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Abstract

Peer-to-peer networks and folksonomies are like living organisms, ever growing and chang-
ing as time goes on. This thesis addresses the applicability of algorithms derived from the
self-organizing and emergent behavior observed from ant colonies to these complex net-
works for two specific purposes, namely (1) content-based search in unstructured peer-to-
peer networks, and (2) the extraction of adaptive user profiles from folksonomies.

For search in unstructured peer-to-peer networks, the main goal is to find the shortest
path from every querying peer to one or more answering peers that possess resources which
are appropriate answers for the given query. The SEMANT algorithm, which is designed for
this task, is based on reputation learning. In reputation learning, the information about the
remote peers’ resources is gained passively by observing the user queries and their answers
that are forwarded through the local peer. Every successful query evokes small updates in
the routing tables of those peers that are included in the path between the querying and
the answering peer. The routing tables are used for subsequent queries to decide which
link to follow in order to find appropriate resources. The SEMANT algorithm is compliant
with the Ant Colony Optimization meta-heuristic, and it employs a probabilistic procedure to
select outgoing links for query forwarding. This procedure combines an exploiting strategy,
which selects those links currently known as the most appropriate ones, with an exploring
strategy, which also follows links not currently known as the best ones with the aim of
finding better paths not yet explored. A weight defines the ratio between the strategies.

Since the SEMANT algorithm is a content-based approach to peer-to-peer search, its per-
formance depends on how the content is distributed in the network. The evaluation of the
algorithm includes an investigation to which extent this is the case. Based on these results,
we develop strategies for improvement. Under the assumption that the resources in the net-
work are annotated according to a taxonomy, and that the query vocabulary is restricted to
the leaf topics from the same taxonomy, it is possible to consider also the upper-level topics
in the query routing procedure of the algorithm in order to increase its performance.

Ant algorithms include an evaporation feature for integrating a time factor when incre-
mentally creating solutions. This feature is beneficial for the task of learning adaptive user
profiles from tagging data. For this purpose we design the Add-A-Tag algorithm, which
is based on a combination of an evaporation feature for adapting the user profile to trends
over time, and the co-occurrence technique for determining the relationships between tags.
The user profiles created with the Add-A-Tag algorithm are semantic networks derived
from the structure of the tagging data, and they are adaptive in the sense that they change
according to changes in a user’s tagging behavior. In addition to the long-term interests of
a user, also his or her short-term interests are included in the profile at any given point of
time. We present a tool for visualizing the changes in the profile over time, and we show
how to exploit the profile for personalized browsing of annotated data sources.
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Kurzfassung

Peer-to-Peer Netzwerke und Folksonomies ähneln lebendigen Organismen, die stetig wach-
sen und sich kontinuierlich ändern. Ameisenalgorithmen sind dem emergenten und selbst-
organisierenden Verhalten von Ameisenkolonien bei der Futtersuche nachempfunden. Die
vorliegende Dissertation beschäftigt sich mit der Anwendbarkeit von Ameisenalgorithmen
in diesen Netzwerken für (1) die semantische Suche in unstrukturierten Peer-to-Peer Netz-
werken, und für (2) die Extrahierung von adaptiven Benutzungsprofilen von Folksonomies.

Das Hauptproblem bei der Suche in unstrukturierten Peer-to-Peer Netzwerken ist es, für
jede Anfrage jene Peers zu finden, die dem anfragenden Peer topologisch nahe liegen und
über Ressourcen verfügen, die als Antwort auf die Anfrage geeignet sind. Der im Rahmen
dieser Dissertation für diesen Zweck erstellte Ameisenalgorithmus SEMANT verfolgt einen
Ansatz, in dem die Informationen über die an den entfernten Peers verfügbaren Ressour-
cen auf passive Art und Weise, durch das Überwachen der am lokalen Peer empfangenen
und weitergeleiteten Anfragen und Antworten, gewonnen werden. Jede erfolgreiche An-
frage hinterlässt eine Spur im Netzwerk. Für das Weiterleiten aktueller Anfragen wird ein
probabilistisches Modell benutzt, das die Summe der bestehenden Spuren auswertet. Die-
ses Modell kombiniert eine verwertende mit einer explorierenden Strategie. In der verwer-
tenden Strategie werden immer jene Spuren benutzt, die am besten geeignet sind. In der
explorierenden Strategie werden auch schlechtere Spuren benutzt, um potentiell noch nicht
bekannte bessere Wege zu finden und damit die Leistung des Gesamtsystems zu erhöhen.

Die Leistung von semantischen Ansätzen zur Peer-to-Peer Suche wird stark von der Ver-
teilung der Inhalte im Netzwerk beeinflusst. Das gilt auch für den SEMANT Algorithmus.
Unter der Annahme, dass alle Ressourcen im Netzwerk mit aus einer Taxonomie stammen-
den Metadaten ausgezeichnet sind und dass die Anfragen auf demselben Metadatenvoka-
bular beruhen, ist es möglich, die hierarchische Information aus der Taxonomie in die Ent-
scheidung mit einzubeziehen, zu welchem Nachbar-Peer eine Anfrage weitergeleitet wer-
den soll. Damit wird die Leistung des Suchalgorithmus verbessert.

Ameisenalgorithmen inkludieren einen Evaporierungsfaktor zur Berücksichtigung von
zeitlichen Aspekten bei der inkrementellen Generierung von Lösungen für Optimierungs-
probleme. Der Add-A-Tag Algorithmus für die Extrahierung von adaptiven Benutzungs-
profilen von Folksonomies nutzt diesen Evaporierungsfaktor in Kombination mit einem
Co-occurrence Ansatz zur Anpassung von Benutzungsprofilen an die Änderungen im Tag-
ging Verhalten eines Benutzers oder einer Benutzerin. Die mit Add-A-Tag erstellten Profile
sind semantische Netzwerke, deren gewichtete Kanten die Stärke der Beziehungen zwi-
schen den einzelnen Tags im Profil ausdrücken. Durch die Integration des Evaporierungs-
faktors in den Algorithmus beinhalten die Profile sowohl die Langzeitinteressen als auch
die Kurzzeitinteressen der BenutzerInnen zum Zeitpunkt der Profilberechnung. Die Profile
können für das personalisierte Browsen von annotierten Datenquellen verwendet werden.
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Chapter 1

Introduction

This chapter presents the motivation for the research conducted in this thesis. Next to pro-
viding the necessary background about the problems to be tackled, the contributions of the
thesis are summarized and the organization of this document is presented.

1.1 Problem statement

The proliferation of the Internet has drastically enhanced the opportunities to access, pub-
lish, and manage information and resources. The World Wide Web provides for easily ac-
cessing and publishing information. Peer-to-peer systems allow users to make the resources
stored at their personal computers available to the community. Current efforts – subsumed
under the term Web2.0 [138] – are targeted at making it even easier for end users to publish
information, thus emphasizing the social network aspect of the Web, and at providing them
with folksonomies as a simple means to annotate information. Since publishing is made
so easy, an enormous amount of networked data is available. This raises challenges for the
research community: How to support users in discovering what they are looking for?

Many approaches to searching or organising information in a network take a link-based
approach. The most prominent example is the PageRank algorithm [22], which iteratively
estimates the importance of a Web page by considering the number of links pointing to it
in combination with the importance of the referring pages. In peer-to-peer search, the core
of every search algorithm for unstructured networks is its method for evaluating a peer’s
outgoing links with respect to their desirability for forwarding a certain type of query. Folk-
sonomies are tripartite graphs with hyperedges (that is, links which can connect more than
two nodes) which allow to derive networks with weighted links that express the strength of
the relationship between the nodes. Depending on which network is of interest, the nodes
can either refer to tags, or to bookmarks, or to users.

This thesis investigates the use of ant algorithms for assessing the strengths between links
in social networks. Ant algorithms mimick the pheromone-based, self-organizing behavior
called trail-laying and trail-following that is used by natural ant colonies for finding the
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shortest path between a nest and a food source. When moving, each ant drops a chemical
substance called pheromone. In order to decide which way to follow, the ants sense their
environment for existing pheromone trails and follow them with a probability that is pro-
portional to the strength of the trail. If not reinforced by an ant that uses it, a pheromone
trail will evaporate over time. The Ant Colony Optimization meta-heuristic (ACO, [45])
proposed by Di Caro and Dorigo defines a framework for applying trail-laying and trail-
following techniques in combination with evaporation of trails to solving graph-based com-
binatorial optimization problems. Most ACO-compliant algorithms have been applied to
centralized problems. However, since ant algorithms are exclusively based on modifica-
tions of pheromone trails and therefore need only local knowledge about the graph, they are
also suitable for application in distributed environments without centralized control, i.e., in
peer-to-peer networks. A dedicated subset of ant-based algorithms, subsumed under the
term Ant Colony Routing [27], was specifically designed for managing routing tables in IP
networks. A similar approach is used for routing tables in mobile ad-hoc networks [28].

1.2 Contributions

This thesis provides a twofold contribution. In the first part of the thesis, we investigate ant
algorithms for content-based search in peer-to-peer networks. The three main contributions
of this part of the thesis are the following:

• We propose a novel algorithm for content-based search in peer-to-peer networks com-
pliant with the Ant Colony Optimization meta-heuristic.

• We assess the factors that have an impact on the performance on the algorithm (such
as parameter settings, network topology, and content distribution in the network) and
conduct a thorough evaluation to quantify their impact.

• We design an extension to the algorithm for taxonomy-based application scenarios
that enhances its performance by additionally laying and following pheromone trails
for higher-level topics.

In the second part of the thesis, we show how the evaporation factor from ant algorithms
can be applied to the task of extracting adaptive user profiles from tagging data. The two
main contributions of this part of the thesis are the following:

• We design the Add-A-Tag algorithm for adaptive user profile learning from tagging
data, and we evaluate it (1) through statistical analysis and (2) with a small-scale user
study, for which we implemented a tool for visualizing the profile changes over time.

• We show how to use the profiles created with Add-A-Tag for personalized browsing
of annotated data sources.

2
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1.3 Organization of the thesis

The thesis is organized as follows.

Part I presents the SEMANT algorithm for content-based search in unstructured peer-to-
peer networks. This part is comprised of Chapter 2, Chapter 3, Chapter 4, and Chap-
ter 5.

Chapter 2 provides an overview of peer-to-peer networks. It introduces the main charac-
teristics of the peer-to-peer paradigm and the different approaches to structuring the
topology of the overlay network. Since the SEMANT algorithm is designed for search
within unstructured networks, the major part of the chapter is devoted to a review of
related work on unstructured networks.

Chapter 3 introduces the basic principles of emergence and self-organization and gives a
short summary of the relevant literature in this research area. The focus of this chap-
ter is on ant-based methods. After giving a general overview of ant algorithms and
their properties, three different ant algorithms that are relevant for the SEMANT al-
gorithm are introduced and discussed. In particular, the applicability of the selected
algorithms for search in peer-to-peer networks is evaluated. The outcome of this eval-
uation builds the basis for defining the SEMANT algorithm.

Chapter 4 is based on the findings of Chapter 3 and covers the specification of the pro-
posed ant algorithm SEMANT for content-based search in peer-to-peer networks. Af-
ter defining the problem and stating the assumptions which were made, what fol-
lows is a detailed description of all aspects related to the SEMANT algorithm. The
remainder of the chapter is devoted to the evaluation of the algorithm’s performance
in various scenarios and settings, and to an overview of related work.

Chapter 5 serves two purposes. Firstly, it investigates the impact of different content dis-
tributions on the performance of the SEMANT algorithm. Secondly, it shows how
taxonomies can be used for SEMANT in order to improve the performance. After pro-
viding the motivation for that work, it is shown how to extend the SEMANT algorithm
to provide for the consideration of metadata from a taxonomy for routing. After that,
the experimental results indicating the performance of the algorithm with respect to
different content distributions – with or without using information from a taxonomy
for routing – are presented, and related work on using taxonomies for routing in peer-
to-peer networks is discussed.

Part II deals with tagging data and presents the Add-A-Tag algorithm for acquisition of
dynamic user profiles from folksonomies. It is comprised of Chapter 6 and Chapter 7.

3
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Chapter 6 delivers a case study on the properties of meta-data provided by a folksonomy
(also referred to as tagging data). After providing the background about folksonomies
and discussing to which extend the process of creating meta-data in a folksonomy is
related to the idea of emergent semantics as defined by the IFIP 2.6 Working Group
on Data Semantics, experiments are conducted in order to analyze the meta-data pro-
vided by the del.icio.us folksonomy. The aim is (1) to develop a method for selecting
subsets of meta-data that adhere to the principle of interest-based locality, which was
originally observed in peer-to-peer environments, and to (2) compare the data pro-
vided by the del.icio.us folksonomy to data provided by the DMOZ taxonomy.

This chapter provides the connection between the two parts of the thesis. Next to
being an initial starting point for the more detailed investigation of folksonomies in
Chapter 7, the work presented in this chapter was also carried out to determine if
tagging data can be used as test data for a peer-to-peer simulation environment, and
therefore contains backlinks to the work described in Part I of the thesis.

Chapter 7 This chapter presents the Add-A-Tag algorithm for profile construction from tag-
ging data. Taking account of the structural and temporal nature of tagging data allows
to create user profiles which (1) are represented as semantic networks, and (2) include
both long-term and short-term interests of a user. In addition, this chapter explores
ways of leveraging the user profiles. They can be used to guide a user’s navigation,
that is, to provide the user with personalized access to information resources.

Chapter 8 concludes and gives an overview of future work.

4
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Chapter 2

Search in peer-to-peer networks

This chapter presents an overview of peer-to-peer networks. It introduces the main char-
acteristics of the peer-to-peer paradigm, and the different approaches to structuring the
topology of the overlay network. Since the SEMANT algorithm is designed for search in
unstructured networks, the major part of the chapter is devoted to a review of related work
in this area.

Contents
2.1 Peer-to-peer networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Structured and unstructured networks . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Unstructured overlay networks . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Super-peer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Structured overlay networks . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Search in unstructured networks . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Breadth-first search and depth-first search . . . . . . . . . . . . . . . 10
2.3.2 Modifications to breadth-first search . . . . . . . . . . . . . . . . . . 10
2.3.3 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Local indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.5 Exploitation of network topology . . . . . . . . . . . . . . . . . . . . 12
2.3.6 Reputation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.7 Semantic overlay networks / Shortcut networks . . . . . . . . . . . . 14
2.3.8 Comparison of approaches . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Peer-to-peer networks

A peer-to-peer network is “a distributed system in which all nodes are completely equiva-
lent in terms of functionality and tasks they perform” [10]. In contrast to the client/server
model, every peer-to-peer node is both a client that consumes resources from other peers,
and a server that provides resources to other peers. Another definition of peer-to-peer net-
works puts the focus on the implications of the fact that there is no central coordination in
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the network: “Peer-to-peer systems are distributed systems consisting of interconnected
nodes able to self-organize into network topologies with the purpose of sharing resources
such as content [...] without requiring the intermediation or support of a global centralized
server or authority” [10]. This definition also stresses that each peer owns a portion of the
resources (such as data or computing power) accessible in the network. Since each peer
knows only about the peers it communicates with, it has a local view on the network. Ris-
son and Moors’s definition includes the self-organizing properties of peer-to-peer networks,
that is, they “automatically adapt to the arrival, departure, and failure of nodes” [111].

Peer-to-peer networks are built at the application layer on top of a communication infras-
tructure at the physical layer, such as the Internet. They can be viewed as graphs in which
the nodes are the peers and the edges are the links between these peers. Since (1) only a few
of all nodes of the underlying infrastructure participate in the peer-to-peer network and (2)
the links between these peers can be composed of a number of physical links, peer-to-peer
networks are also referred to as overlay networks.

The peers are autonomous and can leave the network at any time. This must not cause
any interruption of the network’s services. Hence, peer-to-peer architectures must provide
for fault tolerance by nature, which is one of their main characteristics. Another character-
istic that is inherently present is scalability. Unlike in centralized systems where upgrading
the server can be hard or impossible when the maximum number of users is reached, in a
peer-to-peer network it must be considered already in the design phase of the system that
any number of peers can participate. Other requirements of peer-to-peer networks include
performance, fairness, and security.

For a more detailed general overview, see the work of Hauswirth et al. [68] and Milojicic et
al. [94]. There are numerous research issues in the peer-to-peer area, e.g., discovery, content
replication, schema mapping, caching, migration, access control, authentication, reputation,
and others. One of the key challenges is search in peer-to-peer networks (also referred to as
query routing or query processing), which is the focus of this part of the thesis.

2.2 Structured and unstructured networks

There are several possibilities for the structure (topology) of the overlay network, which
will be described in the following.

2.2.1 Unstructured overlay networks

The most simple approach is to use the network structure the peers organize themselves
into when joining the network. Each peer will connect to a set of other peers when joining
the network, which will result in a random graph. Such overlay networks are called unstruc-
tured overlay networks. Depending on which search technique is used, the peers will either

7
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(1) not manage a content index at all, or (2) manage an index of their own content, or (3)
also include information about the content stored at their neighbor peers in their indexes.
Each peer can send queries to its neighbors, and the peers collaborate to forward queries on
each others behalf. Search techniques for unstructured overlays are reviewed in Section 2.3.

2.2.2 Super-peer architecture

In real-world settings, not all the peers will have the same capabilities in terms of band-
width and amount of storage space. Instead, some of the peers will have a high amount of
resources, whereas most peers will have an average amount of resources at their disposal.
Therefore, it makes sense to impose a two-level hierarchy on the peers and to classify those
peers with a high amount of resources as super-peers (sometimes also referred to as ultra-
peers). The super-peer architecture has first been described by Yang and Garcia-Molina [146].
In this architecture, each peer connects to a super-peer when joining the network. Each
super-peer (1) is connected to other super-peers and (2) serves a set of peers for which it
manages an index of their content, and for which it forwards queries to other super-peers
if the query can not be answered considering the content indexed at the super-peer itself.
Additionally, the super-peers can organize themselves into a convenient topology that pro-
vides short paths for query routing, such as a hypercube as shown by Nejdl et al. [100].

2.2.3 Structured overlay networks

Similar to changing the overlay structure of the super-peer network, it is also possible to
organize all the peers into regular topologies, such as rings [97], binary trees [2], multi-
dimensional toruses [108], or others. Such overlay networks are called structured overlay
networks or distributed hash tables (DHT) [15]. The regular topology allows for an efficient
lookup procedure (proximity routing) for simple exact-match queries, also referred to as
key lookup. However, in order to make use of the regular structure it is necessary to relocate
the content in the network. This is also referred to as publishing:

• All the resources in the network are identified using unique numeric keys.

• According to the regular structure chosen, each peer is responsible for a certain range
of the key space.

• To insert a resource into the system, it is necessary (1) to derive its key from the re-
source name using a hash function and to (2) copy the resource to the peer that is
responsible for that key.

Structured overlay networks guarantee that each resource can be found (in the absence of
network failures). In addition, they assure an upper bound for the number of hops neces-

8
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sary for key lookup. Typically, the upper bound is O(log(N)), where N is the number of
peers in the network.

2.2.4 Comparison

There is still a lot of debate within the peer-to-peer research community about which ap-
proach – unstructured overlays, super-peer architectures, or structured overlays – has the
most benefits. It is generally agreed that key lookup with distributed hash tables is very ef-
ficient and can not be beaten by the other approaches. On the other hand, supporting com-
plex queries is easier to implement with unstructured overlays or super-peer architectures
(see [44]). However, it is also possible with structured overlays (see [65]). In addition, the
fact that structured overlays require content publishing can not be neglected easily, since it
(1) creates additional costs and also because it (2) is not possible in all application scenarios,
e.g., due to user preferences or intellectual property (IP) issues.

Since most researchers are in favor of one method or the other, only a few direct com-
parisons between the different approaches can be found in literature. One of them is pro-
vided by Yang et al. [147], who compare the performance of full-text search in a structured,
a super-peer, and an unstructured network. Their results show that the structured net-
work provides a 30% better response time than the super-peer network, but needs six times
as much network resources for publishing the content. The unstructured approach (with
search implemented as random walks, see Section 2.3.3) needs no resources for publishing
at all, but is much slower in responding to queries compared to the other approaches.

However, some related work on combining structured and unstructured approaches can
be found. Castro et al. [29] show how to implement flooding (see Section 2.3) and random
walks in a distributed hash table for better support of complex queries. Loo et al. [85]
observe that unstructured networks (in their case Gnutella, which uses a simple super-peer
architecture) are highly effective for locating popular files, whereas distributed hash tables
are not. At the same time, unstructured networks are not effective for locating rare items,
whereas distributed hash tables are. Hence, they suggest to use a hybrid infrastructure
in which only rare items are published using a distributed hash table. The super-peers
need to be organized into a regular structure, and they are responsible for identifying and
publishing rare content from their client peers to the distributed hash table. Queries are
then performed by using the methods used in unstructured networks. Only if there are not
enough results, the query is issued to the distributed hash table.

2.3 Search in unstructured networks

This section provides a chronological overview of the different approaches to query routing
in unstructured overlay networks. For a more detailed overview refer to [131, 111, 76, 10].

9
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The idea of a peer-to-peer network as a network where nodes with equal properties col-
laborate is not a new one. It has already been applied for the Usenet [42] in 1979 and for
the FidoNet [124] in 1984. The term peer-to-peer became famous with the advent of the dis-
tributed file-sharing application Napster. Napster, which was a very popular service be-
tween 1999 and 2001, relies on an index of all documents stored at central servers. The peers
in the network register their contents at these servers, and use the indexes for querying. The
content itself is exchanged using direct connections between the nodes. Peer-to-peer ar-
chitectures which include centralized components are also referred to as hybrid peer-to-peer
systems. The centralized component was the main drawback of Napster for two reasons.
Firstly, it is a bottleneck because all users rely on the central indexes. Secondly, the owners
of the central components can be made responsible for legal issues if the users of the system
share copyrighted material. For this reason, Napster was shut down in 2002.

2.3.1 Breadth-first search and depth-first search

Soon after Napster’s shutdown, similar file-sharing applications that did not rely on cen-
tralized components emerged. Their basic approach was not to use indexes at all, but to
broadcast each query to the network with a limited scope. Broadcasting queries is also
known as flooding. The queries are recursively forwarded to all reachable neighbor nodes.
The scope of a broadcast, also referred to as time-to-live parameter (TTL), is defined by the
number of hops that lie between the querying node and the most far-off node trying to an-
swer the query. In breadth-first search, a query is recursively broadcast to all neighbors that
can be reached within a defined number of hops. Less network resources than in breadth-
first search are used in depth-first search, where nodes send a query to all of their neighbors
sequentially, and stop after the query is satisfied. Breadth-first search (BFS) and depth-first
search (DFS) are techniques known from Graph Theory [80]. Since they consume a high
amount of network resource, the drawback of broadcasting techniques is that they provide
only limited scalability [112, 90].

2.3.2 Modifications to breadth-first search

The drawbacks of flooding-based techniques with regards to scalability became evident
soon, and a newly-formed research community began to work on improvements. Yang and
Garcia-Molina [145] suggested directed breadth-first search, where the peers rely on statistical
information they collect about their neighbors – such as the amount of results received in
the past – together with simple heuristics for ranking them according to their performance
in answering queries. Subsequent queries are sent to the peers that performed best. The
directed breadth-first search approach considers only the first hop of each query, and uses
flooding for the other hops. In addition, Yang and Garcia-Molina use dynamically increas-
ing time-to-live parameters (iterative deepening). With iterative deepening, each query is

10
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broadcast with a small TTL parameter first. If there is no answer, the TTL is increased. This
process repeats until an answer can be found, or the maximum TTL is reached. A similar
approach was suggested by Lv et al. [90] under the name expanding ring.

Kalogeraki et al. [78] proposed modified breadth-first search, where a search message is not
forwarded to all neighbors but only to a fraction of them. For example, if the fraction pa-
rameter is set to 0.5, a peer will randomly select 50% of its neighbors for forwarding a query.

Menascé and Kanchanapalli’s [92] approach also selects a subset of neighbors for for-
warding. Instead of selecting a fraction of neighbors to according a certain probability, it
employs a broadcast probability according to which each neighbor will be chosen. This means
that it can select between 0 and n neighbors of a peer Px, where n is the number of peer Px’s
outgoing links.

2.3.3 Random walks

Another technique that does not rely on any indexes are random walkers as introduced by Lv
et al. [90]. In the random walker approach, a query will be forwarded to a randomly chosen
neighbor until an answer is found, or the maximum TTL is reached. Since using only one
walker results in long response times for the user, k random walkers are employed to speed
up the retrieval process. The authors suggest to use between 16 and 64 walkers for a query.
Moreover, several possibilities to enhance random walks are proposed:

• Instead of using a TTL-based termination of the queries, it is also possible to use a
technique named checking, where a walker periodically checks with the querying peer
to find out if enough answers to the query were found already. If not, it continues
walking.

• In random walk with state, each query has an unique ID. Each peer records the IDs of the
queries it forwards, together with the identifier of the neighbor it sent it to. If another
query with the same ID arrives, the peer will forward it to another neighbor.

In addition, the authors propose techniques for replicating the content in the network in
order to improve recall.

2.3.4 Local indices

In the same paper [145] that presents directed breadth-first search, Yang and Garcia-Molina
also propose another technique called Local Indices. In this case, each peer stores an index
of the content of all its neighbors within a certain radius and can then process queries on
behalf of its neighbors.

A refinement to local indices is defined by Crespo and Garcia-Molina [40], who are among
the first to suggest a content-based approach. All content in the network is annotated with
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meta-data, and the peers try to predict based on a query’s keywords which remote peer is
capable of answering it. Each peer maintains an index of content summaries of its neigh-
bors. For selecting the most appropriate peer, functions that rank the information in the
index according to its relevance to the query are used in order to select the node that is most
likely to contain content that satisfies the query. The method of Crespo and Garcia-Molina
is called Routing Indices (RIs). Both local indices and routing indices are actively created by
exchange of content summaries between the peers.

2.3.5 Exploitation of network topology

As described in [148, 110, 116], most real-world peer-to-peer networks have power-law de-
gree distributions. In such a network topology, the probability that a node has x outgoing
links is proportional to x−τ , where τ > 0 is referred to as the exponent of the distribution.
Several approaches to search in peer-to-peer networks exploit the topology of the network
for creating appropriate routing schemes.

Adamic et al. [7, 6] address the question of finding the shortest path between a source
node and a target node in a power-law network. Their assumption is that each node knows
about the degree of its neighbor nodes. The search messages are then always passed on
to the neighbor with the highest degree which has not already been visited. Compared to
random walks, a high degree seeking algorithm covers a greater portion of the network (that
is, its well-connected part) more quickly. Using high degree seeking for keyword-based or
filename-based search in peer-to-peer networks requires every peer to manage a local index
of the resources of its neighbors one and two hops away.

A very sophisticated exploitation of the power-law degree distribution can be found in
percolation search [117, 118]. Percolation search consists of three building blocks: content
implantation, query implantation, and bond percolation. Content implantation means that
every peer announces its content through a short random walk. Query implantation, which
is executed each time a peer issues a query, means that the query will be ”implanted” at
a small number of peers through a short random walk. Content and query implantation
ensure that content and queries are known by at least one high-degree node, since a random
walk in a power-law network gravitates towards high-degree nodes because they have a
higher number of incoming links. The search is executed in the bond percolation step. Each
peer which has an implanted query will perform a probabilistic broadcast, in which it sends
the query to each of its neighbors with probability q. Probability q is set to such a value that a
query starting from a high-degree node will be broadcast to the so-called giant component
of the network (which all high-degree nodes are part of with a high probability). Since
content implantation ensures that each resource is known by at least one high-degree node,
it will be found.
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2.3.6 Reputation learning

Instead of creating local indices by actively exchanging information between the peers about
their resources (cf. Section 2.3.4), it is also possible to gain information about the remote
peers’ resources passively by observing the user queries and their answers that are for-
warded through the local peer. This has the benefit that no additional traffic is necessary for
creating the local indices. The local indices are used to forward queries to those peers that
are likely to have resources appropriate for answering it. Joseph and Hoshiai coined the
term reputation learning for this approach [76]. The basic premise behind reputation learn-
ing is that peers which were able to satisfy previous queries are more likely candidates to
answer a current query which is similar (see [37]).

