problem (DN) and m=n-1 for Problem (DD).
The first term can be estimated by using the properties of the projection £ such that

-l\tlel; :Jê2-:J£ê2)dt=-ltj(tlel-£tlel; :Jê2-:J£ê2)dt

::; C l
tj

Ilhp
-
1 DP+1UI (t) IIL2(0) Ilhp+1DP+1Ü2(t) IIL2(0)dt

::; CllhP V+1UI 11£2(£2) IIhPDP+1Ü21IL2(L2). (3.73)

In the last inequality we used the fact that the spatial mesh is h-quasi uniform.
As far as the jump term on the RHS of (3.72) and (DN) boundary conditions are concerned,
we can not derive an estimate which depends either on a priori terms or on the error terms
éllê211£2(O,tj;Hl) and IlêllulO(1-l)'In case of cG(1)0PI discretisation, the problem is to estimate the
jump terms [De]k which do not vanish due to the fact that De is piecewise constant function
in space. Therefore we assume in the following that the discretisation in space is done with
Cl functions. Then, the jump term simplifies to

(3.74)

(3.75)

since (:Jê2-:J£ê2)(t,0)=0. Obviously ifé=O, then Del(t,l)=O and the last term van-
ishes. Also, if the the initial problem satisfies the (DD) boundary conditions, then (:Jê2-
:J£ê2)(t, 1)=0.
We did not succeed to estimate the latter terms in other cases then this two cases mentioned.
Therefore, we assume that either one of these two conditions is satisfied, namely that either
é=O or (DD) boundary conditions. Then for p=3 and h-quasi uniform mesh, there holds

l
tj

a(ell :Jê2 -:J £ê2)dt::; C1lhPDP+1UtIIL2(£2) IIhPDP+IÜ21IL2(L2).

This concludes the proof. o
Lemma 3.2.2.4. For E6 there exists a constant C such that if the initial problem satisfies
the (DD) boundary conditions for p=3 and h-quasi uniform mesh, there holds e
E6::; C { éllhP DP+1U211£2(£2)IIhPDP+1ü2I1L2(L2) + Ilk2Ü211£2(Hl)éllê21IL2([o,tj];Hl(0)) } +éllê21Ii2([o,tj];Hl(0))'

Proof. We start from the following decomposition of E6

it. it.
E6=é 0 J a(e2;ê2-:Jê2)dt+é 0 J a(e2;:Jê2-:J£ê2)dt.

An integration by parts in the second integral on the RHS of (3.76) yields

(3.76)

For the first term we have similar as in (3.73) for the h-quasi uniform spatial mesh

-éltj

(tle2; :Jê2-:J £ê2)dt::; CéllhP DP+IU211£2(£2) IIhPDP+1ü2I1L2(L2). (3.77)
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In order to estimate the jump term, we recall the estimation of (3.74). Obviously, we need to
assume that the initial problem satisfies the (DD) boundary conditions and p = 3. Then the
jump term vanishes.
Moreover, for the first term on the RHS of (3.76) we have

€ lt~(e2; ~2-.:J~2)dt=€ lt~(e2-~2; ~2-.:J~2)dt+€ lt~(~2; ~2-.:J~2)dt

~ Cllk2Ü211L2(Hl )€11~211£2([O,ti];Hl(n))+d~21Ii2([O,ti];Hl(n)).

This completes the proof of lemma. o

Remark 3.2.2.2. Apperantly, the estimate from Lemma 3.2.2.4 is not optimal due to the
presence of €lle21Ii2(Ii;Hl(n))' which is not the only €11~21IL2(Ii;Hl(n)) contribution. However, we
do not abandon this result because it shows why the estimation for € > 0 is difficult and does
not yield a result, which can be further used. 0

Lemma 3.2.2.5. For E7 there holds

E7 ~ Cllk2ü2I1Ll(Hl) II~lllL<"'(Hl),

with C >0 some numerical constant.

Proof. From the definition of ~ and the identity (3.65) we have that

E7= ltia(e2 -~2; ~l)dt= l
tia

(U2-ù2; ~ddt~ Cllk2Ü21ILl(Hl)ll~lllL<"'(Hl).

This completes the proof.

(3.78)

o

Lemma 3.2.2.6. For Es there is a constant C such that

Es ~ C {llk2 ßÜlIILl(£2) 11~211L<"'(L2)+ (1Ik
2
ü21IL2(Hl) + IIk2ßÜ21IL2(£2))€11~211£2([O,ti];Hl(n))}, (3.79)

where the second summand does not appear in case of the (DD) boundary conditions.

Proof. An integration by parts in space and the fact that Ul -Ùl is the continuous functions
in space yield

Es = l
ti

a(~l-el; ~2)dt= l
ti

(ß(ul-ùd; ~2)dt+ l
ti

D(Ùl-ud(t, 1)~2(t, l)dt

= l
ti

(ß(Ul-Ùl); ~2)dt-€ l
ti

D(Ù2-U2)(t, 1)~2(t, l)dt.

We assumed here that the initial problem U = (y, iJ) satisfies the (DN) boundary condition
(1.13c). On the other hand for (DD) boundary conditions (1.13d), the second term on the
RHS of either equalities above vanishes.
Finally, the identity (3.65) and the trace and Friedrichs inequality lead to

Es ~ C {llk2 ßÜlIILl(£2)11~211L<"'(L2)+ (lIk2ü21IL2(Hl) + IIk2
ßÜ21IL2(L2))d~211£2([O,ti];Hl(n)) },

which proves the Lemma. o
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Lemma 3.2.2.7. For Eg the following is valid

Eg ~ Cllk2Ü211L2(Hl )éll~211L2([o,t;];Hl(n)),

with C some numerical constant.

(3.80)

D

Proof. The Hölder inequality in time and space and estimate (3.65) yield the proof. Namely,

Eg =é it; a(~2-e2; ~2)dt~ Ilü2-U211L2(Hl)d~211L2([o,t;];Hl(n))

~ Cllk2Ü211L2(Hl )éll~21IL2([O,t;];Hl(n».

We now substitute the results of Lemma 3.2.1.2 and Lemma 3.2.2.2 -Lemma 3.2.2.7 into the
error representation (3.58) and assume é = 0, p = 3 and h-quasi uniformity of the spatial
mesh. Then, the application of the Young inequality allows us to move the terms 11~IIlL'x'(Hl),
1I~211L''''(L2)onto the LHS of (3.58) so that we finally obtain

1I~11L''''(1l)~ C{ IIhP DP+1YoIIL2(n)+ IlhP+1 DP+1yIIIL2(n)+ IIhP DP+1ÜIII£l(L2)+ IlhP+1 DP+IÜ21I£l(L2) e
+ Ilk2ÜIII£l(Hl) + IIhP DP+1U211L2(L2) + IIk2ßÜIII£l(Hl) + IIhP DP+1UIIIL2(L2)

+ IIhP DP+1Ü211L2(L2) + Ilk2Ü21I£l(Hl)+ IIk2ßÜIII£l(L2) }.

This completes the proof of theorem.

3.2.3 Method of lines

D

Within this subsection we prove an a priori error estimate for the error of the semi-discrete
approximation where the discretisation in space follows by use of Cl function and the (DD)
boundary condition and h-quasi uniformity of the spatial mesh are also assumed. The error
function for which the analysis applies,

e:=u-U, (3.81)

is a globally continuous function in time. e
For notation and definitions used in the following, we refer to Chapter 2, where the particular
space discretisation methods, cf. Section 2.1 and the method of lines, cf. Subsection 2.3.5 are
introduced.

Lemma 3.2.3.1 (Error representation, MoL). In case ofthe semi-discretisation with re-
spect to time, there holds for each tE [0,T] and all V EWs

~llle(t)III~+éitlle2(T)II~1(n)dT=~llle(0)1II~+ it (ë; e- v>lldT-it a(e2; el - Vl)dT

+ it a(el; e2- V2)dT+é it a(e2; e2- V2)dT. (3.82)

Proof. From the fundamental theorem of calculus in time and the fact that the error e is a
continuous function in time, we have

~ ~ Ille(t) III~ =( ë(t) ; e(t) >1l' t E [0, T]. (3.83)



3.2. A PRIORI ENERGY ERROR ESTIMATE 87

With the definition of the bilinear form B (2.49) and the Galerkin orthogonality (2.9), we
have for all V E Ws and continously in time

(è; e)li = (è; e- V)ll+(è; V)li
= (è; e- V)1i+a(e2; VI) -a(el +êe2;~)
= (è; e- V)li -a(e2; el - VI)+a(el +êe2; e2- V2) -êa(e2, e2),

where e=e(t), è=è(t) and also V = V(t).

If we integrate the last equation with respect to time interval [0, t] and apply the identity
(3.83), we may conclude the proof of the Lemma. 0

Theorem 3.2.3.1 (A priori energy error estimate, MoL). There is a constant C such
that for UEHP+I(n)2, p=3 and h-quasi uniform spatial mesh, there holds

(a) in case of the (DD) boundary conditions

IlellvX>(li):::; C {llhP DP+1YoIIL2(rl) + IlhP+1 DP+1YIilL2(rl) + IIhPDP+1UIII£l(£2) + IlhP+1 DP+1U21I£l(£2)

+ IIhPDP+1U21I£l(L2) + IIhPDP+1UIIIL2(£2) + IIhP DP+IU21IL2(£2)

+vI€llhP DP+1u211£2(L2)}, (3.84)

(b) if ê=O

IlellvX>(li):::; C {llhP DP+1Yolli2(rl) + IlhP+1 DP+1Yllli2(rl) + IIhPDP+IUlllil(£2) + IlhP+1 DP+1U21Iil(L2)

+ IIhPDP+1U21Iil(L2) + IIhPDP+1uIili2(£2) + IIhPDP+1U21Ii2(£2)}. (3.85)

Remark 3.2.3.1. Note that both estimates ofTheorem 3.2.3.1 are of order O(hP) i.e. O(h3).O

Proof. Fix some t E [0,T] such that

Ille(t) 11111. = IlelluX>(li).

Then, from the representation (3.82), we have

t 5

~eH,=(ll)+e lIe2(TlI~'(n)dT=: ~ Et.

(3.86)

(3.87)

The main idea in the following is to estimate the terms El, ... ,E5 from (3.87) such that the
final estimate contains the contribution of the exact solution only or the error terms IlellvX>(li)
or êlle21Ii2(O,t;Hl(rl)) which can then be absorbed through the LHS of (3.87), by an application
of the Young inequality.
As before, we write p = 1 for PI elements and p = 3 for Cl elements in space. The proof will
be conducted in a similar way as in case of the cG(1) and dG(O) time discretisation, i.e. the
estimation of terms El, ... ,E5 will be given through the severallemmas.
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Let us first assume that the test function V is defined by

V:=IIe E Ws, II=(Ç,.c). (3.88)

For fix t E [0,Tl, we have V(t) ES x S. We also recall the approximation properties of the
projections g,.c given in Lemma 3.1.0.6 and Lemma 3.1.0.7, respectively.

El is estimated by means of Lemma 3.2.1.2. We continue with the estimation of E2, E3, E4, E5.

Lemma 3.2.3.2. There is a constant C such that

Proof. The approximation properties of the projections g,.c imply

E2= it a(el;el-ger)dT+ i
t
(e2;e2-.ce2)dT

= it a(el -gel; er)dT+ it (e2 - .ce2; e2)dT

::;C (11hPDP+1ÜIII£l(£2) IIelIIU)('(Hl)+ IlhP+1DP+1Ü21I£l(£2) Ile21IUXl(L2»).

Lemma 3.2.3.3. For E3 there exists a constant C such that

E3 ::;CllhP DP+1U2 II£I (L2) IlerlluXl(Hl).

o

Proof. By using the symmetry of Galerkin projection g with respect to HI scalar product,
we obtain

E3= -lta(e2;el-gel)dT=-lta(e2-ge2;er)dT::;CllhPDP+1U21I£l(L2)11elllvXl(Hl). 0

In the following lemma we show why the estimation of E4 can be accomplished only for
p = 3 under certain restrictions concerning the parameter c and the choice of the boundary
conditions and the spatial mesh.

Lemma 3.2.3.4. For E4 and p = 3 there exists a constant C such that if c = 0 or the initial e
problem satisfies the (DD) boundary conditions, there holds

E4::; CllhP DP+IUI IIL2(L2)IIhPDP+1U21IL2(L2).

Proof. A partial integration in space yields

As in the proof of Lemma 3.2.2.3, for p= 3 if c = 0 or the initial problem satisfies the (DD)
boundary conditions the second integral vanishes. If we assume additional that the spatial
mesh is h-quasi uniform, then

E4 = it a(el; e2 - .ce2)dT= -i
t
(!:lel; e2 - .ce2)dT::; CllhP DP+IUIIIL2(£2)llhp DP+1U211£2(L2).

This concludes the proof. o
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Lemma 3.2.3~5. For Es there exists a constant C such that for p '= 3, (DD) boundary
conditions and h-quasi uniform spatial mesh, there holds

Proof. As in the proof of Lemma 3.2.3.4, we may conclude

Es=ê lta(e2;e2-£,e2)dT ~ CdhPDP+1u21Ii2(L2). o

From an application of Young inequality, provided (DD) boundary conditions and h-quasi
uniform spatial mesh, there holds for p=3

IleIILOO(ll)$C{ ~hP DP+1yoII L2(rl) + ~hP+1 DP+1YI ~L2(rl) + IIhP DP+1ùlll£l(L2) + IlhP+1DP+1Ù21I£l(L2)
+~hP DP+1U2~£l(L2) + IIhP DP+1UIIIL2(L2) + IIhP DP+1U2h2~L2) +êllhP DP+1U21IL2(L2) }.

Moreover, if ê=O and (DD) or (DN) boundary conditions, there holds additionally

~e~LOO(ll) $C{ IIhP DP+1YolIL2(rl) + ~hP+1 DP+1yIIIL2(rl) + ~hP DP+1ÙI ~£l(L2) + IIhP+1 DP+1Ù2~£l(L2)

+ IIhP DP+1u2I1Ll(L2) + IIhP DP+1UI ~L2(L2) + IIhP DP+1U21IL2(L2)}'

This yields the proof of the theorem.

3.3 A posteriori energy error estimate

o

Within this section we derive a posteriori error bounds for the fully discrete model with the
discontinuous and continuous Galerkin method in time, i.e. dG(q), q = 0,1, cG(I), respec-
tively, and cubic and linear splines in space, abb. Cl and PI finite elements. We also provide
a short analysis for the semi-discrete model obtained from the discretisation in space, where
time remains continuous.
The analysis follows via residual arguments introduced in Definition 2.3.1.2. The a posteriori
error bound 17for the error of the fully (time-space) discrete problem and error damping term
is a quantity depending on the mesh data h, k, the discrete solution U and the initial data
uo, f. An overview concerning the accuracy order of developed estimates, with respect to time
and space discretisation is presented in Table 3.3.
The spatial approximation by PI functions was not an adequate choice for the derivation of
a posteriori error bounds by use of the energy techniques. This holds independently of the
time approximation method due to the lack of continuity in the first derivative of the discrete
solution. For a further discussion see Subsection 3.3.1.1.
On the other hand, the Cl elements in space enable the derivation of an a posteriori error
bound and provide the expected optimal accuracy of order O(h3) in space.
Concerning the convergence order in time, only the dG(O) method provides the optimal re-
sult, i.e. O(k), see Figure 3.4. The dG(I) and cG(I) method in time yield estimates with a
suboptimalorder of convergence O(k), where O(k3) and O(k2), respectively, are expected. A
detailed discussion follows in Subsections 3.3.2.2 and 3.3.3.2, respectively. For an example see
Figure 3.6.
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dG(O) - O(h3+k) S;-l ÇS;

Subsection 3.3.1 O(h3+k-Ih3+k) otherwise

dG(l) - O(h3+k) S;-l ÇS;

Subsection 3.3.2 O(h3+k-Ih3+k) otherwise

cG(l) - O(h3+k)
Subsection 3.3.3

MoL O(h3)-
Subsection 3.3.4

: _.

Table 3.3: Proven a posteriori error estimates for IlëîILOO(1l)+Jëlle211£2(H1) in case of dG(D) and
IleIlLoo(1l)+Jëlle21IL2(H1) in case of dG(l), cG(l) and MoL; energy method. e
However, the estimates proved within this section are computable, i.e. the constants which
occur in the error bound are exact. Improved results in case ofthe dG(l) and cG(l) method in
time with an optimal convergence order in time are obtained by use of the duality technique,
see Section 4.3.

'0'

,0'

10~

10~'---~-~~~"'-'- ~~.......J

10' 10' ,cl~ al....,... n.... (lIrM)

Figure 3.4: Convergence of IleIILoo(1l)+Jëlle21IL2(H1) and 7J for dG(D) ~ Cl with respect to the
number of elements in space (time) for h=k; Proven a posteriori error bound 7J=O(h3+k) =
O(k) and IleIILOO(ll)+ Jëlle21IL2(H1) = O(h3 + k) = O(k); Example 6.2.4, é = 0.1, (DN), T = 1;
energy method.
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Figure 3.5: Convergence of IleIILOO(1i)+Vélle21IL2(Hl) and 7J for dG(I)@C1 with respect to the
number of elements in space (time) for h=k; Proven a posteriori error bound 7J=O(h3+k) =
O(h3

) = O(k) is suboptimal compared with Ilellux'(1l)Mlle21IL2(Hl) = O(h3+k2) = O(h2
) = O(k2

)

and IleIIVlCl(1l)= O(h3+k3) = O(h3) = O(k3); Left figure: Example 6.2.3, ê = 0, (DD), T = 1;
Right figure: Example 6.2.4, ê=O.I, (DN), T=I; energy method.
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Figure 3.6: Convergence of IIeil LOO (1l) + Vélle211L2(Hl) and 7J for cG(I) @C1 with respect to the
number of elements in space (left) and time (right) for h = k2/3; Proven a posteriori error
bound 7J= O(h3 + k) = O(h3/2) = O(k) is suboptimal compared with IleIILOO(1l) + Vélle211 =
O(h3+k2) = O(h3) = O(k2); Left figure: Example 6.2.5, ê = 0, (DN), T = 1; Right figure:
Example 6.2.4, ê=O.I, (DN), T= 1; energy method.

3.3.1 dG(O) time approximation

The main tool in the following a posteriori error analysis is the "modified" ~inear form B
introduced in (2.20), the linear functional 2 from (2.19) and the residual Res from (2.21).
,!hrough these definitions, the concept of affine approximation concerning the discrete solution
U is introduced, see Definition 2.3.3.3. This allows the temporal jump terms to be included
in the definition of the residual as a function of time. Thereafter we may introduce the error

(3.89)
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which is a globally continuous function in time. The term of interests in the following a
posteriori error analysis will be precisely this error function, i.e.

for which we seek to derive the computable bound 17.

Lemma 3.3.1.1 (Error representation, dG(O) time approximation). In case of dG(O)
time discretisation, there holds for every V E Qo

~leN-K+ë t llê,(tH~'(O)dt= ~leo-Ij,+ReS(ê- V)+ tl a(e,- ê,; ê,)dt
j=l ~ j=l ~

N N

+~ l a(ê,- e,;ê,)dt+e ~ l,a(ê, -e,; ê,)dt. (3.90)

Proof. The fundamental theorem of calculus and the fact that è(tj) =e(tj), for each tj E 9, e
,lead to

(3.91)

With the residual representation (2.22) and orthogonality of the residual from (2.23), we show
that for arbitrary V E Qo

N N N

~l}l;ê)lI.dt= ~l,(l;ê- V)lI.dt+~l(l; V)lI.dt

N N N N

='LJ (ê;è-V)lldt+ 'LJ a(e2;Vddt-'LJ(el;~)dt-ê'LJ(e2;V2)dt
~l~ ~l ~ ~l ~ ~l ~

N N N

=Res(ê- V)+~ h(e,; ê,)dt- ~ l~(e,; ê,)dt-e ~ l~(e,; ê,)dt

N N

= &;(è- V)+ 'Lla(e2-è2; èl)dt+ 'L1a(èl-el; è2)dt
j=l ~ j=l ~

N N

+ef;,l,a( ê, - e,;ë,)dt -e f;,1,a(ê,;ë,)dt. (3.92)

The combination of the last equality and identity (3.91) yields the proof. o
Lemma 3.3.1.2. In case of dG(O) time approximation and PI, i.e. Cl approximation in
space, the residual (2.21) may be expressed in terms of the local residuals and local jumps
such that for all v E L2(Hb x Hb),

N N

&;(v) = 'L1(Rj; V)lldt + 'L1~(U, v)dt,
j=l Ij j=l Ij

(3.93a)
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where for all (t, x) E Ij x fl,

Rj(t, x) : = F(t, x) -U(t, x) - AU(t, x),

~(U, v)(t) : = { l::=I[D(UI +;U2)]kV2(t, Xk) for PI elements,
for Cl elements.

93

(3.93b)

(3.93c)

Here m=n in case of (DN) and m=n-l in case of (DD) boundary conditions.
Furthermore, [D(UI +éU2)]k are defined asjumps orthe piecewise constant functions DUI, DU2
with respect to the space coordinate, see Definition 3.1.0.6.

Proof. Given the residual definition from (2.21) with the bilinear form fj and functional 2
defined in (2.20) and (2.19), respectively, an integration by parts in space yields the following
result for all v EL2(HbxHb)

N N N N

2(v)-fj(U,v)=:L I (J;v2)dt-:L I a(UI;vd- :L(U2;V2)+:L I a(U2;vI)dt
j=l Ii j=l Ii j=l j=l Ii

N N m
+ :L I (ß(UI +éU2); v2)dt+ :L I :L[D(UI +éU2)]kV2(Xk)dt.

j=l Ii j=l Ii k=l

In case of the spatial approximation by Hermite cubic splines, the jump terms equal zero due
to the fact that discrete functions are globally continuous in the first derivative and they also
satisfy the (DN) boundary conditions too, cf. Subsections 6.1.3 and 6.1.4. With the notation
from Definition 1.3.0.7 we conclude the proof of the lemma. 0

Remark 3.3.1.1. If!Y is an arbitrary discretisation of the time interval [0,Tl, then from the
definition of the local weak problem (2.6) and residual representation in Lemma 3.3.1.2, there
holds for each tn E !Y

1 ni 1 nl_ nl_2I11en-III~+é:L Ile2(t)II~1(n)dt=211IeO-III~+:L(Rj; e- V)1ldt+ :L Jj(U; e- V)dt
j=l Ii j=l Ii j=l Ii

n n

+ :LI a(U2-U2; el)dt+ :L I a(UI -UI; e2)dt
j=l Ii j=l Ii

n

+é :LI a(U2 - U2;e2)dt. (3.94)
j=l Ii

Here V is an arbitrary test function, VII- E ~ for all j = 1, ... ,n for which the residual1 _

orthogonality (2.8) applies. 0

The following technical lemma will be used latter on for the different space discretisation
separately. Then the abstract contributions Ml, M2, M3,n, M4,n will be defined accordingly.

Lemma 3.3.1.3. Let Rand j be defined by (3.93b) and (3.93c), respectively. Let e be
the error of the affine approximation of the dG(O) solution with respect to PI or Cl space
discretisation. Let II:= (Q,.c) be a spatial orthogonal projection with respect to the ll-scalar
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product. Finally, we assume that there are some positive Ml, M2, M3,n,M4,n such that there
holds for each n= 1, ... , N and both o:E {2, 4},

nj_ nj_ 1
L (Rj; ë-Ilel1ldt+ L Jj(U; ë-Ile)dt~o:Ml + 40:1Iëllioo(1l)'
j=l ~ j=l ~
n n

L !a(fi2-U2; ël)dt+ ~ f. a(Ul -fil +é(U2-fi2); ë2)dt~o:M2+ 4~ Ilëllioo(1l)'
j=l I] 3=1 I]

j (Îin; ël1ldt+f Jn(U; ë)dt~ o:M3,n+ 4~ Ilëllioo(1l)'
In In

1a(fi2-U2; ël)dt+f a(Ul-fil +é(u2-fi2); ë2)dt~o:M4,n+ 4~llëllioo(1l).
In In

(3.95a)

(3.95b)

(3.95c)

(3.95d)

Then the following estimate is valid for all é ~ 0

Ilëllioo(1l)+éllë21Ii2(Hl) ~ 311Ieo-III~+22(Ml +M2)+20 1~~N(M3,j+M4,j). (3.96)
_3_

Moreover if é = 0, then there holds additionally

(3.97)

Proof. Let t E [0, T] be some time point where Illë(t)1111l= IlëIILOO(1l)'Due to the fact that ë is
not an affine function in time, we have that either

1. t=tf. for sorne £=1, ... , N, or

2. tE (tf.-I, tf.) for sorne £= 1, ... , N, i.e. t=tf.-l +c5, c5< kf..

In the following we discuss both cases separately.

1. In the first case given representation from Remark 3.3.1.1 where V:= Ile we may see
that there holds for each n = 1, ... , N

!lIIen-III~+étj Ilë2(t)II~1(n)dt~~llleO-III~+tj (Rj; ë-Ilel1ldt+ tj ~(U; ë-Ile)dt e
2 j=l Ii j=l Ii j=l Ii

n n

+ L j a(fi2-U2; ëddt+ L j a(Ul-fil; ë2)dt
j=l Ii j=l Ii

n

+é L! a(U2- fi2;ë2)dt. (3.98)
j=l Ii

Furthermore frorn.(3.95) with 0:=2 and the fact that (3.98) is also valid for n=£, where
Illëf.-III1l= IlëIILOO(1l),we obtain

~ Ilëllioo(1l)~ ~ Illeo-lII~+ 2Ml + 2M2+ ~ II ëllioo(1l) . (3.99)

Moving the last term onto the LHS of (3.99) proves

(3.100)
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If é = 0, the estimate (3.100) holds. We continue by estimating the damping term in
case of é > O. This also hold for the case é =O.

For n=N in (3.98), the estimation with (3.95) for a=2 and with (3.100), yields

N

éL j11e2(t)II't1(o):::; ~lIIeo-III~+2Ml +2M2+~llellioo(1l):::; Illeo-III~+4Ml +4M2. (3.101)
j=l Ij

Summing the estimates (3.100) and (3.101), we finally obtain for é ~ 0

IleIILOO(1l)+élle21Ii2(Hl):::;311Ieo-III~+12Ml + 12M2. (3.102)

2. In case when t is not a node from the triangulation !!7, the fundamental theorem of
calculus yields

(3.103)

(3.105)

From the error representation formula (3.94) where V = lIe, and an application of the
fundamental theorem of calculus, we have for all n= 1, ... , N

ln(i! ; Ii)"dt = tl(Ri; li-Ill) "dt+ t1,l;(U; Ii- Ill)dt+ tl,a(ù,- u,; li1)dt

n n

+Lj a(Ul-Ul; e2)dt+é Lj a(U2-U2; e2)dt
j=l ~ j=l ~

n

-é Lj Ile2(t)ll'tl(O)dt. (3.104)
j=l Ij

Then, ifwe assume that n=f-1 in (3.104), the first term on the RHS of (3.103) can be
estimated by (3.95) with a=4 such that

rt-1 1Jo (ê; e)lldt:::;4Ml +4M2+Sllellioo(1l).

With the definition of the residual where the jumps w~th respect to time variable are- -included in the definition of the volume term R:=F-U -AU, see Lemma 3.3.1.2, the
second term on the RHS of (3.103) is equivalent to

it (ê;e)lldr= it (Re;e)lldr+ it î'e(u;e)dr+i
t

a(U2-U2;eddr
tt-l tt-l tt-l tt-l

+ it a(Ul -Ul; e2)dr+é it a(U2-U2; e2)dr-é iÎle2(t)ll'tl(o)dr.
tn-l tt-l tt-l

From (3.95) with a=4 and the fact that é~O, we obtain

i
t
(ê; e)lldr :::;4M3,e+4M4,e+~lIellioo(1l).
tt-l

(3.106)
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The sum of (3.105) and (3.106) combined with the representation (3.103) yield

Ilëllioo(ll) ~ 211IeO-lIIt+16(MI +M2)+16(M3,n+M4,n)
~ 211IeO-lIIt+16(MI +M2)+161~~1r(M3,j+M4,j).

