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Deut sche Kurzfassung 

Diese Dissertation beschaftigt sich mit der Modellierung und Prognose multipler Zeitreihen. Die Disser- 
tation gliedert sich in zwei Teile: 

Im ersten Teil werdeil verschiedene Modellklassen vorgestellt, welche den bedingten Erwartungswert einer 

multiplen Zeitreihe modellieren. Der Fokus dabei ist hauptsachlich auf jene Modellklassen gerichtet, 

P welche die Information gegeben durch die Gegenwart und Vergangenheit. des Vektorprozesses selbst und 

moglicherweise zusatzlicher exogener Inputprozesse komprimieren und dadurch die Dimension des zu- 
grunde liegenden Parameterraumes reduzieren. 
Die Anzahl der voneinander funktional unabhangigen Parameter in VARX Modellen wachst mit dem 
Quadrat der Dimension des Vektorprozesses, falls keine weiterell Restriktionen an die Parameter in der 
Koeffizientenmatrix gestellt werden. Reduced Rank Regressionsmodelle und Faktor Modelle bieten eine 

Moglichkeit die Anzahl der zu schatzenden Parameter zu reduzieren. Gegeben die gesamte verfugbare 
Information, versuchen sie jene Charakteristika in den Daten zu finden, welche ill Bezug auf gewisse 

Verlustfunktionen den zugrunde liegenden Prozess am besten beschreiben. 

Die zuvor genannten Modellklassen werden beschrieben und ihre Eigenschaften diskutiert. Es werden 
insbesondere Prozeduren vorgestellt, welche eine datengetriebene Modellspezifikation und Inputselektion 
der erwahnten Modellklassen bei relativ geringem Rechenaufwand ermoglichen. Die Prozeduren basieren 

auf Informationskriterien und sind im Wesentlichen Verallgemeinerungen fur den multivariaten Fall der 
"Fast step procedure", welche von (A11 and Gu, 1985; A11 and Gu, 1989) fur lineare Einzelgleichungsmod- 
elle vorgeschlagen wurde. Ein weiteres Kapitel enthalt schlieBlich Anwendungen. Es zeigt die Ergebnisse 
verschiedener Schatzungen und Prognosen aller Modellklassen und vergleicht deren Gute auBerhalb der 

(1 zur Modellspezifikation und -schatzung verwendeten Stichprobe. 

Der zweite Teil hat die Schatzung der bedingten Varianz des Vektorprozesses zum Inhalt. Das Haup- 
taugenmerk liegt bei der Parametrisierung von multivariaten GARCH Modellen, insbesondere den so 
genannten VECH und BEKK Modellen. 
VECH Modelle erlauben eine sehr flexible (affine) Modellierung der bedingten Kovarianzmatrix. Allerd- 
ings haben diese Modelle auch zwei groBe Nachteile: Zum einen wird nicht gewahrleistet, dass die 
geschatzten bedingten Kovarianzmatrizen- positiv definit sind und zum anderen ist die Anzahl der 
voneinander funktional unabhangigen zu schatzenden Parameter von der GroBenordnung O(n4). Das 
heifit, man muss zusatzliche Bedingungen an die Parameter stellen um positiv definite Schatzer fur die 
bedingten Kovarianzen zu erhalten und fur groBe Vektordimensionen n ist eine Schatzung praktisch 
unmoglich. In weiterer Folge nennen wir VECH Modelle, welche fur alle moglichen Stichprobenpfade 
positiv definite bedingte Kovarianzmatrizen liefern, zulassige VECH Modelle. 
Die BEKK Modelle liefern per Konstruktion positiv definite Schatzer fur die bedingten Kovarianzma- 
trizen, allerdings lastet auch auf ihnen der so genannte "Fluch der Dimensionen", denn auch hier wachst 
die Anzahl der unabhangigen Parameter mit O(n4). Das heifit, es ist unabdingbar die genannten Model- 
lklassen entsprechend einzuschranken, um auch fur hochdimensionale Vektorprozesse die Schatzung eines 
multivariaten GARCH Modells zu ermoglichen. 
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Im Folgenden wird gezeigt, dass im bivariaten Fall BEKK Modelle genauso allgemein sind wie VECH 
Modelle. Im Fall von hoherdimensionalen Vektorprozessen jedoch sind die zulassigen VECH Modelle all- 

gemeiner. Leider ist es nicht sehr einfach festzustellen, ob ein gegebenes VECH Model1 zuliksig ist oder 
nicht. Vor allem ist es schwierig eine Parametrisierung so zu definieren, dass man damit alle zulksigen 

VECH Modelle erhalt. Es lasst sich jedoch einfach klaren, ob ein gegebenes VECH Model1 als BEKK 

Model1 geschrieben werden kann. Hierfur wird eine Methode vorgeschlagen. 
In weiterer Folge werden verschiedene Moglichkeiten zur Parametrisierung von BEKK Modellen in ihrer 
"allgemeinsten" Form diskutiert. Die Vor- und Nachteile der einzelnen Parametrisierungen werden 
angefuhrt. Mit Hilfe der zuvor erlangten Erkenntnisse uber die Modellklassen werden dann bekannte 
restriktivere Modellklassen, wie zum Beispiel das Diagonal VECH (DVECH) Model1 und das Faktor 

GARCH (F-GARCH) Model1 analysiert. Besonders das DVECH Model1 findet in der Praxis vielfach 

Anwendung, da sich die Parametrisierung zulksiger DVECH Modelle sehr einfach gestaltet und auch 

die Stationaritatsbedingungen leicht zu uberprufen sind. Es werden noch weitere alternative Modelle 

vorgestellt, die ebenfalls eine geringere Anzahl von Parametern zur Schatzung der bedingten Kovarianz- 

matrizen benotigen als das allgemeine BEKK Modell. 

Zuletzt werden noch Ergebnisse von Schatzungen angefiihrt uiid die zuvor analysierten Modellklassen 
miteinander verglichen. 



Abstract 

This thesis deals with the problem of modelling and forecasting multiple time series and consists of two 

parts: 

In the first part different model classes are presented that can be used for modelling the conditional 

expectation of a multiple time series. The focus is mainly on model classes that try to condense the 

r\ information provided by the present and past of the vector process itself and possibly some additional 

exogenous input processes and thereby, shrink the dimension of the underlying parameter space. 

In the framework of VARX models for instance, without imposing any restrictions on the parameter 

matrix, the number of functionally independent parameters is increasing with the square of the dimen- 

sion of the endogenous vector process under investigation. Reduced rank regression models and factor 

n~odels, both having somehow different backgrounds, provide one possibility to  reduce the actual number 

of parameters that have to  be estimated. Given all the information available they try to find the main 

characteristics or features in the data that subject to some quality measure explain best the underlying 

vector process. 

The aforementioned model classes are presented and their properties are discussed. In particular, proce- 

dures will be proposed that enable data-driven model specification and input selection of the model classes 

a t  relatively low computational costs. The procedures base on information criteria and basically are gen- 

eralizations to  the multivariate case of the "Fast step procedure" suggested by (An and Gu, 1985; An 

and Gu, 1989) for linear single equation models. Finally, a section of applications shows estimation and 

forecasting results of all model classes and compares their out-of-sample performance. 

The second part deals with estimation of t,he conditional variance matrix of the vector process. The main 

focus is on the parametrization of multivariate GARCH models, in particular, the so-called VECH and 

BEKK models. 

VECH models allow for a quite flexible (affine) modelling of the conditional variance matrix. However, 

these models exhibit two disadvantages: First of all, it is not ensured that the estimated conditional 

variance matrices are positive definite. Second, the number of functionally independent parameters that 

have to be estimated is of the order O(n4).  Hence, one has to  impose further restrictions on the parameters 
in order to obtain positive definite estimates for the conditional variance matrices. Furthermore, for large 
vector dimensions n, estimation is infeasible in practice. In the following, VECH models that ensure 
positive definite conditional variance matrices for all sample paths will be called admissible. 

BEKK models by construction provide positive definite estimates for the conditional variance matrices. 

However, they also suffer from the so-called "curse of dimensionality", since the number of functionally 
independent parameters is also of order O(n4). Therefore, it is indispensable t o  further restrict the above 

model classes in order to make estimation of multivariate GARCH models possible for high dimensional 

vector processes. 

In the following, it is shown that in the bivariate case the BEKK model is as general as the VECH 

model. In case of higher dimensions however, the class of admissible VECH models is more general than 

the BEKK model class. Unfortunately, it is not easy to  determine whether a given VECH model is 
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admissible or not. It  is particularly difficult to  define a parametrization that parametrizes all admissible 

VECH models. However, it is easy to check whether the underlying VECH model may be cast as a 

BEKK model, thus, has a BEKK representation. For this purpose a simple method is suggested. 

Next, different parametrizations for BEKK models in their most general form are presented, and their 

assets and drawbacks are listed. Well-known more restrictive model classes such as the diagonal VECH 
(DVECH) and the factor GARCH (F-GARCH) model are then analyzed. The DVECH model is often 

times used in practice, since it is easy to parametrize admissible DVECH models and to  check whether 
the stationarity conditions hold or not. In addition, alternative parsimonious models are suggested. 

Finally, estimation results are presented and the different model classes are compared. 
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Chapter 1 

Introduction 

Forecasting of financial time series, such as asset prices, plays an important part in portfolio management. 

However, the question whether returns of asset prices are predictable or not, has divided the community. 

In the late 1960s, Fama defined the so-called eficient market hypothesis (EMH), one of the central 

propositions in finance, see (Fama, 1970; Fama, 1991). According to this hypothesis a financial market is 

efficient, if at any time asset prices fully reflect the available information. This implies that the market 

processes information rationally, in the sense that relevant information is not ignored, and systematic 

errors are not made. As a consequence, prices are always a t  levels consistent with 'Lfundamentals". Thus, 

market efficiency here refers to informational efficiency of markets. Let pt denote the price of some asset 

at time t,  then yt = 
P I - l  

is the return obtained within period t - 1 t,o t. Let furthermore, Zt be some 

information set available at time t ,  then informational efficiency with respect to  Zt means that 

Hence, any investor that a t  time t possesses only information that is contained in Zt, cannot expect to  

gain by using this information to  predict returns. According to  the amount of information available Fama 

distinguishes between three types of efficiency: 

1. strong form efficiency: The information set Zt contains all information available to  any market 

part,icipant. Thus, Zt does also include so-called insider informations. 

2. semi-strong form efficiency: The information set Zt contains all publicly available information. 

Hence, in a semi-strong form efficient market, as soon as information becomes public, it is immedi- 

ately incorporated into prices. 

3. weak form efficiency: Here Zt = {y,, yt-1, yt-2, . . .). Thus, the information set includes only the 

history of the returns themselves. 

For further discussions on the above hypothesis and its implications and challenges see e.g. (Kaul, 1996), 
(Campbell, Lo and MacKinlay, 1997), (Grinold and Kahn, 1999), (Shleifer, 2000) and (Singal, 2003). 

We believe that the stock markets are weak form efficient. It  is clear that  the markets work and that 
(nontrivial) forecasting is not an easy task. In addition, it seems to  be reasonable to  assume that the 

markets have become even more efficient in the last decade by the widespread use of the Internet, the 
easily available data base (at least for frequently traded financial assets) and by skilled experts advising 

large investors. Nevertheless, we think that a necessary condition for successful forecasting is to  make use 

of information contained in (market) variables that might be related with the financial assets of interest. 
Since there is no clear a priori knowledge concerning relevant explanatory variables (or inputs) available 

for us, data driven input selection is an important issue here. However, the problem is messed by the 
large number of potential input combinations (relative to  sample size), by high correlation between the 
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potential inputs, by extremely weak correlations between future returns and present and past inputs and 

by time changing structures. The large number of possible input combinations or model specifications, 

in particular, leads to the danger of overfitting, see e.g. (White, 2000). 

It  is already said in the title of the thesis that the focus is on multivariate model classes for forecasting 

returns of asset prices and their volatilities. As stated in (Tiao, 2001), there are a t  least two good 

reasons for analyzing and modelling time series jointly. First, to understand the dynamic relationship 

among the series; certain structures such as comovements or common factors may be detected. Second, 

to  improve accuracy of forecasts. If one variable contains in its historical data information on the other 

series, better forecasts may be obtained when multivariate   no del classes are applied. However, turning 

from single equation models to syste~ns of equations also implies an increasing model complexity. This 

fact involves two problems concerning some practical limitations. First, the more parameters one has to  

estimate the more observations are actually needed in order to  obtain statistically tenable results. This 

is sometimes referred to  as the curse of dimensionality. Second, assuming that enough data is available 

for the investigator -invalidating the first claim- interpretability of the obtained coefficient estimates is 

desirable. Thus, one is interested in having sparse parameter matrices, or simplified model structures. 

In the following chapters of the first part of the thesis different model classes for the conditioi~al mean 

of multidimensional time series processes are presented. It  will be shown how the parameter space may 

be restricted by imposing additional constraints. We commence with the very general class of Vector 

autoregressive forecasting models zncludzng exogenous explanatory variables (VARX) in chapter 2. We 

provide parameter estimates and their asymptotic properties for both cases, the unrestricted case and the 

case, where linear restrictions are imposed. In chapter 3 the concept of Reduced Rank (RR) regression 

is elaborated and maximum likelihood estimates are presented. The classical Factor model is presented 
in chapter 4 as a third alternative for dinlension reduction of the parameter space. For each of the 

above model classes we propose model specification and input selection procedures that are in the style 

of the procedures brought up by (An and Gu, 1985; An and Gu, 1989) for the univariate case. Finally, 

applications are provided in chapter 5. The different forecasting methods are evaluated and compared. 

The second part of the thesis is devoted to  multivariate models for the conditional variance of a vector 

process, see chapter 6 for a short introduction. We concentrate on multivariate GARCH models, in 

particular, the VECH and BEKK model classes. In chapter 7 we give a description of the two model 

classes. Chapter 8 deals with the problem of parametrizatioil and identifiability. A simple to  check 

characterization of VECH models that have an equivalent BEKK representation is given. It  will be shown 

that in the bivariate case BEKK models are as general as VECH models. In higher dimensional cases, 

however, VECH models allow for more flexibility. A parametrization for a generic, i.e. open and dense, 

subset of BEKK(p, g, K) models (with K = n2) is presented. Furthermore, two other parainetrizations 

(also with K = n2) are analyzed. It  is shown that these parametrizations both do not cover a generic 
set of BEKK models. In addition, several alternative parametrizations of BEKK(p, g, K )  models (with 

K 5 n), thus with a small number of additive terms are presented. A short summary of estimation in 

the multivariate GARCH framework is given in chapter 9. Finally, chapter 10 concludes the second part 

of the thesis with some applications on simultated and real data. 

An appendix is included for the sake of completeness and clarity. It  contains an introductory chapter 

on random variables and stochastic processes (appendix A), appendix B provides some additional proofs 
and finally appendix C deals with basic definitions and frequently used notations. 



Chapter 2 

VARX model 

Vector autoregressive models including exogenous explanatory variables (VARX) are mainly used for 

P forecasting and structural analysis. Here, the focus is on forecasting only. 

2.1 The model 

VARX (or VAR(p)X) models are of the form 

~t = c + Alyt-1 + Azyt-2 + . . . + Apyt-, + D Z ~ - ~  + et ,  

or in a more conlpact notation (2.1) 
A(z)yt = C + Dot-l + et, t E Z, 

where (yt) denotes the n-dimensional vector of observed endogenous variables (e.g. asset returns) and 

c is some n-dimensional vector of constants. A(z) = -Ajzj, with A. = -In, Aj E Rnxn and 

A, # 0, is an n X n-dimensional polynomial matrix of order p in a complex variable z or the backward 

shift operator z, defined by zj(yt) = (yt-j). D is some n X k-dimensional real parameter matrix, loading 

the k-dimensional exogenous inputs, xt-l. The process (xt) is stationary1 with mean p, and may, for 

P 
instance, contain different lags of one and the same or several candidate explanatory variables. (et) is an 

n-dimensional white noise process, i.e. IEet = 0, IEete; = 0 for all s # t ,  and IEete: = C, is supposed to  be 

positive definite unless stated otherwise. Hence, et can be viewed as some unobservable random shock 

to yt a t  time t .  
It  is assumed that the stability condition,, det(A(z)) # 0 for all lzl < 1, holds. Hence, the convergence 

of the Taylor series expansion of A(z)-l about 0, A(z)-l = Cco ajzj ,  on a disk containing the unit 

circle is ensured and therefore, the processes A ( ~ ) - ' D X ~ - ~  = Ego ajDxt-i-j ,  A(z)-'et = Ego ajet-j 

and thus, (yt) are well-defined. In the case p = 1, the stability condition is equivalent to  the condition 

that the eigenvalues of AI are smaller than one in absolute value, implying that the coefficient matrices 

a j  = A{ are absolutely summable2. In the sequel, we consider the unique stationary solution t o  eq. 

(2.1), which is given by yt = A(z)-l(Dxt-l + et) = C z o a j ( D x t - l - j  + Note, that this solution 
is causal, since the series A(z)-l = Cco ajz j  contains nonnegative powers of the lag operator only, 

implying that yt does not depend on future shocks et+h, and present and future observations xt-l+h, 

h > 0. 

'unless stated otherwise, the term "stationary" is refering to wide or weak sense stationarity throughout the thesis, i.e. 
the first and second moments of the process are finite and time independent, IExt = p,, Extx', = r,(t  - s) depends only on 

t - S, and IExtxi = rz (0)  < 00. 

2Note, that for every n-dimensional VAR(p)X process (yt) with p > 1, the np-dimensional process Yt-1 = 
(yt-1, yt-2,. . . , ~ t - ~ ) '  is a VAR(1)X process. This representation is referred to as a state-space representation of the 
original VARX process. Thus, theoretical findings for VAR(1)X processes can easily be extended to VAR(p)X processes. 
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In addition, it is assumed that et is independent of the exogenous variables X,, for all s < t .  Hence, the 

best linear prediction given {yt-l, yt-2,. . . , xt-1, xt-2,. . .) for yt in the sense of L2-norm approximation, 

minimizing IE(yt - ytlt-l)'(yt - ytlt-1)7 is given by ytlt-l = C + A3ytYt--3 + Dxt-l, and et is the 
forecast error, see section 2.4. 

The VARX model class is often applied in practice due to  its simple structure, but it has also a theoretical 

justification: In Wold's decomposition theorem, see (Wold, 1938), it is shown that every n-dimensional 

stationary process can be decomposed into the sum of two uncorrelated processes, namely a singular3 

and a regular process4, and the regular process has an infinite moving average (MA) representation 

k3~t -3 ,  where ko = I,, (et) is a white noise process and the sequence of matrices kg is absolutely 

summable. Hence, the infinite sum is defined as a limit in mean square. This infinite MA process call 

be approximated with arbitrarily high accuracy by a VAR process, highlighting the iniportance of VAR 

and also VARX models in the framework of stationary processes. 

A drawback of VARX models, however, is the fact that the number of parameters to estimate (pn2 + nk, 

intercepts and C, excluded) is a quadratic function of dimension n. Hence, estimation precision might 

be low even for small n (and possibly known C,). Another problem concerns the choice of relevant 

explanatory variables out of a huge set of possible candidates, see section 2.3. 

In the following section estimators of the real-valued parameters c, A l l . .  . ,Ap, D are presented. We will, 

in addition, deal with the case where linear restrictions are imposed on the parameters. Finally, the 

asymptotic properties of the estimators will be discussed. 

2.2 Estimation 

In this section it is assumed throughout that the lag order p as well as the set of explanatory variables is 

known. So, the focus is on the estimation of the unknown coefficients c,  AI , .  . . ,Ap,  D and C,, only. 

Given a sample of observations yl, . . . , y~ and xo, . . . , XT of the process (yt) and the exogenous variables 

xt respectively, and some presample values yl-,, . . . , yo, the analyst can choose an estimatioil procedure 

according to  the properties the estimators should have. The following three methods, especially the first 

two, are in a widespread use: the method of multivariate least squares (LS), the maximum likelih,ood 
(ML) method and the Yule- Wallcer estimation (YW) method. Apart from their different backgrounds 
and ways of solving the underlying estimation problem, the methods differ from each other mainly due 

to their different choice and treatment of starting or presample values. Especially in finite samples this 

may lead to different estimation results and hence, the estimators in general have different finite sample 

properties. Asymptotically, however, they all have the same properties. Here, the form and properties of 

LS estimates are discussed only. For a detailed description of all three methods mentioned refer to e.g. 

(Liitkepohl, 1993, chapter 3). 

3A process ( y t )  is called singular, or in other words, a process is purely deterministic, if it can be forecasted perfectly by 
its own past, i.e. yt+hlt = yt+h a.e. for all h > 0. 

4A process ( y t )  is called regular, when the distant past of the process has no impact on the future development of the 
process. In terms of forecasting this means that, if lEyt = 0, 1.i.m Pt+hlt = 0 a.e., see appendix C.l  for a definition of I.i.m, 

h - + m  
the limit in mean square. 
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To keep notation simple, let 

: = 1 + p n + k  

~t := ( Y I ~ ,  ~ 2 t l .  . . 1  ~ n t ) '  (n X l ) ,  
Y := (YI, YZ, . . . , YT) (n  X T) ,  

xt := (xltr x2t1 . . . 1  xkt)' (k X 11, - 
xt = Y - ~ . . .  Y - - 1 '  (k X 11, 

X := (X l ,X2 , .  . . ,XT)  (l X T), 
B := (c,A1,. . . ,Ap,  D) (n X l), 
E t  := ( & l t , & Z t ,  . . . 1 fnt) '  ( n  X 111 
E := ( E ~ , & ~ , . . . , & ~ )  (n X T). 

Eq. (2.1) can now be written in a compact way as 

or using the vec operator it can be written as 

P 
vec(Y) = vec(BX) + vec(E). 

Let y = vec(Y), E = vec(E) and b = vec(B), then 

Y = (X' @ In)b + E, (2.5) 

where @ denotes the Kronecker product, see appendix C.2 for a definition and basic rules. Note that the 

variance covariance matrix of E is given by 

Suppose for the moment that. C, is known. The unrestricted multivariate weighted least squares estimator 

f ,  then minimizes the following specially weighted quadratic loss function 

S(b) = (Y - (X' @ I , )b) ' ( l~ @ - (X' In)b). (2.6) 

P 
Its objective is to  weight the observations according to the variance of the corresponding noise term which 

also determines the actual precision of the underlying observation. Thus, little weight is given to terms 

including a noise term with high variation and much weight is given to  those, whose innovations show low 

variation. Note that the minimizing 6 of eq. (2.6) due to this specific weighting is an efficient estimate of 

b. Eq. (2.6) can be transformed to 

using basic algebraic rules. Hence, the first and second order partial derivatives are given by 

-- d2s(b) - 2(XX1 @ E;1). 
dbdb' 

The normal equations are obtained by setting = 0, 

(XX'  8 ~ : l ) b  = ( X  @ 

In the theorem below it is shown that under certain assumptions on the exogenous variables and innovation 

process IEXtX,' has full rank. Thus, for sufficiently large sample size T this should also hold for its sample 
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l 

a2s (b )  is positive definite and therefore, counterpart +XX' = $ zL1 XtXk Hence, the Hessian of S(b), W ,  

the LS estimator is a unique minimizer of S(b) and given by5 

Obviously the weighted LS estimate (2.7) is just the ordinay least squares (OLS) estimate that is obtained 

by minimizing the squared sum of residuals 

l S(b) = (y - (X' In)b)'(y - (X' 8 In)b). 

The reason therefore is not only that the innovation process (et) is assumed to be a vector white noise 

process and hence, is uncorrelated in time, but also the fact that the set of explanatory variables is iden- 

tical in all n equations. Thus, C, cancels out and 6 is totally independent of the error variance covariance 

matrix. What happens if the latter of the two conditions fails to  hold, will be seen in the second part of 

this section. First, however, it should be stressed again that if these two conditions hold, 6 or v e c ( ~ )  can 

be obtained by simply solving the ordinary least squares optimization problem for each single equation 

or endogenous variable ytt, i = 1 , .  . . , n.  

It  can be shown that the LS estimator 6 is consistent and asymptotically normal, if the following assump- 

tions hold: 

1 Assumption 2.1 (Consistency a n d  Asymptot ic  Normal i ty  of 6) 

(i) (ct) is an n-dimensional stationary process of independently identically distributed (iid) random 

variables with Ef t  = 0, Ecte: = C, > 0, and finite 4th moments, i.e. EIcitcjtcltcmtl < CO, for 

i , j , l , m = l ,  . . . ,  n a n d a l l t  E Z . ~  

(ii) (xt) is a stationary k-dimensional process that  may be written as the sum of a constant and some 

(infinite) MA process: 

where (Et) is a k-dimensional iid white noise process with Et t  = 0, Ett<{ = Cc > 0 and finite 

4th moments. Of course this implies Ext = p,. The coefficient matrices K, are assumed to  be 

absolutely summable, that is C;, 1 1  K, 1 1  F < CO, where 11. [ l F  denotes the F'robenius norm 1 1  K, [ l F  = 

[tr(K,K;)] ' and such that E(zt  - p,)(xt -p,)' > 0. (Ft) is independent of (et), thus EEte: = 0 for 

all t , s  E Z. 

(iii) The polynomial matrix A(z) is as described in section 2.1 and fulfills the stability condition 

det(A(z)) # 0 for all Izl 5 1. 

Note that given assumptions (i) to  (iii), the fourth assumption can be shown to  hold; for instance, 

by application of a suitable martingale central limit theorem, see e.g. (Brown, 1971) for a list of such 

theorems. Standard central limit theorems are in general ruled out, since they assume that the underlying 

l sequence of random variables is independent, which however here is not the case. (Anderson, 1971) 

I circumvents this problem in the univariate AR case by introduction of so-called K-dependent sequences, 

see (Anderson, 1971, chapter 7) or (Amemiya, 1985, section 5.4). A proof for the VAR case is provided 
in (Mann and Wald, 1943). 

5 ~ o t e  that the estimates 6 and B depend on the sample size T. Superscripts, such as bT and BT, have been omitted 
for the sake of readability. 

61n literature such processes are sometimes referred to as standard whzte noise processes. 



Theorem 2.1 (Consistency and Asymptotic Normality of 6) Let (yt) be a VAR(p)X process as 

presented in eq. (2.1) and let the assumptions 2.1 hold, then rx  := IEXtX,' > 0, with Xt as in (2.2), and 

the multivariate LS estimate 6 = v e c ( ~ )  from eq. (2.7) is consistent and asymptotically normal, i.e. 

(i) plim(6 - b) = 0, 
T-O0 

d 
(ii) n(6 - b) - N(0 ,  (F,' 18 E,)). 

To prove this theorem some important limit, laws for sequences of random variables are needed: 

Theorem 2.2 (Law of Large Numbers (LLN)) Let (yt) be a scalar stationary process with IEy, = p, 
T and let &r = E t = '  yt and ~ ~ ( j )  = IEytyt-j. If limj,, y,(j) = 0 holds, then 

1.i.m g~ = p i.e. lim~,, IE(JT - p)2  = 0, an,d hence plim jjT = p. 
T-00 T-cc 

P Proof. See (Deistler and Scherrer, 1994, theorem 6.4). 

A similar result can of course be obtained for vector random processes. I11 this case the LLN has to  be 

applied to every single component of the vector process. 

Note that in the literature there exist several versions of LLN's basing on different assumptions and with 

possibly more general results. In our case however, the assumptions needed for the above theorem to  

hold and its result are sufficiently general. 

Theorem 2.3 (Slutsky's theorem) Let yt be a sequen.ce of n-dimensional real random variables and 

let g : Rn --+ Rm be a continuous function: then 

plim yt = yo implies plim g(yt) = g(p1im yt) = g(yo). 
T-00 T-cc T-+m 

Proof. See e.g. (Schonfeld, 1969, Satz 6.212) or (Davidson, 1994, theorem 18.10(ii)). 

P Let us now sketch the proof of theorem 2.1: 

Proof. See Lemma B.2 in the Appendix for the proof of rx  > 0. 

(i) Consistency of 6: 
Due to  Slutsky's theorem we have 

Now, consider (a) and let us show that ~ l i m ( ( 4  XtX,')-l @ I,) = ( r x  C3 I,) and hence 
1 

plim((+ x~x,')-' C3 In)  = ( r i  8 In). 
Let (zt) be the process defined by zt := XtX,'. Since the processes (ct) and (&) are independent and 

their 4th moments exist and since it is in addition assumed that the polynomial coefficient matrix A(z) 

fulfills the stability condition and the coefficient matrices K j  in the MA process are absolutely summable, 

it can be shown that the first and second moments of zt are finite and independent of t ,  hence (zt) is 
stationary. In addition, due to  the properties of the coefficient matrices the covariances y,(j) tend to  

T zero for j going to  infinity. According to the LLN plim E t = ,  X t X [  = rx and with Slutsky's theorem 
T-cc 

we have plim((4 CL1 xtX;)-' €3 I,) = (l?;' 8 I,). 
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Next, consider (b). Note that (X @ In)vec(E) = vec(EXf) = cT=~(x~ @ In)et. Let q := (X, @ In)et, 

then Ezt = 0, due t o  the fact that  et is orthogonal to  the past of yt and xt.  Making use of the law of 

iterated expectations (LIE)7we obtain 

E(ztz:) = E [(Xt 8 In)IE(ct~: let-1 l . . . , xt-11. . . ) ( x i  @ In)] = 
= E((& @ In)C,(X: @ In))  = 

= E(XtXi @ C,) = 

= ( r x  8 C,) < 

Hence the variance of zt exists and is independent o f t .  For j > 0, 

Thus, the LLN applies and plim + cT=~(x~  @ In)ct = 0, and therefore, together with the result of term 
T-cc 

(a) we obtain, plim(b - b) = 0. 