In the Intelligent Search Mechanism [78], a local index is composed of pairs (query, peer),
where peer is the ID of the peer that was able to answer a query and query are the keywords
of the query. Since an answer is transported back hop-by-hop to the querying peer, all
peers that lie between a querying and an answering peer gain access to this information.
To improve performance, each peer broadcasts the query and its own ID to its one hop
away neighbors each time it successfully answers a query. There is a size limit on the local
index, and the Least Recently Used policy is used for removing outdated pairs. To decide
which peer a query should be forwarded to, the peers in the index are ranked according to
the given query. The vector space model and cosine similarity are used to compute query
similarities.

Tsoumakos and Roussopoulos [132] introduce a search algorithm called APS (Adaptive
Probabilistic Search), which is an extension of the k-random walker approach. Queries are
issued for certain objects, and the local indices contain goodness values for every outgoing
link and every object. Similar to the SEMANT algorithm, the goodness values are used by
the walkers to make probabilistic decisions about which outgoing link to select for finding
a certain object. The walkers choose between two modes of operation. In the optimistic
approach, they assume that an object will be found along a certain path, and therefore in-
crease its goodness value each time a link is used. In the pessimistic approach, they assume
otherwise and decrease its goodness when using a link. If the assumption was wrong, the
goodness values need to be corrected by the walker when traveling back to the querying
peer. The decision between choosing the optimistic or the pessimistic approach is based
on monitoring the success rate for every type of object request. In addition, the goodness
values are increased in proportion to the distance between the peer and the object found.

InfoBeacons [39] implements a distributed search engine based on a peer-to-peer middle-
ware system consisting of so-called beacons. Each beacon manages a small number of in-
formation sources and provides an interface for user queries. It is in charge of sending
user queries to appropriate sources utilizing wrappers that are responsible for translating
queries to the search interface locally exposed by the information source. If a user’s query
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can not be answered by any of the information sources the beacon is connected to, the query
is forwarded to another beacon. All query results are cached at the beacons. The cached in-
formation consists of a set of pairs (Wi, CW s

i ) where Wi is a keyword and CW s
i is the count

of this word at source s. These statistics about past queries are exploited by the ProbResults
ranking function for directing future queries to appropriate sources. For a query Q, com-
prised of a set of n keywords, ProbResults is computed as the product of

∏n
i=1 CW s

i /ks,
where ks is the number of queries previously sent to s. If the count for a keywords is zero
for a given source, a constant 0 < PWmin < 1 is used to prevent that the outcome of Pro-
bResults will be zero.

A heuristic called experience weighting provides for adaptation of cached information to
changes at information sources. An experience factor EF ≥ 1 is defined. After executing a
query, each CW s

i is multiplied by EF if source s returned any results, or divided by EF in
case source s returned no results. The author discusses the possibility of using a forgetting
factor µ from reinforcement learning (similar to the evaporation factor used in Ant Colony
Optimization, see Section 3.2) instead of experience weighting.

2.3.7 Semantic overlay networks / Shortcut networks

All the approaches mentioned so far do not make any changes to the topology of the overlay
network. There are several approaches that suggest to cluster semantically related nodes,
either by creating shortcut links between peers with similar content, or by grouping all
peers into an overlay network on top of the existing overlay. The basic premise behind that,
namely interest-based locality [123], is that peers which possess the same or similar resources
are more likely to be able to answer each other’s queries.

Cohen et al. [37] suggest that all peers which share a certain resource should form a so-
called possession-rule sub-overlay. Consequently, each peer is a member of multiple overlays.
If it issues a query, the query is sent to a randomly selected overlay the peer is a member of.

Crespo and Garcia-Molina [41] propose semantic overlay networks. In this approach, the
resources at each peer are classified according to the concepts of a classification hierarchy.
There is a semantic overlay network for every concept, which a peer joins if it possesses a
significant amount of resources related to that concept. The queries are also classified, and
each query is sent to those semantic overlay networks that correspond to the concept(s) of
the query. If they do not provide enough results, the query will additionally be sent to the
semantic overlay networks corresponding to the super-concepts.

Cholvi et al.’s [34, 35] concept of acquaintance links uses the query patterns occurring in
the network to dynamically adapt the topology of the overlay network in order to create
communities of peers that share similar interests. It turns out that the peers tend to organize
into a super-peer structure, where powerful peers that have a big amount of resources at
their disposal are better connected than less powerful peers.
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gain info
of remote
content

informed
(directed)
search

probabilistic
broadcast

changes to
topology
(shortcuts)

content-
based
routing

BFS/DFS no no no no no
Directed BFS no first hop no no no
Modified BFS no no no no no
Random Walks no no no no no
Local Indices actively no no no yes
Routing Indices actively yes no no yes
High-degree Seeking actively yes no no no
Percolation Search actively yes no no no
Intelligent Search passively yes no no yes
Adaptive Probabilistic Search passively yes yes no yes
InfoBeacons passively yes no no yes
Semantic Overlay Networks n/a n/a no yes yes
Acquaintance Links passively yes no yes yes
Firework Model actively yes no yes yes
REMINDIN’ passively yes no yes yes
SEMANT passively yes yes no yes

Table 2.1: Summary of approaches

The firework query model [102] uses the vector space model for computing the similarity
between the resource repositories of the participating peers. When a new peer joins the
system, it creates so-called attractive connections to those peers that have a similar resource
repository. Consequently, peers with similar content form clusters because they create at-
tractive connections to each other. If the similarity between a query and the resource repos-
itory of a certain neighbor peer P lies below a pre-defined threshold value, the query is
forwarded to this peer P using the attractive connection. Since the peers are clustered, it
is likely that peer P has one or more attractive connections to peers with similar resource
repositories. Hence, the query will be flooded to all the peers within the same cluster.

The REMINDIN’ algorithm [130, 88] employs social metaphors for shortcut creation, that
is, the way humans try to find answers for their question in a real-world scenario. The
algorithm defines three different kinds of shortcuts. The first kind links to peers that possess
resources which are suitable answers for a given query (content provider peers). The second
kind links to peers that issued similar queries in the past (recommender peers). The third
kind of shortcuts provides links to peers that have a high amount of knowledge about other
peers (bootstrapping peers).

2.3.8 Comparison of approaches

Table 2.1 provides a summary of the approaches discussed in this section classified by their
features. To enable comparisons, this table also includes the features of the SEMANT algo-
rithm described in Chapter 4.
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Chapter 3

Ant-inspired emergence and
self-organization

This thesis is motivated by the evident similarities between the self-organizing behavior of
ant colonies and self-organization in peer-to-peer networks [68]. This chapter introduces
the basic principles of emergence and self-organization and gives a short summary of the
relevant literature in this research area. After presenting a general overview of ant algo-
rithms and their properties, three different ant algorithms that are relevant for the SEMANT

algorithm are introduced and discussed. In particular, the applicability of the selected algo-
rithms for search in peer-to-peer networks is evaluated.

Contents
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3.3.2 AntHocNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Emergence and self-organization

Although often used as synonyms, the terms self-organization and emergence refer to different
concepts that often – but not necessarily – occur in combination. De Wolf and Holvoet [140]
provide a discussion of their differences and suggest the following working definitions:

• A system exhibits emergence when there are coherent emergents at the macro-level
that dynamically arise from the interactions between the parts at the micro-level. Such emer-
gents are novel w.r.t. the individual parts of the system.

• Self-organization is a dynamical and adaptive process where systems acquire and
maintain structure themselves, without external control.
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Emergent and self-organizing phenomena can be observed from nature, where they are
ubiquitous. Since emergent systems build their results incrementally and dynamically, it is
impossible to predict their behavior in advance. Although a high number of experiments
empirically observe the appropriateness of emergent systems for different application sce-
narios, no formal proofs exist [73].

Researchers from many different areas such as physics, mathematics, engineering, bi-
ology, philosophy, and the social sciences are interested in emergent and self-organizing
phenomena and the field has a long history. A historical overview about how the principles
of emergence were discovered for the first time – a story that includes very famous people
such as Alan Turing and Evelyn Fox Keller – can be found in [75].

In the 1940s, a group of scientists around Norbert Wiener [137] founded the research
area of cybernetics, which is concerned with the investigation of control and communication
in biological, mechanical, and social systems consisting of connected parts. In particular,
cybernetics is interested in the information transfer and the feedback mechanisms occurring
in the relationships between those parts. The system has the goal of maintaining some
specific internal state, i.e., it behaves goal-oriented. If its current state is different from the
goal state, the system will return from this state to the goal state.

The terms bionics and biomimicry, which were coined in the 1950s, refer to the principle of
applying methods or systems found in nature to engineering. A distinction is made between
rebuilding natural phenomena (biomimicry) and solving an actual problem in engineering
using a bio-inspired model (bionics). In the domains of computer science and artificial
intelligence, many existing techniques and research areas are inspired by bionics, such as
swarm intelligence, neural networks, simulated annealing, evolutionary algorithms, and
many others. Researchers in computer science tend to take the natural phenomena as an
input and a metaphor, but many of them build their own extensions on top of the model
of the natural phenomena. In addition, since most of the natural phenomena are not yet
completely understood, the model of the natural phenomena can only be a simplification of
it. Therefore, bionic systems are easier to achieve than biomimetic systems.

Since the 1980s, the natural phenomena that are mimicked are also called complex systems
and their study is called complexity science. Examples for complex systems are ant colonies,
organisms, minds, ecologies, and societies. Although cybernetics and complexity science
are based on the same principles, there seems to be only little cooperation between those
fields. Similar to a system in cybernetics, a complex system has a network-like structure;
it consists of parts (agents) which are coupled. Complex systems dynamically change over
time, and their present state is influenced by the former states. A complex system has the
objective of preserving its collective functionality, e.g., adaptation to different environmen-
tal situations. The agents contribute to that goal by seeking to maximize their local view of
the system according to some measure of goodness. The relationships between the agents
are non-linear and may contain positive and negative feedback loops.
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The term complex adaptive systems was coined by John H. Holland and others (see [84]). It
refers to complex systems in which the agents are adaptive, that is, they can change their
behavior in reaction to what they learn from interaction with their environment. Complex
(adaptive) systems usually exhibit emergent and/or self-organizing behavior. This line of
research puts the emphasis on the self-learning aspects of the systems, whereas cybernet-
ics is mostly concerned with observing closed-loop control systems. Unlike in cybernetics,
where research had to be conducted in an abstract way, the scientists working on complex
adaptive systems have the necessary tools available for creating computer simulations of
their models. Hence, the field of computer science contributes back by providing the nec-
essary research tools for biologists, physicians, and sociologists who need to simulate and
visualize the phenomena observed from nature.

In the field of artificial intelligence (AI), there are two opposing approaches to creating
intelligent behavior: Symbol processing systems and sub-symbolic systems. In symbol process-
ing systems, knowledge is stored as a set of symbols and reasoning is manipulation of these
symbols. This is a top-down approach known as the classical approach, which is by far the
dominant one. On the other hand, in sub-symbolic processing (which came up in the 1990s),
knowledge is represented as a kind of network with interacting nodes, and reasoning is
adjusting the weights on the network’s nodes. Similar to complex adaptive systems, intel-
ligent behavior emerges in a bottom-up manner from the interaction between the nodes.
Since some proponents of sub-symbolic processing heavily attacked the physical symbol
system hypothesis that the classical AI approach is based on and advocated the physical
grounding hypothesis [23] instead, which demands the construction of physical agents, this
line of research was not widely adopted. Other instances of sub-symbolic processing that do
not rely on the physical grounding hypothesis are neural networks and swarm intelligence [19].
The term swarm intelligence emphasizes the fact that all the agents in the system have the
same (simple) behavior and capabilities. Ant algorithms, which are described in the next
section, can be classified as a swarm intelligence technique.

3.2 Ant-based methods

Ant algorithms are inspired by the collective foraging behavior of specific ant species. For
different purposes, e.g., foraging, alarm behavior, or necrophoric behavior, ants indirectly
communicate with the other members of their ant colony. The communication is based
on modifying the local environment by dropping a chemical substance called pheromone.
This was first observed by Grassé in 1959 who named the phenomena stigmergy [61]. For
foraging, some species use the so-called trail-laying and trail-following behavior for finding
the shortest path between a nest and a food source. The trail-laying and trail-following
behavior consists of the following three basic principles:

18



Chapter 3 Ant-inspired emergence and self-organization

1. Each time an ant moves, it lays a pheromone trail.

2. For finding its way, it senses its environment and

a) follows existing trails, if there are any. The probability that the ant chooses a
certain trail is proportional to the amount of pheromone on that trail.

b) walks randomly, if no trails can be found.

3. Pheromone evaporates over time. If a trail is not used, it will vanish.

This is quite a simple behavior. However, it is sufficient for finding the shortest path – or a
relatively short path – between two geographical locations. The ants travel from the nest to
the food source, and back again. In the beginning there are no pheromone trails, so all the
ants will walk randomly. The ant that randomly chose the shortest path will arrive first at
the food source, and is also the first one to go back to the nest. For the way back, there is
a high probability that it will use the pheromone trail it created by itself. If it does so, the
strength of this trail will be doubled. When the other ants arrive at the food source, the trail
of the first ant will be the strongest one. For this reason, the other ants will probably follow
it as well. If so, the strength of the trail for the shortest path found will be increased further.
Now its likely that the trail holds a significant concentration of pheromone. Consequently,
all the other ants will follow it with a high probability. In summary, the trail-laying and
trail-following behavior is another incidence of the ”rich-get-richer” phenomena [16].

Ant colonies are multi-agent systems in the sense that each ant/agent has incomplete in-
formation or capabilities for solving the problem, that there is no global system control, that
data is decentralized, and that computation is asynchronous [128]. In addition, ant colonies
exhibit emergent behavior (cf. Section 3.1) because they build their results incrementally.
Therefore, ant colonies are complex adaptive systems (cf. Section 3.1).

Several ant algorithms exist that model and exploit the trail-laying and trail-following be-
havior for solving graph-based NP-hard combinatorial optimization problems. They have
been most extensively applied to the Traveling Salesman Problem (TSP, [83]), but to many
others as well. Ant algorithms can be classified as a Monte Carlo technique [115], and there are
similarities between reinforcement learning [127] (a technique known from machine learning)
and ant algorithms. In particular, as stated in [54], a special form of reinforcement learning
called Q-learning has many commonalities to ant algorithms.

The building blocks an ant algorithm should have in order to be justified as such are
defined by Dorigo and Di Caro in the Ant Colony Optimization [45, 46] meta-heuristic. Dorigo
and Stützle [48] claim that ACO can be applied to every discrete optimization problem for
which some solution construction mechanism can be conceived. The meta-heuristic dictates
three building blocks and their sequence of execution:

1. Trail following (state transition rule). For every iteration, each ant determines a so-
lution to the optimization problem. In the Traveling Salesman Problem, this would be
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a path through the graph from its (randomly selected) starting node to its destination
node. A so-called state transition rule defines how the ants choose their path through
the network. This rule derives which one of all possible next nodes to choose and is
executed every time an ant has to select the next node of the path. This decision is
based on two different types of information:

• The first type is the cost of the outgoing links (called local information). This infor-
mation is problem-specific. In the Traveling Salesman Problem, the local infor-
mation would be the geographical distance between the cities.

• The second type of information is the pheromone distribution of the outgoing
links (called global information). This information is built incrementally by the
ants.

2. Trail laying (pheromone update rule). When an ant arrives at the destination node,
the total cost of the newly found path is calculated. The amount of newly dropped
pheromone is inversely proportional to the cost of the found path. It is defined by
the pheromone trail update rule. The same amount is used for each edge which is part
of the found path. Depending on the algorithm, pheromone is either dropped to all
the found paths, or only to the best one found in one iteration, or only to the best one
found in one iteration if is the currently globally best one of all iterations.

3. Evaporation (evaporation rule). In each iteration, a certain percentage of pheromone
evaporates according to an evaporation factor. Since each edge of the problem graph
is initialized with a small amount of pheromone, the pheromone amount of an edge
will always be a positive value greater than zero. Evaporation prevents unlimited
increments in pheromone amount. In addition, it avoids that paths become too dom-
inant: Since the pheromone amount is lowered by multiplication of the current value
with a constant smaller than one, evaporation removes more pheromone from trails
that store a high amount than of those that store a low amount.

Using this procedure, the ants will explore the search space and incrementally improve the
solution by using the pheromone trails – which act as the memory of previous attempts –
as a guidance for future iterations. Ant algorithms are known for building an acceptable
solution rather quickly, but requiring a long time for reaching a converged stage where the
solution is optimal. To some extent, convergence has been proven formally. Gutjahr [62]
shows that for a particular Ant Colony Optimization instance called Graph-based Ant System
and with certain constraints on the parameter settings, the probability that the current solu-
tion will converge to an optimal solution is 1 for t→∞. Stützle and Dorigo [125] show the
same for theMAX −MIN Ant System algorithm.

In this thesis, the focus is on the Ant Colony System [47] algorithm, which is described
in the next section, the AntNet algorithm (see Section 3.3.1), and the AntHocNet algorithm
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(see Section 3.3.2). The other existing instances – i.e, Ant System [38] and its variations, or
MAX −MIN Ant System [126] – are similar to Ant Colony System and vary mostly in their
transition rules and pheromone trail update rules, or some other additional constraints or
small add-ons. A very good overview about these algorithms and the differences between
them is provided in [60].

3.2.1 Ant Colony System

The Ant Colony System [47] algorithm was published in 1997 as an improvement to Ant sys-
tem [38]. It is the most prominent instance of Ant Colony Optimization and has been applied
to the Traveling Salesman Problem [47], the Vehicle Routing Problem [56, 95], the Sequen-
tial Ordering Problem [55], the Bin Packing Problem [50], and many other combinatorial
optimization problems. In the following, Ant Colony System will be described using the
Traveling Salesman Problem as an example (Section 3.2.1.1) and after that its applicability
for query routing in peer-to-peer networks will be discussed (Section 3.2.1.2).

3.2.1.1 Description of the algorithm

Ant Colony System implements the principles described in Section 3.2. The optimization
problem to solve is represented as a graph. In this graph, each link (r, s) leads from node r

to node s. Every link (r, s) stores a pheromone value τ(r, s), and has a link cost η(r, s) which
is the inverse value of the distance between city r and city s.

State transition rule. The algorithm employs a very sophisticated state transition rule
which consists of two strategies together with a parameter 0 ≤ q0 ≤ 1 that defines the
weight for each strategy. Let k be an ant positioned at node r. Ant k applies the state
transition rule shown in Equation 3.1a to select the next node s. The ant uses the roulette
wheel selection technique [58] to select one of the two the strategies. In the first step, it
computes a random value q ∈ [0, 1]. If q ≤ q0, it will select the best link in terms of low
link costs and a large amount of pheromone. In this strategy – which is called the exploiting
strategy – the ant exploits the information collected by its predecessors by selecting the best
possibility known so far.

s =

arg maxu∈Jk(r){[τ (r, u)] · [η (r, u)]β} if q ≤ q0 (exploitation)

S otherwise (exploration)
(3.1a)

In Equation 3.1a, Jk(r) is the set of all nodes ant k still has to visit. Weight β > 0 defines the
influence of link costs. Variable S is derived according to Equation 3.1b, which comes to use
if q > q0. In this case, ant k considers the set of nodes Jk(r) it did not visit yet and derives
a probability distribution for all those nodes. Each probability pk(r, s) is proportional to the
desirability of choosing (r, s) in terms of link costs and pheromone amount. Based on this
probability distribution, the roulette wheel selection technique is used for choosing node s.
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pk(r, s) =


[τ(r,u)]·[η(r,u)]β

P
u∈Jk(r)[τ(r,u)]·[η(r,u)]β

if s ∈ Jk(r)

0 otherwise
(3.1b)

The state transition rule in Equation 3.1b is called random-proportional. In this strategy –
which is called the exploring strategy – the ant uses the information collected by its prede-
cessors by randomly selecting a link in proportion to its desirability.

Pheromone update rule and evaporation. Ant Colony System uses two pheromone update
rules which complement each other. They are applied in different situations. Both of them
use a combined formula for the pheromone updates and evaporation. The global pheromone
update rule is shown in Equation 3.2. It is applied after all ants of an iteration have found a
path.

τ (r, s)← (1− α) · τ (r, s) + α ·∆τ (r, s) (3.2)

In Equation 3.2, the amount ∆τ (r, s) is the inverse of the length of the global best tour if
link (r, s) belongs to the global best tour. If not, ∆τ (r, s) = 0. This means that additional
pheromone is dropped only if an ant has found a path that is better than the currently best
one. The constant 0 < α < 1 defines the weight between evaporation and updates.

Since the global rule puts a high emphasis on the best path found so far, the ants will stay
in the neighborhood of this path. The local pheromone update rule shown in Equation 3.3 is
designed for making the less-visited paths more attractive by removing a small amount of
pheromone from an edge every time it is visited by an ant.

τ (r, s)← (1− ρ) · τ (r, s) + ρ ·∆τ (r, s) (3.3)

In Equation 3.3, the amount ∆τ (r, s) = γ ·maxz∈Jk(s)τ(s, z), where γ is a constant 0 < γ < 1.
Therefore, the amount of additional pheromone is proportional to the pheromone amount
of the outgoing link with the largest amount of pheromone. The constant 0 < ρ < 1 defines
the weight between evaporation and updates.

3.2.1.2 Discussion

Now the applicability of Ant Colony System for query routing in peer-to-peer networks is
discussed. Ant Colony System is used for solving combinatorial optimization problems, and
query routing in peer-to-peer networks can be seen as a special kind of combinatorial opti-
mization problem. The main difference between this problem and the Traveling Salesman
Problem is that in the latter the task is to find one solution (the shortest path that visits
every city just once), whereas in the former there are lots of sub-solutions (every query is
issued at a certain peer with certain keywords, and the shortest path to an appropriate peer
offering answers to the query must be found). As mentioned above, Ant Colony System has
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been applied to many different combinatorial optimization problems. This implies that the
algorithm provides a high degree of adaptability.

Compared to the transition rules of the other algorithms reviewed later in this chapter,
Ant Colony System’s transition rule is the most comprehensive and the most adaptable one.
It will be selected for the SEMANT state transition rule as-is. In order to account for the fact
that there are multiple possible sub-solutions, using the Ant Colony System state transition
rule will be experimentally evaluated first. Based on the results, adaptations that encourage
the ants to use multiple paths can be designed.

The combination of global and local pheromone update rule is tailored for the task of find-
ing one solution, so it will not be adopted for SEMANT. Instead, only a global pheromone
update rule is used. For defining the amount of new pheromone to add, the quality of a
found path needs to be calculated. In the SEMANT scenario, there are two metrics that de-
fine the quality of a found path. These are the number of results found, and the number
of hops that lie between the querying and the answering peer. Since Ant Colony System is
usually used in a centralized environment, all the pheromone trails can be updated at the
same time. This is not the case for SEMANT. The question of how to update pheromone
trails in a distributed scenario is answered in the next section.

3.3 Distributed ant-based methods

Although the primary application area for Ant Colony Optimization is in solving graph-
based optimization problems in a centralized manner, a considerable amount of work has
been devoted to solving distributed problems with the ant metaphor. Subsumed under
the name Ant Colony Routing [21], a dedicated subset of ant algorithms was specifically
designed for managing routing tables in telecommunication networks, in fixed networks
based on the IP protocol, and in mobile ad-hoc networks. The three most prominent variants
of ant algorithms for routing of data packets are:

• Ant-based control (ABC). The ABC algorithm was published in 1996 by Schoonder-
woerd et al. [122]. It is designed for circuit-switched networks and its pheromone
updating approach is appropriate for symmetric networks only. Hence, its applica-
tion scenario is very different from the characteristics of peer-to-peer networks. For
this reason, ABC is not evaluated further in this section.

• AntNet. This approach was published in 1998 by Di Caro and Dorigo [27]. It is de-
signed for packet-switched networks and its pheromone updating approach is appro-
priate for both symmetric and asymmetric networks. AntNet is the most prominent
distributed ant algorithm.
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• AntHocNet. This algorithm was published in 2004 by Di Caro, Ducatelle, and Gam-
bardella [28]. It is designed for mobile ad-hoc networks (MANETs).

Both AntNet and AntHocNet are designed for routing of data packets, that is, the process of
selecting the next hop for an incoming data packet being forwarded based on information
held in routing tables. The three main differences between routing of data packets and
query routing are as follows.

• Firstly, when routing data packets, the destination address of a packet is known in
advance. In query routing, it is not.

• Secondly, network routing does not account for the contents of data packets. On the
contrary, in content-based approaches to query routing, the contents (keywords) of a
query are considered in order to decide which node to send the query to.

• Thirdly, for routing of data packets, there is just one appropriate destination node. In
query routing, there are possibly many of them.

However, despite these differences, the common ground lies within the distributed appli-
cation area. In the following, the main building blocks and the distributed aspects of AntNet
(see Section 3.3.1) and AntHocNet (see Section 3.3.2) are evaluated in order to identify those
building blocks that can be transferred to query routing in peer-to-peer networks as well as
those that can not.

3.3.1 AntNet

In AntNet, ants collaborate in building routing tables for routing of data packets in a com-
munication network with the aim of optimizing the routing performance of the entire net-
work. The algorithm is distributed and adaptive in the sense that it adapts the routing
policy according to the current traffic conditions in the network.

In the next sections, first the AntNet algorithm (Section 3.3.1.1) and after that its strategy
for preventing cycles (Section 3.3.1.2) are described in detail. The description is followed by
a discussion of the adequacy of AntNet’s components for search in peer-to-peer networks
(Section 3.3.1.3).

3.3.1.1 Description of the algorithm

The AntNet [27, 26] algorithm operates at the IP layer and does not offer management of
error, flow, and congestion control. In addition, the algorithm does not provide support for
link failures, node failures, or new nodes that join the network.

Data structures. The network that the algorithm should be deployed in is mapped on
a directed weighted graph with N nodes. The edges of the graph are the links between
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the nodes. The links are viewed as bit pipes with certain costs – bandwidth, measured in
bits per second, and transmission delay, measured in seconds – that depend on the current
load of the links. Each node n manages a routing table Tn that stores information about
the outgoing links and their amount of pheromone. The routing tables are matrices of size
N× l, where N is the number of nodes in the network and l is the number of outgoing links.
Each entry Pnd of these tables is a probabilistic value indicating the goodness of choosing
the link to neighbor node n with respect to a given destination node d.

At startup, all entries in the routing table are initialized with equal values in such a way
that the sum of all entries in a column is 1. Barán et al. [17] suggest an improvement of the
initialization: Instead of using a uniform distribution, more weight should be put on those
links that lead to neighboring nodes that simultaneously could be destination nodes.

Next to the routing table Tn, each node n manages an arrayMn which stores statistical
information for each destination node d about the time it takes to travel from node n to
node d. The information is comprised of (1) an estimated mean µd for the expected trip
time, (2) the variance σ2

d expressing the stability of the expected trip time value, and (3) the
shortest trip time Wbestd

to node d as observed in a defined number of last samples.

s

d

Forward ant

Backward ant

Figure 3.1: Forward and backward ants

Forward ants. Additional traffic – so-called forward ants – is created for keeping the
information in T andM updated. At regular intervals, each node s generates a forward ant
(see Figure 3.1) that builds a path to a randomly selected destination node d by applying
the transition rule shown in Equation 3.4 each time it arrives at a node k and has to select
an outgoing link. The transition rule decides based on the entry Pnd found in the routing
table and includes the factor ln ∈ [0, 1]. For each outgoing link n, factor ln is proportional
to the current length of the link queue to n in terms of bits waiting to be sent. The weight
α ∈ [0, 1] defines the influence of the queue length factor. The authors suggest that the best
value for α is between 0.2 and 0.5.

