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Kurzfassung 

Messwerte kontinuierlicher physikalischer GroBen sind a priori unscharf und 
konnen mittels des Konzepts der unscharfen Zahlen und unscharfen Vektoren 
modelliert werden. 
Im Sinne einer quantitativen Verarbeitung solcher Daten ist es insbesondere 
notwendig, das klassische Konzept relativer Haufigkeiten fur reelle Stich- 
proben auf sogenannte unscharfe relative Haufigkeiten fiir unscharfe Stich- 
proben zu erweitern. Die unscharfe relative Haufigkeit einer Menge ist selbst 
eine unscharfe Zahl. Ausgehend von der Interpretation von Wahrscheinlichkei- 
ten als Grenzwerte relativer Haufigkeiten ist es daher unumganglich, auch 
sogenannte unscharfe Wahrscheinlichkeitsverteilungen zu betrachten, fiir die 
die Wahrscheinlichkeit eines Ereignisses selbst eine unscharfe Zahl ist. 

Nach einer grundlegenden Abhandlung uber die wichtigsten algebraischen 
und topologischen Eigenschaften der Familie der unscharfen Zahlen und der 
Familie der d-dimensionalen unscharfen Vektoren ist daher der GroGteil der 
vorliegende Arbeit der Untersuchung zweier unterschiedlicher naturlicher Zu- 
gange zu unscharfen Wahrscheinlichkeitsverteilungen gewidmet: 
Jenem uber sogenannte unscharfe Wahrscheinlichkeitsdichten und einem spe- 
ziellen Integrationsprozess ahnlich dem Aumann-Integral einerseits, und je- 
nem uber die Verteilung unscharfer Zufallsvektoren andererseits. Es wird 
dabei insbesondere versucht, den hohen Grad an Gemeinsamkeit der durch 
die beiden Zugange induzierten unscharfen Wahrscheinlichkeitsverteilungen 
herauszustreichen. 
Daruberhinaus wird ein Starkes Gesetz der GroBen Zahlen fur unscharfe rela- 
tive Haufigkeiten und unscharfe Wahrscheinlichkeitsverteilungen induziert 
von unscharfen Zufallsvektoren bezuglich verschiedener Metriken bewiesen 
und, in Verallgemeinerung reellwertiger stochastischer Prozesse, sogenannte 
unscharfe stochastische Prozesse definiert, und grundlegende Eigenschaften 
untersucht . 



Abstract 

The unavoidable imprecision of measurements of continuous physical quanti- 
ties can be modelled by using the concept of fuzzy numbers and fuzzy vectors. 
Concerning a quantitative usage of such data it is necessary to extend the 
classical concept of relative frequencies for real data to so-called fuzzy relative 
frequencies for fuzzy data. Thereby the fuzzy relative frequency of a set, given 
a fuzzy sample, is a fuzzy number. Regarding probabilities as limits of re- 
lative frequencies it is consequently mandatory to  consider so-called fuzzy 
probability distributions, for which the 'probability' of an event is a fuzzy 
number. 

The present dissertation therefore starts with a chapter about basic alge- 
braic and topological properties of the family of all fuzzy numbers and the 
family of all d-dimensional fuzzy vectors and then mainly concentrates on 
two different natural approaches to fuzzy probability distributions: 
The approach based on so-called fuzzy probability densities and a certain 
integration process similar to the Aumann-Integral on the one hand, and the 
approach based on the distribution of a d-dimensional fuzzy random vector 
on the other hand. In particular it is tried to emphasize the high degree of 
similarity of the fuzzy probability distributions induced by these two differ- 
ent approaches. 
In addition a Strong Law of Large Numbers for fuzzy relative frequencies and 
fuzzy probability distributions induced by fuzzy random vectors with respect 
to various metrics is proved and basic properties of so-called fuzzy stochastic 
processes in discrete as well as in continuous time, which are a generalization 
of classical real-valued stochastic processes, are analyzed. 
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Introduction 

As a matter of fact in many real situations uncertainty is not only present 
in form of randomness (stochastic uncertainty) but also in form of fuzzi- 
ness (imprecision), for instance due to the inexactness of measurements of 
continuous quantities. Examples, where imprecision should not be neglected, 
range from environmental data to measurements of physical quantities even 
on the macroscopic level. 
Randomness is modelled by the concept of random variables, whereas impre- 
cision is best modelled by the concept of fuzzy numbers and fuzzy vectors. 
From the probabilistic point of view the unavoidable fuzziness of measure- 
ments has amongst others the following far-reaching consequence: 
Without doubt one of the most central results of probability theory is the 
Strong Law of Large Numbers (SLLN), which in particular says, that given a 
sequence of identically distributed, pairwise independent, integrable 
random variables the probability of a measurable event (X E B)  can be re- 
garded as the limit of the relative frequencies of B induced by the sequence 
(Xn),cM (with probability one). 
Incorporating into considerations the fact that a realistic sample of a one- 
dimensional continuous quantity consists of fuzzy numbers, it is first of all 
necessary to generalize relative frequencies to the case of fuzzy samples, which 
yields so-called fuzzy relative frequencies. Furthermore keeping in mind the 
SLLN it is therefore mandatory to consider and analyze fuzzy-valued 'prob- 
abilities' as generalization of classical probabilities, which can be seen as the 
major task of this dissertation. 
The developed 'probability' concept will be called fuzzy probability distribu- 
t ion  in order to emphasize that it is a fuzzy-valued mapping and to point out 
that it is also naturally induced by the distribution of so-called fuzzy random 
variables and fuzzy random vectors. 
In short the present thesis analyzes two approaches to fuzzy probability 
distributions - that based on so-called fuzzy probability densities and a certain 
integration process on the one hand, and that based on fuzzy random vari- 
ables and fuzzy random vectors on the other hand. Furthermore it under- 
lines the high degree of similarity of the two (at first sight) very different 
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approaches. 
In fact the thesis is divided into six chapters: 
Chapter 1 can be seen as preparation for the following chapters. It starts 
with the definitions of fuzzy numbers and fuzzy vectors and provides results 
about the family K,d of all non-empty compact convex sets in Rd concern- 
ing the Hausdorff metric h, support functions, and the L,-metrics induced 
by support functions. After defining basic operations like sum and scalar 
multiplication for fuzzy numbers and fuzzy vectors, the results on K,d are 
generalized to the families 3: and 3: of a11 fuzzy numbers and d-dimensional 
fuzzy vectors respectively. The main properties of the corresponding support 
functions are presented and metrics on subclasses of F: are analyzed. 
These metrics are treated in detail (and modified proofs are presented) since 
in literature a complete survey is hard to find and since the results are 
interesting in itself. 
Chapter 2 begins with a motivation to consider fuzzy-valued 'probabilities', 
the definition of fuzzy relative frequencies, and the most important proper- 
ties of fuzzy relative frequencies regarded as fuzzy-valued set functions. 
Before concentrating on general fuzzy probability distributions induced by 
fuzzy probability densities on arbitrary measure spaces (R, A, p )  so-called 
discrete fuzzy probabilities, going back to J. Buckley [6] ,  are treated briefly 
since they are a special case of the notion developed in Chapter 2. 
Based on a useful compactness argument the main properties of fuzzy pro- 
bability distributions P* induced by fuzzy probability densities f* like mono- 
tonicity, sub- and superadditivity and the behaviour under building comple- 
ments are analyzed. Furthermore the approach is illustrated by a detailed 
example and some figures. The chapter is concluded by the proposal of a 
general definition of a fuzzy probability distribution. 
The main ideas presented in Chapter 2 are continued in Chapter 3 to 
generalize the notions of expectation and k-th moment to the case of fuzzy 
probability distributions induced by fuzzy probability densities. Again using 
a compactness result both the expectation and the k t h  moment are easily 
seen to be fuzzy numbers defined via their corresponding a-cuts. 
Chapter 4 deals with fuzzy random variables and fuzzy random vectors. 
Using the rich theory of random sets (compare [29]) at first it is proved that 
eleven different measurability conditions for fuzzy random variables X*, de- 
fined on a complete probability space (R, A, P), are equivalent. Analogous 
results for fuzzy random vectors are stated. After that it is shown that, 
similar to fuzzy relative frequencies, every fuzzy random vector and every 
fuzzy random variable induces a fuzzy probability distribution P* according 
to the general definition stated at the end of Chapter 2. 
The boundaries of the a-cuts of this fuzzy probability distribution P* are 
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furthermore analyzed with respect to regularity and continuity properties of 
classical probability measures. 
In Chapter 5 so-called fuzzy stochastic processes in discrete as well as in 
continuous time are motivated and considered. The supremum and infimum 
of families of fuzzy numbers are explained. Based on these definitions mea- 
surability results like the measurability of the limes superior and the limes 
inferior of a fuzzy stochastic process in discrete time and the measurability 
of the limes superior and the limes inferior of a separable fuzzy stochastic 
process in continuous time is proved. 
After defining independence for fuzzy random variables and fuzzy random 
vectors Chapter 5 is concluded by a SLLN for fuzzy probability distributions 
induced by fuzzy random vectors. This result says that given a sequence 
(X:)nEW of identically distributed, pairwise independent d-dimensional fuzzy 
random vectors for every d-dimensional Bore1 set B the relative frequencies 
hk(B, W )  converge to P*(B) with probability one (with respect to various 
metrics treated in Chapter 1). 
Finally the Appendix, Chapter 6, presents a short introduction to the theory 
of Souslin sets since some the results are needed in Chapter 4. 
Furthermore some theorems from functional analysis and measure theory, 
which are used throughout the dissertation, are stated as reference. 



Chapter 1 

Fuzzy numbers and fuzzy 
vectors 

1.1 Definitions and basic properties 

As already mentioned in the introduction the imprecision of measurements 
of continuous quantities can be modelled by the concept of fuzzy numbers 
and fuzzy vectors. A general definition of fuzzy numbers and fuzzy vectors 
and two elementary (but very useful) about the families of a-cuts of fuzzy 
numbers and fuzzy vectors are stated within this first section. 

Fuzzy numbers are a generalization of real numbers and are defined and 
represented by so-called characterizing functions (compare [g], [41]) . 

Definition 1.1 A characterizing function E,*(.) of a fuzzy number X* is a 
real function with the following properties: 

3. V a  E (0, l] the set [E,*], = {X E R : E,* (X) 2 a ) ,  the so-called a-cut ,  
is a compact interval. 

The  set of all fuzzy numbers will be denoted by F:. 

Examples for characterizing functions are classical indicator functions of 
single points (in which case the corresponding fuzzy number is called crisp) 
and every indicator function of a compact interval. 
In the same manner fuzzy vectors are defined (compare [g], [20]): 
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Definition 1.2 A vector-characterizing function L*(.) of a d-dimensional 
fuzzy vector g* is a real-valued function with the following properties: 

3. E ((),l] the set [<,*], - = {X E Rd : Jg* (X) 2 a ) ,  the so-called a-cut, 
is a compact convex set. 

The set of all d-dimensional fuzzy vectors will be denoted by .F: and the set 
of all d-dimensional non-empty, convex and compact subsets of Rd will be 
denoted by KZ. 

Remark: Since different definitions of fuzzy vectors - with for instance star- 
shaped a-cuts - are also used in literature, the notation 3: is chosen to 
emphasize compactness and convexity of the a-cuts. 
As customary fuzzy vectors * (fuzzy numbers) and their corresponding 
vector-characterizing functions J,* (characterizing functions) will be iden- 
tified and simply be denoted by F .  
Definition 1.3 Let J* E .F: be a d-dimensional fuzzy vector, then the set 
~ ~ P P ( J * ) ,  defined by 

supp(J*) := U K*], = {X E Etd : [*(X) > O), 

is called the support of the fuzzy vector J*, whereby 2 denotes the closure of 
the set A for every A C Rd . 
The set of all d-dimensional fuzzy vectors with compact support will be de- 
noted by F:,. 

The following two simple theorems describe how fuzzy vectors can be recon- 
structed via their a-cuts and how a nested family (B,),,(o,ll in K: can be 
used to define a fuzzy vector: 

Theorem 1.4 Let J* E F,d be a d-dimensional fuzzy vector, then it follows 
that 

([J*]a),,(o,ll is a nested family in K,d with [J*], > [[*lp whenever 
a 5 ,B and a , p  E (0, l], fulfilling 
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The fuzzy vector J* can be reconstructed via the a-cuts i n  the following 
way: 

i f x # [ J * l a ~ ~ E ( O , l I  
= { i a x { a  E ( 0 ,  l ]  : X E [C*],) otherwise 

Proof: It follows immediately from the definition of the a-cuts of a fuzzy 
vector that [J*] ,  > [[*]p whenever a < p, a ,  ,G' E ( 0 ,  l ]  and that [J*] ,  E K t .  
In order to prove the first assertion it is therefore sufficient to prove that 

If X E [J*] ,  for every a < p it follows directly from the definition that 
( * ( X )  2 a for all a < p. Therefore J*(x)  can't be smaller than P ,  which 
means that X E [[*]p. 
In order to prove the second assertion define a function q : Rd 4 R by 

q ( x )  := max{a E ( 0 ,  l ]  : X E [J*],) 

and define the maximum of the empty set to be zero. 
First of all notice that v ( - )  is well-defined since due to the already proved 
property (1.2) the maximum exists. 
If q ( x )  = a0 it follows that X E [J*],, and therefore ( * ( X )  > ao. 
On the other hand if J*(x) = a0 it follows that X E [J*],,, which means that 
q ( x )  2 ao. This completes the proof. 

Theorem 1.5 If (B,)oE(O,ll is a family in K! with B, > Bp if a 5 P, then 
J*,  defined by 

~f X #B .  va E (0111 } V x  E p, 
= { :up{a E ( 0 ,  l ]  : X E B,) otherwise 

is a d-dimensional fuzzy vector called convex hull of the family (Bff),E(O,l) 
with 

K*ls = B,. 
a<8 

Proof: It is obvious that r ( x )  E [0, l ]  for every X E Rd and since B1 E 
I C , ~  it follows immediately that there exists at least one xo E Rd such that 
<*(so) = 1, so the first two assertions of Definition 1.2 are clearly fulfilled. 
It remains to show that 

K*Ip  = n Ba. 
,<P 
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Suppose X E [clp and P E (0, l ] .  It follows that [ * ( X )  > P, which means that 

sup{a E (O,1 ]  : X E B,) 2 p.  

Consequently for every a with 0 < a < p it follows that X E B,. 
On the other hand if X E B, for every a < p obviously 

sup{a E (0, l] : X E B,) 2 p 

holds. Therefore <*(X) 2 ,8 and X E [[*]p. 
Since the collection (B,),,(o,ll surely has the intersection property (which 
means that every finite subcollection has non-empty intersection), it has 
non-empty intersection itself. Furthermore because arbitrary intersections of 
compact and convex subsets of Rd are again compact and convex it follows 
that 

[[*lp = n B, E a. I 
,<P 

Using so-called support functions a stronger version of Theorem 1.5 can be 
proved (compare Theorem 1.36). 

Since the a-cuts of fuzzy vectors are elements in. IC,d by definition the whole 
theory of convex bodies in Rd can be applied to fuzzy vectors and fuzzy num- 
bers. Consequently some of the most important and most useful results on 
convex and compact sets in Rd will be presented in the next section. 

1.2 Non-empty convex and compact subsets 
of Etd 

Throughout the whole thesis the system of all non-empty compact subsets 
of Rd is denoted by Kd. As already mentioned before, the system of all non- 
empty compact convex subsets of Rd is denoted by K:. 
Moreover B ( x ,  r )  will denote the closed ball with center X E Rd and radius 
r E [0, oo) with respect to the Euclidean norm 1 1  . \ l z  

Definition 1.6 For every set A 5 Etd, the convex hull conv(A) is the inter- 
section of all convex sets containing A. 

Since arbitrary intersections of convex sets are convex, the convex hull conv(A) 
of A itself is a convex set for every A c Rd. 
The following theorem is well known: 
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Theorem 1.7 (Caratheodory) For every set A c Etd the convex hull conv(A) 
is the set of all convex combinations of at most d + 1 points in A, i.e. for 
every X E conv(A) there exist points a l ,  az, . , ad+l E A and real numbers 
Y1,Y2, ' ' ' 1 Y d t l  E [O, 11 such that 

= l and t = C y i a i .  

Proof: Compare for instance (371. 

Using Theorem 1.7 it is easy to see that 

A S B C Rd implies conv(A) conv(B), 

A bounded implies conv(A) bounded and 

A compact implies conv(A) compact. 

Definition 1.8 Let A, B E ICd and A E R, then the Minlcowslci sum and the 
Minlcowslci scalar multiplication are defined as follows: 

A + B := {a + b : a E A, b E B), AA := {Xa : a E A) (1.3) 

It is easy to show that IC: and ICd are closed under these operations and that 
(Kt ,  +) and (Kd, +) are commutative semigroups. 
In fact the following relations hold for A, B, C E IC: (or ICd) and AI, A2 E R: 

X(A -t B) = AA + AB, AI(A2A) = (A1A2)A, 1A = A 

It can be proved (compare [34]) that (X:, +) can be embedded in a group 
such that the multiplication with scalars can be extended to this group in 
such a way, that the resulting system becomes a vector space. 

1.2.1 Hausdorff metric 

Definition 1.9 For A, B E ICd the Hausdorff metric bH is defined by 

bH(A, B)  = max { maxmin lla - bl12 , 
aEA b€B maxmin ~ E B  aEA lla - bl12J, (1.4) 

whereby 11 . 112 denotes the Euclidean Norm on Rd. 
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As it is well known (compare [l], [37]) that hH satisfies the properties of a 
metric the proof will be omitted here. 
In many cases the following equivalent definition of the Hausdorff metric is 
useful. 

Lemma 1.10 Let B ( 0 , l )  denote the closed ball in Rd of radius 1 and center 
0 with respect to the Euclidean n o m  and suppose that A, B E K d ,  then 

~ H ( A ,  B )  = min { X  2 0 : A c B + XB(0, 1) and B C A + XB(0, l)}. 

Proof: Because of the compactness of the sets A, B, B ( 0 , l )  all sets of the 
form B + xB(o, 1) and A + xB(o, 1) are compact for X E R:. 
If A c B + xB(o, 1) for all X > p ,  it follows that 

Interchanging A and B and using the same argument it follows that 

min {X 2 0 : A 2 B + xB(o, 1) and B C A + xB(o, l )}  

really exists. Define 

$(A, B) := min {X 2 0 : A 5 B + XB(0, l )  and B C_ A + XB(0, l ) }  

and suppose that bH (A, B )  = XI and that $(A, B )  = X2. 
Since hH(A, B )  = XI it follows that minbEB Ila - bl12 5 X1 for every a E A. 
This means that for every a E A there exists b E B such that Ila - bl12 < X1 
and consequently A G B + x ~ B ( o ,  l). 
Interchanging A and B and using completely the same argument directly 
yields B C A + x ~ B ( o ,  l ) ,  which proves that XI 2 X2.  
On the other hand since A C B + X~B(O,  l )  and B C A + x ~ B ( o ,  1) it follows 
immediately that for every a E A there exists b E B such that Ila - bl12 5 X2 
and vice versa. Therefore X2 2 X I ,  which completes the proof. I 

Lemma 1.11 Suppose (An)nEN is a monotonically decreasing sequence i n  
K d .  Then it follows that 

Proof: Since the sequence (An)nEN surely has the intersection property it 
follows that A := niEN Ai E ICd .  
Suppose now that the theorem is wrong. Then there exists E > 0 such that 
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dH(A,, A) > E infinitely often. Since obviously A c A, for all n E N it follows 
that A, g A + E ~ ( o ,  1 )  infinitely often and since the sequence (An),EN is 
monotonically decreasing it follows that 

A, g A + &(o, 1 )  for all n E N. 

Defining B, := A, \ int(A + E ~ ( o ,  l ) ) ,  where int denotes the interior of a set, 
it follows immediately that (B,),,N is a decreasing sequence in ICd. 
Using the same argument as at the beginning of the proof gives 

B : = ~ B ~ E K ~  and B C A .  
i E N  

If X E A then surely X E int(A + eB(0, l ) ) ,  and therefore X &r B. This means 
that A n B = 0, which is a contradiction to B C A. 

Theorem 1.12 (Kd, b H )  is a complete metric space. 
Furthermore if ( K n ) n E ~  is a Cauchy sequence i n  ICd then the limit K E ICd 
can be characterized in the following way: 

K := { X  E Etd : 3(xn),€M such that X ,  E K, Vn and lim X ,  = X }  
n+o3 

Proof: If 
00 CO 

A m : = U K i  and K : = n A ,  
2=m m=l 

then it follows from the Cauchy property that every A, is bounded and 
closed and therefore compact. Because of that (Am)mEM is a sequence in ICd 
that surely has the intersection property as it is decreasing. Hence applying 
Lemma 1.11 shows that 

lim bH (A,, K )  = 0. 
m+w 

The next step is to prove that 

Let E > 0 be arbitrary. 
Since lirn,,, SH(Am, K) = 0 it follows that there exists nl = nl(E) E N 
such that for every m 2 nl A, c K + ~z(0, 1)  holds. This proves that 

Ki C K + EB(o, 1 )  for every i 2 nl. 
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On the other hand since is a Cauchy sequence in ICd it follows that 
there exists n2 = n 2 ( ~ )  E N such that for all i ,  j 2 n2 

Ki c K j  +eB(0,1) and Kj  c K ~ + E B ( o , I ) .  

Since K j  + cB(0, l )  is compact it follows that 

and therefore that 

Defining no := max{nl, n2}  this shows that bH(Ki, A) 5 E for all i 2 no, 
which proves (1 5).  
It remains to show that K is the set of all limits of sequences ( x , ) , ~ ~  such 
that X ,  E K, for all n E N. Set 

K := { X  E IRd : 3 ( ~ , ) , ~ n  such that X ,  E K, 'dn and lim X ,  = X } .  
,-+CO 

Suppose X E K and (x , ) , ,~  is a sequence converging to X with X ,  E K, for 
all n E N. In order to prove that X E K it is sufficient to show that X E Am 
for every m E N since 

C U? Ki c Am it follows that X E Am for every m E N. BY m m +  ,=, 
This proves that K c K .  
On the other hand if X E K for every m E N there exists a sequence (x:) , ,~  
fulfilling 

CO 

lim X: = X and x : c : : u K i  V n E N .  
n+oo 

i=m 

(In the following d ( . ,  m )  denotes the metric induced by the Euclidean norm 
I I  - 112 on Rd.) 
If m1 = 1 there surely exists nl E N such that d(xz l ,  X )  5 for all n 2 nl. 
Furthermore there also exists j l  E N such that xjl := X: E Kjl . 
Setting m2 = jl+l there exists n2 E N such that d(xz2 ,  X )  5 $ for all n 2 n2 
and there exists j2 E N with j2 2 m2 and xj2 := X: E Kjz .  
Proceeding inductively in the same manner gives a strictly increasing se- 
quence ( j 2 ) l E N  of natural numbers and a sequences (x j l ) lEw with 

1 
d ( X  , X )  5 and X,, E K, V1 E W .  
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Obviously ( x ~ , ) ~ , ~  is a Cauchy sequence in Rd. Using the Extension Lemma 
(Lemma 1.13) this sequence can be extended to a Cauchy sequence (2j)j,N 
fulfilling Z j  E K j  V j ,  I c j ,  = xj, for all 1 E N and limj,, xj = X .  This shows 
that X E K and completes the proof.. 

The following simple Lemma was used in the proof of Theorem 1.12 and can 
be found for example in [l]. 

Lemma 1.13 (Extension Lemma) Suppose (An)nEM is a Cauchy sequence 
in ICd. Furthermore suppose that (nj)j,N is a strictly monotonically increas- 
zng sequence in N and that (xnj ) jEN is a Cauchy sequence in (Rd,  11 . 1 1 2 )  such 
that xnj E A,, for all j E N .  
Then there exists a Cauchy sequence (2n)nEn fulfilling 2, E A, for all n E N 
and Znj  = xnj for all j E N .  

Proof: As before let d ( . ,  a )  denote the metric induced by the Euclidean Norm 
1 1  112 on Rd. For n E { l ,  a ,  n l )  choose 2, E A, so that 

d ( Z n ,  xnl) = min d(x,,, a), 
a€ A, 

which is possible since A, E ICd.  
Analogous for every j E {2,3,  .) and every n E {nj + 1, . . . , nj+1) choose 
5, E A, so that 

d(2,, xnj ) = min d(xnj , a) .  
aEA, 

Let E > 0 be arbitrary. 
Then there exists N I ( € )  such that 

E 
d(xn j ,  X,,) < - for all nj ,  nk 2 Nl and 

3 

there exists N Z ( € )  such that 

E 
d (An lAm)  < - 3 for all n , m  2 N2. 

Suppose now that n, m > max{Nl, NZ) .  
Choose k and j so that m E {nj + 1, .  . . , nj+1) and n E {nk + l , .  . . , nk+1). 
Because of nj, nk 2 max{Nl, N2)  it follows immediately that 

which proves the theorem.. 

Remark: Theorem 1.12 and Lemma 1.13 especially prove that the limit in 
the Hausdoff metric is the same as the topological limit. 
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Remark: Theorem 1.12 and Lemma 1.13 in fact are valid in more general 
situations. One can start with an arbitrary metric space (X, d) and look at 
the set E ( X )  of all non-empty compact subsets of X .  The Hausdorff metric 
bH then is defined using the original metric instead of the Euclidean norm. 
It can be shown that ( E ( X ) ,  bH) inherits many important properties like 
completeness and compactness from (X, d). 
These results are for instance very important in the field of Iterated Function 
Systems, where questions on convergence of the so-called Hutchinson opera- 
tor are observed (compare for example [l], [23], [39]). 

For ICd the following result similar to the famous theorem of Heine-Bore1 
can be proved (compare 11371): 

Theorem 1.14 Every bounded and closed set in Kd i s  compact. Moreover 
(Kd, SH) i s  a separable metric space. 

Proof: It suffices to prove that every bounded sequence in (Kd, bH) has a 
convergent subsequence. 
For arbitrary A E ICd and r E R$ let 

denote the open ball with respect to the Hausdorff metric dH with center A 
and radius r .  
Suppose now that (Ki)iEn is a bounded sequence in (Kd, bH). 
Then (by definition) there exists a positive real number R E (0, m) such that 
Ki C Ba,({O), R) for all i E N. In particular there exists a closed cube W of 
edge length y such that Ki L W for all i E N. 
For each m E N the cube can be written as a union of 2dm closed subcubes 
of edge length 2-"y . 
For arbitrary A E ICd let Qm(A) denote the union of all such small cubes that 
hit A. Since for each m the number of subcubes is finite, the sequence (Ki)iEN 
must have a subsequence (K:)iEn such that Q1(K:) is identical for every i.  
Similarly there exists a subsequence (K&N of the subsequence (K:)iEn such 
that Q2(K?) is identical for every i .  
Continuing in this way, a sequence &"(K,") of unions of subcubes (of edge 
length 2-"y for given m) and for each m a sequence (K,")iEn is obtained. 
If S denotes the closed unit ball in Ikd then it follows easily from the con- 
struction that for fixed m 
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Since (K:)~,N is a subsequence of if 1 2 m it therefore follows that 

b H ( ~ j , ~ y )  5 X &  for 12 m a n d V i , j  E N. 
2" 

Hence the sequence (Km),GN, defined by Km := K,", is easily seen to  be a 
Cauchy sequence and a subsequence of the original sequence (Ki)iEN. 
This proves the first part of the theorem. 
The second part is an easy consequence of the first part: The first part proves 
that (Kd, bH) is a a-compact metric space. Since every compact metric space 
is separable (in fact even totally bounded) and countable unions of countable 
sets are countable it immediately follows that (Kd, bH) is separable. H 

Since K: is a subclass of Kd by definition compactness and other proper- 
ties of subsets of K: will follow if it can be proved that K: is a closed subset 
of ICd. This is the content of the next lemma. 

Lemma 1.15 K,d is a closed subset of Kd 

Proof: Suppose (Ki)iGn is a sequence in K,d converging to  a set K E ICd. 
If X,  y E K according to Theorem 1.12 there exist sequences (x,),,~ and 
(yn)nEn such that 

lim X, = X, lim y, = y and xn,yn E Kn Vn E N. 
n--00 n+cc 

If a E [0, l] then zi := oxi + (l - a)yi E Ki holds for all i E N. 
Since every Ki is convex by definition and lirn,,, z, = a x  + (1 - a ) y  it 
follows that a x  + (l - a ) y  E K which completes the proof. H 

Proposition 1.16 (K:, bH) is a complete, separable, a-compact metric space 
in which every bounded and closed set is compact. 

Proof: The fact that (Kt,  bH) is complete and separable is an immediate 
consequence of Lemma 1.15. Furthermore if (An)nEN is a bounded sequence 
in K: then it is also bounded in Kd. According to Theorem 1.14 there exists 
a convergent subsequence (An,)kEn with limit A E Kd. Since IC: is closed it 
follows immediately that A E K: holds, which shows both that every bounded 
closed set in (K:, bH) is compact and that (K:, bH) is a-compact. H 

The following lemma will be helpful in Section 1.5. 

Lemma 1.17 Suppose that A, B E Kd, then the following inequality holds 
for the corresponding convex hulls: 

( C O ~ V (  A), conv(B)) 5 dH (A, B) (l.G) 
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Proof: Since by assumption A and B are non-empty compact sets the cor- 
responding convex hulls conv(A), conv(B) are elements in K:. 
Set bo := bH(A, B) and suppose that X E conv(A), then according to 
Theorem 1.7 X is the convex combination of at most d+l points in A, i.e. there 
exist points a l ,  a2, . . . , ad+l E A and real numbers y l ,  7 2 ,  . , ~ d + l  E [0, l ] ,  
such that 

d+l d+ 1 

C^/, = 1 and X = C y i a i .  
i=l i=l 

It follows immediately from the definition of the Hausdorff metric that for 
every ai there exists bi E B such that [[ai  - bill2 5 b0 for all i E { l , .  . a ,  d+ l ) .  
For the point y,  defined by y = yibi it follows that y E conv(B) and 

Starting with arbitrary X E conv(B) and following the same idea finally yields 
6~ (conv(A) , conv(B)) 5 do. 

Before continuing with so-called support functions an interesting and useful 
result (Theorem 1.20) about generators of the Bore1 o-algebra B ((lid, bH)) 
in lid generated by the Hausdorff metric 6 will be proved (compare [29] for 
a more general setting). The following lemma provides the main tool for the 
proof. 

Lemma 1.18 Suppose that Oa, denotes the topology induced by the Haus- 
dor f  metric on lid and that '93 denotes the countable basis for the Euclidean 
topology on Rd consisting of all open balls B(m, r )  with m E Qd and r E Q+.  
Then the following assertions hold: 

1. For every open set G 2 Rd both sets KG := {K E lid : K C G )  and 
KG := { K  E lid : K n G # 0 )  are open i n  (lid, b), i.e. K G ,  KG E OsH 
holds. 

2. For every non-empty compact set KO E ICd and every E > 0 there exist 
Un Bi open balls B1, B2, . . , Bn E '93 such that the set ICBf7i B,, defined by 
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Proof: In order to prove the first assertion assume that G c Rd is open and 
that L E KG. Since L is compact and GC is closed it follows immediately that 

E := inf [ / X  - yl12 > 0. 
XEL, ycGC 

If K E Bs,(L, ;) then the definition of the Hausdorff metric (1.4) implies 
that for every y E K there exists X E L fulfilling llx - y1I2 < i. Consequently 
y E G holds, which shows that K c G. Therefore it follows immediately that 
L E BaH(L, 5 )  C KG, which proves that every L E KG is an inner point of 
KG. Hence KG is open in (Kd, dH). 
If G c Rd is open and L r l  G # Q), then there exists a point X E L and 
E > 0 such that B(x,E) := { Z  E IRd : llx - zllz < E) c G. For every set 
K E B6,(L, E) there exists a point y E K such that ( ( X  - y(12 < E holds, 
which implies that Q) # B(x, E) n K c G f l  K .  Consequently L is an inner 
point of KG, which completes the proof that KG is open since L E KG was 
arbitrary. 
In order to  prove the second assertion of the lemma suppose that KO E Kd 
and E > 0. Choose E' E (0, E) n Q and cover KO by finitely many open 
balls B1, B2, m ,  B, E b of radius f from the basis b that have non-empty 
intersection with KO (this is possible since KO is compact). Consider the set 

Un B It follows immediately from the first part of the proof that KB~=+~2,,~,,Bn is as 
finite non-empty intersection of open sets itself open. 

Uy=l Bi It will be proved now that KO E KB1,B2 ,.,., C - BaH (Ko, E) holds: 
ual Bi 

Suppose that K E KB1,B2 ,..., B, is arbitrary but fixed. Then for every point 
X E KO there exists an index io E {l, 2, , n )  such that X E Bio is fulfilled. 
Since K n Bio # Q) holds there exists a point y E K such that I I x  - y1I2 < E', 

which shows that m a x , ~ ~ ~  minycK ([X - y[( < E'. 
Interchanging KO and K and following the same argumentation implies that 
max, ,~  minyEKo I I x  - yll < E'. Consequently by the very definition of the 
Hausdorff metric (1.4) dH(K, KO) < E' < E follows, which completes the 
proof of the lemma.. 

Proposition 1.19 With  the notation used i n  Lemma 1.18 the family C ,  de- 
fined by 

: ~ E N ,  B1,B2, . . . ,Bn E%},  

is a countable basis for the topology Os,. 
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Proof: Since 93 is countable the set of all finite subsets of 93 itself is count- 
able, which immediately implies that the family C is countable. The fact that 
C is a basis for the topology is an obvious consequence of Lemma 1.18. 