(ii) Asymptotic normality of 6: 

(a) (b) ( c )  

where (a) converges in probability to  zero, (b) converges in distribution (see assumption (iv)), and (C) 

converges in distribution to N(0 ,  (F;' €3 C,)), and thus f l ( h  - b) --% N(O, (F;' @ C,)). 17 

In general, the variance matrix C, is unknown. It  can be shown however, that the ML estimate 

is a consistent estimate for C,. In small samples, however, this estimate is biased. An unbiased estimate 

may for instance be obtained by adjusting the degrees of freedom by the number of predetermined 

regressors &g,. Choosing instead of nE may be justified by the fact that the multivariate LS estimate 

of the coefficients corresponds t o  the OLS estimates obtained by estimating each of the n equations 

separately. For a more detailed discussion on the choice of the adjusting term in the denominator see 

(Liitkepohl, 1993, proposition 3.2). Anyhow, gb := ( (+XXf)- I  8 &gt) is a consistent estimate for 

(P i1  @ C,), since it has already been shown that $XX' converges in propability to  rx. 
I t  should also be stressed at this point that the results of theorem 2.1 are asymptotic results only. Hence, 

in small samples the estimate 6 may be biased and inference may be hard, since the real distribution of 

the so-called "t-statistic" (b, - b,)/&b,, where is the square root of the i th  diagonal element of kb ,  
in general does not follow a Student's t distribution in small samples. To illustrate this behavior 1000 
samples of length 16 of the bivariate VAR(1) process 

have been generated, the coefficient matrix has been estimated by OLS and the corresponding statistics 
(Gij -aij)/&,,, have been computed. Figure 2.1 shows the histograms of the thus obtained 1000 statistics, 

the standard normal and Student's t distribution with 14 degrees of freedom (df). 

'LIE: Given some random variable X defined on the probability space (R, A, P) and some information set Z C A, the 
following statement holds: 

E(x) = E(E(x1T)). 
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a-l l 

Figure 2.1: Given 1000 samples of length 16 of the bivarite VAR(1) process defined in eq. (2.9), this 
figure shows the histograms of the 1000 statistics (iiij - aij)/b,,, of the respective estimated coefficients, 
together with the standard normal (blue) and Student's t distribution with 14 df (red). 

In fact, the small sample bias is conspicuous, see also table 2.1. Note however that the results of the 

t-tests have to be interpreted with care, since almost all of the above statistics do not follow a Student's t 
distribution with 14 df, as indicated by the Kolmogorov-Smirnov test. By the way, again the choice of the 

number of degrees of freedom has to be clarified. In the literature one can find many studies about the 

small sample distribution of t-statistics of AR parameters, see e.g. (Nankervis and Savin, 1988; Nicholls 
and Pope, 1988; Tjprstheim and Paulsen, 1983). 
To sum it up, it can be said that one has to be aware of the fact that in small samples the estimates of 
VARX models may be biased and their corresponding test statistics may not be distributed such as in 
the asymptotic case. Nevertheless, the asymptotic results may be used as rugh guidelines in small sample 
inference, which of course is better than having nothing to go by. 

Up to now, the coefficients matrix B was assumed to be totally free regardless of the number of free 

parameters to estimate stored therein. The more parameters one has to estimate the more observations 
are actually needed in order to obtain statistically tenable results8. Having also the aforementioned 

problem in mind the possibly high number of parameters is, in fact, a crucial problem in estimating 
VARX models. The dimension of the parameter space can be reduced by imposing constraints on the 
elements in B. The functional form of these constraints may be provided by some economic theory or 
expert knowledge. Even if there is no theory or insider knowledge available one might want to test certain 
hypotheses concerning the parameter space. Anyhow, estimation in a constrained setting is important 
and will therefore be considered next: 
It should be noted however, that here, we are dealing with linear constraints, only. In our applications 
later on, we are, in particular, interested in zero restrictions imposed on a set of parameters in the 

* This is sometimes referred to as the curse of dimensionality. 
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skewness 0.049 0.010 -0.010 -0.030 
t-teststatistic -4.895 3.497 -2.827 -6.835 

t-test p.value 0.000 0.000 0.005 0.000 

KS statistic 0.059 0.077 0.037 0.080 

Table 2.1: Given 1000 samples of length 16 of the bivarite VAR(1) process defined in eq. (2.9), this table 
provides the sample skewness, test results of a two-sided t-test testing the Null hypothesis: "The mean 

of the 1000 statistics (Gij - aij)/baZj is zero", and a two-sided Kolmogorov-Smirnov test testing the Null 
hypothesis: "The 1000 statistics (Gij - aij)/baij follow a Student's t distribution with 14 df". 

coefficients matrix B .  Thus, if there is a strong belief (accompanied a t  best by statistical justification) 
that the j th  explanatory variable has no influence on the ith endogenous variable, B(ij) = bij is set to 

zero and estimation is performed on an accordingly restricted parameter space. 

q linear constraints on the parameter vector b = vec(B) may be formulated as 

where R is a known (nk X n i  - q)-dimensional real matrix with full column rank, rk R = n i  - q, y is 
the ( n i  - 9)-dimensional vector of remaining free parameters and r is an ni-dimensional vector of known 
real constants. In case of zero restrictions r = 0 and R is a matrix consisting of 0's and l's only. R can 
then be seen as a selection matrix; it selects all variables in (X' @ I,) that are supposed to  explain the 
corresponding components in y. Returning to the general case, we have, 

y = (X' @ In)(Ry + r )  + E ,  or reformulated 
(2.1 1) 

y -  ( X 1 @ I n ) r  = (X1@In)Ry+6.  

The LS estimate of y minimizing function S(b(y)) from (2.6) is then given by 

= (R1(XX1 18 c;')R)-'R'(x @ c; ' ) (~ - (X' @ In)r) .  (2.12) 

In contrast to the unrestricted case the minimizer of the generalized or weighted sum of squared errors and 
that of the ordinary sum of squared errors may not be the same. The weighted LS estimator is preferred 

at this point, due to  the fact that in general its asymptotic variance covariance matrix is smaller than 

that of the OLS estimator ? o ~ s  = (R'(xXI@ In)R)-'R'(x@ I,)(Y - (X1@ I,)r), where "smaller" has to  
be understood in the sense of the ordering of positive semidefinite matrices (A, B 2 0, square matrices, 

then A 2  B,  if A -  B 2 0). 

Theorem 2.4 (Consistency and Asymptotic Normality of j) Let (yt) be a VAR(p)X process as 
presented in eq. (2.11) with rk(R) = n i  - q, and let the assumptions 2.1 hold, rx := IEXtX,' > 0, with 
Xt as in (2.2), then the multivariate LS estimate .$I from eq. (2.12) is consistent and asymptotically 
normal, i.e. 

(i) plim (? - y) = 0, 
T-+cm 

Proof. The results can be shown analogously to those in theorem 2.1, by noting that 
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(a) converges in probability to  (R1(rx  BC;') R)'-' and (b) can be written as R1(Ii B C;l)vec(+ EX'). It  

has already been shown that plim vec($Exl) = 0 and f lvec ( )Ex l )  5 N(O, rx BC,) by assumption. 
T--103 

n 

9 as in eq. (2.12), however, is of little practical use, since in practice the variance covariance matrix C, 

is unknown. A two stage estimator is used instead. In stage one a consistent estimator, .%,, for C, is 

computed, e.g. the ML estimate of the unrestricted model see eq. (2.8), which in stage two substitutes 

the actual error variance covariance in eq. (2.12), giving 

? = (R'(XX1 8 g;l)R)-lRr(x 8 - (X' B In)r) 

Since 2, is a consistent estimator, the asymptotic results of theorem 2.4 translate to  the two st,age LS - 

estimator 7 see e.g. (Liitkepohl, 1993, Proposition 5.3) and, therefore, also to b = R? + r, for which we 

have 

ri 
V 

An alternative consistent estimator Ccg is obt.ained by 2, = $(Y - B O L ~ X ) ( Y  - BOLSx)l,  where 

v e c ( ~ 0 L s )  = 60~s = R ~ O L S  + r .  Thus, the ordinary sum of least squares in the restricted framework is 

minimized in stage one. This might be a better choice than taking the ML estimator from the unrestricted 

model, since the information about the restricted parameter space is used. Thus, if there is a strong belief 

in the underlying restrictions one might use the latter estimator C,. 
Finally, one may also follow some iterative estimation procedure, that starts with estimating ToLs and 

iteratively performs step one and two of the two stage LS estimation procedure until convergence is 

obtained. Thus, g!') is obtained from 9 0 ~ s  and gives the two stage LS estimate ?(l), which in the 

second iteration step is used to  compute a new estimate for C,, CS2) a.s.0. 

The following theorem shows that the restricted estimator b asymptotically is as efficient or even more 

efficient than the unrestricted estimator 6. 

Theorem 2.5 (Asymptotic Comparison of 6 and b) Let (y,) be as in theorem 2.4 and let 6 = 

((XX1)-lX @ In)y be the unrestricted estimator and b = R(R1(XX' @ Crl)R)- '(R1(X C F ~ ) ) ( ~  - 

0 (X' @ In ) r )  + r be the restricted estimator of the true parameter vector b. Then, 

(r;' B C,) 2 R(R1(rx B c;~)R)-~R'  

Proof. Let M := ( P i 1  B C,). Due to  the assumptions 2.1, it follows that M > 0, see also lemma B.2. 
Hence, 

and therefore, application of lemma B.l from the appendix on this matrix finalizes the proof. 

It should be stressed however, that the above result is obtained under the assumption and validity of a 

restricted parameter space. If the observations are generated by an unrestricted process the ordering of 

variances may not hold anymore. Hence, imposing restrictions may alleviate the problems arising from 

a high dimensional parameter space, but they should always be confirmed by theoretical findings about 

gConsistency of 2, here follows due the fact that under the assumptions 2.1 

d dWoLs -?l -+ N(o, ( R ' ( ~ x  CZJ I ~ ) R ) - ~ ( R ' ( ~ x  CZJ E ~ ) R ) ( R I ( ~ x  CZJ I ~ R ) - ] ) ,  

and proposition 3.2 and corrolary 3.2.1 in (Lutkepohl, 1993) apply. See also (Lutkepohl, 1993, Proposition 5.4). 
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the underlying system or statistical tests and information criteria, respectively. Section 2.3 will deal with 

the statistical procedures that detect or confirm zero restriction on elements of the parameter matrix B .  

This section covers linear constraints on the coefficients vector b only. A popular model class that contains 

certain non-linear restrictions will be presented in chapter 3. 

2.3 Model specification and input selection 

Model specification in the VARX framework concerns two types of parameters: the integer valued lag 

order p determining the dynamic and the real valued parameters in c, A l l . .  . ,A, ,  D, and C,. 
The selection of the lag order p is difficult and the final choice depends highly on the analyst's, say, 

"selection tool". Econometric literature provides a wide range of different selection procedures, for 

instance, the application of Informatzon Cntena (IC), see e.g. (Hannan and Deistler, 1988), or methods 

as the likelihood ratio test proposed by (Bartlett, 1938a) where p is determined by running a sequence 

of tests, or methods as described in (Tiao, 2001) basing on the sample cross-correlations, sample partial 

autoregression matrices and the diagonal elements of the estimated residual covariance matrix, which 

provide a measure of the extent to  which the fit is improved as the order p is increased. G.C. Tiao himself 

calls these procedures "tentative" specification procedures and diagnostic checking is indispensable in 

order to prevent model misspecification. 

Here, the focus is on totally data driven specification and input selection methods. Due to the high number 

of input variable candidates it is necessary to  find a reasonable subset of explanatory variables and it 

might, in addition, be useful to  impose zero restrictions on the elements in the matrices Al,  . . . , Ap and 

D in order to reduce the nunlber of parameters to  estimate. IC give one solution to this selection problem 

and for several reasons are preferable to  the latter two methods mentioned above. An IC is composed as 

the sum of two measures, one reflecting the goodness of fit and one indicating the corresponding model 

complexity. Hence, if forecasting is the objective of model specification, one can choose an appropriate 

measure for the forecasting performance and combine it with a model complexity index. In comparison 

with testing sequences the actual objective may, therefore, already be part of the selection instrument, 

which might be meaningful. Furthermore, testing sequences have a positive probability of choosing the 

incorrect order p even for large samples, if their significance level does not go to  zero while sample size T 
approaches infinity, see (Lutkepohl, 1993, section 4.3.3) for a discussion. IC, on the other hand, can be 

shown to be consistent, if their measure of model complexity fulfills certain limit conditions for T going 

to  infinity, see e.g. (Lutkepohl, 1993, proposition 4.2) and references cited there for consistency of VAR 

order estimators. Last but not least, they are easy to compute and not as time consuming as possibly the 

procedure proposed by G.C. Tiao, which might give more insight into the data generating process, but 

might be infeasible, if model specification has to  be done automatically, without any correcting interaction 

of the analyst. 
The IC used throughout the applications of this thesis are Akaike7s Information Criterion (AIC), see 

(Akaike, 1973; Akaike, 1974) and Schwarz7s Bayeszan Informatzon Cnterion (referred to  as SC and BIC, 

respectively), see (Schwarz, 1978): 

AIC(~)  = log det 9, + $k 
BIC(~)  = log det 2, + vk, 

where k is the actual number of functionally independent or free parameters, T is the underlying 

sample size and 5, is the sample variance covariance matrix of the estimated residuals. For T > 7 the 

"complexity" term of BIC is larger than that of AIC and, therefore, BIC tends to  be more restrictive. 
For a single equation or n = 1, it can be shown however, that if the true model is element of the set 

of model specifications under investigation and the BIC is computed for all these model specifications, 

for T going t o  infinity the minimal BIC value is attained a t  the true specification, see e.g. (An and 
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Gu, 1985, theorem l ) ,  while the minimal AIC value is attained a t  a model specification that is a t  least 

as "complex" as the true model. Anyway, in small samples AIC might be better in the sense that the 

true model specification might be selected more often especially in cases where the model structure is 

not parsimonious. Thus, it is not really clear which IC performs better or disposes of the better measure 

of complexity. An information criterion that is based on an adaptive measure of complexity, where 
"adaptive" here has to be understood in relation to  the respective data set a t  hand, is presented in 

(Ye, 1998). 

Since, in general, the number of all possible model specifications becomes large easily, the analyst is 

confronted with two problems in pract,ice. First, it is hardly ever possible to  estimate the whole set of 

specifications and select the one giving the minimal IC value. In other words, an exhaustive search is 

almost always impracticable. Consider for instance an n-dimensional VAR process including intercept. If 

n+pn2 ("+pn2) - 2 n + ~ n 2  the upper bound for the lag order p is assumed to be P ,  there are 

model specifications. For n = 2 and P = 3 this would already give 214 = 16384. Second, and what 
is even more serious than the arising computational costs, the problem of overfitting may occur, if we 

search for too many (relative to  sample size T) model specifications using always the same dataset, see. 

P e.g. (Ye, 1998; White, 2000). This means that the goodness of fit statistics of the final model obtained 

from the application of a sequence of statistical and nonstatistical tools to  a dataset, what is also called 

data mining, may be too optimistic, and hence, misleading. What can be done however, is to  search 
for the IC-optimal specification along some especially chosen path. Several procedures of the kind have 

been proposed in literature: Bottom up and Top Down methods as in (Liitkepohl, 1993); fully automatic 

General to Specific select.ion procedures for single equation models combining diversified test batteries 

and IC, see (Krolzig and Hendry, 2001; Hendry and Krolzig, 2001); Branch and Bound or Leaps and 

Bound procedures, see e.g. (Furnival and Wilson, 1974); Elimination of Complete Matrices in (Penm 

and Terrell, 1982); versions of a Backward algorithm, Forward algorithm and Fast Step Procedure (FSP) 

for single equation models can be found in (An and Gu, 1985; An and Gu, 1989); and many more. 

In this thesis we focus on the Forward algorithm and the FSP proposed by An and Gu and generalize 

them for the use in multivariate settings. For the sake of completeness, let us first describe in a few 

words the concepts of the two a1gorit.hms basing on an IC (here AIC and BIC respectively) for the 

univariate case, i.e. n = 1: 

Forward algorithm: Let i be t.he number of candidate variables. The forward procedure looks for 
f l  the IC optimal singleton, giving set S1 say, then for the IC optimal explanatory variable to  be added to 

the singleton, giving set Sz,  and so on, until all i candidate variables are included and give the largest 

possible set Sk. Out of these thus obtained sets, S1 , .  . . , Sk ,  for which S1 C Sz C . . . C Sil. holds, the 

set with the lowest criterion value is chosen to  be the final set. 

Thus, for the forward algorithm just - possible model specifications have to  be considered, which is 

much less than for the exhaustive procedure. It  is obvious that the sets Sk,  1 < k < E ,  depend strongly 

on the previously selected sets S1,.  . . , SkP1 and are not necessarily the IC optimal subset of S& with 

cardinality10 k. The following FSP procedure allows to, loosely spoken, "move" from one path of model 
specifications to  another in order to improve the IC value and counter the shortcoming of the forward 

procedure. 

FSP: In a first step one has t o  look for an IC optimal initial set, which can for instance be found by 
application of the above mentioned forward algorithm. Given this initial set, now in a second step, a 

local search is performed as follows: the initial set is enlarged by adding one single variable t o  the set or 
reduced by dropping one variable from the set and the IC optimal set out of these is compared with the 

initial set with respect to the IC value. The procedure is iterated until the criterion value can no longer 

1°The cardinality of a finite set is defined as the number of elements in the set. 
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be decreased by adding or omitting variables. 

To adapt these ideas to  a system of equations we investigate two different ways for determining an 
initial set. One way is to  apply a forward algorithm to all equations a t  once, i.e. in each step of the 

forward algorithm we search for the IC optimal explanatory variable to be added t o  all equations. In 
terms of the parameter matrix B from eq. (2.3) this means, that we start with zero restrictions on the 
whole matrix and cancel out the restrictions in the column corresponding to the IC optimal singleton, 

then the restrictions are canceled out for the column corresponding to  the IC optimal variable added to  
the singleton and so forth until there is no further column of zeros left in B or equivalently the set of 
explanatory variables contains all explanatory variable candidates. The set of variables out of the sets 

giving the minimal IC value is then chosen as initial set. This method is referred to  as mva method. The 
other method (called univ method) applies the forward algorithm proposed by A11 and Gu to  each single 

equation. Hence, it is likely that not whole columns of B are set to  zero but single elements. 
Given the initial specification of B,  the IC value is tried to be decreased by altering the zero restrictions 

on the single elements of B. So, in each iteration step one looks for that element in B for which the change 
in its status ("restricted to  zero" or "free in R") yields the highest decrease in IC value. The proce- 

dure stops when the IC value can no longer be improved by changing the status of one single element in B .  

The above presented variable selection processes are all discrete and can hence be extremely variable, 
i.e. small changes in the data can result in completely different models being selected. This can decrease 
prediction accuracy. Continuous alternatives are for instance given by Shmnkage estimators such as the 

Ridge and Lasso1' estimator respectively, or Bayes estimation methods. The first two impose (nonlinear - 
in case of Ridge) parameter restrictions, by bounding from above the Euclidean and L1 norm respectively 
of the parameter vector b. Bayesian estimators base on the prior information about the density of the 

parameter vector. The restriction of the parameter space is then given by the prior variance covariance 
matrix of the parameter vector. In any case, the analyst has to define either the upper bound for the 
parameter vector norm or mean and variance of the prior density of the parameter vector, which again 

leads to a parameter specification problem that however, is not going to be discussed here. For further 
details and simulation studies see (Brown, 1994; Tibshirani, 1996) and (Liitkepohl, 1993, section 5.4). 

The problem in forecasting is to  find an optimal approximation of the future values or realizations of a 
process by a (linear, affine or most general a measurable) function of its current and past realizations 
plus some exogenous variables. Optimality of course has to  be understood with respect to some criterion 

measuring the approximation quality. A frequently used criterion is the least squares criterion and the 
resulting predictor is referred to as the mean squared error (MSE) predictor. Thus, the task is to  solve 
the following minimization problem for each component of yt, 

where t denotes present time and the predictor yt+hlt = gh(y:, Y I - ~ ,  . . . ,xi ,  xi- , , . .  . , l )  is a function 
of the (possibly finite) past of (yt) and the exogenous (xt) and a constant. If gh(.) is taken out 
of the class of measurable functions, it can be shown that the conditional expectation Et(yt+h) := 

IE(yt+hly{, y(-,, . . . ,x i ,  xi-,, . . . , l )  is the optimal predictor of yt+h This can be seen as 
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and hence, M S E ( Y ~ + ~ I ~ )  > M S E ( I E ~ ( Y ~ + ~ ) ) ,  (in the sense of the ordering of positive semidefinite matri- 
ces) for any predictor yt+hlt. The term IE [(yt+h - TEt(yt+h))(IEt(yt+h) - yt+hlt)'] and its transpose can 
be shown to  be zero by application of the law of iterated expectations, or by noting that the two bracket 

terms are uncorrelated by construction. The first bracket term is adjusted from the influence of the 
present and past of (yt) and hence, depends on future et's and Et's only, and the second bracket term is 

dependent on the current and past et's and Et's. 
Since (yt) is assumed to  be a VARX process as in eq. (2.1) and due to  the assumptions 2.1, we have 

which for h = 1 is 

E t ( ~ t + l )  = c + Aiyt + . . . + Apyt-p+l + Dxt. 

Hence, under these assumptions the conditional expectation is a linear function of the present and past 
observations of (yt). I t  is unbiased, since its prediction error is zero in expectation, IE(yt+h-IEt(yt+h)) = 0. 

The MSE(IEt(yt+h)) can thus be seen as the prediction error variance. 

P 
If assumptions 2.1 (i) and (ii) are relaxed such that (ct) is no longer asked to be an independent process 

and to be independent of the process ( t t ) ,  but is just a white noise process that is uncorrelated with 

(&), = 0 does not hold, in general. Hence, the conditional expectation cannot be computed 

without imposing further assumptions on the underlying processes. Inst,ead of doing the latter, we 
might rather shrink the class of functions over which eq. (2.15) is optimized from measurable to affine 

functions. In case of affine functions gh(.), the problem in eq. (2.15) is equivalent to  the problem 
of finding that yt+hlt, element of the Hilbert space12, W(yi, yi-,, . . . , x i ,  xi-,, . . . , l ) ,  spanned by the 
conlponents of the present and past yt's, xt's and by the constant 1, for which the distance norm, 

2 
Il~t+h - yt+hlt 1 1  = (yt+h - Yt+hlt, Yt+h - yt+hlt) = E(yt+h - yt+hlt)(yt+h - yt+hlt)', is minimal. The 
following theorem shows that the projection of yt+h on this Hilbert space is the unique solution to  this 

problem. 

Theorem 2.6 (Projection Theorem) Let MI? M be Hilbert spaces and M C W. Then for every X E W 

there exists a unique decomposition 
x = P + u ,  

such that 2 E M and U E M' (i.e. (y,u) = 0 for all y E M ) .  In  addition., 2 is the unique element of M 

p satisfying 
[ [ X  - 211 = min IIx - yyll . 

YEM 

Proof. A proof of this theorem can be found in (Brockwell and Davis, 1989, p.51 f f ) .  

Hence, if is a projector on the above Hilbert space, W(yi, yl-,, . . . ,x i ,  xi-,, . . . , l ) ,  the optimal pre- 

dictor for yt+h is given by 

P ~ c t + h  = 0, since ~ t + h ,  h > 0, is uncorrelated with y,, X, for s 5 t and the constant. For h = 1 we obtain 
again 

h y t + ~  = c + A ~ y t  + . . . + Apyt-p+~ + Dxt. 

Note, however, that coincides with the conditional expectation only if (ct) is independent white 
noise that is, in addition, independent of (ct). Otherwise, f iyt+h is "just" the optimal affine predictor 
of yt+h. Let from now on yt+llt := C + Alyt + . . . + Apyt-p+l + Dxt. If the true intercept and coefficient 

12See appendix A for definitions and properties of Hilbert spaces of square integrable random variables. 
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matrices are replaced by their estimators from section 2.2, we get := ? + a l  yt + . . . + A ~ ~ ~ - ~ + ~  + DX,. 
For a detailed discussion on the MSE($t+llt)  in the VAR framework see (Liitkepohl, 1993, section 3.5). It 

should be mentioned however, that the variance of the prediction error yt+l may be driven by three 

different sources of uncertainty: First of all, the uncertainty coming from the noise or innovation term; 
second, the uncertainty caused by estimation of the true parameters; and third, if the true model structure 
is unknown, the uncertainty due to  model specification. Asymptotically, however, the contributions from 

the latter two causes to the overall forecast uncertainty should vanish, if also the specification procedure 
is consistent. 



Chapter 3 

Reduced Rank Regression 

One of the major concerns in modelling multiple time series is the possibly large set of parameters in- 

C\ 
volved in the underlying model. Two problems may arise in this regard: First, sample size T, in practice, 

may be or often is small compared to  the overall number of parameters. Thus, estimation accuracy of all 
regression coefficients may be low. Second, irrespective of sample size, interpretation for a large number 

of parameters can become unwieldy. In the previous chapter we have already pointed out these problems 
and proposed one possibility to  reduce the dimension of the parameter space in the framework of VARX 
models. This has been done by allowing for linear constraints to be imposed on the coefficient matrix B.  
These restrictions, however, were assumed to  be known. In addition, as we have seen before, estimation 
of the full model - without imposing any restrictions - in a multivariate linear LS framework is just the 
same as estimating every singly equation by OLS. Hence, the fact that the multiple responses are likely 
to be related is not involved in estimation. 

Reduced Rank (RR) regression models allows for a rank deficient regression coefficient matrix and thereby 

reduces the aforementioned problems. Thus on the one hand, the parameter matrix call be constructed as 

the product of two rectangular matrices that consist of less columns than the original coefficient matrix 
B, and hence, involve less parameters. On the other hand, the rank deficiency of the coefficient matrix 
implies that the kernel of the matrix is not empty. That is, there exists some non-zero matrix C,  for 
which CB' = 0 holds. In other words, the parameters in B are again restricted by linear constraints, 

r\ namely CB' = 0. However, in contrast to the previous chapter, here, the linear restrictions are unknown 
a priori. In addition, the correlation structure of the endogenous variables is taken into account during 

estimation. This can be seen due to  its relation to principal components (PC) and canonzcal correlation 

(CC) analysis, see for instance (Reinsel and Velu, 1998). 
RR was first considered by Anderson in (Anderson, 1951). More than twenty years later Izenman intro- 

duced the term "reduced rank regression'' in (Izenman, 1975). RR models, in the meanwhile, are in a 
widespread use. The book (Reinsel and Velu, 1998) contains a detailed list of references to  all sorts of 

disciplines working with RR models. 

3.1 The model 

Let in the following the n-dimensional variable of responses, yt , and the Ic-dimensional exogenous variables, 
xt, be mean-adjusted1. Thus, lEyt = 0 and Ext = 0, and eq. (2.1) can be written as 

'1f yt and xt are not mean-adjusted and there is no extra additive constant term included (on the right hand side) in 
the third line of eq. (3.1), an additional restriction on the mean of the response variable yt is introduced; namely, (given 

that  E E ~  = 0 holds), Eyt = FG'EXt .  Thus, the mean of yt has to  be element of the space spanned by the columns of F. 
A model including an additive constant term (or a whole second set of regressors, whose coefficient matrix has full rank) 
is examined e.g. in (Reinsel and Velu, 1998, chapter 3). Here, however, we consider the  simpler case of mean-adjusted 
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where (xt), (with p, = 0), (ct) and the n X n and n X k dimensional coefficient matrices AI , .  . . , Apl D 
fulfil1 assumptions 2.1, Xt  = (yi-,, . . . , yi-,, x:-~)', B = [Al, .  . . ,Ap, D] and rk(B) = r 5 min(n, i ) ,  
where = pn + k, is the dimension of Xt .  Hence, B can be written as the product of two rectangular 

matrices F and G of dimension n X r and X r with rk(F)  = rk(G) = r. 

The model may among others be interpreted a.s follows: The information provided in Xt is "compressed" 
or summarized in the linear combinations GIXt, which is then via F transferred to yt. RR is therefore 
sometimes also referred to  as index (for r = l ) ,  see e.g. (Sargent and Sims, 1977), or factor model, see 
e.g. (van der Leeden, 1990, chapter 5), where the factor ft is given by ft = GIXt and the matrix F stores 

l the corresponding loadings. 

3.2 Identifiability of F and G 

Note that, even if the product B = FG' is identified, the matrices F and G are not uniquely identified 
without imposing further normalizing conditions, since for any non-singular r X r-dimensional matrix M 
it holds that 

B = F G ' = F M - ~ M G ' = F @ ,  

where F = FM-' and G = GM'. Let B = {(FM-', GM') I M E RrXr, M non-singular) denote the set 
of equivalent decoinpositions of B. In order to  obtain unique matrices F and G, or in other words, to  

select a unique representative (F, G) out of B, r2 normalization conditions may be imposed. 
One might, for instance, select matrices (F, G) that show a certain structure: Consider G' = [G:, G], 
where G' is of dimension r X r and is of dimensioil (E - r )  X r ,  and let the variables in Xt be arranged 
such that the square matrix G1 is non-singular, then 

Hence, the first upper r X r sub-block matrix of G is the r-dimensional identity matrix, which also 
eliminates further unidentifiability concerning sign changes in the columns of F and G. (Of course, one 

can alternatively ask F to  be of the form [I,, F;]'.) 

In the following lemma we introduce an alternative set of normalization conditions that is often referred 
to in the literature. Note that  throughout this chapter we consider symmetric square roots of symmetric 

matrices, see also appendix C .  

Lemma 3.1 Given B E E X n X A  with r k B  = r 5 min(n, L) and two arbitrary positive definite symmetric 
matrices l? and Mxx of order n and respectively, there exists always a pair (Fl,  G1) E B that fulfills 
the following r2 normalization conditions: 

where A, is a diagonal matrix. 
If it holds furthermore that dli > 0, i = 1 , .  . . , r ,  where dli denotes the ith entry in the first row of F ,  
and if the diagonal elements of A, are distinct and ordered, i.e. X1 > . . . > X, > 0, the pair (Fl,G1) is 
also unique in B. 

variables and one set of regressors with a rank-deficient coefficient matrix B. 
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Proof. 1. Existence of a pair (Fl,G1) E B that fulfills the conditions (3.3) and (3.4): I t  is easy to  
verify that F1 = r;U,, and G1 = B'r-&UT, where U, E RnX' with U;UT = IT contains the normalized 

eigenvectors corresponding to the first r eigenvalues of r - + B ~ x x B ' r - + ,  fulfill the above conditions 
(3.3) and (3.4). To see that FIG; = B ,  let S = F-+BM~,,  and note that SS' = T - + B M ~ ~ B ' ~ - ~ .  
Hence, matrix A, from eq. (3.4) contains the non-zero singular values of S .  Since r k S  = r, the 
singular value decomposition of S may be written as S = UAV' = U,A,V,', where U, and V, consist 

of the r columns of the n X n and X dimensional orthonormal matrices U and V corresponding 
to the r non-zero singular values of S.  In other words, U, and V, contain in their r columns the 
normalized eigenvectors of SS' and S'S respectively, corresponding to  the non-zero eigenvalues A:. 
Hence, FIG: = r+u,u;s~;b = ~ ~ s M ; B  = B.  
2. Any B E Rnx' with rk B = r 5 min(n, k )  can be written as the product of such matrices F1 and G1, 

i.e. given a pair (F, G) E B there exists always a non-singular M E RTXT, such that FM- '  = Fl and 

GM' = G1, namely M = U;~-&F.  

