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Abstract

This diploma thesis gives a characterization and a compilation of advantages and
drawbacks of approval voting in respect of other voting procedures. Approval voting
is a voting procedure, where voters can approve of as many candidates as they like,
therefore casting a vote for every candidate they approve of. After a short introduc-
tion into voting and social choice theory, and the presentation of two discouraging
results (Arrow’s theorem and the Gibbard-Satterthwaite theorem), the present work
evaluates approval voting by some standard social choice criteria. Then, it character-
izes approval voting among ballot aggregation functions, it characterizes candidates
who can win approval voting elections, and provides advice to voters on what strate-
gies they should employ according to their preference ranking. The main part of this
work compiles advantages and disadvantages of approval voting as far as dichoto-
mous, trichotomous and multichotomous preferences, strategy-proofness, election
of Pareto and Condorcet candidates, stability of outcomes, Condorcet efficiency,
comparison of outcomes to other voting procedures, computational manipulation,
vulnerability to majority decisiveness and to the erosion of the majority principle,
and subset election outcomes are concerned. Finally it presents some modifications
of approval voting to mitigate some of the mentioned drawbacks.
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Zusammenfassung

Diese Diplomarbeit enthält eine Charakterisierung und eine Zusammenstellung von
Vor- und Nachteilen von “Approval Voting” im Hinblick auf andere Wahlverfahren.
Approval Voting ist ein Wahlverfahren, welches den Wählern erlaubt, so vielen
Kandidaten ihre Stimme zu geben wie sie möchten, d.h. all jene Kandidaten zu
wählen, die sie befürworten. Nach einer kurzen Einführung in die Sozialwahltheorie
(engl. social social choice theory bzw. voting theory) und der Präsentation zweier
entmutigender Resultate (Arrows Unmöglichkeitssatz und der Satz von Gibbard-
Satterthwaite) bewertet die vorliegende Arbeit Approval Voting an Hand einiger
bekannter Wahlkriterien. Anschließend charakterisiert sie Approval Voting unter
ballot aggregation functions, charakterisiert Kandidaten, die Wahlen mittels Ap-
proval Voting gewinnen können und hilft Wählern, sich für die richtige Strate-
gie gemäß ihrer Präferenzen zu entscheiden. Der Hauptteil dieser Arbeit stellt
Vor- und Nachteile von Approval Voting zusammen, und zwar im Hinblick auf di-
chotome, trichotome und multichotome Präferenzen, Manipulierbarkeit, Wahl eines
Pareto- und eines Condorcet-Kandidaten, Stabilität der Wahlergebnisse, Condorcet-
Effizienz, Vergleich von Wahlergebnissen mit anderen Wahlverfahren, rechnerbe-
tonte Manipulierbarkeit (computational manipulation), Anfälligkeit für Mehrheits-
maßgeblichkeit (majority decisiveness) und für das Aushöhlen des Mehrheitsprinzips,
und Wahlergebnisse von Teilmengen von Kandidaten. Schließlich präsentiert sie
einige Modifikationen von Approval Voting, um einige der genannten Nachteile zu
entschärfen.
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Preface

Democracy must be something more
than two wolves and a sheep

voting on what to have for dinner.

James Bovard

Motivation

Already since grammar school, I have been interested in game theory. In 12th grade
I wrote a Fachbereichsarbeit, a work for the Austrian school leaving examination
(Matura), about game theory and analyzed briefly the strategies of the game Mas-
ter Mind. During my studies of applied mathematics, however, I hardly came into
contact with game theory. It was not before Prof. Mehlmann’s lecture on game-
theoretic modeling (Spieltheoretische Modellierung) that I regained interest in this
subject and decided to write my diploma thesis in this field. Personally, it was
not clear to me from the beginning to study mathematics and computer science. I
was also interested in physics, but even more in philosophy, linguistics and sociol-
ogy. This helps to explain how I decided to write about a topic being right on the
intersection point between mathematics, social science and politics: voting theory.

Content

This diploma thesis deals with approval voting, a kind of voting procedure where
every voter may approve of as many candidates as he or she likes. The first chapter
gives a short introduction into voting theory and confronts the reader with two dis-
couraging results: Arrow’s theorem and the Gibbard-Satterthwaite theorem. The
second chapter presents the most common criteria for voting procedures, defines and
evaluates approval voting by these criteria and compares the results with the perfor-
mance of other voting procedures. Since this approach is not the most satisfactory
one, I turn in chapter three to a characterization of approval voting. On the one
hand, I present a characterization among ballot aggregation functions. This char-
acterization distinguishes approval voting from other voting procedures by three
criteria. On the other hand, I present some basic properties of approval voting,
including a characterization of candidates who can win approval voting elections.
Furthermore, I provide advice to voters on what strategies they should employ ac-
cording to their preference ranking.

The fourth chapter shows advantages of approval voting in various fields. It also
prepares the theoretic background for many issues so that the fifth chapter dealing
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Preface

with the disadvantages of approval voting is a lot shorter thanks to the basics of
chapter four.

The sixth chapter gives a little outlook on how approval voting could be modified
to mitigate some of the mentioned drawbacks in chapter five.
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1 Voting paradoxes, social choice
functions and impossibility theorems

1.1 Voting paradoxes

Suppose a group of nine friends who regularly meet for game evenings and share
their games together are planning on what new game to afford. Not everybody,
of course, wants to buy the same game, but eventually they can decide on three
games to vote for: Poker (P), Monopoly (M) and Twister (T). Everybody has some
preferences over the games that group as follows, where for example P � M � T
means that this person strictly prefers Poker to Monopoly to Twister.

Example 1.

4 people: M � P � T
3 people: T � P �M
2 people: P � T �M

As everybody has stated his or her wishes and preferences, what shall our nine
friends do now? If everybody just had one vote and therefore voted for their top
choice, Monopoly would receive 4 votes, Twister 3 votes and Poker 2 votes. So
the overall preference would be M � T � P and Monopoly would be the winner.
This kind of voting is called plurality voting and is a very common and popular
voting method being used in various single winner elections worldwide, the election
for the US president, the US Congress or the UK House of Commons for instance.
It incorporates the slogan one person - one vote.

Wouldn’t it be fairer, however, to employ another form of voting: What about
a runoff between the two most preferred games to find out which one really is our
friends’ darling? If we do that, we will see a runoff between Monopoly and Twister
(which got 4 and 3 votes in the first run, respectively), where the first two voter
groups will stick to their votes, and the last two people will vote for Twister, since
they prefer Twister to Monopoly (regardless of the fact that they would prefer Poker
to both of them). So we get an outcome of 4 votes for Monopoly and 5 votes for
Twister, so in this case Twister wins! The overall outcome would be T � M � P .
This voting method is called plurality voting with runoff and is also commonly
used, in the election of the French or Austrian president1, for example.

Thirdly, nobody can prevent us from making pairwise comparisons: If Twister
competes directly against Monopoly, we get 5 votes for Twister and 4 votes for

1only if none of the candidates gets more than 50% in the first run.
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1 Voting paradoxes, social choice functions and impossibility theorems

Monopoly2, so we have T � M . If Twister directly competes against Poker, we
get 3 votes for Twister and 6 for Poker, so P � T . Finally, a direct competition
between Monopoly and Poker will yield an outcome of 4 votes for Monopoly and
5 votes for Poker, so P � M . Concluding, our friends remark that Poker wins
in all pairwise comparisons. Therefore, shouldn’t Poker be considered as the most
preferred game, since it beats both Monopoly and Twister? The overall outcome of
the so called Condorcet voting is P � T �M . (This holds because Twister wins
once and Monopoly always loses.) Furthermore, since Monopoly loses in all pairwise
comparisons, should our nine friends really trust the plurality voting outcome?

The remarkable thing we see here is that the chosen game depends more on the
choice of the decision procedure than on the voters’ wishes. Even though voter
preferences never change, we see that every game can be the winner, only depending
on what procedure we use. This can be very dangerous, because if somebody knows
about the others’ preferences (which is not unlikely in a small group where people
know each other well) he or she can intentionally change the voting outcome to his
or her favorite outcome only by choosing the appropriate voting procedure.

You can find a similar approach, where Saari lays out the set of an academic
department dealing with what beverage to drink at the annual departmental fall
banquet [17, pp. 2ff.].

Let us have a look at another example [19, pp. 19-20]. We suppose that a three-
body jury has to decide on four different options. Taking the idea from above, the
jury makes one-by-one comparisons between the alternatives with the difference that
after the first comparison the winner is directly compared with the third alternative
and so on. The winner of the last direct comparison will be the overall winner. This
kind of voting is called sequential pairwise voting.

Example 2. Suppose the following preferences of our three jury members over the
four alternatives we call a, b, c and d:
Member A: a � b � d � c
Member B: c � a � b � d
Member C: b � d � c � a

To avoid any dispute, the jury is used to voting on the alternatives in alphabetical
order. So from the pairing a and b we have a as winner, because both members A
and B prefer a to b and only C prefers b to a. Hence, the next pairing is a against
c, where c is victorious. The last “battle” will be c against d, and we get the overall
winner d with the votes of members A and C, cf. figure 1.1.

What if the jury changed their voting agenda to voting in reversed alphabetical
order? We would get the winner d from the pairing d against c, the winner b from
d against b and finally the overall winner a from b against a, cf. figure 1.2.

Referring to the figures 1.3 and 1.4 we see that if we used other agendas, we could
also get c and b as winners. So it is clear that - as in the previous example - even
though none of the jury members changes their mind, any of the four alternatives
can win, only depending on the agenda which is employed. Straffin claimed in [19]

2since the second and the third group both prefer Twister to Monopoly and only the first group
prefers Monopoly to Twister
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1 Voting paradoxes, social choice functions and impossibility theorems
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Figure 1.4: Agenda: a, b, d, c - Winner: c

that “chance, or sophisticated manipulation of the agenda, can have as much to do
with the outcome as the preferences of the voters”. And we have not even changed
the voting procedure as in the previous example!

The reason why this is possible is the fact that in this example there is no candidate
who would win over all other candidates in pairwise elections, so there is no winner
in the Condorcet voting sense as in example 1. Because if there was one, he would
win in any election of the pairwise voting, no matter when he is put in for voting,
in other words what agenda is used. If such a winner is lacking, we will get quite
strange results. Let us state the winners of pairwise elections, which is equal to the
overall preference between two candidates: a � b, b � c, d � c, a � d, b � d and
c � a. If we suppose transitivity (from a � b and b � c follows a � c for all a, b,
c), we will get a � b � d � c � a as an overall outcome, from which both a � c
and c � a follow, which is a contradiction to the definition that a � c means that a
is strictly preferred to c. Hence, even though the voters have transitive preferences
themselves, the overall outcome may not be transitive. What we have seen here is
called the paradox of voting, Condorcet’s paradox or the paradox of cyclic

3



1 Voting paradoxes, social choice functions and impossibility theorems

majorities.

1.2 Voting preferences and social choice functions

In this section we want to formalize what we have seen so far in order to provide a
basis for the next chapters. In general, we are going to follow the introduction in [6,
pp. 180ff]. We presume that there are n ≥ 2 voters, indexed by i = 1, 2, . . . , n, and
a set X of two or more candidates. We will refer to any alternatives as candidates,
but note that this can mean “people running for office, passage or defeat of a bill,
alternative budgets, applicants for a faculty position, or jury verdicts that a judge
permits”, not forgetting the different board games from example 1. Also voters
can have a broad interpretation, meaning “individuals being registered as voters,
legislators, trustees, committee members, jurors, or members of some other body
whose decisions not only are binding on their members but often a larger community
that the body represents”. Voters can also be computer programs which have to
decide among different alternatives [13].

We assume that voters have preferences among the candidates. Every voter i is
assumed to have a preference ranking of the various candidates %i, which is a binary
relation on X, so that %i is transitive (x %i y and y %i z imply x %i z ∀x, y, z ∈ X)
and complete (x %i y or y %i x ∀x, y ∈ X). The interpretation of x %i y is that
voter i weakly prefers x to y, which means that he either strictly prefers x to y or
that he is indifferent about the two alternatives. We denote the asymmetric (strict)
preference part of %i by �i, and the symmetric (indifferent) part of %i by ∼i:

x �i y if x %i y and not y %i x,

x ∼i y if x %i y and y %i x.