P ′
nd =

Pnd + αln
1 + α(|neighbors(k)| − 1)

(3.4)

When a forward ant has reached its destination node, it calculates the total trip time T of
the path it used. The value T indicates the goodness of the path it found. Since each node
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stores routing information locally, the forward ant cannot update the goodness values in the
routing tables directly. Instead, it generates a backward ant that returns to the source node
through the same path that was used by the forward ant. After creating the backward ant
and passing it over a copy of the stack data it recorded while traveling to the destination
node, the forward ant terminates.

Backward ants. The backward ant is responsible for updating the goodness values and
the statistical information according to the information gathered by the forward ant by al-
tering the data structures T andM at each visited node (see dotted arrows in Figure 3.1).
The backward ant updates only those entries that refer to the destination node. Subsequent
forward ants make their routing decisions based on the altered values. In AntNet, the sum
of all probabilities which refer to a given destination node is always 1. This is achieved
by increasing the probability value for the path that was used, and by decreasing the other
values for destination node d accordingly, as shown in Equation 3.5a and Equation 3.5b. In
these equations, the backward ant arrives from a node x at a node k and updates Tk. The
amount of pheromone is determined by the factor r ∈ [0, 1] which is derived by comparing
trip time T to the current best trip time Wbestd

(see [27] for details). Since the goodness of a
trip time is relative to the current load of the network, the comparison takes the mean and
variance estimates into account as well.

Pxd ← Pxd + r(1− Pxd) (3.5a)

Pnd ← Pnd − rPnd, n ∈ neighbors(k), n 6= x (3.5b)

Next to updating Tk, the backward ant also updates the data structureMk with the recorded
trip time from node k to node d. The mean and variance estimates are updated with the new
values. If the new result is the best one out of the last w samples, it is stored in Wbestd

.

a b c d

Figure 3.2: Sub-paths of a path

Optimizing sub-paths. In the description above, the modifications of routing table en-
tries corresponding to destination node d were specified. Consider a forward ant traveling
from node a over nodes b and c to node d (see Figure 3.2). The corresponding backward ant
travels from node d to node a. It updates the entriesMc(µd, σ

2
d,Wbestd

),Mb(µd, σ
2
d,Wbestd

),
andMa(µd, σ

2
d,Wbestd

), and increments Tc(Pcd), Tb(Pbd), and Ta(Pad). Since the forward ant
visits a couple of other nodes before arriving at the destination, the backward ant knows
about the trip times to these nodes as well. Hence, the backward ant also performs the up-
dates described above on the sub-paths (path ac, path ab, and path bc), but only if sub-paths
are found that are significantly better than the current ones. If this is the case, the entries

26



Chapter 3 Ant-inspired emergence and self-organization

Ma(µc, σ
2
c ,Wbestc

),Ma(µb, σ
2
b ,Wbestb

),Mb(µc, σ
2
c ,Wbestc

), Ta(Pac), Ta(Pab), and Tb(Pbc) are
updated.

3.3.1.2 Preventing cycles

The AntNet algorithm includes a strategy for preventing cycles. Each forward ant manages
a stack of nodes already visited. Each time it has to decide which node to visit next, it
excludes all already visited nodes. If it detects a cycle because it is forced to go to an already
visited node v since all possible next nodes were already visited, it calculates the time span t

it spent inside the circle. If t is greater than 50% of the ant’s total lifetime, it is terminated.
Otherwise, the ant removes all nodes that are part of the cycle from its stack and continues
traveling at node v.

3.3.1.3 Discussion

Now the applicability of AntNet for search in peer-to-peer networks is discussed. One of
the reasons which make it impossible to apply the AntNet algorithm without any changes
to query routing in peer-to-peer networks is that all nodes that exist in the network must be
known at each node in order to choose random destination nodes for forward ants. How-
ever, this requirement stems from data packet routing. It is not necessary to adopt this
behavior for query routing.

The components of the algorithm that are most useful for the realm of peer-to-peer net-
works and thus will be adopted are those that are designed for coping with the distributed
environment. These are:

1. Data structures. The distributed data structures used in AntNet are necessary in a
peer-to-peer environment as well. However, in AntNet every column in the routing ta-
bles corresponds to a destination node in the network. For query routing, the columns
must correspond to the keywords of the queries instead.

2. Forward and backward ants. The concept of forward and backward ants is absolutely
necessary in a distributed environment. Some changes need to be made, because in
AntNet the forward ant has a well-defined destination node, which is not the case for
query routing in peer-to-peer networks. The drawback of this approach is that the
backward ant visits every node on the path between the answering and the querying
peer, although it would be possible to jump directly to the querying peer instead.
However, in order to be able to use an ant algorithm, this can not be circumvented.

3. Preventing cycles. AntNet’s strategy for preventing cycles can be adopted for the
SEMANT algorithm without any major changes.
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Another idea from AntNet that can be easily transferred is the optimization of sub-paths.
Since in SEMANT the pheromone trails correspond to the keywords of the queries instead
of corresponding to destination nodes, sub-paths are automatically optimized.

The state transition rule used in AntNet (see Equation 3.4) puts high emphasis on the
current loads of the links. Although considering the current load in the network is an aspect
that could improve search performance in a peer-to-peer network, it is not the main goal
of the thesis. Thus, adopting the state transition rule of AntNet as-is is not desirable. If
those parts from the state transition rule that consider the current loads are removed, the
remaining part is basically the same as the exploring strategy used in Ant Colony System (see
Equation 3.1a). Therefore, it makes no sense to select AntNet’s state transition rule as the
basis for adaptations.

The pheromone update rule used in AntNet enforces that the sum of all goodness values
corresponding to a certain destination node is always 1. This makes the routing of data
packets faster, because no further normalization of goodness values is necessary at runtime.
Since query routing is less time-critical than routing of data packets, it is not necessary to
transfer this feature. In addition, enforcing a sum of 1 makes it more difficult to include an
evaporation feature.

3.3.2 AntHocNet

Next to their application in fixed networks, ant-based methods have also been employed for
routing of data packets in mobile ad-hoc networks (MANETs, [91]). Mobile ad-hoc networks
are networks in which the participating nodes are in motion while communicating, e.g.,
using handheld devices. The most prominent ant algorithm for this application scenario
is AntHocNet [28, 51, 12] by Ducatelle, Di Caro, and Gambardella. In this section, AntHoc-
Net is described (Section 3.3.2.1) and its applicability in peer-to-peer networks is discussed
(Section 3.3.2.2).

3.3.2.1 Description of the algorithm

The AntHocNet algorithm is called a hybrid approach because it combines reactive and
proactive components. Reactive behavior means that routing information is gathered in
response to a certain event, whereas proactive behavior means that information is gathered
beforehand, reckoning that exactly this information might be necessary soon. AntHocNet
relies on an improved variant of AntNet’s concept of forward and backward ants. The al-
gorithm uses two different kinds of forward ants for the reactive and for the proactive part,
which are described in the following.

Reactive part. The reactive part of the algorithm is used for setting up a path between a
source node s and a destination node d which want to establish a communication session. In
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this case, a reactive forward ant F s
d is launched at node s in order to build a path to node d.

AntHocNet relies on a combination of unicast and broadcast forwarding:

• Broadcast. If there is no appropriate pheromone information available at a node, the
reactive forward ant will proceed to all neighboring nodes. Since broadcast is used,
multiple instances of the same forward ant can exist. All ants together that are gener-
ated by an initial forward ant starting at the source node form a so-called ant genera-
tion.

• Unicast. If a forward ant arrives at a node that stores pheromone information corre-
sponding to node d, it will consult this information in order to decide which node to
choose next. Each node stores a table T i with entries T i

nd that correspond to the good-
ness of choosing neighbor n to go to destination node d. Neighbor node n is chosen
with the probability Pnd, which is computed as shown in Equation 3.6.

Pnd =

(
T i

nd

)β1∑
j∈N i

d

(
T i

jd

)β1
, β1 ≥ 1 (3.6)

In Equation 3.6, N i
d is the set of neighbors of i which store pheromone information about

their goodness when going to node d, and β1 allows additional control of the reactive pro-
cess. To ensure that only one path between s and d is set up, every ant that arrives at a
node already visited by another ant of the same ant generation will be terminated. Similar
to AntNet, the forward ant keeps a list of node it visited. Arriving at the destination node d,
the forward ant will create a backward ant which goes back to the source node using the
same path in the reverse direction. At each intermediate node x, the backward computes a
local estimate of the time it takes to reach the neighbor it came from. These estimations are
accumulated to compute the time T̂ x

d it takes to go from x to d. As shown in Equation 3.7, in
addition to the estimated value, the algorithm also considers the number of hops between
x and d for computing τx

d , which is the inverse value of the time it takes to go from x to d.

τx
d =

(
T̂ x

d + hThop

2

)−1

(3.7)

In Equation 3.7, h is the number of hops between x and d, and Thop is a constant representing
the time it takes to move one hop. The value T x

nd is updated as shown in Equation 3.8.

T x
nd = γT x

nd + (1− γ)τx
d , γ ∈ [0, 1] (3.8)

As soon as the backward ant arrives at the source node, the communication session between
node s and node d is set up and data can be transmitted. The data packets are transmitted
in the same way as the reactive forward ants (see Equation 3.6), but instead of β1, a factor
β2 ≥ β1 is used.
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Proactive part. The proactive part of AntHocNet is responsible for path maintenance and
path improvement of already existing paths. Since mobile ad-hoc networks are comprised
of nodes that move, the neighbor relationships between the nodes change rather often and
path maintenance is an important issue. To keep track of the continuous changes in the
neighbor relationships, AntHocNet uses hello messages which are broadcast by each node
in defined regular intervals. If a node a knows about a neighbor node b but does not re-
ceive any hello messages from b within a defined period of time, node a will remove the
pheromone information about node b from the routing tables of node a. This is AntHocNet’s
local repair mechanism to cope with link failures. In addition, hello messages are used for
discovering new neighbors. If a node a receives a hello message from a node c it did not yet
communicate with, it adds node c as a neighbor.

Next to path maintenance, the hello messages are also used for the improvement of
existing paths. Piggy-backed with the hello messages, each node sends excerpts of its
pheromone tables to its direct neighbors. Imagine a node x broadcasting a hello message
and a neighbor node y receiving it. Node y inspects the contents T x

xd and adds the cost for
sending packets from node y to node x, thus creating an estimate By

xd for sending an ant to
node d over node x. If an entry T y

xd for going to node d over node x exists, it will be updated
using By

xd. If not, the entry By
xd will not be stored in T y , but in a separate virtual pheromone

table Vy to prevent broadcasting estimates based on non-local information (which would
be propagated further, and thus be spread through the whole network quickly). The virtual
pheromone tables are read only by those nodes that are source nodes of active communi-
cation sessions. At regular intervals, the entries in tables T and V corresponding to the
destination nodes of the active communication sessions are compared. If the entry in V
is significantly better, a so-called proactive forward ant is unicast to the destination node.
It exploits the information from both virtual and regular pheromone tables, and creates a
backward ant at the destination node.

3.3.2.2 Discussion

Ducatelle, Di Caro, and Gambardella [51] point out that ant-based methods are suitable for
mobile ad-hoc networks because (1) they are adaptive to network changes, (2) robust to
agent failures, and (3) can provide multi-path routing. They also state that the drawback
of ant-based methods is the repeated path sampling (meaning that lots of ants are sent).
Repeated path sampling needs to be dealt with carefully, because significant overhead in
network traffic might be created. The same benefits and drawbacks as in mobile ad-hoc net-
works apply to peer-to-peer networks as well. The reactive part of AntHocNet is comprised
of forward and backward ants as already known from AntNet together with the exploring
strategy (without integrating link costs) already known from Ant Colony System. Hence,
there is basically nothing new to learn here for the big picture. However, there are several
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slight differences to the other algorithms:

1. What is different is the factor β2 used in the transition rule (see Equation 3.6) for the
routing packets, which was set to the high value of 20 in the experiments described
in [51]. Using this factor has the effect that if one of the available outgoing links has
a very high pheromone concentration compared to the others, its desirability for se-
lection is even more emphasized. This could be useful in the SEMANT algorithm as
well.

2. Another difference is that the pheromone trails are not initialized. Broadcast is used
if no routing information is present for any of the outgoing nodes. This means that
for every destination node that is requested for the first time, the whole network will
be flooded. Consequently, there will be a high amount of traffic in the network, es-
pecially in the startup phase. If pheromone information exists only about a subset of
the outgoing links, those links nothing is known about are omitted from the transi-
tion rule. Hence, it could happen that some outgoing links are never used, because
they were not included in the initial broadcast for some reason. Given those two facts
together, using initialization of the pheromone trails seems to be a better approach.

3. The third difference is the combination of unicast – i.e., directed forwarding to one
neighbor – and broadcast techniques. Obviously, using broadcast improves the num-
ber of results for a query also in a peer-to-peer network, but at the cost of consuming
a high amount of network resources. In the experiments described in [51], a maxi-
mum of 500 nodes was used, and broadcast seems to perform well in this scenario.
In a peer-to-peer network, there are usually more than 500 nodes and broadcast is
not scalable [112]. However, for the SEMANT algorithm it seems to be promising not
always to rely on unicast forwarding, but to find an appropriate balance between uni-
cast and broadcast by choosing a subset of the outgoing links to forward a query to
if the pheromone trails indicate that this would be useful. In particular, choosing a
subset seems to be of benefit if some of the outgoing links have the same or a very
similar goodness values.

4. Unlike in AntNet, optimization of sub-paths is not used.

5. In a mobile ad-hoc network, the distances between the nodes change constantly and
differ greatly over time. Therefore, using the AntNet approach for integrating link
costs is not feasible in this scenario. Instead of incorporating link costs, AntHocNet
uses a simpler version of local information about the network where the number of
hops between the nodes is considered and the time it takes to move one hop is con-
sidered a constant factor (see Equation 3.7). The drawback of this approach is its
assumption that every link has the same link cost, which is not the case in real-world
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settings. Since the pheromone amounts correspond to inverted time values anyway,
including the number of hops and estimating them with a fixed time value could lead
to wrong results, especially if the links have very different link costs.

6. AntHocNet applies evaporation only if a backward ant visits a node. Although the
pheromone update rule (see Equation 3.8) is basically the same as the global phero-
mone update rule of Ant Colony System (see Equation 3.2), the difference is that in Ant
Colony System it is applied in every iteration for every node. This could be useful in
peer-to-peer networks as well because in this case information is removed only if new
information is available.

The proactive part of AntHocNet is relevant for peer-to-peer networks if the dynamic as-
pects – nodes leaving and joining – are considered. It does not apply to a static setting (as
described in Chapters 4 to 5). Seen from the perspective of a neighbor peer, it does not mat-
ter if the peer moves away, as in a mobile ad-hoc network, or if it leaves, as in a peer-to-peer
network. The effect – node is unreachable – is the same, and the consequences of the net-
work topology changes depend on the actual rate in which these changes occur (churn rate
and velocity of the nodes, respectively). However, it can be assumed that the change rate
will be higher in a mobile ad-hoc network. What can be learned from AntHocNet is (1) the
technique of using hello messages for keeping track of the state of the network and (2) the
importance of separating local information which is approved by the local peer from locally
stored information which is not approved by the local peer.
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Chapter 4

The SEMANT algorithm

This chapter covers the specification of the proposed ant algorithm SEMANT for content-
based search in peer-to-peer networks. After defining the problem and stating the assump-
tions which were made, what follows is a detailed description of all aspects related to the
SEMANT algorithm. The remainder of the chapter is devoted to the evaluation of the algo-
rithm’s performance in various scenarios and settings, and to a discussion of related work
on ant algorithms in peer-to-peer networks.
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4.1 Problem description

A peer-to-peer network is a network consisting of interconnected peers in which each of
them manages an information repository containing a certain number of resources. Every
peer offers its resources to the other peers in the network. The peers issue queries for those
resources to the network. All peers collaborate to answer the queries and, as a whole, im-
plement a distributed search engine. For each query, the shortest path through the network
must be found that leads from the querying peer to one or more answering peers offering
one or more resources that are appropriate results for the query.

The resources can be any kind of files that are annotated with metadata. The metadata are
composed of name-value pairs, also called elements. These elements are used for specifying
additional information about a certain resource. A meta-data schema defines the name and
the meaning for each of the elements the schema is comprised of. Since the query routing
procedure is the same no matter which element is employed, only one element is considered
in the following. The values that can be used for annotation originate from a controlled
vocabulary, e.g, the concepts of a taxonomy or an ontology.

The query vocabulary is the same as the metadata vocabulary used for annotating re-
sources. The queries do not consider the actual content of a resource, but rather the meta-
data that describes its content.

The challenges for query routing are the following. Each peer is connected via outgoing
links to some other peers which are called its neighbor peers. If a peer issues a query or
receives a forwarded query from one of its neighbor peers, it has to decide based on its
local information which neighbor peer to send the query to. The local information of a peer
is gained by continuously observing the queries and answers that pass the local node and
by recording which kind of queries its neighbor peers were able to answer in the past (cf.
reputation learning, Section 2.3). The recorded data must be accumulated and stored in an
appropriate way to support the selection process. Based on this information, the peer has to
choose the neighbor peer which is (1) most likely to store results itself, or (2) has neighbor
peers that are likely to store such resources. Approaches to query routing in which this
decision depends on the keywords of the query are called content-based approaches. They
are sometimes also referred to as semantic query routing. The goals for the query routing
procedure are to maximize the number of query results and, at the same time, to minimize
the usage of network resources. The best metric for measuring if those two goals are reached
is to divide the total amount of network resources consumed by a query by the number of
query results.

The objective of this work is to employ ant-based methods for the query routing proce-
dure. Basically, the ant metaphor can be applied rather straightforward. The pheromone
trails store the recorded data about the successful queries in the past. The queries them-
selves are represented as ants.
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4.1.1 Assumptions

In order to make it possible to concentrate on the problem of query routing, the following
assumptions are made about the application scenario:

1. Each peer has an unique address that can be used as an unique identifier.

2. The resources at each peer can be uniquely identified using an existing resource iden-
tifier (such as a filename) together with the peer identifier.

3. All links between peers are bi-directional, that is, can be used in both directions.

4. The network topology already exists. Each peer already knows which neighbor peers
it is connected to. The problem of peer discovery is not within the scope of this thesis.

An additional assumption is that the network topology and the content distribution in the
network are considered static.

4.2 Specification of the algorithm

This section specifies the components of the SEMANT algorithm. Section 4.2.1 documents
the data structures that need to be stored at each peer. Section 4.2.2 describes the query
routing procedure and all aspects related to facilitating ant algorithms in a peer-to-peer
network. In Section 4.2.3, all issues related to the selection of outgoing links for query
routing are covered. Section 4.2.4 explicates how routing tables are updated after successful
queries. Section 4.2.5 describes the activities executed locally at the peers. Section 4.2.6
discusses how to improve the performance of the algorithm in the start-up phase. Finally,
in Section 4.2.7, the algorithm flow is specified.

4.2.1 Data structures

The routing information is stored in two tables τ and η which are present at each peer Pi.
Table τ maintains the pheromone trails. It is of size C × n, where C is the size of the con-
trolled vocabulary that defines the allowed keywords in a query and n is the number of
peer Pi’s outgoing links to neighbor peers. Each τcu stores the amount of pheromone corre-
sponding to concept c dropped at the link from peer Pi to peer Pu, for each concept c and
each neighbor peer Pu. The left side of Figure 4.1 shows an example. At startup, all entries
in table τ are initialized with the same value τinit = 0.009. Initialization with a small value
is necessary to prevent divisions by zero in the evaporation feature (see Section 4.2.5) and
in link selection (see Section 4.2.3).

Next to table τ , each peer manages a table η that stores the link costs to its neighbor peers.
This table consists of only one column (see right side of Figure 4.1). Each entry ηu is the

35



Chapter 4 The SEMANT algorithm

τ11

Concepts

O
ut

go
in

g 
lin

ks τc1

τ1n τcn

...

...

... ......

µ1

Link costs

µn

...

Figure 4.1: Format and size of the routing tables

inverse value 1
lcu

of the cost lcu for sending an ant from peer Pi to peer Pu. The entries in
this table are initialized with zero.

Note that these are the same data structures as used in AntNet. The difference is that in
AntNet the columns of table τ refer to destination nodes, while in the SEMANT algorithm
the columns of table τ refer to the keywords that can occur in a query. This implies that a
different type of pheromone is used for every query keyword that can occur.

Allowing free-text search is not feasible in this setting. It would result in an unlimited
number of pheromone types, and therefore in an unlimited number of columns in the rout-
ing tables.

4.2.2 Query routing

As discussed in Section 3.3.1.3, the concept of forward ants and backward ants from the Ant-
Net algorithm (see Figure 3.1) is employed as the foundation of the query routing procedure.
In addition, AntNet’s mechanism for preventing cycles is adopted. Whereas the latter can
be adopted without any changes, the concept of forward ants and backward ants needs to
be adapted to the application purpose of query routing. In the following, the necessary
adaptations are discussed.

4.2.2.1 Queries

In the SEMANT algorithm, queries are represented as ants. This approach has two advan-
tages. Firstly, no additional traffic is created in the network. Secondly, representing queries
as ants guarantees that the degree of optimization for certain query keywords directly de-
pends on the popularity of a given keyword. The more often a query keyword is requested,
the better its paths will be optimized in terms of indicating the way through the network to
the most appropriate peers. Instead of sending out forward ants at regular intervals from
random peers like in AntNet, a forward ant is created for each query that occurs in the
network. This ant is created at the peer which issued the query, and it is responsible for
answering it.
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4.2.2.2 Time-to-live parameter

Next, it is necessary to define at which point in time the forward ant should stop its travel.
In AntNet, forward ants terminate their travel through the network when they arrive at
their well-defined destination peer. This behavior can not be transferred, since the forward
ant’s task is to find an unknown destination peer that in the worst case does not even ex-
ist. Instead, a stop point for forward ants must be defined to prevent forward ants from
running infinitely if no results can be found. There are two possibilities for defining the
stop point. The simplest solution is to use a time-to-live (TTL) parameter ttlmax like in-
troduced in Gnutella (see [67]). Each time an ant travels one hop to reach another peer, it
decrements ttlmax by one. The stop point is reached if ttlmax = 0.

Another possibility is to use a maximum lifetime tmax measured in seconds. This option
is more complex, since it requires that either the clocks at every peer are synchronized, or
that the ants carry a clock themselves. The benefit of this approach is that it creates an
upper bound for the time it takes until the result arrives at the querying peer. If a forward
ant arrives at a peer that stores results, it creates a backward ant. Consequently, if results
were found and – as a consequence – backward ants were created, the upper bound for a
backward ant to arrive at the querying peer is the time interval of 2 ∗ tmax. If no backward
ants arrive within this time interval, the querying peer can deduce that no result could be
found.

4.2.2.3 MinResources variation and maxResults variation

After a forward ant has found a result and creates a backward ant, there are two possibili-
ties for proceeding further. Either the forward ant (1) terminates its travel, or (2) it continues
until the maximum time-to-live parameter is reached. The idea behind the latter approach
is that if forward ants are allowed to go on after they found the first peer that stores results,
they can increase the absolute number of results found by detecting other appropriate peers.
Keeping in mind that query routing in peer-to-peer networks is a special kind of optimiza-
tion problem, the choice between these two options determines the optimization goal of the
algorithm:

• MinResources variation. If the ants are terminated after they found the first result, the
optimization goal is to use the minimum amount of network resources. Therefore, the
backward ant strategy of stopping after the first result is found will be referenced to
as the minResources variation of the SEMANT algorithm.

• MaxResults variation. In the other case, where the ants use the maximum time-to-
live parameter, the ants use approximately the same amount of network resources for
each query and the optimization goal is to maximize the number of results that are
found for a query. In the remainder of this thesis, the strategy of using the maximum

37



Chapter 4 The SEMANT algorithm

time-to-live parameter will be referenced to as the maxResults variation of the SEMANT

algorithm.

In practice, both of these variations are valid, because both of the optimization goals are
desired at the same time. Using the minResources variation is of benefit for the performance
of the entire network, since the algorithm saves as many network resources as possible.
Using the maxResults variation is of benefit for the individual users of the network, since
the algorithm tries to find as many results for a single query as possible.

The variations can be combined by using a weight that defines the ratio between using
the minResources variation and using the maxResults variation. Based on this weight, each
forward ant applies the roulette wheel selection technique [58] to select for one of the variations
before it starts travelling.

4.2.2.4 Step-by-step description of the query routing procedure

Now the complete procedure for answering a query is laid out. Consider a query q issued
at a peer Pq. The following seven steps are necessary for answering query q.

Step 1 Check the resource repository of peer Pq. If any results are found, present them to
the user. If the number of results found is less than rmax, go to step 2. If the number
of results found is greater than rmax, terminate the algorithm.

Step 2 Create a forward ant Fq with starting time tFstart and timeout tmax at peer Pq. Add
the identifier of peer Pq to Fq’s stack of already visited peers s(Fq). Initialize the
list lc(Fq) that stores the link costs of all links used by Fq.

Step 3 Use the link selection procedure described in Section 4.2.3 for selecting the neighbor
peer(s) Pjx

the forward ant Fq should choose (x ∈ [1..n], n ∈ N). Send ant Fq to
peer Pj1 . For every peer Pjx , where x ∈ [2..n], create a clone F c

q of forward ant Fq and
send ant F c

q to peer Pjx .

Step 4 For every forward ant Fq that arrives at a peer Pj , check if peer Pj was already
visited by a clone F c

q . If so, terminate ant Fq. Otherwise, check the resource repository
of peer Pj for resources r that are results for query Q. If there are no results, continue
at step 6. Otherwise, add the identifiers of all resources r to the set R.

Step 5 Generate a backward ant Bq. Pass it R, the identifier of the peer Pj that stores R,
the stack of already visited peers s(Fq), and the recorded link costs lc(Fq). Send Bq

back to the querying peer Pq using the procedure described in Section 4.2.4. In case
the minResources variation is used, terminate the forward ant Fq. Otherwise, continue
at step 6.
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Step 6 Add the identifier of peer Pj to the stack of already visited peers s(Fq). Add the cost
of the last used link to list lc(Fq).

Step 7 If tFstart + tmax < CurrentT ime, continue at step 3. Otherwise, terminate Fq.

As soon as a backward ant Bq arrives at the querying peer Pq, the results r ∈ R are presented
to the user. In case the user decides to download a resource r, a direct connection between
peer Pq and the peer Pj that stores r is established and resource r is retrieved from peer Pj .

The description above refers to using tmax as the time-to-live parameter. In case of us-
ing ttlmax instead (see Section 4.2.2.2), the expression in step 7 is changed to ttlmax > 0.
Moreover, step 7 includes decreasing ttlmax by 1. Recording the starting time tFstart is not
necessary in this case.

4.2.3 Link selection

Now the selection of outgoing links by the forward ants is described. In ant algorithms, this
selection is made by applying a so-called transition rule. As justified in Section 3.2.1.2, the
transition rule designed for the SEMANT algorithm is based on the transition rule from the
Ant Colony System algorithm. The Ant Colony System transition rule consists of two strategies
that supplement each other.

• In the exploiting strategy, the ant determines the quality of the links depending on the
amounts of pheromone and the link costs, and always selects the link with the highest
quality.

• The exploring strategy encourages ants to discover new paths. This is achieved by
deriving a goodness value pu for each neighbor peer Pu not already visited, and by
applying the roulette wheel selection technique [58] to select one of the peers.

