Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universitét Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/)

TECHNISCHE
] UNIVERSITAT
I lj WIEN
VIENNA
WIEN UNIVERSITY OF
TECHNOLOGY

DISSERTATION

The Design of a Building Model Service

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der Sozial- und Wirtschaftswissenschaften

unter der Leitung von

Univ. Prof. Dipl.-Ing. Dr. techn. Ardeshir Mahdavi
E 259/3 Abteilung Bauphysik und Bauokologie
Institut fiir Architekturwissenschaften

eingereicht an der Technischen Universitdt Wien

Fakultat fiir Informatik

von

Klaus A. Brunner

Matrikelnr. 9626334
Pachergasse 16, 2344 Ma. Enzersdorf, Osterreich

Wien, im Marz 2007

Kurzfassung der Dissertation

Gebédude-Informationsmodelle sind hochauflésende, universelle, integrierte Informati-
onsmodelle physischer Gebaude. Sie enthalten nicht nur geometrische, sondern auch
semantische Daten von Baukomponenten und ihren Zusammenhéngen. Zweck solcher
Modelle ist es, den gesamten Lebenszyklus von Gebduden von der Konzeption iiber
Betrieb und Wartung bis zum Abbruch zu unterstiitzen. Gebdudemodell-Dienste sind
Softwarekomponenten, die solche Gebdudemodelle betreiben und den Zugriff fiir An-
wendungen ermdglichen.

Bestehende Software-Architekturen fiir Gebdudemodell-Dienste orientieren sich stark
an den Anforderungen der Entwurfsphase und teilweise auch der Errichtungsphase von
Gebéduden. Diese Anforderungen dhneln jenen von Versionierungssystemen fiir die Soft-
wareentwicklung: dabei werden in relativ grof3en Zeitabstinden Daten (potentiell in
grofRen Blocken) abgefragt oder eingepflegt.

Gegenstand dieser Dissertation ist der Entwurf von Gebdudemodell-Diensten, die sich
fiir die Unterstiitzung des Betriebs von Gebduden eignen. Als Referenzanwendung dient
simulationsgestiitzte Beleuchtungsregelung, die ein besonders hochaufl6sendes und ak-
tuelles Modell erfordert. Das Modell ist daher mit Sensoren und Aktuatoren im Gebaude
verbunden, wodurch es laufend aktualisiert wird und fiir Anwendungen als Schnittstelle
zu den Gebaudesystemen dienen kann.

Die Hauptprobleme beim Entwurf solcher Dienste sind 1) die Integration einer brei-
ten Palette verschiedener Datenquellen und -senken, sowie 2) die effiziente Verarbei-
tung von anhaltend hohen Datenraten, wobei gleichzeitig einfacher, ununterbrochener
und rascher Zugriff auf Modelldaten méglich sein muss. Einige Anwendungen (etwa Be-
leuchtungsregelung) haben sogar ,, weiche* Echtzeitanforderungen. Besonderes Augen-
merk ist daher auf Performanz, Skalierbarkeit und Modifizierbarkeit zu legen. In die-
ser Dissertation wird argumentiert, dass bestehende Architekturen von Gebaudemodell-
Diensten fiir diese Anforderungen wenig geeignet sind.

Im Kern der vorgeschlagenen Architektur steht das Objektmodell in einer bitempora-
len Hauptspeicher-Datenbank mit persistenter Speicherung. Anderungen an Objekten

sind versioniert, was den einfachen und transparenten Zugriff auf die gesamte Mo-

dellhistorie ermdglicht. Die Datenbank ermdglicht serialisierbare Transaktionen mit ho-
her Nebenlaufigkeit durch den Einsatz von Multiversions-Synchronisierung auf Basis
einer Variante von multiversion transaction ordering (MVTO). Transaktionen konnen fiir
zeitgerechte Aktualisierung priorisiert werden. Die Geschwindigkeit und Skalierbarkeit
dieses Synchronisations-Mechanismus ist sehr gut im Vergleich zu einfachen Locking-
Ansitzen. Sowohl die Reihenfolge der Datenbank-Aktualisierungen als auch der gespei-
cherten Ereignisse kann jederzeit wiederhergestellt werden, auch wenn Daten unge-
ordnet oder verspétet eintreffen. Dies ist moglich, indem Daten auch nachtraglich in
die Versionshistorie eingefiigt werden kdnnen.

Der Verteilungsaspekt ist einer der wichtigsten Punkte der Architektur: statt eine her-
kommliche Referenzarchitektur (z. B. Client/Server) zu verwenden und ihre jeweiligen
Beschriankungen zu umgehen, wird fiir jeden Prozess jeweils die passendste Lokation
bestimmt, wo er ausgefiihrt werden soll.

Es wird von zwei Arten charakteristischem Verhalten von Anwendungen ausgegan-
gen. Interaktives Verhalten besteht in raschen Folgen von kurzen Schreib- und Lesezu-
griffen auf verschiedene Objekte, etwa als Reaktion auf Modelldnderungen. Interakti-
ve Applikationen benoétigen wenig CPU und Speicher, aber raschen Modellzugriff und
sofortige Benachrichtigung bei Modellainderungen. Solche Anwendungen werden als
Agenten innerhalb des Modelldienstes ausgefiihrt, um Code moglichst dort auszufiih-
ren, wo die Daten sind. Agenten kénnen zur Laufzeit installiert und aktiviert werden,
ohne den Dienst zu unterbrechen.

Batch-Verhalten besteht in intensivem, langem Arbeiten mit fixen Modellausschnit-
ten, was typisch fiir Simulation und andere Analyseaufgaben ist. Schreibzugriffe sind
selten. Solche Aufgaben benétigen viel CPU und sind von gleichzeitigen Modelldnde-
rungen weniger betroffen. Batch-Applikationen werden daher auf andere Knoten ver-
teilt und arbeiten auf Kopien der benétigten Modellteile. Zusammen mit einer auf spaces
basierenden Kommunikation ist diese Verteilung sehr transparent und erlaubt einfache
Lastverteilung mit einem Minimum an Administration.

Die Kommunikation mit Gebdudesystemen wird iiber eine externe Infrastruktur fiir
asynchrones Messaging abgewickelt. Der Modelldienst verwendet eine flexible neben-
laufige Verarbeitung, um Zielobjekte zu lokalisieren und mit den empfangenen Daten zu
aktualisieren. Fiir interne Kommunikation zwischen nebenldufigen Programmen (z. B.
Agenten) wird ein einfache asynchrone Messaging-Infrastruktur zur Verfligung gestellt,
die auch mit externem Messaging verbunden werden kann. Code kann zur Laufzeit
getauscht werden, um hohe Verfiigbarkeit und Modifizierbarkeit zu erreichen.

ii

Abstract

Building Models or Building Information Models (BIM) are fine-grained, multi-faceted,
integrated computational models of physical buildings. They capture not only geomet-
ric, but also semantic data of building components and their relations. The promise of
building information models is to support the entire lifecycle of a building, from concep-
tion through operation and maintenance to decommissioning. Building model servers
are software systems that maintain such models and provide access to local and remote
client applications.

Existing software architectures for building model servers are strongly focused on the
requirements of the design phase and, to a lesser extent, the construction phase of the
building lifecycle. These requirements resemble those of source-code version control
systems, with infrequent but potentially massive check-in/check-out operations on a
central model repository.

The subject of this dissertation is the design of building model servers suitable for
support of the operation phase of a building. The prototypical application used here is
simulation-based lighting control, which requires a fine-grained and up-to-date model
of the controlled space and devices, much more so than typical facility management
applications. The model is therefore connected to sensors and actuators within the
building, keeping itself updated with sensor data and also acting as an interface to
building systems for client applications.

The main challenges for such operation-phase building models are 1) the integration
of a wide range of different data sources and endpoints, and 2) the efficient handling of
high sustained rates of incoming data while ensuring simple, uninterrupted, low-latency
access to model data. Certain client applications (such as lighting control) even have
soft real-time requirements. Great emphasis must therefore be placed on performance,
scalability, as well as modifiability. This dissertation argues that existing model server
architectures are not suitable to ensure these quality attributes, particularly because
they are not designed for high concurrency.

At the core of the proposed architecture, the building object model is implemented

in a bitemporal main memory database with persistent backing storage. Changes to

iii

model objects are versioned, allowing simple and transparent access to a full model
history (“time travel”). The database ensures serializable transactions with a high de-
gree of concurrency using a variant of the multi-version transaction ordering (MVTO)
algorithm. Transactions may be prioritised to ensure low-latency updates. The perfor-
mance and scalability of the concurrency control mechanism compares favourably with
a simple locking scheme. The model server provides full support for happened-before
and known-before ordering of data even when the data arrive unordered or very late
by allowing retroactive insertion of records.

Distribution design is one of the key points in the software architecture: instead of
using a reference architecture (such as client-server) and working around its limitations,
the most beneficial runtime locations of tasks and data for the given requirements are
considered. This is particularly important for client applications.

Two classes of client component behaviour are identified. Interactive behaviour is
characterised by bursts of short read/write accesses to a varying set of model objects,
possibly in reaction to model changes. Interactive components require little CPU and
memory, but call for low-latency model access and immediate notification of model
changes. They access the model as agents that are executed as threads within the
model service, following the principle to run code where its data are. Agents can be
installed and activated at run-time without service disruption.

Batch behaviour is characterised by intensive, long-running work on a fixed set of
model objects, as is typical for building simulation and other analysis tasks. Write op-
erations are rare. Such tasks call for great amounts of CPU cycles and are typically less
affected by concurrent model changes. Batch components are therefore distributed to
other systems and work on snapshot copies of the required model subset. Combined
with a space-based communication layer, this distribution is transparent to a high de-
gree and allows simple load distribution with a minimum of central administration.

Communication with the building systems is performed through an external message-
queue infrastructure. The model service uses a flexible processing pipeline served by
thread pools to locate and update the target objects corresponding to incoming mes-
sages. For concurrency-optimised internal communications (e.g. between agents), the
model service provides a simple generalised message queuing system that can trans-
parently connect to the external messaging system if needed. A facility for runtime-
pluggable code is provided to achieve a high degree of modifiability and availability.

iv

Contents

Acknowledgements

1

Introduction

1.1 MOtiVation v vt e e e e e e e e e e e e e e e e e e e
1.1.1 Simulation-Based Control
1.1.2 OtherUses v v vt it e e et e et e e e e e e e

1.2 Research Statement and Thesis Overview

Background

2.1 Building Communication Systemsttt

2.2 Building Automation and Control Systems

2.3 Pervasive and Ubiquitous Computing

2.4 From Product Models to Building Information Models
2.4.1 Building Product Models
2.4.2 Building Model Servers

2.5 Chapter SUMmMAry v v v v ot e e e e et e e e e e e

Specification

3.1 System Environment

3.2 Functional Requirements vt v vt nnn.n
3.2.1 CoreFunctionality
3.2.2 Interface to the Building Systems
3.2.3 Interface to Applications,

3.3 Quality Attributes e e e e
3.3.1 Performance, Scalability
3.3.2 Availability e e
3.3.3 Adaptability and Portability
3.3.4 Modifiability

3.4 Non-Requirementsttt nene...

Xi

5

Contents

3.4.1 Security e e 37
3.4.2 Multi-model Support 37
3.5 Chapter SUMMATY v v v v v et e e e et e e e e 38
System Architecture and Design 39
4.1 Overviewand Context v ittt ettt et 39
4.2 Some Architectural Considerations 39
4.2.1 BaseTechnology in... 41
4.2.2 Distribution 41
4.2.3 Centralised versus Distributed Model 44
4.2.4 The Model istheInterface 45
4.2.5 Avoiding State 46
4.2.6 Interface Designt 47
4.2.7 Component Design: Reference Isolation. 47
4.2.8 Loose Coupling Through Messaging 48
4.3 ATop-level Decomposition 53
4.3.1 Distribution e 54
4.4 Building Data Interface 59
4.4.1 General Considerations on Data Flows 59
4.4.2 DeSIgN e e e e 61
4.5 Application Interface e 70
4.5.1 AGeNLS e 70
4.6 Messaging Facility e 74
4.6.1 Issues in Intraprocess Communications 74
4.7 General Facilities e 79
4.7.1 Runtime-Changeable Code 79
4.7.2 ComponentRegistry 80
4.7.3 Management and Development 80
4.8 Chapter SUMMArY ¢ ¢ o v vttt e e e et e e e e e e e 83
4.8.1 Requirements OVEIVIEW o o v vt ittt et et e e e 83
The Model as a Temporal Database 85
5.1 BuildingModel 85
5.2 Handling Concurrent Model Access 86
5.2.1 Correctness Criteria v v v i v i ittt et et e 86

vi

6

5.3

5.4

5.5

5.6
5.7

Contents

5.2.2 DeSIgN e e e e e
5.2.3 Multiversion Methods
5.2.4 Multiversion Transaction Ordering
5.2.5 Performance Evaluation.

53.1 Terminology.
5.3.2 Time Travel: Reconstructing Model Snapshots
533 Delay e
534 Orderingt e
5.3.5 Requirements Summary and Solution Approach
5.3.6 Implementation Optionso,
5.3.7 Implementation
Application Interface
5.4.1 Object Creation and Destruction
5.4.2 Notifications. i

Persistent Storage

5.5.1 Serialization and Deserialization: Managing Object References

5.5.2 StorageFormat e
5.5.3 Performance.
Related Work: OODBMS e
Chapter Summary i e

System Application: A Simulation-Based Lighting Control System

6.1
6.2

System OVEIVIEW ¢ v vt it e e e e e e e e e e e e e et e
Application: Control Cycle

Conclusion

7.1
7.2

Contributions
Further Work e
7.2.1 Constraint Enforcement.
7.2.2 SECUityo it i e
7.2.3 Support for Multiple Models and Merging
7.2.4 Model Navigation SUpport vt
7.2.5 Distribution and Replication
7.3 Publications

vii

Contents

References 138
8 Appendix 147
8.1 The Luxmate BMS Interface v i it ittt e 147
8.2 The RADIANCE Lighting Simulation System 148

viii

List of Figures

2.1 Basic IFC entities in EXPRESS-G notation (simplified)
2.2 Alayered view of the IFC architecture uuueene...
2.3 Architectural overview of IMSVR. e
2.4 A deployment view of EDMSEIVEr vv v i viie e
2.5 An example deploymentview of S2. e
2.6 Shared Object Model (SOM), simplified class diagram

3.1 System Layers View i e e e e e e

4.1 A context diagram of the model service.,
4.2 A sample deployment view of a model server for design support.
4.3 A sample deployment view of a model server for operations support.
4.4 An example deployment view of a typical point-to-point messaging setup. . .
4.5 An example deployment view of a space shared by three nodes.
4.6 Top-level logical components.ot iiii
4.7 Top-level architectural overview. i
4.8 A conceptual overview of data flows between model and building systems. . .
4.9 Responsibilities for data flow from sensor to model object.
4.10 Life-cycle of worker threads.
4.11 Message envelope class diagram (simplified).
4.12 Three different workflows for processing messages.
4.13 Example sequence of updates with one long-running update.
4.14 An overview of the agent deployment process. oo
4.15 The deployment manager COMPONent. ou v e e
4.16 The messaging manager COMPONENL. v« v e v v v v e v v un e e e

4.17 Classes involved in run-time changeable component implementations.

14
16

80

4.18 Sequence: Regular component operation and installing a new implementation. 81

4.19 Prototypical web-based system monitoring and management console.

ix

82

List of Figures

5.1 Transaction: sShrinking @ space.« v v v v v v i v it e e o 90
5.2 Multi-version transaction ordering: some typical sequences. 93
5.3 Sequence diagram of MVTO implementation. 96
5.4 MVTO sequences with preemption. ou e . 98
5.5 Throughput of short transactions for various writer ratios. 102

5.6 Throughput of “long” transactions of approx. 3 milliseconds for various
WITEET TALIOS. . v v v v v v i e e e e e e e e e e e e e e e 104

5.7 Throughput of “long” transactions of approx. 6 milliseconds for various

WITEET FALIOS. « v v o v v i e e e e e e e e e e e e e e e 106
5.8 Reconstructing object set snapshots for points in transaction-time. 108
5.9 Delays between observation (O) and recording (R) of facts. 109
5.10 Ordered vs. un-ordered arrival of updates and its effect on the monotonicity

o) A2 111
5.11 Two objects (t,, t,) with delayed and out-of-sequence updates 112
5.12 Finding the correct point for late insertion of messages: single and multiple

valid inSertion POINES. v v v vt e e e e e e 114
5.13 Sample insertion SEQUENCe. v v v v i e 116
5.14 The object model root class (simplified). 118
5.15 Object update notification: a sample sequence. 120
5.16 The ObjectStorageMgr COMPONENt v v v v v v v v e e et e et e e e e e a 121
5.17 Object storage performance for various thread counts. 123

6.1 An overview of system components and connections in the experimental setup.127

6.2 Weather station mounted on main buildingroof. 129
6.3 Sky-scanning camera mounted on main building roof. 130
6.4 Test space with uplights and window blinds. 131
6.5 Simulation-based lighting control workflow. 132
8.1 RADIANCE components and the data flows between them. 148

Acknowledgements

This dissertation was written as part of a multidisciplinary project on sensor-driven
building models. My thanks go to the entire project team at the Building Physics and
Building Ecology group of the Institute for Architectural Sciences at Vienna University
of Technology: Oguz Icoglu, Josef Lechleitner, Bojana Spasojevi¢, and Georg Suter. In
particular, I would like to thank my advisor, Prof. Ardeshir Mahdavi, for his valuable
support throughout my employment and thesis work — and of course, for his insistence

on submitting papers for publication and attending conferences.

I am very, very grateful for my family’s unwavering and unconditional support through-

out my entire academic curriculum.

The work documented in this dissertation was supported in part by a grant from FWF

(Fonds zur Forderung der wissenschaftlichen Forschung), project number P15998-N07.

xi

1 Introduction

This dissertation describes the design and prototypical implementation of a dynamic,
integrated building model service. Its purpose is to build and maintain a live compu-
tational representation of a building and to provide open access to client applications
interested in monitoring and controlling the building and its subsystems. The model is
continuously updated through various sensors, keeping track of changes as they occur.

Much research into intelligent buildings has focused on sensors and actuators and
the communications between them and control or monitoring applications. However,
one significant shortcoming of these efforts is that they are often hard-wired to specific
applications, and in many cases, there is no communication between domain-specific
information systems within the very same building. This is a situation where an addi-
tional abstraction layer makes sense: a layer that unifies the various data sources and
sinks of a building and offers a transparent, open interface to any number of applica-
tions.

The primary goal of this work thus is not to increase the amount of data sensed
and communicated within a building. The goal is to make full use of the available data,
avoiding duplication of efforts, improving efficiency, and gaining as much information as
possible. To achieve this goal, an integrated, contextual information model is necessary.

Context is required to gain information from data: a temperature sensor reading is
meaningless without knowledge of its location, its surroundings, and the factors influ-
encing its value — e.g., the room where it is located, the height at which it is mounted,
the HVAC and shading systems that affect its value. Today, modern office buildings are
often equipped with considerable networks of sensors and actuators. However, there is
generally a lack of integration and open access to make full use of these available data.

1.1 Motivation

This work is part of a research project on sentient buildings, which are essentially build-

ings that have an internal model of themselves as outlined above (Mahdavi 2004). The

1 Introduction

project focuses on the application of such internal models toward supporting indoor-
environmental control systems of buildings (e.g. heating, cooling, ventilation, and il-
lumination systems). Specifically, it aims to explore the potential of dynamic building
models to enable simulation-based building control strategies (Mahdavi 1997, 2001,
Clarke et al. 2001).

1.1.1 Simulation-Based Control

Simulation-based control can be seen as an extension of a technique called Model Pre-
dictive Control (MPC), which has been used for industrial production processes since
the early 1970s. Predictive control relies on a parametric model of the controlled sys-
tem to estimate the expected outcome of a control action (Rawlings 2000). Deriving
such a model is not trivial and may require frequent test runs of the system to assess
its reaction to various inputs; a human expert is needed to develop and optimise the
model. In complex situations with many variables and nonlinear behaviours, creating
such a model may be infeasible.

While MPC demands this custom approach, simulation-based control as discussed
here allows a more generic approach. This means that the controlled system’s relevant
components are modelled individually and used to populate a simulation space in which
their reactions to influences received from the outside and from other components are
calculated by a simulation tool. Instead of trying to develop a global equation describing
a specific system’s overall behaviour, systems are reconstructed part-by-part in a virtual
model (a potentially automatable task) to run repeated experiments. The big advantage
of simulation-based control versus MPC is thus its potential to eliminate the need for
a human expert hand-crafting or adapting a parametric system model each time the
system’s structure changes.

In the building domain, the basic prerequisites for simulation-based control are avail-
able:

* Models of individual building components (product models) are relatively easy to

create or derive from design data, or even readily available from manufacturers.

* The spatial configuration of the components can be derived from design data or

through location sensing technologies (Icoglu et al. 2004, Suter et al. 2005).

» Simulation tools for various aspects of building performance have been available

commercially and as research projects for some time (Ward 1994, Rindel 2000,

1 Introduction

Citherlet and Hand 2002).

Challenges

One issue of simulation-based control approaches is the high processing volume, re-
quiring considerable computational power to keep simulation times low enough for
control applications. Advances in computer hardware and simulation algorithms have,
however, brought simulation times to a level that is useable for building energy man-
agement systems applications.

Moreover, simulation requires a fairly detailed model of the building, its systems,
its context, and its occupancy. However, creating simulation models is still manual
labour to some extent. The transition from initial CAD (computer-aided design) build-
ing documents to simulation models is hardly seamless and often requires additional
domain-specific information and extensive post-processing.

Given the dynamic nature of building-related processes, such a model must be con-
tinuously updated to be of any use in the context of building systems control. In a
statically designed control system, a model of the controlled system is established by
an engineer and remains fixed until further human intervention — even when the real
world context changes. If it is not accurate enough, the control system will fail: e.g. if a
new wall is erected within the building, separating a sensor from the region of interest,
the context model is out of touch with reality and any control system based on it will
not function correctly.

Ideally, simulation-based control utilises a model of the building’s status that is up-
dated without human intervention. This evidently requires an extensive sensor infras-
tructure in the building generating a huge amount of raw data — and consequently,
software that processes these data, collating and organising them contextually for ac-

cess by other software.

1.1.2 Other Uses

While simulation-based control is the primary driver for this work, it is not the only
application that could be based on it. On the contrary, one of the underlying assertions
of this dissertation is that a dynamic building model can be useful for many other pur-
poses besides simulation-based building systems control, offering a level of abstraction

and a common interface that has not been available so far. For example, another major

1 Introduction

application that would benefit from an up-to-date building model is facility manage-
ment. Today, a number of proprietary solutions supporting tasks such as asset inventory
and condition assessment exist, but there is little information sharing between them
(Hassanain et al. 2003).

1.2 Research Statement and Thesis Overview
This dissertation aims to contribute to the state of knowledge in the following ways:

* First, by stating the requirements of a building model service with a strong focus
on the operational phase of a building’s life-cycle. This is documented in chapters
2 (Background) and 3 (Specification).

* Second, by proposing an architecture to fulfil the functional requirements and
quality attributes outlined previously. This is the main purpose of chapter 4 (Sys-
tem Architecture and Design).

* Third, by proposing a suitable software design for the operational core of a build-
ing model service, given the stated requirements. This is the focus of chapter 5
(The Model as a Temporal Database).

Finally, chapter 6 describes the setup of an application prototype system that was

built for the purpose of experimentation and evaluation of the architecture and design.

2 Background

The goal of this chapter is to demonstrate a general understanding of the state of the

art, examine related research work, and thus place this work’s contribution in context.

2.1 Building Communication Systems

The purpose of building communication systems is the remote control and monitoring
of appliances such as light fixtures, valves, and sensors. Typically, each appliance can
be connected anywhere on the system and accessed from any other part of the system
based through an address code.

As of today, various mostly incompatible building communication systems exist, dif-
fering in hardware technologies, application scope, and the layers of the OSI reference
model they implement (Kastner et al. 2005). Recently, the growing coverage of offices
with networks based on the internet protocol (IP) has driven the utilisation of such net-
works for building control purposes. IP networking is then used as a tunneling medium
or as a replacement of some layers in existing building control protocols. Whether this
partial convergence will ultimately lead to a full integration of building control and
office communications is still subject of discussion (Finch 2001).

Building communication systems are a crucial element of building automation and a
prerequisite for creating self-updating building models. Although there is little overlap
between the two areas, there is a clear need to understand the design approaches used

in building communication in order to design effective interfaces between them.

2.2 Building Automation and Control Systems

Building communication systems provide the basic layer for remote interaction with var-
ious devices. This is a requirement, but not sufficient for building automation, which
also implies some form of automatic control. Designing control systems entails a num-

ber of design choices: how to model the controlled zone, which sensors and actuators to

2 Background

use, which control algorithms or heuristics to use, how and where to deploy the control
system, to name a few.

Most of these questions have been the subject of intense research for decades. During
this time, advances in electronics and computing have driven progress and widened
the possibilities: new modeling approaches have become feasible, just as integration
of previously disparate control systems (Pargfrieder and Jorgl 2002), simulation-based
control (Mahdavi 1997, 2001, Clarke et al. 2001), and adaptive or self-learning control
(Guillemin and Morel 2001).

In the research projects just cited, control applications are generally hard-wired to
a communication system and expected to have exclusive access to the controlled de-
vices. This approach is acceptable for research prototypes, but not for most real-world
applications. As building communication systems — the lowest layer — and applications
— the highest layer — have become more complex and powerful, the need for an equally
powerful middle layer has clearly emerged. This middle layer is not merely a mediator
between communication systems and applications, but also structures the way applica-
tions interact with each other, and may prescribe how applications are deployed during
run-time. It is not merely an addition, but introduces a new quality of system architec-
ture.

Research on such system architectures has picked up only recently. Many of the
systems are agent-based and decentralised, such as the one proposed by Sharples et al.
(1999) and refined by Cayci et al. (2000). Davidsson and Boman (2005) suggest a
similar approach. Their common theme is that control is distributed on local devices
(typically one per space), where agents are processes acting on behalf of users and other
parties to decide on the control actions to be taken.

The OWL framework by Briigge et al. (1999) is a distributed, event-based system that
adds an object-oriented layer of abstraction on top of existing communication buses,
with a focus on facility management applications.

The primary advantage of decentralised approaches is improved scalability and reli-
ability: new devices can be added as necessary without increasing the load on existing
devices, the failure of a single device does not necessarily imply a total system failure.
The main disadvantage is that these approaches are not well-suited for simulation-based
control strategies that span multiple spaces (see chapter 4 for further discussion of this
issue).

2 Background

2.3 Pervasive and Ubiquitous Computing

In Pervasive and Ubiquitous Computing,! environments are envisioned as providing an
ubiquitous computing infrastructure that adapts to the needs of users and assists in their
everyday tasks — ideally in an intuitive, non-obtrusive manner to the point of “disappear-
ance” (Weiser 1991). The PC as a complex universal tool loses importance in favour of
networks of specialised devices that may collaborate to support some user-defined goal.
A typical research focus is the intelligent support of collaborative teamwork.

While it certainly comes with a huge amount of technology, pervasive computing is
focused on assisting humans and human-to-human communications. The building is
principally seen as a hardware skeleton that structures the environment and carries the
necessary infrastructure, but it is usually not of interest by itself.

Despite this different focus and the different design approaches that follow from it,
pervasive computing has to solve problems very similar to those of sentient buildings:
both must handle potentially large, heterogenous and changing networks of devices

that interact with the physical environment.

2.4 From Product Models to Building Information Models

From the viewpoint of information technology, the current situation in building indus-
try is characterised by weakly connected “information islands” for the various parties
involved in the construction of a building: architects, structural engineers, HVAC plan-
ners, and so forth. While most of these participants rely heavily on IT support for their
efforts, the overall picture is one of barely connected fragments.

Information exchange between these fragments is still largely a matter of sending files
and manually translating them to the various specialised applications involved, such
as CAD software, building performance simulation applications, structural engineering
software, and so forth. Subsequently, design iterations cause a cascade of back-and-
forth file transfers and conversions. The process involves lots of overhead and repetitive
work and is hardly conducive to concurrent and collaborative engineering. A central,
integrated, managed repository of building-related data is rarely used.