Theorem 1.20 Denote by B((xd,  dH)) the Borel a-algebra generated by the 
Hausdorfl metric bH on Kd and define 

Then both systems G;d and 8; generate the Borel a-algebra B((xd,  JH)), i.e. 
A, (8:) = AD (G) = B ((Kd, 6 ~ ) )  holds. 

Proof: The theorem will be proved in two steps - first of all it will be shown 
that 8: and 8; generate the same a-algebra and after that it will be proved 
that this a-algebra coincides with B((Kd, 6 ~ ) ) .  
Suppose that G is an open subset of IKd. Approximate G by a sequence 
(Fn),eN of closed subsets, defined by 

Then it follows immediately that U:=, F, = G, which implies that 

Consequently 8; C A,(&:) and therefore A,(&;) C AD(&:) holds. 
On the other hand G can also be approximated by a sequence (E,),,N of 
open subsets, defined by 

1 
E, := {X E IRd : inf 1 1 ~  - yllz > --). 

y€GC 

It follows immediately that U:=, E, = G is satisfied. Furthermore since E; 
is closed for every n E N the following equality holds: 
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Consequently &;d C A,(&:) and therefore A,(&:) C A,(8",d follows. This 
completes the proof that A,(&:) = A,(&:), which in turn especially shows 
that A, (8:) = A, (8:) = A, (8: U 8:). 
The Borel o-algebra B ( ( K d ,  6)) is generated by the topology Os, by defi- 
nition. According to Proposition 1.19 this topology has a countable base C, 
which consists of sets K ~ ~ ; ~ 2 B ~ , B n  that obviously lie in A,($ U 8:). Conse- 
quently it follows immediately that Oa, C A,(&: U 8:) holds, which in turn 
implies that B ( ( K d ,  6 ~ ) )  C A,(&: U 8:) holds. 
On the other hand since both the family 8: and the family &: according to 
Lemma 1.18 consist of open sets it follows that U g) C B ( ( x d ,  6 ~ ) ) .  
Finally applying the first part of the proof yields A,(&:) = A,(&:) = 
B ( ( K d ,  d H ) ) ,  which completes the proof. U 

Not surprisingly an analogous result holds for K t  instead of Kd.  

Proposition 1.21 Denote by B((K,d,  6 8 ) )  the Borel o-algebra generated by 
the Hausdorff metric SH on K t  and define 

KG = { K  E K : :  K C G )  : G C Etd, G open} (1.9) 

KG = { K  E K: : K n G # 0) : G 2 Etd, G o p e n )  (1.10) 

Then both systems and E& generate the Borel o-algebm B((ICd, b H ) ) ,  i.e. 

Au (g&) = Au (g&) = B ((K:', J H )  ) holds. 

Proof: First of all it follows immediately from the definitions (1.9) and (1.10) 
that both equalities $, = $ n K t  and 8ic = 8; n K,d are satisfied. Further- 
more it is well known from measure theory (compare [13]) that A,(&:nKf) = 

A, (8:) f l  and A,(&: n K:) = A, (8:) n K: hold. Since (by the very defi- 
nition of Borel sets) moreover obviously B ( ( K t ,  6 ~ ) )  = B ( ( K d ,  h H ) )  n K t  is 
satisfied the proposition follows immediately from Theorem 1.20. U 

1.2.2 Support functions 

Every non-empty convex and compact set A E K t  can be described by its 
so-called support function sA  (.) , defined by 

s A ( u )  := sup ( a ,  U )  for every u E IRd, (1.11) 
aEA 
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whereby (. , a )  denotes the standard inner product on Rd. 
Since the mapping a H (a ,  U ) ,  for fixed u E IRd ,  is continuous on Rd and 
every set A E K: is compact it follows immediately that the supremum in 
(1.11) actually is a maximum, i.e. 

sA(u )  = max(a,  U )  for every u E Rd. 
aEA 

Due to the bilinearity of the inner product support functions frequently are 
only defined on the d-dimensional sphere Sd-' := {X E Rd : 1 1 .  112 = 1) .  
Moreover considering U E Sd-l the intuitive meaning of support functions 
becomes clear: By definition A is contained in the halfspace 

H - ( A ,  U )  := {X E Rd : (X, U )  I s A ( u ) )  

generated by the hyperplane 

Furthermore there exists at least one point a, E A lying on the hyperplane 
H ( A ,  U ) .  H - ( A ,  U )  and H ( A ,  U )  are referred to as supporting halfspace and 
supporting hyperplane with outer normal U to the set A respectively. 
Consequently for U E Sd-' the value sA(u )  is the signed distance of the hy- 
perplane H ( A ,  U )  with exterior normal u to the origin (compare Figure 1.1). 

Example 1.22 

The support function of an interval I = [a, b] E K: in R calculates 
to s I ( l )  = b and S{(- l )  = -a. 

The support function s~ of a d-dimensional closed ball K = B ( 0 ,  R) 
with center 0 and radius R is given by s K ( u )  = R for all U E Sd-l. 

The support function S E  of a d-dimensional ellipsoid 

is given by sE(u )  = ula: for all U E sd-' n 
Some of the most important properties of support functions of sets in K: are 
summarized in the next theorem. 
Since by definition the a-cuts [[*l, of a d-dimensional fuzzy vector [* E .F: 
are elements in K:, these properties are also fulfilled by support functions of 
fuzzy vectors, which will be demonstrated in the next section. 
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Figure 1.1: Geometric meaning of support functions 

Theorem 1.23 Suppose that K ,  L E IC,d and denote by s K ( - )  and sL( . )  the 
corresponding support functions defined according to ( l .  1 l ) ,  then the follow- 
ing assertions hold: 

1. s K ( - )  is positive homogeneous and subadditive, i.e. S K ( X U )  = X S K ( U )  
and s K ( u  + v )  < s K ( u )  + s K ( v )  for every U ,  v E Rd and X > 0 .  

2. s K ( . )  is lips chit^ continuous on Rd. 

3. If K ,  L G B ( 0 ,  R), where B ( 0 ,  R) denotes the closed ball with radius R 
and center 0 ,  then 

I S K ( U )  - S L ( ~ ) I  5 RIIu - 21112 + ~ H ( K ,  L )  max( l l~l l2 ,  11v112). (1.12) 

Proof: In order to prove the theorem let K ,  L E K:, U ,  v E Rd and X 2 0. 
Using the bilinearity of the inner product it follows that 
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sK (XU) = max(a, Xu) = X max(a, U) = AsK (U), 
a€ K a€ K 

which proves the first assertion. 
Since K ,  L E K,d are compact by definition, there exists a positive real number 
R such that K U L G B(0, R). 
On the one hand given K E K: and u E Rd there exists a0 E K such that 
sK(u) = (ao,u).  Furthermore by the definition of the Hausdorff metric bH 
there exists bo E L fulfilling llao - bol12 I bH(K, L). Consequently using the 
Cauchy Schwarz inequality it follows that 

On the other hand starting with L E K: and v E Rd using completely the 
same argument yields 

From this, inequality (1.12) follows immediately. 
For K = L inequality (1.12) reduces to (sK(u) - sK(v)I 5 Rllu - v1I2, which 
shows that sK(.) is Lipschitz continuous and completes the proof. W 

The above Theorem 1.23 provides the possibility of embedding K,d isometri- 
cally and structure-preserving in the Banach space (c(Sd-l), 11 . ( l m )  of all 
real-valued continuous functions on the d-dimensional unit sphere with the 
maximum norm 1 1  - (I,: 

Theorem 1.24 Define a mapping @ : K,d -+ C(Sd-l) by @(K) := s ~ ,  then 

@ is isometric, i.e. /[@(K) - @(L) 11, = [IsK - sLl(, = bH(K, L) for all 
K, L E K:. 

Q, preserves structure, i.e. @(K + L) = SK+L = SK + SL = @(K) + @(L) 
and @(XK) = SAK = AsK = X@(K) for all K ,  L E K: and X 2 0. 

@ preserves order, i.e. K C L sK (U) I SL(U) 'du E Sd-l. 

Proof: First of all notice that the assertion that @ preserves structure im- 
mediately follows from the fact that sK(u) = maxaEA(a, U)  and the definition 
of the Minkowski sum and Minkowski scalar multiplication. 
Furthermore the third point is an obvious consequence of Theorem 1.27, 
which says that every set K E K,d can be reconstructed from its support 
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function sK( . ) .  Consequently only the first assertion remains to be proved. 
Applying inequality (1.12) for u = v E Sd-l yields 

which immediately shows that [IsK - sLllco 5 d H ( K ,  L ) .  
On the other hand assume that [IsK - sLIIm =: 60. Then for all u E Sd-l 
both s K ( u )  5 sL(u)  + do and sL (u )  5 s K ( u )  + do hold. Since obviously 
do = S B ( ~ , ~ ~ ) ( U )  holds for every u E Sd-' this shows that 

S K ( ~ )  5 S L ( ~ )  + ~ ~ ( 0 , 6 ~ ) ( ~ )  = SL+B(O,&) ( U )  and 

5 + ' ~ ( 0 , 6 ~ ) ( ~ )  = S K + B ( ~ , ~ ~ ) ( ~ )  vu 21 Sd-'. 

Applying Theorem 1.27 these inequalities imply that K g L+B(o, 60) as well 
as L G K + B(o, d o ) ,  which, using Lemma 1.10, proves that d H ( K ,  L )  5 60. 
This completes the proof of the theorem. D 

Based on Theorem 1.24 further properties of the Hausdorff metric dH on 
IC: concerning the Minkowski operations can easily be proved: 

Proposition 1.25 For non-empty convex and compact sets K ,  L , T  E K:, 
and c E R the following assertions hold: 

S H ( K  + T ,  L + T )  = b H ( K ,  L )  (translation invariance) 

dH ( c K ,  C L )  = I cl dH ( K ,  L )  

Proof: Because of the fact that <P is isometric it follows that 

= max I S K ( U ) + S T ( U ) - S L ( U ) - S T ( U ) ~  
u€Sd-1 

= max I S K ( U )  - sL ( U )  I = dH ( K ,  L )  
u ~ S d - 1  

The second point can be proved in completely the same manner. D 

In order to continue with properties of support functions the following simple 
lemma that describes the (strong) separation of a closed convex set A and a 
point X lying outside that set by means of a separating hyperplane is helpful 
(compare [37] for more results on separation of convex sets). 

Lemma 1.26 Suppose that A C Rd is closed and convex and that X A, 
then there exists u E Sd-l and a E R such that 

In other words, there exists a hyperplane H,,, = ( 9  E Rd : (y, U )  = a) ,  such 
that A G H;, = { y  E Rd : (9 ,  U )  5 a) and X E (HL , )~ .  
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Proof: First of all it is easy to show that there is a unique point p(A, X) in 
A nearest to the point X: 

Choose r > 0 such that B ( x , r )  f l  A is non-empty and compact. Conse- 
quently the continuous function y H ( ( X  - ylI2 attains a minimum at ya 
on B(x,  r) n A. This minimizing point is unique since if there was yl E - 
B(x ,  r) n A with yl # yo fulfilling llx - yol12 = IIx - yl 1 1 2 ,  then choosing 
z := i ( Y o  + yl) E B ( x , r )  n A  would give llx - < IIx - yol12, which is a 
contradiction to the choice of yo. 
Having that define a vector u = u(A, X) E sd-' by 

and set a := (p(A, X ) ,  U). 
Suppose there exists a point W E A with W g H;, = {y E Rd : (y, U) 5 a )  
then by the first part of the proof there exists a point z in the line segment 
b(A, X) ,  W] from p(A, X) to W nearest to X. Since A is convex, it follows that 
x E A and Ilx - zl12 < IIx - p(A, X) 112, which contradicts the construction of 
p(A, X). Consequently A C H;, holds. 
Due to X A obviously (X -p(A, X) ,  X -p(A, X))  = llx -P(A, x)IIi > 0 holds, 
which is equivalent to (X, U) > (p(A, X) ,  U) = a and therefore completes the 
proof of the theorem. 

Theorem 1.27 Suppose that SA(.) is the support function of a given set 
A E K t ,  then A can be reconstructed by 

A = {a E Rd : (a, U) I s ~ ( u )  Vu E sd-l). (1.13) 

Proof: Set A = {a E Rd : (a, U) 5 sA(u) VU E Sd-l). 
Then obviously A C A follows directly from the the definition of SA(.). 
In order to prove the other inclusion assume that X A. Using Lemma 1.26 
it follows that there exist u E Sd-l and a E R such that 

This shows that sA(u) 5 a < (X, U) and therefore X $L A holds, proving that 
A G A . .  

The next theorem describes which conditions a function f : Rd -+ R has 
to fulfil1 in order to be a support function of a set K  E K t .  

Theorem 1.28 If a function f : Rd -+ R is subadditive and positive homo- 
geneous then there exists a unique set K E K t  such that f is the support 
function of K ,  i.e. f = SK. 



CHAPTER 1. FUZZY NUMBERS AND FUZZY VECTORS 24 

Proof: Obviously f is bounded on the finite set {el, -el, e2, -e2 . . . , ed, -ed), 
where {el, e2, . , ed) denotes the canonical basis of the vector space Rd. 
Consequently by using subadditivity and positive homogenity it follows that 
f is bounded on Sd-l by a constant R, which in turn implies that for every 
u E Rd \ (0) 

holds. Furthermore f (0) = 0 immediately follows from positive homogenity. 
Given arbitrary U,  v E Rd and again using subadditivity it therefore follows 
that 

f ( u ) -  f(v)  I f ( u - v )  I I f ( ~ - , v ) l  I R l l ~ - ~ l l 2  

f (v) - f (U) I f (v - U) I If (v - 41 I Rllu - '~112,  

which gives I f  (U) - f ( v)l 5 Rllu - v1I2, and proves that f is Lipschitz 
continuous on Rd. Define a set K by 

K := {a E : (a, U) I f (v) Vu E sd-l} 

Then it follows immediately' that K is as intersection of closed halfspaces 
itself closed and that K is bounded because f is bounded on Sd-l. Since the 
convexity of K is a trivial consequence of the linearity of the inner product 
it follows that K is convex and compact. 
Furthermore obviously sK(u) I f (U) holds for every u E Sd-l and therefore 
for every u E Rd by positive homogenity. 
It remains to  prove that K # 0 and that f (U) I SK(U)  for all u E Sd-l. 
Define the so-called epigraph rt G Rd+' of the function f by 

r+ := {(v,t) E X R :  f (v)  I t).  

It follows immediately that l?+ is a closed convex cone, i.e. it is closed, convex 
and for every x E I" and X 2 0 Xz E I'+ holds. Since for every u E Rd 
(U, f (U)) is a boundary point of l?+ Theorem 1.3.2. and Theorem 1.3.9 in [37] 
show that there exists (y, v) E Rd X R with (y, v) # 0 E Rdtl determining 
a (supporting) hyperplane H = {(x, t) E Rd X R : ((2, t ) ,  (y, v))  = 0) going 
through (U, f (U)) and the origin 0 and fulfilling 

Since = 0 implies (y, v) I 0 for all v E Rd, giving y = 0 and contradicting 
the assumption (y, v) # 0 ,  it follows that # 0. 
Furthermore if > 0 then for every v E Rd 
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would have to hold for every t 2 f (v). This shows that q < 0. 
Set jj := 2 then (1.14) can be written as 

1171 

r+ g { ( ~ , t )  E X R :  (X,$)  5 t). 

For every v E Rd ( V ,  f (v)) lies in I"- by definition, so (v, 9) 5 f (v) holds for 
every v E JRd which proves that jj E K # Q). 
Finally using sK(u) 2 (6, U) = f (U) completes the proof of the theorem since 
U E Rd was arbitrary. H 

With the aid of Theorem 1.28 it can be shown that pointwise convergence of a 
sequence ( s ~ ~ ) ~ ~ ~  of support functions on Sd-l implies uniform convergence 
to a support function SK on Sd-l. 

Theorem 1.29 Suppose that (Kn),cN is a sequence in K: such that the cor- 
responding support functions ( s ~ , ) ~ ~ ~  converge pointwise on Sd-l. 
Then there exists a unique set K E K: such that SK, converges to s~ 
uniformly on Sd-l. 

Proof: Set S, := s ~ , ,  for every n E N. Since sn converges pointwise on 
s d - l  it follows from positive homogenity that it converges on whole Rd. 

Furthermore because of the obvious fact that the limit function s inherits 
positive homogenity and subbadditivity according to Theorem 1.28 S(.) is 
the support function of a unique set K E Kt ,  i.e. s = SK. 
For every U E Sd-l set ,(U) := sup{s,(u) : n E N), then it follows from 
pointwise convergence that a(u)  < m for every U E Sd-l. 
Again by considering the finite set E = {el, -el, e2, -e2 . . . , ed, -ed), where 
{el, e2, - , ed) denotes the canonical basis of the vector space IKd, it follows 
that R = max{a(u) : U E E) < oo. Hence for L := f i ~  both 

Kn 2 B(0, L) and K C_ B(0, L) 

hold, which according to inequality (1.12) implies that S, sl, sz, . . . are Lip- 
schitz continuous with common Lipschitz constant L and therefore are a 
equicontinuous family. 
Having that the proof is easily completed by using the compactness of Sd-l 
in the following way: 
For arbitrary E > 0 there exists an &-net N = {xl, . . , xk) C Sd-l for the 
sphere Sd-l. Since JV is finite the convergence of ( s , ) , ~ ~  on N is uniform 
and there exists an index no = no(€) E N such that 
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Given arbitrary u E Sd-' there exists v, E N such that 1/21 - v, 1 1 2  5 &, 
which finally implies that 

This proves uniform convergence since U E Sd-l was arbitrary. H 

The required pointwise convergence condition can even be alleviated to almost 
everywhere convergence on Sd-l with respect to the normalized Lebesgue 
(surface) measure d on the unit sphere Sd-l: 

Theorem 1.30 Suppose that is a sequence in K t  such that the 
corresponding support functions converge 6-almost everywhere on 
Sd-l. Then there exists a unique set K E K,d such that S K ~  converges to s~ 
uniformly on Sd-l. 

Proof: Again set sn(u) := sK,(u) for every n E N and every u E Sd-l. 
If sn(u) converges for 6-almost every u E Sd-l, then it follows that a(u )  := 

sup{sn(u) : n E N) is finite for d-almost every u E Sd-l. 
Since every relative open set V G Sd-' has positive mass 6 ( V )  > 0 it follows 
that every measurable set A C Sd-' with 6 ( A )  = 1 is dense in Sd-l. Hence 
a(u )  < m on a dense subset A of Sd-l, which shows that M defined by 

is bounded. Since M is as intersection of closed sets itself closed this implies 
that M is compact. Consequently there exists a constant L E R+ such that 
M is contained in the closed ball B(0, L). Therefore 

holds for every n E N ,  which according to (1.12) implies that all functions 
S K ~ ,  S K ~ ,  . . . are Lipschitz continuous with common Lipschitz constant L. 
Suppose now that v E Sd-' and let E > 0 be arbitrary but fixed, then there 
exists u E A G Sd-' such that llu -v1I2 < & and an integer no = no(€,  U )  E N 
such that 

E I s , ( u )  -sm(u)I < - Vn,m 2 no. 
3 

Consequently 

holds, which proves that (s,) , ,~ converges pointwise everywhere on Sd-l 
since v E Sd-l was arbitrary. Applying Theorem 1.29 completes the proof. 
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1.2.3 P-metrics induced by support functions 

The one-to-one correspondence of non-empty, convex and compact sets K E IC; 
and their support functions SK as described before makes it possible to define 
metrics pp on K;, p E [l, m), via the LP-norms of the corresponding support 
functions on Sd-' with respect to the normalized Lebesgue measure 8: 

According to Theorem 1.23 for every set K E IC: the corresponding support 
function SK is an element in the Banach space (C(Sd-l), I /  . / l c o ) ,  which en- 
sures that the integral in (1.15) exists for every p E [l, m). 
By using the well known properties of the p-norm 1 1  . 11, it is easy to see 
that pp(., .) is non-negative, commutative and fulfills the triangle inequality. 
Furthermore if pp(K, L) = 0 then it follows immediately that sK(u) = sL(u) 
8-almost everywhere, which, using continuity, implies that sK(u) = sL(u) 
holds for every u E Sd-l. Therefore K = L holds, which completes the proof 
that pp is a metric on IC; for every p E [l, CO). 

Analyzing the interrelation of the metric pp and the Hausdorff metric SH 
Theorem 1.24 (point one) immediately shows that 

holds for every p E [l, m )  and K ,  L E K;. 

Concerning an estimation in the other direction only the case d = 1 is 
obvious: If K = [a, b] and L = [c, d] are compact intervals then it follows that 
pp(K, L) = (ild - bIP + ; \C - a/p)l/P. Since JH(K, L) = max{ld - bl, \ c  - a\} 

(1 
this implies that SH(K, L) 5 2pp(K, L) for every p E [l, CO), which together 
with (1.16) proves that pp and bH are equivalent metrics for d = 1. 

In 1984 Vitale [43] proved amongst other things the following useful inequa- 
lity for d 2 2, p E [l, m )  and K, L E K:: 

Thereby 0 < D = max{lla - bllz : a,  b E K U L} =: diam(K U L) is the 
diameter of K U L and B(- ,  .) denotes the beta-function. (In the trivial case 
of diam(K U L) = 0 obviously SH(K, L) = pp(K, L) = 0 holds.) 
This inequality is the main tool for proving the following theorem (compare 
Vitale [43]) : 
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Theorem 1.31 For every p E [ l ,  m) the metric pp defined according to 
(1.15) induces the same topology on as the Hausdorfl metric bH. 
Moreover for every p E [ l ,  m) (K:, p,) is a complete, separable metric space 
i n  which every closed, bounded subset is compact. 

Proof: For the case d = 1 it is an immediate consequence of the equivalence 
of the metrics bH and pp that bH(Kn, K )  -+ 0 for n + m holds exactly if 
pp(Kn, K )  -+ 0 for n -t m holds. 
If d 2 2 then (1.16) shows that bH(Kn, K )  + 0 for n -+ oo implies that 
pp(Kn, K )  t 0 for n + m. 
In order to prove the opposite implication assume that pp(Kn, K )  + 0 for 
n --t m. Since it follows directly from the definition of the Hausdorff metric 
bH that for every K ,  L E K: 

B(p+13d-1)] ' lp  inequality (1.17) applied for K,, K 

shows that 

m If diam(K) = 0 then (1.18) reduces to v ~ H ( K , ,  K )  5 ~p(Kn,  K ) ,  
proving that b~ (K,, K )  + 0 since C(d, P )  # 0. 

m If diam(K) > 0 then diam(K) + %H(&, K )  2 diam(K) > 0 for all 
n E N. Hence pp(Kn, K )  -+ 0 implies S H ( K ~ ,  K )  -+ 0 for n -+ m. 

Altogether it follows that 

pp(Kn,K) -+ 0 bH(Kn,K)  --+ 0 for n + m. 

Consequently for every d 2 1 a set C c K: is closed with respect to bH if 
and only if it is closed with respect to p,, which proves that the metrics pp 
and bH induce the same topology. This completes the proof of the first part 
of the theorem. 

For the case d = 1 obviously a set C C K: is bounded with respect to bH ex- 
actly if it is bounded with respect to p, since the metrics are equivalent. 
Suppose now that d 2 2 and that C C K,d is bounded with respect to 
the metric pp. Then there exists a set M E K: and R > 0 such that 
C G Bpp ( M ,  R ) ,  where &p ( M ,  R )  denotes the closed ball with center M 
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and radius R with respect to the metric p,. By using the triangle inequa- 
lity one may assume without loss of generality that M = {m} E K:, which 
implies that diam(M) = 0. If A E C then applying inequality (1.18) for 
K = {m) and Kn = A yields 

Since C(d, p) # 0 it follows that bH ({m), A) 5 m, 2R which shows that A is 
bounded with respect to the metric bH too. 
Consequently by (1.16) for arbitrary d > l a set C C IC: is bounded with 
respect to bH if and only if it is bounded with respect to p,. Hence the first 
part of the proof implies that a set C C is closed and bounded with respect 
to bH if and only if it is closed and bounded with respect to p,. Moreover 
the first part of the proof shows that a set C C K: is compact with respect 
to bH exactly if it is compact with respect to p,. 
Having that simply applying Theorem 1.14 shows that every closed, bounded 
set C in IC: is compact with respect to p,. 
Especially for every n E N the closed ball K 0 ( 0 ,  n)  is compact, which shows 
that (K:, pp) is a a-compact metric space and therefore separable. 
~ e c a i s e  of  the fact that for every Cauchy sequence the closed set 
L := {K1, Kz,  K3, .  . .) (closure with respect to p,) is bounded, it follows 
that L is compact and therefore that there exists a convergent subsequence 

and a set K E IC: such that pp(Kn,, K )  -+ 0 for j -+ W. 

By the Cauchy property it follows immediately that pp(Kn, K )  -+ 0 holds 
for n + m, which finally shows that (K:, pp) is a complete metric space. H 

1.3 Operations on F: 
As fuzzy numbers and fuzzy vectors can be seen as a generalization of real 
numbers and real vectors it is natural to  try to define operations such as 
the sum of two fuzzy vectors or the scalar multiplication of a real number 
with a fuzzy vector so that they are natural extensions of the corresponding 
operations for real numbers and real vectors. 
If for instance J* E F: and c E R then it seems natural to define the fuzzy 
number v* = J* + c so that q*(x) = <*(X - C). 
Suppose now that T : IRd - Rdl is an arbitrary function and that J* E Ft. 
Define a function J$ : Rdl - R for X E Rd' as follows: 

if T-'({X)) = 0 
B(x) = { :up{t*(y) : y E T-'({X))) otherwise. 

} a x  t IR~ '  (1.19) 
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This construction is called Zadeh's extension principle. 
In general J$ need not be a fuzzy vector, but if the function T is continuous 
there is the following simple result: 

Lemma 1.32 Suppose T : Rd - Rdl is a continuous function and J* E F:, 
Then the function J+ defined according to (1.19) has the following properties: 

1. [<$l, = {X E Rdl : <$(X) > a) E ICd1 for every a E (0, l] 

3. T([E*],) = [&]a for every a E (0, I] 

4. <$(X) E [0, l] for every X E Rdl 

Proof: Suppose that a E (0, l] and that X E [[+l,. Choose no E N sufficiently 
large so that l / n  < a holds for every n 2 no. It follows immediately from 
(1.19) that for every n 2 no there exists y, E fulfilling T(y,) = X. 

The compactness of the (a - l/n)-cuts [J*],-l/n for every n 2 no implies the 
existence of a convergent subsequence ( Y , , ) ~ , ~  with limit y. Using Theorem 
1.4 it follows that y E [E*],, which, using continuity of T, yields X E ~ ( [ t * ] , ) .  
On the other hand if X E ~([t*],) then there exists y E [J*], such that 
J*(y) 2 a: > 0 and T(y) = X holds. This shows that X E [c+], and completes 
the proof of the third assertion of the theorem. 
Because of the fact that continuity preserves compactness the compactness 
of [J$], is an immediate consequence of the third assertion. 
The other two assertions directly follow from the definition. 

If in addition the function T is linear (and therefore continuous) it follows im- 
mediately that the convexity of the a-cuts is preserved as well since linearity 
preserves convexity. 
Hence under the requirement that T : Rd ---+ Rdl is linear it follows that J$ 
is a vector-characterizing function of a d'-dimensional fuzzy vector, therefore 
J+ E .F:' holds. 

This can be used in order to define a scalar multiplication of a fuzzy vector 
J* E .F: with a real number X E R in the following way: 
Setting T : IRd - Rd, T(x) = Xx and applying Zadeh's extension principle 

According to the above remarks it follows that XJ* E .F: 
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Two fuzzy vectors J*,q* E 7: can be combined to a 2d-dimensional fuzzy 
vector O* in various ways, the probably most important method is the so- 
called Minimum combination rule: 

O*(x, y) := min{J*(x), q*(y)} for all X,  y E Rd 

It is easy to see that O* E FZd and that [O*], = [J*], X h*]a for all a E (0, l]. 

Having this the sum F @ q* of two fuzzy vectors [*,v* E 3: can be de- 
fined applying Zadeh's extension principle to the function T : R2d - Rd, 
defined by 

T(x, y) = X + y. 

Using the above notation this gives: 

(c* @ q*) (2) = 8; (z) = sup{O*(x, y) : X, y E Rd and X + y = z) 

= suP{min{J*(x), v*(y)) : X ,  y E Rd and X + y = x) 
= max{ min{J*(x), q*(y)} : X,  y E Rd and X + y = z) 

Since T(x,  y) = X + y is linear it follows immediately that F @ q* E F: 

This definition of the sum of two fuzzy vectors J*, q* E F: is closely related 
to the Minkowski sum on IC,d (compare for example [g]): 

Lemma 1.33 If J*, q* E 3: then the a-cut of the sum [*@v* is the Minlcowski 
sum of the a-cuts of J* and v*, i.e. 

[J* @ v*], = [J*Ia + for all a E (0, l]. 

Proof: The assertion is a direct consequence of the fact that [O$], = T([O*],) 
with T(x, y) = X + y and O*(x, y) = min{F(x), q*(y)).. 

The difference J* 8 q* of two fuzzy vectors J*, q* E F: can be defined com- 
pletely in the same manner, namely applying Zadeh7s extension principle to 
the function T : --+ Rd defined by 

or, equivalently, as [* 8 r]* := J* $ (-Q*). 
Analogous to Lemma 1.33 this difference fulfills 

In order to compare two fuzzy numbers J*, q* E F: the following definitions 
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are useful (and will be used throughout the thesis): 
Starting from the semiordering 5 on the compact subintervals of R, defined 
by 

[Q, bl] 5 [m, h] :* I a2 and I b2, 

a semiordering 5 can be defined on .F: in the following way: 

Analogous an inclusion can be defined on .F: by 

r* 2 v* :* [(*]a 2 [v*], va E ( 0 ,  11. 

1.4 Support functions for .F: 

Throughout this and the next section fuzzy vectors will be denoted by capi- 
tal letters A* instead of greek letters C* in order to emphasize that the main 
ideas come from the theory of compact and convex sets and to point out 
the similarities of support functions of fuzzy vectors and support functions 
of non-empty compact convex sets. 

According to Definition 1.2 for every a E ( 0 ,  l] the a-cut [F], of every 
d-dimensional fuzzy vector (* E F: is an element of K:. Since every set 
K E K,d is uniquely characterized by its support function s~ it is natural 
to extend the concept of support functions to fuzzy vectors in the following 
way: 
Suppose that A* E .F$ then the support function SA*(. ,  -) for A* is defined by 

s A * ( u , a )  := s [~*] , (u )  = max ( a , u ) ,  
.€[A*], 

for every u E Rd and a E (0 ,  l ] .  
The following analogy to Theorem 1.23 holds for'support functions of fuzzy 
vectors: 

Theorem 1.34 Suppose that A* E .F: is a d-dimensional fuzzy vector and 
denote by SA* the corresponding support function defined according to (1.22), 
then the following assertions hold: 

1. For fixed a E ( 0 ,  l] SA*(., a )  is positive homogeneous and subadditive. 

2. For fixed a E ( 0 ,  l] SA* ( a ,  a) is Lipschitz continuous. 

3. Forfixed u E Rd sA*(u,  .) is monotonically decreasing and left-continuous 
on ( 0 ,  l ] .  
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Proof: Since SA* (U, a) = s[~*],(u) holds by definition, point one and two are 
immediate consequences of Theorem 1.23. 
Furthermore because of the fact that [A*], monotonically decreases as a 
increases, it is obvious that SA* (U,  -) is monotonically decreasing in a for fixed 
U E Rd. In order to prove left-continuity fix u E Rd and assume that (a,),,N 

is a sequence in (0, l] that increases monotonically to the limit a E (0, l ] .  
Since the sequence (SA* (U, an))nEN is monotonically decreasing and bounded 
below by SA* (U, a), it follows that (SA* (U, a,)) is convergent and that 

lim SA* (U, a,) 2 SA* (U, a ) .  
n+W 

Moreover for every n there exists a, E [A*],, fulfilling SA* (U, a,) = (a,, U). 
Since a, E [A*],, E K: for every n it follows that there exists a convergent 
subsequence (an,)nEN converging to a point a. Since this point obviously 
fulfills 

W W 

it follows that lirn,,, sA*(u, a,) = limj4W(ani, U) = (a, U) I sA*(u, a), 
which completes the proof of the theorem. W 

Furthermore it is easy to check whether a given function f : Rd X (0, l] + R 
is support function of a d-dimensional fuzzy vector A* E 3:: 

Theorem 1.35 If a function f : Rd X (0, l] + R is 

1. subadditive and positive homogeneous in u E Rd for fixed a E (0, l] and 

2. monotonically decreasing and left-continuous in a E (0, l] for fixed 
u E Rd, 

then there exists a unique fuzzy vector A* such that f is the support function 
of A*, i.e. f = SA*. 

