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Abstract

Micromagnetism is a continuum theory to describe magnetization processes on

a characteristic length scale of several atomic distances. For realistic geome-

tries the micromagnetic equations have to be solved numerically. Therefore,

the magnetic material is subdivided into smaller computational cells. To re-

solve domain walls or high frequency spin waves the computational cell size

has to be in the order of a few nanometers. Then, the temperature depen-

dent intrinsic magnetic properties which have to be assigned to the magnetic

moment of each cell also depend on the number of atoms within a cell. As a

consequence, the intrinsic material parameters have to be scaled accordingly

to find cell size independent results of micromagnetic simulations at nonzero-

temperatures.

In this thesis, a coarse-graining procedure for the material parameters is

suggested. Scaling laws for the spontaneous magnetization, the anisotropy

constant, and the exchange constant are calculated by Metropolis Monte Carlo

simulations of atomistic exchange coupled Heisenberg spins in the classical

approximation. Bloch-like scaling laws for the spontaneous magnetization are

found for simple cubic, body-centered cubic, and face-centered cubic lattices.

The cell size dependent intrinsic magnetic parameters are used for non-

atomistic Monte Carlo and Langevin simulations. The method is successfully

applied for both simulations of equilibrium properties and simulations of ther-

mally driven magnetization reversal processes. It is shown that a proper scal-

ing of the material parameters leads to numerical results which are almost

independent of the computational cell size.
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Kurzfassung

Als Kontinuumstheorie beschreibt der Mikromagnetismus magnetische

Prozesse auf einer Längenskala von einigen Atomdurchmessern. Die mikro-

magnetischen Gleichungen müssen für realistische Geometrien numerisch

gelöst werden. Dazu ist eine Diskretisierung des magnetischen Materials in

kleine Volumina notwendig. Um Domänenwände oder hochfrequente Spin-

wellen auflösen zu können, müssen Diskretisierungslängen im Nanometerbe-

reich verwendet werden. Die intrinsischen magnetischen Materialparameter,

die jedem Diskretisierungsvolumen zugeordnet werden, hängen dann nicht nur

von der Temperatur, sondern auch von der Zahl der Atome innerhalb dieser

Volumina ab. Damit ist eine entsprechende Skalierung der Materialparameter

unumgänglich, um diskretisierungsunabhängige Resultate mit mikromagnet-

ischen Simulationen bei endlichen Temperaturen zu erzielen.

In dieser Arbeit wird eine Methode präsentiert, die die Abhängigkeit der

magnetischen Parameter von der Diskretisierungslänge beschreibt. Mit Hilfe

von Metropolis-Monte-Carlo-Simulationen von austauschgekoppelten klassi-

schen Heisenbergspins auf atomarer Ebene werden Skalierungsgesetze für die

spontane Magnetisierung, die magnetokristalline Anisotropiekonstante und die

Austauschkonstante abgeleitet. Die Simulationsergebnisse zeigen, dass sich die

spontane Magnetisierung als Funktion der Diskretisierungslänge für einfach ku-

bische, raumzentriert kubische und flächenzentriert kubische Gitter mit einem

dem Blochschen Gesetz für die Temperaturabhängigkeit ähnlichen Skalierungs-

gesetz beschreiben lässt.

Die skalierten intrinsischen Materialparameter werden für nichtatomare

Monte-Carlo- und Langevin-Simulationen verwendet. Die vorgestellte Metho-

de erweist sich sowohl bei Berechnungen von Gleichgewichtsgrößen als auch bei

Simulationen von Ummagnetisierungsprozessen aufgrund thermischer Fluk-

tuationen als erfolgreich. Die Ergebnisse zeigen, dass die skalierten Material-

parameter zu numerischen Resultaten führen, deren Abhängigkeit von der

Größe der Diskretisierungsvolumina vernachlässigbar ist.



Wenn jemand sucht, dann geschieht es leicht, daß sein

Auge nur noch das Ding sieht, das er sucht, daß er

nichts zu finden, nichts in sich einzulassen vermag, weil

er nur an das Gesuchte denkt, weil er ein Ziel hat, weil

er vom Ziel besessen ist. Finden aber heißt: frei sein,

offen stehen, kein Ziel haben.

Hermann Hesse
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Conventions and Nomenclature

Although Gaussian (or cgs) units are widespread in the scientific community

of magnetism, we exclusively use SI units (Système International d’Unités) in

the entire thesis with the definition of the magnetic induction (in T)

B = µ0(H + M) = µ0H + J . (1)

H denotes the magnetic field (in A/m), J the magnetic polarization (in T),

M the magnetization (in A/m), and µ0 the permeability of free space. In this

work, both, the polarization J = µ0M and the magnetization M are used.

Variables in calligraphic style indicate quantum mechanical operators

(e.g. the Hamiltonian H), whereas bold letters represent vectors. Greek in-

dices (always superscripts) will be consistently used to label atomistic lattice

sites or nodes in the continuum model, respectively. Einstein’s summation

convention is used only for Latin indices (always subscripts), which indicate

the Cartesian components.

In the following, important variables and symbols together with their

units are given. Useful constants are listed at the end of this chapter (taken

from Ref. [37]).

9
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Important Variables and Symbols

a [m] Edge length of cubic atomistic unit cells

a [1] Unit vector parallel to the easy axis

A [J/m] Exchange constant

A0 [J/m] Exchange constant at an atomistic level

Acell [J/m] Cell size dependent exchange constant

B [T] Magnetic induction or flux density

c [1] Number of atoms in the cubic atomistic unit cell

D [A2 s/m2] Strength of thermal field

E [J] Total energy

Eexch [J] Exchange energy

Eani [J] Anisotropy energy

Estray [J] Strayfield energy

Eext [J] Zeeman energy

gL [1] Landé factor or spectroscopic splitting factor

H [A/m] Magnetic field

Hani [A/m] Anisotropy field

Heff [A/m] Effective field

Hexch [A/m] Exchange field

Hext [A/m] External field

Hstray [A/m] Strayfield or Dipole field

H th [A/m] Thermal field

J [J] Exchange integral

JS [T] Spontaneous polarization

JS,0 [T] Spontaneous polarization at zero temperature

JS,cell [T] Cell size dependent spontaneous polarization

JS,∞ [T] Spontaneous polarization for large cells

J [T] Magnetic polarization
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K1 [J/m3] Uniaxial anisotropy constant

K1,0 [J/m3] Uniaxial anisotropy constant at an atomistic level

K1,cell [J/m3] Cell size dependent uniaxial anisotropy constant

K1,∞ [J/m3] Uniaxial anisotropy constant for large cells

lexch [m] Exchange length

lthex [m] Thermal exchange length

m [Am2] Magnetic moment

MS [A/m] Spontaneous magnetization

MS,0 [A/m] Spontaneous magnetization at zero temperature

MS,cell [A/m] Cell size dependent spontaneous magnetization

MS,∞ [A/m] Spontaneous magnetization for large cells

M [A/m] Magnetization

n, N [1] Number of atoms or magnetic moments

q [1] Exponent in the scaling law for MS,cell

r [m] Position vector

S [1] Modulus of S

S [1] Classical total angular momentum

t [s] Time

T [K] Temperature

TC [K] Curie temperature

T mf
C [K] Mean field critical temperature

u [1] Unit vector of the magnetization or the total angular

momentum, respectively

v [m3] Volume

vat [m3] Volume per atomistic spin (volume of primitive unit cell)

V [m3] Total volume of a magnetic body

x̂ [1] Unit vector in +x-direction

ŷ [1] Unit vector in +y-direction
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z [1] Number of nearest neighbors

ẑ [1] Unit vector in +z-direction

α [1] Damping constant in Langevin dynamics

β [1/J] β = (kBT )−1

γ [m/As] Gyromagnetic ratio

γ′ [m/As] γ′ = γ/(1 + α2)

ε [J/m3] Energy density

εani [J/m3] Energy density of magnetocrystalline anisotropy

εexch [J/m3] Energy density of exchange interaction

εext [J/m3] Energy density of Zeeman interaction

εstray [J/m3] Energy density of strayfield interaction

∆t [s] Time step

∆x [m] Spatial discretization in x-direction

∆xat [m] Edge length of a cube with v = vat

∆y [m] Spatial discretization in y-direction

∆z [m] Spatial discretization in z-direction

Constants

e = −1.6022 · 10−19 C Electron charge

~ = 1.0545 · 10−34 Js Planck constant

kB = 1.3806 · 10−23 J/K Boltzmann constant

me = 9.1094 · 10−31 kg Electron mass

µ0 = 4π · 10−7 Vs/Am Permeability of free space

µB = 9.2740 · 10−24 J/T Bohr magneton (Ampère’s definition)



Chapter 1

Introduction

The development and application of modern magnetic materials with specific

magnetic properties require a basic understanding of the underlying physics.

The theory of micromagnetics relates the microscopic magnetization distribu-

tion to the physical and chemical microstructure of a magnetic material and

has turned out to be a proper and efficient way of describing and predicting

the static and dynamic properties. Recently, micromagnetic modeling has be-

come an important tool to characterize the magnetic behavior of such different

magnetic systems as thin film heads, recording media, patterned magnetic ele-

ments, and nanocrystalline permanent magnets. Micromagnetism highly pro-

motes the design of new materials, where a detailed knowledge of the magnetic

response to external fields and temperature as function of time is essential.

A typical field where micromagnetic simulations help research and develop-

ment greatly is magnetic recording. Nowadays, information in commercial hard

disks is stored by aligning the magnetization of grains parallel to the surface

(longitudinal recording). The areal density (in bits/in2) defines the amount

of information, which can be stored on a given area of a hard disk and is al-

most doubled every year. However, the superparamagnetic limit determines

an upper bound for the areal density. In the year 1997, Charap et al. quoted

a limit of about 40 GBits/in2 [13]. New methods like antiferromagnetically-

coupled (AFC) media have been developed and allow higher areal densities in

13



CHAPTER 1. INTRODUCTION 14

longitudinal recording [23]. In perpendicular recording, where the magnetiza-

tion of each bit is perpendicular to the surface, much higher areal densities

can be achieved. This technology lead to the world record in areal density of

230 GBits/in2 [32] in spring 2005.

Numerical micromagnetics is a suitable method to treat magnetization dy-

namics on the nanometer scale. A description of the magnetization in the

framework of a continuum approach goes back to Landau and Lifshitz [39].

The continuum theory of micromagnetics assumes the magnetization to be

a continuous function of space, M(r), and allows for the calculation of the

magnetization configuration on a mesoscopic length scale. Brown used the

continuum expression for the Gibbs free energy of a ferromagnetic body to

calculate the critical external field at which the magnetization of a uniform

body becomes unstable [11]. The variation of the total Gibbs free energy

shows that the equilibrium magnetization is parallel to a total effective field.

The Landau-Lifshitz-Gilbert (LLG) equation describes the time evolution of

the magnetization in the effective field and is the basis for many micromagnetic

simulations.

Most such simulations have been performed at zero temperature. How-

ever, the decreasing dimensions of magnetic devices make the use of nonzero-

temperature micromagnetics essential. Heinonen and Cho [30] investigated

thermal magnetic noise in TMR (tunneling magnetoresistance) sensors and

claim that thermal magnetic noise becomes essential as device sizes shrink.

Since the noise contains important information about the performance and

stability of the sensors, a stochastic description is highly required. Weller and

Moser [61] showed that magnetization reversal due to thermal fluctuations has

become important in magnetic recording and calls for temperature dependent

simulations.

Brown [12] added a stochastic, thermal field to the effective field in the

LLG equation allowing for stochastic simulations. The thermal field describes

the interaction of the magnetization with the microscopic degrees of freedom

and ensures that the system finally achieves the stationary Boltzmann dis-
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tribution. The strength of the thermal field, derived via the Fokker-Planck

equation, is strictly speaking only valid for noninteracting magnetic moments.

However, for small fluctuations around equilibrium, Chubykalo et al. [15] and

also Lyberatos et al. [40] showed that it is still valid for interacting moments.

To solve a micromagnetic problem numerically, it is necessary to use a

discretization of space. The finite difference method is a possibility to simu-

late magnetization processes in regularly shaped elements [50]. For arbitrar-

ily shaped magnetic bodies the finite element method is more suitable [22].

Normally, the intrinsic magnetic parameters of materials in micromagnetics,

such as the spontaneous magnetization and the magneto-crystalline anisotropy

constant, are supposed to be independent of the computational cell size. This

common assumption is valid only if the computational cell contains enough

atomistic spins to justify the use of statistics and the laws of thermodynam-

ics [8]. Then, one can use the experimentally measured, only temperature

dependent values for the material parameters. However, in order to resolve

domain walls or high frequency spin waves the computational cell size has to

be small. Then the intrinsic magnetic properties which have to be assigned

to the magnetic moment of each cell depend both on temperature and on the

number of atoms within the cell. As a consequence, the intrinsic magnetic

properties have to be scaled accordingly if the number of atoms within a com-

putational cell becomes too small (less than about 20 000 atoms per cell or

10 nm cell size). For instance, Fig. 1.1 depicts the situation for the spon-

taneous magnetization, which decreases with increasing discretization length

and finally approaches the experimental value MS,∞. Between the atomistic

level and the thermodynamic region the use of cell size-independent parame-

ters leads to wrong numerical results even at temperatures far below the Curie

temperature TC. Several groups, for instance Tsiantos et al. [57] or Feng and

Visscher [21] reported on cell size dependencies in nonzero-temperature micro-

magnetics when cell size independent parameters are used. The knowledge of

temperature- and cell size-dependent corrections of the system parameters has

become crucial, since Igarashi et al. pointed out that small computational cells
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  2a ... 10 nm

8 ... 20 000 1

a a

      > 20 000

      > 10 nm          Discretization length

      Atoms in comp. cell

    Spont. magnetization

Figure 1.1: Number of atoms in the computational cell and the required
spontaneous magnetization MS for micromagnetic simulations as function of
the discretization length. a denotes the atomistic lattice constant and MS,0

the spontaneous magnetization at zero temperature, MS(T = 0). A cell size-
independent spontaneous magnetization MS,∞ is valid only for large compu-
tational cells. Between the atomistic level with MS,0 and the thermodynamic
region with MS,∞, the spontaneous magnetization MS,cell depends on the cell
size.

are necessary to find correct results due to the importance of high-frequency

spin waves [35].

Dobrovitski et al. faced the problem of cell size dependencies by applying

the ideas of coarse graining [18, 19]. Starting at an atomistic level, they intro-

duced large-scale variables as averages of the atomistic parameters by using

appropriate weighting functions. However, the proper choice of the weighting

functions is mathematically expensive even for simple one-dimensional sys-

tems. It is not clear, how their method can be applied to more complex

systems.

Grinstein and Koch suggested a mathematical coarse-graining method to

describe systems near the Curie point [27]. They pointed out that the ef-

fective exchange constant of the system undergoes a temperature-dependent

renormalization. The basic assumption in continuum micromagnetics that the

angle between neighboring moments have to be small is, however, violated near

TC.

In this work, we propose an approximate coarse-graining procedure. We

suggest to use the experimentally measured, only temperature dependent ma-

terial parameters for large computational cells and apply corrections to these
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Acell

K1,cell

S,cellM

1,0K

A0

MS,0

∆x = a ∆x = na

averaging
cube

graining

coarse−

Figure 1.2: Illustration of the coarse-graining procedure. ∆x denotes the
discretization length, a the atomistic lattice constant. Starting with MC sim-
ulations at an atomistic level (left hand side) with the so-defined parameters
MS,0, K1,0, and A0, the cell size dependent values MS,cell, K1,cell, and Acell can
be extracted. The cell size dependent material parameters are then used for
non-atomistic simulations (right hand side).

parameters at least if the computational cell size approaches the exchange

length [57]. We perform atomistic and non-atomistic Monte Carlo (MC) simu-

lations of exchange-coupled anisotropic Heisenberg spins at finite temperatures

and extract a cell size dependent spontaneous magnetization MS,cell, anisotropy

constant K1,cell, and exchange constant Acell after equilibration, see Fig. 1.2.

The so-obtained material parameters can then be used for any kind of non-

atomistic stochastic LLG and MC simulations. We will show that our method

can be applied successfully for both, simulations of equilibrium properties and

simulations of thermally driven magnetization reversal processes.

The combination of MC calculations at an atomistic level and non-atomistic

stochastic LLG simulations proposed in this thesis is an easy way to treat

coarse-graining in micromagnetics. The method is applicable for a variety of

micromagnetic problems, such as the calculation of thermal magnetic noise

in spin valve heads [56, 63] or transition rates of thermally induced decay in

perpendicular recording [59]. Due to the shrinking head dimensions, thermal

fluctuations strongly influence the performance of write heads and have to
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be considered in micromagnetic modeling [4, 53]. Magnetization switching

due to spin-polarized current injection is one of the most intensively studied

magnetic phenomena at present and promises interesting applications, such as

fast switching of nanoelements [6, 45]. A fundamental understanding of the

complicated switching processes in small elements requires simulations at finite

temperatures.