Overcoming this situation requires two major development efforts. First, a common

vocabulary for describing buildings and building-related things must be defined. This

!The terms are often used interchangeably and have become almost synonymous. From this point on,
the term “pervasive computing” is used.

2 Background

is a nontrivial task, given the various participants in the building lifecycle, their vastly
different areas of concern, and their fundamentally different ways of describing the
same things. Second, a well-defined collaboration framework based must be created to
connect all participants interested in building data in a structured manner. This, again,
has to be done in consideration of the different requirements of the participants and
lifecycle phases.

The ultimate goal then is to create so-called Building Information Models (BIM) that
follow a building’s entire life-cycle from conception to destruction. The US National
Institute of Building Sciences defines a BIM as “a digital representation of physical and
functional characteristics of a facility ...a shared knowledge resource for information
about a facility forming a reliable basis for decisions during its life-cycle from inception
onward.” (Nat 2006).

2.4.1 Building Product Models

A wide range work has been done in the field of building product modelling with the
aim of creating semantic models for buildings, mainly to improve collaboration in the
design and construction phase of buildings (Eastman 1999). Such building product
models are intended to define a common vocabulary for collaboration.

The Industry Foundation Classes

Currently, most work in building product modeling is done under the umbrella of the
International Alliance for Interoperability (IAI). Originally an industry consortium, the
IAI now also comprises members from academia. Their main area of work is the In-
dustry Foundation Classes (IFCs), a data model definition with some object-oriented
features aiming to capture all aspects of building projects throughout their lifecycle
(International Alliance for Interoperability 2006, 2000).

As of their current version 2x edition 3, the IFCs are capable of modelling a range of

diverse concepts including:

Shapes (such as beams, walls, pipes)

Building elements (doors, windows, roof)

Relations between elements (holes, zones)

* Spaces (space, storey, part, wing)

2 Background

* Grids

* Equipment and furniture (fans, pumps, tables, chairs)
* Actors (people, organisations)

* Costs

* Work plans and schedules

* Orders (work orders, change orders)

* Assets in the sense of facility management (inventories, maintenance histories)

The IFC definition is based on the ISO STEP (ISO 10303) data interchange develop-
ment model, which uses EXPRESS as its normative data modeling language. Recent
versions of the IFC documentation add an XML representation called ifcXML to enable
the use of XML-based tools and interfaces.

A bottom-up view of the core IFC class structure is given in figure 2.1. The abstract
root supertype IfcRoot carries basic properties for identification, ownership, history in-

formation. Three major branches derive from it:

lfcObject This is the supertype for the primary entities modelled by the IFCs, defined as
products (physical objects), processes, controls (concepts that control or constrain
objects), resources (concepts that are used by objects within a process), actors

(human agents), projects, and groups (collections of objects).

lfcPropertyDefinition Properties are used to further define classes, object groups, and
individual objects. The IFC properties definition is very powerful and flexible,
which alleviates the need to derive a large number of early-bound, specialised
subtypes to model real-world products — a typical problem of naive approaches to

object modelling that tends to result in inflexible models.

lficRelation In the IFCs, relations between objects are not direct links, but are also mod-
elled as objects. This indirection allows to separate relationship-specific proper-
ties and semantics from the related objects and also improves modelling flexibil-
ity. Different classes of objects exist to cover various types of relationships such

as containment and aggregation.

2 Background

(ABS)IfcRoot
Q
(ABS)IfcObject (ABS)lfcPropertyDefinition (ABS)IfcRelationship
IfcRelAssigns IfcRelAssociates IfcRelDecomposes

IfcRelDefines

IfcRelConnects

IfcProduct

IfcControl

IfcActor

IfcProject

IfcProcess

IfcResource

IfcGroup

Figure 2.1: Basic IFC entities in EXPRESS-G notation (simplified)

10

2 Background

The flexibility of the IFC design comes at a cost: it markedly increases the object
count and model complexity. Additionally, the many freedoms afforded by the versatile
property and relation model would make automatic model validation (a crucial tool
for interoperability work) harder to implement. However, the properties and property
sets have been designed to prevent the need for deep inheritance: instead of explicitly
modelling every kind of possible building product, the IFCs stop at fairly general con-
cepts like “window” and leave the detailed specification of a concrete window type to
be expressed as property sets.

From a top-down perspective, the IFCs are structured in four layers (Figure 2.2)
related in strictly unidirectional manner: higher levels can use or derive from the same

or lower layers only.?

4 N
Domain Domain Schema External Domain Models
\)
4 N
Interoperability Shared Elements Schema
\ y
4 N
Extension Schema
Core
Kernel
\ J
4 N
Resource

Resource Schema

Figure 2.2: A layered view of the IFC architecture
Beginning at the bottom, the layers are:

Resource Layer This layer contains general-purpose and utility classes such as IfcGe-

ometryResource or IfcDateAndTimeResource.

2The layers are not opaque as is often implied by layer diagrams that represent software interfaces. There
is no isolation that prevents or discourages access from e.g. the domain layer to the core or resource
layer: classes in the domain schema may directly use classes from all layers below it.

11

2 Background

Core Layer The core layer defines the central, basic classes that form the foundation
of the IFCs. Root classes are defined in the Kernel sub-layer, where they are still
abstract to the point of having no discernible conceptual connection to AEC/FM
applications (as seen in figure 2.1). This building-related link is first introduced in

the Core Extensions sub-layer with concepts such as sites, buildings, and spaces.

Interoperability Layer The interoperability layer introduces concepts that are shared by

two or more domain models, e.g. walls, doors, beams.

Domain Layer The domain layer contains domain-specific concepts. The latest version
of the IFC specification as of this writing, version 2X3, defines nine domain model
schemas. These include architecture, facilities management, building controls,
plumbing and fire protection, HVAC, and others.

Mature software support for the IFCs in the industry is currently far from universal,
but apparently growing. No other free industry standard of comparable scope, maturity,

and industry support exists at this time.

aecXML

Sometimes considered a competitor to the IFCs, aecXML is more of a complementary
effort. As opposed to the IFC goal of creating all-encompassing building models, the
intention of aecXML is to facilitate automated business transactions in the Architecture,
Engineering, and Construction (AEC) industry based on XML.

Work on aecXML has not progressed significantly in the past few years. It appears

that the specification scope and relation to IFC are still unclear (Zhu and Weng 2001).

2.4.2 Building Model Servers

With the number of IFC-compliant applications growing, data exchange issues as out-
lined above have become more acute. Work on model IFC servers has started in the past
few years in both the research community and industry (Kiviniemi et al. 2005). The cur-
rently published work is generally characterised by a strong focus on collaboration in

the design and construction phase of buildings.

12

2 Background

IMSVR

One of the first IFC model server projects was IMSVR. The project was finalised in 2002
after producing a research prototype (Adachi 2002a,b).

IMSVR stores IFC model data in a relational database, offering access to clients
through web services based on the Simple Object Access Protocol (SOAP). The archi-
tecture comprises three major components (Figure 2.3):

Database A relational database system (Microsoft SQL Server) is used for persistent
storage. The database schema is generated from the IFC EXPRESS definition
using a two-phase conversion process that first generates an intermediate XML
format. This format, in turn, is transformed to SQL DDL statements in order to

create the database schema, stored procedures, and triggers.

Data Access Layer Component (DALC) The data access layer manages generic client
access to model data, ranging from simple single-object access to complex queries
specified in a specialised query language called PMQL (Partial Model Query Lan-
guage). Communication with the database is based on SQL and XML returned by

stored procedures.

Web Service Layer Component (WSLC) The web service layer provides SOAP access to
the data acess layer with operations such as AddObject, GetObject, DeleteObject,

etc. All operations are stateless.

No data have been published on the performance characteristics and scalability of the
IMSVR system. The architecture appears unlikely to be designed for high performance:
it relies heavily on XML processing and incurs synchronous database accesses for each
model access.

Eurostep/Webstep

The commercial Eurostep Model Server for IFC (EMS) is largely similar in architecture
to IMSVR, but offers a richer function set by providing tools for visualisation/model
browsing, user management, version management, etc. (Hemi6 and Noack 2002). EMS
is implemented in Java and uses a relational database management system (such as
MySQL, SQL Server or ORACLE) for persistent storage. Clients access the server via
HTTP transport using the standardised ISO 10303 XML schema, which may also be

13

2 Background

Client

o

=

%

3
Model |
Server i WSLC |
i DALC 3
i -— 3

\ IFC EXPRESS
Ly Schema

Figure 2.3: Architectural overview of IMSVR. Adapted from Adachi (2002a).

wrapped in SOAP envelopes. The communication pattern is session-based (i.e. stateful).
Objects are stored in multiple versions, where only the latest version can be changed.

Product advertising material states that the model server can import data at a rate
of about 1200 objects per second when importing a new model, and about 50 objects
per second when appending new data to an existing model (Eurostep 2003). The per-
formance of queries is claimed to be highly dependent on usage patterns, as caching is
used extensively in the model server.

Just as IMSVR, the project has apparently not progressed significantly since 2002.

iCSS

The iCSS? system developed jointly by the Dresden University of Technology and indus-
try partners aimed to create a cooperative work environment for building construction
based on an IFC model server (Scherer et al. 2003). More than just offering a building
data repository, it was also designed to support project management and work-flows.
One notable innovation of iCSS is a conflict management tool to resolve inconsisten-

cies that are an inevitable side-effect of parallel teamwork on the same project. In the

3Integriertes Client-Server-System fiir das virtuelle Bauteam

14

2 Background

system core, an information logistics component (“Informationslogistik-Komponente”)
unifies services — such as workflow, product model data, and contract data servers —
and clients via a standardised Application Programming Interface (iCSS-Schnittstelle),
accessible through TCP/IP and Java Remote Method Invocation. Little information on

the software architecture has been published.

EDMserver

As of 2006, the only fully-functional, mature, and actively developed model server avail-
able appears to be EDMserver (EPM Technology 2005), a proprietary commercial prod-
uct. EDMserver aims to support the entire product lifecycle including aspects such as
facility management. An architectural overview is given in Figure 2.4, based on (Dahl
2005).

EDMserver can be used either as a single-user local application for model access, or
in client-server mode. The server core, EDMdataServer, holds the actual product model
and handles persistent storage. Client applications (which may include EDM application

servers or external clients) can access the server core in two ways:

* Fat Client: This is a session-based (stateful) communication model that supports
transactions. Fat clients typically check out portions of the model, work on them,
and check them back in once they are finished. Checked-out data are usually

locked for other applications.

* Thin Client: This is a stateless communication model that does not support trans-

actions.

Most calls to the EDMserver are handled by EDM application servers, only some calls
are served directly by the EDMdataServer core. The actual routing of these calls is, how-
ever, transparent for client applications. EDM application servers support synchronous
and asynchronous modes of operation.

The transaction model allows multiple concurrent read-only transactions to a model
or set of models, but only one open write transaction at a time. Any additional write
transaction requests are enqueued and executed sequentially. Write transactions may
be nested.

Versioning is implemented so that only changed objects are stored with each ver-
sion to maximise space utilisation. Only the most recent version of the model can be

changed, i. e. branching is not possible.

15

2 Background

Remote Client

\

TCP

\
«call»
\
\
\
\

\
\

\
% EDMinterface (remote subset)

EDMserver

P [
«cally .~ [N
e ! ~ «call»
1l \\
ll ~
| N
1
1

-
«call»

. N

N

EDM Application Server

I
EDM Application Server

S~ «call»

EDMdataServer

\
\
Q
%)
@
Qo
©
3
©
kel

Figure 2.4: A deployment view of EDMserver

16

2 Background

A notable EDMserver-based application for building information models has been
outlined by O’Sullivan et al. (2004). Building performance data are collected from
a building management system and incorporated into a central building model. The
collected data may be used to evaluate control and design decisions. Moreover, the
model is also envisioned to be used as a basis for predictive control routines, although

no specifics on this kind of application have been published yet.

An Interface Standardisation Effort: SABLE

In anticipation of a growing number of IFC model servers, the SABLE (Simple Access to
the Building Lifecycle Exchange) project aims to specify a framework and standardised
API for communication between model servers and clients (BLIS Project 2005). SABLE
is intended to act as a mediator and standardised protocol glue that simplifies com-
munication between multiple clients and multiple model servers during the building
lifecycle. No final and complete documentation on the project’s outcome has been pub-
lished to date. Draft documents suggest that the design of SABLE is inspired by IMSVR

and Eurostep work, with an emphasis on web services.

SEMPER and S2

The SEMPER and S2 projects created a distributed object-oriented design environment
for integrated building performance modelling, allowing remote collaboration over the
Internet (Mahdavi et al. 1996, 1999). Using OMG CORBA technology to connect re-
mote systems, users could simultaneously use various domain simulation modules to
assess building performance for interactive design support, regardless of their physical
location (Figure 2.5). As in the other projects discussed in this section, the focus was
clearly set on design support only.

At the core of the S2 architecture, the S2 Kernel module provides model services such
as managing persistent storage and concurrency control. It employs a simple “check out
and lock” approach to manage multi-user access: as long as a user has checked out a
project, other users may only access it for reading (Lam et al. 2001).

Unlike the IFC-based model server projects mentioned above, SEMPER/S2 uses the
Shared Object Model (SOM) for building modeling. As opposed to the IFCs, SOM is
based on a relatively simple and straightforward object hierarchy (see Figure 2.6) and
geared toward building simulation. When used for concrete simulation application, the
SOM is mapped to a domain object model (DOM) that may exclude parts of the SOM

17

2 Background

GUI Frontend Lighting Design/ Acoustics
«call» Simulation Design/
,,,,,,,, Simulation
,,,,,,,,,,,,,, N

7 \
. \
, 8
«cally, «call»
Z

CORBA

. \
1 {1
|- \

\
SOM Database Product Library

Figure 2.5: An example deployment view of S2.

data, model it in different ways (e.g. by mapping objects to attributes) and augment it
with domain-specific data (Mahdavi et al. 2002).

Other Projects

The discussed list of model servers and related projects is not exhaustive, but represents
the main architectural approaches that have been published so far. For instance, a three-
tiered web-based architecture was also used in the WISPER project (Faraja et al. 2000),
and a CORBA-based architecture similar to S2 was proposed by Brown et al. (1996).

Conclusion

There is relatively little published information on the software design of the building
model servers described above, and even less on their performance characteristics. The
servers represent different stages of development, from the research prototype IMSVR,
which was finalised in 2002, to EDMserver, which is under continued development and
appears as a comparatively mature and robust product with a large feature set. Product
and design documentation suggests that the development of all three model servers is
based on the requirements of supporting building design and construction. The Industry
Foundation Classes (IFC) are generally used as basis for the data model and exchange
format.

The architectural patterns of IMSVR and EMS are straightforward and proven: they

18

2 Background

SomTopography SomSite SomSiteFeature

0.*

SomBuilding

1.*

SomTechnicalElement

SomSection

1
1.*

SomSpace SomOccupant

1.2

1. SomFurniture

SomSpaceEnclosure 0.*

SomEnclosure

SomAperture SomShade

SomEnclosureSegment

Figure 2.6: Shared Object Model (SOM), simplified class diagram

19

2 Background

have been used successfully in information systems for years. However, they are not
as well suited for the requirements of building monitoring and control based on large
object networks. Specifically, the three-tier style is inflexible in that it is tailored for
a client-server, request-response communication scheme. The available documentation
suggests that massive concurrency was not a design consideration. EDMserver is con-
siderably more complex, but appears more scalable and also offers greater flexibility
in terms of client location and interaction patterns and thus shows higher potential for
supporting building operations. However, there are no published data as to how well it
performs in situations with sustained high update rates from multiple data sources.
Most current work on IFC model servers is proposing Web services (usually SOAP-
based) as the interface to use for client communication. This technology holds a certain
appeal for integration: as it is based on standard Internet technology and the XML
format, interoperability is in principle easy to achieve between completely different
programming languages and operating environments. The growing popularity of Web
services may also owe to practical considerations such as typical corporate network
firewall setups which often permit HTTP traffic readily, but deny most other protocols.
However, Web services entail substantial processing and communications overhead
due to the necessary data format conversions (XML generation and parsing). Complex
queries can exceed the limits of a simple parameterised interface and may have to
be expressed as either a convoluted series of requests and responses, or encoded in a
specialised parsing language which adds development overhead and another layer of

text parsing.

20

2 Background

2.5 Chapter Summary

In this chapter, related work in various fields was surveyed, with a focus on building

model servers. In summary:

* Work on building models and model servers has so far been focused strongly on
design support, although the vision of full life-cycle coverage is a strong driver for

development.

* The technology to measure and control a wide range of building parameters and
systems, as well as technology for in-building communications for these data, is

available and has been used for years.

* Beyond conceptual sketches, there is little published work on integrated, open-
access building model servers that support the operational phase of a building’s

life-cycle. Existing model server designs are not suitable for these requirements.

21

3 Specification

In this chapter, the system to build is defined in terms of functionality (functional re-
quirements) and quality attributes (nonfunctional requirements). The specification is
intentionally restricted to key features of the system that are deemed essential for build-
ing model servers supporting the operational phase of the building life-cycle. Some
requirements are left out of the scope of this dissertation, but are relevant nonetheless

and therefore included for completeness (3.4).

3.1 System Environment

The purpose of this section is to give an overview of the environment in which the
model service is expected to operate, and to define the boundaries of the model service
to its environment — in other words, to define what the model service is not.

To be of any use, a model service must be supplied with data about the physical world
it is supposed to represent. The key issue for this work is that these data are not only
supplied once at initialisation or even compilation time, possibly manually by a designer,
but continuously, throughout runtime. While manual data input must be possible, once
the system is operational, the bulk of data about the modeled domain is expected to
come from sensors. As the model service is also envisioned to be an abstract interface
for building control, there is a need to control actuators that influence the physical
world.

The model service thus depends on sensors, actuators, and mechanisms to communi-
cate with these devices, as discussed in 2.1. These are beyond the scope of this work:
they are simply expected to exist in the environment. However, interfaces to build-
ing communication systems must be considered in the design of the model service. As
there is a wide range of different building communications technologies, the model
service must be able to deal with various interfaces. This entails understanding the
data supplied by sensors, which may include complex geometry information, simple

one-dimensional sensor readings (e.g. temperature), complex physical data such as sky

22

3 Specification

luminance distribution patterns (Mahdavi et al. 2005), or highly domain-specific data

for certain building subsystems (HVAC, lifts, security systems, to name a few).

Application Laver . . N Inventory Performance
pPp y Lighting Control Visualisation Management Monitoring
; SOM/IFC/... Building
Model Service Layer Product Model
Communications Layer BACnet LonWorks LUXMATE LabVIEW
Sensor/Actuator Layer Temperature | | Occupancy Luminance Motorised Location Dimmers
Yy Sensors Sensors Scanning Shading Sensing
: Physical Building, Inventory, and Environment
PhySICaI Layer Walls, Windows, Doors, Furniture, Occup Weath

Figure 3.1: System Layers View

A layered overview of the system and its environment is shown in figure 3.1. At the
lowest level, the physical layer comprises the building and its environment as such.
Observing and controlling the state of these entities is handled by sensors and actua-
tors, shown on the next system level. To gather and distribute data between these de-
vices and computer programs using them, a communications layer is needed. This may
include combinations of various specialised (LonWorks, BACnet, DALI) and general-
purpose (Ethernet, TCP/IB MQ) communication technologies.

The key element of the system is in the next level, the model service layer. Instead
of letting applications communicate directly with the communications layer, it offers

an additional level of abstraction that isolates applications from the details of commu-

23

3 Specification

nications and sensor hardware. The model service represents the current state of the
building and its environment in the form of a live building product model. Applications
are thus freed from dealing with specific communication, sensor and actuator systems,
but instead communicate with objects whose properties, methods and relations with

other objects provide a high-level interface to the physical world.

3.2 Functional Requirements

In this section, the functional requirements of the model service are outlined. They are
grouped in three areas: the core functionality that maintains the model, the interface
to the building systems, and the interface to client applications. This grouping does not
imply a specific implementation structure, it only serves as a conceptual categorisation.

The listed requirements are to be considered a minimum set of functions; mechanisms
for future extension must be provided (see Modifiability below). Each requirement is

labeled with an identifier on the margin.

3.2.1 Core Functionality

At the core of the system, a building model (in short: model) shall exist in the form
of objects reflecting information on the physical building. The system must maintain
this model, ensure proper initialisation and shutdown, ensure the model’s integrity con-
straints, and handle persistent storage and retrieval.

This object model is a directed acyclic graph of objects, such as a tree structure that
assigns a parent and any number of children to each object (except the root).

To ensure that only a single live building model exists, model objects shall exist in
two states: online and offline. All publically-accessible objects that are part of the core
model are in online status, meaning that changes to them are observable by the model
and client applications, and may result in automated persistent storage (see below).
Method calls to online objects may result in data communication with building systems.
Online objects may be changed by the model service based on incoming data, such as
sensor readings.

When an object is copied, e.g. by a client application requesting an model object copy,
the copy must be in offline status. Offline objects are completely de-coupled from the
model: changes to these objects have no effect on online objects whatsoever, and are

not observable by the model or other applications. Method calls on these objects (e.g.

24

FR1
Model

FR2
Online/Offline
Model

attempts to send commands to a light fixture represented by the object) will not result
in data communications to the physical building. An error must be signalled to the
calling application if such operations are attempted. The model service will not change

these objects even when sensor data are received. Offline objects cannot be switched

3 Specification

online again, all further copies of offline objects are again offline.

Each model object carries a date of last modification, and all states are recorded
and timestamped in persistent storage. The states of objects are recorded as versions:
whenever the state of an object’s data changes, its version is incremented. At all times, it
must be possible to track the full change history of an object. This extends to the entire

model: the state of the model at a given time in the past must be easily recoverable

(“time travel”).

Use Cases

Major use cases are described in tables 3.1 — 3.7.

Name
Actors
Preconditions

Flow of Events

Insert New Object

Client

The client has a reference to an online parent object for
the object to be inserted

1. The client requests the creation of a new object,
stating its type, and the reference to an existing online
parent object.

2. The model service creates an object of the specified
type and inserts it in the model as a child of the given
parent object.

3. The client is returned the reference to the newly created
object.

Postconditions A new object has been created and inserted as a child of
the specified parent object.
Table 3.1: Insert New Object (UC1)
Queries

The model service shall provide a way to retrieve objects based on certain criteria, which

may be a combination of the following:

25

FR3
Model
History

3 Specification

Name
Actors
Preconditions

Flow of Events

Retrieve Object Copy

Client

The client has a reference to an online object and a version
number.

1. The client requests the creation of an offline copy of the
specified object at the given version number.

2. The model service creates an object copy of the object version
with the highest available version that is less than or equal to
the given version number. A reference is returned to the client.

Postconditions A new object has been created as an offline copy of the specified
object. The copy carries no references to online parent or child
objects. Its version number is less than or equal the requested
version number.

Table 3.2: Retrieve Object Copy (UC2)
Name Retrieve Object Tree Copy
Actors Client
Preconditions The client has a reference to an online object and a version

Flow of Events

Postconditions

number.

1. The client requests the creation of an offline copy of the
specified object and its descendants (child objects, child objects

of child objects, etc.), given a version number.

2. The model service creates copies of the specified object and

its descendants. The descendants’ version numbers are the highest
available version numbers that are less than or equal to the given
version number.

The client is returned a reference to the newly created

offline copy of the specified object.

A new object has been created as an offline copy of the specified
object. It has no references to parent objects, and references to
zero or more newly created offline child objects. All objects’
version numbers are less than or equal to the given version number.

Table 3.3: Retrieve Object Tree Copy (UC3)

26

3 Specification

Name

Actors
Preconditions
Flow of Events

Change Object

Client

The client has a reference to an online object.

1. The client requests a change to an object’s data.

2. The client calls the object’s appropriate function to change
data.

3. The model service creates a new object version and applies the
changes.

Postconditions The online object has been changed as requested. Its version number
has been incremented.
Table 3.4: Change Object (UC4)
Name Command Object
Actors Client, Physical Object
Preconditions The client has a reference to an online object.

Flow of Events

Postconditions

1. The client requests an action from the physical object
represented by the online object.

2. The model service communicates with the physical object to
initiate the requested action.

A command has been sent to the physical object.

Table 3.5: Command Object (UC5)

27

3 Specification

Name

Actors
Preconditions
Flow of Events

Execute Transaction

Client

The client has a reference to one or more online objects.

1. The client announces the beginning of a transaction.

The client reads or changes any of the objects. Any changes by
the client will not be visible to other clients yet (isolation).
2a. If the client commits the transaction:

The model server either applies all changes requested by the
client since the beginning of the transaction, or rejects the
transaction in case of error or conflict and forgets all changes
(atomicity, consistency). Any applied changes are permanent
(durability). The client is notified whether the transaction has
been committed or not.

2b. If the client aborts the transaction:

The model server forgets all changes (atomicity, consistency)
requested by the client since the beginning of the transaction.

Postconditions All changes made during the transaction have been applied and
stored (persistence) , or no changes have been applied (if the
transaction was rejected or aborted).

Table 3.6: Execute Transaction (UC6)
Name Publish/Subscribe on Object Change
Actors Model Service, Client
Preconditions The client has a reference to an online object.

Flow of Events

Postconditions

1. The client announces its interest in changes to the object.

It optionally specifies a filter to select only specific changes.

2. A matching change to the object occurs (is successfully committed).
3. The client is notified of the object change.

The client has been notified of the target object change.

Table 3.7: Publish/Subscribe on Object Change (UC7)

28

3 Specification

Find by Id Each object carries a unique identification datum (Id) that is not related to
any physical attributes of the modeled object. The model service shall provide
a function to retrieve an object based on its Id. Example query: “Return object
whose Id is 3871232”

Find by Class Each object has a class (as in object-oriented terminology). The model
service shall provide a function to retrieve all objects of a given class. Example

query: “Return objects of class ‘FileCabinet’.”

Find by Descent Each object except the root object has one or more parent objects, and
zero, one, or more child objects. The model service shall provide a function to
retrieve all objects that are descendants of a given object. Example query: “Return
objects that are descendants of <object reference>.”

Find by Spatial Containment Each object carries a three-dimensional bounding shape
of the modeled physical object. The model service shall provide a function to re-
trieve all objects whose bounding shapes intersect a given shape. Example query:
“Return all objects whose bounding shapes intersect a sphere with a radius of 5
metres, with the centre at (x, y,z) coordinates (30.2,15.4,29.3)”.

Find By Time Instant The model service shall provide a function that returns a copy of
the object in the state at a given time t, meaning that the timestamp is the highest

timestamp less than or equal to t.

Find By Time Range The model service shall provide a function that returns the object
in the state at a given time t, meaning that the timestamp is the highest timestamp

less than or equal to ¢.

3.2.2 Interface to the Building Systems

The model state can be changed by data supplied by sensors or other applications.
These data must be received and processed so that the corresponding model objects
are updated, or objects are created or removed as needed. To support different sensor
types and communication systems, it must be possible to dynamically add behaviour
for handling them. Handling in this sense relates to two principal tasks: 1) connecting
the communication system to the model service so that data flow is established, and
2) interpreting (translating) the received data in order to cause the appropriate model

updates. The complexity of such code can vary greatly: from simple adaptation and

29

FR4
Model Input

3 Specification

translation code (e.g. in the case of temperature sensors) to complex, CPU-intensive
operations that are driven by multiple sensor readings and may result in wide-ranging
reconfiguration of the space layout (Suter et al. 2005).

Conversely, operations on model objects can result in data written to actuators or
other applications. The model service shall route data sent through model object meth-
ods to their destinations, converting them if necessary.

3.2.3 Interface to Applications

As listed in the use cases, client applications shall be able to read the current state of
single model objects or the entire model, call model object methods, and change model
object states, including the creation and removal of objects.

It must be possible to retrieve the state of a single object, a group of related objects,

or the entire model, for any given time in the past in which the model existed.

Isolation of and Cooperation Between Clients

By default, clients must be able to view and use the model as if in isolation, i. e. without
particular regard for other clients. This means that inadvertent access to other clients’
private memory or any other interference with their operation must be prevented. There
is currently no requirement that resource exhaustion (e.g. excessive CPU or memory
usage) must be prevented.

Clients should be able to cooperate with each other voluntarily. This means that
they should be able to find each other based on unique identifiers and additional data
they may supply themselves (such as classification strings, capability bundles, lists of
offered services). A generalised communication mechanism must be provided to allow

communication between clients.