It follows from completeness of %i that it is reflexive (x %i x, if you set y = x) and
that exactly one of x �i y, y �i x or x ∼i y holds. The indifference relation ∼i on
X is an equivalence relation which partitions X into r different indifference classes
X1, X2, . . . , Xr, where x ∼i y holds for all candidates in the same indifference class
and x �i y or y �i x for all candidates in different equivalence classes. Furthermore,
an overall ranking X1 �i X2 �i . . . �i Xr can be made, where X �i Y means that
a �i b for all pairs (a, b) ∈ X × Y . When x ∼i y ⇔ x = y, for all x, y ∈ X, we refer
to %i or its asymmetric part �i as linear order or strict ranking .

An n-tuple v = (%1,%2, · · · ,%n) of preference rankings on X, one for each voter,
is a voter preference profile. Let V denote the nonempty set of voter preference
profiles in a particular situation.

We will now prepare to define a social choice function, which chooses from a
preference profile and the ballots cast by the voters one or more candidates as winner
or winners of the election. Then we can define a voting procedure through its social
choice function. Three inputs determine the domain of a social choice function. The
first is the number k ≥ 1 of candidates to be chosen by a voting procedure. The
second is a nonempty set X of subsets of X, each of which might arise as the feasible
set of candidates or the official set of nominees. We require |A| ≥ k for every A ∈ X .

4



1 Voting paradoxes, social choice functions and impossibility theorems

The third input is the set DA of ballot response profiles that can occur for each
A ∈ X . Each member of DA is a ballot response profile d = (d1, d2, . . . , dn), where
di ∈ B(A) for each voter and B(A) is the set of admissible ballots. The domain of a
social choice function is the set

D =
⋃
A∈X
{(A, d) : d ∈ DA} (1.2.1)

of all ordered pairs (A, d) of a set A of feasible candidates and a ballot response
profile for that set.

Definition 1. A social choice function is a mapping F from a domain D into the
family 2X of subsets of X such that, for all (A, d) ∈ D,

F (A, d) ⊆ A and |F (A, d)| ≥ k.

We interpret F (A, d) as the subset of feasible candidates chosen by the voting
procedure for situation (A, d). It is assumed to contain at least k candidates. When
|F (A, d)| = k for all (A, d) ∈ D, we say F is decisive. By not imposing decisiveness,
we allow for the possibility that a choice set contains more candidates than the
precise number to be elected, i.e. we admit the possibility of unresolved ties.

So social choice functions give us the winners of an election. The task of receiving
a complete social ranking of candidates (from which we can also retrieve the winners,
namely the candidates ranked on top) will do a social welfare function for us:

Definition 2. 1. A social preference (order) % on X is a preference ranking of
the various candidates of the society as a whole, which is a binary relation on
X, so that it is complete.3 We denote the set of all social preference orders as
P .

2. A social welfare function F : V → P maps a voter preference profile v to a
social preference order p.

1.3 Arrow’s impossibility theorem and the
Gibbard-Satterthwaite theorem

As we have seen in the first section, there is not really a way to say which would be
the best voting procedure whenever we have more than two candidates, especially in
cases like example 1. A famous theoretical finding by Kenneth Arrow in 1951, which
can probably be considered as important for voting theory as Gödel’s incompleteness
theorems are for mathematical logic, states that there is no voting procedure (in
this version of Arrow’s Theorem we will especially examine social welfare functions)
which fulfills some quite reasonable criteria if there are more than two alternatives.
These criteria have been revised and are not completely the same as in Arrow’s
original formulation, since some of them were found not necessary. The criteria we
examine are:

3As we have seen in example 2, it need not be transitive.
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1 Voting paradoxes, social choice functions and impossibility theorems

Criterion 1 (Unanimity (U)). A social welfare function respects unanimity if x �i y
for all i ∈ {1, . . . , n} implies x � y.

Criterion 2 (Independence of irrelevant alternatives (IIA)). A social welfare func-
tion F respects independence of irrelevant alternatives if F’s ranking of x and y
(which can be x � y, y � x or x ∼ y) only depends on the voters’ rankings of x and
y and on no other alternatives.

Criterion 3 (Non-dictatorship (ND)). A social welfare function F respects non-
dictatorship if there is no voter i so that F ranks x � y whenever voter i ranks
x �i y for every pair x, y ∈ X.

Theorem 1 (Arrow’s Impossibility Theorem). For |X| ≥ 3, there is no social wel-
fare function F that satisfies transitivity, independence of irrelevant alternatives,
unanimity and non-dictatorship. Or, in other words: Every social welfare function
F for |X| ≥ 3 that satisfies transitivity, independence of irrelevant alternatives and
unanimity is a dictatorship.

Proof. To prove the second formulation of Arrow’s Theorem we will make use of the
first proof in [11]. We suppose a set of candidates X = {a, b, c, . . .}. Let us have
a closer look at candidate b, who is just one arbitrarily chosen candidate. First we
want to show that if every voter ranks b at the top or bottom of his preference order,
F must do the same (which implies that even if half of the voters rank b top and the
other half ranks it bottom, F can’t place it somewhere in the middle). Suppose on
the contrary that F ranked a % b and b % c for the given voter preference profile,
regardless of any other candidates, but with b not top or bottom ranked. By IIA,
if every voter moves c over a, the above ranking must stay the same, since this
move would not change the ab and bc rankings of our voters because of the extreme
position of b, see figure 1.5. Since every voter i now has c �i a, by U we get c � a,
but by transitivity F has to put a % c, a contradiction.

b

a

c

�
�
i

������������

������������
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������������

������������

b

a c
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Figure 1.5: Changes between a and c do not affect the ab and bc ratings

Secondly we want to show that there is a voter µ∗ = µ(b) who is extremely pivotal
in the sense that by changing his vote at some profile he can move b from the bottom
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1 Voting paradoxes, social choice functions and impossibility theorems

of the social preference to the top. To see this, consider a voter preference profile
where each voter ranks b at the bottom, and arbitrarily ranks the other candidates.
By U, F must rank b at the bottom as well. Now, let the voters from 1 to n
successively move b to the top without changing anything else. At some voter, F
must change its ranking of b, which it has to do at the latest when voter n does the
change because of U. Let µ∗ be the first voter who causes F to move b. We consider
the voter preference profile just before µ∗ did the change as profile I and the one
right after his change as profile II, see figure 1.6. Since at profile II b is no longer at
the bottom of the social ranking, it must be on top because of our first argument.
(Also in profile II b is only put either at the top or at the bottom of each voter’s
order.)
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b � c

voter 1 · · · µ∗ · · · voter n F ’s choice

Figure 1.6: Profiles I, II and III with extremely pivotal voter µ∗

Thirdly we argue that µ∗ is a dictator over any pair ac not including b, which
means that F ’s preference is always the same as µ∗’s preference between a and c.
To see this, we will choose an element of ac, let’s say a. We construct profile III
from profile II by letting µ∗ move a over b such that he has a �µ∗ b �µ∗ c, and the
other voters change the position of a and c arbitrarily while leaving b in its extreme
position. By IIA, F must put a � b (since the rankings of a and b are the same as
in profile I) and b � c (since the ranking of b and c are the same as in profile II).
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1 Voting paradoxes, social choice functions and impossibility theorems

So by transitivity we get a � c, and by IIA a �µ∗ c⇔ a � c, because for all voters
except µ∗ in profile III alternatives a and c are in arbitrary order.

We conclude by showing that µ∗ is also a dictator over every pair ab. Take a third
distinct alternative c to put at the bottom of each voter’s preference order as done
in our second argument. Our third argument implies that there must be a voter
µ(c) who is a dictator over every pair αβ not including c, such as ab. But µ∗ can
affect the ab ranking in profiles I and II, hence this ab dictator µ(c) must actually
be µ∗.

This theorem has inspired many other impossibility theorems, from which we
will have a look at the Gibbard-Satterthwaite theorem, which says that there is no
strategy-proof, non-dictatorial social choice function. The proof can be found in [20]
for example. Although we defined a social choice function on D (see equation 1.2.1),
we are looking here at another version of a social choice function, which is defined
on {X} × V and which is specified to be decisive with k = 1.

Criterion 4 (Strategy-proofness). A social choice function F is strategy-proof if
for all v = (%1, . . . ,%n) and v′ = (%′1, . . . ,%

′
n) in V and all i ∈ {1, . . . , n},

(%j=%′j for all j 6= i)⇒ F (X, v) %i F (X, v′).

A social choice function which is not strategy-proof is called manipulable, which
implies that a voter can unilaterally obtain a preferred outcome by voting contrary
to his or her true preferences [6, p. 16].

Criterion 5 (Surjective). A social choice function F is surjective if for every a ∈ X
there is voter preference profile v ∈ V so that F (X, v) = {a}.

We still have to define Non-dictatorship for social choice functions, which is quite
similar to the definition for a social welfare function. We will do that by defining it
as the contrary of dictatorship.

Criterion 6 (Dictatorship). A social choice function F is dictatorial if there ex-
ists a voter i so that for every voter preference profile v = (%1, . . . ,%n) with A =
{a ∈ X : a %i b for all b ∈ X} we have F (X, v) = A.

Theorem 2 (Gibbard-Satterthwaite Theorem). For |X| ≥ 3, a social choice func-
tion which is strategy-proof and surjective must be a dictatorship.

What we can conclude from here is that there is no optimal voting procedure.
So we will not be able to find something perfect, but we will still look for those
voting procedures which are better than others and specify in which forms they have
advantages and disadvantages. So the decision on which procedure to use depends on
what criteria are more important than others, amongst others also non-mathematical
considerations (not examined here) like simplicity and straightforwardness for people
to understand, effort to count the ballots etc.
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2 Criteria for voting procedures

2.1 Approval voting evaluated

Now that we know we will not find a perfect voting procedure, we will try to evaluate
approval voting by using different criteria which voting procedures should satisfy.
Approval voting is a voting procedure, where every voter can approve of as many
candidates as they want, therefore casting a vote for every candidate they approve of.
More formally, we will define a nonranked voting procedure and give some examples,
including approval voting [6, pp. 189f.].

Definition 3. F on {X} × Bn with |X| = m is a nonranked voting procedure if
there is a nonempty subset M of {0, 1, . . . ,m − 1} that includes at least one j > 0
such that B = {A ⊂ X : |A| ∈M} and, for all x ∈ X and d ∈ Bn,

x ∈ F (X, d)⇔ |{i : x ∈ di}| ≥ |{i : y ∈ di}| for all y ∈ X. (2.1.1)

While the definition of a ballot has been left open in the definition of a social choice
procedure in definition 1, for nonranked voting procedures the set of admissible
ballots B is now defined as a set of proper subsets of the candidates, ∅ ( B ( X with
|B| ∈M . At least one j > 0 is required, so that there cannot be only empty ballots
voting for nobody. However, when 0 is included in M , this means that abstention
is allowed. Equation 2.1.1 is the condition for winning the election: getting at least
as many votes as all the other candidates. We will abbreviate |{i : x ∈ di}| with
v(x, d), which signifies the number of votes candidate x got at the ballot response
profile d.

We will see that all nonranked voting procedures only differ in the set M , which
defines the set of admissible ballots:

Plurality voting has M = {0, 1}, so voters can vote exactly for one candidate if
they do not abstain. Brams and Fishburn write in [6]: ”It is commonly used in single-
winner elections and sometimes in multiple-winner elections. The main criticisms of
plurality voting concern its severe limitation on the expression of voter preferences,
the dispersion of votes that it produces across ideologically similar candidates - ren-
dering them vulnerable to other candidates, particularly on the ideological extremes,
who have no opposition - and the extent to which it encourages voters to vote for
candidates other than their favorites when their favorites have no real chance of
winning.”

Approval voting is defined through M = {0, 1, . . . ,m−1}, so it is the nonranked
voting procedure with the largest possible subset of M , the whole set.

Another form of nonranked voting procedures is Negative voting, which allows
each voter either to vote for one candidate or to vote for all but one - which is the
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2 Criteria for voting procedures

same as voting against one - and has M = {1,m − 1}, or M = {0, 1,m − 1} with
abstentions allowed.

At this step we are ready to examine our first two voting criteria:

Criterion 7 (Condorcet winner). If there is a candidate a that wins against ev-
ery other candidate in pairwise contests, a voting procedure should choose a as the
winner.

Criterion 8 (Condorcet loser). If there is a candidate a that loses against every
other candidate in pairwise contests, a voting procedure should not choose a as the
winner.

Lemma 1. Approval voting fails the Condorcet winner and the Condorcet loser
criterion.