_J_
(3.107)

For é=O, this concludes the proof. For é>O, we proceed as follows. Given (3.104) with
n=N, the fundamental theorem of calculus combined with (3.95) for Œ=2, yields

N

éLIllë2(t)II~1(f2)dt ~ ~lIIeO-lIIt+2(MI +1\12)+~llëllioo(1l)
j=l Ii

~ IlleO-lllt+6(MI+M2)+41~~N(M3,n+M4,n),
_J_

where we used the estimate (3.107) in the second inequality above.
Combination of (3.107) and (3.108) proves

Ilëllioo(1l)+éllë21Ii2(Hl) ~ 311IeO-lIIt+22(Ml +M2)+201~~N(M3,j+M4,j).
_J_

(3.108)

(3.109)

In general, it is not easy to determine whether t is mesh point or not. Therefore, we have to
compare the error estimates (3.102) and (3.109), for é > 0 and estimates (3.100) and (3.107)
for é=O. Obviously, the RHS of (3.102) is smaller then the RHS in (3.109) and the analogous
result holds in case é=O. Therefore, (3.107) and (3.109) are the estimates valid in both cases,
i.e. independent of whether t is mesh point or not. This concludes the proof of the Lemma.D

3.3.1.1 A posteriori energy error analysis, dG(O)~Pl

In the following we consider whether Lemma 3.3.1.3 can be applied in case of the dG(O)@PI

approximation which would yield an a posteriori error estimate. To check the assumptions
(3.95), we should estimate

N N

EI:= L1 (Rj; ë-IIe)lldt+ L1 ~(U, ë-IIë)dt,
j=l ~ j=l ~

E2 :=1 a(U2-U2; ëddt+ 1 a(UI -UI +ê(U2-U2); ë2)dt,
Ii Ii

E3:= 1 (Rj; ë)lldt+ 1 ~(U, ë)dt,
Ii Ii

E4 :=1 a(U2-U2; ëddt+ 1 a(UI -UI +ê(U2-U2); ë2)dt,
Ii Ii

by IlëIILOO(ll).Unfortunately, we did not succeed to derive an upper bound for El, E2, E3, E4
in terms of IlëIILOO(ll)'For instance, we could prove that

N

El ~ (L II(1 -Q)Ul-IIIHl(f2)) IlëdILOO(Hl)+ 11(1- .c)(f + :. U4-1
) 11£1(£2)Ilë21ILoo(L2)

j=l J

+CIIDh,1 (UI +éU2) 1I£2(o,T)Ilë21IL2(Hl)+ Ilf - 111£1(£2)lIë2i1LOO(£2), (3.111)
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with a numerical constant C 2: O. However, it is clear that the term Ile21IL2(Hl) can not be
dominated by Ile21Iu)('(£2)' The problem is the estimation of the jump term in space. Here
we used the techniques as before, e.g. trace and Friedrichs inequality, inverse estimates and
we could not obtain a bound in terms of Ile21IL2(!1)' Another possibility would be to use the
nodal interpolation operator 'L instead of L2 projection operator £, but according to Remark
3.1.0.3, the nodal interpolation operator 'L is not L2 stable. We therefore skip the verification
of (3.111). The same difficulty arises if we aim to estimate E2, E3 and E4 instead of El'

Obviously, the choice of the discrete space may be relevant for the validity of the error estimate.
Namely, by means of the discretisation in the higher degree spaces (concerning the spatial
variable), we may be able to avoid the jump terms. This idea will be further developed in
Subsection 3.3.1.2.

Remark 3.3.1.2. The idea applied in Lemma 3.3.1.3 was to estimate residual and other
discrete solution contributions with respect to IlellvX>(ll) in order to absorb the error terms
through the IlellvX>(ll)' Note that Ile21IL2(Hl) could also be absorbed through the viscosity term
clle2(t)lli2(Hl) from the LHS only account to the loss in the final estimate. Namely in the final
estimate we would then have some residual contributions in corresponding norm multiplied
with 1/ VË. For c -+ 0 factor 1/ VË -+ 00 and this yields the estimate which is not sharp
enough to be further used. D

3.3.1.2 A posteriori energy error analysis, dG(O)~CI

Within this subsection we analyse whether the result of Lemma 3.3.1.3 can be applied in case
of the dG(O)QSlCI approximation.

Theorem 3.3.1.1 (A posteriori energy error estimate, dG(O) ~Cl). For u and its dis-
crete dG(O)QSlCI counterpart U, there holds for all c 2: 0

N 2

lIIellliOO(ll) +delli2(Hl) :S 311Yo-'LYollt.l(!1) +311YI -'LYllli2(!1) +22 (LII(1 -Q)U{-IIlHl(!1))
j=l

-2 - 1 . I 2
+4411f - 11I£1(L2)+4411(1 -£)(J+~Ur +il(UI +cU2))II£1(L2)

J
- 2 - - 2+221IU2-U21I£1(Hl)+221Iil(UI-UI +c(U2-U2»)II£1(£2)

+20 max {IIU2 -u Illil(["Hl(!1)) + IIU2- U21Iil(["Hl(!1))l~j~N ). ).

- 2+ 111- U2+il(UI +CU2))II£1(IjiL2(!1))

+llil(UI-UI +c(U2-U2))lli1(Iji£2(!1))}' (3.112)
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Moreover if é = 0, then there holds additionally
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N 2
Illëlllioo(ll):::;21IYO-IYOII~f1(!l)+211YI-IYllli2(!l) + 16(2:11 (1-Ç)ul-IIIH1(!l))

j=l

+3211f-llli1(L2)+3211(1-£)(1+ ;. U4-I+ßudlli1(L2)+161Iu2-U21Ii1(H1)
J

+ 1611ß(UI-Udlli1(L2)+ 16IT1~~{IIU2-UI Ili1(IjjH1(!l))+ Ilf-U2+ßUdlli1(Ij;L2(!l))

- 2 - 2 }+IIU2-U21I£l(IjjH1(!l))+IIß(UI-Udll£l(Ijj£2(!l)) . (3.113)

Note that if Sj-l ÇSj, then (1-IT)Uj-I=O on the RHS of (3.112) and (3.113). Moreover, the
RHS of both estimates is denoted by 'TJ2.

Remark 3.3.1.3. For sufficiently smooth initial data f, Yo,YI, the estimate ofTheorem 3.3.1.1
is of order O(h3+k) when Sj-l ç sj for all j =1, ... , Nand O(h3+k-Ih3+k) otherwise. 0

Proof. The proof follows from an application of Lemma 3.3.1.3. We therefore check the
assumptions of the same in the following.

Lemma 3.3.1.4. With
N

MI:= 211f- 11Ii1(£2)+211(1-£)(1+ ;. u4-I+ß(UI +éU2))lli1(£2)+ (2:11(1 -Ç)Ul-IIIH1(!l))2,

J j=l

there holds for n= 1, ... , N and both aE {2, 4},

(3.114)

L

Note that El is the LHS of (3.95a) since the jump term vanishes for Cl functions.

Proof. Due to the orthogonal properties of the projections Q, £ and Lemma 3.3.1.2, we have
N N

El =2: 1 (Rj-Rj; ë)lldt+ 2:1 (Rj-ITRj; ë)lldt
j=l Ij j=l Ij

N N ..

= 2: 1 (F-F;ë)lldt+ 2: 1 (F-ITF-U+ITU-AU+ITAU;ë)lldt.
j=l ~ j=l ~

Note that (ITU - U)IIj = l/kj(Uj-1 - ITIIjUj-l) and this term equals zero only in case of
hierarchical grids, i.e. when Sj-l ç Sj.
Expanding the last equation in terms of the 1£ scalar product, we obtain
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The Hölder inequality in time and in space yields
N

El :::;II! - 1II£1(L2)llë211L'x'(L2)+(2:11(1 -Q)U[-IIIHl(O)) IlëdlL''''(Hl)
j=l

- 1 . I+ 11(1- £)(f + k:Ur +il(UI +éU2)) 11£1(£2)Ilë211L'X>(L2).
J

With the aid of the Young inequality, we conclude for a E {2, 4}
N

El:::; a( 2:11(1 -Q)Ui-IIIHl(O)) 2 +2allf - lllil(L2)
j=l

+2all(1 -£)(1+ ;. UtI +il(UI +éU2))llil(L2) + 4~ IlëlliOO(ll)' D
J

Lemma 3.3.1.5. For all n= 1, ... , Nand M2 and M4,n defined by
. - 2 - - 2M2'= IIU2-U21I£1(Hl)+llil(UI-UI +é(U2-U2))II£1(£2)'

- 2 - - 2M4,n:= IIU2-U21I£1(1j;Hl(0)) + IIil (UI -UI +é(U2-U2))II£1(1j;L2(0))'

there holds for both aE {2, 4}
n n

E2:= 2: ja(fi2-U2; ël)dt+ ~ ja(UI -fil +é(u2-fi2); ë2)dt:::; aM2+ 4~ IlëIILoo(ll)l (3.116a)
j=l IJ J=l IJ

and also

E4 :=j a(fi2-U2; ël)dt+j a(UI -fil +é(u2-fi2); ë2)dt:::; aM4,n + 4~ IlëIILOO(ll)' (3.116b)
In In

Proof. It is obvious that if we prove (3.116b), the estimate (3.116a) follows automatically.

The Hermite cubic polynomials are globally Cl functions in space which satisfy the (DD) or
(DN) boundary conditions. Then, the partial integration in space yields

E4 = j a(fi2 -U2; ël)dt+j(il(fil -UI +c(fi2-U2)); ë2)dt.
In In

With Hölder inequality we obtain

E4:::; IIfi2 - U21I£1(1n;Hl(0))IIëtllLOO(Hl)+ IIil (fil - UI +é(fi2 - U2)) 1I£1(1n;£2(O))Ilë21ILOO(£2)'(3.117)

With the aid of the Young inequality we prove (3.116b). The estimate (3.116a) can be proven
by taking a sum over all n= 1, ,N in (3.117). D

Lemma 3.3.1.6. For n= 1, , Nand M3,n defined as
. .

- 2 - 2M3,n:= IIU2- UIII£1(1n;Hl(O)) + II!-U2 - il(UI +éU2) 1iL1(In;L2(0))'

there holds for both a E {2, 4},

j - 1
E3:= In(Rn; ë)lldt:::;aM3,n+ 4allëIILOO(1l)'

Note that E3 is the LHS of (3.95c) since the jump term vanishes for Cl functions.

(3.118)
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Proof. Given E3 from (3.118), the residual representation from Lemma 3.3.1.2 implies

E3 = 1(F-U -AU; ë)1{dt
In

= 1a(U2-UI;ël)dt+l (j-U2-ß(UI+CU2);ë2)dt ..
In In

An application of the Hölder inequality in time and in space shows
. .

E3 :SIIU2-u I II£l(In;Hl(0» IlëIIlLOO(Hl)+ II! - U2- ß(UI +cU2) 1I£l(In;L2(O»Ilë21ILOO(L2).
The Young inequality for a E {2, 4} yields the proof. o
Latter lemmas have shown that Lemma 3.3.1.3 can be applied in case of the dG(O) Q9 Cl
approximation. However, if we recall the estimates (3.96) and (3.97), it remains to estimate
term Illeo-lII1{in order to complete the proof of theorem.

Lemma 3.3.1.7. Let the discrete variant of initial solution be defined as

where Uo = (Yo, YI) is the initial solution and I, the Hermite cubic interpolant. Then there
holds,

lIIeo-lII~= Ilyo-IYoll~l(O) +IIYI -IYllli2(O)'
Proof. Proof follows directly from

lIIeo-lII~= Illuo-Uo-lII~ = IIYo-IYoll~l(O) + IIYI-IYllli2(O)'

This concludes the proof of theorem.

(3.119)

(3.120)
o
o

(3.121)

3.3.2 dG(l) time approximation
The main argument in the following error analysis is the use of the residual Res from (2.7),
where B stands for the bilinear form (2.18) and .!£ is defined as in (2.19). We derive an error e
bound 1] for

IlelIi~(1{) +clle21Ii2(Hl).
Contrariwise to the analysis developed for the dG(O) time approximation presented in Sub-
section 3.3.1, the error function ë and the affine interpolant of the discrete solution U are
not involved in the error analysis when dG(l) time approximation is considered. This is due
to the fact that here the time projection .J, cf. Definition 3.1.0.9, case dG(l)a, enables the
optimal estimation of the temporal jump terms. Namely, the projection .lu and u coincide
in each tj-l on Ij.

Lemma 3.3.2.1 (Error representation, dG(l) time approximation). In case of dG(l)
time discretisation, there holds for every V E QI

lIN Nf 1211IeN-III~+2 L 111[e]j-IIII~+cL Ile2(t)II~1(O)= 2"leo-III~+Res(e- V).
j=l j=l Ii
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Proof. The fundamental theorem of calculus leads to

N N N

~Llllej-III~-~ Llllej-I+III~=LI (er; e)lldt.
j=l j=l j=l Ii

101

(3.122)

Given the residual representation (2.10) and the orthogonality (2.9), for arbitrary test function
VE QI we have

N N N N'f:1,<eT ; e) "dt ='f:1,(eT; e - V)"dt+ 'f:1;a( e, ;Vl)dt - 'f:1; (el; Vi)dt

N N

-é Lj(e2; V2)dt- L([ep-I; Vj-H)ll. (3.123)
j=l ~ j=l

From (3.122) and the second identity from Lemma 2.3.3.3, the last equation (3.123) simplifies
to

Moving the last four terms on the RHS of latter equation to the LHS of the same, we may
prove the lemma. D

Lemma 3.3.2.2. In case of dG(q), q=O, 1 time approximation and PI, i.e. Cl approximation
in space, the residual (2.7) may be expressed in terms of local residuals and local jumps such
that for all v E L2(H1xH1)

(Rj ; v)ll(t): = (F; v )ll(t) - (Ur; V)ll(t) - (AU; v )ll(t) - ([UP-I; vj-H)1£'
J.(U V)(t): = { I:::=I[D(UI+éU2)(t)]kV2(t, Xk), for PI elements,

J , 0, for Cl elements.

(3.124a)

(3.124b)

(3.124c)

Here m=n, n-1 in case of Problem (DN), (DD) respectively. The jump terms [D(UI +éU2)]k
are defined in Definition 3.1.0.6.
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Proof. An integration by parts in space in (2.21) with the bilinear form B as in (2.18) and
Z from (2.19), yields for all v E £2(Hb x Hb)

N N N N

Res(v) =f;l (/;v,)dt- f;l a(U"T; v,)dt- f;1;(U"T; v,)dt+ f;l a(U,; v,)dt

N N N m

+ L j (~UI; v2)dt+é L j (~U2; v2)dt+ LI L[D(UI +éU2)]kV2(Xk)dt
j=l Ij j=l Ij j=l Ij k=l

N N

- L a([Udj-\ vi-H) - L([U2]i-I; vtH).
j=l j=l

The jump terms in space [D(UI + éU2)]k equal zero for all k = 1, ... , m in case of spatial
approximation by Cl functions due to the continuity of discrete function in first derivative
and the fact that discrete solution satisfies the (DD) as well as (DN) boundary conditions, see
Subsections 6.1.3, 6.1.4. With the notation from Definition 1.3.0.7, we conclude the proof of
the lemma. 0 _

Remark 3.3.2.1. If!Y is an arbitrary discretisation of the time interval [0,Tl, then from the
definition of the local weak problem (2.6) and the residual representation in Lemma 3.3.2.2,
there holds for each tn E !Y

lIn n.{ 1 n {
2I11en-III~+2 L 111[e]i-IIII~+éLi)le2(t)II~1(n)dt= 2I11eO-III~+LiT (Rj; e- V)lldt

j=l j=l Ij j=l Ij
n

+LI Jj(U; e-V)dt. (3.125)
j=l Ij

Here V is an arbitrary test function, VIIj E Q{ for all j = 1, ... , n for which the residual
orthogonality (2.8) applies. 0

The following lemma will be used latter on for the PI and Cl approximation in space separately.

Lemma 3.3.2.3. Let Rj and Jj be defined by (3.124b) and (3.124c), respectively. Let e be
the error of dG(l) time approximation and PI or Cl discretisation in space. Let II:= (Q, [,) e
be a spatial orthogonal projection with respect to the 1t scalar product and let also .:J be
a temporal £2 projection from Definition 3.1.0.9, case dG(l)a. If there exists some positive
Ml, M2,n such that there holds for all n= 1, ... , N and both a= {I,2}

Then the following estimate is valid for all é 2:: 0

Ilellioo(1l)+de2I1i2(Hl) ~ 311Ieo-III~+11MI + 10 l~~~ M2,j.
_J_

Moreover for é =0 there holds the sharper estimate

Ilellioo(ll)~ 211Ieo-III~+8MI+81~.~NM2,j.
_J_

(3.126a)

(3.126b)

(3.127)

(3.128)



3.3. A POSTERIORI ENERGY ERROR ESTIMATE 103

•

Proof. Similar as in the proof of Lemma 3.3.1.3, let t E [0, T] be some time point where
Ille(t)lll1£= lIeIILoo(1£)'Due to the fact that e is not an affine, globally continuous function in
time, it is difficult to determine whether t is mesh point or not. Analogously to the proof of
Lemma 3.3.1.3, where we proved that the estimate in case t rt.!!7 also holds if tE !!7, we may
proceed here by using the same arguments. Therefore, we treat only the case t rt.!!7 in the
following.
Let us assume that tE (tf-l, tf). Given the error representation formula (3.125) where V =
.JIIe, from (3.126) there holds for all n= 1, ... , Nand a= {I, 2}

1 ni 1 ni ni2I11en-III~+éL !le2(t)llt1(o)dt:S; 211Ieo-III~+~ .(Rj; e-TIë)1£dt+ ~ .Jj(U; e-TIë)dt
j=I l, J=I l, J=I l,

:S;~lIIeO-III~+aMI+ 4~lleilloo(1£)' (3.129)

The fundamental theorem of calculus, Lemma 3.3.2.2 and Lemma 2.3.3.3 imply

~llellloo(1£)-~lllef-1+III~= it (ë;e)1£dT
tt-l

= it(Rf; e)1£dt+ itJf(U; e)dT-éitlle2(T)lItl(O)dT-([e]f-I; ef-1+)
~-l ~-l ~-l

i
t it 1 1 1:S; (Rf; e)1£dt+ Jf(U; e)dT+211Ief-I-III~ - 2111[e]f-IIII~- 211Ief-1+III~.
~-l ~-l

According to (3.126), the last inequality simplifies to

1 2 1 f 1 2 1 2 1111f 1 1112 1 II 112-21IeiILoo(1£):S;-2111e- -11I1£+aM2,f+ -4 lIeIILoo(1£):S;-2 e - - 1£+a max M2,j + -4 e Loo(1£)'a I'5:.i':SN a
(3.130)

With (3.129) where n=f-1 and (3.130), owing to é20 we obtain for a=2

lIellloo(1£):S;211Ieo-III~+8MI +8I~~NM2,j. (3.131)
_J_

For é=O, this concludes the proof. For é20, from (3.129) with n=N and a=l we have
N

€ ~ 1!e2( t) II~.(O)dt 5, ~ meo-I~+M, +~IleI1100(7')5, Illeo-l~ +3M, +2 if/fN M2J. (3.132)

Note that in the second inequality above, we used the estimate (3.131).
Finally, the combination of (3.131) and (3.132) proves

Ilellloo(1£)+de21112(Hl):S; 3I11eo-III~+11MI + 10 I~~N M2,j. (3.133)
_J_

This concludes the proof of the Lemma. 0

3.3.2.1 A posteriori energy error analysis, dG(1)01'1

Owing to the same complexity that obviated the derivation of an a posteriori error estimate
for dG(O)&/PI discretisation, cf. Subsection 3.3.1.1, we were not able to derive an a posteriori
bound in case of dG (1) ~ Pl discrete problem. This yields the conclusion that in case of Pl
space discretisation by estimating according to the techniques of energy method, the error
analysis and derivation of the a posteriori error bound can not be completed at least by using
the result of Lemma 3.3.2.3.
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(3.134)

(3.135)

3.3.2.2 A posteriori energy error analysis, dG(l)~Cl

Contrary to the dG(1)0pl According to results and conclusions from the Subsection 3.3.2.1,
spatially Cl approximation is required in order to prove a sharp residual-based a posteriori
error bound in the energy norm.

Theorem 3.3.2.1 (A posteriori energy error estimate, dG(1)@C1). Foruanditsdis-
crete dG(1)0CI counterpart U, there holds for all é2::0

IlelliOO(1l)+de21Ii2(Hl)::; 31IYo-TYoll~{l(o)+31IYI-IYllli2(o) +3311(1-£)(f +~(UI+éU2)) 11£1(£2)
- - - 2+3311f - f+~(UI-UI +C(U2-U2))II£1(£2)

N . 2
+33(2:: 11(.c-I)U~-I-IIL2(O») +221IU2-U2I1il(Hl)

j=l

N

+22(2:: II(g-I)Ul-I-IIHl(o)f
j=l

+20 lTi~N{IIU2-UI,Tllil(IjiHl(O)) + III[uJi-IIll~

+ Ilf - U2,T + ~(UI +éU2)) lIi1(Ij;L2(O» }.

Moreover, for é=O, then there holds the sharper estimate

IlelliOO(1l)::;2I1Yo~IYoll~1(o) +211YI-IYtlli2(O) +2411(I - £)(f +~UI) 1I£1(L2)
N 2

+24111 - f+~(UI-Udllil(£2)+24( 2:: 11(£-I)u4-1-11£2(O») +161IU2-U21Iil(Hl)
j=l

N 2
+16( 2:: 11(Ç-I)Utl-IIHl(O») +161~~N {IIU2-UI,Tlli1(Ij;Hl(O»

. I _J_
J=

+ 111[uJi-IIll~+llf -U2'T+~Ulllil(Ij;L2(O»}'

Note that if Sj-l ÇSj, then (1 -II)Uj-1 =0 on the RHS of (3.134) and (3.135). Moreover, the
RHS of both estimates is denoted by TJ2.

Remark 3.3.2.2. The estimate of Theorem 3.3.2.1 is of order O(h3+k) when Sj-l ç Sj and
O(h3+k-Ih3+k) otherwise. This holds for sufficiently smooth initial data Yo,YI, f. 0

Proof. The proof follows from an application of Lemma 3.3.2.3. We prove the validity of the
assumptions (3.126) in the following two lemmas.

Lemma 3.3.2.4. With

2 - - - 2MI:= 311(1- £)(f +~(UI +éU2))II£1(£2) +311f - f +~(UI - UI +é(U2-U2))II£1(L2)
N 2 N 2

+3(2:: 1I(£-I)u4-1-IIL2(O») +2I1U2-U21Ii1(Hl)+2(2:: 11(Ç-I)ul-I-IIHl(O») .
j=l j=l

•

•



3.3. A POSTERIORI ENERGY ERROR ESTIMATE

there holds for n= 1, ... , N and both a= {I, 2}

105

(3.136)

•

Note that El is the LHS of (3.126a) since the jump term vanishes for Cl functions.

Proof. Due to the orthogonal properties of the projections Q, £,.:J and Lemma 3.3.2.2, we
have

n n

El =L! (Rj-ITRj; e-IIe)1idt+ L! (Rj-Rj; IIe-IIë)1idt
j=l ~ j=l ~
n n

= L! (F-IIF-AU +IIAU; e-IIe)1idt+ L (IIUj-l- _Uj-l-; (e-IIe)j-1+)1i
j=l ~ j=l

n

+L! (F-F-A(U -U); IIe-ITë)1idt. (3.137)
j=l Ii

Note that the term IIUj-1 - Uj-l from the last equality above equals zero for Sj-l ç; sj.
Expanding the equation above due to the definition of the 1£ scalar product, we obtain

n n

El =L! ((1-£)(f+ß(UI +éU2)); e2)dt+ L a((Q-I)Ui-I-; e{-1+)
j=l Ii j=l

n n

+ L((£-I)u4-1-; ~-1+)+ L!. a(U2-U2; Qeddt
j=l j=l I}

n

+ L j (f -1+ß(UI -UI +é(U2-U2)); £e2)dt.
j=l Ii

The Hölder inequality yields

N

El::; II(I - £)(f +ß(UI +éU2)) IIV(£2} Ile211L'lO(£2}+ (L IIW - I)utl-IIH1(rl}) 1Ie111L'lO(Hl}
j=l

N

+ (L 11(£- I)utl-lk2(rl}) Ile21IvX>(L2}+ IIU2-U21ILl(Hl} IletllL'lO(Hl}
j=l

+11f-l+ß(UI-UI +é(U2-U2))IIV(L2}lle211L'lO(L2}.

With the aid of the Young inequality we obtain for a= {I, 2}
2 - - - 2El::; 3all(I - £)(f +ß(UI +éU2))IIV(L2)+3allf - f +ß(UI -U I+é(U2-U2))IIV(L2}

N N

+3a(L 11(£-I)U4-1-11£2(rl}r +2a(L IIW-1)utl-IIH1(rl}r
j=l j=l

- 2 1 2+2aIIU2- U21ILl(Hl} + 4)lellvXl(1i}'

This concludes the proof of the lemma. o
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Lemma 3.3.2.5. For all n=1, ... , Nand M2,n defined by

M2,n:= 211U2- UI,rllil(ln;Hl(f!)) +211[udn-III~1(f!)
+211f - U2,r+~(UI +cU2)) Ili1(In;L2(f!))+211[u2]n-Illi2(f!)'

there holds for both a={l,2}

E2:= In (Rn; e)1idt 5: aM2,n+ 4~ IlelliOO(1i)'

Note that E2 is the LHS of (3.126b) since the jump term vanishes for Cl functions.

Proof. In case of E2 we have

E2=!(F-Ur-AU; e)1idt+([u]n-l; ei-1+)1i
In

=!a(U2-UI,r; el)dt+! (1- U2,r+~(UI +cU2); e2)dt
In In

+a([Ult-l; e~-1+)+([U2]n-l; e~-1+).

(3.138)

Applying the Hölder and then the Young inequality inequality for a= {l,2}, we conclude

o

(3.139)

If we assume that the discrete initial solution Uo- is defined as in Lemma 3.3.1.7, then the
results of the latter lemmas and the estimate (3.120), combined with (3.127) and (3.128) yield
the proof of theorem. 0

Remark 3.3.2.3. In Subsection 3.3.1.2, we used the bilinear form B for the discrete model
to derive an a posteriori error estimate for dG(O) @CI. On the other hand, we mayalso
perform the same strategy for the derivation of a posteriori error estimates for the dG(O)@CI •
approximation as for dG (1) @CI. In this case, the resulting estimate reads for c ~ 0

• if the temporal operator .:l is defined by .:lIIje := :h. e,
]

IIeIIioo(1i)+de2I1i2(Hl )dt 5: 311Yo-IYoll~l(f!) +311YI-IYllli2(f!) +4411(1- £)(1+~(UI +cU2)) Ilil(£2)
N 2 N 2

+22(2:: IIW-I)UI-1-IIH1(f!)) +22(2:: 11(£-1)U4-1-IIL2(f!))
j=l j=l

N 2

+441If-fllil(£2) +22 (2:: II[U]{-lll£l(Hl))
j=l

N 2

+44 (f; II[U2]i-III£l(L2)) +20 1~'rN{IIU21Ii1(lj;Hl(f!))

+ 111[u]i-IIII~+ Ilf +~(UI +cU2)lli1(lj;£2(f!))}'
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•

• if the temporal operator :l is defined by :lllje := ej-1+

IlelliOO(ll)+de21Ii2(Hl) ~ 3I1Yo-IYoI111(11)+311Yl-Iytlli2(11) +221IU21Ii1(Hl)
+3311(1 - £)(1 +ß(U1+éU2))llil(£2) +33111 +ß(U1 +éU2)llil(£2)

N . 2 N . 2

+22(I: II(g-I)Uf-1-IIHl(I1)) +33(I: 11(£-I)ur1-IIL2(11))
j=l j=l

+20 1~~1v {IIU21Ii1(lj;Hl(I1))+ 111[U]j-llll~

+11f+ß(U1+éU2)lli1(Ij;L2(11))}. (3.140)

The estimate in case é=O can be derived similarly. The comparison of estimate (3.112) with
(3.139) and (3.140) shows that the estimates (3.139) and (3.140) are of order 0(1) in time,
whereby the estimate (3.112) shows the convergence order O(k) which makes it better. 0

3.3.3 cG(1) time approximation
Within this section we provide an a posteriori error analysis for cG(I) 0Pl and cG(I) 0C1

discretisation. The presented analysis follows via residual arguments introduced in Definition
2.3.1.2 with B,.:£ from (2.41) and (2.42), respectively. For the notation and definitions, we
refer to Section 2.1 and Subsection 2.3.4. Note that the analysis of this section is completely
analogous to the analysis for the dG(I) case. The only difference is that the jump terms in
time of the discrete solution do not occur here.
Recall that in case of the cG(I) time discretisation, we require that Sj-l ç sj for all j =
1, ... , N in order to provide the continuity of the discrete solution with respect to the neigh-
bouring time levels.