Transaction Processing

Following standard terminology, transactions — also known as logical units of work in
some contexts — are sets of operations that must either succeed or fail as a group. The
key properties of transactions are usually given under the acronym “ACID”: Atomicity (a
number of operations are grouped together as an indivisible unit of work), Consistency
(the database must not be left in an inconsistent state after the transaction), Isolation

(intermediate stages of a transaction must not be visible to any other tasks than the

30

FRS5
Model
Output

FR6
Client

Isolation

FR7
Client

Cooperation

3 Specification

one initiating the transaction), and Durability (completed transactions are not lost; the
database can be restored to a consistent state even after hardware or software failure).

The requirement for providing transactions comes from the fact that many real-world
events are represented by multiple operations on multiple related objects in computa-
tional models. As an example, a building designer may want to move the position of
a window in a wall. The window is represented as an aperture in the wall and addi-
tionally an object representing the window. Moving the window’s position thus requires
at least two operations: changing the aperture’s position, and changing the window’s
position. If either one of these operations failed, the model would be left in a nonsen-
sical state, with a gaping hole in one location and a window stuck in solid matter in
some other location. A similar effect can occur if the model server is used like a version
control repository, with users infrequently “checking in” batches of updates they have
made on their local models over some time period: as long as a batch of updates is not
processed completely, another user accessing the model at the same time might see an
inconsistent model state.

The model server must therefore ensure that these operations can be grouped to-
gether (atomicity) and that a concurrently operating task never gets to observe a model
state that shows the effects of only a subset of the transaction’s operations (isolation).

A trivial form of transaction processing would simply block access to the entire model
as long as one user is accessing it, enforcing sequential processing of each transaction.
While this is a very effective way of achieving isolation, it is obviously not scalable and
hence not a feasible solution (cf. 3.3). The goal is to enable concurrent access while

ensuring transactionality.

3.3 Quality Attributes

This section lists the nonfunctional requirements to be fulfilled by the system. Whenever
applicable, concrete criteria are specified in the form of Quality Attribute Scenarios
(Bass et al. 2003).

As seen in the survey of existing building model servers in 2.4.2, the main differences
between a building model server that is useful for operational support and one that is

not lie in these nonfunctional requirements.

31

FR8

Transactions

3 Specification

3.3.1 Performance, Scalability

The most important measure of performance relates to the delay between a sensor’s
sending of a readout and the instant it is available in the object model to client applica-
tions.

Scalability in this context refers to the ability of the system to perform well (i.e. within
the given time limits) when the number of certain entities — data sources, model objects,
clients — increases.

Scenarios

Unlike in a real-world business situation, there is no exact hardware setup given in
this specification. The goal of the performance scenarios here is to give an indication
of the performance that would be required under realistic operating conditions using
reasonably-priced hardware available at the time of this writing. All quantitative limits
(e.g. performance figures) stated in the scenarios are intended as examples to give some
guidance on possible and reasonable ranges. They have not been derived from a formal,
quantitative requirements analysis.

The scenarios assume a hardware setup that represents a typical small-enterprise or
workgroup server configuration in the year 2006: a dual-core processor machine run-
ning at 2 GHz clock frequency, equipped with 1 gigabyte of RAM and an ATA-attached
harddisk drive with a capacity of several hundred gigabytes.

The scenarios are intentionally restricted to those situations that are expected to make
up the vast majority of system interactions over the system’s lifespan. Rare interactions
such as massive multi-object inserts caused by import of design data (e.g. during setup)

are not considered.

3.3.2 Availability

If a self-updating building model is to be used as a basis for building control tasks (as
opposed to noncritical monitoring tasks), availability is a concern.

Availability is a quality relating to the system’s continued operation in the face of
failure: failure of hardware (e.g. network interruptions, harddisk crashes), failure of
software (e.g. operating system crashes).

Although availability is to a large extent the responsibility of base systems, no soft-

ware system cannot be fully shielded from the effects of failure: even an uninterruptible

32

3 Specification

Source
Stimulus

Environment
Artefact

Response
Response Measure

Sensors

Stochastic arrival of 10,000 simple updates per minute,
concerning any of 1,000 existing model objects
(randomly selected).

Normal operating conditions. No active client processing.
Model Core

Model objects updated.

For 99% of all incoming updates, the corresponding
object is updated within 500 ms. No update takes longer
than 1 s to be processed.

Table 3.8: Performance Quality Attribute Scenario: Simple data updates. A simple up-
date is defined as one that does not affect more than a single object.

Source
Stimulus

Environment
Artefact

Response
Response Measure

Sensors

Stochastic arrival of 1,000 multi-object updates per minute,
concerning any 3 of 1,000 existing model objects
(randomly selected).

Normal operating conditions. No active client processing.
Model Core

Model objects updated.

For 99% of all incoming updates, the corresponding

objects are updated within 500 ms. No update takes longer
than 1 s to be processed.

Table 3.9: Performance Quality Attribute Scenario: Multi-object data updates. A multi-
object update is defined as one that affects more than one existing object.

power supply can only mask a power failure for a limited time, so the system may have

to be shut down on short notice. Network protocols can handle brief connectivity in-

terruptions gracefully, but they cannot mend an accidentally cut wire. Extending the

notion of failure, availability may also relate to dealing with scheduled maintenance

interruptions such as hardware or software upgrades. Ensuring continued operation

under these circumstances may be achieved using a redundant fail-over system, but

seamlessly passing control between the systems does require cooperation on the part of

the building model software.

For the purpose of this work, only a reasonable minimal degree of availability is

33

3 Specification

specified.
Scenarios
Source External to system
Stimulus Impending system shutdown.
Environment Normal operating conditions.
Artefact Building model service
Response State of model service stored and restored without

loss, continuing operation where it was stopped.
Sensor data are buffered (if separate system is
available) and processed after restart.

Response Measure Disregarding the time needed to restart base
systems or transfer stored data, the model service
is shut down within 2 minutes and restarted within
10 minutes.

Table 3.10: Availability Quality Attribute Scenario: Availability for shutdown an-
nounced on short notice.

Source External to system

Stimulus Unexpected system shutdown (e.g. CPU failure).
Environment Normal operating conditions.

Artefact Building model service

Response The building model is restored to a consistent

state. Model service is continuing operation.
Clients are notified of interruption and
asked to resume.

Response Measure The building model is restored to a consistent
state corresponding to the instant just before
shutdown or an instant no longer than 1 minute
before.

Table 3.11: Availability Quality Attribute Scenario: Availability for unexpected shut-
down.

34

3 Specification

3.3.3 Adaptability and Portability

Adaptability relates to the ability of the system to be adapted to different environments.
More specifically, the portability requirement arises from the need to operate on differ-
ent hardware and software platforms. For a software system that is envisioned to have
a very long operational life-cycle phase — which is certainly the case for a system closely
tied to a physical building —, this quality is essential to ensure continued functionality
and manageable running costs, as hardware and software platforms come and go in

relatively short cycles compared to the lifespan of buildings.!

Scenarios
Source External to System
Stimulus The hardware, operating system, or another basic
environment support system is changed.
Environment System Maintenance.
Artefact Building Model Service
Response Change in environment has no adverse effects on

Response Measure

operation.

Service can be restored without code change,
or code change restricted only to specific,
portability-related modules (abstraction
layers, device drivers, or similar).

Table 3.12: Portability Quality Attribute Scenario

3.3.4 Modifiability

Modifiability is a quality that relates to the ease (or difficulty) with which the system
can be modified to fulfil new requirements. As described in the above section, this is a
crucial quality for a system that is expected to operate for a long time. Changes in the
original requirements for a software system are inevitable, even more so in the case of

a system that strongly relies on interfaces to many external systems.

For example, IBM Corporation currently guarantees a minimum of 3 years software support beginning at
a product version’s general availability. Microsoft Corp. states a minimum of 10 years for business/de-
veloper products, of which the second half is covered under a more expensive “extended support”

scheme.

35

3 Specification

Modifiability has a few different aspects: it can refer to modifications during develop-
ment, but also to modifications during run-time. A system that provides a high degree

of run-time modifiability also has advantages for availability.

Scenarios

Adding or removing sensors that use a known, implemented interface should be as
simple as possible, with minimal operator effort. This can also be seen as a measure of
robustness: a few failing sensors should not disrupt the entire system’s operation (Table
3.13).

Source Sensor/actuator system

Stimulus A sensor or actuator is added to the system.
Environment System Maintenance.

Artefact Building Model Service

Response Addition of the sensor or actuator does not disrupt the

operation of the system. Proper connection of sensor or
actuator to corresponding object is configured manually
or detected automatically through context, such as
position information.

Response Measure No downtime. In case of manual reconfiguration, changes
take effect immediately.

Table 3.13: Modifiability Quality Attribute Scenario: New Sensor/Actuator.

Adding an interface to support a new technology (such as a specific building automa-
tion bus) should be possible with minimal changes to the existing system. No binary
code changes or recompilation of existing code should be necessary. Similarly, chang-
ing interface code (updates, bug fixes) should be possible without disrupting the entire

system’s operation (Table 3.14).

3.4 Non-Requirements

This section lists requirements that are not within the scope of the work covered in this

dissertation — however, they are not considered irrelevant.

36

3 Specification

Source Sensor/actuator system
Stimulus An new type of sensor/actuator interface is introduced,
or an existing interface is updated.
Environment System Maintenance.
Artefact Building Model Service
Response Addition of the interface module and removal of old interface

module takes place at run-time, without shutdown of the system.
Any buffered data generated while the new interface module is not
operational are processed after interface startup without manual
intervention.

Response Measure No system downtime.

Table 3.14: Modifiability Quality Attribute Scenario: New Sensor/Actuator Interface.

3.4.1 Security

The proposed architecture does not have to offer any dedicated security-related fea-
tures. It is assumed that malicious users are kept off the system by external mecha-
nisms.

Some aspects of security could be handled by the building communication systems,
such as maintaining integrity of sensor and actuator data. Other security concerns can,
at least in part, be handled by relying on security services of the underlying networking
protocols and operating systems. These would be sufficient to restrict access to the
model service authorised users only.

In a real-world application, there would be a need to identify users, keep track of their
actions, and provide different levels of access to them. For the purpose of this work, all
users and applications may be treated identically. The architecture should, however, be

designed to make later introduction of security tactics as simple as possible.

3.4.2 Multi-model Support

Despite all attempts to create a single unified building model, there may be a need for
keeping multiple separate models in the model server, and for providing merging and
mapping functionality for this case (Kiviniemi et al. 2005). This is not a requirement

for this work.

37

3 Specification

3.5 Chapter Summary

In this chapter, the key requirements for a building model server to support the opera-

tional life-cycle phase have been discussed. They were categorised as

* Functional Requirements that relate to the model core as well as its main inter-

faces to applications and the building, and

* Quality Attributes (Non-functional requirements), most importantly performance,
modifiability, and availability.

The quality attributes and functional requirements are considered equally important.
In fact, it is chiefly the quality attributes that differentiate the requirements of support-
ing the various life-cycle phases of a building. Most of the described quality attribute
scenarios would be either irrelevant or very different for design support, while the func-

tional requirements would be very similar.

38

4 System Architecture and Design

This chapter outlines a system architecture for the building model server. The descrip-
tion moves from a general overview and discussion of overarching design principles to
selected key points of the design, driven by the requirements described in the previous
chapter. The model server core is discussed in detail in the following chapter.

4.1 Overview and Context

Figure 4.1 gives an overview of the system’s context. One of the major interactions is
between the model service and the building control systems that are the model’s source
of information about the physical building, as well as a destination for commands that
the service sends to change the states of physical objects. The system does not necessar-
ily interact with only one such communication system, and the set of communication
systems may change during runtime.

On the other side, human users as well as clients application interact with the model
service to query its current state or send commands to building systems. Just as the set
of communication systems, the set of client applications and users can change anytime.

Notably, this diagram considers system developers important enough to be considered
part of the system’s environment. As the model service is not merely an application, but
a foundation for client applications, its design must consider runtime interaction with
developers of such applications.

System managers are important as well, given the availability and maintainability
requirements. Monitoring and configuring the system are crucial runtime activities

performed by these users.

4.2 Some Architectural Considerations

39

4 System Architecture and Design

System Users
(e.g. FM)

Client
Applications
model queries,
updates,
commands

Y
Building
Control
System
(based on
BACnet,
LonWorks, ...)
sensor/actuator client applications,
data Model Service debugging
Other data information
sources/sinks \
System
Developers
-~

configuration,
monitoring data

Operating
Environment (JVM

etc.) System Managers

(IT operations staff)

Figure 4.1: A context diagram of the model service.

40

4 System Architecture and Design

4.2.1 Base Technology

The Sun Microsystems Java SE platform is chosen as the principal implementation lan-
guage and runtime environment. The system is mature, robust, and well-documented.
It offers a high degree of portability to different hardware and software environments,
as well as a large selection of commercial and open-source software tools and libraries.

While the general architecture is not tied to this specific platform, some design deci-

sions are influenced by it.

4.2.2 Distribution

As shown previously in 2.4.2, most existing building model servers are based on a two-
tier or three-tier client-server architecture. There are two likely reasons for this. First,
the tools and methods for creating such applications are widely available and proven.
Three-tier has become so prevalent in distributed business applications that it is often
seen as the “default” architecture choice.

Second, two/three-tier is a good fit for the requirements of model servers for design
support. The primary task for such model servers is to store and maintain a model
that is created by independent, user-operated “offline” applications that submit their
work from time to time, similar to software revision control systems such as CVS. The
applications are distributed by necessity, simply because their operators will work in
different companies, locations, and of course on different computers (compare fig. 4.2).

On the other hand, our requirements of a building model server are driven by the
need to have a single, centralised model updated by a range of data sources that contin-
uously deliver raw data. Most applications — such as building systems control — usually
do not check out a model copy from time to time, but must react immediately on model
changes and use the model as an interface to the physical building. Such applications
are generally long-lived, which means they operate 24 hours a day — similar to the dae-
mons of the UNIX world. While they may be distributed on different computers, there
is usually no pressing need for it (compare 4.3).

Classic two- or three-tier architectures are not a good fit for these requirements. Their
design is primarily motivated by support for client distribution and flexibility of client
code. As mentioned, client distribution is not a must-have requirement. On the contrary,
it is a disadvantage for long-lived applications because server environments usually pro-

vide a far more robust, managed operating environment and the communications load

41

4 System Architecture and Design

Server Node

Model Server

Model Objects
(or Operations on Model Objects)
<
~

Client Node Client Node

Client Application Client Application Client Application

User User User

Figure 4.2: A sample deployment view of a model server for design support.

42

4 System Architecture and Design

Building Building
system [System
Server Node

e
7

Raw Data
Building
Application

Syseem _\

i

Model Server

Application

Application

Model Objects
(or Operations on Model Objects)

Client Node

Client Application

User

Figure 4.3: A sample deployment view of a model server for operations support.

43

4 System Architecture and Design

between client and server can be heavy. Flexibility, on the other hand, is a must (com-
pare 3.3.4): applications should be changeable without any disruption on the server.

What is needed, therefore, is a distributed architecture that allows applications to
run where their data are for high efficiency, but is still flexible enough to allow remote
on-the-fly modifications of these applications. At the same time, it should be inclusive
enough to accommodate “classic” distributed client applications if needed.

4.2.3 Centralised versus Distributed Model

One of the first questions for decomposition is whether to represent the building as a
collection of — more or less — loosely connected fragments, or as a strictly centralised
data structure.

There are two related, but different aspects to this matter. The first, the application
aspect, is about the logical view that model-using client applications see. Are they
presented with a single, unified object model of the entire building, or with a network
of model partitions? In the first case, random access to any part of the model is possible
so that every object can be accessed by every application in the same way. In the second
case, applications work on parts of the model and must explicitly switch context to
other parts of the model if necessary. These context switches involve more than just
following a reference, but possibly interprocess communications across networks. As
an example, the system proposed by Sharples et al. (1999) comprises a network of
embedded computers distributed across a building, each responsible for a single room.

One problem with the latter approach is to decide how to break the overall model
into parts: a decomposition that works well for one application may not be suitable for
another. For example, an inventory management application may be based on a decom-
position of the building into organisational units. However, the boundaries between
such units may not have any relation to the boundaries that are relevant to a heating
control application (walls and floors) — in fact, they can be purely virtual. Some sys-
tems cross-cut buildings in a way that even seemingly obvious and “neutral” divisions
into stories and rooms are hardly useful: consider lifts, staircases, and other vertical
elements of a building. Moreover, modern open-plan offices are designed so that their
internal layout can be changed easily with room dividers. Any decomposition based on
a notion of “rooms” would have to be reconfigured accordingly.

Another difficulty with a split-up model is that it does not help efforts to take the

“big picture” into account for local control decisions. Unlike simple room thermostat

44

4 System Architecture and Design

control, the idea in modern building control is to consider a range of external constraints
to arrive at a control action that balances local goals (maintain set temperature, ensure
appropriate workplace illuminance) with overarching, building-wide goals (such as:
reduce energy usage, increase daylight usage, and others). This is related to the fact that
the effects of many control decisions are not strictly local, as they affect the situation in
adjacent rooms and floors — consider heating, for example.

It follows that a single, unified model view for applications is desirable, so that ap-
plications can decide based on their own specific needs which parts of the model they
access, unhindered by an arbitrary partitioning.

The implementation aspect is about the actual storage of the model at run-time, which
is not necessarily visible to applications. Here, keeping everything in one place (one
process, one database) would also be desirable for the sake of simplicity. However, it
may not be feasible to do so given a very large object network. Breaking up the model
in parts assigned to different processes possibly on different computers can make sense
for performance reasons. On the other hand, keeping mirrored (replicated) copies of
the model could be done to improve availability.

For the system architecture, it can be concluded that a single, unified model should
be presented to the application, but the physical design should be flexible enough to

allow partitioning and replication if needed.

4.2.4 The Model is the Interface

The model is the only view of the building systems that client applications can get. In
other words, it is an opaque layer (compare figure 3.1). Therefore, it must be rich
enough to capture all available information that may be interesting to client applica-
tions, and it must be updated quickly enough to eliminate the need for special low-level
access.

An alternative design may choose to allow clients low-level access to incoming or
outgoing data, possibly in the form of processing hooks. Experience shows, however,
that such “backdoors” tend to get over-used for supposedly temporary quick and dirty
problem solutions. They are also detrimental to reuse when each client creates its own
processing behaviours or views without sharing them through the model. Another prob-
lem to expect is that multiple client applications hooked into input processing would

slow down model updates for other clients.

45

4 System Architecture and Design

4.2.5 Avoiding State

“State is hell. You need to design systems under the assumption that state is hell. Everything
that can be stateless should be stateless.” —Ken Arnold (Venners 2002)

Keeping state in this context refers to distributing state information over multiple
components, possibly operating in separate processes or on separate machines. A classic
example of this is a TCP connection: both ends of the connection must keep state to
ensure packet ordering, for flow control, and for reliable transmission in case of errors.
Each incoming packet is handled differently based on the history of previously received
packets. Both parties need to reserve some local memory for each connection and must
be able to handle various forms of failure. As opposed to streams of unrelated packets, it
is not easily possible to pass control of a connection to another process, or to distribute
workload among multiple processes. Similar issues exist in other forms of session-based
communication patterns between modules.

Such distribution of state among components is a force opposing the push for looser
coupling (and less complexity). While its use cannot be avoided altogether, it should
be limited to those occasions and places where it is absolutely necessary and directly
reflects a functional requirement. Stateless components have a number of advantages,

such as:

* Simpler testing and debugging. Operations inside a module depend only on the
request that is currently processed. To test the module, sending one request per
test case is enough. To debug the module, it is not necessary to follow an entire

conversation history; it is sufficient to inspect the current operation.

* Better scalability. The number of requestors has no direct effect on resource con-
sumption (given a constant rate of incoming requests, it is irrelevant whether they
are generated by one sender or many). If a single task is overwhelmed with pro-
cessing, the load can be easily distributed by setting up multiple tasks that take
turns processing incoming requests. Moreover, stateless modules need relatively
little initialisation and do not have to discard data after each finished session,

which impacts garbage collection.

* Simpler semantics. Stateful communications have to follow a common protocol
that is impossible to specify as a static model and can become quite complex,

especially for exception handling.

46

4 System Architecture and Design

* Harder to break. A communications partner that does not follow the agreed-upon
protocol can - inadvertently or maliciously — disrupt operations on the other side,
to the point of denial-of-service attacks. Many attacks on the TCP protocol (such
as the well-documented “SYN flood” attack) exploit a combination of the facts
that a) the remote party must reserve some resources for each connection, and
b) it cannot easily decide when to free these resources, so it must hold them for
some time to account for network delays and other temporary problems in order
to achieve fault tolerance.

4.2.6 Interface Design
Plain Objects

As industry experience with technologies such as CORBA or Enterprise Java Beans
(EJBs) shows, layers upon layers of proxies, adapters and interfaces to implement —
often generated by development tools — are a frequent source of problems in the devel-
opment of distributed systems, particularly when existing interfaces are changed. As an
example, every single EJB requires at least an EJBHome interface and implementation,
an EJBObject interface and implementation, an XML deployment descriptor, the actual
bean class, and context objects (DeMichiel 2003). These are coupled fairly tightly: even
a minor interface change in the bean class requires synchronised changes to most re-
lated interfaces and implementations. In fact, most of these objects are implemented by
code generation, with even a trivial EJB resulting in hundreds of lines of deployed code,
the vast majority generated and often hardly readable. From the developer’s viewpoint,
this code appears to have little if any benefit.

Recently, there has been a broad move to rid the development process of these in-
termediate steps, reduce visible complexity and enable developers to work with “plain
old Java objects” (POJOs) as much as possible (DeMichiel and Keith 2006). One of the
basic rules of the model service’s architecture and design is to use such “plain objects”

throughout whenever feasible, and to avoid code generation altogether.

4.2.7 Component Design: Reference Isolation

In a complex environment with a changing set of components and threads sharing the
same process context, the design must limit the scope of object references and pre-
vent unintended reference sharing. Components must take care to only expose inter-

47

4 System Architecture and Design

face classes to facilitate run-time implementation changes (4.7). References to internal
mutable objects must not be “leaked” to avoid compromised encapsulation: object ref-
erences returned to component callers should be either immutable or copies of the

internal representation.

4.2.8 Loose Coupling Through Messaging

In software design, tight coupling relates to various appearances of the same design
property: that code or data in one place is highly dependent on code or data in other
places. For instance, when changes in a data structure of one part of a system necessi-
tate changes in components all over that system.

As this has turned out to be a major problem in the development and maintenance
of software systems, all significant milestones in the progress of software engineer-
ing have contributed to enabling looser coupling in some way: structured program-
ming pushed for subroutines (instead of GOTOs) and other modularisation techniques.
Object-oriented programming emphasised this further with its principle of encapsula-
tion. In network communications, layered protocol stacks are an approach to establish
clear, strictly enforced interfaces between communicating systems that hide implemen-
tation details. Here as well, the aim is to prevent the propagation of small, local changes
in system elements to the whole system by containing them within explicitly defined
bounds. Bass et al. (2003) generalise this concept as the “prevention of ripple effect”
modifiability tactic.

Tight vs. loose coupling can also be seen as a temporal property of interaction be-
tween communicating tasks. In this context, tight coupling usually refers to a remote
procedure call (RPC) pattern that emulates the semantics of a local procedure call. Con-
sider a system with two concurrent tasks, both of which are involved in some compu-
tation. At some point, task 1 may decide that it needs to call a procedure provided by
task 2. Just as in a regular procedure call, this means that task 1 passes control of the
overall computation to the procedure in task 2 and is effectively suspended until the
remote procedure completes. The execution of task 1 is therefore tightly coupled to the
execution of task 2 — unless there is some form of timeout mechanism, task 1 might be
stopped indefinitely until task 2 passes back control.

This temporal coupling can be loosened significantly by allowing asynchronous remote
procedure calls. This would allow task 1 to submit its request to task 2 and immediately

return to its own processing, while task 2 receives the call and commences execution

48

4 System Architecture and Design

of the requested procedure. Once finished, the results of the procedure may be re-
turned to task 1 by using a callback mechanism (a reverse procedure call) or by task 1
actively polling for them. As opposed to synchronous calls, an asynchronous call thus
does not force the caller into suspension. As a result, the overall level of concurrency
is increased. This comes at the cost of increased complexity for the developer, who
has to deal with losing the accustomed sequential ordering of events and a variety of
exceptional situations (what happens if task 2 responds very late or never?).
Messaging is a generalisation of this asynchronous communication pattern. The most
fundamental difference to RPC is that the data sent from one task to another is not
necessarily a procedure call — it may be any chunk of data presumably understood by
the recipient. Messaging facilities are typically provided by a messaging infrastruc-
ture that takes care of addressing (providing abstract communication channels called
queues), guaranteed delivery, buffering, and other intricacies of asynchronous network
communications. Unlike synchronous RPC, the messaging paradigm has been shown to
scale very well in practice from intra-process communication up to enterprise applica-
tion integration (Hohpe and Woolf 2003). Beyond point-to-point communication (see
4.4), most messaging infrastructures also support some form of message broadcast (one

sender, multiple receivers) in the form of publish-subscribe messaging.

Messaging Client

Messaging Server

\ Messaging Client
Queue |
Message Listener

Messaging Client

Figure 4.4: An example deployment view of a typical point-to-point messaging setup. The
clients to the left submit messages to an existing queue on the messaging server.
The client to the right has registered itself as a consumer of this queue and gets
the messages delivered by the messaging server.

49

4 System Architecture and Design

The conceptual scalability of messaging, however, does not mean it is a full replace-
ment of synchronous remote procedure calls. In many situations, the semantics of
synchronous calls are still needed. While it is possible to emulate RPC using messaging,
the resulting code tends to be convoluted and less efficient than using “native” RPC.

On the Java platform, the Sun Java Message Service (JMS) specification provides an
interface to a range of existing messaging infrastructures such as IBM’s Websphere MQ

and native implementations (Hapner et al. 2002).

Space-Based Computing

Although it shares some concepts with messaging, space-based computing is a funda-
mentally different approach to distributed computing. In the space-based paradigm,
a virtual shared data container (the space) is visible to all participating tasks and can
be accessed by them as if it were local memory (Carriero and Gelernter 1989). Tasks
can add data to the space (the put operation) and take data from the space based on
certain criteria. The details of distribution are completely hidden: a task does not have
to know which other tasks are using the space, where they are located, nor how they
are implemented. The space infrastructure handles all the details of providing the dis-
tributed shared memory. This form of collaboration is an instance of the Blackboard

pattern (Buschmann et al. 1996).

JavaSpaces

On the Java platform, the JavaSpaces specification describes an infrastructure for object-
oriented collaboration based on the spaces concept (Freeman et al. 1999). Tasks can
put objects into the space and take objects based on their types and the values of their
public fields'. Additionally, tasks may read objects (without removing them from the
space) and register their interest in certain objects to be notified asynchronously when
matching objects are put into the space (notify). JavaSpaces also support transactions
and transparent persistent storage of the space.

One of the standard applications for using spaces is the master/worker pattern, used
for distributed processing of work items. Tasks post work requests by posting items of
work into the space, which are taken from the space by worker tasks, who then post the

results back into the space. The particular benefit is that workers can be added anytime

1 This is not a full-fledged query mechanism, however. Matching is restricted to exact (bitwise comparison)
matching or any (wildcard) by supplying a single template object.

50

4 System Architecture and Design

Node2

putiget x

_ \
- \
- \
// \
/ \
\
! \
! \
/ \
! \
// pace (oo |
/ L 1 \

/ \

\

/ /

// /
' — .
| \
1 L1 |
| \
1 I
/ //
: 7
Node1 \

Node3 /
\ /

1
O/‘\,/"~\ ~-TTT~ |
-~ ~ |
put/get ~. /\o
N -
~< =1 - putiget

Figure 4.5: An example deployment view of a space shared by three nodes. The space inter-

face (put/get) is available through local method calls. Distribution is handled
transparently.

51

4 System Architecture and Design

simply by starting them and having them wait for new work items. Unprocessed work
requests are buffered by the space until they are picked up by one of the workers. The
developer is freed from concurrency issues, as the put and take operations are atomic.