After a short introduction to Maxwell’s equations of magnetostatics in

chapter 2, the atomistic energy contributions are discussed in chapter 3. The

continuum theory of micromagnetics and the discretization of the different en-

ergy terms in the context of the finite difference method are outlined in chap-

ter 4. The Metropolis Monte Carlo method for magnetic systems is explained

in chapter 5. Micromagnetic simulations at zero and finite temperatures based

on the Landau-Lifshitz-Gilbert equation are described in chapter 6. Chapter 7

verifies the influence of the discretization length on the simulation results. In

chapter 8, our coarse-graining procedure is introduced and applied to calcu-

late equilibrium properties of magnetic systems. Chapter 9 points out that the

cell size dependent parameters can also be used for highly dynamic processes.

Finally, chapter 10 shows how the coarse-graining procedure can be applied

for different crystal lattices, such as body-centered and face-centered cubic lat-

tices. This thesis is completed by an appendix including algorithm tests of the

MC and LLG programs and a description of the MC parameter file.



Chapter 2

Magnetostatics

The theory of magnetostatics is a restriction of the general form of Maxwell’s

equations and is valid for static magnetic fields, i.e. the currents as physical

sources of the fields are static. However, it is still a good approximation for

non-static currents as long as current variations are slow enough, that one can

still assume stationary conditions at each time step [8].

Maxwell’s equations of magnetostatics in SI units reads

∇ ·B = 0 (2.1)

∇×B = µ0j , (2.2)

where B is the magnetic induction (or flux density) in T, j the current density

(in A/m2), and µ0 = 4π · 10−7 Vs/Am is the permeability of free space.

In the presence of matter we have to distinguish between the magnetic

induction Bfree due to free current densities jfree and 〈Bmat〉 due to bound

current densities 〈jmat〉. Since quantities in 〈·〉 represent spatial averages over

many atomic unit cells, Maxwell’s equations in matter do not account for

fluctuations on an atomic length scale. Those quantities satisfy the relations

∇ ·Bfree = 0 (2.3)

∇×Bfree = µ0jfree (2.4)

19



CHAPTER 2. MAGNETOSTATICS 20

and

∇ · 〈Bmat〉 = 0 (2.5)

∇× 〈Bmat〉 = µ0〈jmat〉 . (2.6)

The total field B = Bfree + 〈Bmat〉 fulfills the equations

∇ ·B = 0 (2.7)

∇×B = µ0jfree + µ0〈jmat〉 . (2.8)

〈jmat〉 generates the magnetization M (in A/m) within the body,

∇×M = 〈jmat〉 . (2.9)

Per definition, M vanishes outside the material.

If we define the so-called magnetic field H (in A/m) via the relation

B = µ0(H + M) = µ0H + J , (2.10)

where J denotes the magnetic polarization (in T), we obtain Maxwell’s macro-

scopic or phenomenological equations of magnetostatics,

∇ ·B = 0 (2.11)

∇×H = µ0jfree , (2.12)

where bound current densities do not appear anymore.

For the important case of vanishing free current densities, the remaining

Maxwell’s equations read

∇ ·B = 0 (2.13)

∇×H = 0 . (2.14)



Chapter 3

Atomistic System

3.1 Magnetic Moments and Magnetization

We start with an ensemble of atoms or ions (like a solid), each of them having

the total angular momentum ~S, which is the sum of the total orbital mo-

mentum and the spin momentum of electrons. In the scope of this work we

always assume that it is valid to replace the quantum mechanical operators S
by classical vectors S with |S| = S (S is dimensionless).

The magnetic moment m (in Am2) associated with S reads

m = −γ~S = −gLµBS = gLµBSu (3.1)

and is thus antiparallel to S. γ = µ0gL|e|/2me = gL · 1, 105 · 105 m/As is the

gyromagnetic ratio (γ > 0), µB = |e|~/2me = 9.2740 · 10−24 J/T is the Bohr

magneton, and gL denotes the Landé factor or spectroscopic splitting factor.

gL is close to 2 for many ferromagnetic materials (quenching of the orbital

momentum [44]). u denotes a unit vector in the direction of m.

In ferromagnetic materials, the magnetic moments line up parallel to each

other due to exchange interaction, leading to the macroscopic effect of mag-

netization even for vanishing external fields. The magnetization M is defined

21
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as the total magnetic moment per volume v,

M = mtot/v . (3.2)

In this work, the magnetic polarization J = µ0M is often used instead of the

magnetization M .

The norm of M is defined by the temperature dependent spontaneous mag-

netization MS,

M = MSu , (3.3)

with |u| = 1.

It was first suggested by Weiss in 1907 that in ferromagnetic materials a

molecular field due to exchange interactions of the elementary magnetic mo-

ments gives rise to long range order and a substantial spontaneous magneti-

zation below the Curie temperature TC [8]. For instance, iron shows a spon-

taneous magnetization of about 2 T at room temperature. However, Weiss

postulated this field arbitrarily. The first successful attempt to approach fer-

romagnetism theoretically was in terms of mean field theory, which can be

regarded as a justification of the molecular field of Weiss.

The mean field approximation is described in many textbooks, for instance

in Ref. [3, 44]. Here, the problem of ferromagnetism is reduced to the problem

of isolated spins interacting with a field H = Hmf + Hext, which is actually

the problem of paramagnetism. Hmf denotes the molecular or Weiss field gen-

erated by the neighboring spins and is proportional to the mean value 〈S〉.
Due to the internal molecular field, the magnetization parallel to the external

field is nonzero even if the applied field vanishes. For zero temperature all

ferromagnetic moments are parallel, and the maximum spontaneous magneti-

zation

MS,0 = gLµBv−1
at S (3.4)
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is achieved. vat is the volume per atomistic spin (volume per atom),

vat =





a3 for simple cubic,

a3/2 for body centered cubic, and

a3/4 for face centered cubic lattices.

(3.5)

The edge of the atomistic cubic unit cell is denoted by a. For finite tempera-

tures, thermal fluctuations lead to a temperature dependent spontaneous mag-

netization MS(T ), which vanishes at the Curie temperature TC. In the frame-

work of mean field theory of exchange coupled spins with quantized states, the

Curie temperature reads

T mf
C =

S(S + 1)Jz

3kB

(3.6)

and is sometimes used as a reference temperature. z denotes the coordination

number (number of nearest neighbors), kB = 1.3807 ·10−23 J/K is Boltzmann’s

constant, and J is the isotropic exchange integral between nearest neighbors,

see Sec. 3.2.1. However, T mf
C gives only a hint of the real Curie tempera-

ture and has to be handled with care since the approximation of the exchange

interaction by the molecular field is valid only for small fluctuations around

equilibrium, i.e. far away from criticality. In particular, T mf
C always overesti-

mates the actual critical temperature though the agreement improves as the

coordination number z increases [3].

3.2 Classical Hamiltonian

We now assume magnetic moments localized on an atomistic lattice with lattice

sites rµ, mµ ≡ m(rµ), coupled via strayfield and isotropic exchange interac-

tions. The crystalline symmetry with its preferred directions is described by

an additional anisotropy term, and we suppose a homogeneous external field

Hext. Then, the classical Hamiltonian, which can be obtained from quantum

mechanical expressions by replacing operators with their expectation values
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(classical limit), reads

E = Eexch + Eani + Estray + Eext . (3.7)

E is a sum of the exchange energy, anisotropy energy, strayfield energy, and

Zeeman energy and represents the total energy of the system. Both, strayfield

energy and Zeeman energy are magnetostatic energy contributions: the dipo-

lar or strayfield energy arises from dipole-dipole interaction and the Zeeman

energy from the interaction with an external field.

Throughout this work, Greek indices (always superscripts) will be consis-

tently used to label atomistic lattice sites or nodes in the continuum model,

respectively. Einstein’s summation convention is used only for Latin indices

(always subscripts), which indicate the Cartesian components.

3.2.1 Exchange Energy

The exchange energy is minimized by aligning the magnetic moments parallel

or antiparallel, respectively, and is responsible for long range order of the mo-

ments. It has no classical analogue and is caused by the overlap of electronic

wave functions and the Pauli principle in quantum mechanics. The Hamil-

tonian of the exchange interaction in the Heisenberg model (direct exchange

coupling) is usually written in the form [37]

Hexch = −
∑

µ

∑

ν 6=µ

Jµν(rµ − rν) Sµ · Sν . (3.8)

Jµν(rµ − rν) denotes the exchange integral between the quantum mechanical

spin operators of the total angular momenta ~Sµ at lattice site rµ and ~Sν at

rν and can be derived using quantum mechanics. For ferromagnetic ordering

the exchange integrals are positive, whereas negative integrals lead to antifer-

romagnetic ordering. The exchange integrals decrease rapidly with increasing

distance between the atoms. Thus, it is usually a good approximation to take

the inner sum only for nearest neighbors.
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Replacing the quantum mechanical operators by classical spin vectors S =

−Su (Eq. (3.1)) and supposing an isotropic exchange constant J , we arrive at

the classical atomistic exchange energy

Eexch = −JS2
∑

µ

∑
ν∈nn

uµ · uν , (3.9)

where the inner sum is carried out only for the nearest neighbors (nn) of µ.

Since we used Sµ = Sν = S, we have restricted ourselves to homogeneous

materials in the sense that material parameters are independent of rµ.

3.2.2 Magnetocrystalline Anisotropy Energy

The assumption of an isotropic exchange integral between neighboring spins

resulted in the isotropic exchange energy of Eq. (3.9). However, the energy de-

pends on the angles between the spins and the crystal axes, as can be observed

via hysteresis measurements on single crystals and magnetic domain patterns.

Consequently, a more realistic model requires an additional energy term which

takes into account anisotropy effects. The most common type of anisotropy is

the magnetocrystalline anisotropy, which is caused by the asymmetric overlap

of electron density distributions of neighboring lattice sites. Due to spin-orbit

coupling the charge density of the electrons is not spherical but reflects the

crystal structure of the lattice. This asymmetry and the direction of the mag-

netic moment are tied together by spin-orbit coupling. Hence, if one changes

the spin direction, the overlap energy changes as well. Therefore, many ferro-

and ferrimagnetic materials exhibit easy and hard directions in space. More

energy (or a higher external field) is required to saturate the crystal in a hard

direction compared to an easy one. Though spin-orbit coupling can be eval-

uated from basic principles, it is easier to use phenomenological expressions

(power series) according to the crystal structure and take the coefficients from

experiments [2].

For crystals with uniaxial anisotropy (e.g. hexagonal crystals such as Co)
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the phenomenological expression of the anisotropy energy of a single moment

has the form

Eani = K0v + K1v sin2 θ + higher order terms . (3.10)

K0 and K1 are the anisotropy constants (in J/m3), v the associated volume

and θ the angle between the easy direction and the magnetization vector. The

higher order terms (a series of even powers of sin θ) are often small and thus

negligible.

The magnetocrystalline anisotropy energy for cubic crystals (e.g. Fe, Ni) is

given by

Eani = Kc0v + Kc1v
(
α2

1α
2
2 + α2

2α
2
3 + α2

1α
2
3

)
+ Kc2v α2

1α
2
2α

2
3 +

+ higher order terms , (3.11)

where α1, α2 and α3 designate the direction cosines of the direction of magne-

tization with respect to the cubic lattice vectors. Analogously, Kc2 and higher

order terms can be neglected in most cases. Naturally, uniaxial anisotropies

are much stronger than cubic ones.

Since K0v and Kc0v are only constant offsets of the anisotropy energy, they

are usually omitted. The remaining first anisotropy constants cover several

orders of magnitude (102 - 107 J/m3) and are temperature dependent.

In this work we restrict ourselves to uniaxial anisotropies. The anisotropy

energy of a single atomistic spin S = −Su then reads

Eani = K1v
(
1− (a · u)2

)
, (3.12)

where a is a unit vector parallel to the easy axis of the crystal and v the volume

associated with the spin S.
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3.2.3 Strayfield Energy

The strayfield energy (also called magnetic self energy, demagnetizing energy,

or even just magnetostatic energy) is connected with the magnetic field gen-

erated by the magnetic moments themselves. Each lattice site is occupied by

a magnetic dipole m = gµBSu (Eq. (3.1)). Let us consider a magnetic body,

successively built up by adding N magnetic dipoles [36]. E(µ|ν) denotes the

required energy to put the dipole µ into the field of dipole ν. Since no energy

is needed for the positioning of the first dipole, the magnetic self energy follows

as

Estray = E(2|1) +

+ E(3|1) + E(3|2) +
...

+ E(N |1) + E(N |2) + . . . + E(N |N − 1) . (3.13)

However, one can also put together the magnet in reversed order, obtaining

Estray = E(N − 1|N) +

+ E(N − 2|N) + E(N − 2|N − 1) +
...

+ E(1|N) + E(1|N − 1) + . . . + E(1|2) . (3.14)

Hence, we find

2Estray = 0 + E(1|2) + . . . + E(1|N − 1) + E(1|N) +

+ E(2|1) 0 + . . . + E(2|N − 1) + E(2|N) +
...

+ E(N |1) + E(N |2) + . . . + E(N |N − 1) + 0 . (3.15)
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Rewriting Eq. (3.15), we obtain for the magnetic strayfield energy

Estray =
1

2

∑
µ

Eµ , (3.16)

where Eµ ≡ E(rµ) designates the energy of dipole mµ in the field generated

by all the other dipoles. The factor 1/2 in Eq. (3.16) is typical for self energies.

The energy of dipole interaction, Eµ, can be found in Ref. [2] and reads

Eµ =
µ0

4π
(gLµBS)2

∑

ν 6=µ

(
uµ · uν

(rµν)3
− 3(uµ · rµν)(uν · rµν)

(rµν)5

)
, (3.17)

where rµν = rν − rµ points from µ to ν.

3.2.4 Zeeman Energy

The Zeeman energy of a dipole m in an external field Hext simply reads

Eext = −µ0 m ·Hext = −µ0gLµBS u ·Hext . (3.18)



Chapter 4

Micromagnetics

Micromagnetics is a phenomenological theory based on the work of Landau and

Lifshitz about magnetic domains in the year 1935 [39], as well as Brown [11],

who named it micromagnetism. Quantum mechanical spin operators are re-

placed by classical vector fields, which has already been done in the previous

chapter. Those classical discrete magnetic moments mµ at the positions of

the atoms, rµ, are then replaced by the continuous function of magnetization,

M(r). A proper classical description of the exchange interaction in the con-

tinuum limit together with the phenomenological Maxwell equations lead to a

theory of continuous magnetic materials.

The theory of micromagnetics is a suitable framework to investigate mag-

netic phenomena in the nanometer regime. As long as the underlying as-

sumptions, such as slow variations of the magnetic polarization in space and

regions much larger than the atomic distance, are not violated, micromagnetics

proofed to be very successfully in the analysis of domain structures in small

particles and thin films, nucleation problems and interaction between defects

and domain walls [37].

29
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4.1 Gibbs Free Energy

The basis of a micromagnetic description of a magnetic material is the total en-

ergy of the system in the continuum limit, given by the Gibbs free energy [2, 11]

E =

∫

V

d3r (εexch + εani + εstray + εext) , (4.1)

with the energy densities of the exchange interaction εexch, magnetocrystalline

anisotropy εani, of the strayfield contribution εstray, and the Zeeman interaction

εext, respectively. V denotes the volume of the magnetic body. Magnetostric-

tive terms are omitted since the effect is usually small and we are not interested

in mechanical deformations due to magnetization (cases which can be written

in the same form as the appropriate magnetocrystalline anisotropy are, how-

ever, included anyway since the anisotropy coefficients come from experiments

and include different contributions to the anisotropy energy). Also ignored are

surface anisotropy terms, which are discussed for instance in Ref. [2]. Ther-

modynamics tells us that the most probable state of a magnetic system for a

fixed temperature T is given by the minimum of E.

Gibbs free energy is a function of the magnetic polarization, where the

vector field

J(r, t) = JS(r)u(r, t) with |u| = 1 (4.2)

is constrained by |J | = JS = const. for every point r ∈ V , disregarding

the Holstein-Primakoff effect (dependence of JS on the external field) [33].

Of course, the spontaneous polarization depends on the temperature of the

sample, JS = JS(T ). Although we deal with homogeneous materials in this

work, we let the spontaneous polarization depend on r just for generality

reasons, because no difficulties occur in the discussion.

In the following sections the energy contributions in the continuum limit are

given. However, to solve a micromagnetic problem numerically, we have to use

a discretization of space, either by using finite differences or finite elements.

At least at this point the material parameters may depend on the position
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rµ or, to be more precise, on the associated volume vµ, which is obvious for

the spontaneous magnetization (see Eq. (3.2)). Then, for instance, Jµ(t) ≡
J(rµ, t) = Jµ

S uµ(t) denotes the value of the continuous vector field J at node

µ. The assumption of isotropic exchange is then still valid, since the same

exchange constant is used for all interactions between the moment at node µ

with its nearest neighbors. We present the energy terms in Eq. (4.1) in a form

suitable for regular cubic lattices (method of finite differences) with lattice

sites rµ and lattice spacing ∆x in any direction. By assuming a homogeneous

material, the material parameters then generally depend on ∆x (even though

not explicitly written) but not on the position rµ.