Lemma 3.3.3.1 (Error representation, cG(1) time approximation). In case of cG(I)
time discretisation there holds for every V E Wc,

(3.141)

Proof. The fundamental theorem of calculus and the fact that the error e is a continuous
function in time, leads to

(3.142)

With the residual representation (2.7) and the orthogonality of the residual from (2.8), we
have for arbitrary V E Wc

i
T

(ë; e)lldt= iT (ë; e- V)lldt+ iTa(e2; V1)dt-i
T

a(el+ée2;lt2)dt

= Res(e- V) -é iTa(e2; e2)dt.

The combination of the last equality and the identity (3.142) yields the proof of lemma. 0
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(3.l43a)

Lemma 3.3.3.2. In case of cG(l) time approximation and PI or Cl approximation in space,
the residual (2.7) may be expressed in terms of local residuals and local jumps such that for
any v E L2(Hf; x Hf;)

Res(v) = iT (R;v)lldt+ iT J(U,v)dt

where for all (t, x) E [0,T] x n

R(t, x): =F(t, x) - U(t, x) - AU(t, x) III Q,

J(U, v)(t): ={ 2:;;=1 ([D(U1 +éO~2)]k)(t)V2(Xt'k)' for PI elements,
for Cl elements.

(3.l43b)

(3.l43c)

Here m=n, n-l for Problem (DN), (DD) respectively. Furthermore, [D(U1 +éU2)]k are defined
as jumps of the piecewise constant functions DUI, DU2 with respect to the space coordinate,
see Definition 3.1.0.6.

Proof. Given (2.7) with B,:t' as in (2.41), (2.42), respectively, an integration by parts in
space yields for each v E L2(Hf; x Hf;)

Res(v)= iTU;v2)dt-i
T

a(uI;vI)dt-lT(U2;V2)dt+ iT a(U2;vddt+ iT(~UI;v2)dt

iT iTm
+é 0 (~U2; v2)dt+ 0 f;[D(UI +éU2)]kV2(Xk)dt.

In case of the spatial approximation by Hermite cubic splines, the jump terms equal zero due
to the fact that the discrete functions satisfy the boundary conditions, see Subsection 2.1.2.
With the notation from Definition 1.3.0.7, we conclude the proof of the lemma. 0

Remark 3.3.3.1. If !!7 is an arbitrary discretisation of time interval [0,Tl, then from the
definition of the local weak problem (2.6) and the residual representation from Lemma 3.3.3.2,
there holds for each tn E !!7 •(3.144)

Here V is an arbitrary test function, VIIj E Q& for all j = 1, ... ,n for which the residual
orthogonality (2.8) holds. 0

Lemma 3.3.3.3. Let Rand J be defined by (3.l43b) and (3.l43c), respectively. Let e be the
error of cG(l) solution with respect to the PI i.e. Cl discretisation in space. Let II:= (Ç, £) be
a spatial orthogonal projection with respect to the 1l scalar product. We assume that there
are some positive Ml, M2,n such that there holds for all n= 1, ... , N and both Œ= {I, 2}

(3.l45a)

(3.l45b)
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then the following estimate is valid for all c 2::0

Moreover if c =0, then there holds additionally
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(3.146)

(3.147)

•

•

Proof. The proof is similar to the proof of Lemma 3.3.2.3. Here we also discuss only the case
t et g where Ille(t)1111l= IlellulO(1-l)and g is the arbitrary triangulation of the time interval [0, Tl.

Let us assume that t E [ti-I, ti) for some 1'5: f '5:N.
Given the error representation formula (3.144) with V = Ile, from (3.145) we have for all
n =1, ... , N and a E {I, 2}

The fundamental theorem of calculus, Lemma 3.3.3.2 and assumption (3.145) with a = 2,
imply

~llelliOO(1l)-~llle(ti-l)III~= it (eT ;e)1ldT
tl-l

= it (R; e)1ldT+ it J(U; e)dT-c itlle2(T)lliIl(fl)dT
tn-l tn-l tn-l

'5:2M2,i+~llelliOO(1l) '5:21~y~~M2,j+~llellioo(1l). (3.149)

With (3.148) where n=f-1 and a=2, we obtain from (3.149) and the fact that c2::0

(3.150)

For c = 0 this conel udes the proof. For all c 2::0, from (3.148) with n= N and a = 1 we have

(3.151)

Note that in the second inequality above we used the estimate (3.150).
Finally, for c 2::0, the combination of (3.150) and (3.151) proves

(3.152)
o
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3.3.3.1 A posteriori energy error analysis, cG(1)01'l

From Lemma 3.3.3.3, an a posteriori error estimate can be derived for the case of cG(1)Q9Pl
approximation if the following terms are estimated with respect to IleIILOO(ll)' namely

ltn ltnEl:= 0 (R; e-ITë)lldt+ 0 J(U, e-ITë)dt,

E2:= !(R; e)lldt+! J(U, e)dt.
In In

(3.153a)

(3.153b)

Here we deal with the same complicity in the derivation of the a posteriori error estimate as
in the case of dG(O) Q9Pl and dG(1) Q9Pl approximation, see Subsection 3.3.1.1 and 3.3.2.1,
respectively. Namely, we can not accomplish the estimation of (e2-£e2)(xk) with respect to
Ile21ILOO(L2).However, the term in question can be estimated with respect to Ile21IHl(O)'but then
we can not apply Lemma 3.3.3.3. For further details, we refer to the Subsection 3.3.1.1.

3.3.3.2 A posteriori energy error analysis, cG(1)0Cl

According to results and conclusions from the previous section a spatially Cl approximation is
required in order to prove a sharp residual-based a posteriori error bound in the energy norm.

Theorem 3.3.3.1 (A posteriori energy error estimate, cG(1)@C1). For u and its dis-
crete cG (1) Q9CIcounterpart U, there holds for all é 2:: 0

lIIellliOO(ll)+élle21Ii2(Hl):S;31IYo-IYollt-l(O)+311Yl-IYllli2(o) + 11IIU2- U21Iil(Hl)
- - - 2

+2211f-I+ß(UI-Ul +é(U2-U2))11£1(£2)
2 {. 2+2211(1 -£)(f +ß(UI +éU2)) II£I (L2) + 10 1~~N IIU2-Ulll£1(Ij;Hl)

+111-U2+ß(UI +éU2)lli1(IjjO)}. (3.154)

Moreover if é =0, there holds additionally

IllellliOO(ll):S;211Yo-IYollt-l(O) +211YI-IyIilh(o) +811U2-U 21Iil(Hl)
- - 2 2

+ 1611f-1 + ß(UI - U 1) 11£1(L2)+ 1611(I - £) (f + ßUd 11£1(£2)

+8 max {IIU2-Ùllli1(I'.Hl)+111 -U2+ßUllli1(I"O)}.1-:::.i'~N l' l'

Note that the RHS of both estimates is denoted by Tl.

(3.155)

Remark 3.3.3.2. For sufficiently smooth initial data, the error estimate of Theorem 3.3.3.1
is of order O(h2+k). 0

Proof. The proof follows from an application of Lemma 3.3.3.3. We prove the validity of the
assumptions (3.145) in the following two lemmas.

Lemma 3.3.3.4. With
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(3.156)

there holds for n= 1, ... , N and both a E {I, 2}

ltn 1
EI:= (R; e- IIë)lldt::; aMI +-lleIIloo(ll)'

o 4a

Note that El is the LHS of (3.145a), since the jump terms vanishes for Cl functions.

Proof. Due to the orthogonal properties of projections Q, [, and the fact that Si-l ç; Si for
all j = 1, ... , N, we have

l
tn ltnEI= 0 (R-IIR;e-IIe)lldt+ 0 (R-R;IIe-IIë)lldt

l
tn ltn= 0 (F-IIF-AU +IIAU; e)lldt+ 0 (F-F-A(U -U); IIe)lldt.

Expanding the last equation in terms of 1l scalar product we show

1~ r~
El = 0 ((1-.c)(f+ß(UI +éU2)); e2)dt+ Jo a(U2-U2; Qeddt

ltn
+ 0 (J-l+ß(UI-UI +£(U2-U2)); [,e2)dt.

The main properties of projections Q,.c and the Cauchy inequality yield

El::; 11(1- .c)(J +ß(UI +éU2)) 1I£1(L2)Ile21IuX>(£2)+ IIU2-U 21I£1(Hl)IleIIILOO(Hl)

+11/-l+~(UI-UI +é(U2-U2))II£1(L2)lle21Ivx>(£2)'

With the aid of the Young inequality, we conclude for a E {I, 2}
2 - 2El::; 2all(1 -.c)(f +ß(UI +éU2))II£1(Ij;L2) +aIIU2-U21I£1(Hl)

- - - 2 1 2
+2all/-I+ß(UI-Ul +é(U2-U2))II£1(£2)+ 4allellvX>(1l)' 0

Lemma 3.3.3.5. For all n= 1, ... , Nand M2,n defined by
. 2 . 2

M2,n:= IIU2-UtII£1(In;Hl(O)) + Il!-U2+ß(UI +éU2)11£1(In;£2(O))'
there holds for both a E {l,2}

E2:=1(R;e)lldt::;a m.ax M2,i+-4
1

Ilellloo(ll)'
In I"5:.J"5:.N a

Note that E2 is the LHS of (3.145b), since the jump terms vanishes for Cl functions.

Proof. Similar as in the proof of of lemma above, we have

ltn
E2= 0 (F-Ù-AU+IIAU;e)lldt

l
tn ltn= 0 a(U2-ÙI;el)dt+ 0 (f- Ù2+ß(UI+éU2);e2)dt

::; IIU2- ÙIII£1(In;Hl(O))IleIIILOO(Hl)+ III- Ù2+ ß(UI +éU2) IIv (In;L2(O)) Ile21ILOO(L2).

An application of the Young inequality for both aE {I, 2} yields the proof of lemma. 0

If we assume that the discrete initial solution U(O) is defined as Uo- in Lemma 3.3.1.7, then
the latter Lemmas and the estimate (3.120) combined with (3.146) and (3.147) yield the proof
of theorem. 0
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3.3.4 Method of lines

In this section we provide a full error analysis concerning the derivation of a posteriori error
bound in case of the method of lines and PI or Cl spatial discretisation. Namely, we seek to
find an error bound TJ, such that

The error analysis follows via residual argument introduced in Definition 2.3.1.2, with B,.:£
from (2.49) and (2.50), respectively. For the notations and definitions, we refer to Section 2.1
and Subsection 2.3.5.

Lemma 3.3.4.1 (Error representation, MoL). In case of the MoL discretisation, there
holds for each tE [0,Tl

(3.157)

Proof. From the fundamental theorem of calculus, we may deduce for each tE [0,Tl

According to the definition ofthe residual Res, cf. (2.7), and the orthogonality (2.8), we have
for arbitrary V E Ws

•

it (é; e)1ldT= it (é; e- V)1ldT+ it a(e2; vddT-i
t

a(el +ée2; lt2)dT

= Res(e- V) -é it a(e2; e2)dT.

A combination of the latter two inequalities yields the proof of the lemma. o •Lemma 3.3.4.2. In case of the method of lines and PI or Cl approximation in space, the
residual (2.7) may be expressed in terms of local residuals and local jumps such that for any
VEC(0,T;H1(n)2) and tE [O,T],

Res( v)(t) = (R; v )1l(t) +J(U, v)(t),

where in particular

R(t, x) : = F(t, x) - U(t, x) - AU(t, x) III Q,

J(U, v)(t) : = { L~=I[D(UI +é~2)(t)lkv2(t, Xk), ~~~ Pl elements,
Cl elements.

(3.158a)

(3.158b)

(3.158c)

Here m=n,n-l for Problem (DN), (DD) respectively. Thejumps terms [DUllk, [DU2lk are
defined as in Definition 3.1.0.6.
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(3.160)

(3.161)

(3.164)

(3.165)

(3.166)
o

Proof. Given (2.7) with B,2 as in (2.41) and (2.42), respectively, an integration by parts in
space yields for each vEC(0,T;H1(n)2) and tE [O,T],

Res( v )(t) =(J(t); V2(t)) - a(UI (t); VI (t)) - (U2(t); V2(t)) +a(U2( t); VI (t)) + (~UI (t); V2(t))
m

+c(~U2(t); V2(t))+ I)D(UI +éU2)(t)]kV2(t, Xk).
k=l

In case of the spatial approximation by Cl elements, the jump terms equal zero due to the
fact that the discrete functions satisfy the (DD) or (DN) boundary conditions, see Subsection
2.1.2. With the notation from Definition 1.3.0.7, we conclude the proof of the lemma. 0
Remark 3.3.4.1. From the error representation (3.157) and the residual representation from
Lemma 3.3.4.2, there holds for each tE [0,T] and V E Ws

~llle(t)III~+é itlle2(T)II~1(n)dT=~llle(0)111~+ it (R;e-V)1idT+ it J(U,e-V)dT. (3.159)
o

Lemma 3.3.4.3. Let Rand J be defined by (3.158b) and (3.158c), respectively. Let e be
the the error of semi-discrete solution with respect to the PI i.e. Cl discretisation in space.
Let IT:= (9, £) be a spatial orthogonal projection with respect to the 1l scalar product. We
assume that there is some positive M such that there holds for each tE [0, T]

it it 1(R; e- ITe)1idT+ J(U; e-ITe)dT ~ M +-lleiliOO(1i)'
o 0 4

then the following estimate is valid for all é ~ 0

IlelliOO(1i)+de21Ii2(Hl)~ 311Ie(0)111~+6M.

Moreover, if é=O, then there holds a sharper estimate

liellioo(1i)~ 211Ie(0)111~+4M. (3.162)

Proof. Given the error representation formula (3.159) where V =ITe, from (3.160) there holds
for all tE [0, T]

~llle(t)III~+é it Ile2(T)II~1(n)dT= ~llle(O)III~+l<R; e-ITe)1idT+ it J(U; e-ITe)dT

1 2 1 12~ 2I11e(0)1111i+M +411el LOO(1i)' (3.163)

The function e is a monotone function in time. Let tmaxE[O, T] be some point in time such
that IIeilLOO(1i) = IIIe(tmax)lll1i'
Ifwe choose t=tmax and a=1 in (3.163), then for é=O we may conclude

Ilellioo(1i)~ 211Ieo-lII~+4M.
From (3.163) with t=T and a= 1, we have for all é ~ 0

fT 2 1 0 2 1 112 0 2éJo 1Ie2(T)IIHl(n)dT~211Ie -1II1i+M+41Ie Loo(1i)~lIIe -1II1i+2M.

Note that in the second inequality above we used the estimate (3.164).
Finally, for é ~ 0, the combination of (3.164) and (3.165) proves

Ilellioo(1i)+élle2I1i2(Hl)~ 3I11e(0)III~+6M.
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3.3.4.1 A posteriori energy error analysis, MoL~Pl

From Lemma 3.3.4.3, we can derive an a posteriori error estimate if the assumption (3.160)
hold. Unfortunately, in case of M OL~PI discrete problem, we did not succeed to derive an
upper bound for

EI:= it
(R; e-ITe)lldT+ it J(U, e-ITe)dT

in terms of IlellvX>(ll). Namely, we can estimate the second term on the RHS of the equality
above only with respect to Ile21IH1(o)and thereafter the adequate a posteriori error bound can
not be derived. We refer to Subsection 3.3.1.1 for further explanation.

3.3.4.2 A posteriori energy error analysis, M OL~Cl

From the Subsection 3.3.4.1, a spatially Cl approximation is required in order to prove a sharp
residual-based a posteriori error bound in the energy norm.

Theorem 3.3.4.1 (A posteriori energy error estimate, M oL&;JC1). For u and its semi- '_
discrete MoL r:sCI counterpart U, there holds for all é ;:::0

Ilellioo(ll)+élle21Ii2(Hl )dt ::; 311Yo-IYoll~l(O) +311YI-IYtlli2(O)
+611{1 -£)(f+ß(UI +éU2))lli1(L2). (3.167)

Moreover if é =0, then there holds additionally

Ilellioo(ll)::; 21IYo-IYoll~1(O) +211YI -IYllli2(O) +411{1 - £)(f +ßUI) Ili1(£2). (3.168)

Note that the RHS of both estimates is denoted by 7J2.

Remark 3.3.4.2. For sufficiently smooth initial data I, Yo, YI, the estimates (3.167) and
(3.168) are of order O(h3). 0

Proof. The proof follows from an application of Lemma 3.3.4.3. Therefore, we need to to
prove the validity of the assumption (3.160). This is given in the following lemma.

Lemma 3.3.4.4. With

there holds for tE [0,Tl

EI:= it
(R; e-ITe)lldT::; M +lllellioo(ll). (3.169)

Proof. Owing to the orthogonal properties of projection IT= (Ç, £) with respect to 1£ scalar
product, the LHS of (3.169) is equivalent to

El = it (R-ITR; e)lldT

= it (F - ITF - Tl+ITU - AU +ITAU ;e)lldT

= l(/-£I+ß(UI +éU2)+£ß(UI +éU2); e2)dT.
. .

Note that in the second inequality above we used U = ITU. An application of the Hölder and
Young inequality yield the proof of lemma. 0
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•

In order to complete the proof, its left to estimate the error of initial solution lIIe(O) 1111£. If we
assume that the discrete initial solution U(O) is defined as Uo- in Lemma 3.3.1.7, then the
latter Lemma and the estimate (3.120) combined with (3.167) and (3.168) yield the proof of
theorem. 0



Chapter 4

Dual method

Within the following chapter, we give an introduction to the dual method as one of the easily
applicable methods for the derivation and analysis of a priori and a posteriori error bounds
for finite elements discrete methods.
In determining the error bounds, the dual method approach assumes the usage of the so-called
backward problem which is also referred to as dual or adjoint problem. The initial problem is
then according to this notation often referred to as forward problem. The backward problem
is introduced through its continuous (strong) and discrete (weak) formulation. For the strong
formulation we refer to Section 4.1. The weak formulation is introduced for each ansatz
in time separately. However, the derivation of the a priori resp. a posteriori error bound
mainly relies on the so-called weak resp. strong stability estimates which are derived from
the corresponding adjoint problem. Moreover, the a posteriori error analysis also relies on the
residual arguments similar as in Chapter 3.
A priori and a posteriori error analysis are discussed in Section 4.2 and 4.3, respectively. We
first introduce the time approximation, i.e. discontinuous and continuous Galerkin methods
as well as the method of lines and then combine with different spatial ansatzes, i.e. PI and
Cl elements in space.
The notation used in the following is the one from Table 3.1 and also the additional notation
presented in Table 4.1. The analytical techniques in case of dG (q), q =0, 1 time discretisation

<I>
\l1
B*
IC
ICh
.Ji
<-; ')-û, 111.11I1£

exact dual solution
discrete dual solution
weak dual bilinear form
continuous operator IC
discrete IC operator
temporal Hl projection
weak scalar product and corresponding norm

solution of (4.3)
solution of (4.9), (4.35)
Definition 4.1.0.2
Definition 1.3.0.5
Definition 2.3.3.4
Definition 3.1.0.10
Definition 1.3.0.6

Table 4.1: Additional notation used in Chapter 4.

rely on the duality approach used in JOHNSON[42]for the dG(l)@PI discretisation of the
wave equation. In case of continuous Galerkin approximation in time and space our analysis
is similar to the one presented in AZIZ-MoNK [5] and LUSKIN-RANNACHER[?],where the
parabolic equation has been discretised. Both papers consider the wave equation , Le strongly
damped wave equation with é = O. In our analysis we extend these methods to the more
general case é 2: 0 with certain restrictions for é =0 and é > 0, respectively.

117



118 CHAPTER 4. DUAL METHOD

4.1 Adjoint problem
In the following we introduce the adjoint problem related to the initial problem (1.13) and
derive strong stability estimates for which. This will allow us to construct the discrete scheme
for particular discrete ansatzes in space and time and also to develop the a priori and a pos-
teriori error bounds.

First, we introduce the adjoint problem, whereby we recall the notations and definitions from
Section 1.3. The adjoint problem reads: For given data (4)f-, 4>f-) E H1 x L2(O), for s = 0,
resp. (4)f-,4>f-)E (H2nH1) xH1(O), for s=l, find 4>:Q--+R such that

., .
4>- 6.4>+ E:6.4>= a on Q (4.1a)

subject to the initial conditions

and boundary conditions of either

4>(t,O) = 0, D4>(t, 1) -E:D~(t, 1) = 0, on [0, T]

or

4>(t,O) = 0, ~(t, 0) = 0, on [0, T]

(DN*),

(DD*).

(4.1b)

(4.1c)

(4.1d)

We refer to the dual continuous problem as Problem (DN*) when (4.1a)-(4.1b)-(4.1c) hold
and Problem (DD*) provided (4.1a)-(4.1b)-(4.1d).
Similar to the notation from Definition 1.3.0.7 we mayalso rewrite the dual problem (4.1) in
the vector form.

Definition 4.1.0.1 (Adjoint operator A*). Let <l> = (4),~) the vector form of the dual
solution of problem (4.1) and define the dual operator matrix A* :1l--+1l by

A* := [1 -~6.]. (4.2)

The problem (4.1) is equivalent to: Find <l>EHI(O,T;1l) such that

-<Ï>(t, x) -A*<l>(t, x) = 0, on Q,
<l>(T,x) = <l>N-(x) on 0,

(4.3a)

(4.3b)

for A*: 9J(A*) c1l--+ 1l where

9J(A*) := {(UI, U2) C H1(O) x H1(O) I UI-E:U2 E H2(O) and D(UI-E:U2)lrN = a}
and given <l>N- E 9J(A*). 0

Remark 4.1.0.3. Note that for u E9J(A) and v E9J(A*) there holds (Au; v)1i = (u; A*v)1i
smce

(Au; v)1i =((-U2, -6.( UI +E:U2)) ; (VI, V2))1i
= - a( U2; vd - (6.(UI +E:U2); V2)
=a(uI; V2) - a(u2; vd+E:a(u2; V2)
= a( UI; V2) + (U2; 6.(VI -E:V2)) = (u; A*v)1i' o
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In the following we derive the strong stability estimates.

Lemma 4.1.0.5. Let <I>= (4),~) be the solution of the vector dual problem (4.3), then the
following stability estimates for all tE [0,T] hold

111<I>(t)lll~ + 2é iT 1I~(T)1111(0)dT =III<I>N-III~,

111<I>(t)lll~ + 2é iT 11~(T)II~2(0)dT =III<I>N-III~.

Moreover in case of (DD*) boundary conditions there holds

If é=O then

(4.4a)

(4.4b)

(4.4c)

Proof. Scalar multiplication of (4.1a) with ~ with respect to L2(0) gives

An integration by parts with respect to the spatial variable x and the boundary conditions
(DN*) or (DD*) from (4.1) lead to

la. 2 la 2 • 2
2 aT 114>(T)II£2(O) + 2 aT 114>(T)IIHl(O)dT - d4>(T)IIHl(O) = O.

An integration over the time interval [t, T] and the main theorem of calculus in time, yield

1. 2 1. 2 1 2 12fT. 22114>(T) 11£2(0) - 2114>(t) 11£2(0) + 2114>(T) IIHl(O) - 2114>(t) IIHl(O) -é t 114>(T) IIHl(O)dT = O.

Finally, the use of the condition (4.1b) proves the statement (4.4a).

For the proof of the second stability assertion, we proceed similarly by multiplying (4.1a) with
K~ with respect to the L2(0) scalar product. This leads to

An integration by parts in space in the second term shows

From <I>E 91(A*) and the fact that K~ is the solution of the steady-state problem (1.14), the
boundary terms in the equation above vanish for either (DD*) or (DN*) boundary conditions.
Moreover, for ~EL2(0) there holds a(K~;v)=(~;v) for all VEH1(0) with the definition of
the operator K. Therefore, the last equality simplifies to
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Furthermore, an integration with respect to the time interval [t, T] and the main theorem of
calculus yield

1 1/2 . 2 1 1/2 . (2 1 2 1 2 iT. 22"IIK 4>(T)IIL2(!1)-2"IIK 4> t)IIL2(!1)+2"II4>(T)1iL2(!1)-2""4>(t)IIL2(!1)-ê t 114>(-r)IIL2(!1)dr=O.

This concludes the proof of the second stability assertion.

For the proof of the third stability estimate (4.4c), we proceed similarly as in case of the first
two estimates. Namely, by multiplying (4.1a) with -!:i.~ with respect to £2(0) scalar product
and integrating in time, we obtain

An integration by parts in space yields

Obviously, the second term on the LHS in the equation above equals zero if (DD*) boundary
conditions or ê = 0 hold. The main theorem of calculus applied to the last equation proves
the third stability assertion, i.e.

Furthermore, in order to prove (4.4d), recall that ifê=O, ~=!:i.4>. Ifwe replace 11!:i.4>llu>O(L2) in
(4.4c) by 11~11L''''(L2) and combine the resulting estimate with (4.4c), we complete the proof of
the fourth stability estimate. 0

Definition 4.1.0.2 (Dual bilinear form B*). Let B* be the dual bilinear form with re-
spect to the bilinear form B defined in Subsection 2.3.1 defined such that

B*(v,u):=B(u,v) for all u,v E H1(:Y;1l). (4.5)
o

An explicit formel for B* is derived later on with integration by parts in time for each dis-
cretisation in time separately.

4.2 A priori dual error estimate
In the following we try' to determine the a priori error bound 'TJa such that

Here eN-is the error related to the final time point T. The bound 'TJa depends on space and
time mesh-size h, k, respectively, as well as on the initial solution u.
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ê=O
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dG(O) O(hP+k) S;-1 =s;

Subsection 4.2.1.1 O(hP+k-I/2hP+1+k) otherwise

dG(1) O(hP+k2) S;-1 =S; O(hP+k3) S;-I=S;

Subsection 4.2.1.2 O(hP +k-I/2 hP+k2) otherwise O(hP+k-I/2hP+k3) otherwise

cG(1)
Subsection 4.2.2

Table 4.2: Proven a priori error estimates for IlleN-III1l; P= 1 for PI elements and p= 3 for Cl
elements in space; dual method.

The main arguments in the subsequent dual-based a priori error analysis are the weak stability
estimates. They depend on the properties of the weak dual problem, in particular on the time
discretisation method.
The proven convergence order of a priori error estimates for different time discretisation meth-
ods and PI and Cl ansatz in space are given in Table 4.2.
For comparison only, note that the results obtained by the dual method show better conver-
gence rates than the one obtained by the energy method, cf. Table 4.2 and 3.2, respectively.
In particular, by use of the energy method, we did not succeed to derive an a priori error
estimate for dG(I) time discretisation as well as for the cG(I)~PI case. Apart from that, the
dual method also provides the better estimate for the dG(O) time discretisation, see Figure
4.1. Namely for h=k and dG(O)~PI' the duality method proves convergence of order O(h).

10'

10'

10'"

10'"

10"

Figure 4.1: Convergence of 1IeIIvXl(1l) for dG(O)~CI with respect to the number of elements in
space; The a priori error bound TJa=O(hP+k) is optimal for both p= 1,3. For p= 1, see Figure
3.1. For p = 3 and k=h3, the exact error is of order O(h3); Example 6.2.1, ê=O, (DN), T= 1.

The energy metod provides an estimate of order O(hl/2) for the same choice of time and space
steps. For the proof of the optiamlity of the proven a priori error bound when dG(I) in time,
we refer to the Figure 3.5 where besides the proven a posteriori energy error estimate, the
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(4.8)

error in the energy norm and the dissipative term have been ploted. We also refer to Figure
3.6, where the bahavior of the exact error terms when cG(1) in time is showed.
The approach and techniques used in the following adopt the one presented in JOHNSON [42]
for the problem dG(1)@Pl with é = 0 whereby our estimate show better convergence rates.
Namely for each k=ho where 0'>2, we have an estimate of order O(h) whereby in JOHNSON
[42] proven a priori estimate is weaker, i.e. O(h2-o/2).

4.2.1 dG(q) time approximation, q=O, 1

For the notation and definitions used within this section we refer to Section 2.1 and Subsection
2.3.3 where space discretisation and discontinuous Galerkin approximation are introduced,
respectively. The main tool in the following analysis is the bilinear form B from (2.18) and
its dual counterpart B*.
We start with an explicit representation of the dual bilinear form B* for dG ansatz in time.