Proof: Since for every fixed a E (0, l] the function f (., a) is subadditive and 
positive homogeneous by assumption, applying Theorem 1.28 shows that 
[A*],, defined by 

[A*], := {a E IRd : (a, U) < f (U, a) Vu E sd-'}, 

is a non-empty, convex compact set with support function S[A*], (.) = f (. , a ) .  
Furthermore it follows immediately from the second requirement that the 
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family ([A*],),,(O,ll is a nested family, monotonically decreasing for a in- 
creasing. consequently the only thing left to prove is that for every ,B E (0, l] 

n [A*]. = [A*]@ 

is fulfilled: 
Since [A*], 3 [A*]p for every a < ,B obviously r),,p[A*], > [A*]p follows. 
In order to prove the opposite inclusion suppose that a E [A*], for every 
a < p. Then it follows that ( a ,  U )  5 f ( U ,  a) for every U E Sd-l and 
every a < p. Finally left-continuity of f with respect to a implies that 
( a ,  U )  5 f (U, P) holds for every U E Sd-l, which shows that a E [A*]p and 
therefore completes the proof of the theorem. B 

Using the properties of support functions for fuzzy vectors a stronger version 
of Theorem 1.5 will be proved now. This theorem especially states not only 
that every nested monotonically decreasing family (K,),,(o,ll in IC,d induces 
a fuzzy vector C* E .F: (in fact the convex hull) but also that for X-almost 
every a E (0, l] the equality [C*], = K, holds (compare [20]). 

Theorem 1.36 Suppose that A C (0, l] is a measurable set with X(A) = 1 
and that (K,),,* is a nested monotonically decreasing family of sets i n  K;. 
For every a E (0, l] define a set C, by 

Then the family (Ca)aE(O,l] is a family of a-cuts of a fuzzy vector C* E 
and [C*], = C, = K, holds for X-almost every a E (0, l]. 

Proof: First of all it follows immediately from the definition of C, that 
C, E K: holds for every a E (0, l] and that C, > Cp whenever a 5 P. 
Furthermore an easy calculation shows that for every P E (0, l] 

Consequently according to Theorem 1.5 the family (Ca)ffE(O,l] is a family of 
a-cuts of a unique fuzzy vector C* E F:, which proves the first part of the 
assertion in the theorem. 
In order to  prove the second part notice that the construction of C, implies 
that for every ,O E A and a E (0, p) n A the inclusion K, > Cp > Kp holds. 
Define a set D, by 

D,:={:: i f A E A  otherwise } V a E ( O , l ] ,  
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then it follows immediately that (D,),E(o,ll is a nested family of sets in K:, 
that decreases monotonically in a .  
Moreover for every v E Sd-' n Qd define a function g, : (0, l] + R by 

for every cu E (0, l], whereby som ( S )  denotes the support function of D, E K:. 
Since obviously g,(.) is a monotonically decreasing function on (0, l] the set 
TV C_ (0, l] of all discontinuities of g,(-) is at most countable (compare [16]). 
Because of the fact that Sd-l n Qd is countable it follows that the set T, 
defined by 

is as countable union of (at most) countable sets itself countable. Hence T is 
measurable and X(T) = 0. This shows that the set A defined by ;l := A \ T 
is measurable and has full measure, i.e. x(A) = 1, which in turn implies that 
A is dense in (0, l ] .  
Let a E and v E Sd-l n Qd be arbitrary but fixed, then there exists a 
monotonically increasing sequence (an)nEN in (0, a )  n A that converges to a .  
Because of K,,, > C, > K, for all n E N it follows that 

holds for every n E N. Since by construction lim,,, g,(cu,) = gv(a) holds 
this implies that sc ,  (v) = s ~ ,  (v), which in turn shows that s c ,  (v) = s ~ ,  (v) 
holds for all v E Sd-l nQd since v was arbitrary. Using the fact that Sd-lnQd 
is dense in Sd-l and the (Lipschitz-) continuity of support functions it there- 
fore follows that C, = K, is fulfilled. The fact that a E A was arbitrary 
completes the proof. 

Remark: Note that in case of A = (0, l] the fuzzy vector C* E 3: is exactly 
the convex hull as described in Theorem 1.5. Consequently starting from a 
nested monotonically decreasing family (K,),€* of sets in K: and building 
the convex hull C* E F: leaves X-almost every a-cut unchanged. 

In the following section it will be shown how the LP-metrics mentioned in 
Section 1.2.3 can be extended to the case of fuzzy vectors. In doing so the 
following measurability result is needed: 

Lemma 1.37 Suppose that A* E F: is  a d-dimensional fuzzy vector with 
corresponding support function SA* (., .), defined according t o  (l .22), and de- 
note by B(Sd-l) and B((0, l]) the Bore1 sets o n  Sd-l and (0, l] respectively. 
T h e n  the support function SA*(. ,  a )  is  measurable with respect t o  the product 
a-algebra Z?(Sd-l) @ B((0, l ] ) .  
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Proof: It is well known that the family E = {(-m, t )  : t E R} generates the 
Bore1 sets B(R) on R. Consequently it suffices to prove that 

SA: ((-m, t ) )  E B(sd-l)  CZI B( (0 ,  l ] )  

holds for every t E R. It follows immediately from point three in Theorem 
1.34 that the following equality is fulfilled: 

S;.' ((-m, t ) )  = U ( { U  E sd-' : s(A+], ( U )  < t )  X [a, l ] )  (1.23) 
ff€(o,llnQ 

Point two of Theorem 1.34 implies that for every fixed a E (0 ,  l ]  the set 
{U E S"' : s [~*] , (u )  < t )  is an open (relative open) subset of Sd-' and 
therefore Borel-measurable. Consequently (1.23) shows that SA.' ((-m, t ) )  is 
a countable union of measurable rectangles in B(sd- l )  8 B((0, l ] )  and there- 
fore measurable, which completes the proof of the lemma. 

A further measurability result will be helpful: 

Lemma 1.38 For eve y pair A*, B* E .F: the function h : (0 ,  l ]  -+ [0,  m),  
defined by h(a) := 6 8  ([A*],, [B*],), is left-continuous in a .  

Proof: Suppose that is a monotonically increasing sequence in (0 ,  l ]  
that converges to a E (0, l ] .  By using Theorem 1.4 and Lemma 1.11 it follows 
that lim,+, 6 8  ([A*],, , [A*],) = 0 and lim,,, h ([B*],, , [B*],) = 0. 
Applying the triangle inequality shows that 

and 

' H  7 [B*],,) 5 ' H  ([A*],, 1 + 6 ~  ([A*],, [B*],) ([B*],, [B*],,). 

Rearranging and combining these inequalities yields 

16H ([A*],, [B*],) -68 ([A*],, 1 [B*],,) 1 < 68  ([A*],, [A*],,) +&H ([B*],, [B*],,) 

which implies that 

and therefore completes the proof of the lemma. W 

Denote by M (Sd-' X (0 ,  l ] ,  R) the set of all Borel-measurable functions from 
Sd-l X (0 ,  l ]  to R. Similar to the embedding @ treated in Theorem 1.24 accor- 
ding to Lemma 1.37 a mapping !P : .F: -+ M (Sd-' X (0 ,  l ] ,  R) can be defined 
as described in the next theorem. 
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Theorem 1.39 The mapping P : F: + M(Sd-l X (0, l ] , ~ ) ,  defined by 
P(A*) := S A * ( - ,  .) for every A* E F:, has the following properties: 

P preserves Minlcowslci structure, i.e. P(A* $ B*) = P(A*) + Q(B*) 
and *(AA*) = XQ(A*) for all A*, B* E F: and X 2 0. 

P preserves order, i.e. A* E B* SA* ( U ,  a )  5 SB* ( U ,  a )  for all ( U ,  a )  E 
Sd-l X (0 ,  l ]  (notation according to (1.21)). 

P is injective. 

Proof: Given A*, B* E F: using Theorem 1.24 it follows that 

Q(A* @ B*) ( U ,  a )  = ~ A * @ B *  (21, a )  = s[A*@B*], ( U )  = s[A*], ( U )  + s[B*], ( U )  

= S A * ( U , Q )  + S B * ( U , Q )  

= P(A*)(u,a)+P(B*)(u,a) V(u,a) E sd-' X (0,ll. 

In completely the same manner it can be shown that 

holds for all ( U ,  a )  E Sd-l X (0 ,  l ] .  
The second assertion can be proved via the following chain of equivalences 
(again using Theorem 1.24) : 

A* c B* U [A*], C [B*], Va E (0, l ]  

* s[A*], ( U )  5 s[B*],  ( U )  V(u, 0 )  E sd-l X ( O , 1 ]  

sA*(u, a )  5 sB* ( U ,  a )  V ( U ,  Q )  E sd-l X (0 ,  l ]  

Finally if P(A*) = *(B*) holds for two fuzzy vectors A*, B* E F:, then 
by definition s [ ~ * ] ,  ( U )  = s [ ~ * ] ,  ( U )  is satisfied for every a E (0 ,  I ]  and every 
U E Sd-l, which implies that [A*], = [B*], for all a E (0 ,  l ] .  Hence A* = B* 
follows, which completes the proof. 

1.5 Metrics on subclasses of F: 
Starting from either the Hausdorff metric aH or the P-metrics p, induced 
by support functions on I C , ~  various metrics can be defined on subsets of 3;. 
First of all the set F:,, defined by 

F, ,  := {A* E F: : supp(A*) is compact}, (1.24) 
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and the following three different types of metric~ on F:, are considered (com- 
pare [g] and [20]): 

b&,,(A*, B*) := sup JH ([A*],, [B*],) (1.25) 
f f ~ ( O , l ]  

b&,p(A* B*) := ( H *  (1.26) 

&(A*, B*) : = IsA*(u, a)  - SB*(U, a)IPd6(u)dX(a) )'lp (1.27) 

Thereby A*, B* E F:,, p E [ l ,  oo), X denotes the Lebesgue-measure on (0, l] 
and 8 denotes the normalized Lebesgue measure on Sd-l. 

According to Theorem 1.24 the definitions (1.25) and (1.26) can be rewritten 
as 

b;,,,(A*, B*) = sup max I slA*]. (U) - slB*]. (U) / and (1.28) 
a€(O,l] u ~ S d - l  

Throughout the rest of the thesis Lp(Sd-' X (0, l ] ,  fl @I X) denotes the set of all 
measurable real-valued functions f ,  such that l f lp is integrable on Sd-l X (0, l] 
with respect to the product measure 6 8 X. Furthermore for every function 
f E Lp(Sd-l X ( 0 , 1 ] , 8  @I X), I l f  / I p  is defined by 

It is well known that 11 . 11, is only a seminorm on Lp(Sd-l X (0, l], 6 @ X), 
nonetheless the notation 1 1  11, will be used since no confusion will arise. 
Using this notation &(A*, B*) is easily seen to be [IsA* - sg* [lp, whereby SA* 

and Sg* denote the corresponding support functions on Sd-' X (0, l], i.e. 

$(A*, B*) = I s A * ( u , ~ )  - S B * ( U , ~ ) I ~ ~ ( ~  8 X)(U,(I) 
Sd- l  X (0,1] 

whereby the last equality follows from Fubini's Theorem. 
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It is straightforward to show that 6&,,(., m ) ,  6&,p(., .) and p;(., .) are metrics: 
Since for every A* E F,, the corresponding support function SA*( . ,  .) is 
bounded on sd-' X (0, l ]  it follows that 6;1, (A*, B*) < m, 6;1,p(A*, B*) < m 
and /$(A*, B*) < m for all A*, B* E (measurability of the function 
a I-+ ~H([A*] , ,  [B*],) is guaranteed by Lemma 1.38). 
For h&,,(., .) fulfillment of the triangle inequality is an immediate conse- 
quence of the fact that hH is a metric and fulfillment of commutativity is 
obvious. Furthermore if 6;1,(A*, B*) = 0 then [A*], = [B*], holds for every 
a E (0, l ] ,  which implies that A* = B*. Consequently 6;1,,(. , .) fulfills the 
conditions of a a metric on F:,. 
Concerning ~5;1,~(., .) again commutativity is obvious and the triangle inequa- 
lity is an immediate consequence of the fact that bH is a metric and the well- 
known Minkowski inequality (compare [13]). Furthermore if 6;1,p(A*, B*) = 0 
then it follows that [A*], = [B*], holds for X-almost every a E (0 ,  l ] .  This 
implies that [A*], = [B*], for all a E (0, l ]  since every set M C (0 ,  l ]  of 
Lebesgue measure 1 is dense in (0 ,  l ] .  Consequently A* = B* holds, which 
completes the proof that 6&,p(., m )  too is a metric on F&. 
Finally, the fact that p;(., .) is commutative and fulfills the triangle inequality 
is an immediate consequence of the properties of the LP-norm. Furthermore 
if P;(A*, B*) = 0 ,  then SA* ( U ,  a )  = sB* ( U ,  a )  holds for (6 8 X)-almost every 
( U ,  a )  E sd-l X (0, l ] ,  which implies that there exists a set A C (0 ,  l ]  of 
Lebesgue measure 1, such that for every a E h S [ ~ * ] ~ ( U )  = s[B*],(u) holds 
for #-almost every u E Sd-l. Using the fact that for every set K E ~ , d  the 
corresponding support function sK( - )  is continuous on Sd-l, it follows that 
[A*], = [B*], for every a E A. Since A is a dense subset of (0, l ]  it eventually 
follows that A* = B*. 

Within the next theorems the most important properties of the three types 
of metrics on F:, are presented (compare [g] and [20]).  

Theorem 1.40 (F,,, h&,,) is a complete, non-separable metnc space. 
Furthemnore 6;1,,(-, S )  is translation-invariant and fulfills 6;1,,(cA*, c B*) = 

IcJ 6&,,(A*, B*) for all A*, B* E F:, and c E R. 

Proof: Completeness can most easily be proved using support functions: 
Suppose that is a Cauchy sequence in (F,,, 6;1,,). Then it follows 
from (1.28) and the positive homogenity of support functions for fixed a ,  
that for every ( U ,  a )  E X (0, l] the sequence (sA;(u, a))nEN is a Cauchy 
sequence in R and therefore converges to a a real number denoted by s(u, a) .  
By using the Cauchy property it follows that S( . ,  -) is the uniform limit of 
sA;(., a ) ,  i.e. 

lim sup IsA;(u,a)-s(u,a)I=O. 
n+w ( u , a ) ~ S ~ - '  X (0,1] 
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Because of the fact that every function SA;(., .) is bounded on Sd-l X (0, l] 
this implies that S(., -) is bounded on Sd-l X (0, l] too. 
As pointwise (in fact even uniform) limit of subadditive and positive homo- 
geneous functions for a E (0, l] fixed S(., a) itself is subadditive and positive 
homogeneous in u E Rd. 
Furthermore for U E Rd fixed s(u,  a) as function of a is the uniform limit of 
left-continuous functions and therefore itself left-continuous in a .  
Consequently according to Theorem 1.35 S(., -) itself is the support function 
of a unique d-dimensional fuzzy vector A* E F:, i.e. S(. , .) = SA* (. , .). 
From the fact that S(., a) is bounded on Sd-l X (0, l] it follows immediately 
that the limit A* has bounded support and consequently that A* E F:,, 
which finally proves completeness. 
The assertion that (F:,, d;,,) is not separable can easily be verified in the 
following way: 
For y E [O, l] define a d-dimensional fuzzy vector A$ E F:, via its a-cuts 

( [ A ~ l ) a E ( o , l l  by 

For every pair yl ,  h E [O, l] with 71 # h obviously 6;I,,(A$,, A&) = 2 1 
holds, which shows that there exist uncountably many fuzzy vectors in F:, 
with distance not smaller than 1. 
The remaining properties claimed are an immediate consequence of the corres- 
ponding properties of the Hausdorff metric bH stated in Proposition 1.25. 

Theorem 1.41 (F:,, 6&,p) is a non-complete, sepamble metric space. 

Proof: Non-completeness for given p can easily be demonstrated as follows: 
Define a sequence in F:, by 

otherwise 

Consequently the corresponding a-cuts are given by 
- 
B (0, for a E [ n - 2 ~ ,  l] 

[A:]., = { for a E (0, n-2P) } ~n E N, 

and supp(A*,) = B(0,  n) holds for every n E N. 
Having that it follows that for every n ,  k E N the following estimation holds: 
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This shows that (A:)nE~ is a Cauchy sequence in ( . F c ) .  Obviously 
converges with respect to b ; l ,  to the fuzzy vector A*, defined by 

1 for llxll2 I 1 
* { ( x ) ~ ~  otherwise } VX E Rd. 

Since obviously A* 6 F:, holds, non-completeness is proved. 

In order to prove separability construct a countable family Q 5. .F:, as 
follows: 
The set C of all d-dimensional compact cubes of the form xt=l[ai, bi] with 
ai < bi and ai, bi E Q is countable. Consequently the set C, of all finite unions 
of such cubes is countable too. Furthermore the set W ,  defined by 

is countable. Consequently the set Q c .F& of all fuzzy vectors L* with 
a-cuts 

[L*]a = conv ( U ~ i )  V a  E ( O , l ] ,  
{i:pi2a) 

wherein r E N, (P1, ,B2, . . , ,Br) E W and Qi E C, for all i E {l, 2 , .  . . , r ) ,  is 
itself countable too. 

It will be shown now that this family Q is dense. 
In this spirit suppose that A* E F:, and let t E (0 , l )  be arbitrary. 
Since A* E F:, has compact support there exists a rational number y E Q+ 
such that supp(A*) c [-y, yid c Rd. For every m E N this cube [-y, y]d 

can be written as union of md closed subcubes of equal edge length 2 with 
pairwise disjoint interior and vertices with rational coordinates. Choose m 
sufficiently large, so that 

2 r  E 

holds, and denote by Q1, Q2, .  . , Q, the set of all subcubes, that have non- 
empty intersection with supp(Ak). Consequently supp(A*) is approximated 
from outside by Q1, Q2, - . . , Q,, i.e. UT Z=I Qi 2 supp(A*). Define 
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and rename Q1, Q2, . , Qr SO, that 0 =: a0 < a1 5 a 2  5 . 5 a, = 1 holds. 
Given a E (0, l] define I, := {i E {l, , r) : Qi n [A*], # 01, then [A*], 
is approximated from outside by UiEIa Q;. Concerning the quality of the 
approximation with respect to the Hausdorff metric it follows that 

h ~ ( i J ~ i  , SUPP(A*)) 5 /(i)id= 2& ' 2 and 
i=l 

The next step is to prove that 

I, = {i E { l , . . . , r )  : ai 2 a). 

In fact, if Qi, n [A*], # 0, then it follows immediately that aio 2 a. 
On the other hand if ai 2 a, then the definition of ai implies that for every 
n E N sufficiently large there exists X, E Qi n [A*],-lln. Since Qi is compact 
there exists a convergent subsequence ( x , , ) ~ , ~  of (x,),,~ with limit X E Qi. 
As n,"==, [A*],-lln = [A*], holds, it follows that X E [A*], n Qi. 
Having that define for every a E (0, l] a non-empty compact and convex set 
K, by 

K, := conv ( U Q,). 
{i:ei>a) 

It is obvious that is a nested monotonically decreasing family in 
a of sets in Kt. In addition, it follows directly from the construction that 

holds for every P E (0, l], which shows that (according to Theorem 1.5) there 
exists a unique fuzzy vector K* E F:, with [K*], = K, for every a E (0, l]. 
If X E [A*], then there exists a cube Qi such that ai 2 a .  Therefore it follows 
that X E U{i:,.,,) Qi, which shows that [A*], c [K*], = K, holds for every 
a E (0, l]. ~hiA-im~lies the following inclusion for every a E (0, l] : 

[A*], L [K*], = ( U Q ~ )  = conv ( U Q ~ )  
{i: ai&) iEI, 

Consequently, using Lemma 1.17 and (1.31), this shows that 
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for all a E (0 ,  l ] ,  which in turn implies that 

As final step in the proof the irrational ai are approximated from below by 
sufficiently close rational numbers Pi: 
First choose an integer M E N so that M > 4 ( r  - 1)'lp 2y&. 
For a1 irrational choose ,Bl so, that max(0, al-(E/M)P) < ,B1 < all otherwise 
set pl = al. Continue inductively as follows: For ai+l = ai set Pi+l = ail 
for ai+l > ai and ai+l rational set = ai+l and for ai+l > ai and ai+l 
irrational choose SO that max{ai, ai+l - ( E / M ) ~ )  < Pi+l < ai+l. 
This r rational numbers ,B1 5 P2 5 . 5 P, are used to define a fuzzy vector 
L* E 32, by 

pi if K*(x) = ai 
L*(x) := 

0 otherwise } 'dx E Etd .  

Because of the fact that [K*],, [L*], 2 [-y, yId for every a E (0 ,  l ]  it follows 
immediately that dH ([K*],, [ L * ] ~ )  5 2y & for every a E (0 ,  l ] .  Hence 

r-l 

5 ( p i  i i )  

which together with (1.32) and the triangle inequality finally shows that 
C~;I,~(A*, L*) 5 E .  H 

Theorem 1.42 (F;,, p;) i s  a non-complete,  separable metr ic  space. 
Moreover for  every p E [ l ,  oo) the  metr ics  p i  and b;,, induce the  same topo- 
logy o n  F:,. 

Proof: Using completely the same sequence (A:)nEN as in the proof of 
Theorem 1.41 it follows directly from the rotation-symmetric construction 
(all a-cuts are balls) that b;l,p(A*,, A*,,,) = pg(A*,, A:,,) holds for every 
n, k E N. Consequently ( A : ) ~ , ~  is also a Cauchy sequence with respect to 
the metric p;(- ,  .) without limit in F;,, which shows that (F:,, p;) is a non- 
complete metric space. 
The fact that the metrics p; and 6 ; I ,  induce the same topology on .F$ is not 
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easy to prove for d 2 2, although at first sight inequality (1.17) by Vitale 
may seem strong enough. In their book [g] Diamond and Kloeden actually 
deduce that pi and 6$, induce the same topology on F& by simply using 
(1.17) without giving precise arguments. Fortunately using some results from 
measure theory an even stronger result by Kratschmer 1201 stated in Theo- 
rem 1.46 can be proved, which immediately yields that pi and G,, induce 
the same topology on F:,. 
Given this fact, separability of (F$, pi) immediately follows from Theorem 
1.41. 

Having in mind firstly the well-known completeness of LP-spaces in measure 
theory, secondly the non-completeness stated in Theorem 1.41 and Theorem 
1.42 and thirdly equation (1.30) it seems reasonable to extend the metric 
pi from F:, to the set .F$, of all fuzzy vectors with p-integrable support 
functions on Sd-l X (0, l] with respect to the product measure 19 8 X,  i.e. 

Thereby, as before, 1 1  SA* ( a ,  a )  11, is defined by 

1 / P  

Ils~*(.,.)I\p = (J' ~ S ~ * ( u . a ) l " d ( a  8 X)(.,a)) . 
Sd-1x (O,l] 

The following lemma shows that not only the extension of pi but also the 
extension of 6 $ ,  to 3;,6, is possible. 

Lemma 1.43 For every p E [l, oo) pi(., .) and 6;1,,(., S )  are metrics on F:, . 
Moreover pi(A*, B*) 5 I~;I,~(A*, B*) holds for arbitrary A*, B* E .F:p. 

Proof: pi(., .) is easily seen to be a metric on .Ftp: 
It follows immediately from the definition that for every pair A*, B* E F:, 
0 5 pi(A*, B*) < m holds, that the triangle inequality is fulfilled and that 
p;(., .) is commutative. If pi(A*, B*) = 0 then according to equation (1.30) 
there exists a measurable set A C (0, l] with a (A)  = 1 such that for every 
a E A sp.1. (U) = sp*la (U) holds for &almost every U E Sd--' . 
Using continuity of support functions for a fixed this implies that for every 
a E A the equality s [ ~ * ] ~ ( u )  = s [ ~ * ] ~ ( u )  is fulfilled for every u E S"-', which 
shows that [A*], = [B*], for every a E A. Since A is as set of full measure 
a dense subset of (0, l], it follows that [A*], = [B*], for every a E (0, l] and 
therefore that A* = B*, which completes the proof that pi(-,  a )  is a metric 
on F$,. 
Concerning 6&,,(., .) the first thing to prove is that 63jl,,(A*, B*) < m for 
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every pair A*, B* E Ftp: 
For d = 1 this is trivial since the metrics SH and pp are equivalent as men- 
tioned before. 
For d > 2 define the function h : ( 0 ,  l ]  + [0, m) by h(a) = bH ([A*],, [B*],) 
for every a E ( 0 ,  l ]  as in Lemma 1.38 . 
Looking back at inequality (1.18), since diam((0) )  = 0 ,  it follows that 

2 
6~ {O)) 5 - pP([A*],, { 0 ) )  and 

C ( d ,  P) 

which implies that 

h(&)  = 6~ ([A*], [B*],) I b~ ([A*],, ( 0 ) )  + 6~ ( ( 0 ) ;  
2 2 

for every a E ( 0 ,  l ] .  Having that it follows from (1.26) and the Minkowski 
inequality that 

6&,p(A*, B*) = ( h ( a ) ) ~ d A ( a ) )  lip 

Moreover looking at (1.16) it is obvious that for every pair A*, B* E F:, 

&(A*, B*) < bh,p(A*, B*) (1.34) 

holds. 
The fact that .) fulfills the triangle inequality and that .) is 
commutative follows immediately from the definition and the fact that bH 
is a metric on KZ. Finally C~;I,~(A*,  B*) = 0 according to  (1.34) implies that 
p;(A*, B*)  = 0 ,  which shows that A* = B*. This completes the proof of the 
theorem. W 

Theorem 1.44 F:, is dense in Fzp with respect to .) and with respect 
to p;(., a )  for every p E [ l ,  m). 
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Proof: Suppose that A* E F,!, is given. It  will be shown now that there 
exists a sequence (A;),,N of sets in F:, that converges to  A* with respect 
to  the metric G,,(., 0 ) .  According to (1.34) this implies that also 
converges to A* with respect to the metric p;(., .). 
For every n E N define A: E F,!, by 

A; (X) := { F ( x )  if A*(x) > k 
otherwise } V Z E R ~ ,  

which implies that 

[A*], for a E [k , l] 
: l a  = { [ A * ] ,  for a E (0, i) 

For every n E N define a function h, : (0, l] + [O, oo) by 

h, ( a )  := ( 8 ~  ([A:] a ,  [A*] a )  P 

for every a E (0, l]. It follows immediately from the construction that 
lirn,,, h,(a) = 0 for every a E (0, l]. 
Furthermore again by using (1.18) it follows that 

Since by assumption A* E F,!, it follows from Fubini's Theorem that the 
function a H (0))' is integrable over (0, l] .  
Consequently applying Lebesgue's Dominated Convergence Theorem proves 
that lirn,,, b;l,,(A;, A*) = 0. W 

It will be proved now that for every (fixed) p 2 1 the metrics p;(., .) and 

S&,p(*, .) induce the same topology on F:,. As a first step going in that di- 
rection inequality (1.34) implies that if a sequence (A:),,* in F:, converges 
to  A* E F:, with respect to b;l,,, then it particularly converges to  A* with 
respect to  p; too. 
The main tool for proving the opposite implication is a well known theo- 
rem from measure theory quoted as Theorem 6.14 in the Appendix. This 
approach goes back to Kratschmer [20], however the proofs below are shorter 
than the original ones and produce the same result. 

Lemma 1.45 Suppose that (A*,)nEN i s  a'sequence in F:, that converges to  
A* E F,, with respect t o  the metric p;(., m ) .  Then  i t  converges to A* with 
respect t o  the metric S;,,(., .) too. 
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Proof: Suppose that is a sequence in F& that converges to A* E 
with respect to the metric p;(.;.). 
For every n E N define a function h, : (0, l] -+ [0, m )  by 

hn (a) := b~ ([A:] ,, [A*] ,) V a  E (0, l ] .  

Again using the same estimation as in the proof of Lemma 1.43 with Al*, 
instead of B* and the triangle inequality, it follows that 

For every a E (0, l] and every n E N set 

Using Fubini's Theorem it follows that g,(.) has as sum of two measurable 
functions with finite p-mean over (0, l] itself finite pmean, i.e. 

Since by assumption lirn,,, p;(A*, A:) = 0 holds, again by using Fubini's 
Theorem this implies that the sequence g,(.) converges in p-mean to (the 
measurable function) g (a) = 2pP ([A*], , (0)). Consequently by Theorem 6.14 
in the Appendix it follows immediately that the sequence (g$)nEn is uniformly 
integrable, which shows that the sequence is uniformly integrable 
since 

2 
hn(a) 5 ~(d,p) gn(a) 

holds for every a E (0, l] and every n E N. 
In order to be able to apply Theorem 6.14 it is necessary to prove that 
h,(.) converges to 0 in measure. For that purpose suppose that is 
a subsequence of Then surely limk,, $(A*,,, A*) = 0 holds, which 
implies that there exists a further subsequence (nkj)jEN of (nk)kEM, such that 

lim SA* (U, a )  = SA* (U, a )  
J - + W  * k j  

for (6  8 X)-almost every (U, a )  E Sd-l X (0, l ] .  Consequently there exists 
a measurable set A c (0, l] with X(A) = 1 such that for every a E A 
limj+, SA;,, (U, a )  = sa* (U, a )  holds for Balmost every U E Sd-l. Apply- 

ing Theorem 1.30 this shows that limj+, h,,, ( a )  = 0 for X-almost every 
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a E (0, l]. Moreover according to Theorem 6.15 this shows that h,(.) con- 
verges to 0 in measure. 
Finally applying Theorem 6.14 this shows that 

lim (6&,,(~*, A:)) P = lim (hn (a))'dX(u) = 0, n-+W n+w 

which completes the proof. 

Theorem 1.46 For every fixed p E [l, m) the metrics p; and G,, znduce 
the same topology on F:,. 

Proof: According to Lemma 1.45 and inequality (1.34) it follows immedi- 
ately that a sequence (An)nEN in F:, converges to A* E F:, with respect to 
the metric p;(., .) if and only if it converges to A* with respect to the metric 
6k,,(., .). Consequently a set C c F:, is closed with respect to p;(-, .) if and 
only if it is closed with respect to 6h,,(., a ) .  This proves that the topologies 
induced by the metrics are the same. 

Finally the main Theorem of this section can be stated and proved (again 
compare [20]): 

Theorem 1.47 For every p E [l, m) both (F:,, and (F:,, &L,,) are com- 
plete separable metric spaces. 

Proof: Separability of (F:,, 6~, , )  is an immediate consequence of Theorem 
1.41 and Theorem 1.44. Having that separability of (F:,, p;) follows imme- 
diately from Theorem 1.46. 
Furthermore according to (1.34) and Lemma 1.45 completeness of (F:,, 
implies completeness of (e,, 6~ , , ) .  Consequently it suffices to prove that 
(F:,, p;) is a complete metric space. 
Therefore suppose that (A,),,* is a Cauchy sequence in F:, with respect 
to p;(., .). Because of equality (1.30) it follows that (s~+.)~€~ is a Cauchy 
sequence in Lp(Sd-l X (0, l], 19 @I X). Hence (compare [l]) there exists a real- 
valued function f E Lp(Sd-' X (0, l], 8 @ X) such that 

and such that there exists a subsequence (SA* )jEN with 
"3 
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for (68X)-almost every ( U ,  a) E Sd-l X (0 ,  l ] .  Using (1.36) it follows immedi- 
ately that there exists a exists a measurable set A C (0, l ]  fulfilling X(A) = 1, 
such that for every a E A 

lim SA* ( U ,  a )  = lim sIAkjl. ( U ,  0) = f (21, a )  
j-W "j J - + W  

holds for 6-almost every U E Sd-l .  Consequently Theorem 1.29 and Theorem 
1.30 together imply that for every a E A the sequence SA* ( U ,  a )  converges 

n3 

to f ( U ,  a )  uniformly in U E Sd-l and that for every a E A there exists a set 
K ,  E K t ,  such that sKa(u )  = f ( U ,  a )  holds for every U E Sd-l .  
Using (1.37) and the fact that for every A; the family ([A",l,),,(o,ll of its 
a-cuts decreases in a,  it follows immediately that for every U E sd-' and 
every a, P E A f ( U ,  a )  2 f ( U ,  P )  holds whenever a 5 P. This directly proves 
that K ,  > K p  whenever a, p E A and a 5 p. 
Therefore (Kor)aEh is a family in K t  that decreases monotonically in a ,  which 
allows to apply Theorem 1.36 to this situation. Consequently there exists a 
fuzzy vector C* E F:, such that [C*], = K ,  for X-almost every a E (0 ,  l ] ,  
which in turn shows that 

holds for 6 8 X-almost every ( U ,  a )  E Sd-l X (0 ,  l ] .  
Since f E Lp(Sd-l X (0 ,  l ] ,  6 8 X) it follows directly from (1.38) that sc* E 
Lp(Sd-I X (0 ,  l ] ,  6 8 X), which means that C* E F,!,. Moreover looking at 
(1.35) equation (1.38) implies that 

lim pi(A*,,C*) = lim IlsAk - sc*llp = 0. 
n - + m  n-+m 

This completes the proof. 



Chapter 2 

Fuzzy probability distributions 

2.1 Motivation 

As mentioned at the beginning of the previous chapter the unavoidable fuzzi- 
ness (imprecision) of measurements of one-dimensional continuous quantities 
can be modelled by the concept of fuzzy numbers. Concerning probability 
theory and statistics this fuzziness must not be neglected and has far-reaching 
consequences as will be demonstrated below. 
From the classical point of view one of the most central results of probability 
theory is the well-known Strong Law of Large Numbers (SLLN) ,  basically 
going back to Komogorov in 1930. The version stated below goes back to 
Etemadi (compare [3] and [14]): 

Theorem 2.1 ( S L L N )  Let X,  XI,  X2, . be identically distributed, paimvise 
independent, integrable random variables o n  a probability space (R, A,%'). 
T h e n  

1 
n 

lim - C xi(w) = E(X) = 
n--+m n i=l 

holds for P-almost  every W E Q. 