4.1.1 Exchange Energy

The dot product in the isotropic exchange energy Eq. (3.9) can be written in

terms of the angles ϕµν between the interacting moments,

Eexch = −JS2
∑

µ

∑
ν∈nn

cos ϕµν . (4.3)

After subtracting the energy of the state where all spins are aligned, which

only redefines the zero level of the exchange energy, we arrive at [2]

Eexch = −JS2
∑

µ

∑
ν∈nn

(cos ϕµν − 1) = 2JS2
∑

µ

∑
ν∈nn

sin2(ϕµν/2) . (4.4)

We now assume small angles between neighboring magnetic moments due to

the strong exchange interaction and use sin x ≈ x for small x, which brings us

to

Eexch =
1

2
JS2

∑
µ

∑
ν∈nn

ϕµν2 . (4.5)

For small angles ϕµν , the approximation |ϕµν | ≈ |uµ−uν | is also valid, where

we used the continuous unit vector u = M/MS. In general, the spontaneous

magnetization MS is also a function of space, MS = MS(r). Using the Taylor
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expansion

|uµ − uν | ≈ |(sµ ·∇)u|2 (4.6)

with sµ = rν − rµ yields

Eexch =
1

2
JS2

∑
µ

∑
sµ

|(sµ ·∇)u|2 . (4.7)

The second sum is carried out over all vectors sµ pointing to the nearest neigh-

bors of lattice site µ. For instance, for primitive (or simple) cubic lattices with

lattice constant a the sum has to be carried out over s ∈ {±ax̂,±aŷ,±aẑ}.
After changing the first sum in Eq. (4.7) to an integral over the magnetic

body, we finally obtain the continuum representation of the exchange energy,

Eexch =

∫

V

d3r A
[
(∇ux)

2 + (∇uy)
2 + (∇uz)

2
]

. (4.8)

The exchange constant A for cubic lattices is given by

A =
JS2

a
c , (4.9)

where a denotes the edge of the cubic atomistic unit cell and c the number

of atoms in the cubic atomistic unit cell. c = 1, 2, 4 for a simple cubic,

body centered cubic (bcc), and face centered cubic (fcc) crystal structure,

respectively. The same result for the exchange energy in Eq. (4.8) is found for

hexagonal close-packed crystals (e.g. Co), but then a is the distance between

nearest neighbors and c = 2
√

2 [2, 37].

The value of the exchange constant A can be measured experimentally by

determining the domain wall width or measuring the correlation of spins near

the Curie point TC and is found to be of the order of 10−12 to 10−11 J/m [34].

Discretization of the Exchange Energy

The partial derivatives in Eq. (4.8) of the continuous vector field u can be

approximated by finite differences. For instance, the approximation of the
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first term reads

(∇ux)
2 ≈

(
∆xux

∆x

)2

+

(
∆yux

∆y

)2

+

(
∆zux

∆z

)2

, (4.10)

where ∆x, ∆y, and ∆z are the lattice spacings in the three dimensions of

space, and ∆x, ∆y, ∆z denote finite difference operators [51]. In this work we

only use regular cubic lattices and we simply write ∆x for the lattice spacing

in all directions.

If uµ denotes the magnetization vector at lattice site µ, uµ+1 is the neighbor

of uµ in +x-direction and uµ−1 the neighbor in −x-direction. Thus, we can

write the first term in Eq. (4.10) as the arithmetic mean of the two opposite

nearest neighbors,

(
∆xux

∆x

)2

rµ

=
1

2∆x2

(
(uµ−1

x − uµ
x)2 + (uµ+1

x − uµ
x)2

)
. (4.11)

Doing so analogously for the second and third term in Eq. (4.10) with the

nearest neighbors in y- and z-direction, we arrive at

(∇ux)
2
rµ ≈ 1

2∆x2

∑
ν∈nn

(uν
x − uµ

x)2 , (4.12)

where the sum is evaluated for the 6 nearest neighbors (nn) of the magnetic

moment at rµ. Summing up all contributions in Eq. (4.8), utilizing |u| = 1,

and changing
∫

d3r → ∆x3
∑

µ , our final result for the exchange energy in

discretized form reads

Eexch = A∆x
∑

µ

∑
ν∈nn

(1− uµ · uν) . (4.13)

Eq. (4.13) is probably the most common representation of the exchange en-

ergy in discrete form and is only valid for small deviations between neighboring

moments, uµ and uν . However, other approximations are possible, leading to

different representations and properties, as reported in Ref. [20].
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Omitting the constant term in Eq. (4.13), the discretized expression of the

exchange energy looks very similar to the atomistic version Eq. (3.9). How-

ever, in Eq. (4.13) the unit vector u is a continuous vector field, evaluated on

the lattice sites µ. The derivation of Eq. (4.13) supposed small angles between

neighboring spins whereas the angle between neighboring spins in Eq. (3.9)

is arbitrary. The exchange constant A is a phenomenological constant, deter-

mined via macroscopic measurements. Last but not least, the dependence on

the lattice spacing, ∆x, does not occur in Eq. (3.9) and is a typical relict of

discretizing a continuum formulation.

4.1.2 Magnetocrystalline Anisotropy Energy

The continuum formulation of the magnetocrystalline anisotropy energy for

the most important case of uniaxial anisotropies, Eq. (3.12), is straightforward

and reads

Eani =

∫

V

d3r K1

(
1− (a · u)2

)
. (4.14)

K1 is the first magnetocrystalline anisotropy constant, a is a unit vector par-

allel to the easy axis, and u is now a continuous vector field, u = J/JS.

Discretization of the Anisotropy Energy

For the method of finite differences with a regular cubic lattice of lattice spac-

ings ∆x in all directions, the discretized form of Eq. (4.14) reads

Eani = K1∆x3
∑

µ

(
1− (a · uµ)2

)
. (4.15)

The sum is carried out over all lattice sites µ, and the anisotropy constant may

depend on ∆x but not on the lattice site (homogeneous material).
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4.1.3 Strayfield Energy

The strayfield energy in the limit of a continuous material is given by [1, 37]

Estray = −1

2

∫

V

d3r J ·Hstray . (4.16)

The factor 1/2 again points out that Estray is a self energy. The strayfield or

demagnetizing field Hstray only appears if J is spatially inhomogeneous, either

in orientation or in the absolute value |J | = JS, and has to fulfill Maxwell’s

phenomenological equation of magnetostatics (Eq. (2.14)),

∇×Hstray = 0 . (4.17)

The general solution reads

Hstray = −∇U , (4.18)

where U is a scalar magnetic potential. Using Eq. (2.10) and Eq. (2.13), we

get the Poisson equation for U ,

∇2U =
1

µ0

∇ · J . (4.19)

These equations have to be solved together with the appropriate boundary

conditions to obtain Hstray and finally the strayfield energy Estray.

In a ferromagnetic material, the exchange energy Eexch competes with the

strayfield energy Estray. This is the reason why large domains break up into

a number of smaller domains when magnetic particles become larger than the

critical size of a single-domain particle [37]. Above the critical diameter, flux

closure configurations (i.e. multi-domain configurations) are energetically more

favorable.
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Discretization of the Magnetostatic Energy

For regular cubic lattices Schabes and Aharoni [49] presented an exact analytic

formula for the magnetostatic interaction energy. However, the expressions

obtained are complex and computationally expensive. For the method of finite

differences it is normally sufficient to approximate each cubic cell µ with volume

∆x3 by a magnetic dipole mµ = Mµ∆x3 and to use the energy expression for

dipole-dipole interaction (see Eq. (3.16) and Eq. (3.17)),

Estray = −∆x3

2

∑
µ

Jµ ·Hµ
stray . (4.20)

The strayfield Hµ
stray at lattice site rµ is given by

Hµ
stray = − 1

4πµ0

∑

ν 6=µ

(
Jν

(rµν)3
− 3

rµν(Jν · rµν)

(rµν)5

)
, (4.21)

where rµν = rν − rµ points from µ to ν.

The difference between the exact formula and the dipole approximation is

negligible for small volumes ∆x3 [1].

4.1.4 Zeeman Energy

The Zeeman energy, Eq. (3.18), in the continuum theory of micromagnetism

reads

Eext = −
∫

V

d3r J ·Hext . (4.22)

Discretization of the Zeeman Energy

The discretized form of Eq. (4.22) for a regular cubic lattice with lattice spacing

∆x and lattice sites rµ is

Eext = −∆x3
∑

µ

Jµ ·Hext . (4.23)
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4.2 Energy Minimization and Effective Field

The minimum of the total Gibbs free energy of a magnetic body V with con-

tinuous polarization J(r) = JS(r)u(r) (with |u(r)| = 1),

E =

∫

V

d3r
{

A
[
(∇ux)

2 + (∇uy)
2 + (∇uz)

2
]
+

+ K1

(
1− (a · u)2

)− 1

2
J ·Hstray − J ·Hext

}
, (4.24)

is the most probable state of the magnetic system. Brown suggested a vari-

ational method to find the magnetization distribution which minimizes the

energy (originally, the name micromagnetics only denoted this theory before

it was extended later on and now includes any sort of magnetic calculation

ignoring the atomic structure of the material in the energy contributions ex-

plicitly) [11].

Let us consider small variations of J around the polarization distribution

J0 = JSu0 with the constraint |u| = 1 everywhere. Though, the spontaneous

polarization JS is, for generality reasons, a function of space, it is chosen once

and then assumed to be constant at any point r ∈ V . Therefore, variations

δJ = J−J0 only apply for the vector field u and let JS unaffected, δJ = JS δu.

A spontaneous magnetization depending on r but constant at any point is thus

in agreement with the original constraint of Brown, M 2 = M2
S = const. (In

the context of this section, we can actually extend this assumption and let

all material parameters be functions of r but inalterable for any r ∈ V , even

though not explicitly written.)

We set

ux = u0,x + ζwx and uy = u0,y + ζwy , (4.25)

where ζ is small and wx and wy are arbitrary functions of space [2]. uz is

determined by the constraint |u| = 1 and reads to first order of ζ

uz = u0,z − ζλ , (4.26)
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where

λ =
u0,xwx + u0,ywy

u0,z

. (4.27)

At a minimum, the variation of the total Gibbs free energy,

δE =

∫

V

d3r (ε(u)− ε(u0)) , (4.28)

should vanish for any choice of wx and wy.

We start with the variation of the exchange energy, which is (to a first

order in ζ)

δEexch = 2ζ

∫

V

d3r A [(∂iu0,x)(∂iwx) + (∂iu0,y)(∂iwy)− (∂iu0,z)(∂iλ)] ,

(4.29)

where we used Einstein’s summation convention, and ∂i is the i-th component

of the nabla operator ∇. With the first Green’s identity

∫

V

d3r
[
(∂ig)(∂ih) + g∂2

i h
]

=

∮

∂V

d2fi g∂ih , (4.30)

where g and h are any two functions and ∂V denotes the surface of V , we

obtain

δEexch = 2ζ

∮

∂V

d2fi A [wx∂iu0,x + wy∂iu0,y − λ∂iu0,z]−

−2ζ

∫

V

d3r A
[
wx∂

2
i u0,x + wy∂

2
i u0,y − λ∂2

i u0,z

]
. (4.31)

A variation of the uniaxial anisotropy energy yields

δEani = 2ζ

∫

V

d3r K1(− axu0,xaxwx − axu0,xaywy + axu0,xazλ−

− ayu0,yaxwx − ayu0,yaywy + ayu0,yazλ−

− azu0,zaxwx − azu0,zaywy + azu0,zazλ) =

= −2ζ

∫

V

d3r K1(aiu0,iaxwx + aiu0,iaywy − aiu0,iazλ) , (4.32)
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again to first order in ζ.

For the variation of the strayfield energy we obtain

δEstray = −1

2

∫

V

d3r [(J0 + δJ) · (Hstray,0 + δHstray)− J ·Hstray] =

= −1

2

∫

V

d3r [J0 · δHstray + Hstray,0 · δJ ] , (4.33)

which is true to first order for small variations δ. Since Hstray,0 is the field

generated by J0 and δHstray stems from the small polarization δJ , we can use

the reciprocity theorem [11]

∫

V

d3r J0 · δHstray =

∫

V

d3r Hstray,0 · δJ (4.34)

and obtain

δEstray = −
∫

V

d3r JSHstray,0 · δu . (4.35)

A variation of the Zeeman energy leads to a similar result as for the stray-

field energy in Eq. (4.35) since Hext does not depend on the magnetization

distribution. With the definition

H0 = Hstray,0 + Hext (4.36)

we can summarize both energy terms and end up with

δEstray + δEext = −ζ

∫

V

d3r JS(H0,xwx + H0,ywy −H0,zλ) . (4.37)

The variation δE must vanish for any choice of wx and wy. Thus, the

integrand of the surface integral in Eq. (4.31) must be zero and also the sum

of the volume integrands. Omitting the index 0 (it is not necessary anymore)

and using

d2fi ∂i = d2f
∂

∂n
, (4.38)

where n is the normal vector to the surface (|n| = 1), the first condition leads
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to the boundary conditions on the surface,

A

(
∂ux

∂n
− ux

uz

∂uz

∂n

)
= 0 , (4.39)

A

(
∂uy

∂n
− uy

uz

∂uz

∂n

)
= 0 . (4.40)

Multiplying Eq. (4.39) by uy and Eq. (4.40) by ux and subtracting both equa-

tions leads to

A

(
ux

∂uy

∂n
− uy

∂ux

∂n

)
= 0 . (4.41)

The boundary conditions can now be written in vector notation,

u× ∂u

∂n
= 0 , (4.42)

but one has to bear in mind that there are only two independent equations.

The second condition that the integrand of the volume integral should

vanish also leads to two differential equations (we omitted the index 0 and

multiplied both equations by uz),

2A(uz∂
2
i ux − ux∂

2
i uz) + 2K1(aiuiaxuz − aiuiazux)+

+JS(uzHx − uxHz) = 0 (4.43)

and

2A(uz∂
2
i uy − uy∂

2
i uz) + 2K1(aiuiayuz − aiuiazuy)+

+JS(uzHy − uyHz) = 0 . (4.44)

Again, we can build a third equation by multiplying Eq. (4.43) by uy and

Eq. (4.44) by ux and subtracting both equations. After dividing the result by

uz, we obtain

2A(uy∂
2
i ux − ux∂

2
i uy) + 2K1(aiuiaxuy − aiuiayux)+

+JS(uyHx − uxHy) = 0 . (4.45)
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These three equations read in vector notation

u× (
2A∇2u + 2K1(a · u)a + JSHstray + JSHext

)
= 0 . (4.46)

Brown’s equations thus mean that the magnetic polarization J = JSu in

equilibrium is parallel to an effective field

Heff = Hexch + Hani + Hstray + Hext (4.47)

at any point r ∈ V , and the torque vanishes, J ×Heff = 0. The effective field

is composed of the exchange field

Hexch =
2A

JS

∇2u , (4.48)

the anisotropy field

Hani =
2K1

JS

(a · u)a , (4.49)

the strayfield Hstray, and the external field Hext.

Brown’s equations have to be solved together with Maxwell’s equations

of magnetostatics (see Chap. 2) and the boundary conditions (4.42). Since

the condition that the variation of the energy E vanishes is also fulfilled for

maxima of E, it is necessary to check whether a solution is a maximum or a

minimum.

In a discretized form (finite differences or finite elements), the effective field

at node rµ can be approximated using the box scheme [25],

Hµ
eff = − 1

vµJµ
S

∂E

∂uµ
. (4.50)

At this point we restrict ourselves again to homogeneous materials. For

the method of finite differences with a regular cubic lattice (vµ = ∆x3) we end
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up with

Hµ
eff =

2A

JS∆x2

∑
ν∈nn

uν +
2K1

JS

(a · uµ)a + Hµ
stray + Hext , (4.51)

where the material parameters JS, A, and K1 may depend on ∆x. Eq. (4.13)

and Eq. (4.15) were used to calculate the exchange field and the anisotropy

field, respectively. The stray field for the method of finite differences, Hµ
stray,

is given by Eq. (4.21).



Chapter 5

Metropolis Monte Carlo

The Monte Carlo method provides approximate solutions to numerous mathe-

matical and physical problems of many degrees of freedom by performing sta-

tistical sampling experiments on a computer. Ultimately, it is used to calculate

quantities appearing as results of high-dimensional integrals by using a random

sequence of numbers. The method applies to problems with non-probabilistic

structure as well as to those with probabilistic behavior, for instance physical

systems in contact with a heat bath.

For problems in physics, the Monte Carlo method starts with a descrip-

tion of the physical system by a (classical) Hamiltonian and by choosing the

appropriate ensemble. All mean values of the observables of interest are then

computable via the associated distribution function and the partition function.

Normally, importance sampling Monte Carlo (like the Metropolis Monte Carlo

method) is used instead of simple sampling to sample the main contributions

in phase space in order to get estimates for the observables more quickly [9, 38].

In the framework of Monte Carlo simulations it is a priori not possible to

describe physical systems dynamically. However, only recently, a Monte Carlo

method with a quantified time step was introduced to systems of interacting

magnetic moments, see for instance Ref. [14, 31]. The authors claim that the

interpretation of a Monte Carlo step as a physical time interval is possible

by comparing this step with a time interval of the corresponding Langevin

43



CHAPTER 5. METROPOLIS MONTE CARLO 44

equation (in our case of magnetic moments, the stochastic Landau-Lifshitz-

Gilbert equation (6.6)).

5.1 Method of Importance Sampling

To get an idea, how importance sampling works, we look at the simple one-

dimensional integration problem [29]

I =

∫ b

a

dx f(x) . (5.1)

According to the mean value theorem of analytical calculus, the integral I can

be calculated via the mean value 〈f(x)〉 within [a, b],

I = (b− a)〈f〉 ≈ b− a

n

n∑
i=1

f(xi) , (5.2)

where xi are n randomly distributed numbers in [a, b]. The approach given

above is usually called direct sampling or simple sampling. The error of the

result is

σI ≈ 1√
n

σf , (5.3)

where σf denotes the maximum range of f(x) between a and b. If the function

f(x) has a large variation in [a, b], the convergence will be very slow. On the

other hand, if the function is more or less uniform, the estimate will be very

efficient.