Proof. If you look at example 1 and suppose that every voter only votes for his top
preference, the outcome will be the same as plurality voting, where Monopoly was
the winner, which by the way was not only not the Condorcet winner, but even the
Condorcet loser.

Even though it is true that approval voting need not always elect the Condorcet
winner and can sometimes even elect the Condorcet loser, we will show later that
approval voting can always produce a Condorcet winner as approval voting winner.
Suppose in our example 1 that every voter votes for his top two preferences. Hence,
we would have the following situation

4 voters: {M,P}
3 voters: {T, P}
2 voters: {P, T}

with Poker - the Condorcet winner - winning with 9 votes, Twister getting 5 votes
and Monopoly losing with only 4 votes.

We will examine two more criteria which belong to the family of Condorcet criteria.

Criterion 9 (Majority). If a majority (= more than half) of voters have a as their
first choice, a should win.

Criterion 10 (Smith’s Generalized Condorcet). If the candidates can be partitioned
into two sets A and B such that every alternative in A beats every alternative in B
in pairwise contests, then a voting procedure should not elect an alternative in B.

The explanation of our statement above about the family of Condorcet criteria
is that Smith’s Generalized Condorcet criterion implies the Condorcet winner and
loser criterion, and the Condorcet winner criterion implies the majority criterion.
So if a voting procedure satisfies Smith’s Generalized criterion, it satisfies all the
other three. On the other hand, if it does not satisfy the majority criterion it will
neither satisfy the Condorcet winner nor Smith’s Generalized Condorcet criterion.

10



2 Criteria for voting procedures

Smith’s Generalized Condorcet⇒
{

Condorcet Winner ⇒ Majority
Condorcet Loser

To see the first implication, just let A be the set which consists only of the Con-
dorcet winner, or B be the set which consists only of the Condorcet loser. To see
the second implication consider the following argument: If a majority of voters have
a as their first choice, a will also be the Condorcet winner, because with this ma-
jority a will win against every other candidate. Now, if a voting procedure picks
the Condorcet winner as the winner, the same voting procedure will also elect the
majority winner, since he or she is also the Condorcet winner.

Lemma 2. Approval voting fails Smith’s Generalized Condorcet criterion and the
majority criterion.

Proof. To see that approval voting fails Smith’s Generalized Condorcet criterion, we
just follow the arguments of the implication chain. To see that approval voting fails
the majority criterion, have a look at the following example:

3 voters: a � b � c who vote {a, b}
2 voters: b � c � a who vote {b, c}

Here a is ranked first place by a majority of voters. If the voters vote as suggested,
b will win with 5 votes against a with 3 votes. (cf. erosion of the majority principle
in section 5.6)

Criterion 11 (Monotonicity). If a voting procedure chooses a as the winner, and one
or more voters change their preferences in a way favorable for a (without changing
anything else), a should still be the winner.

Lemma 3. Approval voting satisfies the monotonicity criterion.

Proof. If a wins, he has got more votes than the other candidates. If now one or
more voters rank him higher, some of them might now also vote for a, if they haven’t
already done so before. So a gets at least all the votes he or she got before, if not
more. As far as the other candidates are concerned, they now get at most as many
votes as they got before - if not fewer -, because some of those voters might now
choose to disapprove of some of the other candidates. So a still gets more votes than
the other candidates.

Criterion 12 (Participation). Adding one or more voters that prefer a to b should
never change the winner from a to b.

Lemma 4. Approval voting satisfies the participation criterion.

Proof. If a gets more votes than any other candidate b, and an additional ballot is
cast where at least a is voted for (it could also be voted for b), a still gets more
votes.

11



2 Criteria for voting procedures

If a voting procedure does not meet the participation criterion in a specific situa-
tion, we call this situation the No- Show-Paradox . In this case it can be better for
a voter who prefers a the most to abstain from voting rather than to vote for a. We
will see more about this in the next section.

The last criterion (taken from [1]) is one of the most important ones for approval
voting, since – as we will show in the next chapter – it will characterize it together
with two other criteria (faithfulness and cancellation, cf. criteria 14 and 16) among
ballot aggregation functions (for a definition see p. 18).

Criterion 13 (Consistency). If two societies vote separately over the same set of
candidates and there are candidates who win in both societies, then those candidates
should also win if the ballots of the two societies are put together.

If F (X, d)∩F (X, d′) 6= ∅ for d ∈ Bn, d′ ∈ Bm then F (X, d+d′) = F (X, d)∩F (X, d′),

where d+ d′ ∈ Bn+m signifies the ballots of the two societies put together.

Lemma 5. Approval voting satisfies consistency.

Proof. Let’s denote the set of winners in both societies as W = {x1, . . . , xk}. Now
we have,

∀xi ∈W : v(xi, d) ≥ v(xj , d) ∀xj ∈ X,
∀xi ∈W : v(xi, d′) ≥ v(xj , d′) ∀xj ∈ X,

and therefore we get

∀xi ∈W : v(xi, d) + v(xi, d′) ≥ v(xj , d) + v(xj , d′) ∀xj ∈ X.

2.2 Voting procedures compared

The difficulty of comparing ranked and nonranked voting procedures is that many
criteria can be formulated in a way that is favorable for one or the other system.
Take the Pareto criterion, for example. If you state it in a way favorable for ranked
voting systems like “If all voters prefer a to b, then b should not win”, it is obvious
that approval voting does not meet this criterion. (It could be that all voters prefer
a to b to c and vote for a and b, so a and b both win.) If you state it, however, like
“If all voters rank a over b on each ballot, then b should not win”, it is clear that
approval voting passes this version of the criterion. (If everybody votes for a but
not for b, b will certainly lose.) Hence, we will only look at criteria which can be
evaluated with both types of voting procedures in a meaningful way.

Besides plurality voting (PV), plurality voting with runoff (PVR) and approval
voting (AV), we want to include Borda count (BC) and the Black method (BM)
into our comparison. Borda count is a ranked voting system where each voter gives
points to the candidates in order of his preference ranking. The most preferred
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candidate is given |X|−1 points, the second most preferred candidate |X|−2 points
and so forth leaving the least preferred candidate with 0 points. The points are
summed up and the candidate with most points is declared winner. This special
case of a ranked voting system is called positional scoring procedure. As we will
show, Borda count need not produce a Condorcet winner as the outcome. This is
why the Black method has been invented: it is a ranked voting procedure combining
Condorcet voting and Borda count: If there is a Condorcet winner, he or she will
win the election. If not, regular Borda count is carried out and the Borda count
winner wins.

To give a more precise formulation of a positional scoring procedure, we will use
the definition in [6]. For a positional scoring procedure the set of admissible ballots
B is the set of all linear orders of X. We denote by sj the points awarded to
a candidate in position j and refer to s = (s1, s2, . . . , sm) as a positional scoring
vector, where |X| = m. It is assumed that s1 ≥ s2 ≥ · · · ≥ sm and s1 > sm.
Borda count has s = (m − 1,m − 2, . . . , 1, 0) and even plurality voting1 can be
considered as a positional scoring procedure with s = (1, 0, . . . , 0). For every x ∈ X,
every j ∈ {1, . . . ,m} and every ballot response profile d = (d1, . . . , dn) in B, let
d(x, j) denote the number of voters who rank candidate x in jth position. Clearly,
d(x, 1) + d(x, 2) + · · · + d(x,m) = n. The score of candidate x for ballot response
profile d with respect to positional scoring vector s is

s(x, d) =
m∑
j=1

sjd(x, j)

The positional scoring procedure for s takes F (X, d) as the subset of candidates that
maximize s(x, d) over X for each d in D.

In the following table 2.1 we will summarize our findings about whether the above
voting procedures satisfy or fail some chosen criteria. We will prove some of the
entries in the table, the rest can be found in Straffin’s Topics in the Theory of
Voting [19].

Table 2.1: Evaluation of voting procedures

PV PVR BC BM AV
Majority YES YES NO YES NO
Condorcet winner NO NO NO YES NO
Condorcet loser NO YES YES YES NO
Smith’s Generalized Condorcet NO NO NO NO NO
Monotonicity YES NO YES YES YES
Participation YES NO YES NO YES
Consistency YES NO YES NO YES

Lemma 6. Plurality voting fails the Condorcet winner, Condorcet loser and Smith’s
Generalized Condorcet criterion.

1Approval voting not, since there is no fixed positional scoring vector s!
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Proof. See example 1 for Condorcet winner and loser, the rest is done by the impli-
cation chain.

Lemma 7. Plurality voting satisfies the participation and the consistency criterion.

Proof. Participation: If a gets more votes than any other candidate b, and an addi-
tional ballot is cast where a (or neither a nor b) is voted for, a still gets more votes.
Consistency: The proof is exactly the same as for approval voting in lemma 5.

Lemma 8. Plurality voting with runoff satisfies the Condorcet loser criterion.

Proof. If the Condorcet loser comes into the runoff, he will certainly lose against the
other candidate in this pairwise comparison.

Lemma 9. Plurality voting with runoff fails the Condorcet winner, Smith’s Gener-
alized Condorcet, the monotonicity, the participation and the consistency criterion.

Proof. Condorcet winner and Smith’s Generalized Condorcet: See example 1 for
Condorcet winner. Failing this criterion implies failing Smith’s Generalized Con-
dorcet criterion.
Monotonicity: Have a look at the following example:

6 voters: a � b � c
5 voters: c � a � b
4 voters: b � c � a
2 voters: b � a � c

If plurality voting is carried out, candidates a and b will come into the runoff with
6 votes each, where candidate a will win with 11 over 6 votes. If now the last two
voters change their minds in favor of alternative a - having a � b � c - we will have
candidates a and c coming into the runoff with 8 and 5 votes respectively, where c
will win with 9 against 8 votes. Hence, changes in favor of candidate a have made
him lose.
Consistency: Consider the example with the changes made in favor of a, which we
will partition into two societies d and d′.

d d′

a � b � c 4 4
c � a � b 2 3
b � c � a 4 0

In society d, a and b will be in the runoff with a winning 6 over 4 votes. In society
d′, a and c will be in the runoff with a winning 4 over 3 votes. However, as we have
seen before, if we put the societies together, c will win the election.
Participation: Consider the same example without the partition. If we add two
extra voters with b � c � a, we will have a and b in the runoff with a winning 13
over 6 votes. So adding voters that rank c over a makes c lose and a win.
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If you are interested in an amusing story about this issue we suggest reading [5],
where the story of a Mr. and Mrs. Smith about “a funny thing happened on the
way to the polls” is told. As far as the failure of plurality voting with runoff in
satisfying the monotonicity criterion is concerned, following Straffin in [19], we can
imagine a news announcement: “Candidate c won today, but if candidate a had
received less support, he would have won”. This paradoxical situation is called the
More-Is-Less-Paradox . Referring to the No-Show-Paradox, we saw here that voting
c over a makes c lose and a win. Again, the voters who preferred c to a had rather
stayed at home than gone to the polls.

Lemma 10. Borda count satisfies the participation and the consistency criterion.

Proof. Participation: If a gets more points than any other candidate b, and an
additional ballot is cast where a gets more points than b, a still has more points.
Consistency: This proof goes in line with the proof for approval voting (lemma 5),
where v(x, d) is replaced with s(x, d) which signifies the number of points candidate
x received.

Lemma 11. Borda count fails the majority, the Condorcet winner and Smith’s
Generalized Condorcet criterion.

Proof. We only need to show that Borda count fails the majority criterion. The rest
will do the implication chain for us. We will make use of the same example used to
prove that approval voting fails the majority criterion in lemma 2. In this example
the majority winner a gets 6 points, whereas b gets 7 points and wins.

Lemma 12. The Black method satisfies the majority, the Condorcet winner and the
Condorcet loser criterion.

Proof. Since the Black method was designed to choose the Condorcet winner, if one
exists, it satisfies the Condorcet winner criterion by definition, which implies the
majority criterion. If no Condorcet winner exists, Borda count is carried out, which
satisfies the Condorcet loser criterion.

Although the Black method was designed to choose the Condorcet winner, it does
not satisfy the generalized Condorcet criterion as we will see in this lemma.

Lemma 13. The Black method fails Smith’s Generalized Condorcet, the participa-
tion and the consistency criterion.

Proof. Smith’s Generalized Condorcet: To see this, consider the admittedly con-
structed example from [19].