If (Xn)nEM fulfills the conditions of Theorem 2.1 and B E B(R) is a Bore1 
set, then obviously the sequence (Yn),,~ of (0, l)-valued random variables, 
defined by 

Y,(w) := lB 0 Xn(w) 

for every n E N and every W E R, also fulfills the conditions of Theo- 
rem 2.1. Define the relative frequency hn(B,w) of the set B with respect 
to Xl(w), . . - , Xn(w) for every n E N and every W E R by 

i E {l, 2 , .  - - , n)  : Xi(w) E B 
n 
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Then according to Theorem 2.1 for P-almost every W E R the following 
equality holds 

lim h, (B,  W)  
n+w 

= P({w E R : X(w) E B)) = P x ( ~ ) ,  (2.2) 

whereby PX denotes the distribution of the random variable X .  
In other words: For every Bore1 set B E B(R) there exists a set M E A with 
P ( M )  = l, such that the probability of the event {X E B)  is exactly the 
limit of the relative frequencies of the set B for every W E M. Particularly, 
with probability 1 probabilities of events can be approximated by relative 
frequencies of (sufficiently large) samples X I ,  . . . , X,. 

In the realistic case that the samples consist in fuzzy numbers X;, . . . , X; the 
first problem that arises is, how the concept of relative frequencies can be 
extended from the idealized case of real samples. The intuitive best approach 
is based on so-called hitting and missing sets from the theory of random sets 
(for random sets compare [27] and [29]) and works as follows: 
Suppose that B 2 R and that X;, X;, . . . ,X;*, is a fuzzy sample. As usual for 
every a E (0, l] and every i E {l,. . . , n) let [X:], denote the a-cut of the 
fuzzy number X:. 

For every a E (0, l] the lower relative frequency of level a, denoted by 
b,,,(B), and the upper relative frequency of level a,  denoted by ?&(B), 
are defined by 

- 
i E {l,. . . , n )  : [xZ],n B # 0 

n 

Thus the lower relative frequency of level a counts all i E {l, 2, . . . , n) for 
which the a-cut of X: is contained in the set B and divides by n,  whereas 
the upper relative frequency of level a counts all i E {l, 2, . . . , n) for which 
the a-cut of X: has non-empty intersection with the set B and divides by n. 

Since obviously hn,,(B) 5 &,,(B) holds for every n E N, for every a E (0, l] 

and every B E B, it follows immediately that ([~n,,(~),En,~(~)]),E~O,ll is a 
family of compact non-empty intervals (for n and B fixed) in a .  
Furthermore again for n and B fixed it follows immediately from the de- 
finition that hn,,(B) increases if a increases and that &,(B) decreases if 
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a increases. Consequently ( [ b n , a ( ~ ) ,  L , a ( ~ ) ] )  aE(O,ll  is a family of compact 
non-empty intervals for n and B fixed, that decreases if a increases, i.e. 

holds for a 5 ,G' and a, ,G' E (0, l] .  
It can be shown easily (by a small modification of Example 4.21 in Section 
4.3 below) that unfortunately in general ([/I~,,(B),~,,(B)])~~~~,~~ is not a 
family of a-cuts of a fuzzy number, but at least there exists a fuzzy number 
(in fact the convex hull), denoted by h i (B)  E F:, such that 

holds for all except (at most) finitely many a E (0, l]. This fuzzy number 
hi(B) E F: will be called the fuzzy relative frequency of the set B with respect 
to the sample xi, X;, . . . , xi .  

Figure 2.1: Fuzzy sample of size 10 

Figure 2.2: Fuzzy relative frequency h?,([l, 21) 



CHAPTER 2. FUZZY PROBABILITY DISTRIBUTIONS 5 3 

Note that if X ; ,  X ; ,  . . . , x i  is a real sample, then hi (B)  coincides with the 
indicator function of the classical relative frequency, i.e. hi (B)  = l{h,(B)), 
which shows that this notion of fuzzy relative frequency really is a generali- 
zation of the classical concept. 
For n E N fixed this induces a mapping hi : 2R -+ F: by assigning each set 
B c R its fuzzy relative frequency hi(B) .  In the sequel some main properties 
of this mapping will be observed - in doing so the following notation will be 
used for every a E (0, l] and every B E B(R): 

According to equality (2.5)  it follows immediately that for fixed n E N and 
B c R both fj ( B )  = /zn,,(B) and  fin,,(^) = h,,,(~) holds for all except 

-n,a 
at most finitely many a E (0, l]. 

Remark: Fix n E N and B 2 R. Then obviously bn,,(B) as a function of 
a is a monotonically increasing step function in a E (0, l ] .  The function 
fj ( B ) ,  also regarded as a function of a ,  is a left-continuous and monoton- -n,a 

ically increasing step function which coincides with /z,,,(B) at least outside 
the set of all discontinuities of fj ( B ) ,  which is finite. 

-n,a 
In the same manner %,,(B) as a function of a is a monotonically decreasing 
step function in a E (0, l]. The function  fin,,(^), also regarded as a function 
of a ,  is a left-continuous and monotonically decreasing step function which 
coincides with Z,,,(B) at least outside the set of all discontinuities of F,,,(B), 
which is finite too. 

The most important properties of hi(.)  as fuzzy-valued set function are sum- 
marized in the next theorem. 

Theorem 2.2 Suppose that X ; ,  X ; ,  . . . , xi is a fuzzy sample of size n and that 
B ,  C are arbitrary subsets of R. Furthermore let the fuzzy frequency hi(.)  and 
the real-valued set functions -n,a fj ( a )  and G,,,(.) be defined according to (2.5) 

and (2.6), then: 

3. fj (.) and bn,,(.) are monotonic set-functions for eve y a E (0, l], i.e. 
-n,a 

fj ( B )  5 f j (C)  and f i n S a ( ~ )  5 f i n , a ( ~ )  hold whenever B c C .  
-n,a -n,a 

4. fj ( a )  is a superadditive and fin,,(.) is a subadditive set function for 
-n,a 

every a E (0, l], i.e. if B n C = 0, then the following inequalities hold 
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for every a E (0, l] : 

5. 9 (Bc) = 1 - W,,(B) and L,,(Bc) = 1 - fj (B) hold for every -n,a -n,a 

a E (0, l ] .  

ProoE Since h*(B) is the convex hull of the family ([bn,,(B), En,,(B)]) ,,(o,ll 

for every B C R by construction, it follows immediately that if a E (0, l] 
and if (aj)j,n is a monotonically increasing sequence in (0, a )  that converges 
to a, then the following interrelations hold: 

- 
fj (B) = m b n ( )  and bn,,(B) = lim hn,,j (B) -n,a J - + W  J-+W 

(2.7) 

The main advantage of (2.7) over (2.5) concerning the proof is the fact that 
it holds for every a E (0, l] and not only X-almost everywhere. 
Consequently in order to  prove the assertions stated in the theorem firstly 
properties of the family ([&(B), ~n , , (~ ) ] ) , , ( o , , l  are observed and after that, 
by using (2.7), are transferred to hz(B). 
Since [bn,,(B),&,,(B)] G [0, l] is satisfied for every a E (0, l] it follows 
immediately that because of (2.7) [h:(B)], = [Qn,,(B), ijn,,(B)] C [O, l] holds 
for every a E (0, l], which proves the first assertion of the theorem. 
Since obviously bn,,(iR) = L,,(R) = 1 and hn,,(0) = zn,,(0) = 0 is fulfilled 
for every a E (0, l], again using (2.7) shows that fj (R) = Fn,,(IR) = 1 and 

-12.01 

I) (0) = K,,(@) = 0, which proves the second assertion of the theorem. 
-n,a 
If B C C 2 R then it follows immediately that 

{i E { l , .  . . , n) : [xi], c B) C {i E { l ,  . . , n) : [zf], C_ C) and 

{i E { l , .  . . , n) : [xi], n B # 0) c {i E { l , .  . . , n )  : [X:], n C # 0) 

hold for every a E (0, l], which in turn implies that &(B) L: bn,,(C) and 
hn,,(B) 5 %,,(C) is fulfilled for every a E (0, l] .  Applying (2.7) yet another 
time proves monotonicity of -n,a f j  (.) and G,,,(.) for every a E (0, l], which 
completes the proof of the third assertion. 
If B, C are disjoint then 

1 
h (BUG') = -#{iE {l, . . . ,  n ) :  [ x f ] , ~  B U C )  -n,a n 

1 
2 -#{i E {l , . . . ,  n)  : [xi], c B or [xf], c C} 

n 
= bn,cx(B) + bn,a(c) 
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holds for every a E ( 0 ,  l ] ,  from which again by (2.7) it follows immediately 
that fj ( B u C )  2 f j  ( B )  + fj ( C )  is fulfilled for every a E (0 ,  l ] ,  proving 

- n , ~  -n,a -n,a 

that fj (.) is a superadditive set function for every a E (0, l ] .  
-n,a 

Furthermore because of 

again (2.7) implies that L,,(B U C )  5 $,,,(B) + F , , ( c )  holds for every 
a E ( 0 ,  l ] ,  which proves that fj (.) is a subadditive set function for every 

-n,a 
a E ( 0 ,  l ] .  Consequently it remains to prove the last assertion. Using 

{i E { I . .  . , n )  : [X:] ,  G BC} = { l ,  - .  , n)\{i E { I , .  . . , n} : [X:] ,  " B # 0 )  

and 

it follows that hn,,(Bc) = 1 - E ~ , , ( B )  and &,(Bc) = 1 - hn,, ( B )  hold for 
every a E ( 0 ,  l ] ,  which by using (2.7) completes the proof of the theorem. H 

Using the notations (1.20) and (1.21) Theorem 2.2 can be expressed more 
elegantly as follows: 

Theorem 2.3 Suppose that X ; ,  X ; ,  . . . , X ;  i s  a fuzzy sample of size n and that 
B ,  C are arbitrary subsets of R. Furthermore let the fuzzy relative frequency 
h*,(.) be defined according to (2.5), then: 

Having in mind both the interrelation (2.2) and the fact that hE(B) is 
a fuzzy number it is inevitable to consider fuzzy-valued 'probabilities' as 
generalizations of classical probabilities. Of course the question immediately 
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f-' 

arises, which properties a fuzzy-valued mapping P* : A + F: on a measure 
space (a, A) should fulfil1 in order to be called 'probability', however Theo- 
rem 2.3 suggests what properties a meaningful notion at least must satisfy. 
Such fuzzy-valued mappings will be called fuzzy probability distributions in 
the sequel, firstly in order to avoid confusion with so-called fuzzy measures 
treated for instance by Z. Wang and G. Klir (compare [45]), and secondly 
to indicate that they are also induced by the distribution of fuzzy random 
variables, which will be shown in Section 4.3. 
Before formulating a general definition of fuzzy probability distributions, 
which will be done in Section 2.4, another natural approach to fuzzy-valued 
mappings on a system of sets based on a completely different idea will be 
discussed. In the elementary case, which is presented in subsequent Section 
2.2, this approach goes back to Buckley's fuzzy probabilities ([6]), however 
filtering out the main idea, a much more general concept of so-called fuzzy 
probability distributions induced by fuzzy probability densities can be deve- 
loped. Remarkably this concept fulfills all the properties listed in Theorem 
2.3 in a very general setting, which is a strong argument for defining general 
fuzzy probability distributions in the way it is done in Section 2.4. 

2.2 Discrete fuzzy probability distributions 

Much of the material presented in this section can be found in Buckley [6], 
however the presentation is chosen differently in order to point out the main 
idea that will be used for the mentioned generalization in the next section. 

Consider as starting point a soccer match of two different teams M1 and 
M2. In this situation three different outcomes are possible: 
Team Ml wins (event {a)), team M2 wins (event { b ) )  or the match ends in 
a draw (event {c)). 
For none of the three outcomes it is possible to know the exact probabilities, 
therefore the probabilities are estimated (by using old results), or they are 
provided by experts. 
Because of the unavoidable uncertainties in the assessment of the probabili- 
ties, it seems to be more realistic to model these estimations by using fuzzy 
numbers, or, in the simplest case, by using intervals. Let 

a := {a, b, c), A := p, 

and suppose that 
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The assignment above can be considered to be meaningful and a generaliza- 
tion of punctual probabilities as there exist xl E p(a), x2 E p(b), x3 E p(c) 
such that 

X1 +X2 +X3 = 1. 

Based on the intervals I,, Ib, I, 'probabilities' for all subsets of R can be 
defined in the following way: 

P({a, c ) )  := {xi + ~ 3  : 21 E I a ,  1 2  E I ~ ,  ~3 E I,, XI + x2 +X8 = l )  

P({bl C)) := {x2 + ~3 : X I  E I a ,  ~2 E I b ,  2-3 E Ici XI + 22 + 23 = 1) 

P({% b, C)) := (21 + 52 + 53 : 51 E I a ,  X2 E Ib, 13 E Ic 51 + 22 + 53 = l)  

This yields: 

As in the previous chapter let 3: denote the set of all fuzzy numbers defined 
according to Definition l .  1. 

Definition 2.4 Let SZ = {al, .  - . , a,) be a finite set. 
Then a mapping p* : R + 3: is called discrete fuzzy probability density 
on R, if for every i E { l , .  . S ,  n) the fuzzy numbers p: := p*(ai) fulfill: 

b;la C [0, l] V a  E (0, l] and 

n 

W E { l , - . . , n )  : 3xi E b;ll such that x x i  = 1 
i=l 
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Similar to  the above example F ( A )  is defined on all sets A g R by 

At first sight it may be not clear if for every A G R the family ([P*(A)],),t(o,l, 
really is a family of a-cuts of a fuzzy number, however the following lemma 
can be proved. 

Lemma 2.5 Suppose R = { a l l . .  . , an )  is a finite set, A 2 R an arbitrary 
subset of R, p* : R - .F: is a discrete fuzzy probability density on R and 
[P*(A)], is defined according to (2.8), then: 

l. [P*(A)], is a compact interval for every a E (0, l] 

2. [P*(A)], is a nested monotonically decreasing family in a with 

Proof: Let KZ denote the system of all non-empty, compact and convex 
subsets of R" and define 

{ 
n 

A := X ( X , X ~ )  t R n  xi 2 0  Viand Z x i = 1 }  

S, := [ p 1 ] , ~ [ p 2 ] , ~ . . . ~ [ l ) n ] , C R n ,  V , : = S , n A ,  f o r a ~ ( O , l ] .  

Then it follows immediately from the definition that V, # 8 holds, which 
shows that D, E K:. The mapping f : R" - R,  defined by 

is linear, continuous and satisfies f (V,) = [P*(A)],. As an image of a compact 
and convex set under a continuous linear mapping, [P*(A)], is a compact 
interval, which proves the first part of the lemma. 
If p 5 a it follows that V, C Vp and consequently 

The only thing left to  show is: 
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For X E n,,p[P*(A)], it follows that for each a E (0, P) there exists y, E D, 
such that f (y,) = X. 

Especially for every sequence (a,),,~ with an /" ,6 and an E (0,P)  there 
exists a sequence (yn )nE~  S U C ~  that Yn E D,% and f (yn) = X holds. 
Because of the compactness of D,, there exists a y E Rn and a convergent 
subsequence ( ~ n k  ) kCM of (yn)nEM with 

CO 

? / n k + y E n D a L = D p  f o r k - m .  
1=1 

Using the continuity of f it follows that f (y) = X and therefore 

The other inclusion is trivial, as for every a < P it follows that Dp C D, and 
consequently 

[P*(A)]p C [P*(A)]ff.. 

Lemma 2.5 especially shows that P*(A) is a fuzzy number for every A c R. 
JP*(.) will be called discrete fuzzy probability distribution induced by the dis- 
crete fuzzy probability density p*. 

The most important properties of discrete fuzzy probability distributions 
are summarized in the following theorem, which uses the notions explained 
a t  the end of Section 1.3 (compare [6]). 

Theorem 2.6 Let R = { a l ,  . . , an )  be a finite set, P* a discrete fuzzy prob- 
ability distribution induced by a discrete fuzzy probability density p*, and 
A, B C R, then: 

1. supp(P*(A)) C [0, l] VA C R 

4. A n B = 0 + P* (A U B )  g P*(A) $ P* (B) (Subadditivity) 

5. 1 E [P* (A) @ P* (Ac)], V a  E (0, l] 

Proof: The above theorem is a special case of Theorem 2.15 and Theorem 
2.16 in the next section. 
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2.3 Fuzzy probability distributions induced 
by fuzzy probability densities 

Let (R, A, p)  be an arbitrary measure space and G : R - IC; an interval- 
valued function (also referred as correspondence) on R. 
A function g : R -+ R is called selection of G if g(t) E G(t) holds for 
p-almost every t E R. Note that if g is a selection of G and h is another 
function, such that g(t) = h(t) holds for p-almost every t E R, then h is a 
selection of G too. The set of all measurable selections of G will be denoted 
by Sel(G) . 
Furthermore the correspondence G is called integrably bounded, if there exists 
an integrable function h such that 

(y l  5 h(t) for every y  E G(t) and every t E R. 

If f*  : R - FE is a fuzzy-valued function on R, then the function F,, 
defined by 

F&) := [f*(t)],, (2.9) 

is an interval-valued function on R for each a E (0, l]. 
Moreover for every fuzzy-valued function f" : R --+ .F: the lower and upper 
a-level functions f (.) and 7,(.) are defined by 

4 

f (t) := min ( ~ , ( t ) )  and f,(t) := max ( ~ , ( t ) )  
-a (2.10) 

for every t E R and every a E (0, l]. In other words the following identity 
holds for every t E R and every a E (0, l]: 

The fuzzy valued function f * is called (uniformly) integrably bounded, if there 
exists an integrable function h such that for p-almost every t E R 

Using these notions the following general definition can be made: 

Definition 2.7 Let (R, A, p) be an arbitrary measure space. 
Then a function f* : R - .F: is called fuzzy probability density with respect 
to the measure p on (R, A), if for F, the following conditions are fulfilled: 

2. 3 f E Sel(Fl) such that SS2 f (t)dp(t) = 1 
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Definition 2.7 includes and unifies 

discrete fuzzy probability distributions induced by discrete fuzzy pro- 
bability densities (the measure in this case is the counting measure) 

classical probability densities on a measure space (R, A, p )  

m classical parametric probability densities (depending continuously on 
the parameter) with a fuzzy parameter as treated in [6] (compare Ex- 
ample 2.8). 

Remark: According to  Definition 2.7 a fuzzy probability density f*  doesn't 
have to fulfil1 any measurability requirements except the fact that there are 
some measurable selections. 

Fuzzy probability densities can appear as depicted in Figure 2.3 - Figure 
2.4 depicts the same fuzzy probability density from a different point of view 
and Figure 2.5 depicts some a-level curves for this example. 

Figure 2.3: Sketch of a fuzzy probability density 



CHAPTER 2. FUZZY PROBABILITY DISTRIBUTIONS 

Figure 2.4: Sketch from a different focus 
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Example 2.8 Consider the well-known exponential density g, with para- 
meter q, defined by g,(t) = q e-'lt for every t 2: 0 and q > 0. Obviously for 
every t E [0, m) the function ht : (0, m) + (0, m), defined by 

is a continuous (in fact even Coo-) function in q E (0, m ) .  Therefore if the 
parameter q is no real number but a fuzzy number q* E F: with support in 
(0, oo) then applying the Extension Principle (1.19) and Lemma 1.32 shows 
that f * (t) , defined by 

if h ~ l ( { ~ } )  = } vy E R, 
f * t y  { u p  q * )  : X E h ( {  otherwise 

is a fuzzy number for every t E [0, m ) .  
Consequently P(.) is a fuzzy-valued mapping on [0, m ) .  Moreover because 
of the fact that for every q E [q*Il the function g,(.) is both a measurable se- 
lection of Fl (.), and a probability density on R with respect to the Lebesgue 
measure X it follows that f*  is a fuzzy probability density on the measure 
space (E?:, B(R$), X) according to Definition 2.7. 
This example will be continued later on for two special cases of v* (compare 
Example 2.13 and Example 2.14). 

Given a fuzzy probability density f* with respect to the measure p on (R, A),  
a fuzzy probability distribution P* on A can be defined analogous to the 
discrete case on all sets A E A by: 

Using the abbreviation 

- 
Da := {f E Sel(F.) : l f (t)dp(t) = l),  (2.13) 

the above definition reduces to 

Since every function f E 5, is integrable by construction it is clear that 
ea t l ( R ,  A, p) for every a E (0, l], whereby as usual t l ( R ,  A, p )  denotes 
the set of all integrable (and hence measurable) real-valued functions on R 
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(compare for instance 121). 
In the sequel as common let L1(R, A l p )  denote the Banach space of all 
equivalence classes of functions in L1(R, A l p )  modulo equality p-almost 
everywhere (compare [2], [l31 or [35]). Although in fact every element of 
L1(R, A,  p)  is an equivalence class of measurable functions as customary 
(and since no confusion will arise) L1(0, A,  p)  will be considered as a space 
of functions. 
If f E D, and g is a measurable function such that f (t) = g(t) for p-almost 
every t E R, then obviously both g E D,, and SA f (t)dp(t) = SA g(t)dp(t) 
follows for every measurable set A E A. 
Because of that, equation (2.14) can be reformulated as follows: 

whereby 

The reason for considering D, consists in the fact that D, is a subset of 
L1(R, A, p) having a compactness property in the weak topology, that will 
be very useful in the following (note the analogy to the set D, E IC: used in 
the proof of Lemma 2.5) . 

Theorem 2.9 Let (R, A, p) be an arbitrary measure space, f* : R + F: 
a fuzzy probability density with respect to the measure p on (R, A), and f* 
integrably bounded. 
Then D, is a weakly compact subset of L1 (R, A,  p) for every a, E (0, l] .  

Proof: In order to prove this theorem two famous results from functional 
analysis, Theorem 6.11 and Theorem 6.12 in the Appendix, will be used 
(compare [12], [23] ,[36]). 
Since the fuzzy probability density f* is integrably bounded by assumption, 
there exists a function h E L1(R, A,  p) (to be precise a representative h of an 
equivalence class in L1(R, A,  p)) ,  such that 

0 5  If(t)J = f ( t )  < h ( t )  forp-almost e v e r y t E R  Vf €23,. 

If E > 0, there exists a nonnegative measurable simple function S such that 
0 5 s(t) 5 h(t) for all t E R and 
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Define M := max{s(t), t E R) < cm and set 6 = &. 
Then for arbitrary f E D, and A E A with p(A) < 6 it follows immediately 
that 

which proves point 2 of Theorem 6.11. 
In order to prove point 3 set B = supp(s) = {X E Cl  : s(x) # 0). 
Then clearly B is measurable, p(B)  < cm, and for f E D, it follows that 

S,. I f  (t)ldp(t) = lc f ( t ) d ~ ( t )  5 lc h(t)dp(t) 

Having this, according to Theorem 6.11, the family D, is weakly precompact 
in L1(R, A,  p). 
Because of the fact that D, is convex, the Theorem of Mazur (Theorem 6.12) 
shows that the weak closure of D, is equal to its strong closure. If it can be 
proved that D, is closed in the strong topology it will therefore follow that it 
is weakly closed, which together with the already proved weak precompact- 
ness proves the compactness of D, in the weak topology. 
Suppose (fn)nEN is a strongly convergent sequence in D,, with limit f E 
L1(R, A, p), then there exists a p-almost everywhere to f convergent subse- 
quence (f,,)k,n. Because of fnk(t) E F,(t) for p-almost every t E R 'dk E N 
it follows that 

f (t) E F,(t) for p-almost every t E R. 

As obviously 
r 

this shows that f E D, and proves that D, is closed in the strong topology. 
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Theorem 2.10 Let (S2, A, p)  be a n  arbitrary measure space, A E A a mea- 
surable set, f* : S2 - F: a fuzzy probability density with respect t o  the 
measure p, f* integrably bounded, and [P*(A)], defined according to  (2.14), 
then: 

1. [P*(A)], is  a compact interval for  every a E (0, l] 

2. [P*(A)], i s  a nested family monotonically decreasing in a with 

Proof: The mapping @ A ,  defined by 

is a continuous linear functional on L1(S2, A, p) and therefore also continuous 
in the weak topology. Moreover it satisfies 

@,(V,) = [P* (A)], E (0,lI 

@A preserves compactness and convexity, which proves the compactness and 
convexity of [P*(A)],. Apart from that [P*(A)], # 0 for all a E (0, l] by 
definition, which completes the proof of the first part of the theorem. 
Since V, decreases as a increases, [P*(A)], is decreasing in a too. 
It remains to show that 

Suppose X E [P(A)], for all a < P and is a strictly increasing se- 
quence of positive real numbers converging to P. 
Then for every n E N there exists a function fn E V,,, such that 

Because of f n  E V,, V n  E N and the fact that D, is weakly compact 
for every a E (0, l], it follows that there exists a function f E V,, and a 
subsequence ( fnk)kEN such that 

f,, - f weakly for k + m. 
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Since for each j almost all fn, lie in DQj it follows, using the same argument, 
that f E D,,.. 
Using 

CO n ~ ~ ~ ( t )  = F P ( ~ )  
n=l 

one sees that f ( t )  E Fp(t) almost everywhere and therefore f E ;Dp. This 
shows that X E [P*(A)lp and 

The other inclusion is obvious. 

In particular Theorem 2.10 shows that, provided the above conditions hold, 
P*(A), defined by 

is a fuzzy number (defined via its a-cuts). 

Definition 2.11 Let (R, A, p) be a n  arbitrary measure space, A E A a mea- 
surable set, f" : R ---t 32 a fuzzy probability density with respect t o  the 
measure p, and f * integrably bounded, then  the .fuzzy number P*(A) defined 
according to  (2.14) is  called probability of the event A and P* is  called fuzzy 
probability distribution o n  (R, A). 

At first sight the definition (2.14) of the fuzzy probability distribution P* 
induced by a fuzzy probability density f * may seem difficult to compute in 
practise - nonetheless in many situation the computation of the fuzzy number 
P*(A) can be reduced to the calculation of integrals of the corresponding a -  
level functions (compare [41]). In order to formulate a precise theorem the 
following abbreviations will be used for every a E (0, l] and every A E A: 

p (A) := min[P*(A)], , p,(A) := max[P*(A)], 
-a 

Theorem 2.12 Let (R, A, p) be a n  arbitrary measure space, A E A a mea- 
surable set, f* : R ---t 3; a fuzzy probability density with respect t o  the 
measure p,  and f" integrably bounded. Furthemnore suppose that the corres- 
ponding a-level functions f and f, are measurable for every a E (0, l]. 
T h e n  for every a E (0, l] p q ~ )  and pQ(A) can be calculated as follows: 

-Q 
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{ SA f a ( t ) d ~ ( t )  if SA f , ( t )dp ( t )  + S A C  & ( t ) d ~ ( t )  5 l (2.18) 
= 

1  - SAC & ( t ) d p ( t )  otherwise 

Proof: It follows immediately from Definition 2.7, that under the assump- 
tions of Theorem 2.12 both 

hold for every a E ( 0 ,  l ] .  Fix an arbitrary a E ( 0 ,  l ] .  
If SA --(y f ( t ) d p ( t )  + SAc f , ( t )dp ( t )  > 1,  then set 6  := 1  - JA&( t )dp ( t )  2 0 .  
It follows immediately that on the one hand S A C  J , ( t )dp( t )  2 6 ,  and on the 
other hand c f ( t ) d p ( t )  < 6  holds for every a E ( 0 ,  l ] .  Consequently there 

A -a 
exists a unique real number I9 E [0,  l ] ,  such that 

Define a new function g  as follows 

g ( t ) : =  { A t )  + ( l  - I 9  i f t E A  otherwise ) h t ~ n .  

Obviously g  is a measurable selection of F, and g ( t ) d p ( t )  = 1 ,  so g  E D,. 
Furthermore obviously p (A)  = JA g ( t ) d p ( t )  holds. 

If f  ( t ) d p ( t ) + ~ , ,  f,G:dp(t) < 1  is fulfilled, then set 6  := l-SAC f a ( t ) d p ( t ) .  
A -a 

This time it follows immediately that on the one hand SA f ( t ) d p ( t )  I 6 ,  and 
--Q 

on the other hand S A f , ( t ) d p ( t )  2 6  holds for every a E ( 0 ,  l ] .  Consequently 
there exists a unique real number I9 E [0,  l ]  such that 

Again define a new function g  as follows 

g ( t )  := { ) + ( l  - I 9  if otherwise E 
} yt E Q. 

Obviously g  is a measurable selection of F, and S, g ( t ) d p ( t )  = 1 ,  so g  E D,. 
Furthermore obviously &(A) = SA g ( t ) d p ( t )  holds. 
This completes the proof of the formula for the calculation of p (A )  since a 

-01 

was arbitrary. The formula for the calculation of p a ( A )  can be proved com- 
pletely in. the same manner. H 
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In the following the concrete calculation is demonstrated for the fuzzy pro- 
bability density f*  in Example 2.8 with two different cases of r)* (compare 
Figure 2.6): First of all for v* being an interval-type fuzzy number L* = lil,21 
and after that for r)* being a triangular fuzzy number r* defined by 

2x-2  i f x ~ [ l , % ]  
+ 4 if X E (i, 21 (2.19) 

otherwise 

Figure 2.6: Parameters r* and L* for the exponential density 

Example 2.13 Exponential density with fuzzy parameter r)* = 
In this case it is very easy to calculate the lower and upper a-level functions 
f and 7, of f * explicitly by elementary calculus, since according to the Ex- 
4 

tension Principle (1.19), Lemma 1.32 and Example 2.8, the following equali- 
ties hold for every t E [0, m ) :  

f,(t) = min{r)e-nt : v E [1,2]} - 
- 
f, (t) = max {v e-@ : r)  E [l, 21) 

This minimization and maximization can easily be accomplished by simply 
computing local extrema and the corresponding boundary values, and yields 
the following result: 
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- 

{ 
2 e-2t if t E [O, 1/21 

f l ( t ) =  i f t ~ ( 1 / 2 , 1 ]  V t ~ [ O , c m )  
ect if t E (1, cm) 1 

Since v* is an interval-type fuzzy number all a-cuts are identical and it suffices 
to compute the boundaries of the l-cut. The lower and upper a-level functions 

Figure 2.7: l-cut of an exponential density with fuzzy parameter v* = 111,21 

as well as classical densities g,, where v E {l ,  1.25,1.5,1.75,2), are depicted 
in Figure 2.7. Obviously the lower and upper a-level functions are continuous 
and bounded, so if one wishes for instance to calculate IP*(A) for the set 
A = [O, 21, then according to Theorem 2.12 this can be done by simply 
checking the conditions (2.17) and (2.18) for the set A, which gives 

Consequently p ([O,2]) and pl([O, 21) can be calculated as follows: 
-1 
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Altogether, this implies that for v* = 111,21 the fuzzy number P*([O, 21) is 
given by 

P*([(), 21) = 1[1-e-2,1-e-41 

In completely the same manner one can compute P*(At) for the set A' = [0,1/2]: 
First, the conditions (2.17) and (2.18) are checked, which gives 

and then p ([O, 1/21) and pl([O, 1/21) are calculated by: 
-1 

This in turn shows that for v* = the fuzzy number P*([O, 1/21) is given 
by 

P*([O, 1/21) = 1[1-e-1/2,1-e-1,. 

Both fuzzy numbers P*([O, 21) and P* ([0,1/2]) are depicted in Figure 2.8. 

Example 2.14 Exponential density with fuzzy parameter v* = T* defined 
according to (2.19): 
First of all it follows immediately that the a-cuts of T* are given by 
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Figure 2.8: P*([O, 1/21) and P*([O, 21) for the exponential density with fuzzy 
parameter q* = 1[1,2~ 

for every a E (0 ,  l ] .  
For this case too it is possible to calculate the lower and upper boundary 
functions and 7, explicitly by elementary calculus. According to the Ex- 
tension Principle (1.19), Lemma 1.32 and Example 2.8 the following equalities 
hold for every t E [0, oo) and every a E (0 ,  l ] :  

f ( t )  = min {qe-" : q E [T*],) 
---Q - 
f a  ( t )  = max { q  eVnt : 1) E [T*], ) 

For a = 1 minimization and maximization are trivial since the l-cut [ T * ] ~  of 
T* is a single point [ T * ] ~  = (3121, which immediately implies that 

For a E ( 0 , l )  again minimization and maximization can be accomplished 
by simply computing local extrema in q for fked t (the only local extremum 
is a local maximum for certain values of t )  and comparing them with the 
corresponding boundary values. This yields the following result for every 
a E ( 0 , l ) :  

( ~ + ; ) e - ~ - $  i f t  E [ ~ , & l n ( e ) ]  
f (4 = -a vt E [O,  m)  

(2  - e )  ,-2t+% 
2 if t E (&ln(%),oo) 
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(2 - ~ ) e - ~ ~ + $  2 if t E [0, A] 
1 

= 
- 
t e i f t ~  (&,&I  W E  [O,m) 

( l + ~ ) e - ~ - t  i f t  E (&-,m) l 
Obviously for every a E (0 , l )  both L(.) and fa(.) are continuous bounded 
functions. Consequently the calculation of P*([O, 21) according to Theorem 
2.12 can be done by simply checking the conditions (2.17) and (2.18) for the 
set A = [O, 21 for every a E (0 , l ) .  
Since f (t) = f ,(t) = el t  holds for every t E [O, m )  it follows immediately 

-1 
that 

Apart from that it can be verified easily by using standard mathematical 
software like Maple or Matlab (or with more effort analytically) that 

holds for very a E (0, l),  which according to Theorem 2.12 implies that 

Moreover again with standard software or analytically it can be verified that 
for every a E (0 , l )  

which in turn shows that 

Consequently the a-cuts of P*([O, 21) E F'' are given by 
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Having that the characterizing function of the fuzzy number P*([O, 21) can be 
expressed explicitly as follows (compare Figure 2.9): 

I O 
if X E (-m, 1 - e-2) 1 

In order to calculate P*([0, $1) E .F: first of all notice that because of the fact 
that f (t) = Tl(t) = f egt holds for every t E [O, m )  it follows immediately 

-1 
that 

Apart from that in this case it can be shown that 
F 

holds for very a E (0, l),  which according to Theorem 2.12 implies that 

Moreover it can be verified that for every a E ( 0 , l )  

P P 

which in turn shows that 

Consequently the a-cuts of P([O, 1/21) E .F: are given by 
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Having that the characterizing function of the fuzzy number P*([O, 1/21) can 
be expressed explicitly as follows (compare Figure 2.9): 

In Figure 2.9 P*([O, 1/21) and P*([O, 21) for the case of v* = T* are depicted 
by solid lines - furthermore for comparison the corresponding results for the 
case v* = 111,21 (Example 2.13) are depicted by dotted lines. 