Lemma 4.2.1.1 (Dual bilinear form S*, dG time approximation). If discontinuous tit
Galerkin time discretisation is performed, for sufficiently (piecewise) smooth functions in time
U, V, the dual bilinear form B* of the bilinear form B'from (2.18) reads

N N N

B*(V,U)=-L 1(vT; U)1ldt+L 1a(\12; Uddt - L 1a(Vi -é\12; U2)dt
;=1 Ij ;=1 Ij ;=1 Ij

N

- L ([VP-l ;U;-I-)1l+(VN- ; uN-)1l - (Vo+ ; UO-)1l' (4.6)
;=2

Proof. The representation of the bilinear dual form B* (4.6) arises from the definition of B
(2.18) if we integrate by parts with respect to time variable. Namely,

Furthermore, the sum of the jump terms and the boundary terms equals

N N N N
L(V;-; U;-)1l- L (V;-1+; U;-1+)1l+L (V;-1+; U;-1+)1l- L (V;-1+; U;-I-)1l
;=1 ;=1 ;=1 ;=1

N+1 N
= L (V;-I-; U;-I-)1l- L (V;-1+; U;-I-)1l

;=2 ;=1
N

=- L ([VP-l; U;-I-)1l+(VN-; UN-)1l+(VO+; UO-)1l'
;=2

A substitution of (4.8) into (4.7) and the definition (4.5) yield the proof. o
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Having introduced the dual bilinear form, we can formulate the discrete weak dual problem:
Given wN- E (SN)2 ç1l, find WE Qq such that

B*(w, V)+(wo+; VO-)1i = (wN-; VN-)1i for all V E Qq. (4.9)

W is called the discrete weak solution of the dual problem (4.3).

Remark 4.2.1.1. Analogue to the analysis presented in Subsections 2.4.1.1 and 2.4.2.1, we
may show that the problem (4.9) has an unique solution. 0

Remark 4.2.1.2. Note that for every V E L2(!y, Hb x Hb) the continuous dual solution <I>
of (4.3) is the weak solution of (4.9). 0

Lemma 4.2.1.2 (Stability of the discrete weak dual dG solution). The solution W=
(WI, W2) of (4.9) satisfies the following stability estimate

N N

IIIwn-III~+2é L 11IW2(t) II~l(n)dt+ L 111[wPIII~= IIIwN-III~,
j=n Ij j=n

where 1::; n::; N. Moreover, in case of WE QI

where additionally for é =0

(4.10a)

(4.10b)

(4.lOc)

Proof. The proof follows analogously as in case of weak "forward problem" , see Lemma
2.3.3.5. 0

To derive an a priori error bound for lIIeN-III1i,the error e:=u-U will be decomposed in two
parts, namely

e=p-(), where p:=u-3IIu and ():=U -3IIu. (4.11)

(4.12)

Here II denotes the spatial multi projection. 3 is the mapping onto the space of discrete
functions in time which will be introduced for dG(O) or dG(1) method separately.

The idea is to dominate IlleN-III1i by estimating IllpN-III1i and III()N-III1i. The estimation of
IllpN-III1i is done for each ansatz in time owing to the approximation properties of the corre-
sponding projections. To bound III()N-III1i,we introduce the following lemma.

Lemma 4.2.1.3. For (),p from (4.11) there holds

N N N
ION- m;,= (>1<0+ ; 0"-)1£ +~ 1;a( >1<2- >1<IT; pIldt- ~ l (>1<2,<; p,)dt - ~ 1;a(>1< 1; p,)dt

N N N
+é L1. a(W2; P2)dt- La([Wl]j-\ p{-l-) - L([W2P-1; ~-l-)

j=l IJ j=2 j=2
9

+a(wf-; pf-)+(wf-; pf-) =: LEi,
l=l

when w solves (4.9) with WN-=()N-.
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Proof. Owing to the definition of B, we have 0 E Qq. Given (4.9) with 'ItN- = ON-, let V = O.
This yields

From Definition 4.1.0.2 and the Galerkin orthogonality (2.9), we further have

B*('It, 0) = B(O, 'It) = B(U - .JTlu, 'It) = B( u-.JIIu, 'It) = B(p, 'It) = B*('It, p).

The combination of the last two equations and the representation of B* in (4.6) yield the
proof. 0

With the representation from Lemma 4.2.1.3, we derive in the following an a priori error
estimate for each ansatz in time separately"

4.2.1.1 A priori dual error analysis, dG(O) time approximation

Theorem 4.2.1.1 (A priori dual error estimate, dG(O) time approximation). There e
is a constant C > 0 independent of u, its discrete dG(O) counterpart U and h, k such that

1 .fSj-l-Sj ~ Il "-I N. 1 - lor a J - , ... ,

IlleN -11I1£ ~ C { IIkßùtllLI(L2) + JE (1Ikù21IL2(HI) + Ilkßù211£2(L2)) + IIkÙ211£l(Hl)

+ JEllkÙ211£2(HI) + II hP+! DP+!Ù2 IIJ.I(£2) + II hP+! DP+!Ylll~,1(L2)

+ IIhPDP+!Ul (T) 1I£2(rl) + IIhP+! DP+!U2(T) IIL2(0) }, (4.13)

2. if Sj-l =/=Sj for all at least one j = 1, ... , N

IlleN -1111£ ~ C { Ilkßùdl£l (£2) + JE (1Ikù21IL2(HI) + Ilkßù21IL2(L2)) + IIkÙ21I£l(HI) + JEll kÙ211£2(HI)

N 1/2 N 1/2
+ (L IIhPDP+!Ul (tj-1)lli2(rl)) +(L IIhP+! DP+!U2(tj-dlli2(rl))

j=2 j=2 e
+ II hPDP+!ul(T)IIL2(rl)+ IIhP+! DP+!U2(T)II£2(rl) }, (4.14)

provided that uE (HP+! (n))2 where p=l for linear splines in space and p=3 for cubic splines
in space. The 2th summand on the RHS of (4.13) and (4.14) does not appear in case of the
(DD*) problem.

Remark 4.2.1.3. The estimate (4.13) is of order O(hP+k). The estimate (4.14) of order
O(hP+k-1/2hP+k). 0

The remaining part of this subsection is devoted to the proof of the Theorem 4.2.1.1.

Given the error decomposition (4.11), we may choose II = (Ç, Q). Let the mapping .J be
defined such that

(4.15a)
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and

(.JU)O-.= {UO- if UEH
1((-oo,OlU3"),

. u(O) if U E C[O, Tl.

125

(4.15b)

Obviously .J U belongs to the space of constant functions in time but .J is not L2 orthogonal.
We also make use of the approximation properties of the projection g. These are given in
Lemma 3.1.0.6.

Lemma 4.2.1.4. If the discrete variant of the initial solution Uo is defined by

(4.16)

then E1=0.

Proof. After the definition of the 11. scalar product and projection .J we have

o

Lemma 4.2.1.5. There holds for E2,

where the second summand does not appear in case of the (DD*) boundary conditions.

Proof. Note that <Pl,T =0 according to the dG(O) time discretisation. With the orthogonality
properties of the Galerkin projection and integration by parts in space, we obtain

N N

E2 =LJ. a(w2; Ul -guddt+ ~ J. a(w2; gUI -gu{-)dt
j=l I] J=l I]

N N

=-LJ (W2; ß(Ul-u{-))dt+ LJ W2(t, l)D(UI-u{-)(t, l)dt.
j=l Ij j=l Ij

(4.17)

The second term on the RHS of the second equality above vanishes for (DD*) boundary
conditions. If the initial problems satisfies the (DN*) boundary conditions, the main theorem
of calculus with respect to space interval n = [0,1 1 implies

(4.18)

Furthermore, from the boundary condition D(Ul(t, 1)+Eu2(t, 1))=0 and a trace inequality we
have for all t E Ij

D(Ul(t, 1) -Ul(tj, 1)) = -ED(U2(t, 1) -U2(tj, 1))
::;dD( U2(t) -U2(tj)) 11£2(11) +EIIß( U2(t) - U2(tj)) 11£2(11)'

Combining the last two estimates and using

U(t) -u(tj) = l.t ü(T)dT,
]

(4.19)
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N

LJ W2(t, l)D( U1(t, 1) -U1 (tj, 1))dt:::; éllw211£2(Hl )(llkü211£2(Hl) + Ilk~Ü21IL2(£2»). (4.20)
j=1 Ii

With the same technique we prove

N

-LJ (W2; ~(U1 -u{-))dt:::; Ilk~ÜIil£l(L2(n)llw211L'X>(L2).
j=1 Ii

From (4.20) and the last inequality we conclude the proof of the Lemma.

Lemma 4.2.1.6. E3=0.

o

Proof. Follows from the fact that in case ofthe dG(O) time approximation method <1>2,T=0.0

Lemma 4.2.1.7. For E4 there holds

Proof. On account to the orthogonality properties of the projection g we have

Then, similar as in the proof of E3, we deduce

Lemma 4.2.1.8. For E5 there holds

Proof. With the same arguments as for the Lemma 4.2.1.7, there holds

N

E5=é LJ a(w2; u2-u~-)dt:::; IIkü21IL2(Hl)éllw211£2(Hl).
j=1 Ii

Lemma 4.2.1.9. If sj-1 =lSj for at least one j there is a constant C such that

Otherwise E6=0.

o

o
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Proof. If for all j = 1, ... , N there holds Sj-1 =Sj, then owing to the orthogonal property of
the projection g and the definition of the projection :1, we have

N

E6 = - La(w{ - w{-\ (U1 - gudj-1-) =O.
j=2

Otherwise, the application of Hölder, a discrete Cauchy inequality, and the approximation
property of the Galerkin projection g yield

N 1/2 N 1/2
E6::SC (L IIhPDP+!u1(tj-1)1!i2(0») (L II[W1P-11IH1(0») ,

j=2 j=2

for some constant C >O.

Lemma 4.2.1.10. There exists a constant C such that

E7+ Es + Eg::SC (1IhP+!DP+!Ù21I£1(£2) + IIhP+! DP+!Y11I£1(£2») Ilw21IvX>(£2)'
if Sj-1 =sj for all j = 1, ... , N. Otherwise

( ~ +1 +1 2) 1/2 (~[ . 1 2 ) 1/2E7+Es+Eg::S C L..., IlhP DP U2(tj-1)IIL2(0) L..., II W2)1- 11£2(0)
j=2 j=2

+CllhP+! DP+!U2(T) IIL1(L2)IIOf-II£2(O)'
Proof. Owing to the orthogonality property of :1, g, we have

D

D

N

E7+ES+Eg=- L([W2P-\ (U2-gu2)j-1-)+a(Of-; (U1-gU1)N-)+(Of-; (U2-gU2)N-)
j=2

N

=- L([W2P-1; (U2-gU2)j-1-)+(Of-; (U2-gU2)N-). (4.21)
j=2

Ifwe assume that space mesh does not change in time, then (gU2)j-1+ = (GU2)j-1- =gU2(tj-1).
An integration by parts in time yields

N

E7+ES+Eg= L(W2; Ù2-gÙ2)+(WO+; Y1-gyd.
j=l

Hölder inequality and approximation properties of g yield the following estimate

E7+ Es + Eg::S C (lihP+! DP+!Ù21I£1(L2)+ IIhP+! DP+!Y11I£1(£2») Ilw21IvX>(£2)'
We continue by estimating E7+ES+Eg under assumption that there exists at least one j such
that Sj-1=1Sj. Using the same arguments as before, we have from (4.21)

N 1/2 N 1/2
E7+Es+Eg::S C( L IIhP+! DP+!U2(tj-dlli2(0») (L II[W2P-11Ii2(0»)

j=2 j=2
-tC IIhP+! DP+!U2(T) 1I£1(L2)IIOf-IIL2(0)'

This concludes the proof.
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Incorporating all previous estimates into the representation (4.12) and recalling the stability
Lemma 4.2.1.2 we have

1. if sj -1=sj for all j = 1, ... , N

1II0N-III1l:S;C {llkßU11I£l(£2) +.JE"(Ilku21IL2(Hl) + IlkßU211£2(L2))+ Ilku21I£l(Hl)
+ .JE"llku211£2(Hl)+ IIhP+!DP+!U21I£l(L2) + IIhP+!DP+!ytll£l(L2) }. (4.22)

2. if Sj-1 =/=Sj for at least one j = 1, ... , N

ilioN-1111l::; C { IIkßU111£l(£2)+.JE" (1Iku211£2(Hl)+ IIkßU21IL2(L2)) + IlkU21I£l(Hl) + .JE"IIkU211£2(Hl)

N 1/2 N 1/2
+ (LllhP DP+!u1(tj-1)lli2(!1)) + (LllhP+1 DP+!u2(tj-dlli2(!1))

j=2 j=2

+ IIhP+! DP+!u2(T)II£2(!1)}. (4.23)

In order to complete the proof of Theorem 4.2.1.1 we need to estimate IllpN-III1l. This is done
in the following lemma.

Lemma 4.2.1.11. For p=u-.JIIu where I1= (Q,Ç) and the temporal projection .J where
(.Ju)j- =uj- there is a constant C such that

(4.24)

Proof. Due to the approximation properties of projection II and mapping .J we have

IllpN-III~ = lII(u-I1u)N-lIIt = II(ul -Qud(T)II~l(!1) + II(U2-QU2)(T)lli2(!1)
::; C (11hPDP+!U1 (T) Ili2(!1)+ IIhP+!DP+!U2(T) Ili2(!1)). D

According to the decomposition (4.11), the sum of (4.23) and (4.24) yields the proof of The-
orem 4.2.1.1.

4.2.1.2 A priori dual error analysis, dG(l) time approximation

Theorem 4.2.1.2 (A priori dual error estimate, dG(1) time approximation, 8i-1=8i).
If Sj-1 =Sj for all j = 1, ... , N then there is a constant C independent of u, its discrete dG(l)
counterpart U and mesh size h, k such that

1. ê::::O, (DD)

IIleN-III1l:S;C {llk2 ßÜ1I1£l(£2) + IIhP+!DP+1U21I£l(L2) + IIhP+! DP+!Y1I1£l(£2)

+ IIk3ßÜ21I£l(L2) +.JE"llk2Ü211£2(Hl)+ IIhPDP+!U1 (T)II£2(!1)
+ IIhP+! DP+!U2(T) IIL2(!1)}, (4.25a)
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2. if é 2::0 and (DN)
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IlleN-III1l ~ c{llk2 ~ütllV(£2) +J£(llk2ü21IL2(Hl) + IIk2~ü21IL2(L2)) + Ilhp+1 DP+1ü21Iv(£2)

+ IIhP+! DP+!Y11ILl(£2) + Ilk2Ü21Iv(Hl)

+ IIhPDP+!U1 (T) IIL2(0)+ IIhP+! DP+1U2(T) IIL2(0)}, (4.25b)

3. if é=O and (DD) or (DN)

IlleN-III1l ~ c{ IIk3~ü11ILl(Hl)+ IIhP+! DP+!Ü21Iv(L2)+ IIhP+! DP+!Y11Iv(L2)

+ IIk3~ü21Iv(L2)+ IIhPDP+!U1(T)IIL2(0)+ IIhP+! DP+!u2(T)IIL2(0) }, (4.25c)

provided U E (HP+1(O))2 where p= 1 for linear and p=3 for cubic splines in space. Additionally,
we demand also UE(HP+2(O))2 for p=1 in the third estimate.

Remark 4.2.1.4. The estimates (4.25a) and (4.25b) are of order O(hP+k2). The estimate
(4.25c) is of order O(hP+k3). 0

Theorem 4.2.1.3 (A priori dual error estimate, dG(!) time approximation, 8j-1=/=8j).

If Sj-1 =/=Sj for at least one j = 1, ... , N then there is a constant C independent of u, its dis-
crete dG(I) counterpart U and mesh size h, k such that

1. ifé2::0, (DD)

N

IlleN-III1l ~ C{ IIk2~ü11Iv(£2)+ IIhP+! DP+!Ü21Iv(L2)+ L IIhP+! DP+!U2(tj)IIL2(0)
j=O

N 1/2
+ (L IIhP+! DP+!U2(tj-1)lli2(0)) + IIk3~ü21IV(£2)+J£llk2ü21IL2(Hl)

j=2
N 1~

+ (LllhP DP+!U1 (tj-1)lli2(0)) + IIhPDP+!U1(T)IIL2(0) }, (4.26a)
j=1

2. if é 2::0 and (DN)

IIIeN -1111l~ C{ IIe~ü111V (£2)+ J£ (IIk2ü211L2(Hl ) + IIk2~ ü211£2(L2)) + IIhP+! DP+!Ü211V (£2)

N N 1/2
+ L IIhP+! DP+!U2(tj)IIL2(0)+ (L IIhP+! DP+!U2(tj-dlli2(0))

j=O j=2
N 1~

+ Ilk2ü21IV(Hl)+ (LllhPDP+!u1(tj-dlli2(0)) + IIhPDP+!U1(T) 11£2(0)}' (4.26b)
j=2
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3. é=O and (DD) or (DN)
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N I~
1II0N-1111l~ c{ IIk3ßÜIIILl(Hl)+ IIhPDP+1U21ILl(L2)+ (LllhP+1 DP+1UI(tj-dlli2(r!»)

j=2

+ IlhP+1DP+1U2(T) 11L2(r!)+ IIk3 ßÜ21ILl(L2)
N 1/2

+ (LllhP DP+1uI (tj_l) Ili2(r!) ) + IIhPDP+1UI(T)IIL2(r!) }, (4.26c)
j=1

provided U E (HP+I(O))2 where p= 1 for linear and p=3 for cubic splines in space. Additionally,
we demand also uE (HP+2(O))2 for p=l in the third estimate.

Remark 4.2.1.5. The estimates (4.26) are of order O(hP + k-I/2hP + k2).

We prove both theorems simultaneously.

o

Proof (Theorem 4.2.1.2, Theorem 4.2.1.3). Given the error decomposition (4.11), let
II= (9, Q) and .:J be the time projection operator as in Definition 3.1.0.9, case dG(l)b. In the
following we make use of the corresponding approximation lemmas, i.e. Lemma 3.1.0.6 and
Lemma 3.1.0.11, respectively.

The idea is to estimate EI - Eg such that the final estimates contains a priori known terms
and discrete dual solution contributions which can be further estimated by means of Lemma
4.2.1.2. To estimate EI, recall that (.7IIu )0- = IIuo according to the definition ofthe temporal
projection .:J. Then there holds the same estimate for EI as the one already proven in case of
dG(O) method in time, see Lemma 4.2.1.4. The estimates for the remaining terms are given
throughout the following lemmas.

Lemma 4.2.1.12. There exists a constant C>O such that for é>O there holds

where the second summand does not appear for (DD*) boundary conditions.
Moreover, if é=O, then

Proof. Owing to the properties of Q and .7, we have

since UI -.:J UI is orthogonal to the piecewise constant functions in time.
An integration by parts in space yields

N N

E2= - L! ('l12; ß(uI-.7ud)dt+ L! 'l12(t, l)D(uI-.7ud(t, l)dt.
j=1 Ij j=1 Ij

(4.27)
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The second term on the RHS of the equation above equals zero when (DD*) boundary con-
ditions hold or é = O. On the other hand, if é > 0 and (DN*), i.e. (DN) boundary conditions
hold, the second term can be estimated by using the same arguments as in the proof of Lemma
4.2.1.5. Namely,

N NLI 'l12(t, I)D(U1-..JU1)(t, l)dt=-é L1'l12(t, I)D(u2-..Ju2)(t, l)dt
j=l Ij j=l Ij

~ c(lleü21IL2(Hl) + IIk2 ßÜ211£2(£2))éll'l121IL2(Hl).

We continue by estimating the first term on the RHS of (4.27). This completes the estimation
for E2• Namely, if é> 0 then

N

-Lf ('l12; ß(u1-..Jud)dt~Cllk2ßüIil£l(L2)11'l121IvOO(£2)'
j=l Ij

For é=O we conclude

N

E2 = - L1('l12 - 'l12; ß( U1-..Ju1))dt ~ Cllk3 ßÜIilLl(Hl) 11'l12,TllvOO(H-l). D
j=l Ij

In the following lemma we provide the estimate for E3 +E7 +Eg.

Lemma 4.2.1.13. If Sj-1 =sj for all j =1, ... , Nand é 2: 0 there is a constant C such that
there holds

(4.28a)

(4.28b)

Otherwise, if there exists at least one j such that Sj-1 =I Sj, then for all é 2: 0

N

E3 +E7+ Eg ~ C {llhP+1 DP+1Ù21I£l(L2) 11'l121IvOO(L2)+ (L IlhP+1DP+1U2(tj) 11£2(0)) 11'l121IvOO(£2)
j=O

N 1/2 N 1/2
+ (L IlhP+1DP+1U2(tj_1) Ili2(0)) (L II['l12]i-1Ili2(0) )

j=2 j=2

+ IlhP+1 DP+1u2(T) 11£2(0)IlB:f-IIL2(0) }

where for é= 0 additionally holds

E3+ E7+ Eg ~ C {llhP DP+1U21I£l(L2) 11'l12,TllvOO(H-l)

N 1/2 N 1/2
+(L Ilhp+1 DP+1U2(tj_1)lli2(0)) (L 11['l12]j-11Ii2(0))

j=2 j=2

+ IlhP+1DP+1u2(T) 11£2(0)IIOf-II£2(O) }, (4.28c)
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(4.29)

Proof. Let us assume that Sj-l = sj for all j = 1, ... , N. Owing to the properties of .J we
have

N N

E3+E7+E9= - L! (W2,T; U2-QU2)dt- L([W2]i-l; (U2-QU2)j-l-)+(Of-; (U2-Qu2)N-).
j=l Ii j=2

If we integrate by parts in time in the first term, we obtain
N N

E3+ E7+ E9 = '{; 1}'It2; Ù2-giv,)dt- '{; { (\ft~-; (U:2 _gu2)i-) - (\ft~-1+; (U2-gU2)i-1+) }

N

- L([W2]j-\ (U2-QU2)j-l-)+(Of-; (U2-QU2)N-).
j=2

Obviously, from Sj-l =sj we have (ÇU2)j-l- = (ÇU2)j-1+ =QU2(tj). Then

N

E3+E7+E9= L! (W2; Ù2-QÙ2)dt- (Of-; (U2-QU2)(T))- (wg+; YI-QYl)
j=l Ii

N N

+ L([W2]i-l; (U2-QU2)(tj-1))- L([W2]i-\ (U2-QU2)(tj-d)
j=2 j=2

+(Of-; (U2-QU2)(T)).

Hölder inequality and the approximation properties of Q imply

E3+E7+E9:::; C(llhP+1 DP+1Ù21I£l(L2)+ IlhP+1DP+1YIiI£2(o)) Ilw21Ivx'(L2).
This concludes the proof for the case c ~ 0 when the space mesh does not change in time, i.e.
Sj-l =sj for all j = 1, ... , N.
We continue by assuming that there exists at least one j such that Sj-l =j:.Sj. 'Then

(~ +1 +1 2 )1/2(~ . 1 2 )1/2E7+ Eg:::; C L.J IlhP DP U2(tj-1) IIL2(0) L.J II[W2P- 11£2(0)
j=2 j=2

+CllhP+1 Dp+1U2(T) 11£2(0)IIOf-II£2(O)'
In order to estimate E3, we differ between two cases, case c=O and case c>O. Let us assume
that c=O. Then we my deduce

E3:::; CllhP DP+IU21I£l(L2) Ilw2,TllvX'(H-l).
For c >0, an integration by parts in time leads to

N N

E3 = L! (W2; Ù2-QÙ2)dt- L(w~-; (U2-QU2)j-)- (w~-1+; (U2-QU2)j-1+)
j=l Ii j=l

N

:::;C {llhP+1 DP+1Ù2II£I (£2) + L IlhP+1DP+1U2(tj)llL2(0) } Ilw21Iv>O(£2)' (4.30)
j=O

Note that the estimate (4.30) also holds for c =0 when the space mesh differs from one time
slab to another. However, we choose (4.29) because it shows the better convergence rates then
(4.30). This concludes the proof. 0
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Lemma 4.2.1.14. There exists a constant C such that for c 2: 0 and (DN*)

E4 S Cllk2Ü21ILl(Hl) Ilwlllv")(Hl).

Furthermore, if (DD*) or c = 0, then

E4 S Cllk3 ßÜ21I£l(£2) Ilwl,rIILOO(£2).

Proof. The orthogonality property of g implies
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(4.31)

If the (DD*) boundary conditions hold or c = 0, an integration by parts in space and the
approximation properties of :J lead to

N

E4 = LI (WI - WI; ß( U2- :JU2) )dt sCllk3 ßÜ21I£l(L2) IIW1,rIILOO(£2).
j==1 Ij

Otherwise, if (DN), i.e. (DN*) and c>O, we deduce from (4.31)

E4 SCllk2Ü21I£l(Hl) Ilw11ILOO(Hl).

Lemma 4.2.1.15. There is a constant C such that

Proof. From an application of the Hölder inequality, we may deduce

N

E5 = -c LI a(W2; U2-:JU2)dt Sdk2Ü21IL2(Hl)llw211£2(Hl).
j==1 Ij

Lemma 4.2.1.16. For E6 there is a constant C such that

where the both sums go only over such j where Sj-l =lSj.

Proof. If we assume that for each j = 1, ... , N there holds Sj-l = Sj, then

N

E6 = La(w{-1+ - W{-I-; (QUI -Ul)j-l-) = O.
j==2

D

D

Otherwise, the approximation properties of g and the discrete Cauchy inequality yield for
some C>O,

D
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Lemma 4.2.1.17. Es=O.

Proof. On account to the properties of projection .:r and g, we have
N

Es = L a(Of-; (Ul-gUl)N-) =0.
j=l

(4.32)
o

(4.33c)

Incorporating estimates for El - Eg into the representation (4.12) and recalling the stability
estimate from Lemma 4.2.1.2 we have

1. if Sj-l =Sj for all j = 1, ... , Nand

a) é 2: 0, (DD)

1II0N-1111l:SC {llk2 ßÜlll£l(£2) + Ilhp+l DP+!Ü21I£l(£2) + IIhP+! DP+lylll£l(£2)
+ IIk3ßÜ21I£l(L2) +JEllk2ü21IL2(Hl) }, (4.33a)

b) if é 2: 0 and (D N)

1II0N-1111l:SC {llk2 ßÜlll£l(L2) +JE(llk2Ü211£2(Hl) + IIk2ßÜ211£2(£2))+ IlhP+l DP+lÜ21I£l(L2)

+ IIhP+! DP+!Ylll£l(L2)+ Ilk2Ü21I£l(Hl) }, (4.33b)

c) if é=O and (DD) or (DN)

1II0N-1II1l:Sc{ IIk3ßÜlll£l(Hl)+ IIhP+! DP+!Ü21I£l(£2)

+ IIhP+! DP+!Ydl £1(L2) + IIk3 ß ü211£1(L2) },

2. if Sj-l =/=Sj for at least one j =1, ... , N

a) é 2: 0, (DD)
N

1II0N-1111l:Sc{ IIk2ßÜlll£l(£2)+ IIhP+! DP+!ü2I1£l(£2)+ L IIhP+! DP+lU2(tj)II£2(O)
j=O

N 1/2
+JEllk2Ü21IL2(Hl)+ (LllhP DP+!Ul(tj-l)lli2(O)) }, (4.33d)

j=l

b) é2:0 and (DN)

1II0N-1111l:Sc{ IIk2ßÜlll£l(£2)+JE(llk2Ü211£2(Hl) + IleßÜ21IL2(£2)) + IIhP+! DP+lÜ21I£l(£2)

N N l~

+ L Ilhp+l DP+lU2(tj)IIL2(O) + (L IIhP+! DP+!U2(tj-l)lli2(o))
j=O j=2

N 1/2
+ Ilk2Ü21I£l(Hl) + (LllhP DP+!Ul (tj-l) Ili2(O)) }, (4.33e)

j=2
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c) é=O and (DD) or (DN)

N 1/2
1II0N-III1{:Sc{ IIk3ßÜlll£l(Hl)+ IIhPDP+1U21I£1(£2)+ (2::llhP+1 DP+1U1(tj-dlli2(fl))

j=2

+ IlhP+1DP+1U2(T)IIL2(fl)+ IIk3ßÜ21I£l(L2)
N 1~

+(2::llhPDP+IU1(tj-dlli2(fl)) }, (4.33f)
j=1

The estimation of IllpN-III1{follows as Lemma 4.2.1.11. According to the decomposition (4.11),
the combination of the estimates above with an estimate (4.24) yields an upper bound for
IIleN-III1{.This concludes the proof of Theorem 4.2.1.2 and Theorem 4.2.1.3. 0

4.2.2 cG(1) time approximation
For the notation and definitions used in the following, we refer to Section 2.3.4 for cG(l) time
approximation and to Section 2.1 for the spatial Galerkin discretisation.

