
MASTERARBEIT

An algorithm for the calculation of
exact con�dence intervals for adaptive

group sequential trials

Ausgeführt am Institut für
Medizinische Statistik

der Medizinischen Universität Wien

unter der Anleitung von

Ao. Univ.-Prof. Mag. Dr. Werner Brannath

eingereicht an der Technischen Universität Wien

Fakultät für Informatik

von

Niklas Hack
9901424

Breitenfurterstrasse 380A/39
1230 Wien

Wien, 13.12.2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Contents

1 Introduction 1

2 Review of adaptive and sequential designs 4

2.1 History of sequential designs 4

2.2 Group sequential designs . 6

2.3 Spending function approach 8

2.4 Müller and Schäfer method . 9

2.4.1 Numerical example . 10

3 Overall p-values 14

3.1 Repeated p-values . 14

3.1.1 No adaptive change . 14

3.1.2 Incorporating adaptive changes 15

3.2 P -values based on the stage wise ordering 16

3.2.1 No adaptive change . 16

3.2.2 Incorporating adaptive changes 17

4 Construction of one sided repeated con�dence intervals 18

4.1 Con�dence intervals . 18

4.2 Classical repeated con�dence bounds 18

4.3 Adaptive repeated con�dence bounds 19

4.4 Conservative point estimates 20

4.4.1 No adaptive change . 20

i

4.4.2 Incorporating adaptive changes 21

5 Stage-wise con�dence intervals 22

5.1 Classic stage-wise con�dence bound 22

5.2 Construction principle for the stage-wise con�dence bound . . 23

5.3 Median unbiased point estimates 26

6 The algorithm 27

6.1 General method . 27

6.2 More e�cient algorithm . 29

7 Integration of the C-source code into R 32

7.1 Data preparation and call of the function 34

8 Simulation study 36

A Appendix 39

ii

1 Introduction

During the last years much research was spent on making mid-course correc-
tions to the sample size of a clinical trial while the overall type I error rate
of the test was preserved. Adaptive or �exible designs for clinical trials are
attractive to clinical scientists and researchers since they provide a method to
add �exibility to the frequentist paradigm. An important feature of adaptive
designs is that the precise adaptation rule needs not to be pre-planed.

The �rst methods that allow for full �exibility were suggested by Bauer
(1989), Bauer and Köhne (1994), Proschan and Hunsberger (1995). The
methods were further developed by Cui, Hung and Wang (1999), Lehmacher
and Wassmer (1999), Shen and Fisher (1999), Denne (2001), Müller and
Schäfer (2001, 2004), Brannath et al. (2002) and Hartung and Knapp (2003).

Müller and Schäfer (2001, 2004) presented the most general way to make
adaptive changes to an on-going group sequential clinical trial while preserv-
ing the overall type I error rate. Their method allows to make data dependent
changes to the sample size, the spending function and the number and spac-
ing of interim looks at one or more time points. Adaptations can depend
on the observed data up to the interim analysis and if no adaptation is per-
formed the originally planned group sequential analysis can be applied. Only
in the case of adaptations a modi�ed test statistic based on the conditional
error rate has to be performed.

One of the limits of the Müller and Schäfer method is that they do not
give details on the computation of con�dence intervals, point estimates and
p-values for adaptive group sequential clinical trials. This limits the appli-
cability of the method to real clinical trials. According to ICH E9 guideline
testing e�cacy should be accompanied by unbiased estimates and con�dence
intervals.

In recent years there have been several approaches to calculate point esti-
mates and con�dence intervals following an adaptive change. An overview
of point and interval estimation is given in Brannath et al. (2006). For in-
stance Brannath, Posch and Bauer (2002) proposed the recursive combination
tests which have similar �exibility as the Müller and Schäfer (2001) method,
while also providing p-values and exact con�dence intervals. However, these
tests were not primarily intended for group sequential trials and are di�-
cult to apply to group sequential designs. Lehmacher and Wassmer (1999)
extended Jennison and Turnbulls (1989) method of repeated con�dence inter-

1

vals to adaptive designs, based on the inverse normal method. The method
of Lehmacher and Wassmer (1999) allows to perform data driven sample size
adaptations in a classic group sequential design, but does not allow changes
of the spending function or the number of interim analyses.

Metha, Bauer, Posch and Brannath (2006) proposed an approach for the cal-
culation of repeated con�dence intervals for adaptive group sequential trials.
The Müller and Schäfer (2001) method is applied to the dual tests derived
from the repeated con�dence intervals (RCI) of Jennison and Turnbull (1989).
However, this method can only provide conservative coverage of the e�cacy
parameter δ. Brannath, Mehta and Posch (2007) extended the stage-wise ad-
justed con�dence intervals of Tsiatis, Rosner and Mehta (1984) to adaptive
designs. Stage-wise adjusted con�dence intervals provide exact coverage for
classic group sequential designs. In the case of design adaptations it cannot
be guaranteed that the stage-wise adjusted con�dence interval provides exact
coverage in general. The reason is that the dual adjusted rejection regions
may not be nested and thus the con�dence regions may not be an interval.
Extending the con�dence regions to an interval will produce a conservative
lower con�dence bound. Their method shares an essential feature of Müller
and Schäfer adaptive test: If no adaptation is performed a classical stage-wise
adjusted con�dence interval is computed. Only in the case of adaptations
a modi�ed construction principle is performed. Furthermore the computed
con�dence intervals and p-values are usually consistent, such that the Müller
and Schäfer method rejects the null hypothesis H0 : δ ≤ 0 if and only if
the corresponding con�dence interval excludes the parameter δ. In rare and
very special cases it may occur that the test rejects, however, the con�dence
interval accepts. Brannath et al. (2007) have shown by simulations that the
coverage probability of the con�dence intervals is - from a practical point of
view - exact.

This work describes a new algorithm for the calculation of the stage-wise ad-
justed one-sided con�dence interval of Brannath, Mehta and Posch (2007).
The presented algorithm is implemented in C and works via a speci�c bisec-
tion search method. This work is con�ned to one-sided con�dence intervals.

In chapter 2 we introduce the Müller and Schäfer (2001) method and show
how to apply it to the dual tests of con�dence intervals. In chapter 3 we
discuss repeated p-values and p-values based on the stage-wise ordering. The
repeated con�dence intervals are discussed in chapter 4. In chapter 5 we dis-
cuss stage-wise adjusted con�dence intervals, at �rst the classical stage-wise
adjusted con�dence bounds and afterwards the adaptive version. Chapter

2

6 describes the algorithm for the adaptive con�dence intervals based on the
stage-wise ordering in Brannath, Mehta and Posch (2007). In chapter 7 we
show how to integrate the C-source code into R and in chapter 8 we illus-
trate the implemented algorithm by a simulation study done with R. The C
program is given in the Appendix A.

3

2 Review of adaptive and sequential designs

2.1 History of sequential designs

The investigation of sequential experiments started in the 17th and 18th cen-
tury with the work of Huyghens, James Bernoulli, DeMoivre, Laplace and
others who studied gambling systems. In the late 1920s the �rst application
of sequential procedures started in the area of statistical quality control in
the manufacturing production. In this context Dodge and Roming (1929) de-
�ned the �rst two-stage acceptance sampling plan. The test consisted of six
parameters and was inducted to test components and classify them as e�ec-
tive or defective. The two parameters n1, n2 de�ned the sample size of stage
1 and stage 2, respectively. The critical parameters to decide if the compo-
nents were defective or e�ective were de�ned by c1, c2 (acceptance values)
and d1, d2 (rejection values) and were due to the condition that d1 > c1 + 1
and d2 = c2 +1. In the �rst stage of the two-stage acceptance sampling plan,
they took an initial sample size of n1 and if the n1 samples contained c1 or
less defectives the lot was accepted, but if d1 or more defectives were detected
the lot was rejected. If the number of defectives was between c1 and d1, the
decision was displaced until the complete sample size n2 was tested. In the
secondary trial the number of defectives was compared to c2 and d2 and if
the items contained c2 or fewer defectives the whole production was accepted,
but if d2 or more defectives were detected the production was rejected.

This approach was the basic module for the development of multi-stage or
multi sampling plans (Bartky 1943). The idea was that a two-stage plan can
easily be generalized to a k-stage plan.

Only a few years later the theory of sequential analyses was strongly a�ected
by the work of Abraham Wald (1948) and especially by his sequential proba-
bility ratio test (SPRT). The test considers a random number of observations
with known distribution f(x;θ) and unknown parameter θ. The null hypoth-
esis H0 : θ = θ0 is tested against an alternative HA : θ = θA. Thereby H0

should have at most α and HA at most β as probability of error. The SPRT
is de�ned by the likelihood ratio test statistic and the rejection boundaries
(a, b). The boundaries can be chosen such that the probability of a type I
error (select HA when H0 is true) and a type II error (select H0 when HA is
true) are nearly equal to the prede�ned α and β. The critical upper bound-
ary for rejection can be calculated by the equation A = 1−β

α
and the lower

boundary by B = β
1−α . The test statistic has the following decision rules: If

4

the likelihood ratio is bigger than or equal to A, reject the null hypothesis H0,
if the likelihood ratio is smaller or equal to B accept the null hypothesis H0,
but if the test statistic is smaller than A and bigger than B, continue with
the observations. Under H0 and HA this procedure leads to lower expected
sample sizes than the �xed sample tests.

Only one year later Wald and Wolfowitz (1948) proved that the SPRT not
exceeds α and β and has the smallest possible expected sample size or "aver-
age sample number" (ASN) when either H0 or HA is true. One of the main
disadvantages of the test is that the sample size is not bounded and so it can
lead to a large variance of the sample size.

The early multi-stage or "group sequential" design was primary developed
for industrial acceptance tests with a binary response. Later the development
was focused on two-stage and three-stage procedures for a normal response:
see, for example, Armitage and Schneiderman (1958), Schneiderman (1961),
Dunnett (1961), Roseberry and Gehan (1964) and Armitage, McPherson and
Rowe (1969). In this early work repeated numerical integration was used to
calculate operating characteristics and ASN curves of multi-stage procedures
for normal data. This method represents the basic tool to construct many
group sequential tests. It also plays a decisive role in the calculation of
signi�cance levels and con�dence intervals following a group sequential test.
In the 1950's Armitage and Bross considered the use of sequential methods
in the medical �eld. Elfring and Schultz (1973) presented a method for the
comparison of two treatments with binary response and were the �rst who
used the term "group sequential design".

One of the major impetus for group sequential methods came from Pocock
(1977). He de�ned the �rst exact approach for the implementation of group
sequential designs attending type I error and power requirements. One of
his greatest achievements was to show that the nominal signi�cance level of
repeated signi�cant tests for a normal response can also be used for a variety
of other responses and situations, like e.g. normal with unknown variance,
binomial or exponential.

Only two years later O'Brien and Fleming (1979) presented a di�erent class of
group sequential tests based on an adaptation of a truncated SPRT. These
tests had conservative stopping boundaries at very early analyses, which
turned out to be very appealing in practice. Furthermore, there was still
the problem that in clinical trials the group size is in the majority of cases
unequal. Slud and Wei (1982) and Lan and DeMets (1983) showed that group

5

sequential methods can also be employed when group sizes are unequal and
even unpredictable.

After the investigation of the two-sided group sequential tests of Pocock
(1977) and of O'Brien and Fleming (1979) the one-sided tests followed very
soon. DeMets and Ware (1980 and 1982) adapted the tests from Pocock
and O'Brien and Fleming to the one-sided hypothesis. Jennison (1987) and
Eales and Jennison (1992) reduced the expected sample size by searching for
optimal group sequential one-sided tests.

With the work of Siegmund (1978, 1985), Tsiatis, Rosner and Metha (1984)
and Kim and DeMets (1987) it is now possible to calculate interval estimates
for group sequential tests. Furthermore, Fairbanks and Madsen (1982) and
Madsen and Fairbanks (1983) proposed a method to calculate p-values and
Whitehead (1986) presented a method to calculate point estimates for group
sequential tests. The method of Jennison and Turnbull (1984, 1989) allows
the construction of repeated con�dence intervals for the parameter of interest.

2.2 Group sequential designs

In this thesis we restrict attention to one-sided group sequential designs with-
out futility bounds. We consider a group sequential test (see for example,
Jennison and Turnball (2000)) for a comparative study of an experimental
treatment E to a control treatment C, with a total of N normally distributed
observations Xil, i = E or C, l = 1, 2, . . . , N/2, with known variance σ2. Let
µE and µC denote the means based on a treatment E and a control C group
and δ = µE − µC the di�erence of the population means. We focus on group
sequential tests of the hypothesis

H0 : δ ≤ 0

against the one-sided alternative δ > 0. The trial is performed in K sequen-
tial stages after observing the cumulative responses for n1, n2, . . . , nK = N
subjects. At stage j the data are summarized by the Wald statistics

Zj = δ̂j
√
Ij, j = 1, . . . , K

6

where δ̂j is the maximum likelihood estimate of δ and Ij ≈
[
se
(
δ̂j
)]−2

=

nj/ (4σ2) is the estimate of the Fisher information. We calculate sequentially
for every interim analysis the Wald statistic {Z1, Z2, . . . , ZK}. This statistic
has the following known distributional properties: (Jennison and Turnbull,
2000, p.49)

(1) (Z1, Z2, . . . , ZK) is multivariate normal,

(2)E (Zj) = δ
√
Ij, j = 1, 2, . . . , K,

(3)Cov (Zj1 , Zj2) =
√
Ij1/Ij2 , 1 ≤ j1 ≤ j2 ≤ K

This implies that {Z1, Z2, . . . , ZK} is a Markov chain of the �rst order. The
Markov chain property means that the conditional distribution of Zj, con-
ditional on the past history (Zj−1, Zj−2, . . . , Z1), depends only on the previ-
ous stage Zj−1. Using this property one can generate stopping boundaries
{bj, j = 1, 2, . . . , K} for testing the null hypothesis

H0 : δ ≤ 0.

in such a way that under H0

P0(
⋃K
j=1 Zj ≥ bj) ≤ α

whereby this probability equals α if δ = 0. The α-spending function can be
used to establish the boundaries b1, b2, . . . , bK for each interim monitoring
point, given the overall α (see next section).