Figure 2.9: P*([O, 1/21) and P*([O, 21) for the exponential density with fuzzy 
parameter v* = r* 

-1/2 -2 -4 
I-e l-&l I-e l-e 

After these examples the main properties of P* are analyzed - it will be 
shown that completely analogous to the discrete case P* has the following 
properties: 

Theorem 2.15 Let (R, A, p) be a n  arbitrary measure space, f * : R -+ F: a 
fuzzy probability density with respect t o  the measure p, f * integrably bounded, 
A, B E A measurable sets, and P* defined according to  (2.14), then  

l .  supp(P*(A))  C [0, l] V A  E A 

2. ( 0 )  = [ l l ]  = { l  P*(@) = l[0,0] = l{0) 
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3. AcB==+P*(A)dP*(B) (Monotony) 

4 .  A n B = 0 ==+ P*(A U B )  2 P*(A) @ P*(B) (Subadditiuity) 

5. 1 E [P* ( A )  @ P* (Ac)],  V a  E (0, l ]  

6. A n  B + 0 + P*(A U B)  c P*(A) @ P*(B) 9 P*(A n B )  

Proof: Point one and two are clear by definition. 
The third point immediately follows from the fact that for A C B 

Suppose now that A n B = 0 and that X E [P*(A U B)],. 
Then there exists a function f E D, such that X = h,, f (t)dp(t) and 
therefore 

Der fifth point is a direct consequence of the fourth point. 
In order to prove the last assertion of the theorem suppose that A n B # 0 
and that X E [P*(A U B)],. 
Then there exists a function f E D, such that 

= L", f( t)dp(t)  = f ( t )dp(t)  + f ( t ) d ~ ( t )  + J f ( t ) d ~ ( t )  
AnBc BnAc AnB 

= L f ( t ) ~ ( t )  + J f ( t ) d ~ ( t )  - J f ( t ) d ~ ( t )  E 
B AnB 

E [P*(A)], @ [P*(B)] 9 [P* ( A  n B)],.. 

In addition it is easy to calculate P*(AC) if P*(A) is known. 

Theorem 2.16 Let (R,  A, p )  be an arbitrary measure space, f" : R t F: a 
fuzzy probability density with respect to the measure p,  f*  integrably bounded, 
and P* defined according to (2.14). 
Then for A, B E A the following assertions hold: 

1. A c B * [P*(B \ A)], C [P* (B ) ] ,  9 [P* (A ) ] ,  V a  E (O,1] 

2. P*(Ac) = 1 9 P* (A )  
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Proof: Let A C B and X E [P*(B \ A)],, then by definition there exists 
f E D,  such that 

which proves the first part of the theorem. 
Suppose now that X E [P*(Ac)],. Then there exists a function f E D, with 

= S,. f ( t ) ~ ( t )  = f ( t ) d p ( t )  - S, f ( t ) d p ( t )  
R 

On the other hand if X E 1 8 [P*(A)],, then there exist y E [P*(A)] ,  and 
f E D ,  such that 

Remark: Note that according to Theorem 2.15 and Theorem 2.16 P*(.) especially 
fulfills all the properties of fuzzy relative frequencies h i ( . )  stated in Theorem 2.3. 

In order to  analyze properties of P* regarding countable unions of sets, the 
following common definition for a sequence (In),,N of real intervals will be 
used: 

CO 1 CO CO 

Theorem 2.17 (a-Additivity) 
Let ( R ,  A, p )  be an  arbitrary measure space, f* : R + .F: a fuzzy probability 
density with respect to the measure p ,  f" integrably bounded, and the fuzzy 
probability distribution P* defined according to (2.14). 
Furthermore suppose (An)nEN is  a pairwise disjoint sequence of measurable 
sets, then for every a E (0, l ]  it follows that 

1. [O,  l ]  n C,",,[P*(A,)], i s  a compact interval and 
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Proof: Let (An)ncN be as in the theorem. 
If X E [P ( U:=l ~ n ) ]  ,, then X E [0, l ]  and there exists a function f E D, 
such that 

whereby the second part of the theorem is proved. 
To prove the fist part, write [P*(An)] ,  =: [a,, bn] and define 

DC) 

Due to point two of the theorem it is clear that C,"==, an I 1,  I # 0. Using 

I DC) . 
X ,  5 1 : X ,  E [an,bn] 'dn E N 

the convexity of I is easy to see: 

If bn I 1 obviously I = [C:=l a,, C:==1 b,] . 

If C:==, bn > 1,  then there exists a minimal no such that C z l  bk > 1. 
Define a new sequence ( c ~ ) ~ ~ ~  by c1 = bl ,  c2 = b2, . . ., cnO = bno, cno+l = 

ano+l, Cno+2 = ano+2, ' ' ' S  

Because of 1 < C:=l cn < m and C,"==, an 5 1 there exists a real 
number X E [0,  l ]  such that 

DC) DC) 

X C a n + ( l - X ) E ~ = l .  

Therefore it follows that 

and consequently 1 E I, which means that 
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Before continuing and proposing a general notion of a fuzzy probability 
distribution the a-cut representation of P*(A), shortly mentioned before The- 
orem 2.12, will be picked up again. It will be especially helpful in order to see 
the similarity of fuzzy probability distributions induced by fuzzy probability 
densities as presented before and that of fuzzy probability distributions in- 
duced by fuzzy random variables (compare Section 4.3). 
As hitherto let (R, A, p)  be an arbitrary measure space, f" : R + .F: a fuzzy 
probability density with respect to the measure p,  f" integrably bounded, 
and the fuzzy probability distribution P* defined according to (2.14). 
Remember that the boundaries p ,pa of the a-cuts [P*(A)], are real functions 

-a 
E,, pa : A -+ R, defined by 

k ( ~ ) , p ~ ( A ) ]  := [P(A)] , ,  whereaE  (0,1] and A E  A ,  (2.22) 

or formulated explicitly 

p (A) = min [P* (A)], , p, (A) = max[P*(A)], , where a E (0, l] and A E A. 
-a 

Having this it follows immediately from the last three theorems, that the set- 
functions %,p, have (amongst others) the following properties summarized 
in the next theorem. 

Theorem 2.18 Let (R, A, p )  be an arbitrary measure space, f*  : R t .F: a 
fuzzy probability density with respect to the measure p,  f*  integrably bounded, 
P* defined according to (2.14) and %,pa defined according to (2.22). 
Then the following assertions hold: 

2. If A, B E A, A G B ,  then %(A) 5 %(B) and &(A) 5 p,(B) holds for 
all a E (0, l ] .  

3. For e v e y  a E (0, l] p is superadditive and p, is subadditive, i.e. if 
A , B  E A and A n Ba= 0, then p -a (A U B )  > p -a (A) + ZI(B) and 
p,(A U B )  I p,(A) + p, (B) holds. 

4. For every a E (0, l] p is even super-a-additive and p, is sub-a- - 
additive, i.e. if (An),En zs a sequence of pairnoise disjoint, measurable 
sets then the following inequalities hold for e v e y  a E (0, l]: 
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5. For A E A the following equalities hold: 

%(Ac) = 1 - p- (A) and P- (Ac) = 1 - &(A) 

2.4 General fuzzy probability distributions 

Looking back at the properties of fuzzy relative frequencies stated in Theorem 
2.3 and that of fuzzy probability distributions induced by integrably bounded 
fuzzy probability densities as formulated in Theorem 2.15 and Theorem 2.16, 
then the following definition of a general fuzzy probability distribution is 
suggestive: 

Definition 2.19 Suppose that A is a a-algebra in R, then a fuzzy-valued 
function JP* : A -t F: is called (general) fuzzy probability distribution on R, 
if the following four conditions are fulfilled: 

1. * ( ) = l {  P*(0)=1{0) 

2. If A, B E A ,  A c B ,  then JP*(A) 5 P*(B) holds. 

3. If A, B E A ,  A n B = 8, then P*(A U B )  g JP*(A) @ P*(B) holds. 

4. If A E A,  then P*(Ac) = 8 P * ( A )  

Again considering the a-cuts p ,p, of P* : A -t F:, defined by 
[-a l 

[ 2 a ( ~ ) ,  p, (A)] := [P* (A)]. , where a E (0, l] and A E A, (2.23) 

Definition 2.19 can be reformulated equivalently as follows: 

Definition 2.20 Suppose that A is a a-algebra i n  R, then a fuzzy-valued 
function P* : A -t F: is called (general) fuzzy probability distribution on 

R, if the a-cuts -(Y (-),%(.)l defined according to (2.23) fulfil1 the following 
four conditions: 

1. p (R) = ( R )  = l p (0) = p,(@) = 0 va E (0711 
-a -01 

2. If A, B E A ,  A C B, then %(A) 5 %(B)  and F,(A) 5 %(B)  holds for 
all a E (0, l ] .  

3. For every a E (0, l] p- is superadditive and p, is subadditive, i.e. if 
A, B E A and A n B = 0, then %(A U B)  2 pa(A) + pa(B) and 
p,(A U B )  5 p,(A) +p,(B) holds. 
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4. For every A E A and every a E (0, l] the identities p (Ac) = 1 -pa(A) 
-a 

and p,(Ac) = 1 - p (A)  hold. 
--a 

Remark: It is clear that every probability measure P on (R, A) can be seen 
as a fuzzy probability distribution by simply defining P*(A) := l{p(A)) E .F:. 



Chapter 3 

Expectation and other 
characteristics 

3.1 Discrete case 

Suppose R = { a l ,  . , an)  C R is a finite set and P* : 2" - .F: is a discrete 
fuzzy probability distribution on R induced by a discrete fuzzy probability 
density p*. It is natural to ask questions about if and how the concepts of 
characteristics like expectation or other moments can be applied to the con- 
cept of fuzzy probability distributions. Intuitively these characteristics should 
be fuzzy numbers as well. 
Continuing the same ideas as before the following definitions for the expec- 
tation m; and the k-th central moment .iizi (k > 1)  seem to be natural: 

[m;]. := ( Z a i x i  : X = ( X ~ , X ~ , . - . , X , )  E D, 1 

Thereby a E ( 0 ,  l ]  and 

Lemma 3.1 Let R = { a l ,  - . , a,) C W be a finite set and P* : 2" - F: a 
discrete fuzzy probability distribution on R induced by a discrete fuzzy proba- 
bility density p*. Furthermore let [m;]. for a E ( 0 ,  l ]  be defined according to 
(3.1), then: 
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1. [m;], is a compact interval for every a E (0, l], 

2. [m;], is a nested family monotonically decreasing i n  a with 

Proof: The mapping f : Rn --+ R, defined by 

is linear, continuous and satisfies 

Therefore it immediately follows that [m;], is a compact interval. 
Since D, monotonically decreases as a increases it is clear that [m;], is 
monotonically decreasing in a too. 
Suppose now that 

E nrm;ia 
and denote by (ak )kEn  a strictly increasing sequence of positive real numbers 
converging to P. 
Then z  E [m;],, V k  E N and for every k there exists a xk E D,, such that 

Since D, is compact for every a E (0, l] and since xk E D,, for all k E N 
there exists a convergent subsequence ( x ~ , ) ~ ~ ~  converging to a point x. It is 
easy to see that X E D,, for every k and therefore 

Due to the continuity of f it follows that f ( X )  = z ,  which implies that 

The other inclusion is obvious. W 

Lemma 3.1 shows that the family ([m;],),E(o,ll is a family of a-cuts of a 
fuzzy number. Consequently the following definition makes sense: 
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Definition 3.2 Suppose R = { a l ,  . , an} C R is a finite set and that 
P* : 2" - F: is a discrete fuzzy probability distribution on 0 induced by a 
discrete fuzzy probability density p*. Then the fuzzy number m;, defined via 
its a-cuts 

is called the expectation of the discrete fuzzy probability distribution P*. 

Lemma 3.3 Let S2 = { a l ,  , a,} C R be a finite set and P* : 2" -+ F: a 
discrete fuzzy probability distribution on R induced by a discrete fuzzy pro- 
bability density p*. Furthermore let [m:], for k > l be defined according to 
(3.2), then: 

l. [jT2:], is a compact interval for every a E (0, l], 

2. [+L*,], is a nested family monotonically decreasing i n  a with 

Proof: The mapping fk : Rn ---t R, defined by 

is continuous and satisfies 

Since D, c R" is compact for each a E (0, l] it follows immediately that 
[fh~], is a compact interval. 
As D, is monotonically decreasing as a increases it is clear that [fh*,], is 
monotonically decreasing in a too. 
Suppose now that 

E n [.;I. 
and denote by (aj)jEN a strictly increasing sequence of positive real numbers 
converging to P. 
Then z E [i?~:],~ \dj E N and for every j there exists by definition a point 
xj E Dq such that 

fk(xj) = 
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Since D, is compact for every a E (0, l] and xj E D,, for all j E N there 
exists a convergent subsequence ( x ~ ~ ) ~ ~ ~  converging to a point X. It is easy 
to see that X E Daj for every j and therefore 

Due to the continuity of fk it follows that fk(x) = z ,  which proves that 

The other inclusion is obvious. I 

As before the above Lemma 3.3 justifies the following definition: 

Definition 3.4 Suppose R = {al,. ,an) C R is  a finite set and that 
P* : 2" -+ F: i s  a discrete fuzzy probability distribution o n  R induced by 
a discrete fuzzy probability density p*. T h e n  the fuzzy number %*,, defined via 
i ts  a -cu ts  

i s  called the k t h  central moment of the discrete fuzzy probability distribution 
P* o n  R. 

3.2 Case of fuzzy probability distributions in- 
duced by fuzzy probability densities 

Let (R, A, p) = (R, B(R), p), where B(R) denotes the Bore1 sets on R and p 
denotes an arbitrary measure on B(R). 
Furthermore suppose that f* : R + .F: is a fuzzy probability density 
with respect to the measure p and integrably bounded by a function h E 

L1(R, B(R), P). 
As in the previous section P* is defined according to (2.14). 
Following the ideas used before, a natural extension m; of the concept of 
expectation is defined via its a-cuts by 
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In order to ensure the existence of the above integrals, suppose that 

Using the abbreviation 

E," := {g(t) = t f( t )  : f E D,) 

the above definition reduces to 

The procedure for showing that (3.3) under suitable assumptions determines 
a family of a-cuts of a fuzzy number is similar to the procedure in the forego- 
ing chapter, in which the first step was to prove that V, is a weakly compact 
subset of L' (R, A, p). 
Now the first step is to show that E," has the same property. 

Theorem 3.5 Suppose p is a measure on the Bore1 subsets B(R) of R, 
f*  : R -+ F: is a fuzzy probability density with respect to the measure p, 
and f*  is integrably bounded by a function h E L1(R,B(R),p). Furthermore 
suppose that lth(t)Idp(t) < m. 
Then E," is a weakly compact subset of L1(R, B(R), p) for every a E (0, l] .  

Proof: Because of lth(t)jdp(t) < m it follows that 

holds and therefore that E," c L1(R, B(R), p)  for every a E (0, l]. 
Defining h(t) := th(t) for all t E R it follows that for arbitrary g E E,* 

Ig(t)l < ~ i ( t ) l  for p-almost every t E R. 

Using this and following the idea of the proof of Theorem 2.9 it is easy to 
prove that the family E," fulfills the points of Theorem 6.11 in the Appendix 
and is therefore weakly precompact for every a E (0, l]. 
Because of the fact, that E,* inherits the convexity from V, the Theorem 
of Mazur (Theorem 6.12) shows that the weak closure of E," is equal to its 
strong closure. If it can be proved that E r  is closed in the strong topology 
it will therefore follow that it is weakly closed, which together with the al- 
ready proved weak precompactness proves the compactness of E," in the weak 
topology. 
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In this regard suppose ( g n ) n E ~  is a strongly convergent sequence in &p,  with 
limit function g E L1(R,  B(R) ,  p). Then there exists a yalmost everywhere 
to g convergent subsequence (gnk)kEn. 
Therefore 

9 ( t )  
4 - as k + m for p-almost every t E R. 

t t 

Because of 

gnk( t )  E F,(t) for p-almost every t E W 
t 

and the compactness of F,(t) it follows that 

9(t )  
- E F,(t) for p-almost every t E W. 

t 

Using the fact that 

gnk( t )  5 ~ ~ ( t ) l  for all k E N, 
171 

together with Lebesgue's Dominated Convergence Theorem yields 

for k + m, 

which shows that 9 E Q, and therefore g ( t )  E E?. 

Theorem 3.6 Suppose p is a measure on the Bore1 subsets B(R)  of R ,  
f*  : R - .F: is a fuzzy probability density with respect to the measure p, 
and f*  is integrably bounded by a function h E L1(R, B(R) ,  p ) .  
Furthermore suppose that (th(t)ldp(t) < m and let [m;], for a E (0,  l ]  be 
defined according to (3.3), then 

1. [m;], is a compact interval for every a E (0, l ]  

2. [m;], is a nested monotonically decreasing family in a with 

Proof: The mapping Q, defined by 



CHAPTER 3. EXPECTATION AND OTHER CHARACTERISTICS 88 

is a continuous linear functional on L1 (R, A, p) and therefore also continuous 
in the weak topology. Moreover it satisfies 

Q (E,") = [m;], Va, E (0, l ] .  

Q perserves compactness and convexity, which proves the compactness and 
convexity of [m;]a and completes the proof of the first part of the theorem. 
Since Er decreases as a, increases, [m;]a is decreasing in a, too. 
It remains to show that n [m;]. = im;Ia. 

a < P  

Suppose X E [m;]a for all a, < ,B and (CY,),,~ is a strictly increasing sequence 
of positive real numbers converging to ,B. 
Then for every n E N there exists a function g, E E? such that 

Because g, E Eal holds for all n E N and the because of the fact that Er is 
weakly compact for every a E (0, l], it follows that there exists a function 
g E Er1 and a subsequence such that 

gnk - g weakly for k t m. 

Since for each j almost all g,, lie in &,"j it follows using the same argument 
that g E E?. 
Using 

03 

one sees that f ( t )  := E Ep(t) p-almost everywhere and therefore 9 E 

D@. This shows that X E [m& and 

The other inclusion is obvious. B 

The above theorem justifies the following definition: 

Definition 3.7 Suppose p i s  a measure o n  the  Bore1 subsets B(R) of R, 
f* : R - F: i s  a fuzzy probability densi ty  wi th  respect t o  the  measure p, 
and f * i s  integrably bounded by a funct ion h E L1 (R, B(R), p ) .  
Furthermore suppose that  JR (th(t) Idp(t) < 00 and define the  fuzzy probability 
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distribution P* according to  (2.14). 
Then  the fuzzy number m;, defined via its a-cuts  

is called expectation of the fuzzy probability distribution IP on  R. 

Following the ideas used before, a natural extension m: of the concept of the 
k-th moment is 

In order to ensure the existence of the above integrals, suppose now that 

Using the abbreviation 

E; := { g ( t )  = t k f ( t )  : f E D,), 

the above definition reduces to 

Cn;1.. = { Jn s ( t ) d p ( t )  : 9 E E;}, t ( 0 ,  l ] .  

Note that in the general case in contrast to the discrete case the k-th moment 
and not the k-th central moment is defined. 

Theorem 3.8 Suppose p is a measure on  the Borel subsets B(R) of R, 
f*  : R -+ 3; is a fuzzy probability density with respect to the measure p, 
and f * is integrably bounded by a function h E L1 (R, B(R),  p ) .  Furthermore 
suppose that JR I tkh( t ) Idp( t )  < m. 
Then  E; is a weakly compact subset of L1(R, B(R) ,  p )  for every a t ( 0 ,  l ] .  

Proof: The theorem is easily proved by following the proof of Theorem 3.5 
and replacing &P by E r .  W 

Theorem 3.9 Suppose p is a measure on  the Borel subsets B(R) of R, 
f* : R --t 3: is a fuzzy probability density with respect t o  the measure p ,  
and f * is integrably bounded by a function h E L 1 ( R ,  B ( R ) ,  p ) .  
Furthermore suppose that 1, l t k h ( t ) ( d p ( t )  < m and let [m;], for a t ( 0 ,  l ]  
be defined according to (3.4), then 
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1. [m;], is a compact interval for every a E ( 0 ,  l] 

2. [m& is a nested family monotonically decreasing i n  a with 

Proof: It is obvious how to prove the theorem by following the proof of 
Theorem 3.6 and replacing &P by E r  and [m;], by [m&. U 

The above theorem justifies the following definition: 

Definition 3.10 Suppose p is a measure on the Bore1 subsets B ( R )  of R, 
f *  : R ---t 3.: is a fuzzy probability density with respect to the measure p, 
and f * is integrably bounded by a function h E L1(R, B(R) ,  p ) .  
Furthermore suppose that S, I tkh(t) ldp(t)  < 00 and define the fuzzy probabil- 
ity distribution P* according to (2.14). 
Then the fuzzy number m:, defined via its a-cuts 

is called k t h  moment of the fuzzy probability distribution P* on R .  



Chapter 4 

Fuzzy random variables and 
vectors 

In the last decades of the 20th century fuzzy random variables (and fuzzy 
random vectors) were a particular subject of research since they combine 
both randomness (stochastic uncertainty) and fuzziness (imprecision), where 
imprecision means non-statistical uncertainty due to the inaccuracy of hu- 
man knowlegde or the inexactness of measurements. 
In short a fuzzy random variable is a fuzzy-valued mapping defined on a 
probability space, fulfilling a certain measurability condition similar to the 
classical case of (real-valued) random variables. Concerning the precise mea- 
surability condition there is no generally accepted concept but mainly three 
different approaches have been developed: 
Kwakernaak [21] focused on the corresponding a-cut mappings (see below) 
assuming that the lower and upper boundary functions are Borel measur- 
able. Puri and Ralescu [33] also considered the induced a-cut mappings and 
postulated that these mappings are random compact sets (compare [29]). 
Klement et al. [l81 called a fuzzy-valued mapping on a probability space a 
fuzzy random variable if it is measurable with respect to the Borel U-algebra 
induced by certain metrics defined on (subsets of) F:. 
In the following at first different measurability conditions for fuzzy random 
variables and their interrelation will be analyzed in detail. After that fuzzy 
random vectors, which are the multi-dimensional analogy of fuzzy random 
variables, and their corresponding measurability conditions will be discussed 
briefly (since the results and proofs are very similar). 
Finally it will be shown how fuzzy random variables and fuzzy random vectors 
naturally induce a fuzzy probability distribution according to Defintion 2.19 
on the Borel U-algebra B(R) in R and the Borel U-algebra B(Rd) in Etd 
respectively. 
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4.1 Fuzzy random variables 

A very interesting idea that describes the construction of fuzzy-valued pro- 
babilities by using fuzzy random variables is presented in the book [30] by 
Moller and Beer (compare Section 4.3). They use a definition (Definition 4.1 
below) of fuzzy random variables by Wang and Zhang [44] that turns out 
amongst others to be equivalent to Kwakernaak7s original definition. 
Before stating their exact definition some abbreviations are helpful: 
If (R, A, P) is a probability space and X* : R -+ 3: is a fuzzy-valued function 
on R, then the following notation will be used for every W E R and every 
a E (0, l] throughout the whole chapter: 

It is clear by definition that the maximum and the minimum exist and that 

X,(w) = [~ , (w) ,X, (w) ]  V a  E ( O , 1 ]  and Vw E R. 

Obviously X, is an interval-valued function on (R, A, P). 

Definition 4.1 (Wang, Zhang [44]) 
Let (R, A, P) be a probability space and B(R) denote the Borel subsets of R. 
T h e n  a function X* : R -+ .F: i s  called fuzzy random variable i f  

holds for every B E B(R) and every a E (0, l]. 

Remark: It is clear that Definition 4.1 includes the case of classical (real- 
valued) random variables on (R, A, P ) .  

The following two results (compare [44]) give equivalent forms of (4.2) and 
show how the measurability condition can be stated in terms of the upper 
and lower bounds X, and X,. 

Lemma 4.2 Let (0, A, P) be a probability space and B(R) denote the Borel 
subsets of R. T h e n  a function X* : R -t .F: is  a fuzzy random variable if and 
only if 

{W E R :  X,(w) L B) E A 

holds for every B E B(R) and every a E (0, l]. 
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Proof: The lemma is an immediate consequence of the following equality: 

Theorem 4.3 Let (R, A, P )  be a probability space and B(R) denote the Bore1 
subsets of R. T h e n  a function X* : R t F: is  a fuzzy random variable if 
and only if X ,  and ?7, defined according to  (4.1) are classical (real-valued) 
random variables for every a E (0, l], i.e. 

-- 
~ , ~ ( g )  ={W E R :X,(w) E B) E A 

holds for every B E B(&!). 

Proof: Suppose that X* : R t .F: is a fuzzy random variable and let X E R 
be arbitrary, then it follows that 

~ - l ( ( - m ,  X]) = {W E R : &(W) 5 X) - 
= { w E R : X , ( w ) n ( - m , x ] # 0 ) ~ A  and 

-- 
x, '([x,m)) = {W E R : X,(w) > X} 

= {W E R :  X,(w) n [x,oo) # 0) E A. 

Since both systems Cl = {(-m, X] : X E R) and Cz = {[X, m )  : X E R} are 
generators of B(R), it follows immediately that X, and X, are measurable 
and therefore random variables for every a E (0, l] .  This proves one half of 
the theorem. 
In order to prove the other direction suppose that X, and X, are measur- 
able and let B E B(R) be arbitrary. For every X E B let C(x) denote the 
(maximal) connected component of B that contains X. It is clear that C(x) is 
a single point or an interval with non-empty interior and that all connected 
components of B are pairwise disjoint. 
If B1 denotes the set of all X E B such that C(x) is a single point, then B \  B1 
can be written in the form 

where (a i ,  bi) for every i E {l, .  . . , N) denotes a closed, open or semiopen 
interval with non-empty interior, ((ai, bi))El is a pairwise disjoint family, and 
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N E N U { m )  (it is clear that there are at most countably many connected 
components with non-empty interior because of the separability of R ) .  
Using this decomposition and the fact that X,(w) is a compact interval for 
every a E (0,  l ]  and every W E R by definition it follows that 

= {W E R : X,(w) C B1 and X ,  ( W )  = X,(w)} U 

= {W E R : X,(w) C B1 and & ( W )  = X,(w)} U 
N 

U IJ{w E R : X a ( w )  C (ai,bi)} 
i=l 

= {W E R : X,(w) C B1 and & ( W )  = >7,(w)) U 
\ 

V 

A 

N 
- -1 

U U ( z l ( ( a i , m ) ) n x a  ( ( -oo ,b i ) ) ) .  
i=l 

\ d " 
C 

Since X ,  and X, are measurable it follows immediately that A E A. Further- 
more C is as (at most) countable union of measurable sets itself measurable, 
which implies that C E A. This shows that {W E R : X,(w) C B )  = A U C E 
A for every a E (0 ,  l ] .  Since B E B ( R )  was arbitrary this completes the prove 
of the theorem. 

Suppose for the moment that ( R ,  A, P) is a probability space and X : R -t R 
is a random variable. It is well known (compare [13]) that the graph r ( X ) ,  
defined by 

r(x) = { ( w , x ( w ) )  : W E R )  G R X R, 

fulfilis r(x) E A 8 B p ) .  
If X* : R -+ 3-2 is a fuzzy-valued function on R and the graph r(X, )  of X ,  
is for a E (0,  l] defined by 

then the measurability result mentioned above remains true if X* is a fuzzy 
random variable. 
This is the content of the next theorem. 
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Theorem 4.4 Suppose (R, A, P) is a probability space and B(R) denotes the 
Bore1 subsets of B. If X* : R -t .F: is a fuzzy random variable then r(X,) 
defined according to (4.3) is measurable, i.e. r(X,) E A 8 B(R) holds. 

Proof: Define a function F, : R X IR - B for a E (0, l] by 

The function Q, : R X R - R2, defined by 

is surely measurable since both coordinates are measurable and the function 
M : R2 - R,  M(x, y )  := X-y is continuous and therefore Borel-measurable. 
Because of M o Q, = F, it follows immediately that F, is A 8 B(R) - B(R) 
measurable. Consequently 

In the same manner ist can easily be shown that 

Finally because of r+(X,) r l  I'-(X,) = r(X,) it follows immediately that 
r(X,) E A €3 B(R) for every a E (0, l], which completes the proof. W 

Having Theorem 4.4 the question arises, whether the converse is true as 
well, i.e.: 

Question 4.5 Given a fuzzy-valued function X* : R t .F: on  a probability 
space (R, A, P ) ,  does r(X,) E A €3 B(R) for every a E (0, l] imply that X* 
i s  a fuzzy random variable? 

Regarding classical random variables X a complete answer is given (amongst 
others) in Bierlein [4]. Bierlein showed that a real-valued function X defined 
on a complete measure space (R, A, P) is measurable if and only if the graph 
r ( X )  is the complement of a countable union of measurable rectangles and 
that this is equivalent to r ( X )  E A @ B(B). (For further generalizations of 
Bierlein's result compare for example [5], [25], [26]). 
Within [4] a central lemma is proved using the theory of Choquet capacities, 
but this lemma can also be proved in a different (and more elementary) 
manner using the theory of Souslin sets. Therefore a short introduction into 
the theory of Souslin sets, presenting some main results that will be used to 
answer Question 4.5, is given in the Appendix. 
In order to be able to apply these results one last step is necessary. 
Remember the following definition: 
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Definition 4.6 Let R be a n  arbitrary set, then a collection R of subsets of R 
is  called a a-&ring i f  0, R E R and R is  closed under countable intersections 
and countable unions. 

Since an arbitrary intersection of a-6-rings is again a a-&-ring it follows that 
for every family E of subsets of R there exists a minimal a-&ring that contains 
E.  This ring is called the a-S-ring generated by E and will be denoted by R(&). 
In the same manner the a-algebra generated by E will be denoted by A,(&). 

Lemma 4.7 Suppose that E is a family of subsets of a given set R. If EC = 

{Ac : A E E )  c R(&) then R(&) = A,(&) holds. 

Proof: The Theorem can be proved easily by following the ideas of the proof 
of Theorem 6.6: Since every a-algebra obviously is a a-&ring it follows that 
R(&) C Ag(E). Defining R' := { A  E R(&) : A" E R(&)) G R(&) it follows 
that R' is closed under complementation and countable unions. 
Therefore R' is a a-algebra. Using the fact that E" C R(&) shows that R' is 
a a-algebra containing E.  Consequently 

E G R' C R(&) C A,(&) C R', 

which shows that R' = R(&) = A,(&). This completes the proof.. 

Having this the following lemma can be proved: 

Lemma 4.8 Suppose that A is  a a-algebra in R and denote by B(R) the 
Bore1 a-algebra in R. Define 3 := { [a ,  b] c R : -m < a 5 b < m )  U 0 and 

f j  := { A x  B : A E A , B E B ( R ) )  

6 := { A  X J :  A E A and J E 3). 

Then  it follows that A 8 B(R) C Gsous(fj)  = ~ s m s ( 6 ) .  

Proof: It is clear that b is a generator of the product-a-algebra A 8 B(R) 
and it is easy to see that 6 is a generator too. Therefore 

Since ( A  X [a, b])' = (Ac X R) U ( A  X [a ,  bIc) E R(&) for every (A X [a ,  b])  E 6 
it follows immediately that cc C ~ ( 6 ) .  Consequently 

according to Lemma 4.7. Furthermore since G',,,(G) is a a-&ring containing 
6 ,  by Theorem 6.5 it follows that 
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Using the idempotence of the Souslin Operation (Theorem 6.4) this proves 
that 

Gsms (h) C Gsms (A 8 C GsoUs (6) G Gsous(b). 
Therefore A 8 B(R) C Gsou,(b) = ~ s o u s ( 6 )  holds. 

As usual denote by nl : R X R -+ R the projection of R X R on R, de- 
fined by nl(x, y) := X for all (X, y) E R X R. Furthermore for A C R X R the 
projection nl(A) is defined by nl(A) := {X E R : 3y E R with (X, y) E A). 

Theorem 4.9 Suppose that the conditions of Lemma 4.8 hold. Then for 
arbitrary C E G,,,(fj) it  follows that nl(C) E Gsous(A). 