3. Uniqueness of (FI, G') E B: Suppose that 41, > 0, i = 1 , .  . . , r  and X1 > . . . > X, > 0 holds. Due to 
X1 > . . . > X, > 0 the eigenvalue decomposition of SS' is unique up to sign changes. This non-uniqueness 

is then eliminated by the condition 41i > 0, i = 1, .  . . , r .  

C: 
Note that an alternative set of conditions to  (3.3), (3.4) again with respect to the two positive definite 
symmetric matrices l? and Mxx is given by 

Note that the diagonal matrices A, in (3.4) and (3.5) are idenbical. Analogously to  above, it can be shown 
1 1 

that F2 = BMGxVT, G2 = MxzV,, with V, defined as in the proof above, fulfill t,hese conditions and one 
can always find such a pair (F2, G2) in B. If 41i > 0, i = 1, .  . . , r and X1 > . . . > X,. > 0 holds, (F2, G2) 
is also unique in B. The relation between the two corresponding to the respective set of normalization 

conditions unique representatives of B is given by 

F2 = Fl A, and G2 = A;'. 

P 
Given the nonlinear restriction rk B = r and a set of normalization conditions (3.3), (3.4) and given 

that 41, > 0, i = l , .  . . , r and X1 > . . . > X, > 0 holds, the total number of functionally independent 
parameters in B is n r  + r i  - r2. This is a considerable decrease conlpaired to n i  in the full model. 

3.3 Estimation 

Throughout this section assume that r ,  the rank of B,  is known and consider a t  first only estimation of 
the real valued parameters in F, G and B, respectively. Estimation or specification of r will be treated 
in the subsequent section, 3.4. 
Given the notation (2.2) (excluding the constant) the reduced rank regression model (3.1) can be written 
as 

Yt = =xt + E t ,  

Y = B X + E ,  (3.7) 
Y = F G I X +  E, 

with rk(B) = rk(F) = rk(G) = r 5 min(n, i ) .  
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1 3.3.1 Maximum likelihood estimators for F and G: 

Assume for the time being that (ct) is normally distributed, consider the multivariate normal likelihood 
function 

and let 
1(F, G, C,IY, X )  = -$log(L(F, G, C,IY, X)) - n l o g ( 2 ~ )  

= logdet(C,) + c T = ~ ( ~ ~  - FGfXt)'C;l(yt - FGIXt)  
= logdet(C,) + t r  [c;'$(Y - FGIX)(Y - FG'x)'] 

Thus, maximization of L(F, G,  C,IY, X )  is equivalent to  the minimization of 1(F, G, C,IY, X) .  

The following two lemmata are useful to interprete and prove the claims stated in the subsequent theorem 
3.1: 0 
Lemma 3.2 (Minimization of the F'robenius norm [IS - PllF ) Let S be a matrix of order m X n 
and of rank min(m,n) and let P be a matrix of the same size as S but of rank r ( l :  min(m,n)).  The 
matrix P that minimizes the squared Frobenius norm [IS - PI[: = t r  [(S - P ) ( S  - P)'] and that therefore 

is  the best rank r approximation of S i n  the II.IIF-sense, is given by  P = U,UiS, where U, is m X r 
dimensional and the columns of U, are the r normalized eigenvectors of SS' that correspond to th,e r 
largest eigenvalues of SS'. 

Let S = UAV' be the singular value decomposition of S ,  hence P = U,A,V,', where U, i s  as above and 
V, consists of the r columns of the orthonormal matrix V that correspond to the r largest singular values 
of S contained i n  the diagonal matrix A,. 

~ Proof. See (Reinsel and Velu, 1998, theorem 2.1). 

1 Lemma 3.3 (Simultaneous minimization of singular values of a rectangular matrix ( S  - P ) )  
Let S be as i n  lemma 3.2 an.d let S = UAV1 be its singular value decomposition. For any m X n dimen- 
sional m,atrix P of rank r ( 5  min(m, n))  the following inequalities hold 

l Xi(S - P )  > &+((S) i = 1,.  . . , min(m, n), 

where &(S) denotes the i th  largest singular value of matrix S ,  and X,+i(S) is defined to be zero for 
r + i > min(m, n).  
The equality holds for all i if and only if P = U,A,V,'. Thus, the singular values of the matrix S - P 
attain their minimal value simultaneously if and only if P = U,A,V,'. 

Proof. See (Rm, 1979, theorem 2.3). 

l 
Theorem 3.1 (ML estimators for F, G and C.) Let M x x  := ) E:=, XtX:, Mxy = Mkx := 

4 xL1 Xtyl and Myy := $ C:=, ytyi denote the (centered) sample second moment and cross moment 
matrices of yt and X t .  
Under the assumptions 2.1 with p, = 0 and et N i i d N ( 0 ,  C,), two pairs of equivalent maximum likelihood 

1 estimators for the parameter matrices F and G of model 3.7 are given by  
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( i )  F1 = I?$u, and G1 = M , ~ M ~ , I ' - ~ u , ,  
where U, with U;U, = I, is the n X r dimensional matrix of normalized eigenvectors that correspond 

to the r largest eigenvalues of l?- M , x M ~ & M x ~ ~ ? -  4, 

(G) = M , X M ; & M ~ ~ V ,  and 8 2  = M;; V,, 
where V, with ViV, = I, is the X r dimensional matrix of normalized eigenvectors that correspond 

M- 5 to the r largest eigenvalues of M;$Mx,I'-~M,x xx, 

and where l? = 9, = ) x E 1 ( y t  - M y x ~ i & x t ) ( y t  - M,xM~&x~) '  i s  the ML estimator for the error 
variance covariance m,atrix in  the full unrestricted linear model. 
The ML estimate for C, i n  the RR case is given by 

where P, G i s  a pair of ML estimates. 

Proof. Consider function 1 (F, G, C, IY, X )  and let W = W (F, G) := ) (Y  - FG'X) (Y - FG'X)'. Hence, 

E(W, C,IY, X )  = log det(C,) + t r  [C;' W] and & = - c ;~wC;~ = 0 implies that &(F, G) = 

W(F, G). 
Substitution of C, by 9, gives the concentrated objective function 1(W, ~ , I Y ,  X )  = log det(W) + n .  This 

function is minimal, if det(W) is minimal or equivalently if det(I'-l W) is minimal, for some positive 
definite matrix l?. Let in the following l? = g,, the ML estimate of C, in the full unrestriced linear model. 

. . -L ^ - L  
Due to  the properties of the determinant of a matrix d e t ( 9 r 1 w )  = det(C, WC, 2 ) .  

W = ) (Y - FGIX) (Y  - FG'X)' = 

= My, - MYxGF1 - FGIMx, + FG'MxxGF1 = 

= $ + ( M , ~ M ; ~  - FG'M~,)(M,~M;; - F G ~ M ~ , ) '  

The last equation follows due to  2, = M,, - M , ~ M ~ ~ M ~ ~ .  Hence, 

n 

det(~; 'wf$) = det(I, + ( S  - P ) ( S  - P)') = n ( l  + h i (S  - P ) ~ ) ,  
i=l 

where S = C ; ~ M , X M ; ~ ,  P = 9;' F G ' M ~ ~ ,  and hi(S- P )  denotes the ith singular value of S - P ,  the 
objective is to  sin~ultaneously minimize the singular values of S - P. Following lemma 3.3 the singular 

values of S - P are simultaneously minimized, if P = U,A,V; = U,U;S = SV,Vi, with A,, U, and, V, 
as in lemma 3.3. Thus, 

Due to lemma 3.1 it is clear that  ( F ~ , G ~ )  and (F2,G2) are pairs of matrices that  corre- 
spond t o  the normalization conditions (3.3), (3.4), and (3.5), (3.6) respectively. Finally, 

A ,. 
6. = w(&,Gi )  = ) xT=l(R - F ~ G : X ~ ) ( ~ ~  - FiQx t ) ' ,  for i = 1 or 2. 

From the above theorem it is obvious that  the ML estimators for F and G with I' = My, are given by: 

1 

l = ~ y ,  and G ~ = M ; ~ M ~ , M ~ ~ U , ,  
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where U,. is the n X r dimensional matrix of normalized eigenvectors that correspond t o  the r largest 

eigenvalues of M ~ ~ ~ M , ~ M ; ~ M ~ , M ~ , ~  and 

F2 = M , ~ M ; ~ M ~ ~ P , .  and ~2 = M,$v~, 

where V, is the X r dimensional matrix of normalized eigenvectors that correspond t o  the r largest 

eigenvalues of M;$ Mx, M;: MYx M,!. 

Let us now study their relation to  the ML estimators with l? = 2, from theorem 3.1. Consider therefore 

the symmetric matrices Q, := M ; $ M ~ , ~ ; ' M ~ ~ M ~ ~  and Q, := M ~ $ M ~ , M ; ~ M , ~ M ~ $ .  Note that 

2, = M,, - M y X M i ~ M X y  and hence 

The second equality follows from the fact that for any two quadratic matrices A, B of the same size with 

(A - B )  non-singular, it holds that (A - B)-' B = -(A - B)-' (A - B )  + (A - B)-'A = (A - B)-'A - I .  

Since two symmetric matrices can be simultaneously diagonalized by an orthogonal matrix if and only if 

t.he product of the two matrices is symmetric (for a proof see e.g. (Harville, 1997, corollary 21.13.2)) and 

since from the above eq. (3.9), it is easy to  see that Q,Q, = (Q,Q,)' holds, it follows that Q, and Q, 

have the same eigenvectors, V = V, and their eigenvalues fulfil1 the following relation: 

and hence, A2 = A2(Ik - A2)-l  and A2 = A2(Ii + A2)-l. Thus, v V implies that î F2 and 

î ~ 2 .  Finally, from lemma 3.1 it follows that 

- 2  1 2 -1 pl = (I, - A,.) 2 and = G1 (I,. - A,.) 2 , 

where A: is the diagonal matrix of the r largest eigenvalues of Q,. Thus, the difference in the pairs of 

estimators is again just a matter of scaling of the columns of the estimators for F and G. 

Let us mention just two further remarks before we state the asymptotic properties of the above ML 

estimators. 

Remark 3.1 (Link between RR and canonical correlation analysis.) In fact, by introduction of Q, one 

can already see the link of RR to  canonical correlation analysis (CCA) since the square roots of the 
eigenvalues of Q, := M ~ ~ M ~ , M ; ~ M , ~ M ; ~ ,  i.e. A, are the sample canonical correlations of yt and 

X t ,  see for instance (Brillinger, 2001) for an introduction to  the canonical analysis of time series that has 
been introduced by (Hotelling, 1935; Hotelling, 1936). In terms of 6 and the canonical variates a t  

time t can be written as 
- 2  ' Ct = A;~G;x, and wt = (I, - A,)z Fcy t ,  

where F; = is the left inverse of F ~ .  
\ 

Remark 3.2 (Link to the coeficient matrix i n  the unrestricted full linear model.) Note that both pairs 
of ML estimates contain the LS estimator of the full unrestriced linear model MyXM~;.  The rank 
reduction is achieved by pre- and postmultiplication respectively of special matrices of rank r that are 

constructed such that the above criterion function is optimized. 
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3.3.2 Asymptotic properties of the ML estimators 

Consider first t h e  case where C ,  is known, and = C,: 
Let the  corresponding M L  estimators for F and G be  denoted as Fl = C? U, and G 1  = M ~ ~ M ~ , C ; ~ U ~ ,  

where U, consists o f  t h e  r largest normalized eigenvectors o f  C ; i ~ , x ~ ; ~ ~ ~ y C ; i .  I t  can be  shown 

that  (F1 , G1) converge in probability t o  (F,*, G ; ) ,  their population counterparts, namely, 

F; = C ~ U :  and G: = r i1rXyCi iu ; ,  

where r x  = IEXtX,', rYx = F&, = IEytX,' and U,* contains the  eigenvectors corresponding t o  the  r 

largest eigenvalues o f  c ; ~ F , ~ I ' ~ ' I ' ~ , C ;  ' . 
T h e o r e m  3.2 ( C o n s i s t e n c y  a n d  A s y m p t o t i c  N o r m a l i t y  o f  F1,G1 a n d  B = ) Let ( y t )  be a 
(stable) process as presented i n  eq. (3.7) and let the assumptions 2.1 hold. Let in addition p, = 0 ,  

et i iaN(O,C,)  with C ,  > 0 and known, and let the r largest (and non-zero) eigenvalues of 
C ; i ~ y ~ ~ x l r x y C ; i  be ordered and distinct i.e. X;' > X;' > . . . > X:' > 0 and X;:l = . . . = X i 2  = 0 .  
Then i t  follows that 

( i )  plim Fl = FT and plim = G;;  
T-cc T-oo 

-(G -F,*)  ) AN [n, ( F CF:G; )] 
vec(G1 - G;) G CG; 

l 

where CF; is  an n r  X n r  dimensional matrix> whose ( i ,  j ) t h  n X n dimensional sub-block matrix i s  

given by 

where +l i s  the l th  column of F;: C F ; ~ ;  is  an n r  X k r  dimensional matrix, whose ( i , j ) t h  n X k 
dimensional sub-block matrix is given by 

where is  the l th  column of G; ,  and finally, CG; is  an k r  X kr  dimensional matrix, whose ( i ,  j ) t h  
X dimensional sub-block matrix is given by 

, 3 ~ * 2 _ ~ * 2  
1 + r 1  for i = j 

C ~ ; , i j  = 
- Xi +X+ , 

(~:2-~:)2 YjYi for i # j,  

and 

(iii) plim B = B* 
T-00 

(iv) J T v e c ( B  - B*) -% N(O, C B * ) ,  
where 

CB* = ( G ;  B ln)CF; (G;' B I n )  + ( I k  B F,*)EG;F; (G;' B I n )  + ( G ;  B I ~ ) C F ; G : K ~ , , ( I E  B F,*')+ 

( I G  B F : ) K k , T C ~ ; K i , r ( I ~  B F?') 

and KE, ,  denotes a commutation matrix; see appendix C.2 for a definition. 
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Proof. For the proof of (i) and (ii) see e.g. (Reinsel and Velu, 1998, theorem 2.4). For the proof of (iii) 

and (iv) we refer to  (Liitkepohl, 1993, corollary 5.10.1). 

Consider now the case, where C, is unknown: 
On pages 46 ff. (Reinsel and Velu, 1998) investigate the asymptotic distribution of kl, and B, where C, 

is unknown and thus, l? = g,, for the case where rk(B) = 1. They show that the asymptotic distribution 

of the product B = F ~ G ~  is unaffected by choosing I' = 2, instead of I' = C,, whereas the asymptotic 
variance of the vectors PI, changes. For further details refer to (Reinsel and Velu, 1998). 

3.3.3 Weighted least squares estimators for F and G: 

The objective in the weighted least squares framework is to minimize 

1 
min - t r  [(Y - FG'x)'I'-~(Y - FG'X)] , 
F,G T 

where I' is as above some positive definite symmet.ric mat.rix t,hat here determines the weighting structure. 
Note that 

1 
- t r  [(Y - F G ' x ) ' ~ - ~ ( Y  - FG'X)] = 
T 

l?-$ (M,, - MYxGF1 - FGIMx, + FG'MXXGF')I'-~ = l 
= t r  [r-+(C, + (M,~M;$ - FG~M$,)(M,~M;$ - F G ' M ~  xx )l)r-+]  

Hence, lemma 3.2 implies that the optimal matrices (Fw1,, Gwl,) in the weighted least squares sense 
with respect to  l? and the normalization conditions (3.3) and (3.4) are Full, = I'4uT and Gull, = 

M M  I?-~u,,  where U, contains the normalized eigenvectors corresponding to  the r largest eigenval- 
xyl 

ues of I ' - ~ M y X ~ ~ & M x y r - ~ .  Therefore, for r = 2, the weighted least squares estimators are equal to  
the ML estimators stated in theorem 3.1. Due to the above discussions analog statements can be made, 
if I' = M,,, see section 3.3.1. 

3.3.4 Some alternative estimators for B = FG' 

Consider in the following a specially weighted form of the OLS estimator obt.ained from the full unre- 

stricted linear model 

LM,XM&R, (3.10) 

where L and R are some non-singular n X n and X dimensional matrices. From lemma 3.2 it follows 
that the best rank r approximation of L M , ~ M ~ ~ R  in the II.IIF-sense, is given by P = U,A,V,', where 
U,, A, and V, are the respective submatrices of U, A and V from the singular value decomposition of 
L M , ~ M ~ &  R corresponding t o  the largest r singular values. Since 

is equivalent to 
g i n  IlMyxhl;, - L - ~ P R - ~  

PER'"~;~~(P)=T IIF 

estimators for the rank deficient matrix B that minimize this objective function may be given as = 

L - ~ P R - ~ .  

Let us now discuss briefly some different choices for the weighting matrices L and R: 
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- -1 1 1 
1. L = C, or L = Miyyl, R = M:X: From section 3.3.3 it is clear that with these choices for L and R 

we obtain the above ML and weighted least squares estimators for the rank deficient B. In (Deistler 

and Hamann, 2005) this method to  obtain ML estimators is called indirect estimation method. 

2. L = I,, R = I,: Thus, the OLS estimate of the full unrestricted method is directly approximated 

by a rank r matrix. In (Deistler and Hamann, 2005) this method is therefore referred to  as direct 
estimation method. 

3. L = I,, R = Mxx: This means that it is just the cross moments matrix MyX that is approximated 

by some rank r matrix. Note however that the optimal rank deficient matrix B corresponding to  

this objective funct.ion minimizes in particular the following optimization problem 

i.e. it minimizes the overall sum of squared residuals of the normal equations. 

It  has been shown before that the ML estimator of the rank deficient B is consistent and asymptotically 

normal. In addition, the ML estimator is asymptotically efficient. In order to  investigate especially small 

(1 sample properties of the ML and the alternative estimators consider the following simulation study: 

Let the process be defined as 

~t = Ayt-i +Dxt - l+e t ,  

Yt = B [ Y I - ~ ,  xt-l]' + et, t E z, 
with n = 2, r = 1, k = 1, xt i i N ( 0 ,  l) independent of (et), et N i i N ( 0 ,  C,), with 

6.3e - 05 -3.9e - 05 
. Due to r = 1, B can be written as B = [A,  D] = 

-3.9e - 05 2.7e - 05 
/ 

( ' ) M ,  kf ( )] , where M i non-singular, X E JR\{Oj and b is free in R. Through- 

out the simulations we chose M = [ ;' ) , b = 2 and also the realizations of (xt) were just once 

generated. It  can easily be seen that the selection of X,  the non zero eigenvalue of the AR coefficient 

matrix A, determines the stability of the process (yt). For IXI < 1, the process will be stable and unstable 

otherwise. 

p, Simulations were performed for X = 0.1, 0.7, 0.99, 1 and sample size T = 10, 30, 100, 1000. In order 

to reduce the influence of starting values the first 50 generated data points were always dropped. The 

goodness of the estimates is examined by the following three different measures: 

1. FNB = B - B , the Frobenius norm of the distance of the estimate to the true parameter matrix 

B 1 

I / -  IIF 

, where X and Y are as in 3.1 and 3.7, the Frobenius norm of the residuals, 

i.e. the overall sum of squared residuals, and 

T 
3. 1 = log {det [) Et=l (y t  - B X ~ ) ( Y ~  - BX~)'] } + n, the log likelihood value (up to a constant). 

For each combination of X and T 500 data series for et and yt have been generated. 

In short, the following conclusions may be drawn from this simulation study: The indirect estimation 

method performs best throughout, meaning irrespective of sample size and stability of the underlying 

process, while the direct estimation method lags behind its competitors. The estimator that approximates 

the cross moments matrix Myx does a good job and due to  its construction beats the ML estimator in 

the F N y  sense. Nevertheless, one should rather perform ML estimation. Table 3.1 shows some results 

of the simulation study. Due to  the fact that the results indicated no extreme differences concerning the 

choice of X,  table 3.1 contains only summary statistics for X = 0.7. 



28 CHAPTER 3. REDUCED RANK REGRESSION 

P- 

Measure T unrestr. OLS direct . indirect M~~ 
F N B  10 0.9759 0.8507 0.3285 0.8141 

100 0.9516 0.8106 0.2731 0.7832 

1000 0.8743 0.7851 0.2768 0.7352 

FN, 10 0.0534 0.8768 0.0614 0.0561 

30 0.1886 1.2137 0.1945 0.1916 

100 0.6620 2.2986 0.6686 0.6666 

Table 3.1: Median of the 500 FNB,  FN,, and log likelihood values computed for each combination of 
X = 0.7 and sample size T ,  and each of the above presented estimation methods plus the OLS estimator 
in the unrestricted framework. 

3.3.5 Estimation under linear (or affine) restrictions on F and G: 

Suppose we are given some information about the structure of F and G. For instance, we might have 
some knowledge about zero restrictions on F and G respectively, or any other linear (or affine) restriction. 
In some cases we rnight be able to find a representative in the set of equivalent multiplicative decom- 
positions of the (aside from the rank constraint) unrestricted estimate of B that fulfills the additional 
constraints imposed by the new structure. However, by optimizing the "unrestricted" likelihood function 
an unnecessarily high number of parameters is estimated, which might deteriorate the estimation of the 

possibly small set of free parameters. Or in other words, optimization of a constrained setting might be 
advantageous concerning efficiency. Let us therefore mention a procedure that takes into account the 
additional restrictions during estimation: 

Suppose that  C, is known and apply the vec operator on equation 

Y = FG'X + E. 

According to the rules of kronecker products and the vec operator, this gives 

vec(Y) = (X' €9 F)vec(G1) + vec(E) 

or 
vec(Y) = (X'G €9 In)vec(F) + vec(E). 

Now suppose that we are given the linear constraints 

vec(G') = R G ~ G  + r G  and vec(F) = RFyF + r p  

Analogously to  section 2.2 eq. (2.12) we obtain for given F 

TG(F) (R&(xx' €9 F'c;'F)R~)-~R&(x €9 F ' C ; ~ ) ( ~  - (X' €9 F)rG) ,  (3.11) 

and reversely for given G we obtain 

TF(G) = (R>(G'XXIG €9 CT~)R~) - 'R>(G 'X  €9 C E ' ) ( ~  - (X'G €9 I n ) r ~ ) .  (3.12) 

Thus, we might pursue the following iterative procedure: Starting with some arbitrary pair ( ~ ( ~ 1 ,  
for instance the "unrestriceted" ML estimators from theorem 3.1 (i), compute (for i > 0) iteratively 
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in terms of and 

in terms of and at each step of the iteration impose suitably defined normalization conditions. 

Continue to  iterate until convergence is reached. For further details concerning the properties of this 

procedure see e.g. (Reinsel and Velu, 1998, p.33). 

3.4 Model specification and input selection 

In case of reduced rank regression models one has to specify not only the set of explanatory variables 

and the dynamics but also the integer valued parameter r,  namely the rank of the coefficient matrix B ,  

and finally the real valued parameters of the rank deficient matrix B. 
In literature, see e.g. (Anderson, 1951), (Reinsel and Velu, 1998, section 2.6), or (Liitkepohl, 1993, section 

n 5.3.5), several testing procedures are proposed. Due to the relation of RR to  CCA one might determine 
the rank of B by testing the significance of the last (min(n, k) - r )  canonical correlations between yt and 

X,. A test statistic for testing H. : rk(B) < r against H1 : rk(B) > r is given by 

for r = l , .  . . , min(n, L) - 1, where A, is the j t h  largest canonical correlation between yt and X,, i.e. the 

square root of the jt,h largest eigenvalue of Q,. Under t,he null hypothesis, the test statistic converges in 

distribution to a X2 distributioil with (n - r)(x - r )  degrees of freedom. Thus, if M is greater than an 

upper critical value determined by the X;n-T)(IC-P) distribution, the null hypothesis is rejected. 

Alternatively one may follow the line as proposed in (Deistler and Hamann, 2005), who simultaneously 

specify the rank r, the set of explanatory variables and the dynamics by a procedure involving iterative 

computation and conlparison of IC values, similarly to the FSP for single equations proposed by (An and 

Gu, 1985; An and Gu, 1989). The IC values are computed as follows 

AIC(r ,  E )  = log det 2, + $ (nr  + rk - r2)  

BIC( r ,  k) = logdet 2, + y ( n ~  + r k  - r2), 

T where 2, = 4 Ct=l (y t  - F @ X , ) ( ~ ~  - PG'X~)', is the ML estimator of C,. 

FSP in the framework of RR models: The initial rank T of B is chosen to  be min(n, k) and the 
initial set of explanatory variables is found by application of one of the forward procedures for systems 

of equations described in section 2.3. A refinement of the second step of An and Gu's FSP for this model 
class is as follows: It  is now not only allowed to  add or drop variables from the set, but also to  let the 

rank of B vary from 1 up to  min(n, E )  and to  weight observations a t  time t with some weighting factor 

selected from a finite grid in (0, l] .  The latter is done in order to  take into account slowly time 

varying parameters. Thus, in each iteration step the IC optimal variable to  be added t o  the set, dropped 

from the set, the IC optimal rank r and the IC optimal weighting factor X are determined, giving four 

"optimal" criterion values. These four values are compared with the criterion value corresponding to  the 

initial setting and the IC optimal setting is chosen. The procedure is iterated and it stops, when the IC 
value cannot be improved anymore by any of the possibilities mentioned before. 
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3.5 Forecasting 

Let, as in section 2.4, Pw be a projector on the Hilbert space, IHI(yi, yi-, , . .  . ,xi ,  xi-, , . . . , l). The optimal 
predictor for yt+h is then given by 

The error term is mapped to zero by the projector, if assumptions 2.1 hold. Thus, for h = 1 we have ,. ,. 
yt+~l t  = FG'Xt+l,  and hence, the estimate for yt+1lt is given by &+llt = FG1Xt+1. 



Chapter 4 

Factor Model wit h Idiosyncratic 
Noise (IN) 

Factor analysis is an important instrument of multivariate analysis. It. is motivated by the assumption 

that the underlying observed variables are correlated in such a way that their correlation structure can 

be simply reconstructed by a small set of variates, so-called factors. 

Factor analysis was first introduced in the field of psychology by Burt,, Spearman, Thomson and Thur- 

stone, just to  name some. In the last decades however, its use spreaded also to other disciplines. Growing 

dat,a availability and computing power of ordinary personal computers made the concept of Factor models 

attractive to  practitioners. 

4.1 The model 

Let for simplicity throughout this chapter all variables of interest be mean adjusted. As mentioned in 

the introduction the basic idea of factor models is to  find a representation of the n-dimensional vector 

of observed variables yt as a linear combination of a small number, say r << n, of in general unobserved 

factors (t and an n-dimensional vector of noise, et. Hence, yt can be written as 

P 
y t = A ( t + ~ t ,  ~ E Z .  (4.1) 

In addition, we assume that the following assumptions hold: 

Assumption 4.1 (Factor Model) 

(i) (Ct) and (et) are linearly regular, jointly stationary and ergodic processes with mean zero. 

(ii) Cc = I,. 

(iii) C, > 0 and diagonal. 

(iv) A E BnXT is the factor loading matrix, with rk(A) = r. 

(v) IECte; = 0 for all S, t E Z. 

The variance covariance matrix of yt is therefore given by the sum 

C, = AA' + C,. 
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Thus, the noise component et has no impact on the correlation structure of yt that is explained by a 

(possibly) small number of factors only, but may contain additional component individual information 
concerning the variances of yZt, i = l , .  . . , n. et is therefore called idiosyncratic. In case of economic 

time series, e.g. time series of asset shares, this may have a natural interpretation, since the factors 

may describe the movements according to  the market and the "noise" the movements according to the 

individual companies. 

Note that the dynamics in the factor model as it is given in eq. (4.1) together with the assumptions 4.1 

come from the dynamics of (ct) and (ct)  only, since A is assumed to  be constant in time. The model is 

hence called quasi-static factor model. The dynamics in (ct) and (ct) respectively may be modelled by 

some r-dimensional VARX model as presented in chapter 2 and n single equation ARX models. 

For a discussion on dynamic factor models see for instance (Forni and Lippi, 1999; Forni, Hallin, Lippi 

and Reichlin, 2000; Forni, Hallin, Lippi and Reichlin, 2001; Forni, Hallin, Lippi and Reichlin, 2003) or 

(Scherrer and Deistler, 1998) and (Diebold, 2000). 

Note furthermore that the above factor model involves a high order of indeterminacy in the parameters 

due to the fact that the factor variates are unobserved and have to  be estimated themselves. Given C, 
and the number of factors r,  in estimating the factor loading matrix A two identifiability problems arise. 

The first problem is to obtain feasible AA' (and feasible C,, i.e. C, 2 0) from C, and the second is to  

obtain A from AA'. 
Comparison of the number of underlying equations and the number of functionally independent. param- 

eters gives a first indication, whether we might expect a unique decomposition of C, or not: Eq. (4.2), 

due to the symmetry of C,, states i n ( n  + 1) single equations. The number of free parameters in C, 

and A is n and n r  - $r( r  - l ) ,  respectively. The latter is because of the indeterminacy in the product 

Act = AOIOCt = At t ,  where 0 is an arbitrary r X r dimensional orthonormal matrix, i.e. 00' = 0'0 = I,, 
Ct, as a rotation of ct, has the same properties as ct, and fulfills AA' = AA' and thus, eq. (4.2). Hence, 

A can be made to  satisfy $r(r - 1) additional normalizing conditions. The solution for r of the quadratic 

eauation 

that is smaller than n is called the Ledermann bound and is given by ruppeT = v - ,/(v)2 - (n2 - n). 

If the number of factors is greater than r,,,,,, then we might expect non-uniqueness of the decomposition. 

If r = [ruppeTJ1, then we might expect uniqueness. Note however, that it is not guaranteed that this 

unique solution is an admissible solution (i.e. C, > 0 and AA' 2 0 have to hold). If however, r < LruppeTJ, 

it has been shown that generically the decomposition of C, is unique, see (Scherrer and Deistler, 1998). 