Lemma 4.2.2.1 (Dual bilinear form B*, cG(l) time approximation). In case of the
continuous Galerkin discretisation in time, for (piecewise) smooth functions, globally contin-
uous in time u, v the dual bilinear form of the bilinear form (2.41) reads

B*(v, u) = -iT (v; u)1{dt+ iT a(V2;uddt-i
T

a(Vl-éV2; u2)dt

+ (v(T) ; u(T))1{ - (v(O) ; u(O) )1{' (4.34)

Proof. Given the definition of B* in (4.5) and the definition of Bin (2.41), an integration by
parts in time yields

B*(v,u)=B(u,v)= -lT
(v;u)1{dt+(V(T) ;u(T))1{-(v(O) ;u(0))1l

+ iT a(V2;u1)dt-i
T

a(VI -éV2; u2)dt. 0

The discrete weak dual problem reads: Given weT) ES x S c 1£, find WE Qc such that

B*(w,V)+(W(0);V(0))1l=(W(T);V(T))1l forall VEWc' (4.35)

Remark 4.2.2.1. Note that the strong dual solution <I> of problem (4.3) is also a weak solution
of problem (4.35). 0

Lemma 4.2.2.2 (Stability of the discrete weak dual cG(l) solution). The solution W=
(WI, W2) of the problem (4.35) satisfies the following stability estimates

(4.36a)

where 1:S n:S Nand

(4.36b)
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Furthermore, for é =0, there holds
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(4.36c)

Proof. The proof follows analogously as in case of weak "forward problem", see Lemma
2.3.4.1. []

Theorem 4.2.2.1 (A priori dual error estimate, cG(l) time approximation). There
is a constant C, independent of u and its discrete cG(l) counterpart U, such that for é~O

Ille(T) 1111£::;C {llhP+I DP+1Ü211L1(£2)+ IlhP+1DP+1U2(T) IIL2(0) + IIhP+1DP+1i/lIIL2(0)

+ IIk2ßÜ211L1(£2)+ (1Ikü211L1(Hl) IlkßÜ211L1(L2)) + IlkßÜIIIL1(£2)

+ Ilkß(ÜI +éU2)11L1(£2)+ IIhPDP+1UI(T)IIL2(0)+llhp+1 DP+1U2(T)II£2(0)}' (4.37a)

provided U E (HP+1(O))2 where p = 1 for linear and p = 3 for cubic elements in space. Here
the 5th does not appear if the (DD*) boundary conditions hold.Moreover, if é=O, there holds
additionally

IlIe(T) 1111£::;C {llhP+! DP+1Ü211L1(L2)+ IIhP+! DP+1U2(T) 11£2(0)+ IlhP+1DP+1yIII£2(O)

+ IIk2ßÜ211L1(£2)+ IIk2ß( ÜI +éÜ2) 11L1(Hl)

+ IlhPDP+1UI(T)IIL2(0)+ IlhP+1DP+IU2(T)II£2(0)}'

provided UE(Hp+2(O))2 for p=l and UE(Hp+2(O))2 for p=3.

(4.37b)

Remark 4.2.2.2. The estimate (4.37a) is of order O(hP+k) whereby the estimate (4.37b)
attains the expected order of convergence O(hP+k2). []

Proof. Let the error e=u-U be decomposed as

e= p-(}, p:=u-.JiIIu, () :=U -JlIIu, (4.38)

where II:= (Q, Q) and .11 is the HI temporal projection onto the space of cG(l) functions from
Definition 3.1.0.10. For the properties of the projections .11 and Q we recall Lemma 3.1.0.12
and 3.1.0.6, respectively. To bound 1II(}(T)III1£, we introduce the following Lemma.

Lemma 4.2.2.3. For (),p as in (4.38) there holds

1II(}(T)III~=a((}I(O); W2(0))-a((}2(0); Wl(0))+éa((}2(0); W2(0))+ 1:(1)1; ~l)dt+ 1(1)2; ~2)dt

T T T 8- r a(p2; ~ddt+ { a(pl; ~2)dt+é 1a(p2; ~2)dt=: LEi, (4.39)Jo Jo 0 l=1
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Proof. Given (4.35), let the test function V E Wc be chosen such that V = Ö. This yields

(W(T) ;Ö(T))1{-(W(O) ;Ö(O))1{= B*(w,Ö)

= 1:(W2- {Pl; Öddt-1({P2; (2)dt-1:(WI; (2)dt

+ê 1:(W2; (2)dt+ (W(T) ;Ö(T))1{ - (W(O) ; 19(0))1{'

The last equation is equivalent to

Furthermore, an integration by parts in time yields

0= -1:(191; {Pddt-1(Ö2; {P2)dt+ 1:(02; {P1)dt-a(02(T); WI(T))+a(02(0); WI(O))

-1:(01; {P2)dt+a(01(T); w2(T))-a(01(0); W2(0))

-ê 1:(02; {P2)dt+êa(02(T); w2(T))-êa(02(0); W2(0)).

From the definition of the bilinear form B, see (2.41), the last equation simplifies to

137

a(OI(T); w2(T)) -a(02(T); (WI-êW2)(T)) = B(O, {P)+a(OI(O); W2(0))
-a(02(0); (WI -êW2)(0)). (4.40)

The Galerkin orthogonality (2.9) provides

B(O, {P)=B(U-..1iIIu, {p)=B(U-.JlIIu, {P)=B(p, \Î1).

Furthermore, due to the choice of W, we obtain

(4.41 )

a(OI (T); W2(T)) -a(02(T); (WI -êW2)(T)) =a(OI (T); 01(T)) +a(02(T); Kh02(T))
= 1101(T) 11~1 (fi) + 1102(T) Ili2(fI)
= IIIO(T)III~. (4.42)

If we substitute (4.41) and (4.42) into (4.40) we obtain

From the definition of the bilinear form B, cf. (2.41), we may conclude the proof. 0

In order to estimate IIIO(T)III~,we have to estimate each of El, f= 1, ... ,8.

Lemma 4.2.2.4. Let U(O) :=IIuo be a discrete variant of the initial solution ua, then
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Proof. Owing to the properties of the projection g,:Jl we have

0(0) = (U - :Jlf1UO)(O) =U(O) - fluo =fluo-fluo =0. ( 4.43)
D

Remark 4.2.2.3. If we choose U(O) = (Iyo, Iyd, we may obtain the estimate in terms of
Ilw2(0)IIHl(0). This is not optimal due to the results from the stability Lemma 4.2.2.2. D

Lemma 4.2.2.5. E4 =O.

Proof. According to the orthogonal properties of projection g and :JI

D

Lemma 4.2.2.6. There exists a constant C such that for é ~ 0

E5::; C{ IIhP+! DP+!Ü21I£l(£2) Ilw21Iu>O(£2)+ IIhP+!DP+!Ü2(T) IIL2(0) 1102(T) IIL2(0)
+ IIhP+! DP+!Ylll£2(O) Ilw21IvXl(L2)}. (4.44)

Proof. Similar as in the proof of E4, the orthogonality properties of :JI imply

An integration by parts in time and the approximation properties of the Galerkin projections
yield

E5=-1'(Ü2-gÜ2; w2)dt + ((Ü2-gÜ2)(T); W2(T))-(Yl-gYl; W2(0))

::; IIhP+!DP+!Ü2 11£1(£2)IIW2 IIVXl(£2) + IIhP+! DP+!Ü2(T) 11£2(0)1102(T) IIL2(0)
+ IIhP+! DP+!Ylll£2(O) IIw21IvXl(L2).

Lemma 4.2.2.7. There exists a constant C such that

D

where the second summand does not appear if the (DD*) boundary conditions or é =o.
Proof. The orthogonality properties of projection g lead to

E6 = -1:(u2-gU2; 1Î11)dt -1:Wu2-:JlgU2; 1Î11)dt= -1:(u2 -:JIU2; 1Î11)dt.

Furthermore, an integration by parts in space yields
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For the first term on the RHS we have
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(4.47)

The second term equals zero if (DD) or é = 0 and (DN) hold. Otherwise, if we integrate by
parts in time and make use of the fact that :JU2 and U2 coincide in each time-point tj, then

From

we obtain for some numerical constant C,

A substitution of (4.47) and (4.49) into (4.46) yields the proof of theorem. D

Lemma 4.2.2.8. There exists a constant C such that for é 2: 0

Furthermore, for é =0 there holds additionally

Proof. The orthogonality property of 9 and integration by parts in space yield

Let us assume that é=O. Then

If é > 0, an integration by parts in time in the RHS of (4.50) and the Hölder inequality yield

E7+ Es =-1((1-:J)I:1(Ul +éU2); {r,2)dt= 1( :t (1-:J)I:1(Ul +éU2); lJ!2)dt

~ Cllkl:1(Ül +éÜ2) 1I£l(L2) 11lJ!21IVXl(£2)' (4.51)

This concludes the proof. D
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Given the stability Lemma 4.2.2.2, if we substitute the estimates for El,' .. , Es derived above
into the representation (4.39), we have for é 2: 0,

IIIB(T) Ilhi:S C {llhP+I DP+!Ü21I£1(£2) + IIhP+! DP+!U2(T)IIL2(f!) + IIhP+! DP+!]Ï1 IIL2(f!)

+ IIk2ßÜ21I£1(£2) + (lIkü2I1£1(Hl) IlkßÜ21I£1(L2)) + IlkßÜIII£1(L2)

+ Ilkß( ÜI +éÜI) 1I£1(L2) }. (4.52a)

If é=O, then

IIIB(T)III1i:S C {llhP+IDP+!Ü21I£1(£2) + II hP+! DP+!U2(T) 11£2(f!)+ II hP+! DP+!YIII£2(f!)

+ IIk2 ßÜ21ILl(£2) + IIk2ß( ÜI +éÜ2) 1I£1(Hl) }. (4.52b)

Its left to estimate IIIp(T)III1i' We recall the proof of Lemma 4.2.1.11. Then there holds

(4.53)

for some numerical constant C >O.
According to the decomposition (4.38), estimate (4.52), and (4.53) yield the proof. D

4.3 A posteriori dual error estimate
The a posteriori error estimates accomplish two main goals. First they provide a computable
error bound for the given finite element computation. Secondly, they are used to perform the
adaptive mesh refinement. Within this section we analyse and derive these bounds by using
the dual method techniques which rely on the stability estimates of the strong dual solution
introduced in Lemma 4.1.0.5. Their use in adaptive refinement process will be emphasised in
Chapter 6.4.
We start by first considering the time discretisation methods, and then combine them with
the two different space ansatz, i.e. PI and Cl elements. The proven convergence order of a
posteriori error estimates for different time discretisation methods and PI and Cl ansatz in e
space are given in Table 4.3. "-
Note that the error convergence rates proved by the dual method under certain restrictions
show the better convergence behaviour than the ones obtained by the energy method. This
is obvious when compared dG(I)0CI and cG(I)0CI discretisation. However, we still did not
succeed to prove the optimal convergence order for pI space ansatz. The problem is that in
ID we can not make any additional requirements on the spatial mesh.
Here we also proved the a posteriori error estimates in the negative norm.
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Ilef-IIH1-s + Ilef-IIH-s pl Cl
if s=1 then ~=O or (DO)

S=O -
O(h3+k), (DD*), Si-1çSi,

dG(O) O(h3 +k-I h3 +k) otherwise

Subsection 4.3.1.1 O(h+k) Sj-lçSi, O(h4+k), Si-1çSi,
s=1 O(h+k-Ih2+k) otherwise O(h4+k-Ih4+k) otherwise

S=O -
O(h3+k3), é=O, (DD*), Si-1 =Si

O(h3+k-Ih3+k3) otherwise

dG(l)
Subsection 4.3.1.2 s=1 O(h+k3), é=O, Si-1=Si, O(h4+k3), (DD*), Si-l=Si

O(h+k-Ih+k3) otherwise O(h4+k-Ih4+k3) otherwise

S=O -

cG(l) O(hs+3+k2), (DD*)
Subsection 4.3.2

s=l O(h+k2)

Table 4.3: Proven a posteriori error estimates for IlleN-III1l (s = 0) and IlleN-IIIM (s = 1); dual
method.

4.3.1 dG(q) time approximation, q=O, 1

In the following, the error representation lemma for the case dG(q) in time will be introduced.
The notations and definitions are adopted from Subsection 2.3.3 and Section 2.1. Note also
that the analysis presented below employs the residual Res from Definition 2.3.1.2.

Lemma 4.3.1.1 (Dual error representation, dG(q) time approximation). Ifuisaso-
lution of (1.28), U its discrete dG(q) variant and <I> a strong solution of the corresponding dual
problem (4.3), there holds

(<I>N-;eN-)1l=(<I>°+;eO-)1l+Res(e,<I>-V) forall VE Qq. (4.54)

Proof. Since <I> is also a solution of the discrete weak dual problem (4.9), cf. Remark 4.2.1.2,
we have

(4.55)

From the definition of the dual bilinear form, see Definition 4.1.0.2, the Galerkin orthogonality
(2.9) and the definition of the residual Res in (2.10), we have for all V E Qq

B*(<I>,e) =B(e, <I» =B(e, <I>- V)=Res(<I>- V).

A substitution of the last equation into (4.55) completes the proof. o
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4.3.1.1 Dual a posteriori error analysis, dG(O)~1'l

The following analysis implies the estimation of the error in the energy norm IlleN-III1l for
Problem (1.13) with an arbitrary boundary conditions and of the error IlleN-III1i in case of
(DD*) boundary conditions only.

Theorem 4.3.1.1 (A posteriori dual error estimate, dG(O)~Pl). There exists a con-
stant C such that the error of the dG(O)~pl approximation satisfies the following a posteriori
error bound for s = 1

IlleN-lk::; C{ Ilh(Yo-IYo)IIH1(O) + IIh(Yl -IydIIH1(O)+ IlkU21I£l(H1)+ Ilh(J- £/)IIL1(L2)
N N

+(Tl/2 + cl/2)llk!II£l(£2)+ Lllh(I -Ç)U{-1-IIH1(O)+ Lllh(I -£)U1-l-II£2(O)
j=l j=l

+(Tl/2+cl/2)llkKh"1(Ul +cU2)II£l(L2)}. (4.56)

The sums Ef=lll (I - Q)U{-1-IIH1(O) + Ef=lll (I - £)U1-l-IIL2(O) in equation above vanish pro-
vided Sj-l ç sj for all j.

Remark 4.3.1.1. The estimate (4.56) is of order O(h+k) when Sj-l ÇSj for all j = 1, ... , N.
Otherwise, the estimate is of order O(h+h2k-l+k). D

Proof. Given the residual representation from Lemma 3.3.2.2, case pl, the error represena-
tion (4.54) is equivalent to

N

(eN-; <1>N-)1l= (eO-; <1>0+)1l+LI a(U2; 4>- Vddt
j=l Ij

N N

+ LI (J; ~- li2)dt- L ([u]i-l; (<1>- V)j-1+)1l
j=l ~ j=l

N m 5
- LI L[D(UI +CU2)(t)]k(~- li2)(t, xk)dt=: L El, (4.57)

j=l Ij k=l l=l
Here m=n-l for (DD*) or m=n for (DN*) boundary conditions.
In order to determine the upper bound for IlleN-III1i' we need to estimate each of the terms
El,"" E5 from (4.57). Therefore, we choose a test function V E Qo such that

V =.7II<1>, II= (9, £). (4.58)

Here, <1>denotes the continuous solution of the dual problem (4.1) and .7 is the mapping onto
the space of constant functions in time defined by

.7uIIj:=Uj-1+ forall j=I, ... ,N and UEHl(!y). (4.59)

Obviously, .7 is not a L2 projection in time.

Lemma 4.3.1.2. If a discrete variant Uo- of the initial solution Uo= (Yo, YI) is defined by

Uo- :=(IYo,Iyd,

where I is the nodal interpolation operator, then

El ::; C {llh(YO -Iyo) IIH1(O)IIß4>11 V'"(L2)+ IIh(Yl -IYl) IIH1(f!)11~IIV"'(H1)}.
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Proof. We start from
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The Friedrichs inequality and the fact that the nodal interpolation operator and the Galerkin
projection 9 coincide in ID, yield the following estimate

Lemma 4.3.1.3. There holds

Proof. The properties of 9 imply

t .
Since 4>(t)-4>(tj-d= h

j
-

1
4>(r)dr we may deduce

N

E2::; L! IIU21IHl(f!)114>-~-1+IIHl(f!)dt::; IlkU21I£l(Hl) 11~11L''''(Hl).
j=l Ij

Note that the inequality above can be further used only if the (DD*) boundary conditions or
é=O hold. 0

Lemma 4.3.1.4. There exists a constant C> 0 such that there holds

Proof. According to the symmetry properties of £, we have

N N

E3= L! (J-£I;~-£~)dt+ L! (J;£~-£~-1+)dt.
j=l ~ j=l ~

For the first term there holds

NL! (J -£1; ~-£~)dt::; Cllh(J -£J)II£l(£2)II~IIL'lO(Hl).
j=l Ij

Owing to ~=D.(4)-é~), we deduce the following estimate for the second term

N NL! (J; £(~-~-1+))dt= L! (£1; ~-~-1+)dt
j=l ~ j=l ~

::; (1Ik£IIIL2(o,T); Tl
/
211D.4>IIL'lO(O,T)+éllD.~IIL2(O,T)). (4.60)
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This follows since
N N~l,(£1; ~-4J-1+)dt= ln~ 1,(£J)(~-4J-1+)dtdx

N::;1Lllkj.cfIIL2(Ij) II~( 4>-c~) IIL2(Ij)dx
f2 j=1

N

S In~llk;£1IL'(I') (!Ll..p~P(I,) +£1Ll.~llp(I,)) dx

r ~ 1/2 0::; Jo L.,..llkj.cfllL2(Ij) (kj 11~4>IIL''''(Ij)+cll~4>IIL2(Ij))dx
f2 j=1

N

S In {IIk£1 Ili'(O,T)( ( ~ k; ) 1/'~Ll..pILoo(O,T) +dLl.~11P(o,T) } dx.

By use of the Hölder inequality, the RHS of the equation above can be dominated by

N~ 1,(J; £(~-4J-1+) )dt S IlkfIIL'(L') (Tl/'~Ll..plLoo(L') +£ILl.~~P(L'))' 0

Lemma 4.3.1.5. There exists a constant C such that
N N

E4::; C (L Ilk(I -Q)ul-1-IIHl(f2)) 11~4>IIL''''(L2)+C (L Ilk(I -.c)U4-1-11£2(f2)) 11~11£<"'(Hl),
j=1 j=1

where both sums go only over such j where Sj-l Ç?; Sj 0

Proof. Owing to the properties of the mapping .7, we have

N N
E4=- La([U1]i-l; (4)-Q4>)j-1+)dt- L([U2]i-l; (~-.c~)j-1+).

j=1 j=1

If we assume that for all j = 1,. o., N, Sj-l ç Sj, then E4 = 0 owing to the orthogonality
properties of Q and .co Otherwise,

N N
E4 =La(Ul-1- _QU{-I-; (4)-Q4>)j-1+)dt+ L(U4-1- - .cu4-1-; (~-.c~)j-1+)

j=1 j=1
N N

::; C( L Ilk(I -Q)U{-I-IIHl(f2)) 11~4>IILOO(£2)+C(L Ilk(I -.c)U4-1-IIL2(f2)) 11~II£<lO(Hl).0
j=1 j=1

Lemma 4.3.1.6. There exists a constant C such that there holds
N

E5::; C( L Ilk(UI +cU2)jIIHl(f2)) 11~4>IILoo(£2)
j=1

1 ( 1/2 0+CllkKh (U1+cU2)11£l(L2) T 11~4>II£<lO(L2)+cll~4>IIL2(£2))o
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Proof. We start from
N m

E, =- f;:1;"f: [D(Ul +eU,) ].( ~- £~)(x.)dt

N m
- L J L[D(UI +éU2)]k(£(~-J>.i-1+»)(Xk)dt. (4.61)

j=1 Ii k=1

For the first term on the RHS of the equation above we have
N m N

- L J L[D(UI +éU2)]k(~-£~)(Xk)dt= L J a(UI +éU2; ~-£~)dt. (4.62)
j=1 Ii k=1 j=1 Ii

An integration by parts in time yields
N N

L J a(UI +éU2; ~-£~)dt= L a((UI +éU2)j-; (<I>-£<I»j-)
j=1 Ii j=1

N

- L a((UI +éU2)j-1+; (<1>-£<I»j-1+).
j=1

The Hölder inequality and the approximation properties of £ yield the following estimate for
the first term

N m N

L J L[D(UI +éU2)]k(~-£~)(Xk)dt:S C (L Ilh(UI +éU2)jIIHl(rl)) 11L\<I>II£<x)(£2)'
j=1 ~k=1 j=1

Arguing in the similar way, the second term can be rewritten such that
N m N- f;:l "f:[D(Ul +éU,) M£( ~- <il-H))(x.)dt =f;:l a(U, +eU,; £(~- <il-H))dt. (4.63)

Since ~=L\(<I>-é~), we may deduce
N

L J a(UI +éU2; £( ~- J>.i-1+))dt:S a(llk(UI +éU2) 1I£l(O,T); TI
/
211£L\<I>II£<x)(O;T)+ciI£L\~IIL2(o,T))'

j=1 Ii

From the definition of the operator KhI, we have

a(llk(UI + éU2) 1I£l(O,T); TI/211£L\<I>llu>O(O,T)+éll£L\~II£2(O,T))
= (KhIllk(UI +éU2) 1I£l(O,T); TI/211£L\<I>II£<Xl(O,T)+d£L\~II£2(O,T))' (4.64)

Finally, we may deduce
N m

- L J L[D(UI +éU2)]k(£( ~-J>.i-1+) )(xk)dt:S IlkKhIUIII£l(L2) (TI/211L\<I>llu>O(L2)+éllL\~IIL2(£2))'
j=1 Ii k=1

If s =0, an integration by parts in space in the RHS of (4.64) yields This concludes the proof.D

Owing to the results of the latter lemmas, if we recall the stability Lemma 4.1.0.5 and the
error representation (4.57) we may conclude the proof of theorem. 0
Remark 4.3.1.2. We mayalso use V = (.J9<1>,.JI~) in order to neutralise the jumps terms
in Es. However, since I is not £2 orthogonal, we can not obtain the optimal estimate in e.g.
&. 0
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4.3.1.2 Dual a posteriori error analysis, dG(O)~Cl

For the derivation of the a posteriori error estimate in case of dG(O)~Cl approximation, recall
the definition ofthe bilinear form B (2.18), its dual form ß* (4.6) and the error representation
formula from Lemma 4.3.1.1.

Theorem 4.3.1.2 (A posteriori dual error estimate, dG(O)~Cl). There exists a con-
stant C > 0 such that for s = 0,1, the error of the dG(O) ~Cl approximation satisfies the
following a posteriori error bound

Ilef-IIH1-S(n)+ Ilef-IIH-S(n) ~ C{ IlhS(Yo-IYo)IIH1(n)+ IlhS(Yl -IydIIHS(n) + IlkD2
-
SU21I£l(£2)

+ (1IU21IHl(n)+IIßU21IL2(n))+ Ilhs(I -£)(J +ß(U1 +êU2)II£l(£2)
+ (Tl/2+ê1/2) Ilk£l-s(J + ß(UI +êU2)) 11£2(Hl-S)

N N

+ 2]1hS (I -Q)utl-IIH1(fl)+ 2]lhs(I -£)U4-1-lIi2(n)}. (4.65)
j=l j=l

Moreover, for s=l we assume that either ê=O or (DD*) hold. Furthermore, the 4th summand
on the RHS ofthe equation above appears only for s=O and (DN)* boundary conditions. The
sums over j vanish for all j where Sj-l çSj.

Remark 4.3.1.3. Assume Sj-l ç sj for all j = 1, ... , N. If s = 0 and (DD)*, the estimate
(4.65) is of order O(h3+k). If s = 1 and either ê = 0 or (DD*) hold, proven estimate has the
order of convergence O(h4+k). Otherwise, if we assume that Sj-l Cl Sj for all j = 1, ... , N,
then the estimate is of order O(h3+h3k-l+k) for s=O and (DD*) and of order O(h4+h4k-1+k)
for 8=1 where either ê=O or (DD)* hold. 0

Proof. According to the definition of the residual Res from Lemma 3.3.1.2, case Cl, the error
representation (4.54) reads

N N

(eN-; <pN-)ll = (eO-; <P0+)1£+L! a(U2; 4>- Vl)dt+ L! (J+ß(U1 +êU2); ~- ~)dt
j=l Ij j=l . Ij

N 4- L ([UP-I; (<p- V)j-1+)ll =:LEi.
j=l l=l

(4.66) •
In order to derive an a posteriori error bound for IIIeN-lIIll and lIIeN-III1i,we need to estimate
El, ... , E4 such that the final bound consists of some computable terms and terms which can
be dominated according to the stability Lemma 4.1.0.5. If we chose a test function V as in
(4.72) with .J as in (4.59), then for E4 we mayabounds as in Lemma 4.3.1.5, where Q and
£ are the projections onto the space of cubic polynomials in space. It remains to estimate
EI, E2 and E3' This is emphasised in the following lemmas.

Lemma 4.3.1.7. If a discrete variant Uo- of the initial solution Uo = (Yo, YI) is defined by

Uo-:= (IYo,Iyd,

where I is the Hermite cubic interpolation operator, then



An application of the Friedrichs inequality yields the following estimate

El ~ c{ Ilh(yo - TYo)IIHI(n) IIß4>llvXl(£2) + Ilh(YI -TYI) IIHI(n) 11~IIVXl(HI)}.

Note that for 8= 1 we applied the following inequalities in the estimation of the second term

1
114>IIL2(n)~ 114>IIHI(n) and IIYo-TYoIIL2(n) ~ -llh(Yo-TYo)IIHI(n)o

'if•

•
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Proof. We start from the definition

For 8=0 we have

For 8= 1 an integration by parts in space leads to

El = - (Yo-Tyo; ß4>°+)+(YI-TYI; ~o+).

This concludes the proof.

Lemma 4.3.1.8. There holds the following estimate

E2 ~ IlkD2
-
SU21I£l(£2) 11~lIvXl(Hs) + (2+~) (IIU21I£l(HI) + IIßU21I£1(£2)) 114>IILOO(HI),

'if

where the second term appears only for 8=0, é > 0 and (DN)* boundary conditions.

Proof. The properties of 9 imply

For 8=0, an integration by parts in space yields
N . N

E2 = -LI. (ßU2; 4>-qJ-1+)dt+ LI DU2(t, 1)(4)-qJ-1+)(t, 1) .
j=l ~ j=l ~

147

o

(4.67)

The second term on the RRS of the equation above vanishes for (DD)*. Otherwise an appli-
cation of the trace, Friedrichs and then of the Hölder inequality leads to

NLI DU2(t, 1)(4)-qJ-1+)(t, 1) ~ (2+~)(IIU21I£l(HI)+IIßU21I£l(L2))II4>llv'O(HI)o
~l ~ 'if

Hence,

. 2
E2 ~ IlkßU2I1£l(£2) 114>IILoo(£2)+ (2+ -) (1IU21I£l(HI) + IIßU21I£1(£2)) 114>IILoo(HI)o

'if

t 0

For 8=1, since 4>(t)-4>(tj-I)= h
j
-
l

4>(r)dr we may deduce from (4.67)

N

E2 ~ LlIIU2I1HI(n)II4>-qJ-1+IIHI(n)dt~ IlkU21I£l(HI)II~IILoo(HI)o
j=l Ij

o



148 CHAPTER 4. DUAL METHOD

Lemma 4.3.1.9. For 8=0,1 there is a constant C>O such that there holds

E3:S Cs {llhs (I - £) (f + .6.(U1 +éU2)) 11£1(£2)11~lIvXl(Hs)

+ Ilk£I-S(f +.6.(U1 +éU2) )1I£1(Hl-S) (TI/21IDS+14>llvXl(£2)+éIlDS+1~II£2(L2))}.