The strategies are described in Section 4.2.3.1 and Section 4.2.3.2. The question of which
one of the two strategies to select according to its desirability in the current context of the
ant is referred to as the exploration-exploitation-dilemma [70, 139]. The dilemma occurs not
only in ant algorithms, but in reinforcement learning [127] in general. In Ant Colony System,
the decision for one of the strategies is based on a defined weight we ∈ [0, 1] which stays
constant during the execution of the algorithm. Each ant individually decides for a strategy
based on weight we and on the roulette wheel selection technique every time it has to decide
for an outgoing link. The SEMANT algorithm also relies on weight we for strategy selection.

4.2.3.1 Exploiting strategy

In case the exploiting strategy is used, a forward ant Fq located at a certain peer Pi selects the
neighbor peer Pj currently known as the most appropriate one by applying the transition
rule shown in Equation 4.1.
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j = arg maxu∈U∧u/∈s(Fq)

(
[τcu] · [ηu]β

)
, (4.1)

where τcu is the amount of pheromone for concept c on the path to peer Pu, ηu is the link
cost of the path to peer Pu, β is a constant that defines the influence of link costs, U is the
set of neighbor peers of peer Pi, and s(Fq) is the set of peers already visited by Fq.

4.2.3.2 Exploring strategy

In case the exploring strategy is used, a forward ant Fq located at a certain peer Pi applies
the transition rule shown in Equation 4.2a and Equation 4.2b. This rule is applied for each
neighbor peer Pj in order to decide whether it should be selected. This is an adaptation
of the roulette wheel selection technique: Each pj is separately placed on the continuum
between 0 and 1, and for each pj a random value q is calculated for deciding if peer Pj

should be selected. This mechanism allows more than one peer to be selected in order to
account for the fact that there are multiple possible destination peers which contain answers
for a query. To ensure that at least one peer will be selected, the algorithm falls back to the
exploiting strategy in case applying the exploring strategy does result in not selecting any
peer.

pj =
[τcj ] · [ηj ]

β∑
u∈U∧u/∈s(Fq)

(
[τcu] · [ηu]β

) (4.2a)

In Equation 4.2a, τcj is the amount of pheromone for concept c on the path to peer Pj , ηj is
the link cost of the path to peer Pj , parameter β is a constant that defines the influence of
link costs, U is the set of neighbor peers of peer Pi, s(Fq) is the set of peers already visited
by Fq, and

GOj =

{
1 if q ≤ pj ∧ j ∈ U ∧ j /∈ s(Fq)
0 else

(4.2b)

In Equation 4.2b, q is a random value, q ∈ [0, 1], and the sum of all goodness values∑
j∈U∧j /∈s(Fq)

pj = 1.

If GOj = 1, the forward ant Fq creates a clone F c
q of itself and sends the clone F c

q to peer Pj .

4.2.4 Routing table updates

A description of the mechanism used by the backward ants for updating the routing tables
follows. A backward ant is created at a certain peer Pr storing a set of results R. Each
backward ant Bq is in possession of a copy of the stack data recorded by its corresponding
forward ant Fq. This stack contains all visited peers s(Fq) and all recorded link costs lc(Fq).
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Depending on whether tmax or ttlmax is used for either measuring the time or measuring
the number of hops consumed by the forward ant, the backward ant Bq either calculates
the sum of all entries in lc(Fq) to get the total link costs tqr for the path from the querying
peer Pq to the answering peer Pr, or it calculates the number of hops hqr between peer Pq

and peer Pr. After performing the calculation, the backward ant travels back hop-by-hop
according to the information stored in s(Fq) until it arrives at querying peer Pq. At each
intermediate peer, the backward ant is responsible for two tasks:

• Firstly, it updates the link cost ηj according to the entry in lc(Fq).

• Secondly, it drops pheromone by applying the pheromone trail update rule shown
in Equation 4.3a to Equation 4.3c. In Equation 4.3a, the amount Z of newly added
pheromone depends on the goodness of the found path. If tmax is used, amount Z is
derived according to Equation 4.3b. If ttlmax is used, amount Z is derived according
to Equation 4.3c.

The goodness of the found path is determined by comparing the number of resources found
and the length of the path to pre-defined reference values. For the reference solution, the
value for a path’s total link costs is set to 1

2 · tmax, and the number of resources is set to rmax.

τcj ← τcj + Z, (4.3a)

where

Z = wd ·
|R|

rmax
+ (1− wd) ·

tmax

2 · tqr
(4.3b)

or

Z = wd ·
|R|

rmax
+ (1− wd) ·

ttlmax

2 · hqr
(4.3c)

In Equation 4.3b and Equation 4.3c, parameter wd weights the influence of resource quanti-
ties and link costs.

4.2.5 Peer activity

Each peer performs management procedures on its local routing table. It is responsible for
periodically applying an evaporation feature to the locally maintained pheromone trails.
Evaporation is one of the constituents of pheromone management in ant algorithms (cf.
Section 3.2). In a static scenario, the evaporation rule is useful for preventing that paths
become dominant. In a dynamic setting, it can also help to remove outdated information.

τcu ← (1− ρ) · τcu (4.4)
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Each peer applies the evaporation rule shown in Equation 4.4 in predefined intervals te for
each link to neighbor peer Pu and each concept c. The amount of pheromone that evapo-
rates in every interval is controlled by parameter ρ ∈ [0, 1]. This rule is adopted from the
evaporation part of Ant Colony System’s global pheromone update rule (see Section 3.2.1.1).

4.2.6 Bootstrapping

In the start-up phase, directly after the initialization of the routing tables, all pheromone
trails are of equal strength. Therefore, the ants make their decisions completely randomly.
This means that the performance values of the algorithm will be rather bad in the beginning.
Informed decisions are made as soon as an appropriate number of ants found results, and
updated the pheromone trails accordingly. After a certain time, the pheromone trails will
be near to the optimum. When reaching this point, the performance values do not improve
significantly any longer.

One possibility to speed up the time to reach this point is to send additional ants in the
start-up phase. Since the exploring strategy already provides for selecting more than one
outgoing link, sending additional ants is most useful in the exploiting strategy.

A simple criteria to detect if the algorithm is in the start-up phase is to check the amounts
of pheromone on the outgoing links before link selection is performed in order to find out if
all amounts for the keyword of the query are of equal size. If this is the case, one possibility
would be to send an ant to every outgoing link, but this is equal to flooding. Another option
would be to randomly choose two outgoing links, but initial experiments have shown that
this still creates a high amount of network traffic. Instead, a parameter psendAdditional ∈
[0, 1] is used. It defines the probability that two outgoing links are chosen in case (1) the
pheromone trails on all outgoing links are equal and (2) the exploiting strategy is employed.

4.2.7 Program flow

Finally, the program flow of the SEMANT algorithm can be specified in pseudo-code. It is
shown in Figure 4.2.

4.3 Simulation and Results

This section presents the experimental evaluation of the performance figures of the SEMANT

algorithm as defined in Section 4.2. After describing the simulation setup in Section 4.3.1,
Section 4.3.2 depicts the metrics used and discusses the rationale behind choosing them. The
performance results are shown in Section 4.3.3. In Section 4.3.4, the impacts of the values
chosen for the configurable parameters of SEMANT on its performance are investigated.
Finally, Section 4.3.5 analyzes the influence of the network topology on the performance
results.
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1 t = CurrentTime ;
2 t end = EndTimeOfSimulation ;
3

4 # Concurrent a c t i v i t y
5 foreach ( Peer ) {
6 in i t i a l izePheromoneTables ( ) ;
7 ini t ia l izeLinkCostsToNeighborNodes ( ) ;
8 while ( t <= t end ) {
9

10 # Concurrent a c t i v i t y a t e a c h p e e r
11 i n p a r a l l e l {
12 i f ( Query Q) {
13 checkLocalDocumentRepository ( ) ;
14 createForwardAnt ( query parameter ) ;
15 }
16

17 foreach ( ForwardAnt ) {
18 i n i t i a l i z e P a r a m e t e r s ( ) ;
19 while ( Timeout not reached ) {
20 applyTransi t ionRule ( ) ;
21 t a = CurrentTime ;
22 foreach ( ForwardAnt ) {
23 GoToNode( P j ) ;
24 t b = CurrentTime ;
25 checkLocalDocumentRepository ( ) ;
26 i f ( DocumentsFound > 0) {
27 createBackwardAnt ( stackData , P j ) ;
28 i f ( minResourceStrategy ) {
29 terminate ( ) ;
30 }
31 }
32 addDataToStack ( P j , t b−t a ) ;
33 }
34 }
35 terminate ( ) ;
36 }
37

38 foreach ( BackwardAnt ) {
39 c a l c u l a t e Q u a l i t y ( ) ;
40 do {
41 node = popStackData Node ( ) ;
42 GoToNode( node ) ;
43 applyPheromoneTrailUpdateRule ( ) ;
44 updateLis tCosts ( popStackData Costs ( ) ) ;
45 } while ( node <> source node ) ;
46 }
47

48 foreach ( P e r i o d i c a l T i m e I n t e r v a l t e ) {
49 applyEvaporationRule ( ) ;
50 }
51

52 }
53 }
54 }

Figure 4.2: The SEMANT algorithm in pseudo-code
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4.3.1 Evaluation setup

For evaluating the design of the SEMANT algorithm, a peer-to-peer system needs to be sim-
ulated. The most important characteristics of a peer-to-peer system that have an impact
on the performance of the search algorithm are the (1) network topology used, the (2) dis-
tribution of the content within the network, and (3) the distribution of queries within the
network. The specifications for all three of them will be described below.

The SEMANT algorithm is independent from a certain application scenario. It can be used
in every situation where a group of individuals wants to share annotated resources. The ap-
plication scenario chosen for this evaluation is to support cooperation between researchers
in computer science by allowing them to share scientific articles. An overview of legal use
cases for peer-to-peer-based search can be found in [87].

4.3.1.1 Network topology

Since the use case concerns a community of researchers, and therefore a social network, a
small world [79] network topology is selected for the experiments in order to choose a real-
istic model for social networks. We use the Kleinberg small world generator provided by
the JUNG framework [77], which models the network topology with a toroidal lattice. Each
node has four local connections, one to each of its neighbors. In addition, each node has one
long range connection to some node which is chosen randomly according to a probability
proportional to d−α, where d is the number of hops between these nodes, and α is the clus-
tering coefficient (which we set to 1). The size of the network is set to 1024 peers. As shown
in [57], the underlying network topology has significant effects on the performance of the
search algorithm. For this reason, the performance of the algorithm needs to be evaluated
for other network topologies as well. This is the subject of Section 4.3.5.

The SEMANT algorithm provides support for taking different link costs into account. In a
real-world setting, each link between two peers has a certain latency, a certain bandwidth,
and a certain throughput (see, e.g., [81]) depending on the hardware of the connection. Un-
fortunately, there are two reasons that make the evaluation of this feature cumbersome.
Firstly, there is no appropriate test data composed of a real-world network topology to-
gether with defined latency/bandwidth/throughput properties available. Secondly, even if
such data would be available, there is no other approach to search in peer-to-peer networks
that considers different link costs. This makes it impossible to compare the performance
figures to reference values. For these reasons, it was decided not to evaluate this feature.
The link costs for all links are set to 1.

4.3.1.2 Content distribution

The content is modeled with the ACM Computing Classification System (ACM CCS, [11])
as the underlying meta-data vocabulary. The ACM CCS is a taxonomy consisting of 1473
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Figure 4.3: Research areas: Third-level topics and their leaf topics

topics for the domain of scientific literature in the field of computer science. Each resource
is annotated with one keyword, i.e., each resource is an instance of one leaf topic from the
taxonomy. In total, the ACM CCS taxonomy contains 910 leaf topics. In order to represent
each research topic equally, the same number of resources is created for each leaf topic.
Each peer stores on average 30 resources, and the total number of resources in the network
is 30940 resources. This means that there are approximately 34 resources per topic. In real-
world settings, the resources in a peer-to-peer network are not randomly distributed among
the peers (see, e.g., [148]). Instead, patterns in the data can be observed because the interests
of the peers are not uniformly distributed. Each peer focuses on one or a few topics it has
special interests in. In the application scenario of researchers, the special interests are certain
research areas. Modeling research areas with the leaf topics from the taxonomy would lead
to very narrow interests. Therefore, the sub-topics of a third-level topic of the taxonomy (see
Figure 4.3) are facilitated for modeling a research area. There are 177 third-level topics in
the taxonomy. The assumption is that each peer is an expert on a certain research area and
for this reason, on average 60% of the resources in his or her repository are instances of one
particular research area. On average, another 20% of the resources are related to another
research area. The remaining 20% are instances of random leaf topics.

Some remarks need to be made about the content distribution described above. Firstly,
there is an additional assumption that the content distribution does not change during the
simulation. In a real network, it would change since the peers retrieve resources from each
other. This behavior is not integrated in the simulation. Secondly, the hierarchical relation-
ships between the topics in the taxonomy are used only for modeling the research areas,
but not for query routing. The exploitation of these relationships to improve the routing
performance is subject of Chapter 5.

4.3.1.3 Query distribution

A uniform query distribution is used in the following. For uniformly distributing the
queries within the network, a ticker clock at each peer is employed. The probability that
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a peer issues a query within one time unit is set to 0.1. Each query consists of a randomly
selected leaf topic from the ACM Computing Classification System taxonomy.

4.3.2 Metrics

Although many scientific articles about peer-to-peer systems use the metrics of precision
and recall [14] known from information retrieval for their evaluation, the drawback of rely-
ing on these metrics is that they do not include the traffic created in the network. The aim
of this work is to create an algorithm for query routing which has an optimal ratio between
network traffic and quantity of results. Hence, the following metrics are used for evaluation:

• Resource usage is defined as the number of links traveled for each query within a given
period of time.

• Hit rate is defined as the number of resources found for each query within a given
period of time.

• Efficiency is the ratio of resource usage to hit rate. Dividing the number of links trav-
eled by the number of resources found gives the average number of links traveled to find
one resource as a result, which is the most practical metric.

Obviously, these metrics have the drawback that the recall, which measures the ratio be-
tween resources found and resources present in the network, is not known. The value for
precision, which measures the ratio between correctly found resources and false positives,
will always be 100% since the SEMANT algorithm does not produce false positives.

4.3.3 Performance evaluation

This section describes the experimental evaluations conducted. Section 4.3.3.1 documents
the parameter settings for the SEMANT algorithm. In Section 4.3.3.2, the SEMANT algo-
rithm is compared against the k-random walker approach. In Section 4.3.3.3, it is shown
that the simulation environment is implemented and set up correctly in such a way that it
produces repeatable results. In Section 4.3.3.4, a comparison of the SEMANT minResources
variation against the maxResults variation is performed. In Section 4.3.3.5, the bootstrapping
mechanism is evaluated.

4.3.3.1 Parameter settings

The left side of Table 4.1 shows a listing of the configurable parameters of the SEMANT algo-
rithm. The values used for these parameters at runtime have a considerable impact on the
performance of the system, and choosing the most appropriate values is a non-trivial task.
The parameter values chosen for the experiments described in the subsequent sections were
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ρ evaporation factor 0.07
ttlmax timeout of forward ants 25
we weight of exploiting vs. exploring strategy 0.85
rmax maximum number of resources 10
wd weight of resource quantity vs. link costs 0.5
β weight of link costs 1
psendAdditional bootstrapping parameter 0.0

Table 4.1: Parameter values chosen for the SEMANT algorithm

defined after conducting initial experiments. These are not the optimal, but approximated
values. The selected settings are shown in the right-most column of Table 4.1. Note that
ttlmax (and not tmax) is used for defining the stop point (see Section 4.2.2.2). The effect
that changing the values has on the overall performance of the algorithm is evaluated in
Section 4.3.4.

4.3.3.2 Comparison of the maxResults variation against the k-random walker algorithm

Now the performance of the SEMANT algorithm is compared against that of the well-known
k-random walker approach [90], which will be described below. The maxResults variation (see
Section 4.2.2.3) and the parameter values shown in Table 4.1 are used. The time horizon for
the experiment is set to 10000 time units. In order to provide for comparison fairness,

• both algorithms use the same setup as described in Section 4.3.1,

• the time-to-live parameters are set to an equal value, and

• the parameter settings for the algorithms are set in such a way that – in total – the
agents of both algorithms are allowed to travel a comparable number of links.

Consequently, the parameters for the k-random walker algorithm are set to k = 2 and TTL =
25. This means that two walkers travel for 25 hops. A walker is similar to a forward ant,
except from the fact that it does not rely on routing tables, but makes a random decision
about which outgoing link to choose in the link selection procedure. If resources are found,
the walker sends an information message back to the querying peer (similar to a backward
ant), and walks on. After 25 hops, the walkers are terminated.

The results of the resource usage comparison between the SEMANT algorithm and the
k-random walker algorithm are shown in Figure 4.4. Note that these numbers include both
forward and backward ants/agents. The hit rate measurements are shown in Figure 4.5.
What can be seen from these figures is that the performance of the k-random walker algorithm
stays constant. The reason for that is that k-random walker does not include any kind of
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Figure 4.4: Resource usage comparison of the k-random walker algorithm and the SEMANT algorithm
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Figure 4.5: Hit rate comparison of the k-random walker algorithm and the SEMANT algorithm

optimization. On average, the agents travel 59.27 links for answering a query. The average
number of results found for a query is 1.49 resources.

On the contrary, the SEMANT algorithm steadily increases its performance by storing
information about queries and results in the past in pheromone trails and by exploiting
this information for the routing decisions. In the starting phase of the experiment, the ants
have to travel 60.44 links in order to find 1.82 resources per query. After 1000 time units,
these numbers improve to 55.13 links traveled for retrieving 3.8 resources per query. The
algorithm converges quite fast and reaches its optimal performance after 2000 time units.
The average hit rate goes up to 3.95 resources per query, and resource usage decreases to
54.04 links traveled. Between time unit 2000 and time unit 10000, the results are robust. The
number of resources per query stays nearly constant. Resource usage decreases slightly.
After 10000 time units, the agents need to travel 53.02 links to find 3.95 resources per query.

Note that the performance figures depicted in Figures 4.4 to 4.5 (and also all other re-
sults described in this section) are derived by building average values from all queries that
occurred within 100 time units for the respective metric.
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Figure 4.6: Resource usage comparison of 3 test runs
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Figure 4.7: Hit rate comparison of 3 test runs
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Figure 4.8: Efficiency comparison of 3 test runs

4.3.3.3 Correctness of the implementation

The design and implementation of the simulation environment used for the experiments is
described in [104]. It is necessary to test if the simulation environment is implemented cor-
rectly, that is, to show that the results produced are deterministic and repeatable. In order to
carry this out, the experiment described in Section 4.3.3.2 is repeated three times (using the
minResources variation), and for each of these recurrences a newly generated network with
the same content distribution parameters as described in Section 4.3.1 is used. This means
that there are three different networks having the same properties. Since Figure 4.4 and
Figure 4.5 already revealed that the algorithm’s results do not significantly change between
time unit 5000 and time unit 10000, in this experiment (and also in the subsequent ones) it
is sufficient to use a time horizon of 5000 time units.

After that, the results are compared. The Figures 4.6 to 4.8 show the resource usage, hit
rate, and efficiency figures for the three recurrences. What can be seen is that there are no
significant differences between these results. Obviously, this is not a formal proof for the
correctness of the simulation environment. However, it is sufficient for concluding that the
evaluation method chosen is valid and that the results are reproducible.

49



Chapter 4 The SEMANT algorithm

4.3.3.4 Comparison of the minResources variation against the maxResults variation

Now the performance of the minResources variation of the SEMANT algorithm is compared
against the performance of the maxResults variation. The parameter values shown in Ta-
ble 4.1 are used. The results of the comparison are shown in Figures 4.9 to 4.12. The results
for the k-random walker approach are included as a reference. The figures clearly indicate
that, depending on the variation used, two different optimization problems are solved. In
case of the maxResults variation, the hit rate is maximized. Figure 4.9 shows that after 5000
time units, on average 3.98 resources per query are found compared to 1.77 resources per
query at time unit 0. However, the resource usage decreases only slightly. After 5000 time
units, on average 53 hops are necessary for query routing (Figure 4.11) compared to on
average 59 hops at time unit 0.
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Figure 4.9: Hit rate evaluation of the maxResults varia-
tion of the SEMANT algorithm
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Figure 4.10: Hit rate evaluation of the minResource vari-
ation of the SEMANT algorithm
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Figure 4.11: Resource usage evaluation of the maxRe-
sults variation of SEMANT
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Figure 4.12: Resource usage evaluation of the minRe-
source variation of SEMANT

On the other hand, employing the minResources variation minimizes the resource usage
of the ants. In this case, after 5000 time units only 26 hops are needed on average for query
routing (Figure 4.12), but on average only 2.1 resources per query are found (Figure 4.10).
Since hit rate and resource usage depend on each other, the best way of comparing the vari-
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Figure 4.13: Efficiency of minResources variation and maxResults variation

ations against each other is to use the metric of efficiency. Figure 4.13 shows a comparison
of the efficiency values for the two variations. It can be seen that, as soon as the converged
phase is reached (after 500 time units), the minResources variation needs less hops to retrieve
one resource than the maxResults variation. These results show that for the overall perfor-
mance of the system, the minResources variation has a higher benefit in terms of a lower
number of hops traveled for retrieving one resource. The difference after 5000 time units is
approximately 0.9 hops per query (13.6 hops on average/12.7 hops on average). The reason
for that is as follows. Recall that ants using the maxResults variation go on after they found
the first appropriate peer. However, after finding it they tend to stay in the neighborhood
of this peer, since the pheromone trails indicate that there is an appropriate peer nearby. In
this case the trails are misleading, because forward ants can not visit the same peer twice.
However, the performance difference between the variations is rather marginal. Therefore,
employing the maxResults variation is reasonable as well, because in this case the number
of resources found for a single query is higher. This is of benefit to the individual users of
the network.

4.3.3.5 Evaluation of the bootstrapping mechanism

As the next step, the bootstrapping mechanism described in Section 4.2.6 is evaluated. The
minResources variation together with the parameter values shown in Table 4.1 is used, and
four test runs with parameter psendAdditional = 0, psendAdditional = 0.1, psendAdditional = 0.2,
and psendAdditional = 0.3 are executed.

As can be seen in Figure 4.14, bootstrapping causes a high amount of network traffic in
the start-up phase (between time unit 0 and time unit 100). The reason for that is that in this
interval of time, all pheromone amounts are equal. Between time unit 100 and time unit 300,
most of the pheromone trails are already initialized (that is, the amounts of pheromone are
not equal any longer). Consequently, only slightly more network resources are consumed if
psendAdditional 6= 0 than if otherwise. After time unit 300, and the bootstrapping mechanism
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Figure 4.14: Resource usage evaluation of the bootstrapping mechanism
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Figure 4.15: Hit rate evaluation of the bootstrapping mechanism

does not create any additional traffic. Figure 4.14 and Figure 4.16 reveal that the parameter
psendAdditional needs to be dealt with very carefully, because the amount of traffic in the
network in the start-up phase is exponentially proportional to the value set for it. Using a
value psendAdditional > 0.3 is not feasible.

Figure 4.15 shows that the higher the value for parameter psendAdditional, the higher the
number of results in the start-up phase. But it can be observed from Figure 4.16 that these
benefits are achieved in an inefficient way because the average number of hops necessary
for answering a query is high.

However, as shown in Figure 4.17, using the bootstrapping mechanism for initializing
the pheromone trails has positive effects on the performance which are permanent and still
present after 5000 time units. Whereas for psendAdditional = 0 the efficiency result is 12.7
hops per query, for psendAdditional = 0.1 this value lowers to 12 hops, for psendAdditional =
0.2 to 10.9 hops, and for psendAdditional = 0.3 to 9.8 hops per query. Therefore, using the
bootstrapping mechanism is of benefit.
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Figure 4.16: Efficiency evaluation of the bootstrapping
mechanism (time unit 0 to 500)

0

2

4

6

8

10

12

14

16

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

time

ef
fic

ie
nc

y

0%
10%
20%
30%

Figure 4.17: Efficiency evaluation of the bootstrapping
mechanism (time unit 500 to 5000)

4.3.4 Influence of parameter settings on performance

One of the challenges when employing ant algorithms is that they include various config-
urable parameters for which appropriate value settings must be found. Ideally, it would
be possible to automatically determine these parameter values at runtime, but this is not
within the scope of this work. In the experiments conducted so far, fixed values were used
for the configurable parameters of the SEMANT algorithm. In the following, the influence
of different settings for the parameters on the performance of the algorithm is evaluated.
Section 4.3.4.1 investigates the influence of the time-to-live parameter, Section 4.3.4.2 that of
the weight between exploiting and exploring strategy, and Section 4.3.4.3 that of the evap-
oration factor. The other parameters of the SEMANT algorithm (rmax, wd, β) do not have a
significant effect on the performance values, and are therefore excluded from the evaluation.

4.3.4.1 Influence of time-to-live parameter ttlmax

The influence of the time-to-live parameter ttlmax is evaluated by acquiring the performance
results for ttlmax ∈ [5, 10, 15, 20, 25, 30] and comparing them. Since the assumption is that
there is a dependency between variation and time-to-live parameter, the results for both
the minResources variation and the maxResults variation are retrieved. The results of the
evaluation are shown in Figure 4.18 to Figure 4.23.

The hit rate results for both variations (see Figure 4.18 and Figure 4.19) show that values
lower than ttlmax = 15 have a negative impact on performance. The problem in these cases
is that the forward ants are terminated before they found an appropriate peer. This effect
itself is independent from the experimental setup, but the bound ttlmax < 15 is specific for
the setup used in this experiment. The value for the bound is dependent on the network
size and in the content distribution in the network.

Figure 4.18 reveals that in the minResources variation, the main effect of employing a
higher value for parameter ttlmax is a faster convergence of the algorithm. For appropri-
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Figure 4.18: Hit rate evaluation of the influence of time-
to-live parameter ttlmax in the minResources
variation
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Figure 4.19: Hit rate evaluation of the influence of time-
to-live parameter ttlmax in the maxResults
variation

ate values of ttlmax, i.e., ttlmax ∈ [15, 20, 25, 30], the differences concerning the absolute
number of results are marginal after the converged phase is reached. The average values
after 5000 time units are 2.05 for ttlmax = 30, 2.09 for ttlmax = 25, 2.08 for ttlmax = 20, and
1.97 for ttlmax = 15.

On the contrary, when employing the maxResults variation (see Figure 4.19), the absolute
number of results increases significantly depending on the value used for parameter ttlmax.
The average values after 5000 time units are 4.32 for ttlmax = 30, 3.80 for ttlmax = 25, 3.54
for ttlmax = 20, and 2.93 for ttlmax = 15.
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Figure 4.20: Resource usage evaluation of the influence
of time-to-live parameter ttlmax in the min-
Resources variation
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Figure 4.21: Resource usage evaluation of the influ-
ence of time-to-live parameter ttlmax in the
maxResults variation

Figure 4.20 and Figure 4.21 show that the resource usage is directly dependent on the
value used for parameter ttlmax for both variations of the algorithm. In the minResources
variation (see Figure 4.20), the resource usage is exponentially dependent on the value used
for parameter ttlmax between time unit 0 and time unit 1000 (average values at time unit 0:
30.4 for ttlmax = 30, 25.9 for ttlmax = 25, 21.7 for ttlmax = 20, 17.0 for ttlmax = 15) and
decreases greatly within this time period. After the converged phase is reached (at time
unit 1000), the resource usage is proportionally dependent on parameter ttlmax.