Proof: If C E &,,(h) = ~,,(fi)- is  an arbitrary set then there exists a tree 
{R, = A, X I, E fj : s E WN) in lj such that 

Without loss of generality assume both that the tree {R,) is regular (which 
is possible since the family 3 is closed under intersection) and that A, = 0 
and I, = 0 if R, = 0. Consequently both {A, : S E N<N) and {I, : s E 
are regular trees. Define for arbitrary a E NN 

M 03 03 

R" := R",,, A" := Auln and I" := n I,,,,. 
n= l n=l n=l 

Obviously R" = A" X I" holds for every a E NN. Therefore if R" = 0 it 
follows immediately that at least one of A", I" is empty. 
If I" = 0 then there exists a no E N such that IuIn = 0 for every n 2 no 
(IuIn # 0 for every n E N can not hold since this would imply that I" # 0 by 
the intersection property). Therefore RuIno = 0 holds, which gives AuIn0 = 0 
by assumption and shows that A" = 0. This proves that R" = 0 implies 
A" = 0. Having this it follows immediately that nl(RU) = A" for every 
a E NN, which shows that 

and completes the proof of the theorem. 

Theorem 4.10 Suppose that (a, A, p )  is a complete a-finite measure space 
and denote by B(R) the Bore1 a-algebra in R. 
Then for every set C E A 8 B(R) the projection nl(C) of C on R fulfills 
nl (C) E Gsms (A) C A. 
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ProoE Since A 8 B(R) C &,,(6) by Lemma 4.8, and 7r1(C) E Gsous(A) for 
every C E GS,,(6) by Theorem 4.9 it follows that ?rl(C) E GsoUs(A) for every 
C E A 8 B(R). The fact that Gsms(A) = A (Theorem 6.10) completes the 
proof. 

Finally the complete answer to the Question 4.5 is given in the next the- 
orem, which is the converse of Theorem 4.4. 

Theorem 4.11 Let (R, A, P) be a complete probability space and B(R) de- 
note the Borel subsets of  R. I f  for  X* : R -+ F,, the graph r(X,) defined 
according t o  (4.3) i s  measurable for  every cr E (0, l] then  X* is  a fuzzy ran- 
d o m  variable. 

Proof: According to Theorem 4.3 the fact that X* is a fuzzy random variable 
is equivalent to the condition that X, : R - R and X, : R - R are 
classical random variables. Suppose that l?(X,) E A 8 B(R) holds for every 
cr E (0, l] and let X E R be arbitrary, then it follows that 

X-l((-m,x]) = { w E R : X , ( w ) l x )  -Q 

= {W E R : 3 y  E X,(w) such that y 5 X) 

= ?il({(w,y) E R x R :  y E X,(w) and y < X}) 

-- 
~ , ~ ( [ ~ , c m ) )  = {W E R :%(W) 2 X) 

= { w E R : 3 y E X , ( w )  such that y2x) 

= n l ( { ( w , y ) ~ ~ x R : y ~ ~ , ( w ) a n d y ~ x } )  

= 711 n (R x [X, m))) E A. 

Since both systems El = {(-m, X] : X E R) and E2 = {[X, oo) : X E R) are 
generators of B@), it follows that and X, are measurable and therefore 
random variables for every cr E (0, l] .  

Theorem 4.11 is the key for proving other equivalent measurability condi- 
tions for a fuzzy-valued mapping X* : R -+ F,: on a complete probability 
space (R, A,  P ) ,  which are summarized in the next theorem (compare [7] and 

1171) : 

Theorem 4.12 Let (R, A, P )  be a complete probability space and B(R) de- 
note the Borel subsets of R. T h e n  for a fuzzy-valued mapping X* : R --+ F,: 
the following nine conditions are equivalent: 
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1. {W E R : X,(w) n B # 0) E A holds for every B E B(R) and every 
a E (0, l ]  (i.e. X* i s  a fuzzy random variable). 

2. {W E R : X,(w) C B) E A holds for every B E B(R) and every 
a E (0, l ] .  

3. {W E R : X,(w) n C # 0) E A holds for every closed set C C R and 
every a E (0, l ] .  

4. {W E R : X,(w) n K # 0) E A holds for every compact set K G R and 
every a E (0, l ]  (i.e. X, is a random closed set for every a E (0, l ] ) .  

5. {W E R : X,(w)nG # 0) E A holds for every open set G C R and every 
a, E (0, l ]  (i.e. X, i s  Eflros measurable for every a E (0, l ] ,  compare 
for instance [7], [29]). 

6. W H d ( x ,  X,(w)) := infgExm(,) [ X  - yl is a Borel-measurable function 
for every fixed X E R and every a E (0, l ] .  

7.  X ,  and X, defined according to  (4.1) are classical (real-valued) random 
variables for every a E (0, l ] .  

8. r(X,) defined according to  (4.3) i s  measurable for every a E (0, l ] ,  i.e. 
r(X,) E A @ B(R) holds for every a E (0, l ] .  

9. For every a E (0, l ]  there exists a sequence (fn)nEM of measurable se- 
lections of X, such that the following equality holds for every w E a: 

{fn(w) : n E N) = X,(w) (Castaing representation, compare [7], [29]) 

Proof: It has already been proved in this section that the points one, two, 
seven and eight are equivalent. Furthermore it is trivial that point one implies 
implies point three and that point three implies point four. 
Consequently it suffices to prove that 

point four implies point five (a) 

m point five is equivalent to point six (b) 

a point five implies to point seven (c) 

point seven implies point nine (d) 

a point nine implies point five (e). 
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For every a E (0, l] and every set A c R define 

Then it follows immediately that for every family (Ai)iE1 (I an arbitrary 
index set) 

holds. 
(a) It i i  well-known that the family 8 consisting of all open balls B(x, r )  
with X E Q and r E Q+ is a countable base for the Euclidean topology and 
that every ball B(x, r) is precompact (i.e. the closure B(x, r) is compact). 
Consequently for every open set G the following representation holds: 

Assume that point four is fulfilled, then using (4.5) and the countability of 
8 yields 

which completes the proof of (a), since a E (0, l] was arbitrary. 
(b) In order to prove the equivalence of point five and point six define for 
every X E R and W E R: 

g,(w)=d(x,X,(w)) := inf (x-yl  
Y€X,(W) 

The desired equivalence is an immediate consequence of the following interre- 
lation, which holds for every X E R and c > 0, and the fact that the countable 
base 8 exactly consists of sets of the form B(x, c) (B(x, c) C R as common 
denotes the open ball with radius c and center X): 

x;~(B(x, C)) = {W E R :  Xa(w) n B(x, C) # 0) 
= { w ~ R : d ( x , X , ( w )  < c )  

= g,-l((-m, c)) 

(c) Suppose that X* : R --+ F: fulfills point five, fix a E (0, l] and let X E R 
be arbitrary, then it follows that 

X-'((-m, X)) = {W E R : &(W) < X) -Q 

= { w ~ R : X , ( w ) n ( - m , x ) # 0 ) ~ A  and 
-- 
xQ1( (x ,m))  = {W E R : fTQ(w) > X) 

= {W E R :  X , ( W ) ~ ( X , W )  # 0) E A. 
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Since both systems (2; = {(-W) : X E R) and (2; = {(X, m) : X E R} are 
generators of B(R), it follows immediately that X, and X, are measurable 
and therefore random variables for every a E (0, l] .  Since a E (0, l] was 
arbitrary step (c) is proved, which (using the equivalence of point seven 
and point one) completes the proof that alle the points one to eight are 
equivalent. It remains to prove that the Castaing representation (point nine) 
also is equivalent. 
(d) Given the measurablility of X ,  and X, for every a E (0, l], the Castaing 
representation is easy to prove: 
Denote by Q[o,ll = {ql, q2, a . .) the countable set of all rational numbers in 
the interval [0, l]. Fix an arbitrary a E (0, l] and for every n E N define a 
function fn by 

As convex combination of measurable functions every function fn is measur- 
able and a selection of X, too. Furthermore because of the fact that Q[O,ll 
is dense in [0, l] the desired property {fn(w) : n E N) = X,(w) obviously is 
fulfilled. Since a was arbitrary this proves the implication (d). 
(e) Finally suppose that for every fixed a E (0, l] there exists a sequence of 
measurable selections ( fn)nEA of X, such that 

holds for all W E R. If G is an arbitrary open subset of R then 

completes the proof. 

Since by definition for every fuzzy-valued mapping X* : R t .F: the a-cut 
mappings X, (for every a E (0, l]) are K:-valued it is furthermore natural to 
analyze the interrelation of the measurability condition (4.2) and the mea- 
surability of the a-cut mappings X, with respect to the Bore1 a-algebra 
B((K:, d H ) )  in K: generated by the Hausdorff metric. Applying Theorem 1.20 
the following result can be proved (compare [29]) - since it is a supplement 
to Theorem 4.12 the enumeration of Theorem 4.12 is carried on: 
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Theorem 4.13 Suppose that (R, A,  P )  is  a complete probability space and 
let B((ICa, 6 ~ ) )  denote the Bore1 a-algebra in ICf generated by the Hausdorff 
metric  SH. Then  the following conditions are equivalent for a fuzzy-valued 
mapping X* : R -+ 32: 

l .  X* is  a fuzzy random variable according t o  Definition 4.1. 

10. For every a E (0, l] the a -cu t  mapping X ,  : R -+ ICL is  measurable 
with respect t o  B((KE, SH)). 

Proof: According to Theorem 4.12 a fuzzy-valued mapping X* : 0 -+ F: is 
a fuzzy random variable if and only if {W E R : X,(w) n G # 0) E A holds 
for every open set G c R. Moreover since the family 

according to Proposition 1.21 generates B((K:, bH)) the desired equivalence 
follows immediately since obviously for every open set G C R and every 
a E (0, l] the equality 

holds. W 

In case that Xl(w) does not only consist of one point for P-almost every 
W E R, another equivalent easy manageable notion of measurability can be 
stated (the enumeration is continued once more), compare again [29]. 

Theorem 4.14 Suppose that (R, A, P )  is  a complete probability space and 
that X* : R - +  F: is  a fuzzy-valued mapping o n  R such that &(W) < x l ( w )  
holds for P-almost  e v e y  W E R. T h e n  the following conditions are equivalent: 

1. X* i s  a fuzzy random variable according t o  Definition 4.1. 

11. {W E R : X E X,(w)) E A holds for  every a E (0, l] and every X E R . 

Proof: One part of the equivalence is trivial: 
If X* is a fuzzy random variable then {W E 0 : X E X,(w)) E A surely holds 
since {X) is closed and X E X,(w) is equivalent to X,(w) n {X) # 8 for every 
X E R and a E (O,l]. 
Because of the fact that by assumption X,(w) < x l (w)  holds for P-almost 
every W E 0 there exists a set N E A with P ( N )  = 0, such that for all 
W E Nc int(X,(w)) # 0 is fulfilled (int(A) denotes the topological interior of 
A, i.e. the set of all inner points of A, and cls(A) denotes the closure of A, 
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i.e. the intersection of all closed sets containing A, for every set A). 
Suppose now that G is open, a E (0, l], and that condition eleven is fulfilled. 
Obviously the following equality holds: 

As a subset of the set N of probability zero the set AI itself is measurable, 
i.e. AI E A. Consequently it suffices to prove that A2 E A holds, which can 
be done as follows: 

This completes the proof. 

Section 4.1 will be rounded off by a result which basically says that if a 
fuzzy-valued function X* : R -, F:,, is measurable with respect to the U- 

algebra B ((F:,,, &&,,)) generated by the metric &&,, (compare Section 1.5), 
then X* is a fuzzy random variable. 

Theorem 4.15 Suppose that (R, A, P )  is  a complete probability space and 
that X* : R -, F:,, i s  a fuzzy-valued mapping o n  R. Furthermore denote by 
B((F,,,, &S,,)) the g-algebra generated by the metric  h&,, in F:,,. 
If X* i s  measurable with respect t o  B((F:,,, 6;1,,)) then  X* is  a fuzzy random 
variable according to  Definition 4 .  l .  

Proof: For every a E (0, l] define a mapping II, : c,, -, K: 2 K' by 
&(c*) := [[*la for every c* E F:,. It follows immediately from the con- 
struction of 6&,, that ll, is Lipschitz continuous with Lipschitz constant l 
(in fact ll, is a projection). Consequently II, is B ((F:,,, &&,,)) -l?((Kr, 
measurable. Since the composition of two measurable mappings is itself mea- 
surable the fact that 

x,(w) = n, x*(w) 

holds for every W E 52, together with Theorem 4.13 completes the proof of 
the theorem. H 
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4.2 Fuzzy random vectors 

As already mentioned fuzzy random vectors are the multi-dimensional ana- 
logy of fuzzy random variables. 
If (R, A, P )  is a probability space and X* : R + .F: (d > 2) is a fuzzy- 
vector-valued function on R, then the following notation (analogous to fuzzy 
random variables) will be used for every W E L? and every a E (0, l]: 

Furthermore the graph I'(X,) is for every a E (0, l] defined by 

Definition 4.16 Let (R, A,  P) be a probability space and B(Rd) denote the 
Borel subsets of Rd. T h e n  a function X* : R + .F: is  called (d-dimensional) 
fuzzy random vector if 

holds for every B E B(Rd) and every a E (0, l] 

As for fuzzy random variables the above definition of fuzzy random vectors 
is equivalent to various other conditions. Looking back at the proofs of the 
results in Section 4.1, especially that of Theorem 4.12, it may come as no 
suprise that similar results also hold for fuzzy random vectors since R and 
Rd are very similar from the topological point of view - both are U-compact 
Polish spaces. In fact the following theorem, taken from [7] and [29] with 
some small modifications, holds: 

Theorem 4.17 Let (R, A , P )  be a complete probability space and B(Rd) 
denote the Borel subsets of Rd. T h e n  for a fuzzy vector-valued mapping 
X* : R -+ .F: the following conditions are equivalent: 

ld.  {W E R : X,(w) n B # 0) E A holds for every B E B(Rd) and every 
a E (0, l] (i.e. X* is  a d-dimensional fuzzy random vector). 

9. {W E R : X,(w) C B) E A holds for every B E B(Rd) and every 
a E (0, l] .  

9. {W E R : X,(w) n.C # 0) E A holds for  every closed set C Rd and 
every a E (0, l ] .  

4d. {W E R : X,(w) n K # 0) E A holds for every compact set K C_ Rd and 
every cr E (0, l] (i.e. X, is  a random closed set for every a E (0, l]). 
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5d. {W E R : X,(w) fl G # 0) E A holds for every open set G c Rd and 
every a E ( 0 ,  l ]  (i.e. X ,  is Effros measurable for every a E ( 0 ,  l ] ) .  

6d. W d(x ,X , (w) )  := inf,,xm(,) Ilx - yllz is a measurable function for 
every fixed X E R and every a E ( 0 ,  l ] .  

9. r ( X , )  defined according to (4.8) is measurable for every a E ( 0 ,  l ] ,  i.e. 
r ( X , )  E A 8 B ( R d )  holds for every a E ( 0 ,  l ] .  

8d. For every a E (0 ,  l ]  there exists a sequence ( fn )nEM of measurable se- 
lections of X ,  such that the following equality holds for e u e y  w E R:  

{ f n ( w )  : n E N) = X,(w) (Castaing representation) 

Proof: Most parts of the theorem can be proved following the proofs from 
Section 4.1. For a detailed proof compare [7].  

Furthermore similar to the case of fuzzy random variables the measurability 
condition can also be expressed equivalently via the measurability of the 
a-cut mappings X ,  with respect to the Borel a-algebra B((K,d, S*)) in K: 
generated by the Hausdorff metric. Since this is a supplement to Theorem 
4.17 the enumeration of Theorem 4.17 is carried on: 

Theorem 4.18 Suppose that ( R ,  A, P )  is a complete probability space and 
let B((ICi, b ~ ) )  denote the Borel a-algebra in K: generated by the Hausdorff 
metric bH. Then the following conditions are equivalent for a fuzzy vector- 
valued mapping X* : R + F:: 

l d .  X*  is a d-dimensional fuzzy random vector according to Definition 4.16. 

9. For every a E ( 0 ,  l ]  the a-cut mapping X ,  : R + K: is measurable 
with respect to B((K,d, b H ) ) .  

Proof: The theorem can easily be proved following the proof of Theorem 
4.13 and simply replacing F: by F:, R by Rd7 K: by K: and by &g,. 
Within the next theorem, which is an analogon to Theorem 4.14, as before 
int(A) denotes the topological interior of A, i.e. the set of all inner points of 
A, and cls(A) denoted the closure of A. i.e. the intersection of all closed sets 
containing A, for every set A C Rd. 

Theorem 4.19 Suppose that ( R , A , P )  is a complete probability space and 
that X* : R + F: is a fuzzy vector-valued mapping on il such that for P- 
almost every W E R i n t ( X l ( w ) )  # 0 holds . Then the following conditions are 
equivalent: 
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l d .  X* is a d-dimensional fuzzy random vector according to Definition 4.16. 

l@. {W E R : X E X,(w)) E A holds for every a E (0, l] and every X E Rd . 

Proof: Again one part of the equivalence is trivial: 
If X* is a fuzzy random vector then {W E R : X E X,(w)) E A surely holds 
since {X} is closed and X E X,(w) is equivalent to X,(w) n {X) # 0 for every 
X E Etd and a E (O,l]. 
On the other hand because of the fact that by assumption int(Xl(w)) # 0 
holds for P-almost every W E R there exists a set N E A with P ( N )  = 0 
such that for all W E Nc int(X,(w)) # 0 is fulfilled. 
As it is well known that every convex compact set with non-empty interior 
coincides with the closure of its inner points (compare for instance [37]) it 
follows immediately that X,(w) = cls(int(~,(w))) holds for every W E NC 
and every a E (0, l]. 
Suppose now that G is open, a E (0, l] and that condition lod is fulfilled. 
Obviously the following equality holds: 

As a subset of the set N of probability zero the set AI itself is measurable, 
i.e. AI E A holds. Consequently it suffices to prove that A2 satisfies A2 E A,  
which can be done as follows: 

A2 = {W E Nc : X,(W) n G # 0) = {W E Nc : i n t (~ , (w) )  n G # 0) 
= {W E NE : int (X, (W)) n G n # 0) 

This completes the proof. 

Section 4.2 will be closed with the following theorem: 

Theorem 4.20 Suppose that (R, A,  P )  is a complete probability space and 
that X* : R + 3& is a fuzzy vector-valued mapping on a. Furthermore 
denote by B((F&, 6&,,)) the o-algebra generated by the me tnc  b&,, on F:,. 
If X* is measurable with respect to B((F&, 6;1,,)) then X* is a d-dimensional 
fuzzy random vector according to Definition 4.1 6. 
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Proof: For every a E (0, l] define a mapping II, : .F:, 4 Kt by setting 
IT,(r) := [E*], for every E* E F:,. It follows immediately from the con- 
struction of bh,, that IT, is Lipschitz continuous with Lipschitz constant 1 
(in fact IT, is a projection). Consequently II, is B((.F:,, bh,,))-B((x~, bH))- 
measurable. It is well known that the composition of two measurable map- 
pings is itself measurable. Consequently Theorem 4.18 and the fact that 

X,(,) = IT, 0 X*(w) 

holds for every W E R complete the proof of the the0rem.l 

4.3 Fuzzy probability distributions induced 
by fuzzy random variables and fuzzy ran- 
dom vectors 

In this section it will be demonstrated how fuzzy random variables and fuzzy 
random vectors naturally induce a fuzzy probability distribution according 
to Definition 2.19. Since fuzzy random variables can be regarded as special 
cases of fuzzy random vectors, only fuzzy random vectors will be considered. 

Every d-dimensional fuzzy random vector X* : R .F: induces families 
( ~ ) a E ( o , l l  and (Ta)aE@,ll of real-valued set-functions on B(IRd) in the follo- 
wing way: For every a E (0, l] and every B E B(Rd) define 

Obviously for every B E B(IRd) and a E (0, l] 7r,(B) 5 %(B) holds. 
Using the fact that P is a probability measure, this shows that [L(B), T,(B)] 
is a non-empty, compact subinterval of [0, l] for every a E (0, l] and every 
B E B(Rd). 
Suppose for the moment that B E B(Rd) is fixed and that a, P E (0, l], a 5 P, 
then it follows that X,(w) 2 Xp(w) for every W E R, and that 

{W E R :  X,(w) C B)  C {W E R :  Xp(w) C B), 

which shows that L(B) 5 .rrp(B). Moreover 

which gives that ?-ip(B) 5 F, (B). 
This proves that for fixed B E B(Wd), ( [7 ra (~) ,  is a nested, 



CHAPTER 4.  FUZZY RANDOM VARIABLES AND VECTORS 108 

monontonically decrasing family of non-empty compact intervals in a. 
Unfortunately, in contradiction to [30], in general ([z,(~),  1,(B)]) ,,(o,ll is 
not a family of a-cuts of a fuzzy number, as the following counter-example 
shows: 

Example 4.21 Suppose that (R, A, P) is an arbitrary probability space and 
let q* E .F: be the triangular fuzzy number with a-cuts [v*], = [a - 1 , l -  a] 
for every a E (0, l] (depicted in Figure 4.1). 
Define X* : S1 t F: by simply setting X*(w) = q* for every W E S1. Obvi- 
ously X* is a fuzzy random variable (the measurability condition obviously 
is fulfilled). 

Figure 4.1: Q* and B in Example 4.21 

Choosing B = [- i, i] E B(R) gives 

If the family ([&(B), ii,(B)]) a,(o,,l was a family of a-cuts of a fuzzy number, 
then for every p E (0, l] the following would hold (compare Theorem 1.4) 
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Choosing ,B = therefore would give 

IT$ (B) ,F;  (B ) ]  = ,(B),,(B)] = [o, l ] ,  
a<; 

which is a contradiction to [7rI ( B ) ,  3; (B) ]  = { l ) .  
2 

Consequently in general the family ([%(B) , T,(B)]) aE(o, l l  need not be a 
family of a-cuts of a fuzzy number, but because of the before mentioned pro- 
perties one can easily construct a fuzzy number P*(B) for every B E D(Rd) 
by simply building the convex hull, i.e. for X E R define 

(P*(B))  (X) := { O 
if. sr [%(B),7fa(B)] Qa E (0 ,  l ]  

sup {a E (0 ,  l ]  : X E ([T-(B),S;F,(B)]) otherwise . 

Note that according to Theorem 1.36 the a-cuts [P*(B)], of P*(B) coincide 
with [%(B), T,(B)] for X-almost every a E (0 ,  l ] .  
This again defines a mapping P* : B(Rd) + .F: that satisfies Definition 2.19 
on (Rd,  B(Rd)) which is now going to be proved in three steps: 
Firstly properties of the families ( ~ , ) , E ( O , l l ,  ( T ~ ) ~ ~ ( ~ , J ]  will be analyzed. 
After that, a simple formula describing the interrelation between the a-cuts 
of the fuzzy numbers P ( B )  and the generating families ( T , ) , ~ ( ~ , ~ ] ,  ( ~ ( Y ) a E ( O , l l  

will be proved. 
Finally it will be shown that P* satisfies Definition 2.19 on (Rd,  B(Rd)) by 
using this formula and the properties of (7r,)aE(0,11, ( T , ) ~ ~ ( ~ , J ~ .  

Lemma 4.22 Suppose that (R,  A, P )  is  a n  arbitrary probability space and 
that X* : R + .F: is  a d-dimensional fuzzy random vector. 
T h e n  the families (7~-),~(~,~~ and ( T ~ ) ~ ~ ( ~ , J ] ,  defined according t o  (4. l U), fu@ll 
all points of Definition 2.20 o n  (Rd,  B(Rd)). 

Proof: Point one is surely satisfied since it follows immediately from the 
definition that 

T ( I t d )  = 3, (Rd) = l  and K,  ( 0 )  = %, ( 0 )  = 0 V a  E (0 ,  l ] .  
4 

If A, B E B(Rd) satisfy A C_ B, then it follows that for every a E (0, l ]  

{ w E R : X , ( W )  C A )  C {W E R : X , ( W )  C B )  and 

{W E R :  X,(w)nA # 0 )  C {W E R : x,(w)n B # 01, 

which shows that L(A) 5 %(B)  and T,(A) 5 %,(B) for every a E (0 ,  l ] .  
In order to prove the third assertion suppose that A, B E B(Rd) and that 
A n B = 0. Then for every a E (0, l ]  on the one hand it follows that 
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which shows that 7r,(A) + .rr,(B) 5 L(A U B) ,  and on the other hand 

which finally shows that %,(A U B)  5 %,(A) + 77, ( B ) .  
The last assertion is an immediate consequence of the following identities: 

%(Ac) = P({ ,  E R :  X,(W) n A  # @ ) = l -  P({W E R :  X,(w)nAC = 0 ) )  
= l - ~ ( { w  E R :  X,(w) C A))  = l -z,(A) 

As already mentioned before for every d-dimensional Bore1 set B E B(IRid) 
the family ([%(B) ,  Ta(B)l) y,(o,ll induces a fuzzy number P*(B) E .F: in the 
following way: for X E R define 

0 ifx#[7r-(B),T,(B)] VaE(O, l]  
SUP {a E (0 ,  l ]  : X E ( [ E , ( ~ ) , T , ( ~ ) ] )  otherwise. 

(4.11) 
The a-cuts of the resulting fuzzy number will be denoted by [p ( B ) ,  p,(B)], 

-a 
i.e. 

For every B E 13(Rd) there is a simple interrelation between the family 
(ip,(B), i ja(B)]) ,~(~, l]  and the generating family ([%(B) ,  Ta(B)])oE(~,lj. 
In fact the following lemma holds: 

Lemma 4.23 Let a be a n  arbitrary but fixed real number in (0 ,  l ]  and sup- 
pose that i s  a strictly increasing sequence in (0 , l )  that converges t o  
a .  T h e n  the following equation holds for  every B E B(Rd) : 

lim E,, ( B ) ,  lim F,, ( B )  
= In+- n-m 1 

Proof: The first equality has already been proved for more general cases in 
Lemma 1.4 . 
In order to prove the second equality suppose that P < a .  Then by definition 
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of the sequence there surely exists no(P) E N such that for all n 2 no 
an E ( p ,  a )  holds. This proves that [E,, ( B ) ,  B,, (B ) ]  C [ q ( B ) ,  $(B)]  for all 
n 2 no. Since p < a  was arbitrary it follows that 

Since the reverse inclusion is obvious because a, E (0 ,  a )  holds for every 
n E N by assumption, this proves the second equality. 
Concerning the third equality first of all notice that the mentioned limits 
really exist, since for every B  E B(IEXd) the sequence G ~ ( B )  is monotonically 
increasing and bounded and the sequence Tan ( B )  is monotonically decrea- 
sing and bounded. 
X E nz=l [L, ( B ) ,  B,, (B ) ]  means that L, ( B )  5 X 5 Tan ( B )  for a11 n E N ,  

- from which it follows immediately that lirn,,, ( B )  5 X 5 lim,,, ran ( B ) ,  
which proves that 

Because of the fact that the other inclusion is an immediate consequence of 
the monotony on the sequences ( B )  and F,, ( B )  this concludes the proof 
of the lemma.. 

Since for every a  E (0 ,  l] there surely exists a sequence in (0 , l )  
that is strictly monotonically increasing and converging to a like stated in 
Lemma 4.23 is follows that for every B E B(Rd) the following equations hold: 

p ( B )  = lim ( B )  and 
--(Y n - - - t ~  -CYn 

p,(B) = lim G,, ( B )  
n+w 

This fact can be used to prove the following result: 

Theorem 4.24 Suppose that (R,  A, P )  i s  a n  arbitrary probability space and 
that X* : R  t .F: i s  a d-dimensional fuzzy random vector. For every 
B  E B(Rd) and a E (0 ,  l ]  let 7r,(B) and T,(B) be defined according to  (4.lO), 
IID*(B) defined according t o  ( 4 . l l ) ,  and p -01 ( B )  and p,(B) defined according t o  
(4.12). T h e n  P* : B(IRd) t 3: is  a fuzzy probability distribution in the sense 
of Definition 2.19. 
( O r  equivalently p -01 and p, fulfil1 Definition 2.20.) 
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Proof: Let a E (0, l] be arbitrary. Choose a sequence in ( 0 , l )  that 
is strictly monotonically increasing and converges to a .  Using the fact that 

&(Rd)=?i,(IRd)=l and 7r- (0)= i ia (O)=O V a ~ ( 0 , 1 ] ,  

applying (4.13) immediately yields p (IRd) = pa(IRd) = 1 and (0) =&(g) = 0. 
Furthermore if A, B E B(Rd) with G B ,  then again applying (4.13) imme- 
diately shows that 

p (A) = lirn n (A) 5 lirn n (B) = p  (B) and 
-a n - - t ~ ~ ~  n+w4"' 4 

pa(A) = lirn T~, ,  (A) I lirn G,, (B) = p,(B), 
n+w n+w 

which proves point two of Definition 2.20. 
Finally if A n B = 0 for two Borel sets A, B E B(Rd), then it follows again 
by using (4.13) and Lemma 4.23 that 

p ( A u B )  = l i m z f f n ( A U B ) 2  ~ ~ ~ ( E ~ , ( A ) + Z L , ( B ) )  
-a n--+W n+cc 

= %(A) +%(B) and 

p (A U B) = lirn ?ian (A U B)  I lim (Tan (A) + (B))  a n+w n+w 

= p,(A) +%(B). 

Finally again using (4.13) and Lemma 4.23 shows that 

p (AC) = lirn n (Ac) = lirn (l - ?ian (A)) 
-Q n-+W n+w 

= 1 - pa(A) and 

p, (Ac) = lirn zan (Ac) = lirn (l - G, (A)) 
n+w n + ~  

= l -%(A).  

This completes the proof. 

Remark: It will be proved in Section 5.3 that for every Borel set B E B(Rd) 
with probability one P*(B), defined according to (4.11), is the limit of rela- 
tive frequencies h*,(B, W )  (defined as in Section 2.1) induced by a sequence 

of pairwise independent, identically distributed d-dimensional fuzzy 
random vectors. In other words, a Strong Law of Large Numbers holds. 

Theorem 4.24 can be seen as a further justification of the general definition 
of a fuzzy probability distribution (Definition 2.19) since the fuzzy-valued 
set-functions (probabilities) arising from two completely different approaches 
(using densities respectively fuzzy random vectors) both are included in the 
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general definition. 
Regarding Theorem 2.18 the question arises whether p- is even super-a- 
additive and whether p, is even sub-a-additive for fixed a E (0, l] (both 
defined according to (4.12)). 
As a first step going in that direction, the following theorem can be proved: 

Lemma 4.25 Suppose that (R, A, P) is an arbitrary probability space and 
that X* : R + .F: is a d-dimensional fuzzy random vector. Furthermore for 
every a E (0, l] let L and F ,  be defined according to (4.10). 
Then for every a t (0, l] is super-a-additive and 77, is sub-U-additive, 
i.e. i f  (Bn)nFIN is a pairwise disjoint sequence of Borel subsets of Rd, then for 
every a E (0, l] the following holds: 

Proof: Suppose that (Bn)nEN is a sequence of pairwise disjoint Borel subsets 
of Etd  and let a E (0, l] be arbitrary, then super-a-additivity of can easily 
be shown by using the fact that P is a probability measure on (R, A) in the 
following way: 

In the same manner one can prove sub-a-additivity of 77,: 
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Having this, it can be proved that p defined according to (4.11) and (4.12) 
is even super-a-additive for every a: (0,  l ] :  

Theorem 4.26 Suppose that ( R ,  A, P )  i s  a n  arbitrary probability space and 
that X* : R + .F: i s  a d-dimensional fuzzy random vector. For every 
B E B(IRd) and cu E (0 ,  l ]  let .ir,(B) be defined according t o  (4.10), P*(B) 
defined according t o  (4.11) and p (B)de f ined  according t o  (4.12). 

4 

T h e n  p- i s  super-a-additive for  every cu E (0 ,  l ] .  

Proof: Suppose again that (Bi)iEn is a sequence of pairwise disjoint Bore1 
sets, let cu E (0 ,  l ]  be arbitrary and choose (an)nEn according to Lemma 4.23. 
For every n E N define a function fn : N + R by fn(i) = %,(Bi) and a 
function f : N -+ R by f ( i)  = % ( B i ) ,  for every i E N. 
Furthermore consider the measure space ( N ,  2N,  r ) ,  where 2" is the set of all 
subsets of N and T denotes the counting measure on 2n. 
Obviously all functions f n ,  n E N,  and f are measurable, f n  is monotonically 
increasing and lim,,, f n ( i )  = f ( i )  for every i E N by construction. 
Applying the monotone convergence theorem (compare for instance [13]) it 
follows that F p 

Since by construcion 

this proves that 
CO 00 

Consequently 

which completes the proof of the theorem. 

The remaining part of this section deals with regularity and continuity pro- 
perties of the real-valued set functions %(-) and F,( . )  defined according to 
(4.10) induced by a fuzzy random vector X* : R -+ 3: (compare [29]). 