The trial stops at look j when the observed Wald statistic zj is larger than
the rejection boundary bj. We denote by T the random variable which gives
the stage where the trial stops.

7

2.3 Spending function approach

In clinical trials accruing data are monitored periodically for safety and ef-
�cacy, resulting in several looks at the interim data. In practice it is often
di�cult to perfectly meet the anticipated sample size for the respective in-
terim analyses. Very often data is missing at the time-point of the pre-planed
inspection of the data or the recruitment rate of the patients is lower than
expected. The α-spending approach of Lan and DeMets (1983) allows us
to perform interim analyses at arbitrary information fractions tj = Ij

IK
, j =

1, . . . , K, that are random and need not to be speci�ed in advance. However,
in order to keep the type I error α, the information fractions for the interim
analyses must be independent from the data observed so far.

An α-spending function g(t), 0 ≤ g(t) ≤ α, at level α, is a strictly increasing
function in the infromation fraction t ∈ (0, 1), which satis�es g(0) = 0 and
g(1) = α. The value g(tj) speci�es the cumulative type I error rate "spent"
at the j-th interim analysis. Typically lower g(t)-values are established for
early looks and higher g(t)-values for later looks.

The spending function g(t) determines the critical boundary at the �rst in-
terim analysis by the equation P0(Z1 ≥ b1) = g(t1). Solving this equation we
get b1 = Φ−1(1−g(t1)), where Φ−1 is the inverse standard normal cumulative
distribution function. At time-point t2 = I2

IK
the condition for the critical

boundary b2 is the solution of

P0({Z1 < b1} ∩ {Z2 ≥ b2}) = g(t2)− g(t1)

Hence, g(t2) is the level of signi�cance that is spend till time-point t2. We
continue with the calculation till the complete type I error rate α is exhausted.
In detail, the critical boundaries bj, j = 1, . . . , K, are recursively de�ned by

P0

(⋂k−1
j=1{Zj < bj} ∩ {Zk ≥ bk}

)
= g(tk)− g(tk−1).

Examples for the choice of g(t) are

g(tk) = α · ln(1 + (e− 1)tk) (Pocock, 1977),

8

g(tk) = 4(1− Φ
(

Φ−1(1−α
4

)√
tk

)
) (O'Brien and Fleming, 1979) and

g(tk) = 1−e−γt
1−e−γ (γ-family of Hwang, Shih and DeCani, 1990).

where Φ is the standard normal cumulative distribution function.

2.4 Müller and Schäfer method

Müller and Schäfer (2001) present a general method for the full integration of
the concept of adaptive interim analyses (Bauer and Köhne, 1994) into group
sequential testing. This method is the �rst allowing to change statistical
design elements of a given group sequential design such as the α-spending
function and the number of interim analyses, without e�ecting the type I
error rate. The method is described by statistical decision functions and is
based on the conditional rejection probability of a decision variable.

The conditional rejection probability gives the conditional probability to �-
nally reject the null hypothesis given the interim data, assuming that the
null hypothesis is true. To explain the method, consider as in the previous
section the case of a comparative study of an experimental treatment E to
a control treatment C with means µE and µC and common known variance
σ2. As before assume a group sequential trial with H0 : δ ≤ 0 against the
one-sided alternative HA : δ > 0 and a maximum of K stages. Let us assume
that the trial continues until stage L < K without any rejection, i.e., zj < bj
for all j ≤ L, where zj is the observed value of the Wald test statistic Zj
from stage j. Let us further assume that one decides to make data dependent
changes to the study design at look L. Let zi denote the observed value of Zi
for i ≤ L, and let R denote the event that H0 will be rejected at any future
analyses j = L+ 1, . . . , K. R can be written as the union of disjoint events

R =
⋃K
i=L+1Ri

where

Ri = {Zi ≥ bi and Zj < bj for all j < i

9

The conditional probability for H0 of the event R given Zj for j ≤ L, is called
conditional rejection probability. It can formally be written as

ε(0) = P0(R|Z1 = z1, . . . , ZL = zL).

Because of the Markov property of Zj, j ≤ k, we have that ε(0) is a function
of zL only as long as zi ≤ bi for all i ≤ L. We now plan a new group
sequential design at level ε(0). This trial starts at stage L and is based on
a patient cohort which is independent from the cohort of patients recruited
up to look L. This trial can be seen as a new, independent "secondary"
trial in which the sample size is initialized to zero and the type I error is
equal to ε(0). The Wald z-statistics for the secondary trial are only based on
the data observed after the stage of the adaptation L. We will distinguish
the secondary trial from the original "primary" trial by labeling the stages,
sample sizes, stopping boundaries and test statistics by the superscript "(2)".
Assume that the secondary trial has a maximum number of K(2) stages,
cumulated information numbers I

(2)
j , j = 1, . . . , K(2) and rejection boundaries

b
(2)
j , j = 1, . . . , K(2). The boundaries for the secondary group sequential trial
have to be chosen in such a way, that the resulting test procedure has type
I error ε(0), i.e.,

ε(0) = P0

(⋃k(2)

j=L+1

{
Z

(2)
j ≥ b

(2)
j

}
|Z1 = z1, . . . , ZL = zL

)

Assume that the secondary trial terminates at look T (2) ≤ K(2) with the
observed test-statistic Z

(2)

T (2) = z
(2)

T (2) . Now, the null hypothesis is rejected if

and only (if z
(2)

T (2) ≥ b
(2)

T (2)). Note that the conditional rejection probability is
the only information which is carried over to the secondary trial.

2.4.1 Numerical example

For a better understanding we illustrate the approach of Müller and Schäfer
(2001) by a numerical example. We start with a comparative study of an
experimental treatment E to a control treatment C. The trial is planed as a
four-look, one-sided group sequential design at level α = 0.025. We initially
want to test H0 : δ ≤ 0 with 90% power to detect δ = 5 with known
standard deviation σ = 15. The stopping boundaries are derived from the
γ-family proposed by Hwang, Shih and DeCani (1990) with γ = −4, see

10

section 2.3. Such boundaries are frequently used in practice. The boundaries
were calculated with the statistical software EAST and have the values b1 =
3.155, b2 = 2.818, b3 = 2.439 and b4 = 2.014. The initial maximum sample
size is N = 392 (up rounded to achieve equal sample sizes per group).

Now suppose that at the �rst interim analysis, after n1 = 98 subjects in
total (both groups together) have been evaluated, the estimate of δ is δ̂1 = 3
with the estimated standard deviation σ̂1 = 20 which gives z1 = 0.742. Since
the observed δ̂1 is below the anticipated δ and σ̂1 is higher than assumed we
decide to increase the sample size. Given the data the conditional rejection
probability is ε(0) = 0.031. As described above we set the signi�cance level
of the secondary trial equal ε(0) to control the type I error rate . The sample
size is calculated on the bases of δ = 4, which is the mean of the original
δ and the interim estimate δ̂1 = 3, with σ = 20 and a power of 90%. The
secondary trial is designed as a four-stage O'Brien-Fleming group sequential
design (γ-family with γ = −4). The required total sample size isN (2) = 1016,
as was calculated with EAST. The corresponding rejection boundaries are
b

(2)
1 = 3.092, b

(2)
2 = 2.747, b

(2)
3 = 2.357 and b

(2)
4 = 1.918.

Suppose that the secondary trial stops at the third stage with a �nal estimate
δ̂

(2)
3 = 4 and σ̂

(2)
3 = 20. The standardized test statistic at this stage is

z
(2)
3 = 2.76 and hence that z

(2)
3 > b

(2)
3 we stop the trial and reject H0.

11

Cumulative Sample Size

W
al

d
T

es
ts

ta
tis

tic

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0 98 196 294 392

●

●

●

●

●

conditional rejection probability = 0.031

●

●

Standardized test statistic
Boundaries

Figure 1: Primary trial (OBF design at level 0.025) from the example in
section 2.4.1

12

Cumulative Sample Size

W
al

d
T

es
ts

ta
tis

tic

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0 254 508 762 1016

●

●

●

●

●

●

●

Reject H0

●

●

Standardized test statistic
Boundaries

Figure 2: Secondary trial (OBF design at level 0.031) from the example in
section 2.4.1

13

3 Overall p-values

An overall p-value can be de�ned via a family of nested hypotheses tests. We
denote a family of hypotheses tests as nested, if the rejection of the level-u
test in the family implies the rejection of all level-u′ tests where u′ > u. An
overall p-value q can be de�ned as the minimum of the levels of the tests
which reject H0. In other words, we continue rejecting H0 : δ ≤ 0 in a
sequence of nested tests, with decreasing signi�cant levels 0 < u < 1, until
we reach the level q, such that we cannot reject H0. In the next chapters
we are going to introduce the repeated p-value and the p-value based on
the stage-wise ordering, which are both following this construction principle.
Repeated p-values are �exible with respect to the stopping rule, but they are
strictly conservative. P -values based on the stage-wise ordering are exact in
the sense that the level is exhausted, but they can only be calculated at the
stage where the trial stops according to the stopping rule.

3.1 Repeated p-values

For the repeated p-value the rejection boundaries of the primary trial and, in
case of a design adaptation, also for the secondary trial, need to be speci�ed
via spending functions gu(t) and g(2)

u that generates boundaries bk,u and b
(2)
k,u

for all levels 0 < u < 1 which are non-decreasing in u, or directly via a
monotone family of boundaries bk,u and b

(2)
k,u.

3.1.1 No adaptive change

We start with the primary trial and choose a family of spending functions
gu(t), 0 ≤ u ≤ 1, such that gu(1) = u for all u. Now we calculate the
test statistics at information times tj and denote them by zj. The critical
boundaries, following from the spending function gu(t) at the stages j =
1, . . . , K, are denoted by bj,u, where bj,u satis�es the usual level-u group
sequential test requirement

P0

(⋂K
j=1{Zj < bj,u}

)
= 1− u.

In order to obtain nested rejection regions we must have bj,u < bj,u′ for
all 0 ≤ u′ < u ≤ 1. This requires a speci�c assumption on the spending

14

functions, see Mehta, Bauer, Posch and Brannath (2007). Now we can de�ne
the repeated p-value at stage k by

pk = inf{u : zk ≥ bk,u} = sup{u : zk < bk,u} (1)

Note that
⋃K
j=1{pj ≤ u} =

⋃K
j=1{Zj ≥ bj,u} is the rejection rule of a group

sequential test at level u. Hence, for any stopping rule T , P (pT ≤ u) ≤
P (
⋃k
j=1{pj ≤ u}) = u.

3.1.2 Incorporating adaptive changes

Now let us assume that we perform some design adaptations at stage L. The
conditional type I error rate for the test at level u is then given by

εu =

{
0 if u ≤ αL
P0

(⋃K
j=L+1{Zj ≥ bj,u}|Z1 = z1, . . . , ZL = zL

)
if u > αL

Let p(2) denote the repeated p-value of the secondary trial of the stage where
the trial stops T (2), i.e.,

p(2) = inf(u : z
(2)

T (2) ≥ b
(2)

T (2),u
)

where b
(2)
k,u is from the monotone family of boundaries from the spending

function for the secondary trial. Now the overall p-value, considering the data
from the primary and secondary trial, with regard to the design adaptations
at stage L is de�ned by

q = inf{u : p(2) ≤ εu} (2)

In this equation εu is increasing in u (if all bj,u's are decreasing in u) and
hence the corresponding adaptive level-u tests are nested. Therefore the
p-value can be computed as the solution of the equation p(2) = εu.

15

Remark:

1. Repeated p-values can be de�ned at every interim look j of an adap-
tive secondary trial and not just at the look T (2) where the trial was
terminated.

2. Repeated p-values produce conservative tests at levels u 6= α.

We continue with the numerical example from section 2.4.1. The overall p-
value q based on the secondary trial can now be calculated by (2) and is the
unique solution of the equation p(2) = εu. In our example the overall p-value
is q = 0.0094.

3.2 P -values based on the stage wise ordering

3.2.1 No adaptive change

We assume that the primary trial stops at look T . The stage wise ordering
on the sample space (T, zT) of the trial was proposed by Armitage (1957),
Siegmund (1978), Fairbanks and Madsen (1982) and Tsiatis, Rosner and
Mehta (1984). It considers a sample point (j, zj) as more extreme than the
sample point (k, zk), if either j < k or j = k and zj ≥ zk. This ordering can
be used to de�ne an overall p-value p for H0 as

p = P0

T−1⋃
j=1

{Zj ≥ bj} ∪ {ZT ≥ zT}

 (3)

which is the probability under H0 to get a more extreme sample (in the sense
of the stage wise ordering) than the one we have observed.

For a better understanding of this p-value let us de�ne for j = 1, 2, . . . , K−1,

αj = P0

(⋃k
j=1{Zj ≥ bj}

)

We further de�ne for each u ∈ [0, 1] the index ju = j in such a way that
αj−1 < u ≤ αj where α0 = 0 and αK = 1. αj is the level "spent" in the
primary trial at the j-th interim look.

16

Now we de�ne the "threshold boundary" bk,u in such a way that it satis�es
the relationship

P0

(⋃ju−1
j=1 {Zj ≥ bj} ∪ {Zju ≥ bju,u}

)
= u

One can show that {p ≤ u} =
⋃ju−1
j=1 {Zj ≥ bj} ∪ {Zju ≥ bju,u}.