Issues with JavaSpaces

Spaces can be used to emulate messaging semantics. However, certain requirements
such as maintaining order (first-in-first-out semantics for queues) must be hand-coded,
e.g. using the Channel pattern described by Freeman et al. (1999). This requires
transactions and multiple space accesses for each messaging operation and is there-
fore bound to be less efficient than a dedicated messaging solution that provides FIFO
functionality. Specifically, many patterns providing complex distributed data structures
require access to one or more singleton control objects in the space (e.g. an index object
tracking a channel’s head and tail). With growing numbers of tasks competing for ac-
cess to these central objects, concurrency decreases and temporal coupling between the
tasks tightens as they wait to take turns using the control objects. Emulating broadcast
semantics (delivering one posted object to multiple recipients) requires similar efforts.

Most of these difficulties stem from the fact that the JavaSpaces specification provides
very few guarantees on which objects are picked up when, and in which order. If a
task requests to take an object with specified type and field values from the space,
any random object matching the template may be returned. If a task repeatedly uses
the read operation, it may read the very same object again and again even if other
matching objects exist — or not, as the specification leaves this open. Due to the limited
querying/matching semantics, simple requests such as “take the object with the smallest
timestamp value available in the space” are not easily fulfilled. If a task has registered
to be notified when an object matching a certain template is posted to the space, it will
be duly notified of this event. However, there is no guarantee that it will be able to read
or take that exact object — the notification does not contain a reference to the posted
object or any other way to address it directly.

In summary, spaces are not a replacement for messaging, but serve certain appli-
cations very well. Specifically, they allow for elegant load distribution with minimal

administrative overhead.

52

4 System Architecture and Design

4.3 A Top-level Decomposition

A simple decomposition can be derived from the requirements. The following logical
components must exist to support the required functionality (4.6):

<<component>>
STORAGE
—

g —_—
<<component>> - 8]
CLIENTS . El El <<component>>
T _J] BUILDING coMM.

<<component>> <<component>> [-==""1 - SYSTEMS
MODEL 110

CH| [=]

<<component>> <<component>>
MANAGEMENT DEVELOPMENT

Figure 4.6: Top-level logical components. Slashed lines denote interactions.

MODEL This component holds the actual building model. Its main responsibility is to
keep the model consistent and available for client access.

STORAGE The responsibility of this component is to keep the current state of the

model, as well as past version, available in persistent storage for later retrieval.

I/0 The I/O component is responsible for getting data in and out of the model. For data
supplied by building communications systems, this implies converting incoming
data to understand their contents, mapping the data to target objects, deciding
which actions to take on which fields of the objects, and executing these actions.
Similarly, outgoing commands triggered by commands on model objects must
be converted to the appropriate actions in the building communication system’s
context.

53

4 System Architecture and Design

DEVELOPMENT The development component must provide the necessary functions to
aid in deployment, testing, and debugging of client applications.

MANAGEMENT This component provides the necessary functions to support monitor-
ing and configuration of the system.

There is obviously a close relationship between the MODEL and I/O components,
and in turn, the clients and communication systems that act as sources or destinations
of the data flows. Across these three (or more) components, the vast majority of data
are expected to flow in and out of the model. Considering the quality attributes relating
to performance (3.3.1), particular attention must be paid to the design of this path.

4.3.1 Distribution

The logical view leaves the actual locations and communication methods between the
components open. For optimal adaptability and modifiability, clients and building com-
munication systems should be physically decoupled from the model component, as
would be the case in a typical client-server architecture. While such distribution can
also improve performance by offloading some tasks to separate hardware, it tends to
incur a heavy cost in network traffic. On the other hand, placing the clients on the same
hardware, or even within the same process context, reduces network communications
to nil. The downside is that in such a “monolithic” setup, run-time modifiability may
suffer.

As a design guideline, we identify two types of runtime behaviour in terms of model

access patterns:

Batch behaviour An application component collects some model data, performs inten-
sive processing on it, and returns some output data. One example is model-based
lighting simulation (by ray tracing or radiosity), another is spatial reasoning (e.g.
to generate space boundaries from tag locations). The object working set is typi-

cally fixed before the actual processing begins.

Interactive behaviour An application component keeps accessing a number of objects
repeatedly, possibly reacting to events and changing the objects. It requires little
processing power, but low-latency object access. One example is a lighting con-

troller task that monitors workplaces and registers any relevant events that may

54

4 System Architecture and Design

occur, e.g. changes in occupancy or daylight. The object working set may change

in reaction to object states or events.

Components with Batch Behaviour

Components with batch behaviour benefit from distribution to keep high CPU work-
loads off of the computer hosting the model service. This distribution is implemented
using a spaces-based infrastructure. For instance, an application’s request for lighting
simulation can be posted to the space and subsequently picked up and processed by any
connected machine running an instance of such a service. Once completed, the results
are placed back into the space to be picked up by the client. This allows a simple and
transparent load distribution that decouples components in time and space as much as
desirable. Neither party needs to know anything about the other except how to access
the common space and the signature of the relevant request and response objects. Com-
ponents can choose a synchronous or asynchronous mode of operation: either posting
requests and waiting for responses sequentially, or posting a batch of requests at once
and coming back later to pick up the results. The latter scenario is particularly suited
for simulation-based control programs, which frequently need to commission a set of
simulations to select the best control decision. The advantage of using spaces instead
of messaging here is that objects can be shared: common data used by multiple partic-
ipants can be posted to the space just once, instead of duplicating them for each one.

This also allows for simpler co-ordination between participants.

Components with Interactive Behaviour

The characteristics of components with interactive behaviour suggest a different ap-
proach. It is desirable to keep these components’ code close to the data during runtime
without losing the flexibility and loose coupling of the system by hard-wiring their code
into the model service. One way to achieve this goal is to design an elaborate query lan-
guage for the model: the main advantage of this approach is that components are not
bound to any specific programming language, as long as they can submit well-formed
query strings to the model service and process the results. However, the developer
effort of translating query or program logic into an intermediary is considerable, and
there would be significant communications overhead incurred by repeated queries and
responses. Ideally, components should be able to access the model just like any other

Java object.

55

4 System Architecture and Design

This is achieved by implementing them as agents, which might also be called “mobile
plug-ins”. Agents are objects that may be submitted to the model service over the
space, where the are started as separate threads within the service process. They can
directly access the object graph and use all public operations on the objects as well as a
number of utility methods for traversing the object graph, retrieving historic versions,
and communicating with other modules. Moreover, agents can register for events on
specific objects to be notified of data updates. While agents in this context do not refer
to mobile agents in the strict sense (as they do not migrate from system to system on
their own), some of the advantages outlined by Lange and Oshima (1999) do apply just

as well:

* They reduce network load by “packaging conversations” and moving code to data.
* They limit the effects of network latency to a minimum.

* They execute asynchronously and autonomously — which means that the agent
can remain active even if network connectivity is lost or the originating computer

is shut down.

As an example, the core of a control application can be sent to the model as an
agent, where it can examine the relevant objects, derive a number of possible control
decisions and send a batch of simulation requests (containing relevant model data) to
the space. Using the results provided by one or more simulation services connected to
the space, the controller can take appropriate action (e.g. opening a valve). Further
control cycles can either be triggered in time intervals or based on update events (e.g.
when a temperature sensor reading rises above a threshold).

For both batch and interactive access patterns, this design ensures modularity and
flexibility while the specific runtime characteristics are taken into account. Naturally,
some applications will be hybrids of these main types: such applications are split into
two communicating, but separately distributed components.

Architecture Overview

Figure 4.7 shows a top-level architectural overview of the system. The model’s principal
form of communication with building systems is through message queues. Its persistent
storage is maintained by a separate database management system. Clients access the
model — and vice versa — primarily by message-based communications. The design

56

4 System Architecture and Design

does not consider model distribution (partitioning): the model is kept in one process.

However, it does offer some extensibility for replication (see 5.5).

57

jualy/edinIes

4 System Architecture and Design

PILIESIINETS

jual|/edines

B
L

e
<

by W

"SMOf DIDP 910UIP SMO.LLY "MIAI2A0]DINII2IYIID 1242]-d0], : /'t 9IS

Josueg

L

ananp) abessapy

13dow

\
sunpady
Buipeys
aunyuing
aunpaubI Kiepunog
\ e
Buiping

\

R

ananp abessajy

Il

ananp abessajy

SW3LSAS NOILYOINNWNOD ONIaTiNg

58

4 System Architecture and Design

The following sections of this chapter discuss the interface with the building commu-
nication systems, as well as the client interface. Specific issues relating to concurrent
transactional access to the model, as well as some observations on its role as a temporal

database, are discussed in chapter 5.

4.4 Building Data Interface

The building data interface’s main task is to get information from the real world into the
virtual world by acquiring data and triggering the necessary changes on the appropriate
objects, and vice versa. The design is focused on sensors as its data sources, although it
is general enough to allow other data sources (such as import from design software) as

well.

4.4.1 General Considerations on Data Flows

Figure 4.8 illustrates on a high level the data flows between the model and the building
systems. Data about the building’s current status are received from the various building
systems (sensors etc.) and then typically undergo a stage of pre-processing.

This processing may be a simple and short format conversion, but can also involve
long-running, computing-intensive stages such as spatial reconstruction from sensor
data (Suter et al. 2005). In consequence, there may not necessarily be one-to-one
relation between building system updates and model updates: a model update could
require collection of multiple sensor values (either a series of values from the same
source, or a set of values from multiple sources) to result in a meaningful model update.

In the next stage, the processed data are used to update the model. This again can
range from updating a single field of a single model object to a massive restructuring of
the object network, including deletion and creation of multiple objects. Once updated,
the model objects are available to client applications.

In the other direction, client applications may trigger commands on model objects
representing controllable physical entities, such as motorised window blinds. The out-
going data volume and processing requirements are expected to be significantly lower
than those for incoming data; the following discussion is therefore focused on incom-
ing data under the assumption that outgoing communications are handled in the same

manner, just in the opposite direction.

59

4 System Architecture and Design

Model Users

I

P
Ly

Model updatej

Model
command

! |

c f

Pre- Post-
Processing Processing
t i

Data Command
acquisition transmission

) \

a h

\ v

Building
Systems

Figure 4.8: A conceptual overview of data flows between model and building systems.

Communications at this level are stateless. Specifically, there is no notion of a con-
nection. This is a crucial point that aids in performance and flexibility, reduces resource

consumption, and simplifies the design (see 4.2.5).

Who Drives Data Flows?

There are principally two modes of operation for getting sensor data into the model,
depending on who initiates the data transfer. In sensor-driven mode, the sensor submits
status data on its own volition: based either on a fixed schedule or a change-triggered
mechanism, sensor data are sent to the model. The main advantage of this approach is
that it simplifies things on the sensor’s side: it operates only as a sender, not a recipient
of information and consequently does not have to handle the intricacies of two-way
communication. For simple sensors, this approach also reduces effort on the model side.
The main disadvantage is that the sensor cannot adapt to the model’s data requirements
and might either overload it with more data than it needs or is able to handle, or it
might starve it by not sending data when they are needed. Sensor-driven mode is most

applicable for simple, low-cost sensors that generate little data for each update. It is also

60

4 System Architecture and Design

appropriate for sensors that generate data in irregular intervals, triggered by significant
events in the physical world (e.g. occupancy sensors).

In model-driven mode, the sensor transmits data only by request from the model ser-
vice in a polling pattern. The main advantage here is that the model gets exactly the
data it needs and when it needs them, not more or less. However, this places a higher
burden on both the sensor, which has to understand requests and react accordingly, and
the model, which has to run a task that requests data as needed. Additionally, this mode
of operation generates more network traffic for periodic updates than sensor-driven
mode. Model-driven mode is most applicable for sensors that are needed infrequently
or in unpredictable schedules, and that generate a higher amount of data for each up-
date. Note that even in model-driven mode, the actual data reception works the same
way as it does for sensor-driven mode. The difference is that some process must send a
request to the sensor to submit data.

There may also be a combination of the two modes for certain types of sensor de-
vices. Sensors could be programmed by the model service to transmit data based on a
given schedule or whenever changes deemed significant by the model occur. This can
solve the problem of increased network traffic for periodic updates, but requires more
sophisticated sensor devices on the one side and more sophisticated knowledge of how
to access and program sensors on the other side.

It follows that the design must be flexible enough to allow different approaches of
driving communication between model and building system. To achieve this, the design
for handling of incoming data assumes sensor-driven mode (which essentially means
“data can come in any time from anyone”). If model-driven mode is required, the

commands to trigger data updates are treated just as any other outgoing data.

4.4.2 Design

The building data interface’s most natural decomposition is a sequence of stages,
pipe-and-filters style.

1. Data Acquisition Data must be picked up from the data sources. The model service
is designed to get its data from some form of message queue. To get data from
an arbitrary building communication system, it is therefore necessary to provide
such a queue and route messages to it. This is achieved using a separate adapter
process that knows how to communicate with the BCS and the message queue.

61

4 System Architecture and Design

In consequence, three separate tasks are responsible for transporting data from
sensor to model object: the BCS, the adapter, and the model service itself (see
figure 4.9).

2. Repackaging Once received from the queue, data must be repackaged for further
processing. This is a lightweight operation that simply normalises all messages to

an object structure that is independent of the used messaging application.

3. Target Localisation In the next step, the target model objects must be found. This
can be a complex operation depending on message content. It may involve mul-
tiple objects and result in the need to create new objects, move existing objects,

or delete objects.

4. Model Update Finally, the target objects must be updated.

§ SENSOR —1

|
Messdge Queue

O . Model
BCS Adapter - Object

Y

BUILDING COMM.
SYSTEM

ADAPTER
PROCESS

MODEL
SERVICE

Figure 4.9: Responsibilities for data flow from sensor to model object.

A number of factors make the entire process more complex than its high-level descrip-
tion suggests. First, the various formats of incoming data from various sources must be
understood. Second, a mapping of sensor data to objects must either exist a priori or
must be derived dynamically from the incoming data. It may be necessary to query
the model or run lengthy decision algorithms or heuristics to find the target objects.

Third, updates that require multiple messages may have to be collected, assembled and

62

4 System Architecture and Design

applied together, which takes time and requires some temporary memory. Fourth, all
behaviour in these stages must be fully reconfigurable during runtime, as a hard-wired
data processing chain would not fulfil basic requirements of the model service (cf. 3.3).
If the model, the data sources, the messages they send and the frequency at which they
do so were known and fixed at design-time, input processing would be a matter of a

few method calls. In this project’s specification, all of these properties are variable.

Data Acquisition

In terms of functionality, data acquisition is simple: incoming messages are pulled from
a queue and passed on to the next module. Messaging systems such as JMS provide an
asynchronous call-back interface that allows message listeners to register to be notified
of incoming messages. However, it is already at this first stage that the design must
consider concurrency.

There is a limited number of input queues. Processing of messages is, as established
above, nontrivial and can involve lengthy processing. To keep updates flowing into the
model with low latency even when some of the updates take longer, multiple messages
must be processed concurrently.

The design of web servers and CORBA object request brokers has some similarity to
this design problem, and has been studied extensively (Schmidt et al. 2001). The main
difference between web servers and the model service is that the latter does not imple-
ment two-way communication: messages are received and processed without returning
a response to the sender .

Some frequently-used concurrency strategies include:

Thread-per-message A separate thread is created for each incoming message. While
easy to implement, this approach tends to be inefficient due to thread initialisa-

tion and destruction. It is also hard to apply to multiple-message processing.

Thread pool A pool of pre-created threads is available; incoming messages are dis-
tributed among the threads. The pool can be of static size or resized adaptively

depending on load levels.

Processes (per request, pooled): Similar to thread approaches, except that full pro-
cesses are used. Spawning processes is a heavyweight operation compared to

63

4 System Architecture and Design

threads and incurs additional cost for interprocess communication. Benefits in-
clude isolation (a crashing process usually does not harm other processes) and
possibly easier load distribution across multiple machines. This approach is not

considered any further.

Reactor/select Some web servers employ a single-threaded model that utilises operat-
ing system facilities like UNIX’s select() system call to operate on multiple con-
nections quasi-concurrently (generalised as the Reactor pattern by Schmidt et al.
(2001)). What this pattern implies is reliance on the operating system’s “hidden”
I/0 multiprocessing. It therefore works well for I/O-bound tasks that spend most
of their running time inside operating system functions, e.g. when reading files
from disk. However, this is not expected to be the case for the model service.

Of these options, the thread pool offers the best balance of performance and ease of
use. The thread pool design is a variation of the Leader/Followers pattern (Schmidt
et al. 2001).

When using callbacks (e.g. the MessageListener interface for JMS (Hapner et al.
2002)), the messaging system calls a specific method of a registered message listener
to deliver the incoming message. As this happens in the context of a messaging sys-
tem thread, the called method should return quickly to avoid blocking further delivery.
Therefore, the message (or a reference to it) is typically stored temporarily and a worker
thread is notified to pick it up and commence processing. This approach is cumbersome
and introduces at least one unnecessary context switch between the messaging system
thread and the actual worker thread, plus some data copying and concurrency control
mechanisms.

Instead, the Leader/Followers approach is to let the worker threads take turns waiting
for new messages. The worker threads form a list, with the first thread (leader) using a
blocking call to the message system that returns as soon as a new message is available.
Once this is the case, it notifies the next free thread (follower) to move into its place
and wait for the next message. It then proceeds to work on the received message and
returns to the queue after finishing (Figure 4.10).

In our adaptation of this pattern, the workers are selected in MRU (most recently
used) order to achieve a degree of CPU cache affinity. Instead of attaching to the queue’s
tail after processing a message, the thread is placed as the first follower. With this
approach, the queue is effectively used like a stack. A practical side-effect is that the
size of the thread pool can be tuned very easily by watching the usage counts of the

64

4 System Architecture and Design

process
message

return to stack

<<call>> receive()

wait for
MessageListener Worker (Leader) % message

wait for
promotion to
leader push

<<th read>>
Worker 1Fo|lcwer)

<<thread>>
Worker (Follower)

<<thread>>
Worker (Follower)

Figure 4.10: Life-cycle of worker threads.

follower threads. If a number of threads are never used because they remain on the
stack all the time, the thread pool size can be reduced. If, on the other hand, the stack’s

bottom is hit frequently, new threads should be spawned.

Data Repackaging

Once processing has been taken over by a worker thread, messages must be con-
verted to a format that is understood by the following stages. This operation is usually
lightweight and chiefly consists of wrapping the message into a standardised message
class for further handling in the sense of an Envelope Wrapper (Hohpe and Woolf 2003).

The base message class comprises the actual message payload and header fields, in-
cluding a history of stations passed so far (Figure 4.11). This history can, and should,
begin with the originator. In the simplest case, and as a general fallback method, the
message is wrapped without further inspection. However, header data can be extracted
from the message contents if the type is known using Inspector objects. Such objects
can be registered and de-registered at runtime (see 4.7).

At this stage, inspection should be kept to the absolute minimum required to derive

65

4 System Architecture and Design

MessageEnvelope RoutingSlip

+priority
expiryDate — 1
1

1 Routing information supplied
1 by Inspectors in each stage.
The original message object
as received from the input
queue 1

Payload

+stationType by this message so far.
+receivedDate

SeenBy
+stationld A history of stations/nodes passed ﬁ

Figure 4.11: Message envelope class diagram (simplified).

meaningful header information. As a general rule, the process should not involve any
other information than that contained in the message itself (e.g., no queries to back-end
systems) and be kept to simple data conversion and copying. Complex processing, if

necessary, is to be executed further down the pipeline.

Target Localisation

Multiple steps are taken to decide which objects are affected by the incoming message
and which actions must be taken on these objects. In the simplest case, there is one
target object for the message, which is determined from the message headers and a
table or b-tree look-up. This is the case when sensors have unique identifiers, the
corresponding model objects already exist, and they are indexed according to the ID.

In complex cases, multiple messages must be correlated, and potentially lengthy
model queries or decision algorithms are executed to determine the affected objects
and decide on the necessary update actions. One example of such a scenario is the
reconstruction of spatial geometries from sensed positions of tags that are attached to
walls, floors, and other surfaces (Suter et al. 2005). This reconstruction requires a mul-
titude of tag locations and requires processing time in the range of seconds to a few
minutes.

Target localisation consists of two major steps: first header inspection and then con-
tent inspection. The latter is only executed if the message has been flagged accordingly
during header inspection. Each step consists of iterating through a list of Inspector ob-

jects that can be registered and de-registered at runtime, calling their inspect() meth-

66

4 System Architecture and Design

ods. The result of inspection is a list of references to Updater objects (which may be
empty if the message matches no Inspector), which is added to the message’s Rout-
ingSlip.

The rationale for separating different inspection stages and the actual updates is to
allow different workflows for target localisation and updating. Figure 4.12 shows three
variants. In the first case, the first Updaters are run immediately after header inspec-
tion, with content inspection running in parallel. The idea here is to begin updates as
soon as possible, assuming that content inspection takes somewhat longer than header
inspection. In the second case, the same steps are run sequentially, with updating in
two stages. The third variant runs all cumulated updates of the inspection activities in

one step.

Message : Wrapped Inspect Contents

Message : Generic |— @_ [

Run Updaters

Inspect Headers

Run Updaters

Message : Wrapped

Message : Generic |— }C}— _— —>€nspectHeadeH{un UpdmerHvspemComenHaunUpdaterH

Message : Wrapped

Message : Generic — Repackage R — —>Q|spec(HeadeH\spedCuntemHun Upda(eH

Figure 4.12: Three different workflows for processing messages.

The choice of workflow depends on the messages and usage patterns to expect at
runtime. To ensure flexibility, workflows can be defined in user-supplied classes and
selected at model service initialisation.

67

4 System Architecture and Design

Model Update

The same message can trigger multiple update actions on different objects, with differ-
ent complexities. In the spatial reconstruction example mentioned above, a sensed tag
location results in a simple update to the corresponding tag object, as well as a series of
complex update operations on the object or objects that the tag is attached to. It is de-
sirable to execute simple updates as soon as possible without waiting for long-running
updates. This can be achieved by sorting the updates’ execution schedule according to
their expected running time, or by executing all updates concurrently. Both choices have
their problems: estimating expected running time is not always possible with reason-
able accuracy and may add substantial overhead before the actual update even starts.
Forced concurrency is not effective if most updates are short, with significant overheads

introduced by thread initialisation and communication.

|
runUpdate()
1

WorkerThread Message RoutingSlip ‘ Updater1 Updater2 ‘ Updater3 ‘ UpdateWorkerThread
| | | I | | |
iR | | | | | |
| | | | | |
| | | | | |
getRoutingSlip) | ! ! ! | :
— | | | | |
| | | | | |
! | | | | |
getUpdaters() | | | | |
T » | | | |
| | | | | |
| | | | | |
| runUpdate() | | 1 | 1
+ L | | |
| | U | | |
ke e - | | 1
| | | |
| | |
| | |
»l | |
|
|

1 start()
S

Figure 4.13: Example sequence of updates with one long-running update.

In the chosen design approach, updaters are called sequentially and are expected to
return quickly. Complex updaters are responsible for spawning worker threads or using
pooled threads when necessary (Figure 4.13).

68

4 System Architecture and Design

Message Correlation

Message correlation relates to the requirement of combining information from multiple
messages before a meaningful model update can occur. This means that a number of
messages must be held in temporary storage and any related messages must be acquired
before proceeding with the update. Some problems arise here: first, temporarily-stored
messages may pile up and claim significant amounts of memory — during that time, they
are not easily available to other model clients. The temporary buffers would have to
be flushed periodically to prevent losing messages, prompting the question of what do
to with them (use for updates or throw away). Second, finding related messages can
prove nontrivial if messages from different sources must be correlated. If messages are
held by one correlator and required by another, which in turn holds messages required
by the first correlator, deadlock results.

Supporting message correlation is therefore in direct conflict with performance re-
quirements (cf. 3.3) and would complicate the design considerably. One of the basic
premises of the model service architecture is that the model is the interface (4.2.4).
Consequently, no temporary pre-buffering of messages occurs: each message is ex-
pected to result in an update to a model object. Correlation of multiple messages occurs
by correlating the model objects’ values, not by intercepting messages before they result
in updates. This also reduces state-keeping in the processing pipeline.

As an example, the spatial reconstruction algorithm outlined by Suter et al. (2005)
relies on the positions of multiple tags that are attached to objects and building elements
(walls, ceilings, floors). Instead of intercepting the tag positions before they are used
to update the corresponding “host objects”, the tags are modeled as individual objects
and updated individually. The spatial reconstruction task is decoupled from message

processing: it acts upon the tag objects’ properties.

Handling Priorities

A typical requirement for real-time applications is that different messages are processed
with different priorities. To achieve this, the first question is how to decide which mes-
sages have which priority. If the relative priorities are known to the data source or the
adapter (i.e. before the messages enter the building model service), a simple solution is
to create dedicated queues for each priority and set up a separate thread pool for each.
If the priorities are determined dynamically for each message, based on an inspection of

its contents, an alternative approach is to let the processing threads raise or lower their

69

4 System Architecture and Design

own priorities accordingly. In Java, threads can change their own scheduling priority
using the Thread.setPriority() call (unless explicitly disabled by security policy). Addi-
tionally, the database concurrency control mechanism may offer different transaction

priorities.

4.5 Application Interface

4.5.1 Agents

As discussed before, clients access the model as agents. Agents are threads that reside
within the model server process and act either autonomously, or on behalf of a remote
application, with which they may communicate. In this context, the process of deliv-
ering agent state and code from a remote node into the server and setting the agent
up to be started is called deployment. Inside the server, agent deployment and lifecycle
support is provided by the AgentMgr component.

It should be noted that the current design and implementation of agents in the model
server is restricted to the specific application’s needs and not comparable in generality
and functionality to full-fledged agent systems.

An agent object must implement the java.lang.Serializable as well as the Agents in-

terface:

public interface Agent {
enum State { STOPPED, RUNNING, SUSPENDED }

void setld ();
String getld ();
Properties getProperties ();

void setAgentEnvironment (AgentEnvironment env);

// current agent state
State getState ();

// contains actual agent code

void start ();

70

4 System Architecture and Design

// request agent termination (async)

void stop ();

// request temporary suspension (async)

void suspend ();

// wake up from suspension (sync)

void resume ();

Deployment and Undeployment

Deployment comprises delivering the agent code (classes) and its state (object data)
to the server. The interface for agent deployment is a dedicated message queue that
accepts deployment messages.

The process is illustrated in figure 4.14. Agent object data are included as a byte array
containing an image of the object obtained by serialization (see 4.6.1). This approach
is necessary to prevent classloader bootstrap problems on the server side, when an
incoming message is automatically deserialized by the messaging framework: as the
code for the incoming objects is not known at this stage, the object cannot be restored
yet. It is similar to the approach exemplified by Java’s java.rmi.MarshalledObject class.

The agent class code is supplied by providing it to an HTTP server as one or more
JAR (Java archive) files and transmitting their URLs together with the deployment mes-
sage. A custom classloader instance is set up for each agent, augmenting its codebase
with the given JAR files; the separate classloaders afford a degree of isolation between
agent threads. An advantage of the URL approach is that it prevents unnecessary re-
transmission of class code, especially when many agents share the same utility code.
The disadvantage is that agent deployment therefore requires two separate communica-
tion channels. If this is a critical problem, the deployment message could be augmented
to include JAR files with little effort.

Agents can be undeployed on their own volition or by an undeployment request from

the remote client.

71

4 System Architecture and Design

Client Model Server

Receive Message

Create Message
Initialize Agent
Serialize Agent into Message

'Submit Classes to HTTP Server
(if necessary)

Initialize Classloader with URLs

\
\
\

Deserialize Agent

\ HTTP Server

AN
AN Class Store (JAR files)
N
N _ |

~ - _—

Figure 4.14: An overview of the agent deployment process.

Runtime Environment

Once deployed and instantiated by the DeploymentHandler — the component responsi-
ble for lifecycle management of agents — the agent is passed a reference to an AgentEn-
vironment object, registered by its ID with the singleton AgentRegistry, and started by
calling its start() method within a newly created Runnable wrapper.

To handle planned outages and quick recovery without manual re-deployment of
applications (see 3.3.2), agents can be placed in suspension. The suspend() method
signals to the agent object that it is about to be suspended. Typically, the agent will
then stop all its operations and prepare itself for the invalidation of all external object
references. Once all agents are suspended, they are serialized to disk storage.