In the method of importance sampling we use a probability density function

W (x) with W (x) ≥ 0, ∀x ∈ [a, b], and the analytically solvable integral

∫ b

a

dxW (x) = 1 , (5.4)
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and rewrite the integral I,

I =

∫ b

a

dx f(x) =

∫ b

a

dxW (x)
f(x)

W (x)
=

〈
f

W

〉

W

≈ 1

n

∑

{xi}W

f(xi)

W (xi)
. (5.5)

〈·〉
W

denotes the mean value with respect to the distribution function W (x),

and {xi}W
is a sequence of random numbers in [a, b] distributed according to

W (x). The method is most efficient for

W (x) ≈ f(x)∫ b

a
dx f(x)

, (5.6)

i.e. for f(x)/W (x) ≈ const., where the statistical error reduces enormously

without increasing sample size (variance reduction [29]). Here, we arrived at

the idea of importance sampling, where we preferably choose points xi with

dominant contributions to the integral.

5.2 Simulating Magnetic Systems

Now, let us consider a system of interacting magnetic moments, either atom-

istic or non-atomistic (finite differences), described by the classical Hamilto-

nian

E = Eexch + Eani + Estray + Eext , (5.7)

which represents the total energy. The energy is a function of all unit vectors,

E = E(u1, . . . , uN) = E(u), where we defined the 3N -dimensional vector

u = (u1
x, u

1
y, . . . , u

N
z )T. The magnetic system is in contact with a heat bath,

and the appropriate ensemble is the canonical one. We want to compute the

mean value of an observable O(u), given by the ensemble average

〈O〉 =
1

Z

∫

Π

du f(E(u)) O(u) , (5.8)
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with the canonical distribution function

f(E(u)) ∝ exp

(
−E(u)

kBT

)
(5.9)

and the partition function

Z =

∫

Π

du f(E(u)) . (5.10)

Π denotes the phase space with all possible states u of the magnetic system.

All vectors u corresponding to states with high energies give only small contri-

butions to the integral in Eq. (5.8). Since we use the ensemble average (5.8),

we have implicitly assumed ergodicity, which allows for the replacement of

time averages by ensemble averages [29].

Proceeding analogously to the last section, we can rewrite Eq. (5.8) as

〈O〉 =

∫

Π

du Z−1f(E(u))︸ ︷︷ ︸
W (u)

O(u) ≈ 1

n

∑

{ui}W

O(ui) , (5.11)

with Metropolis’ choice of the variance reduction function W (u) [43] and the

states {ui}W
, randomly distributed according to W (u). With the probability

density W (u) equal to the equilibrium distribution, the variance is almost

zero since primarily the thermodynamic equilibrium states of the system are

sampled and the observable O only fluctuates around its mean value. Eq. (5.11)

means that in Metropolis Monte Carlo simulations the calculation of 〈O〉 has

been reduced to simple arithmetic averaging.

The problem at hand now is to randomly generate states u which are dis-

tributed according to W (u). Metropolis et al. [43] suggested to build a Markov

chain with a well-defined correlation between subsequent states, starting from

an arbitrary initial state u0 (for more details about Markov processes, see

Sec. 6.3.1). To ensure that these states u are finally distributed according to

W (u), restrictions must be addressed to the transition probability P (u′|u)

from the state u to the state u′.
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Figure 5.1: Transition probability for the heat bath algorithm according
to Eq. (5.16).

5.2.1 Restrictions to the Transition Probability

As a probability function, P (u′|u) has to fulfill

P (u′|u) ≥ 0 , ∀u,u′ (5.12)

and ∑
u

P (u′|u) = 1 , ∀u′ . (5.13)

Furthermore, the choice of P (u′|u) has to guarantee ergodicity, which means

that any state of the system must be accessible from any other state in a finite

number of transitions. And, finally, to ensure that the states u are ultimately

randomly distributed according to the thermodynamic equilibrium distribution

W (u), it is sufficient (but not necessary) to impose the condition of detailed

balance [9],

P (u′|u)W (u) = P (u|u′)W (u′) . (5.14)

Note that it does not matter how many intermediate states u′′ are realized

until the system actually reaches u′, starting from u. This follows from the

Chapman-Kolmogorov equation (6.25), which is valid for Markov processes.
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5.2.2 Heat Bath Algorithm

For our canonical ensemble, Eq. (5.14) means that in thermodynamic equilib-

rium the ratio of transition probabilities only depends on the change in energy

∆E = E(u′)− E(u) between state u and successor u′ ,

P (u′|u)

P (u|u′) =
W (u′)
W (u)

= exp

(
−∆E

kBT

)
. (5.15)

A possible and physically obvious form to specify the transition probability for

the Metropolis Monte Carlo method is

P (u′|u) =

{
pu′,u exp(−∆E/kBT ) , if ∆E > 0,

pu′,u , else.
(5.16)

That is, the transition probability from state u to state u′ is proportional

to the Boltzmann factor if the energy increases and does not depend on the

energy difference if the energy decreases. The numbers pu′,u ≥ 0 are arbitrary

but have to fulfill

pu′,u = pu,u′ and
∑

u

pu′,u = 1 . (5.17)

The first relation directly follows from Eq. (5.15) together with Eq. (5.16).

To make the second relation plausible, consider u′ to be the state with the

maximum possible energy E(u′) = Emax. With this, we find for the energy

differences ∆E = E(u′) − E(u) > 0 for all states u and therefore P (u′|u) =

pu′,u, ∀u. Then, the second relation in Eq. (5.17) follows from Eq. (5.13).

Fig. 5.1 depicts the transition probability of Eq. (5.16). For an implemen-

tation of the transition probability, a random variable ξ ∈ [0, pu′,u] is required

which decides whether a new state u′ is accepted or not: if ξ lies within the

gray area in Fig. 5.1 for a certain energy difference ∆E, the new state is ac-

cepted, otherwise rejected. To make life easier, pu′,u = 1 and ξ ∈ [0, 1] can

always be chosen in a computer program.
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Figure 5.2: Trial step in the heat bath algorithm. The new spin direction
uµ′ is generated within a cone of opening angle 2θmax around the old direction
uµ. The random unit vector wµ is perpendicular to uµ.

In our Monte Carlo (MC) simulations of interacting moments in an external

field Hext, we use the following heat bath algorithm:

1. Initial configuration parallel to Hext.

2. Randomly pick a spin uµ.

3. Generate a new spin direction uµ′ within a cone around uµ (trial step).

4. Compute the energy difference ∆E.

5. If ∆E < 0, accept uµ′ and return to step 2.

6. Else, compute exp(−∆E/kBT ).

7. Generate a random number ξ ∈ [0, 1].

8. If ξ < exp(−∆E/kBT ), accept uµ′ and return to step 2.

9. Else, the old spin direction is also the new one.

Since each loop (steps 2–9) is performed with just one magnetic moment,

this method is called single spin update mechanism. The algorithm starts

with a completely ordered ferromagnetic configuration parallel to the external

field. However, to be sure that the results are independent of the starting

configuration, we verified our calculations with initially frustrated moments.
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We define one MC step as N trial steps as described above, where N is the

number of magnetic moments. That is, on average every spin is considered

once per MC step. For our simulations at temperatures well below the crit-

ical temperature TC (Eq. (3.6)), the single spin update method is sufficient.

Around TC, the correlation length diverges and almost all single spin trial

steps are rejected (critical slowing down). Then, cluster flipping methods are

much more efficient, for instance the Wolff method which can be applied for

continuous-spin models [38, 62]. However, this method fails for spin systems

with anisotropy terms in the total energy. De Meo and Oh [17] solved this

problem by modifying Wolff’s algorithm. The remaining disadvantage of sav-

ing all spins of the cluster can be avoided by introducing interactions between

the physical spins with a so-called ghost spin [58].

The rate of accepted trial steps strongly depends on the opening angle

2θmax of the cone around uµ. Particularly at low temperatures the major part

of the trial steps may be rejected because ∆E is large compared to kBT . So, we

start with θmax = 180◦ (trial directions are chosen randomly on a sphere) and

then adapt the “cone” to achieve maximum performance. After each MC step,

θmax is increased (decreased) by 2◦ whenever the acceptance rate exceeds (falls

below) 50%. The new directions within the cone have to be chosen carefully in

order to avoid artificial anisotropies. Otherwise, mean values of magnetization

components which should be zero for symmetry reasons do not vanish due to

an incorrect drift of the magnetization. We follow the suggestions of Serena et

al. [55] to achieve an isotropic and homogeneous sampling probability inside

the cone and calculate the new spin direction at site µ via

uµ′ = uµ cos θµ + wµ sin θµ , (5.18)

where wµ denotes a unit vector perpendicular to the original direction uµ,

see Fig. 5.2. A unit vector ζµ 6= uµ is randomly chosen first, and then wµ is

calculated via

wµ =
uµ × ζµ

|uµ × ζµ| . (5.19)
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Figure 5.3: Comparison between adaptive cone method and completely ran-
dom trial steps. The equilibration takes about 150 MC steps for the adaptive
cone method, whereas approximately 1500 MC steps are required for trial steps
randomly chosen on a sphere. The feedback algorithm of the adaptive method
yielded an optimal angle of θmax ≈ 13◦.

The rotation angle θµ is obtained from

cos θµ = 1 + ξµ (cos θmax − 1) , (5.20)

with the random number ξµ ∈ [0, 1].

In Fig. 5.3 we simulated a cube of 40 nm edge length with periodic boundary

conditions and without strayfield interactions. The material parameters were

chosen as JS = 1.76 T, K1 = 4.5 · 105 J/m3 (easy axis parallel z-axis), and

A = 1.3 · 10−11 J/m. We subdivided the cube into 203 subcubes, each with

2 nm edge length, and started with a ferromagnetic configuration parallel

to the z-axis. The results clearly show the advantage of the adaptive cone

method. After about 150 MC steps the total magnetization already fluctuates

around its equilibrium value whereas for completely random trial directions

the equilibration takes about 1500 MC steps. For the chosen parameters, the

feedback algorithm resulted in an optimal angle of θmax ≈ 13◦.



Chapter 6

The Dynamic Equation

Brown [11] proposed a variational method to minimize the energy in continu-

ous form (4.24), yielding the magnetization distribution in equilibrium, where

the torque on the magnetization vanishes (see Sec. 4.2). A more physical de-

scription also accounts for the dynamics of the system, i.e. for the Larmor

precession around the local magnetic field.

6.1 Dynamics at Zero Temperature

The starting point of any dynamic description of micromagnetic processes is

the equation
∂J

∂t
= −γ J ×Heff , (6.1)

which can be obtained directly from the quantum mechanical expression for the

precession of a magnetic moment around a magnetic field which is considered

here to be the effective field, Heff , of Eq. (4.47). J denotes the magnetic

polarization vector, J = µ0M , and is presumed to be a continuous function

in space and time, J = J(r, t). γ = µ0gL|e|/2me = gL · 1, 105 · 105 m/As is the

gyromagnetic ratio (γ > 0).

Eq. (6.1) describes the undamped Larmor precession of the magnetization

around the effective field with the Larmor frequency ω = γHeff (usually in the

GHz range). Since no losses have been taken into account the angle between

52
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J and Heff does not change. However, experiments show a relaxation of the

magnetization towards equilibrium in a finite time due to damping processes.

In the Gilbert equation [26]

∂J

∂t
= −γ J ×Heff +

α

JS

J × ∂J

∂t
(6.2)

an additional term with the dimensionless damping factor α is introduced to

describe dissipative phenomena. The phenomenological factor α combines all

damping effects, like magnon-magnon and magnon-phonon interactions, inter-

actions between localized and itinerant electrons, eddy currents and macro-

scopic discontinuities [52]. JS denotes the spontaneous polarization.

Obviously, the dot product of J with the right hand side of Eq. (6.2)

vanishes, and therefore

J · ∂J

∂t
=

1

2

∂J2

∂t
= 0 . (6.3)

Thus, |J | = JS = const. for any point in the magnetic body is ensured during

time evolution according to the Gilbert equation.

The Gilbert equation can be transformed into the older and mathematically

equivalent Landau-Lifshitz-Gilbert (LLG) equation [2]

∂J

∂t
= −γ′J ×Heff − αγ′

JS

J × (J ×Heff) , (6.4)

with

γ′ =
γ

1 + α2
. (6.5)

Eq. (6.4) has the general form of an ordinary differential equation (ODE),

ẏ = f(y, t). The damping term introduced by Landau and Lifshitz drives J

towards the direction of the effective field until both vectors align parallel (see

Fig. 6.1).
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Figure 6.1: Illustration of the Landau-Lifshitz-Gilbert-Eq. (6.4).

6.2 Stochastic Dynamics

Dynamic approaches based on the LLG Eq. (6.4) are probably the most com-

mon method for the simulation of magnetization processes at zero temperature.

However, temperature effects in magnetic systems are often not negligible. For

example, thermally activated magnetization reversal has become an important

issue in magnetic recording due to rapidly increasing recording density and de-

creasing bit size [61]. In order to treat thermally activated processes in the

framework of micromagnetics, Brown added a stochastic, thermal field, Hth,

to the effective field, Heff [12]. It accounts for the interaction of the magnetic

polarization J with the microscopic degrees of freedom (phonons, conduct-

ing electrons, nuclear spins, etc.) which causes fluctuations of the magnetic

moments [24]. Those interactions are also responsible for the damping of the

precession around the effective field, since dissipation and fluctuation are re-

lated via the fluctuation–dissipation theorem.

After adding the thermal field, we obtain the stochastic Landau-Lifshitz-

Gilbert (LLG) equation

∂J

∂t
= −γ′J × (Heff + Hth)− αγ′

JS

J × (J × (Heff + Hth)) , (6.6)
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which is a Langevin type stochastic differential equation with multiplicative

noise and is similar to the Langevin equation of a Brownian particle in a

viscous liquid [16]. The constraint |J | = JS = const. is still fulfilled. However,

in reality the moment of a particle also fluctuates in its magnitude JS, but

the exchange interaction keeps fluctuations of JS very small, and it can be

neglected normally [12].

In order to solve the stochastic problem numerically, we have to replace

the continuous solution in space by a discrete set of lattice points of a finite

difference lattice (or nodes of a finite element mesh, respectively). Indicating

lattice points by Greek indices and Cartesian components by Latin indices, we

get

∂Jµ

∂t
= −γ′Jµ × (Hµ

eff + Hµ
th)−

αγ′

Jµ
S

Jµ × (Jµ × (Hµ
eff + Hµ

th)) . (6.7)

The effective field can be approximated using the box scheme [25],

Hµ
eff = − 1

vµ

∂E

∂Jµ , (6.8)

and is given in Eq. (4.51) for finite differences with a regular cubic lattice.

In general, the spontaneous polarization (as well as the other parameters)

may depend on rµ. However, even for homogeneous materials a spatial dis-

cretization at finite temperatures lets the material parameters depend on the

associated volume vµ and therefore on the node position.

It is assumed that a large number of independent random variables (mi-

croscopic degrees of freedom) contribute to the thermal field. The central

limit theorem [16] states that the sum of many such independent stochastic

processes, each having arbitrary distribution functions, approaches a normally

distributed random variable and thus validates the assumption that the ther-

mal field is a Gaussian random process. Therefore, the thermal field is com-

pletely defined by its mean value

〈
Hµ

th,i(t)
〉

= 0 (6.9)
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and its second moment or variance

〈
Hµ

th,i(t)H
ν
th,j(t

′)
〉

= 2Dµδijδ
µνδ(t− t′) . (6.10)

Several assumptions are summarized in Eq. (6.10): The variance of the

thermal field is isotropic in space, and the strength is given by the constant

Dµ. Different components of the thermal field are uncorrelated, expressed

by the Kronecker δij. Usually, thermal fields acting on different magnetic

moments are supposed to be uncorrelated, too, given by δµν . The most impor-

tant assumption is that the stochastic field is uncorrelated in time (Dirac δ in

time), or – more precisely – has autocorrelation times much shorter than the

rotational-response time of the system (factor ≈ 1000) and thus can be treated

as white noise. (As the Fourier transform of exp(−iωt), δ(t) has the unit of an

inverse time.) So, the spectral density of the stochastic field is independent of

the frequency ω, leading to interesting consequences as discussed in the next

section.

The strength of the thermal field, Dµ, is calculated in Sec. 6.4 via the

Fokker-Planck equation. We will find the relation

Dµ =
αkBT

γvµJµ
S

, (6.11)

which is a manifestation of the fluctuation-dissipation theorem.

It is convenient to split the stochastic LLG Eq. (6.6) into a deterministic

part, governed by Heff , and a stochastic one, driven by H th [54]:

∂Jµ
i

∂t
= Bµ

ik(J
µ, t)

(
Hµ

eff,k(J
ν , t) + Hµ

th,k(t)
)

, (6.12)

where the matrix elements Bµ
ik read

Bµ
ik(J

µ, t) = −γ′εijkJ
µ
j −

αγ′

Jµ
S

εijkεklmJµ
j Jµ

l =

= −γ′εijkJ
µ
j −

αγ′

Jµ
S

(Jµ
i Jµ

k − δikJ
µ
S

2) . (6.13)
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With the definition

Aµ
i (Jν , t) = Bµ

ikH
µ
eff,k , (6.14)

we find the stochastic LLG equation in the form of a general Langevin equation,

∂Jµ
i

∂t
= Aµ

i (Jν , t) + Bµ
ik(J

µ, t)Hµ
th,k(t) . (6.15)

Aµ
i (Jν , t) generally depends on the magnetization at all lattice sites rν since

exchange and dipole interactions enter in the effective field as non-local con-

tributions.