54



Chapter 4 The SEMANT algorithm

variation 5 10 15 20 25 30 mean std. deviation
minResources 21.09 12.28 11.39 12.37 13.72 15.64 14.41 3.59
maxResults 21.73 12.91 12.51 13.49 15.33 16.85 15.47 3.48

Table 4.2: Average efficiency of the SEMANT algorithm when varying the value used for parameter ttlmax

When comparing the variations to each other, the resource usage is much higher in the
maxResults variation (see Figure 4.21). This is obvious, since the forward ants do not stop
after the first result in this case. In the maxResults variation, the resource usage in the start-
up phase of the algorithm is very much biased by the high increase of the hit rate at the
same time (see Figure 4.19). Therefore, interpreting this result is easier when utilizing the
efficiency metric (see Figure 4.23).
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Figure 4.22: Efficiency evaluation of the influence of
time-to-live parameter ttlmax in the minRe-
sources variation
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Figure 4.23: Efficiency evaluation of the influence of
time-to-live parameter ttlmax in the maxRe-
sults variation

Figure 4.22 and Figure 4.23 show that, unlike it was assumed, there is no additional de-
pendency between the value set for parameter ttlmax and the variation of the algorithm
used. The only difference between the variations is the minor performance benefit of the
minResources variation as already discussed in Section 4.3.3.4, which is observable for every
setting of parameter ttlmax (see Table 4.2). It can seen in Figure 4.22 and Figure 4.23 that the
value set for parameter ttlmax has a significant effect on the performance of the algorithm.
In both variations, the best performance can be reached when setting ttlmax = 15. In this
case, after 5000 time units on average 8.62 hops are necessary for retrieving one result in
the minResources variation and on average 9.82 hops are necessary for retrieving one result
in the maxResults variation. Again, these results are dependent on the network size and
the content distribution in the network. According to which setup is used, there will be a
different optimal value for parameter ttlmax.

Setting the value for parameter ttlmax higher than the optimal one has the effect that per-
formance is lower. The average values after 5000 time units for the minResources variation
are 10.42 for ttlmax = 20, 12.37 for ttlmax = 25, and 14.82 for ttlmax = 30. The average

55



Chapter 4 The SEMANT algorithm

values after 5000 time units for the maxResults variation are 11.58 for ttlmax = 20, 13.91 for
ttlmax = 25, and 15.51 for ttlmax = 30.

Setting the value for parameter ttlmax lower than the optimal one results in low hit rates
and is therefore not desirable. As discussed above, in case of ttlmax = 5, the reason for that is
that the forward ants are terminated before they found an appropriate peer. An interesting
result is that, in terms of efficiency, the case of ttlmax = 10 is actually the most efficient after
5000 time units. However, the algorithm does not improve the performance in the start-up
phase as much as for settings where ttlmax ≥ 15, and the performance in terms of hit rate is
very low.

4.3.4.2 Influence of weight we

As discussed in Section 4.2.3, weight we ∈ [0, 1] is a parameter that influences a basic deci-
sion each ant has to make before selecting an outgoing link. It can either

• exploit the best results known so far for path selection, or it can

• explore a path that is not currently known as the best one in order to possibly find an
improved solution to the problem. If it succeeds, this will enhance the performance of
the system.

The exploitation-exploration dilemma has been discussed in several contexts, such as in
the case of foraging bees [103], in economic systems [109], in software product develop-
ment [71], and others. The exploitation-exploration dilemma is now addressed for the SEM-
ANT algorithm by acquiring the simulation results for several different settings for param-
eter we. Since in the experiment described in Section 4.3.3.4 it turned out to perform better,
the minResources variation is employed. In addition, parameter ttlmax is set to 15 according
to the results gained in Section 4.3.4.1. For the parameters other than we and ttlmax, the
settings given in Table 4.1 are used.

The results of the comparison are given in Figure 4.24 to Figure 4.26. Figure 4.24 shows
that in the start-up phase, the resource usage is proportional to the ratio between exploring
and exploiting strategy. The more forward ants employ the exploring strategy, the higher
the amount of messages in the network. Consequently, for the overall load of the system
it is better to employ a low rate of exploring forward ants. However, also a high rate, e.g.,
we = 0.05, is feasible. Although in this case the resource usage at time unit 0 is much higher
(168.4 hops on average) than in case of a low rate (e.g., 16.7 hops on average for we = 0.95),
still not even half as many resources are consumed as when using broadcast with a time-to-
live parameter of 4.

The hit rate is dependent on parameter we not only in the start-up phase, but also in
the converged phase (Figure 4.25). The more exploring forward ants in the network, the
better the pheromone trails and, consequently, the higher the hit rate. The best result can
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Figure 4.24: Resource usage of the SEMANT algorithm using the minResources variation when varying the value
used for parameter we. Between time unit 0 and time unit 1500, resource usage is dependent on
parameter we.
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Figure 4.25: Hit rate of the SEMANT algorithm using the minResources variation when varying the value used for
parameter we. The curves converge to the same limit.

be reached for setting we = 0.05. After 5000 time units, on average 2.24 resources are found
in this case. The worst possible result (1.92 resources on average after 5000 time units) is
obtained for setting we = 0.95. However, the difference in absolute numbers is marginal
and the curves converge to the same limit over time.

Combining the two metrics shows that, independently from the ratio between explor-
ing and exploiting strategy, the overall efficiency in terms of number of hops necessary for
answering a query is similar for every setting of parameter we. Although a higher rate of
exploring ants gives slightly less efficient results in the start-up phase, at the same time it
moderately improves the performance in the converged phase. Figure 4.26 highlights this
by depicting the efficiency results for we = 0.05 and we = 0.95 plotted in log-log scale.
Table 4.3, showing the average efficiency over the complete time span for every setting of
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Figure 4.26: Log-log plot of the efficiency of the SEMANT algorithm using the minResources variation for parameter
we ∈ [0.05, 0.95]. A higher rate of exploring ants results in slightly less efficient results in the start-
up phase, but improves the performance in the converged phase. The curves for the other settings
of parameter we lie in between those shown and are omitted for clarity. Note that the time axis is
stretched by factor 2.

0.05 0.15 0.25 0.35 0.45 mean
11.43 11.31 11.33 11.45 11.25 11.38619209
0.55 0.65 0.75 0.85 0.95 standard deviation

11.35 11.37 11.42 11.38 11.57 0.087454343

Table 4.3: Average efficiency of the SEMANT algorithm using the minResources variation when varying the value
used for parameter we

parameter we, reveals that those two effects are in balance with each other. The mean of all
values is 11.39 hops per query, and the low standard deviation of 0.087 indicates that there
are no significant differences in average efficiency when varying the ratio between exploring
and exploiting strategy. The reason for this effect lies in the design of the exploring strategy.
It can be explained by the fact that, although the forward ants choose outgoing links that
are not currently known as the best ones, they still make this decision in proportion to their
desirability.

4.3.4.3 Influence of evaporation factor ρ

In order to evaluate the influence of the value set for the evaporation factor ρ (see Sec-
tion 4.2.5) on the performance of the algorithm, the results for ρ ∈ [0.01, 0.03, 0.05, 0.07, 0.09]
are acquired and compared. The minResources variation of the SEMANT algorithm is em-
ployed. Parameter ttlmax is set to 15. For the parameters other than ρ and ttlmax, the set-
tings shown in Table 4.1 are used. Table 4.4, Figure 4.27, and Figure 4.28 show the results of
the comparison. Table 4.4 shows that the performance values for the different settings of
parameter ρ are very similar. The standard deviation of the average number of hops neces-
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Figure 4.27: Efficiency of the SEMANT algorithm using the minResources variation when varying the value used for
parameter ρ. Note that the time axis is stretched by factor 2.

sary for retrieving one result over the time span of 5000 time units is only 0.12. This means
that the impact of the value used for the evaporation factor ρ on the performance of the al-
gorithm is very small. For this reason, Figure 4.27 and Figure 4.28, which depict the results
for the efficiency metric over time, are shown as log-log plots in order to highlight the minor
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Figure 4.28: Zoom of the efficiency results between time unit 500 and time unit 5000 of the SEMANT algorithm
using the minResources variation when varying the value used for parameter ρ. Note that the time axis
is stretched by factor 2.

0.01 0.03 0.05 0.07 0.09 mean standard deviation
11.18 11.30 11.44 11.39 11.47 11.35319617 0.116934088

Table 4.4: Average efficiency of the SEMANT algorithm using the minResources variation varying the value used for
parameter ρ
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differences between the curves. Figure 4.28 is a zoom of the behavior of the curves between
time unit 500 and time unit 5000. It can be seen that the evaporation feature has a negative
effect on the performance of the SEMANT algorithm. The best performance can be reached
when setting parameter ρ = 0.01. The reason for that is that the content distribution in the
network is static and no peers are leaving and joining during the simulation. Consequently,
the information collected by the ants does not become outdated and therefore should not
be removed by evaporation.

4.3.5 Influence of network topology on performance

The topology of the underlying network has a high impact on the performance of the search
algorithm. The small world network (as described by Kleinberg [79] and Watts et al. [136])
with 1024 peers and 5120 links that was used in the experiments conducted in the previous
sections is now used as a reference to compare the performance of the algorithm against the
one that can be reached in a power-law network [7] with 1024 peers and 1000, 2000, 4000,
6000, 8000, and 10000 links between the peers. The minResources variation of the SEMANT

algorithm is employed. Parameter ttlmax is set to 15, and all other parameters are set as
shown in Table 4.1. The results of the comparison are depicted in Figure 4.29 to Figure 4.31.
They reveal that the performance of SEMANT for the power-law network is better than in
the small-world network, except from the case of 1000 links. However, this case can be
neglected because the number of links is too low and, consequently, many of the nodes are
of degree 0.

In case of 2000 links, the hit rate (see Figure 4.29) is slightly worse than in the small-world
network with 5120 links, but at the same time the resource usage is significantly lower (see
Figure 4.30). This leads to SEMANT’s performance in the power-law network with 2000
links being more efficient (see Figure 4.31) than in the small-world network.

For 4000, 6000, 8000, and 10000 links, the hit rate is higher than in the small-world net-
work (see Figure 4.29), but unaffected by the number of links (that is, nearly the same no
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Figure 4.29: Hit rate comparison when using different network topologies
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Figure 4.30: Resource usage comparison when using different network topologies

matter how many links are present in the network). The same behavior can be observed for
resource usage (see Figure 4.30) and efficiency (see Figure 4.31). The fact that the hit rate
is the same for all these cases and does not improve in proportion to the number of links
indicates that the SEMANT algorithm can not take advantage of the additional connectivity
in the network that should improve the search. The reason for that can be explained by the
fact that SEMANT’s mechanism of selecting outgoing links according to a probability dis-
tribution is the less effective the more outgoing links exist. In a power-law network, there
are a few highly connected links that act as information hubs for the many nodes with low
degree they are connected to. Since the SEMANT algorithm is the less effective the higher
the degree of the node, it is not advisable for use in power-law networks.
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Figure 4.31: Efficiency of the SEMANT algorithm using the minResources variation when using different network
topologies. Note that the time axis is stretched by factor 2.
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4.4 Related work

This section reviews related work on ant algorithms in peer-to-peer networks. After pre-
senting the directly related work that also focuses on peer-to-peer search in Section 4.4.1,
Section 4.4.2 takes a broader view and presents an (incomplete) overview of ant-based ap-
proaches to peer-to-peer tasks other than search.

4.4.1 Ant algorithms for search in peer-to-peer networks

The most well-known practical approach towards employing ant algorithms in peer-to-peer
networks is the Java-based open source framework Anthill [13] for the design, implemen-
tation, and evaluation of ant algorithms in peer-to-peer networks. An Anthill system is an
overlay network of interconnected nests which correspond to peers. Nests provide services
like document storage, routing table management, topology management, and generation
of ants upon user requests. In addition, the Anthill API provides a basic set of actions for
ants that enables them to travel from nest to nest, and to interact with the services provided
by them. The main difference between Anthill and SEMANT is that the Anthill project fo-
cuses on the development of the framework. It does not specify ant algorithms. This task is
left to the users of the framework according to the application scenario. However, there are
two applications based on the Anthill framework which were built by the Anthill developers
for demonstration and evaluation purposes.

Gnutant [13] is a file-sharing application. In this application, each file is identified by an
unique file identifier and associated with meta-data comprised of textual keywords. The
query routing algorithm is based on the ant metaphor, but not on the principles defined
by the Ant Colony Optimization meta-heuristic. Three different types of ants are respon-
sible (1) for constructing a distributed index that contains URLs pointing to shared files
and (2) for managing routing tables. If a user adds a new file to a nest, one InsertAnt is
generated for each keyword of the file. InsertAnts propagate the presence of new files to
the network by updating the distributed index. Gnutant utilizes hashed keyword routing
based on the Secure Hash Algorithm (SHA). Each index entry contains the hash value of a
keyword together with a set of nests that are likely to store files associated with the given
keyword. SearchAnts are generated upon user queries and exploit the information stored in
the routing tables in order to find files that match the queries’ keywords. If no index entry
that exactly matches the query’s hash value exists, the SearchAnt selects the hash value that
most closely matches the hash value of the query. If a SearchAnt localizes an appropriate
file, it generates a ReplyAnt that immediately returns to the source nest and informs the user
about the result of his or her query. The SearchAnt itself continues traveling until it reaches
a defined time-to-live (TTL) parameter, that is, the maximum number of hops the ant is al-
lowed to move. Once the TTL parameter is reached, it returns to its source nest via the same
path it traveled before and updates both routing tables and distributed index.
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The second application that was built using Anthill is called Messor [96]. It is not intended
for search, but for load-balancing in peer-to-peer networks based on the necrophoric behav-
ior of ants.

Schelthout et al. [119] evaluate whether the principle of synthetic pheromone can be em-
ployed for coordination in distributed agent-oriented environments. Their framework is
based on the idea of objectspaces known from concurrent computing. Similar to Gnutant,
Schelthout et al. create pheromone trails for each query and allow agents to follow trails
that represent only one out of the multiple keywords in the query. Evaporation is used and
the evaporation factor is set to 0.1. The test environment is too small (200 peers, one kind of
resource) to be useful, but the experimental results show that pheromone trails enhance the
performance of the network. The hit rate increases with the number of queries sent to the
network (32% hit rate after 400 queries, 53% hit rate after 700 queries).

In addition to the directly related work, there are two areas of distantly related work.
Firstly, there is work addressing the applicability of biological processes other than ant-
based methods to search in peer-to-peer networks. For example, Babaoglu et al. [12] apply
the principles of proliferation to search in unstructured overlay networks. Secondly, there
are approaches to peer-to-peer which are inspired by stigmergy, but do not derive from
the Ant Colony Optimization meta-heuristic. For instance, Handt [64] tackles the problem
of search in peer-to-peer networks by inverting it. Instead of peers issuing queries, the
annotated resources move through the network and lay/follow pheromone trails that guide
them. In addition, the peers re-order according to their interests which are determined by
creating node profiles out of the meta-data their locally stored resources are marked-up
with.

4.4.2 Ant algorithms for other distributed tasks

The open-source project MUTE [114] implements a peer-to-peer system that relies on the ant
metaphor for user discovery. Ants are used to track which neighbor connections are associ-
ated with particular sender addresses. Distributed search is based on controlled flooding to
locate files by name based on free-form query strings.

Wu and Aberer [141] use swarm intelligence to create a model for the dynamic interac-
tions between Web servers and users, which provide relevance feedback by browsing Web
pages. This model is used for ranking Web documents. A swarm intelligent module is
added to the Web server architecture. The trail laying feature used is composed of an accu-
mulation feature that increases the pheromone amount when a user visits a page, and of a
spreading feature in which pheromone is diffused to the pages that link to a certain page.
The spreading feature does not comply with the Ant Colony Optimization meta-heuristic.

Labella et al. [82] present a foraging-inspired approach for division of labor between a
group of robots performing object search and retrieval. The goal is to distributively deter-
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mine which agent is suited best for carrying out a certain task using indirect communication
only.

4.5 Summary

In this chapter, the effectiveness of the self-organizing and emergent behavior observed
from natural ants for query routing in peer-to-peer networks was evaluated. Based on the
findings of Chapter 3, two variations of the SEMANT algorithm for content-based query
routing in peer-to-peer networks based on the Ant Colony Optimization meta-heuristic and
on the AntNet algorithm were specified.

Because of the necessity to employ a different type of pheromone for every keyword that
can occur in a query, allowing free-text search with the trail-laying and trail-following be-
havior is not feasible. As a consequence, the SEMANT algorithm was designed for metadata-
based search. The use case of supporting researchers in computer science by allowing them
to share scientific articles was selected, and the ACM Computing Classification System tax-
onomy was used as the underlying metadata vocabulary.

An experimental evaluation of the proposed algorithm was conducted in order to assess
its performance. Analyzing the results gained allows to draw the conclusion that employing
pheromone trails for optimizing query routes is a meaningful approach. Both variations of
the SEMANT algorithm outperform the k-random walker algorithm, which was used as
a reference, in terms of resource usage as well as in terms of hit rate. The minResources
variation of the SEMANT algorithm was identified as the superior one by comparing the
performance of the variations against each other.

The SEMANT algorithm converges fast and delivers stable results. Its performance in the
start-up phase can be even more improved by integrating a bootstrapping mechanism that
leads to a faster initialization of the pheromone trails.

The values set for the configurable parameters of the SEMANT algorithm and the proper-
ties of the peer-to-peer network in which it is used have impacts on the performance of the
algorithm. Four main insights have been gained:

• The parameter with the highest influence on performance is the time-to-live parame-
ter. Its optimal value is dependent on the network size and on the content distribution
in the network.

• The parameter value chosen for the ratio between exploring and exploiting forwards
ants (cf. exploration-exploitation dilemma) does not influence the overall efficiency
of the algorithm’s search process. The reason for this effect lies in the design of the
exploring strategy. Although the forward ants choose outgoing links that are not cur-
rently known as the best ones, they still make this decision in proportion to their
desirability.
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• In a static setting, information will not become outdated. Therefore, using an evapo-
ration factor has a small negative effect on performance.

• Since the SEMANT algorithm’s link selection procedure is the less effective the higher
the degree of the node, it is not advisable for use in power-law networks. It is indented
for use in small-world networks.

In the work presented in this chapter, the namespace of the metadata vocabulary was
considered flat. The next chapter presents an extension of the SEMANT algorithm, in which
the hierarchical relationships between the topics in the taxonomy are used to improve query
routing performance.
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Extensions to the SEMANT algorithm

This chapter (1) investigates the impact of different content distributions on the perfor-
mance of the SEMANT algorithm and (2) shows how taxonomies can be used for SEMANT

in order to improve the performance. After providing the motivation for that work, it is
shown how to extend the SEMANT algorithm to provide for the consideration of metadata
from a taxonomy for routing. Experimental results indicating the performance of the algo-
rithm with respect to different content distributions – with or without using information
from a taxonomy for routing – are presented, and related work on using taxonomies for
routing in peer-to-peer networks is discussed.
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5.1 Motivation

Since the keyword of a query governs the way an ant will take through the network, the
SEMANT algorithm is a content-based approach. Therefore, as for every content-based
approach, the content distribution in the network has an impact of its performance. As
discussed in Section 2.3, several existing approaches are relying on assumptions about the
distribution of content in the network, i.e., they take for granted that peers have special
interests in specific topics and for this reason store a lot of their resources related to these
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topics. In the evaluations presented in Chapter 4.3, this assumption was used as well. Re-
member that each peer was an expert within a certain research area and stored 60% of its
resources about this area, 20% about another research area, and 20% of random topics. In
this chapter, the goal is to find out which implications this assumption has, and therefore,
to evaluate the influence of the content distribution in the network on the performance of
the SEMANT algorithm.

In particular, the aim is to vary the degree of ”coherence in the content”, that is, the
percentage of resources about a particular research area stored at the expert peers. Figure 5.1
shows an example of a coherent content distribution, where most of the resources about a
certain topic are stored at one expert peer. Compared to Figure 5.1, the content distribution
shown in Figure 5.2 is much more dispersed, because there is a higher number of peers
storing resources about the given topic, but the number of stored resources is smaller.

Query for 
„WWW“

10 Docs for 
„WWW“

2 Docs for 
„WWW“

Figure 5.1: Coherent content distribution

Query for 
„WWW“

4 Docs for 
„WWW“

4 Docs for 
„WWW“

4 Docs for 
„WWW“

Figure 5.2: Dispersed content distribution

The expected result of the experiments conducted in this section is that the performance of
SEMANT is dependent on the content distribution in the network, and that the algorithm’s
performance will degrade according to the degree of coherence in the content.

Therefore, the additional goal of this work is to develop strategies for enhancing the per-
formance in case of dispersed content distributions. An obvious source of improvement is
the underlying taxonomy that was used for creating the test data and modeling the research
areas. Recall that research areas are modeled using the third-level topics of the taxonomy,
but except from that the namespace was treated as flat and keywords were treated as inde-
pendent from each other. For making it possible to use this information from the taxonomy,
it must be known at every peer.

Basically, the idea now is to (1) lay and maintain pheromone trails not only for the leaf
topics in the taxonomy, but also for the higher-level ones, and to (2) define the relationships
between the keywords by the underlying taxonomy. The latter can then be used for im-
proving the routing performance. Therefore, SEMANT’s content-based approach to query
routing will be extended to a semantic query routing approach in this chapter. Since the ex-
pected result is that the impact of higher-level topics on routing performance is even more
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dependent on the content distribution in the network than that of the leaf topics, it is justi-
fiable to discuss both these issues together.

5.2 Defining semantic relationships between pheromone
trails

In this section, the extensions for integrating pheromone trails for all topics from the taxon-
omy are described. There are three parts of the algorithm that need to be extended. Changes
need to be made to the data structures (see Section 5.2.1), to the trail following behavior (see
Section 5.2.2), and to the trail laying behavior (see Section 5.2.3).

5.2.1 Data structures

As described in Section 4.2.1, in the original version of the SEMANT algorithm, the phero-
mone trails are maintained in a table τ of size C × n at each peer Pi, where C is the size of
the controlled vocabulary. For using a taxonomy, these tables must be of size T ×n, where T

is the number of topics in the taxonomy.

5.2.2 Trail following

Since it is executed much more often and most relies on the information already stored in
the pheromone trails, considering the hierarchical relationships between the keywords is
more useful in the exploiting strategy than in the exploring strategy. For this reason, the
exploring strategy remains unchanged as described in Section 4.2.3.2.

In extended version of the exploiting strategy, a forward ant Fq located at a certain peer Pi

selects a neighbor peer Pj as shown in Equation 5.1a. It considers the hierarchical structure
of the pheromone trails. The strategy incorporates not only the pheromone trail for topic c,
which is the keyword of query Q, but also the trails that correspond to the super-topics of
topic c. To put more emphasis on those trails that directly match the query, a multiplication
factor is used.

j = arg maxu∈U∧u/∈S(F Q)

(
n−1∑
i=0

τciu ·
1
xi

)
(5.1a)

In Equation 5.1a, U is the set of neighbor peers of peer Pi, S(FQ) is the set of peers already
visited by forward ant FQ, i is the distance between the super-topic ci and topic c, c0 = c,
n is the distance between topic c and the top-level topic, τciu is the amount of pheromone
for concept ci on the path to peer Pu, and x ∈ [2, 4, 8, 16, ...]. Parameter n defines how many
super-topics are considered and parameter x defines to which extent they are incorporated.
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The appropriate values for n and x were determined using experimental evaluations.
It turned out that the most appropriate value is to set n = 2. This means that only the
direct super-topic – the one that corresponds to the research area – is specific enough for
improving performance. The higher-level super-topics are not specific enough to bring im-
provements. If they are taken into account as well, performance is actually lowered.

To measure the usefulness of the underlying taxonomical information for the routing per-
formance, the newly defined exploiting strategy as described above is compared to its origi-
nal version (see Section 4.2.3.1), in which all pheromone trails for different topics are treated
as being independent from each other. A forward ant Fq located at a certain peer Pi sim-
ply selects the link that stores the highest amount of pheromone for the given keyword as
shown in Equation 5.1b.

j = arg maxu∈U∧u/∈S(F Q)τcu (5.1b)

In Equation 5.1b, U is the set of neighbor peers of peer Pi, S(FQ) is the set of peers already
visited by forward ant FQ, and τciu is the amount of pheromone for concept ci on the path
to peer Pu.

Remember that the original version of the exploiting strategy (see Section 4.2.3.1) con-
sidered both the current amount of pheromone and the cost of a certain link for making a
decision which outgoing link to follow. As discussed in Section 4.5, appropriate test data
is missing for evaluation of this feature. For this reason, links costs were omitted in Equa-
tion 5.1a and Equation 5.1b.

5.2.3 Trail laying

In order to make it possible to consider them in the forward ants’ exploiting strategy, cer-
tain amounts of pheromone need to be dropped by the backward ants not only to the
topic itself, but also to the higher-level topics. Therefore, changes to the pheromone up-
date rule as defined in Section 4.2.4 are necessary. The extended pheromone update rule
is defined in Equation 5.2a to Equation 5.2c. Equal amounts of pheromone are dropped on
the pheromone trail for topic c – which is the keyword of query Q – and on the pheromone
trails corresponding to the super-topics ci of topic c.

τcij ← τcij + Z, (5.2a)

where

i = {0, . . . , n− 1}, c0 = c (5.2b)

and

Z = wd ·
|R|

rmax
+ (1− wd) ·

ttlmax

2 · hqr
(5.2c)
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ρ evaporation factor 0.07
ttlmax timeout of forward ants 25
ws weight of exploiting and exploring strategy 0.85
rmax maximal number of resources 10
wd weight of resource quantity and path length 0.5
n number of superconcept pheromone trails incorpo-

rated (including concept itself)
2

Table 5.1: Parameter values set for the SEMANT algorithm

As shown in Equation 5.2c, the values for the optimal solution are set to 1
2 · ttlmax for the

path length and rmax for the number of resources. Parameter wd weights the influence of
resource quantities and path lengths.

5.3 Experimental results

The focus of this section is on evaluating the performance of the extensions to the algorithm.
Section 5.3.1 describes the simulation setup. In Section 5.3.2, the impact of the number of
experts in the network on the performance of the algorithm is determined. In Section 5.3.3,
the impact of the degree of coherence in the content on performance is evaluated.

5.3.1 Simulation setup

The simulation setup used for the subsequent experiments is the same as already described
in Section 4.3.1, and the same metrics as already defined in Section 4.3.2 are used. For
distributing the resources across the network, it is assumed that each peer is an expert on
a certain topic and therefore a certain percentage Pexpert of its resources are instances of
one particular research area. A research area is modeled by the third-level topics of the
taxonomy and their leaf topics, as shown in Figure 4.3. The parameter values for the SEM-
ANT algorithm are set as shown in Table 5.1.

The degree of coherence in the content can vary. If Pexpert = 100%, all the resources
stored at a certain peer belong to the same research area. If Pexpert < 100%, those resources
that are not stored at an expert peer are randomly and individually spread in the network.
Consequently, in case of Pexpert = 0%, all the resources are spread randomly across the
network.

5.3.2 Number of experts in the network

In the first experiment, the aim is to compare the effects different numbers of experts have
on the overall performance. The setting Pexpert = 100% is used for all test runs. What varies
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Figure 5.3: Hit rate evaluation of the impact of the number of experts (six and twelve) on performance in case of
(1) using a flat namespace and in case of (2) using a hierarchic namespace
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Figure 5.4: Resource usage evaluation of the impact of the number of experts (six and twelve) on performance in
case of (1) using a flat namespace and in case of (2) using a hierarchic namespace

is the number of experts in the network. Two different cases are compared. In the first case,
there are six experts per research area in the network. In the second case, there are twelve
experts per research area. The number of resources per research area stays constant. Hence,
in the latter case with twelve experts, each expert stores half as many resources as in case
of six experts. Therefore, the content distribution is more dispersed in the case of twelve
experts.

Because of Pexpert = 100%, the corresponding super-topic has the same significance for a
query as the topic itself. Thus, it is irrelevant to which extend super-topics are considered,
that is, which value is used for parameter x. It is set to x = 4.