When server operations resume, the stored agent objects are deserialized similarly
to a regular deployment, but started using the resume() method. The agent must then

recover all external object references, but can continue with the internal state it stored

prior to suspension.

72

4 System Architecture and Design

file storage

externally exposed interface:

deployment
and undeployment
messages

deployment queue

/

° ~ N DeploymentHandler

AgentRegistry

J

AN AgentMgr

N

internal interface
for agent use

Agentlnstance 1

Figure 4.15: The deployment manager component.

73

4 System Architecture and Design

4.6 Messaging Facility

To allow efficient intra-process as well as inter-process communications, a simple gener-
alised messaging component is provided within the model server. For intra-process use,
the messaging component allows other modules to register central message queues,
identifiable by string IDs. Messages can be pushed to the queue’s head and retrieved
from the tail in first-in-first-out fashion. The implementation is a thin wrapper around
Java’s ConcurrentLinkedQueue, a FIFO implementation optimised for high concurrency
(Goetz et al. 2006, chap. 5). In order to prevent memory overflows caused by inac-
tive message recipients, the queues are bounded by the wrapper so that messages that
would exceed the queue’s maximum length are rejected?. Each queue carries a string
ID which can be used for lookups.

To simplify communications with remote processes, queues can be mapped transpar-
ently to external queues provided by the messaging framework used for this purpose.
The mapping requires the creator of the new queue to pass the external queue’s name

and creates a proxy queue object. An example is shown in fig. 4.16.

4.6.1 Issues in Intraprocess Communications

When passing messages — or, more generally, any object references — between otherwise
independent threads, they may become indirectly related by sharing references to the
same object (sometimes called aliases). While such reference-sharing is generally un-
problematic for immutable objects (e.g. java.lang.String), it can result in adverse effects
that are very difficult to retrace in the case of regular, mutable objects unless this inter-
action has been considered in the design of all participating threads (compare 4.2.7).

Typical symptoms include:

1. Objects may suddenly change their state without any apparent cause and possibly

at different times when the program is tested repeatedly.

2. Objects may exist much longer than expected, causing memory and resource

leaks.

2The wrapper keeps its own count of put/get operations to avoid calling the expensive size() method of
ConcurrentLinkedQueue. The bounding is designed for speed and minimal locking, using an atomic
variable without additional locking. It may therefore be imprecise, allowing the queue size to overshoot
the limit slightly or blocking before the limit is reached. For the purpose of resource usage limitation,
this is acceptable.

74

4 System Architecture and Design

U external queue

QueueFactory MessageRouter

QueueRegistry

J
- /] ~ o MessagingMgr
-7 / ~
=z / ~
requests for queue creation routed (external) messages
(regular queue or proxy)

/
/
queue lookups .
Proxy queue instance

Figure 4.16: The messaging manager component.

75

4 System Architecture and Design

3. Objects may be in invalid states because they are not designed for thread safety.

Two general strategies for preventing these issues exist.

Passing Immutable objects

As stated above, one approach is to pass only references to immutable objects between
threads. While this approach is simple, elegant, and safe in theory, it proves difficult
to enforce in practice as there is no built-in support for immutable objects in the Java
language. That is, it is not possible to rely on language runtime support to ensure
that a given object is immutable: immutability, although it has been an important tech-
nique in Java development since its inception, is purely a convention of the language
user. Researchers have addressed this problem in a number of experimental Java exten-
sions, none of which have been incorporated into the standard language yet — see e.g.

Tschantz and Ernst (2005) for a recent example including discussion of earlier efforts.

Passing by value

An alternative approach is to make sure that objects are copied when passing them to
other threads, emulating pass-by-value semantics for objects. That is, when a reference
to object A is passed to another thread, an exact copy of A is created and it is a reference
to the new, copied object that is actually given to the other thread. Java offers two

mechanisms for creating object copies: cloning and serialization.

Cloning

The Java approach to cloning is two-fold. A Cloneable marker interface exists “to indi-
cate to the Object.clone() method that it is legal for that method to make a field-for-field
copy of instances of that class.” (Sun 2004). The Cloneable interface does not define
any methods; the actual cloning code is left to the clone() method of the Object class.
However, this Object.clone() method is marked as protected and must be overridden
with a public implementation to enable cloning from other classes — by convention,
such an implementation simply calls super.clone() to invoke a bit-wise exact copy of the
object. This bit-wise copy is not applied recursively to any referenced objects. The con-
ventional semantics of Java cloning are therefore those of a “shallow copy”, although it
is feasible to implement a deep-copy mechanism within this framework.

76

4 System Architecture and Design

Java cloning is only a partial solution to the reference sharing problem. Given
shallow-copy semantics, the problem is not guaranteed to be eliminated, but rather
deferred: the cloned object is likely to comprise not only primitive types, but also hold
references to other objects, which are cloned as well and thus again shared between
sender and receiver. Moreover, the Cloneable interface is not implemented by most
classes defined in the Java standard library including frequently used classes such as
String — and, as explained above, it is not even a guarantee that a public clone() method
exists in a given class. A method accepting Cloneable arguments thus cannot rely on
being able to call the clone() method on the passed object unless it performs a prior

run-time check using reflection.

Serialization

Java serialization is a mechanism intended to write out the state of an object to a stream
so that it can be reconstructed later on by deserialization. This can be used to store
object states in persistent storage or to transmit object states over network connections,
as used in the Remote Method Invocation (RMI) framework. It may also be used to
create object copies within the same thread by serializing to a temporary in-memory
buffer and reconstructing object copies by deserialization.

Just as in cloning, one element of serialization is a marker interface (Serializable).
Unlike cloning, however, a default serialization implementation exists and is used auto-
matically for all classes that implement Serializable, but do not overwrite the writeOb-
ject() and readObject() methods. This default implementation performs a deep copy,
in turn serializing all referenced objects that implement Serializable as well>. The re-
sulting representation of the object graph state is self-contained, as it does not contain
any references to other objects. The semantics of serialization do not guarantee that it
succeeds on all Serializable objects, but that it signals certain breaches of contract: if a
referenced nontransient object is not marked as Serializable, an exception is thrown at
runtime.

Temporary serialization appears as an excellent candidate for emulating pass-by-
value semantics as it ensures that no references are inadvertently shared. It is supported
by the language core and implemented by many Java runtime classes. However, it still
requires some attention on the developer’s part. For instance, deep copying carries a

risk of inadvertently dragging an entire complex object network along with the passed

3Unless they are exempted from serialization by designating them “transient.”

77

4 System Architecture and Design

object — even though the recipient may only be interested in a single field of the passed
object. This could be prevented by either using specialised "transport objects" with
limited references to other objects, or by intentionally breaking those references upon
serialization with an appropriate implementation of writeObject() and the affected data
access methods.

While it may be the best option in terms of functional requirements, the runtime
performance of serialization must be considered. Compared to the other options —
cloning and passing immutable objects —, it tends to be computationally very expensive
(see table 4.1).

elapsed time [ms]

virtual machine reference clone serialized
Sun 1.5.0 06-b05 Hotspot Client 277.1 4239 12811.2
Sun 1.5.0 06-b05 Hotspot Server 197.4 315.7 9716.7
IBM J9 VM 2.3 213.9 3784 11471.3

Table 4.1: Comparing the performance of passing by reference, passing cloned object
copies, and passing object copies created by in-memory serialization and de-
serialization. The passed object contains only primitive types, no object ref-
erences. Times given are the average of 30 consecutive test cycles (after one
discarded cycle to allow for virtual machine warm-up) comprising 200,000
calls each, measured on a 1.9 GHz Intel Pentium M single-processor machine
with 512 megabytes of RAM running Microsoft Windows XP Build 2600.

The performance of Java serialization can be improved by using custom serialization
mechanisms that omit some of the standard mechanism’s features, such as compatibility
with different Java virtual machine versions. For older versions of the Java VM (1.1 and
1.2) Philippsen et al. (2000) demonstrated serialization time reductions by 80-90%
using a highly optimised implementation.

It should be noted that even though the raw message-passing performance of im-
mutable objects is far superior to object copying, its use can cost performance in other
places. Since immutable objects cannot be changed, change of object state can only be
represented by creating new objects. If object data change very frequently, the effort to

create new objects and garbage-collect old ones may become significant, possibly com-

78

4 System Architecture and Design

pensating the savings due to reference passing versus serialization in some cases*. This
dilemma is reflected in the Java standard library by the existence of StringBuffer and

StringBuilder as mutable complements to String.

Design Decision

As shown above, the mechanisms for handling reference sharing differ quite signif-
icantly in both performance and capabilities. Finding the appropriate solution thus
depends very much on the exact usage pattern. In a general-purpose message passing
system, making assumptions about usage patterns is highly speculative. The best solu-
tion appears to be implementing a safe default behaviour (in this case: serialization),
but optionally allowing the use of a faster and riskier mechanism: in this case, passing
plain object references and leaving it to the user to ensure that they point to immutable
objects. Thus, the messaging system’s put() operations allow the caller to override the
default serialization behaviour to pass unchanged object references.

4.7 General Facilities

4.7.1 Runtime-Changeable Code

To provide the required runtime modifiability, component implementations as well as
certain other code (such as processing chains of the building data interface, 4.4) can
be changed at runtime (figure 4.17). Components are exclusively accessible through
a facade object that delegates the requested calls to the concrete implementation class
or classes. These implementation classes are loaded and initialised by an ImplLoader
object that encapsulates class loading. Currently, two implementations of this loader
exist for loading classes from a local directory (used for loading at model server initiali-
sation) and for loading classes submitted at runtime through an incoming message (see
4.5.1). To allow seamless code exchange, the component facade acts as a gateway that
blocks client calls while the implementation is changed.

The sequence for the replacement of an existing implementation is shown in figure
4.18. The ComponentFacade uses a read-write lock to allow concurrent component

calls, but block all access while the component implementation is switched. A new

“This depends not only on the actual application, but also on the runtime system. Recent versions of the
Java VM have improved both object creation and garbage collection performance significantly (Goetz
2005).

79

4 System Architecture and Design

and/or message queue handler for
runtime reconfiguration

called by model startup initialization |j
/

acts as gateway to block ~ ~ (uses»
access while implementation ~ 4
is loaded/replaced /
/ \L
/ ImplLoader
/
/ «controls» — —
e 1

-~
«controls lifecycle» AN
P
-~

public interface O

oader Fil oader

Client1 4 \«uses» Componentimpl1
A
\ T
N
N |

«interface»
Componentimplinterface

Figure 4.17: Classes involved in run-time changeable component implementations.

component implementation is loaded (using a new instance of the custom classloader),
initialised with a reference to the ComponentRegistry (see 4.7.2), and given a reference
to the current implementation to copy its state as needed.

Component implementation classes must take care not to expose internal references
to clients. Specifically, they should only return copies of internally-used objects or im-
mutable objects (compare 4.6.1). Otherwise, clients may hold on to references used by

a component implementation that has already been superseded by another.

4.7.2 Component Registry

The initial point of contact for any piece of non-fixed code in the model server (including
agents) is the ComponentRegistry. This simple, central singleton keeps references to all
available components; it is therefore the only reference required by newly deployed

code to navigate the model server environment.

4.7.3 Management and Development

The management and development components should provide support for system op-

eration, maintenance, and code development (e.g. debugging). In the prototypical

80

4 System Architecture and Design

Client ComponentFacade Componentimpl1 ImplLoader Componentimpl2

component call

»!
I
lockReadLock

component impl call

|
E return
I

injects ComponentRegistry
reference

return

~
I
I
I
I
I
I
I
I
L
7

I
instantiate
| | v !
I \ I
prevents all client calls | \ | initialize |
until unlock | \i >|
=~ - lockWriteLock
I = ~l- | I
| |< getCurrentimpl | |
| | | | copyStateFrom(currentimpl) |
! ! | >
new implementation obtains — .'< i get..() calls i i
state from current implementation
object (if necessary) | | | |
T |< setCurrentimpl(Componentimpl2) | |
I I I I I
|

l l unlockWriteLock ! l
| |-t f i I
I I I I I
I I I I I
I I X I I
| component call | | |
f I I
I I I
I I I
| component impl call | |
! | >

I I

I I

I I

:> lockReadLock
I
[
I
I
I

Figure 4.18: Sequence: Regular component operation and installing a new implementa-

tion.

81

4 System Architecture and Design

implementation, a simple web-based application provides an overview of the server’s
status and allows monitoring and control of the entire server as well as installed com-

ponents and agents (figure 4.19).

3 Model Server Status - Mozilla Firefox

Fle Edt Mew Hstory Bookmarks Ipols Help

° - @ {35 | repuiisz bl tuien,ac.at5050/ms-statusrefresh=30 [~[] -] [<)

Model Server
s2.bpi.tuwien.ac.at running since 2005-10-09 13:.04:28

log level slatus change:

Building Systems Interface

log level slatus change:

Luxrmatelnbound running v _ 18716 in detail
LuzrnateOutbound @ 282 aut detail
LocationSystemMock running v _ 941 in detail
SkyLuminanceMock @ 860 in detail
RemoteManipulation suspended ¥ 2 in detail

Messaging

log level slatus change:
active local queues: 9 [details:

message count: 3341
active proxy queues: 2 (details

message count.

Agents

1 thread log level detail
3 threads log level detail
1 thread log level detail

‘isualisationAgent

TestAgent

VisualisationAgent

Done Adblock

Figure 4.19: Prototypical web-based system monitoring and management console.

82

4 System Architecture and Design

4.8 Chapter Summary

In this chapter, the system’s overall architecture was outlined. The key points in sum-

mary:

* At the core of the architecture, a central live building model is maintained as an

object network.

* The architecture recognises two groups of client applications, those with interac-
tive and those with batch characteristics. This distinction guides its approach to
distribution: interactive applications run as agents within the model server, with
direct access to model objects, while batch applications can be distributed to other
nodes for workload distribution. The distribution is based on “spaces”, achieving
a high degree of transparency and flexibility.

* Performance and scalability are supported by concurrency and stateless design of
the system’s I/O paths from and to building systems. Loose temporal coupling for
higher concurrency is gained by using asynchronous communications whenever
feasible.

* Modifiability and availability are supported by designing for run-time replaceable

code from the ground up.

4.8.1 Requirements Overview

Table 4.2 lists the main requirements of chapter 3 and those sections of the architecture

that primarily deal with them.

83

4 System Architecture and Design

MBIIAIRAQ syudwaImbay 7'y 9qel,

It vee AmqeyrpoN - AOIN
Ty gee Aniqeitod pue Aiiqesdepy 0dv
(I'st) ¥ Tee Aaqereay YAV
vy TS ree Aypiqeredg @ oouewiojd Ydd
TY's 1'c’e @8ueyD 102[qO uo 9qusqns/ystqnd £ON
€Ce 1'C¢ uondesueI], 9INX9XY 9D
&% 1'C¢e 109[qO puewio) SN
€Te 1'Ce 109[qO 23ueyd $DON
¥'S e AdoD 9011, 109[qQ 2a9I8Y €DN
¥'s 1'C¢e AdoD 123[qO 2adImayY ZON
I't's 1€ 199(qO MaN MesUl 1N
€Te €Te suopoesuel], gyd
9% ‘I'SH €Te uoneradood U LYd
'S €Te UOMR[OS[JUSI[D QYA
% TTE mding pPpoN S¥4
% TTE mnduj PpoN P
S'g 1'Ce A10ISTH [9POIN €44
g'g 1€ [OPOIN SUIJFO/2UIUO THd
g 1'Ce [PPON T4
(s)uomodeg ur (S)uondaS ul
uonejudwarduy /udisaq uontuygaqg uondinsag al

84

5 The Model as a Temporal Database

The core component of the building model service is an object-oriented, temporal, main-
memory database. It is object-oriented by virtue of storing plain Java objects. It is
temporal by maintaining full histories of each object and the entire model’s state, unlike
snapshot databases that store only the most recent version of an object. As the current
version of the building model is kept in main memory and unlike in most database
management systems, client applications get direct access to actual object references,
it is a main-memory database (Garcia-Molina and Salem 1992). However, previous
versions are kept in persistent storage; the mechanics of this storage and retrieval are
delegated to a third-party database management system.

In this chapter, the design and implementation of the model core is discussed. The
design is driven by functional as well as nonfunctional requirements: in fact, it turns
out that quality attributes relating to performance and scalability dominate most design

decisions.

5.1 Building Model

In the prototypical implementation used for this dissertation, the System Object Model
(SOM, Mahdavi et al. (2002), see also Figure 2.6) is used as the reference building
model. As opposed to the complex Industry Foundation Classes, SOM is a fairly straight-
forward object hierarchy and serves well as an example implementation that has also
been tested in earlier work for similar applications. The design of the model service is
largely independent of the used model schema, although a few general assumptions are
made to guide the design:

* The model is a directed acyclic graph of objects.

* The model is reasonably fine-grained, providing a level of granularity that is prac-
tical for most uses: there is neither a single “house object” that contains thousands
of properties describing the entire building, nor a mass of “single-property” ob-

jects that separately capture parts of parts of things down to some micro-level.

85

5 The Model as a Temporal Database

* There is only a single model, i.e. one object graph following one model specifica-
tion. The model service is not specifically designed to support multiple models of
the same building. However, care is taken not to introduce design decisions that

prevent support for this scenario.

* Sensors and actuators are considered first-class model objects that are represented
explicitly. This means that if a room contains a temperature sensor, the room
temperature is not modeled as a property of the corresponding space object. To
get the room’s temperature, a model user must locate the space object, find those
temperature sensor objects that are located inside, query their current values,
and calculate the room temperature. This may add some complexity to the model
and its usage, but is necessary to capture the building as faithfully as possible
and keep the model flexible enough for all sorts of applications. In general, it is
not the model service’s responsibility to maintain physical relationships between

model objects.

* Each model object has at least one ID that is unique among all objects (past,

current, and future) in the model.

Although SOM and the IFC are referred to as object models, it should be noted that
they are actually data models using some properties of object modelling, specifically
inheritance. No actual behaviours are specified, unless the enforcement of constraints

and possibly getter/setter methods are counted as such.

5.2 Handling Concurrent Model Access

As the model server is intended for massive multi-user access (cf. 3.3), it must be able
to cope with concurrent transactions which may include both reads and updates to one

or more model objects.

5.2.1 Correctness Criteria

In databases, transactions are series of read and write operations on database objects. If
multiple transactions are to be executed, it is desirable to interleave their operations so
that they effectively run in parallel. However, such interleaving can lead to undesirable

effects that break the desired correctness of each transaction. One such anomaly is the

86

5 The Model as a Temporal Database

Lost Update: Assume two transactions P and Q that operate on the same object. Both
transactions read its current value, increment it by 1, and write the incremented value

back to the object. If the initial value is 0, a non-interleaved execution history could be
Pread(0),Pwrite(1),Qread(1),Qwrite(2)

yielding the expected result, 2. An interleaved history might be
Pread(0),Qread(0),Pwrite(1),Qwrite(1)

giving an incorrect result, as the first update by P was missed by Q.

The goal is therefore to schedule the transactions’s operations to allow for concur-
rency, but ensure that the outcome is correct. Various concepts of correctness exist,
such as sequential consistency and linearizability (Herlihy and Wing 1990). In database
systems with concurrent access to multiple objects by multiple threads, the most com-
monly used notion of correctness in literature is serializability (Papadimitriou 1979).
In plain language, this is the intuitive idea that any execution schedule of transactions
must be equivalent to some serial ordering of transactions at the granularity of a full,
atomic transaction — i.e. all operations are ordered so that the effect is the same as if
the transactions take turns, without interleaving individual operations. There are some
variants of serializability; for practical use, the most relevant ones are strict and conflict
serializability.

In some cases, a history is only serializable if a somewhat counterintuitive reordering
takes place, i.e. in the equivalent serial schedule, transactions are executed in different
order than in the original schedule (Papadimitriou 1979, p. 644). Strict serializability
restricts the possible serializable schedules by prescribing that no re-ordering of already
ordered histories can occur.

A conflict occurs when two or more transactions access the same object, and at least
one of the operations is a write. In consequence, any non-conflicting sequences of oper-
ations can be re-ordered without affecting the transactions’ results: if one history can be
transformed into another by such reordering of non-conflicting operations, the histories
are conflict-equivalent. If a history can be transformed to a serial, conflict-equivalent
history, it is considered conflict serializable. An interesting property of this correctness
definition is that while deciding whether a history is serializable is NP-complete, decid-
ing conflict serializability is not.

87

5 The Model as a Temporal Database

In commercial database systems, serializability is often relaxed to avoid concurrency
bottlenecks, at the cost of accepting certain anomalies to occur. The ANSI SQL 92 stan-
dard introduced a classification of four isolation levels ordered by the range of concur-
rency anomalies that are acceptable in each level. Berenson et al. (1995) extended this
classification, introducing the notion of snapshot isolation (SI). In short, the underlying
principle of SI is that a transaction sees exactly the (committed) state of the database
that existed in the instant that it was started; two concurrently-executing transactions
therefore never see the state generated by the other transaction. While SI does not
guarantee serializability, it still avoids most of the well-known anomalies (such as Lost
Update) and has therefore been adopted in many database systems.

Which correctness criteria to apply is largely application-dependent and may also
have to be decided on a case-by-case basis. Barghouti and Kaiser (1991) discuss a
range of different correctness notions and concurrency control algorithms with a view
to applications that involve long transactions, such as CAD and software development
collaboration. One of their conclusions is that serializability is often too strict a cor-
rectness measure and may have to be relaxed somewhat to accommodate the usage
patterns in collaborative work. They suggest that the user should have some control
over which form of correctness the database enforces. Fekete et al. (2005) introduce
a static-analysis approach to decide for a set of transactions whether using snapshot
isolation is enough to get serializability — this, however, requires an analysis of all par-
ticipating transactions before they are executed.

In many database applications, database designers, database administrators, and ap-
plication programmers know about each other and can coordinate their work. In such
situations, using relaxed correctness criteria to improve performance is feasible. How-
ever, if the database is intended as a public interface to client applications that are
unknown to the database designer, it is sensible to enforce rather strict correctness cri-
teria. For the building model server, serializability is therefore chosen as the desired

isolation level.
5.2.2 Design

Requirements

The design choice for the transaction processing algorithm is driven partly by the re-
quired correctness criteria, partly by the usage patterns. Specifically, the ratio of read-

only transactions and the transaction lengths can have significant impact on the perfor-

88

5 The Model as a Temporal Database

mance of concurrency control. The following assumptions are made:

* Concurrent update transactions affecting the same set of objects (i. e. competing

for writes) are rare.
* Read-only transactions are frequent.

* A significant portion of read-only transactions are long-running and affect multi-

ple objects.

Lock-Based Concurrency Control Methods

One of the oldest and still most popular concurrency control mechanisms for database
access is two-phase locking (2PL), a method that achieves strict serializability (Sethi
1982, Eswaran et al. 1976). For single objects, 2PL is easily described and easily im-
plemented: all transactions follow a protocol that consists of one growing phase (in
which locks can only be acquired) followed by one shrinking phase (in which locks can
only be released). Among 2PL’s problems are the possibility of deadlock, which requires
additional deadlock-resolving methods, and its poor concurrency. Specifically, 2PL has
a tendency to “starve” writers if many readers access the same object. For systems run-
ning processes with different priorities, as is often the case in real-time applications,
this may result in priority inversion when high-priority tasks must wait for low-priority
tasks to release their locks.

Locking, in general, becomes significantly more complex for hierarchical databases as
in the case of a building object model: an update to an object may invalidate the states
of some (or all) of its descendants. Consider, for instance, an operation that shrinks
a space containing a number of objects (Figure 5.1). When the space is shrunk, some
of the object positions and dimensions may become invalid, as they are left outside of
the containing space. The transaction must correct these positions inside the space-
shrinking transaction to avoid showing an inconsistent state to other applications. In
the shown example, some contained objects must be changed (such as the meeting
room’s dimensions, or the topmost desk), while others can remain as is (such as the
table in the meeting room, or the other desks).

A simple consistency-preserving approach to this problem is locking the entire subtree
that descends from the changed object. A tree-locking algorithm proposed by Silber-
schatz and Kedem (1980) allows more selective locking of the object graph, guarantees

serializability and is deadlock-free. However, it may still lock a large part of the model if

89

5 The Model as a Temporal Database

o (1] {]]
= ({1}

o (141 {]

Figure 5.1: Transaction: shrinking a space

90

5 The Model as a Temporal Database

the locked object is near the model root and the affected descendants are far away from
it. A large number of separate locks may have to be maintained, as the tree-locking
algorithm requires that locks must be set on each node on the path from the root to

each descendant object of interest.

5.2.3 Multiversion Methods

Multiversion concurrency control (MVCC) is based on the principle that updates to
objects are implemented by creating new object versions instead of changing a single
object instance, reducing the need for synchronisation in many usage patterns (Reed
1978, 1983, Bernstein and Goodman 1983).

Specifically, in most multi-version algorithms, “the idea is to permit long read-only
transactions to read older versions of objects while allowing update transactions to
create newer versions concurrently” (Carey and Muhanna 1986). Readers can therefore
choose to work on older object versions to avoid synchronisation expenses. The main
performance advantage of MVCC is therefore in situations with a mix of many readers
and few writers on the same object — a fairly typical usage pattern for many databases,
and also the expected usage pattern of a building model.

Counted among the downsides of MVCC are the somewhat higher implementation
complexity and, most importantly, the cost of creating, storing, and possibly pruning
old object versions. However, as keeping all historic object versions is a functional
requirement of the model (see 3.2.1), this is not an issue for our purposes.

A number of different multiversion concurrency algorithms have been proposed, vary-
ing in their runtime characteristics, implementation complexity, and correctness criteria.

Most of the algorithms are derived from two archetypes:

Multiversion Timestamp Ordering — MVTO (Reed 1983, 1978). This is generally con-
sidered the classic MVCC algorithm and uses timestamp comparisons throughout
instead of locks for concurrency control. A detailed description of an MVTO algo-

rithm is given below.

Multiversion 2-Phase Locking — MV2PL (Chan et al. 1982). This extension of two-phase
locking follows the standard 2PL protocol for update transactions with the addi-
tion of new versions for each update and adapts MVTQO’s timestamp ordering

principle for read transactions. A recent derivate of MV2PL is Multiversion Query

91

5 The Model as a Temporal Database

Locking, which allows relaxed consistency for increased performance (Bober and
Carey 1992). Just as 2PL, MV2PL is prone to deadlocks.

Given the expected usage patterns of the building model with relatively little con-

tention between writers and the desire to choose a deadlock-free algorithm to ensure

limited response times, an MVTO approach was chosen.

5.2.4 Multiversion Transaction Ordering

The concurrency control mechanism used for the building model is based on the one
first proposed by Reed (1983, p. 17) and studied by Carey and Muhanna (1986) as a
simplified variant of a more general algorithm.

1.

Each object is viewed as a sequence of versions. Each update results in a new
version of the object; old versions remain available indefinitely. Old versions,

once created, are never changed.

. Each transaction T; is issued a startup timestamp STS;. Startup timestamps rep-

resent transaction time (Salzberg and Tsotras 1999) and are guaranteed to be
unique and increasing in strict monotonicity: two transactions cannot have the
same startup timestamp, the one that was started later has a higher value of STS
than the one that was started before.

. The most recent version of each object O; has a read timestamp RTS(O;) that

contains the startup timestamp of the youngest reader of the object, and a write
timestamp W TS(O;) that contains the startup timestamp of the youngest writer
of the object. The write timestamp is effectively the version number of each object

version.

. Write requests by a transaction T are only granted if STS(T) > RTS(0O) and

STS(T) > WTS(O), otherwise they are rejected. If a transaction’s write request
is rejected, it must be restarted.

. When a write request has been granted to a transaction, it is said to be pending

until the transaction commits or aborts (put differently, the object “has a pending

write”).

. As long as an object has a pending write, any read or write request on that object

is blocked (suspended).

92

5 The Model as a Temporal Database

7. Read requests may be blocked, but are never rejected. Blocking of readers only
occurs if the most recent object version is read and it has a pending write. Reads
of a non-recent version of an object are never blocked. Generally, read requests
by a transaction T are directed to an object version that has STS(T) > WTS(0O).