3.2.2 Incorporating adaptive changes

In the case of a design adaptation at look L we compute the corresponding
conditional error functions

εu =

0 if u ≤ αL
P0

(⋃k−1
j=1{Zj ≥ bj} ∪ {Zk ≥ bk,u}|Z1 = z1, . . . , ZL = zL

)
if αk−1 < u ≤ αk, k = L+ 1, . . . , K

Let p(2) denote the stage-wise adjusted p-value of the secondary trial of the
stage where the trial stops T (2), i.e.,

p(2) = P0

T (2)−1⋃
j=1

{Z(2)
j ≥ b

(2)
j } ∪ {Z

(2)

T (2) ≥ z
(2)

T (2)}

 (4)

Now we can calculate the overall p-value by

q = inf{u : p(2) ≤ εu} = sup{u : p(2) > εu} (5)

where p(2) is the p-value of the secondary trial according to the stage-wise
ordering of the secondary trial. Note that εu is monotonically increasing in
u and hence the adaptive tests are nested and q can be evaluated as the root
of p(2) = εu.

We continue with the numerical example from section 2.4.1. The p-value
based on the stage-wise ordering can be calculated by (4) and is the unique
solution of the equation p(2) = εu. In our example the stage-wise adjusted
p-value is q = 0.0076.

17

4 Construction of one sided repeated con�dence

intervals

4.1 Con�dence intervals

An (1− α) con�dence interval gives an estimated range of parameter values
for the unknown population parameter. The estimated range is calculated
from a given set of sample data. Con�dence intervals are usually calculated
for a coverage probability of 95%, but also other coverage probabilities are
possible. A coverage probability of 95% means that, with a probability of
95%, we receive an interval that contains the unknown parameter. The
width of the con�dence interval gives some idea about how uncertain the
unknown parameter is. In the case of a lower one-sided con�dence interval
we only declare a value for the lower bound, and the upper bound is set to∞.
Con�dence intervals are more informative than the result of a hypothesis test
(where it is only decided to reject H0 or don't reject H0) since they provide
a range of plausible values for the unknown parameter.

4.2 Classical repeated con�dence bounds

We next review the classical Jennison and Turnbull (1989) one-sided con-
�dence intervals for a given group sequential design, without any design
modi�cation. These repeated con�dence intervals will be the starting point
for adaptive repeated con�dence intervals.

The repeated con�dence interval is de�ned by a family of dual signi�cance
tests for the hypothesis Hh : δ ≤ h versus δ > h for all h ∈ (−∞,∞). The
con�dence interval includes all values of h where the shifted null hypothesis
Hh is not rejected. First, we sequentially compute the shifted Wald statistics

Zj(h) = Zj − h
√
Ij, j = 1, 2, . . . , K, where Ij is the cumulated information

until stage j. It is known that Zj(h) is N(0, 1)-distributed under Hh. Now
we apply the same group sequential design to all h. At stage j we reject Hh

if Zj − h
√
Ij ≥ bj, i.e., we reject all h ≤ Zj−bj√

Ij
. Hence, the lower con�dence

bound at each step j = 1, 2, . . . , K of the one-sided con�dence interval is

(
δj,∞

)
, j = 1, 2, . . . , K, with δj = Zj−bj√

Ij

18

Furthermore, because

Pδ

 K⋂
j=1

δ > Zj − bj√
Ij

 = Pδ

 K⋂
j=1

{δ > δj}

 =

Pδ

 K⋂
j=1

{
Zj − δ

√
Ij < bj

} = 1− α (6)

the interval (δj,∞) contains δ with probability greater than or equal to 1−α.
Hence, the interval provides conservative coverage of δ at whatever stage the
con�dence bound is computed. This also implicates that the speci�ed α-
level is exhausted with the intersection with all (δj,∞). Hence, each single
(δj,∞), e.g., the one at the stage the trial stops, is strictly conservative.

4.3 Adaptive repeated con�dence bounds

In the case of a design adaptation we apply the Müller and Schäfer principle
to all dual tests. Collecting all h where Hh : δ ≤ h is accepted gives the 1−α
con�dence interval. To obtain this con�dence interval we shift the observed
test statistic of the primary trial to

zj(h) = zj − h
√
Ij, j = 1, 2, . . . , L,

and the test statistic observed in the secondary trial is shifted to

z
(2)
j (h) = z

(2)
j − h

√
I

(2)
j , j = 1, 2, . . . , T (2).

Now, the conditional rejection probability can be calculated by

ε(h) = P0

(⋃K
j=L+1{Zj ≥ bj}|Z1 = z1 − h

√
I1, . . . , ZL = zL − h

√
IL
)
.

Since the probability of crossing the boundaries bj at some stage j > L is
decreasing with decreasing starting point zL − h

√
IL, we get that ε(h) is

19

decreasing with increasing h. With the Müller and Schäfer (2001) principle
we can de�ne the family of dual tests for Hh with rejection rule

p(2)(h) ≤ ε(h), (7)

where p(2)(h) is a p-value of the secondary trial for the shifted test statistics

z
(2)
j − h

√
I

(2)
j . To preserve the �exibility of the repeated con�dence intervals

we use the repeated p-value for p(2)(h). The rejection rule p(2)(h) ≤ ε(h)
gives a level α-test for Hh : δ ≤ h. Note that p(2)(h) is increasing and ε(h) is
decreasing in h. Applying (7) to all values of h gives the one-sided con�dence
interval (δ,∞) where δ is the unique solution of p(2)(h) = ε(h) in h.

We continue with the numerical example from section 2.4.1. For the com-
putation of the con�dence interval all information numbers Ij and I

(2)
j are

computed assuming that σ = 20. The repeated con�dence interval is cal-
culated at the stage T (2) where the trial stops and is the unique solution of
p(2)(h) = ε(h). In our example the repeated con�dence interval is (0.491,∞).

4.4 Conservative point estimates

The lower bound of a one-sided con�dence interval at level 0.5 is an point
estimate for the true treatment e�ect δ. The median of such an estimate δ0.5

is smaller or equal to the true e�ect and hence under-estimates the true δ.
This implies that this point estimate is conservative. To obtain this level 0.5
lower con�dence bound for δ we perform level 0.5 tests for all Hh : δ ≤ h.
The con�dence interval consists of all h where Hh is accepted.

4.4.1 No adaptive change

To obtain a conservative point estimate for the classic group sequential trial
we �rst have to calculate rejection boundaries bj,0.5 at level 0.5, e.g., by using
a spending function g0.5(t) at level 0.5. Let us assume that the trial stops at
stage T , then we calculate the classic repeated con�dence bound by

δT =
ZT−bT,0.5√

IT

20

Now δT is a conservative point estimate for the true e�ect δ.

4.4.2 Incorporating adaptive changes

Let us assume that we perform adaptive changes at stage L of the primary
trial. Let us further assume that the secondary trial stops at stage T (2).

First we calculate the conditional rejection probability ε0.5 based on the new
boundaries bj,0.5 for j = L + 1, . . . , K. Then, as mentioned before, the z-
statistic zL at stage L is shifted to zL(h) = zL − h

√
IL. The new boundaries

b
(2)
j,0.5 for the secondary trial can be computed by using the spending function

gε0.5(h)(t) and the shifted z-statistics z
(2)
j of the secondary trial z

(2)
j (h) =

z
(2)
j −h

√
I

(2)
j . Now we perform a test forHh and reject if z

(2)

T (2)(h) ≥ b
(2)

T (2),0.5
(h).

The conservative point estimate δ0.5 is the value of h at which z
(2)

T (2)(h) =

b
(2)

T (2),0.5
(h).

21

5 Stage-wise con�dence intervals

The stage-wise adjusted con�dence intervals proposed by Brannath, Mehta
and Posch (2007) are less conservative than the repeated con�dence intervals
of Mehta, Bauer, Posch and Brannath (2006). The stage-wise adjusted con-
�dence intervals also provide a less conservative point estimate for δ. The
repeated con�dence intervals have the advantage that they can be computed
at any stage and are also valid if one deviates from the stopping rules of
the primary and secondary trial. In contrast, the stage-wise con�dence in-
tervals can only be computed at the stage the trial stops according to the
pre-speci�ed stopping rule. Hence, with the stage-wise con�dence intervals
we cannot deviate from the pre-speci�ed stopping rule.

5.1 Classic stage-wise con�dence bound

The stage wise ordering can be used to de�ne an overall p-value p(h) for Hh

as

p(h) = Ph

T−1⋃
j=1

{Zj ≥ bj} ∪ {ZT ≥ zT}

 (8)

By de�nition p(h) has an uniform distribution under Hh. Since p(h) is mono-
tone increasing in h, the equation p(h) = α has a unique solution. Thus we
perform a level-α test for Hh, if we reject Hh in the case that p(h) ≤ α, and
otherwise accept Hh.

It is di�cult to apply the Müller and Schäfer (2001) principle directly to the
rejection rule p(h) ≤ α. Therefore it is helpful to rewrite the rule p(h) ≤ α
as group sequential plan in terms of rejection boundaries for the Zj's. To
this end we de�ne so called α-absorbing constants δ1 ≥ δ2 ≥ . . . ≥ δK−1 such
that, for k = 1, 2, . . . , K − 1,

Pδk

 k⋃
j=1

{Zj ≥ bj}

 = α (9)

Note that the probability to reject at some given stage k increases in the

22

parameter δ and reaches α at δk. Hence, when testing Hδk via the stage-
wise ordering the level is used up (absorbed) at stage k. We further de�ne
δ0 = ∞ and δK = 0 so that we can �nd for every real value of h the unique
index k(h) = k such that δk ≤ h < δk−1. For each such h we can de�ne the
"threshold boundary" bk(h)(h) by the identity

Ph

k(h)−1⋃
j=1

{Zj ≥ bj} ∪
{
Zk(h) ≥ bk(h)(h)

} = α (10)

For given h we can determine bk(h)(h) by a root �nding process. It can be
shown that the rejection rule p(h) ≤ α is equivalent to a group sequential de-
sign with a maximum of k(h) stages. The boundaries of this group sequential
design are bj for j ≤ k(h)− 1 and bk(h)(h) at stage k(h), i.e.,

{p(h) ≤ α} =
⋃k(h)−1
j=1 {Zj ≥ bj} ∪ {Zk(h) ≥ bk(h)(h)},

where we put
⋃0
j=1{Zj ≥ bj} = ∅. The function bk(h)(h) assures the type I

error rate α.

Note that the p-value of p(h) is equal to α if the observed value of Zk(h)

equals bk(h)(h). This follows from (8) and (10). Note further that p(h) is
a monotone increasing function of h. It follows from identity (10) that if h
increases from δK = −∞ to δK−1, then bK−1(h) increases from −∞ to ∞. If
k < K and h increases from δk−1 to δk then bk(h) increases from bk to ∞.

5.2 Construction principle for the stage-wise con�dence

bound

Let us now assume that we want to perform some design adaptations at look
L. Recall that we have to compute the conditional type I error rate

ε(0) = P0

(⋃K
j=L+1 {Zj ≥ bj} |Z1 = z1, . . . , ZL = zL

)

As explained in chapter 2.4, whatever secondary trial we choose it must be
at level ε(0).

23

In order to test Hh : δ ≤ h at level α we apply the Müller and Schäfer (2001)
principle for any given h by computing the conditional error function of the
test for Hh

ε(h) = Ph

k(h)−1⋃
j=L+1

{Zj ≥ bj} ∪
{
Zk(h) ≥ bk(h)(h)

}
|Z1 = z1, . . . , ZL = zL

 .
(11)

We assume that the secondary trial stops at look T (2). Then we compute the
p-value according to the stage-wise ordering of the secondary trial as

p(2)(h) = Ph
(⋃T (2)−1

j=1

{
Z

(2)
j ≥ b

(2)
j

}
∪
{
Z

(2)

T (2) ≥ z
(2)

T (2)

})

With this new p-value we can de�ne the dual test in such a way thatHh : δ ≤ h
is rejected if and only if p(2)(h) ≤ ε(h).

With the above adaptive tests for Hh it is now possible to compute the
lower con�dence bound δ in the case of an adaptive change at look L. We
build the con�dence set of all parameter values h that were accepted, i.e.,
p(2)(h) > ε(h). We have the problem that p(2)(h) = ε(h) may have more
than one solution. The reason is the non-monotonicity of ε(h) (see Figure 3
and Brannath et al., 2007). At the present we are unable to identify precise
conditions under which ε(h) is not increasing, or is increasing at a slower
rate than p(2)(h). Thus we de�ne δ as the smallest solution of p(2)(h) = ε(h)
which gives a conservative lower con�dence bound.

We continue with the numerical example from section 2.4.1. The stage-
wise adjusted con�dence interval can now be calculated and is the smallest
solution of p(2)(h) = ε(h). In our example the stage-wise adjusted con�dence
interval is (0.786,∞).

24

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

εε((
h))

δδ1δδ2δδ3

Figure 3: In Figure 3 we show an example for the nonmonotonicity of the
conditional rejection probability ε(h) in h for the stage-wise adjusted con�-
dence intervals. The trial is designed as a four-stage O'Brien-Fleming group
sequential design with equally spaced looks at level α = 0.025. The condi-
tional rejection probability is computed at look 1 and the z-statistic observed
at this look is z1 = 4. The secondary trial is designed as a one stage group
sequential design at level ε = 0.673 with the upper boundary b

(2)
1 = −0.44792

and the lower bound a
(2)
1 = −10. The z-statistic at the end of the secondary

trial is z
(2)
1 = −0.46. The dotted line are the p-values p(2)(h) in h and the

vertical dashed lines show the α-absorbing parameters δ1 ≥ δ2 ≥ δ3. We can
now see that the p-value p(2)(h) crosses ε(h) more than one time and hence
we cannot �nd an unique solution for p(2)(h) = ε(h).

25

5.3 Median unbiased point estimates

To calculate the point estimate δ0.5 based on the stage-wise ordering we
calculate the stage-wise con�dence interval at level 0.5. If the primary trial
terminates without any adaptation at stage T , then δ0.5 is the value of h that
satis�es p(h) = 0.5 where p(h) is calculated by (8).