1 voter: a � b � x � y � z � w � c
1 voter: b � c � x � y � z � w � a
1 voter: c � a � x � y � z � w � b

If we partition the alternatives into set A = {a, b, c} and B = {x, y, z, w}, one can
easily check that every alternative in A beats every alternative in B. However, there
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is no Condorcet winner since a � b � c � a (the alternatives beat each other cycli-
cally) and so Borda count is carried out. In points, we will get the following result.

a b c x y z w
6 5 0 4 3 2 1
0 6 5 4 3 2 1
5 0 6 4 3 2 1
11 11 11 12 9 6 3

Candidate x wins although it is in set B.
Consistency: Consider the following example.

d d′ d+ d′

a � b � c 0 4 4
a � c � b 1 2 3
b � a � c 2 0 2
b � c � a 0 5 5
c � a � b 0 1 1

In partition d we clearly get candidate b as the Condorcet winner, since the profile
b � a � c has a majority of votes. In partition d′ candidate b beats a 7 to 5 and b
beats c 9 to 3, so candidate b is the Condorcet winner and the winner of the Black
method. (We do not care about the tie of a against c since those candidates are
both beaten by b and therefore cannot win.) Now, in d + d′ we have a beating b 8
to 7 and a beating c 9 to 6.

Participation: Consider the following example.

6 voters: a � c � b
5 voters: b � a � c
3 voters: c � b � a
2 voters: b � c � a
1 voter: a � b � c

For the Condorcet voting we get the intransitive outcome a � c � b � a. So Borda
count is carried out with the following result where a wins.

a b c
12 0 6
5 10 0
0 3 6
0 4 2
2 1 0
19 18 14
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If we now add two voters who prefer a to b and vote a � b � c, candidate b will
beat both a and c 10 to 9 in the Condorcet election. So b is the new winner of the
Black method.

As we have never used the Borda count step in the proof against consistency, we
have actually shown that every Condorcet method – that is every voting procedure
that elects first the Condorcet winner if one exists, and then uses another procedure
if not – fails the consistency criterion.

Summing up, we have investigated the following kinds of voting procedures: non-
ranked singlestage voting procedures (AV, PV), nonranked multistage voting pro-
cedures (PVR), ranked Condorcet voting procedures (BM), ranked singlestage po-
sitional scoring procedures (BC, PV) and ranked multistage positional scoring pro-
cedures (PVR).
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3 Characterization and properties of
approval voting

3.1 Characterization

In the previous chapter we have shown that approval voting satisfies consistency. As
we have announced and will show now, this criterion together with faithfulness and
cancellation characterize approval voting in the field of ballot aggregation functions
as shown in [1]. A ballot aggregation function is more or less the same as a nonranked
social choice function, with the difference that there is no confinement on the set
of ballots B, allowing fully for B ∈ P(X) \ {∅, X}. The ballot aggregation function
itself decides whether to count a ballot or not. To do this, we will use a function
π : B → N called voter response profile with the interpretation that π(B) is the
number of voters who cast ballot B. In this setting, we can define plurality voting
by

fP (π) = arg max
x∈X

π({x}),

where all non-singleton ballots are discarded; approval voting by

fA(π) = arg max
x∈X

∑
{π(B)|x ∈ B ∈ B},

where all votes count equally; or the “split-the-vote-rule” by

fS(π) = arg max
x∈X

∑
{ 1
|B|

π(B)|x ∈ B ∈ B},

where each voter can split their only vote among as many candidates as desired. The
advantage of this definition is that it has a variable electorate, i.e. is independent
of the number of voters. We define v(x, π) as the number of voters who vote for
x in π, i.e. v(x, π) =

∑
{π(B)|x ∈ B ∈ B}. We will redefine consistency for ballot

aggregation functions and give the definitions of faithfulness and cancellation. It is
immediate to check that approval voting satisfies all of the three criteria, cf. lemma
5 for consistency.

Criterion 14 (Faithfulness). If a society consists of only one voter (or if only one
ballot was cast), a voting procedure should stick to this voter’s ballot.

f(B) = B for all B ∈ B.
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Criterion 15 (Consistency). If two societies vote separately over the same set of
candidates and there are candidates who win in both societies, then those candidates
should also win if the ballots of the two societies are put together.

If f(π) ∩ f(π′) 6= ∅ for π, π′ ∈ Π then f(π + π′) = f(π) ∩ f(π′),

where π + π′ defines a new voter response profile putting together the voters and
ballots of the two societies.

Criterion 16 (Cancellation). If every candidate gets the same number of votes, all
of the candidates should be elected.

If v(x, π) = v(y, π) for all x, y ∈ X then f(π) = X.

Theorem 3. Approval voting is the only ballot aggregation function satisfying faith-
fulness, consistency, and cancellation.

Proof. Let f be a ballot aggregation function satisfying the above mentioned criteria.
We will proceed in three steps and show that this function must be approval voting.

Step 1: For any π ∈ Π, B1, B2 ∈ B with B1 ∩B2 = ∅ we want to show that

f(π +B1 +B2) = f(π + (B1 ∪B2)) (3.1.1)

holds. This is the case because by cancellation f((B1 ∪ B2) + X \ (B1 ∪ B2)) = X
(every candidate gets the same number of votes) and therefore by consistency,

f(π +B1 +B2) = f(π +B1 +B2 + (B1 ∪B2) +X \ (B1 ∪B2))

holds, because f(π + B1 + B2) ∩ f((B1 ∪B2) +X \ (B1 ∪B2))︸ ︷︷ ︸
=X

= f(π + B1 + B2).

Through an analog argument we get

f(π + (B1 ∪B2)) = f(π + (B1 ∪B2) +B1 +B2 +X \ (B1 ∪B2)).

As the two right-hand side expressions are the same, the claim is proven.
Step 2: Let π ∈ Π be an arbitrary voter response profile. We construct π′ ∈ Π

such that v(x, π) = v(x, π′) for all x ∈ X, but π′ only consists of singleton ballots,
i.e. π′(B) > 0 implies |B| = 1. Profile π′ is constructed from π by “taking apart”
each ballot cast under π into separate singleton ballots. This process will result
into more ballots and consequently more voters. This does not bother us, since the
size of the electorate is not fixed in the definition of a ballot aggregation function1.
Iteration of 3.1.1 (starting with an empty voter response profile) verifies that the
outcome of π and π′ will be the same, so f(π) = f(π′).

1contrary to the definition of a social choice function, cf. definition 1, or a nonranked voting
procedure, cf. definition 3.
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Step 3: We define K = maxx∈X v(x, π), which exists because X is finite. For each
k = 0, . . . ,K we define further Xk = {x ∈ X|v(x, π) = k}, which form a partition
of X. Consider the profile

π∗ = XK + (XK ∪XK−1) + · · ·+ (XK ∪XK−1 ∪ · · · ∪X1).

By faithfulness and consistency we get f(π∗) = XK , because

f(XK)︸ ︷︷ ︸
=XK

∩ f(XK ∪XK−1)︸ ︷︷ ︸
=XK∪XK−1

∩ · · · ∩ f(XK ∪XK−1 ∪ · · ·X1)︸ ︷︷ ︸
=XK∪XK−1∪···∪X1

= XK

all by faithfulness and partition. So by consistency we get f(XK + (XK ∪XK−1) +
· · ·+ (XK ∪XK−1 ∪ · · · ∪X1)) = XK . Next we show f(π∗) = f(π′) by iteration of
3.1.1:

f(π∗) = f(XK + · · ·+XK︸ ︷︷ ︸
K times

+XK−1 + · · ·+XK−1︸ ︷︷ ︸
K−1 times

+ · · ·+ ∪X1),

which is the same as f(π′) with all x ∈ Xk in separate singleton ballots. So from
step 2 we get f(π) = f(π′) = f(π∗) = XK . As π was arbitrary and results in the set
XK as the set of winners, which are the winners of approval voting (since approval
voting is to maximize v(·, π)), we conclude that f is approval voting.

Just to give an intuition why this is not true for other voting procedures, take
plurality voting for example and suppose X = {x, y, z, . . .}. Plurality voting violates
faithfulness, because if there is only one voter and this voter casts ballot B = {x, y},
this ballot is ignored (since only singleton ballots are counted) and every candidate
has got the maximum of 0 votes. So all candidates are declared winners and the
ballot aggregation function does not stick to the voter’s ballot. This can occur,
because the criterion of faithfulness has to be true for all B ∈ P \ {∅, X}, and not
only for the ballots permitted by the voting procedure. Further, plurality voting
also violates cancellation. If there are only two voters - one votes {x, y} and the
other one {z} - only z wins, even though v(x, π) = v(y, π) = v(z, π).

3.2 Feasible, admissible and sincere strategies for voters

Up to now we have only had a look at the voting procedure alone without giving the
voters any clue on what to vote for based on their preferences. This will change in
this section. For this purpose we will first define feasible, dominated and admissible
strategies and further go into detail for sincere strategies. If not mentioned otherwise,
all these definitions will be in the context of nonranked voting procedures.

A strategy S for a voter i is a subset of X with the interpretation that i votes
for every candidate in S and for none outside S. A feasible strategy is a strategy
permitted by the voting procedure, i.e. a strategy S is feasible exactly when |S| ∈M .

Although the terms strategy and ballot have different motivations and origins,
they technically describe the same thing. This is why we will use them equiv-
alently. So, also the terms strategy profile and ballot response profile are tech-
nically the same. Similar to the definition in [4], we will define the strategic
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complement d−i for the so called focal voter i of the ballot response profile d as
d−i := (d1, . . . , di−1, di+1, . . . , dn). F (X, d−i + S) will then be the voting outcome if
voter i chooses strategy S and the other voters vote as in d−i.

If we want voter i to compare voting outcomes, we will write this as ARiB meaning
that he likes voting outcome A at least as much as voting outcome B, where A and
B are sets of candidates. APiB means that he strictly prefers voting outcome A to
B. We suppose that {a}Ri{b} ⇔ a %i b and {a}Pi{b} ⇔ a �i b, and that APiB
and BRiA cannot hold both. Further, we make the following assumptions for all
i ∈ {1, . . . , n}, a, b ∈ X and all A,B,C ⊆ X:

Assumption 1 (Assumption P). If a �i b then {a}Pi{a, b}Pi{b}.

Assumption 2 (Assumption R). If A∪B and B ∪C are not empty, and if a %i b,
b %i c and a %i c for all a ∈ A, b ∈ B and c ∈ C, then (A ∪B)Ri(B ∪ C).

Assumption P asserts that if a voter prefers candidate a to candidate b he also
prefers a voting outcome of {a} to a tied outcome of {a, b} (whenever both a and b
have a positive probability of being elected however a tie is resolved), which in turn
he prefers to {b}. Assumption R asserts that if everything in A is at least as good
as everything in B and C, and everything in B is at least as good as everything in
C, then outcome A∪B is at least as good as B∪C [4, p. 18]. All these assumptions
also apply for the social choice, if you just replace %i by % etc.

Definition 4. Given P and R for a voter i with %i on X, strategy S dominates
strategy T for this voter, or S dom T for %i, if F (X, d−i + S)RiF (X, d−i + T ) for
every possible d−i ∈ Bn−1, and F (X, d−i + S)PiF (X, d−i + T ) for at least one d−i.

This definition does not require T and S to be feasible strategies and is therefore
applicable to all nonranked voting systems. It can be interpreted in the way that
S dominates T if the focal voter likes every possible outcome (depending on what
the others vote) when he votes S at least as much as when he votes T , and strictly
prefers the outcome when he votes S to the outcome when he votes T for at least
one ballot response profile of the other voters.

Definition 5. Strategy S is admissible for M and %i if S is feasible for M and
there is no strategy T that is also feasible for M and has T dom S for %i. A strategy
profile s is admissible, if all the strategies in s are admissible.

Remember that %i defines an equivalence order on X and therefore partitions it
into X1 �i X2 �i · · · �i Xr. A voter is called concerned if r > 1 and unconcerned
if r = 1. For r = 2 he is said to have a dichotomous preference ranking, for r = 3 a
trichotomous and for r > 3 a multichotomous preference ranking. Let H(%i) = X1

denote the subset of the most preferred candidates and L(%i) = Xr denote the
subset of the least preferred candidates for voter i.

Not only because we will need this theorem, which helps us to find admissible
strategies, in later proofs, we will present it here (without proof) from [6, p. 22]. To
understand the theorem, we need to define the concept of high and low subsets of
X [6, p. 18]. A subset A ⊆ X is high for %i if

x ∈ A ∩Xk ⇒ Xl ⊆ A for all l < k,
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and is low for %i if
x ∈ A ∩Xk ⇒ Xl ⊆ A for all l > k.