6.3 The Fokker-Planck Equation

The stochastic Landau-Lifshitz-Gilbert equation (6.15) has the form of the

general nonlinear Langevin equation for d time dependent stochastic variables

ξ(t) = (ξ1, . . . , ξd)
T,

ξ̇i = hi(ξ, t) + gij(ξ, t) ηj(t) , (6.16)

with the Langevin forces ηj(t). If gij does not depend on ξ, Eq. (6.16) is called a

Langevin equation with additive noise. Otherwise one speaks of multiplicative

noise.

ηi(t) are Gaussian random forces with the mean values

〈ηi(t)〉 = 0 (6.17)

and the correlation functions

〈ηi(t)ηj(t
′)〉 = 2 δij δ(t− t′) . (6.18)

Since the Langevin forces ηi(t) are uncorrelated in time, this kind of noise

is called white noise, i.e. the spectral density of the Langevin forces, which

for stationary processes is the Fourier transform of the correlation function
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(Wiener-Khintchine theorem [48]), does not depend on the frequency ω.

It is convenient to use different symbols for random variables and their val-

ues. We use ξi for the stochastic variables and xi for the values or realizations

of ξi (for a certain time t the identity ξi = xi is valid). Any statistical property

of ξ can be obtained from the probability density W (x, t) (W (x, t) dx denotes

the probability that ξ takes a value within [x,x + dx] at time t). Thus, the

knowledge of W (x, t) completely determines the statistical properties of ξ. A

differential equation for the probability density W (x, t) can be derived via the

Kramers-Moyal expansion, which will be carried out later on. We will see

that this expansion with an infinite number of terms stops after the second

term since Eq. (6.16) with δ-correlated Langevin forces ηi describes a Markov

process [48]. This equation for the time evolution of the probability density

W (x, t) is the Fokker-Planck equation.

Before dealing with the Kramers-Moyal expansion, we have a look at the

classification of random processes and the different interpretations of stochastic

differential equations.

6.3.1 Classification of Random Processes

A realization of ξ(t) for a certain time interval is a curve in a ξ(t)-t space.

Now we can ask for the conditional probability density of ξ at time tn,

P (xn, tn|xn−1, tn−1; . . . ; x1, t1), under the conditions that ξ has the values xn−1

at tn−1, and xn−2 at tn−2, . . ., and x1 at the time t1 (with tn > tn−1 > . . . > t1)

[25, 48]. In other words, P (xn, tn|xn−1, tn−1; . . . ; x1, t1) dxn gives the probabil-

ity that the random variable ξ has a value within [xn, xn+dxn] at tn under the

condition that the stochastic variable has the sharp value ξ(tn−1) = xn−1 and

met ξ(ti) = xi, with ti = t1, . . . , tn−2, in the past. Therefore, the conditional

probability density is also often called transition probability density.

The conditional probability density can be expressed by the probability
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densities W according to

P (xn, tn|xn−1, tn−1; . . . ; x1, t1) =
Wn(xn, tn; . . . ; x1, t1)

Wn−1(xn−1, tn−1; . . . ; x1, t1)
. (6.19)

This relation becomes clearer in the form

Wn(xn, tn; . . . ; x1, t1) =

= Wn−1(xn−1, tn−1; . . . ; x1, t1) P (xn, tn|xn−1, tn−1; . . . ; x1, t1) =

= W1(x1, t1) P (x2, t2|x1, t1) P (x3, t3|x2, t2; x1, t1) . . .

. . . P (xn, tn|xn−1, tn−1; . . . ; x1, t1) . (6.20)

With the conditional probability density, two equations can be built which are

valid for all stochastic processes (t3 > t2 > t1) [25]:

W (x2, t2) =

∫
dx1 P (x2, t2|x1, t1) W (x1, t1) , (6.21)

P (x3, t3|x1, t1) =

∫
dx2 P (x3, t3|x2, t2; x1, t1) P (x2, t2|x1, t1) . (6.22)

Wang and Uhlenbeck [60] classified three types of stochastic processes:

Purely random processes, Markov processes, and general processes.

Purely random processes fulfill

P (xn, tn|xn−1, tn−1; . . . ; x1, t1) = P (xn, tn) , (6.23)

i.e. the conditional probability density does not depend on the history of the

stochastic variable ξ.

For physical systems with continuous time t, the random variable ξ(t) has

to be a continuous function of t. Thus, ξ(tn−1) and ξ(tn) have to be correlated

for small time intervals tn − tn−1. This is the reason why purely random

processes can describe physical systems with continuous stochastic variables

only in a limiting sense.
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Markov processes are the next more complicated case. Here, the conditional

probability density depends (besides on ξ(tn) = xn) only on the value of ξ at

the previous time tn−1,

P (xn, tn|xn−1, tn−1; . . . ; x1, t1) = P (xn, tn|xn−1, tn−1) . (6.24)

The time interval tn− tn−1 is arbitrary. For small time intervals the transition

probability strongly depends on the value xn−1 of the previous time step,

whereas large time differences lead to a weak dependence on the history of ξ.

For Markov processes, Eq. (6.22) reduces to the Chapman-Kolmogorov

equation [48]

P (x3, t3|x1, t1) =

∫
dx2 P (x3, t3|x2, t2) P (x2, t2|x1, t1) . (6.25)

In reality Markov processes do not exist. But there are numerous physi-

cal processes with memory times small enough to validate the mathematical

approximation of Markov as long as the typical response time of the system

is much larger than the intrinsic memory time. The Langevin equation (6.16)

with δ-correlated forces in time (Eq. (6.18)) describes such a Markov process

since a first-order differential equation is uniquely determined by an initial

value, and because a δ-correlated noise term at time tn−1 cannot change the

transition probability at time tn [48].

General processes have conditional probability densities at least depending

also on x2 at t2. However, a lot of non-Markovian processes can be considered

as a projection of a higher-dimensional Markov process, i.e. taking into account

additional random variables yields a more complex Markov process.

6.3.2 Interpretation of Stochastic Integrals

The system of Langevin equations (6.16) with δ correlated noise in time

(Eq. (6.18)) is not completely defined mathematically. To see this, let us
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write Eq. (6.16) in the integral form

ξi(t + τ)− xi(t) =

∫ t+τ

t

dt′hi(ξ(t′), t′) +

∫ t+τ

t

dt′gij(ξ(t′), t′) ηj(t
′) (6.26)

with the infinitesimal time interval τ and the sharp value ξ(t) = x(t) [54,

42]. The first integral is a Riemann integral and becomes hi(x(t), t) τ for

infinitesimal τ . The second one is a stochastic integral. Since each jump in

the Langevin noise causes the stochastic variable to jump, it is not clear which

value of ξ one should use in the function gij.

In the Itô interpretation of the stochastic integral the value of ξ at the

beginning of the time interval is used [16]:

ξi(t + τ)− xi(t) = hi(x(t), t) τ + gij(x(t), t)

∫ t+τ

t

dt′ηj(t
′) . (6.27)

Stratonovich’s definition of the stochastic integral in Eq. (6.26) takes the mean

of the values ξ(t) = x(t) and ξ(t + τ) – the value in the future:

ξi(t + τ)− xi(t) = hi(x(t), t) τ+

+ gij

(
1

2
(x(t) + ξ(t + τ)), t +

τ

2

) ∫ t+τ

t

dt′ηj(t
′) . (6.28)

From a mathematical point of view it is not clear whether Itô’s or

Stratonovich’s or some other interpretation should be used. However, in

physics the δ function for the noise correlation in time is usually replaced

by the limit of a narrow function symmetric around the origin (white noise

as a limit of colored noise with short autocorrelation time [54]), automatically

leading to Stratonovich’s interpretation of the stochastic problem (see also

App. B).

In thermal equilibrium the magnetization vector as a solution of the

stochastic LLG equation (6.15) has to fulfill the Maxwell-Boltzmann distri-

bution. We will see, that the Maxwell-Boltzmann distribution is a stationary

solution of the Stratonovich Fokker-Planck equation in Cartesian coordinates.
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This is not the case for the Fokker-Planck equation in Itô interpretation [42].

For these reasons we use the Stratonovich interpretation of stochastic in-

tegrals throughout this work.

6.3.3 Kramers-Moyal Expansion

In this section we carry out the Kramers-Moyal forward expansion, using the

general expression (6.21), and closely follow Risken [48]. (The Kramers-Moyal

backward expansion starts from the Chapman-Kolmogorov equation (6.25).

In Ref. [48] the equivalence of both ways is shown.) For simplicity reasons we

first consider the one-dimensional case with the stochastic variable ξ(t) and

generalize the results afterwards.

Let us write Eq. (6.21) in the form

W (x, t + τ) =

∫
dx′ P (x, t + τ |x′, t) W (x′, t) , (6.29)

with τ ≥ 0. With x′′ = x − x′ and the Taylor expansion of the integrand of

Eq. (6.29),

P (x, t + τ |x′, t) W (x′, t) = P (x + x′′ − x′′, t + τ |x− x′′, t) W (x− x′′, t) =

=
∞∑

n=0

x′′n

n!
(−∂x)

nP (x + x′′, t + τ |x, t) W (x, t) (6.30)

(∂x means the derivative ∂/∂x), we can write Eq. (6.29) in the form

W (x, t + τ) =

=
∞∑

n=0

(−∂x)
n

n!
W (x, t)

∫
dx′ (x− x′)nP (2x− x′, t + τ |x, t) . (6.31)
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Finally, with y = 2x− x′ we get the expression

W (x, t + τ) =
∞∑

n=0

(−∂x)
n

n!
W (x, t)

∫
dy (y − x)nP (y, t + τ |x, t)

︸ ︷︷ ︸
=〈(ξ(t+τ)−ξ(t))n〉

∣∣
ξ(t)=x

. (6.32)

The integral in Eq. (6.32) is the n-th moment M (n)(x, t, τ) of (ξ(t + τ)− ξ(t))

under the condition ξ(t) = x.

Let us assume the existence of the Taylor expansion with respect to τ ,

M (n)(x, t, τ) = M (n)(x, t, 0) + τ
∂

∂τ
M (n)(x, t, τ)

∣∣
τ=0

+O(τ 2) . (6.33)

Using the definition of the Kramers-Moyal coefficients

K(n)(x, t) =
1

n!

∂

∂τ
M (n)(x, t, τ)

∣∣
τ=0

=

=
1

n!
lim
τ→0

1

τ

〈
(ξ(t + τ)− ξ(t))n 〉∣∣∣

ξ(t)=x
(6.34)

and the fact that the first term in Eq. (6.33) vanishes due to the initial value

P (x, t|x′, t) = δ(x− x′), we arrive at

W (x, t + τ)−W (x, t) =

=
∞∑

n=1

(−∂x)
n

n!

(
K(n)(x, t) τ +O(τ 2)

)
W (x, t) . (6.35)

With τ → 0 we finally obtain a differential equation for the time evolution of

the probability density – the Kramers-Moyal expansion:

∂

∂t
W (x, t) =

∞∑
n=1

(−∂x)
nK(n)(x, t)

︸ ︷︷ ︸
=LKM(x,t)

W (x, t) = LKM(x, t) W (x, t) , (6.36)

where LKM(x, t) denotes the Kramers-Moyal operator.

For d dimensions with ξ(t) = (ξ1, . . . , ξd)
T, the derivation of the Kramers-
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Moyal expansion is very similar to the one-dimensional case and yields

∂

∂t
W (x, t) =

∞∑
n=1

(−1)n∂i1 . . . ∂inK
(n)
i1...in

(x, t)

︸ ︷︷ ︸
=LKM(x,t)

W (x, t) =

= LKM(x, t) W (x, t) , (6.37)

where we used ∂k = ∂/∂xk. The Kramers-Moyal coefficients are given by

K
(n)
i1...in

(x, t) =
1

n!
lim
τ→0

1

τ

〈 n∏
j=1

(
ξij(t + τ)− ξij(t)

) 〉∣∣∣
ξ(t)=x

. (6.38)

6.3.4 Markov Processes and Fokker-Planck Equation

The process described by the Langevin equations (6.16) with the δ-correlated

forces in time (Eq. (6.18)) is a Markov process, and the associated Kramers-

Moyal expansion (6.37) stops after the second term. A derivation of the

Kramers-Moyal coefficients for the one-dimensional case is given in App. B.

For the general d dimensional process the calculation is very similar to the one-

dimensional case. The additional condition that different degrees of freedom of

the Langevin forces are uncorrelated (δij in Eq. (6.18)) enters in the calculation

wherever the variance of the noise occurs (see Eq. (B.8) and Eq. (B.11)). The

Kramers-Moyal coefficients (6.38) in Stratonovich interpretation then read [48]

K
(1)
i (x, t) = hi(x, t) + gkj(x, t)∂kgij(x, t) (6.39)

K
(2)
ij (x, t) = gik(x, t) gjk(x, t) = K

(2)
ji (x, t) (6.40)

K
(n)
i1...in

(x, t) = 0 , ∀n ≥ 3 . (6.41)

In this case the, Kramers-Moyal expansion for the time evolution of the prob-

ability density function is called the Fokker-Planck equation,

∂

∂t
W (x, t) =

(
−∂iK

(1)
i (x, t) + ∂i∂jK

(2)
ij (x, t)

)
W (x, t) , (6.42)



CHAPTER 6. THE DYNAMIC EQUATION 65

with the drift vector K
(1)
i (x, t) and the diffusion matrix K

(2)
ij (x, t).

6.4 Thermal Field Strength

The Fokker-Planck equation in Stratonovich interpretation associated with

the stochastic Landau-Lifshitz-Gilbert equation (6.15) was originally derived

by Brown [12] for an isolated single domain particle (single magnetic moment

without interactions). It describes the time evolution of the non-equilibrium

probability density distribution W (J , t) of the orientation of a single magnetic

polarization vector J .

By comparing the set of general Langevin equations (6.16) and their noise

terms given by Eq. (6.17) and (6.18) with the stochastic LLG equation (6.15)

together with Eq. (6.9) and (6.10), we obtain the required substitutions

ξ, x =̂ J (6.43)

hi(ξ, t) =̂ Ai(J , t) (6.44)

gij(ξ, t) =̂
√

D Bij(J , t) (6.45)

for the Kramers-Moyal coefficients (6.39) and (6.40) for a single magnetic mo-

ment. Using ∂k = ∂/∂Jk, the Fokker-Planck equation in Stratonovich inter-

pretation reads

∂

∂t
W = −∂i(Ai + D Bkj∂kBij︸ ︷︷ ︸

=Bjk∂jBik

−D ∂jBikBjk︸ ︷︷ ︸
=Bik∂jBjk−
−Bjk∂jBik

)W =

= −∂i(AiW −DWBik∂jBjk −DBikBjk∂jW ) . (6.46)

After some vector algebra and applying Eq. (6.13), we easily obtain

Bik∂jBjk = 0 (6.47)
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and thus arrive at

∂

∂t
W = −∂i(Ai −DBikBjk∂j)W , (6.48)

with

BikBjk = γ′2(1 + α2)(J2
Sδij − JiJj) . (6.49)

For a given initial distribution function Winit(J), the Fokker-Planck equa-

tion (6.48) describes the time evolution of W (on the surface of a sphere, since

|J | = JS = const.) until it reaches the equilibrium distribution density W0(J)

with ∂W0/∂t = 0. For physical reasons, this stationary solution of Eq. (6.48)

has to be the Maxwell-Boltzmann distribution [24]

W0(J) ∝ exp(−βE(J)) , (6.50)

with β = (kBT )−1, leading to a condition for the variance D of the thermal

field H th.

Utilizing Eq. (6.14) and vHeff,i = −∂iE (Eq. (4.50)), the first term in

Eq. (6.48) reads for W = W0:

−∂iAiW0 = γ′εijk (Heff,kW0 ∂iJj︸︷︷︸
=δij

+JjW0∂i Heff,k︸ ︷︷ ︸
=−v−1∂kE

+JjHeff,k ∂iW0︸ ︷︷ ︸
=βvHeff,iW0

)

︸ ︷︷ ︸
=0

+

+ ∂i
αγ′

JS

(JiJk − δikJ
2
S)Heff,kW0 . (6.51)

Finally, we use Eq. (6.49) and obtain

∂

∂t
W0 = 0 =

(
αγ′

JS

−Dβvγ′2(1 + α2)

)

︸ ︷︷ ︸
=0

∂i(JiJk − δikJ
2
S)Heff,kW0 , (6.52)

with the solution

D =
αkBT

γvJS

. (6.53)
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Eq. (6.53) is a special form of the fluctuation-dissipation theorem, which relates

the variance of thermal fluctuations and the damping parameter.