Readers may opt to read a non-recent version to avoid blocking when necessary

request

(fallback reads).
0 2 4 6 8 10 12 14 16 18
L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[|
WTS = 0 z >
RTS=0 i WIS =2 . 1 7
: : WTS =5 I RTS=10 :
i Lo l .
| | l | I
| | | | !
: :: l | :
o £ | :
i S '3 | | !
= g | :.-: : |
L L A I E | :
STS1=2A /, : % : |
I | :
/28 | | |
// = g : : |
/ = | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
|
|
|

write
request

Figure 5.2: Multi-version transaction ordering: some typical sequences. The time arrow at
the top of the diagram shows "ticket" counter pseudotime. Note that the ticket
counter may be advanced by other events than those depicted (e.g. other tasks
running in parallel) and is generally not required to advance in increments of
exactly 1.

93

5 The Model as a Temporal Database

Figure 5.2 illustrates some typical transaction sequences in the MVTO scheme.

* At the beginning, an object with WTS = 0 and RTS = 0 is assumed to exist,
depicted as a horizontal bar. A transaction T; starts and is assigned a startup
timestamp STS; = 2. It issues a write request on the object, which is granted
because the condition of item 4 (above) holds. This results in a new object ver-
sion with WTS = 2 with a pending write (depicted as a hashed pattern in the

diagram).

* Some time later, transaction T3, which was started earlier with a timestamp
STS; = 1, requests a write. This write is rejected because item 4 is violated;
the transaction is aborted and may be attempted again at a later time.

* Transaction T, is started with STS, = 5. It issues a write request on the ob-
ject, which is deferred because the object still has a pending (uncommitted)
write request — this deferral would also apply to a read request on object ver-
sion WTS = 2. A read request to the old object version WTS = 0 would be
granted immediately, as old versions are always read-only and thus free to read

any time by any number of concurrent transactions.

* T, commits some time later, which allows T, to immediately go ahead with its
deferred write request and create a new object version with WTS = 5. Later, T,

commits.

* Subsequently, T, is started with STS, = 10 and issues a read request on the latest

object version (W TS = 5), which is granted immediately.

* Afterwards, Ts, which was started earlier with a timestamp of STSs = 9, issues a
write request. This request is rejected because item 4 is violated: the transaction

is aborted and may be retried later.

A Note on Terminology: “Optimistic” Concurrency Control and MVTO

With a low likelihood of conflicting writes, optimistic transaction processing tends to be
at an advantage compared with pessimistic variants. In optimistic concurrency control,
transactions are generally assumed to go through without interference, but must be
restarted if conflicts are detected at (or before) commit-time. Pessimistic algorithms, on
the other hand, assume that conflict will occur and aim to prevent it in the first place.

94

5 The Model as a Temporal Database

The computational cost is thus distributed differently: optimistic methods tend to be
lightweight in non-conflict situations, but incur high cost once conflict is detected (as
the entire transaction must be rolled back and restarted). Pessimistic methods always
expend some time for concurrency control, regardless of whether conflict occurs or
not!.

In the strict sense, optimistic concurrency control (OCC) refers to a class of methods
that do not check for conflicts until they are ready to commit a transaction (Kung and
Robinson 1981). Transactions are divided into three phases: a read phase in which
the state of the objects is read and writes are performed on transaction-local copies
(“copy-on-write”), a validation phase in which it is checked whether the transaction
can commit serializably, and finally the write phase when the actual commit occurs by
writing the contents of local copies to global storage. Transactions are ordered using
unique transaction numbers; these numbers are assigned at the end of the “read” phase.

MVTO, on the other hand, checks for conflict as soon as a write is attempted on an
object. The transactions are ordered by their startup timestamps, which are assigned
before the transaction starts. The method is weakly optimistic in the sense that it is
also based on conflict detection (as opposed to locking, which is a method of conflict
prevention). It does not, however, perform the entire transaction in local storage before
attempting to commit it. In MVTO, validation is simpler than in OCC, as it is enough to
compare two timestamps to detect a conflict, while OCC validation requires checking
the write sets of all concurrently executing transactions. In MVTO, each object may
have only one set of pending writes assigned to exactly one transaction. In OCC, each
transaction has its own write set: this results in higher overall memory requirements

for concurrent write transactions on the same objects.

Basic Implementation

The algorithm chosen for this implementation is based on the one proposed for the
SWALLOW project, a simplified version of the general algorithm outlined by Reed
(1983).

A TicketDispenser singleton object is used to obtain unique startup timestamps for
transactions.

In the algorithm as implemented for the model service core, each object carries a

write timestamp, containing the startup timestamp (WTS) of the last writer to the object

"However, resolving deadlock situations can require costly restarts even in pessimistic approaches.

95

5 The Model as a Temporal Database

: user thread

TransactionMgr

TicketDispenser

: ModelObject

i
|
begin() |

— !

| getTicket()
|

- _ ____]

(for the current thread)

TransactionMgr obtains and stores
a startup timestamp for current transaction

setValue()

T
|
|
|
|
|
|
<

getTxStartTicket()

<

transaction must be rejected or not

- v __

ModelObject checks startup timestamp (STS),
RTS and WTS and decides whether

ObjectStorageMar

checkTimestamps()

[checkTimestamps() == false] markTxRejected()

registerPendingWrite()

|
|
|
|
|
l¢
|
|
|
|
|
|
commit :

N

|
D newVersion()
|
|
|

ModelObject queues this write request and
registers with the TransactionMgr

transactioﬁCommit()

 ¥_ _ _ _ _

ModelObject updates WTS and
thus creates a new version

ModelObject writes out pending changes to
in-memory fields and calls ObjectStorageMgr
to write out new object version

ObjectStorageMgr uses ModelObject's
writeObject() method to serialise the object
and write it to persistent storage. Inter-object
references are converted to ID values.

storeObject()

writeObject()

return

Y . N

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
»l
Lad
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 5.3: Sequence diagram of MVTO implementation.

96

5 The Model as a Temporal Database

— and thus this object’s version number —, and a read timestamp (RTS) containing the
startup timestamp of the last reader of the most recent version of the object.

In each thread, at most one transaction can be active at a time (i.e. nested transactions
are not supported). To start, commit, or abort a transaction, the singleton Transaction-
Mgr exposes a set of methods that are called from the user thread. Once a transaction
is started, it is assigned a startup timestamp (STS) obtained from the TicketDispenser.

Write requests are only accepted if STS > RTS and STS > WTS (see above), other-
wise they are rejected and the transaction must be restarted. Once accepted, the write
is marked as pending and not visible to other transactions until the current transaction
is committed.

Objects implement this behaviour by storing a list of pending writes and notifying the
TransactionMgr that they have pending writes. Transactions are committed when the
user thread calls the corresponding TransactionMgr method, which in turns notifies all
objects that have previously announced pending writes to commit these writes.

Once the writes are committed, a snapshot of the current object version is enqueued
for serialization to the database by the ObjectStorageMgr. This class acts as an abstrac-
tion layer for persistent storage and manages both storage and retrieval with simple
cache functionality (see 5.5).

By default, reads are performed as fallback reads: if reading the most recent version
would result in delay, the previous version is read. However, clients may opt to use the

most recent version in any case.

Handling Cyclic Restarts and Priorities: An Extension to MVTO

One problem of the original MVTO algorithm is that it does not allow any prioritisation
of transactions. Transactions may be restarted frequently until successful completion. In
extreme cases this can result in a potentially infinite restart cycle between transactions:
MVTO'’s counterpart to 2PL’s deadlock problem.

Just as in Carey and Muhanna (1986), the implementation uses a simple adaptive
exponential backoff scheme for transaction restarts. The TransactionMgr keeps statistics
about transaction lengths and the number of restarts for each transaction and delays
transactions progressively with a mean of one average transaction length. Using the
waitForRestart() method, a thread can therefore reduce its risk of restarts and increase
overall throughput.

For real-time transactions, observing deadlines is a crucial requirement. The con-

97

5 The Model as a Temporal Database

currency control algorithm does not give any timeliness guarantees: while the adaptive
delay scheme just described is helpful for overall performance, it does not assist a thread
in ensuring timely completion of its transactions. An extension is to the MVTO algo-
rithm is therefore introduced that allows threads to preempt other threads in certain
situations: specifically, when a write transaction is granted but delayed by a pending
write from another thread.

0 2 4 6 8 10
L 1 1 1 1 1 1 1 1 1 1
| |
WTS =0
RTS =0 | WTS =2 E |
: : WTS =5
! |]
| | e
[0]
S
TS =2 X £
A | | 8
|

write
equest

t

STSz =5

write
request

STS3=1 ; :

Figure 5.4: MVTO sequences with preemption.

Each thread has a priority level that determines whether it may preempt another
thread. Preemption is only granted if the conditions for STS, WTS, and RTS are ful-
filled (as discussed in 5.2.4) and the transaction with the pending object write, T; has
a lower priority p than the one requesting preemption, T,. It thus follows that pre-
emption is only possible iff T; currently has a pending transaction on the object and
STS; <STS,Ap; < py. The preempting thread then simply overwrites the object’s cur-
rent WTS to claim its precedence and become the new write owner of the object. When

98

5 The Model as a Temporal Database

the previous write owner attempts to commit or perform another write on the same ob-
ject, it finds that the object’s WTS has changed in the meantime and the operation
therefore fails, resulting in a transaction abort.

An execution example is shown in figure 5.4 (based on the previous example of figure
5.2). Transaction T, has been assigned a higher priority than T; and is therefore able to
preempt T, and create a new version of the object with WTS = 5. Note that Ty is unable
to preempt T, regardless of its priority, as the basic condition STS(T) > W TS(O) must
always hold. The object version created by T, is discarded.

Pending writes are kept private and conflict-free by implementing them in thread-
local storage instead of attaching them to each object as in the original method. This
means that it is possible for two threads to maintain pending writes on the same object
concurrently for some time until one of them detects that it has been preempted, which
brings the MVTO implementation closer to OCC in some respects.

The following code section shows the awaitPendingWrites() method of the model

object class in simplified form:

// the actual pending writes flag

transient boolean pendingWritesFlag = false;

// predicate: noPendingWrites (pendingWritesFlag =— false)
transient final Condition noPendingWrites

= lockPendingWritesFlag.newCondition ();

// S_TS of the writer who’s currently holding pending writes
transient long currentWriter;

// wait until pending writes flag is cleared
void awaitPendingWrites(long S TS, boolean releaseLock) {
int myPriority = TransactionMgr. getlnstance (). getPriority ();
while (this.pendingWritesFlag != false) {
// preempt if possible
if (this.currentWriterPriority < myPriority) {
break;

99

5 The Model as a Temporal Database

// wait otherwise

this.noPendingWrites.await ();

A potential downside of preemption is that the preempted thread is not immediately
notified of the need to abort, but only when it attempts to access the object or the
TransactionMgr the next time. For computing-intensive transactions, this could result
in wasted computation effort. We have found that for our purposes, this issue did not
have any measurable impact. If necessary, an explicit signal could be sent to preempted

threads to ensure rapid aborts.

5.2.5 Performance Evaluation

The primary goal of this performance evaluation is to assess the relative throughput of
the MVTO concurrency control implemented compared with a simple exclusive locking
approach. Specifically, it is interesting to evaluate how the algorithm performs in ex-
treme cases as well as in situations believed to be representative for the actual operation
of a large-scale building model.

Unlike the simulation-based study performed by Carey and Muhanna (1986), actual
implementations are run using the object-oriented implementation described above.
As persistent storage is an absolute requirement regardless of the concurrency control
mechanism used, it is disregarded in this comparison: versions are kept in working
memory only. This quickly piles up a large number of briefly-referenced objects that are
candidates for garbage collection (GC). To reduce its impact on the measurements, GC
is explicitly initiated between test runs using System.gc().

Measurements are conducted for the MVTO and locking implementations with a com-

bination of the following parameters:

e Number of Concurrent Threads: 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000. This
parameter sets the number of threads that execute concurrent transactions. All

threads execute at the same priority (no preemption takes place).

* Write Probability: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0. This parameter controls the
likelihood that the next transaction executed by a thread will be a write transac-

tion.

100

5 The Model as a Temporal Database

* Transaction Delay: 0, 3, 6 milliseconds. This parameter introduces an artificial
pause in each transaction before it is committed to simulate “long” transactions.

Each test run comprised 100,000 successfully committed transactions.

Measurements were conducted using Sun’s Server VM 1.5.0_07-b03 for Windows
XP (32 bit) on a dual-core Athlon 64 X2 3800+ (2 GHz core clock frequency) CPU
with 1 GiB of RAM. To reduce the impact of any background tasks, the process’s base
priority was set to HIGH_PRIORITY CLASS. The Java process start and maximum heap
size were set to 512 MiB using the -Xms and —-Xmx parameters, respectively. System
memory usage was monitored during the test runs to detect possibly skewed results due
to excessive paging (thrashing): the process working set never exceeded 20 MiB, with
several hundred MiB listed as “free” by the operating system during the entire test run.

Results

Figure 5.5 compares the sustained throughput of short transactions for various write
probabilities. Short transactions consist of a read or a read and write operation on an
object without any further processing or delay. On all diagrams, the dual-core CPU
results in a visible throughput increase between 1 and 2 threads. As is expected, higher
thread counts generally result in lower throughputs because thread synchronisation
efforts increase while the available CPU resources remain constant.

From 1% to about 20% write probability, MVTO is at advantage: due to the small
percentage of writes, restarts are rare and generate less overhead than locking. At 100%
writes, the situation is clearly reversed: when conflict is almost guaranteed, locking
is more efficient than conflict detection plus restarts. Even though this is the worst-
case situation for MVTO, the throughput difference is limited: while locking generates
almost twice as many successful transactions than MVTO at 2 threads, the advantage is

reduced quickly for higher thread counts, converging to parity at about 1000 threads.

101

5 The Model as a Temporal Database

"SO1ID.L 1931IM SNOLIDA L0f SU01IODSUD.L] 310YS Jo Indy3no.y] :G°G 2In3ig

speaJy)

001

ol

0

0000¢

0000t

00009

00008

000004

speauy}
0001 00k ol 3
0 0
0000¢
4 =
0000 <
= 7] =
ol 2 o
& 0009 00009 = &
@ 2 @
00008
00000}
)
OOOO—\ L1111 Il j,, L1 Il j,, 1l OOOON_\ ooom
SOJIM %001 —¥— s100loy
—v— OLAN
speauy) —@— bBupjoo
0001 0ol oL 3
0
00002
00007 &
= 7 =
@ Qo
8 00009 2 3
» . > o
(%]
00008
—1 000001
000G Lrii 000021 0005

SBJUM %2

S9IM %0¢C

speaJy)

0000¢tL

0

0000¢

0000t

00009

4

00008

—1 00000}

SOIIM %

0000¢ct

S / suoljoesuel

S / suonoesuel}

102

5 The Model as a Temporal Database

Figure 5.6 compares the sustained throughput of “long” transactions. Such transac-
tions include a pause of approximately 3 milliseconds before committing. This is to
simulate transactions that comprise more than just a series of object reads and writes,
but possibly other processing (calculations, I/0). Clearly, this is an idealised setup, as
the threads are actually sent to sleep, effectively reducing their CPU usage share to zero.
It therefore does not represent a situation where transactions execute CPU-bound tasks
in addition to model access.

In this case, the scale effects are dramatic. Maximum locking throughput is always
bounded by 1/t qnsaction (@bout 330 transactions per second) as the threads queue
up for lock acquisition, taking turns to use the object. At 1% write probability, MVTO
throughput scales linearly at throughputs approaching about 85% of the upper bound
N/t ransaction due to the low risk of restarts, until about 100 threads?.

After this point the cost of concurrency control begins to outweigh the benefit, yet
throughput remains well above locking until at least 1000 threads. The advantage
diminishes with higher write probabilities up to 100%, where the two concurrency
control methods tie at all thread counts.

ZNote logarithmic scale on diagrams. A good linear approximation for throughput for thread numbers
1 <n <100 is 287.36n + 550,31 (R? = 0.994)

103

5 The Model as a Temporal Database

3

spealy}

0ol ol

"SO1ID.L L931IM SNOLIDA L0f Spuodasyiut & “xo.ddp fo suoiopsup.y , uoy, Jo ndysnoay] :9°G 2In3iy

-1 000G

—1 00004

-1 000G

—1 0000¢

-1 000S¢

SSIM %0¢C

spealy)
00} oL

0000€

0008

00001

000G1

0000¢

000S¢

speauy}
0001 (0[] oL 000
0 RARmEES BAREEY X 0 0
00002 |- -1 002 v
3 0000% |~ -1 00¥% m 3
m = m 000S 7
“ 00009 009 &2
Y
00008 |~ -1 008
OOOOO—\ 1111 7,, L1l Il j, L1 1 OOO—\ OOOO—\
SOJIM %001 —¥— s100loy
—¥— OLAN
speaiy) —@— bBupjoo
0001 00k ol 3 000l
0¢ 0 0
-1 000§
- 00001
= 7 =
8 2 O
m -] 00051 = m
2] > (2]
(%]
-| 00002
-1 00052
000G Lt 0000€ 0005

SOIIM %Z

SOIIM % |

0000€

S / suoljoesuel

S / suonoesuel}

104

5 The Model as a Temporal Database

Figure 5.7 compares the sustained throughput of “long” transactions, this time with
teransaction ™ 6 ms. The results are principally the same as those for three-millisecond

transactions.

105

5 The Model as a Temporal Database

"SO1ID.L L931IM SNOLIDA L0f Spuodasyjiut 9 “xo.ddp fo suoiopsup.y , uoy, Jo ndysnoay] 1/ G 2In3ig

0ol

spealy}

ol

00k

SSIM %0¢C

speaJy}

ol

speaiy}
0001 00l o0l 3 000l
0 0
q
00¢
0oy ¢ 3
Q o
o 9
009 3 “
Y
-1 008
oooow) T | 7,,,,,, 7,,,,, OOO—\ OOOON I -
S8JLIM %001 —¥— s100loy
—v¥— OlAN
speauy) —@— bBupjoo
000} 00l ol 3 000l
0 0 0
-1 000G
- 00001
- 7] - 3
8, q 2 8
m -] 000§} = m
2] > (2]
(%]
-| 0000¢C
-1 000S¢
00007 Lot 00008 0000z Lt

SOIIM %Z

SOIM %

0008

00001

000G1

0000¢

0005¢

0000€

0008

00001

000G1

0000¢

000S¢

0000€

S / suoljoesuel

S / suonoesuel}

106

5 The Model as a Temporal Database

5.3 Temporal Ordering of Data

The building model reflects objects and events (facts) in the physical building, keeping
histories of object states over time. This section discusses some challenges that arise
in tracking the temporal ordering of real-world events with a temporal database and

describes an approach to deal with these issues.

5.3.1 Terminology

In the terminology collected by Dyreson et al. (1994), there are two main notions of
time:

* Valid time relates to the time when facts are true in the real world. Time here is
generally understood as “wall clock time”, which is observable in limited accuracy
and granularity. A single point in valid time may be represented as “2006-10-15
18:15:32.198”, for instance. In this example, the given granularity is in millisec-
onds. Valid time is primarily of importance to the external user of the database:

it orders events in the real world.

* Transaction time relates to the order in which facts become available in the database.
It is supplied by the database itself and has the important property of “marching
monotonically forward” (Jensen and Snodgrass 1999) when triggered by certain
events. A single point in transaction time may be represented by an integer num-
ber, such as 7637463. Transaction time is primarily of importance to the internal
mechanisms of the database: it orders database activity.

The building model database is a bitemporal database as defined by Salzberg and
Tsotras (1999) because it records both kinds of time. As a transaction-time database, it
is able to roll back to previous states and provide consistent snapshots of the past. As a
valid-time database, it models the current state of the real world — at least those facts
that are known about it.

It follows that each database record must comprise at least a 3-tuple (t,, t;,data),
where t, denotes valid time and t, denotes transaction time. Each t, is unique for each
object (actually, for the entire database) and can be considered the object’s version.
Valid-times are not necessarily unique, i.e. multiple versions of the same object (or
other objects) may carry the same t,,.

107

5 The Model as a Temporal Database

5.3.2 Time Travel: Reconstructing Model Snapshots

Considering only transaction time, retrieval of consistent historic object network snap-
shots (sometimes called “time travel”) is simple. Based on a given reference transaction
time value t,, obtaining a consistent snapshot for the reference time amounts to obtain-
ing, for each object, its version with the highest available transaction timestamp t < t,.,
as illustrated in fig. 5.8. In the figure, the current transaction time is > 10 and the
reference transaction time is 8. Obtaining a snapshot for the latter corresponds to the
most recent versions of objects 1 and 2 and non-recent versions of the other objects.
Retrieval of non-recent object versions is integral functionality of the model core and

transparent to the client, regardless of where the objects are stored (see 5.5 for details).

t=8
transaction time —>
id 1 id 1 id 1
t=1 t=4 t=
id 2 id 2
t=3 t=6
id 3 id3 |¢ id3
t=2 t=7 t=9
id 4 < id4
t=5 t=10

Figure 5.8: Reconstructing object set snapshots for points in transaction-time.

However, ignoring every notion of time other than transaction time is an idealised

assumption.

5.3.3 Delay

Facts about the real world are fed into the database from external sources, such as
sensors, but possibly also by manual data entry. Data input may occur either online or
in batch processing. In the first case, attributes of a model object (e.g. the temperature

reading of an indoor climate sensor) are updated in an automated fashion, as soon

108

5 The Model as a Temporal Database

as possible after they have been recorded by the sensor. For instance, a sensor may
transmit its current reading in 1-second intervals to the building model, using some
form of communications channel. In the second case, data are collected independently
of the building model (e.g. by an autonomous data logger device) and fed into the
database as a “batch” of data some time later, e.g. in a nightly or weekly rhythm. This
may happen semi-manually, typically by an operator who downloads collected sensor
readings from the devices and then feeds them into the building model.

In both cases there will be a delay between the time the real-world fact is observed,
and the time that this fact is recorded in the database. For online data input, this delay
can be expected to be somewhere in the range of fractions of a second to a few seconds.

For batch processing, delays could range from hours to weeks.

(l) 1 % 1 ‘11 1 Els 1 § 1 110 1 112 1 114 1 116 1 118
D(1) R(1)
L]
D(2) R(2)
L]
D(3) R(3)
L]
D(4) R(4)
L]
D(5) R(3)
L]

D(6) R(6)

Figure 5.9: Delays between observation (O) and recording (R) of facts. The time scale
represents "wall clock time", measured in fractions or multiples of a second.

Figure 5.9 illustrates some delay and ordering timelines beginning with observation
(O) of a fact and ending with its recording (R) in the database. Facts may be related to
the same model object or different model objects. The first two timelines from the top
show a situation where the occurrence of fact 1 happens prior to that of fact 2, yet is
recorded later than fact 2. This may be due to communication channels with different
speeds, necessary pre-processing of the sensor data before it is recordable, or simply
due to uncontrollable task scheduling decisions by the model server’s operating system.
The remaining timelines illustrate a batch input situation: a number of facts occur one

after the other, but are recorded as a “batch” significantly later at (or around) the same

109

5 The Model as a Temporal Database

point in time.

Delay alone is not a significant problem for the designer or user of a database, at
least as long as only a single object is considered and ordering is preserved. When
updates are delayed but arrive in the same order as the real-world events they represent,
an important assumption holds: namely, that valid time increases monotonically over
transaction time. This assumption has two consequences for queries. First, the latest
object version (with the highest transaction timestamp) is guaranteed to be the latest
version in terms of valid time, i.e. the most current representation of the physical object
available. This means that obtaining the most current version is trivial: one simply has
to select the version with the highest transaction-timestamp. Second, the sequence of
transaction times of all object versions corresponds to the sequence of valid times. This
means that getting a faithful representation of the valid-time evolution of an object is
equivalent to a linear traversal of its history of transaction-time.

Somewhat more formally, if an object o is defined as (t,, t,,data) like shown above,

for any two versions of the object, t,; > t, if t;1 > t;o.

5.3.4 Ordering

As discussed above, an important assumption underlying many temporal databases is
that the startup times of write transactions correspond to the temporal ordering of the
events that caused them, or are at least correlated to some extent. In the case of a
building model, this means that streams of sensor data must be received and processed
in the order that they were generated.

Ensuring this condition is fairly simple for a single data source, even when the trans-
mission channel does not guarantee arrival in the same order that data were sent. As-
suming that all messages are sent with a sequence number to establish a total ordering,
messages can be buffered and sorted before they are passed on for further processing
following the Resequencer pattern (Hohpe and Woolf 2003, ch. 7).

However, ensuring ordered arrival over multiple data streams coming from different
sources with different transmission delays will quickly become infeasible. First, se-
quence numbers or timestamps would have to be coordinated among the data sources
so that an unambiguous total ordering could be determined for all data — increasing the
required capabilities and therefore cost of data sources. Second, the necessary buffer
size and computational effort for sorting increases with the number of data sources.

Third, the expected delays incurred by waiting for out-of-order arrivals would increase,

110

5 The Model as a Temporal Database

as each data stream increases the chance that the Resequencer has to wait for “straggler”
messages. It follows that a total order of all incoming messages cannot be established
with reasonable effort.

Even if such a total order of incoming messages exists, there is no guarantee that
the messages result in an equivalent ordering of database updates. As discussed earlier,
the transaction control mechanism does not guarantee strict serializability: restarts of
concurrent write transactions result in reordering of updates.

For queries, the result is that the “latest” object version (with the highest t, of all
versions) may not be the version with the latest valid-time, which may prove inefficient
for queries if only the transaction-time is indexed. This problem can be alleviated by
keeping a separate index for valid-time. Within an object’s history, the ordering of ¢,
does not necessarily correspond to the ordering of t, (Figure 5.10). This introduces
some ambiguity as the ordering of object versions with the same ¢, cannot be resolved

by comparing t,.

t t

Vv
Vv

Figure 5.10: Ordered vs. un-ordered arrival of updates and its effect on the monotonicity
of t, over t,.

The situation is complicated further for multiple objects. To obtain a consistent snap-
shot of multiple objects, one can generally use a reference transaction-time t,.; as a
basis and for each object, obtain the version with the highest available ¢, < ... While
this results in a snapshot that is consistent with regard to transaction-time, it can result
in a snapshot that is not consistent in terms of valid-time. Consider figure 5.11, which
shows two objects with multiple versions and their respective t, and t, values. Until
t, = 5, things appear normal, and snapshots are valid for both transaction-time as well

as valid-time. At t, = 6, the symmetry breaks: the inserted object version’s valid-time

111

5 The Model as a Temporal Database

is greater than the valid-time of its last version, as before. However, it is less than the
valid-time of the other object’s latest version. Similarly, in t, = 7, an out-of-sequence

update for O; appears.

01 02

(7; OO:OB)\

(6; 00:09)

(1; 00:01)

Figure 5.11: Two objects (t,, t,) with delayed and out-of-sequence updates

5.3.5 Requirements Summary and Solution Approach

The database is connected to a number of sources S;. Each source i emits a sequence
of messages m = {data,s,t,} where s € Z is a sequence number and t, is a times-
tamp. The sequence number is local to the source. Using the relation <., the messages
populate a total order (M;, <) for each source.

The timestamp represents a global “wall clock” time of limited granularity, which
means it is actually a time interval. Multiple messages can therefore carry the same
timestamp, resulting in a total order (M, <,) for all messages from all sources.

One or more incoming messages eventually result in a database update. The or-
dering of startup transaction times t, of successfully committed update transactions
can be understood as a known-before relation, while the ordering of timestamps t, is

a happened-before relation. It is desirable that happened-before relations correspond to

112

5 The Model as a Temporal Database

known-before relations:

Condition 5.3.1 For any pair of recorded messages (m,, m,),

tvl Z th — ttl > ttZ'

However, the discussion above has shown that this condition does not hold if t; can
only increase monotonically with each recorded message, as messages are not guaran-
teed to arrive in order of increasing t,, and recorded messages must not be changed.
The proposed solution is to allow insertion — or “sandwiching” — of transaction times
between existing transaction times.

When an incoming message is determined to be a late arrival, i.e. its t, is less than
the t, of the most recent record, it is not assigned the next transaction-time increment.
Instead, the correct location between two existing t; joer and t; pigher Must be deter-
mined, and the message must be recorded with a new t; ;;q4ze-

The correct insertion transaction-time that fulfils condition 5.3.1 can be determined
from the message’s t,, easily. Due to the limited granularity of t,,, multiple valid insertion
points may be available (see figure 5.12). The sequence number s can help narrowing
the set of choices, but is not guaranteed to do so, as sequence numbers are local to a
single source.