Theorem 4 (Admissibility). Suppose %i is concerned and assumptions P and R
hold. Then strategy S is admissible for a nonranked voting procedure M and prefer-
ence order %i if and only if S is feasible for M and either criterion 1 or 2 (or both)
holds:

1. Every candidate in H(%i) is in S, and it is impossible to partition S into
nonempty subsets S1 and S2 such that S1 is feasible for M and S2 is low for
%i.

2. No candidate in L(%i) is in S, and there is no nonempty A ⊆ X disjoint from
S such that A ∪ S is feasible for M and A is high for %i.

Following [6, pp. 21-24], we will prove the following results for a concerned voter
with preference ranking %i.

Corollary 1. For approval voting, S is an admissible strategy if and only if S
contains all candidates in H(%i) and none in L(%i).

Proof. “⇒:” If S is admissible, we show via criterion 1 of theorem 4 that the claim
holds. Since all candidates of H(%i) have to be in S, we only have to show that
S ∩ L(%i) = ∅. Suppose on the contrary, that there is a candidate x ∈ L(%i) ∩ S.
But now we can partition S into S1 = H(%i) and S2 = {x}, where S1 is of course
feasible and S2 is low for %i.

“⇐:” If S contains all candidates in H(%i) and none in L(%i) we show again via
criterion 1 of theorem 4 that the claim holds. Again, the first part is obviously true.
For the second one, assume that there is a subset T of X with T ⊂ S, T ∩H(%i) =
∅, T ∩ L(%i) = ∅. No subset of H(%i) is low, and the only other possibility S2 = T
is not low either, because it would have to contain L(%i).

Corollary 2. For plurality voting, strategy {a} is admissible if and only if {a} is
not in L(%i).

Proof. “⇒:” If {a} is admissible, we show via criterion 2 of theorem 4 that the claim
holds. Since none of the candidates of L(%i) are allowed to be in S we are done.

“⇐:” If {a} is not in L(%i) we show again via criterion 2 that the claim holds.
Again, the first part is obviously true. For the second one, it is clear that we will
not find a nonempty set A ⊆ X disjoint from {a} such that A ∪ S is feasible.

Corollary 3. For negative voting,2

• strategy {a} is admissible if and only if the voter strictly prefers a to at least
two other candidates,

• and strategy ā (casting a vote against a) is admissible if and only if the voter
strictly prefers at least two other candidates to a.

2We assume |X| ≥ 4, because if |X| < 4 negative voting is equivalent to approval voting.
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Proof. We start to show the first point:
“⇒:” If {a} is admissible, we show via criterion 2 of theorem 4 that the claim holds.
So, it is clear that {a} cannot be in Xr. We have to show that it cannot be in
Xr−1 either, if |Xr| = 1 with Xr = {b}. Suppose a ∈ Xr−1. Then we can define
A = X1 ∪X2 ∪ · · · ∪Xr−2 ∪ (Xr−1 \ {a}) = X \ ({a} ∪ {b}) with A∪ S = b̄ and A is
high for %i.

“⇐:” If the voter strictly prefers a to at least two other candidates we show again
via criterion 2 that the claim holds. Again, the first part is obviously true (a cannot
be in L(%i)). For the second one, the only nonempty set A ⊆ X disjoint from S
such that A ∪ S is feasible is A = X \ ({a} ∪ {b}) with b ∈ X. But A is not high,
because it contains Xr and so it would have to contain all Xk with k < r, which it
does not, since a is in one of these Xk.

The second point is quite similar, but we will use criterion 1:
“⇒:” If ā = X\{a} is admissible, we show via criterion 1 that the claim holds. Since
every candidate from S has to be in X1 it is clear that a cannot be in X1. We have
to show that it cannot be in X2 either, if |X1| = 1 with X1 = {b}. Suppose a ∈ X2.
Then we partition S into S1 = {b} and S2 = (X2\{a})∪X3∪· · ·∪Xr = X\(X1∪{a}),
where S1 is feasible and S2 is low for %i.

“⇐:” If the voter strictly prefers at least two other candidates to a we show via
criterion 1 that the claim holds. Again, it is clear for the fist part that a cannot be
in X1, and so all candidates of ā are in S. For the second point, the only nonempty
partition of S such that S1 is feasible is S1 = {b} with b being any candidate in S.
But S2 = S \ S1 is not low, because it contains X1 and so it would have to contain
all Xk with k > 1, which it does not, since a is in one of these Xk.

Furthermore, for a concerned voter, abstention is never an admissible strategy,
since it does not satisfy neither criterion 1 nor 2. Likewise, voting for all candidates
can also never be an admissible strategy. Although both strategies can be considered
feasible, they can be excluded from the analysis for concerned voters [4, p. 25].

With abstentions allowed, approval voting has 2|X|−1 different feasible strategies
(all possible subsets of X minus the whole set), plurality voting |X|+1 (vote for ev-
ery candidate in X plus abstention) and negative voting 2|X|+1 for |X| ≥ 3 (voting
for and against every candidate, plus abstention) feasible strategies. Here we see
that approval voting offers by far the most possibilities for voters. Speaking of ad-
missible strategies, however, this will radically change, especially under dichotomous
preferences, as we will see in the next chapter.

Example 3. Suppose a voter has the preference order a � b � c � d. We will have
the following admissible strategies:

• Approval voting: {a}, {a, b}, {a, c}, {a, b, c}

• Plurality voting: {a}, {b}, {c}

• Negative voting: {a}, {b}, c̄, d̄

Now we want to set up a concept which decides whether a voter is voting according
to his or her true preferences. Referring to the example above, voting {a, c} leaves

23



3 Characterization and properties of approval voting

a little awkward impression: Why should a voter approve of one candidate and not
approve of a higher ranked one? The concept of sincerity handles this.

Definition 6. Strategy S is sincere for a concerned %i whenever x ∈ S implies
y ∈ S for all y �i x. A strategy profile s is sincere, if all the strategies in s are
sincere. A voting procedure is sincere for % if all admissible strategies are sincere.

So what are the sincere strategies in the example above? Approval voting has {a},
{a, b}, and {a, b, c}, plurality voting {a} and negative voting {a} and d̄. As we see
in this example, approval voting has the highest percentage of admissible strategies
which are also sincere. This statement is not true under all circumstances, however.
We will examine this more deeply in chapters 4 and 5. If we only allow for linear
preference orders (which we will do in the next section), sincere strategies are always
admissible if we exclude voting for everybody.

Proposition 1. For linear preference orders, every feasible and sincere strategy is
also admissible.

Proof. Let us consider criterion 1 of theorem 4. Since we only allow for linear
preference orders, H(%i) only consists of one candidate who we want to call a.
Given any sincere strategy S, a has always to be included in S. Now, we cannot
find a partition of S in which S2 is low, because if we found one, this would imply
that no matter which candidate is included in S2 we would always have to include
the candidate from L(%i) into S2. But this cannot be the case, since S is sincere
and we have excluded voting for everybody.

If not mentioned otherwise, we will always assume strategies to be admissible and
sincere.

3.3 Characterization of approval voting outcomes

Our next goal is to characterize election outcomes under approval voting following
[7]. “Given a preference profile v, we consider the set of all candidates that can
be chosen by approval voting when voters use sincere strategies. We call this set
AV outcomes at v. Clearly, a candidate ranked last by all voters cannot be in this
set, because it is inadmissible for any voter to vote for this candidate.” We assume
linear preferences in this context throughout this work, which only facilitates proofs
and does not infringe generality referring to [7]. For every voter preference profile
v, we will define a special ballot response profile, the critical strategy profile Ci(v)
for candidate i as follows: Every voter who has ranked candidate i last only votes
for his highest ranked candidate. All the other voters vote for all candidates from
the top down to candidate i. It is obvious that all these strategies are sincere and
admissible, since no “gap” is allowed between the approved candidates and no low-
est ranked candidate is ever approved. To give an example, the critical preference
profiles for all candidates in example 1 for the given voter preference profile v are:3

3For a simpler use of notation we will omit the curly brackets in critical strategy profiles and write
only MP instead of {M, P}.
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CM (v) = (M,M,M,M, T, T, T, P, P ), CT (v) = (M,M,M,M, T, T, T, PT, PT ) and
CP (v) = (MP,MP,MP,MP, TP, TP, TP, P, P ) with each game winning at its crit-
ical strategy profile. This is not by pure chance - the following lemma will show
that a candidate cannot do better than at his own critical strategy profile. So if a
candidate is to win, he must win at his own critical strategy profile. If he does not,
there is no other, better, election outcome where he could possibly win.

Lemma 14. Assume all voters choose sincere strategies. The AV critical strategy
profile for candidate i, Ci(v), maximizes the difference between the number of votes
that i receives and the number of votes that every other candidate j receives.

Proof. If you just look at the definition above, it is obvious that candidate i cannot
receive more votes than at his or her critical strategy profile Ci(v). Now consider
the number of votes any other candidate j gets at Ci(v). If there are any departures
from Ci(v) he or she will get no fewer or sometimes more votes. These departures
could be:

1. A voter who ranked candidate i last votes for more than for the highest ranked
candidate, possibly for j, if j is not already the highest ranked candidate.

2. All remaining voters can approve of more candidates who are lower ranked
than candidate i, possibly including j.

So in either case, candidate j never gets fewer votes and sometimes more. The only
other departure from Ci(v) than 1 and 2 would be not to vote for i if he is not ranked
last and only to vote for candidates ranked above i. But this would give candidate
i fewer votes. So every departure from Ci(v) can only result in the same or fewer
votes for i and in the same or more votes for j. So Ci(v) maximizes the difference
between number of votes for i and the number of votes for every other candidate
j.

The next theorem will specify what we stated before, i.e. characterize AV out-
comes. The second theorem will additionally characterize candidates who cannot be
AV outcomes.

Theorem 5. Candidate i is an AV outcome if and only if i is chosen at his or her
critical strategy profile Ci(v).

Proof. If i is chosen at Ci(v) it obviously is an AV outcome, since all strategies in
Ci(v) are sincere. To show the other part, suppose candidate i is not chosen at Ci(v).
By lemma 14, candidate i cannot receive more votes at any other ballot response
profile consisting of sincere and admissible strategies. So if i is not chosen at Ci(v)
it will not be an AV outcome at all.

Theorem 6. Given any preference profile v and any candidate i, i cannot be an
AV outcome if and only if there exists some other candidate j such that the number
of voters who consider j as their best choice and i as their worst choice exceeds the
number of voters who prefer i to j.
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Proof. Given two candidates i and j, voters can be partitioned into three (disjoint)
classes: (i) those who prefer i to j; (ii) those who consider j as their best choice and
i as their worst; and (iii) those who prefer j to i but do not fall in class (ii). At
Ci(v) voters of class (i) will only vote for i, those in class (ii) only for j and those
in class (iii) will vote for both candidates. Neglecting voters of class (iii) who give i
and j the same number of votes, candidate i cannot be elected at Ci(v) if and only
if the number of voters in class (ii) exceeds the number of voters in class (i). Hence,
by theorem 5 candidate i cannot be an AV outcome.

To illustrate this, consider the following example:

Example 4. We define the preference profile v as follows:

3 voters: a � b � c � d
2 voters: b � c � a � d
2 voters: d � b � c � a

We have a look at the candidates’ critical strategy profiles, which are

Ca(v) = (a, a, a, bca, bca, d, d),
Cb(v) = (ab, ab, ab, b, b, db, db),
Cc(v) = (abc, abc, abc, bc, bc, dbc, dbc) and
Cd(v) = (a, a, a, b, b, d, d).

The winners are, respectively, {a}, {b}, {b, c} and {a}, so the set of (all possible)
AV outcomes at v is {{a}, {b}, {b, c}}. Candidate c can only win in a tie with b,
and d has no chance of winning at all. We could have seen the latter fact also by
applying theorem 6: There are 3 voters who consider a as their best choice and 5
who consider d as their worst choice. This makes 8 voters which exceeds the number
of voters who prefer d to a, namely 2.
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4.1 On dichotomous preferences

Most advantages of approval voting become obvious when regarded under dichoto-
mous preferences. Dichotomous preferences mean that voters only divide the can-
didates into two groups: those they approve of and those they disapprove of. This
concept of preferences is the one which most closely approaches the idea of approval
voting. From what we have stated before, we know that on dichotomous preferences
there is a unique admissible strategy for approval voting, namely to vote for all can-
didates in H(%i) and none in L(%i), whereas for plurality voting, for instance, there
are |H(%i)| many admissible strategies. It is obvious that this unique admissible
strategy for approval voting is also sincere.