Let us now assume that we perform a design adaptation at stage L of the
primary trial. We �rst have to calculate new α-absorbing constants δ1,0.5 ≥
δ2,0.5, . . . , δK−1,0.5 for the level 0.5, i.e., such that

Pδk,0.5
(⋃k

j=1{Zj ≥ bj}
)

= 0.5, k=1,2,. . . ,K-1.

We further de�ne δ0,0.5 =∞ and δK,0.5 = 0. Now we calculate the "threshold
boundary" bk,0.5(h) from the identity

Ph
(⋃k−1

j=1{Zj ≥ bj} ∪ {Zk ≥ bk,0.5(h)}
)

= 0.5.

We assume that the secondary trial stops at look T (2). Then we compute the
conditional rejection probability similar as in section 5.2 by

ε0.5(h) = Ph
(⋃k−1

j=L+1{Zj ≥ bj} ∪ {Zk ≥ bk,0.5(h)}|Z1 = z1, . . . , ZL = zL
)

The median unbiased point estimate δ0.5 is the smallest value of h such that
p(2)(h) = ε0.5(h).

26

6 The algorithm

To construct the con�dence interval (δ,∞) we �rst mention, that the condi-
tional type I error rate can also be written as ε = A(h) +B(h) with

A(h) = Ph
(⋃k(h)−1

j=L+1 {Zj ≥ bj} |Z1 = z1, . . . , ZL = zL
)

and

B(h) = Ph
(⋂k(h)−1

j=L+1 {Zj < bj} ∩
{
Zk(h) ≥ bk(h)(h)

}
|Z1 = z1, . . . , ZL = zL

)

It is known that Zj is stochastically increasing in h, and so one can show that
A(h) is increasing in h and B(h) is decreasing in h, for details see Brannath et
al. (2007). The algorithm relies on these monotonicity properties of A(h) and
B(h), and it has the ability to �nd the (smallest) solution of p(2)(h) = ε(h).

The main idea of the algorithm is the following. We start with the partition
(−∞, 0], (0, δK−1], . . . , (δL+1, δL] of the interval (−∞, δL] which is known to
contain the lower con�dence bound δ. We try to identify the interval of
the partition which contains δ. This may not be possible with the initial
partition, however, by re�ning the partition we will �nally be able to identify
the interval containing δ. If this interval has length below prec, then the
upper bound of this interval gives a numerical estimate of δ with precision
prec. If the length of the interval is larger than prec, then the algorithm
continues re�ning the interval.

In the algorithm the range for δ and the partition of this range is re�ned
inductively. Given a range and partition we always start checking whether δ
belongs to the smallest interval. The lower and upper bound of this smallest
interval will be denoted by hl and hu.

6.1 General method

We start with the initial partition P = {(−∞, 0], (0, δK−1], . . . , (δL+1, δL]}
and verify if the lower con�dence bound is in (−∞, 0], the smallest interval
of the partition P . To this end we compute p(2)(0), A(0) and B(0). We
distinguish three cases.

27

(A0) If p(2)(0) ≤ B(0), then p(2)(h) ≤ B(h) ≤ ε(h) for all h ≤ 0, because
p(2)(h) is decreasing and B(h) is increasing for decreasing h. This
implies that δ ≥ 0 and hence we can reject the whole interval (−∞, 0].
Therefore we remove this interval from the partition P and proceed
with the next interval (0, δk−1], i.e. we put hl = 0 and hu = δk−1

(B0) If p(2)(0) > A(0) +B(0) = ε(0), then we must accept H0 and hence δ <
0. We must therefore restrict attention to the interval (−∞, 0] and must
not search in any other interval of the partition. In order to proceed
we split the interval (−∞, 0] into the two subintervals (−∞,−δ̃] and
(−δ̃, 0], where δ̃ is some pre�xed constant. In the program we use

δ̃ =
k−1∑
j=1

δj
(k − 1)

(12)

the mean of the α-absorbing constants. We continue with the new
partition P = {(−∞,−δ̃], (−δ̃, 0]} and the lower interval (−∞,−δ̃],
i.e., we set hl = −∞ and hu = −δ̃.

(C0) If B(0) < p(2)(0) ≤ A(0) +B(0) then we cannot decide whether δ is in
(−∞, 0] or not. In order to decide, we split the interval (−∞, 0] into
the two subintervals (−∞,−δ̃] and (−δ̃, 0], where δ̃ is de�ned in (12).
As in case (B0) we continue with the interval (−∞,−δ̃], i.e., we put
hl = −∞ and hu = −δ̃. We keep, however, the other intervals of the
initial partition, i.e., the new partition is

P = {(−∞,−δ̃], (−δ̃, 0], (0, δK−1], . . . , (δL+1, δL]}.

Whatever case (A0), (B0) or (C0) applies at the �rst step, we do the follow-
ing with the current partition P and its lowest interval (hl, hu].We compute
p(2)(hu), A(hl), A(hu) and B(hu). Again we have to distinguish between
three cases.

(A) If p(2)(hu) ≤ B(hu) +A(hl) then p(2)(h) ≤ B(hu) +A(hl) ≤ ε(h) for all
h with hl < h ≤ hu. This implies that δ ≥ hu and hence we can reject
the whole interval (hl, hu]. We therefore remove this interval from P
and continue with the next higher interval and set hl and hu to the
limits of the lowest interval from the new partition P .

(B) If p(2)(hu) > B(hu)+A(hu) = ε(hu), then we have to accept the interval.
Therefore δ must be in the interval (hl, hu]. If hu − hl < prec then we

28

stop the algorithm and report the interval δ = hu. If hu − hl ≥ prec
then we split the interval into (hl, h̃], (h̃, hu] where

h̃ =

{
hu − δ̃ if hl = −∞
hu−hl

2
if hl > −∞

(13)

with δ̃ de�ned in (12). We continue with the partition P = {(hl, h̃], (h̃, hu]}
and its lowest interval (hl, h̃], i.e., we leave hl unchanged and set hu = h̃.

(C) If B(hu) + A(hl) < p(2)(hu) ≤ B(hu) + A(hu) then we cannot decide
whether δ is in the interval (hl, hu] or not. Hence, we split (hl, hu] into
the two subintervals (hl, h̃], (h̃, hu] with h̃ as in (13). We replace (hl, hu]
by the two subintervals in the partition P and keep all other intervals
unmodi�ed.

We continue with case (A) to (C) until we end up in case (B) and the di�er-
ence hu − hl is smaller or equal to the pre-speci�ed precision prec.

Remark

The reason why the algorithm always converges is that B(h) → 1 and
p(2)(h) → 0 for h → −∞. From this we can follow that at some point
we must have p(2)(hu) < B(hu) which allows us to conclude case (A). From
this point on we have a �nite lower limit for δ. The convergence of the al-
gorithm then follows from the continuity of A(h) and B(h) on the intervals
(δk, δk−1].

6.2 More e�cient algorithm

Note that for the calculation of B(h) we �rst need to determine bk(h)(h) which
requires numerical integration and root �nding. Hence, the computation of
B(hu) at every step of the algorithm slows down the algorithm considerably.
The numerical precision of B(h) required for the steps (A) to (C) depends on
how close p(2)(h) is to ε(h). If p(2)(h) is far o� from ε(h) then p(2)(h) > ε(h)
can be decided also with a rough estimate for B(h). In order to exploite this
fact we do not always compute bk(h)(h) with maximum precision, but use a
lower and upper bound b1(h) ≤ bk(h)(h) ≤ b2(h) of bk(h)(h) which is re�ned
only if necessary. The bounds b1(h) and b2(h) imply lower and upper bounds
B1(h) ≥ B(h) ≥ B2(h) for B(h) where

29

Bi(h) = Ph
(⋂k(h)−1

j=L+1 {Zj < bj} ∩
{
Zk(h) ≥ bi(h)

}
|Z1 = z1, . . . , ZL = zL

)
.

We always start with the initial lower and upper bounds

b1(hu) = Φ−1(1− α) + hu
√
IK ,

b2(hu) = Φ−1(1− α + A(hu)) + hu
√
IK

(14)

Then we replace B(hu) in the steps (A0) and (A) by B2(hu), and in steps
(B0) and (B) by B1(hu). In the steps (C0) and (C) we replace B(hu) on
the right side of the inequality by B1(hu) and on the left side by B2(hu).
Note that all replacements lead to sharper inequalities, so that the new cases
do no longer cover the whole sample space. Should we not be able to decide
between these three modi�ed cases then we re�ne the upper and lower bound
b1(hu) and b2(hu) in the following way: we compute

b∗(hu) = b1(hu)+b2(hu)
2

and the rejection probability (10) with bk(h)(h) replaced by b∗(hu). If this
probability is above α then we replace b1(hu) by b

∗(hu), otherwise we replace
b2(hu) by b∗(hu). The other bi(hu) remains unchanged.

To give the algorithm in detail, suppose that at step k of the algorithm we
have the lower and upper bound b1(hu) and b2(hu) and the partition P with
the lowest interval (hl, hu]. In order to decide whether (A), (B) or (C) is true
we execute the following two steps consecutively.

(S1) We distinguish between three cases:

(a) If p(2)(hu) ≤ A(hl) +B2(hu) then we can conclude (A) and hence
can reject the whole interval (hl, hu]. We remove this interval from
the initial partition P and continue with the lowest interval and
rede�ne correspondingly hl and hu.

(b) If p(2)(hu) > A(hl) + B1(hu) then we can exclude case (A) and
pass directly to the second step (S2) below, to verify (B) or (C).

30

(c) If A(hl) + B2(hu) < p(2)(hu) ≤ A(hl) + B1(hu) then we cannot
make any conclusion yet, because b1(hu) and b2(hu) are too rough
estimates. Before improving them, we pass to step (S2), now
without excluding (A).

(S2) In step (S2) we distinguish between the following three cases:

(a) If p(2)(hu) > A(hu) + B1(hu) then we can conclude (B). This im-
plies that δ must be in the interval (hl, hu]. If hl − hu < prec
then we stop and put δ = hu. Otherwise we split the interval
(hl, hu] as in (B) and start again with step (S1) for the partition
P = {(hl, h̃], (h̃, hu]} and b1(h̃), b2(h̃) as in (14) with hu replaced
by h̃.

(b) If A(hl) + B1(hu) < p(2)(hu) ≤ A(hu) + B2(hu) then we can con-
clude (C) and re�ne the partition P as in (C) and continue to (S1)
with this partition and b1(h̃) and b2(h̃) as in (14).

(c) If neither (a) nor (b) is satis�ed then we must improve the bound-
aries b1(hu) and b2(hu). We do this as explained before. If (A)
was excluded at step (S1), then we execute step (S2) with the
improved boundaries b1(hu) and b2(hu). If (A) was not excluded
we continue with step (S1).

We repeat the whole procedure until we end up with case (B) and
hu − hl < prec.

31

7 Integration of the C-source code into R

The presented algorithm is implemented in C, but designed for the integration
in the R project for statistical computing. In the following the integretion of
our C-source is described.

First create the C-�les (asoCbound.c, functions.c, functions.h) given in Ap-
pendix A. Afterwards copy the �les to your local folder on your Linux-system.
Now the C-source has to be compiled for R by typing in the command prompt

Listing 1: Build shared library for dynamic loading

R CMD SHLIB [opt ions] [−o libname] f i l e s

In our example the command is

R CMD SHLIB −L/usr / l o c a l / l i b asoCbound . c f unc t i on s . c − l g s l − l g s l c b l a s
−lm

This command compiles the given source �les and links all speci�ed object
�les into a shared library named asoCbound.so. This shared library can be
loaded into R using dyn.load or library.dynam. The R-function dyn.load()
loads or unloads shared libraries and tests if a C-function is available. In our
example the command is

dyn.load("asoCbound.so")

After the libraries are loaded into R, all the variables have to be passed to
the compiled C-functions. This can be performed with the R-function

.C(name,. . ., NAOK = FALSE, DUP = TRUE, PACKAGE)

The �rst character string (name) gives the name of the C-function. In our
case this would be the function main(); see the example below. Afterwards
the variables which are passed to the C-function main() are given. It is
important to notice that the types and names of the variables used in R
must be the same as in C. Otherwise R will produce a fatal error. Di�erent
vector types in R can be modi�ed for the C-function by the commands

as.integer() integer vector
as.numeric() real number vector
as.character() string vector
as.logical() logical vector

32

The function .C() will return a list of objects which contains the input vari-
ables as well as the output of the C-function. All variables are saved in the
out object. Now the result can be shown by the command out$erg.

It is convenient to create an R-�le which automatically calls the C-�les and
passes the variables. In our example the R-�le would be:

Listing 2: Example R-�le

asoCbound<−f unc t i on (pT, sT , iD , a l g l){
dyn . load (" asoCbound . so ")

e<−c (0 , 0)

out <− .C("main " ,
k = as . i n t e g e r (l ength (pT$a)) ,
a = as . numeric (pT$a) ,
b = as . numeric (pT$b) ,
t = as . numeric (pT$t) ,
theta = as . numeric (a l g l) ,
l e v e l = as . numeric (pT$al) ,
L = as . i n t e g e r (iD$L) ,
z = as . numeric (iD$z) ,
k2 = as . i n t e g e r (l ength (sT$a2)) ,
a2 = as . numeric (sT$a2) ,
b2 = as . numeric (sT$b2) ,
t2 = as . numeric (sT$t2) ,
T2 = as . i n t e g e r (sT$T2) ,
zT = as . numeric (sT$z2) ,
erg = as . numeric (e))

out ;

}

The function asoCbound() modi�es the input variables and passes them di-
rectly to the C-function in the Appendix A. The call of this C-function would
be

int main(int k, var a, var b, var t, var theta, double level, int L, double z, int
k2, var a2, var b2, var t2, int T2, double zT, double erg).