Proof. We rewrite E3 owing to the symmetry properties of £ such that

N

E3= LI (f -Li +.6.(U1 -£U1)+é.6.(U2-£U2); ~-£~)dt
j=1 Ii

N

+ L l(f+.6.(UI +éU2); £(~-~-1+))dt. (4.68)
j=1 Ii

For the first term on the RHS of the equation above we may deduce

NLI (f -£i+.6.(U1-£Ud+é.6.(U2-£U2); ~-£~)dt
j=1 Ii

:S CSllhs(I -£)(f+.6.(UI +éU2))II£1(L2)11~IIL'Xl(Hs).

For the second term on the RHS of (4.68) we have since ~=.6.(4)-é4>)

N

L1(f+ .6.(U1 +éU2); £(~-~-1+))dt
j=1 Ii

:S (1Ik(f+.6.(UI +éU2))IIL2(O,T); 1I£~IIL2(o,T))

:S (1Ik(f+.6.(UI +éU2))II£2(O,T);11£.6.(4)-é~)IIL2(o,T)). (4.69)

For 8 = 1 a Hölder inequality in space proves

•

N~ly + t;.( UI+EU,); e( 1>- ,p-1+))dt:'Ô Ik(J + t;.(UI +êU,))fL'(L') (TIl' ~tl4)ILOO(L')+ef t;.1>IIL'(L'») .•

For 8 = 0, we continue by using the same arguments as in the proof of Lemma 4.3.1.4. From
(4.69) using the symmetry property of £ and integrating by parts in space we obtain

N

L1(f +.6.(U1 +éU2); £(~-~-1+))dt:S (£lIk(f +.6.(U1 +éU2))IIL2(O,T); 11.6.(4)-é~)II£2(O,T))
j=1 Ii

:S a(ll£k(f+.6.(UI +éU2))II£2(o,T); 114>-é~II£2(O,T))

:S Ilk£(f +.6.(U1 +éU2)) IIL2(Hl)(TI/2114>IIVXl(Hl)+d~IIL2(Hl)).

This concludes the proof of the lemma. D

If we substitute the results of the lemmas above into the error representation (4.66) and recall
the stability results from Lemma 4.1.0.5, we may conclude the proof of theorem. Note that in
case 8= 1, the stability result (4.4c) and (4.4d) can be applied if (DD*) or é=O, respectively.D
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4.3.1.3 Dual a posteriori error analysis, dG(l)~Pl

Theorem 4.3.1.3 (A posteriori dual error estimate, dG(l)@Pd. There is a constant
C such that the error of the dG(I)~Pl approximation satisfies the following a posteriori error
bound for é = 0

IlleN-III'il~ c{ Ilh(Yo-IYo)IIH1(0)+ Ilh(Yl -IydIIH1(0) + IIDh,3(U2)llu(0,T)+Tl/21Ik2(U2-U2)11£2(£2)
N

+ IlhU -£/)IIL1(L2) +Tl
/
21Ik2 £U - Ï)llu(L2)+ L Ilh(I -£)U4-l-IIL2(0)

j=l

N

+Dh,3(U{"-)+Dh,3(Uf-)+ L Dh,3(Ul-l-)
j=2

+Tl/2I1e£Khl(Ul-Ul)II£2(H1) }. (4.70)

• The sums on the RHS of the estimate above go only over such j = 1, ... , N where Sj-l i=Sj.

Remark 4.3.1.4. The estimate (4.3.1.3) is of order O(h + k3) if Sj-l = sj and of order
O(h+hk-l+k3) otherwise. 0

Proof. Given the residual representation from Lemma 3.3.2.2, the error representation (4.54)
can be rewritten such that

N N

(eN-; iJ>N-)1i= (eO
- ; iJ>0+)1i+L! a(U2; <jJ- Vddt- L! a(Ulr; <jJ- Vddt

j=l Ii j=l Ii

N N N
+L! U -U2r; ~- Y;)dt- L a([Udj-l; (<jJ- Vl)j-1+) - L([U2P-l; (~- y;)j-1+)

j=l Ii j=l j=l

N m 7

+L! L[D(UI +éU2)]k(~- V2)(Xk)dt=: LEi. (4.71)
j=l Ii k=l i=l

Note that here m = n if we deal with (DN*) boundary conditions and m = n -1 for (DD*)
boundary conditions.
The idea is to estimate each of El, ... , E7 such that the dual solution contribution in the final
estimate can be dominated by means of the stability results from Lemma 4.1.0.5.
Therefore, we choose a test function V E QI such that

V=3IIiJ>, II=(£,£). (4.72)

Here, iJ> denotes the continuous solution of the dual problem (4.1) and 3 is the mapping onto
the space of dG(I) functions from Definition 3.1.0.9, case dG(I)a. Like in the Subsection
4.3.1.1, see Lemma 4.3.1.7, if Uo- is chosen such that Uo- = (IYo,IYl) where I denotes the
nodal interpolant, we have

The estimation of the remaining terms E2, •.. , E7 is given in the Lemmas below.
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Lemma 4.3.1.10. There exists a constant C such that for eS =a

Proof. Due to the orthogonality property of .J, we have

N N

E2= Lj a(U2;if>-[,if»dt+ Lj a(U2-U2;[,(if>-.1if>))dt.
j=1 ~ j=1 ~

The approximation properties of [, given in Lemma 3.1.0.10 prove

N

Lj a(U2; if>- [,if>)dt:::; CIIDh,3(U2) 1I£l(O,T)IIßif> IIU") (L2) •
j=1 Ij

For the second term the approximation properties of .1 imply

N

Lj a(U2 - U 2; [,(if>-.1 if>)dt:::; C a(llk2(U2 -U 2) 11£2(O,T);11[,~IIL2(O,T))'
j=1 Ij

Since if>= ßif> for eS = 0, the last inequality can be recast to

N

Lj a(U2 - U 2; [,(if>-.1 if»dt:::; C a(llk2(U2 -U2)11£2(O,T); TI
/
211[,ßif>lIux>(o,T))' (4.73)

j=1 Ij

From the definition of the operator K;hl
, the last inequality is equivalent to

N

Lj a(U2 - U 2; [,( if>-.1 if»dt:::; C (11k2 KhI (U2 - U 2) 11£2(O,T);TI/211[,ßif>llux>(o,T))
j=1 Ij

:::;CTI/211k2 KhI (U2 - U2) 11£2(L2)IIßif>11 Ux>(£2) .

•

This concludes the proof.

Lemma 4.3.1.11. There exists a constant C such that for eS=O,

o •

Proof. Using the symmetry and the approximation properties of [, and .J, we may rewrite
E4 such that

N N

E4 = Lj (f -[,f; ~- ['~)dt+ Lj (f - f; [,~ - .1 ['~)dt. (4.74)
j=1 Ij j=1 Ij

For the first term on the RHS of the equation above we may deduce,

NL! (f -[,f; ~- ['~)dt:::; Cllh(f -[,J)II£l(£2)II~lIuX>(Hl).
j=1 Ij

(4.75)
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The second term can be estimated such that

tl (J - f; C(~ -:J ~))dt5, COk'(J -1l11L'(o,T); IIC~4>11L'(O,T»)'
j=1 Ij
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From the dual equation we have ~ = ß(cP - é~). Then, owing to the symmetry properties of
£', we may deduce

N

'L1U- f; £,(~ - J ~))dt~ C(llk2.cU - /)11£2(O,T); IIß(~-é~)IIL2(O,T»)' (4.76)
j=1 Ij

After integrating by parts in space, the term on the RHS of the equation (4.76) is equivalent
to

• If é=O we have

a(£,llk2U - /) 11£2(O,T);11~-é~IIL2(O,T») ~ CTI/21Ie.cU - /) 11£2(Hl)11~11L''''(Hl). (4.78)

A combination of (4.78), (4.77) and (4.76) yields an estimate for the second term from the
RHS of (4.74). If we recall an estimate (4.75), we may complete the proof. D

Lemma 4.3.1.12. There exists a constant C such that
N

E6 ~ C( 'Lllh(I -.c)ut1-11£2(0») 11~11L''''(Hl),
j=1

where the sum goes only over such j where Sj-l ~ sj.

•
Proof. Owing to the properties of £', J, we have

N

E6 = 'L((I -.c)U4-1-; (~-.c~)j-1+) .
j=1

The approximation properties of £, lead to

N

E6 ~ C( 'Lllh(I -.c)U4-1-IIL2(0») 11~IIL'x)(Hl).
j=1

This concludes the proof.

Lemma 4.3.1.13. There exists a constant C > 0 such that for (DD*) and é = 0

E3+ES+ E7 ~ C{Dh,3(Ut'-)IIßcPN-II£2(0)+Dh,3(U~-)IIßcPllL'Xl(L2)
N

+ ('LDh,3(Uj-l-)) IIßcPllL'Xl(£2)+T1/21Ie £'K-,;I(U1 -UdIIL2(Hl)II~IIL'Xl(Hl)},
j=2

D

where the third summand (sum) on the RHS does not appear if for all j = 1, ... , N, Sj-l =Sj.
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Proof. Let E7 be rewritten such that
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N m N m
E7 L12:[D(U1 +CU2)]k(~-.c~)(Xk)dt+ 2:12:[D(U1 +cU2)]k(.c(~-3 ~))(xk)dt

j=l Ii k=l j=l Ii k=l

N N

= - 2:/, a(U1+CU2;~-.c~)dt- 2:1a(U1-u1+c(U2-U2);.c(~-3~))dt. (4.79)
j=l ~ j=l ~

In the following we assume c = O. An integration by parts in time yields for the first term

N N N-2:1 a(U1; ~-.c~)dt= 2:1 a(U1,r; <jJ-.c<jJ)dt- 2:1a(UI-; (<jJ-.c<jJ)j-)dt
j=l Ii j=l Ii j=l Ii

N

+2:1 a(U{-1+; (<jJ-.c<jJ)j-1+)dt.
j=l Ii

Then

N

E3+E5 - 2:1 a(U1; ~-.c~)dt= -a(Uf-; (<jJ-.c<jJ)N-)dt
j=l Ii

N

+a(Uf-; (<jJ_.c<jJ)O+)+2:a([<jJ-.c<jJ]j-\ Uj-1-)
j=2

~ C{ Dh,3(uf-) IIß<jJN-IIL2(O) +Dh,3(Uf-) IIß<jJ11U>C' (L2)

N

+ (2:Dh,3(Uj-1-)) IIß<jJ11L''''(£2) }. (4.80)
j=2

Furthermore, on account to the projection properties of 3, we have for the second term on
the RHS of (4.79)

N-2:1 a(U1 -u1; .c(~-3 ~))dt ::;Ca(llk2(U1 -UdIIL2(O,T); II.cß~II£2(O,T))
j=l Ii

~ C (11k2 .cKh1(U1 - U 1) 11£2(O,T);IIß~IIL2(O,T))
~ Ca(llk2 .cKh1(U1 -U dll£2(O,T); 11~IIL2(o,T))

~ CT1
/
211k2 .cKh1(U1 - Ud IIL2(Hl) 11~11L''''(Hl).

~ere we used the symmetry properties of .c, properties of operator Kh1 and the fact that
<jJ=ß<jJfor c=O. D

If we substitute the estimates for El, ... ,E7 given below into the error representation (4.71)
and apply the stability results of Lemma 4.1.0.5, we may conclude the proof. D

•

•
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•

4.3.1.4 Dual a posteriori error analysis, dG(l)@C1

In the following we provide the estimate for IlleN-lllll when (DD*), i.e. (DD) hold.

Theorem 4.3.1.4 (Dual a posteriori error estimate, dG(!)@C1). There exists a con-
stant C such that the error of dG(I) 0C1 finite element approximation satisfies the following
a posteriori error bound if (DD*) holds

1. For 8=0 and é=O

IlleN-III1£ ~ c{ IIYo-IYoIIHl(o) + IIYl -IYlll£2(O) + Ilh(J -£)U21I£1(£2)

+ Tl/211k2 £}Ch1(U2 - U 2)llil(Hl) + II (J- £)(f +1::1(U1 +éU2)llil(£2)

+ Tl/211k2 (f - f + I::1(U1- U 1) Ili2(£2) + II (I - £)I::1U11I£1(£2)
N+l N

+I::Ilh(I -£)I::1Ul-1-11£2(0)+ I::11(1-£)U4-1-11£2(0)}, (4.81a)
j=1 j=1

2. For 8=1 and é;:::O

IlleN-III1i ~ c{ Ilh(yo-IYo)IIHl(O)+ Ilh(Yl -IydIIHl(o)+ II h2 (J - £)U21I£1(£2)

+ (T1
/
2 +é1

/
2) IIk2}ChI (U2 - U 2) 11£2(£2)+ Ilh(I - £) (f + I::1(U1+éU2) 11£1(£2)

+(Tl/2+éTl/2+é3/2)lIe 1::1£(f - f +1::1(U1-U1 +é{U2-U2» 11£2(£2)
N+l

+ Ilh(1 - £)I::1U11I£1(£2) +I::Ilh2(1 - £)I::1Ul-111£2(0)
j=1

N

+I::Ilh(I- £)U4-1-1I£2(0) }.
j=1

(4.81b)

The last two summands on the RHS of the both estimates above do not appear if for all
j= 1, ... , N, Sj-l =sj. We also assume that the mesh in space is quasi-uniform.

Remark 4.3.1.5. The proven estimates are of order O(hs+3 + k3) if Sj-l = Sj for all j =
1, ... , N and of order O(hs+3+hS+3k-1+k3) otherwise. D

Proof. From residual representation, cf. Lemma 3.3.2.2, the error representation (4.54) is
equivalent to

N N

(eN-; <I>N-)1£ = (eO-; <I>0+)1£+ I::! a(U2; 4J- Vi)dt- L! a(UIT; 4J- Vddt
j=1 ~ j=1 ~

N

+I::! (f -U27+I::1(U1 +éU2); ~- V2)dt
j=1 Ij

N 5- L ([U]j-l ; (<I>- V)j-1+»)1£ =:LEi.
j=1 l=1

(4.82)
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We choose a test function V E QI such that

V:=.JIT <I> IT = (£, £),

CHAPTER 4. DUAL METHOD

where <I> is strong solution and.J is the temporal L2 projection introduced in Definition 3.1.0.9,
case dG(I)a.
The idea is to estimate each of the terms El, ... , E4 so that the stability Lemma 4.1.0.5 can
be applied.
If Uo- is chosen as Uo- = (IYo,Iyd where I denotes the cubic Hermite interpolant, then there
holds for 8= 0, 1

El ~ C {llhs (Yo-IYo)II£2(!1) IIDs+l 4>IIV",(£2) + IlhS(Yl -Iyd IIHS(!1) 11~IIL<lO(Hs)},

cf. Lemma 4.3.1.7.

Lemma 4.3.1.14. If (DD*) then for 8=0,1 there holds

E2 ~ C {llhS+1(I -£)U21I£l(£2)II~4>llvX>(£2)

+ IIk2£l-s KhI (U2 - U2) IIL2(Hl-S) (T1/2I1DS+14>IIVX>(£2) +éIIDs+1~II£2(L2)) }.

Proof. We start from the following decomposition

N N

E2= Li a(U2;cjJ-£4»dt+ Li a(U2-U2;£(4>-.J4»)dt, (4.83)
j=l ~ j=l ~

since .J is orthogonal to the functions constant in time. If we assume that (DD) ie.e (DD*)
hold, an integration by parts in space yields

Then the first term on the RHS of (4.84) can be estimated for 8=0, 1 such that

NLi a(U2; 4>-£4»dt~Cllhs+1(I -£)U2I1£l(£2)IIDs+1cjJIILOO(£2)'
j=l Ii

From ~ = ~(cjJ - é~), the definition of the operator KhI, and the symmetry properties of £,
the second term reads

NLi a(U2 -u2; £(4)-.J cjJ))dt ~ C a(llk2(U2-U2)1I£2(0,T); 11£~II£2(o,T))
j=l Ii

= C a(llk2(U2 - U2) IIL2(0,T); II£~( 4>-é~) IIL2(0,T))

= C (11k2£Khl(U2 - U2) IIL2(0,T); 11~(cjJ-é~) IIL2(0,T))' (4.84)

For 8= 1, the RHS of the inequality above can be further estimated such that

NLi a(U2 - U 2; £( cjJ-.J 4» )dt ~ C IIk2KhI (U2 - U 2) 11£2(L2)(Tl/211~4>IILOO(L2) +éll~~IIL2(£2)).
j=l Ii
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If 8= 0, an integration by parts in space in the RHS of (4.84) yields

NLj a(U2-U2; £(4J-.:J4J))dt5:C a(llk2£K;;1(U2-U2)IIL2(o,T); 114J-c~II£2(O,T)).
j=l Ii

Hence,
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NLi a(U2 -U 2; £( 4J-.:J 4J) )dt 5: C IIk2£Kh1(U2 - U 2) IIL2(Hl)(Tl/2114JIIUIO(Hl) +cll~II£2(Hl)).
j=l Ii

This concludes the proof.

Lemma 4.3.1.15. For (DD*) there exists a constant C >0 such that there holds

1. for 8=0 and c=O

o

2. for 8=1

E45: C {llh(I - £) (f +.6.(U1 +cU2)) 1I£1(L2)11~IIL'x)(Hl)
+ lie .6.£(f - f + .6.(U1 - U 1+c(U2 - U 2))) IIL2(£2)(Tl/211~11L'>O(L2)

+cT1
/
211.6.4JIIL'IO(L2) +c211.6.~II£2(L2)) }.

Proof. According to the properties of £ and .:J, we have in E4

N

E4 = Li ((I - £) (f + .6.(U1 +cU2)); ~- £~ )dt
j=l Ii

N

+ Li (f - f+.6.(U1-Ul +c(U2-U2)); £(~-.:J 4J))dt
j=l Ij

For the first term on the RHS of the equation above we have by using the approximation
properties of £ for both 8 =0, 1

NLi ((I -£)(f+.6.(Ul +cU2)); ~-£~)dt5: CSllhs(I -£)(f+.6.(Ul +cU2))IILl(L2)11~11L'IO(H.).
j=l Ii

Furthermore, the second term can be estimated such that

NLi (f- f+ .6.(U1-U1 +c(U2-U2)); £(~-.:J~))dt
j=l Ii

5: C (1Ik2(f - f +.6.(U1 - U 1+c(U2 - U2))) 11£2(O,T); 11£~ 4JIIL2(o,T)). (4.85)
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Since ~~4>=6.(~-é~), an integration by parts in space yields

(1Ik2(J- J +6.(U1 - U 1+é(U2 - U 2))) IIL2(o,T); 11.c~: 4>11£2(O,T»)

:::;(lIk2.c(J - J +6.(U1 - U 1+é(U2 - U 2))) IIL2(O,T);116.(~-é~)IIL2(O,T»)
:::;a(lIk2.c(J - J +6.(U1 -U1 +é(U2-U2)))IIL2(o,T); 11~-é~II£2(o,T») (4.86)

If (DD*), we have by integrating by parts in the last term on the RHS of the inequality above

a(llk2.c(J- J+6.(U1-U1 +é(U2-U2)))II£2(O,T); 11~-é~IIL2(O,T»)
:::;(1Ik26..c(J - J+6.(U1-U1 +é(U2-U2)))II£2(O,T); 11~-é~II£2(O,T») (4.87)

For 8= 0 and é= 0 we may then conclude

N

LI (J- J+ 6.(U1-U1 +é(U2-U2)); .c(~-.J~))dt
j=1 Ii

:::;CT1/211k2 6..c(J - J +6.(U1 - U 1+é(U2- U2))) IIL2(£2)11~11L<)()(£2)'

For 8=1, from (4.85), (4.86) and (4.87) we have

N

LI (J - J+6.(U1 -U1 +é(U2-U2)); .c(~-.J ~))dt
j=1 Ii

:::;C IIk26..c(J - J + 6.(U1 - U 1+é(U2 - U 2))) IIL2(£2)(TI/211~11L<)()(Hl)
1/2 2')+éT II6.4>IILoo(L2) +é 116.4>IIL2(£2)

.'

This concludes the proof.

Lemma 4.3.1.16. There exists a constant C > 0 such that

o

E3 + E5:::; C {llhS(I - .c)6.U11I£l(L2) 11~IILoo(HS)+ IlhS+1(I - .c)6.Uf-IIL2(r!) IIDS+14>N-II£2(r!)
N

+ Ilhs+1(I - .c)6.Uf-IIL2(r!) IIDS+14>IILOO(£2)+ L II(hs+1(I - .c)U4-1-11£2(r!) IIDS+1~IILoo(£2)
j=2

N

+ (L IIhS (I -.c)U4-1-11£2(r!») 1I~IILoo(Hs)},
j=1

where the last two sums on the RHS of the equation above go only over such j = 1, ... , N
where Sj-l =J. sj.

Proof. Owing to he properties of .c and .J we have

N N

E3+E5 = - LI a(U1,T; 4>-.c4»dt- L a([U1P-l; (4)-.c4>)j-1+)
j=1 ~ j=1
N

+ L((I -.c)u4-1-; (~_£~)j-1+).
j=1
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If we integrate by parts in time in the first term, we obtain

N

E3+E5= LI a(U1; ~-£~)dt-a(Uf-; (<jJ-£<jJ)N-)+a(Uf-; (<jJ_£<jJ)O+)
j=l Ij

N N

+ La(ut1-; [<jJ_£<jJp-l)+ L((I-£)ut1-; (~_£~)j-1+).
j=2 j=l
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If we assume that the spatial mesh does not change i.e. Sj-l = Si for all j = 1, ... , N, then
the 4th and the 5th summand on the RHS of the equation above equals zero.
Anyhow, if we integrate by parts in space and make use of the (DD) boundary conditions,
then

N

E3+E5= - LI ((I -£)!::..U1; ~-£~)dt+((I -£)uf-; (<jJ_£<jJ)N-)
j=l Ij

N

- ((I - £)!::..ut; (<jJ-£<jJ)O+)+L((I - £)!::..U{-l-; [<jJ-£<jJP-l)dt
j=2

N

+ L((I -£)u4-1
-; (~_£~)j-1+).

j=l

Finally, the approximation properties of £ imply

E3+E5:Sc{ IlhS(I -£)!::..Ulll£l(£2)II~IIL'X>(H')+ IlhS+1(I -£)!::..uf-IIL2(n)IIDS+1<jJN-II£2(n)
N

+ Ilhs+1(I - £)!::..uf-IIL2(n) IIDs+1<jJIIL'>O (L2) + L II(hs+1(I - £)ut1-IIL2(n) IIDS+1~IIL'X>(£2)
j=2

N

+ (L IlhS(I - £)U4-1-11£2(n)) II~IIL'X>(H')}.
j=l

This concludes the proof. D

Recalling Lemma 4.1.0.5 and the error representation from (4.82) we may conclude the proof.D

Remark 4.3.1.6. In [42], the author proved the estimate for IlleN-lIIll by deriving the esti-
mates in terms of II . IIL2(n). norm which is equivalent to the £2 norm on the space of finite
element functions. Here we did not used this equivalent norm and therefore only the estimate
for IlleN-III'fi is proven. D

4.3.2 cG(1) time approximation
Within the following subsection we analyse an a posteriori error bound and its derivation for
the case of cG(I) time approximation and P1(C1) approximation in space. The notations and
definitions are adopted from Subsections 2.1.1 and 2.3.4. The presented analysis employs the
residual Res defined in Definition 2.3.1.2 with bilinear form B defined in (2.41) and its dual
form B* from (4.34). Note that in case of cG(I) method in time, Sj-l çSj for all j =1, ... , N.
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Lemma 4.3.2.1 (Dual error representation, cG(1) time approximation). If u is a so-
lution of (1.28), U its discrete cG(l) variant and <I>,a strong solution of the corresponding
dual problem (4.3) there holds

(<I>(T);V(T))1{=Res(e,<I>-V)+(<I>(O);V(O))1{ forall VEWc' (4.88)

Proof. Since<I> is solves the weak discrete problem (4.35), see Remark 4.2.2.1, and both <I>,e
belong to the space of the continuous functions, from definition of the dual bilinear form, see
Definition 4.1.0.2, we have

(<I>(T) ; e(T) )1{- (<I>(O); e(O))1{ =B* (<I>,e) = B( e, <I» = Res( <I» = Res( <I>- V),

for all V EWe' o

o

(4.89)

4.3.2.1 Dual a posteriori error analysis, cG(l)~Pl

Theorem 4.3.2.1 (A posteriori dual error estimate, cG(1)~Pl). There exists a con-
stant C> 0 such that the error of the cG(l) l8lPl finite element approximation satisfies the a
following a posteriori error bound if (DD*) or é=0, ..

Ille(T) Illil:S C {llh(YO -Iyo) IIH1(f2)+ Ilh(Yl -IYl) IIH1(f2)+ Ilk(U2 - U 2) 1I£1(H1)

+ IlhU -.cf) 1I£1(L2)+ (Tl/2+él/2) IlkU - 1) IIL1(£2)
+IIDh,3(r\ +é(2)II£1(f2)+Dh,3«Ul +éU2)(T))+Dh,3«Ul +éU2)(0))

1/2 1/2 1 - - }+(T +é )llkKh (U1-Ul +C(u2-U2)11£2(£2) .

Remark 4.3.2.1. The estimate (4.3.2.1) is of order O(h+k2).

Proof. A substitution of into error representation formula (4.88) and use of the residual
definition from Lemma 3.3.3.2 yields

(e(T) ;<I>(T))1{=(e(O) ;<I>(0))1{+iT a(U2-Ul;<I>-Vl)dt+ iTU-U2;iI>-V2)dt

Tm 4
+1f;[D(Ul +éU2)]k(iI>- V2)(Xk)dt=: ~ Ee. (4.90) •

We may choose a test function V E We such that

V:= .lIT<I>, IT = (Q,.c) (4.91)

where <I>is the continuous solution of the dual problem and .l is the temporal projection on
the space of constant functions in time i.e. integral mean, see Definition 3.1.0.9, case cG(l).
In order to derive an estimate for Ille(T)III1i' we need to estimate each of El"", E4 such that
the stability Lemma 4.1.0.5 can be applied. This is done in the following Lemmas.

Lemma 4.3.2.2. If a discrete variant U(O) of the continuous initial solution uo = (Yo,Yd is
chosen such that

for I a nodal interpolant, then there holds

El :S C {llh(YO -Iyo) IIH1(f2)1I£.\4>II£'>O(L2)+ IIh(Yl -Iyd IIH1(f2)11~1IL''''(H1)}.
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Proof. We start from

159

Since the nodal interpolation I and the Galerkin projection 9 coincide in 1D, we may derive

This completes the proof.

Lemma 4.3.2.3. There holds

Proof. Owing to the orthogonality properties of 9 and .:I we have

E2= iT a(U2-U2; <p-~)dt.

Since (<P-~)IIj ~fI. ~(t)dt, an application ofthe Hölder inequality yields the proof
]

Lemma 4.3.2.4. There exists a constant C such that

Proof. Using the orthogonality properties of [, and .:I, we have

For the first term we have

In case of the second term we may deduce by using the fact that ~=ß(<P-é<P)

lT(j - f; [,(~-.:I ~))dt ~ (1Ik(j- f)h2(o,T); 11[,~IIL2(O,T))

~ (1Ik[,(j - f)IIL2(O,T); IIß(<p-é~)II£2(O,T)).

Furthermore, an application of the Hölder inequality in time and in space yields

o

o

From the last two inequalities we derive an estimate for the second term and this concludes
the proof of the Lemma. 0
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Lemma 4.3.2.5. There exists a constant C > 0 such that

E4::; C {IIDh,3(Ù1 +eÙ2) 11£1(0)IIß1>11VX>(L2)+ Dh,3( (Ul +eU2)(T)) IIß1>(T) 11£2(0)
+ Dh,3( (Ul +eU2) (0)) IIß1>IILoo(£2)

+ IIkK:hl(Ul - U 1+e(U2 -U2) 11£2(L2)(Tl/21IßcpIILOO(L2)+eIIß~II£2(£2)) }.

Proof. We may rewrite E4 such that

i
T

m
iTmE4 = I)D(UI +eU2)]k(~-£~) - 2:)D(Ul +eU2)]k£(~-J ~)(xk)dt

o ~l 0 ~l

= -lT
a(Ul +eU2; ~-£~)dt-1T a(Ul -Ul +e(U2-U2); £(~-J ~))dt. (4.92)

An integration by parts in time in the first term yields

i
T a(Ul +eU2; ~-£~)dt= -iT a(Ùl +eÙ2; 1>-£cp)dt+a((Ul +eU2)(T); (1)-£cp)(T))
00.

-a((Ul +eU2)(0); (cp-£cp)(O).