The strength of the thermal noise, Eq. (6.53), was derived for an isolated

magnetic moment. Nevertheless, the generalized form

Dµ =
αkBT

γvµJµ
S

, (6.54)

is used in every temperature dependent computation of magnetization dy-

namics, with or without interactions between magnetic moments on different

lattice sites rµ. It is still a topic of discussion whether interactions between

magnetic moments introduce correlations in the thermal field between differ-

ent lattice sites or not. For example, Chubykalo et al. [15] took into account

interactions in the effective field and linearized the stochastic LLG equation

near equilibrium under the assumption of small fluctuations. They found that

interactions of magnetic moments do not lead to correlations in the thermal

field and that the fluctuation-dissipation theorem (6.54) is valid for interact-

ing moments. Lyberatos et al. obtained the same result in the limit of small

fluctuations [40]. However, Berkov and Gorn [5, 7] claimed that thermal bath

correlations for ultrafast processes introduce correlations of the thermal field,

which originate from the discretization of the physical problem. They found

correlations in space and time with alternating sign as discretization changes.

6.5 Heun Method

For the time integration of the Langevin Eq. (6.15) we use the Heun

scheme, which is a predictor-corrector method with second order accuracy in

time [24, 54]. The stochastic Heun algorithm converges in quadratic mean

to the solution of the system of stochastic differential equations (6.15) in

Stratonovich interpretation.

The predictor J̄
µ

for the polarization vector at lattice site rµ is given by
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an Euler type integration,

J̄µ
i = Jµ

i (t) + Aµ
i (Jν , t)∆t + Bµ

ik(J
µ, t)∆W µ

k (t) , (6.55)

with the discretization time step ∆t and the Gaussian random numbers

∆W µ
i =

∫ t+∆t

t

dt′ Hµ
th,i(t

′) . (6.56)

The mean value of ∆W µ
i (t) is

〈∆W µ
i (t)〉 = 0 , (6.57)

and together with Eq. (6.10) and Eq. (A.4) we find for the variance

〈∆W µ
i (t)∆W ν

j (t′)〉 =

∫ t+∆t

t

dt′′
∫ t′+∆t

t′
dt′′′

〈
Hµ

th,i(t
′′)Hν

th,j(t
′′′)

〉
︸ ︷︷ ︸

=2Dµδijδµν [Θ(t′+∆t−t′′)−Θ(t′−t′′)]

. (6.58)

The Θ functions in square brackets demand for t′′ ∈ [t′, t′+∆t]. For successive

time steps ∆t the time intervals [t, t + ∆t] and [t′, t′ + ∆t] do not overlap for

t 6= t′, and we thus arrive at

〈∆W µ
i (t)∆W ν

j (t′)〉 =

{
2Dµ∆t δijδ

µν for t = t′,

0 else.
(6.59)

The variance of the thermal field in the discretized form then reads for t = t′

〈Hµ
th,iH

ν
th,j〉 = 2Dµ∆t−1 δijδ

µν , (6.60)

which is consistent with an approximation of the Dirac δ in Eq. (6.10) for small

∆t by a narrow rectangle (see Eq. (A.1)),

δ(t) ≈ 1

∆t

(
Θ (t + ∆t/2)−Θ (t−∆t/2)

)
. (6.61)



CHAPTER 6. THE DYNAMIC EQUATION 69

Finally, the corrector step reads

Jµ
i (t + ∆t) = Jµ

i (t) +
1

2

(
Aµ

i (J̄
ν
, t + ∆t) + Aµ

i (Jν , t)
)
∆t +

+
1

2

(
Bµ

ik(J̄
µ
, t + ∆t) + Bµ

ik(J
µ, t)

)
∆W µ

k , (6.62)

with the same Gaussian random numbers ∆W µ
k as used for the calculation of

the predictor J̄
µ
.

The time step ∆t for the Heun method should be at most 1/30th of the

precession time tp = 2π/ω = 2π/γHeff of the magnetization vector in the

effective field [51]. Without strayfield, ∆t = 0.1 ps turned out to be sufficient,

whereas with strayfield the time step often has to be much smaller (0.01 ps or

even 1 fs).



Chapter 7

Influence of Discretization

In Sec. 4.1 we derived expressions for the energy terms suitable for the method

of finite differences assuming small deviations between neighboring moments.

The lattice spacing ∆x for a regular cubic lattice appears in all energy contri-

butions and affects the simulation results. Small lattice spacings are necessary

to resolve domain walls and high frequency spin waves. For instance, Igarashi

et al. [35] performed simulations of perpendicular recording media and pointed

out the necessity to use small computational cells in order to achieve correct

results. Usually, discretization lengths below the exchange length

lexch =

√
2µ0A

J2
S

(7.1)

are supposed to be sufficient [47]. Other authors, for instance Tsiantos et

al. [57], claim that the discretization length ∆x has to be smaller than the

minimum of lexch and the thermal exchange length

lthex =

√
A

JSσth

, (7.2)

where

σth =

√
2αkBT

∆tγJS∆x3
(7.3)

70
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is the standard deviation of the thermal field (see Eq. (6.60)). However, the

thermal exchange length often lies in the atomistic range and is thus beyond

the micromagnetic regime.

In this chapter we perform Metropolis Monte Carlo and Langevin simula-

tions of an array of N3 non-atomistic magnetic moments and investigate the

influence of the lattice spacing ∆x on the equilibrium properties of the mag-

netic system. The results are compared in terms of the mean value of the total

magnetization,

〈ui〉 ≡ 〈Mi〉
MS

=
1

N3

N3∑
µ=1

uµ
i . (7.4)

7.1 Geometry and Material Parameters

We simulate a cubic ensemble of interacting moments with a uniaxial

anisotropy parallel to the z-axis. The material parameters are chosen as

K1 = 4.5 · 105 J/m3, JS = 1.76 T, and A = 1.3 · 10−11 J/m. The moments

are exposed to an external field of µ0Hext = 0.1 T in +z-direction. We start

with a ferromagnetic configuration parallel to Hext and apply T = 300 K.

Since the damping constant α in the stochastic LLG equation (6.12) does not

affect the equilibrium properties of magnetic systems [14], the relatively large

value of α = 1 is used to reduce the equilibration time. A cube of 20 nm edge

length is discretized into N3 subcubes of size ∆x. Open boundary conditions

are applied in all directions.

For the MC simulations we discard the first 104 MC steps to ensure equili-

bration and fluctuation around equilibrium, although a much smaller number

would also be sufficient for the simulations without strayfield interaction. The

next 105 steps are then used for averaging. The Langevin simulations are

performed with a time step of ∆t = 0.1 ps. We execute 2 · 106 time steps

and exclude the first 105 steps from averaging. For this particular set of pa-

rameters, smaller time steps had no influence on the results of the Langevin

simulations with or without strayfield interaction. For instance, the difference
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Figure 7.1: Magnetization parallel to the external field axis as a function
of the discretization length ∆x at T = 300 K without strayfield interaction.
The numbers in the diagram indicate the number of subcubes. The difference
between MC and stochastic LLG simulations is negligible for all cell sizes.
〈Mz〉 decreases with decreasing ∆x which cannot be attributed to the thermal
field in the Langevin simulations.

in 〈Mz〉 between simulations with ∆t = 0.1 ps and ∆t = 0.01 ps at ∆x = 5 nm

is only 0.004% when strayfield interaction is taken into account.

The chosen parameters lead to an exchange length of lexch = 3.25 nm.

The condition that the discretization length fulfills at least ∆x = lthex yields

∆x = 0.26 nm and is thus not applicable.

7.2 Results and Discussion

The mean value of the magnetization parallel to the z-axis as a function of

∆x for the simulations without strayfield interaction is given in Fig. 7.1. With

both simulation methods, 〈ux〉 = 〈uy〉 = 0 is found due to symmetry reasons

in the case of lacking dipole interaction.

The results reveal an excellent agreement between MC and stochastic LLG
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Figure 7.2: Comparison of the magnetization parallel to the external field
axis as a function of the discretization length ∆x between stochastic LLG sim-
ulations with and without strayfield interaction at T = 300 K. The numbers in
the diagram indicate the number of subcubes. 〈Mz〉 obtained from simulations
with dipole interaction decreases with respect to the results without strayfield
interaction due to the principle of pole avoidance [2].

simulations for all cell sizes. Only for very small discretization lengths there

are differences in the equilibrium property 〈uz〉. However, at ∆x = 1.43 nm

(143 subcubes), the difference is only 0.2% and thus negligible.

The behavior of 〈uz〉 as a function of ∆x is, however, everything else but

satisfying. The magnetization decreases with decreasing cell size and does not

converge for small cell sizes. In particular, using cell sizes below the exchange

length lexch = 3.25 nm has no positive effect on the simulation results.

Fig. 7.2 compares the results of the Langevin simulations with and with-

out strayfield interaction. The mean value 〈uz〉 decreases when the strayfield

interaction is turned on because the magnetic system tries to avoid free mag-

netic poles on the surface [2]. Apart from that, the general behavior of the

magnetization as a function of cell size is the same with or without strayfield

interaction. The MC calculations with strayfield again yielded only negligible
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differences (for instance 0.006% at ∆x = 5 nm) and are not presented in this

picture. In general, the mean values of the other components do not vanish

anymore since asymmetric spin configurations are possibly more favorable in

terms of total energy. Anyhow, since 〈uz〉 is close to 1 for all discretization

lengths, the deviations of 〈ux〉 and 〈uy〉 from zero, respectively, between sim-

ulations with and without dipole interaction are very small.

Using other material parameters and temperatures always results in an

excellent agreement between MC and stochastic LLG simulations for all cell

sizes and temperatures and point out that both methods coincide very well

down to a cell size of at least 1.5 nm. The equilibrium magnetization parallel

to the external field always decreases for decreasing discretization length, and

no convergence can be found for ∆x < lexch. The agreement between MC and

Langevin simulations points out that the behavior of 〈Mz〉 cannot be attributed

to the thermal field in the stochastic LLG simulations. In addition, Fig. 7.2

clearly shows that the temperature was relatively low, ensuring validity of the

variance of Hth, since Eq. (6.10) is strictly speaking only valid in the linear

regime of exchange coupled magnetic moments.

To obtain cell size independent results it is necessary to use a coarse-

graining procedure for the material parameters, applicable for both MC and

stochastic LLG simulations.



Chapter 8

Coarse-graining

In the last chapter we pointed out that micromagnetic simulations at nonzero

temperatures depend on the computational cell size, introduced by the ex-

change coupling of the magnetic moments. The problem of cell size dependen-

cies arises since the common assumption of micromagnetics that the computa-

tional cells contain enough magnetic moments to permit the use of statistics [8],

is clearly violated for small cells. The experimentally measured, only tempera-

ture dependent values for the material parameters are valid unless the number

of atoms within a computational cell becomes too small. Then, statistical av-

erages over the cell volume will give parameters depending not only on the

temperature, but also on the cell size, i.e. on the discretization length ∆x.

In this chapter we propose a coarse-graining procedure for small computa-

tional cells to achieve cell size independent results. Starting on an atomistic

level, we extract material parameters depending on the discretization length

and suggest to use them for non-atomistic simulations. For physical reasons

we first look at the spontaneous magnetization as function of cell size and

consider anisotropy and exchange constants afterwards (however, the order of

deriving scaling laws is not uniquely defined).

75
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8.1 Atomistic Monte Carlo Simulations

To compute the material parameters as a function of temperature and cell

size, we first perform Metropolis MC simulations of a cubic spin array on

an atomistic level. We use a three-dimensional discrete Heisenberg model of

exchange-coupled magnetic moments localized on a primitive cubic lattice in

an isotropic external field Hext = Hextẑ. The easy axis is also parallel to the

z-axis. Periodic boundary conditions are applied in all directions, and dipole

interactions are neglected. Thus, the total energy E of the magnetic system

reads

E = Eexch + Eani + Eext . (8.1)

The different contributions to E are discussed in detail in Chap. 3.

Although the spontaneous magnetization and the exchange constant are

only reasonable for volumes larger than the atomic unit cell, Eq. (3.4) and

Eq. (4.9) can be used for the substitutions JS2 = A0 a and gLµBS = MS,0 a3

in the total energy. The index “0” indicates that the parameters are used

for simulations on an atomistic level. Consistently, the atomistic anisotropy

constant K1,0 can be introduced, arriving at

E = −A0 a

N3∑
µ=1

∑
ν∈nn

uµ · uν + K1,0 a3

N3∑
µ=1

(
1− (ẑ · u)2

)

−µ0MS,0 a3Hextẑ ·
N3∑
µ=1

uµ . (8.2)

N denotes the number of spins in one direction, and the sum over ν is carried

out over the 6 nearest neighbor moments.

In the center of the cubic spin array an averaging cube with n3 atomistic

spins and an edge length of ∆x = na is used to derive magnetic properties

after equilibration. In particular, we extract the (normalized) spontaneous
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magnetization as a function of cell size [10],

MS,cell =
〈 3∑

i=1

M 2
i

〉1/2

, (8.3)

and 〈Mz〉, the averaged magnetization per moment parallel to the z-axis, for

a given temperature T . Mi denotes the Cartesian components of the total

magnetization within the averaging cube,

Mi =
MS,0

n3

n3∑
µ=1

uµ
i . (8.4)

The mean values 〈Mx〉 and 〈My〉 vanish for symmetry reasons. Fig. 8.1 depicts

the arrangement of the atomistic MC simulations.

To illustrate our coarse-graining method, the material parameters are cho-

sen as µ0MS,0 = 1.76 T, A0 = 1.3 · 10−11 J/m, K1,0 = 4.5 · 105 J/m3,

and a = 0.376 nm. With Eq. (3.6), a mean field critical temperature of

T mf
C = 884.4 K can be obtained. An external field of 0.1 T is applied to

ensure that the whole system does not switch thermally to the negative z-

direction. However, we will see that the external field strength only affects

〈Mz〉 and that the influence on the spontaneous magnetization is negligible.

The system size is mainly based on the exchange length, Eq. (7.1), and thus

on the exchange constant. For this particular set of parameters, we obtain

lexch = 3.25 nm and use N3 = 603, whereas the size of the central averaging

cube is n = 1, 2, 4, 6, . . . , 30. The properly chosen system size ensures that the

equilibrium quantities within the averaging cube neither depend on the total

number of moments, N3, nor on the boundary conditions. The MC algorithm

starts with a completely ordered ferromagnetic configuration parallel to the

external field. For every temperature T we discard the first 104 MC steps and

use the next 105 steps for averaging.

To summarize, the idea is to start at an atomistic level and evaluate rescaled

material parameters for non-atomistic simulations with a discretization length
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Figure 8.1: Setup of the atomistic MC simulations. After equilibration a
central averaging cube of edge length ∆x is used to extract the spontaneous
magnetization and the magnetization parallel to the field axis as a function of
∆x.

of ∆x = na. The atomistic spins within an averaging cube can then be replaced

by one non-atomistic moment per computational cell with the appropriate

rescaled parameters. The aim is to find the same equilibrium properties of the

central magnetic moment as for the mean values within the central averaging

cell of same size obtained via atomistic MC simulations.

8.1.1 Equilibrium Magnetization

After equilibration, the atomistic MC simulations show a cell size independent

mean value 〈Mz〉, since Eq. (8.4) is linear in the Cartesian components uµ
i .

Therefore, it does not matter if only one spin is considered for averaging or

many, as long as the “averaging time” is sufficient. Fig. 8.2 summarizes the

results for 〈Mz〉 for different temperatures. Taking the average over all cell
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Figure 8.2: Mean value 〈Mz〉 of the magnetization parallel to the field axis as
function of the averaging cube size ∆x. In equilibrium, 〈Mz〉 does not depend
on ∆x.

sizes for each temperature leads to the values listed in Tab. 8.1.

The cell size dependent spontaneous magnetization MS,cell is found to de-

crease with increasing cell size ∆x according to the Bloch-like scaling law

MS,cell(∆x, T ) = MS,∞(T ) +
(
MS,0 −MS,∞(T )

) ( a

∆x

)3/2

. (8.5)

MS,∞(T ) is the experimentally found spontaneous magnetization for large cells

and depends on the exchange and anisotropy constants. The exponent 3/2 is

typical for simple cubic lattices and slightly changes if other lattice types are

considered (see Chap. 10).

Fig. 8.3 shows MS,cell as a function of the averaging cube size ∆x for dif-

ferent temperatures and an external field of µ0Hext = 0.1 T. The reason for

a decreasing spontaneous magnetization for an increasing number of atoms

within the averaging cell are thermal fluctuations of the magnetic moments.

Thus, partial cancellation of the spin components takes place in Eq. (8.4)

leading to a smaller MS,cell.
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Figure 8.3: Spontaneous magnetization MS,cell as function of the averaging
cell size ∆x for different temperatures, resulting from atomistic MC simula-
tions. The graphs are normalized to the atomistic spontaneous magnetization
MS,0. The solid lines represent fitting curves according to the Bloch-like scaling
law (8.5). MS,cell decreases with increasing cell size due to thermal fluctuations
and finally approaches the experimentally found MS,∞.

The scaling law (8.5) with the exponent 3/2 is found to be valid for a wide

range of the exchange constant (at least for 10−13J/m ≤ A ≤ 2 · 10−11J/m),

for arbitrary anisotropy constants, and holds for temperatures up to T/T mf
C ≈

0.75. The effect of the external field strength on MS,cell is very small. For the

chosen material parameters and T = 300 K (T/T mf
C ≈ 0.34) the difference

in MS,cell between simulations at zero field and 0.5 T is less than 0.1% for

a ≤ ∆x ≤ 11 nm and thus negligible for most cases. This result validates the

assumption of a field independent spontaneous magnetization in micromagnet-

ics (see Sec. 4.1).