33

7.1 Data preparation and call of the function

We continue with the example from section 2.4.1 and show how to prepare
the data and call the implemented function. First we create an object of the
given primary trial. This object consists of a varible al which speci�es the
level and the variables aj and bj for j = 1, . . . , K which specify the lower and
upper stopping boundaries. These boundaries can be calculated as described
in section 2.3. Furthermore we have to declare the information times tj which
can be calculated by

tj = nj
4σ2 for j = 1, . . . , K

where nj was the number of patients recruited between stage j− 1 and stage
j. Now the objects for the primary trial is

//Object of the primary trial

pT=list(al=0.025,

t=0.06125*c(1:4),

a=rep(-8,4),

b=c(3.155,2.818,2.439,2.014))

On the bases of the primary trial we can calculate the α-absobing constants
as in (9)

//Alpha-absorbing parameters

algl=c(4.830182,2.331478,0.986098,0.000000)

Now we perform a design adaptation at look L = 1. This data is stored in
the interim data object iD. It comprises of the stage of the adaptation L
and the z-statistic observed at this stage

//Object of the interim data

iD=list(L=1,z=0.742)

After this design adaptation we �rst have to calculate the conditional error
ε(0) as described in section 2.2. Now we can create an object for the secondary
trial sT at level ε(0). The secondary trial consists of the lower and upper

stopping boundaries a
(2)
j and b

(2)
j for j = 1, . . . , K(2) and information times

34

t
(2)
j =

n
(2)
j

n1
t1

where n
(2)
j is the number of patients recruited between stage j − 1 and j of

the secondary trial. As given in the example we assume that the secondary
trial stops at stage T (2) with the observed test-statistic z

(2)

T (2) . This data are
also stored in the sT -object.

//Object of the secondary trial

sT=list(t2= 0.158125*c(1:4),

a2=rep(-8,4),

b2=c(3.093995,2.749179,2.360214,1.921324),

T2=3,

z2=2.755)

Now we can pass the objects to the function asoCbound(),

asoCbound(pT,sT,iD,algl)

which calculates for the given primary trial, α-absorbing parameters, interim
data and secondary trial the corresponding stage wise adjusted con�dence
interval.

35

8 Simulation study

We used the C-program given in the Appendix A for a simulation study
for the investigation of the coverage probability of the stage-wise con�dence
bound and median of the corresponding estimate. Furthermore, we want
to compare the stage-wise adjusted con�dence intervals and the repeated
con�dence intervals with regard to their coverage probability. We calculate
the repeated con�dence intervals only at the stage T (2) where the trial stops.

We start with a three-look, one-sided group sequential design at level 0.025
with equally spaced looks and without stopping for futility. We test H0 :
δ ≤ 0 and assume a known standard deviation σ = 1. The initial maximum
sample size Nmax = 390 was chosen to detect a mean di�erence of δ = 0.3
with 90% power. We used the O'Brien-Fleming (1979) boundaries for the
initial design. We perform design adaptations at the �rst look of the primary
trial, L = 1.

For the secondary trial we assume a maximal sample size of N (2)
max = 520 and

a minimal sample size of N
(2)
min = 260. For sample size reassessment we re-

estimate the e�ect by the average θ̂ of the original δ and the interim estimate

δ̂1 of δ, i.e., θ̂ = δ+δ̂1
2

. Based on this estimate we de�ne two rules:

1. If θ̂ ≤ 0 then we keep the initial design.

2. If θ̂ > 0 we adapt the sample size and calculate the total sample size
of the secondary trial by

N (2) = min(N (2)
max,max(N

(2)
min,

4σ2(Φ−1(Π)−Φ−1(ε))2

θ̂2
))

where Π is the conditional power and ε the conditional rejection prob-
ability.

For simplicity the sample size is computed with the usual �xed sample size
formula ignoring the group sequential nature of the secondary trial. The
number of stages of the secondary trial was chosen such that the number of
patients recruited between each look, N(2)

K(2) , is just below 130. We also used
O'Brien-Fleming boundaries for the secondary trial. Each trial was simulated
10.000 times for several di�erent true δ values.

36

The results of the simulations are given in Table 1 and Table 2. In Table 1 the
coverage probabilities of the 97.5% stage-wise adjusted con�dence intervals
and the 97.5% repeated con�dence intervals are given. Table 2 shows the
median, mean and standard error of the 10.000 point estimates for the stage-
wise adjusted and repeated method. It can easily be seen that the stage-wise
adjusted con�dence intervals provide for all values of δ exact coverage prob-
ability up to the simulation error. However the repeated con�dence intervals
have only for δ = 0 exact coverage and become increasingly conservative for
higher values of δ. Furthermore, the stage-wise adjusted con�dence interval
method produces point estimates that are median unbiased for all values of
δ, whereas the repeated con�dence interval method produces point estimates
that are only median unbiased for δ = 0, becoming increasingly negatively
biased for higher values of δ. The standard error of the point estimates are
similar.

Con�dence Intervals
Actual Coverage of

Spending True 97.5% Con�dence Intervals
function δ SWACI RCI

γ(−4) -0.2 0.9737 0.9756
γ(−4) 0.0 0.9762 0.975
γ(−4) 0.1 0.9769 0.9924
γ(−4) 0.2 0.9764 0.9947
γ(−4) 0.3 0.9638 0.9968
γ(−4) 0.4 0.9729 0.9984
γ(−4) 0.5 0.9729 0.9998

Table 1: Con�dence intervals; 10.000 simulations; 3-look primary trial with
adaptation at look 1; 2- to 4-look secondary trial

37

Point Estimates
Spending True Median of δ0.5 Mean of δ0.5 Standard Error of δ0.5

function δ SWACI RCI SWACI RCI SWACI RCI

γ(−4) -0.2 -0.2010 -0.2319 -0.2010 -0.2316 0.001 0.001
γ(−4) 0.0 -0.0005 -0.0350 -0.0046 -0.0385 0.0009 0.0009
γ(−4) 0.1 0.0996 0.0666 0.1029 0.0702 0.0009 0.0009
γ(−4) 0.2 0.1986 0.1745 0.2130 0.1805 0.0010 0.0009
γ(−4) 0.3 0.3088 0.2695 0.3165 0.2796 0.0011 0.0011
γ(−4) 0.4 0.3962 0.3541 0.4156 0.3727 0.0013 0.0011
γ(−4) 0.5 0.4983 0.4562 0.5188 0.4661 0.0014 0.0012

Table 2: Point Estimates; 10.000 simulations; 3-look primary trial with adap-
tation at look 1; 2- to 4-look secondary trial

38

A Appendix

Listing 3: functions.h

typedef double ∗var ;

// S t ruc t o f the primary t r i a l o b j e c t
typedef struct{

double l e v e l ; // l e v e l
double ∗a ; // lower bound
double ∗b ; //upper bound
double ∗ t ; // in format ion
int k ; //number o f s t a g e s
double ∗ theta ; // a lpha_g lobb ings
double bonf_alg l ; // bon f e r ron i e s t imate
}pT_obj ;

// S t ruc t o f the secondary t r i a l o b j e c t
typedef struct{

double ∗a ; // lower bound
double ∗b ; //upper bound
double ∗ t ; // in format ion
int k ; //number o f s t a g e s
double zT ; //z−s t a t i s t i c a t s t a g e T
int T; // s t a g e where the t r i a l s t op s
}sT_obj ;

// S t ruc t o f the in ter im data o b j e c t
typedef struct{

int L ; // s t a g e o f the adapt ion
double z ; //z−s t a t i s t i c a t s t a g e L
}iD_obj ;

// S t ruc t o f the H o b j e c t
// d e s c r i b t i o n : con ta ins a l l v a r i a b l e s f o r the c a l c u l a t i o n o f
// the a l gor i thm
typedef struct{

double hl ; // lower i n t e r v a l bound
double hu ; //upper i n t e r v a l bound
double b1 ; // lower e s t ima t i on o f the t h r e s h o l d boundary (8)

39

double b2 ; //upper e s t ima t i on o f the t h r e s h o l d boundary (8)
double Al ; // va lue o f A at the lower i n t e r v a l bound
double Au; // va lue o f A at the upper i n t e r v a l bound
double A; // cond i t i ona l r e j e c t i o n p r o b a b i l i t y
double B1 ; //upper bound f o r Bk
double B2 ; // lower bound f o r Bk
double p2 ; //p−va lue o f secondary t r i a l
int t e s t ; // r e s u l t o f the t e s t
}H_list ;

// d e f i n i t i o n s o f the d i f f e r e n t f unc t i on s

H_list in i t i a l_H (H_list H) ;

iD_obj i n i t i a l (iD_obj iD) ;

var a l loc_var (int s i z e i) ;

pT_obj alloc_seqmon_obj (pT_obj pT, int s i z e_ i) ;

double seqmon (double ∗a , double ∗b , double ∗t , int k , double theta) ;

double seqmon_b(double ∗a , double ∗b , double ∗t , int k , double theta) ;

double alpha_glob (double x , void ∗params) ;

int alpha_globbing (pT_obj pT) ;

int the ta_inte rva l (pT_obj pT, double h) ;

double c e r r o r (double theta_c , pT_obj pT, iD_obj iD , int calc_b) ;

double ep s i l o n (double theta_a , pT_obj pT, iD_obj iD , double x) ;

double B(double theta_a , pT_obj pT, iD_obj iD , double x) ;

double A(double theta_a , pT_obj pT, iD_obj iD) ;

sT_obj alloc_sT_obj (sT_obj s , int s i z e_ i) ;

40

double p2 (sT_obj sT , double theta) ;

double sword (double theta , int k , pT_obj pT, double x) ;

41

Listing 4: functions.c

#include <R. h> // s p e c i f i c R l i b r a r y
#include <Rdef ines . h> // s p e c i f i c R l i b r a r y

#include <s t d l i b . h>
#include <s td i o . h>
#include <math . h>
#include <g s l / gs l_root s . h> //GSL
#include <g s l / gs l_errno . h> //GSL
#include <g s l /gsl_math . h> //GSL
#include " g s l / gs l_cdf . h" //GSL

#include " func t i on s . h" //header− f i l e

// a l l v a r i a b l e s o f the H_lis t o b j e c t are i n i t i a l i s e d to 0 .
//For d e t a i l o f the H_lis t o b j e c t see f i l e f unc t i on s . h
H_list in i t i a l_H (H_list H){

H. h l =0;
H. hu=0;
H. b1=0;
H. b2=0;
H. Al=0;
H.Au=0;
H.A=0;
H.B1=0;
H.B2=0;
H. p2=0;
H. t e s t =0;
return H;
}

// the iD_obj o b j e c t i s i n i t i a l i s e d to 0 . For d e t a i l o f
// the iD_obj o b j e c t see f i l e f unc t i on s . h
iD_obj i n i t i a l (iD_obj iD){

iD .L=0;
iD . z=0;
} ;

42

//memory i s a l l o c a t e d f o r the v a r i a b l e s o f the secondary t r i a l
sT_obj alloc_sT_obj (sT_obj s , int s i z e_ i){

int i =0;
s . a=al loc_var (s i z e_ i) ;
s . b=al loc_var (s i z e_ i) ;
s . t=al loc_var (s i z e_ i) ;
// i n i t to 0
for (i =0; i<s i z e_ i ; i++){

s . a [i]=0;
s . b [i]=0;
s . t [i]=0;
}

return s ;
}

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ p2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// d e s c r i p t i o n : Ca l cu l a t e s the p−va lue o f the secondary t r i a l
//
// input : sT Object f o r the secondary t r i a l
// t h e t a Value o f t h e t a
//
// output : erg p−va lue o f the secondary t r i a l

double p2 (sT_obj sT , double theta){
int i =0;
double erg=0;
var b_new=al loc_var (sT . k) ;

for (i =0; i<sT . k ; i++)b_new [i]=sT . b [i] ;

int new_T=sT .T;
new_T−−;
i f (sT . zT<b_new [new_T] && sT .T<sT . k){ p r i n t f ("Error : zT < b [T] ") ;

return 0 ;}
else {

// the secondary t r i a l s t op s at the f i r s t s t a g e
i f (sT .T==1){

f r e e (b_new) ;
return 1−gsl_cdf_ugaussian_P (sT . zT−theta ∗ s q r t (sT . t [0])) ;

43

}
else {

b_new [new_T]=sT . zT ;
erg=seqmon (sT . a , b_new , sT . t , sT .T, theta) ;
}

}
f r e e (b_new) ;
return erg ;
} ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ t h e t a_ in t e r v a l ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// d e s c r i p t i o n : Ca l cu l a t e s which i n t e r v a l con ta ins t h e t a
//
// input : pT Object o f the primary t r i a l
// h Value o f t h e t a
//
// output : i number o f the i n t e r v a l t h a t con ta ins
// t h e t a

int the ta_inte rva l (pT_obj pT, double h){
int i ;
for (i =0; i<pT. k ; i++){

i f (h>pT. theta [i]+0.0000001){ i++;return i ; }
}

return i ;
} ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ B ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// d e s c r i p t i o n : Ca l cu l a t e s the va lue o f B(h)
//
// input : theta_a Value o f t h e t a
// pt Object f o r the primary t r i a l
// iD Object f o r the in ter im data
// x Value o f the l a s t c r i t i c a l boundary
//
// output : B va lue o f B(h)

double B(double theta_a , pT_obj pT, iD_obj iD , double x){
int i =0;
double B=0;

44

int i n t e r v a l=the ta_inte rva l (pT, theta_a) ;

int l a s t=i n t e r v a l ;
l a s t −−;
pT_obj pT_new;

pT_new. k=i n t e r v a l ;

pT_new=alloc_seqmon_obj (pT_new, i n t e r v a l) ;
i f (! pT_new . a | | ! pT_new . b | | ! pT_new . t | | ! pT_new . theta)

{
p r i n t f ("No memory f r e e f o r double−components (B)\n") ;
e x i t (1) ;