For further details on identifiability of the decomposition of C ,  see (Anderson and Rubin, 1956) and 

(Scherrer and Deistler, 1998). 
Suppose a partition of C, has been found, then as mentioned before (under the assumption that A has 

rank r) A is uniquely determined from AA' up to  postmultiplication by an arbitrary orthogonal matrix 

0 .  A set of $r(r - 1) normalizing conditions is for instance given by 

where A = diag(Sl, S2,. . . , S,) is an ( r  X r)-dimensional diagonal matrix, with 61 > S2 > . . . > S, > 0. 

This normalization is referred t o  as the default method in the subsequent "quasi maximum l ike l ih~od"~ 
algorithm. 

In many cases, however, the A that fulfills the default normalizing conditions may lack interpretability. 

This can be improved by rotating the factors in such a way that the new factor loadings become more 

'1.1 : R - Z, denotes the f loor  funct ion,  i.e. the operator that gives the largest integer number that is smaller than the 
operand. 

2 ~ h e  algorithm is named "quasi" here, because the variates are not explicitly asked to be normally distributed. 
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meaningful. Let us in this context mention two procedures, namely the varimm and the promm method. 
The varimax method, see (Kaiser, 1958; Horst, 1965), tries to rotate the factors such that the resulting 

loadings tend to  have in each row a few relatively large entries in absolute magnitude compared with 
the original ones, while the others become small or close to zero. The promax method, see (Hendrickson 
and White, 1964), starts with a varimm rotation and continues by focussing on the columns of A. The 

aim of this second optimization step is again to  increase already large entries (in absolute magnitude) in 

each column and to  shrink the others. This time, however, the criterion function is such that the optimal 
transformation matrix obtained, in general, is non-orthogonal, leading to  oblique, i.e. correlated factors. 

4.2 Estimation 

In this section estimates for the real valued parameters and the unobserved factor variates are presented 

under the assumption that the number of factors r is given. Consider the following function LT(A, C , I~ ; ) ,  

where T denotes sample size and 2; := cT=~ yty: is the sample variance covariance matrix of yt, t = 

1, .  . . , T. Estimates for A and C, are obtained by iteratively maximizing, 

1 T 

T logdet(AA1 + C,) - 5 C ( y ; ( ~ ~ l  + C,)-lyt) = 
2 t=l 

- -L logdet(AA1 + C,) - L t r a c e ( ( ~ ~ '  + C,)-lk:), 
2 2 

subject to A E RnXr, rank(A) = r, C, > 0 and the default normalization condition (4.3), see e.g. (Lawley 
and Maxwell, 1971, section 4.3). Note, that in case of independently identically normally distributed 

noise and factors, the function given in (4.4) is (up to  a constant) the loglikelihood function of yt. In 
case of autoregressive factors and noise as considered here, (4.4) however, is not the likelihood function. 

Nevertheless, the estimates A and 2, obtained from maximizing (4.4) can be shown to  be consistent 
estimates for A and C,, if A and C, are identifiable and if 2; is a consistent estimate of C,. The proof 
for this is completely analogous to the proof given in (Anderson, 1971, p. 565), since the argument only 
depends on 2; converging to C, a.e. For a detailed description of the iterative maximization procedure, 
the choice of starting values and the case of ML estimation under constraints, on one or both matrices 

C, and A respectively, see (Lawley and Maxwell, 1971; Anderson, 1971). 

P 
Let us now consider estimation of the unobserved factors Ct. In contrast to index, RR or principal 

components models, here, the factors, in general, cannot be obtained directly as a function of the observed 

yt and, hence, have to  be approximated by some (linear) function of yt. In the following we will present 
two methods, namely the regression method, discussed in detail by Thomson (Thomson, 1951), and 
Bartlett's method, see (Bartlett, 1937; Bartlett, 1938b): 

1. Regression method: Here the factor process is approximated in least squares sense by some linear 
combination of yt, obtained from 

From the assumptions 4.1 we obtain A' = AA'C;l and, therefore, tt = A'Ccl yt. 
If the covariance matrix of the factors is not the identity but some symmetric positive definite matrix 
Q, of order r, i.e. the factors are oblique and not necessarily standardized, the factor estimates are 
given by It = Q,AA'Cy1 yt, since in this case IECty; = @A1. 

2. Bartlett's method: Bartlett's idea was to minimize the sum of the squared standardized residuals 
with respect to  the r-dimensional factor process, 
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giving it = (AIC;lA)-l A'C;' yt. 

It  is easy to see that  this method is independent of the factors being orthogonal or oblique. 

There is no general rule which method to  apply. The decision may be based on the properties the 

estimates of the factor process should possess. The following remarks will point out some of them: 

Remark 4.1 (Estimation error variance.) By application of the matrix inversion lemma (MIL)3 on 

C, = AQA' + C,, where Q, := we obtain 

C-l = C-l - ~;1A(@- l  + A'c;~A)-~A'c-~ 
Y E .  

Hence, the second moments and the estimation error variances can be written as 

Thus unsurprisingly due t o  its construction, for any > 0 it holds that the estimation error variance 

of the factor estimates obtained by the regression method is smaller than that of the factor estimates 

Bartlett's method 

( A I C ; ~ A ) - ~  + m 
m 

(AIC;lA)-l. 

E& l; 

E - c ) (  - ) 

obtained by Bartlett's method. 

Regression method 

m [ (A 'C;~A)-~  + m]-' m 
m [ ( A ~ C ; ~ A ) - ~  + m]-' m 

(@-l + A'c;~A)-~ 

Remark 4.2 (Condition,al unbiasdness.) Consider the conditional expectation IE(lt1ct). Then, since 
E(A'C;lytl<t) = A'C;lA(t and IE((A'C;lA)-lA'C;lYtI<t) = et, it follows that Bartlett's method is 

unbiased in this sense, whereas the regression method is biased. 

Remark 4.3 (Relation between the two estimates.) With the MIL it follows that 

A'c;~ = (I, + A'C;~A@)-~A'C;~. 

Hence, the following relation between the two estimation methods holds 

-(regression) + A!c;~A@)-~A/c;~A ^(Bartlett) 
et ct 

Note that if Q, is diagonal and if the default normalizing conditions (4.3) hold, the factor estimates differ 

only by scaling. 

Let & = AIC;'yt and (t = (A'~; 'A)- 'A'~; '? /~ denote the final factor estimates, where A,C, and Cy are 
substituted by A, 2, and 2, (= 2;). 

4.3 Forecasting 

In order to  forecast yt we have to  define forecasting models for the factor and the idiosyncratic noise 

component: 

For forecasting the factor process (ct), here, we use a VARX model of the form 

where A(z) and D ( t )  are polynomial matrices in the backward shift operator t of order p and g, respec- 

tively, and the stability condition 

det [I - z A(z)] # 0 for all lzl 5 1 (4.8) 

holds. 

3Matrix inversion lemma (MIL): Let A, D and C be non-singular quadratic matrices. A and D are n X n and C is 
m X m dimensional. Let B be a rectangular n X m dimensional matrix. The inverse of D = A - BC-'B' is then given by 
D-1 = A-l + A-IB(C - B'A-~B)-~B'A-'. 
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Assumption 4.2 (Factor  Forecasting Model )  

(i) (ut) is white noise. 

(ii) (xt) is a k-dimensional linearly regular, stationary and ergodic process with nonsingular spectral 

density and mean zero and IExtuL = 0 for all t, s E Z. 

Equation (4.7) can also be written as 

<t+l = Frlt + %+l, (4.9) 

where F = [Ao AI . . . Ap DO D1 . . . Dq] and vt = (c: . . . X; . . . x:-~)'. 

If we had observed Cl,. . . ,<t,  the OLS estimate for F E RrX[(p+l)T+(q+l)k] would be given by Ft = 

c : ~ ~ ( < ~ + ~ ~ ~ ) ( c : ~ ~ ~ , I ~ ~ ) - ~ ,  where i = min(p,q) + 1. By defining jt analogously to  tt we obtain an 

estimate Ft for Ft.  Hence, the one-step ahead forecasts for the factors are given by itill, = 

which finally yield the one-step ahead forecasts, &+llt = for yt+l. 

Since the "noise" is assumed to  be idiosyncratic and, as it has already been stated above, may be 

P interpreted as an asset specific component, we additionally consider univariate ARX models in order to  

predict the idiosyncratic component, which in obvious notation are given by, 

with pi and qi being the order of the polynomials ai(z) and Di(z) and with the assumptions 

Assumption 4.3 (Forecasting t h e  idiosyncratic component )  

(i) (vt) is white noise. 

(ii) (zji)) is an mi-dimensional linearly regular, stationary and ergodic process with nonsingular spectral 

density and mean zero and = 0 for all t, s E Z, and i = 1, .  . . , n. 

(iii) 11 - zai(t)l  # 0 for all lzl 5 1, i = 1 , .  . . ,n. 

Note that the "noise" component et is of course unobservable, and thus the coefficients of eq. (4.10) have 

n to be computed with respect t o  the estimated residuals it = y, - A&. 
i 

The one-step ahead forecasts for €/P1 are obtained analogously to above as 
;(i) ' :(i) 

= Fi~t , 
where 

;(i) - ~ ( i ) '  ( a )  (i)' (i)' 
rlt -(Et l . . . lEt-p;r~t  l . . . lz t -q;) ,  

t - l  ;(i) ~ ( a ) ' ) ( ~ t - !  (:(i) :(i)' 
Fi = Cs=l i  (E,+IV~ ,=ti 77s VS ))-l7 and 

Hence, this approach consists of two steps: First, estimate the factor model (4.1), and second, estimate 

the VARX model (4.7) from the estimated factors tt and the univariate ARX models (4.10) from the 

estimated residuals i t .  

Finally, one may compute two different types of one-step ahead forecasts for yt+l, 

As an option in forecasting, we additionally consider t o  project the inputs for the models forecasting the 

idiosyncratic components on the orthocomplement of inputs for the VARX model forecasting the factors. 
This is done in order to separate the individual, idiosyncratic components from the common components. 
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1 4.4 Model specification and input selection 

In (Lawley and Maxwell, 1971, section 4.4) and (Anderson and Rubin, 1956, section 8), likelihood ratio 
criteria testing procedures for the determination of the number of factors are proposed. These sequences 
of tests base only on the goodness of decomposition of C,, the factor scores are totally neglected. This 
may be reasonable in many applications. Here, however, the aim is to  forecast. Thus, it might make 

sense to include the forecasting ability of the forecasting models for the factors in the decision rule. 

As in the previous chapters specification is done totally data-driven. In order to  determine the number of 

factors, dynamics and the sets of explanatory variables, we use again specification procedures involving 
information cirteria. 

The Ledermann bound, as mentioned above, provides an upper bound for the number of factors, such 
that the decompositio~l of the variance-covariance matrices C, is determined generically unique from the 
observed data y t .  The specification procedure may hence consist of the following steps: 

1. For each feasible r ,  r = 1, . . . , ~rupper], compute A, g,, and &. 

2. Specify the VARX forecasting models for the respective factor processes and the ARX forecasting 
models for the corresponding idiosyncratic components, as described in section 2.3. 

3. Choose r such that it minimizes the underlying IC criterion. Thus, choose r such bhat it gives an 
IC-optimal trade-off between in-sample explanatory power for y, (based on the factor (and possibly 
also the "noise") forecast obtained from the previous step and on the estimated loadings A) and 
model complexity (i.e. the number of parameters to  be estimated). 

Note, that in this procedure input selection and dynamic specification for the VARX and ARX models 
respectively, is based on a goodness-of-fit measure for the factor and "noise" process, whereas determi- 

nation of the number of factors is based on a goodness-of-fit measure for yt .  Of course given the number 

r of factors, one could alternatively specify the forecasting models for the factors and the idiosyncratic 
noise component jointly with respect to a goodness-of-fit measure for yt in a first step, and in a second 

step just as above select the optimal r .  This however, is much more time consuming due to the high 
number of parameters that have to  be taken under consideration during the selection and specification 
procedure of all forecasting models, and has therefore not been considered here. 



Chapter 5 

Empirical Analysis for Daily Share 
Prices 

The methods proposed in the previous chapters are applied to  daily close return data for shares of the 

banking sector in DJ EURO STOXX~O' from 16.06.2000 to  13.11.2002. These are in total 629 observa- 

tions, weekends excluded. 

The banks are: ABN AMRO (H.AAB), Banco Bilbao (U.BBV), Banco Santander (E.SCH), Hypo- 

Vereinsbank (D.HVM), Deutsche Bank (D.DBK), BNP Paribas (F.BNP), UniCredib (I.UC); see figure 

5.1. 

Euro Stoxx 50 Banks 

Figure 5.1: Return Series of the DJ EURO STOXX50 banks sector, 16.06.2000 - 13.11.2002. 

Note that the definition of returns depends on the way of compounding. Let pt be the price of an asset 
a t  time t ,  then 

The data were provided by Siemens-Fin4cast, Vienna. 
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1. relative dzfferences, defined as yt = (pt - pt-l)/pt-l, give the interest or percentage yield obtained 

within period t - 1 to  t using (here) daily compounding, and 

2. log returns, defined as rt = In fi = l n ( l+  yt), give the interest or percentage yield obtained within 

period t - 1 to t using continuous compounding. 

Daily, monthly, yearly, and the like compoundings are often used by banks, financial institutions and in- 

vestors in financial markets, whereas continuous compounding is used rather by researchers. Continuous 

compounding is also opportune in the framework of the widely used Black and Scholes option pricing 

model, since there one of the main assumption is that stock prices follow a geometric Brownian motion. 

Thus, under this assumption the differences of log prices are norn~ally distributed. In practice however, 

this assumption hardly ever holds, see e.g. (Hull, 2003). 

Note that for the  average return over the whole observation period, t = 1 , .  . . , T, using daily compound- 

ing we have 

- , and thus ( l + ) T - l  = 7 
1/T 

g = (g) - l =  

where 7: = $ cT=~ rt .  Thus, the average return is computed as geometric mean of the yt's, if daily 

compounding is used, whereas the arithmetic mean applies for log returns, hence continuous compounding. 

By definition (see also figure 5.2) it is clear that yt > rt holds. The difference yt - rt is small, if the yt 'S 

are small in absolute values. 

Figure 5.2: Relative differences (solid line) and the log returns expressed as a function of relative differ- 

ences (dotted line). 

Note that all asset price data available for us were already transformed to  relative differences. Thus, 

the subsequent analyses are carried out on returns using daily compounding, and from now on the item 
"return" refers to  the relative differences as defined above. 

Table 5.1 contains summary statistics of the return series, and shows some stylized facts of financial 

return series: 

First, return series tend to  have a leptokurtic distribution. This means that compared with the normal 

distribution it is more peaked a t  the center and has fatter tails. Thus, "extremes" are more likely to  occur 

in the framework of leptokurtic distributions than of normal distributions. For all bank return series the 

estimated kurtosis exceeds 3, the kurtosis of a normally distributed variable, and therefore confirms this 



- - -. - - 

min -0.1181 -0.0961 -0.1074 -0.1588 -0.1162 -0.1062 -0.0943 

925 

median 

975 

max 

arith. mean 

geom. mean 

skewness 

kurtosis 

Table 5.1: Summary statistics of the return series of the DJ EURO STOXX50 banks sector, 16.06.2000 

- 13.11.2002. (qz5 is the 25% (75%) sample quantile.) 

stylized fact. 

C Second, volatilities tend to cluster, see figure 5.1. It  can be observed that the summer of 2001 and the 

period from June 2002 until the end of the observed sample were periods of high volatility as compared 

to the rest of t,he time. In part I1 we come back t.o this characteristic and present model classes for the 

conditional variances. 

It should be mentioned that the series were tested for unit roots, i.e. one type of non-stationarity. The 

hypothesis of the existence of a unit root in the augmented Dickey Fuller test, however, could be rejected 

for all 7 series at a significance level of 1%. 

Let us now turn to the input variable candidates that are all given as relative differences and can be 

partitioned into three groups: The first group is given by present and lagged values of the bank returns. 

Throughout we consider only lags of order one and five. The second group, see table 5.2, consists of present 

values, first and fifth lag of 19 variables that contain general information concerning the development 

of the market under consideration, such as indices for the banking sector, interest rates and futures for 

indices. Finally, the third group pools present values, first and fifth lag of variables that are rather bank 

specific, like market indices of the markets or branches the banks are invested in, and stocks of companies 

of wllich the banks are important shareholders, see table 5.3. 

P The set of exogenous variables in the VARX models estimated is either given by whole group two or 

by current and lagged values of the three variables "BIX", "IRX" and "NDcl". These three variables 

have been selected throughout or most frequently by the two-step FSP and, if BIC was the underlying 

information criterion they sometimes appeared to be the only explanatory variables selected, in the 

framework of both, VARX and RR models. Vector Xt  (see eq. (3.1)) in the RR models contains all 

variables provided by group one and two. Finally, for the factor models (IN) the variables in group one 

and two are used as "exogenous" variables in the factor forecasting models and the variables in group 

three are used as exogenous variables in the forecasting models for the idiosyncratic "noise" component. 

Due to  the fact that for each model class (i.e. the VARX method, the RR method and the IN method) 

considered we allow for certain design specifications, we will now introduce a coding system identifying 

the computed models. The code of a VARX model is as follows, 'varx[re-specification period].[initial 
method (mva/univ)].[criteria used in the two steps of the FSP].[logical for moving (TRUE) or expanding 

(FALSE) window]', e.g. varx5.univ.AICF-BIC.TRUE means that a VARX model has been respecified 

every 5 days using the univ method with AIC to determine the initial set, BIC in the second step of the 
refined FSP and a moving window of observations used for estimation. The code for the RR models is 

as follows, 'rr[re-specification period].[estimation of P (directlindirect)]. [criteria used in the two steps of 

the FSP]. [logical for moving (TRUE) or expanding (FALSE) window]', e.g. rr5.direct.AICF-BIC.TRUE 
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Variable Name Description 

FTEUF E300 Financials (FTSE International) 

FTEUBKEC 

SKX 
GOX 
T O P  
GBPlYD 

FCUcl 
BIX 
XID 
LIEURlYD 
LIEURlMD 

E300 Banks EU (FTSE International) 

S&P 500 BARRA Growth Special O P  
Gold Index (Chicago Board Options Exchange) 
EURO TOP-100 (FTSE International) 
GBP, 1 Year Yield (Bid) 

Future, 3 Month Euro LIBOR traded on LIFFE, continues 
S&P Bank Index (Standard & Poor's Corp) 
Industrial Index (American Stock Exchange) 
EURO LIBOR, 1 Year Yield 
EURO LIBOR, 1 Month Yield 

CH2MTRR Swiss, 2 Month zero-bond 

DElOYTRR BRD, 10 Years zero-bond 
IRX 13-Week Treasury Bill (Chicago Board Options Exchange) 

USD9MD USD, 9 Month Yield 
FTEUOFEC E300 other Financials EU (FTSE International) 

SXFE Dow Jones Euro Stoxx Financial Services Index 

NDcl Future, NASDAQ 100, continues 

FDXcl Future, DAX INDEX, continues 

Table 5.2: Input variable candidates - group two. 

means that a RR model is respecified every 5 days, ,6 is estimated by the direct method, AIC is used in the 

forward algorithm and BIC in the FSP, and a moving window is used for estimation. Finally, the code 
for the IN models is given by 'in[re-specification period].[factor estimates (regression/Bartlett)]. [rota- 

tion (varimax/promax/default)] . [initial method (inva/univ)] . [criteria used in the two steps of the FSP]. 
[criterion used t o  specify the number of factors (AIC/BIC)]. [logical for moving (TRUE) or expanding 

(FALSE) window]. [orthogonal projection of the explanatory variables of the error models on the ortho- 
complement of the inputs of the factor models (TRUE/FALSE)]', e.g. inl0.regression.default.univ.AICF- 
BIC.AIC.TRUE.TRUE means that a respecification period of 10 days, factor estimation by the regression 
method, normalization by the default method, univ method with AIC for the initial set, BIC for the second 
step of the FSP, AIC for determining the number of factors, moving window and orthogonal projection 

has been applied. 

5.1 Measures for out-of-sample model validation 

As is well known, in-sample effects can be extremely misleading in terms of notably overestimating the 
forecasting quality of the models. The forecast procedures presented here are "honest", in the sense of 
being strictly out-of-sample, i.e. for forecasting yt+l only data up t o  time t are used, both for estimation 
of real valued parameters and for model specification. 
Thus, throughout, for each dependent variable, y,,t+l, the one-step (here one day) ahead predictors, 
yz,t+llt, and the corresponding prediction errors, = ~ , , ~ + l  - yz,t+llt, are calculated from a model 
identified from data up to  time t ,  using both an extending and a moving window, respectively. The 

estimators of the real valued parameters are updated a t  every time instance. The specification is updated 
every five or every ten days, i.e. every week or every fortnight. The sample is divided into two parts, 
1 , .  . . , TI and TI + 1, .  . . , Tz. Only the latter part is used for evaluating the out-of-sample forecasts. The 
evaluation sample, Tl + 1, .  . . , Tz, consists of the last 30% of the whole sample. 
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Idiosyncratic Variable 
Noise Name Description 

H.AAB H.AEGN Aegon, Insurance company 
H.ING ING, Insurance company 
H.AMEV Group Fortis AMEV, Insurance, banking, investment 
DJTNFEE Northern European Financial Index 

U.BBV E.TEF Telefonica 
DJLAFE Latin America, Financial Index 
DJLABK Latin America, Banks Index 

E.SCH VOD Vodafone 
E.TEF Telefonica 
DJLAFE Latin America, Financial Index 
DJLABK Latin America, Banks Index 

D. HVM D.MU2X Munich Re Group 
ASTCECE OTOB CENTRAL & EAST. EUROP.FIN.CECE 

D.DBK D.ALV Allianz, Insurance company 
DAXBNKK DAX 100 BANKS 
FTSElOO FTSE 100 
DAXIDXI DAX 30 
DJ1 DJ1 30 

F.BNP F.MID1 
F.SGE 
SPEUREl 
SPE35E1 
CHEMSEX 
CHEMSFR 
F.EADS 

I.UC 1.G 
ASTCECE 

AXA, Insurance company 
Group Sociktk Gknkral 
S&P EURO ENERGY 
S&P EUROPE 350 ENERGY 
EUROPE EX UK COMMODITY 
FRANCEDS CHEMS. COMMODITY 
European Aeronautic Defence and Space Company 

Generali, Insurance Company 
OTOB CENTRAL & EAST. EUROP.FIN.CECE 

Table 5.3: Input variable candidates - group three. 

C 
Three measures for the quality of the forecasts are considered: 

" I  ̂  

The out-of-sample coefficient of determination R: = 1 - E ,  where ii and yi, respectively, are the 
vectors consisting of the components ii,t and yi,t from the validation sample, t = Tl + 1 , .  . . , T2. 

T2 The out-of-sample hit rate given by, hi = Ct=Tl+l ~ i g n ( y ~ , ~ c ~ , ~ l ~ - ~ ) .  

The Diebold Mariano (DM) test: Suppose a pair of h-step forecasts for an asset i have produced 
(1)  ( 2 )  errors (E^i,t , fi,t ), t = Tl + 1 , .  . . , T2. The quality of the forecast is to be judged on some specified 

function g(&) of the forecast error, ii,t. Then, the Null hypothesis of equality of the expected 
forecast performance is 

( 2 )  - ~[g(ij,li)) g(E^i,t )l - 0. 
( 1 )  ( 2 )  7-2 Let zi,t = g(;,,, ) - g(;,,, ). The variance of % = Ct=Tl+l ~ i , ~  is asymptotically, var(Zi) = 

1 m(% + 2CE1 yk), where ~k is the kth autocovariance of zi,t that is estimated as ?k = 
1 T2 m Ct,T,+l(~i,t  - Z i ) ( - ~ ~ , ~ - k  - h). The Diebold Mariano test statistic is then given as 

with 



42 CHAPTER 5. EMPIRICAL ANALYSIS FOR DAILY SHARE PRICES 

where K is an increasing function of sample size. Under the null hypothesis, this statistic has 

an asymptotic standard normal distribution. Unless stated otherwise, g(x) = x2, i.e. function 
g gives the squared residuals. See (Diebold and Mariano, 1995) and (Harvey, Leybourne and 

Newbold, 1997) for further details. 

It  should be emphasized, that these measures should be interpreted with care. An ideal measure would 

depend on the actual trading strategy used. Thus, a real test of the forecasting quality is context 

dependent and would consist in evaluating the profits made by a specific portfolio selection strategy. 

As an example let us consider the following criterion function: 

where wt is the n-dimensional vector of portfolio weights at time t,  ktlt-l = & is the pre- 

diction error variance covariance matrix, and a is some factor representing risk aversion (throughout we 

chose a = 0.5). So, by minimizing function (5.1) with respect to  wt, we optimize the trade-off between 

expected return, w:ytlt-l, and risk. We choose two simple strategies corresponding to  the two following 

sets of restrictions on the portfolio weights: 

S t ra tegy  I: Q 
C:=l w2.t = 1 

w,,t > 0, f o r a l l i = l ,  ..., n 

St ra tegy  11: 

Note that the weights obtained from strategy I1 were (after optimization) always rescaled such that 

C W& = - C = 0.5, where C W& (C W&) means that we sum just the positive (negative) weights. 

In Strategy I the restriction C:=l w , , ~  = 1 gives the allocation of one monetary unit on the shares 

contained in the portfolio a t  time t. Short selling, i.e. < 0 for any i, is not allowed. In the scenarios 

presented later on we have an investor that given a certain capital of Kt monetary units a t  time t invests 

everything in the underlying portfolio, so that a t  time t + l he has Kt+l = Kt + KtLji+lYt+l, which he 

reinvests in period t + l, and so on. Strategy 11, on the other side, allows for short selling, where the 

money invested in certain assets equals the amount of money obtained from short selling other positions. 

So, at time t our investor sells positions of a total amount of 0.5Kt and from this money he buys other 

positions. At time t + 1 he is left with Kt+1 = Kt + K&J:+~ yt+1. 

In the figures shown below we plot the time series of the capital Kt, where our investor is assumed to 
0 

have KO = 100 monetary units available as starting capital. 

In the following section we will summarize the results obtained concerning the main issues and problems 
in developing forecasting strategies for return series. 

5.2 Problems in developing forecasting strategies 

Input Selection: As it has been mentioned in the introduction of this part, we believe that a necessary 

condition for successful forecasting is to  make use of information contained in inputs. In other words, we 
think, that there may be weak form efficiency (i.e. efficiency in relation to  the history of the returns), but 

no semi-strong efficiency (where semi-strong efficiency means efficiency in relation to  publicly available 

information). Since there is no clear a priori knowledge concerning relevant inputs available for us, we 

chose explanatory variable candidates that provide information of the financial sector or specific branches 

and regions in which the banks are invested. Hence, data driven input selection is a particularly important 

issue here. 
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One of the most important inputs throughout the forecasting methods appeared to be the S&P Bank 

Index (BIX). In any method and model it got selected nearly every specification period. 

Modelling of Dynamics: Linear dynamics is modelled here by adding lagged inputs and outputs to  

the set of explanatory variable candidates. Thus, input selection and dynamic specification is performed 

in one step here. Lagged output variables, and in the IN method also lagged factor scores, seem to be 

essential for all three forecasting methods. This, in a certain sense, even loosens the above assumption 

that there may be weak form efficiency. 

Specification: Throughout the methods we only computed models with a BIC-type criterion in the 

second step of the refined FSP (see section 2.3), as our previous investigations showed bet,ter results with 

BIC than with AIC. 

In case of VARX models 8(1) lagged output variables have been selected on average per equation, if 

AIC(B1C) was the IC criterion in the first step of the refined FSP. The average number of selected 

(current and lagged) exogenous variables per equation ranges from 2 in case of BIC to  19 in case of 

AIC, when the exogenous variables were chosen from total Group two, and from 1 in case of BIC to  5 
in case of AIC, when the exogenous variables were chosen from current and lagged variables of the set 

rJ {BIX, IRX,  NDcl}).  

Due to the BIC-type criterion in the second step of the refined FSP in case of the RR method the rank r 

of the coefficient mat.rix was specified to  be one throughout, whereas the number of explanatory variables 

k ranges from 1 up to 16 across the different models estimated. 

Whenever a BIC-like penalty term was chosen to  determine the IC-optimal number of factors for the IN 

method just one factor was selected, regardless of which estimator ("regression" or "Bartlett") for the 

factor is chosen. When an AIC-like penalty term was chosen, the specification procedure tended to select 

slightly less factors when the factors are estimated with the "regressionn-method than when the factors 

are estimated with Bartlett's method. Especially when the "promax" method was applied to  additionally 

transform the factors and when the factors were estimated by the "regressionn-method, the procedure 

throughout selected only one factor. 

Structural Changes: Structural changes seem to be an important issue for a number of reasons. For 

instance, it is quite comnlon to  distinguish between bear, bull and sideward regimes. Structural breaks 

and smooth transition in returns have been investigated in Krca (2002) and are not explicitly considered 

here. Slowly time varying parameters have been taken into account in our procedure by using adaptive 

identification methods: We considered a weighting factor that decreases exponentially and therefore gives 

C-' less weight to  past observations, and rolling and expanding estimation windows. As rolling window we 

chose a window of 433 observations, which corresponds to  69.5% of the whole sample, a bit less than 21 

months. Finally, our models are respecified every 5 and 10 days, respectively, which also accounts for 

structural breaks and allows for adapting to  new economic regimes or states, since the set of common 

components or factors and explanatory variables is allowed to  alter accordingly. 

Concerning design parameters like the weighting factor and rolling or expanding estimation window, we 

found the following: Multiplying observations a t  time t with a weighting factor x ~ - ~  does not seem to be 

crucial. Our procedure hardly ever selected a X smaller than 1. Thus, changes in the set of explanatory 
variables or in the number of common components are much more striking, or the structural changes 

occurring in our data cannot be handled adequately by a simple weighting factor. Making use of a rolling 
or expanding window also seems to be of secondary importance in our context. The out-of-sample results 

are comparable, maybe with a slight preference for the expanding window version, see e.g. table 5.9. 
We should mention, however, that we only considered a fixed window size of 433 observations for the 

rolling windows. Different sizes could have led to different results, however we do not think that this 

point is important. In addition, by the introduction of an additional integer parameter that governs the 

rolling window size we would have made estimation and specification even more complex a t  the expense 

of computing time and the danger of overfitting. So, we did not follow this line here. 

What we could observe, however, was that our procedures made great demands on the possibility of 
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respecifying the integer valued parameters indicating that structural changes do take place. 
In figure 5.3 the time path of the estimated coefficients of model rr5.indirect.BICF-BIC.FALSE is given. 