MS,∞ as function of temperature T is given in Tab. 8.1 and is found to

agree well with Bloch’s T 3/2 law [28]

MS,0 −MS,∞(T )

MS,0

∝ (kBT )3/2 . (8.6)
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T (K) 〈Mz〉/MS,0 MS,∞/MS,0

100 0.9643 0.9646
200 0.9265 0.9270
300 0.8872 0.8873
400 0.8431 0.8444
500 0.7957 0.7974
600 0.7428 0.7444

Table 8.1: Mean value 〈Mz〉 of the magnetization parallel to the field axis
and spontaneous magnetization for large cells, MS,∞, for different temperatures
(T mf

C = 884.4 K).

The proportionality factor in Eq. (8.6) depends among others on the exchange

constant.

8.1.2 Anisotropy Constant

To obtain a scaling law for the uniaxial anisotropy constant, we have a closer

look at the anisotropy field

Hani =
2K1

µ0MS

, (8.7)

which equals the required external field perpendicular to the easy axis of a

Stoner-Wohlfarth particle to find a magnetization vector parallel to Hext [37].

Demanding cell size independent simulations in the context of anisotropy

means that the anisotropy field should not depend on the cell size ∆x,

Hani,0 =
2K1,0

µ0MS,0

≡ 2K1,cell

µ0MS,cell

= Hani,cell , (8.8)

yielding

K1,cell(∆x, T ) = K1,0
MS,cell

MS,0

. (8.9)

Thus, in our coarse-graining procedure the anisotropy constant scales like the

spontaneous magnetization MS,cell, Eq. (8.5).
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Figure 8.4: For non-atomistic simulations with one magnetic moment per
computational cell we suggest to use cell size dependent material parameters,
obtained from atomistic MC simulations. With the proper coarse-graining
procedure the equilibrium properties of the central magnetic moment should
coincide with those of the central averaging cube of same size obtained via
atomistic simulations.

8.2 Non-atomistic Simulations

After evaluating the behavior of the spontaneous magnetization as function

of cell size, we perform non-atomistic MC and Langevin simulations with an

discretization length of ∆x = na, i.e. the atomistic spins within an averaging

cube are now replaced by one non-atomistic magnetic moment, see Fig. 8.4.

In the expression of the total energy, Eq. (8.2), the atomistic lattice constant

a has to be substituted by the discretization length ∆x. Again, we look at

the averaged magnetization parallel to the field axis, 〈Mz〉, at equilibrium

and investigate the influence of cell size dependent material parameters. For

averaging, the same number of MC steps and Langevin time steps as in the

previous section are used. To ensure that the properties of the central moment

do not depend on the number of spins, a system size of N3 = 303 turned out to

be sufficient. Again, periodic boundary conditions are applied in all directions.
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Figure 8.5: Mean value of the magnetization parallel to the field axis as
a function of cell size ∆x for T/T mf

C = 0.34, resulting from non-atomistic
stochastic LLG simulations. The curves are normalized to the correct value
of 〈Mz〉 obtained via atomistic MC simulations (〈Mz〉/MS,0 = 0.8872, see
Tab. 8.1). No cell size corrections were used for ◦. Simulations with cell size
dependent MS,cell and K1,cell according to Eq. (8.5) and Eq. (8.9), respectively,
resulted in ¦.

The results of our simulations show that the spontaneous magnetization

and the anisotropy constant have to be corrected for small cells according to

Eq. (8.5) and Eq. (8.9), respectively. Otherwise physical properties, such as

the equilibrium magnetization 〈Mz〉, will depend on the computational cell

size ∆x.

Fig. 8.5 summarizes the results for 〈Mz〉 at equilibrium obtained via non-

atomistic Langevin simulations with α = 1 at T = 300 K, normalized to the

correct value 〈Mz〉/MS,0 = 0.8872. Since Chap. 7 pointed out an excellent

agreement between MC and stochastic LLG simulations at all cell sizes and

temperatures, only the results of the LLG simulations are presented in Fig. 8.5.

Simulations using the experimentally found values MS,∞/MS,0 = K1,∞/K1,0 =

0.8873 for all cell sizes show a systematic deviation for decreasing ∆x. At

∆x = 0.75 nm the deviation of 〈Mz〉 is 5.4% as compared with the correct
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Figure 8.6: Exchange constant Acell as a function of the computational cell
size ∆x, derived for T/T mf

C = 0.34. The numerical results of Acell reveal an
inflection point near the exchange length lexch. Above the exchange length,
Acell behaves parabolically, leading to non-vanishing exchange fields Hexch for
large cells (Eq. (8.10)).

atomistic result. The use of a cell size dependent spontaneous magnetization

and anisotropy sufficiently reduces systematic errors due to different compu-

tational cell sizes. The deviation is then only 1.3% even at the very small cell

size of ∆x = 0.75 nm. If one applies the atomistic values MS,0 and K1,0 for

all cell sizes, 〈Mz〉 is too large for all ∆x. The difference at ∆x = 0.75 nm is

then 6.7% and increases rapidly with increasing cell size. At ∆x = 4.5 nm the

error is even 12%.

8.2.1 Exchange Constant

To get rid of the remaining small deviations in Fig. 8.5 it is necessary to

use a rescaled exchange constant Acell, which can be derived numerically via

the condition of a constant 〈Mz〉, either with nonatomistic MC or stochastic

LLG simulations. Fig. 8.6 shows Acell for T = 300 K and an external field

of µ0Hext = 0.1 T. Acell increases with increasing cell size and finally behaves
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Figure 8.7: Comparison between the cell size dependent prefactor
(lexch,cell/∆x)2 of Hexch and 1/∆x2, both normalized to 1 at ∆x = a. The
constant behavior above 7 nm avoids an unphysical disappearance of the fer-
romagnetic character for large computational cells.

parabolically above the exchange length lexch = 3.25 nm (calculated with the

atomistic parameters). This leads to non-vanishing exchange fields

Hexch =
2Acell

µ0MS,cell∆x2

∑
ν∈nn

uν (8.10)

for large cells because Hexch is proportional to Acell/∆x2.

Additionally, the exchange length also depends on the cell size, lexch =

lexch,cell. With this, Eq. (8.10) reads

Hexch = MS,cell

(
lexch,cell

∆x

)2 ∑
ν∈nn

uν . (8.11)

Fig. 8.7 shows a comparison between 1/∆x2 and (lexch,cell/∆x)2, both normal-

ized to 1 at ∆x = a. The constant behavior of the prefactor above ∆x ≈ 7 nm

means, that the exchange length increases proportional to the discretization

length and thus preserves the ferromagnetic behavior of the material.
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Since the aim of this work is to give corrections for the material parameters

for small computational cells, the interesting part of Acell is near and below

the inflection point.

8.3 Summary

We suggested a simple coarse-graining procedure for nonzero-temperature mi-

cromagnetics:

1. Determine the atomistic spontaneous magnetization MS,0 = MS(T =

0), the experimentally found spontaneous magnetization for large cells

MS,∞(T ) at the desired temperature T , and the atomistic lattice constant

a.

2. Apply Eq. (8.5) and Eq. (8.9) to calculate the cell size dependent values

MS,cell and K1,cell, respectively, for non-atomistic simulations.

3. If necessary, calculate the cell size dependent exchange constant Acell with

non-atomistic MC or LLG simulations via the condition of a constant

〈Mz〉.

The obtained rescaled material parameters can then be used for any kind of

micromagnetic simulations at nonzero-temperatures.

In the next chapter we investigate the influence of our coarse-graining pro-

cedure on the switching time of small particles.



Chapter 9

Relaxation Times

The obtained scaling laws for the spontaneous magnetization MS, the

anisotropy constant K1, and the exchange constant A were derived from equi-

librium magnetization properties and represent statistical averages over a large

number of Monte Carlo steps. Thus, it is a priori not justified to use the

results of the previous chapter for highly dynamic processes such as magne-

tization switching. The simulation results in this chapter point out that our

coarse-graining procedure is also able to improve numerical results of dynamic

behavior.

9.1 Geometry and Material Parameters

We perform stochastic LLG simulations of small cubic particles with uniaxial

anisotropy and investigate the dependence of the averaged relaxation time on

the number of exchange coupled subcubes or discretization length ∆x, respec-

tively. Both, simulations with and without dipole interaction are considered.

The simulation setup is shown in Fig. 9.1. The material parameters are

the same as in the last chapter: µ0MS,0 = 1.76 T, A0 = 1.3 · 10−11 J/m,

K1,0 = 4.5 ·105 J/m3, and a = 0.376 nm. The edge length of the ferromagnetic

particle is 6 nm, the damping constant α = 1, and open boundary conditions

are applied in all directions. For the stochastic time integration of the Langevin
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Figure 9.1: Setup of switching simulations.

equation without dipole interaction a time step of ∆t = 0.1 ps is sufficient,

whereas ∆t = 0.01 ps turned out to be necessary for the simulations with

dipole interaction. The initial magnetization points upwards parallel to the

z-axis and the anisotropy direction. At an external field of H/Hani,0 = −0.84

(µ0Hani,0 = 0.64 T), applied in the negative z-direction, thermal activation

drives the magnetization out of the z-axis and finally causes the particle to

switch. For each cell size 2000 switching events were used to calculate an

averaged switching time.

9.2 Results and Discussion

The results of the switching simulations without dipole interaction for T =

300 K are shown in Fig. 9.2. The relaxation time as a function of the discretiza-

tion length is found to decrease with decreasing ∆x when cell size independent

material parameters are used, such as the atomistic material parameters MS,0,

K1,0 and A0. Fig. 9.2 points out that the results can be improved by applying

the previously derived scaling laws for the parameters MS,cell, K1,cell and Acell.

Then, the switching time remains almost constant.
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Figure 9.2: Switching times as a function of the computational cell size ∆x
at T = 300 K and without dipole interaction. The numbers in the diagram
indicate the number of subcubes. Simulations with the constant system param-
eters MS,0, K1,0, and A0 resulted in a decreasing switching time for decreasing
cell size. This behavior can be improved by using cell size dependent material
parameters. Then, the difference between the lowest and highest switching
times reduces from 63 ps to 23 ps. Scaling of MS and K1 but still using A0

resulted in the dashed curve. Standard deviations are always smaller than the
symbol size.

The simulation results also show that, contrary to equilibrium properties

as discussed in the previous section, the scaling of the exchange constant has a

strong impact on dynamic processes and thus on the relaxation time. Scaling

of MS and K1 but still using A0 resulted in the dashed curve in Fig. 9.2.

However, the results for the switching time increase for very small cell

sizes, which indicates that high frequency spin waves may slow down thermally

induced switching. Simulations with ∆x = a = 0.376 nm (163 subcubes)

resulted in switching times being about 2.5 times larger than those of Fig. 9.2.

Anyway, stochastic LLG simulations on an atomistic level are a special case

and should be handled carefully.

Fig. 9.3 summarizes the results for the same system but with dipole interac-
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Figure 9.3: Switching times as a function of the computational cell size ∆x
at T = 300 K and with dipole interaction. The constant parameters MS,0,
K1,0, and A0 again resulted in a decreasing switching time for decreasing cell
size. The cell size dependent parameters improve the behavior.

tion. The case of just one magnetic moment representing the whole magnetic

system was excluded in this diagram since the strayfield does not affect the

result. Decreasing switching times with decreasing discretization length can

be observed. The cell-size dependent parameters again improve the results.



Chapter 10

Cubic Crystal Lattices

For simplicity reasons we introduced our coarse-graining method for simple

cubic lattices and obtained scaling laws for the spontaneous magnetization and

the anisotropy constant directly from atomistic MC simulations. Nonatomistic

simulations suggested to use cell size dependent exchange constants at least

when dynamic properties are of interest.

However, simple cubic lattices with an atom (or ion) at each vertex are

very rare. The alpha phase of polonium is the only known example among

the elements under normal conditions [3]. The other two cubic Bravais lattices

– the face-centered cubic (fcc) and the body-centered cubic (bcc) lattices –

are much more important. An enormous variety of solids crystallize in these

structures. Typical elements with a monatomic bcc crystal structure are for

instance Cr and α-Fe, with a monatomic fcc lattice Ni, Pt, and β-Co.

In this chapter we focus on bcc and fcc lattices and extract scaling laws from

atomistic MC simulations for these lattice types. Other important elements for

magnetic applications (e.g. α-Co) crystallize in hexagonal forms, but cannot

be considered with the simple data structure of our MC program.
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Figure 10.1: Body-centered cubic (bcc) Bravais lattice. The set {a1, a2, a3}
defines the primitive unit cell, whereas the conventional cubic unit cell is de-
scribed by {ax̂, aŷ, aẑ}.

10.1 General Aspects

The body-centered cubic lattice is formed by adding an additional site to the

simple cubic lattice at the center of each cube, see Fig. 10.1, whereas the

face-centered cubic lattice shows an additional point in the center of each

square face, Fig. 10.2. The coordination number 6 for simple cubic lattices

consequently changes to 8 for bcc and 12 for fcc, respectively. Usually, the cubic

non-primitive unit cell (conventional unit cell) is described by the orthogonal

set of vectors {ax̂, aŷ, aẑ}, where a denotes the edge of the cubic unit cell.

The conventional unit cell is often preferred because the cubic symmetry is

reflected explicitly. The primitive cell, defined by {a1,a2, a3} (see Fig. 10.1

and Fig. 10.2), contains precisely one lattice point, and the volume is the
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Figure 10.2: Face-centered cubic (fcc) Bravais lattice. The vectors
{a1,a2, a3} describe the primitive unit cell, whereas the conventional cubic
unit cell is defined by {ax̂, aŷ, aẑ}.

volume per atom or lattice site,

vat =
∣∣ a1 · (a2 × a3)

∣∣ =
a3

c
. (10.1)

The volume of the cubic unit cell is c-times larger than vat, where c is the

number of atoms in the cubic unit cell. c = 1, 2, 4 for simple cubic, bcc, and

fcc lattices, respectively.

10.2 Geometry and Material Parameters

The atomistic MC simulations of bcc and fcc materials are performed in the

same way as in Sec. 8.1. Following the discussion in Sec. 8.1, considering c 6= 1,
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and again neglecting dipole interactions, we arrive at the total energy

cE = −A0 a

N ′∑
µ=1

∑
ν∈nn

uµ · uν + K1,0 a3

N ′∑
µ=1

(
1− (ẑ · u)2

)

−µ0MS,0 a3Hextẑ ·
N ′∑

µ=1

uµ , (10.2)

where N ′ now denotes the total number of spins. The system size is set to

(60 a)3, and periodic boundary conditions are applied in all directions. For the

calculation of the equilibrium properties 〈Mz〉 and MS,cell (see Eq. (8.3) and

Eq. (8.4)) a central averaging cube is used with the maximum edge length of

30 a. Again, we discard the first 104 MC steps and use the next 105 steps for

averaging.

Contrary to the primitive cubic lattice, the relation between the edge length

of the averaging cube and the number of spins in one direction within the cube

is not linear for bcc and fcc lattices. Thus, we extract the equilibrium values as

function of the number of spins within the averaging cube, n′, and subsequently

relate them with the discretization length ∆x = (n′vat)
1/3 of (nonatomistic) fi-

nite difference simulations. Consequently, ∆xat = v
1/3
at denotes the edge length

of a cube with the same volume as the primitive unit cell. The question is if

there is still a scaling law for MS,cell of the form

MS,cell(∆x, T ) = MS,∞(T ) +
(
MS,0 −MS,∞(T )

) (
∆xat

∆x

)q

. (10.3)

The bcc material parameters are chosen as µ0MS,0 = 2.15 T and A0 = 2.5 ·
10−11 J/m, which are those of α-Fe [52], though measured at room temperature.

The lattice constant of α-Fe is found to be a = 2.87 Å [46]. The fcc material

parameters are µ0MS,0 = 0.603 T and A0 = 2.5 · 10−11 J/m and correspond

to those of Ni [41] (again measured at room temperature), which has a lattice

constant of a = 3.52 Å [46]. Both materials are exposed to an external field

of 0.1 T parallel to the z-axis. Since the anisotropy term does not influence
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Figure 10.3: Spontaneous magnetization as function of ∆x/a for bcc (a =
2.87 Å) and fcc (a = 3.52 Å) materials, resulting from atomistic MC sim-
ulations. A fit according to the Bloch-like scaling law (8.5) does not give
reasonable results. The solid lines in the diagram are guides for the eyes only.

Structure q 〈Mz〉/MS,0 MS,∞/MS,0

bcc at T = 300 K 1.60 0.8916 0.8925
bcc at T = 500 K 1.58 0.8065 0.8073
fcc at T = 300 K 1.55 0.8858 0.8861

Table 10.1: Results of atomistic MC simulations for bcc (α-Fe) and fcc (Ni)
materials.

the form of the scaling law for the spontaneous magnetization, we neglect

anisotropy for both materials. Moreover, the scaling law for the anisotropy

constant is already given in Eq. (8.9).