}

for (i =0; i<i n t e r v a l ; i++){
pT_new. b [i]=pT. b [i] ;
pT_new . a [i]=pT. a [i] ;
pT_new . t [i]=pT. t [i] ;
}

pT_new . b [l a s t]=x ;

B=ce r r o r (theta_a ,pT_new, iD , 1) ;

// f r e e memory
f r e e (pT_new . a) ; f r e e (pT_new . b) ; f r e e (pT_new . t) ; f r e e (pT_new . theta) ;

return B;
} ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ A ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// d e s c r i p t i o n : Ca l cu l a t e s the va lue o f A(h)
//
// input : theta_a Value o f t h e t a
// pt Objec t f o r the primary t r i a l
// iD Object f o r the in ter im data
//
// output : A va lue o f A(h)

double A(double theta_a , pT_obj pT, iD_obj iD){

45

int i =0;
double A=0;
int i n t e r v a l=the ta_inte rva l (pT, theta_a) ;

i f (i n t e r va l−iD .L<=1)return 0 ;

else {

i n t e r va l −−;

pT_obj pT_new;
pT_new. k=i n t e r v a l ;

pT_new=alloc_seqmon_obj (pT_new, i n t e r v a l) ;
i f (! pT_new . a | | ! pT_new . b | | ! pT_new . t | | ! pT_new . theta)

{
p r i n t f ("No memory f r e e f o r double−components (A)\n") ;
e x i t (1) ;

}

for (i =0; i<i n t e r v a l ; i++){
pT_new. b [i]=pT. b [i] ;
pT_new . a [i]=pT. a [i] ;
pT_new . t [i]=pT. t [i] ;

}

A=ce r r o r (theta_a ,pT_new, iD , 0) ;

// f r e e memory
f r e e (pT_new . a) ; f r e e (pT_new . b) ; f r e e (pT_new . t) ; f r e e (pT_new . theta) ;

return A;
}
} ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ cer ror ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// d e s c r i p t i o n : Ca l cu l a t e s the c ond i t i o na l e r ror p r o b a b i l i t y
//
// input : theta_c Value o f t h e t a

46

// pT Object f o r the primary Tr ia l
// iD Object f o r the in ter im Data
// calc_b i f 0 c l a c u l a t e seqmon
// i f 1 c l a c u l a t e seqmon_b
//
// output : e c ond i t i o na l e r ror p r o b a b i l i t y

double c e r r o r (double theta_c , pT_obj pT, iD_obj iD , int calc_b){
int i =0;
double e=0;
int k_new=pT. k ;
k_new−=iD .L ;
int L=iD .L ;
L−−;

i f (k_new<1){
p r i n t f (" cannot compute c e r r o r f o r L>K") ;
return 0 ;
}

var a_new=al loc_var (k_new) ;
var b_new=al loc_var (k_new) ;
var t_new=al loc_var (k_new) ;

int c=0;
for (i=iD .L ; i<pT. k ; i++){

b_new [c]=(pT . b [i]∗ s q r t (pT . t [i])− iD . z∗ s q r t (pT . t [L])) /
sq r t (pT . t [i]−pT. t [L]) ;

a_new [c]=pT. a [i] ;
t_new [c]=pT. t [i]−pT. t [L] ;
c++;
}

i f (! calc_b)
e=seqmon (a_new , b_new , t_new , k_new , theta_c) ;
else

e=seqmon_b(a_new , b_new , t_new , k_new , theta_c) ;

// f r e e memory
f r e e (a_new) ; f r e e (b_new) ; f r e e (t_new) ;

47

return e ;
} ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ a l l oc_var ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// d e s c r i p t i o n : A l l o c a t e s unused space f o r an array
//
// input : s i z e i s i z e o f the a l l o c a t e d array
//
// output : V the new a l l o c a t e d array

var a l loc_var (int s i z e i){
int i =0;
var V = (double ∗) c a l l o c (s i z e i , s izeof (double)) ;
// i n i t to 0
for (i =0; i<s i z e i ; i++){

V[i]=0;
}

return V;
} ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ alloc_seqmon_obj ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// d e s c r i p t i o n : A l l o c a t e s unused space f o r a l l v a r i a b l e s o f a
// pT_obj
//
// input : pT Object f o r the primary Tr ia l
// s i z e i s i z e o f the a l l o c a t e d array
//
// output : pT A pT_obj wi th the a l l o c a t e d v a r i a b l e s

pT_obj alloc_seqmon_obj (pT_obj pT, int s i z e_ i){
int i =0;
pT . a=al loc_var (s i z e_ i) ;
pT . b=al loc_var (s i z e_ i) ;
pT . t=al loc_var (s i z e_ i) ;
pT . theta=al loc_var (s i z e_ i +1);
// i n i t to 0
for (i =0; i<s i z e_ i ; i++){

pT. a [i]=0;
pT . b [i]=0;

48

pT. t [i]=0;
pT . theta [i]=0;
}

pT . theta [s i z e_ i]=0;
return pT;
} ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ seqmon ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// d e s c r i p t i o n : computes the p r o b a b i l i t i e s o f c r o s s i n g
// boundar ies in a group s e q u en t i a l c l i n i c a l
// t r i a l . I t implements the Armitage−McPherson
// and Rowe (1969) a l gor i thm us ing the method
// de s c r i b ed in Schoen fe ld D. (2001) .
//
// input : a lower boundar ies
// b upper boundar ies
// t in format ion
// k number o f s t a g e s
// t h e t a va lue o f t h e t a
//
// output : pU_last p r o b a b i l i t y o f c r o s s i n g the
// boundar ies

double seqmon (double ∗a , double ∗b , double ∗t , int k , double theta){

int c=1;
int i n t e r v a l =500;
var M=al loc_var (i n t e r v a l) ;
var Ma=al loc_var (i n t e r v a l) ;
var Maf=al loc_var (i n t e r v a l) ;
var x0=al loc_var (i n t e r v a l) ;
var d=al loc_var (k) ;
var pU=al loc_var (k) ;
var pL=al loc_var (k) ;
var VU=al loc_var (i n t e r v a l) ;
var VL=al loc_var (i n t e r v a l) ;
var x=al loc_var (i n t e r v a l) ;
int i =0;
int j =0;
int w=0;

49

var b_new=al loc_var (k) ;

i f (! x | | !VU| | !VL | | ! x0 | | !Maf | | !Ma | | !M | | ! d | | ! pU | | ! pL | | ! b_new)
{

p r i n t f ("No memory f r e e f o r double−components (seqmon)\n") ;
e x i t (1) ;

}

double pUd , pLd ,VUf , VLf ,VUM=0,VLM=0;

for (i =0; i<k ; i++){
i f (theta) b_new [i]=b [i]− theta ∗ s q r t (t [i]) ;
else b_new [i]=b [i] ;
d [i]=(b_new [i]−a [i]) / (i n t e r v a l) ;
}

c=1;

for (i =0; i<i n t e r v a l ; i++){
x0 [i]=a [0]+(c−0.5)∗(d [0]) ;
M[i]=(d [0] / sq r t (2∗M_PI))∗

exp(−(pow((sq r t (t [0]) ∗ x0 [i]) , 2)) / (2 ∗ t [0])) ;
c++;
}

pUd=−(s q r t (t [0]) ∗b_new [0]) / sq r t (t [0]) ;
// gsl_cdf_ugaussian_P cumula t ive d i s t r i b u t i o n f unc t i on s
//For d e t a i l s see GNU S c i e n t i f i c Library
pU[0]= gsl_cdf_ugaussian_P (pUd) ;

pLd=(sq r t (t [0]) ∗ a [0]) / sq r t (t [0]) ;
pL[0]= gsl_cdf_ugaussian_P (pLd) ;

int count=0;
int l a s t=k ;
l a s t −−;
for (i =1; i<k ; i++){

c=1;
for (j =0; j<i n t e r v a l ; j++){

50

VUf=−(s q r t (t [i]) ∗b_new [i] + (− s q r t (t [count]) ∗ x0 [j])) /
sq r t (t [i]− t [count]) ;

VU[j]=gsl_cdf_ugaussian_P (VUf) ;
VLf=(sq r t (t [i]) ∗ a [i] + (− s q r t (t [count]) ∗ x0 [j])) /

sq r t (t [i]− t [count]) ;
VL[j]=gsl_cdf_ugaussian_P (VLf) ;
VLM+=VL[j]∗M[j] ;
VUM+=VU[j]∗M[j] ;
x [j]=a [i] + (c − 0 .5) ∗ d [i] ;
c++;
}

pL [i]=pL [count]+VLM;
pU[i]=pU[count]+VUM;

VLM=0.0;
VUM=0.0;

i f (i != l a s t){
for (w=0;w<i n t e r v a l ;w++){

for (j =0; j<i n t e r v a l ; j++){
Ma[j]=(d [i]∗ s q r t (t [i]) / (s q r t (2 . 0∗M_PI)∗

s q r t (t [i] − t [count]))) ∗
expl (−pow((sq r t (t [i]) ∗ x [w]− s q r t (t [count]) ∗
x0 [j]) , 2) / (2 ∗ (t [i] − t [count]))) ;

Maf [w]+=Ma[j]∗M[j] ;
}

}
for (j =0; j<i n t e r v a l ; j++){

M[j]=Maf [j] ;
x0 [j]=x [j] ;
Maf [j]=0 . 0 ;
Ma[j]=0 . 0 ;
}

}
count++;

}

for (i =0; i<k ; i++){

51

i f (! pU[i] | | ! pL [i]) {
f r e e (M) ; f r e e (Ma) ; f r e e (Maf) ; f r e e (x0) ;
f r e e (VU) ; f r e e (VL) ; f r e e (x) ; f r e e (d) ;
f r e e (pU) ; f r e e (pL) ; f r e e (b_new) ;
return −1;
}

}

double pU_last=pU[l a s t] ;

f r e e (M) ; f r e e (Ma) ; f r e e (Maf) ; f r e e (x0) ; f r e e (VU) ; f r e e (VL) ; f r e e (x) ;
f r e e (d) ; f r e e (pU) ; f r e e (pL) ; f r e e (b_new) ;

return pU_last ;

} ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ seqmon_b ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// d e s c r i p t i o n : I t ' s a modi f ied ve r s i on o f seqmon and
// c a l c u l a t e s the p r o b a b i l i t y o f c r o s s i n g
// only the l a s t upper boundary
//
// input : a lower boundar ies
// b upper boundar ies
// t in format ion
// k number o f s t a g e s
// t h e t a t h e t a
//
// output : pU_last p r o b a b i l i t y o f c r o s s i n g the l a s t
// boundary

double seqmon_b(double ∗a , double ∗b , double ∗t , int k , double theta){

int c=1;
int i n t e r v a l =500;
var M=al loc_var (i n t e r v a l) ;
var Ma=al loc_var (i n t e r v a l) ;
var Maf=al loc_var (i n t e r v a l) ;
var x0=al loc_var (i n t e r v a l) ;

52

var d=al loc_var (k) ;
var VU=al loc_var (i n t e r v a l) ;
var x=al loc_var (i n t e r v a l) ;
var b_new=al loc_var (k) ;

double pU,pUd ;
int i =0;
int j =0;
int w=0;

i f (! x | | !VU| | ! x0 | | !Maf | | !Ma | | !M | | ! d | | ! b_new)
{

p r i n t f ("No memory f r e e f o r double−components (seqmon_b)\n") ;
e x i t (1) ;

}

double VUf=0,VUM=0;

for (i =0; i<k ; i++){
i f (theta) b_new [i]=b [i]− theta ∗ s q r t (t [i]) ;
else b_new [i]=b [i] ;
d [i]=(b_new [i]−a [i]) / (i n t e r v a l) ;
}

c=1;

for (i =0; i<i n t e r v a l ; i++){
x0 [i]=a [0]+(c−0.5)∗(d [0]) ;
M[i]=(d [0] / sq r t (2∗M_PI))∗ exp(−(pow((sq r t (t [0]) ∗ x0 [i]) , 2)) /

(2∗ t [0])) ;
c++;
}

pUd=−(s q r t (t [0]) ∗b_new [0]) / sq r t (t [0]) ;
pU=gsl_cdf_ugaussian_P (pUd) ;

int count=0;
int l a s t=k ;

53

i f (k==1){
f r e e (M) ; f r e e (Ma) ; f r e e (Maf) ; f r e e (x0) ; f r e e (VU) ; f r e e (x) ;
f r e e (d) ; f r e e (b_new) ;
return pU;
}

l a s t −−;
for (i =1; i<k ; i++){

c=1;
for (j =0; j<i n t e r v a l ; j++){

x [j]=a [i] + (c − 0 .5) ∗ d [i] ;
c++;
}

i f (i != l a s t){
for (w=0;w<i n t e r v a l ;w++){

for (j =0; j<i n t e r v a l ; j++){
Ma[j]=(d [i]∗ s q r t (t [i]) /

(s q r t (2 . 0∗M_PI)∗ s q r t (t [i] − t [count]))) ∗
exp(−pow((sq r t (t [i]) ∗ x [w] − s q r t (t [count]) ∗
x0 [j]) , 2) / (2 ∗ (t [i] − t [count]))) ;

Maf [w]+=Ma[j]∗M[j] ;
}

}
for (j =0; j<i n t e r v a l ; j++){

M[j]=Maf [j] ;
x0 [j]=x [j] ;
Maf [j]=0 . 0 ;
Ma[j]=0 . 0 ;
}

}
i f (i==l a s t){
for (j =0; j<i n t e r v a l ; j++){

VUf=−(s q r t (t [i]) ∗b_new [i] + (− s q r t (t [count]) ∗ x0 [j])) /
sq r t (t [i]− t [count]) ;

VU[j]=gsl_cdf_ugaussian_P (VUf) ;
VUM+=VU[j]∗M[j] ;
}

pU=VUM;
}
count++;

}

54

VUf=VUM=0;
f r e e (M) ; f r e e (Ma) ; f r e e (Maf) ; f r e e (x0) ; f r e e (VU) ; f r e e (x) ; f r e e (d) ;
f r e e (b_new) ;

i f (! pU) return −1;
else return pU;

} ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ sword ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// d e s c r i p t i o n : Ca l cu l a t e s c ond t i t ona l r e j e c t i o n p r o b a b i l i t y
// wi th l a s t c r i t i c a l boundary equa l x
//
// input : t h e t a va lue o f t h e t a
// k number o f s t a g e s
// pt o b j e c t f o r the primary t r i a l
// x va lue o f the l a s t c r i t i c a l boundary
//
// output : erg

double sword (double theta , int k , pT_obj pT, double x){
int i =0;
int new_k=k ;
double erg=0;
new_k−−;

i f (k==1){
return 1−gsl_cdf_ugaussian_P (x−

theta ∗ s q r t (pT . t [new_k])) ;
}

else {
var b_new=al loc_var (k) ;
var t_new=al loc_var (k) ;

for (i =0; i<k ; i++){
b_new [i]=pT. b [i] ;
t_new [i]=pT. t [i] ;

55

}
b_new [new_k]=x ;

erg=seqmon (pT . a , b_new , t_new , k , theta) ;
f r e e (b_new) ;
f r e e (t_new) ;
return erg ;
}

} ;

56

Listing 5: asoCbound.c

#include <R. h> // s p e c i f i c R l i b r a r y
#include <Rdef ines . h> // s p e c i f i c R l i b r a r y

#include <s td i o . h>
#include <g s l /gsl_math . h> //GSL
#include <g s l / gs l_errno . h> //GSL
#include " g s l / gs l_cdf . h" //GSL

#include " func t i on s . h" //header− f i l e

#define INF −100 //pre−de f ined va lue f o r minus i n f i n i t y
#define pprec 0 .0001 //pre−de f ined va lue f o r the p r e c i s i on

/∗∗∗
//The func t i on t e s t i n t c a l c u l a t e s i f the t e s t e d i n t e r v a l s i s
// r e j e c t ed , accepted or t ha t t h e r e i s no de c i s i on p o s s i b l e .
// input : H o b e j c t o f H_lis t
// pT o b j e c t o f the primary t r i a l
// sT o b j e c t o f the secondary t r i a l
// iD o b j e c t o f the in ter im data
// output : H
// the output o f the t e s t i s saved in
// H. t e s t (2= r e j e c t ; 1=accep t ; 0=no dec i s i on)
/∗∗∗

H_lis t t e s t i n t (H_lis t H, pT_obj pT , iD_obj iD , sT_obj sT){
i n t i n t e r v a l h l =0;
i n t i n t e r v a l h u =0;
i n t i n t e r v a l =0;
i n t l a s t =0;
i n t check_a=0;
i n t check_b=0;
i n t i =0;

// t h e t a_ in t e r v a l c a l c u l a t e s the s t a g e con ta in ing h l and hu
i n t e r v a l h l=t h e t a_ in t e r v a l (pT ,H. h l) ;
i n t e r v a l h u=th e t a_ in t e r v a l (pT ,H. hu) ;

57

// i f h l and hu are not in the same i n t e r v a l we have to abor t
i f (i n t e r v a l h l != i n t e r v a l h u && H. hl >0 && in t e r va l hu >iD .L){
p r i n t f (" h l and hu not in the same alpha−g l o b b i n g i n t e r v a l or

i n t e r v a l < iD L") ;
H. t e s t =−1;
re turn H;
}

l a s t=i n t e r v a l h u ;
l a s t −−;

//Value o f A at the upper bound hu
i f (H.Au==0){H.Au=A(H. hu , pT, iD) ; }

//P−va lue o f the secondary t r i a l
i f (H. p2==0)H. p2=p2 (sT ,H. hu) ;

//∗∗
// parameter va l u e s so sma l l t h a t we can n e g l e c t r e j e c t i o n
// boundar ies from the f i r s t K−1 s t a g e s

i f (H. hu<=pT. bon f_a l g l){
// gsl_cdf_ugaussian_Pinv in v e r s e cumula t ive d i s t r i b u t i o n
// f unc t i on s .
//For d e t a i l s see GNU S c i e n t i f i c Library
H. b1=H. b2=gsl_cdf_ugaussian_Pinv(1−pT . l e v e l)+

H. hu∗ s q r t (pT . t [l a s t]) ;
i f (!H.B1)H.B1=B(H. hu , pT , iD ,H. b1) ;

i f (H. p2<=H.B1)H. t e s t =2;
e l s e {

i f (H. p2>H.B1+H.Au)H. t e s t =1;
e l s e H. t e s t =0;
}

re turn H;
}

//∗∗
// parameter va l u e s not sma l l enough t ha t we can n e g l e c t r e j e c t i o n
// boundar ies

e l s e {
//Value o f A at the lower bound hu
i f (!H. Al){

58

i f (H. h l==INF)H. Al=0; // i f h l=−i n f
e l s e H. Al=A(H. hl , pT , iD) ;
}

i n t e r v a l=l a s t ;
i n t e r v a l −−;

//∗∗
//hu i s equa l to the upper boundary o f the t e s t e d i n t e r v a l

i f (f a b s (pT . t h e t a [i n t e r v a l]−H. hu)<0.00001 && H. hu>0.00001)
{
i f (H. p2<=H. Al){H. t e s t =2; // r e j e c t i n t e r v a l

}
e l s e {

i f (H. p2<=H.Au){H. t e s t =1;// accep t i n t e r v a l
}

e l s e {H. t e s t =0;//no de c i s i on p o s s i b l e
}

}
re turn H;
}

//∗∗

var a_new=al loc_var (l a s t) ;
var b_new=al loc_var (l a s t) ;
var t_new=al loc_var (l a s t) ;

i f (!H.A){
f o r (i =0; i<l a s t ; i++){

a_new [i]=pT. a [i] ;
b_new [i]=pT. b [i] ;
t_new [i]=pT. t [i] ;
}

H.A=seqmon (a_new , b_new , t_new , l a s t ,H. hu) ;
}

f r e e (a_new) ;
f r e e (b_new) ;
f r e e (t_new) ;

59

// lower and upper e s t ima t i on s f o r the boundary bk (h) as in (8)
i f (!H. b1)H. b1=gsl_cdf_ugaussian_Pinv(1−pT . l e v e l)+

H. hu∗ s q r t (pT . t [l a s t]) ;
i f (!H. b2)H. b2=gsl_cdf_ugaussian_Pinv (1−((pT . l e v e l−H.A)/(1−H.A)))+

H. hu∗ s q r t (pT . t [l a s t]) ;

//Values o f B at the upper and lower bound b1 and b2
i f (!H.B1)H.B1=B(H. hu , pT , iD ,H. b1) ;
i f (!H.B2)H.B2=B(H. hu , pT , iD ,H. b2) ;

//Algorithm
fo r (i =0; i <100; i++){

// s t ep (S1)
i f (! check_a){

// case (a)
i f (H. p2<=H. Al+H.B2){

H. t e s t =2;// r e j e c t i n t e r v a l
check_a=1;
break ;
}

// case (b)
i f (H. p2>H. Al+H.B1){

check_a=1;// exc lude case (a) and pass
// d i r e c t l y to (S2)

}
// case (c)
i f (H. Al+H.B2<H. p2 && H. p2<=H. Al+H.B1){

check_a=0;//Without e x c l ud ing case (a) ,
// pass d i r e c t l y to (S2)

}
}

// s t ep (S2)
i f (! check_b){

// case (a)
i f (H. p2>H.Au+H.B1){

check_b=1;
H. t e s t =1;// accep t the i n t e r v a l
break ;

60

}
// case (b)
i f (H. Al+H.B1<H. p2 && H. p2<=H.Au+H.B2){// r e f i n e i n t e r v a l

H. t e s t =0;
check_b=1;
break ;
}

e l s e {
// c a l c u l a t e r e j e c t i o n p r o b a b i l i t y
i f (sword (H. hu , i n t e r v a l h l , pT , (H. b1+H. b2)/2)>pT. l e v e l){

H. b1=(H. b1+H. b2)/2 ;
H.B1=B(H. hu , pT, iD ,H. b1) ;
}

e l s e {
H. b2=(H. b1+H. b2)/2 ;
H.B2=B(H. hu , pT, iD ,H. b2) ;
}

}
}
}
i f (!H. t e s t && i >98){

//maximum number o f 100 i t e r a t i o n s reached wi thou t
// convergence
p r i n t f ("maximum number o f 100 i t e r a t i o n s reached wi thout

convergence ") ;
H. t e s t =0;
re turn H;
}

e l s e re turn H;
}

} ;

// d e s c r i p t i o n : The func t i on main c a l c u l a t e s from a g iven group
// s e q u en t i a l p lan wi th adap t i v e des i gn the a s s o c i a t e d
// i n t e r v a l s , pas se s them to the func t i on t e s t i n t and
// re turns the lower con f idence bound
//
// input : parameters f o r the primary t r i a l :
// k number o f s t a g e s

61

// a lower boundar ies
// b upper boundar ies
// t in format ion
// t h e t a t h e t a
// l e v e l a lpha
// parameters f o r the in ter im data
// L s ta g e o f the adapt ion
// z z−s t a t i s t i c a t s t a g e L
// parameters f o r the secondary t r i a l
// k2 number o f s t a g e s
// a2 lower boundar ies
// b2 upper boundar ies
// t2 in format ion
// T2 s t a g e where the t r i a l s t op s
// zT z−s t a t i s t i c a t s t a g e T2
//
// output : erg lower bound o f the c a l c u l a t e d con f idence
// i n t e r v a l

i n t main (i n t ∗k , var a , var b , var t , var the ta , doub le ∗ l e v e l ,
i n t ∗L, doub le ∗z , i n t ∗k2 , var a2 , var b2 , var t2 , i n t ∗T2,
doub le ∗zT , doub le ∗ erg){

i n t i =0;

pT_obj pT;// dec l a r e primary t r i a l o b j e c t pT
iD_obj iD ;// de c l a r e in ter im data o b j e c t iD
iD=i n i t i a l (iD) ;
sT_obj sT ;// dec l a r e secondary t r i a l o b j e c t sT

pT. k=k [0] ; / / s t a g e s pT

pT=alloc_seqmon_obj (pT,pT . k) ;
i f (! pT . a | | ! pT . b | | ! pT . t | | ! pT . t h e t a)
{

// p r i n t f ("No memory a v a i l a b l e f o r double−components !\n ") ;
e x i t (1) ;

}

62

f o r (i =0; i<pT. k ; i++){
pT. a [i]=a [i] ; / / lower boundar ies pT
pT. b [i]=b [i] ; / / upper boundar ies pT
pT. t [i]= t [i] ; / / in format ion pT
pT. t h e t a [i]= th e t a [i] ; / / a lpha_g lobb ings
}

sT . k=k2 [0] ; / / s t a g e s sT

sT=alloc_sT_obj (sT , sT . k) ;
i f (! sT . a | | ! sT . b | | ! sT . t)
{

// p r i n t f ("No memory a v a i l a b l e f o r double−components !\n ") ;
e x i t (1) ;

}

f o r (i =0; i<sT . k ; i++){
sT . a [i]=a2 [i] ; / / lower boundar ies pT
sT . b [i]=b2 [i] ; / / upper boundar ies pT
sT . t [i]= t2 [i] ; / / in format ion sT
}

iD .L=L [0] ; / / s t a g e o f the des i gn adap ta t i ons

iD . z=z [0] ; / / z−s t a t i s t i c a t s t a g e L

sT . zT=zT [0] ; / / z−s t a t i s t i c a t s t a g e T2

sT .T=T2 [0] ; / / s t a g e where the secondary t r i a l s s t op s

pT . l e v e l=l e v e l [0] ; / / a lpha

i n t j =0;
doub le min_bonf=0;
i n t count =0;
i n t s t a r t=pT. k ;
s t a r t −=2;

63

i n t t h e t a c=pT. k ;
the tac−−;
i n t i n t e r v a l ;
i n t t e s t_ i =0;
i n t t e s t =0;
i n t t e s t i t =0;
i n t o l d_ in t e r va l =0;

// i n i t i a l o b j e c t Hl
H_lis t Hl [pT . k] [1 0 0] ;
f o r (i =0; i<pT. k ; i++){

f o r (j =0; j <100; j++){
Hl [i] [j]= in i t i a l_H (Hl [i] [j]) ;
}

}

doub le malg l =0;//mean o f the alpha−g l o b b i n g cons tan t s (6)
f o r (i =0; i<pT. k ; i++){

malg l+=pT. t h e t a [i] ;
}

malg l=malg l /pT . k ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Bonferroni e s t imate ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

pT . bon f_a l g l =100;

f o r (i =0; i<pT. k−1; i++){
min_bonf=(pT . b [i]−gsl_cdf_ugaussian_Pinv(1−pprec / i))/

s q r t (pT . t [i]) ;
i f (min_bonf<=pT. bon f_a l g l)pT . bon f_a l g l=min_bonf ;
}

//∗∗

f o r (i=s t a r t ; i >=0;i−−){

64

count=0;
i n t e r v a l =0;

// bounds f o r the f i r s t i n t e r v a l
i f (i==s t a r t){

Hl [i] [0] . h l=INF ;
Hl [i] [0] . hu=pT. t h e t a [i] ;
}

// bounds f o r the r e s t o f the i n t e r v a l s
e l s e {

Hl [i] [i n t e r v a l] . h l=pT. t h e t a [t h e t a c] ;
Hl [i] [i n t e r v a l] . hu=pT. t h e t a [i] ;
}

Hl [i] [i n t e r v a l]= t e s t i n t (Hl [i] [i n t e r v a l] , pT , iD , sT) ;
count++;

i f (Hl [i] [i n t e r v a l] . t e s t ==2){// the whole i n t e r v a l can be r e j e c t e d
}

e l s e {// the i n t e r v a l i s accep ted or t he r e i s no dec i s i on p o s s i b l e
o l d_ in t e r va l=i n t e r v a l ;
i n t e r v a l++; // increment l i s t −counter
Hl [i] [i n t e r v a l] . Al=Hl [i] [o l d_ in t e r va l] . Al ;
Hl [i] [i n t e r v a l] . h l=Hl [i] [o l d_ in t e r va l] . h l ;