It  shows that for every input the signs of the coefficients are the same for all bank return series except for 

Banco Bilbao for which the signs flip. Furthermore note that most of the inputs are not always selected 

as explanatory variable, as their coefficient series are given only for a certain subset of the time span 
considered. The numbers of selected explanatory variables, k, for the underlying model ranges from 5 to 

9. 

RR: Estimated coefficients 

Figure 5.3: Coefficient of model rr5.indirect.BICF-BIC.FALSE; solid lines: U.BB&-l, U.BB&-2, 
D.DBKtPl ,  BIXtPl ,  IRXtV2,  N D d - 1  and NDelt-2; dotted lines: E.SCHtPl ,  E.SCHt-2, F.BNPt-2, 

I.UCt-l, I.UCtP2, SKXt-2, LIEURIYDt-6, CH2MTRRt-2, IRXt-6 and SXFEt-2. 

Possible Nonlinearities: During the last decade modelling of financial data by neural nets has attracted 
great attention (see e.g. Abu-Mostafa, Atiya, Magdon-Ismail and White (2001)). Since we are interested 

in short term forecasting only (daily returns), we think that nonlinearity is not a big issue here, except 
for structural changes. 

In (Deistler and Hamann, 2005) some results for neural nets are provided to  the same data set. Their 
forecasting performance however is disappointing. 

Outliers: Detection of outliers in general is an important problem in return series and needs a great 
amount of expertise, especially, in order to distinguish them from structural breaks. Thus, it requires 
specific knowledge about the data generating process and the process gathering the data of interest. The 
investigations in (Deistler and Hamann, 2005) concerning this topic do not lead to  a clear general answer 
to the question whether outlier adjustment in case of the underlying data set does improve results or not. 

5.3 Comparison of the forecasting methods 

The largest impact on the forecasting results has the choice between VARX, RR and IN. As far as the 
forecasting qualities (with respect to  the out-of-sample R2 and hit rate) are concerned RR seems t o  be 
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the best, whereas the performance of IN underachieves, see table 5.4 for an example. Figure 5.4 and 
tables 5.5, 5.6 and 5.7 give an overall impression of the methods' forecasting quality. The tables show 

the fractions of positive out-of-sample R2 and hit rates greater than 0.5 for all models considered per 

forecasting method and confirms the ranking with respect to the out-of-sample R2 and hit rate. Figure 5.4 

gives an impression of the out-of-sample measures' distribution along the different design specifications. 

The relatively good results obtained using the simple -as compared to  the competitors- VARX method 

is joyous, a bit surprising, though. Note that for VARX models using just current and lagged values of 
three exogenous variables on average show more positive out-of-sample and out-of-sample hit rates 
that are larger than 0.5 than when whole group two is provided. 

banks 

Table 5.4: The out-of-sample results for varx5.mva.BICF-BIC.TRUE (exogenous variables: BIX, IRX, 
NDcl), rr5.direct.BICF-BIC.TRUE, inl0.Bartlett.default.mva.BICF-BIC.BIC.TRUE.FALSE (consider- 
ing only forecasts based on the factor part of the model) and the geometric mean as benchmark model. 

VARX 
R2 hit rate 

0.0461 0.56 

-0.0002 0.50 

I , ,  I , , , , , I  
HAAB U W  ESCH O H W  O D W  F.BNP IUC H M B  UBBY ESCH DHVM DD% FBNP 1°C 

RR 

R2 hit rate 

0.0687 0.62 

0.0004 0.48 

l I 
I , , , , ,  

HAAB UBBV ESCH D W M  D D W  F W P  IUC 

. , , . . , .  . . , . . . .  . . . . . . .  
HAAB UBBY ESCH D H M l  DDBK FBNP IUC H M B  UBBV E.SCH DHVM DDBI  FBNP IVC HAAB UBBV ESCH D W M  DOBK FBNP IVC  

IN 
R2 hit rate 

0.0144 0.54 
-0.0404 0.48 

Figure 5.4: Boxplots of out-of-sample R2  (first row) and hit rates (second row) of all VARX (first column), 
RR (second column) and IN models (third column) considered. 

Benchmark 
R2 hit rate 

-0.0017 0.51 
-0.0017 0.50 

The next important design parameter is the choice of the information criterion for model selection. The 
best results for VARX and RR with respect to the out-of-sample measures are achieved by choosing BIC 
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- "  . - 
3 inputs 0.75 0.00 0.50 0.44 0.75 1.00 0.50 

Group 2 0.56 0.00 0.25 0.69 0.50 0.63 0.38 

all VARX models 0.66 0.00 0.38 0.56 0.63 0.81 0.44 

hitrate > 0.5 H.AAB U.BBV E.SCH D.HVM D.DBK F.BNP I.UC 

3 inputs 1 .OO 0.13 0.50 0.06 0.94 0.94 1.00 

Group 2 0.88 0.25 0.25 0.38 0.81 0.38 0.88 

all VARX models 0.94 0.19 0.38 0.22 0.88 0.66 0.94 

Table 5.5: For all VARX models considered (16 models with 3 exogenous inputs (BIX, IRK, NDcl), 16 

models with whole Group 2 as exogenous explanatory variable candidates), the table shows: Fractions of 

positive out-of-sample R2 and hit rates greater than 0.5 are given. 

R2 > 0 H.AAB U.BBV ESCH D.HVM D.DBK F.BNP I.UC 

new.spec = 5 1 .OO 0.13 0.88 1 .OO 1 .OO 1.00 0.75 

new.spec = 10 1 .OO 0.13 0.88 1 .OO 1.00 1.00 0.88 

all RR models 1 .OO 0.13 0.88 1 .OO 1 .OO 1.00 0.81 

hitrate > 0.5 H.AAB U.BBV E.SCH D.HVM D.DBK F.BNP I.UC 

new.spec = 5 0.75 0.13 0.88 0.38 0.88 0.88 0.63 

newspec = 10 0.75 0.25 0.88 0.25 0.88 0.88 0.88 

all RR models 0.75 0.19 0.88 0.31 0.88 0.88 0.75 

Table 5.6: For all RR models considered (8 models with new.spec = 5, 8 models with new.spec = 10), 

the table shows: Fractions of positive out-of-sample R2 and hit rates greater than 0.5 are given. 

Factors 0.52 0.00 0.02 0.64 0.38 0.75 0.11 

Factors + Errors 0.32 0.04 0.18 0.68 0.43 0.59 0.00 

all IN models 0.42 0.02 0.10 0.66 0.40 0.67 0.05 

hitrate > 0.5 H.AAB U.BBV E.SCH D.HVM D.DBK F.BNP I.UC 

Factors 0.78 0.12 0.26 0.11 0.60 0.53 0.06 

Factors + Errors 0.71 0.07 0.54 0.09 0.62 0.78 0.23 

all IN models 0.74 0.10 0.40 0.10 0.61 0.65 0.14 

Table 5.7: For all IN models considered (192 models including factors only, 192 models including factors 
and errors), the table shows: Fractions of positive out-of-sample R2 and hit rates greater than 0.5 are 
given. 

in both steps of the refined FSP. The performance of portfolios of VARX models, however, seems to be 
somewhat better when AIC is used in the respective forward procedure, see figure 5.5. For the factor and 
noise component models in the IN method the combination BICF-BIC again outperforms the other IC 
combinations in the FSP. It  seems however advantageous to  choose AIC as information criterion in order 
to determine the number of factors. 
The consequences of the choice between mva and univ give no clear picture throughout the methods of 
modelling and out-of-sample validation. 
In table 5.8 a comparison between some selected models of all three modelling methods is given. The RR 
model performs slightly better than the others. In addition, it is shown for the IN models that adding 
the noise forecasts is helpful in some cases and may deteriorate the forecasts in other cases. Portfolio 
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optimization, however, gives reason to  prefer models that include the forecasts of idiosyncratic noise, see 

figure 5.6. Note that for IN the in-sample forecast errors Pt, t = 1 , .  . . , TI, needed to  estimate the forecast 

error variance covariance matrix, unfortunately were not saved during estimation. Anyway, the in-sample 

performance of the IN models is rather poor, too. The in-sample R2 values across the seven banks range 

from 0.0328 to 0.3136. Hence, for IN y, y i  L = <,E^; was used to compute the 

portfolio weights, see eq. 5.1. 

In many cases the forecasts obtained for Banco Bilbao (U.BBV) are bad. Banco Bilbao seems to be a 

special case (see figure 5.3), possibly due to their engagement in South American countries. It  can be 

seen in table 5.8 that, in particular, the results for Banco Bilbao improve by adding the noise forecasts in 

the IN case. The forecasts for UniCredit are reasonable for the RR model. We observe that the forecasts 

for UniCredit based on IN models are bad, in general. Thus, the explanatory variables for the noise 

component of UniCredit seem to be insufficient. 

Portfolio Return: VARX 

Figure 5.5: Capital development of portfolios. Computation of portfolio weights is based on forecasts of 

VARX models; Black lines: AIC in the first step of the refined FSP; Grey lines: BIC in the first step of 

the refined FSP. 

Choosing between moving and expanding windows, the different re-specification periods and between 

the orthogonal projection of the input variables of the noise component or not, has little impact for the 

forecasting quality. For IN regression gives somewhat better results than Bartlett and for RR indirect 
estimation, thus MLE, gives somewhat better results than direct estimation. For the latter, see table 5.9. 

The DM test results are disappointing, since the Null hypothesis the zero-forecast i s  better than our 
forecast cannot be rejected. Just in some rare cases the p-value is below 0.1. The results stay the same if 

we replace the zero-forecast by the sample (geometric) mean, which for all banks are slightly below zero, 

see table 5.1. 

If we consider portfolio optimization our forecasts however appear superior t o  the benchmark portfolio, 

see figure 5.7. 

In short, non-trivial forecasting of asset return series is not an easy task. However, figure 5.4 shows that 

RR models may yield reasonable out-of-sample R2. RR models are easy t o  implement and estimate. 
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Forecasting with the Forecasting with the 
factor part factor and noise part 

VARX RR IN IN 

banks R2 hit rate R2 hit rate R2 hit rate R2 hit rate 

H.AAB 0.0503 0.56 0.1006 0.57 0.0519 0.57 0.0433 0.56 

U.BBV -0.0076 0.51 -0.0049 0.45 -0.0170 0.47 0.0032 0.50 

E.SCH 0.0183 0.52 0.0426 0.54 0.0098 0.53 0.0334 0.54 

D.HVM 0.0127 0.48 0.0333 0.49 0.0607 0.52 0.0672 0.50 

D.DBK 0.0514 0.51 0.0591 0.53 0.0563 0.54 0.0538 0.54 

F.BNP 0.0820 0.52 0.1159 0.52 0.0591 0.54 0.0420 0.56 

I.UC 0.0084 0.52 0.0251 0.51 -0.0123 0.51 -0.0282 0.50 
- 

Table 5.8: The out-of-sample results of models varxlO.mva.BICF-BIC.TRUE (exogenous vari- 

ables: BIX, IRX, NDcl), rrlO.indirect.BICF-BIC.TRUE and inl0.regression.default.univ.BICF- 

BIC.AIC.TRUE.TRUE. 

Portfolio Return: IN 

Figure 5.6: Capital development of portfolios. Computation of portfolio weights is based on forecasts 
of IN models, respecified every 10 days; Solid lines: factor forecasts only; Dotted lines: factor plus 
idiosyncratic noise forecasts. 

Especially for the second half of the validation sample of the underlying data set, non-trivial forecasts 
seem t o  be worthwhile, see table 5.10 and figure 5.7. 
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direct indirect 

banks 

H.AAB 
U.BBV 
E.SCH 

D.HVM 
D.DBK 
F.BNP 

I.UC 

H. AAB 
U.BBV 
E.SCH 

D.HVM 
D.DBK 
F.BNP 

I.UC 

banks 

c Table 5.9: The out-of-sample results of the models rr5.direct.BICF-BIC.TRUE, rr5.direct.BICF- 
BIC.FALSE, rr5.indirect.BICF-BIC.TRUE, rr5.indirect.BICF-BIC.FALSE. 

Table 5.10: Out of sample measures for rr5.indirect.BICF-BIC.FALSE and the geometric mean as bench- 
mark model for the first and the second half of the validation sample, i.e. 21.02.2002 t o  03.07.2002 and 
04.07.2002 to  13.11.2002. 

mov. window 
R2 hit rat,e 

0.0687 0.62 

0.0004 0.48 

0.0165 0.58 

0.0263 0.53 

0.0597 0.59 

0.1010 0.58 

0.0092 0.54 

RR Benchmark 

exp. window 
R2 hit rate 

0.0690 0.57 

-0.0057 0.43 

0.0301 0.56 

0.0338 0.49 

0.0704 0.57 

0.0929 0.52 

0.0431 0.53 

inov. window 
R2 hit rate 

0.0953 0.57 

-0.0050 0.45 

0.0351 0.54 

0.0418 0.50 

0.0734 0.54 

0.1136 0.52 

0.0137 0.47 

First half 
R2 hit rate 

First half 

R2 hit rate 

exp. window 
R 2  hit rate 

0.0856 0.58 

-0.0040 0.47 

0.0487 0.54 

0.0395 0.53 

0.0830 0.58 

0.1201 0.55 

0.0524 0.54 

Second half 
R2  hit rate 

Second half 
R2 hit rate 



Portfolio Return: VARX, RR, Sample (geom.) Mean 

Figure 5.7: Capital development of portfolios. Computation of portfolio weights is based oil forecasts 
of varx5.mva.BICF-BIC.FALSE (thin solid line), rr5.indirect.BICF-BIC.FALSE (dotted line), and as 

benchmark the sample geometric mean (thick solid line). 
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Chapter 

Introduction 

R.F. Engle describes in the introduction of his Nobel Lecture Notes, see (Engle, 2003), the central 

C 
paradigm of finance as "Optimal behavior that takes worthwhile risks". Knowledge of the level of risk 

taken is essential in portfolio optimization, pricing of assets and derivatives, computation of the Value at 

Risk (VaR), etc. Typically risk is measured by the variance of the underlying returns. Hence, reliable 

models for estimating variances are inevitable. 

In the early eighties (Engle, 1982) proposed the so-called autoregressive conditional heteroskedastic 

(ARCH) model that obtained broad acceptance not only from researchers, but also from analysts on 

financial markets, and for which in 2003 he was awarded the Bank of Sweden Prize in Economic Sciences 

in Memory of Alfred Nobel. Let yt denote the return of some asset and let pt be its expectation condi- 

tional on the sigma field, generated by the past values of yt, then the linear univariate ARCH(q) 

model can be written as 

where the conditional distibution of is for instance given by E ~ I Z ~ - ~  -- N(0, a:), if we assume normality. 

In this case et may be written as the product et = otzt, where at is the conditional standard deviation 

r‘ (that is also referred to as volatility), and zt is some independently and identically distributed standard 

Gaussian random variable. 

A generalization, the so-called GARCH(p, g) model, was proposed by (Bollerslev, 1986): 

Today it is possibly the most widely used model of this type. The GARCH(1,l) model has a particularly 

neat interpretation, since in this case the conditional variance is a weighted average of three different 

variance forecasts: First, the constant that corresponds to the long run average, second, the past estimated 

conditional variance, and third, a term that adjusts for the new information available. 

Note that in order to  guarantee that the estimate for U: is positive for all t and that the GARCH process 

~t is stationary the parameters have to fulfil1 the following constraints: 

Positivity constraints: 

c > O ,  a i ~ O a n d ~ j ~ O f o r a l l i , j .  

I t  is easy to  see that these constraints ensure a positive a: for all ~ t - i  and in the sample space. 
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Stationarity constraints: In (Bollerslev, 1986) it is shown that (ct)  is wide sense stationary, i.e. 

Eft = 0, var(ct) = c( l  - C:=, a, - C:=l p,) and COV(E~E,) = 0 for a11 t # S, if and only if 

~ In the meanwhile various extensions have been suggested due to shortcomings in the assumptions under- 

lying the standard GARCH model, see for instance (Engle, 2003) for a list, or (Gourieroux, 1997) who 

provides an overview of ARCH models and their applications in financial and monetary econonlics. Let us 

here just mention one drawback of the model class that might be crucial for financial applications: In the 

standard GARCH framework positive and negative error terms (one can interpret these as positive and 

negative shocks or news) have the same effect on the volatility. The information concerning the sign of 

1 is lost due to  the consideration of squared terms of past shocks. In practice, in particular for stock returns, 

one can observe however the so-called Lelierage Effect, i.e. the volatility increases more after bad news 

then after good news. Thus, the assumption of symmetric effects in the standard GARCH framework is 

often violated in practice. The exponential GARCH (EGARCH) model proposed by (Nelson, 1991) or 

Stochastic Volatility models (see e.g. (Hull and White, 1987; Melino and Turnbull, 1990)) are examples ~ for model classes, which may model this asymmetric behaviour, but are not further discussed here. 

Anyway, GARCH models are successful in financial applicat.ions since financial returns do have charac- 

teristics that can be modelled by GARCH models. First of all, volatilities of returns tend to  cluster, i.e. 

a largelsmall change in the asset price is very likely again followed by a largelsmall change. Second, 

extreme values appear quite often in series of asset returns. E.g., the probability for an extreme value in 

an ordinary return series is in general higher than for an independently and identically distributed family 

I of Gaussian random variables. That is, the distribution underlying the process of returns has in general 
l , fatter tails than the normal distribution. 

In this part of the thesis we will focus on multivariate generalizations of the above model classes. Let 

(yt) be an n-dimensional vector process of returns, and let Zt-1 be again the sigma field generated by 

the past of ytl. The basic multivariate framework is then given by 

where pt as above denotes the conditional mean of yt, pt = E(ytIZt-l), and may for instance be modelled 

as shown in part I. (ct) is the stochastic error process that is not independent but uncorrelated with 

zero mean, (q) is an n-dimensional vector process independently and identically distributed with mean 

zero and unit variance, zt N iid(0, In), and Ht is symmetric positive definite for all t and assumed to  be 

It- 1-measurable. 
Given all these assumptions, the variance of yt conditional on ZtPl equals the variance of conditional 

on &-l, 

The last equality follows from the fact that zt is independent of Z t - ~ ,  and hence, v a r ( ~ ~ l Z ~ - ~ )  = var(zt) = 

In. 
The model classes discussed in the subsequent chapters are the VECH model and the BEKK2 model, see 

(Bollerslev, Engle and Wooldridge, 1988), (Baba, Engle, Kraft and Kroner, 1991), (Engle and Kroner, 
1995). Modelling of multivariate GARCH models is challenging for several reasons: 

'Note, that Zt-1 may also contain the  past of some exogenous variables xt .  Here, we suppress xt for simplicity. 
'Note that the name of the BEKK model is formed by the first letters of the  surnames of Y. Baba, R.F. Engle, D. Kraft 

and K. Kroner. 



1. The model structure should be parsimonious but still flexible. 

2. Positivity of the conditional variances, Ht, should be ensured for all sample paths. 

3. The vector GARCH process et should be (wide sense) stationary. 

The VECH model e.g. is very flexible, but in order to fulfil1 the positivity constraint one has to  impose 

complicated parameter restrictions. Furthermore, the number of parameters is of the order 0 (n4 ) ,  which 

makes estimation infeasible for large n. BEKK models ensure positivity by construction, but they also 

suffer from the curse of dimensionality. The econometric literature of the last decade comprises many 

attempts of dimension reduction of the parameter space of VECH and BEKK models respectively by 

imposing further restrictions on the structure. For an example see (Bollerslev et al., 1988) who proposed 

the Diagonal VECH model (DVECH) or (Engle, Ng and Rothschild, 1990) who suggest a Factor GARCH 

model (F-GARCH)3. A survey of multivariate generalizations of the basic GARCH model is provided in 

(Bauwens, Laurent and Rombouts, 2003). 

This part proceeds as follows: In chapter 7 a detailed description of both the VECH and BEKK model 

(? class is given. Chapter 8 will then deal with the problem of parametrization and identifiability. A simple to  

check characterization of VECH models which have an equivalent BEKK representation will be presented. 

It will be shown that in the bivariate case BEKK models are as general as VECH models. In higher 
dimensional cases, however, VECH models allow for more flexibility. A paranletrization for a generic, i.e. 

open and dense, subset of BEKK(p, q, K) models (with K = n2) is presented. Furthermore, two other 

parametrizations (also with K = n2) are analyzed. It  is shown that  these parametrizations both do not 

cover a generic set of BEKK models. In addition, several alternative parametrizations of BEKK(p, q, K )  

models (with K < n),  thus with a small number of additive terms are presented. Estimation of the 

models is discussed in chapter 9. Finally, chapter 10 concludes the second part of the thesis with some 

applications on simulated and real data. 

3An investigation of the restrictions that are imposed on the parameter space by the aforementioned multivariate volatility 

models is given in (Kroner and Ng, 1998), who point out that the choice of a multivariate volatility model can substantially 
affect the conclusions of the analysis. 
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Chapter 7 

Mult ivariate GARCH models 

(MGARCH) 

In the following many symbols and operators will appear that have not been used above. For a detailed 

list and description see Appendix C. 

7.1 VECH model 

The VECH(p, g) inode1 was proposed in (Bollerslev et al., 1988) and is given by 

where c is an (n(n  + 1)/2)-dimensional vector and the Ai's .are square matrices of order n (n  + 1)/2. This 

is a very general formulatioll of the conditional second moments of (et), since each component of Ht can 

be formed by a linear coinbinatioi~ of its own past and the past of all the other elements in Ht and et€:. 

However, a t  least two drawbacks of this model are apparent. First, the high number of parameters to  

p estimate, which increases rapidly with O(n4), implies that estimation of the model is infeasible for large 

nl.  Second, Ht has bo be positive definite for all et-, and all Ht-j in the sample space. This is ensured 

if we assume that, 

math(c) > 0 (7.2) 

and that the contribution of each ARCH and GARCH term, respectively, is non negative, i.e. 

math(Aivech(ee1)) 2 0, for all e E Rn (7.3) 

holds for i = 1, . . . , p  + g. Here we have used the fact that any symmetric matrix H 2 0 may be factorized 

as H = eiel and thus, the condition 

math(Ajvech(H)) 2 0, for all H E RnXn, H = H', H 2 0 

is equivalent to  (7.3). A VECH model that satisfies the above conditions (7.2) and (7.3) will be called 

admissible2. However, note that  admissibility is hard to  check for given parameters c, AI,  . . . , Ap+, and 

thus, hard to  impose during estimation. 

'The total number of parameters is 9 + (p + 
2Here 'admissibility' is used only in the sense that  the VECH model fulfills a t  least t he  positivity constraints. I t  may 

however not satisfy some stationarity conditions. We will treat stationarity conditions later on. 
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In order to  further analyze the admissibility constraint let us concentrate on one of the above terms, 

Avech(eel) say. The matrix A is admissible if and only if 

f (v, e) = v'math(Avech(ee'))v 2 0, for all v, e E R" (7.4) 

Thus A is admissible if and only if the optimization problem 

minimize v'(math(Avech(eel)) v 

subject to llvll = llell = 1 

has an optimal value, y;(A) say, which is non negat.ive. Note that (7.5) is a non convex optimization 

problem, which in general is hard to  solve. 

If we suppose that A corresponds to  the lag one ARCH term, the function f (v,e) has the following 

interpretation: For a given = e, f (v ,e )  is the contribution of this lag one ARCH term to  the 

conditional variance of the linear combination (vtet). Note furthermore that for fixed v, f (v, e) is a 

quadratic form in e and that for fixed e, it is a quadratic form in v. 

By rearrangement of terms, f (., .) may also be written as 

f (v, e) = v'math(Avech(eet))v = (v 8 e)'Q(v @ e), 

where Q E IRnZxn2 is a symmetric matrix that fulfills the following equations: 

qij,kl = qji,lk~ for all i, j , k, 1 (symmetry of Q) 
qii,kk = ( i , i ) , ( k k )  for all 2 7  k 

2qii,kl = ( ) 1 ( k , l )  for 811 ir k > 1 (7.7) 

qij,kk = I ( i j ) ~ ( k , k )  for 811 i > j , k 

qij,kl + qij,lk = 1 ( i j ) , 1 ( k , )  for all i > j ,  k > 1. 

Here h e  have partitioned Q E Rnzxn2 into ' n X n sub-blocks of size (n  X n)  each and used the indexing 

as described in eq. (C.l) and (C.2) of appendix C. Note that the first set of equations relates to the 

symmetry of Q, and that  due to the last set of equations the matrix Q is not uniquely determined for a 

given matrix A. Thus, there is always a whole set of matrices Q that all correspond to  one and the same 

VECH term A, namely 

where Q. is an arbitrary matrix for which, given this matrix A, the above equations (7.7) hold, f i  = 

(n(n - 1 ) / 2 ) ~ ,  and A,,, is the set of symmetric matrices of dimension 1x2 X n2 whose diagonal sub-blocks 

of dimensioil n X n are zero and whose off-diagonal sub-blocks are antisymmetric3; see appendix C for a 

more detailed description. Hence, the Q-set Q(A) corresponding to  the VECH-term A is an affine subset 
Of xn2  of dimension R. 

One can of course always select a unique matrix Q out of &(A), if further normalizing conditions are 

imposed. For instance, Q in S,,, is the unique representative of a Q-set &(A), where not only Q itself, 

but also all sub-blocks of Q are symmetric: 

However, as we will see later on, it might be advantageous to  consider other normalizing conditions. 

Note that for a given symmetric Q E RnZxnZ the relations (7.7) uniquely define a VECH term A E 

R ~ ( ~ + ~ ) / ~ ~ ~ ( ~ + ~ ) / ~ .  Thus, the mapping that maps matrices Q to  matrices A as displayed in eq. (7.7) is 

surjective but not injective. 

3~ square matrix M is said to  be antisymmetric (or skew symmetric), if M = -Mt holds. Note that  the  diagonal 
elements of antisymmetric matrices by definition are zero. 
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As an example the matrices Q(wl), wl E R, that all correspond to  the same matrix A are given below 

for the simplest case, n = 2: 

Note that up to now we have only dealt with admissibilit,~ co~~ditions concerning bhe posit,ive definite- 

ness of the conditional variance matrices. A necessary and sufficient condit,ion t,hat the aforementioned 

multivariate GARCH model (7.1) has a covariance st,ationary solution (ct) is: 

Q P 

All eigenvalues of E Ai + E A,+? are less than one in modulus. (7.11) 
i= l j=1 

A proof of the latter statement is provided in (Engle and Kroner, 1995, Proposition 2.7.)4. Note that 

(7.11) is a highly non linear restriction, which is hard t o  impose on a parametrization. In particular, it 

imposes a "cross restriction", which jointly refers to all terms Ai. In special cases however, the stationarity 

condition simplifies significantly, e.g. the diagonal VECH and the factor GARCH model. 

7.2 BEKK model 

(Baba et al., 1991) proposed the BEKK(p, q, K )  model, 

where C is a lower triangular nonsingular n X n matrix, B,,k are n X 11 parameter matrices and K deter- 

mines the generality of the process. 

Note that BEKK models (with C non singular) yield by construction positive definite variance covari- 

ance matrices Ht. BEKK parameter matrices, however, are not identifiable without further normalizing 

restrictions. We will come back to  this point in chapter 8. 

P Let us now examine the Q matrices corresponding to  a BEKK-term5, C:='=, B;eetBk: 

K K 

v' (F BLee1Bk') v = E(v 'B ;e ) (v l~ ; e ) '  = (v W e)' vec(~k)vec(Bk)'(v 8 e). (7.13) 

This implies that any BEKK-term has an equivalent representation as an admissible VECH-term and the 

corresponding &-set &(A) contains a t  least one positive semidefinite element Q = xk vec(Bk)vec(Bk)'. 

On the other hand if the &-set corresponding to a VECH-term, A say, contains a positive semidefinite 
element, Q > 0 say, then this A is admissible and has equivalent BEKK representations. To see this, 

just note that Q > 0 implies that Q may be factorized as Q = UkUk, where Uk E Rn2 and K < n2 
is the rank of Q,  and thus Bk = mat(Uk), k = 1, . . . , K ,  gives a representation for the corresponding 

BEKK-term. Of course this representation is not unique. To obtain uniqueness one has to  select a unique 

Q > 0 out of the corresponding &-set first, and then define a unique factorization of Q. 

4 ~ o t e  that in fact Engle and Kroner show the above statement for the parameter matrices of the so-called VEC model. 
Anyway, the parameter matrices in (Engle and Kroner, 1995) may be obtained from the transformation G,A,G$, where 

G, denotes the so-called duplication matrix and G$ = (GLG,)-'GL is a left inverse of G,, see also appendix ( C ) .  Due to 

the fact that G, is orthogonal, these transformations have no effect on the eigenvalues. Thus, the condition stays the same. 
5 ~ i n c e  positive semidefinite matrices H 2 0 may be factorized as H = C e,e:, it follows that the "GARCH terms" 

BI;HBk may be treated completely analogous to  the "ARCH terms" B;eelBk. 
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As has been noted already it is hard to check whether a given VECH term, A say, is admissible. However, it 

is easy to  check whether A admits a BEKK representation. To this end consider the following semidefinite 
program (s.d.p.), 

maximize X 
(7.14) 

subject to  (Qo + C;=, wkAk) - XIns L 0 

where Q. is an arbitrary solution of (7.7). It  can be shown that this s.d.p. has always an optimizer, 

(X*,w*) say, see Lemma B.3 in the Appendix. Furthermore, note that the optimal X* is the minimal 

eigenvalue of Q(w*) = Q. + C wiAk. In other words, the above s.d.p. maximizes Xmin (Q) over the set 

&(A), where Xn,in(Q) denotes the minimal eigenvalue of Q. Thus, &(A) contains a positive semidefinite 

matrix Q if and only if the optimal X is non negative. For a detailed description of semidefinite programs 

and their properties refer to  (Vandenberghe and Boyd, 1996). Note that (7.14) is a convex relaxation of 

problem (7.5). 

The theorem below summarizes some basic facts on VECH and BEKK models. For simplicity of notation 

only single terms will be considered, however the generalization to  complete models is straightforward. 

Let us now define the following sets: 

Let V C - R ~ ( ~ ~ ~ ) / ~ ~ ~ ( ~ + ~ ) / ~  denote the set of all admissible VECH-terms A. Note that A E V if and 

only if $,,(A) > 0 holds, see (7.5). Let B C V denote the set of all VECH-terms A, which have a BEKK 

representation. Let X$(A) = X* denote the optimum value attained for problem (7.14), and note that 

A E B if and only if &(A) contains a positive semidefinite element Q 2 0, i.e. if and only if Xi(A) L 0 

holds. Finally, let B+ C B 5 V denote the set of all BEKK terms A, where &(A) contains a positive 

definite element Q > 0, i.e. X$(A) > 0. 