Theorem 4.27 Suppose that (Q, A, P )  i s  a complete probability space and 
that X* : fl ;2 .F: i s  a d-dimensional fuzzy random vector. For every 
B E B (Rd)  and cu E (0 ,  l ]  let T,(B) be defined according to  (4.10) then: 
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For every open set G S IRd and every cu E (0, l] the following equality 
holds: 

T,(G) = sup{-/r,(K) : K c G,K E x d )  

For every Bore1 set B E B(Rd)  and every Q E (0, l] the following 
equality holds: 

T,(B) = sup{T,(K) : K S B ,  K E x d )  = inf{T,(G) : G > B, G open) 

Proof: It is obvious that the second assertion implies the first assertion. 
Nevertheless the assertions are stated separatedly since the first assertion 
will be proved completely, whereas the proof of the second assertion uses a 
very non-trivial result from the theory of capacities, which will not be proved 
here. 
In order to prove the first assertion it suffices to show that 

since the other inequality is an immediate consequence of Lemma 4.22. 
As in Lemma 1.18 suppose that 23 denotes the countable basis for the 
Euclidean topology on IRd consisting of open all balls B(m, r )  with m E Qd 
and r E Q+. Then it follows immediately that every open set G c Etd can be 
represented as follows (B denotes the corresponding closed ball): 

Let the corresponding balls B E 23 fulfilling B c G be enumerated as 
{B1, B2, . -1. Using the notation explained in (4.4), equation (4.5), and the 
fact that every probability measure is continuous (compare [2]), then it 
follows immediately that 

Since for every B E 23 the closure B is compact (it is closed and bounded) 
this implies that is compact for every n E N, which completes the 
proof of inequality (4.14), and therefore the proof of the first assertion of 
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Theorem 4.27. 
The second (much stronger) assertion can be proved using the so-called 
Choquet Capacitability Theorem (compare [8] and [29]), which implies that 

sup{F,(K) : K c B ,  K E lCd) = inf {?i,(G) : G > B ,  G open in Rd} 

holds for every Borel set B E B(Rd). Again using monotonicity of F,(.) 
(Lemma 4.22) the desired equality immediately follows.. 

Concerning continuity properties of F,(.) the following result holds: 

Theorem 4.28 Suppose that (R, A, P )  is a complete probability space and 
that X* : R -+ F: is a d-dimensional fuzzy random vector. For every 
B E B(Rd) and a: E (0, l] let F,(B) be defined according to (4.10) then: 

The set function F , ( . )  is continuous from below, i.e. if (Bn)nE~ is 
a monotonically increasing sequence of Borel sets with limit B, then 
lirn,,, F,(Bn) = F,(B) holds. 

The set function F , ( . )  is continuous from above for closed sets, i.e. if 
is a monotonically decreasing sequence of closed sets with limit 

F ,  then lim,,,F,(Fn) = T,(F) holds. 

In  general F,(.) is not continuous from above. 

Proof: Suppose that (Bn)nEM is an increasing sequence of Borel sets in Rd 
with limit B = B, E B(Rd), then again using the notation explained 
in (4.4) and equation (4.5) continuity from below follows immediately by 

= lim Fa(Bn). 
n+cc 

In order to prove the second assertion assume that is a monotonically 
decreasing sequence of closed sets with limit F = F,. Note that since 
X,(w) E KZ holds for every W E R and every a: E (0, l] by defnition and since 
F, is closed for every n E N the set X,(w) n F, is compact. Consequently 
X,(w) n F, # 8 for every n E N implies that X,(w) n F # 8, which yields 
that Xzl(Fn) monotonically decreases to Xgl(F).  Having that the second 
assertion of Theorem 4.28 follows immediately from 

r,(F) = P(x;'(F)) = lim P(x,"'(F,)) = lirn %(F,). 
,403 R+M 
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The fact that in general F,(.) is not continuous from above can easily be 
demonstrated as follows: 
Suppose that (R, A, P) is a complete probability space, define a fuzzy ran- 
dom variable X* : R --+ by setting X*(w) := 1[1,21 for every W E R, and 
define for every n E N an open set G, by G, := (1, 1 + i). 
Then obviously r)r=l G, = Q) and ;rr,(G,) = 1 is satisfied for every n E N. 
However F,(@) = 0 holds, which completes the proof. H 

Considering G (.) , defined according to (4.10), two results analogous to Theo- 
rem 4.14 and Theorem 4.28 hold: 

Theorem 4.29 Suppose that ( R , A , P )  is a complete probability space and 
that X* : R --+ F: is a d-dimensional fuzzy random vector. For every 
B E B(Rd) and a E (0, l] let L(B) be defined according to (4.10) then: 

For every Bore1 set B E B(Rd) and every a E (0, l] the following 
equality holds: 

%(B) =sup{.lr,(K) : K C B , K  E ICd) =inf{.lr,(G) : G > B , G  open) 

Proof: According to Lemma 4.22 x,(B) = 1 - ;rr,(BC) is satisfied for every 
B E B(Rd) and every a E (0, l], which makes it possible to apply the pro- 
perties stated in Theorem 4.27. Furthermore obviously the identity 

l - inf{~,(G) : G > B, G open) = sup{l - rr,(G) : G > B ,  G open) 

holds for every B E B(Rd) and every a E (0, l] .  
If F C Rd is a closed set and X,(w) C F then there exists an integer n E N 
such that X,(w) C F n [-n , nId is fulfilled, which shows that 

holds for every closed set F and every a E (0, l ] .  Since Fn [-n, nId is compact 
this yields that L(F) = sup{~-(K) : K 2 F, K E ICd). 
Having this, suppose now that B E B(Rd), then the first part of the identity 
stated in the theorem follows directly from: 

7r (B) = 1 -F,(Bc) = 1 -inf{~,(G) : G > Bc,G open} -a 

= sup11 - T,(G) : G 2 BC, G open) 
= sup{.lr,(F) : F C B, F closed) 

= sup{~-(K) : K E B , K  E ICd) 

The second part of the identity can be proved similarly. 
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Theorem 4.30 Suppose that (R,A, P) is a complete probability space and 
that X* : R --+ .F: is a d-dimensional fuzzy random vector. For every 
B E B(IRd) and a E (0, l] let %(B) be defined according to (4.10) then: 

The set function G(.) is continuous from above, i.e. if (B,),,N is 
a monotonically decreasing sequence of Borel sets with limit B, then 
lirn,,, K,(B,) = 7r,(B) holds. 

The set function E,(.) is continuous from below for open sets, i.e. i f  
(Gn),,~ is a monotonically increasing sequence of open sets with limit 
G, then lirn,,, rr,(G,) = 7r,(G) holds. 

In  general L(.) is not continuous from below. 

Proof: The theorem can easily be proved by using Theorem 4.28 and by 
using the fact that for every Borel set B E B(Rd) and every a E (0, l] the 
identity z,(B) = 1 - 3,(Bc) holds. 
If is a decreasing sequence of Borel sets in Rd with limit B = B,, 
then obviously is an increasing sequence with limit BC = U;==, B:. 
Consequently applying Theorem 4.28 yields 

lirn 7r,(Bn) = lirn (l - T,(B;)) = l - T,(B') = %(B) , 
n--.m n+m 

which proves continuity from above. 
Furthermore if (Gn),,cN is an increasing sequence of open sets in Rd with 
limit G = U,"==l G, then it follows immediately that 

= lirn ~ ( { w  E R : X,(w) G G,)) 
12-00 

= lirn 7ra(Gn). 
,403 

Finally the fact that in general F,(.) is not continuous from below can easily 
be demonstrated as follows: 
Choose X* : R + F: and G, as in the proof of Theorem 4.28 and simply 
set F, = G:. Then obviously U:==, F, = IRd and %(F,) = 0 is satisfied for 
every n E N. However %(Rd) = 1 holds. This completes the proof. 



Chapter 5 

Fuzzy stochastic processes 

5.1 Motivation, basic definitions, and 
properties 

As a matter of fact in various disciplines of civil engineering and other related 
fields (compare [30]) measurements of (continuous physical) quantities one is 
interested in are more or less imprecise. By neglecting this imprecision the 
engineer gives away many pieces of information regarding the quantification 
of data. 
Consider for example the time-dependent assessment of the structural relia- 
bility of a building - in the majority of the cases few parameters of interest are 
accessible. Nevertheless, based on time series of assessments, it is demanded 
to forecast the reliability (safety) of the building for a certain time in the 
future. 
Classical deterministic structural analysis tries to  describe the correlation 
between so-called crisp input variables like load, geometry, material-specific 
parameters and so-called structural responses like stress or displacements by 
a model M, described by a function f (schematically depicted in Figure 5.1). 
In the realistic case that the measurements of the input variables are impre- 
cise naturally the output vectors themselfes are imprecise. Various different 
approaches concerning this issue like for example so-called a-level optimiza- 
tion can be found in [30]. 
If in addition the uncertainty of the input variables is described by both im- 
precision and stochastics, fuzzy random variables and fuzzy random vectors 
can be used, which results in so-called fuzzy stochastic structural analysis 
(again compare [30]). Not surprisingly such models are gaining more and 
more importance. 
Finally incorporating time dependence into considerations naturally leads to 
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Figure 5.1: Structural Analysis schematically 

Model M 

Crisp Input 
Variables 

Geometry 

Material- 
s ecific 

Crisp Output 
Variables (structural 
responses) 

Stresses 

Displacements 

input and output variables described by fuzzy stochastic processes in  discrete 
or continuous time (compare Definition 5.1 below). 
Discrete fuzzy stochastic processes can be regarded as time series with fuzzy 
data (as depicted in Figure 5.2). During the last years interesting generaliza- 

Figure 5.2: Time series with fuzzy data 
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tions of techniques for classical stochastical time series with real-valued data 
have been generalized to the case of non-precise data (compare [15]). 
These results are also applied in civil engineering, whereby mostly only sub- 
classes of fuzzy numbers with l-cuts consisting only of single points and so- 
called a-discretization (describing a fuzzy number by finitely many a-cuts) 
is used (compare [31]). 

In the remaining section a general definition of fuzzy stochastic processes 
in continuous as well as in discrete time will be stated, separability will be 
defined, and, using this notion, it will be shown that similar to classical 
separable stochastic processes supremum, infimum, limes superior and limes 
inferior will be fuzzy random variables again (compare [44]). 

Definition 5.1 Suppose that (R, A, P )  is a complete probability space and 
that T G R is an open or closed interval (possibly entire R), or T = N .  Then 
every family (X,*)tcT of fuzzy random variables according to Definition 4.1 is 
called fuzzy stochastic process on (R, A,  P ) .  
If T = N holds, then (X,*)tET is called fuzzy stochastic process in discrete 
time. If T is an open or closed interval then (X,*)tET is called fuzzy stochastic 
process in continuous time. 
For every W E R the fuzzy-valued mapping t H X,*(w) is called fuzzy path of 
the process (X,*)tcT. 

Remark: Note that every fuzzy stochastic process in discrete time is nothing 
else but a sequence of fuzzy random variables. 

It is well known from measure theory that given a pointwise bounded sequence 
of random variables (i.e. a stochastic process in discrete time) 

sup X,, inf X,, as well as 
n E N  nEN 

lim sup X, : = inf sup{Xn7 Xn+17 . .) and 
n+co n E N  

are random variables again (compare [2], [13]). A similar result holds for 
stochastic processes in continuous time if the process is separable (compare 
[1117 1241). 
It was shown by Wang and Zhang [44] that similar results hold for fuzzy 
stochastic processes in discrete time (X,*)tEN and fuzzy stochastic processes 
in continuous time (X,*)tET respectively. Unfortunately some of the results 
stated in [44] are simply wrong (see Example 5.3 and the subsequent remark) 
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- nevertheless the main results (which are frequently used by engineers) re- 
main true albeit the corresponding proofs are a bit more difficult. 

First of all analogous to [44] supremum and infimum of families of fuzzy 
numbers will be defined and it will be shown that this definitions are com- 
patible with the semiordering (1.20) explained at the end of Section 1.3. 

Definition 5.2 Suppose that (I an  arbitrary index set) is a family of 
- fuzzy numbers with a-cuts [X:], := [xi,, , xi,,] for every a E (0, l] and i E I .  

Then (xS)iEI is called cut-wise bounded i f  

[$!xi, , sup K,,] E (--m, m) 
i E I  

holds for every a E (0, l] .  

Given a cut-wise bounded family of fuzzy numbers at first sight it 
seems natural to define the supremum supiEI(x:) and the infimum infiEI(x:) 
of the family ( x ? ) ~ , ~  as those fuzzy numbers with a-cuts 

respectively for every a E (0, l ] .  
This surely works for finite index sets I, however unfortunately in general 

- 
( [ s u P ~ ~ I  9,. , s " P i ~ ~  xi..]) ,E(0, and ( [infiEI p,, , infiEI G,,]) , E ( O , ~ I  are not 
families of a-cuts of a fuzzy number as the following counter-example shows: 

Example 5.3 Consider the following sequence (x*,),,~ of fuzzy numbers 
defined via their a-cuts by 

(5.2) 
Calculating the first part of (5.1) for this sequence immediately yields 

[0, l] if a E (0 ,  2-l) } 
'da E (0711, 

which according to Theorem 1.4 is not a family of a-cuts of a fuzzy number 
since 

[SUP Zn,, , SUP ~ n , , ]  = 10, l] # {o) 
a<1/2 

nEN n € N  

holds. An example falsifying that ( [ infiEI gi,a , infiEI %,,l) is a family 
ff€(0,1] 

of a-cuts of a fuzzy number can be constructed analogously. 
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- Remark: Note that in [44] it is stated that ([supiEI gi,, , supiEI ~ i , a ] ) , ~ ( ~ , ~ ~  

and ([infisI gi,, , infiEr ~ i , , ] ) , ~ ( ~ , ~ ,  are families of a-cuts of a fuzzy number, 

and that this is an essential result which is used throughout their paper. 
However this is falsified by Example 5.3. 

Despite the fact that for a cut-wise bounded family ( x : ) ~ ~ ~  in general the 
- 

fami1ies ( [ s u ~ i r ~  p,, , Sup," xi,,]) YE(O,ll and ( [ i n f i € ~  gi,, i n f i ~ ~  zip]) ,E(O,ll 

are not families of a-cuts of a fuzzy number, both families are nested monoton- 
ically decreasing families of compact non-empty intervals in a .  Consequently 
according to Theorem 1.5 and Theorem 1.36 there exist fuzzy numbers (in 
fact the convex hulls), which will be denoted by supiEr X: and infiEI X: re- 
spectively, such that 

and [ inf xf] = [ inf X inf ?E,,,] 
~ E I  a: ~EI-", ' ~ E I  . (5.4) 

holds for X-almost every a E (0, l] (following the proof of Theorem 1.36 in 
fact (5.3) and (5.4) even hold outside a countable subset of (0, l ]) .  

Definition 5.4 Given a cut-wise bounded family (x:)~,~ of fuzzy numbers 
throughout the rest of the thesis the supremum supiEI X: and the infimum 
infiEI X: are defined as the convex hulls of the families 

([SUP i E I  t,, , sup i E  I E. , ] )  and ([inf X inf %,,I) 
, ~ ( O , l l  ~ E I  ' z E I  ' a € ( O , l I  

respectively (compare Theorem l .  5 and Theorem l .  36). 

The following lemma shows that this definition of the supremum and infimum 
is compatible with 5 in (1.20): 

Lemma 5.5 Suppose that (x:)~,~ is a cut-wise bounded family of fuzzy num- 
bers, let the supremum supiEIx~ E 3: and the infimum infiEI X: E 32 be 
defined according to Definition 5.4. Then supiEr X: is the least upper bound 
and infiEI X: is the greatest lower bound of the family (x:)~,~ with respect to 
the semiordering 5 i n  (1.20). 

Proof: Set S* := supiEI X: E F: and [S*], =: [s,,~,] for every a E (0, l], 
then it follows from the proof of Theorem 1.36 that 

[S*],  = [S,, B,] > [SUP h,, SUP zi,,] 
i€ I i E I  

(5.5) 
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holds for all a E (0, l] .  Suppose that A G (0, l] is the set for which equality 
holds, then again according to the proof of Theorem 1.36 (0, l] \ A is a 
countable set. 
Because of (5.5)  sup,,^ Zi,, I B, holds for every a E (0, l]. Since S,, as a 
function of a, is monotonically increasing and left-continuous in a (compare 
Theorem 1.4 ), it follows that for every ,8 E (0, l] \ A  and every monotonically 
increasing sequence (at) t ,~ in A, that converges to p, limt,, zak = 50 holds. 
Because of 2 s-k = supiEI gi,,k and the fact that limk,,gi,,k = g i ,  for 
every i E I it follows immediately that 2 g i , ~  holds for every i E I. 
This shows that zp 2 supiEI gi,@ is satisfied for every ,B E (0, l] \A .  Since zp 2 
supiEI gi,@ surely holds for every /3 E A, this completes the proof that supiEI X: 

is an upper bound of the family (X;)~€I with respect to the semiordering 
(1.20), i.e. 

X; 5 supx: = S* 
ZEI 

holds for every j E I. 
It remains to show that supiEI X; is the least upper bound with respect to the 
semiordering 5. Suppose that U* E .F: is another upper bound with respect 
to 5 and denote by [%,E,] the a-cuts of U*. Then it follows immediately 
from (1.20) that [supiEI gi,, , supiEIZi,,] 5 [%,Q] holds for every a E (0, l], 
which implies that 

[L, S,] 5 [G, Eff] for every a E A. 

Since both S* and U* are fuzzy numbers, it follows from Theorem 1.4 that 
[S,, S,] 5 [S, E,] also holds for every a E (0, l] \A ,  which shows that S* 5 U*,  

and therefore completes the proof that S* = supiEI X: is the least upper bound 
of the family (x;)~€I. 
The fact that infiEI X; is the greatest lower bound of the family with 
respect to the semiordering 5 can be proved analogously. 

Definition 5.6 Given a cut-wise bounded sequence ( x * , ) , ~ ~  of fuzzy numbers 
in the sequel the fuzzy numbers limes superior lim sup,,, X*, and the limes 
inferior liminf,,, X*,, based o n  Definition 5.4, are defined by 

lim sup X*, := inf sup{x*,, x*,+~, . .) and 
n+co n E N  

liminfx*, := s u p i n f { ~ * , , x * , + ~ , ~ - ~ )  
(5.6) 

n'cc n E N  

respectively. 

Remark: Note that the fact that lim sup,,, X*, and lim inf,,, X*, are fuzzy 
numbers follows immediately from the construction. 
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The next lemma shows that one could also define the limes superior and the 
limes inferior directly by starting from classical limes superior and the limes 
inferior of the boundaries g,,, and Zn,a of the a-cuts [xi],. 

Lemma 5.7 Suppose that (xi)iEN is a cut-wise bounded sequence of fuzzy 
numbers and let lirn sup,,, x i  and lirn inf,,, x i  be defined according to 
Definition 5.6. Then  for X-almost every a E (0, l] the following two equalities 
hold: 

[ lim sup X*] = [ lim sup g,,, , lim sup F,,,] 
,--+cc 01 n-+w ,+cc 

(5.7) [ lim inf X:] , = [ lirn inf gm,, , lirn inf G,,] 
71-00 n+cc n-cc 

Proof: For every n E N set z: := sup{x:, . a )  and y* := lim sup,,, X:. 
According to Theorem 1.36 for every n E N there exists a countable set 
N, C (0, l] such that 

[z~,,,L,,] := [%]a = 
k>n 

holds for every a E Ni.  In the same manner (also according to Theorem 
1.36) there exists a countable set N ,  such that 

holds for every a E Nc. Define A := (0, l] n Nc r l  N;, then obviously A 
is measurable and fulfills X(A) = 1. For every a E A it follows that 

[v*], = [ingr,,, , n E N  inf in,a l = [ n € N  inf sup gk,, , inf sup G,,] 
,EN k2n 

This completes the proof of the first part of (5.7). The second part can be 
proved in the same manner. W 

Suppose now that (X;)nEN is a sequence of fuzzy random variables ,on a 
complete probability space (R, A, P), such that for every W E R the sequence 
(X;(W)),~A is cut-wise bounded. Using Definition 5.4 and Definition 5.6 the 
supremum, the infimum, the limes superior and the limes inferior of the se- 
quence (X;)nEN can be defined (pointwise) for every w E R by: 

sup X: ( W )  := sup (x:(w)) 
(ncN ) ~ E N  

(S& X;) (W) := n E  inf A (x:(w)) 

( lim sup X:) (U)  := lirn sup 
n+co n-00 

( lirn inf X:) (W) := lirn inf 
n+co n--03 
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Obviously every mapping supnEN X:, inf,,, X:, lim sup,,, X,*, as well as 
lim inf,,, X: is a fuzzy-valued mapping on (R, A, P )  by construction. In 
addition (and that is the interesting point) each of these four mappings is a 
fuzzy random variable according to Definition 4.1. This is the content of the 
next theorem. 

Theorem 5.8 Suppose that (Cl, A, P )  is  a complete probability space, and 
that (X:)nEn is a fuzzy stochastic process in discrete t ime (i.e. a sequence of 
fuzzy random variables), such that for every W E R the sequence (X,*(w)),,N 
i s  cut-wise bounded according to Definition 5.2. 
Then  sup,,, X,*, inf,,, X:, lim sup,,, X,*, and lim inf,,, X,* defined accor- 
ding to (5.8) are fuzzy random variables on  (R, A,  P ) .  

Proof: First of all consider S* := sup,,, X,*, which is a fuzzy-valued mapping 
on R. It follows from the construction of the convex hull, compare Theorem 
1.5 and Theorem 1.36, and from Definition 5.4, that 

holds for every a E (0, l] and every W E 0. Fix a E (0, l] and suppose that 
(ak)kEN is a strictly increasing sequence in (0, a )  that converges to a .  Then 
obviously 

holds, which implies that 

is satisfied for every W E R. Consequently if follows immediately (for example 
by applying Lemma 1.11) that 

- 
&(W) = k-m lim ( sup ,c, ( f~,,,,(w))) 

holds for every W E R. Using the well-known fact that the supremum of every 
(pointwise) bounded sequence of real-valued random variables is itself a real- 
valued random variable (compare [2], [13]) it follows that S, and 3, are 
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(pointwise) limits of measurable functions according to (5.14) and therefore 
measurable too. Since cu E (0, l] was arbitrary it follows directly by applying 
Theorem 4.12 that S* = supnEN X,* is a fuzzy random variable. 
The assertion that infnEN X,* is a fuzzy random variable can be proved com- 
pletely analogous. 
Having this and looking back at Definition 5.6 and (5.8) it follows immedi- 
ately that lim SUPnE~ X,*, and lim infnEn X,* are fuzzy random variables too. I 

Given these results for fuzzy stochastic processes in discrete time it is possible 
to prove similar results for so-called separable fuzzy stochastic processes in 
continuous time. 
Before giving an exact definition of a separable fuzzy stochastic process 
in continuous time the classical case of (real-valued) separable stochastic 
processes in continuous time and some basic properties are briefly discussed. 

Remember the following definition of a (real-valued) separable stochastic 
process in continuous time (compare [l11 and [24]). Thereby cls(A) as before 
denotes the closure of the set A. 

Definition 5.9 Suppose that (R, A, P )  is a complete probability space, and 
that (Xt)tET is a (real-valued) stochastic process in continuous time (i.e. T is 
an open or closed interval). Then (Xt)tET is called separable, if there exists 
a countable set D which is dense in T ,  and a set N E A, fulfilling P ( N )  = 0,  
such that for every to E T and every E > 0 

holds for every W E Nc 

Remark: Note that for a general stochastic processes in continuous time 
(Xt)tET neither SUPtE~ Xt nor inftET Xt need to be measurable, however mea- 
surability can be proved for separable stochastic processes, which is a propo- 
sition of the following lemma (again compare [ l l ]) .  
Furthermore note that assuming that a process is separable is not a strong 
restriction, compare [ l l ] .  

Lemma 5.10 Suppose that (R, A, P )  is a complete probability space, and 
that (Xt)tET is a separable stochastic process in continuous time with cor- 
responding sets D and N. Then for every open interval I G T and every 
W E Nc the following equalities hold: 

sup Xt (W) = sup Xt (W), inf Xt (W) = inf Xt (W) 
t E I  t€DnI ~ E I  t€DnI 
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Proof: First of all notice that obviously suptEr Xt(w) 2 Xt(w) holds 
for every W E R. In order to prove the opposite inequality suppose that 
t E I. Since t is an inner point of I (open) there exists E > 0 such that 
( t  - E, t + E) C I. Separability of (Xt)tET implies that for every W E Nc 

holds, from which it follows immediately that 

Since t E I was arbitrary this proves the first part of equation 5.11 for every 
W E Nc. The second part can be proved similarly. H 

Again suppose that (R, A,  P) is a complete probability space, and that (Xt)tET 
is a separable stochastic process in continuous time. Remember the following 
definition of the l imes superior of (Xt(w))tET at to and the l imes inferior of 
( X t ( ~ ) ) t E T  at to E T for every W E R: 

lim sup Xt(w) := inf sup X,(w) : s E T n (to - l l n  , to + l l n )  } 
t--.to n E  N { (5.12) 

lim inf Xt(w) := sup inf X,(w) : s E T n (to - l l n  , to + l l n )  } 
t,t0 n € N  

Proposition 5.11 Suppose that (R, A,  P )  is  a complete probability space, 
and that (Xt)tET is  a (real-valued) separable stochastic process in continuous 
t ime.  Furthermore suppose that [inftET Xt (W) , SUPtE~ Xt (W)] C (-m, m) for 
every W E R. T h e n  for every open interval I C T both suptEIXt : R -+ R 
and inftEI Xt : R -+ R are random variables (i.e measurable). 
Furthermore for every to E I both mappings limsup,,,, Xt : R -+ R and 
lim inft,,, Xt : R -+ R, defined according t o  (5.12), are random variables. 

Proof: For every W E R set Y(w) := suptE1 Xt(w) < m .  Since (R, A, P) is 
complete, for every c E R it follows immediately from Lemma 5.10 that (D 
and N as in Definition 5.9) 

= {W E N : supXt(w) < c }  U {W E Nc : sup Xt(w) < c }  
t€I t€DnI 
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Since the system Q1 = {(--m, c] : c E R )  is a generator of the Bore1 sets B(B) 
(compare [2], [13]) this shows that Y is measurable, i.e. a random variable. 
Measurability of i n f t € ~  Xt can be proved in completely the same manner. 
It remains to prove the measurability of lim sup,,,, Xt and lim inft+,, X,, 
which can easily be done as follows: 
Since I is open, there exists no E N such that (to - l l n ,  to + l l n )  C I G T 
holds for every n 2 no. Consequently it follows from the first part of the 
proof that for every n 2 no the mapping Yn : S2 t R, defined by 

is measurable. Since limsup,,,, Xt(w) = infnLno Yn holds measurability of 
lim sup,,,, X, follows immediately. Measurability of lim inf,,,, X, can be 
proved analogously. I 

The notion of separability of a stochastic process can be extended to the 
case of fuzzy stochastic processes in the following way: 

Definition 5.12 Suppose that (R, A, P )  is  a complete probability space and 
that (X,")tET is a fuzzy stochastic process i n  continuous time. Then  (X,")tET is 
called separable if for every a E (0, l] both (real-valued) stochastic processes 
(xt,,)tEr and (&,,),A are separable according to  Definition 5.9. 

Remark: Note that Definition 5.12 only demands that for every a E (0, l] 
there exists a countable dense subset D, of T and a set N, E A, fulfilling 
P(N,) = 0, for every a - it is not demanded that there exist simultaneous 
sets D and N for every a, which would be a much stronger requirement. 

Given a fuzzy stochastic process in continuous time, an open in- 
terval I c T, and a point to E I, then using Definition 5.4 limsup,,,, X," 
and lirninf,,,, X," can be defined analogous to (5.12) by 

limsupX;(w) := inf sup X,*(w) : s E T n (to - l l n  , t o  + l l n )}  
,+to n€N . (5.13) 

liminfX;(w) := supinf X:(w) : s E T n  ( t o  - l l n ,  to+ l l n ) }  
t h t o  n E N  

for every W E R. 

Remark: Note that if is a real-valued stochastic process then (5.13) 
coincides with (5.12). 

The following measurability result analogous to Proposition 5.11 can be 
proved (compare [44]) : 
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Theorem 5.13 Suppose that (R, A, P) is a complete probability space, that 
(X,*)tE~ i s  a separable fuzzy stochastic process in continuous t ime,  and that 
I C T is  an  open interval. Furthermore suppose that the family (X,*(W)),,~ 
i s  cut-wise bounded for every W E R. 
Then  both sup,,~X,* : R -+ .F: and inftEI X,* : R -+ .F: are fuzzy random 
variables according to Definition 4.1. 
Furthermore for every to E I both mappings lim X,* : R -+ .F: and 
liminftdt, X,* : . R  -+ .F:, defined according to (5.12), are fuzzy random 
variables according to Definition 4.1. 

Proof: For every W E R using Definition 5.4 set S*(w) := suptEI X,*(w) E F:. 
Fix a E (0, l] and suppose that (ak)k,n is a strictly increasing sequence in 
(0, a) that converges to a .  Just as in the proof of Theorem 5.8 it follows 
from the construction of the convex hull (again compare Theorem 1.5 and 
Theorem 1.36) that 

holds for every cu E (0, l] and every W E R, which in turn shows that 

- 
S,(w) = k - r w  lim fft,,,(w))) and 

is satisfied for every W E R. 
Because of the fact that the process (X,*)tET is separable by assumption it 
follows that for every a k  there exists a countable set Dk and a set Nk E A, 
fulfilling P(Nk)  = 0, such that (5.11) is satisfied for the process (fTt,,k)tEI 
and the process simultaneously for every W E Ni. 
For every W E R and every k E N define 

- 
(W) : = sup xt,,, (W) and Yk (W) : = SUP (W) ,  

t€ I ~ E I  

then according to Proposition 5.11 both yk, Yk : R -t R are measurable for 
every k E N. Having this using (5.14) immediately yields that 3, and 2, are 
measurable functions too. 
Since a E (0, l] was arbitrary this completes the proof that S* = suptEI X,* 
is a fuzzy random variable according to Definition 4.1. 
The fact that inftEI(X,*) : R -+ .F: is a fuzzy random variable according to 
Definition 4.1 too can be proved completely analogous. 
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It remains to prove the measurability of lim X,* and lim inft,to X,*, 
which can easily be done as follows: 
Since I is open, there exists no E N such that (to - 1/71,, to + l l n )  G I G T 
holds for every n > no. Consequently it follows from the first part of the 
proof that for every n 2 no the mapping 2; : 0 + FE, defined by 

Zi(w) := sup X:(w) : s E T n (to - l l n ,  t o  + l / n ) ) ,  { 
is measurable. Since lim X,*(w) = infnzn0 Z;(W), applying Theorem 5.8 
shows that lim X,* is a fuzzy random variable in the sense of Definition 
4.1. The assertion for lim inftdt0 X,* can be proved analogously. 

Remark: Obviously separability of a fuzzy stochastic process in continuous 
time could also be defined directly, i.e. without concentrating on the corre- 
sponding a-cuts, by using one of the metrics explained in Section 1.5. 
For example for a fuzzy stochastic process with values in .F:,, one 
could use the metric 6&,, and say that (X,*)tcT is (strongly) separable if there 
exists a countable set D, dense in T ,  and a set N E A, fulfilling P ( N )  = 0, 
such that for every to E T and every E > 0 

X; (U)  E C~S, {x:(w) : S E D n (to - c, to + C ) )  (5.15) 

holds for every W E Nc (thereby cls, denotes the closure with respect to 
the metric Q,,). Obviously this notion of separability is much stronger than 
Definition 5.12. 

This section will be concluded by the definition of (and a result on) strongly 
continuous fuzzy stochastic processes in continuous time. 

Definition 5.14 Suppose that (0, A,  P )  is a complete probability space and 
that (X;)tET is a fuzzy stochastic process in continuous t ime with values in 
F:,c. Then  (X;)feT is called strongly continuous if there exists a set N E A, 
fulfilling P(N) = 0, such that for every W E NC the path t H X,*(w) E F:,, is 
a continuous mapping with respect t o  the metric 6;1,,. 

Remark Any other metric explained in Section 1.5 can be used in order to 
define continuity of a fuzzy stochastic process in continuous time. 
Furthermore if fulfills Definition 5.14 then obviously for every W E NC 
and every cr E (0, l] both paths t H Xt,a(w) and t H &(W) are continuous. 
(This is a direct consequence of the definition of the metric 6;1,,.) 

Analogous to the real case (compare [ll]) strong continuity of a fuzzy sto- 
chastic process implies separability: 
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Theorem 5.15 Suppose that (R, A, P) i s  a complete probability space and 
that ( X t ) t E ~  i s  a strongly continuous fuzzy stochastic process in continuous 
t ime  with values in F:,,. T h e n  i s  separable. 

Proof: Set D := Q n T, then for every to E T and every e > 0 it follows 
immediately that 

holds for every W E N C .  Using the definition of the metric 6&,, on F:,,, this 
shows that both (xt,a)tET and (&,a)tEr are separable (real-valued) stochastic 
processes in continuous time according to Definition 5.9 for every cu E (0, l]. 
Looking at Definition 5.12 this completes the proof. H 

5.2 Independence of fuzzy random vectors 

Definition 5.16 (Independence of fuzzy random vectors) 
Suppose that (R, A, P )  i s  a complete probability space and that X* : R --+ F: 
and Y* : R -t 3: are d-dimensional fuzzy random vectors. T h e n  X* and 
Y* are said t o  be independent if for arbitrary Bore1 sets B1, B2 E B(Rd) the 
following equality holds for every a E (0, l]: 

Analogous to  the notation in Theorem 1.20 and Proposition 1.21 in Section 
1.2.1 set 

ICB := { K  E K: : K L B)  and ICB := {K E K: : K n B # 0) (5.17) 

for every B E B(Ikd) as well as 

Note that & is closed under intersection, in fact ICB1 n ICB2 = ICBlnB2 holds, 
and that ( I C ~ ) ~  = I C B c  is satisfied. Having this it follows immediately that 
the generated a-algebras &(gl) and A u ( g 2 )  respectively coincide, which, 
using Proposition 1.21, implies that 

holds. 
Using notation (5.17) obviously independence (5.16) can be reformulated 
equivalently as 
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for all Borel sets B1, B2 E B(Rd) and every a E (0, l]. 