According to Lemma 3.1.0.10, we may conclude

lT
a(Ul +eU2; ~- £~ )dt::; IIDh,3(Ùl +eÙ2) 11£1(0)IIß1>IILOO(L2)+ Dh,3( (Ul +eU2)(T)) IIßcp(T) IIL2(0)

+ Dh,3((Ul +eU2)(0)) IIßcpIILOO(£2).
For the second term on the RHS of (4.92) we have

lT
a(Ul- Ul +c(U2-U2); £(~-J ~))dt

::;a(llk(Ul-Ul +e(U2-U2)IIL2(O,T); 11£~IIL2(o,T))
= (1IkK:hl(Ul-Ul +e(U2-U2)11£2(O,T); 1I£~IIL2(o,T))

::;IIkK:hl(Ul -Ul +C(U2-U2)11£2(£2) (Tl/2I1ß1>IILoo(£2)+eIIß~II£2(£2)). e
This concludes the proof of Lemma. 0

Recalling Lemma 4.1.0.5 and error representation (4.90) we may conclude the proof. 0

4.3.2.2 Dual a posteriori error estimate, cG(l)~Cl

Theorem 4.3.2.2 (A posteriori dual error estimate, cG(1)@C1). There is a constant
C > 0 such that for (DD*), the error of the cG(l)~Cl approximation satisfies the following a
posteriori error bound

Iiel (T) IIHl-S + Ile2(T) IIH-s ::;C {llhs (Yo -Tyo) IIHl(o) + IlhS(Yl -Tyd IIHS(O)+ IIhs+! ß(U2 - U 2) 11£1(Hl)
1/2 1-+(T +e)llk£K:h (U2-U2)11£1(Hl-S)

+ IlhS(I - £)(J +ß(UI +eU2))II£1(L2)

+(Tl/2+e)llk£(J - J +ß(U1 -Ul +c(U2- U2))II£1(L2) }. (4.93)
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Remark 4.3.2.2. The estimate (4.93) is of convergence order O(hS+3+k2).
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o

Proof. Given the error representation formula (4.88) where residual takes a form as in Lemma
3.3.3.2, case cG(I), we have

(4.94)

In the following we choose a test function V E Wc such that

V:=.7II<I>, II=(.c,.c),

where .7 is the temporal L2 projection orthogonal to the constant functions in time, see
• Definition 3.1.0.9, case cG(I).

The idea is to estimate El, E2 and E3 such that the final estimate consists of the dual solution
contributions which can be further estimated by means of stability Lemma 4.1.0.5. This is
proved in the following three Lemmas.

Lemma 4.3.2.6. If U(O) is a discrete variant of the initial solution Uo = (Yo, YI) defined as

where I is the Hermite cubic interpolant, then

Proof. We start from the following representation

If 8=0, then

For 8=1, an integration by parts in the first term, Hölder and the Friedrichs inequality yield

El = - (Yo-Iyo; ~cP)+(YI-IYI;~)

::;c{ Ilh(yo - Iyo IIHl (f!) IIßcPIILOO(£2) + Ilh(YI - IYI) IIH1(f!} 11~IILOO(Hl}}.

Lemma 4.3.2.7. There exists a constant C such that for 8=0,1

E2::; C {llhs+! ~(U2 - ud 1I£1(L2)IIDS+!cPlI LOO(£2)

+ Ilk.cK:hl(U2 - U 2) IIL2(Hl-S} (TI/21IDs+lcPIILOO(L2) +dDS+I~II£2(L2») }.

o
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Proof. In order to simplify the estimation, we may rewrite E2 owing to the properties of .J
such that

An integration by parts in space in the first term and the use of (DD) boundary conditions
implies

iT a(U2-[ft; cjJ-£cjJ)dt= -lT
((I -£)ß(U2-Ù1); cjJ-£cjJ)dt

:::;Cllhs+1 ß(U2 - ùd 1I£1(L2)IIDS+1cjJIILOO(L2).

For the second term we may conclude

iT a(U2-U2; £(cjJ-.J cjJ))dt:::;a(llk(U2 -U2)11£2(O,T); II£~IIL2(o,T))

:::;a(llk(U2 -U 2) 11£2(O,T);II£ß( cjJ-é~)II£2(O,T))
:::;(1Ik£Kh1(U2 - U 2)IIL2(O,T);IIß(cjJ-é~)II£2(O,T))' (4.95)

For 8=1 we may conclude from the last inequality

For 8=0, we proceed by integrating by parts in space in the last inequality in (4.95), i.e.

iT a(U2 -u2; £(cjJ-.J cjJ))dt:::;a(llk£Kh1(U2 -U2)11£2(O,T); IlcjJ-é~II£2(O,T))

:::; Ilk£Khl (U2 - U2) 11£2(Hl)(Tl
/
21IcjJIILOO(Hl)+éll~IIL2(Hl)).

This concludes the proof of lemma.

Lemma 4.3.2.8. There exists a constant c> 0 such that

o

E3:::; cs{ IIhS(I -£)(f+ß(Ul +éU2))II£1(L2)II~IILOO(HS)

+Ilk.c(f - J+ß(U1 -U 1+é(U2-U2)))IIL2(Hl-S) (Tl/21IDS+1cjJIILOO(£2)+dDS+1~IIL2(£2))}.

Proof. By using the projection properties of £ and .J we may write

E3= iT((I -£)(f+ß(Ul +éU2)); ~-£~)dt

+ iT (f - J+ß(U1-U1 +é(U2-U2)); £(~-.J ~))dt.

The first term can be estimated such that
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For the second term we have

1(/- ï+ß(VI -VI +é(V2-V2)); £(~-.J ~))dt

::; (1Ik£(f - ï +ß(V1 -VI +C(V2-V2)))II£2(O,T); IIß(~-é~)IIL2(O,T»)'

If 8= 1, we may further estimate such that

1(/- ï+ß(V1-VI +é(V2-V2)); £(~-.J~))dt

::; Ilk£(f - ï +ß(V1 - VI +é(V2 -V 2))) IIL2(L2)(TI/21Iß~IIL'Xl(£2) +éIIß~II£2(£2»)'

If 8=0, then
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1T(f - ï+ß(VI -VI +é(V2-V2)); £(~-.J ~))dt

::; a(llk£(f - ï +ß(V1 - VI +c(V2-V2)))IIL2(O,T); 11~-é~IIL2(O,T»)
::; Ilk£(f - ï +ß(V1 -VI +c(V2-V2))) 11£2(Hl)(TI/2114>llux)(£2)+éll~II£2(Hl»).

This completes the proof of Lemma. o

Recalling Lemma 4.1.0.5 and error representation (4.94) we may conclude the proof of theo-
rem. 0



Chapter 5

Goal-oriented error analysis

In the following, we provide the basic theory and ideas underlying the goal-oriented approach
in the error analysis and mesh adaptivity process. This includes only the definitions and
derivation of the a posteriori error bounds, whereby the verification in form of numerical
results in not provided. The notation used within this chapter includes the one used in
Chapter 3, see Table 3.1 and the additional given in Table 5.1 below.

<I> exact dual solution solution of (5.6)
'II discrete dual solution solution of (5.7)

/ target functional definition (5.1)
B* weak dual bilinear form'(}

Table 5.1: Additional notation used in Chapter 5.

The goal is the efficient and accurate computation of certain (locally) defined quantities, so-
called" target quantities" which arise from the physical formulation of the problem. They are
quantified through the linear output functional

(5.1)

This functional can be chosen differently, e.g. it can be the energy flux over some curve
of interest, the energy of the whole system at some point in time, etc. /, i.e. / (e) =
/(u)- /(U) pretends to be the quantity of interest for the error control with e=u-U and
U, the Galerkin approximation.
From the dual formulation it can easily be seen that the computation of the target functional
is closely related to the computation of the unknown continuous dual solution. In particular,
the formulation of the dual problem involves the target functional as the right hand side.
The dual and energy approach in the a posteriori error analysis, see Section 3.3 and 4.3,
respectively, make use of the projection and interpolation estimates when the computation
of the error bound requires some exact terms, which are not necessarily a priori known. On
the other hand, the goal-oriented method, instead of estimating these exact terms, replaces
it by some suitable numerical approximation and then calculates an a posteriori error bound
directly. To attain the optimal order of convergence, we commonly choose some approximation
method based on higher order elements in space and the same order in time. It also makes sense
to use higher order approximations in time. However, this approach apart from being more
expensive, has to deal with a difficulty of adjusting the data between neighboring time slabs.
The analysis employed here is closely related to that used in BANGERTH [9], BANGERTH-

RANNACHER [10].
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5.1 Application to the strongly damped wave equation
In case of the strongly damped wave equation, we are mainly interested in the control of the
energy term at the final time point T as well as in the control of the dissipative term which
arises only in damped case (é > 0). Hence, for some u E L2(!y; 1£); we define

N

-- 1 2 ""1 2/(u) := -lllu(T)llll£+é ~ Ilu(t)IIHl(rI)dt.
2 j=l Ij

(5.2)

(5.5)

Here !Y is some arbitrary triangulation of the time domain [0,T]. Obviously, fis not linear
in u. We may encounter this difficulty, by introducing the linearised target functional /,
such that

N

/(v):=(u(T) ;v(T)1£+2é LI a(U2;V2)dt for all VEHI(O).
j=l Ij

Due to the definition of the energy norm, there holds

/ (e) = ~Illu(T) 1I1~- ~ IIIU(T) III~+ ~ lIIe(T)III~
N N N

+é L lllu(t)1111(rI)dt-é L lIIU(t)1111(rI)dt+é L llle(t)1111(rI)dt, (5.3)
j=l Ij j=l Ij j=l Ij

and thus

/(e) = /(u)- /(U), and /(e) -t /(u)- /(U) when e -t 0 in 1£. (5.4)

From the Riesz-representation theorem, owing to the fact that / is some linear and bounded
functional, there exists some density function j = (JI, j2) E L2(!y; 1£), such that

/(v):= iT (j;v)l£dt for all v E L2(!Y;1£).

Following the general concept of the goal-oriented method, we may now introduce the contin- e
uous dual problem, similar to the one defined in Section 4.1.
Then the vector form of the goal-oriented dual problem reads: Find <I> E HI (0, T; 1£) such
that

-<Î>(t, x) - A* <I> (t, x) = j(t, x) on Q,
<I>(T, x) = 0 on 0,

(5.6a)
(5.6b)

where A* takes the form of (4.2).
Note that the goal-oriented dual problem (5.6) has the same structure as (4.1) except for the
RHS which is in this case inhomogeneous.

5.2 dG(q) time approximation, q=O,l
For the notation and definitions used in the following, we refer to Section 2.1 and Subsection
2.3.3 where space discretisation methods and discontinuous Galerkin time approximation are
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introduced.
The discrete weak dual problem reads: Find 'l1 E Qg C HI (fi"; 1£) such that
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(5.7)

Here, ß; denotes the weak dual form, especially adapted for the goal oriented analysis. Namely
for all V = (VI, V2), U = (Ul, U2) sufficiently (piecewise) smooth functions in time, we define

N N N

ß;(v, u): =L! a(v2-vlT; uddt- L! (V2,T;u2)dt- L! a(vl; u2)dt
j=l 0 j=l 0 j=l 0

N N N

+é L 1.a(V2; u2)dt- L a([VlP-l; U{-l-) - L([V2P-\ U~-I-). (5.8)
j=l ~ j=2 j=2

Remark 5.2.0.3. If we recall the definition of the dual bilinear form ß* from (4.6) in Chapter
4, we may notice that the goal-oriented dual form ß; (5.8) satisfies

ß* ( ) - ß* ( ) (N -. N -) +( 0+. 0-)V, U - 9 V, U - V , U 1l V , U 1l.

In Section 4.2.1, the additional terms allowed to control the error on IlleN-III1l' In case of the
goal-oriented dual method all terms of interest (error in the energy norm etc.) are covered by
the functional .:J. D

Remark 5.2.0.4. The solution <1>= (<1>1, <1>2) of (5.6) is also a solution of (5.7). Scalar multipli-
cation of (5.6) with respect to 1£ scalar product, by some function V E Q, and an integration
by parts in space where the boundary conditions are imposed through the definition of the
dual operator A* provide (5.7). Notice that the jump terms vanish owing to the tontinuity of
the dual solution <I> in time. D

Lemma 5.2.0.9 (Goal-oriented error representation, dG(q) time approximation).
For u, its discrete dG(q) variant U, q = 0,1 and the solution <I> of the dual problem (5.6), we
have the following error representation

(5.9)

Res(<I>-V)=2(<I>-V)-ß(U,<I>-V) is the residual with ß as in (2.18) and 2 from (2.19).

Proof. The proof follows due to the properties of the discrete functions. Given (5.7), an
integration by parts in time yields

N N N

,/ (e) =ß;(<I>,e) = L! (<I>; eT )1ldt- L (<I>j- ; ei-)1l+ L (<I>j-l+ ; ei-l+)1l
j=l Ii j=l j=l

N N N

- L 1a(<I>l;e2)dt+ L 1a(<I>2;el)dt+é L !a(<I>2;e2)dt
j=l Ii j=l Ii j=I Ii

N-L ([<I>]j-l ; ei-l-)1l' (5.10)
j=2
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(5.13)

The sum of the jump terms and additional j - and j - 1+ contributions can be rewritten such
that

N N-I:{(<Pi-; eJ-)1i+(<I>j-l+; ej-1+)1i} - I:([<I>p-l; eJ-1-)1i
j=l j=2

N N

=-I:{(<I>j- ; ej-)1i + (<I>j-H ; ej-H)1i} - I:{(<I>j-H ; ej-1-)1i + (<I>j-l- ; eJ-1-)1i}
j=l j=2
N N N-l

=-I:(<I>j-; ej-)1i+ I:([ep-l; <I>j-H)1i+(eO-; <I>0+)1i+ I:(<I>j-; eJ-)1i
j=l j=l j=l

N

=I:([ep-l; <I>j-H)1i+(eO-; <I>O+)1i-(<I>N-; eN-)1i' (5.11)
j=l

With (5.11) and the definition of the bilinear form ß, cf. (2.18), equation (5.10) simplifies to

,/ (e) = (eO
- ; <I>O+)1i+ß(e, <I».

Here we used the condition (5.6b), i.e. (<I>N-; eN-)1i =0.
Moreover, from (2.10) and Galerkin orthogonality (2.9), we may conclude for each V E Q

,/(e) = (eO
- ; <I>°+)1i+Res(<I» = (eO

-; <I>°+)1i+Res(<I>- V). D

Having derived the error representation (5.9), it is our aim to compute the RHS of (5.9)
numerically. Since the strong dual solution <I>is unknown, the residual Res is not a computable
quantity. Therefore, we replace <I>by an appropriate approximation. This is emphasised in
the following lemma.

Lemma 5.2.0.10. Let <I>be a sufficiently smooth solution of the dual problem (5.6). If we
denote by <Î> a discrete variant of <I>such that <Î> is a polynomial of order p' > p in space and
dG (q) function in time, then

,/ (e) = (eO- ; <Î>°+)1i+Res(<Î>- V)+O(hP'+P + k2q+1).

Proof. We start from (5.9). Then,

,/(e) = (eO-; <Î>O+)1i+(eO
-; (<I>-<Î»o+)1i+Res(<Î>- V)+Res(<I>-<Î». (5.12)

It remains to prove that

(eO-; (<I>-<Î»o+)1i+Res(<I>-<Î»=O(hP'+P + k2Q+1).

Owing to the approximation properties, we have

(eO- ; (<I>- <Î> )o+)1i =O(hP+p').

If we assume that the mesh is quasi-uniform in space, then

Res( <I>- <Î»= ß( e, <I>- <Î»
N N N

= I:1 (é; <I>-<Î»1idt- I:1.(Ae; <I>-<Î»1idt+ I:([UP-I; (<I>-<Î»j-H)1i
j=l Ij j=l IJ j=l

=O(hP'+P + k2Q+1)+O(hP+p' + k2Q+2)+O(hP'+P + k2Q+1). (5.14)

A substitution of (5.13) and (5.14) into (5.12) yields the proof. D
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There are also some other ways of approximating <P in space, e.g. by use of the biquadratic,
patch-wise interpolation, see BANGERTH-RANNACHER [la, Section 4.1].
When the continuous dual solution is approximated, it is left to find a proper choice for test
function V. This will be done for each time-space ansatz separately.

5.2.1 A posteriori goal-oriented error analysis, dG(q) <i?)'Pl, q=O, 1
Theorem 5.2.1.1 (A posteriori goal error estimate, dG(q)~1'l). For u, its discrete
dG(q)0Pl counterpart U and linearised error functional ,/ there holds

1. if q = a
N

,/ (e) = a(Yo-Iyo; 4D+(Yl-IY1; 4D+ L! (f; (I -I)4~)dt
j=l Ij

N N m

+ Lkja(U4; (I -I)4{) +L L kj[D(Ul +éU4)]k(I -I)4~(Xk)
j=l j=l k=l

N N

+ La(utl-ul; (I-I)4{)dt+ L! (U4-l-U4; (I-I)<Ï>~)dt
j=l j=l ~
+O(hP'+1 + k), (5.15)

2. if q = 1

N
-10 -10 "'"'! ( -jO t-tj-l -jl ),/(e)=a(Yo-IYo;<Pl' )+(Yl-IY1;<P2' )+L..,. f;(I-I)(<p2' + k. <P2') dt

j=l ~ )
N N

+ La(Ul,l; (I-1)(<Ï>{,0+~4{,1»+ L(U4'\ (I-1)(<Ï>~,0+~4~,1»
j=l j=l

N N

+ Lkja(U4'0; (I -I)( <Ï>{'O+~<Ï>{,l)) + L kja(Ue; (I -I)(~<Ï>{,O+~<Ï>{,l»)
j=l j=l

N m
+ ?= L kj[D(Ul'o +éu4,0)]k( (I -I)(<Ï>~'o+~<Ï>~'l»)(Xk)

)=1 k=l
N m

+ L L kj[D(Ul,l+éUe)]k((I -I)(~<Ï>{,O+~<Ï>{,l»)(Xk)
j=l k=l

N

+ La(Ul-l,o+utl,l_ul'o; (I-I)4{'0)
j=l

N

+L! (U4-l,0+utl,1-u4'0; (I -I)<Ï>~'O)+O(hP'+1 + k3). (5.16)
j=l Ij

Proof. In the following we provide only the proof for the dG(1)0Pl case. An estimate in
case of the dG(0)0Pl discrete problem can be derived analogously and will be given only in
its final form.



170 CHAPTER 5. GOAL-ORIENTED ERROR ANALYSIS

(5.17)

Given the error representation from Lemma 5.2.0.10 with the residual defined as in Lemma
3.3.2.2, case pI in space, we may deduce

N N N

/(e) = (eO-; epO+)1i+L 1(j,<Î>2-V2)dt- L1 a(UI; <Î>l-Vddt- L 1(U2; <Î>2-V2)dt
j=l 0 j=l 0 j=l 0

N N m

+'{; 1,a(U,; ih - Vi)dt+ '{; 1,£;([D(U, +ëU,) Ik)(<1>, - v,)( xk)dt

N N

- L a([Ulp-\ (<Î>l- V1)j-1+) - L([U2P-\ (<Î>2- V2)j-1+)
j=l j=l

9

+O(hP'+1 +k3)=:LEe.
e=l

Our aim is to compute El,"" Es. e
Before we start, recall that the continuous dual solution ep is replaced by <Î>according to
Lemma 5.2.0.10 where p' > 1. Then fix V to be a nodal interpolant of<Î> at the midpoint of
each time interval (piecewise constant in time), i.e.

VIIj :=I(<i>i'O+t-:~-l<i>i,l) for all Ij E f/.
J

(5.18)

Ifwe assume that the discrete solution Uo- = (Iyo, IYl) for the initial solution Uo from (1.28b),
we may deduce for El

(5.19)

Using (5.18),

(5.20)

E3=- t1a(U,;<I>,- Vddt= t1~a(U{"; (I-I)«W+ t-:J-'~")dt
j=l Ii j=l Ii J J

N

=La(U{'\ (I - 1)( <Î>{'O+ ~<Î>{,l)). (5.21)
j=l

Arguing as in case of E3, we have

N N

E4= - L 1(U2; <Î>2-V2)dt= L(u4,1; (I-I)(~'O+~<Î>~'l)). (5.22)
j=l Ii j=l
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Furthermore,
N

Es = f;:1;a(U,; ii>,- VIldt

N

= L 1a(U4'0+ t-:~-l U4,1;(I -I) (<Î>{'O+ t-:~-l <Î>{,l))dt
j=l ~ J J

N N

= Lkja(U4'0; (I -I)( <Î>{'O+~<Î>{,l)) + L kja(U4,1; (I -I)(~<Î>{'O +~<Î>{'l)). (5.23)
j=1 j=l

Similarly,
N m

E6= L 1L([D(UI +éU2)]k) (<Î>2- V2)(Xk)dt
j=l Ii k=l
N m

= L L kj[D(Ul'O+éu4'0)]k( (I -I)(<Î>4'0 +~<Î>4'1)) (Xk)
j=l k=l

N m
+ L L kj[D(Ul,1 +éu4,1)]k((I -I)(~<Î>4'0 +~<Î>~'l)) (Xk). (5.24)

j=l k=l
We continue with the jump terms E7 and Es.

N N

E7= - L a([Udj-\ (<Î>l- Vi)j-1+) = La(Utl,O +ul-1,1-ul'0; (I -I) <Î>{'O), (5.25)
j=l j=1

N N

Es= - L([U2]i-1; (<Î>2- V2)j-1+)= L(U4-l,0+u4-l,1-u4'0; (I -I)<Î>~'O). (5.26)
j=l j=1

After a discrete solution U and the approximation of the strong dual solution <Î>have been
calculated, it is easy to compute the terms El" .. , Es. This yields the proof of theorem. 0

5.2.2 A posteriori goal-oriented error analysis, dG(q)@C1,q=O, 1
Theorem 5.2.2.1 (A posteriori goal error estimate, dG(q)@C1). For u, its discrete
dG (q) Q9Clcounterpart U and linearised error functional /, there holds

1. if q=O
N

/(e) = a(Yo-Iyo; <Î>D+(Yl-IYl; <Î>~)+L 1(f; (I -I)<Î>~)dt
j=l Ii

N N

+ L kja(u4; (I -I)<Î>{) + L kj(ß(ul +éu4); (I -I)<Î>4)
j=l j=l

N N

+ La(UI-1-ul; (I -I)<Î>{)dt+ L 1(u4-l-u4; (I-I)<Î>4)dt
j=l j=l Ii

+O(h3+pl + k), (5.27)
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2. if q=l

CHAPTER 5. GOAL-ORIENTED ERROR ANALYSIS

(5.29)

N

,/ (e) = a(Yo-Iyo; <Î>~,O)+(Y1 -IY1; <Î>~'o)+LI (f; (I -I)(<Î>~'O + t-;~-l <Î>~,1))dt
j=l ~ . J

N N

+ La(U{'\ (I-1)(<Î>{'O+~<Î>{'1))+ L(u4,1; (I-I)(<Î>~'O+~<Î>~,l))
j=l j=l

N N

+ Lkja(U4'O; (I -I)( <Î>{'O+~<Î>{,1)) + L kja(u4,1; (I -I)(~<Î>{'O +~<Î>{,1))
j=l j=l

N

+ L kj(ß(U{'O +Eu4'O);(I -I)(<Î>~'O +~<Î>~'1))
j=l

N

+ L kj (ß(U{,l + EUe); (I - I) (~<Î>~'O+ ~<Î>~'1))
j=l

N

+ La (U{-l,O+U{-l,l_U{'O; (I -I) <Î>{'O)
j=l

N

+ LI (u4-1,o+U4-1,1-u4'o; (I -I)<Î>~'O) +O(h3+p'+k3). (5.28)
j=l Ij

Proof. Same as in the proof of Theorem 5.2.2.1, we derive only the proof for the case dG(l)
in time.
Given the error representation from Lemma 5.2.0.10 with the residual as in Lemma 3.3.2.2,
case Cl in space, we have

N N N

,/ (e) = (eO- ; <1;0+) 'Il+f;,.ly, <1;2 - V2)dt - f;,.l, a( (;, ; <1;, - vIldt - f;,.1}(;2; <1;2- V2)dt

N N

+ LI a(U2; <Î>1- Vi)dt+ L 1(ß(U1 +EU2); <Î>2- V2)dt
j=l Ij j=l Ij

N N

- L a([U1]i-\ (<Î>1- Vdj-1+) - L([U2]i-\ (<Î>2- V2)j-1+)
j=l j=l

9

+O(hP'+3+k3)=: LEi.
i=l

The idea in the following is to compute El, ... , Es. First, let a discrete function V be defined
as in (5.18) where I stands for the cubic Hermite interpolation operator in space, i.e. p=3 and
then p' > 4. Then, we may see that for El - Es and E7 - Es there hold the analogous estimates
to the one derived for PI ansatz in space, see (5.19)-(5.23) and (5.25)-(5.26), respectively.
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With the following approximation for E6, see (5.29), we conclude the proof of theorem.
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N N
E6=- L1(ß(U1 +éU2); <h- V2)dt= L kj(ß(U{,O+éU4'O); (I-I)(~{'O+~~{,l»)

j=l ~ j=l
N

+ L kj(ß(U{,l+ éu4,1); (I-I)(~~{'O +~~{,l»). 0
j=l

5.3 cG(l) time approximation
For the notation and definitions used in the following, we refer to Section 2.1 and Subsection
2.3.4 where space discretisation methods and continuous Galerkin time approximation are
introduced.
The discrete weak dual problem reads: Find \l1 E Qc such that

(5.30)

Here, B; denotes the weak dual form adapted for the goal-oriented analysis. Namely, for all
V= (VI, V2), u = (Ul, U2) sufficiently (piecewise) smooth functions in time, B; is defined as

B;(v, u) := iT a(V2-Vl; u1)dt-i
T

(v2; u2)dt-i
T

a(Vl; u2)dt+é iT a(V2; u2)dt. (5.31)

Remark 5.3.0.1. Dual bilinear form B* from (4.34) and the goal-oriented dual form B;
defined in (5.31) satisfy

B*( v, u) =B;( v, u) + (v(T) ; u(T) )1£- (v(O) ;u(O) )1£'

Remark 5.3.0.2. The solution <1> of (5.6) solves (5.30).

o

o

Lemma 5.3.0.1 (Goal-oriented error representation, cG(1) time approximation).
For u, its discrete cG(l) variant U and the solution <1> of the dual problem (5.6) we have the
following error representation

/(e)=(e(O) ;<1>(O»)1£+Res(<1>-V) for all V E Wc. (5.32)

Here, the residual Res(<1>-V) =~(<1>-V)-B(U, <1>-V) with B from (2.41) and ~ from (2.42).

Proof. The error e is globally continuous in time. Given (5.30) and (5.31) we have by
integrating by parts in time

/(e) =B*(<1>,e) =iT a(ë1; <1>ddt-a(el(T); <1>l(T»+a(e~-; <1>1(0»

+ i
T

(ë2; <1>2)dt-(e2(T); <1>2(T»+(e~-; <1>2(0»

-iT a(e2; <1>l)dt+ iT a(el; <1>2)dt+é iT a(e2; <1>2)dt.
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Since cI>(T) =0 if we recall the definition of the bilinear form B, see (2.41), we may deduce

/(e)=(e(O) ;cI>(O))1£+B(e,cI». (5.33)

Finally, from the residual representation (2.10) and the Galerkin orthogonality (2.9) we have
for all V E Wc

/ (e) = (e(O) ; cI>(0))1£ + Res( cI» = (e(O) ; cI>(0))1£ + Res( cI>- V). o

Having derived the error representation in terms of the functional of interest (5.32), the idea
is to compute the RHS of the same. Since cI> is unknown we approximate it by some discrete
function. This is emaphasized in the following lemma.

Lemma 5.3.0.2. Let cI> be a a sufficiently smooth solution of problem (5.6). Let ~ be a
discrete variant of cI> such that ~ is a polynomial of order p' >p in space and cG(l) function
in time, then there holds

Proof. We start from (5.32). Then,

/ (e) = (e(O) ; ~(0))1£ + (e(O) ; (cI>- ~ )(0) )1£+ Res(~- V) + Res( cI>-~). (5.34)

We need to prove that

Owing to the approximation properties of both time and space discretisation method we have

( e (0) ; (cI>- ~ ) ( 0) ) 1£= 0 (hp+p' ) •

Using the same arguments as above

Res(cI>-~)= iT (ë;cI>-~)1£dt-1T (Ae;cI>-~)1£dt

=O(hp+p' + k3)+O(hp+pl + k4
).