4.1.1 A characterization with strategy-proofness

Why is it of importance that there are few admissible respectively sincere strategies?
First, it was often criticized that approval voting offers voters too many choices (as
far as feasible strategies are concerned) and makes it too complex for them to under-
stand and to choose one of these many strategies. However, a reasonable voter would
only choose an admissible strategy, since all other strategies would be dominated and
result in a worse election outcome. Although I suppose that each voter will not ana-
lyze their strategies for dominated ones, I still hold the view that it is quite clear to
the common public that normally voting for the least preferred candidates is not the
best strategy to choose. Second, we bring in another argument: strategy-proofness.
A voting procedure is strategy-proof if there is only one admissible strategy for %i

for each voter, which then must be sincere. For another definition see criterion 4 on
page 8. There, we have already seen what strategy-proof implies: A voter cannot
get a better outcome by choosing an admissible strategy which might be insincere
even if he knows the strategies of all the other voters. So the fact that approval
voting only has a unique admissible strategy also implies that it is strategy-proof on
dichotomous preferences.

What about the other voting procedures? Can we really take this as a unique
advantage of approval voting or are there other voting procedures which satisfy
sincerity and strategy-proofness as well? The next theorem will give us the answer:

Theorem 7. Suppose every voter has dichotomous preferences, then the following
two statements are true:

(i) Every nonranked voting procedure is sincere.

(ii) Approval voting is the only nonranked voting procedure which is strategy-proof.
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Proof. (i) We have to show that all admissible strategies are sincere. To analyze
admissible strategies we will make use of theorem 4 and distinguish two cases.
Suppose S is an admissible strategy for voter i on dichotomous preferences with
H(%i) = X1 �i X2 = L(%i).
Criterion 1: When every candidate from H(%i) is in S, S is certainly sincere, be-
cause even if candidates from L(%i) are voted for, sincerity is guaranteed (since all
higher ranked candidate are in S), and we do not even have to look at the second
half of the condition.
Criterion 2: If there is no candidate from L(%i) in S, sincerity is guaranteed as well.
(ii) We have to show that all nonranked voting procedures characterized by M 6=
{0, 1, . . . , |X|−1} have more than one admissible strategy under appropriate dichoto-
mous preferences %i.1 Let %i be such that |X1| − 1 ∈M \ {0} but |X1| /∈M \ {0},
which is possible for every M except for approval voting. Let X1 = {xk1 , . . . , xkl

}
with l = |X1|. Now we define two feasible strategies

S = {xk1 , . . . , xkl−1
} and

S′ = {xk1 , . . . , xkl−2
, xkl
}.

Both strategies fulfill criterion 2 of theorem 4: They include no candidate from X2

and any nonempty A and A′ which is high and disjoint from S and S′ would have to
contain the one candidate missing from X1 in either strategy; but A∪ S and A∪ S′
are both not feasible. Hence, both S and S′ are admissible strategies.

Hence, there is a “yes” and a “no” answer to the question stated before. “Since
the demands of strategy-proofness are more stringent than those for sincere voting,
the circumstances that imply strategy-proofness are less likely to obtain than the
circumstances that imply sincerity” [4, p. 31]. Furthermore, since every voter has
only one sincere and admissible strategy under dichotomous preferences and approval
voting, there is only one outcome, and what we will see in corollary 4, this only
outcome will always be the Condorcet winner.

4.1.2 A more general characterization with strategy-proofness

Additionally, there is another characterization that can be given for approval voting
and strategy-proofness [21]. For this characterization we have to “enhance” our no-
tation a little bit, because this theorem not only permits candidates to be feasible
or not as in definition 1, but also allows for a variability of the set of voters. This
means that there is a set A ∈ X of feasible candidates (or a set of “implementable”
alternatives if you wish) as in the original definition of a social choice function on
page 5 and a set Ȳ ⊆ {1, . . . , n} of voters who do not abstain. The following char-
acterization will also be more general than theorem 7, which characterized approval
voting only among nonranked voting procedures. The following theorem gives a
characterization among all social choice rules (the term is to be specified later) on
dichotomous preferences. It uses another form of a social choice function, namely

1We can say “appropriate”, because we do not have to show this proposition for all dichotomous
preferences. It is enough to show one case, where these voting procedures are not strategy-proof.
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FA,Ȳ : V Ȳ → 2A \ {∅}, where vȲ ∈ V Ȳ specifies the preference profile consisting of
the preferences %i of the non-abstaining voters in Ȳ . For simpler notation we will
write FA(vȲ ) instead of FA,Ȳ (vȲ ) if no confusion may arise.

We define a family of social choice functions {FA,Ȳ (vȲ )}A,Ȳ which takes into
account the variability of the two sets. Furthermore, we consider two consistency
conditions which try to keep track of the selected candidates while the set of voters
and candidates change.

Criterion 17 (Consistency in alternatives). The family of social choice functions
{FA,Ȳ (vȲ )}A,Ȳ is consistent in candidates if for all sets of feasible candidates S ⊂
T ⊆ X, all voters Ȳ , and all preference profiles vȲ ,

FS(vȲ ) = F T (vȲ ) ∩ S whenever F T (vȲ ) ∩ S 6= ∅.

Criterion 18 (Consistency in voters). Given the set of voters B ⊂ C ⊆ {1, . . . , n}
and the preference profile vC , let vC|B be the profile obtained by restricting vC to B.
The family of social choice functions {FA,Ȳ (vȲ )}A,Ȳ is consistent in voters if for all
pairs of candidates (x, y), every electorate B and C, and all preference profiles vB
and vC which are such that vB = vC|B and x ∼i y for all i ∈ C \B, the condition

F {x,y}(vB) = F {x,y}(vC)

holds.

Roughly speaking, criterion 17 says that an election outcome of a smaller subset
always equals the outcome of the larger subset intersected with the smaller one,
and criterion 18 states that unconcerned voters cannot change the outcome of an
election with two alternatives. A family of social choice functions which respects
the two criteria above, i.e. is consistent in candidates and voters, is called a social
choice rule. We call sx(vȲ ) = {i ∈ Ȳ |x ∈ H(%i)} the support of candidate x for
voter preference profile vȲ . Generally, this is not equivalent to the number of votes
candidate x received – only for approval voting, these two terms coincide.2 For later
use, we define the number of voters who weakly prefer candidate x to y under vȲ
by s(vȲ ;x, y) = {i ∈ Ȳ |x %i y}. Under this framework we can define approval
voting as the social choice rule where x ∈ FA(vȲ ) if and only if sx(vȲ ) ≥ sy(vȲ ) for
all y ∈ A. The theorem states that a social choice rule is strategy-proof, neutral,
anonymous and strictly monotone if and only if it is approval voting. Whereas we
want to use definition 4 analogously for strategy-proofness, we still have to define
the other three properties.

Criterion 19 (Anonymity). The social choice rule {FA,Ȳ (vȲ )}A,Ȳ is anonymous if
for all sets of feasible candidates A, all voters Ȳ , all preference profiles vȲ , and all
permutations σ of Ȳ ,

FA(vσ(Ȳ )) = FA(vȲ )

holds with vσ(Ȳ ) = (%σ(i))i∈Ȳ .

2Not only these terms coincide, also the voter preference profile and the ballot response profile are
equivalent only for approval voting – of course, under dichotomous preferences!
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Criterion 20 (Neutrality). The social choice rule {FA,Ȳ (vȲ )}A,Ȳ is neutral if for
all sets of feasible candidates A, all voters Ȳ , all preference profiles vȲ , and all
permutations µ of A,

Fµ(A)(µ(vȲ )) = µ(FA(vȲ ))

holds, where µ(vȲ ) = (µ(%i))i∈Ȳ and µ(%i) means that the preference ranking of
voter i is altered according to the permutation of the candidates so that it represents
the original ranking.

Criterion 21 (Strict monotonicity). The social choice rule {FA,Ȳ (vȲ )}A,Ȳ is strictly
monotone if for all pairs of candidates (x, y), all voters Ȳ , and all preference pro-
files vȲ , v

′
Ȳ
∈ V Ȳ which are such that x �i y and x ∼′i y for one voter i ∈ Ȳ and

vȲ \{i} = v′
Ȳ \{i} for the rest,

x ∈ F {x,y}(v′Ȳ )⇒ F {x,y}(vȲ ) = {x}

holds.

Whereas the criteria of neutrality and anonymity should be taken for granted
regarding most voting procedures in democratic elections, the criteria of strategy-
proofness and strict monotonicity are quite strong and desired properties that (all
four of them) only approval voting satisfies under dichotomous preferences. Before
we come to the theorem, we need to show the following lemma.

Lemma 15. Under dichotomous preferences, if the social choice rule {FA,Ȳ (vȲ )}A,Ȳ
is neutral and strategy-proof, then it satisfies IIA (cf. criterion 2).

Proof. Suppose IIA is not satisfied. Then there exist voter Ȳ and two preference
profiles vȲ , v

′
Ȳ
∈ V Ȳ such that for a pair of candidates (x, y) it satisfies s(vȲ ;x, y) =

s(v′
Ȳ

;x, y) and s(vȲ ; y, x) = s(v′
Ȳ

; y, x), but F {x,y}(vȲ ) = {x} and F {x,y}(v′
Ȳ

) ∈
{{y}, {x, y}}.

We define
i ∈ C ⊆ Ȳ ⇔ x �i y ∨ y �i x.

If C = ∅, then x ∼i y must be true for all i ∈ Ȳ . This would imply F {x,y}(vȲ ) =
{x, y} because we supposed neutrality and the empty set cannot be selected. This,
however, is a contradiction to F {x,y}(vȲ ) = {x}. Hence, C 6= ∅. Since every voter
in Ȳ \ C is indifferent between x and y we can apply consistency in voters and get
F {x,y}(vȲ |C) = F {x,y}(vȲ ) = {x}. As in the mentioned criterion, we will write vC
instead of vȲ |C .

We want to show that for every j ∈ C, F {x,y}(%′j +vC\{j}) = {x} holds, where
%′j replaces %j in vC . We suppose the contrary, having F {x,y}(%′j +vC\{j}) ∈
{{y}, {x, y}}. If voter j has x �j y, then j can manipulate F {x,y},C by pretend-
ing %j would be his true preference instead of %′j , which would yield the preferred
outcome {x}. (To see that j prefers outcome {x} to {x, y} to {y} consider assump-
tion P on page 21.) On the other hand, if voter j has y �j x, then j can manipulate
F {x,y},C by doing the opposite: Pretending that his true preference ranking was %′j
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4 Advantages of approval voting

instead of %j . This contradicts strategy-proofness and we have obtained what we
wanted.

Now, if we repeat this procedure for each voter i ∈ C \ {j} step by step, and
change the voter’s preferences from %i to %′i, we will never change the image of F {x,y}

because of strategy-proofness. Finally, we will have F {x,y}(v′C) = {x}. Again, thanks
to consistency of voters we get F {x,y}(v′

Ȳ
) = F {x,y}(v′C + v′

Ȳ \C) = F {x,y}(v′C) = {x}.
This is a contradiction to y ∈ F {x,y}(v′

Ȳ
), so IIA must hold.

Theorem 8. Under dichotomous preferences, the social choice rule {FA,Ȳ (vȲ )}A,Ȳ
is strategy-proof, neutral, anonymous and strictly monotone if and only if it is ap-
proval voting.

Proof. We have already seen that approval voting is strategy-proof, and it is obvious
that approval voting satisfies neutrality, anonymity and strict monotonicity. For the
other direction let {FA,Ȳ (vȲ )}A,Ȳ be a social choice rule which satisfies the four
properties. We will start with A = {x, y} and show that for all voters Ȳ , and for all
vȲ ∈ V Ȳ , the subfamily

{
F {x,y},Ȳ : V Ȳ → {{x}, {y}, {x, y}}

}
Ȳ

orders candidates

x and y according to approval voting, which means that (1) F {x,y}(vȲ ) = {x, y} if
sx(vȲ ) = sy(vȲ ), and that (2) F {x,y}(vȲ ) = {x} if sx(vȲ ) > sy(vȲ ).