The above notion of independence has the following implications summa- 
rized in the next theorem. 

Theorem 5.17 Suppose that (R, A,  P) is a complete probability space and 
that X* : R -+ 3: and Y* : R + 3: are d-dimensional fuzzy random vectors. 
If X* and Y* are independent according to Definition 5.1 6, then the following 
assertions hold: 

1. For all sets g', 6 E A,(&) the following equalzty is fulfilled for every 
a E (0, l]: 

2. X, and Y, are independent as K:-valued mappings on (R, A, P) with 
respect to the Borel G-algebra B((K:, h)) for every a E (0, l] .  

3. For every cx E (0, l] and every u E Sd-l the support functions sx,(,)(u) 
and sY,(,)(u) (as functions of W) are independent real-valued random 
variables. 

Proof: Since 8 is closed under intersection and generates A,(&), it is well 
known from probability theory (compare [3]) that the fulfillment of (5.20) 
immediately implies the fulfillment of (5.21) for every pair %'l, g2 t A,(&) 
and every a E (0, l]. This proves the first assertion. 
The second assertion is an immediate consequence of the first assertion since 
according to (5.19) A,(&) = A,(&) 2 B((K:, 6 ~ ) )  holds. 
In order to prove the third assertion remember that according to Theorem 1.24 

holds for all K, L E K:, which implies that IsK (U) - sL(u) l 5 bH (K, L) for 
every u E Sd-l. Therefore the mapping Tu : K: + R,  defined by 

for every K E K:, is Lipschitz-continuous (with Lipschitz constant 1) and 
hence Borel measurable. 
Because of the fact that 

holds it follows again by well-known results from probability theory (com- 
pare [3]) that sx,(,)(u) and s ~ , ( ~ ) ( u )  (as functions of W) are independent 
real-valued random variables if X* and Y* are independent according to 
Definition 5.16. 
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Proposition 5.18 Suppose that (R,  A, P )  i s  a complete probability space 
and that X* : R + F: and Y* : R -+ F: are independent fuzzy random vari- 
ables. T h e n  and as well as and Y, are independent real-valued 
random variables. 

Proof: For fuzzy random variables X* : R + F: and Y* : R -, 3: according 
to Example 1.22 the support function fulfills 

- 
Y a ( 4  = S Y ~ ( W ) ( ~ ) ,  L ( w )  = - s ~ ~ ( w ) ( - l ) .  

Consequently appying Theorem 5.17 it follows immediately that X ,  and F, 
as well as and Y ,  are independent real-valued random variables. H 

5.3 A Strong Law of Large Numbers for fuzzy 
relative frequencies 

The purpose of this section is to prove that given a sequence (X:)nEn of pair- 
wise independent, identically distributed d-dimensional fuzzy random vectors 
for every Bore1 set B E B(Rd) with probability one the relative frequencies 
h:(B, W )  converge to P*(B) for n  + CO even with respect to various diffe- 
rent metrics explained in Section 1.5 (h:(B, W )  defined as in Section 2.1 and 
P*(B) defined according to (4.11)). 
The following definitions and lemmas are preliminary steps going in that di- 
rection. 
Given a sequence of d-dimensional fuzzy random vectors on a proba- 
bility space (R,  A, P )  then the lower and upper relative frequencies of level 
a for every W E R and every B E B(Rd) analogous to Section 2.1 are defined 
by 

i~ { l  ,..., n ) :  [X:(w)],CB 
n  

and 

i E { l , .  . . , n)  : [X%*(W)], n B # 0 
n  } (5.23) 

respectively. 
Moreover for every W E R and every B E B(Rd) the fuzzy relative frequency 
h*,(B, W )  E F: analogous to Section 2.1 is defined as the convex hull of the 
family ( [bn , (B ,  W ) ,  %,,(B, ~ ) 1 ) , ~ ~ ~ , ~ ~ .  
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Definition 5.19 Suppose that (R, A, P) is a complete probability space, that 
X* : R + .F$ i s  a d-dimensional fuzzy random vector, and that B E B(Rd) 
i s  a n  arbitray Borel set. Then  for every a E (0, l ]  the random variable 

: R + (0, l ) ,  defined by 

T $ ~  (W) : = 1 if x , ( w ) n B # @  
0 otherwise (5.24) 

is called a-cut hitting variable of B induced by X* and the random variable 

1% : R + (0, l ) ,  defined by 

(W) := 
1 ifX,(w)C_B 
0 otherwise }vw E R, 

i s  called a-cut inclusion variable of B induced by X* 

Remark: Throughout the whole section the notation explained in Section 4.3 
will be used. 

Since X* is a d-dimensional fuzzy random vector obviously T$m and I$m are 
measurable for every a E (0, l]. Furthermore T:m and I$? are integrable for 
every a E (0, l ]  and the expectations IE(T5) and ~ ( 1 ; ~ )  can be calculated 
as follows: 

IE (T;~)  = P ({W E R : x,(w) n B # 0)) = ?ib. (B) (5.26) 

Lemma 5.20 Suppose that (R, A,  P) is a complete probability space, that 
X*, Y* : R + .F: are d-dimensional fuzzy random vectors and that B E B(IRd) 
i s  a n  arbitray Borel set. If X* and Y* are independent then T!m and T; as 
well as I$? and Ife are independent random variables for every a E (0, l ] .  

Proof: It is well known from probability theory (compare for instance [3]) 
that the independence of two events El, E2 implies the independence of the 
generated a-algebras A, ({E1)) and A, ({E2)). 
Consequently if X* and Y* are independent according to Definition 5.16, 
then obviously the events {W E R : X,(w) C B) and {W E R : Y,(w) C B) 
respectively, and the corresponding generated a-algebras are independent, 
which immediately shows that for every a E (0, l] Tge and TE as well as 
I$m and I:' are independent random variables.. 



CHAPTER 5.  FUZZY STOCHASTIC PROCESSES 136 

Lemma 5.21 Suppose that ( R ,  A, P )  is  a complete probability space, that 
X*,  X;,  X,*, . are pairwise independent, identically distributed d-dimensional 
fuzzy random vectors and that B E B(Rd)  is  a n  arbitrary Borel set. Futher- 
more for every a E (0 ,  l ]  let F,  and G be defined according t o  (4.10). 
T h e n  for every a E (0,  l ]  there exists a set N E A, fulfilling P ( N )  = 0, such 
that for every W E Nc the following identities hold: 

lim K,,,(B, W )  = T,(B) 
n+w 

(5.28) 

Proof: For fixed B E B(Rd) ,  every a E (0,  l ] ,  and every n E N, define TknIa 
and according to (5.24) and (5.25) respectively. 
Suppose now that B E B(Rd)  and a E (0,  l ]  are fixed. To simplify matters 
for every n E N and every W E R set 

( W )  := T n w  and In(w) := I & ~ ) ~ ( W ) .  

Since by assumption X;,  X i ,  . -  . are pairwise independent Lemma 5.20 im- 
plies that both (Tn),EN and (In)nEM are sequences of pairwise independent 
random variables. Because of the fact that obviously all Tn and all In are in- 
tegrable and identically distributed the Strong Law of Large Numbers (The- 
orem 2.1) can be applied to both sequences, which yields the following result: 
There exist two sets N I ,  N2 E A, fulfilling P ( N l )  = P ( N 2 )  = 0 ,  such that 
both 

1 
n 

lim - CT,(W) = lim &,,(B,w) = E(T;-) = F,(B), 
n--+m n n+m 

i=l 

and . n 
l 

lim - C & ( W )  = lim bn,a ( B ,  W )  = E ( I ; ~ )  = G ( B ) ,  
n-+m n n-+W 

i=l 

holds for every W E ( N I  U N2)c. 
Setting N := NI U Nz completes the proof since P ( N )  = P ( N l  U N2)  = 0. H 

The next main step consists in finding a simultaneous set N E A of proba- 
bility zero for X-almost every a E (0,  l ]  and in passing over from 77, to p, 
and from to 2,. 
Looking back to Section 4.3, Lemma 4.23 can be used to prove the following 
simple result, which will be helpful in the sequel: 

Lemma 5.22 Suppose that ( R , A ,  P )  is  a complete probability space, that 
X* i s  a d-dimensional fuzzy random vector and that B E B(Rd)  is  a Borel 
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set. Using the notation from Section 4.3 define functions g ,  g : (0, l] -+ [0, l] 
by setting g(a)  := %(B) and g(a) := P,(B) for every ;E (0, l], then the 
following assertions are fulfilled: 

a If g is continuous at a 0  E (0, l] then p,,(B) = T,,(B) holds. 

a If g is continuous at a 0  E (0, l] then k0 (B) = E, (B) holds. - 

Proof: Note that it follows immediately from Lemma 1.4 and Lemma 4.23 
that g is a monotonically decreasing, left-continuous function, that g is a 
monotonically increasing, left-continuous function, and that p, (B) 2 F, (B) 
as well as p (B) < .rr,(B) holds for arbitrary a E (0, l ] .  

4 

Suppose now that p,, (B) - T,, (B) =: c > 0, then 

follows for every a > a o ,  which implies that g can not be continuous at a 0  

and therefore proves the first assertion. The second assertion can be proved 
similarly. I 

Theorem 5.23 Suppose that (R ,  A, P) is a complete probability space, that 
X* ,  X,*, X,*, . . are pairwise independent, identically distributed d-dimensional 
fuzzy random vectors and that B E f3(IRd) is an arbitrary Bore1 set. 
Then there exists a set A C (0, l], fulfilling X(A) = 1, and a set N E A, ful- 
filling P ( N )  = 0, such that for every a E A and every W E NC the following 
identities hold: 

lim &,,(B, W) = p, (B) 
n'ca 

(5.30) 

lim bn,,(B,w) = P (B) 
n-+m --a 

Proof: Define the functions g, ij as in Lemma 5.22 and denote by A = S ( g ,  g) 
the set of all points a E (0,lT at which both g and g are continuous. ~ e c a u s e  
of the fact that g and g are monotonic bounded functions the set A C (0, l] 
is the complement of a countable set (compare [16]), and therefore has full 
measure, i.e. X(A) = 1. Furthermore A is (as subset of a separable set in a 
metric space itself) separable, so there exists a countable dense set A. C A. 
Note that by construction according to Lemma 5.22 p -01 (B) = 7r,(B) and 
p,(B) = %(B) holds for every a E A. 
Since countable unions of sets of probability zero also have probability zero, 
applying Lemma 5.21 yields that there exists a (simultaneous) set N E A for 
every a E Ao, fulfilling P ( N c )  = 1, such that 
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holds for every a E A0 and every W E NC. This result will now be extended 
from A0 to A by using monotonicity in the following way: 
For arbitrary but fixed W E Nc define functions g ,gn : (0,  l ]  -+ [ O ,  l ]  for 

-n 
every n E N by setting 

( a )  := ( B  W )  and 9 ( a )  := !L,,(', W )  
-n 

for every a E (0, l ] .  It follows immediately from the construction that g,( .)  
is monotonically decreasing and g (.) is monotonically increasing. 
Since W E Nc is fixed according t ~ i ~ u a t i o n  (5.32) both lirn,,, % ( a )  = ~ ( a )  
and lirn,,, gn ( a )  = g(a)  holds for every a E Ao. 
Choose an arbitrary Go E A and let E > 0,  then by construction there exists 
6 > 0 such that for every a E (a0 - 6 ,  a0 + 6)  both 

and 

is satisfied. Choose points a l ,  an E A. fulfilling a0 - 6 < al  < a. < a2 < 
a0 + 6, then there exists an integer no E N ,  such that 

E 
max { ma* {lgn(ai) - g(ai) l , Ign(ai) - s(ai) l } }  < 5 for all n 2 no. 

i€{1 ,2)  

Using monotonicity this implies that both 

holds for every n 2 no, which directly shows that lim,,,g,(ao) = g(a0) 
and lim,,, g ( a o )  = g(aO) since E > 0 was arbitrary. This completes the 
proof of the ~ceorem. 

Having this a Strong Law of Large Numbers ( S L L N )  for fuzzy relative fre- 
quencies and fuzzy probability distributions induced by fuzzy random vectors 
can be stated and proved as follows (&h ,  defined as in Section 1.5 and P*(.) 
defined as in Section 4.3): 

Theorem 5.24 (SLLN for fuzzy relative frequencies) 
Suppose that (0, A, P )  i s  a complete probability space, that X*,  X;, X i ,  . . 
are pairwise independent, identically distributed d-dimensional fuzzy random 
vectors, and that B E B(Rd) i s  a n  arbitrary Bore1 set. 
T h e n  there exists a set N E A, fulfilling P ( N )  = 0,  such that for every 
W E Nc the following identity holds (p E [ l ,  m) arbitrary): 

lim (h:(', W )  , P(B)) = 0 n--+m 
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Proof: Again suppose that B E B(Rd) is fixed. Since for every W E R by defi- 
nition h i (B,  W) is the convex hull of the family ([bn,,(B, W ) ,  L,,(B, w)])aE(o,ll , 
according to (2.5) for every n E N 

holds for all except (at most) finitely many a E (0, l]. Since a countable union 
of finite sets is countable, it follows immediately that for all except countably 
many a E (0, l] (5.34) even is satisfied simultaneously for all n E N. Con- 
sequently applying Theorem 5.23 shows the existence of set A' C A C (0, l], 
fulfilling X(A1) = 1, and of a set N E A, fulfilling P ( N )  = 0, such that for 
every W E Nc and every a E A' 

holds (note that &(K, L) = max { Id-bl , /c-a/ ) holds for intervals K := [a,  b] 
and L := [c, d]). 
Consequently for arbitrary p 2 1 using Lemma 1.38 and Lebesgue's Domi- 
nated Convergence Theorem immediately yields 

for W E Nc, which had to be proved. 

Proposition 5.25 Under the assumptions of Theorem 5.24 the convergence 
(5.33) also holds with S,*(., .) replaced by the metric p;(. ,  .) (defined as i n  
Section 4.3) for any p > 1. 

Proof: This is an immediate consequence of Theorem 1.46 and Theorem 
5.24. 1 

Remark: Theorem 5.24 is a strong generalization of the SLLN stated in [32]. 
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Appendix 

6.1 Short introduction to Souslin sets 

Much of the material presented in this section can be found in [38]. 
Throughout this section NN denotes the set of all sequences in N = {l, 2, . . .}, 

denotes the set of all finite sequences in N including the empty sequence, 
which will be denoted by e. Elements of NN will be written in the form 
a = (a1,  Q , .  . .) and elements of in the form ( s l , .  . . , S,). 

For a E NN and k E N the finite sequence alk := (a l , .  . . , ak) is called the 
initial segment of a of length k .  If s E N<* then Is1 denotes the length of S.  
Furthermore if s = ( s l ,  . . . ,S,), t = ( - L l , .  . . , t,) E N<N, then t is called 
initial segment of s and s is called (possible) extension of t if m < n and 
si = ti Vi E { l , .  . . ,m). If t is an initial segment of s this will briefly be 
expressed by t 4 S.  

Definition 6.1 Let R be an arbitrary set and denote b y  5 a family of subsets 
of R. Then a function cP : N<N -+ 8, S H @ ( S )  =: A, is called a tree in 5. 
(The family {A,  : s E WN) will be called tree in 5 as well). 
Furthermore a tree cP is called regular, if At 2 A, whenever t 4 s holds. 

Remark: If {A, : s E W<") is a tree in 5 then it is p'ossible to derive a regular 
tree {B, : S E N<"} by simply defining 

for every s = ( s l ,  . . . , S,) E N<N. 
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Definition 6.2 Let R be an arbitrary set, 5 a family of subsets of R and 
{A, : s E W'") a tree i n  5 ,  then the set G({A,)), defined by 

is called Souslin set generated by the tree {A, : s E F ) .  
Furthermore the family of all Souslin sets generated by 5 will be denoted by 
G,,, (S), 2. e. 

%,,(g) = {G({A,)) : {A, : s E N"} is a tree in  5 . 1 
The following lemma shows that the Souslin operation contains countable 
unions and countable intersections. 

Lemma 6.3 Let R be an  arbitrary set and 5 a family of subsets of R, then 
G,,,($) contains 5 and all countable unions and countable intersections of 
elements i n  5 .  In  other words: 5,5, ,  Sa G GS,,(5) 

Proof: Suppose that A E 5 and set @ ( S )  = A, = A for every s E which 
gives G({A,)) = A E Gs,,(5). This proves that 5 5 GsOu,(~).  
Next let (Bn)nEN be a sequence in 5 and set A, = Bi for every s E with 
s = (i ,  sz, sg, . . .). This gives 

and shows that 5, G GsOu,(~). Furthermore if (Bn)nEA is a sequence in 5 ,  
then setting A, = Bi if Is1 = i gives a tree {A, : s E fulfilling 

This shows that 7j6 G,,,,(~) and completes the proof of the lemma. 

The following Theorem on the idempotence of the Souslin operation can 
be considered as one of the most important results in the theory of Souslin 
sets and plays an important part throughout this section. 

Theorem 6.4 Suppose 5 is a family of subsets of a given set R, then 

G,,, (G,,, (5))  = G,,, (5) .  
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Proof: Because of Lemma 6.3 Gs,,(G,,,,($)) > G,,,($) holds. Therefore it 
suffices to prove the other inclusion. 
If A E G,,,(G,,,($)) then there exists a tree {As : S E N<") in GSOuS(5) 
such that 

For every s E N<" and A, there exists a tree {B," : t E N < N )  in 5 fulfilling 

Consequently 
CO CO 

In other words: 

X E A a 3a E N" : for every n E N : 37, E N" : X E BY& Vm E N 

a 3a E N N  : g ( 7 n ) n ~ ~  E (N")" : X E B;;_ Vm, n E N 

It suffices to prove that there exists a tree {C, : S E N<") in $ such that 
A = G({Cs)). 

Claim: There exist bijections U : N X N - N ,  v : N A  X (PiM)" - N" and 
mappings p, $ : N<" ---+ N<" such that for every (a ,  ( y i ) )  E: N" X (W")" 
the following holds: 
If v(a,  (yi))  = p and S = ,Olu(n, m )  for some n, m E N then p(s) = aln and 
$ ( S )  = 7nIm. 

For the moment assume that such functions exist and define 

C, = B:::! E $ for every s E A'". (6.1) 

If X E A it follows by the above series of equivalences that there exists a E N" 
and (7i) E (NW)" such that X E B;& for all m, n E A. 
Set p := v(a, ( ~ i ) )  and take any k E N ,  then there exist unique n, m E N with 
u(n, m)  = k .  Therefore ~ ( P l k )  = aln, $(,Blk) = ynlm and X E CBlk = B;'_. 
Since k was arbitrary it follows that 
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This proves that A C G({C,)). 
On the other hand if X E G({C,)) then there exists P E NW such that X E Cpk 
for every k E N. Choose (a ,  ( y i ) )  E NW X such that v(a, ( y i ) )  = p. 
Fix m, n E W and set k = u(n, m) then it follows again that cp(P(k) = aln 
and $(PI k )  = ynlm. Consequently z E B O ' ~  Since m, n E W were chosen 
arbitrarily it follows immediately that X €'lm' 
This shows that B({C,)) C A and completes the proof if the claim is proved. 

Proof of the Claim: In order to keep notation as concise as possible, the 
following will be used throughout the proof: 
If a E N N  then a(k) := ak denotes the k-th coordinate for every k E N. 

(i) Define a function u : N X N - N by 

~ ( n ,  m) = 2n-1(2m - l ) ,  n, m E N. (6.2)  

Since u(nl, m') = u(n, m) for n, m, n' , m' E N is equivalent to 

it follows immediately that n = n' and therefore m = m', which proves that 
u is one-to-one. Furthermore u is easily seen to be onto, since every natural 
number can be decomposed in a product of primes. 
Obviously u is (strictly) monotonically increasing in both coordinates and 
fulfills n 5 u(n, m) for all n, m E N. 

Let the function ( 1 ,  r )  : N - N X N be defined in the following way 

(In other words ( 1 ,  r )  is the inverse function of u.) 

(ii) Given U define a function v : NW X (NW)W --+ W* in the following way: 

v(a, (7,)) ( k )  = u(a(k), ~ ( q ( r ( k ) ) )  for k E N (6.4) 

suppose that (a7 (y i ) )  7 (a', (7;)) E NW X (NW)' and (a ,  (X)) # (a', (r,!)) . 
If a # a' then there exists k E N such that a(k) # al(k). Since u is one-to-one 
it follows that 

and therefore 
v(., (ri)) # v(al, (7:)) 
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If, on the other hand yi # yi for some i E N then there exists j E N such 
that yi(j) # yi(j). Choose k so that l(k) = i and r(k) = j, then it follows 
immediately that 

(7,)) (k) = u(a(k) l ~l(k)(r(k))) # u(Q"(k), (~(k))) = v (a1, (y:)) (k). 

Therefore v is one-to-one. 
In order to show that v is also onto, let E NN be arbitrary and define 
(a1 (yi)) E NN X (NN)N by 

a(k) = l(P(k)), ( )  = ( ( U ( ) ) )  for all i, j, k E N. (6.5) 

It follows immediately that 

which proves that v is onto, and therefore bijective. 

(iii) It remains to construct the functions cp, $. 
Let S E N<N arbitrary. Pick P E NN and k E N so that s = Plk holds. Further- 
more choose (a, (yi)) E NN X (NW)N and n) m E N fulfilling v ((a, (%))) = P 
and u(n, m) = k. Having this define the function cp : - by 

Since n 5 u(n, m) = k the definition makes sense. Using (6.5) it follows 
immediately that 

In the same manner define the function $ : N<" - N<* by 

Since u(n, m) = k it follows that u(n, i) < k for every i E {l,. . . ,m) ,  which 
shows that $ is well defined. Again using (6.5) gives 

As S was arbitrary this completes both the proof of the Claim and the proof 
of Theorem 6.4. 4 
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Theorem 6.5 Suppose 5 is a family of subsets of a given set R, then GsoUs(5) 
is  closed under countable unions and countable intersections. 

Proof: According to Lemma 6.3 5,,56 2 G s o u s ( ~ )  holds for every family 5 
of subsets of R. Therefore 

(Gsms (S )  )g C Gsms (Gsms ( S ) )  = Gsous ( S )  and 

(Gsous 2 Gsms (Gsous (5)) = Gsws (5) 

This completes the proof. 

So far, no assumption, like being closed under unions or intersection, were 
imposed on the family 5 .  Especially if 5 is a a-algebra A the question nat- 
urally arises whether there exists a Souslin set A E GS,,(A) that is not 
measurable, i.e. A 6 A. It will be proved that the answer is no if (R ,  A, p)  is 
a complete a-finite measure space. 
Before doing that a first result is presented in order to demonstrate how large 
the family of Souslin sets is, if the generator 5 is the family O of all open 
sets in a metric space (R ,  d ) :  

Theorem 6.6 Suppose that ( 0 , d )  i s  a n  arbitrary metric space. Denote by 
O the topology induced by the metric d and by B(R) the Bore1 a-algebra 
(generated by the topology). Then  it follows that B(R)  C Gsms(0) .  

Proof: It is well known that every closed subset of a metric space is a count- 
able intersection of open sets. Namely if F is closed then obviously 

where K ( F , E )  = { X  E R :  3 y  E F with d(x ,y )  < E )  E O for every E > 0. 
Claim: B(R) is the smallest collection in 2" containing O ,  that is closed 
under countable intersections and countable unions. 
Suppose that R C B(R) is closed under countable intersections and countable 
unions and that R contains 0 .  Defining R' := {A E R : A" E R )  C R 
it follows that R' is closed under complementation and countable unions. 
Therefore R' is a a-algebra. Using the fact that for every open set B the 
complement BC is a countable intersection of open sets it follows that BC E R, 
proving that 0 C R'. Applying 

gives R' = R = B(R),  which completes the proof of the Claim. 
Because of O 5 G,,, (0) and the fact that according to Theorem 6.5 GsoUs(C3) 
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is closed under countable intersections and countable unions it finally follows 
that B(R) G GSms(O). 4 

As preintimated the case where 5 is a a-algebra will now be analyzed. Re- 
member the following definition. 

Definition 6.7 A measure space (R, A,  p)  is called complete if every subset 
of a set A E A of measure zero belongs to A. 

Remark: It is well known that every measure space (R, A, p)  can be completed 
easily. One just has to  consider the outer measure p* : 2" -+ R induced by 
p ,  which is defined by 

p*(A) = inf{p(B) : A C B and B E A), (6.6) 

and the a-algebra A* of all p*-mesurable sets. This gives a complete mesure 
space (R, A*, p*) fulfilling A G A* (compare for instance [2], [13]). 
Another also well known method, which provides a complete extension ;il of 
p with minimal domain, called completion of p ,  works as follows: 
Suppose that (R, A, p)  is a non-complete measure space and denote with N 
the family of all subsets of sets of measure zero. Futhermore define 

- 
A := { A u N : A e A a n d N € N )  and 

~ ( A u  N )  := p(A) for A E A, N E N .  

It can be shown easily that 2 is a a-algebra and that (R, 2, p) is a complete 
measure space. Moreover if p is a-finite, it can be proved that both construc- 
tions yield the same result, i.e. 2 = A* (compare [13]). 

The following lemmas will be very helpful. 

Lemma 6.8 Suppose that (R, A, p)  is an arbitrary measure space and denote 
by p* the outer measure defined according to (6.6). Then for every A 2 R 
there exists a set A E A such that A c A and p ( ~ )  = p*(A). 

Proof: Let A C R be arbitrary. If p*(A) = cm then set A = R. 
If p*(A) < cm it follows by (6.6) that for every n E W there exists a set 
A, E A fulfilling A G A, and p(A,) 5 p*(A) + i. Set B, = n;=, Ak for 
every n E W and A = nm, B,, then it follows immediately that A G A, 
B, \ A and A E d. Consequently 

from which p(A) = p*(A) immediately follows by considering n -+ m. This 
completes the proof of the lemma. 4 
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Lemma 6.9 Suppose that (R, A, p )  is a a-finite measure space. Then for 
every A C R there exists a set A E A such that A 2 A and p(A \ B )  = 0 for 
every set B E A containing A. 
If in addition (Cl ,  A ,  p )  is complete, then every subset of A \ B is measurable. 

Proof: Again let p* denote the outer measure induced by p according to 
(6.6) and suppose that A G R. If p*(A) < co choose A according to Lemma 
6.8 and suppose that Lemma 6.9 does not hold. Then there exists a set 
B E A with A c B and p ( ~  \ B )  > 0. Defining A := A \ (A \ B )  it follows 
immediately that A n (A \ B )  = 0, A U (A \ B )  = A and A G A. Therefore 

which is a contradiction and proves that p ( ~  \ B )  = 0 for every set B E A 
containing A. 
If on the other hand p*(A) = m ,  then choose a countable partition (Ci)iEn 
of R such that p(Ci) < oo for every i E N, which is possible since (R, A ,  p )  
is a-finite by assumption. Define Ai := A n Ci for every i E N, choose Ai 
according to Lemma 6.8 and set A := U:, E A.  
If B E A such that A C B, setting Bi = B n Ci E A it follows that 

Therefore 
00 

If in addition (R, A, p )  is complete, then every subset of A \ B is measurable 
since p(A \ B )  = 0. This completes the proof. 

Theorem 6.10 If (R, A , p )  is a complete a-finite measure space, then it 
follows that G,,,,(A) = A .  In  other words, in case of a complete a-finite 
measure space, A is closed under the Souslin operation. 

Proof: Suppose that B E G,,,,(A) is an arbitrary Souslin set generated by 
a tree {A, : s E N<") in A. Without loss of generality suppose that A, = R 
and that the tree {A, : S E N<") is regular. For every s E N<" define the set 
B, by 

B, := U fi A.,.. 
{~YEM":s+Y) n=l 

Obviously {B, : s E N<") is a regular tree in A too, B, = B and because of 
the regularity of {A, : s E N<") it follows that B, C A, for every s E 
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For the rest of the proof let S V t denote the concatenation of S = ( s l ,  . . . , s k ) ,  
t = ( t l ,  . . . , tl) E W'", defined by S V t := ( s l ,  . . . , sk, t l ,  . . . , t l )  E W<". 
Using this notation it follows that 

CO 

B, = U Bsvn for every S E W'". 
n=l 

For every S E W'" choose B, E A according to Lemma 6.9 and define 

B, := A, n B, for every S E W". 

Obviously every set B, inherits the following properties of B,: p(B,  \ D )  = 0 
for every set D E A containing B,  and E E A for every set E C B, \ D. 
Furthermore B, C B, c A, for every S E W'". 
Next define a regular tree {H,  : S E M'W) in A by H, = B and 

n 

H(, l,..., S,) := 4.3 ,,...,S,), ( s l , .  . . , sn)  E W<". 
k=l 

Since the tree { B ,  : S E N'") is regular it follows that 

B,  C H, C B, G A, for every S E W'". (6.7) 

Consequently p(H, \ D )  = 0 for every set D E A containing B, and E E A 
holds for every set E C H, \ D .  
Finally define C,  for S E W'" by 

and set 
c := U c,.  

SEN<" 

Using (6.7) and the regularity of {H,  : S E W'") it follows that 

W CO 

B,  = U Bsvn c U HSvn c H, c B, 2 A, far every S E N'" 
n=1 n=l 

Therefore p(C,) = 0 for every S E N'", from which it follows by using 
the completeness of (R, A, p) ,  that every subset of C,, is measurable. Since 
W<" is as a countable union of countable sets itself countable, it follows that 
p ( C )  = 0 and especially that every subset of C is measurable. 
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Claim: H,\B= B \ B G C .  
If X E B \ C = H, \ C it follows that X $L C,, which means by definition 
that there exists a natural number a1 such that X E H,, c A,, . In the same 
manner there exists a natural number a2 such that X E H(,,,,,) G A(,,,,,). 
Proceeding inductively yields a sequence a = ( a l ,  az, . . .) E NN such that 

This shows that B \ C C B. Finally since B C B it follows that B \ B c C ,  
which completes the proof of the claim. 

Now the theorem follows easily: Since C E A has measure zero and B\ B c C 
it follows from the completness of the mesure space that B \ B E A. There- 
fore B = B \ ( B  \ B )  E A. This proves that Bs,,,(A) G A. 
The other inclusion is a direct consequence of Lemma 6.3. W 

6.2 Results from functional analysis and mea- 
sure theory 

The following two theorems can be found in [12],[23] ,1361. The first one can 
be considered as analogon to the theorem of Arzela-Ascoli for L1(R, A, p). 

Theorem 6.11 Let (R ,  A, p) be an arbitrary measure space. Then a family 
of functions 3-1 C L1(R, A, p) is weakly precompact i f  and only i f  the following 
three conditions are fulfilled: 

1. There exists a constant M < oo such that 1 1  f I l l  5 M for all f E 3-1. 

2. For every E > 0 there exists S > 0 with 

L I f  (x)ldp(z) < E for p(A) < b and f E 3-1. 

3. For every E > 0 there exists a set B E A such that p ( B )  < 00 and 

]BC 
If(x)ldp(x) < E for all f E 3-1. 
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Theorem 6.12 (Mazur) 
Let (E, 1 1  1 1 )  be a normed linear space and C c E a convex set. 
Then the weak closure of C is equal to the strong (norm) closure of C .  
Especially if (x,),~N is a sequence i n  E that converges weakly to some X E E ,  
then there exists a sequence ( y k ) k E N  in E such that 

each yk is a convex combination of finitely many X,, and 

The following definition and the following two theorems are taken from [2]: 

Definition 6.13 Let ( R ,  A, p)  be an arbitraryfinite measure space and denote 
for e v e y  p 2 1 by LP(@ A, p )  the set of all measurable real-valued functions 
f ,  such that l f is p-integrable. Then a family Z C L 1 ( R ,  A, p)  is called 
uniformly integrable if the following two conditions are fulfilled: 

1. There exists a constant M < oo such that S, 1 f ( t )  ldp( t )  5 M for all 
f ET.  

2. For every E > 0 there exists b > 0 such that S' l f ( x ) l d p ( x )  < E when- 
ever p ( A )  < b and f E Z. 

Using uniform integrability it is possible to deduce convergence in p-mean as 
follows: 

Theorem 6.14 Let ( R ,  A, p )  be a finite measure space and for every p 2 1 
denote by LP(R, A, p )  the set of all measurable real-valued functions f ,  such 
that l f / P  is p-integrable. 
I f  a sequence of functions ( fn)nEM in ,CP(R, A , p )  converges in measure to a 
measurable function f and i f  the sequence ( 1  fn(P)nEN is uniformly integrable, 
then f is in LP(R, A, p )  and ( f,),,~ converges to f i n  p-mean. 
O n  the other hand if a sequence ( f , ) , , ~  of functions in L P ( R , A , p )  con- 
verges in p-mean to a measurable function f then the sequence ( 1  f n l P ) n E N  is 
uniformly integrable and ( fn)nEN converges in measure to f .  

Theorem 6.15 (Subsequence principle for convergence in measure) 
Suppose that ( R ,  A, p )  is a finite measure space, then a sequence ( f , ) , € ~  
of measurable real-valued functions convergens to a measurable real-valued 
function f in measure i f  and only if for every subsequence ( f n k ) k E N  of ( fn )nEN 
there exists a further subsequence ( f n k j ) j c W  that converges to f p-almost 
everywhere. 
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