The results of the experiment are shown in Figure 5.3 to Figure 5.5. Figure 5.3 shows the
results for the hit rate. It reveals that the results are the better, the less experts exist. For

71



Chapter 5 Extensions to the SEMANT algorithm

six experts (solid lines), the hit rate after 5000 time units is approximately 5.5 resources. For
twelve experts (dashed lines), it is approximately 3 resources.

The reason for that is the following: the more experts exist, the less resources are stored
at one expert peer. As soon as the converged phase is reached, the results for the hit rate
(Figure 5.3) are nearly the same, no matter whether the super-topics are considered (black
lines) or not (grey lines). The discrepancy is that, if the super-topic trails are included,
the algorithm converges faster. The reason for that is that the super-topic has the same
significance for a query as the topic itself. This helps to speed up the process, but not to
improve the hit rate.

Figure 5.4 shows the results for the resource usage. As shown, the values for resource
usage are proportionally lower if super-topic trails are included. The difference is rather
small (approximately 3 messages in both cases) but permanent, because it is still present
after 5000 time units. Note that the resources used by the backward ants are included in
Figure 5.4. This is the reason why the resource usage is higher in case of six experts, because
more resources are found. Therefore, more backward ants are created, which leads to more
traffic in the network.
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Figure 5.5: Efficiency evaluation of the impact of the number of experts (six and twelve) on performance in case of
(1) using a flat namespace and in case of (2) using a hierarchic namespace

Since resource usage is dependent on hit rate as discussed above, the most meaningful
metric for evaluation is the combined measure of efficiency. The results for efficiency are
shown in Figure 5.5. The results show that the algorithm is very efficient in all four settings
where Pexpert = 100%. For six experts without using the taxonomy, after 5000 time units
approximately 5.30 hops are necessary in order to retrieve one resource. When using the
taxonomy, approximately 4.58 hops are necessary. Hence, in this case the improvement is
only slightly significant (0.72 hops). In case of 12 experts, the improvement after 5000 time
units is 1.24 hops for retrieving one resource (9.22 without taxonomy, 7.98 with taxonomy).
Again, this is only a slight improvement.
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To summarize, in this experiment, using the super-topic trails for routing gives nearly the
same results as not using them. The main and significant improvement that can be reached
is that integrating super-topic trails into the routing decisions lowers the time it takes for the
algorithm to reach the converged phase. Approximately 500 time units are necessary when
creating hierarchical relationships between keywords in comparison to approximately 1000
time units that are necessary when treating the keyword namespace as flat.

5.3.3 Degree of coherence in the content

In the experiment described in the last section, all resources corresponding to a certain
keyword were stored at one of the expert peers. This setting is the optimal one for us-
ing super-topics for routing. In this experiment, the effects of dispersed resource distribu-
tions are investigated. We use six expert peers for every test run, acquire the results for
Pexpert = [0%, 20%, 40%, 60%, 80%, 100%], and compare them. The percentage of resources
that is not stored at the expert peers is stored at randomly selected peers. Parameter x,
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Figure 5.6: Efficiency evaluation of the impact of the degree of coherence
in the content on performance in case of a flat namespace
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which defines the degree to which the super-topics are taken into account, is set to x = 4.
This means that for a given query, the trail for the keyword of the query is considered to
100%, and the trail for the super-topic is considered to 25%. As experiments have shown,
considering super-topics to an extent of more than 25% lowers performance. Since the op-
timal value is different for every content distribution, it would be necessary to determine it
separately. However, in order to enable comparison between the test runs the same value
x = 4, is used for all content distributions.

Now the results are presented and discussed. Since it turned out to be the most mean-
ingful metric, only the results for efficiency are depicted. Figure 5.6 shows the values
for efficiency when relying on the pheromone trails for topics only. As expected, the al-
gorithms’ performance is the weaker, the more disperse the content distribution is. For
Pexpert = 100%, the algorithm needs on average 5 hops to retrieve one resource (cf. Sec-
tion 5.3.2), which is a very efficient result. However, the results degrade proportionately to
the coherence in the content. For Pexpert = 80%, Pexpert = 60%, and Pexpert = 40%, the
degradation is linear (see Figure 5.7) and its amount rather high. For Pexpert = 20% and
Pexpert = 0%, the degree of degradation is lower but still immense. These results show
that content-based approaches, such as SEMANT, are very inefficient for dispersed content
distributions.

Coherence Flat namespace Taxonomy Improvement

0% 23.25 26.47 worse
20% 21.76 20.19 7,2%
40% 18.95 13.15 30,6%
60% 14.48 8.76 39.5%
80% 10.20 6.29 38,2%

100% 5.30 4.58 13,5%

Table 5.2: Comparison of efficiency after 5000 time units when varying the degree of coherence in the content on
performance (1) in case of a flat namespace and (2) in case of a hierarchic namespace

Now we look at the results when considering the hierarchical relationships between the
keywords for routing. Figure 5.8 shows the results when the pheromone trails for super-
topics are considered, Figure 5.9 shows the results after 5000 time units, and Table 5.2 shows
a comparison of the results when using a flat namespace to those when using the informa-
tion from the taxonomy. These results show that using super-topic pheromone trails for
routing has a positive impact on performance as long as at least some patterns can be found
in the content distribution. Solely in case of Pexpert = 0%, where all resources are indi-
vidually stored at randomly chosen peers, considering the super-topic lowers performance.
The reason for that is that if no coherence in the content can be found at all, the notion of
research area that corresponds to the trails for the super-topics can not be found in the con-
tent distribution. Hence, the trails for the super-topics actually transport no information.
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However, since there is always at least some coherence in the content in real-world settings,
the results for Pexpert = 0% can be neglected.

The most significant improvement in performance can be found in case of Pexpert = 60%,
Pexpert = 80%, and Pexpert = 40% (see Figure 5.9, and compare it to Figure 5.7). The degree
of improvement is depicted in the right-most column of Table 5.2.

Another observation that can be made from these figures is that the lower the value for
Pexpert, the longer it takes until a converged phase is reached, and consequently, the more
shallow the curve. For the case of Pexpert = 20%, not considering super-topics outperforms
considering them until time unit 2500 is reached. However, after 5000 time units, a slight
improvement of 7,2% can be found.

Note that the case of Pexpert = 100% is not addressed here, because it was already dis-
cussed in Section 5.3.2. In some respect, the experiment described in this section can be
compared to the one described in Section 5.3.2, because using the same number of resources
together with a higher number of expert peers for a given topic has basically the same effects
as spreading a percentage of the resources randomly. In both cases, the content distribution
will be more dispersed. However, in the experiment described here the effects are easier to
observe, because the degree of coherence is varied in a more fine-grained level of detail. In
addition, since the randomly spread resources are stored individually at certain peers, the
degree of dispersedness is higher in this case.

To summarize, the performance of the algorithm is highly dependent on the content dis-
tribution in the network. The lower the degree of coherence in the content, the worse the
performance. Using the super-topic trails for routing significantly improves the perfor-
mance in case of moderately coherent content distributions.

5.4 Related work

The main advantage of using taxonomies or ontologies for routing by content is that they
provide a way to extract the relationship between different resources or queries and hence
allow to define similarity measures.

It can be distinguished between approaches that require a summary of a peer’s expertise
in order to classify the peer, and more fine-grained approaches that rely on the classification
of the peer’s resources rather than on summaries.

In the first category, Crespo and Garcia-Molina [41] propose that the expertise of a certain
peer should be classified according to a taxonomy, and that peers storing similar contents
should be clustered into semantic overlay networks. Some others based their work on this
idea. Löser [86] investigates how a super-peer architecture and a distributed hash table can
be combined to create a distributed catalog of peer descriptions. Schmitz [120] deals with a
network in which each peer is characterized by one topic or instance from a certain ontology
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and shows how the peers can organize themselves into a network structure that resembles
the structure of the ontology.

In the second category, next to the work of Tempich et al. (see Section 2.3), Pirredu and
Nascimento [106] describe a peer-to-peer system in which all available content is anno-
tated according to a balanced taxonomy. In a balanced taxonomy, all leaf topics can be
found at the same level of hierarchy. The peers are responsible for two tasks. Firstly, they
broadcast information about their contents. Secondly, they manage a local index that stores
aggregated information about the contents of its n-hops-neighborhood – where n is the
height of the taxonomy – in different granularities depending on how many hops the peer
is away. This approach is similar to hop-count routing indices as proposed by Crespo and
Garcia-Molina [40]. Based on these indices, queries can be routed effectively. Similar to the
work presented in this chapter, Pirredu and Nascimento use the ACM CCS taxonomy [11]
for the design of the application scenario used in the experimental evaluation. Each re-
source is an instance of one leaf topic of the taxonomy and the allowed queries are limited
to the leaf topics.

All the approaches mentioned above, and also the SEMANT algorithm, assume that the
underlying taxonomy is known at every peer and that all the content is annotated according
to that taxonomy. Edutella [99] provides a less restrictive infrastructure in which several dif-
ferent taxonomies can be used for annotation. Tzitzikas et al. [133] present a model in which
every peer can employ its own taxonomy for resource annotation. For queries, mappings
between the taxonomies are necessary.

5.5 Summary

Since SEMANT is a content-based approach to query routing in unstructured peer-to-peer
network, its performance depends on how the content is distributed within the network.

The aim of this chapter was to investigate to which extent the performance of the algo-
rithm is influenced by the content distribution in the network, and to determine the per-
formance values under these different circumstances. The actual result values that were
acquired and described in this chapter are valid for the SEMANT algorithm only, but the
bigger picture applies to other content-based approaches as well. The results have shown
that the performance of the algorithm degrades heavily if a dispersed content distribution
is present in the network.

Therefore, the second main goal of this chapter was to develop strategies for improving
the performance in these cases. Under the assumption that all the resources in the network
are annotated according to a taxonomy that is known at every peer, an extended version
of the SEMANT algorithm was presented that integrates these information into the routing
decisions by treating the keywords as hierarchically related to each other, and by creating
pheromone trails also for higher level topics. After empirically determining the extent to

76



Chapter 5 Extensions to the SEMANT algorithm

which this information should be considered in order to actually improve the results, the
effectiveness of the algorithm when using a flat namespace for keywords was compared
to its effectiveness when using a hierarchical namespace. The results show that the perfor-
mance of SEMANT can be significantly improved by considering super-topic pheromone
trails for routing, particularly if the content distribution is moderately dispersed.
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Chapter 6

A Case Study on Emergent Semantics in
Communities

This chapter delivers a case study on the properties of metadata provided by a folksonomy
(also referred to as tagging data). After providing the background about folksonomies and
discussing to which extend the process of creating metadata in a folksonomy is related to the
idea of emergent semantics as defined by the IFIP 2.6 Working Group on Data Semantics,
experiments are conducted in order to analyze the metadata provided by the del.icio.us folk-
sonomy. The aim is to (1) evaluate if tagging data adheres to the principle of interest-based
locality, which was originally observed in peer-to-peer environments, and to (2) compare
the data provided by the del.icio.us folksonomy to data provided by the DMOZ taxonomy.

This chapter provides the connection between the two parts of the thesis. Next to serving
as an initial starting point for the more detailed investigation of folksonomies in Chapter 7,
the work presented in this chapter has also been carried out to determine if tagging data
can be used as test data for a peer-to-peer simulation environment, and therefore contains
backlinks to the work described in Part I of the thesis.
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The chapter is organized as follows. Section 6.1 provides the necessary background about
folksonomies and discusses their strengths and weaknesses. Section 6.2 compares the be-
havior of the participants in a folksonomy to that of peers in a peer-to-peer network, and
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examines the relationship between emergent semantics and folksonomies. Section 6.3 de-
scribes the experiments conducted on the provided metadata in order to analyze its prop-
erties, and reports on the results of these experiments. Section 6.4 concludes.

6.1 Folksonomies and their characteristics

The term folksonomies refers to a class of multi-user applications that provide a simple cat-
egorization system. These systems are used to organize items, e.g., bookmarks or images.
Instead of managing them within the browser application or on the local hard disk, the items
are sent to a central server and stored there, together with metadata authored by the user.
The metadata are comprised of one or more keywords — so-called tags — which describe
the item. The keywords can be chosen freely by the user. Unlike in other categorization sys-
tems, there is no controlled vocabulary that defines which terms can be used as keywords
in the categorization process. Another difference to existing categorization systems is that
all keywords lie within the same namespace. There is no intention and hence no possibility
to build hierarchical relationships between different keywords. Folksonomies uses a very
simple data model which is depicted in Figure 6.1.

Item

+URL: String

+title: String

+creator: User

+date: DateTime

+description: String

User

+name: String

Tag

+name: String

add_to_collection*

* *

Figure 6.1: Simple data model

A folksonomy provides each participant with his or her own Web page that shows the
participant’s item collection which contains all items together with the corresponding tags.
The items are sorted in chronological order, showing the latest entry first. It is possible to
filter the list of items by tag names to show only items that are annotated with a certain tag
A. It is also possible to use another tag B to filter this list and retrieve all items that were
annotated with both A and B.

Folksonomies provide convenient interfaces to their participants, e.g. the possibility to
add an item using a special link containing JavaScript code — a so-called bookmarklet —
that transfers the URL to be added to the server. While typing in keywords, the participant
is shown a list of the keywords he or she already used before. If the bookmark is already
stored in the system, a list of popular keywords for that bookmark is shown as well. Those
two lists are facilities that assist the participants in choosing appropriate keywords. After
storing the bookmark, he or she is automatically redirected to the newly added Web page.
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Folksonomies are of value to the individual for managing items, but more important
is that all participants of a folksonomy cooperate by allowing public access to their item
collection and the associated metadata. Public availability has two advantages:

• Firstly, all Web users have access to the annotated item collections.

• Secondly, since all metadata are stored at one single server, it is possible to analyze and
aggregate it without having additional communication costs in terms of bandwidth.

Aggregations are performed for both items and tags. Information about items can be ag-
gregated since the participants individually and independently create metadata about the
same items. For each item, there exists a Web page in which all tags that an item was an-
notated with are shown, together with the total number of participants that used that tag to
annotate the item (see Figure 6.2). In addition, the service lists all participants that included
the item in their collection and shows the total number of these participants. The total num-
ber shows the popularity of a certain item. Aggregation for tags is possible because the
participants use the same tags to annotate different items. For each tag, there exists a Web
page with a list of all items at least once annotated with this tag.

The result of these aggregations is a network of related concepts. At the data level,
folksonomies are undirected weighted graphs that can be seen from different perspectives.
When viewing items as the nodes of the network, two nodes are connected if they are an-
notated with the same tags. These kinds of connections are weighted. The more often the
same tags were used, the higher the weight of the edge. When viewing the participants
as the nodes of the network, the edges are built by those items that are shared between
the participants. These graphs are exploited as input for an algorithm that computes the
relatedness of tags. Each Web page containing aggregated information about a certain tag
also shows the tag names of related tags as computed by the algorithm. For example, the
algorithm used by the photo sharing service Flickr [144] computes tent, fire, hiking as related
tags for tag camping.

1 43 physics 15 mathematics 7 l i b r a r y 5 a r t i c l e 3 a i
2 41 s c i e n c e 10 a r t i c l e s 6 pr ep r in t 4 computer 3 study
3 27 research 10 j o u r n a l 6 books 4 arx iv
4 23 math 9 archive 6 programming 4 l i t e r a t u r e
5 19 papers 8 biology 5 cs 4 toread
6 18 r e f e r e n c e 7 e p r i n t 5 academic 4 computerscience

Figure 6.2: Tag distribution of a sample del.icio.us item

This approach to categorization is different to the top-down approach that is employed
in traditional categorization systems, e.g., taxonomies or ontologies. Ontologies provide
domain-specific vocabularies that describe the conceptual elements of a domain and the
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relationship between these elements, such as is-a-relationships or part-of -relationships. Cre-
ating an ontology requires careful analysis of what kind of objects and relations can exist in
that domain [32]. This analysis is performed by domain experts together with information
architects who need to reach consensus about the exact meaning of objects and relations.
After the ontology has been developed and put in place, the data items are categorized ac-
cording to the chosen categorization scheme. The same top-down approach is used in the
database world. Before the actual data comes in, a schema is built that for that data. The
schema defines which entities exists and how they are related. A third example is object-
oriented modeling, where an instance can not exist without being a member of a class. The
model defines the hierarchy of objects and their relationships.

In a folksonomy, each participant uses a certain tag with his or her personal meaning
in mind. There is no controlled vocabulary or ontology that defines the meaning of tags.
Everybody has the possibility to express his or her opinions about the categorization of a
certain object. This freedom of choice induces all problems controlled vocabularies try to
avoid:

• The participants can use either the singular or the plural form of a term. Hence, they
create two different tags with exactly the same meaning. There is no synonym control.

• Different terms that refer to the same concept are in use.

• A special problem are keywords that consist of two terms: some participants create
one tag by combining the terms with underscores or hyphens, or by creating a com-
pound word with no separating character in between, while others create two tags,
one for each term.

The bottom-up approach to categorization avoids the necessity to reach consensus about
the most appropriate categorization of a certain object. Instead, semantic reconciliation is
performed by the magnitude of participants that added metadata to the folksonomy. The
tags that are used most often to annotate a certain item express the opinion of the majority.
Thus, the utility of a folksonomy is directly proportional to its number of participants and
the amount of metadata produced by them.

There are a number of existing services like del.icio.us [143] for bookmarks, Flickr [144] for
images, Connotea [89] for references to scientific literature, and others. A review of the ex-
isting services is provided in [63]. Services for bookmarks are also called social bookmarking
services. More information about the general ideas behind folksonomies can be found in [5]
and [63]. In [36], the major differences between folksonomies and taxonomies are discussed
and some statistical information about the tag distribution of the del.icio.us social bookmark-
ing system is presented. A case study on the service the Connotea service, which provides a
folksonomy for sharing metadata about scientific literature, can be found in [89].
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6.2 Folksonomies and peer-to-peer environments

This section sheds some light on the relationship between folksonomies and peer-to-peer
environments. Section 6.2.1 discusses if it is basically possible to use folksonomies for re-
trieving simulation data for peer-to-peer networks. Section 6.2.2 briefly introduces the idea
of emergent semantics (which was brought up up within the area of peer-to-peer networks)
and discusses its relationship to folksonomies.

6.2.1 Architecture, user behavior, and availability of data

Folksonomies are centralized services that heavily rely on the aggregation of metadata.
These aggregations are possible because the metadata reside on a single server. For ex-
ample, it is easy to determine all participants who share a certain information item. On the
contrary, in a peer-to-peer environment there is no central server, and all peers store their
information items at their local hard disk. Aggregating data consumes network resources.
Knowing which peers share a certain information item is a non-trivial task for which it is
necessary to track how the items are replicated within the network [20]. However, although
the architectures of folksonomies (centralized) and peer-to-peer networks (distributed) are
completely different, the important point is that the behavior of participants in a folkson-
omy is comparable to the behavior of peers in an unstructured peer-to-peer network:

• All participants act autonomously and there is no central authority coordinating them.

• All participants provide information items to others that can be browsed and re-
trieved.

Since the metadata produced by folksonomies are publicly available and can be easily re-
trieved from one central server, they provide an opportunity for retrieving test data for
peer-to-peer applications. There is data available that can be used for modeling peers and
their content distribution. However, the data about queries and query distribution is not
provided. Moreover, the question is whether the content distribution in the tagging data
has the same properties that are usually present in peer-to-peer content distributions, such
as interest-based locality, or – more specifically – if a subset of the vast amount of tagging
data can be selected that fulfills these properties. This is the subject of Section 6.3.2.

6.2.2 Do folksonomies provide emergent semantics?

The term emergent semantics was defined by Aberer et al. in [4]. In this work, the authors
discuss semantic interoperability for loosely coupled information sources and observe that
a-priori agreements on concepts, e.g., the use of ontologies, are not appropriate in ad-hoc
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situations, because there is no possibility for the communicating peers to anticipate all inter-
pretations. This is a major argument against using a taxonomy-based application scenario
as the one described in Part I of the thesis.

Instead, the idea of emergent semantics suggests a semantic handshake protocol that allows
negotiations between pairs of peers to reach an agreement over the meaning of models, e.g.,
by local schema mapping [3]. In order to save network resources, these negotiations are
created out of local interactions whenever possible. Global agreements are obtained by ag-
gregating local agreements. This means that semantic interoperability is constructed incre-
mentally by lots of negotiations which are influenced by the context of existing global agree-
ments. When letting aside the major differences that stem from the fact that folksonomies
operate in a centralized environment, there are some ideas from emergent semantics that
can be found in folksonomies. Both approaches

1. do not force their users to commit themselves to an existing ontology,

2. rely on lots of small interactions as well as on aggregations of the results of these
interactions, and both

3. construct their global properties incrementally.

The main distinction is that, while the interactions in emergent semantics are initiated in
order to reach consensus, in a folksonomy they are merely information-exchanging acts
that to not lead to any definite agreement. The frequency distribution of the tags used for
annotating a bookmark show the popularity of every tag, and its popularity might give
some information about its accuracy. Still, there is no agreement. Tags with low popularity
and tags with high popularity coexist.

Emergent semantics was proposed as an alternative to the use of top-down approaches
to classification, such as the definition of ontologies or taxonomies. It was formulated as
an abstract idea without providing an implementation. Social bookmarking services are
an example of emergent semantics (with the restrictions discussed above). The research
question addressed in Section 6.3.3 is whether the resulting metadata from the bottom-up
classification process is similar to the resulting metadata when using a top-down approach.
The comparison is performed on the data level.

6.3 Experiments and Results

This section reports on experiments conducted on data retrieved from a social bookmarking
service. In Section 6.3.1, the experimental setup is described. The contents of Section 6.3.2
and Section 6.3.3 have been described above.
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6.3.1 Experimental setup and test data

The test data used in the following experiments was gathered by downloading selected
bookmarks from del.icio.us [143], which is one of the most successful social bookmarking
services. The data was downloaded between June 21 and June 30, 2005. The downloading
routines were implemented as Perl scripts. They have the following features:

• In order not to take up too many resources from the service, a delay of five seconds
between each subsequent request was included.

• A list of all already retrieved URLs was kept to prevent multiple downloading of the
same information.

• Error handling facilities were necessary since internal server errors of the service oc-
curred frequently.

In order to include only those bookmarks with a sufficient amount of metadata attached,
the tags and their frequency distribution for the bookmark were retrieved only if the rou-
tine encountered a bookmark that was included in the bookmark collection of more than
hundred participants. If otherwise, the bookmark was not considered. All downloaded
data was saved to text files with a simple format.

6.3.2 Data selection

The hypothesis of the experiment described in this section is that the principle of interest-
based locality [123] can be observed in folksonomies. It has originally been observed in peer-
to-peer environments, and it is defined as follows:

If a participant A has a particular piece of content another participant B is inter-
ested in, it is likely the case that the other information items stored by partici-
pant A are also of interest to participant B.

The following algorithm is used for testing this hypothesis. Firstly, a random bookmark b

is chosen as a starting point. In the second step, the names of all participants in the social
bookmarking service that store bookmark b in their collection are retrieved. In the third step,
the bookmark collections of all of these participants are downloaded. To keep the size of the
test set within reasonable boundaries, only those fifty entries of each participant’s bookmark
collection which were added latest were included. This means that for participants storing
less than fifty entries, the complete bookmark collection was considered.

The result of applying this algorithm is a test set which contains bookmark collections
of a number of users. At least one of the bookmarks – bookmark b – is contained in every
collection. If the principle of interest-based locality is present in the test set, the necessary
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Test set Nr. 1 2 3 4

Number of participants 551 155 248 280
Number of items 17575 5709 8861 10237
Number of unique items 12855 4311 6045 6643
in % of all items 73,14% 75,51% 68,22% 64,89%
Number of popular items 5691 2393 3691 4207
Number of unique popular items 2301 1217 1479 1483
in % of all unique items 17,90% 28,23% 24,47% 22,23%
Average number of items per user (Max: 50) 31,9 36,83 35,73 36,56
Average number of popular items per user 10,32 14,79 13,61 13,50

Table 6.1: Properties of the test sets

condition is that also other bookmarks must be contained in all (or at least in the majority)
of the bookmark collections.

Using the procedure described above, four test sets of different size (a big one, two
medium-sized ones, and a small one) were collected. The four random bookmarks1 were
chosen to be bookmarks that refer to Web sites containing information about diverse topics.

The basic properties of the test sets are shown in Table 6.1. First of all, it can be seen that
the total number of bookmarks of a test set is proportional to the number of participants
that store bookmark b. Since the percentage of unique bookmarks in each test set ranges
from 64,89% to 75,51%, the number of unique bookmarks in a test set is not proportional to
the total number of bookmarks.

There are only small differences in the average number of bookmarks included in a par-
ticipant’s collection (Min: 31,9, Max: 36,83). The number of participants in a test set has a
small impact on this number: In test set 1, which is by far the biggest of all sets, the average
number of bookmarks per participant is higher than in the other test sets. The decision to
consider only the first fifty entries of each bookmark collection was based on the assump-
tion that a high percentage of all del.icio.us participants stores more than fifty entries. The
retrieved data reveals that this is not the case. On average, only 1,15% of participants in
each set own a collection which is comprised of fifty bookmarks or more.

A bookmark is defined to be a popular bookmark if it is included in the bookmark collec-
tion of more than hundred del.icio.us participants. On average, a third of all bookmarks fall
in the category of popular bookmarks. As can be seen in test set 1 and test set 2, the smaller
the test set in terms of number of participants, the higher the amount of popular bookmarks
per user. This is partly due to bookmark b being popular.

1test set 1: b is http://del.icio.us/url/06df5507a27ab5aa297fbb7748374df6 ,
test set 2: b is http://del.icio.us/url/463f3f6f9ce9471fef7f9edb881ad2d7 ,
test set 3: b is http://del.icio.us/url/245d7b2a49a80771da9a4d3a02d539c3 ,
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All items shared ... by > 10 by 5 - 10 by 4 by 3 by 2 not shared

Test set 1 0,41% 1,84% 1,34% 2,76% 9,09% 84,56%
Test set 2 0,16% 1,83% 1,37% 2,85% 9,21% 84,57%
Test set 3 0,58% 2,45% 1,70% 2,96% 8,68% 83,62%
Test set 4 0,90% 2,60% 1,55% 3,10% 8,63% 83,22%
Average 0,51% 2,18% 1,49% 2,92% 8,90% 84,00%

Popular items shared ... by > 10 by 5 - 10 by 4 by 3 by 2 not shared

Test set 1 1,91% 8,43% 6,04% 9,87% 23,55% 50,20%
Test set 2 0,49% 6,08% 3,94% 9,37% 20,46% 59,65%
Test set 3 2,50% 8,32% 3,92% 8,92% 17,58% 58,76%
Test set 4 3,84% 8,36% 4,18% 8,90% 18,07% 56,64%
Average 2,19% 7,80% 4,52% 9,27% 19,92% 56,30%

Table 6.2: Distribution of bookmarks if (a) considering all bookmarks (top), or (b) considering popular bookmarks
only (bottom)

Next, the distribution of bookmarks in the test sets is analyzed for testing the hypothe-
sis. For each bookmark, the total number of participants that store it in their collection was
determined. The results are shown at the top of Table 6.2. It turns out that the bookmark
distribution has equal properties for every test set: On average, only 0,51% of the book-
marks are stored by more than ten participants. 2,18% are stored by a group of five to ten
participants. 1,49% are stored by four participants. 2,92% are stored by three participants.
8,90% are stored by two participants. These are very low values. On the contrary, the per-
centage of bookmarks that are not shared (but stored in only one participant’s collection) is
rather high. It is nearly equal in each test and it amounts to on average 84%. These figures
show that the test sets do not conform to the principle of interest-based locality.

Even when considering only the popular bookmarks, interest-based locality is still not
present. As can be seen at the bottom of Table 6.2, in this case the percentage of bookmarks
that are present in only one collection lowers to 56,3%. On average, 19,92% of all popular
bookmarks are shared by two participants, 9,27% are shared by three participants, 4,52% by
four participants, 7,8% are shared by between five and ten participants, and 2,19% by more
than ten participants.