1. As we have shown in lemma 15, {F {x,y},Ȳ }Ȳ satisfies IIA and also via anonymity
we get that for all set of voters Ȳ , the decision of F {x,y},Ȳ depends on the
numbers s(vȲ ;x, y) = sx(vȲ ) + |{i ∈ Ȳ : x, y ∈ L(%i)}| and s(vȲ ; y, x) =
sy(vȲ ) + |{i ∈ Ȳ : x, y ∈ L(%i)}|. Neutrality implies that F x,y(vȲ ) = {x, y}
whenever sx(vȲ ) = sy(vȲ ).

2. Suppose that for a given set of voters Ȳ and a preference profile vȲ , sx(vȲ )−
sy(vȲ ) = 1. We construct preference profile v′

Ȳ
by picking a voter i who

has x �i y and change it to x ∼i y. For all other voters j 6= i we let
%′j=%j . Now we have sx(v′

Ȳ
) = sy(v′Ȳ ), and thus we are in situation (1)

where we had F x,y(vȲ ) = {x, y}. Now applying strict monotonicity, we can
follow that F x,y(vȲ ) = {x}. It is inductively shown that F x,y(vȲ ) = {x}
whenever sx(v′

Ȳ
) > sy(v′Ȳ ).

At this step we want to generalize the situation from the set of candidates {x, y}
to any set of candidates A ∈ X . We have to prove that for all sets of feasible
candidates A, all sets of non-abstaining voters Ȳ and all preference profiles vȲ the
following equivalence must be true:

x ∈ FA(vȲ )⇔ sx(v′Ȳ ) ≥ sy(v′Ȳ ) for all y ∈ A.

“⇒:” x ∈ FA(vȲ ) implies with consistency in candidates (S = {x, y}, T = A) that
x ∈ F {x,y}(vȲ ) for all y ∈ A \ {x}, since FA(vȲ ) ∩ {x, y} = F {x,y}(vȲ ) must hold.
This, together with the fact from above that {F {x,y},Ȳ }Ȳ orders x and y according
to approval voting, implies that sx(v′

Ȳ
) ≥ sy(v′Ȳ ) for all y ∈ A.

“⇐:” Suppose that sx(v′
Ȳ

) ≥ sy(v′Ȳ ) for all y ∈ A holds. Due to the fact we
just had, namely that {F {x,y},Ȳ }Ȳ orders x and y according to approval voting we

31



4 Advantages of approval voting

know that x ∈ F {x,y}(vȲ ) for all y ∈ A. If there is a candidate z 6= x such that
z ∈ FA(vȲ ), then FA(vȲ ) ∩ {x, z} 6= ∅ and consistency in candidates implies with
S = {x, z} and T = A that F {x,z}(vȲ ) = FA(vȲ ) ∩ {x, z}. But since we know that
x ∈ F {x,y}(vȲ ) is must also be true that x ∈ FA(vȲ ). If there is no candidate z 6= x
such that z ∈ FA(vȲ ), then x ∈ FA(vȲ ) must be true, since FA(vȲ ) is not allowed
to choose the empty set by defintion.

Vorsatz shows in [21] that this theorem is tight, which means that we cannot
renounce one criteria so that the theorem would still hold.

4.2 On trichotomous preferences

On trichotomous preferences, conditions for sincereness and strategy-proofness are
not so easy to fulfill. Approval voting does worse, but the other nonranked voting
procedures do so too. And still, approval voting is the only one still remaining
sincere for every trichotomous preference profile.

Theorem 9. Suppose every voter has trichotomous preferences, then the following
two statements are true:

(i) Approval voting is the only nonranked voting procedure which is sincere.

(ii) There is no nonranked voting procedure which is strategy-proof.

Proof. (i) We will show that approval voting is sincere for all trichotomous prefer-
ences profiles, and no other voting procedure can satisfy this condition. Again, we
will make use of theorem 4. We show for every voter i with H(%i) = X1 �i X2 �i
X3 = L(%i) that all admissible strategies are sincere for approval voting. Let S be
a feasible strategy.
Criterion 1: This condition can only be fulfilled by approval voting for all voter pref-
erences, so S consists of all candidates from X1. If now we add a candidate x ∈ X2,
this strategy is admissible and sincere. If we instead add a candidate x ∈ X3, we
can partition S into S1 = X1 and S2 = {x}, but S2 is low for %i. So this strategy
would not be admissible. Hence, all possible strategies arising from this condition
are also sincere.
Criterion 2: If only candidates from X1 are in S we have no problems concerning
sincerity. If S ⊆ X2, or if only some candidates from X1 are in S and X2∩S 6= ∅, we
can choose |X1| and |X2| such that except for approval voting there is no nonempty
A disjoint from S such that A is high for %i and A ∪ S is feasible. So, only for
approval voting, this strategy is not admissible.

(ii) Let %i be such that

X1 = {xk1 , . . . , xkl
},

X2 = {xkl+1
, . . . , xkj

},
X3 = {xkj+1

} ∪ Y,

with ∅ ⊆ Y ⊆ X \ (X1 ∪X2 ∪ {xkj+1
}) and l < j.
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Case (a): M = {j}, j ∈ {2, . . . , |X| − 1}: We define

S = {xk1 , . . . , xkl
, xkl+1

, . . . , xkj
} and

S′ = {xk1 , . . . , xkl
, xkl+1

, . . . , xkj−1
, xkj+1

}.

Both strategies fulfill criterion 1 of theorem 4 because all candidates from X1 are
in S and in S′ and there is no partition of S nor S′ into nonempty S1 and S2 nor
S′1 and S′2 such that S1 or S′1 are feasible. For j = 1, we redefine X1 = {xk1} and
X2 = {xk2}. Now, both strategies S = X1 and S′ = X2 are admissible, cf. corollary
2.

Case (b): |M | > 1: So there exist two integers j, l ∈ {1, . . . , |X| − 1} with l < j.
We define

S = {xk1 , . . . , xkl
} and

S′ = {xk1 , . . . , xkl
, xkl+1

, . . . , xkj
}.

Again, both strategies fulfill criterion 1 of theorem 4 because both strategies contain
all candidates from X1 and there is no partition of S nor S′ into nonempty S1 and
S2, nor S′1 and S′2, such that S2 or S′2 are low, since they both have to contain
candidates from X1 ∪X2, which would imply that S2 and S′2 would have to contain
all candidates from X3 as well.

Hence, in both cases we have found two distinct admissible strategies.

4.3 On multichotomous preferences

If the preference rankings of the electorate are not really restricted, the conclusions
we draw are not really strong either. However, at least we can state that assuming
multichotomous preferences is no disadvantage for approval voting in comparison
with other nonranked voting procedures.

Theorem 10. Suppose every voter has multichotomous preferences, then the fol-
lowing two statements are true [4, pp. 30-31]:

(i) There is no nonranked voting procedure which is sincere.

(ii) There is no nonranked voting procedure which is strategy-proof.

Proof. We will prove the second part of the theorem first.
(ii) For r ≥ 4, let %i be such that

X1 = {xk1 , . . . , xkl
},

X2 = {xkl+1
, . . . , xkj

},
X3 = {xkj+1

},
X4 = {xkj+2

},
...

Xr = {xkj+(r−2)
} ∪ Y,
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with ∅ ⊆ Y ⊆ X \ (X1 ∪ X2 ∪ · · · ∪ Xr−1 ∪ {xkj+(r−2)
}) and l < j. We can again

distinguish the same two cases:
Case (a): M = {j}, j ∈ {2, . . . , |X|−1}: We again define S and S′ as in the proof

of theorem 9 above and show in the same manner that they are both admissible
strategies. The exception for j = 1 works exactly as above, too.

Case (b): |M | > 1: So there exist again two integers j, l ∈ {1, . . . , |X| − 1} with
l < j, and we define S and S′ as in the proof of theorem 9 above and show in the
same manner that they are both admissible strategies.

(i) Now for the first part, we consider the strategy

S′ = {xk1 , . . . , xkl
, xkl+1

, . . . , xkj−1
, xkj+1

},

which is admissible as shown in part (ii) for both cases and obviously insincere. For
j = 1, strategy S′ = X3 is admissible and insincere.

4.4 Election of a Pareto candidate

A Pareto candidate is a candidate who satisfies the Pareto criterion on page 12 in
the way that there is no candidate who all voters rank higher. So it seems to be a
good idea for a voting procedure to choose such a candidate. We will prove that this
is not always the case for approval voting later, but still the following advantage is
true [7]:

Proposition 2. (i) At every preference profile v, there exists a Pareto candidate
that is an AV outcome or component of an AV outcome.
(ii) A non-Pareto candidate may be a component of an AV outcome but never be a
unique AV winner.

Proof. (i) Suppose any preference profile v with strict preferences, which is no re-
striction to this finding referring to [7]. Let all the voters only vote for their top
choice. In this way, a Pareto candidate is at least part of an AV outcome, if not
the unique winner, because if not, there would have been another candidate who all
voters would have ranked higher.

(ii) To show the first part, consider example 4. Here c is part of an AV outcome
(together with b), although every voter prefers b to c. To show the second part,
suppose non-Pareto candidate i is part of the AV outcome at some preference profile
v. Now take any sincere strategy profile s which yields this outcome. Since i is a
non-Pareto candidate, there must be a candidate j that all voters prefer to i. And
since all voters vote sincerely, all those who vote for i must also vote for j. So, i and
j tie for the most votes. Indeed, all candidates j that are ranked higher than i tie for
AV winners. Among those candidates j some perhaps Pareto-dominate others, but
there must be one who no other candidate is preferred to. Hence, we have shown
that this Pareto candidate is part of the AV outcome.
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4.5 Election of a Condorcet winner

As announced on page 10 analyzing the Condorcet winner criterion, we stated that
approval voting need not always but always can produce a Condorcet winner as the
winner of an election [7]. We will prove this now. Furthermore we will also show a
big advantage of approval voting in comparison to fixed rules, where voters can cast
a vote only for a predetermined number of candidates.

Theorem 11. (i) Condorcet winners are always AV outcomes.
(ii) If |M | = 1 a unique Condorcet winner need not be a possible outcome for M .

Proof. (i) If candidate i is a Condorcet winner, a majority of voters prefer i to every
other candidate j. So fewer voters rank j as their first choice than i as their last
choice, which implies by theorem 6 that i is an AV outcome.

(ii) Consider the following example and suppose sincere strategies:

6 voters: a � b � c
4 voters: b � a � c
4 voters: b � c � a
3 voters: c � a � b

If M = {1} or M = {2}, candidate b is elected, whereas candidate a is the Condorcet
winner.

In the example in the proof above we saw that neither fixed rule with |M | = 1 is
able to elect the Condorcet winner. So plurality voting, for example, is not always
able to elect the Condorcet winner, contrary to approval voting. For approval voting
there are several strategies that would produce Condorcet winner a as an outcome,
e.g. Ca = (a, ba, b, ca) or (a, ba, b, c) with each coordinate representing a whole
voter type3. Referring to [7] we see that “the flexibility of approval voting may
be needed to elect a unique Condorcet winner.” On the other hand, dichotomous
preferences allow the voter only to have one sincere and admissible strategy, and
still the Condorcet winner will be elected.

Corollary 4. If every voter has dichotomous preferences, approval voting always
elects the Condorcet winner.

Proof. Since approval voting is strategy-proof under dichotomous preferences, every
voter has only one sincere and admissible strategy, so the set of AV outcomes will
have cardinality one. And, since Condorcet winners are always AV outcomes, this
one set must be the Condorcet winner.

4.6 Stability of Condorcet winners

What about the stability of voting outcomes and what does stability mean? We
define two kinds of stability.

3A voter type consists of voters having exactly the same preferences.
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Definition 7. Given a preference profile v, a nontied voting outcome is stable if
and only if there exists a strategy profile s such that no voters of a single type have
an incentive to switch their strategy to another sincere strategy in order to produce
a preferred outcome.

A nontied voting outcome is strongly stable if and only if there exists a strategy
profile s such that no types of voters, coordinating their actions, can form a coalition
K, all of whose members would have an incentive to switch their strategies to other
sincere strategies in order to produce a preferred outcome.

If a voting outcome is neither stable nor strongly stable it is called unstable. Brams
and Sanver state in [7] that the strategies associated with a (strongly) stable AV
outcome at Ci(v) define a (strong) Nash equilibrium of a voting game in which the
voters have complete information about each others’ preferences and make simul-
taneous choices. As with the definition of admissibility there is a proposition that
helps us analyzing a nontied outcome for stability: we need only consider critical
strategy profiles.