This retroactive insertion approach potentially changes the meaning of t, for estab-
lishing the known-before relation. The implementation should ensure that the actual
order of message arrival can still be reconstructed. Moreover, it should not be necessary

to change records that have already been written to persistent storage.

5.3.6 Implementation Options

The main problem for implementing retroactive insertion of records is finding a solu-
tion for efficient allocation of and access to inserted transaction-times. Some apparent

solution approaches include:

* Increasing the default increment for transaction-time, leaving gaps between val-
ues for later insertion. For instance, transaction-time could be set to increase by
100 instead of 1, leaving 99 intermediate transaction times for later use. Even
in the optimal case, this limits the number of possible retroactive inserts between
two regular transaction-times to “increment minus 1”7, but potentially wastes lots

of available transaction-times when few or no late insertions are needed.

113

5 The Model as a Temporal Database

(7; 00:10)

(6; 00:08)

(5; 00:07) (:00:05)

(4; 00:05)

(3; 00:05)

- |
(2; 00:01)

(;00:03)

(1; 00:01)

Figure 5.12: Finding the correct point for late insertion of messages: single and multiple
valid insertion points.

114

5 The Model as a Temporal Database

* Using a “virtual tree” approach, as in the classic paper by Dietz and Sleator (1987)
and a recent adaptation by Bender et al. (2002), called the “amortized order-
maintenance algorithm”. These algorithms ensure efficient allocation of available
transaction-times and do not need an explicitly represented tree structure or any
other data besides the list, which makes them very space-efficient. However, they

do require re-labelling of existing records.

» Using a separate ordering table or tree-based index. Instead of comparing the
transaction-times arithmetically as in the original algorithm, an ordering lookup
table or b-tree is maintained. In this case, the transaction-times can even be
arbitrary (but non-repeating) values. This requires additional storage and main-

tenance for each inserted record and complicates SQL queries significantly.

In choosing a suitable solution, it is assumed that retroactive insertion is not a very
frequent operation, i.e. most updates occur in sequence (by appending). The solu-
tion must also take into account that the actual storage and retrieval is handled by an
RDBMS through SQL queries.

5.3.7 Implementation

The valid-time and transaction-time remain as before. Two additional fields are intro-
duced:

* The insertion-time t; is an extension of the transaction-time. It is implemented as
a text field of varying length (“character varying” or “text” in SQL). The lower
bound of the interval t;; (the lower transaction-time) is always assigned the
lowest possible value of t;. Any record that is inserted between two existing
transaction-times t; joye; aNd ty pigher 1S assigned the lower bound’s transaction-
time. The insertion-time is then determined from the position of the new record
(see figure 5.13).

* The recording-valid-time is similar to the valid-timestamp in that it is a “wall clock”

value. However, it tracks the actual time when a record is written to the database

and therefore represents the known-before relation.>

3Alternatively or additionally, a monotonically increasing transaction-time for insertions could be used if
the exact order of writes — as opposed to their valid-times — must be available.

115

5 The Model as a Temporal Database

Figure 5.13: Sample insertion sequence.

Choosing Insertion-times

Figure 5.13 shows some insertions using the basic latin alphabetical range (26 char-
acters) for insertion-time. The algorithm basically treats t; as if it represented the
fractional part of transaction-time. To select an appropriate value of t; between two
existing records, the middle point between their insertion-times is chosen. When the
value range has been exhausted, i.e. when a new record is to be inserted between two
records with successive values of t;, the “precision” is increased by appending a new
digit. As an example, to insert a record between two records with equal t, and t;; = b
and t; , = c, the insertion-time t; = bm is chosen. This is analogous to inserting the
decimal number 1.25 between the numbers 1.2 and 1.3.

Value Ranges and Storage for Insertion-time

In the optimal case, the value range of each digit is used up completely. Given a value
range of r usable characters per digit, up to r™ — 1 values can be inserted between two

transaction-times when using a string of length n for the insertion-time in this optimal

116

5 The Model as a Temporal Database

case.

In the worst case, subsequent insertions always occur before or after the last inserted
value. The maximum number of insertions then derives from the number of times the
value range can be divided by 2 before the next digit must be used, i.e. (|log, r|)".

Assuming a very conservative r = 26 (characters from a to z), this results in a range of
[4"..26" — 1]. For n = 16, at least 4'® = 232 &~ 4.3r9 insertions can be stored between
two adjacent transaction-times. This conservative estimate is expected to work with
even the simplest SQL database.

Recent versions of the PostgreSQL DBMS provide the data type bytea for variable-size
binary strings, which allows to use all 8 bits per octet (r = 256) with full support for
sorting (Pos 2006, ch. 8). Hence, the range becomes [8"..256"]. For n = 16, at least
816 =24 » 281E12 insertions are then possible.*

Discussion

The proposed approach is efficient and simple to implement. In the absence of inser-
tions, the only storage overhead is an additional two fields for each record. In-memory
concurrency control is not affected at all, as it is only relevant for current object ver-
sions. Database concurrency control is delegated to the DBMS, using its provided trans-
actionality mechanisms. As no additional tables or indexes are required (although they
may be used for query optimisation), the known-before and happened-before relations
can be deduced from the records themselves.

The advantage of using a string data type is that it is of variable length and allows
the RDBMS to use its built-in lexical sorting algorithms, allowing simple SQL queries for
object retrieval. In particular, the frequently-needed query for an object’s latest version
less than or equal to some reference value (see 5.3.2) remains trivial. No renumbering
or additional lookups in separate tables are needed.

A possible issue with retroactive insertion arises when older versions of objects are
successively stored to write-only media (WORM) for long-term archival. In this case,
query performance will degrade as object histories may be scattered among multiple
non-contiguous volumes, especially when insertions occur very late. Unless an index
is available, sequence reconstruction requires a full table scan to find late insertions,

possibly across many volumes.

“PostgreSQL version 8.2 requires a fixed overhead of 4 bytes for storing a binary string, plus the actual
length of the string in octets (Pos 2006, 8.4). Insertion-times therefore add at least 5 bytes to each
record and up to 20 bytes if n < 16.

117

5 The Model as a Temporal Database

5.4 Application Interface

The most current version of each object is always kept in memory; the singleton graph
of all interrelated current object versions constitutes “the model”. Only this most recent,
online version of an object will receive updates from building systems and allow to send
commands back. Anyone holding a reference to such an object must be aware that this
is a public, shared object and may change at any time.

Applications wishing to obtain private object copies of the most recent object version
or of previous versions can obtain offline objects. An offline object is completely de-
coupled from the model and represents a snapshot object state. It can be changed, but
this has no effect whatsoever on the model; it does not react on any incoming building

system data (compare 3.2.1).

ModelObject

+id[1]

+description[1]
+deleted[1]
+children[0..*]
+parents[0..*]
+offline[1]
+transaction_t[1]
+valid_t[1]
+insertion_t[0..1]
+recording_valid_t[1]
+position[0..1]
+geometry[0..1]
+setField()
+getField()

+abort()

+commit()
+createOfflineClone()
+subscribe()
+unsubscribe()

Figure 5.14: The object model root class (simplified).

To support this functionality, all model objects are derived from a root class, Mode-
10bject, as shown in figure 5.14. Historic object versions are provided by the Object-

StorageMgr component (see 5.5).

118

5 The Model as a Temporal Database

5.4.1 Object Creation and Destruction

The model core provides factory methods for creating new online or offline objects;
direct instantiation by agents is not supported. Deletion of an object is handled by
setting a “deleted” flag on the object that creates a final non-readable “dead” version of

the object and blocks any further updates — this approach ensures referential integrity.

5.4.2 Notifications

Agents must be able to register for notification of changes on specific objects (see table
3.7). These notifications are not delivered by synchronous method calls (as in the Java
standard library’s java.util.Observer), but through message queues. This loosens not
only the temporal coupling between sender and receiver, but also prevents problems
that arise when the receiver agent disappears. An additional benefit is that it allows
receivers to share the workload of notification processing.

After registration, notifications are sent by the model core on any object change or —
using a simple string matching filter — on changes of certain fields only. Notifications are
only sent when a write transaction has been committed successfully. A sample sequence
is shown in figure 5.15. Care is taken to keep only queue IDs, not object references, for
subscriptions. This is to reduce referential coupling between agent threads and the
model (see 4.6.1).

5.5 Persistent Storage

Persistent storage is managed by an ObjectStorageMgr component. This component
is responsible for storage of and retrieval from a relational database. It offers a quasi-
asynchronous interface for object storage to allow low-latency updates and a synchronous
interface for object retrieval. The component design is shown in figure 5.16.

Due to the characteristics of the MVTO concurrency control approach, read accesses
to recently-written objects occur frequently when the current recent object version is
often in a pending-writes state. In such situations, readers are compelled to fall back
to non-recent versions. However, these versions may still be in the pipeline to persis-
tent storage. It is therefore helpful for performance to provide access to not-yet-written
objects. This would be difficult to achieve using a standard FIFO message queue. In-
stead, the ObjectStorageMgr maintains an internal queue that is accessible in FIFO as

well as random access. Put requests copy the passed object reference to the write queue

119

5 The Model as a Temporal Database

| Agent1 | | Object1 | TransactionMagr |MessagingMgr | Queue1 | | Agent2 |
: | | | | |
has open write | | 1 | |
transaction on . register(queuelD [Queue1], filter) . .
Object1 A ! ! !
71 | | |
/ corrlumlt() >| | blockingGet() |
-
I / I | I I\
I

Subscriptions are kept
and returned as queue
IDs. Filters matched | L 272" Z2
by model object.

commit()
thread blocked

I
I
| until message
I
|
|

arrives

I

| submit(message, queuelD)
| - ?
|

|

|

|

P I |
registryLookup(queuelD) |

1

I

I

I

|
| -
-
| -
| |

| put(message) |

-
| |

TransactionMgr does not keep j

queue object references, only

queue IDs message

Figure 5.15: Object update notification: a sample sequence.

and return immediately. The actual writing of the objects is performed by a fixed-size,
leader-followers thread pool (see also 4.4).

An additional fixed-size object cache with LRU replacement policy is used to improve
the performance of old object version read accesses. Get requests are served from either
the write queue or the read cache, which triggers database accesses as necessary.

By design, the ObjectStorageMgr provides a sequential stream of model updates. This
could be used as an extension point to update remote slave replicas of the model for
fast fail-over in order to increase its availability (cf. 4.2.3).

5.5.1 Serialization and Deserialization: Managing Object References

As outlined before (4.6.1), Java serialization has deep-copy semantics. For any model
object, this means that serializing the object will result in serializing the entire object
graph through following its parent and child references; such external references to
other model objects must therefore be broken before serialization and stored in a way
that allows the reconstruction of references upon later retrieval. This is achieved by

marking external references as transient and converting them to arrays of object IDs.

120

5 The Model as a Temporal Database

(A
write queue and cache ©
put o Object1 Object2 Object3 | |
write queue and cache s N
2
g = DBMS
® [0)
get o— S =t
N (3]
o)) e)
a <
Object3 IS @
Objectt — S %
8 []o
Objectd ® N~
Object5 = B
n
Object2
read cache
|\ J
ObjectStorageMgr

Figure 5.16: The ObjectStorageMgr component

121

5 The Model as a Temporal Database

References to internal objects (those that constitute the object’s data and are only ac-
cessible by itself) are kept as is and serialized accordingly.

Upon retrieval, external object references are not restored automatically, but can be
restored on request. The policy for object graph reconstruction from persistent storage
is generally based on a target timestamp value WTS,: to retrieve one or more objects
from persistent storage, the versions with the largest timestamp less than or equal WTS,
are restored.

5.5.2 Storage Format

The used database schema is intentionally simple: a single table with columns contain-
ing the unique object ID, the various timestamps, and a BLOB (binary large object) field
containing the serialized object data.

The main advantage of this approach — as opposed to a complete field-by-field object-
relational mapping — is a simplified data access layer and vastly improved flexibility,
as the database schema does not have to be changed in accordance with object model
evolution. The disadvantage is that this makes certain types of queries on the model
history very inefficient (e.g. “find all times in the past 7 days when the reading of
temperature sensor A was below 15 degrees”). In such cases, many versions of the
object must be deserialized to memory and checked for the search criteria. For the
scope of this work, it is expected that such queries are relatively rare and generally not
time-critical.

As discussed earlier, a notable characteristic of the multiversion mechanism is that
database records, once written, are never changed. This has potential benefits for per-
formance, security, and auditing: it simplifies optimisation (e.g. caching, indexing) and
allows older data to be archived on write-only mass storage media.

In the current implementation, no additional tables are used — as a result, only queries
based on object ID and write timestamp can be supported with database indexes for fast
queries without full table scans. In future scenarios, additional tables for maintaining

various indexes (e.g. R-trees for spatial queries) should be considered for faster queries.

5.5.3 Performance

To give an indication of the ObjectStorageMgr’s sustained write throughput, figure 5.17
shows the results of a performance test for thread counts from 1 to 100. For each thread
count, 100,000 objects were initialised with random data. These objects, each taking

122

5 The Model as a Temporal Database

657 bytes storage size in serialized form, were then sent to persistent storage using the
PostgreSQL 8.2.3 DBMS running on the same computer. Each writer thread allocated a
separate JDBC connection using the type 4 JDBC3 driver over a local TCP connection
and utilised a prepared statement for all its INSERTs. The DBMS was running in its
default configuration except for a raised client limit; two different settings of the forced
synchronization flag (Pos 2006, 17.5) were tested. The hardware and software setup
was the same as described in 5.2.5. Measured times include Java object serialization
and complete execution of the database INSERT transaction.

Notably, throughput scales well with thread count until about 40-60 threads (peaking
at about 2900 written objects per second), even though all writes affect the same table

in the same database.

3000 — write throughput (fsync on) —e—
A write throughput (fsync off) —a—
7”,,,,,,A7f*””‘”"//ﬂ/ﬂ s A A AL
A— A
2500 |- t
//‘
/
S/
////
/ _eo—
2000 | %
/ . e —@
/ e
/ e
n // —
£ V'
8 1500 -
Q
[=]
1000 |- -
[
500
0 L L L L L L L . L L L L L L L L
1 10 100

threads

Figure 5.17: Object storage performance for various thread counts.

123

5 The Model as a Temporal Database

5.6 Related Work: OODBMS

The model server core’s feature set is very similar to that of object-oriented database
management systems (Atkinson et al. 1989). However, its design differs significantly
from that of most available OODBMS systems (Greene 2006, Objectivity Inc. 2006) in

some respects:

* In contrast to usual OODBMS systems, it is not based on a client-server or peer-to-
peer architecture. This is a deliberate decision driven by its requirements. How-
ever, it can be extended easily to provide both generalised as well as application-

specific client/server functionality through agents.

* The model server acts not just as a storage component, but as an agent-based
execution environment. Unlike classic Active Databases (Paton and Diaz 1999),

user-supplied code is not restricted to an event-reactive pattern.

* The model server has been designed for object-level versioning from the ground
up, including built-in support for happened-before and known-before relations,

and retroactive insertion.

* While many OODBMS designs rely on locking for concurrency control, it uses

multi-version concurrency control and has some support for transaction priorities.

* It delegates the actual persistent storage and retrieval to a separate DBMS.

124

5 The Model as a Temporal Database

5.7 Chapter Summary

In this chapter, the design of the model server core was described. Key points in sum-
mary:

* The building model is accessible as a graph of plain objects.

* All objects are versioned; the most recent version of each object is available in
main memory, older versions are kept in persistent storage provided by a DBMS.
Access to either is transparent for clients.

* Transactionality is provided by using a concurrency control scheme based on
multi-version transaction ordering. An extension to the original MVTO algorithm

is introduced to support different priorities for write access through preemption.

* The MVTO algorithm performs very well compared to a simple locking scheme.

In typical usage scenarios, its performance and scalability are significantly better.

* The model server provides full support for happened-before and known-before or-
dering of data even when the data arrive unordered or very late. This is achieved
by allowing insertion of old object versions, while maintaining simple querying

and the important property that written objects are never changed.

* Using an open-source RBDMS without specific optimisations for persistent stor-
age, sustained write rates of several thousand objects (versions) per second are
achievable on standard desktop-PC-class hardware.

125

6 System Application: A Simulation-Based Lighting

Control System

The building model service implementation was driven by the needs of a research
project that aimed to produce a working prototype of simulation-based control based
on a sensor-supported building model. This chapter describes the experimental setup of
the project and the context in which the model service prototype was initially designed
and operated.

The full system setup was successfully used to evaluate the functional integration of

all system components.

6.1 System Overview

The system architecture was set up to support a simulation-based lighting control sys-
tem for an experimental office space containing remotely controllable light fixtures and
window blinds (Figure 6.4). The model service was connected to the following building

systems, as shown in figure 6.1:

126

“dn3as (pjuswiIadxa aYy3 Ul SUO1IOAUUOD PUD SJUUOdWO0D WAISAS JO Ma1ALA0 UY/ :T°9 INSI]

ooedg |ejuswuadxy

lation-Based Lighting Control System

imu

:ASI

puig

MOPUIM PBZLOION

. «@jewxny «oo1nap [eoishyd»

SWQY ToseiBIsod
«ssa001d» _a |000j01d paseq-jxa) Asejaudod sjewxn
wbidn
\ «goinap [eoishydy
«diidoL> \ N w:hmm___muﬁmi @RuXTy
Jedepyareunm S «soinsp [eoishuydy

WD «sse001d eABr»

1020j01d PasEq-1x8) WoIsno
\
d \
Wasks buisueg «01n0p [e01shydy

BJBWED YIOMON

TS «sseo0ud enep» IS Lono0r SVIOIA Qo

oIS [9po Buipiing
«dnosB sss001d»

«ss8001d BABLY ane

Josueg
soueuILIN| B0BdYOM
«@oInap eaisAydy

«ss300.d BACTY

WY eIA Id seoedgener

Joniss saoedgener 39 saoedseblo

Joniag Buisusg uoneoo

(si0suss eoe|dIom) aInpow JuIogpial4
d a «@21n8p [eISAYdy

AN «ss0001d eACPY

(uones seyieapm)

cation

1

6 System Appl

127

| Jeidepyiasooseleq _a 1020j01d Aeuiq Aejeudoid sjuewnsul
«ssao0id enery — Vi
- (jona) aBe)jon) Bojeue
«diigoL» /
«diigoL / uoeoyddy
/ siosueg d:
«sse001d MIINGETH ~~ «di/dOL>
-
Jonieg joxyoogeleq | “dlidOL -~
«sse201d MIINGETY _a |1000j04d Areuiq Aseyeudosd syuswnisuy |jeN
uoneoyiddy __ 10118AUOD dl/dOL O BIdO
uoners Jauieam QoL «20iAop [edishydy «ggr-3331g1dD»
«di/doL» «ssso0ud MIIAGETH
1888 uopeoyddy
e
e suoisusixe Aeleudoid uim d1d
Jaljouo
: " Jeddeyy soueuiwn Ay n_,m:_ﬁou \
__ «sseo0ud eAery «sse00.d enery L
«@sn»
eiawe) Ayg [eubla uopels Jayieam
3ONVIavY «av1Aep [eISAyd» «s@01A9p [edlsAyd Jo jos»

«ss3001d»

Janieg Buiddeyy soueuiwn Ays

sIaAIag uope|N!

(100%) Joue3 Buipiing

6 System Application: A Simulation-Based Lighting Control System

* A weather station (Figure 6.2) measuring outside air temperature, relative humid-
ity, air pressure, illuminance, global irradiance, precipitation, and wind speeds.
Measurements were taken in one-second intervals by a LabVIEW application, con-
verted, and sent as messages by a Java adapter program.

* A sky luminance scanning system based on analysis of sky images (Spasojevi¢ and
Mahdavi 2005) periodically taken by a digital camera (Figure 6.3). It supplied
1-2 arrays of sky luminance data (each containing 256 floating-point numbers

corresponding to sky patches) per minute through asynchronous messaging.

* A location sensing system providing building geometry information through the
use of optical markers (“tags”) and digital cameras (Icoglu and Mahdavi 2005,
Icoglu 2006). The system was connected using a custom text-based TCP protocol
and sent bulk data updates in intervals of a few minutes, which were picked up
by a Java adapter and submitted as messages to the model service.

¢ Indoor illuminance sensors used for validation of the simulation-based control

algorithm, also connected using LabVIEW and an adapter program.

* A LUXMATE bus system controlling two dimmable uplights and motorised win-
dow blinds. The LUXMATE system was connected through a serial interface to a

Java adapter program (see 8.1 for details).

6.2 Application: Control Cycle

The control methodology is described in detail in other publications (Mahdavi and Spa-
sojevi¢ 2006, Mahdavi et al. 2005); the following description focuses on the implemen-
tation of the workflow as shown in figure 6.5.

128

6 System Application: A Simulation-Based Lighting Control System

Figure 6.2: Weather station mounted on main building roof.

129

6 System Application: A Simulation-Based Lighting Control System

Figure 6.3: Sky-scanning camera mounted on main building roof.

130

6 System Application: A Simulation-Based Lighting Control System

Figure 6.4: Test space with uplights and window blinds.

131

6 System Application: A Simulation-Based Lighting Control System

"MOLf.lom 10.3u02 3u13Yy31) paspq-uovNUS :G'9 2131

30Vds

@djn9gUORRINWISBURYBIY

3AON NOLLYINWIS

3AON NOLLYINWIS ;

synsal uoneINWIS

sjsenbai uonenwIg

%

-

%

¥3AG3S 13A0ON

713A0N ONIdTINg

aunpady

Buipeys

ansojouz

ainpuing

aanxiubI fuepunog

Josusg

\ au\nnw

Bupiing

|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
\

SOLEUSOS SJRUIS}E JO 185

I
[
|
[
“ (se1doo [apow auljyo)
[
|
|

ONIaTing
IVOISAHd
[eX
3OV4Y3LNI

132

6 System Application: A Simulation-Based Lighting Control System

The model is updated regularly through the building data interface (1). To run
simulation-based control, a controller agent is set to operate on the controlled entity;
i.e. the workplace illuminance in the space, with the goal of keeping the illuminance
level within a preferential bandwidth. Control decision cycles are triggered periodically
by a timer; they could also be started by significant changes in environmental condi-
tions.

When a control cycle is started, the controller agent derives an off-line snapshot of
the room’s model including objects representing the relevant environmental parame-
ters, such as the sky luminance distribution. From this as-is model, a set of prospective
alternate states is derived by changing the states of controllable objects: in this applica-
tion, the positions of window blinds, as well as the dimming levels of uplights (2). The
controller now has a set of object networks, each representing a different state of the
space.

The controller’s task then is to compare these different scenarios and select the most
desirable one. The comparison is based on a utility function that takes into account not
only the expected illuminance level, but also power consumption due to electric light-
ing or cooling loads. While power consumption can usually be estimated using a simple
function or table lookup, calculating illuminance requires physically accurate simula-
tion. The controller therefore submits each model scenario, as well as a specification
of the coordinates for which illuminance values are required, as a simulation request to
the service space (3) and waits for all result responses to come back.

Simulation requests are picked up by distributed Java adapter processes (4) that con-
vert the received object network to a textual representation and spawn the necessary
simulation processes (see 8.2). The results — illuminance figures for the requested coor-
dinates — are wrapped into response objects and placed back into the service space (5),
where they are picked up by the original requestor (6).

Once all responses have been gathered, the controller can calculate their utility func-
tions and use this to determine the best scenario. To trigger the required control deci-
sions, the controller locates the respective objects in the live building model and calls
specific methods - e.g. commandDimmingLevel() for an uplight object — on them (7).
The model server then — transparently and asynchronously — sends the necessary com-
mands to the modelled physical objects (8). This ends the control cycle: the controller

agent thread suspends itself until the next cycle is triggered.

133

7 Conclusion

This chapter lists the contributions of this dissertation to the state of knowledge and

identifies some areas for further work.

7.1 Contributions

» Existing model server architectures have been analysed to assess their capabil-
ity for building operations support with a view toward simulation-based control
(2.4.2). It was found that their designs are closely tied to design support, making
them less suitable for other life-cycle phases.

* A complete set of key requirements for model servers for building operations
support has been developed (chapter 3), with emphasis on both functional and

non-functional requirements.

* A suitable system architecture for such a model server has been developed (chap-
ter 4). The architecture is designed to provide high degrees of performance, mod-
ifiability, and availability. This is achieved by a introducing a flexible distribution
design for different kinds of client applications (agents vs. remote clients/ser-

vices), reliance on asynchronous communications, and runtime-changeable code.

* The design of a model server core has been described, based on a proven concur-
rency control method with novel extensions for write prioritisation and retroac-
tive insertion of records (chapter 5). The concurrency control’s performance has

been evaluated experimentally.

* An integrated prototypical system setup for simulation-based lighting control has
been described (chapter 6).

134

7 Conclusion

7.2 Further Work

7.2.1 Constraint Enforcement

In the current implementation of the model service, there is no mechanism to detect or
prevent model changes inconsistent with the model definition (SOM, IFC) beyond some
very basic checks based on data types. To prevent corruption of the model by faulty or
malicious clients, it should be possible during runtime to specify integrity constraints to
be enforced by the model service. This should include higher-level application-specific
constraints that go beyond the basic model definition constraints, and it should be pos-
sible to specify complex scopes for constraints (class, object, contained-in-area, . ..).
Such a mechanism could have multiple uses. During the design phase, regional build-
ing regulations could be specified as model constraints to catch design errors (e.g. “exit
doors must open to the outside”, “rooms must be at least 2.30 metres high”). During
the operational phase, constraints could be used as a generalised alert mechanism to

detect anomalies in building systems.

7.2.2 Security

The proposed architecture was designed under the assumption that only well-meaning
users have access to it, and that there is no need to differentiate between users. This is a
major omission that stands between research and application in a real-world scenario.
Design for security is not trivial, even more so in distributed systems — and security-
related risks spring from many unexpected sources (cf. Neumann (1995)). Adding
functions to record which action was initiated by which user is expected to be fairly
simple, with no disruption to the system architecture. Adding a full-fledged mechanism
for restricting access, however, requires detailed security analysis that goes beyond the

scope of this dissertation.

7.2.3 Support for Multiple Models and Merging

Maintaining multiple different, but more or less coupled models (Kiviniemi et al. 2005)
in the server is not currently possible, although the architecture does not entirely pre-
clude it.

Merging of models or model fragments is a typical challenge of design collaboration

(Scherer et al. 2003). A component to aid in this task could increase the model server’s

135

7 Conclusion

applicability to support of the design phase.

7.2.4 Model Navigation Support

Currently, the burden of searching for objects of interest is on the agents themselves.
The model should be easily navigable in terms of spatial queries (cf. 3.2.1) as well as by
queries on object relations. The latter could be based on a query expression language,
as in the JXPath library.!

7.2.5 Distribution and Replication

As discussed in 4.2.3, there are good reasons to distribute the entire model across sev-
eral nodes, while keeping a unified view to clients. Interlinking between such model
partitions could be based on proxy objects that stand in for remote objects; however, it
is a challenge to keep the number of proxies as well as the communications load low.
Replication is an important design tactic for increased availability. In its current form,
the model server offers a starting point for 1:n master-slave replication (see 5.5) to
provide “warm failover”. Automatic and possibly seamless migration of agents under

such circumstances poses some interesting design questions.