Theorem 7.1 (Facts on VECH and BEKK models) 

1. V is a closed, convex cone i n  Rn(n+1)/2xn(n+1)/2 that contains an open subset of R ~ ( ~ + ~ ) / ~ ~ ~ ( ~ + ~ ) / ~ .  

2. B is a closed, convex cone i n  1)/2xn(n+1)/2 that contains an open subset of R ~ ( ~ + ~ ) / ~ ~ ~ ( ~ + ~ ) / ~ .  

3. The set B+ C B i s  open in R ~ ( ~ + ~ ) / ~ ~ ~ ( ~ + ~ ) / ~  and dense i n  B. 

4. B = V holds for n = 2, whereas for n > 2 the set (V \ B) = {A E V I A B) contains an open subset 
~n(n+l)/2xn(n+1)/2. 

Proof. A set X C Rmxm is a convex cone if and only if for all X I ,  X2 E X and for all X I ,  X2 > 0 it 

follows that (X1X1 + X2X2) E X. In particular, note that SA C RmXm is a (closed) convex cone and this 

property is carried forward to  the sets V and B. 

We start with the proof of statement (2): Let A, E B, Q, E &(A,) n S$ and X, > 0 for i = 1 ,2  be given. 

This implies XlQl+ A2Q2 2 0, XIQI + X2Q2 E Q(XIA1 + X2A2) and thus XIAl + X2A2 E B. Lemma B.3 
shows that the function XL(A) is continuous and thus B is closed. Finally, let AI be the VECH-term 

corresponding to  Q = In= Then Xg(AI) = 1 implies that an open neighborhood of AI is cohtained in B. 

Statement (1) follows by a similar reasoning. 

Concerning statement (3): The set B+ is open in n(n+1)/2 since X& (.) is continuous and since 

B+ is non void. The set B+ is dense in B due to  the fact that the set S$,n2 is dense in S$ 

It remains to  prove the last statement. First, consider the case n = 2: Let an admissible VECH-term 

A be given and let &(A) = {Qo + wlAl), see (7.10). Let (X*,w;) denote the optimizer of the s.d.p. 

(7.14) where w.1.o.g. we assume that w; = 0 holds. Furthermore let W E 1 < k < 4 be an 
orthonormal basis of the eigenspace of Q. corresponding to  its minimal eigenvalue X*. If WIAIW > 0 

then (Qo - X*14) + wlAl > 0 holds for all sufficiently small wl > 0, which is a contradiction to  the 

optimality of w; = 0. Analogously we can rule out the case WIAIW < 0. Hence, there 'must exist a 
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vector o E Rk,  1 1 0 1 1  = 1 such that (Wo)'A1(Wo) = tr(Wo)(Wo)'Al = 0. By Lemma B.4 it follows that 
(WO) has a representation as (WO) = (v @ e) for suitably chosen v, e E R'. Since A is admissible 

holds and thus Q. corresponds to a BEKK-term. 

For the case n = 3 consider the matrix Q. given below. 

P 
By means of a numerical optimization one can show that (v @ e)'Qo(v @ e) 2 0.0019 > 0 holds for all 

v, e E R3 with llvll = llell = 1. Thus, Qo corresponds to an admissible VECH-term. On the other hand, 
the s.d.p. (7.14) delivers an optimal value X* = -0.0012 < 0 and thus Q. does not correspond to a 
BEKK-term. 

For the case n > 3 an example for an admissible VECH-term which does not correspond to a BEKK 
model may be constructed by suitably extending the above n = 3 example with zeroes. 

Finally, let A E (V \ B) and thus AL(A) = Ao < 0 and y;(A) 2 0. Moreover, let AI denote the 
VECH-term corresponding to Q = Inz. It  is easy to see that XL(A - A1Xo/2) = Xo/2 < 0 and 
A;(A - AIAo/2) 2 -Ao/2 > 0 holds. Thus, by continuity of A;(.) and XL(.) it follows that (V \ B) 

contains an open subset of Rn(n+1)/2xn(n+1)/2. 

The above theorem shows in particular that in the bivariate case, n = 2, BEKK models are as general 
as VECH models, wherea.~ for n > 2 there is a 'thick' set of admissible VECH models which have 110 

f-y equivalent BEKK representation. 

The set B+ is a generic subset of BEKK models for which a parametrization will be given in the next 

chapter. 

Concerning the stationarity condition, note that any BEKK model may be cast as a VECH model: 

K 

Ai = C G: (Bi,k B Bi,k)'Gn, for i = 1, . . . , p  + 0, 
k=l 

where G, denotes the respective duplication matrix, and G$ = (GkGn)-lG; is a left inverse of G,, 
see also appendix (C). Hence, the existence of a covariance stationary process ( c t )  is ensured, if the 
coefficients matrices of the corresponding VECH model fulfil1 the constraint given in (7.11). 
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Chapter 8 

Parametrization of BEKK models 

Before we start with the description of possible parametrizations let us consider the geometry of the 
problem. 

n 
Figure 8.1: Gray: Cone containing all p.d. and p.s.d. Q matrices; Black lines: equivalence classes &(A) 
(thick lines: contain at least one p.s.d matrix Q and therefore have a BEKK representation, thin lines: 
contain no p.s.d. matrix Q - have no BEKK representation). 

Figure 8.1 shows a sketch of the space the n2 X n2 dimensional symmetric matrices Q live in. Let the 
gray cone contain all positive definite and positive semidefinite matrices Q. Thus, the cone contains all 

matrices Q corresponding to VECH-terms A, which have an equivalent BEKK-term representation. Of 
course the positive semidefinite matrices are all on the boundary of the cone. Due to their affine structure, 
the equivalence classes appear as straight lines, and it is obvious that Q(A~)  and Q(Az) run parallel, 
for AI # A2. Furthermore, the indefinite matrices Ak imply that the equivalence classes intersect the 
cone in a way as it is shown in the sketch. To see this, let for instance just one wk vary and keep the 
others constant, then the corresponding Q(w) becomes indefinite, if lwkl is sufficiently large. This however 
implies that in any equivalence class Q(A) one can find matrices Q 2 0 for which rk(Q) = K < n2 holds. 
In figure 8.2 the eigenvalues of Q-matrices in &(A) with 
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& ( Q ) d  aos center &(Q)-2 &(Q)-3 ana Center &Q)-2 

Figure 8.2: Given matrix A from eq. (8.1) and the corresponding &-set; Left: barrier function +(wl), see 
eq. (8.2); Right: the 4 eigenvalues of Q matrices in &(A); Gray lines: the analytic center and the p.s.d. 

rank deficient matrices at the boundary of the conus. 

are given as an example. Hence, for a single BEKK-term, K is not necessarily an indicator for generality. 
Due to the fact that any rank deficient matrix may be approximated arbitrarily well by a full rank matrix 
of the same size, setting K = n2 will be sufficient in order to obtain a "fully general" parametrization of 
the BEKK model class. In fact K = n2 - 1 would be sufficient as well, since one can always find rank 

deficient matrices in &(A) of an admissible A that are positive semidefinite. However, choosing K I n2-1 
involves identifiability problems. In other words, it is not so easy to select a unique representative Q 2 0 

out of &(A), for which rk(Q) = K 5 n2 - 1 holds. 

A parametrization of a BEKK-term should now be constructed such that from every equivalence class 
intersecting the cone a positive semidefinite matrix, Q say, is selected uniquely. The parameter matrices 
B1, . . . , BK of the corresponding BEKK-term are then given by a uniquely defined factorization of this 
Q 2 0. 
Let us a t  first restrict ourselves to the generic set B+, i.e. to  Q-sets that contain a t  least one positive 
definite element Q > 0. In particular, Q will be chosen to be positive definite, which implies that K = n2. 

8.1 Parametrizations with K = n2 

8.1.1 BEKK parametrization of Scherrer and Ribarits 

In this parametrization, see also (Scherrer and Ribarits, 2006), the unique positive definite Q of an 
equivalence class &(A) with A E B+ is chosen such that it represents the so-called "analytic center" of 
all positive definite elements in &(A). 

Let a Q-set &(A) = {Q(w) = Qo + C:=l wkAk) be given, where &+(A) = &(A) n S$,,z = {Q E 

&(A) I Q > 0) is non void. We then define a function c$(.) on R" by 

+(W) = 
{ y: Q(w)-' if Q(W) > o 

otherwise 

Note that the set W = {W I Q(w) 2 0) is a compact, convex subset of R", and that, by assumption, the 
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interior of this set, i.e. the set W+ = {W I Q(w) > 0) is non void. The function 4(.), when restricted to  

W+, is convex and analytic and thus has a unique minimizer, G say. The corresponding Q = Q(3) = 

Q. +Ck GkAk is called the analytic center of @(A), see (Vandenberghe and Boyd, 1996) and figure 8.2 
as an example. The gradient, ~ 4 ( w ) ,  and the Hessian, v24(w),  of 4 for W E W+ are given by 

Hence, in the analytic center, Q = Q(G), we have tr(Q-'Ak) = 0 for all k = 1 , .  . . , n. This is guaranteed 
if and only if each sub-block matrix of Q-I is symmetric, see Appendix C. 

Next, let Q-' = VV' be the cholesky decomposition of Q-'. Thus, V E lRnzxn2 is . a lower triangular 
matrix, where without loss of generality all diagonal elements are assumed to  be positive. The parameter 

vector 0 is defined as 

P i.e. we stack the lower triangular entries of all lower triangular blocks of V. Note that we put all the 
diagonal elements of V to  the first n2 positions. Thus, 

Due to  the block symmetric structure of Q-' these entries are sufficient to  reconstruct Q-'. 

Let us summarize the above procedure: 

Given a VECH-term, A E B+ say, compute 0 and a unique set of corresponding BEKK-term 
parameters B1, . . . , Bn2. 
First, compute the analytic center Q of Q+(A) as described above. Next, compute a cholesky factor 
V of Q-1 with strictly positive diagonal elements. The parameter vector 0 is given by (8.4) and the 
BEKK parameter matrices are given by Bk = mat(Uk), where Uk is the k-th column of U = V-T. 

Given a parameter vector 0 E W, compute the unique parameter matrices A and B', .  . . , Bnz of 

the VECH-term and the corresponding BEKK-term. 
First, note that the matrix V is a lower triangular matrix, i.e. vij,kl = 0 for i < j and all k, l and 
for i = j and k < l. In addition, the lower triangular entries vij,kl, i 2 j and k 2 1 are stored in the 
parameter vector 0, see (8.4). Therefore, one has to construct the upper triangular elements vij,kl, 

k < 1 for i > j from the condition that the product P = Q-I = VV' has symmetric sub-blocks 
Pij = P&. For i 2 j such a sub-block is given by Pij = + . . . + and since V, is a lower 
triangular matrix the (k, 1)-th entry of such a sub-block is of the form 

v 

: = P i j , k l  

From the symmetry condition pij,kl = pij,lk and by the constraint vjj,n > 0 we get 

For i > j and k > 1 this expression depends only on Kr, Vjr for r < j and on vij,kr, vij,lr for r < 1. 
Thus, V may be recursively reconstructed from 0. The lower diagonal blocks of V are reconstructed 
in the sequence Vzl,. . . , Vnl, V32,. . . , Vn,n-~ and in each block V,j the upper diagonal elements are 

computed in the sequence vij,lz, . . . , vij,l,, v i j , ~ ~ ,  . . . , ~ i j , ( ~ - l ) , ~ .  Finally, we get Q = UU' from 
U = the BEKK parameter matrices from Bk = mat(Uk) and the VECH matrix A from the 
relations (7.7). 
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As an illustration consider the structure of V for the simplest case n = 2: 

In addition, figure 8.3 shows the parametrization in the cone. Note that the parametrization by construc- 

tion gets arbitrarily close to the intersection of the cone and the respective equivalence classes on the 
boundary. Hence the parametrization more or less cuts the cone in half as it gets close to the boundary. 
Inside the cone however it may have some fancy shape, since the set of analytic centers is not convex. 

Figure 8.3: Gray: Cone containing all p.d. and p.s.d. Q matrices; Black lines: Equivalence classes &(A) 
(thick lines: contain at least one p.s.d matrix Q and therefore have a BEKK representation, thin lines: 
contain no p.s.d. matrix Q - have no BEKK representation); Red: Parametrization using the analytic 
center. 

Theorem 8.1 (Parametrization of B+) 

1. The above defined mapping 
r f  : @+ + B+ 

0 - A  

is a diffeomorphism, i.e. r+ is  bijective and r+ as well as i ts  inverse are smooth, thus infinitely 
differentiable. 

2. The above defined mapping 

is dzfferentiable and injective. 
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Proof. By what has been said before, in particular by the restriction Oi > 0 for all indices corresponding 
to the diagonal elements of V, it is immediate to  see that both mappings are injective and differentiable. 
In addition, n+(.) is surjective by construction. 

I t  remains to  prove that the inverse mapping (X+)-'(.) is differentiable. For this end, we prove that 

the derivative of n+(.) has full rank for all 8 E O+. Note that X+(.) is a concatenation of the following 
mappings: 

~ H V H P = V V ' H Q = P - ' H A  

Let dV, d P ,  dQ and dA denote the respective derivatives of V, P, Q and A along a direction 
d8 E We have to prove that dA = 0 implies dB = 0. First, note that dA = 0 

holds if and only if dQ = dQ' = C:=, Akwk for some wk E R. Since d& = -P - ldPP- l  we get 

d P  = - C,, PAkPwk The matrix P has symmetric sub-blocks by construction and thus the same holds 
for the derivative d P ,  i.e. we have t r  A l d P  = 0 for l = 1 , .  . . , f i .  This implies 0 = xk tr(AIPAkP)wk for 

all l = 1, .  . . , f i  and thus 0 = t r (dQPdQP) = t r ( ~ ~ / ~ d ~ ' ~ d ~ ~ l / ~ ) .  Since P > 0 one obtains dQ = 0 
and d P  = 0. Next, we use 53,~1 > 0 to show that dV = 0 as 0 = d P  = VdV' + dVV'. Now, since 0 is 

r\ 
composed from the entries of V we have dB = 0 as desired. 

It  should be emphasized that this pararnetrization covers a generic set of BEKK models, i.e. the corre- 

sponding set is an open and dense subset of all BEKK models. In this section we considered only the case 
of one term, i.e. the case of a BEKK(0, 1, K) model, but the generalization to  the case of BEKK(p, g, K) 
models is straightforward. 

8.1.2 BEKK pararnetrization of Engle and Kroner 

In (Engle and Kroner, 1995, Proposition 2.3) an alternative pararnetrization for BEKK models is pre- 
sented. The authors claim that this pararnetrization is fully general and identifiable. Here fully general 
means that the pararnetrization covers as many VECH models as possible and identifiable means that 
two different parameter vectors do not represent the same BEKK model. However, both statements are 
not correct as we will show in this section. 

In their representation K = n2 and the parameter matrices Bk are chosen such that the corresponding 

P matrix U = [vec(B1), . . . , vec(B,a)] is a lower block triangular matrix where all ( n  X n)  sub-blocks are 
again lower triangular, i.e. U is a cholesky factor of Q = UU' with the additional zero restrictions given 

by uz,.kl = 0 for i > j and k < 1. By these additional zero restrictions implicitly a unique representative, 
Q say, in the Q-set &(A) is chosen. In addition, the entries of the last row of U are assumed to  be 
positive, u,,.,l > 0 for all j ,  l in order to get rid of the non uniqueness of the cholesky factorization of Q. 

Using the relations between VECH models, BEKK models and Q-sets respectively it is easy to  see that 
two problems occur with this pararnetrization: 

1. The positivity constraints do not guarantee uniqueness in all cases. 

2. There is a "thick" set of BEKK models, which is not covered by this pararnetrization, since the 
corresponding Q-sets do not contain a positive semidefinite representative Q of this structure. 

To see this consider the case n = 2. The Engle-Kroner parametrization leads to  a U-matrix of the form 
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where O5 > 0, d6 > 0, 68 > 0, 69 > 0 and thus, Q is given by 

Now, consider a BEKK-term - in Engle-Kroner form - given by 

In this case we lose identifiability, since 67 = 0 and thus only the sum 6; + 6; is identified from Q. (In 

other words, the positivity constraint, in this case, is not sufficient t o  select a unique cholesky factor.) 

However, this problem may be circumvented by replacing the restrictions u,,,,l > 0 by the restriction 

that the diagonal elements of U are positive, i.e. u,,,ll > 0 for all j , l .  

Next, consider a BEKK-term of the form: 

U = and Q = UU1 = 

The Engle-Kroner parameters 01, and thus Q E Q may be computed from Q as follows: 

Note that Q5 is computed from the sum q21,21 + q21,12 since only the sum is uniquely defined. However, 

this procedure breaks down for "large" X,  since 4 - (1 + - 1 - (1 + ~ ) ~ / ( 1  + x2) < 0 for sufficiently 

large X. In this case the BEKK model defined as above has no representation in the form suggested by 
Engle and Kroner since the set &(A) does not contain a positive semidefinite element Q > 0 conforming 

to the restrictions imposed by the Engle-Kroner parametrization. I t  is clear that this problem occurs on 

a "thick" set of BEKK terms, i.e. on a set that contains an open subset of all BEKK-terms. In this 

sense, using the Engle-Kroner parametrization we lose a non negligible set of BEKK models. 

The above examples were given for the case n = 2, however, the reasoning may be easily extended to  the 

case n > 2. 

8.1.3 Parametrization of the positive definite orthocomplement of the &-sets 

In section 7.1 we have already mentioned that additional normalizing restrictions like symmetric 

sub-blocks would be sufficient in order t o  select a unique representative out of each equivalence class 

Q(A), denoted by Q, see also eq. (7.9). If we choose this selection procedure, we are in fact parametrizing 
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the set S,,,. Note that  S,,, is the orthocomplement of &(A) at the point Q E &(A). To see this, note 

that for any Q E &(A) it holds that (Q - Q) E A,,, =+- vech(Q - Q)'vech(~) = 0 for all S E S,,,. As 
an illustration, consider the following example and let again for the sake of simplicity n = 2. Now, the 
&-set is given as &(A) = {Q(wl) = Q + wlAl). In order to  construct the orthocomplement we have t o  
find the directions that  are orthogonal t o  the directions that span the equivalence class. That is we have 

to  compute vech(A1)'. Since vech(Al)' = (0,0,0,1,0, -1,0,0,0,0), the orthocomplement is spanned by 

the columns of 

where cp = ( p l , .  . . , cpn(n+l)12)' E is the vector of scalars that  determine how far we walk along 

0 a certain direction within the orthocomplement. 
Furthermore note that  due to  the affine structure of the equivalence classes, S,,, is in fact an orthocom- 
plement to  all equivalence classes. 

Let us just in a view words motivate this procedure: In fact, an equivalence class is a set of parameters 
that all correspond to  the same model and, therefore, to the same likelihood value. Thus, we are given 
a parameter space with intrinsic non-identifiability. Given a specific parameter value, the idea now is 
not to  parametrize directions within the equivalence class, because these are exactly the directions where 
the described model and, therefore, the likelihood function, does not change. Only directions in the 
orthogonal complement to the equivalence class are parametrized. In this way we get rid of as many 
parameters as is the dimension of the equivalence class, here this is f i .  
I t  is however obvious that  not every matrix in S,,, is positive semidefinite. Thus, it is necessary t o  
restrict ourselves to the part of the orthocomplement that is at least positive semidefinite in order t o  
obtain a parametrization for terms of a BEKK model. Here however we will even ask for positive definite 
matrices Q. In section 8.1.1 the cholesky factor of some Q > 0 has already been presented, see eq. (8.4) 

to  (8.6), and the example in (8.7). Hence it is easy to  construct positive definite matrices Q. Anyway, 
this parametrization is not "fully general", since there is a thick set of corresponding BEKK terms that  

r‘ cannot be parametrized via Q. In other words there exist equivalence classes &(A) that have a non void 
intersection with the cone, but whose representatives Q(A) lie outside the cone. Consider for instance 
table 8.1 and note that Q stays indefinite for small changes in the parameter vector 8. Figure 8.4 shows 
the implication of this fact on the position of the plane parametrized by the positive semidefinite ortho- 
complement of the equivalence classes within the cone. (Imagine now that you look a t  the cone from 

somewhere above.) Note furthermore that the position of this plane determines the cuttinge angle of the 
equivalence classes and the cone. 

Table 8.1: Eigenvalues of the analytic center Q constructed from 8 = (4.85,2.14,1.46,1.75,0.29,-0.28,- 

0.72,1.28,-1.46)' as shown in section 8.1.1, the VECH-term A and the corresponding Q. 

We have seen that the parametrization proposed by (Engle and Kroner, 1995) and the parametrization 
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Figure 8.4: Gray: Cone containing all p.d. and p.s.d. Q matrices; Black: Equivalence class &(A); Blue: 
Orthocomplement of the equivalence classes; Shaded blue plane: P.s.d. matrices within the orthocom- 

plement . 

of the positive definite orthocomplement of the equivalence classes need the same amount of parameters 
as the first parametrization but are less general. In that sense these parametrizations are suboptimal. 
However, as we will see later in the applications the latter two have nicer numerical properties. 

8.2 Parametrizations with K 5 n 

The main advantages of BEKK models over VECH models is that BEKK models are admissible by 
construction. However, the number of free parameters to estimate for a general BEKK@, q, K = n2) 
model is equal to the number of parameters for a VECH@, q) model, which is of the order O(n4). For 
small vector dimensions, n 5 3, estimation of a BEKK(p, q, n2) model might still be reasonable. In case 
of higher dimensional vector processes however, it becomes inevitable to impose further structure and 

restrictions on the parameters in order to make estimation of multivariate GARCH models applicable 
in practice. There have been many suggestions to further restrict this model class. One natural way in 

doing so is to use a small number K to reduce the number of parameters. 
Here, we will consider the case of a fixed K I n. In particular, we want to analyze the question, if this 
restriction is sufficient to guarantee identifiability of the BEKK parameter matrices Bk. As has been 
noted already, the non-uniqueness of the BEKK parameter matrices stems from the non-uniqueness of 

the Q-matrices and second from the non-uniqueness of the factorization Q = UU'. Here, we will mainly 
deal with the first problem; i.e. we want to answer the question if the additional constraint rk(Q) = K 
is sufficient to uniquely select a positive semidefinite element Q E &(A). 

Let us define the following sets: BK c B denotes the set of BEKK-terms for which the corresponding 
Q-set contains at  least one positive semidefinite element Q of rank K. That means BK is the set of all 
A such that &(A) n S,+",K is non void. For the set B& C BK we demand in addition the existence of a 
Q E Q(A) n S$,, such that the left upper K X K sub-block of Q has full rank K .  The next proposition 
gives some basic topological properties of these sets: 

Proposition 8.2 (Topological properties of the sets B:.) 

1. The set B: is open and dense in BK. 

2. Bfi = B. U Bl U . . . U BK,  where B& is the closure of B; in ~ ~ ( ~ + ~ ) / ~ ~ ~ ( ~ + l ) / ~  

3. For 1 5 K1 < K2 I n it holds n B&, = 8. 
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Proof. The proof of these properties is straightforward. 

8.2.1 ParametrizationofB; for K I n .  

Let an element of B$ be given, where Q L 0 is an element of the corresponding Q-set with the desired 

properties; i.e. Q t Q(A) n c:K and the K X K left upper sub-block of Q has full rank. Thus, Q has a 

factorization as Q = UU', where U E JRnZXK and where the first K rows form a lower triangular matrix 
with strictly positive diagonal elements. I11 the following U is partitioned as U = (U;, . . . , U;)' and Ui 
in turn is partitioned as Ui = (U,!1, U,;)' wit,h Uil t E X K x K  and Ui2 E E % ( n - K ) x  K .  The corresponding 

parameter vector B is defined as: 

Note that for notational convenience the positive diagonal elements have been put to  the first K positions 

and hence B is an element of 

C1 8; := R ( 2 n 2 - ~ - 1 ) ~ / 2  C ~ p ( 2 n ~ - K + l ) K / 2  
- 

For the reverse direction, U is constructed from B in an obvious way; the parameter matrices of the 
respective BEKK-term are computed from the columns of U and A stems from the relations (7.7), where 

Q = UU'. 

Theorem 8.3 The above defined mapping 

n$: @G - B$ 
B - A  

i s  differentiable and surjective. There is a generic subset 02 c O$ with the following properties: 

1. B E 02 is identified from A i n  the sense that A = .rr$(B) = .rr$(0) implies 0 = B for all 6 E 02 
2. The derivative of .rr$ has full rank for all B E 02 

r\ Here generic means that the complement O g  \ 02 has Lebesque measure zero. 

Proof. Let B, t )  E C32 be given and let U, U t lRnZxK be constructed from B and 8 as described above. 

Furthermore, let H = U - U. Now, B and t )  are mapped to  the same VECH-term A if and only if the 
corresponding matrices Q = UU' and Q = DD' only differ by a matrix A E A,,. Hence, .rr$(B) = .rr$($) 
holds, if and only if 

( u + H ) ( u + H ) ' - U U ' = U H ~ + H U ' + H H ' = A  (8.8) 

holds for some matrix A E A,,,. We will use the above described partitioning for U and H and a 
corresponding partitioning for A. The diagonal blocks of (8.8) are of the form: 

For i = 1 the uniqueness of the Cholesky factorization implies Hll  = 0. For the non diagonal blocks 

i # j we get 
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From the (1 , l )  block of the above matrix equation for i = 1 one obtains Ul1Hi1 = Alj,ll and thus 

D j  + D ;  = 0 

for D j  = U ; I ' H ~ ~  = Next, consider the (1 , l )  block of (8.9) for i > 1, which delivers 

Mi D: + Di M,! + Di D: = 0 

for Adi = ~ 1 1 ' ~ ~ ~ .  Therefore, Lemma B.5 implies Hil = 0 for a generic subset of parameters B E O i .  
Next, observe that by the (1,2) blocks of (8.9) Hi2 = 0 follows from Hil = 0 if Uil is a full rank matrix, 

which also is satisfied on a generic set of points in Of;. Of course H = 0 is equivalent to  8 = B and thus 

we have shown the first claim. 

I t  is easy to see that the mapping n$ has a rank deficient derivative in B if and only if there exist (non 

zero) matrices H ,  A of the above described structure such that 

holds. A completely analogous reasoning shows that the above relations (8.11) imply H = 0 and A = 0 

for a generic set of parameters B E O:. 

Consider the following remarks concerning this result: 

Remark 8.1 (Parametrization for B:.) The Theorem shows that for K 5 n the BEKK parameter ma- 

trices Bk (given some suitable zero restrictions and positivity restrictions) may be used as a parametriza- 

tion for a certain subclass of BEKK-terms, namely for the set B$. 

Remark 8.2 (Exceptional points.) This parametrization "fails" on a "thin" set of exceptional points. On 

this set of exceptional points one may lose identifiability; i.e. two or more parameter vectors correspond 

to  the same model. Or one may lose "full rank derivatives", which implies that on these exceptional 

point the Hessian of the likelihood function may become singular. This may cause troubles for numerical 

optimization routines. However, as has been noted already these problems are very "unlikely". 

Remark 8.3 ( T h e  case K = 1.) For the case K = 1, none of the above problems occurs, see also (Engle 

and Kroner, 1995, Proposition 2.1) 

Remark 8.4 (Ranlc restriction on  the first K rows and columns of Q.) The restriction on BEKK-terms 

where the first K rows and columns of Q have full rank may be partly relaxed. E.g. one could define 

an analogous parametrization for terms where the last K rows and columns of the second diagonal block 
have full rank. However, matrices where the full rank rows and columns are spread over several sub 
blocks are not easy to  deal with. Also the case K > n is much more involved. 

8.2.2 The Factor GARCH model of (Engle, Ng and Rothschild, 1990) 

A factor GARCH (F-GARCH) model is a BEKK(p,q,K) models, see (7.12), where the following restric- 

tions are imposed: 

2. the BEKK matrices Bi,k are rank one matrices: 
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Hence the conditional covariance matrix Ht is given by 

Let us first consider the case 0 < K < n. By (8.13) there exist two matrices F, X E Rnx(n-") such that 

Therefore (ct) has a factor model representation of the form: 

where ( fk,t = are the factors and where vt = iiF1et is the "noise". The following relations give the 

conditional variances and covariances respectively: 

cov(fk,t, f1,tIZt-I) = r;Htrl = r;CC1I?l = C O V ( ~ ~ , ~ ,  f l , t)  for k # 1 

var(v, ITt-,) = iiF'~,F;i' = jii="cc'Fiif = var(vt) 

cOv(vtl f k , t l I t - l )  = AFfHtrk = AF'cclrk = cov(vtl fk , t )  

Thus, the factors ( fk,t) are univariate GARCH processes. The conditional variance of the noise (vt) as 

well the conditional covariances are constant. For K = n there is no noise term (vt) and hence ct is a 

linear combination of scalar GARCH processes only. 

Note that the above model imposes strong cross restrictions on the parameters for the respective ARCH 

and GARCH terms. The number of parmeters reduces to  n(n+ l ) /2  + (p+q)K + 2nK - K - K2 = O(n2). 

r) The stationarity condition (7.11) simplifies to the condition that the K univariate factor processes ( fk , t )  

are stationary: 
P+9 

E p : k < l ;  for k = 1 ,  ..., K 

8.2.3 Parametrization for a subset of the positive semidefinite orthocomple- 
ment of the &-sets. 

In section 8.1.3 a parametrization for the positive definite orthocomplement of the equivalence classes 

given by the Q-sets was introduced. Here we will again consider the orthocomplement, but impose the 

following restrictions on Q E S,,,, the block symmetric representative in &(A): 

1. Q L O ,  
i.e, we restrict ourselves to VECH-terms that have an equivalent BEKK-term representation, 

2. rk(Q) = K 5 n,  

i.e. we consider only those VECH-terms A whose corresponding Q E &(A)  has rank K 5 n in 
order to  reduce the number of parameters, and 
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3. let S, T E Rnxn be some matrices of full rank such that  the transformed matrix 

(S 8 T)Q(S 8 T)' 

has a full rank K X K left upper block, 

i.e. we want to avoid degenerated cases. 

Let B& C B denote the set of BEKK-terms, where the block symmetric representative Q E Q(A) n Sn*n 

is a positive semidefinite rank K matrix. 