Assuming that bookmarks that refer to Web sites with similar topics are annotated with
the same tags, and that tags are less specific than bookmarks, now the tags associated with
the popular bookmarks are considered for evaluating if interest-based locality is present in
this case. For each bookmark, the top tag that was used by most participants was selected.
The distributions of the top tags for all popular bookmarks are shown in Figure 6.3 to Fig-
ure 6.6. They reveal that the distribution curves for all four test sets have equal properties:

test set 4: b is http://del.icio.us/url/c745432a483a84037c90e08d79f7c306
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Figure 6.3: Top tag distribution (ranked plot, linear
scale) in set 1
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Figure 6.4: Top tag distribution (ranked plot, linear
scale) in set 2
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Figure 6.5: Top tag distribution (ranked plot, linear
scale) in set 3
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Figure 6.6: Top tag distribution (ranked plot, linear
scale) in set 4

There is a long tail in each curve that reveals that there are many top tags that are included
only once. The reason for that lies in the diversity of bookmark collections. Too many of
them contain items about topics that are not related to the topics of the other items in the
collection. This means that, even when considering the top tags of the popular bookmarks
only, it is not possible to retrieve test sets that conform to the principle of interest-based
locality without any further preparation of the data. The necessary preparations consist of
removing all items that cause the tail of the top tag distribution.

6.3.3 Data semantics

In this experiment, the metadata provided by the del.icio.us folksonomy is compared to the
metadata provided by the DMOZ Project [101]. The DMOZ project is a community effort to
build a taxonomy for Web pages, and to categorize Web pages according to this taxonomy.
It has been used for simulating user behavior in a peer-to-peer network [130].

For conducting this experiment, the RDF dump2 of the structure and of the contents of
the DMOZ directory was downloaded and stored in a relational database for performance

2available at http://rdf.dmoz.org
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1 URL http :// arx iv . org/
2 DMOZ Top/Science/Physics/ P u b l i c a t i o n s
3 DMOZ Top/Science/Math/ P u b l i c a t i o n s
4 DMOZ Top/Science/Math/ P u b l i c a t i o n s /Onl ine Texts/ C o l l e c t i o n s
5 DMOZ Top/Science/ P u b l i c a t i o n s /Archives/Free Access Onl ine Archives
6 ID 19 aa8f f1e9e2a06677ab34f3f2a5b0c8
7 TITLE arXiv . org e−P r i n t archive
8 TAGS physics : 4 3 ; s c i e n c e : 4 1 ; research : 2 7 ; math : 2 3 ; papers : 1 9 ; r e f e r e n c e : 1 8 ; mathematics : 1 5 ;
9 j o u r n a l : 1 0 ; a r t i c l e s : 1 0 ; archive : 9 ; biology : 8 ; e p r i n t : 7 ; l i b r a r y : 7 ; p re pr in t : 6 ; books : 6 ;

10 programming : 6 ; cs : 5 ; a r t i c l e : 5 ; academic : 5 ; computer : 4 ; a rx iv : 4 ; l i t e r a t u r e : 4 ; toread : 4 ;
11 computerscience : 4 ; a i : 3 ; study : 3 ;

Figure 6.7: A sample entry containing metadata from both sources

reasons. After that, a database lookup for each popular bookmark included in the test sets
described in Section 6.3.2 was performed to check if the bookmark is included in the DMOZ
contents. Each time the lookup routine encountered a hit, the bookmark and its metadata
from both sources were appended to a text file with a very simple format (see Figure 6.7
for an example). If a bookmark was assigned more than one DMOZ topic, all of them were
considered. Two observations were made when performing this task:

• The intersection of del.icio.us and the DMOZ directory is rather small. Although only
popular bookmarks were used, only 25% of the bookmarks were also included in the
contents of the DMOZ directory.

• Nearly 50% of those bookmarks that are present both in both sources are instances of
subtopics of the DMOZ topic Top/Computers .

For the matching between tags and topic names, some preparations of the data were neces-
sary:

• All DMOZ topic names were converted to lower-case characters.

• Underscores and hyphens were removed from both topic and tag names.

• To overcome the problem that singular and plural versions of a tag are in use, the
last character of a tag or topic name was removed in case of it being the letter s . For
example, computers was changed to computer .

• Some DMOZ topics have 26 subtopics for each letter from A to Z in order to categorize
items by the first letter of their name. Such topics consisting of only one character were
removed from the topic path.

• The topic Top was removed from each topic path.

• Since the leaf entry from the DMOZ topic path is the one that most exactly categorizes
a bookmark, the topic paths were sorted to their reverse order. For example, the topic
path shown in Figure 6.7 was converted to publications physics science .

89



Chapter 6 A Case Study on Emergent Semantics in Communities

1st 2nd 3rd 4th 5th 6th 7th to 11th

Top tag 9,44% 15,94% 12,67% 4,72% 3,28% 1,72% 0,81%
Top 3 tags 20,37% 27,55% 21,58% 14,29% 12,23% 6,21% 2,30%
Top 5 tags 28,32% 34,81% 27,72% 19,75% 16,42% 11,03% 3,69%
Top 10 tags 37,38% 44,53% 35,94% 27,08% 25,91% 18,28% 6,25%
Top 15 tags 44,30% 52,45% 43,17% 34,16% 32,12% 26,55% 8,93%
All tags 52,99% 62,55% 52,48% 46,34% 44,34% 40,34% 14,73%

Table 6.3: Comparison of categorization data from both sources, considering 1, 3, 5, 10, 15, or all tags for a given
bookmark.

• All DMOZ topics were considered except of the subtopics of topic Top/World , which
is the branch in the DMOZ hierarchy that builds the top concept for multi-lingual
categories not defined in the English language.

In total, the test data retrieved for this experiment consists of 788 bookmarks together with
all corresponding DMOZ topics and all tags and their frequency distribution from del.icio.us.
The average topic path length of all DMOZ topics prepared as described above is 4,67. The
average number of tags per bookmark is 24,59.

The following method is employed for comparing topics to tags. The topics are used
as a reference and the tags are compared to them. If more than one topic is assigned to a
bookmark, a separate comparison for each topic is performed. One comparison consists
of several lookups, one for each entry of a topic path, e.g., for publications physics

science three lookups are performed. The result of a lookup is either true in case of a
match, or false. The results of the matching are shown in Table 6.3. The cases of including
the top 1, top 3, top 5, top 10, top 15, or all tags for a given bookmark are considered. The
column headers refer to the position of the topic in the reversed DMOZ path. The values in
the cells show the percentage of successful matches.

It turns out that the leaf entries of the topic path match more often than the top entries.
This is not surprising, since the top entries are very general (e.g., Computers , Arts , or
Science ). Only a few del.icio.us participants use very general terms to describe their items.
When taking into account only the top tag, which is the one that most participants used for
annotating, the highest percentage of matches is 15,94% for the second entry of each topic
path. The more top tags are taken into account, the better the results. The fairest comparison
is that of the top five tags, since this is the average number of the topic path length. In this
case, the highest percentage of matches is 34,81% for the second entry of each topic path.

However, it can be seen from these values that the terms used for categorization are very
different in both sources. Even when comparing all tags to each topic path entry (and hence
conducting on average 24 comparisons of tags to one single topic), there is no match in
37,45% to 85,27% of the cases.
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6.4 Summary

This chapter introduced folksonomies and their basic properties. A statistical analysis of
the metadata provided by the del.icio.us social bookmarking service to gain a better under-
standing of its structure. The analysis led to the following insights:

• The principle of interest-based locality could not be found in the test sets retrieved.
This finding has implications on the applicability of tagging data as a source of test
data for simulating peer-to-peer environments. It is not possible to use the tagging
data for this purpose without further preparation, such as removing bookmarks that
are only sparsely present.

• The data from the hierarchical classification system provided by the DMOZ Open Di-
rectory Project and the tagging data provided by the del.icio.us social bookmarking
service, which are very different in structure, also have only few similarities on the
data level. This means that the classification method used has an impact on the anno-
tations created by using it.

91



Chapter 7

Creating and Visualizing User Profiles
Over Time

In traditional approaches to information filtering, the user has to explicitly create his or her
profile, and manually keep the profile up to date. Taking advantage of the popularity of
collaborative tagging systems, the recorded tagging behavior can be used to construct user
profiles. This chapter presents the Add-A-Tag algorithm for profile construction from data
from social bookmarking systems. Taking account of the structural and temporal nature of
tagging data allows to create user profiles which (1) are represented as semantic networks,
and (2) include both long-term and short-term interests of a user. The profiles can be used
to guide a user’s navigation, that is, to provide the user with personalized access to infor-
mation resources.
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7.1 Introduction

Collaborative tagging systems, also called folksonomies or social bookmarking services, al-
low their users to manage bookmarks online and to annotate them with free-text keywords
– so-called tags – for improving re-discovery of information. The most well-known social
bookmarking service, del.icio.us [143], was started in 2003. Many others have followed
since. Consequently, the amount of annotated bookmark data available is immense and a
lot of effort has already been devoted to the analysis of these data (see, e.g., [30, 59, 93]).

Most of the existing work employs a bookmark-centric view by evaluating the properties
of the tagging data related to certain bookmarks, or a tag-centric view in which the tagging
data related to certain tags is analyzed. The work presented here relies on a user-centric
perspective, meaning that the focus is on those tags which have been employed by a cer-
tain user. The user-centric perspective allows to treat tagging data as a continuous stream
of information about a user’s interests. Since many users of a folksonomy stick with the
same bookmark collection for years, these data contain a high amount of fine-grained in-
formation that can be utilized for creating user profiles. Unlike many other profile learning
mechanisms, which usually rely on relevance feedback from the user [31], no additional
user input is required. Moreover, since tagging data is time-based, it is possible to create
user profiles that dynamically adapt to drifts in users’ interests.

Profile creation. This work describes how to utilize data from a social bookmarking ser-
vice to create user profiles that can in turn be used for Information Filtering (IF). There are
several challenges inherent to dynamic user profiles that need to be addressed. Firstly, the
profile should represent the most important parts of a users’ behavior (that is, some com-
pression, clustering or summarization needs to be performed). Both persistent long-term
interests and transient short-term interests should co-exist in the profile. Secondly, the algo-
rithm for updating a profile should be performant and scalable, and it should be applicable
for bookmark collections of various sizes.

Profile visualisation and usage. After creating them, the profiles need to be presented to
the user in such a way that it serves him or her a useful purpose. One such purpose is being
able to view the structure and the contents of the profile to get an overview of a user’s in-
terests. Aggregated information about a user’s bookmark collection is usually represented
as a tag cloud, in which (1) all tags a user has employed so far are listed alphabetically and
(2) the font size of a tag is set according to how often it has been used so far. However, tag
clouds fail to represent two properties of a user’s bookmark collection:

• They do not represent the relationships between the tags, which can be derived by
using co-occurrence techniques.

• They do not consider that tagging data is time-based in their weighting of the relative
importance of a tag.
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The aim of this work is to create a visualisation method for user profiles that includes those
two properties. In addition, just as tag clouds (or user profiles) can be used as an interface
to access a user’s bookmark collection, aggregated information about tagging behavior can
also be exploited as an user interface for browsing some other source of data.

This chapter is organized as follows. Section 7.2 discusses various possibilities for cre-
ating a user profile out of a tag collection. This section provides the design rationale for
the Add-A-Tag algorithm, which is formally defined in Section 7.3. Section 7.4 presents the
experiments conducted in order to assess and evaluate the user profiles created with the
Add-A-Tag algorithm, and the results of the experiments. Section 7.5 describes a visual-
ization tool for dynamic user profiles and discusses the results of a small-scale user study
that was carried out to gain some insight about users’ acceptance of the method. Section 7.6
describes how to use the profiles for personalized access to data sources. Section 7.7 gives
an overview of related work. Section 7.8 concludes.

7.2 Profile construction

The data available for profile construction is the following. Consider a user’s bookmark col-
lection consisting of a user-defined number of bookmarks. Each bookmark in the collection
is composed of a title, a description, a URL, a date, and a set of tags. For creating the profile,
the tags and their temporal ordering by increasing date are used. This section presents three
different methods for profile construction. Section 7.2.1 illustrates the naive approach, Sec-
tion 7.2.2 the co-occurrence approach, and Section 7.2.3 the adaptive approach. Examples
are used to illustrate the approaches, the sample data for which are shown in Figure 7.1.

1 datamining rdf t o o l s web
2 algori thms design geo java l i b r a r y programming
3 danger s e c u r i t y pc t o o l s web
4 a i s s e c u r i t y research a r t i c l e
5 bbc media r s s s o c i a l syndica t ion
6 blog f l i c k r fun geo metadata s o c i a l uk web
7 a i tur ing teaching
8 a j a x e c l i p s e programming j s p spring t o o l s uml web
9 geo google gps j a v a s c r i p t t o o l s web web2 . 0

10 owl rdf semanticweb web2 . 0
11 a i teaching
12 a i teaching
13 teaching a i
14 ontology opensource research s e c u r i t y
15 design research robot a i teaching

Figure 7.1: Sample data. A user stores a collection of 15 bookmarks. These bookmarks are annotated with the
tags shown as space-separated lists. The lists are ordered according to the time the corresponding
bookmarks were added to the bookmark collection. The oldest one is shown first (line 1). Note that
this is a very small data sample, for explanatory purposes. The entire bookmark collection for this user
contains many more bookmarks.
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#Occ. Tag

5 web, ai, teaching
4 tools
3 security, research, geo
2 web2.0, rdf, social, programming, design
1 semanticweb, danger, rss, turing, metadata, jsp, fun, library, owl, article, ontology, google, eclipse,

ajax, syndication, ais, javascript, bbc, robot, media, pc, uml, flickr, blog, java, spring, datamining,
gps, opensource, uk, algorithms

Table 7.1: List of tags ranked by their number of occurrence

7.2.1 Naive approach

To construct a user profile out of these data, the task is to aggregate it in such a way that
the interests of the user are reflected according to their intensity. The more often a certain
tag is used, the higher the interest of the user in the corresponding topic. Hence, the most
simple method for creating aggregated data for a user’s bookmark collection is to count the
occurrence of tags. The result of this computation is a list of tags which is ranked accord-
ing to tag popularity. For the sample data (see Figure 7.1), the ranked tag list is shown in
Table 7.1. It reveals that most tags have been used only once, and that there are only a few
tags which were used often. The user profile can then be created by selecting the top k most
popular tags from the ranked list. When selecting the top 3 tags, for example, the resulting
user profile consists of the tags web ai teaching .

The benefit of this method is that it is very simple, and hence fast. However, it has some
drawbacks. One problem is that those tags which are most often used tend to be not very
specific (e.g., the tag web is a very general one). Moreover, the resulting profile consists of
unlinked tags. Although the tagging data includes information about the relationships be-
tween those tags, these relationships are not included in the user profile. The co-occurrence
approach presented in the next section tackles both these drawbacks.

7.2.2 Co-occurrence approach

The resulting profile is more specific if the profile creating mechanism not only considers
which tags have been used, but rather which tags have been used in combination. This
can be achieved by relying on the co-occurrence technique known from Social Network
Analysis [135]. If two tags are used in combination (co-occur) by a certain user for annotating
a certain bookmark, there is some kind of semantic relationship between them. The more
often two tags are used in combination, the more intense this relationship is.

This is represented by a graph with labeled nodes and undirected weighted edges. The
nodes correspond to the tags, and the edges correspond to the relationship between the
tags. The graph is created by parsing the tags for all items in the bookmark collection. Each
time a new tag is used, a new node for this tag is added to the graph. Each time a new
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Figure 7.2: Co-occurrence network for the sample data shown in Figure 7.1. Two nodes are linked with an edge if
the corresponding tags have been used in combination for annotating a bookmark. Edge weights are
not shown. Note that although the amount of sample data is rather small, the resulting network is quite
big.

combination of tags is used, a new edge with weight 1 between the corresponding nodes
is created in the graph. If two tags co-occur again, the weight for the corresponding edge
is increased by 1. Figure 7.2 shows the resulting graph when applying the co-occurrence
approach to the sample data.

Co-occurrence techniques have been employed for diverse purposes. First and foremost,
the folksonomy providers rely on it for computing related tags. Moreover, co-occurrence is
also used for knowledge discovery from databases [33], for extracting light-weight ontolo-
gies from tagging data [93], or for tag recommendation [25, 142]. In this case, co-occurrence
is used for one bookmark collection, only. The relationships between the tags are not the
result of a community-driven process, but entirely created by one user instead. Hence, the
relationships between the tags might not make sense to anyone except to the user who cre-
ated them. However, in the case of user profile creation this is acceptable and even desirable,
because for this task it is necessary to determine how the interests of a user are connected
to each other, no matter how unorthodox these connections might be.

In the second step, a user profile is derived from the resulting graph by selecting the top k

edges with the highest weights and their incident nodes. A ranked list of the weights of the
resulting graph’s edges for the sample data is shown in Table 7.2. Selecting the top 3 edges

Weight Tag combination

4 ai - teaching, tools - web
2 geo - web, security - research

Table 7.2: Top 4 tag combinations ranked by their number of occurrence using the co-occurence technique (Sec-
tion 7.2.2)
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and their incident nodes for the user profile returns a graph with 5 nodes and the following
edges: ai-teaching tools-web geo-web .

One drawback of the co-occurrence approach is that it does not include bookmarks that
are annotated with a single tag. In order to overcome this issue, it would be necessary to
combine it with the naive approach. The result would be a graph with weighted nodes
and weighted edges. However, a decision was made against a combination of approaches,
because the average percentage of bookmarks annotated with only one tag in the test set
used for evaluation (see Section 7.4.1) is 8%. This can serve as an indicator that the average
percentage of bookmarks annotated with only one tag on del.icio.us is small. Therefore, the
loss of these data is acceptable in favor of a simpler method.

Another drawback of this approach is that the age of bookmarks and their temporal order-
ing is not considered. This issue is addressed by the adaptive approach, which is presented
in the next section.

7.2.3 Adaptive approach

Since social bookmarking systems have been around for quite a while now, many of their
users manage a rather big bookmark collection which they continuously have been adding
items to for the time span of several months or even years. In the test set described in
Section 7.4.1, the average lifetime of the bookmark collections is 607.7 days. Hence, the
age information of the tagging data is important. It makes a difference if a user has used
a certain tag and, therefore, specified a certain interest, one day or one year ago. In the
co-occurrence approach, this information is not considered.

To include the age of the bookmarks in the user profile, the co-occurrence approach is
extended with the evaporation technique known from ant algorithms [45]. Evaporation is a
simple method to add time-based information to the weights of edges in a graph: Each time
the profile graph is updated with tags from a newly added bookmark, the weight of each
edge in the graph is decreased slightly by removing a small percentage of its current value.

Obviously, when creating the profile graph for the adaptive approach by parsing the tags
for all items in the bookmark collection, it is necessary to start parsing from the oldest item
and to process the items in the same temporal order as they were added to the bookmark
collection. The nodes and edges in the resulting graph are the same as in the co-occurrence
approach, but the weights of the edges are different. Since the user profile is created by
extracting the top k edges with the highest weights and their incident nodes are from the
profile graph, the resulting user profile will be different as well.

Applying the adaptive approach to the sample data apparently returns the same profile
graph as before (Figure 7.2). However, the weights of the links in this graph are differ-
ent. Table 7.3 lists the highest weighted edges in this graph. Selecting the top 3 edges and
their incident nodes for the user profile returns a graph with 6 nodes and the following
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Weight Tag combination

3.83 ai - teaching
3.63 tools - web
1.89 security - research
1.85 geo - web

Table 7.3: Top 4 tag combinations for the adaptive approach with parameters α = 1.0, β = 1.0, ρ = 0.01 (see
Section 7.2.3 for details).

edges: ai-teaching tools-web security-research . The combinations geo-web

and security-research occur the same number of times in the sample data. In the co-
occurrence approach, the weight was the same for both combinations and therefore it was
necessary to randomly select one of them for the profile. With the adaptive approach it is
possible to detect that the latter combination has been used at a later point in time and can
therefore be considered as currently more important to the user.

7.3 The Add-A-Tag algorithm

Now the adaptive algorithm that was described in Section 7.2.3 is formally defined. Sec-
tion 7.3.1 describes how to create the profile graph. Section 7.3.2 defines how to extract the
user profile from the profile graph.

7.3.1 Updating the graph

Consider a user u adding a bookmark item b tagged with tags t1, . . . , tn to his or her book-
mark collection. The profile graph Gu = (V,E) where V = v1, . . . , vn is the set of vertices
(which correspond to tags) and E = e1, . . . , en is the set of edges, is updated as follows.

Evaporation In the first step, the existing information in the graph is changed by applying
the evaporation formula shown in Equation 7.1 to every edge ex ∈ E

wex ← wex − ρ · wex , (7.1)

where ρ ∈ [0, 1] is a constant and wex
is the weight of edge ex.

Reinforcement In the second step, the n new tags from bookmark b: t1, . . . , tn are added to
the graph. For every combination titj where i, j ∈ 1, . . . , n and i < j, the following
procedure is executed:

1. Add a corresponding vertex vx to graph Gu for every tag tx (x ∈ i, j), if vx does
not exist.

2. Add an edge with weight α between vertex vi and vertex vj to graph Gu, if it
does not yet exist. Constant α is a real number and α > 0.
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3. Otherwise, if an edge between vertex vi and vertex vj exists, increase its weight
by β. Constant β is a real number and β > 0.

The procedure described above is executed each time the user adds an bookmark item to
the bookmark collection.

7.3.2 Extracting the user profile

Extracting the user profile from the profile graph is defined as follows.

1. Create a ordered set Es from E = e1, . . . , en. Es contains all edges ex (x ∈ 1, . . . , n)
from graph Gu ordered in decreasing order by their weights wex

.

2. Create set Ek by extracting the top k elements from set Es, where k is a natural number
and k > 0.

3. Create graph Gu′ which contains all edges from Ek and all vertices vx from graph Gu

which are incident to one of the edges in Ek.

The size of the user profile Gu′ is determined by the value chosen for parameter k.

7.4 Evaluation of profile adaptivity

Evaluating the adaptive aspects of the user profile creation mechanism is complicated be-
cause the amount of change in the user profile depends on the user’s activity pattern as
well as on the profile creation mechanism itself. In this section, an evaluation methodology
is developed and applied to the co-occurrence approach and to the adaptive approach. The
differences in the results demonstrate the effectiveness of the adaptive component in the
Add-A-Tag algorithm. Section 7.4.1 describes the test data used. Section 7.4.2 introduces a
metric for computing the distance between two versions of a user profile created at different
points in time. Section 7.4.3 shows the results of applying the metric to the profiles created.

7.4.1 Test sets

For the experiments and the user study (see Section 7.5.1), the same test set consisting of six
users’ bookmark collections is used. Since this is user-related data, privacy concerns arise.
Therefore, we refrain from retrieving a big test set from the del.icio.us service. Instead, we
rely on a small but carefully selected test set which it is sufficient for the purposes described
here. It consists of three small-sized (user 1, 2 and 3), two medium-sized (user 4 and 6) and
one large bookmark collection (user 5). The owners of the bookmark collections included
in the test set are personally known to at least one of the authors of this chapter, and they
were explicitly asked for permission to retrieve and evaluate their personal tagging data.
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Figure 7.3: Average number of items added per month for the 6 sample users. It can be seen that the tagging
activity depends on a user’s mood and workload and does not follow any predictable patterns.

In addition, using a small test set also saves network resources and prevents overloading
del.icio.us. Table 7.4 shows the basic properties of the six bookmark collections in the test
set. It can be seen that the bookmark collections vary in number of days of use, number
of items, number of tags, number of unique tags, and average number of tags per item.
No proportional relationship between any of these figures can be found. In addition, as
shown in Figure 7.3, the users’ activity patterns are unpredictable. Some users maintain a
reasonably constant level of activity, whereas others exhibit a bursty pattern depending on
mood and workload.

7.4.2 Metrics

To evaluate the Add-A-Tag method it is necessary to determine the change of a profile over
time. If the user profile of user u is computed at time t1 and then again at time t2, there
needs to be a way to measure the difference (distance) between these two user profiles.

User 1 2 3 4 5 6

# of days in use 531 887 435 386 681 726
# of items 368 897 448 1112 2823 1362
# of tags 937 1331 2234 4703 16334 6343
# of unique tags 189 217 488 817 3451 1648
avg. # of tags per item 2.3 3.8 4.3 4.3 5.8 4.3
% of single tags 20% 13% 8% 1% 1% 2%

Table 7.4: Properties of the test set
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Since measuring the distance between two graphs is a difficult and only partly solved is-
sue [24], the problem can be simplified by mapping the graphs onto a simpler structure
which only contains the information that is needed for the comparison. This structure is a
set of edges ordered in decreasing weight order, because several methods for comparing or-
dered sets exist. A simple method for comparison would be to count the common members
in both sets. However, counting common members does not consider the ranking of the set
members. Therefore, the metric relies on the Kendall τ coefficient [1, 52] instead, which is a
standard measure for comparing ordered sets that includes rank correlation.

The metric dist(S1, S2) for the distance between two sets S1 and S2 based on the Kendall τ

coefficient is defined as shown in Equations 7.2a to 7.2c. It obeys the rules for metrics (pos-
itiveness, reflexivity, symmetry, and triangle inequality; see [72]). The resulting values for
dist(S1, S2) are in the range between 0 and 1. The result is 0 if S1 and S2 are the same (that
is, equally ranked). The result is 1 if S1 and S2 are in reverse order.

dist(S1, S2) = 1− 2 ∗ τ(S1, S2)
n ∗ (n− 1)

, where (7.2a)

τ(S1, S2) =
∑

i,j∈P

τ̄i,j(S1, S2) , and (7.2b)

τ̄i,j(S1, S2) =

 0
if i and j are in same
order in S1 and S2

1 otherwise
(7.2c)

In Equation 7.2a, variable n is the size of the sets. In Equation 7.2b, P is the set of pairs of
distinct elements in S1 and S2. The Kendall τ is applicable only for sets which have the
same members and – consequently – are of same size. For this setting, this means that those
set members that are present in only one of the sets need to be added to the other one. The
missing set members are appended to the end of the set in order not to affect the ranking of
the pairs.

7.4.3 Results

Now the user profiles for the six user’s bookmark collections described in Section 7.4.1 are
computed. The profile graph is created incrementally by adding the bookmark items in
their temporal order, and – each time after adding all bookmarks that were created by the
user within the time span of one week – by extracting the user profile from the profile graph.
Using this procedure, a set of user profiles

Gu′ = {Gtx

u′ |x = {1, . . . , n}}

for each user u and each week tx is retrieved. In the next step, the metric dist is applied
to these data in order to assess the amount of change between the weekly snapshots of the
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Figure 7.4: Co-occurrence approach (ρ = 0, k = 20)

Figure 7.5: Add-A-Tag (α = 1.0, β = 1.0, ρ = 0.01, k = 20)

profiles. For each user u, every user profile G
tx+1
up for week tx+1 is compared to the user

profile Gtx
up for the previous week tx. Figure 7.4 shows the results of this computation for

the co-occurrence approach, with parameter k set to 20. Figure 7.5 shows the results for the
Add-A-Tag approach, with parameter k set to 20, α = 1.0, β = 1.0, and ρ = 0.01. In both
figures, the data points show the metric values, and trend lines of type moving average with
period 6 show the performance of the metric values over time for the different users.

In Figure 7.4, it can be seen that the degree of change in the user profiles decreases over
time for the co-occurrence approach. Although the users are specifying new tag combina-
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Figure 7.6: Direct comparison of approaches for user 5.

tions when adding bookmarks to their collections, the most often used tag combinations are
dominant and tend to prevent newly arising tag combinations from being included in the
profile. When comparing these results to those of the Add-A-Tag approach (Figure 7.5), one
can see that (1) the degree of change in the user profile is higher in the Add-A-Tag approach,
and that (2) when comparing the Add-A-Tag results for the 20-weeks time spans, the overall
amount of change in the profiles over time is remarkably similar for every time span. This
provides evidence that the Add-A-Tag approach meets its goal of adapting the profile to the
interests of the user over time.