7.3 Publications

As of this writing, various portions and reports on earlier stages of this work have been

published in the following articles:

Icoglu, O., Brunner, K. A., Mahdavi, A., and Suter, G. 2004. A distributed location
sensing platform for dynamic building models. In Ambient Intelligence: Proceedings
of the Second European Symposium, number 3295 in Lecture Notes in Computer
Science, pages 124-135. Springer-Verlag. doi:10.1007/b102265

Brunner, K. A. and Mahdavi, A. 2005a. A software architecture for self-updating
life-cycle building models. In Martens and Brown (2005), pages 423—-432

Suter, G., Brunner, K., and Mahdavi, A. 2005. Spatial reasoning for building
model reconstruction based on sensed object location information. In Martens
and Brown (2005), pages 403-412

! Apache Jakarta JXPath project, http://jakarta.apache.org/commons/jxpath/

136

http://dx.doi.org/10.1007/b102265
http://jakarta.apache.org/commons/jxpath/

7 Conclusion

Brunner, K. A. and Mahdavi, A. 2005b. The software design of a dynamic building
model service. In Scherer et al. (2005), pages 567-574

Mahdavi, A., Spasojevi¢, B., and Brunner, K. A. 2005. Elements of a simulation-
assisted daylight-responsive illumination systems control in buildings. In Beausoleil-
Morrison, I. and Bernier, M., editors, Building Simulation 2005: Proceedings of the
Ninth IBPSA Conference, volume 1, pages 693-699

Brunner, K. A. and Mahdavi, A. 2006. Software design for building model servers:
concurrency aspects. In Martinez, M. and Scherer, R., editors, ECPPM 2006 —
eWork and eBusiness in Architecture, Engineering and Construction: Proceedings of
the European Conference on Product and Process Modelling, pages 159-164. Taylor
& Francis

137

References

Adachi, Y. 2002a. Technical overview of IFC model server. VIT-TEC-ADA-11, SECOM Co
Ltd and VTT Building and Transport. URL: http://cic.vtt.fi/projects/ifcsvr/tec/VTT-
TEC-ADA-11.pdf.

Adachi, Y. 2002b. Overview of IFC model server framework. In Turk, 7. and Scherer, R.,
editors, Proceedings of ECPPM 2002: eWork and eBusiness in Architecture, Engineering
and Construction. URL: http://cic.vtt.fi/projects/ifcsvr/.

Atkinson, M., Bancilhon, E, DeWitt, D., Dittrich, K., Maier, D., and Zdonik, S. 1989. The
object-oriented database system manifesto. In Proceedings of the First International
Conference on Deductive and Object-Oriented Databases, pages 223-240, Kyoto, Japan.

Barghouti, N. S. and Kaiser, G. E. 1991. Concurrency control in advanced database
applications. ACM Comput. Surv., 23(3):269-317. doi:10.1145/116873.116875.

Bass, L., Clements, P, and Kazman, R. 2003. Software Architecture in Practice. SEI Series
in Software Engineering. Addison-Wesley, second edition. ISBN 0321154959.

Bender, M. A., Cole, R., Demaine, E. D., Farach-Colton, M., and Zito, J. 2002. Two
simplified algorithms for maintaining order in a list. In Goos, G., Hartmanis, J., and
van Leeuwen, J., editors, Algorithms — ESA 2002: Proceedings of the 10th Annual
European Symposium, number 2461 in Lecture Notes in Computer Science, pages
152-164. Springer.

Berenson, H., Bernstein, P, Gray, J., Melton, J., O'Neil, E., and O’'Neil, P 1995. A
critique of ANSI SQL isolation levels. In SIGMOD ’95: Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, pages 1-10. ACM Press.
doi:10.1145/223784.223785.

Bernstein, P A. and Goodman, N. 1983. Multiversion concurrency control—theory and
algorithms. ACM Trans. Database Syst., 8(4):465-483. doi:10.1145/319996.319998.

138

http://cic.vtt.fi/projects/ifcsvr/tec/VTT-TEC-ADA-11.pdf
http://cic.vtt.fi/projects/ifcsvr/tec/VTT-TEC-ADA-11.pdf
http://cic.vtt.fi/projects/ifcsvr/
http://dx.doi.org/10.1145/116873.116875
http://dx.doi.org/10.1145/223784.223785
http://dx.doi.org/10.1145/319996.319998

References

BLIS Project. SABLE — simple access to the building lifecycle exchange, 2005. URL:
http://www.blis-project.org/ “sable/.

Bober, P M. and Carey, M. J. 1992. Multiversion query locking. In Yuan, L.-Y., editor,
Proceedings of the 18th International Conference on Very Large Data Bases, Vancouver;
Canada, pages 497-510. Morgan Kaufmann.

Briigge, B., Pfleghar, R., and Reicher, T. 1999. OWL: An object-oriented framework for
intelligent home and office applications. In Cooperative Buildings: Integrating Infor-
mation, Organizations and Architecture, number 1670 in Lecture Notes in Computer
Science, pages 114-126. Springer. doi:10.1007/10705432.

Brown, A., Rezgui, Y., Cooper, G., Yip, J., and Brandon, P 1996. Promoting computer
integrated construction through the use of distribution technology. ITcon, 1:51-67.
URL: http://www.itcon.org/1996/3.

Brunner, K. A. and Mahdavi, A. 2005a. A software architecture for self-updating life-
cycle building models. In Martens and Brown (2005), pages 423-432.

Brunner, K. A. and Mahdavi, A. 2005b. The software design of a dynamic building
model service. In Scherer et al. (2005), pages 567-574.

Brunner, K. A. and Mahdavi, A. 2006. Software design for building model servers: con-
currency aspects. In Martinez, M. and Scherer, R., editors, ECPPM 2006 — eWork and
eBusiness in Architecture, Engineering and Construction: Proceedings of the European
Conference on Product and Process Modelling, pages 159-164. Taylor & Francis.

Buschmann, E, Meunier, R., Rohnert, H., Sommerlad, P, and Stal, M. 1996. Pattern-
Oriented Software Architecture: A System Of Patterns. Wiley.

Carey, M. J. and Muhanna, W. A. 1986. The performance of multiver-
sion concurrency control algorithms. ACM Trans. Comput. Syst., 4(4):338-378.
doi:10.1145/6513.6517.

Carriero, N. and Gelernter, D. 1989. Linda in context. Comm. ACM, 32(4):444-458.
doi:10.1145/63334.63337.

Cayci, E, Callaghan, V,, and Clarke, G. 2000. A distributed intelligent building agent
language (DIBAL). In Proceedings of the 6th International Conference on Information
Systems Analysis and Synthesis, Orlando, Florida, 2000.

139

http://www.blis-project.org/~{}sable/
http://dx.doi.org/10.1007/10705432
http://www.itcon.org/1996/3
http://dx.doi.org/10.1145/6513.6517
http://dx.doi.org/10.1145/63334.63337

References

Chan, A., Fox, S., Lin, W.-T. K., Nori, A., and Ries, D. R. 1982. The implementation of
an integrated concurrency control and recovery scheme. In SIGMOD ’82: Proceedings
of the 1982 ACM SIGMOD International Conference on Management of Data, pages
184-191. ACM Press. do0i:10.1145/582353.582386.

Citherlet, S. and Hand, J. 2002. Assessing energy, lighting, room acoustics, occupant
comfort and environmental impacts performance of building with a single simula-
tion program. Building and Environment, 37(8-9):845-856. doi:10.1016/S0360-
1323(02)00044-6.

Clarke, J. A., Cockroft, J., Conner, S., Hand, J. W,, Kelly, N. J., Moore, R., O'Brien, T,
and Strachan, P 2001. Control in building energy management systems: the role of
simulation. In Lamberts, R. et al., editors, Building Simulation ’01: Proceedings of the
Seventh International IBPSA Conference, volume 1, pages 99-106.

Dahl, H. K. EDMserver course slides. EPM Technology, Oslo, 2005.

Davidsson, P and Boman, M. 2005. Distributed monitoring and control of
office buildings by embedded agents. Information Sciences, 171(4):293-307.
doi:10.1016/j.ins.2004.09.007.

DeMichiel, L., editor. 2003. Enterprise Java Beans Specification, Version 2.1. Sun Mi-

crosystems.

DeMichiel, L. and Keith, M., editors. 2006. JSR 220: Enterprise Java Beans, Version 3.0:
Simplified API. Sun Microsystems.

Dietz, P and Sleator, D. 1987. Two algorithms for maintaining order in a list. In STOC
'87: Proceedings of the 19th Annual ACM Conference on Theory of Computing, pages
365-372. ACM Press. doi:10.1145/28395.28434.

Dyreson, C. et al. 1994. A consensus glossary of temporal database concepts. SIGMOD
Rec., 23(1):52-64. d0i:10.1145/181550.181560.

Eastman, C. M. 1999. Building Product Models : Computer Environments Supporting
Design and Construction. CRC Press. ISBN 0-8493-0259-5.

EPM Technology, 2005. URL: http://www.epmtech.jotne.com/.

140

http://dx.doi.org/10.1145/582353.582386
http://dx.doi.org/10.1016/S0360-1323(02)00044-6
http://dx.doi.org/10.1016/S0360-1323(02)00044-6
http://dx.doi.org/10.1016/j.ins.2004.09.007
http://dx.doi.org/10.1145/28395.28434
http://dx.doi.org/10.1145/181550.181560
http://www.epmtech.jotne.com/

References

Eswaran, K. P, Gray, J. N., Lorie, R. A., and Traiger, I. L. 1976. The notions of con-
sistency and predicate locks in a database system. Comm. ACM, 19(11):624-633.
doi:10.1145/360363.360369.

Eurostep. ModelServer for IFC. Flyer, 2003. URL: http://ems.eurostep.fi/emsdoc/.

Faraja, 1., Alshawi, M., Aouad, G., Child, T., and Underwood, J. 2000. An industry foun-
dation classes web-based collaborative construction computer environment: WISPER.
Automation in Construction, 10(1):79-99. doi:10.1016/50926-5805(99)00038-2.

Fekete, A., Liarokapis, D., O’Neil, E., O'Neil, P, and Shasha, D. 2005. Mak-
ing snapshot isolation serializable. ACM Trans. Database Syst., 30(2):492-528.
doi:10.1145/1071610.1071615.

Finch, E. 2001. Is IP everywhere the way ahead for building automation? Facilities, 19
(11):396-403. d0i:10.1108/02632770110403365.

Freeman, E., Arnold, K., and Hupfer, S. 1999. JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley Longman Ltd., Essex. ISBN 0201309556.

Garcia-Molina, H. and Salem, K. 1992. Main memory database systems: an
overview. IEEE Transactions on Knowledge and Data Engineering, 4(6):509-516.
doi:10.1109/69.180602.

Goetz, B. September 2005. Java theory and practice: Urban per-
formance legends, revisited. IBM DeveloperWorks. URL: http://www-
128.ibm.com/developerworks/java/library/j-jtp09275.html.

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., and Lea, D. 2006. Java
Concurrency in Practice. Addison-Wesley.

Greene, R. 2006. OODBMS architectures: An examination of implementations. White
Paper 028.01, ODBMS.ORG. URL: http://www.odbms.org/.

Guillemin, A. and Morel, N. 2001. An innovative lighting controller integrated
in a self-adaptive building control system. Energy and Buildings, 33(5):477-487.
doi:10.1016/S0378-7788(00)00100-6.

Hapner, M., Burridge, R., Sharma, R., Fialli, J., and Stout, K. 2002. Java Message Service

Specification, Version 1.1. Sun Microsystems.

141

http://dx.doi.org/10.1145/360363.360369
http://ems.eurostep.fi/emsdoc/
http://dx.doi.org/10.1016/S0926-5805(99)00038-2
http://dx.doi.org/10.1145/1071610.1071615
http://dx.doi.org/10.1108/02632770110403365
http://dx.doi.org/10.1109/69.180602
http://www-128.ibm.com/developerworks/java/library/j-jtp09275.html
http://www-128.ibm.com/developerworks/java/library/j-jtp09275.html
http://www.odbms.org/
http://dx.doi.org/10.1016/S0378-7788(00)00100-6

References

Hassanain, M. A., Froese, T., and Vanier, D. 2003. Implementation of a dis-
tributed, model-based integrated asset management system. ITcon, 8:119-134. URL:
http://www.itcon.org/2003/10.

Hemio6, T. and Noack, R. 2002. EMS developer guide. Technical report, Eurostep. URL:
http://ems.eurostep.fi/emsdoc/.

Herlihyy, M. P and Wing, J. M. 1990. Linearizability: a correctness condi-
tion for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463-492.
doi:10.1145/78969.78972.

Hohpe, G. and Woolf, B. 2003. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley. ISBN 0-321-20068-3.

Icoglu, O. 2006. A Vision-based Sensing System for Sentient Building Models. PhD thesis,
Vienna University of Technology, Austria.

Icoglu, O. and Mahdavi, A. 2005. A vision-based sensing system for sentient building
models. In Scherer et al. (2005), pages 559-566.

Icoglu, O., Brunner, K. A., Mahdavi, A., and Suter, G. 2004. A distributed location
sensing platform for dynamic building models. In Ambient Intelligence: Proceedings of
the Second European Symposium, number 3295 in Lecture Notes in Computer Science,
pages 124-135. Springer-Verlag. doi:10.1007/b102265.

International Alliance for Interoperability. Industry Foundation Classes — release 2x:
IFC Technical Guide, Oct 2000.

International Alliance for Interoperability. Industry Foundation Classes: IFC 2x edition
3, 2006. URL: http://www.iai-international.org/.

Jensen, C. S. and Snodgrass, R. T. 1999. Temporal data management. [EEE Transactions
on Knowledge and Data Engineering, 11(1):36-44. do0i:10.1109/69.755613.

Kastner, W,, Neugschwandtner, G., Soucek, S., and Newman, H. 2005. Communication
systems for building automation and control. Proceedings of the IEEE, 93(6):1178-
1203. doi:10.1109/JPROC.2005.849726.

Kiviniemi, A., Fischer, M., and Bazjanac, V. 2005. Integration of multiple product

models: IFC model servers as a potential solution. In Scherer et al. (2005).

142

http://www.itcon.org/2003/10
http://ems.eurostep.fi/emsdoc/
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1007/b102265
http://www.iai-international.org/
http://dx.doi.org/10.1109/69.755613
http://dx.doi.org/10.1109/JPROC.2005.849726

References

Kung, H. T. and Robinson, J. T. 1981. On optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213-226. do0i:10.1145/319566.319567.

Lam, K. P, Mahdavi, A., Brahme, R., Kang, Z., Ilal, M. E., Wong, N. H., Gupta, S.,
and Au, K. S. 2001. Distributed web-based building performance computing: a
Singapore-US collaborative effort. In Lamberts, R. et al., editors, Building Simulation
'01: Proceedings of the Seventh International IBPSA Conference, volume 2, pages 807-
814.

Lange, D. B. and Oshima, M. 1999. Seven good reasons for mobile agents. Comm.
ACM, 42(3):88-89. do0i:10.1145/295685.298136.

Schnittstelle BMS (BMS v2.3). Luxmate Controls, Dornbirn, Austria, 2001.

Mahdavi, A. 1997. Toward a simulation-assisted dynamic building control strategy. In
Spitler, J. D. and Hensen, J. L. M., editors, Building Simulation 97: Proceedings of the
Fifth International IBPSA Conference, volume 1, pages 291-294.

Mahdavi, A. 2001. Simulation-based control of building systems operation. Building
and Environment, 36(6):789-796. d0i:10.1016/S0360-1323(00)00065-2.

Mahdavi, A. 2004. Self-organizing models for sentient buildings. In Malkawi, A. M. and
Augenbroe, G., editors, Advanced Building Simulation, pages 159-188. Spon Press.

Mahdavi, A. and Spasojevi¢, B. 2006. An energy-efficient simulation-assisted lighting
control system for buildings. In Proceedings of PLEA 2006 — The 23rd Conference on
Passive and Low Energy Architecture, Geneva, Switzerland, volume 1, pages 565-570.

Mahdavi, A., Brahme, R., Kumar, S., Liu, G., Mathew, P, Ries, R., and Wong, N. H. 1996.
On the structure and elements of SEMPER. In McIntosh, P and Ozel, E, editors, Design
Computation: Collaboration, Reasoning, Pedagogy. Proceedings of the 1996 ACADIA
(Association for Computer Aided Design in Architecture) Conference, pages 71-84.

Mahdavi, A., Ilal, M. E., Mathew, P, Ries, R., Suter, G., and Brahme, R. 1999. The
architecture of S2. In Nakahara, N. et al., editors, Building Simulation '99: Proceedings
of the Sixth International IBPSA Conference, volume 3, pages 1219-1226.

Mahdavi, A., Suter, G., and Ries, R. 2002. A representation scheme for integrated build-
ing performance analysis. In Proceedings of the 6th International Conference on Design
and Decision Support Systems in Architecture, pages 301-316. Ed H. Timmermans.

143

http://dx.doi.org/10.1145/319566.319567
http://dx.doi.org/10.1145/295685.298136
http://dx.doi.org/10.1016/S0360-1323(00)00065-2

References

Mahdavi, A., Spasojevi¢, B., and Brunner, K. A. 2005. Elements of a simulation-assisted
daylight-responsive illumination systems control in buildings. In Beausoleil-Morrison,
I. and Bernier, M., editors, Building Simulation 2005: Proceedings of the Ninth IBPSA
Conference, volume 1, pages 693-699.

Martens, B. and Brown, A., editors. 2005. Computer Aided Architectural Design Futures
2005 : Proceedings of the 11th International CAAD Futures Conference, Vienna, Austria.
Springer, Dordrecht. ISBN 1-4020-3460-1.

Building Information Models - Overview. National BIM
Standard Project Committee, November 2006. URL:

http:/ /www.facilityinformationcouncil.org/bim/publications.php.
Neumann, P G. 1995. Computer-Related Risks. Addison-Wesley. ISBN 020155805X.

Objectivity Inc. 2006. Objectivity technical overview: Release 9. Technical Report
9-0OTO-0.

O’Sullivan, D. T.,, Keane, M. M., Kelliher, D., and Hitchcock, R. J. 2004.
Improving building operation by tracking performance metrics throughout
the building lifecycle (BLC). Energy and Buildings, 36(11):1075-1090.
doi:10.1016/j.enbuild.2004.03.003.

Papadimitriou, C. H. 1979. The serializability of concurrent database updates. J. ACM,
26(4):631-653. doi:10.1145/322154.322158.

Pargfrieder, J. and Jorgl, H. 2002. An integrated control system for optimizing the
energy consumption and user comfort in buildings. In Proceedings of the 2002 IEEE
International Symposium on Computer Aided Control System Design, pages 127-132.
doi:10.1109/CACSD.2002.1036941.

Paton, N. W. and Diaz, O. 1999. Active database systems. ACM Comput. Surv., 31(1):
63-103. do0i:10.1145/311531.311623.

Philippsen, M., Haumacher, B., and Nester, C. 2000. More efficient serializa-
tion and RMI for Java. Concurrency: Practice and Experience, 12(7):495-518.
doi:10.1002/1096-9128(200005)12:7<495::AID-CPE496>3.0.CO;2-W.

PostgreSQL 8.2 Documentation. PostgreSQL Global Development Group, 2006. URL:
http://www.postgresql.org/docs/8.2/static/.

144

http://www.facilityinformationcouncil.org/bim/publications.php
http://dx.doi.org/10.1016/j.enbuild.2004.03.003
http://dx.doi.org/10.1145/322154.322158
http://dx.doi.org/10.1109/CACSD.2002.1036941
http://dx.doi.org/10.1145/311531.311623
http://dx.doi.org/10.1002/1096-9128(200005)12:7<495::AID-CPE496>3.0.CO;2-W
http://www.postgresql.org/docs/8.2/static/

References

Rawlings, J. 2000. Tutorial overview of model predictive control. IEEE Control Systems
Magagine, 20(3):38-52. do0i:10.1109/37.845037.

Reed, D. P 1978. Naming and Synchronization in a Decentralized Computer System. PhD

thesis, Massachusetts Institute of Technology.

Reed, D. P 1983. Implementing atomic actions on decentralized data. ACM Trans.
Comput. Syst., 1(1):3-23. do0i:10.1145/357353.357355.

Rindel, J. H. 2000. The use of computer modeling in room acoustics. J. Vibroengineer-
ing, 3(4):219-224.

Salzberg, B. and Tsotras, V. J. 1999. Comparison of access methods for time-evolving
data. ACM Comput. Surv., 31(2):158-221. do0i:10.1145/319806.319816.

Scherer, R. et al. 2003. Integriertes Client-Server-System fiir das virtuelle Bauteam:
Gemeinsamer Abschlussbericht. Technical report, TU Dresden, Lehrstuhl fiir Com-

puteranwendung im Bauwesen.

Scherer, R. J., Katranuschkov, P, and Schapke, S.-E., editors. 2005. Proceedings of the
22nd CIB W78 Conference on Information Technology in Construction, Dresden. ISBN
3-86005-478-3.

Schmidt, D. C., Mungee, S., Flores-Gaitan, S., and Gokhale, A. 2001. Software architec-
tures for reducing priority inversion and non-determinism in real-time object request
brokers. Real-Time Systems, 21:77-125. doi:10.1023/A:1011195304563.

Sethi, R. 1982. Useless actions make a difference: Strict serializability of database
updates. J. ACM, 29(2):394-403. doi:10.1145/322307.322314.

Sharples, S., Callaghan, V, and Clarke, G. 1999. A multi-agent architecture for in-
telligent building sensing and control. International Sensor Review Journal, 19(2):
135-140. URL: http://iieg.essex.ac.uk/papers/multiagent.pdf.

Silberschatz, A. and Kedem, Z. 1980. Consistency in hierarchical database systems. J.
ACM, 27(1):72-80. do0i:10.1145/322169.322176.

Spasojevi¢, B. and Mahdavi, A. 2005. Sky luminance mapping for computational day-
light modeling. In Beausoleil-Morrison, I. and Bernier, M., editors, Building Simula-
tion 2005: Proceedings of the Ninth IBPSA Conference, volume 3, pages 1163-1170.

145

http://dx.doi.org/10.1109/37.845037
http://dx.doi.org/10.1145/357353.357355
http://dx.doi.org/10.1145/319806.319816
http://dx.doi.org/10.1023/A:1011195304563
http://dx.doi.org/10.1145/322307.322314
http://iieg.essex.ac.uk/papers/multiagent.pdf
http://dx.doi.org/10.1145/322169.322176

References

Java 2 Platform Standard Edition 5.0 API Specification. Sun Microsystems, 2004.

Suter, G., Brunner, K., and Mahdavi, A. 2005. Spatial reasoning for building model
reconstruction based on sensed object location information. In Martens and Brown
(2005), pages 403—-412.

Tschantz, M. S. and Ernst, M. D. 2005. Javari: adding reference immutability to Java.
In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object
Oriented Programming, Systems, Languages, and Applications, pages 211-230. ACM
Press. doi:10.1145/1094811.1094828.

Venners, B. Designing distributed systems: A conversation with Ken Arnold. Artima
Developer, October 2002. URL: http://www.artima.com/intv/distrib.html.

Ward, G. J. 1994. The RADIANCE lighting simulation and rendering system. In SIG-
GRAPH ’94: Proceedings of the 21st Annual Conference on Computer Graphics and In-
teractive Techniques, pages 459—472. ACM Press. doi:10.1145/192161.192286.

Weiser, M. 1991. The computer for the 21st century. Scientific American, 265(3):66-75.

Zhu, Y. and Weng, R. aecXML framework. aecXML Technical Committee, 2001. URL:

http://www.iai-na.org/aecxml/.

146

http://dx.doi.org/10.1145/1094811.1094828
http://www.artima.com/intv/distrib.html
http://dx.doi.org/10.1145/192161.192286
http://www.iai-na.org/aecxml/

8 Appendix

8.1 The Luxmate BMS Interface

Luxmate BMS is a proprietary interface for the control and monitoring of various lighting-
related devices, such as light fixtures and motorised shading, and HVAC devices (Lux
2001). A Luxmate system consists of devices that accept commands (e.g. dimming
modules, light sensors), devices that send commands (input modules, control modules)
and a communication bus (LM-Bus). A typical small-scale setup would consist of a
number of lighting devices in a room connected to an input module and a small con-
trol pad with a touch-screen display. Various configurations of the devices can be pre-
programmed on the control device and invoked later on. Configurations may include a
presentation configuration with dimmed lights and closed blinds, a work configuration
with opened blinds, active fluorescent lights and additional workplace lights, or a party
configuration with only halogen lamps switched on to create a ‘warm’ ambience.
Additionally, a hardware interface module is available to control the connected de-
vices from outside the Luxmate system through a 9600 bps RS232C serial connection®.
The interface accepts simple ASCII command strings to address devices and set and get
their specific values, such as a dimming level or blind positions. Responses are also
returned as ASCII strings. A sample conversation between a client and the Luxmate

system looks as follows:

> TLR1R2B6T27?
< TLR1R2B6T2S1W130EO0

This sequence shows a client asking for the current state of a light fixture addressed
as bus 1, room 2, device 6. Specifically, the device’s value for type 2 (light intensity) is
requested. The light fixture responds with its address followed by its current ambience
setting (“Stimmung”) 1 and the requested intensity value, in this case, 130 (on a scale

ranging from 0 to 255).

A TCP/IP-connected module exists as well, but requires an additional computer dedicated to Luxmate
control and was therefore not used in our work.

147

8 Appendix

The interface is very limited in its scalability, partly due to the slow serial connec-
tion, partly due to the Luxmate BMS protocol’s design. Integration with the Java en-
vironment was achieved by implementing a functionality subset based on the protocol
specification, using Sun Microsystems’s Java Communications API to access the serial

interface.

8.2 The RADIANCE Lighting Simulation System

The lighting simulation software RADIANCE (Ward 1994) provides physically accurate
lighting simulation for model descriptions provided in a simple text format. While it is
typically used for rendering photorealistic images, it can also provide numeric output
to determine illuminance values for given coordinates.

CAD rtrace Values
CAD
Drawing Converter (text)
\\,—Scene—\
Scene B

CAL
Functions
(text)
Manual input iew p———

Interactive view

Generators Description oconv Octree rpict
(text) (binary) Image
J =

Figure 8.1: RADIANCE components and the data flows between them.

Following the typical “toolbox” architecture of UNIX-based software, RADIANCE com-
prises a collection of specialised programs that are connected in a pipes-and-filters com-
bination to achieve the desired results (Figure 8.1). Scenes are described in a textual
format in terms of geometry and material properties. A simple functional language can
be used to model complex patterns of geometry and physical properties such as colour
or luminance.

The scenes are converted to a proprietary octree file format, which can be used as
input for programs that either provide rendered images (rpict, rview) or calculated
values for a set of points and vectors (rtrace). The latter is particularly suitable for

148

8 Appendix

simulation-based lighting control, where illuminance values for a given area of interest
must be calculated.

Integration with the Java environment was achieved by spawning the various RA-
DIANCE processes from a Java adapter, feeding all input data through the spawned
processes’ standard input streams and receiving all output data from their standard

output streams.

149

	Acknowledgements
	Introduction
	Motivation
	Simulation-Based Control
	Other Uses

	Research Statement and Thesis Overview

	Background
	Building Communication Systems
	Building Automation and Control Systems
	Pervasive and Ubiquitous Computing
	From Product Models to Building Information Models
	Building Product Models
	Building Model Servers

	Chapter Summary

	Specification
	System Environment
	Functional Requirements
	Core Functionality
	Interface to the Building Systems
	Interface to Applications

	Quality Attributes
	Performance, Scalability
	Availability
	Adaptability and Portability
	Modifiability

	Non-Requirements
	Security
	Multi-model Support

	Chapter Summary

	System Architecture and Design
	Overview and Context
	Some Architectural Considerations
	Base Technology
	Distribution
	Centralised versus Distributed Model
	The Model is the Interface
	Avoiding State
	Interface Design
	Component Design: Reference Isolation
	Loose Coupling Through Messaging

	A Top-level Decomposition
	Distribution

	Building Data Interface
	General Considerations on Data Flows
	Design

	Application Interface
	Agents

	Messaging Facility
	Issues in Intraprocess Communications

	General Facilities
	Runtime-Changeable Code
	Component Registry
	Management and Development

	Chapter Summary
	Requirements Overview

	The Model as a Temporal Database
	Building Model
	Handling Concurrent Model Access
	Correctness Criteria
	Design
	Multiversion Methods
	Multiversion Transaction Ordering
	Performance Evaluation

	Temporal Ordering of Data
	Terminology
	Time Travel: Reconstructing Model Snapshots
	Delay
	Ordering
	Requirements Summary and Solution Approach
	Implementation Options
	Implementation

	Application Interface
	Object Creation and Destruction
	Notifications

	Persistent Storage
	Serialization and Deserialization: Managing Object References
	Storage Format
	Performance

	Related Work: OODBMS
	Chapter Summary

	System Application: A Simulation-Based Lighting Control System
	System Overview
	Application: Control Cycle

	Conclusion
	Contributions
	Further Work
	Constraint Enforcement
	Security
	Support for Multiple Models and Merging
	Model Navigation Support
	Distribution and Replication

	Publications

	References
	Appendix
	The Luxmate BMS Interface
	The RADIANCE Lighting Simulation System