Theorem 8.4 For K < n the set B& is the set of all BEKK-terms which have a representation of the 

form 
Bk = pkrkAk,  k = l , .  . . , K  

where llAkll = llrkll = 1 and pk > 0. Here A and F are two n X K dimensional matrices, where r has 

full rank K and where Ak and rk denote the respective k-th columns. This representation is unique up 

to sign ch,anges and permutations if and only if Ak # A, holds for all k # S. 

Proof. This follows immediately from Lemma B.4 in the Appendix. 

Note that as in case of the F-GARCH model, see (8.12), the parameter matrices Bz,k are all of rank one. 

However, due to  the fact that here the matrices are given as 

Bi,k = ~i,k(ri ,kAi,k),  with r i s k l  Ai,k E Rn, Ilr i ,kl l  = Ilhi,kll = 1, pi,k > 0, (8.14) 

(plus some technical conditions to get rid of trivial non identifiabilities, like sign changes and per- 

mutations), we allow for more generality as compared to  F-GARCH. The additional flexibility of 

course is at the cost of additional parameters. The total amount of independent parameters is now 

n(n + 1)/2 + (p + q)(2(n - l ) K  + K ) .  Nevertheless, this might be a valuable alternative in cases where 

the F-GARCH model is too restrictive. However, one has to  admit that the stationarity condition here 

is much more involved than for the F-GARCH model. In addition, the "factor-interpretation" gets lost, 

since t.he parameters may now depend on the lag i and since the condition (8.13) is not imposed. 

1 8.2.4 The DVECH model 

Let us now consider briefly the oftentimes used diagonal VECH (DVECH) model proposed by (Bollerslev 

et al., 1988). 

A VECH model is called DVECH model, if all parameter matrices A, in (7.1) are diagonal matrices. Thus, 
the elements of Ht depend only on its own past and the respective element of E ~ - ~ E ~ - , .  The number of 

parameters reduces hence t o  (p + q + l ) n (n  + 1)/2 = O(n2). 

Let Vdzag C V 2 Rn(n+1)/2xn(n+1)/2 denote the set of all admissible DVECH-terms A, and let Bdzag C 
B 2 V denote the set of all DVECH-terms A, which have a BEKK representation. 

Theorem 8.5 Bdsag = Vdiag holds for all n, and for the number of additive BEKK-terms it holds that 
K < n.  

Proof Bdzag C Vdzag follows by definition. 

Consider Vdzag 2 adzag: The diagonal VECH-term A is admissible if and only if f(v,e) = 

v'math(Avech(eef))v = (v @I e)'Q(v @ e) 2 0 holds for all v,e E Rn. Due to the diagonality of 
A it follows that f(v,e) = (v a e)'Cl(v e), where Cl is the n X n-dimensional symmetric matrix 
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R := math(diag(A)), and the operator O denotes the Hadamarad product1. Thus, f(v,e) 2 0 holds 

for all v, e E R" if and only if R 2 0. Let S E IRnxn2 be a selection matrix designed such that 
S(v  8 e) = (v O e) holds for all v, e E R", i.e. the ith diagonal element of the ith n X n dimensional 

sub-block of S equals one, s~i,ii = 1 for i = 1, . . . , n,  whereas the other elements are all zero. Then 
f (v, e) can be written as the quadratic form f (v, e) = (v 8 e)'Q*(v 8 e), with Q* := S'RS E Q(A). By 
construction it follows that Q* 2 0, if 0 2 0. Since Q* is also the only positive semidefinite Q-matrix 
in the whole Q-set Q(A) of an admissible DVECH-term A, it follows that hiag = Vdiag. TO see this 

just note that the diagonal blocks of Q* have only one non zero diagonal element, since = 0 for all 
k # i. Thus, Q = Q* + A > 0, A E A,,, implies A = 0. 
It is furthermore easy to  see that the rank of Q*, K, equals the rank of R and is thus bounded from 

above by the vector dimension n. 

As an illust,ration, consider the simplest case n = 2: 

with wl E R, and 

Consider the following remarks: 

Remark 8.5 (Parametrization of Vdiag,K) Let V d i a g , ~  denote the set of all admissible DVECH-terms A, 
whose corresponding R-Matrix has rank K 5 n. Due to  the fact that Q* is the only positive semidefinite 

representative in the Q-set of some admissible DVECH-term A, one can define a unique parametrization 

as follows: Let K < n be the rank of R = math(diag(A)). Then R can be written as the product 

c-' R = LL', where L is the n X K-dimensional cholesky factor of 0, whose upper triangular elements are 
zero and whose diagonal elements are strictly positive by definition. (Strictly spoken this holds true 
for "generic" R that have a regular K X K left upper block.) Let the vector 8 E R: X RnK-K(K+1)12 
contain the non zero elements of L - start with the diagonal and stack the remaining elements columnwise 

beginning with the first column. The paramet.rization is then a concatenation of the following mappings: 
B H L H R = LL' H A = diag(vech(0)). 

Remark 8.6 (Diagonal BEKK model) Due to  the specific structure of the positive semidefinite matrix 
Q* implied by an addmissible diagonal VECH-term A, the corresponding BEKK parameter matrices Bk,  
k = 1 , .  . . ,K ,  are again diagonal. This can be seen when the cholesky factor L of 0 = LL', is transformed 
to the n2 X K dimensional matrix U by U = S'L, such that Q* = UU' holds. Let Uk and Lk denote the 
kth column of U and L respectively, then B k  = mat(Uk) = mat(SfLk) is again diagonal for all k. 

Remark 8.7 (Stationarity conditions) Due to  the diagonal structure the stationarity condition (7.11) is 
now given by 

P f 9  

ai:jj < 1, for j = 1, .  . . , S  n(n  + 1)/2, 
i=l 

where ai,j j  denotes the j-th diagonal element of the DVECH term Ai. 

'The Hadamarad product of two matrices A and B of the same size is defined as (A @ B ) i j  = aijbi j .  
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Theorem 8.6 Vdiag i s  a closed, convex cone i n  w " ( " + ~ ) / ~  that contains an open subset of R " ~ + ' ) / ~ .  

Proof. In theorem 7.1 it is shown that V is a closed convex cone. This property is carried forward to 

Vdzag C V. 
Let A, E Vdzag, X, 2 0 and R, = math(diag(A,)) for i = 1,2.  Since XIRl + X2R2 2 0, it follows that 

XlAl + X2A2 E Vdzag Finally, let AI be such that the corresponding R-matrix is the identity. Then 
R = In > 0 implies that an open neighborhood of AI is contained in Vd,,,. 

The reduction of parameters in the DVECH as coinpared to  the general VECH model however implies 
also some drawbacks. First of all, the model structure is such that a change in the volatility of one 
variable has no immediate or direct impact on the volatility of the other variables. Second, as it is 

also pointed out in (Gourieroux and Jasiak, 2001, section 6.4.1), possibly the main drawback is the fact 
that  due to its structure the DVECH model is not invariant with respect to  linear combinations. This 
is in particular crucial for a number of financial applications such as portfolio composition or volatility 

modeling of exchange rates. For instance, consider a set of exchange rates (expressed in logarithms) and 
assume that this set of rates has a DVECH model structure. The structure will get lost, if the currency 
of reference is changed. 

8.2.5 A restricted BEKK model 

Let us now give a final example for a parsimonious paran~etrization of a BEKK model, where K = 1 
throughout. In addition, it is assumed that the BEKK matrices are all symmetric and the off diagonal 
elements of a BEKK parameter matrix are all equal. Thus, as an illustration consider the structure of a 
BEKK term B and its corresponding VECH term A for the simplest case, i.e. n = 2: 

Note that for 02 = 0 we are left with a DVECH model with K = 1 and for Q2 = we may model a 
certain sublcass of the positive semidefinite orthocomplement of the Q-sets. Q2 is an additional parameter 

that is used directly to  model the underlying correlation structure. It  has such a simple structure that any 

VECH term is parametrized by only n + 1 parameters. Hence,'this restricted BEKK(p, q) model involves 
only (p+q)(n+ 1) parameters excluding the constant. This is comparable with the number of parameters 
needed to  parametrize the so-called Dynamic Conditional Correlation. (DCC) model proposed by (Engle 
and Sheppard, 2001; Engle, 2002). The DCC model however is not a subclass of the VECH model class 
discussed above. But it may be compared with DVECH models, since the most suitable VECH matrices 
that can be imposed to  meet the structure of a DCC model would show a diagonal structure. 

The stationarity conditions from eq. (7.11) cannot be simplified in case of the restricted BEKK model. 
Nevertheless, we think that this model is a neat alternative to the models presented above and it may be 
applied even for moderate or large n. 



Chapter 9 

Estimation of BEKK models 

Estimation of multivariate GARCH models is troublesome, since the number of parameters may be large 

c'\ 
also for moderate vector dimension n. Even if there is enough data available for estimation, the likelihood 

might be relatively "flat" as a function of many parameters. Thus, it might be hard for optimization 
routines to  find the global maximum and therefore, constraints on the parameter space are in many cases 

indispensible. 

Let us state again the model under consideration: 

and let us assume throughout this chapter, unless stated otherwise, that tt - iidN(0, I,), thus E ~ ~ Z ~ - ~  
N(0 ,  Ht),  and the conditional variance matrix may be modeled as 

where the matrices A, may have any of the structures discussed above. 

P 
Due to the fact that pt and ~t are uncorrelated, we might apply a two step estimation procedure. Thus, 
estimate equation (9.1) in a first step, see part I, and in a second step estimate the GARCH structure of 

the error term. In order to  obtain efficient estimates (Engle and Kroner, 1995) suggest to repeat these 

two steps until convergence, while in each step estimation is performed conditional on the estimation 
result of the previous step. 

Let in the following for the sake of simplicity p = q = 1. If we assume that, as proposed in (Engle and 
Kroner, 1995, section 4), the presample data or initial values E O E ~  and H. are equal to  their unconditional 

expectation, 

math((1- Al - A~)- 'c) ,  

where I denotes the identity matrix of suitable dimension, i.e. I = In(n+1)/2, then E ~ ~ Z O  -- N(0,  HI) ,  
with H1 = math((I - A1 - A2)-'c). Let f (.) denote a density function, let 6 be the vector of parameters 
that are needed to parametrize c, A1 and A2, and let T be the sample size, then the likelihood function 
L is given by 
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If we now take the logarithm, we obtain 
m 

T n  
1 

log L = --log(%) + l t ,  with 
2 t=l 

The parameter vector B is now obtained by optimization of 

mins {- log L(B))  

s.t. : positivity constraints (7.2), (7.3) 

stationarity constraints (7.11) 

and the partial derivative with respect t o  the ith component of B is given by 

dl og L ( B )  T 
- ( I ,  - et H; l ( B ) )  . ------ . 

Let B,, BA1 and BA2 denote components of B that are necessary to parametrize the constant, Al and A2 

respectively Note that = math ahr(0) ( ) and aB; may recursively be computed by t,he following 

equations. 

dho(8) ac(e)  - = ( I  - A I  - A 2 ) - l .  - 
do, dB, 

dh0(@) ( I  - A - A2)- lC - = ( I -  Al - A ~ ) - ' .  -. 
dQAl dQAl 

dho(Q) 
( I  - Al A2 ) - l c  = ( I  - A1 - A 2 ) - l .  - . 

d0A2 

dht(0)  - - dht-,(Q) 

80, 80, 
aht ( Q )  - - - -. aA1(B) + A 2 .  ah t - l (e )  
d e ~ l  ~ Q A ,  @A 1 

dht(0)  - - - -. aA2(B) htPl + A2 . aht - l (e )  
~ B A ,  ~ B A ~  ~ B A ,  

of course depend on the respective parametrization. For the The partial derivatives X ,  a~n,, 
DVECH parametrization e.g. these are easy to  derive. However, for most of the other aforementioned 

parametrizations they are much more involved. Thus, optimization of the problem stated in eq. (9.4) 

may be done numerically. In the applications shown in the subsequent chapter 10 we make use of the 

non-linear minimization function nlm( .) that uses a Newton-type method and is provided in the open 

source R package { s t a t s ) ,  see (R Development Core Team, 2005) - h t t p :  //www . r -p ro  j ec t  . org/. 

Asymptotic properties of the quasi1 maximum likelihood estimator: (Comte and Lieber- 

man, 2003) provide conditions for strong consistency of the quasi maximum likelihood estimator e and 

asymptotic normality. In addition, they give a thorough survey of asymptotic results published so far 

for univariate as well as multivariate GARCH processes. Let us for the sake of comleteness state two of 
their main theorems, for the proofs and further details refer to (Comte and Lieberman, 2003): 

Consider in the following a BEKK(p,q) model as defined by eq. (9.1) and (9.2) with zt W iid(0, I,), in 

VECH notation. (Note that every BEKK model may be written as a VECH model.) And refer to  the 

parametrizations given in section 8.1 .l. 

Theorem 9.1 (Consistency of quasi MLE) For the MGARCH(p,q) process defined by eq. (6.3) with 

zt N iid(0, I,) and (7.12), and for eT, the quasi maximum likelihood estimate obtained from a sample of 

length T ,  and the true parameter B. E O, assume that 

'Note that (Comte and Lieberman, 2003) call the estimate quasi MLE, since they do not assume that ( z t )  is Gaussion, 
but work with the Gaussian log-likelihood function. 



1. C3 E C3+ is compact, C and Bi,k, i = l , .  . . ,p+q,  are continuous functions of the parameters B E 0, 

and there exists a c > 0 such that infeEo det(C(B)C(B)') 2 c > 0 ,  

2. The model is identifiable, 

3. The rescaled errors zt admit a density absolutely continuous with respect to the Lebesgue measure 
and positive i n  a neighbourhood of the origin, 

4.  For all 8 E 0 ,  the largest eigen,value in modulus of the C:2 Ai ,  the sum of corresponding VECH 
m,atrices, is smaller than 1. 

Then OT is strongly consistent that is, BT 4 T + ,  00 a.s. 

R e m a r k  9.1 (Identifiability of the model.) Note that in their proof (Comte and Lieberman, 2003) refer 

to the parainetrization proposed by (Engle and Kroner, 1995). The drawbacks or shortcomings of this 

parametrization are discussed in section 8.1.2 from above. Furthermore note that the parametrizations 
proposed above are a t  best identifiable on a generic -here i.e. open and dense- class of BEKK models. 

CI R e m a r k  9.2 (Compactness of the parameter space and stationarity conditions.) Note furthermore, 

that, if one wants to apply theorem 9.1, one has to adjust the underlying parametrization such that 

assumptions 1. and 4. hold. 

T h e o r e m  9.2 ( A s y m p t o t i c  N o r m a l i t y  of quas i  M L E )  Under the assumptions 

1. Ass. (1) - ( 4 )  from theorem 9.1, and C(B), Bi;k(8)7  i = 1 ,  . . . , p  + q admit continuous derivatives 
up to order 3 on  0, 

2. Th,e components of zt are independent, 

3. ct admits bounded moments of order 8 ,  

4. The initial states of the process Ht are fixed2 

The quasi MLE BT,init given the initial state i s  strongly consistent and 

8'1, (eo) w h e n  Cl = & ((-) , ) , 4 = & (-Wf and r i s  the length of the parameter vector 8. 
I l i , g<r  

2Note that  in theorem 9.1 the initial values of Ht are assumed to  be drawn randomly from the  stationary law PO,,. 
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Chapter 10 

Simulation Studies and Applications 
on Real Data 

In this chapter we will present simulation studies of the above discussed model classes. Several simulated 

data sets are used to investigate: 

the practical feasibility to estimate the model classes under consideration in reasonable computing 

time, 

the sensitivity of the computational results of likelihood optimization with respect to the choice of 

starting values, 

the capability of each model class to approximate a data generating process (DGP) belonging to 

another model class. 

We will in addition provide some estimation results of the above MGARCH model classes, where estima- 

tion is performed on the 7 series of close returns of European banks, see chapter 5 for a description of 

P the data. 

Throughout this chapter we consider only MGARCH(1,l) models. Thus, we set q = p = 1. 

Let us first introduce some coding concerning the different models and their specification, see table 10.1. 

Throughout, the appendix ".K" indicates how many additive terms there are involved in the BEKK term 

specification of the underlying model. 

Code K 

sr.K n2 
1, ..., n 

ek.K n2 
0rtho.K n2 

1, . . . ,  n 

f.K 1, . . . ,  n 
dvech.K l , .  . . , n 
rbekk.K 1 

Parametrization 

(Scherrer and Ribarits, 2006) 
(Scherrer and Ribarits, 2006) 

(Engle and Kroner, 1995) 

(Scherrer and Ribarits, 2006) 

(Engle et al., 1990) 

(Bollerslev et al., 1988) 

Section 

8.1.1 
8.2.1 

8.1.2 

8.1.3 

8.2.3 

8.2.2 

Table 10.1: Coding system of the different MGARCH models. 
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10.1 The role of starting values 

1 

Consider the following bivariate VECH(1,l) process et: et = Ht5zt with zt - iidN(0, 12) and 

Note that here the entries in the parameter matrices have been rounded to three digits. The absolute 
values of the eigenvalues of Al +A2 are 0.654,0.250 and 0.096. Thus, the stability condition (7.11) holds. 

The eigenvalues of the Q-matrices in the corresponding Q-sets are shown in figure 10.1. 

Eigenvalues of Qsets 

~ Figure 10.1: The 4 eigenvalues of the Q-matrices in the Q-sets &(AI) and Q(A2); x-axis: wl; Gray 
vertical line: indicates the analytic centers. 

This process is contained in the sr.4 model class. The length of the simulated sample is T = 300 andlthe 
starting values for the simulation have been chosen as HI = math((13 - Al - A2)-'c) and €1 = H:z1, 
with zl random N(0 ,  12). 
The starting values provided for A1 and A2 in the Newton-like algorithm that maximizes the respective 
likelihood functions are all randomly chosen and of order 10-l0 to  l O W 5 ,  whereas the starting value for 
the constant c is chosen as vech(+ xL1 et&:), the "vechtorized" empirical variance covariance matrix 
of et. For each model class considered we provide 100 different random starting values for A1 and A2. 
Figure 10.2 shows the boxplots of the respective 100 likelihood values obtained after optimization. 
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Figure 10.2: Boxplot of likelihood values obtained after optimization from 100 different random start- 

P ing values for each of the considered model class; Green line: likelihood value corresponding to 
T 

C = vech(+ E t = ,  et€:), A = G = 0; Red line: likelihood value corresponding to the true parameter 
values; Number of parameters (from left to  right): 21, 11, 17, 21, 21, 9, 15, 7, 9, 7, 9, 9. 

The performance of sr.4 is surprisingly bad as compared to its competitors that provide the same number 
of parameters. One or possibly the reason for sr.4 numerically lagging behind is the fact that the mapping 

f from the parameters 0 onto the matrices Q, i.e. f : 0 H vech(Q), in general is rather ill-conditioned. 
In the above example the condition number of the Q-matrices corresponding to the analytic centers of 

the Q-sets of the true parameter matrices A1 and A2 and the (relative) condition number of the mapping 
f evaluated at the parameter vectors that correspond to the analytic centers are given in table 10.2 

below. The parametrizations for ek.n2 and ortho.n2 are more stable concerning starting values and show 
considerably shorter computing times1 , see e.g. figure 10.3. The computing times listed throughout this 
chapter should however be considered only as a rough guide, since sometimes several R sessions have 

been run at  the same time. 

Table 10.2: Condition numbers of the analytic centers Q and the mapping f : 0 H vech(Q), evaluated at 

the parameter vectors that correspond to the analytic centers. 

Concerning the other model classes the good performance of sr.2 is striking. If we consider the corre- 
sponding AIC values (not shown here), sr.2 still outperforms its more parsimonious competitors from 
the DVECH model class and rbekk.1 that are all quite stable with respect to variations in the starting 
values. f.1 and f.2 are also stable, but lag behind its competitors that use the same number of parameters. 
Finally, ortho.1 and ortho.2 show in this setting, i.e. for this particular process, the most unstable results 
concerning different starting values. Especially ortho.2 seems to have severe problems to find its optimum 
in the parameter space. Possibly its likelihood function is just too flat. ortho.1 involves less parameters 
and here alltogether does a better job than ortho.2. 

lAll computations have been carried out in R 2.2.0, (R Development Core Team, 2005) and were run on an Intel(R) 
Pentium(R.) M processor 1500 MHz. 
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10.2 The role of the underlying DGP 

Let us now consider different MGARCH processes tt in order to analyse the generality of the model 
classes. 

For n = 2, data series for 12 different MGARCH processes of sample size T = 500 have been generated. 
Each of the above discussed models has been estimated on the respective data sets. In order to reduce 
the influence of the starting value, for each model class 10 different sets of starting values have been 
provided and the "best" model out of ten with respect to the likelihood value has been selected for 

further analysis. In table 10.3 the corresponding AIC and BIC values are listed. I t  can be seen that, 
concerning AIC, sr.2 and sr.1 show good results throughout. They are 8 and 12 times, respectively, among 
the three models that, given the realization of a DGP, show the lowest AIC values. What is surprising 

is the good performance of rbekk.1. Even though it involves a relatively small number of parameters it 
appears 7 times among the best (with respect to  AIC) three estimated models. The results of sr.4 lag 

behind expectations, but as mentioned in the section before, this is due to  numerical problems, see also 
figure 10.3. If we consider ek.4 and ortho.4, the parametrization of (Engle and Kroner, 1995) does a 
slightly better job than ortho.4. The F-GARCH models f.1 and f.2 perform considerably worse than their 
competitors even if the DGP is an F-GARCH process. DVECH models perform good, if the underlying 
DGP is a DVECH process, otherwise they are in the intermediate ranks. In case of a DGP of the form 
ortho.4, ortho.2 and ortho.1 the respective models that model the positive semidefinite orthocomplement 
of the Q-sets are displaced by the more or equally parsimonious rbekk.1 model. The BIC results of course 
give a slight change in the ranking of the models. Anyway, sr.1 and rbekk.1 for almost all simulated series 

stay among the best (with respect to BIC) three estimated models. 

Computing time 

Figure 10.3: Boxplots of computing times (in seconds) of the 12 estimated MGARCH models for the 12 
simulated series with n = 2 and T = 500 of the respective DGP1s, see also table 10.3. 



AIC Data Generating Process 
Nb.P. sr.4 sr.2 sr.1 ek.4 f.2 f.1 dvech.2 dvech.1 ortho.4 ortho.2 ortho.1 rbekk.1 

e sr.4 21 6.218 5.080 7.421 2.909 5.312 2.359 1.883 5.596 3.227 5.838 2.274 4.472 
S sr.2 17 6.186 5.031 7.397 2.882 5.288 2.337 1.853 5.578 3.199 5.665 2.258 4.447 
t sr.1 11 6.192 5.044 7.373 2.874 5.266 2.316 1.834 5.555 3.194 5.656 2.234 4.432 

i ek.4 21 6.202 5.046 7.413 2.898 5.304 2.354 1.869 5.594 3.215 5.672 2.274 4.464 
m f.2 9 7.284 5.291 7.763 3.089 5.306 2.605 1.914 5.777 4.158 6.031 3.018 4.943 

f.1 7 7.276 5.283 7.945 3.138 5.357 2.597 1.925 5.769 4.150 6.023 3.010 4.935 
dvech. 2 9 6.567 5.230 7.582 3.020 5.321 2.481 1.837 5.573 3.304 5.828 2.438 4.815 

M dvech.1 7 6.752 5.237 7.597 3.034 5.324 2.473 1.829 5.565 3.304 5.857 2.447 4.815 

1 rbekk.1 9 6.282 5.068 7.433 2.876 5.278 2.417 1.835 5.559 3.193 5.639 2.237 4.431 

BIC Data Generating Process 

Table 10.3: AIC and BIC values plus the total number of parameters (Nb.P.) of the respective estimated MGARCH models (rows) for realizations of the bivariate 

MGARCH processes (columns); The minimum IC value for a certain DGP across the estimated models is shown in bold face. 
CO 
U1 
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For n = 3, data series for 6 different MGARCH processes of sample size T = 500 have been generated. 
The number of parameters needed to  estimate now ranges from 12 for the dvech.1 model up to  78 for the 
models where K = 9. Figure 10.4 shows boxplots of the computing times in seconds. Due to  the large 
differences in the computing times the models have been grouped according to the number of parameters 
estimated. Estimation of a rbekk.1 model in the worst case takes not even 7 minutes. This is really good, 
since it performs well already in the AIC sense, see table 10.4. Computation of dvech.1 takes a t  most 4 
minutes and ortho.1, although it involves a bit more parameters than rbekk.1 and dvech.1, does not even 
need 3 minutes to  be calculated. Note that on average these models take even less computing time, namely 
around 1.4 to  2.3 minutes. In fact, the IC results show that in case of n = 3 the parsimonious model 
classes can already compete with the more general model classes. sr.1, sr.2 and sr.3 for instance perform 

well, but a t  the cost of high computing times. If we compare the models that involve 78 parameters, again 
ek.9 outperforms sr.9 and ortho.9. The results of the F-GARCH models are again rather disappointing 
for the underlying data sets. 

To sum it up, rbekk.1 is parsimonious, but may still be sufficiently general in order to model different 
kinds of MGARCH processes. The DVECH models possibly are too restrictive concerning the structure 
of the model and therefore tend t o  slightly lag behind when the DGP does not show this diagonality in 
the VECH parameter matrices. ortho.1 is promising, too. As it is the case for rbekk.1, it does not seem 

to  be that dependent on the structure of the underlying DGP. ortho.2 and ortho.3 however can be found 
0 

rather in the intermediate ranks. 

Figure 10.4: Boxplots of computing times (in seconds) of the 16 estimated MGARCH models for the 6 
simulated series with n = 3 and T = 500 of the respective DGP's, see also table 10.4. 



10.2. THE ROLE OF THE UNDERLYING DGP 

AIC Data Generating Process 

BIC Data Generating Process 
Nb.P. sr.9 ek.9 ortho.9 f.1 dvech.3 rbekk.1 

Table 10.4: AIC and BIC values plus the total number of parameters (Nb.P.) of the respective esti- 
mated MGARCH models (rows) for realizations of the 3-dimensional MGARCH processes (columns); 
The minimum IC value for a certain DGP across the estimated models is shown in bold face. 



88 CHAPTER 10. SIMULATION STUDIES AND APPLICATIONS ON REAL DATA 

10.3 Application on real data 

In this section we consider MGARCH models for observations of three bivariate processes and one 7- 
dimensional vector process consisting of the close returns of 7 European banks, see figure 5.1. For the latter 
only the model classes with the most parsimonious model structure were taken into consideration. Table 
10.5 summarizes the results. In general, we can say that the models sr.K with K 5 n yield good results. 
In case of the bivariate data sets, sr.2 is selected throughout by the AIC. If we consider all seven banks, sr.1 
might be a good choice. It  involves however considerably more parameters than its competitors. Following 

the results of the BIC values we would therefore rather choose the more parsimonious restricted BEKK 
model from section 8.2.5 that allows for a more general covariance structure than the DVECH models. 
Figures 10.5 and 10.6 illustrate the estimation results of the sr.1 and rbekk.1 models for the conditional 
variances and covariances of the seven return series. In fact, the changes in the conditional variances are 

modelled quite well. In order to see how good the conditional covariances are modelled, we consider two 
trivial portfolios, where the portfolio weights are held constant throughout and determined as follows: 
Let v denote the geometric mean and 2, the sample variance covarianc matrix of yt, then the portfolio 
weights are obtained from the minimization problem 

1 - 
min -wljj + -w1CYw, 

WEIR'' 2 

with respect to the two different sets of constraints or strategies presented in section 5.1 above. Table 

10.6 below shows the thus obtained portfolio weights. Figure 10.6 depicts the absolute returns of the 
portfolios and two times the estimated conditional standard deviations obtained from the two models 
sr.1 and rbekk.1. It  can be seen that the conditional covariances are modelled quite well, too. 

To sum it up, it can be said that the above presented model classes are promising, and estimation does 
work even for moderate dimensions n. Especially the models sr.K with K 5 n, DVECH and rbekk.1 
models show good results and may be general enough. 

Figure 10.5: Black: Absolute return series of the seven banks; Red: Two times the estimated standard 
deviation of model sr.1; Green: Two times the estimated standard deviation of model rbekk.1. 



10.3. APPLICATION ON REAL DATA 

AIC Nb.P. H.AAB-D.DBK D.DBK-F.BNP U.BBV-E.SCH I Nb.P. All Banks 

Table 10.5: AIC and BIC values plus the total number of parameters (Nb.P.) of the respective estimated 

f.1 7 5.256 4.952 5.334 
dvech.2 9 4.737 4.463 5.074 

M dvech.1 7 4.754 4.483 5.079 
o ortho.4 2 1 4.756 4.484 4.997 
d ortho.2 15 4.911 4.460 4.984 
e ortho.1 9 4.852 4.602 5.071 
1 rbekk.1 9 4.739 4.487 5.043 

BIC Nb.P. H.AAB-D.DBK D.DBK-F.BNP U.BBV-E.SCH 

e sr.4 2 1 5.337 5.198 5.540 

S sr.2 17 5.014 4.726 5.272 

MGARCH models (rows) for observations of three bivariate processes and one 7-dimensional vector 

42 15.888 
54 14.814 
42 14.993 

54 15.259 
44 14.933 

Nb.P. All Banks 

process (columns); The minimum IC value for a certain process across the estimated models is shown 
in bold face; For the 7-dimensional vector process only the most parsimonious model classes have been 
considered. 

Table 10.6: Portfolio weights for Strategy I (wl) and Strategy 11 ( ~ 2 ) .  



Figure 10.6: Black: Absolute return series of the portfolio returns; Red: Two times the estimated standard 
deviation of the portfolio returns obtained from model sr.1; Green: Two times the estimated standard 
deviation of the portfolio returns obtained from model rbekk.1. 



Chapter 11 

Conclusion 

In this thesis multivariate methods for modelling the conditional first and second moments of a vector 

(? 
process have been analyzed. 

The first part is devoted to the identification, specification and estimation of forecasting models for 

the conditional expectation of some vector process. In particular, the properties and main features of 

three model classes, namely the VARX model, the Reduced Rank model and the factor model with 

idiosyncratic noise, were pointed out. A special issue was to  define data driven model specification and 

input selection procedures. In this respect methods similar to  the univariate procedures suggested by 

(An and Gu, 1985; An and Gu, 1989), but adapted for the multivariate case and the framework of the 

respective model class were presented. The applications on real data showed that  out-of-sample the 

RR models almost always outperform their competitors a t  least on the underlying data set of the seven 

European bank close returns. Here, the out-of-sample performance measures were the out-of-sample R2 

and hit rate. If we consider portfolio optimization the portfolio return obtained from portfolio weighting 

strategies t,hat base on forecasts of a RR model exceeds the return of the benchmark portfolio. Thus, the 

model classes, in particular the RR model class, are not only useful when it comes to  data analysis, but 

may also be of value in the area of forecasting of financial time series. 