This completes the proof.

(5.35)

(5.36)

o

Furthermore, let a test function V be chosen as the interpolation of ~ at the midpoint of each
time interval (piecewise constant in time), i.e.

for all Ii E:Y. (5.37)

Note that the interpolation operator I need to be applied interval-wise in time according to
the general idea of the discretisation where the grid may vary in space, from one time slab to
the another. However, in case ofthe cG(l) method in time, we need to assume that Si-1 çSi.
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5.3.1 A posteriori goal-oriented error analysis, cG(l)@Pl
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Theorem 5.3.1.1 (A posteriori goal error estimate, cG(l)@1'l). For u, its discrete
cG (1) lZlPI counterpart U and linearised error functional/there holds

/ (e) = O(hP'+1 +k3
) +a(yo -Iyo; <Î>l(0» + (YI -IYl; <Î>2(0»

N

+LJ (f; :. ((t-tj_d<Î>2(tj)+(tj-t)<Î>2(tj_d) -~I(<Î>2(tj)+<Î>2(tj-l») )dt
j=l Ij J
N+?= ~a( Ul(tj)-Ul(tj-d; (I-1) (<Î>l(tj) +<Î>l(tj-l») )

)=1

N

+?=~(U2(tj) -U2(tj-l); (I -1) (<Î>2(tj)+<Î>2(tj-l») )
J=l
N

+ ~kj a(U2(tj)+U2(tj-l); (I -I)(<Î>l(tj)+<Î>l(tj-l»)~4J=l
N

+ L :~a(U2(tj)-U2(tj-l); <Î>l(tj)-<Î>l(tj-l»)
j=l
N m

+LL d [D(UI (tj) +Ul (tj-l) +é(U2(tj) +U2(tj-l) »]k(I -I) (<Î>l(tj )+<Î>l (tj-d) (Xk)
j=lk=l
N m

+ L L :~ [D(UI (tj) -Ul (tj-d +E(U2(tj) -U2(tj-l» )]k( <Î>2(tj)-<Î>2(tj-l) )(Xk)' (5.38)
j=l k=l

Proof. Given the error representation from Lemma 5.3.0.2 with residual as in Lemma 3.3.3.2,
case PI in space, we may deduce

/(e)= (e(O); <Î>(0»)1£+lT
U, <P2- V2)dt-1

T
a(Ül; <Î>l- Vddt-1

T
(Ü2; <Î>2- V2)dt

i
T iTm .

+ a(U2; <Î>l- Vddt- L[D(UI +éU2)]k(<Î>2- V2)(Xk)dt
o 0 k=l

7

+O(h1+P' +k3) =: L Ef..
f.=l

(5.39)

The idea is to compute El - E6' If we assume that the discrete variant of the initial solution
uo reads U(O) = (Iyo, Iyd, see (1.28b), then we may conclude

Notice that within this subsection I stands for the nodal interpolation operator in space, cf.
Definition 3.1.0.1.
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(5.41)

Furthermore,

E2 = iT

U; <Î>2- V2)dt

N

= LI (f; t-:~-l <Î>2(tj)+tjk~t <Î>2(tj-l) - ~I( <Î>2(tj)+<Î>2(tj-d) )dt.
j=l 0 J J

Using the same arguments,

E3= -iT a(Ul; <Î>l-lft)dt

N

= L r a( :. (Ul (tj)-Ul(tj-l)); ~I( <Î>l(tj) +<Î>l(tj-l) ) - t-:~-l <Î>l(tj)- tjk~t <Î>l(tj-l) )dt
j=JIi J J J
N

= ?= ~a(Ul(tj)-Ul(tj-l); (I-I) (<Î>l(tj)+<Î>l(tj-l)) ). (5.42)
J=l

Similarly,
T N

E4= -1 (U2;<Î>2-V2)dt=L~(U2(tj)-U2(tj-l);(I-I)(<Î>2(tj)+<Î>2(tj-l)))' (5.43)
o j=l

In case of E5 we have

E5 = iT a(U2; CPl- Vddt

N_"I t-tj_l tj -t . t-tj_l ~ tj -t ~
- L...J ( k. U2(tj)+~U2(tj-l)' k. CPl(tj)+~CPl(tj-l))dt

j=l Ii J J J J
N"I 1 (t-tj_l tj -t ~ ~ )- L...J 2"a k. U2(tj)+~U2(tj-d;I(CPl(tj)+CPl(tj-d) dt

j=l Ii J J
N

= L~a(U2(tj)+U2(tj-l); (I -I)(<Î>l (tj) +<Î>l (tj-l)))
j=l

N

+ ?= :~a(U2(tj)-U2(tj-l); <Î>l(tj)-<Î>l(tj_l))' (5.44)
J=l

Likewise,
Tm

E6 =1L[D(UI +cU2)]k(<Î>2- V2)(Xk)dt
o k=l
N m

= LL~[D(UI (tj) +Ul (tj-l)) +cD(U2(tj) +U2(tj-l)) )]k(I -I) (<Î>l(tj) +<Î>l (tj-l)) (Xk)
j=lk=l

~~ kj ~ ~+ ~L...J 12 [D(UI (tj) -Ul (tj-l)) +cD(U2(tj) - U2(tj-l) ))]k(CPl (tj) -CPl (tj-d )(Xk)' (5.45)
J=lk=l

A substitution of the approximations for El - E6 into (5.39) yields the proof of theorem. 0
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5.3.2 A posteriori goal-oriented error analysis, cG(l)@C1

Theorem 5.3.2.1 (A posteriori goal error estimate, cG(1)@C1). For u, its discrete cG(1~
Cl counterpart U and linearised error functional/there holds

/ (e) =O(hP'+3 +k3) +a(Yo-Iyo; <I>I (0)) + (YI -IYl; <I>2(0))
N

+ LI (f; ~. ((t-tj-l)<I>2(tj)+(tj-t)<I>2(tj-l)) -~I(<I>2(tj)+<I>2(tj_l)) )dt
j=l Ii J

N

+ L ~a(Ul(tj)-Ul(tj-d; (I-I) (<I>I (tj) +<I>l(tj-d) )
j=l

N

+ ~~(U2(tj)-U2(tj-d; (I-I) (<I>2(tj)+<I>2(tj-d) )
J=l

N

+ L da(U2(tj) +U2(tj-l); (I -I)( <I>I (tj) +<I>l (tj-l)))
j=l
N

+ L ~~a(U2(tj)-U2(tj-l); <I>l(tj)-<I>l(tj-l))
j=l
N

+ L d (ß(Ul(tj)+Ul(tj-d+é(U2(tj)+U2(tj-l))); (I -I) (<I>l(tj)+<I>l(tj-l)))
j=l
N

+ L ~~(ß(U(tj)-Ul(tj-d+é(U2(tj)-U2(tj-d));<I>1(tj)-<I>1(tj-l)). (5.46)
j=l

Proof. Given the error representation Lemma 5.3.0.2 with the residual as in Lemma 3.3.3.2,
case Cl elements, we may deduce

/(e)= (e(O); <I>(0))11£+lT(f, <I>2- V2)dt-1Ta(Ül; <I>l- Vddt-1
T

(Ü2; <I>2- V2)dt

T iT 7
+1 a(U2; <1>1- Vt)dt+ (ß(UI +éU2); <I>2- "'2)dt+O(hP'+3 + k3) =:L ER.. (5.47)

o 0 R.=l

The idea is to find a suitable approximations for El - E6. Obviously, if we choose a test
function V as in (5.37) then we may derive an analogous estimates for El - E5 as in (5.40)-
(5.44) where I stands for the cubic Hermite interpolation operator in space. To complete the
proof of theorem, its left to estimate E6.

E6= l
T

(ß(Ul +éU2); <I>2- V2)dt

N

= Ld (ß(Udtj) +Ul(tj-d +é(U2(tj) +U2(tj-l))); (I -I){<I>l(tj)+<I>l(tj-d))
j=l

N

+ L~~(ß(U(tj)-Ul(tj-l)+é(U2(tj)-U2(tj-d)); <I>l(tj)-<I>l(tj-d). (5.48)
j=l

A substition of approximation for El - E6 into (5.47), yields the proof of theorem. 0



Chapter 6

Numerical experiments

6.1 FE solution - Algorithmen

Our intention within this section is to determine the algorithm for the computation of the
discrete solution on each time interval Ij. This algorithm is based on the localised weak
form (2.6). We consider only the Galerkin methods for time discretisation introduced in
Subsections 2.3.3 and 2.3.4, and spatial discretisation by PI and Cl elements, see Section
2.1. The algorithm for the computation of the semi-discrete solution is already presented in
Subsection 2.4.1.3 and Subsection 2.4.2.3, for particular space ansatz, respectively.
The analysis follows by considering first the different time approximations and thereupon the
spatial approximation.

6.1.1 FE solution, dG(q) time approximation, q=O, 1

Below we only consider the case q = 1, whereas for q = 0 we provide a final result without
going into details.

6.1.1.1 FE Solution, dG(q)(j!}Pl

Given the equation (2.53), a substitution of four different variants for the test function vj E Qi
yields the following systems,

1. for Vj = (VI, 0) = (<Pm, 0), m=O, ... , n

n n
"'(Uj,O+Uj,I)S "'(k Uj,o+ kj Uj,I)S - GjL k,l k,l m,k - L j k,2 2 k,2 m,k - l,m'
k=O k=O

~ !Uj,IS _ ~(kjUj,o+ kjUj,I)S = 0L 2 k,l m,k L 2 k,2 3 k,2 m,k ,
k=O k=O

179
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3. for Vi = (0, VI) = (0, <Pm),m=O, ... , n

t(kiUl:~ +i Ug)8m,k+é t(kiUl:~+ i Ug)8m,k+ t(Ul:~+Ul:~)Mm,k
k==O k==O k==O

=1(J; <Pm)dt+C!n,2'
Ij

Here, for all m=O, ... , n,

{
",n (Ui-I,O Ui-I,I)SCi '= L..Jk==Ok,l + k,l m,k,

m,l . (Yo; <Pm),
for j > 1,
for j = 1. (6.la)

{
",n (Ui-l,o Ui-I,I)MCi '- L..Jk==Ok,2 + k,2 m,k

m,2 .- (YI; <Pm)
for j > 1,
for j = 1.

(6.lb)

If we denote by

Fo := [ fIP',<I>O)dt ]

JI. (J, <Pn)dt
1

(6.2)

owing to the vector notation from Table 2.5, the systems above read in the equivalent vector
form

(6.4)JL.-.-

lLui = IF, (6.3)

where lL is a 4(n+ 1) x 4(n+ 1) block matrix and IF is a 4(n+ 1) x 1 block vector of the form

8 -ki8 _kj/28]
1/28 _kj/28 -kjj38 IF '_
kif28 éki8 + M ékif28 + M ' .-
kj/38 ckif28 ckj/38 + 1j2M

Here, C{, C~ stand for the global matrices (6.1).

. [1U!] ..In case of q=O, we solve a system (6.3) with a solution vector llP:= ~ where lU{,~ ERn

coincides with 1U{'o,~,o from above, and 2(n+l)x2(n+l) matrix JL and 2(n+l)xl dimensional
vector IF where

[ 8 - k .8] [Ci]
JL:= ki8 éki8 ~ M ' IF:= Fo +IC~ '

. . l' . 1
and C{ := 8lU{- , C~ := M~- .
For both q=O, 1, 1IJO denotes the discrete variant of the initial solution Uo.

(6.5)



6.1. FE SOLUTION - ALGORITHMEN 181

6.1.1.2 FE solution, dG(q)@C1

In the following we only consider the case q=O. Given the weak equation (2.61), for different
choice of test function V E Qi a sum over k= 1, ... , n of the corresponding vector form (2.62)
yields four systems. Namely,

1. for Vi = (VI, 0) = (4)p, 0), l::;p::; 4

n n n

L Sk(llJ{',~ +1U{;,~)-LSk(kilUt~ + i llJ{',~)= LGL,
k=1 k=1 k=O

3. for Vi=(O, Vi)=(O,4>p), l::;p::;4

t Sk(killJ{',~ + i llJ{',i)+ct Sk(killJ{',~+ illJ{',~)+ t Mk(1U{;,~ +llJ{',~)=t Fl,0+Gi,2'
k=I k=I k=I k=1

The coefficient matrices lUk'.~II~have the same form as in Table 2.6. Note also that for these
choices of test functions, coefficient matrices ,t~ll~= ep E JR4. Sk, Mk are the 4 x 4 element
stiffness and mass matrix defined in (2.58), (2.59). In particular they read for k = 1, ... , n

[ 36
3hk -36

3h. ]1 3hk 4(hk)2 - 3hk - (hk)2
(6.6)Sk = 30hk -36 -3hk 36 -3hk '

3hk - (hk)2 - 3hk 4(hk)2

[ 156
22hk 54 -13h. ]

Mk= hk 22hk 4(hk)2 13hk - 3(hk)2
(6.7)420 54 13hk 156 -22hk .

-13hk -3(hk)2 -22hk 4(hk)2
'0 'IFurthermore, FI; , Fi' are the 4 x 1 element force vectors defined as

hk/2 II. I~I /4>1dtd( hk/2 II; I~1 t-t;-l/k;/4>I dtd(
J 1

h%/4 II; I~I t-t;-1/k;/4>2 dtd('0 h%/4 II' I-I /4>2dtd( Fi,I._ (6.8)Fl, '- J 1k .-
hk/2 II, I-I /4>3dtd(

, k .-
hk/2 II; I~I t-t;-1/k;/4>3 dtd(

J 1
h%f4 II; I~I t-t;-1/k;/4>4 dtd(h%/4 II; I-I /4>4dtd(
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The 4 x 1 element mass vectors G~ l' G~2 are related to the terms which include the vector
form of the discrete solution from the pre~ious time step, i.e. 1U{-;.1 and 1U{21 respectively, such, ,
that

(6.ga)

(6.9b)

From the fact that they include some terms from the previous time step, GLI2 are dependent
on the spatial refining method used on the interval Ij-1 and therefore their implementation
can be of special interest in case of different (adaptive) spatial refinement of neighbouring
time slabs.
Our intention is to determine the solution vector l[Ji defined as in Table 2.6 of the following
global system

where

5
kif25
1/25
kjj35

-k.5J
ékj5+M

_kj/25
ékif25

lLVj = lF,

[
G{ ]Fi,O ;G~
FJ,l

(6.10)

(6.11)

Here, 5, M are denoted as global stiffness and mass 2(n+ 1) x 2(n+ 1) block matrices and
Fj,O, Fj,l, G{, G~ are force and mass vectors of dimension 2(n+1) x 1.

In case of dG(O) discretisation in time, the system has the similar structure to the one from
Subsection 6.1.1.1. We solve a problem (6.10) where matrices lL,lF read

(6.12)

with G{ := 5lU{-1, G~ := M~-l. The structure of 5 and M is determined due to cubic e
spline ansatz in space. The solution vector l[Ji has the same structure as in Table 2.6, case
dG(O).
For both q=O, 1, 1[Jl is the coefficient matrix with respect to Uo- =I1uo.

6.1.2 FE solution, cG(1) time approximation
The derivation of the Irinterval based algorithm for the computation of the discrete solution
vector l[Ji relies on the notation from Table 2.5 and Table 2.6. We also assume that Sj-1 ç Sj

for all j = 1, ... ,N, where sj denote the space of spatial discrete functions related to time
slab Ij x n.

6.1.2.1 FE solution, cG(I)~1'l

Given the weak problem (2.54) related to time interval Ij, by applying two different variants
of constant test function in time V EWc, we obtain the following two systems, namely
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1. for Vi=(Vl,O)=(ePm'O), m=O, ... ,n

n n
"'(Ui ki Ui)8 - "'(Ui-l ki Ui-l)8~ k,l-2 k,2 m,k- ~ k,l+2 k,2 m,k,
k=O k=O

2. for Vi = (0, Vi) = (0, ePm), m=O, ... , n

n n n k
'" ki (i i)8 '" i -1(I ) '" i (Ui-l Ui-l)~ 2 Uk,l +éUk,2 m,k+ ~ Uk,2Mm,k - . ' ePmdt- ~ 2 k,l +é k,2 Sm,k
k=O k=O IJ k=O

n

+LUl,;l Mm,k.
k=O

183

Here Ui-l denotes the solution from the previous time slab which is a priori known due to
the fact that in case when j =1, UO = fluo, i.e. UO represents the discrete variant of the initial
solution from (1.28b).

We rewrite the systems above such that the global solution system reads

lLVi = IF, (6.13)

where Vi is a solution vector related to the time interval Ii and defined as in Table 2.5. lL is
4(n+l) x4(n+l) block matrix and IF is a 4(n+1) x 1 block matrix such that

with force and mass vectors defined such that

F:= (1. (I, ePo)dt, ... , 1.(I, ePn)dt) T,
J J

Ci .- sni-l ki sni-l
l'- Vi + 2 \LT2 ,

Ci '=_ ki Sl[i,-l +(M -é ki S)U-l
2' 2 1 2 2'

Note that in case j = 0, 1Ifl is a coefficient matrix of fluo.

(6.14)

(6.15a)

(6.15b)

(6.15c)

6.1.2.2 FE solution, cG(l)~Cl

Given (2.65), for two different choices of test function V E Wc, a sum of jk-contributions (2.66)
over k =1, ... , n yields two systems, namely

n n

L Sk(1JJ{,l _kj/21JJ{,2) =L cL
k=l k=l
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t i Sk~,1 +t(Mk+c i Sk)~,2 = t F~+C{,2'
k=I k=I k=I

Here we used the vector notation for vt,I12 from Table 2.6. Note also that for test functions
V above, we have v{,1,2 = ep E]R4 for 1 ~ P ~ 4. Sk, Mk are 4 x 4 element mass and stiffness
matrices from (6.6), (6.7). F~ is the 4 x 1 element forcing vector which has the same structure

.0
as vector FZ' from (6.8).
The 4 x 1 element mass vectors C{ l' C{ 2 are related to the terms which include the discrete
solution from the previous time st~p ~~I respectively, i.e.

(6.16a)

(6.16b)

Global matrices C{, C~ depend on the spatial refining method on the previous time slab
Ij_I x n. This need to be considered in case of different (adaptive) spatial refinement of two
neighbouring time slabs.

Finally, we seek to find a 2(n+1)x1 dimensional global solution vector Ui defined as in Table
2.6, of the system

where

LUj = lF, (6.17)

S, M are denoted as global stiffness and mass 2(n+1) x2(n+1) block matrices and Fj, C{, C~ e
are 2(n+1) x 1 dimensional force and mass vectors.

6.1.3 Incorporation of Dirichlet boundary conditions
In order to include the homogeneous Dirichlet boundary conditions into the global system
related to time interval Ij, the first components concerning both vectors 10{, ~ from solution
vector Ui = (10{, ~) need to be set to zero.
Additional in case of Problem (DD), the ultimate (linear splines in space) and penultimate
(cubic splines) component in both 10{ and ~ must be also set to zero. A detailed review

~ II
DN
DD

Table 6.1: Zero components in solution vector Ui for homogeneous Dirichlet boundary data.
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concerning the different discretisation in time can be found in Table 6.1.

If the global solution system reads

lLVi = IF
TIY (dirichlet) = 0

185

•

where dirichlet denotes the set of indices at Dirichlet nodes and 0 is the zero vector, by proper
indexing where F N denotes the set of all remaining nodes, the system can be rewritten as

[
lL(F N, F N) lL(F N, dirichlet) ] [ Vi (F N) ] [ IF(FN) ]

lL(dirichlet,FN) lL(dirichlet,dirichlet) Vi (dirichlet) = IF(dirichlet) .

Taking into account that we deal with homogeneous Dirichlet boundary conditions, the first
block of equations can be rewritten as

lL(FN,FN)Vi(FN) = IF(FN).

The second block of equations is not of interest and is omitted in the following which simplifies
the implementation.

6.1.4 Incorporation of Neumann boundary conditions
In case of cubic splines in space, we may additionally require that the Neumann boundary
condition

(6.18)

is also incorporated in the computation of the discrete solution. This can be done owing to
the fact that cubic splines are continuous in first space derivative, whereas in case of linear
splines this is not possible.

• If Vi is the solution vector related to the time interval Ii which can be obtained from the
system

lLVi = IF,

than the extended system with incorporated Neumann boundary condition reads

IF
o

o o o

Here ÀI' ... , Ài stand for the Lagrange multipliers. In particular, f. E {I, 2} such that f.= 1 in
case of dG(O) and cG(I) time discretisation and f.=2 for dG(I) method in time.
Furthermore, BI, ... ,Bi are a (n + 1) x 1 matrices which arise from a substitution of the
discrete form (2.4) for UI and U2 into (6.18).
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6.2 Examples
Within this section, we present five examples of the (strongly damped) wave equation used in
the numerical experiments. The exact solutions of all presented examples are a priori known.
The difference between them is in the choice of the boundary conditions, parameter ê and
homogeneous and non homogeneous right hand side I.
Experiment 6.2.1. We observe the inhomogeneous equation (1.13) without damping, i.e.
ê = 0, on the domain Q = [0,T] x [0, 1] with forcing vector

I(t, x) = -(5 + t)(x - 2)e-X

and initial conditions

Uo(x) = 5xe-x,

Ul(X) = xe-x.

The advantage of using this example is that we know the analytical solution,

U(t, x) = (5 + t)xe-X

(6.19a)

(6.19b)
(6.19c)

(6.19d)

so that we can compare our numerical solution to this and calculate the error in energy norm.
It should be also noted that, as the exact solution is very smooth, this is very well-behaved
problem.

Experiment 6.2.2. We first consider the solution of the homogeneous problem (1.13)-(DN),
i.e. 1=0, without damping (ê=O) where the initial conditions read

Yo(x) = 0
1f. 1fX

Yl(X) = 2" sm(2)'

This problem is defined on the domain Q = [0,T] x [0, 1], T> O.
The analytical solution is known and reads

(6.20a)

(6.20b)

(6.20c)
•

Owing to the fact that the exact solution is Coo with respect to time and space variable, this
is very well-behaved problem which does not give rise to oscillating discrete solution in space.

Experiment 6.2.3. Next we have on the same time-space domain Q = [0,T] x [0,1], a ho-
mogenous wave equation (1.13)-(DD), i.e. 1=0 and ê=O which solution satisfies

y(O, x) =Yo(x) = sin(x1f)
y(O,X)=Yl(X) = 0

The exact solution is smooth and reads

y(t, x) = cos( -t1f) sin(x1f).

(6.21a)
(6.21b)

(6.21c)
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Experiment 6.2.4. This problem is non homogeneous with damping é > O. The solution of
this damped wave equation (1.13)-(DN) with the forcing vector

and the initial conditions

is known and reads

The domain is Q= [0, T] x [0,1].

f(t, x) = e-t/é sin(x7r/2),

Yo(x) = é2 sin(x7r /2),
YI(X) = -ésin(x7r/2),

(6.22a)

(6.22b)
(6.22c)

(6.22d)

Experiment 6.2.5. Finally, we consider the solution of the wave equation (1.13)-(DN) i.e.
with é =0, where the forcing vector reads

f(t, x) = -(5 + t)(x - 2)e-x.

The initial conditions are defined by

Yo(X) = 5e-xx
YI(X) = a

on the domain Q = [0, T] x [0,1]. The analytical solution is known and reads

(6.23a)

(6.23b)
(6.23c)

(6.23d)

6.3 Validity of error and error bound with respect to
change of parameters

Within this section we provide some numerical results which were conducted to examine the
algorithm as well as the a posteriori error estimator obtained by energy method, cf. Chapter
?? For all examples the domain was Q=[O,T]x[O, 1] where T=I, only in Subsection ?? the
final time point changes owing to the purpose of experiments which assumes the study of the
long time behaviour.
In Figure 6.1, we study the effects of saturation with respect to convergence in space for
different choices of time step-size k. Similar behaviour is observed when step site h changes
and the convergence with respect to k is plotted, see Figure 6.2. Notice that we plotted only
the convergence behaviour of the exact error when PI elements in space, but the same effects
are obvious when Cl in space. The approximation by PI elements in space is not so exact as
the one by Cl elements, and therefore the effect of saturation becomes more clear.
In the following we study the behaviour of the reliability constant

(6.24)
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in dependence of the parameter é and T. In Figure 6.3 when cG(I), dG(O) and dG(I) time
approximation combined with Cl elements in space were applied, we may observe the nearly
asymptotical behaviour of Cr. The approximated error is obtained with help of the energy
arguments. This can be treated as the effect of the error accumulation. In Figure 6.4, we plot
Cr in case of the cG(I), dG(O) and dG(I) discretisation in time combined with Cl elements in
space for different choice of terminal point in time T. The error bound is obtained with help
of the energy arguments. The instability of the observed reliability constant may come from
the fact that time step-size k also changes in time as T, i.e. k=T/2.

6.4 Adaptivity
The solutions of the (strongly damped) wave equation, posses localised features, like e.g.
wave fronts. Employing the adaptivity in the choice of the computational grids, may help the
establishing of the efficient Algorithmen, which may resolve this features at certain portion
and improve the convergence of the discrete solution toward the exact one.
Thereafter, the main task is to find the most optimal time-space mesh and then calculate the e
approximate solution U on that mesh with a minimal cost concerning the time of computation
and efficiency of the algorithm in a sense that the algorithm can be used as a platform for
development of solution strategies for much more complicated problems.
In this work, we discussed this problem only partly. Namely, from Section 3.3, where the
derivation of a posteriori error estimates by use of the energy techniques were discussed, we
have

quantity of interest::; TJ (value of the error estimator),

where the quantities of interest represent the energy of the error and dissipative term. We
mayalso notice, that in the formulation of the error estimator TJ, some terms arise form the
global and some only form the local discretisation, i.e.

TJ=TJgl+ max TJj
I'5:.j '5:.N

(6.25)

where indices j clearly indicate that in case of TJj we refer to the local quantity computed only
on time interval Ij. TJgl is the quantity which is computed over he whole time interval [0, T]. e
The main idea is to use TJj as the indicator for the mesh refinement in time. Therefore, the
adaptive method may be formulated as follows

Algorithm 1.

Input: Spatial mesh S which is fix for each time slab; Discrete variant of Uo with respect to S;
An initial coarse time partition !yo of the time interval [0, T], !yo=U:I Ii, i= 0; j = 1.

1. Compute a Galerkin solution uj on the time-space slab Ij x n where Ij E !yi.

2. Compute 'T/j. If j <Ni increase j and goto 1.
Else goto 3.

3. For all TJj where TJj ~ ~ maxi TJI, ... , TJNi}, halve Ij E !yi such that Ij u Ij' =Ij, define
!yi+l={!yi \ Ij}U{Ij,Ij'}, set j = 1, and goto 1.
Else end.
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It's obvious that i in the algorithm above can be iterated a number of times, but we van also
set an indicator for i in order to provide an finiteness.
From the simple numerical computations, see Figures 6.5,6.6, it is obvious that this algorithm
do not improve the convergence rate of the estimator. It just makes the exact error and the
estimator smaller. Possible improvements of the algorithm above which would include the
adaptive mesh refinement as in time as in space, and also for which the efficiency can be
easily proved is a matter of future investigation which are not included in this work. Here
we give just an overview which gives rise to the future discussions. We also note that this
strategy can not be applied for the estimates obtained by using the duality arguments due to
the different form of the estimator then (6.25), cf. Section 4.3, where the local quantities do
not occur separately in the error estimate. For some possible ways of designing an adaptive
algorithms, we refer to the following literature sources [66, 64, 13].
As far as the adaptivity in goaloriented method is concerned, we refer to [9, 10, 11] for further
discussion and references. This has not also been treated within this work.
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Figure 6.1: The exact energy of the error IleIILOO(l£) with respect to the number of elements in
space for the different time-step sizes. We observe the effect of saturation i.e. as soon as the
step size k becomes small, the convergence behaviour with respect to h, i.e. O(h) is obvious;
First row: dG(0)@P1, Second row: cG(1)@P1, Third row: dG(1)@P1; Example 6.2.3, ê=O,
(DD), T=1.
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Figure 6.5: Convergence behaviour of IlellvX>(1l)+v'€lle21IL2(Hl) and 1] for dG(O)@Cl with respect
to the number of elements in time; uniform and adaptive refinement (time); The adaptive
refinement minimises the error and its bound; Example 6.2.4, ê = 0.1, (DN), T = 1; energy
method.
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