// on ly in the case o f the f i r s t i n t e r v a l (7)
i f (i==s t a r t)Hl [i] [i n t e r v a l] . hu=Hl [i] [o l d_ in t e r va l] . hu−malg l ;
e l s e Hl [i] [i n t e r v a l] . hu=(Hl [i] [o l d_ in t e r va l] . h l+

Hl [i] [o l d_ in t e r va l] . hu)/2 ;

//new s u b i n t e r v a l i s t e s t e d
Hl [i] [i n t e r v a l]= t e s t i n t (Hl [i] [i n t e r v a l] , pT , iD , sT) ;
count++;

// cont inues as long as we donnot have the pre−de f ined p r e c i s i on
wh i l e (f a b s (Hl [i] [i n t e r v a l] . hu−Hl [i] [i n t e r v a l] . h l)>=pprec &&

t e s t i t !=1){

i f (Hl [i] [i n t e r v a l] . t e s t ==2){ // r e j e c t the i n t e r v a l
o l d_ in t e r va l=i n t e r v a l ;

65

o ld_in te rva l −−;

// in the case o f the f i r s t i n t e r v a l
i f (i==s t a r t){

Hl [i] [i n t e r v a l] . h l=Hl [i] [i n t e r v a l] . hu ;
Hl [i] [i n t e r v a l] . hu=Hl [i] [o l d_ in t e r va l] . hu ;
Hl [i] [i n t e r v a l] . p2=0;
Hl [i] [i n t e r v a l] . Al=0;
Hl [i] [i n t e r v a l] . Au=0;
Hl [i] [i n t e r v a l] . B1=0;
Hl [i] [i n t e r v a l] . B2=0;
Hl [i] [i n t e r v a l] . b1=0;
Hl [i] [i n t e r v a l] . b2=0;
}

// in a l l o ther cases we can save a coup le o f va l u e s
// to save computation time
e l s e {

Hl [i] [i n t e r v a l] . h l=Hl [i] [i n t e r v a l] . hu ;
Hl [i] [i n t e r v a l] . hu=Hl [i] [o l d_ in t e r va l] . hu ;
Hl [i] [i n t e r v a l] . B1=Hl [i] [o l d_ in t e r va l] . B1 ;
Hl [i] [i n t e r v a l] . B2=Hl [i] [o l d_ in t e r va l] . B2 ;
Hl [i] [i n t e r v a l] . b1=Hl [i] [o l d_ in t e r va l] . b1 ;
Hl [i] [i n t e r v a l] . b2=Hl [i] [o l d_ in t e r va l] . b2 ;
Hl [i] [i n t e r v a l] . Au=Hl [i] [o l d_ in t e r va l] . Au;
Hl [i] [i n t e r v a l] . Al=0;
Hl [i] [i n t e r v a l] . p2=0;
}

}
e l s e {// akzep t or no dec i s i on

i n t e r v a l ++;// increment l i s t −counter
o l d_ in t e r va l++;

// in the case o f the f i r s t i n t e r v a l
i f (i==s t a r t && Hl [i] [i n t e r v a l] . h l==INF){

Hl [i] [i n t e r v a l] . hu=Hl [i] [o l d_ in t e r va l] . hu−malg l ;
Hl [i] [i n t e r v a l] . p2=0;
}

e l s e {
Hl [i] [i n t e r v a l] . h l=Hl [i] [o l d_ in t e r va l] . h l ;
Hl [i] [i n t e r v a l] . hu=(Hl [i] [o l d_ in t e r va l] . h l+

Hl [i] [o l d_ in t e r va l] . hu)/2 ;

66

Hl [i] [i n t e r v a l] . Al=Hl [i] [o l d_ in t e r va l] . Al ;
Hl [i] [i n t e r v a l] . p2=0;
}

}

// t e s t new de f ined i n t e r v a l
Hl [i] [i n t e r v a l]= t e s t i n t (Hl [i] [i n t e r v a l] , pT , iD , sT) ;
count++;

i f (f a b s (Hl [i] [i n t e r v a l] . hu−Hl [i] [i n t e r v a l] . h l)<=0.001 &&
Hl [i] [i n t e r v a l] . hu!=Hl [i] [i n t e r v a l] . h l){

t e s t i t =1;
}

}//end wh i l e

i f (f a b s (Hl [i] [i n t e r v a l] . hu−Hl [i] [i n t e r v a l] . h l)<=0.001 &&
t e s t i t ==1){

break ;
}

}//end e l s e
i f (count >98){

// p r i n t f ("\n100 i t e r a t i o n s reached ") ;
}

the tac−−;
}//end f o r

// f r e e memory
f r e e (pT . a) ;
f r e e (pT . b) ;
f r e e (pT . t) ;
f r e e (pT . t h e t a) ;

f r e e (sT . a) ;
f r e e (sT . b) ;
f r e e (sT . t) ;

// save r e s u l t s in erg

67

erg [0]=Hl [i] [i n t e r v a l] . h l ;
erg [1]=Hl [i] [i n t e r v a l] . hu ;

}//end main

68

References

[Armitage, 1957] Armitage, P. (1957). Restricted sequential procedures.
Biometrika 44, 9-56.

[Armitage et al., 1969] Armitage, P., McPherson, C., and Rowe, B. (1969).
Repeated signi�canca tests on accumulating data. J. Roy. Statist. Soc. A.
132, 235-244.

[Armitage and Schneiderman, 1958] Armitage, P. and Schneiderman, M.
(1958). Statistical problems in a mass screening program. Ann. New York
Academy Sci. 76, 896-908.

[Bartky, 1943] Bartky, W. (1943). Multiple sampling with constant proba-
bility. Ann. Math. Statist. 14, 363-377.

[Bauer, 1989] Bauer, P. (1989). Multistage testing with adaptive designs
(with discussion). Beometrie und Informatik in Medizin Und Biologie ,
130-148.

[Bauer and Köhne, 1994] Bauer, P. and Köhne, K. (1994). Evalution of ex-
periments withadaptive interim analyses. Biomertrics 50, 1029-1041.

[Brannath et al., 2007] Brannath, W., Mehta, C. R., and Posch, M. (2007).
Exact con�dence bounds following adaptive group sequential tests. sub-
mitted.

[Brannath et al., 2002] Brannath, W., Posch, M., and Bauer, P. (2002). Re-
cursive combination tests. Journal of the American Statistical Association
97, 236-244.

[Brannath, 2006] Brannath, W. e. a. (2006). Estimation in �exible two stage
designs. Statistics in Medicine 25, 3366-3381.

[CPMP, 1998] CPMP (1998). Note for guidance on statistical principles for
clinical trias. ICH/363/96.

[Cui et al., 1999] Cui, L., Hung, H., and Wang, S.-J. (1999). Modi�cation of
sample size in group sequential clinical trials. Biometrica 55, 853-857.

[DeMets and Ware, 1980] DeMets, D. and Ware, J. (1980). Group sequential
methods for clinical trials with one-sided hypothesis. Biometrika 67, 651-
660.

69

[DeMets and Ware, 1982] DeMets, D. and Ware, J. (1982). Asymmetric
group sequential boundaries for monitoring cinical trials. Biometrika 69,
661-663.

[Denne, 2001] Denne, J. (2001). Sample size recalculation using conditional
power. Statistics in Medizine 20, 2645-2660.

[Dodge and Roming, 1929] Dodge, H. and Roming, H. (1929). A method for
sampling inspection. Bell Syst. Tech. J. 8, 613-631.

[Dunnett, 1961] Dunnett, C. (1961). The statistical theory of drug screening.
Quantitative Methods in Pharmacology, Amsterdam: North-Holland, 212-
231.

[Eales and Jennison, 1992] Eales, J. and Jennison, C. (1992). An improved
method for deriving optimal one-sided group sequential tests. Biometrika
79, 13-24.

[EAST-5, 2007] EAST-5 (2007). Software for the design and interim mon-
itoring of �exible clinical trials. Cytel Software Corporation, Cambridge,
MA.

[Elfring and Schultz, 1973] Elfring, G. and Schultz, J. (1973). Group sequen-
tial designs for clinical trials. Biometrics 29, 471-477.

[Hartung and Knapp, 2003] Hartung, J. and Knapp, G. (2003). A new class
of completely self-designing clinical trials. Biometrical Journal 45, 3-19.

[Hwang et al., 1990] Hwang, I., Shih, W., and DeCani, J. (1990). Group
sequential designs using a family of type i error probability spending func-
tions. Statistics in Medizine 9, 1439-1445.

[Jennison, 1987] Jennison, C. (1987). E�cient group sequential tests with
unpredictable group sizes. Biometrika 74, 155-165.

[Jennison and Turnbull, 1984] Jennison, C. and Turnbull, B. (1984). Re-
peated con�dence intervals for group sequential clinical trials. Contr. Clin.
Trials 5, 33-45.

[Jennison and Turnbull, 1989] Jennison, C. and Turnbull, B. (1989). Interim
analyses: the repeated con�dence interval approach (with discussion). J.R.
Statist. Soc. B 51, 305-361.

70

[Jennison and Turnbull, 2000] Jennison, C. and Turnbull, B. (2000). Group
sequential methods with applications to clinical trials. Chapman Hall,
Boca Raton, London, New York, Washington, D.C.

[Kim and DeMets, 1987] Kim, K. and DeMets, D. (1987). Con�dende in-
tervals following group sequential tests in clinical trials. Biometrics 43,
857-864.

[Lan and DeMets, 1983] Lan, K. and DeMets, D. (1983). Discrete sequential
boundaries for clinical trials. Biometrica 70, 659-663.

[Lehmacher and Wassmer, 1999] Lehmacher, W. and Wassmer, G. (1999).
Adaptive sample size calculation in group sequential trials. Beometrics
57, 886-891.

[Madsen and Fairbanks, 1983] Madsen, R. and Fairbanks, K. (1983). P val-
ues for multistage and sequential tests. Technometrics 25, 285-293.

[Mehta et al., 2007] Mehta, C., Bauer, P., Posch, M., and Brannath, W.
(2007). Repeated con�dence intervals for adaptive group sequential trials.
Statistics in Medicine 26, 5422-5433.

[Müller and Schäfer, 2001] Müller, H.-H. and Schäfer, H. (2001). Adaptive
group sequential design for clinical trials: Combining the advantages of
adaptive and of classic group sequential approaches. Biometrics 57, 886-
891.

[Müller and Schäfer, 2004] Müller, H.-H. and Schäfer, H. (2004). A general
statistical principle for changing a design any time during the course of a
trial. Statistics in Medicine 23, 2497-2508.

[O'Brien and Fleming, 1979] O'Brien, P. and Fleming, T. (1979). A multiple
testing procedure for clinical trials. Biometrica 35, 549-556.

[Pocock, 1977] Pocock, S. (1977). Group sequential methods in the design
and analysis of clinical trials. Biometrica 64, 191-199.

[Proschan and Hunsberger, 1995] Proschan, M. and Hunsberger, S. (1995).
Designed extensions of studies based on conditional power. Biomertrics
51, 1315-1324.

[Roseberry and Gehan, 1964] Roseberry, T. and Gehan, E. (1964). Operat-
ing characteristic curves and accept-reject rules for two and three stage
screening procedures. Biometrics 20, 73-84.

71

[Schneiderman, 1961] Schneiderman, M. (1961). Statistical problems in the
screening search for anticancer drugs by the national cancer institute of
the united states. Quantitative Methods in Pharmacology, Amsterdam:
North-Holland, 232-246.

[Shen and Fisher, 1999] Shen, J. and Fisher, L. (1999). Statistical inference
for self-desining clinical trials with a one-sided hypothesis. Biometrics 55,
190-197.

[Siegmund, 1978] Siegmund, D. (1978). Estimation following sequential
tests. Biometrika 65, 341-349.

[Siegmund, 1985] Siegmund, D. (1985). Sequential analysis. Springer-Verlag,
New York.

[Slud and Wei, 1982] Slud, E. and Wei, L.-J. (1982). Two-sample repeated
signi�cance tests based on the modi�ed wilcoxon statistic. J. Amer. Statist.
Assoc. 77, 862-868.

[Tsiatis et al., 1984] Tsiatis, A., Rosner, G., and Mehta, C. (1984). Exact
con�dence intervals following a group sequential test. Biomertrics 40,
797-803.

[Wald, 1948] Wald, A. (1948). Sequential analysis. New York: Wiley.

[Wald and Wolfowitz, 1948] Wald, A. and Wolfowitz, J. (1948). Optimum
character of the sequential probability ratio test. Ann. Math. Statist. 19,
326-339.

[Whitehead, 1986] Whitehead, J. (1986). On the bias of maximum likelihood
estimation following a sequential test. Biometrika 73, 573-581.

72

	Introduction
	Review of adaptive and sequential designs
	History of sequential designs
	Group sequential designs
	Spending function approach
	Müller and Schäfer method
	Numerical example

	Overall p-values
	Repeated p-values
	No adaptive change
	Incorporating adaptive changes

	P-values based on the stage wise ordering
	No adaptive change
	Incorporating adaptive changes

	Construction of one sided repeated confidence intervals
	Confidence intervals
	Classical repeated confidence bounds
	Adaptive repeated confidence bounds
	Conservative point estimates
	No adaptive change
	Incorporating adaptive changes

	Stage-wise confidence intervals
	Classic stage-wise confidence bound
	Construction principle for the stage-wise confidence bound
	Median unbiased point estimates

	The algorithm
	General method
	More efficient algorithm

	Integration of the C-source code into R
	Data preparation and call of the function

	Simulation study
	Appendix