Figure 7.6 shows a direct comparison of the co-occurrence and the Add-A-Tag method for
one user (user 5) together with the weekly activity of this user expressed as the logarithm of
the average number of items added to the bookmark collection (cf. Figure 7.3). Again, trend
lines of type moving average with period 6 are included. The dashed lines show the user’s
activity. It can be seen that both approaches exhibit a change pattern that is proportional to
the user’s activity pattern, but the Add-A-Tag approach’s curve (1) shows a considerably
higher amount of change and (2) fits better with the activity pattern. This is particularly the
case for the results in the time span between week 80 and week 100, where the user’s activity
level is high and the Add-A-Tag approach appropriately reflects the activity pattern, but the
co-occurrence approach puts too much emphasis on the most often used tag combinations
and fails to adapt to the newly-used ones.

However, one drawback of the Add-A-Tag approach that became evident during the ex-
periments is that the value for parameter ρ needs to be chosen very carefully. The higher
the value for parameter ρ, the more emphasis is put on those items that were added to the
bookmark collection recently. Choosing a value below 0.01 emphasizes often-used tag com-
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binations, whereas values higher than 0.05 place the emphasis on newer tag combinations.
Choosing a value in the range between 0.01 and 0.05 for ρ gives reasonable results with a
balanced proportion between newly-used tag combinations and often-used tag combina-
tions.

7.5 Profile visualization

This section presents a tool for visualizing the user profiles. It was developed for the user
study (see Section 7.5.1) and allows a user to observe the changes in his or her user profile
over time. The tool is implemented as a Java applet, and the graph visualization is based on
the JUNG framework [77]. A screen shot of the visualization tool is shown in Figure 7.7.

The screen is divided into a main part and a control panel at the bottom of the screen.
The control panel contains (1) radio buttons which allow the user to select one of the pro-
file creation methods and (2) a button to start the visualization. The names of the pro-
file creation methods were not mentioned in order not to influence the results of the user
study. Method A refers to the naive approach, Method B to the Add-A-Tag approach, and
Method C to the co-occurrence approach. After starting a visualization, the user profile is
presented as an animation over time. The bottom panel shows a date, and the main part of
the screen shows the state of the user profile at this date. A button allows the user to pause
and resume the animation.

Figure 7.7: Visualization of a user profile
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Visualizing the profile created with the naive approach is straightforward. To provide
for intuitive observation of the dynamic changes, all nodes are moving using a “bubbling
up” metaphor, which means that they enter the screen from the bottom and continuously
move towards the top. If a tag is included in the user profile at one point of time, but
not included in the next state, it vanishes from the screen. For the naive approach, this
visualization method is sufficient. However, for the co-occurrence approach and for the
Add-A-Tag approach, it is also necessary to visualize the edges between the nodes. The
lengths of the edges between the nodes need to correspond to the edge’s weights. The
higher the weight, the shorter the length of the edge must be.

Basically, there are two approaches possible for visualizing these dynamic graphs. In the
first approach, all nodes and edges that will be included in the profile at a certain point
in time need to be known in advance. In the next step, a graph layout algorithm can be
applied for calculating the positions of all the nodes and edges. During the animation,
those nodes that are currently included in the profile are set to visible while all the others
are set to invisible. The benefit of this approach is that the nodes do not move. However,
the drawback is that the layout algorithm creates a visually pleasing layout for the complete
graph, but the layouts of the different graph states shown over time are not optimized and
tend to look quite ugly.

Therefore, it is necessary to adopt another approach by using an iteration-based graph
visualization algorithm that incrementally optimizes the layout of the different graph states.
To achieve this, the “bubbling up” metaphor is combined with the iteration-based spring
embedder layout algorithm by Fruchterman and Reingold [53], in which the nodes repel or
attract each other depending on the edges between them and on the weight of these edges.
In addition, a minimum and a maximum length for the edges needs to be defined in order
to prevent node labels being printed on top of each other and in order to avoid nodes being
too far away from each other.

If a tag A that newly appears at the bottom of the screen has a connection to a tag B

that is already shown on the screen, the spring embedder algorithm will cause tag B to
move down on the screen and tag A to move up at the same time. Tag A and tag B will
move towards each other until the edge between them has a length according to its weight.
As a consequence, those components of the graph which evolve over time are vertically
aligned in the center of the screen (e.g., the two components related to research and travel
in Figure 7.7), because newly added tags make the older, related tags move down again.
They refer to long- and mid-term interests of a user that are currently active.

On the contrary, those components that do not evolve but are included in the profile for
the timespan of several weeks move to the top of the screen (e.g., ants-conferences in
Figure 7.7). They refer to long-term interests of a user that are currently not active. The
third category are those tags that move in from the bottom and vanish shortly after (e.g.,
uk-cornwall in Figure 7.7). They refer to short-term interests of a user.
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7.5.1 User study

This section presents the results of a small user study conducted in order to get feedback
about user’s acceptance of the three different profile creation methods.

The same six users whose bookmark collections were used for the evaluation of profile
adaptivity (see Section 7.4) were provided with the visualization tool described in the last
section. They were asked to fill out a questionnaire in which they had to rate the different
methods. The following scale was used for the rating: Very good, Good, Fair, Poor, Very Poor.
In addition, the users were asked to rank the methods from 1 to 3 according to how much
they liked them, and to justify both the choices for rating and ranking using free-form text.
There was also some space for additional comments included. The application and the
questionnaire were sent by email to the user, who also replied using email.

As an overall feedback, a Wow!-effect similar to the one described by Golder et al. [134]
in their study of visualizing users’ email archives could be observed. The users were gener-
ally pleased with the possibility of viewing aggregated information about their bookmark
collection. Both being able to view the (1) relationships between the tags and the (2) trends
over time were recognized and appreciated. In their feedback, many of the users mentioned
that some tag combinations showed up in the profile at some point of time which they were
able to track back to a specific event they could still remember. To cite one of the users: “I
kept having the feeling that by looking at the graph some sort of hidden meaning was coming out.
The visualization style is definitely inspiring, for revealing non-obvious relations!”

Although the participants in the user study were not provided with any information
about the inner workings of the different methods, a majority of the users (4 of 6) were
able to correctly identify and describe which kind of aggregation was performed for the
different approaches, e.g, as one user expressed it: “I guess Method 3 represents the average
most used tags, while Method 2 the average most recently used tags.”

However, the users’ preferences for the different methods turned out to be quite diverse.
Two users ranked the co-occurrence approach first, two of them preferred the Add-A-Tag
approach, and one of them ranked both of them equally. One of the users favored the naive
approach. This may have been down to the visualization algorithm rather than the profile
creation method: “there was too much movement and too many changes on the screen, and the edges
between them were detracting from the tags”. The average rating for the naive approach was
Poor. The average rating for both co-occurrence approach and the Add-A-Tag approach was
Good. Several users mentioned that they perceived the difference between the co-occurrence
approach and the Add-A-Tag approach as being rather small.

This leads to the conclusion that the preferred method of user profile creation is a very
individual choice. For this reason, instead of creating a tool with a hard coded method,
a preferable solution may be to allow the user to choose and configure his or her profile
creation algorithm and visualization method. The popularity of the co-occurrence method
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shows that users value the long term tag relationships in their profile; however they also ap-
preciated that Add-A-Tag adapts better to recent changes. Allowing users to select the bal-
ance of long term and short term interests would provide control without over-burdening
the user.

7.6 Profiles for personalized information access

In the following, the usage of the created profile for assisting users in navigating infor-
mation resources is discussed. This section presents two example scenarios in which the
created profile can be of benefit. Section 7.6.1 discusses the scenario of browsing the Web,
Section 7.6.2 that of an annotated data source. Obviously, the profile can also be used for
accessing a user’s bookmark collection in the same manner as tag clouds are used for that
task. Since visualising the relationships between the tags and the time-based aspects at the
same time would cognitively overload users, in this section the focus is on visualising the
relationships between the tags in the profile only.

7.6.1 Browsing the Web

If the person knows what he or she is looking for, e.g., when performing a search, knowing
the user’s additional interests other from the current one is of minor importance. On the
contrary, knowing the user’s interests is important if the person does not know what he or
she is looking for, e.g, when browsing the Web for no specific purpose. In this case, the
profile can be shown in the browser’s sidebar or as a part of the Web page (similar to a
navigation menu). When a tag occurs in the Web page the user is currently looking at, the
tag can be highlighted in the profile, and clicking on it results in automatic scrolling to the
position on the page on which the tag occurs. Another possibility is to highlight the terms
in the Web page that are matched by tags in the profile (e.g., in the same manner as search
strings are highlighted when viewing the Google cache of a search result). To improve the
recall, string matching in combination with stemming can be used.

7.6.2 Browsing an annotated data source

The situation is more complex if a user wants to access a data source that is annotated
with metadata. In this case, a matching needs to be performed. In general, matches are
possible between (1) the profile and the content of the data source (as already discussed in
the previous section), or between (2) the profile and the metadata of the data source as a
description of the corresponding content. In the following the latter case is discussed, using
the HP Technical Reports1 as an example for such a data source. They comprise a document

1see http://www.hpl.hp.com/techreports/
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collection annotated with metadata, such as title, author(s), date of publication, number of
pages, abstract, and keywords. Only metadata that describe the contents of a resource can
be used for the matching. Structural metadata (such as number of pages) is not helpful for
matching, but can be exploited for additional navigational options in the interface.

In this scenario there are three possibilities for the matching between profile and data
source. It can be matched (1) between tags and keywords, (2) between tags and abstracts,
or/and (3) between tags and full text. If the tags in the profile are from very different do-
mains than the domain of the data source, the matching may not be successful. However, at
least a partial overlap between the user’s overall interest and his or her current interests can
be safely assumed. For the matching itself, string matching in combination with stemming
is used. Since tags are most commonly in lower-case letters, whereas keywords are usually
in capitalized letters, the matching needs must be performed in a case-insensitive way. The
matching could be enhanced by backing the comparison algorithm with a thesaurus such
as WordNet to link tags with synonym keywords. Another possibility would be to use clus-
tering to find implicit relationships between tags or technical report keywords in order to
allow a tag to be matched to a larger number of possible keywords.

A conceptual overview of the user interface layout is shown in Figure 7.8. The top left
shows a representation of the profile. The user can select a tag from the profile to show only
those resources in the main screen on the right that match with the selected tag. The bottom
left shows additional navigation options (which are explained later).

The question of how to represent the profile needs to be addressed from two viewpoints.
One of them is the profile-centric viewpoint which focuses on visualising the structure of the
profile. For visualising the relationships between the tags in the profile, a spring embedder
layout algorithm is used to position related tags next to each other. For showing the relative
importance of a tag, the font sizes are set according to the relative importance of a tag, as
in a tag cloud. However, since the profile will possibly contain tags for which no corre-
sponding data can be found, it is also necessary to take a data-centric viewpoint by adapting
the profile to the data that is available. Those tags for which no content exists are removed
from the profile. For those tags for which corresponding resources exist, an optional pos-
sibility would be to print the number of resources that exist next to the tag name, as in
faceted browsing. However, a decision was made against this option because combining
font sizes (for relative importance of tags) and numbers (for number of resources) might be
misleading to users.

The data source will contain content for which no corresponding tags are included in the
profile. Therefore, using only the profile for navigation would make it impossible for the
user to access that content. This can be avoided by offering additional navigation options
to the user, such as a simple query interface. Moreover, providing additional context en-
ables improved browsing of the data source. This is achieved using 2 navigation panels,
shown in the bottom left of Figure 7.8. The first shows a list of keywords, each of which
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Figure 7.8: Interface layout. The top left shows the profile. The main screen (right) shows the resources that match
with the tag from the profile selected by the user. The bottom left shows additional navigation options.

co-occurs with the selected keyword. Co-occurrence in this case means that the keywords
in question are both attached to a single technical report. These related keywords are likely
to cover between them many technical reports, including those which do not have any key-
word matching a user’s tags. The second navigation panel is similar, but this time shows
all authors that have used the selected keyword to markup one or more of their technical
reports. Again, the union of all technical reports authored by one of these people is likely
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to include those that would not be covered by the profile alone. The layout of both these
panels is similar. The font size represents the relative importance within the dataset (that
is, the number of technical reports tagged with this person or keyword). Unlike the profile
pane, co-occurrence patterns are not used to influence the relative positions.

We have also investigated the possibility of representing the user profile as a hierarchy.
Such a structure would have advantages of simplicity and familiarity. Multiple inheritance
issues (that is, a tag having 2 parents) do not preclude such a representation (a tag would
just appear in 2 places in the hierarchy). We adopted an approach loosely similar to the one
of Heymann and Garcia-Molina’s [69], who use centrality measures to derive a taxonomy
from tagging data based on the entirety of a folksonomy’s tagging data. It consists of two
steps which are executed for every subgraph. Firstly, the node with the highest betweenness
centrality is determined as the root node of the tree. Secondly, Prim’s algorithm [107] is
used for computing the maximum spanning tree based on the weights. However, we have
found that this approach is not well suited for profile representation of the type we are
interested in. One problem is that the resulting tree can be quite unbalanced, which gives
an unsatisfying browsing experience. In addition, nodes that frequently co-occur belong
conceptually together and should exist at the same hierarchy level, e.g., the tags ”semantic”
and ”web”. The spanning tree approach forces these tags to exist at different levels, which is
confusing for the user. For these reasons, we decided to go for the spring embedder layout
style as described above.

7.7 Related work

There are several areas in which related work can be found. One of them is the analysis of
tagging data. In this context, the work which is most directly related is ExpertRank [74] for
measuring the expertise of a user in the context of a certain tag. ExpertRank can be viewed
as an approach opposite to the Add-A-Tag approach. Instead of determining all areas of
expertise for a given user, ExpertRank finds users that are knowledgeable in a certain area.
Time-based aspects are not considered. Both [59] and [30] analyze tagging data by evaluat-
ing the data associated with a certain bookmark to show that the tag frequency distribution
of the tags a certain bookmark is annotated with is stable over time, and that it can be
modeled with stochastic processes. Mika [93] shows how to extract light-weight ontologies
from tagging data, which is related to work on folksonomies and emergent semantics [4, 3].
Schmitz et al. [121] analyze the weight distributions of the co-occurrence networks and their
connectivity for two different social bookmarking systems.

Creating (adaptive) user profiles is addressed in the area of (adaptive) information filter-
ing. Allan [9] discusses incrementally applying relevance feedback to user profiles and how
to cope with shifts in the user’s interests, an issue he calls “query drift”. Moreover, several
nature-inspired approaches can be found in this research field. Nootropia [98] is a system
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for adaptive information filtering based on an immune system inspired approach. Another
approach is that of Tebri et al. [129], who use reinforcement learning for profile creation.

Several papers address visualization issues. TagLines [49] is a visualization of the most
popular tags over time in Flickr [144]. It takes the entirety of Flickr tags into account. Since
this is a huge amount of data, TagLines incorporates an efficient algorithm for computing
the top k tags for time intervals of different sizes. Themail [134] is a system for visualizing a
user’s email archive. The focus is on visualizing the communication with one particular per-
son over time. Two different timescales (yearly and monthly) are used. GUESS [8] supports
visualization of dynamic graphs with the so-called tweening algorithm. Similar to the vi-
sualization tool presented earlier in this chapter, it creates an animation of the changes over
time. This animation can be saved to QuickTime format. Hassan-Montero [66] suggests an
improvement on tag cloud visualization by applying clustering algorithms to group related
tags next to each other. Tag clustering is also addressed in [18].

Several applications for visualising a user’s tag collection can be found on the Web. Ex-
tisp.icio.us [43], also described as ”del.icio.us scattering” by its author, is a simple HTML-
based visualisation that uses the size of a browser window. Just as for a tag cloud, the size
of the tags depends on their popularity. The output looks similar to the one presented in
Section 7.6.2, but unlike as in the Add-A-Tag approach, the tags are positioned randomly on
the screen and the relationships between the tags are not taken into account. Since the tags
are not filtered according to their popularity, the output is quite scattered. Some tags are
printed in very small font size, and some on top of each other. Revealicious [105] provides
three different ways for visualising a user’s tag collection. One of them, called SpaceNav, is
a method for graph exploration. Selecting a tag shows all its neighbors in a circle layout.
Selecting a neighbor again brings up its neighborhood. The history of clicked tags is shown
as a path. For selected tags, it is also shown how often it has been used and to how many
other tags it is related. TagsCloud is an extended tag cloud in which hovering over a tag
brings up related tags in color. Grouper does the same, but additionally groups all tag into
the categories ”most used”, ”commonly used”, and ”less used”. Delicious Soup [149] shows
all tags as dots in a two-dimensional grid. The size of a dot roughly corresponds to the num-
ber of times the tag has been used. Hovering over a dots shows textual information about
how often and since when the tag has been used, together with the number of related tags.
In addition, the related dots are highlighted. Delicious Soup could perhaps be improved by
positioning related dots next to each other in the grid, and by including the tag for a related
dot when highlighting it.

7.8 Summary

This chapter presented the Add-A-Tag algorithm for learning adaptive user profiles from
bookmark collections, which is based on a combination of (1) the co-occurrence technique
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for determining the relationships between tags and (2) an evaporation feature as known
from ant algorithms for adapting the user profile to trends over time. The Add-A-Tag ap-
proach was evaluated in two ways. Firstly, by defining a metric appropriate for quantifying
the amount of change over time, and by comparing the results of several methods for creat-
ing user profiles from bookmark collections. This has shown that the user profiles created
with Add-A-Tag are adaptive in the sense that they change according to changes in tag us-
age in a continuous stream of tagging data. Secondly, a user study was conducted. For this
purpose, a visualization method for dynamic graphs was designed and a prototype was im-
plemented. Simply being able to view aggregated information about past tagging behavior
was considered useful by the participants of the user study.
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Conclusion and future work

This thesis has dealt with the applicability of ant algorithms for two specific purposes:
content-based search in unstructured peer-to-peer networks, and the extraction of adaptive
user profiles from social bookmarking systems.

The SEMANT algorithm, which we have designed for search in unstructured peer-to-peer
networks, consists of carefully selected constituents of the ant algorithms Ant Colony Sys-
tem, AntNet, and AntHocNet, which were combined and adapted to fit for the application
purpose. We have shown through experimental evaluation that the SEMANT algorithm
converges fast, delivers stable results, and outperforms the k-random walker reference al-
gorithm in terms of resource usage as well as in terms of hit rate. For bootstrapping, prob-
abilistic link selection provides for precise control of how much traffic is created in the net-
work. However, the necessity to employ a different type of pheromone for every keyword
that can occur in a query entails the management of rather large routing tables at each peer.

Moreover, as for every content-based approach to search, the algorithm’s performance de-
pends on how the content is distributed in the network. In this thesis we have investigated
to which extent the performance is influenced by the content distribution, and whether it
is possible to improve it by defining semantic relationships between the allowed keywords
of a query. Under the assumption that all the resources in the network are annotated ac-
cording to a taxonomy, we have presented an extended version of the SEMANT algorithm
that integrates these information into the routing decisions. Our results have shown the
dependency between content distribution and performance, and that the performance can
be improved significantly by considering super-topic pheromone trails for routing. This is
particularly the case if the content distribution is moderately dispersed.

Ant algorithms include an evaporation feature for integrating a time factor when incre-
mentally creating solutions. Next to being useful for supporting the removal of outdated
information from routing tables (see below), in this thesis we have identified another use
case in which this feature is of great benefit: the learning of user profiles from tagging data.
For this purpose we have designed the Add-A-Tag algorithm, which is based on a combi-
nation of an evaporation feature for adapting the user profile to trends over time and the
co-occurrence technique for determining the relationships between tags. The resulting user
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profiles are semantic networks derived from the structure of the tagging data, and they are
adaptive in the sense that they change according to changes in tag usage in a continuous
stream of tagging data.

Directions for future research

The contributions of this thesis may be further developed in several ways. Promising direc-
tions for future work are discussed in the following, separately for each part of the thesis.

Search in unstructured peer-to-peer networks. The experimental evaluations of the
SEMANT algorithm were based on the assumption that the network topology, the query dis-
tribution, and the content distribution in the network are static. In this case, the information
stored in the routing tables does not become outdated. However, real-world peer-to-peer
systems are dynamic. The SEMANT algorithm is readily applicable for dynamic settings,
because ant algorithms include an evaporation feature for removing outdated information.
Therefore, one promising area of future work is to evaluate the performance of the SEM-
ANT algorithm for dynamic scenarios, and to include further optimizations for dynamic
settings based on the results of the evaluation. Real-world network traces that include data
about the peers’ behavior, such as churn rate and session time, and appropriate hardware
resources are necessary to accomplish this task.

Extraction of adaptive user profiles from tagging data. For the Add-A-Tag algorithm,
next to improving the quality of the user profiles, another area of future work is to investi-
gate additional scenarios for profile usage. For the former, receiving feedback from a large
user population would be beneficial. In case of the latter, up to now we have shown how
to visualize the profiles’ changes over time to the user, and we have investigated how the
user profiles can provide personalized access to annotated textual information sources. This
approach can be generalized to provide personalized access to tagged audiovisual sources,
such photos in Flickr, videos in YouTube, or music files in Last.fm. Since the traditional search
techniques from information retrieval can not be applied to non-textual content, providing
alternative approaches to search based on tag matching and the relationship between tags is
necessary. Other possibilities to make use of the network-like structure of the profile would
be tag recommendation, or ranking of search results. No matter in which context a user
employs a certain tag, as soon as it matches with a tag in the profile, those tags that have a
relationship with the tag used can be employed for supporting the user’s current task.

We strongly believe that emergent and self-organizing phenomena observed from nature
are of great benefit for the field of computer science. Most of these natural phenomena are
not completely understood by now. Recently, biologists found empirical evidence that ants
do not only rely on pheromone for indicating the shortest way to a food source, but also
use a special kind of stop-pheromone [113] to mark unrewarding paths. Augmenting ant
algorithms with this feature would expand them with a negative feedback function.
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1997.

[27] Gianni Di Caro and Marco Dorigo. AntNet: Distributed Stigmergy Control for Com-
munications Networks. Journal of Artificial Intelligence Research (JAIR), 9:317–365, July
1998.

[28] Gianni Di Caro, Frederick Ducatelle, and Luca Maria Gambardella. AntHocNet: An
Ant-based Hybrid Routing Algorithm for Mobile and Ad Hoc Networks. In Proceed-
ings of Parallel Problem Solving from Nature, volume 3242 of Lecture Notes in Computer
Science. Springer, September 2004.

[29] Miguel Castro, Manuel Costa, and Antony Rowston. Debunking some Myths about
Structured and Unstructured Overlays. In Proceedings of the 2nd Symposium on Net-
worked Systems Design and Implementation (NSDI’05), May 2005.

[30] Ciro Cattuto. Semiotic Dynamics in Online Social Communities. Eur. Phys. J. C, 46
(s02):33–37, 2006.

[31] Ugur Cetintemel, Michael J. Franklin, and C. Lee Giles. Self-adaptive user profiles for
large-scale data delivery. In Proceedings of the 16th International Conference on Data En-
gineering (ICDE 2000), page 622, Washington, DC, USA, February/March 2000. IEEE
Computer Society. ISBN 0-7695-0506-6.

[32] B. Chandrasekaran, John R. Josephson, and Richard Benjamins. What are Ontologies,
and Why Do We Need Them? IEEE Intelligent Systems and Their Applications, 14(1):
20–26, 1999.

117



Bibliography

[33] Hsinchun Chen and Kevin J. Lynch. Automatic Construction of Networks of Con-
cepts Characterizing Document Databases. IEEE Transactions On Systems, Man, and
Cybernetics, 22(5):885–902, September/October 1992.

[34] Vicent Cholvi, Pascal Felber, and Ernst Biersack. Efficient Search in Unstructured
Peer-to-Peer Networks. European Transactions on Telecommunications, 15:535–548, 2004.

[35] Vicent Cholvi, Pascal Felber, and Ernst Biersack. Efficient Search in Unstructured
Peer-to-Peer Networks. In Proceedings of SPAA’04, June 2004.

[36] Clay Shirky. Ontology is Overrated: Categories, Links, and Tags. http://shirky.

com/writings/ontology overrated.html , 2005.

[37] Edith Cohen, Amos Fiat, and Haim Kaplan. A Case for Associative Peer to Peer
Overlays. ACM SIGCOMM Computer Communication Review, 33(1):95–100, January
2003.

[38] Alberto Colorni, Marco Dorigo, and Vittorio Maniezzo. Distributed Optimization by
Ant Colonies. In Proceedings of the 1st European Conference on Artificial Life, pages 134–
142. Elsevier, December 1992.

[39] Brian F. Cooper. Guiding Queries to Information Sources with InfoBeacons. In Mid-
dleware 2004, ACM/IFIP/USENIX International Middleware Conference, volume 3231 of
Lecture Notes in Computer Science, pages 59–78. Springer, October 2004. ISBN 3-540-
23428-4.

[40] Arturo Crespo and Hector Garcia-Molina. Routing indices for peer-to-peer systems.
In Proceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS 02). IEEE, July 2002.

[41] Arturo Crespo and Hector Garcia-Molina. Semantic Overlay Networks for P2P Sys-
tems. Technical report, Computer Science Department, Stanford University, October
2002.

[42] Stephen Daniel, James Ellis, and Tom Truscott. USENET - A General Access UNIX
Network. Technical report, Duke University, 1980.

[43] Kevan Davis. extisp.icio.us. http://kevan.org/extispicious/ .

[44] Hadhami Dhraief, Alfons Kemper, Wolfgang Nejdl, and Christian Wiesner. Databases,
Information Systems, and Peer-to-Peer Computing, volume 3367 of Lecture Notes in Com-
puter Science, chapter Processing and Optimization of Complex Queries in Schema-
Based P2P-Networks, pages 31–45. Springer, February 2005.

118



Bibliography

[45] Marco Dorigo and Gianni Di Caro. New Ideas in Optimization, chapter The Ant Colony
Optimization Meta-Heuristic, pages 11–32. McGraw-Hill, 1999.

[46] Marco Dorigo, Gianni Di Caro, and Luca Maria Gambardella. Ant Algorithms for
Discrete Optimization. Artificial Life, 5(2):137–172, 1999.

[47] Marco Dorigo and Luca Maria Gambardella. Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolu-
tionary Computation, 1:53–66, 1997.
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Java programming, JUnit testing
• Implemented a tool for import and export of Bugzilla bugs for the Jazz platform (an

extension of Eclipse for improved team collaboration). The tool includes a wizard for
manual import and a headless UI for batch import. It is used as a test client for the
platform’s underlying framework.
• Advisors: Christof Marti, Erich Gamma

Software Engineer June 2001 - June 2003
ftw. Telecommunications Research Center Vienna (Vienna, AT)
Java programming (June 2001 - January 2003)
• Designed and implemented a HTTP/HTML-based content delivery system for a pro-

totype of a location-based mobile tourist guide for UMTS networks. My part in this
project was to integrate data from various sources (text, images, video, sound, location
data) and to present it according to the client’s device features and requirements, such
as screen size.

Python programming (January 2003 - June 2003)
• Designed and implemented a Zope-based content management system

Trainer for Adult Education (Part time) May 2000 - May 2003
WIFI (Vienna, AT), telm@ (Groß Siegharts, AT)
Designed and taught introductory and advanced courses on
• Linux (installation, administration)
• Design and implementation of relational databases (with MySQL)
• Introduction to programming (with Perl)



Books (in German)

1. Horst Eidenberger, Elke Michlmayr, “Programmieren lernen und Probleme lösen mit
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