In the second part of t,he thesis the focus is on multivariate GARCH models. In particular, the structure 

and parametrization of VECH and BEKK models is investigated. Knowledge of the theory of these 

very general model classes is worthwhile, not only for understanding the model features, but also for 

the construction and parametrization of reasonable parsimonious subclasses as for instance the restricted 

BEKK model from section 8.2.5. 

In fact, connected to  each VECH parameter matrix A there is an affine subset of symmetric matrices, 

called Q(A) that may be used to  analyze VECH and BEKK terms. In particular, a VECH term has 

an equivalent BEKK representation, if and only if this set &(A) contains a positive semidefinite matrix 

Q 2 0. The corresponding BEKK representation essentially corresponds to a factorization of such a Q 2 0 
and thus, the number K of additive terms in the BEKK framework is related to  the rank of Q. Therefore, 
one may check if a BEKK representation exists via a semidefinite program. It  can be shown that for the 

bivariate case admissible VECH models and BEKK models are equivalent. For n > 2 however, there is a 

"thick" class of admissible VECH models that have no equivalent BEKK representation. Hence, in this 

case VECH models are more general. 

The problem of finding a unique BEKK representation may be decomposed into two steps. First, define a 
unique positive semidefinite element in Q ( A )  and then use a unique factorization of this element. Based 
on this idea a parametrization (sr.n2) of a generic set of BEKK models is presented. In addition, it 
is also shown that the Engle-Kroner parametrization (ek.n2), see (Engle and Kroner, 1995), and the 

parametrization of the positive semidefinite orthocomplement (ortho.n2) of the &-sets do not cover a 

generic set. 
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The general BEKK model uses O(n4) free parameters which makes estimation infeasible for large n. 
Anyway, as can be seen from the applications above for small n the parametrization of the general BEKK 
model may be useful and estimation can be performed. Restricting the number of additive terms K in 
the BEKK framework (or equivalently restricting the rank of Q > 0) to be less than n (sr.K with K 5 n)  
dramatically reduces the number of parameters. We show that generically this rank restriction suffices to 
uniquely define an element in &(A) and thus, the BEKK parameter matrices Bk (given some suitable zero 
and positivity restrictions) may be directly used as free parameters. Identifiablity problems only occur on 
a "thin" set of such BEKK(p, g, K 5 n) models. In addition, we discuss parsimonious model classes such 

as the popular diagonal VECH model (dvech.K with K < n) and the F-GARCH model (f.K with K 5 n) 
using the above described methodology. We consider a model class that relaxes some of the restrictions 
imposed by the F-GARCH model and paraiiletrizes the positive semidefinite orthocomplement of the 
Q-sets (0rtho.K with K 5 n). Finally, the restricted BEKK model (rbekk.1) is proposed. 
The applications show that sr .K with K I n and the parsimonious model classes dvec11.1, ortho.1 

and rbekk.1 are promising. The general BEKK model sr.n2 shows severe numerical problems and in this 
respect lags behind its competitors involving the same number of parameters, namely ek.n2 and ortho.n2. 

The parametrization of (Engle and Kroner, 1995) performs well throughout, however it takes in general 
more time to  estimate ek.n2 than ortho.n2. 



Appendix A 

Random Variables and Stochast ic 

Processes 

r' 
Let (R, A, P) be a probability space, where R is the set of all elementary events, A is a sigma algebra of 

events or subsets of R, and P is a probability measure defined on A. An n-dimensional random variable 

y, defined on the probability space (Cl, A,P),  is an A-measurable function, i.e. a real1 valued function 

y : R -+ Rn, mapping each W E R on y(w) = (yl(w), . . . , y,(w))' such that for each c = (cl , .  . . ,G)' E Rn 

the set A, = {W I yl(w) < c l , .  . . , y,(w) < c,} is an element of the sigma algebra A. Note, that every 

"Boreln-measurable function of a random variable is again a random variable. 

The joint distribution function of the components of some real valued n-dimensional random variable y is a 

non-negative, monotonically non-decreasing and componentwise right-continuous function F, mapping Rn 

onto the closed interval1 [0, l] and is defined by the equation F,(c) = P(A,) = P(yl(w) 5 c l , .  . . , yn(w) 5 
c,). Considering random variables, one distinguishes between discrete and continuous random variables. 

A random variable is called discrete, if P(y(w) = uk) > 0 holds for a finite or countable infinite number 

of points uk E Rn. In the sequel however, we will deal with continuous random variables only. A random 

variable is said to  be continuous, if there exists a non-negative integrable function, f, : Rn --+ R, u H 

fy(ul ,  . . . , U,), for which F,(c) = . . . f, (ul ,  . . . , un)dul . . . dun holds. Function f,(u) is called 

the density function of y. Note, that  every integrable non-negative function f(u) ,  whose integral over 

r' Rn is equal to  1, is a density function of some random variable. The density function f, of a continuous 

random variable y contains the same information about the probability distribution of y as the distribution 

function F,, since P(A) = lA(w)dP = SA 1dP = SB f,(u)du, where lA(w) is the indicator function, 

that  is one for W E A and zero else, holds for all A E A, if A = y-l(B), B E B", where Bn is the sigma 

algebra of Bore1 sets in Rn, belonging to  the probability space (Rn, Bn, P,). In many cases it is easier to 

work with f, rather than with F,. 

An n-dimensional stochastic process, denoted by (yt), is a family of n-dimensional random variables 

y,, t in some index set T. Thus, (yt) is a real valued function y : T X R --+ Rn, where for each 

fixed t E T, y(t, .) is an n-dimensional random variable2. In the following, we will only deal with time 

discrete processes. Hence, T C Z. The stochastic properties of a process (yt) can be deduced from the 

joint distribution functions of every finite selection {yt,, . . . , yt,.) of r random variables, t l ,  . . . , t, E Z. 
The complete set of distribution functions will, however, be unknown in practice. Hence, we will be 

concerned with estimation of the moments characterizing the distribution functions. The distribution 
function of a normally distributed random variable, for instance, is totally characterized by its first and 

second moments. The first moment or expectation, Eyt, and the centered second moments or variance 

covariance matrices, cov(yt, ys) = E(yt - Eyt)(ys - Eys)', of the underlying process are therefore in the 

lComplex random variables are not discussed here. 
2 ~ o t e ,  that for time discrete (continuous) processes T is a subset of the integer numbers Z (the real numbers I) 
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center of investigation. Due to the fact, that the whole information set, A, a process ( Y ~ )  is defined on, in 

general, is not available or simply unknown, one is mostly restricted to  conditional distributions, i.e. one 
investigates the distributions of the yt's, conditioned on some available information set, Z, that is a sub 

sigma algebra of A. In the following, Z will often be the sigma field Zt = a(yi, Y I - ~ ,  . . . , X:, . . . , l), 

that is generated by the current and past information of (yt) and some observed exogenous, say, k- 
dimensional vector process (xt),  and a constant. 
What we observe, in fact, are realizations of the process (yt), which therefore is also called a data 
generating process. If the observation intervals are equidistant, the sequence of observations ordered by 
time is called time series. Note, that with yt we denote both, the random variable and its realization. 
It should be clear, however, from the context to which of the two we are refering to. In practice the 

sample size or the length of some time series is finite and will be denoted by T. When time series, 

y1,. . . ,PT, are analyzed, the ordering of observations, in general, is crucial, since it inay contain additional 
information about the family of random variables, more precisely, the dependence structure among the 
random variables forming the underlying stochastic process. To understand independence of two random 
variables consider the following: every (n-dimensional) random variable generates a new probability space 

(Rn, Bn,IP) ,  where Bn is the sigma algebra of Bore1 sets (all half-open intervals) of the n-dimensional 
Euclidian space Rn, and B* is the probability measure given by P ( B )  = B(y-l(B)) for all B E Bn, 

where y-'(B) = {wly(w) E B) = AY,B E A. TWO n-dimensional real valued random variables y and X 

defined on (R, A, P) are said to  be independent if and only if the events Ay,B and are independent 

for all B E Bn, i.e. P ( A Y , ~  n  as,^) = P(Ay,~)P(Ax,B) .  A measure for linear dependence is given by 
the covariance function, COV(E~,  E,). TWO random variables are said to be un,correlated if C O V ( E ~ ,  E,) = 0. 

Hence, independence implies uncorrelatedness. Let yt = yt-l + et. Then, if E(ytlZt-l) = yt-l and 
lE(~tlZt-1) = 0 for all t E T, (yt)t20 is called Martingale and (et) is a Martingale differen,ce sequence 
(MDS). It  is easy to check that the et's of an MDS have mean zero and are uncorrelated. Furthermore 
note, that a process (ct), where the et's have mean zero and are independent, is an MDS. Thus loosely 
spoken, one can state the following: independent process with mean zero =+ MDS + uncorrelated process. 

A stochastic process (yt) is called (wide sense) stationary if its first and second moments exist and are 
time invariant, i.e. Eyt = p (constant) for all t ,  IEyiyt < m for all t and E(yt - p)(yt-, - p)' does not 

depend on t .  An important example for stationary processes are the white noise processes (et), which 

are defined by Eft = 0, EE,E: = c ~ , , ~ C ,  where is the Kronecker delta and C is some n X n-dimensional 
covariance matrix3. 

Consider again the probability space (R, A, P)  and let L2(R, A, P) denote the set of all random variables 
X : R + C that are square integrable, i.e. lE 1x12 < m. Let X y be an equivalence relation defined on L2 
such that X E y if and only if X = y almost surely, and let ILz(Q, A, P) denote the set of these equivalence 
classes. Then due to  the linearity of the integral IL2 is a linear space and (X, y) = Exg is an inner product, 
where jj denotes the complex conjugate of y, since 

3. (x,x)  2 0 and (x,x)  = O H X  =O. 

Let llx(12 = (X, X) be the norm defined by the inner product, then since IL2 is a linear space with an inner 
product and since any Cauchy sequence4 in IL2 converges, i.e. IL2 is complete in the norm defined by the 
inner product, IL2 is a Hilbert space, namely the Hilbert space of square integrable random variables. 

3The name "white noise" is justified by the fact that the spectra of white noise processes are constant over all frequencies 
just like the spectrum of white light. 

4~ Cauchy sequence in L2 is a sequence X, E L2 for which it holds that lim,,,,, 112, - xmll = 0. The Cauchy 
sequence is said to converge to  some X E L2, if  lim,,, 111, - xll = 0. 
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Proofs 

Lemma B. l  Given matrices A,B and C of dimensions n X n, m X n and m X m, where A and C are 

symmetric. If C > 0, 

Proof. 
A B' 

Note that ( B ) 2 0, is equivalent to  T' ( ) T 2 0, for any ma- 

on,, In 
trix T E Choose the (non-singular) T, T = , then 

I -C-'B 

A B' 
T 1 (  ) T = ( "  O > o is equivalent to  A - B'C-' B 2 0. 

B C o A-BC-IB 

Analogously one can show that if C > 0, ( i  z) >O-A-B 'C- lB>O.  

Lemma B.2 (Non-singularity of rx) Let Xt  be the (l +pn+  k)-dimensional process as defined in eq. 
(2.2). Given the assumptions 2.1 from above, the second moment matrix of Xt ,  rx = IEXtXi is positive 
definite. 

Proof. Xt  = (1, yi-,, . . . , y~-,,x~-,) '  and due t o  the fact that  A(z) fulfills the stability condition, yt can 

be represented as 

Let Y," := (y?L,, . . . , y ~ ~ p ) '  and v := (y i l l , .  . . , y::,)'. Hence, 

1 

x t = ( L p . P . ) + (  px 
Q-1 - CL, ( n ) .  

where L, denotes the p-dimensional vector of ones. Since the t t ls  and et's are independent for all S ,  t ,  we 
have I E ~ Y ~ '  = 0 for all t ,  S .  Thus, rx can be written as the sum of three positive semidefinite matrices: 
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rx = EX~X; = o o ) +.. .  
0 0 

0 0 0 0 

E T ( x t - 1  - 112)' 
0 E(xt-l - Wxt-l - px)(xt-l - p,)' 

Now, rx > 0 holds, if IE(ztP1 - p,)(xtV1 - p,)' > 0 and I' := IEY,'Y,'' > 0 (see also lemma B.l).  Since 
IE(xtP1 - p , ) ( ~ ~ - ~  - p,)' > 0 holds by assumption, it remains to show that F > 0: Note that 

I and that the stability of A(z) is equivalent to IXi(A)I < 1 for all i. Hence, 

I = AI'A' + BC, B'. 

Suppose that for some h = (hi ,  . . . , h;)' with hi E Rn, it holds that h'rh = 0. This implies that 

hfArA'h+h'BC,B'h = 0. Since C, > 0, it follows that B'h = hl = 0. Due to  h'ArAfh = 0, 
=o =o 

A'h = (h',, . . . , h;, 0)' E ker r .  Thus, h'ArAfh = h'AArA1A'h + h1ABC,B'A'h = 0 together with the 
above reasoning implies that h2 = 0. If we continue in an analogous way, we can show that h = 0 has to 

hold. 

Lemma B.3 Consider the s.d.p. (7.14) A pair (X E R, A E A,,,) is called feasible if and only if 
Q. + A - X I  2 0 holds. Similarly we call A feasible for X if and only if (X, A) is feasible and finally X is 
called feasible if and only if there exist a A E A,,, s.th. (X, A) is feasible. 

l 1. The set of all A E A,,, which are feasible for X is bounded by llAll I (n2 - l)Xmax(Qo - XI). 

I 2, The feasible X's are bounded from above by X 5 X,,,(Qo) 

3. The set of optimal points of the s.d.p. is non void, i.e. there exists a feasible pair (X*, A*) such 
that X* = sup{X 1 3A E A,,, S. th. Q. + A - X I  2 0). The optimum X* is bounded by Xmin (Qo) I 

X* 5 Xmax(Q0). 

4. The optimal value X* is a continuous function of Qo. 

Proof. Ad (1): First, note that Xmin(X) + Xmin(Y) < Xmin(X + Y) I Xmin(X) + Xmax(Y) 
holds for symmetric matrices X , Y ,  see e.g. (Golub and VanLoan, 1996). Second, observe that 

ma:(lXmin(A)1, IXmax(A)l) = 11A11 < -(nZ - l)Xmin(A) holds for all A E Anm, since O = t r  A = 

C;=, Xk(A), where Xk(A) denotes the kth eigenvalue of A. Therefore, we have 0 5 Xmi,(Qo + A  -XI) I 
Xmin(A) + Xmax(Q0 + XI) and hence, 1 1  All 5 -(n2 - l)Xmin(A> < (n2 - l)Xmax(Qo - XI). 

Claim (2) follows from 0 < llAll/(n2 - 1) I Xmax(Qo - XI) = Xmax(Qo) - X. 

To prove (3), let a sequence (Xk,Ak) of feasible pairs be given such that Xk  I Xk+1 and limk Xk = X*. 
Since 1 1  Ak 11 < (n2 - l)Xmax (Qo - Xk I )  < (n2 - 1) [X,,, (Qo) - XI]  there exists a limiting point, A* say, of 
the sequence (Ak). Since S s  is closed, it follows that Q. + A* - X * I  2 0 and hence, (X*, A*) is feasible. 
Finally, note that X* 2 Xmin(Qo) by definition and that X* 5 Xmax(Qo) holds by (2). 



To prove (4), let a convergent sequence Qok -+ Qoo be given and let (Xi, A;) denote optimal points 
corresponding to QOk and let (X:, A:) be optimal for the limit matrix Q o o  We have X; = Xmin(QOk + 
A;) 2 Xmin(QOk + A:) and hence 

On the other hand, since Xmin(X) - llYll 5 Xmin(X + Y) 5 X,nin(X) + IlYll holds for symmetric matrices 
X, Y, see again e.g. (Golub and VanLoan, 1996), X i  = Xmi,,(QOk +A;) 5 Xmin(Qoo +A;) + [IQOk -QOOII 5 

X6 + IIQok - Q0011 and thus 

The sets S,,, and A,,, are defined in appendix C. These sets are invariant under transforn~ations of the 
form X -, (S €3 T ) X ( S  @ T)'. This means if S, T E E X n X n  are two non singular matrices, t.hen Q E S,,, 
holds if and only if ( S  18 T)Q(S  @ T)' E S,,, and the same statement holds for matrices A E A,,,. 

P Suppose we have given two matrices A, I' E Rnx K and let U = (A1 @ rl , .  . . , AK @ I'K) E RnZxK where 

Ak, Fk denote the k-th column of A, I' respectively. It  is trivial to  see that Q = UU' E S,,, n S$,K 
holds. The next lemma states that for K 5 n also the reverse statement holds, given some regularity 
conditions: 

Lemma B.4 Let Q E S,,, n S$,K be given. If K < n an,d if th,ere exist non singular m,atrices S, T E 

RnXn such that the first K rows and  column,^ of Q = (S @ T)Q(S @ T)' form a positive definite K X K 
matrix, then there exist two matrices A,I' E EXnxK such th,at Q has a factorization as Q = UU', where 

U = (Al @ rl , .  . . , AK @ r K )  E EXn2 and where Ak: I 'k  den.ote the k-th column of A, I' respectively. 

Proof. By Q 2 0 and rk Q = K there exists a factorizat,ion of Q as Q = 0 0 1 ,  U E IRn2 X K .  The matrix 
0 is partitioned a s  

U = (U;,. . . ,U;)' 

where Ui = (oil ,  0i2)' with oil E LRKx K and oi2 E R(n-K)x K. 

First, note that following the above assumptions there exists a transformation U 4 U = ( S  @ T)U such 

that Ull = I and U12 = 0 holds. The block symmetry conditions imply UiUi = U3Ul. For i = 1 these 

P relations give Uj2 = 0 and Ujl = Oil for all j. Furthermore we have Uil = UjlUil for all i, j. From 

(Harville, 1997, Theorem 21.13.1.) we know that in this specific case there exists an orthogonal matrix 
0 E R K x K  such that O1Dil0 = Di, with Di = diag(&, . . . , l i K )  diagonal, holds for all i = 2 , .  . . ,n. 

Hence, 

where for j = 1, .  . . , K, L j  = (1, dz j7 . .  . , dnj)' and G j  = ej ,  the j th  unit vector of dimension n. Therefore, 

has the desired structure. 
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Lemma B.5 Consider the linear matrix equation 

where for given A4 E Rnxn,  n 2 2, we seek for antisymmetric solutions D E A,. The zero matrix D = 0 
is  i n  any case a solution and i t  i s  the only solution for a generic set of M matrices; i.e. the set of matrices 

M E Rnxn,  which allow for a non zero solution D # 0 i s  a'set  of Lebesque measure zero. 

The same statement holds true for the matrix equation 

Proof. First, consider equation (B.l). To prove the claim we reverse the role of A4 and D,  i.e. we 

assume that an antisymmetric matrix D E A, is given and we seek for the set of matrices M E Rnxn 
that satisfy (B.l). Since D is antisymmetric, it follows that D has an orthonormal eigenvector basis 

and that all eigenvalues of D are imaginary. The real block Schur decomposition (see e.g. (Golub and 

VanLoan, 1996)) of D therefore has the form 

d l E  . . .  0 0 

O'DO = [ : . 
.. .  d k E  0 

. . . 

where 2k is the rank of D,  f &=idi are the eigenvalues of D and 

If we partition M = O'MO as 

i ..- 

O'MO = 
Mkl . . .  Mkk A2k(k+l) 

M(k+l)l . . . M(k+l)k A 2 ( k + l ) ( k + l )  1 
we see that M is a solution of the homogeneous equation (B.l)  if and only if 

Mii=mi12 for 1 < i < k  
M.. 23- - -&EM!-E d, 32 for 1 5 j < i 5 k 

M(k+l)j = 0 for l < j 5 k 

where mi, 1 < i < k and Mji, j < i and M ( ~ + ~ ) ( ~ + ~ )  may be chosen arbitrarily. 

Now, let Mk denote the set of all M matrices which are solutions corresponding to an arbitrary rank 2k 
antisymmetric matrix D. By the above reasoning it follows that Mk may be represented as the image 
of a differentiable mapping, where the arguments are 0 E On, di # 0,  mi, Mij E It2x2 for 1 I i < j I k, 

M ~ ( ~ + ~ )  E It2x(n-2k) for 1 5 i 5 k and M(k+l)(k+l) E R ( ~ - ~ ~ ) ~ ( ~ - ~ ~ ) .  Here On denotes the set of all 
orthogonal matrices 0 E RnXn, 0'0 = I,, which is a differentiable manifold of dimension n(n - 1)/2. 
Since only the (n  - 2k)-dimensional eigenspace of D corresponding to  its (n  - 2k) zero eigenvalues is 
uniquely defined, we may use this additional freedom to choose M ( ~ + ~ ) ( ~ + ~ )  as an upper triangular matrix 
without losing any M matrix in M k .  Thus, the domain of definition of this mapping is a differentiable 
manifold of dimension 



Therefore M k  is a set of Lebesque measure zero. Now the result follows by taking the union over all sets 
M k ,  1 1 2 k  L n. 

For the second claim note that  (B.2) is linear in M and that M = -012  is in any case a solution. Thus 

the solutions are of the form M = -012 f MO, where MO is a solution of (B.l). Therefore we may use 
the same reasoning as above to  prove the assertion. 

The above lemma shows that generically D = 0 is the only solution of the equations (B.2). However, as 
is shown in the proof there exist matrices M that allow for non zero solutions. Typically the number of 
solutions is finite which implies that there exists an open neighborhood of D  = 0 such that there are no 

other solut.ions contained in this neighborhood. Yet, there exist also matrices Ad with infinitely many 
solutions and where in particular there exist solutions in any neighborhood of D = 0. 



APPENDIX B. PROOFS 



Appendix C 

Basic Definitions and Frequently 
Used Not at ions 

p 
C.1 Concepts of convergence of sequences of random variables 

Let in the following XQ be a (real) scalar random variable and ( x , ) , ~ ~  a sequence of (real) scalar random 

variables defined on the probability space (R, A, P). 

1. Convergence in probability (plim): 

plim X, = xo, if for all E E R, E > 0, lirn,,, P((x, - xol > E) = 0. 
R-, 

2. The limit in mean square (1.i.m): 

1.i.m X, = XQ, if lirn,,, E(x, - X Q ) ~  = 0. 
n-00 

3. Almost sure convergence (a.s.): 

lim,,, X, = XQ a.s., if lirn,,, P(w E S1 I xn(w) - xo(w)) = 1. 

4. Convergence in distribution: 
d 

X, --+ xo, if for any point X E R of continuity of the distribution function F,,(x) of xo it holds 
n-+m 

that lirn,,, F,"? (X) = F,,, (X). 

Consider also the following laws concerning these concepts of convergence: 

1.i.m X, = XQ + plim X, = XQ, i.e. convergence in mean square implies convergence in probability. 
n-03 n-W 

lim,,, X, = XQ a.s. + plim X, = XQ, i.e. almost sure convergence implies convergence in proba- 
,-+cc 

bility. 

d 
plim X, = xo + X, + xo, i.e. convergence in probability implies convergence in distribution. 
n-W n-M 

For proofs of the above statements see e.g. (Davidson, 1994) or (Amemiya, 1985). 

C.2 Matrices 

The symbols I,, O,,, denote the n X n identity matrix and the m X n zero matrix. If the respective 
size is clear from the context the indices may be omitted. 
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Positive semidefinite (p.s.d.) and positive definite (p.d.) matrices: A square matrix A of dimension 

n, is said to be positive semidefinite, if for all X E Rn xlAx > 0 holds. 
Positive definite (p.d) matrices: A square matrix A of dimension n,  is said to  be positive definite, 
if for all X E R", X # 0, x'Ax > 0 holds. 

Given two matrices A and B of equal size, we say that A > B, if the difference A - B is positive 
semidefinite, i.e. A - B > 0. 

The transposed, inverse and transposed inverse (if they exist) of a matrix A are denoted as A', A-' 

and APT, respectively. 
For a positive semidefinite (p.s.d.) matrix, H > 0 say, a (symmetric) square root is denoted as 

H1l2, i.e. H = ~ l / ~ ( H l / ~ ) ' .  

vec operator: The vec operator takes the columns of a matrix and st.acks them column for column 
in a vector. Given, for instance, an n X n-dimensional matrix A, vec(A) is the n2-dimensional vector 

vec(A) = (al l ,  a21, . . . , an1 , a12,. . . , an,)'. 

Commutation matrix K,,,: K,,, is an nzn X mn dimensional ma.trix defined such that for any l 
m X n dimensional matrix A it holds that 

vec(A1) = K,,,vec(A) 

or equivalentely 
vec(A) = Kn,,vec(A1). 

Note that K,,, = K;,L. 

mat,,, operator: For m X n-dimensional matrices, A, the mat,,, operator is the inverse operator 

to vec, i.e. mat,,,(vec(A)) = A. In case of m = n ,  the subscripts are omitted. 

vech operator: For symmetric matrices A E Rnxn,  A = A', the vech operator stacks the diagonal 

and lower diagonal entries, i.e. vech(A) = (al l ,  sal, . . . , a,l, a22, . . . , a,,)' E R"("+ ')l2. The index 
function 

gives the position where the (k, 1)-th element of A is st,ored into. 

Duplication matrix G,: G, is the unique n2 X n (n  + 1)/2 matrix such that G,vech(M) = vec(M) 
holds for all symmetric n X n matrices M ,  and G: = (GLG,)-lGL is a left inverse of G,, see also 

(Harville, 1997, section 16.4) 

math operator: For symmetric matrices, A = A', t.he math operator is the inverse operator to  vech, 
i.e. math(vech(A)) = A. 

operator: This operator stacks the elements below the diagonal of a matrix, i.e. for a square 
matrix A E Rnxn,  -(A) = (anl, a31,. . . , ,a,l, a32,. . . , an,(,-l))'. 

diag operator: The diagonal elements of a matrix are obtained with the diag operator, i.e. diag(A) = 

(al l , .  . . , a,,)'. With a slight abuse of notation we use diag also to  construct diagonal matrices, i.e. 
diag(x) = diag(x1,. . . , xk) E IRkxk is a diagonal matrix with elements xi on its diagonal. 

The Kronecker product: For two matrices A and B of dimension m X n and p X q respectively, the 
Kronecker product, (A @ B),  is of dimension mp X nq and defined as 
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where ai j  is the (ij)-element of matrix A. 

Let us just state some basic rules: 

( A g B ) '  = (A1@B'),  
(A 8 B)-' = (A-' 8 B-'), 

and for matrices A, B,  C, D with suitable dimensions: 

The Hadamard product: For two matrices A and B of dimension m X n the Hadamard product, 
(A O B),  is of dimension m X n and defined as (A O B)ij  = aijbij, i.e. the ij-th element of (A o B )  
is given by the product of the ij-th element of A and the ij-th element B.  

Eigenvalues of a symmetric matrix: Following the fundametal theorem of algebra the eigenvalues of 

a symmetric matrix are all real. Given a symmetric matrix A, one can always find an orthonormal 

matrix 0 ,  i.e. 00' = 0'0 = I, and some diagonal matrix A such that A = OAO' holds, see 
e.g. (Harville, 1997, Theorem 21.5.7). Let the minimum and maximum eigenvalue of a symmetric 

matrix A = A' be denoted as X,i,(A) and X,,,(A) respectively. 

The trace: The trace of a square matrix A of dimension n is defined to be the sum of the n 

diagonal elements of A, i.e. tr(A) = Erzl aii. Note that due to  the fact that tr(AB) = tr(BA) for 
two matrices with suitable dimensions, the trace of a symmetric matrix is equal to  the sum of its 
eigenvalues. 

The Frobenius norm: The Frobenius norm of a matrix A is defined as 

Hence, the Robenius norm of a symmetric matrix A of dimension n is given by, IIAIIF = (C A:)', 
where Xi, i = 1 , .  . . , n, are the eigenvalues of A. 

The following sections introduce some symbols and acronyms that are in particular important for 

the second part of the thesis: 

Symmetric matrices: Let S, C RmXm denote the set of all symmetric m x  m matrices. The set S& = 

{Q E Sm, I Q 2 0) is the set of all positive semidefinite, symmetric matrices and s:,~ c S& denotes 

the set of positive semidefinite, symmetric matrices of rank K. Note that = s::~ U.. .US: K 

and K = S& = S$ where .) denotes the closure of the respective set in lRmxm. 

Antisymmetric matrices: A square matrix A of dimension n is said to  be antisymmetric or skew 
symmetric, if A = -A1 holds. Note that  by definition the diagonal elements of an antisymmetric 
matrix have to  be zero. 
Let Am c RmXm denote the set of antisymmetric matrices. 

The Q matrices: We will often encounter square matrices Q, of size n2 X n2, which will be partitioned 
into n X n square sub-blocks Qij E Rnxn,  i.e. 

Q =  (C.2) 

Qnl . . .  Qnn 

The elements of Q are indexed by qij,kl, where qij,kl denotes the (k, l)-th entry of the (i, j)-th sub- 
block Qij. 
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Let S,,, be the set of all such block-matrices Q that are symmetric and whose sub-blocks are 
symmetric too; i.e. S,,, = {Q E S,Z ] Qij = Qlj for all 1 I . i ,  j 5 n}. 
In addition, let A,,, = {A = A' l Aij = -Aij for all 1 5 i ,  j 5 n}; be the set of all symmetric 
block-matrices, whose sub-blocks are all antisymmetric. 

Let Eij = uiu> - u j u ~ ,  i > j ,  where ui = (0, . . . ,0,1,0, . . . ,0)' are the canonical unit vectors of R". 
Then it is immediate that A,,, is spanned by the matrices (Eij 8 Ekl)  i.e. 

To simplify notation let A I , .  . . ,A,, n = (n(n  - 1 ) / 2 ) ~ ,  denote the matrices (Eij 8 Ekl)  for i > j 
and k > 1.  Note that Q = Q' is an element of S,,, if and only if tr(QA) = 0 for all A E A,,,. 
Furthermore for A = A', A E A,,, holds if and only if (v 8 e)'A(v 8 e) = 0 holds for all v, e E Rn. 
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