10.3 Results and Discussion

Fig. 10.3 shows the spontaneous magnetization as function of ∆x/a. If one

tries to fit the data according to the Bloch-like scaling law (8.5) of the form y =

a0+(1−a0)(a/∆x)3/2, no reasonable results can be obtained. It is necessary to
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Figure 10.4: Normalized spontaneous magnetization as function of the
averaging cell size ∆x/∆xat for bcc (∆xat = 2.28 Å) and fcc (∆xat =
2.22 Å) materials, resulting from atomistic MC simulations. The fitting curve
(∆x/∆xat)

−1.5 is a good approximation for any kind of cubic unit cell.

calculate ∆xat first and make use of the modified scaling law (10.3). For this

case, the results are given in Tab. 10.1. As for simple cubic lattices, 〈Mz〉 does

not depend on the averaging cell size. The values after taking the average over

all cell sizes are listed in the table. The exponent q in the scaling law Eq. (10.3)

takes the values 1.60 for bcc at T = 300 K, 1.58 for bcc at T = 500 K, and

1.55 for fcc at T = 300 K, respectively. However, the difference between a

fitting curve with q and the exponent 1.5 is negligible for all cases. This can

be seen in Fig. 10.4, where (MS,cell − MS,∞)/(MS,0 − MS,∞) versus ∆x/∆xat

is plotted and reveals a universal behavior. The fitting curve (∆x/∆xat)
−1.5

is reasonable for all three examples. Since ∆xat = (a3/c)1/3 appears in the

scaling law (10.3), the universal fitting curve in Fig. 10.4 does not mean that

the behavior of the spontaneous magnetization is independent of the crystal

structure.

The results of nonatomistic MC simulations for bcc α-Fe at T = 300 K are

shown in Fig. 10.5. In order to extract 〈Mz〉 of the central magnetic moment
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Figure 10.5: Mean value 〈Mz〉 for α-Fe as a function of discretization length
∆x for T = 300 K, resulting from nonatomistic MC simulations. The curves
are normalized to the correct value of µ0〈Mz〉 = 1.9170 T obtained via
atomistic MC simulations. No cell size corrections were used for ◦. Simu-
lations with the cell size dependent spontaneous magnetization MS,cell from
Fig. 10.4 resulted in ¦. The atomistic parameters give an exchange length of
lexch = 3.69 nm.

after equilibration, we simulated a system of 303 moments localized on a regular

cubic lattice with lattice spacing ∆x. Using the cell size independent value

MS,∞ for all discretization lengths ∆x again reveals a decreasing magnetization

parallel to the external field, 〈Mz〉. MS,cell of Fig. 10.4 strongly improves the

behavior (about a factor of 3 at ∆x = 1 nm). The remaining difference can

be attributed to a cell size dependent exchange constant, Acell, following from

nonatomistic MC simulations (see Sec. 8.2).

10.4 Summary

In this chapter, we looked at the behavior of the spontaneous magnetization

MS,cell as function of the discretization length for bcc and fcc lattices. The

Bloch-like scaling law in the modified form of Eq. (10.3) with the exponent
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q = 3/2 turned out to be a good approximation for bcc and fcc lattices. Thus,

we can generalize the suggested coarse-graining procedure of Sec. 8 for any

kind of cubic lattice:

1. Determine the atomistic spontaneous magnetization MS,0 = MS(T =

0), the experimentally found spontaneous magnetization for large cells

MS,∞(T ) at the desired temperature T , the crystal structure, and the

atomistic cubic lattice constant a.

2. Calculate the volume vat = a3/c of the primitive unit cell (c = 1, 2, 4 for

simple cubic, bcc, and fcc lattices, respectively) and ∆xat = v
1/3
at .

3. Apply Eq. (10.3) with q = 3/2 and Eq. (8.9) to calculate the cell size

dependent values MS,cell and K1,cell, respectively, for nonatomistic simu-

lations.

4. If necessary, calculate the cell size dependent exchange constant Acell

with nonatomistic MC or LLG simulations via the condition of a constant

〈Mz〉.

The cell size dependent material parameters sufficiently improve numerical

results of micromagnetic simulations at nonzero-temperatures. Though, the

same scaling law for the spontaneous magnetization can be used for simple

cubic, bcc, and fcc lattices, the crystal structure enters as ∆xat.



Appendix A

Dirac Delta Function

The Dirac δ is a generalized function and can be defined as

δ(x) = lim
a→0

1

2a

(
Θ(x + a)−Θ(x− a)

)
, (A.1)

with the Heavyside function

Θ(x) =

{
0 for x < 0 ,

1 for x > 0 .
(A.2)

Throughout this chapter the variables x, y and the parameters a, b are real.

The function δ(f(x, y)) can be written as

δ(f(x, y)) =
∑

i

δ(x− xi(y))∣∣∣∂f(x,y)
∂x

∣∣∣
x=xi(y)

, (A.3)

where the sum is carried out over all real roots xi(y) of f(xi, y) = 0.

The often used introduction of the δ function via

∫ b

a

dx δ(x− x′) f(x) = f(x′)
[
Θ(b− x′)−Θ(a− x′)

]
(A.4)

is valid for any continuous function f(x).
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Kramers-Moyal Coefficients

The one-dimensional Kramers-Moyal coefficients

K(n)(x, t) =
1

n!
lim
τ→0

1

τ

〈
(ξ(t + τ)− ξ(t))n 〉∣∣∣

ξ(t)=x
(B.1)

are calculated for the Langevin equation of the stochastic variable ξ(t),

ξ̇ = h(ξ, t) + g(ξ, t) η(t) , (B.2)

with the Markovian Langevin force η(t),

〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = 2 δ(t− t′) . (B.3)

A generalization for d dimensions is more or less straightforward and can be

found in Ref. [48].

We start our derivation with the integration of Eq. (B.2) over a small time

interval [t, t + τ ] with the value of the stochastic variable ξ(t) = x:

ξ(t + τ)− x =

∫ t+τ

t

dt′
(
h(ξ, t′) + g(ξ, t′) η(t′)

)
. (B.4)
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The Taylor expansions of h and g read

h(ξ(t′), t′) = h(x + ξ(t′)− x, t′) =

= h(x, t′) + hx(x, t′) (ξ(t′)− x) + . . . (B.5)

g(ξ(t′), t′) = g(x, t′) + gx(x, t′) (ξ(t′)− x) + . . . . (B.6)

To keep the notation simple, we used hx ≡ ∂h/∂x just in the context of the

following derivation.

Using Eq. (B.5) and Eq. (B.6) iteratively in Eq. (B.4), we find

ξ(t + τ)− x =

∫ t+τ

t

dt′h(x, t′) +

∫ t+τ

t

dt′hx(x, t′)
∫ t′

t

dt′′h(x, t′′) +

+

∫ t+τ

t

dt′h(x, t′)
∫ t′

t

dt′′g(x, t′′) η(t′′) + . . . +

+

∫ t+τ

t

dt′g(x, t′) η(t′) +

∫ t+τ

t

dt′gx(x, t′) η(t′)
∫ t′

t

dt′′h(x, t′′) +

+

∫ t+τ

t

dt′gx(x, t′) η(t′)
∫ t′

t

dt′′g(x, t′′) η(t′′) + . . . . (B.7)

Taking the average of Eq. (B.7) and utilizing 〈η(t)〉 = 0 and Eq. (A.1), we

obtain

〈ξ(t + τ)− x〉 =

∫ t+τ

t

dt′h(x, t′) +

∫ t+τ

t

dt′hx(x, t′)
∫ t′

t

dt′′h(x, t′′) + . . . +

+

∫ t+τ

t

dt′gx(x, t′)
∫ t′

t

dt′′g(x, t′′) 〈η(t′)η(t′′)〉︸ ︷︷ ︸
2 δ(t′−t′′)︸ ︷︷ ︸

2 g(x,t′)Θ(t′−t′)

+ . . . . (B.8)

The common definition Θ(0) = 1/2 leads to the Stratonovich interpretation

(see Sec. 6.3.2) of the stochastic differential equation (B.2) and is equivalent

to any symmetric representation of the δ function around the origin (like

Eq. (A.1)). In this thesis we always use the Stratonovich interpretation of
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stochastic integrals. Hence, we get

〈ξ(t + τ)− x〉 =

∫ t+τ

t

dt′h(x, t′) +

∫ t+τ

t

dt′hx(x, t′)
∫ t′

t

dt′′h(x, t′′) + . . . +

+

∫ t+τ

t

dt′g(x, t′) gx(x, t′) + . . . . (B.9)

The first Kramers-Moyal coefficient can now be obtained by multiplying

Eq. (B.9) with τ−1 and performing τ → 0:

K(1)(x, t) = h(x, t) + g(x, t)
∂

∂x
g(x, t) . (B.10)

What happened to the other integrals in Eq. (B.9) in the limit τ → 0? Any

other term in Eq. (B.9) without η(t) contains at least two integrals and thus

is at least proportional to τ 2. So, these terms vanish for τ → 0. Terms with

the random force η(t) and not given explicitly in Eq. (B.9) contain products of

[η(t′)η(t′′) . . . η(t(n))] with n ≥ 3. The averages of these products are multitime

correlation functions of η(t). Since the Langevin forces are assumed to be

Gaussian with zero mean, they obey Isserlis’s theorem [16]

〈η(t′)η(t′′) . . . η(t(n))〉 =

{
0 for n odd,
∑∏

i<j〈η(t(i))η(t(j))〉 for n even,
(B.11)

where the sum runs over all distinct products of pairs 〈η(t(i))η(t(j))〉, each

formed by selecting n/2 pairs of {t′, . . . , t(n)}. With Eq. (B.3), Eq. (B.11)

represents a sum over terms each with n/2 functions δ(t(i) − t(j)). The n-fold

integrals in Eq. (B.9) are thus proportional to τn/2 and vanish for τ → 0.

With the same arguments we find for the other coefficients in Stratonovich

interpretation

K(2)(x, t) =
1

2
lim
τ→0

1

τ

∫ t+τ

t

dt′g(x, t′)
∫ t′

t

dt′′g(x, t′′)2δ(t′ − t′′) =

= g2(x, t) , (B.12)

K(n)(x, t) = 0 , ∀n ≥ 3 . (B.13)



Appendix C

Algorithm Tests

The algorithms for stochastic Landau-Lifshitz-Gilbert and Metropolis Monte

Carlo simulations have been checked via test cases with well-known solutions.

In the following a useful selection of test cases for micromagnetic codes is

presented. When examples of simulation results are given, they were obtained

in equilibrium. In particular, in the MC simulations the first 104 MC steps

were discarded and the next 105 steps were used for averaging, whereas 2 · 106

time steps were executed for the Langevin simulations and the first 105 steps

were excluded from averaging. For the stochastic LLG simulations, a damping

constant of α = 1 has been chosen.

C.1 Paramagnetism

The simplest case is a single (classical) magnetic moment in an external field

Hext = Hextẑ at a fixed temperature T . The total energy is the Zeeman energy

(see Eq. (3.18)) and reads

E = −vJSHext cos θ , (C.1)

where θ denotes the angle between the moment u and the z-axis. The probabil-

ity to find the magnetic moment at an angle θ is proportional to Boltzmann’s
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T (K) 〈uz〉
exact MC LLG

50 0.9306 0.9295 0.9301
100 0.8612 0.8618 0.8615
150 0.7919 0.7923 0.7921

Table C.1: Results for a single magnetic moment in an external field.

factor exp(−βE), with β = (kBT )−1.

After equilibration, the averaged magnetization parallel to the external

field is given by

〈uz〉 ≡ 〈cos θ〉 =

∫ π

0
dθ sin θ cos θ exp(ζ cos θ)∫ π

0
dθ sin θ exp(ζ cos θ)

= coth ζ − 1

ζ
, (C.2)

where we used ζ = βvJSHext. The mean values of the other components vanish

due to symmetry reasons.

Some results for JS = 1 T, µ0Hext = 0.1 T, and v = 125 nm3 are compared

in Tab. C.1 for different temperatures and reveal a good agreement between the

analytical values and those obtained from MC and stochastic LLG simulations.

C.2 Stoner-Wohlfarth Particle

In the Stoner-Wohlfarth model, small magnetic particles are approximated by

rigid magnetic moments [37]. This is equivalent to coherent rotation, where

exchange interaction keeps magnetic moments parallel during reversal.

The energy of a Stoner-Wohlfarth particle with uniaxial anisotropy parallel

to the z-axis in an external field Hext = Hextẑ reads

E = −K1v cos2θ − vJSHext cos θ , (C.3)

where θ again denotes the angle between the magnetization vector and the

z-axis. In equilibrium, the average magnetization 〈uz〉 can be calculated nu-
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T (K) 〈uz〉
exact MC LLG

100 0.9742 0.9743 0.9740
200 0.9470 0.9465 0.9467
300 0.9180 0.9181 0.9178

Table C.2: Results for a Stoner-Wohlfarth particle in an external field.

merically as

〈uz〉 =

∫ π

0
dθ sin θ cos θ exp(ξ cos2θ + ζ cos θ)∫ π

0
dθ sin θ exp(ξ cos2θ + ζ cos θ)

, (C.4)

where ξ = βK1v and ζ = βvJSHext.

Tab. C.2 presents some results for JS = 1 T, K1 = 1·105 J/m3, v = 125 nm3,

and an external field of µ0Hext = 0.3 T. The simulation results agree very well

with the exact values obtained using Mathematica.

C.3 Exchange Coupled Moments

In general, no analytic solutions exist for exchange coupled moments. However,

one can consider special cases for which solutions are known and allow for

verification of correct implementation. To check the MC code on an atomistic

level for simple cubic, bcc, and fcc lattices, we can assume all spins but one

fixed parallel to the z-axis. Then, the total energy of exchange coupled spins

in an external field Hext = Hextẑ reads (see Eq. (10.2))

E = −1

c

(
2zAa + JSa

3Hext

)
cos θ′ . (C.5)

Constant energy terms have been omitted. z denotes the number of nearest

neighbors, a the edge length of the cubic unit cell, and θ′ is the angle between

the external field and the only free spin, u′. Going back to Eq. (C.2), the
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T (K) crystal 〈u′z〉
exact MC

10 simple 0.9617 0.9618
bcc 0.9426 0.9422
fcc 0.9234 0.9232

30 simple 0.8852 0.8855
bcc 0.8277 0.8274
fcc 0.7704 0.7701

Table C.3: Results for exchange coupled spins in an external field obtained
via atomistic MC simulations.

solution for the averaged magnetization can be found as

〈u′z〉 ≡ 〈cos θ〉 = coth ζ − 1

ζ
, (C.6)

with

ζ =
β

c

(
2zAa + JSa

3Hext

)
. (C.7)

For this test case, the same material parameters were used for simple cubic

(z = 6, c = 1), bcc (z = 8, c = 2), and fcc (z = 12, c = 4) lattices: JS = 1 T,

A = 1 ·10−12 J/m, and a = 3 Å. The spins were exposed to an external field of

µ0Hext = 0.3 T. Tab. C.3 shows some results compared with the exact values.

Choosing different directions for the fixed spins is an easy way to check

whether the right nearest neighbors contribute to the exchange energy.
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Monte Carlo Program

The Metropolis Monte Carlo program has been implemented in ANSI-C. All

array sizes are defined in the main program before compiling the code:

#define n 60

#define navstart 2

#define navend 30

#define navstepsize 2

For simple cubic lattices, n is the number of cubic unit cells in x-, y-, and

z-direction, navstart and navend denote the start and end size of the central

averaging box, respectively, and navstepsize is the step size of the averaging

cube size. Body-centered (bcc) and face-centered (fcc) cubic lattices are build

up by considering only the required spins on a regular cubic lattice. Thus, for

bcc and fcc lattices, n denotes the number of lattice points of a regular cubic

lattice in one direction, which are necessary to build the desired bcc or fcc

lattice, respectively. This applies analogously to the other values listed above.

For the initialization of the simulation, all parameters are read from the

file parameter.ini, listed in Tab. D.1. Only a few parameters need further

explanations: The MC program calculates averaged quantities for different

temperatures, starting at the temperature tempfinal/tempsteps and ending

with tempfinal. The case T = 0 is not simulated automatically. If one is

interested in the zero-temperature configuration (e.g. for systems with stray-
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field interaction), one has to set tempfinal = 0. The averaging procedure

starts after the number of MC steps specified by the value start. Running

averages are saved every savemag. If writemagconfig = 1, the magnetization

configuration is saved every savemag in a format readable by MicroAVS.
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# 0 = open bound. cond., 1 = periodic bound. cond. #

pbc = 1

# 0 = no dipole interaction #

dipolefield = 0

# 1 = spins parallel z-axis, 0 = random spin directions #

coldstart = 1

# 0 = simple cubic, 1 = bcc, 2 = fcc #

structure = 2

# Spontaneous polarization in [T] #

Js = 1.0

# exchange constant in [J/m] #

exchangeconstant = 1e-12

# Anisotropy constant in [J/m^3] #

K = 1e5

# lattice constant of CUBIC unit cell, in [m] #

a = 3e-10

# B field VALUE in [T] #

Bfield = 0.1

# B DIRECTION in cartesian coordinates #

Bextx = 0.0

Bexty = 0.0

Bextz = 1.0

# tempinitial = 0 K, but not calculated automatically #

tempfinal = 10.0

tempsteps = 1

# n^3*anzMonte = total number of trial steps #

anzMonte = 110000

# start averaging after # Monte steps #

start = 10000

# save magn. configuration and averages every savemag #

savemag = 1000

# 1 = write magnetization configuration every savemag #

writemagconfig = 0

Table D.1: Initialization file parameter.ini.
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