Lemma 16. (i) A nontied AV outcome i is stable if and only if it is stable at its
critical strategy profile Ci(v).
(ii) A nontied AV outcome i is strongly stable if and only if it is strongly stable at
its critical strategy profile Ci(v).

Proof. (i) “⇐:” If i is stable at Ci(v), it is clear that i is stable, because Ci(v) is
the strategy profile required for stability.
“⇒:” We have to show that if i is not stable at Ci(v), it cannot be stable at any
other strategy profile. So assume that i is unstable at Ci(v). Hence, there exist
voters of a single type who have an incentive to switch to another strategy profile
s′ in order to induce a preferred outcome. By lemma 14 candidate i will receive
generally fewer or the same number of votes at s′ than at Ci(v). Given another
strategy s which elects i, all voters switching from Ci(v) to s′ can do so at s too.

(ii) The argument is analogous to part (i).

Consider again example 1 and CM (v). Of course, the first type of voters has
no incentive to depart from their strategy since M is already their most preferred
outcome. The second type, however, does have an incentive to switch from strategy
{T} to strategy {T, P}, which would change the winner from M to P . Also, if even
only two voters of the second type changed to {T, P}, this would already result into
a tie between M and P with {M,P}P{M}. So M cannot be a stable AV outcome.
What about T? At CT (v) three voters from the first type would prefer voting {M,P}
rather than {M} in order to get a tie between T and P , and if four voters changed
they would even change the outcome from T to P . It is obvious that they prefer
{P}P{T, P}P{T}. Thus, also outcome T is not stable at all, and of course, if an
outcome is not stable, it will not be strongly stable either. Our last hope rests on
candidate P . Without any doubt voters of the third type do not have any incentive
to change their strategy since P is already their most preferred outcome. The voters
of the first type do not have any incentive to change their strategy either because
even if all four voters voted {M} instead of {M,P} this would not change a thing.
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Neither do voters of the second type, because even if all three voters voted {T}
instead of {T, P} the outcome would not change. So we know that P is a stable AV
outcome. Furthermore, the only possible coalition for testing strong stability would
consist of first and second type voters. However, even if they both changed their
strategies to {M} and {P} respectively, the outcome would change to M , which is
preferred by the first type of voters but not at all by the second type. Thus, we
have found a strongly stable AV outcome with candidate P . By the way, P is also
the unique Condorcet winner in this example. Is there any relationship between
stability and a Condorcet winner? Guess what!

Theorem 12. A nontied AV outcome is strongly stable if and only if it is a unique
Condorcet winner.

Proof. “⇐:” Suppose candidate i is a unique Condorcet winner at preference profile
v. By theorem 11(i) the candidate is surely an AV outcome, and by theorem 5 it is so
at least i’s critical strategy profile Ci(v). We will show that the outcome is strongly
stable at Ci(v), which by lemma 16 implies strong stability. So suppose there is a
coalition K consisting of one or more voter types whose members prefer candidate j
to candidate i. The members (as far as the voters, not the voter types are concerned)
of K are outnumbered by the members of coalition L, whose members prefer i to j,
because i is the Condorcet winner. Furthermore, the members of L vote for i, but
not for j at Ci(v). Hence, whatever admissible and sincere strategy the members of
K switch to, candidate i will always get more votes than candidate j.

“⇒:” Suppose candidate i is not the unique Condorcet winner. Consequently,
there exist a candidate j and a majority coalition K consisting of one or more voter
types that prefer j to i. We need to show that i is not strongly stable at Ci(v) which
then implies by lemma 16 that i is not a strongly stable AV outcome. Suppose that
approval voting does not elect i at Ci(v). This means by theorem 5 that i is no AV
outcome, and hence, not a strongly stable one. Suppose on the contrary that AV
does elect i at Ci(v). Now there is this majority coalition K that can change the
winner to j, because all members of K will change their strategy to vote for j and
not for i and so j will receive more AV votes than i because of K’s majority.

This strong result becomes even more stringent when we see that no Condorcet
method – any voting procedure which is designed to elect the Condorcet winner
if one exists – guarantees the Condorcet winner to be in equilibrium. Citing [7]
we state that the following proposition casts doubt on the efficacy of Condorcet
methods, such as the Black method from chapter 2, to do what they purport to do
in equilibrium. By contrast, approval voting ensures that Condorcet winners can be
elected as strong Nash equilibria.

Proposition 3. No Condorcet method which elects a single winner ensures the
election of a unique Condorcet winner as a Nash equilibrium.
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Proof. We consider the following example, in which there is no Condorcet winner:

2 voters: a � d � b � c
2 voters: b � d � c � a
1 voter: c � a � b � d

If there is no Condorcet winner, we assume that different candidates may be chosen
by the voting procedure. From this base example, we will analyze departures for
every voter type, one by one. In these departures there exists a unique Condorcet
winner, and we show that this unique Condorcet winner is no Nash equilibrium.

Suppose all voters of the first voter type have the true preferences a � c � d � b.
In this preference profile, there exists a Condorcet winner, namely c. If the winner
in the base example was candidate a, the first voter type would vote as in the base
example in order to get their preferred outcome a.

Suppose all voters of the second voter type have the true preferences b � d � a � c.
This would yield the Condorcet winner a. If the winner in the base example was
candidate b or d, the second voter type would deviate from their true preferences to
the preferences of the base example in order to get their preferred outcome b or d.

Finally, suppose the voter of the third type has the true preferences c � d � a � b.
In this preference profile we have the Condorcet winner d. If the winner in the base
example was candidate c, the third voter type would prefer to vote as in the base
example in order to get the preferred outcome c.

Thus, all three cases are not in equilibrium. To prevent the voter types to deviate
for all three cases, we would have to prevent candidates a, b, c and d from winning in
the base example, which - with no singleton winner sets left - would yield outcomes
such as {b, c} that are also excluded because the voting system was supposed to elect
single winners. Summarizing, there is no way to prevent at least one of the three
cases to be not in Nash equilibrium. Hence, we have shown that whatever Condorcet
method we use for these examples, there will always be a Condorcet winner not in
Nash equilibrium.

To illustrate this proposition with an example, let’s use the Black method with
the example in the proof. Since there is no Condorcet winner in the base example,
Borda count is carried out with the following results: a: 8 points, b: 9 points, c: 5
points, and d: 8 points. So candidate b would win and we are in the second case of
the proof, where the second voter type has b � d � a � c with candidate a being the
Condorcet winner. Thus, the Black method fails to ensure the election of a unique
Condorcet winner as a Nash equilibrium, since deviating to b � d � c � a would
yield the preferred outcome b for the second voter type.

4.7 Condorcet efficiency

So far we have seen that a Condorcet winner always is an approval voting outcome,
which means that under a given preference profile a Condorcet winner can always,
but need not always be elected. What is now the probability of a Condorcet winner
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really getting elected - of course, only if one exists? This probability is called the
Condorcet efficiency for a certain voting procedure. We will assume linear prefer-
ences and the following assumption [12]:

Assumption 3 (Impartial Culture). If a voter is selected at random, he or she will
have a linear preference order on the set X = {x1, x2, . . . , xm} of m candidates,
and each of the m! possible rankings is equally likely to represent the selected voters’
preferences.

First of all, we will try to compute the probability PCW (m,n) that a Condorcet
winner exists, i.e. that we are not in the situation of the Condorcet paradox. For
instance, it is easy to compute PCW (3, 3). There are 3! = 6 different preferences
for one voter and (3!)3 = 216 possibilities for the voter preference profile v. If all
three or two voters have the same preferences, there will always be a clear Condorcet
winner. So we are only interested in the voter preference profiles with three differ-
ent preference rankings. Their number equals 6!

(6−3)! = 120, which are permutations
without repetition. So 96 preference profiles are so far guaranteed to have a Con-
dorcet winner. Since the order does not matter to us, we will only have

(
6
3

)
= 20

combinations (without repetition) to care about. We enumerate all the 6 different
voter preferences:

1. a � b � c

2. a � c � b

3. b � a � c

4. b � c � a

5. c � a � b

6. c � b � a

Without enumerating all the 20 combinations, we see at one glance that e.g. all 4
combinations which include 1 and 2 have a Condorcet winner (since they both state
a � b and a � c). The same is true for all 4 combinations which include 3 and 4,
and all 4 combinations which include 5 and 6. So there remain 8 combinations to
be examined:

1. 135: Candidate a is Condorcet winner.

2. 136: Candidate b is Condorcet winner.

3. 145: No Condorcet winner!

4. 146: Candidate b is Condorcet winner.

5. 235: Candidate a is Condorcet winner.

6. 236: No Condorcet winner!
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7. 245: Candidate c is Condorcet winner.

8. 246: Candidate c is Condorcet winner.

Thus, there are 2×6 = 12 out of 216 cases which have no Condorcet winner. This
leads to PCW (3, 3) = 204

216 = 17
18 . For values greater than 3 this becomes complex very

quickly and we refer to [6, pp. 34-35] and to the references cited therein for further
results. Hence, we will confine our interest to a comparison of Condorcet efficiency
between approval voting and other fixed rules (nonranked voting procedures with
|M | = 1).

Second, we find the joint probability PCWAVm(m,n, p) that candidate xm ∈ X
is both the Condorcet and the approval voting winner. To do this, we will follow
[12] and define a discrete variable xji for every voter j ≤ n and for each candidate
i ≤ m− 1 by

xji =
{

+1 if xm �j xi,
−1 if xi �j xm.

Let

xi =
n∑
j=1

xji

denote the overall value of xji over the n voters. Then candidate xm will be the
Condorcet winner if xi > 0 for all i ≤ m− 1.

We also define another discrete variable yji for every voter j ≤ n, for each candidate
i ≤ m − 1, and for a given strategy profile S = (S1, S2, . . . , Sn) for approval voting
by

yji =


+1 if xm ∈ Sj ∧ xi /∈ Sj ,
−1 if xi ∈ Sj ∧ xm /∈ Sj ,
0 if (xi ∈ Sj ∧ xm ∈ Sj) ∨ (xi /∈ Sj ∧ xm /∈ Sj).

Let

yi =
n∑
j=1

yji

denote the overall value of yji over the n voters. Then candidate xm will be the
approval voting winner if yi > 0 for all i ≤ m − 1. Obviously yji depends on the
number of candidates voter j chooses to approve. To account for this we define pq
in p as the probability that any voter will choose to approve of q candidates, with∑m−1

q=1 pq = 1 and pm = 0.
With all these definitions, PCWAVm(m,n, p) is given by the joint probability that

xi
√
n > 0 and yi

√
n > 0 for all i ≤ m−1. Let PCWAV (m,n, p) = mPCWAVm(m,n, p)

denote the joint probability that some alternative is both the Condorcet and the
approval voting winner.

Third, we define the conditional probability that approval voting elects a Con-
dorcet winner if one exists - the Condorcet efficiency - by

PCEAV (m,n, p) =
PCWAV (m,n, p)
PCW (m,n)

.
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For fixed rules, we will denote the Condorcet efficiency by PCEFR(m,n, q) with one
pq = 1

We can now state the following proposition whose proof can be found in [12]. It
simply shows that the Condorcet efficiency of approval voting is at least as high as
the Condorcet efficiency of plurality voting for an infinite number of voters.

Proposition 4. PCEFR(m,∞, 1) ≤ PCEAV (m,∞, p)

A similar argument can be found concerning the probability that a voting proce-
dure elects the Condorcet loser if one exists. PCLAV (m,n, p) will define the condi-
tional probability that a Condorcet loser is elected under approval voting given that
one exists . PCLFR(m,n, q) will do the same for any fixed rule. Gehrlein and Lepel-
ley mention in [12] that the probability PCW (m,n) a Condorcet winner exists is the
same as the probability PCL(m,n) a Condorcet loser exists. In the next proposition
we will see another advantage of approval voting towards plurality voting whose
proof is found in the same paper.

Proposition 5. PCLFR(m,∞, 1) ≥ PCLAV (m,∞, p)

4.8 Comparison of outcomes

We will see in this section that all outcomes that can be achieved by a positional
scoring procedure can also be achieved by approval voting, but not vice versa. There
are voting outcomes which can only be achieved by approval voting and not by any
positional scoring procedure. The same is true for two other voting rules which are
not positional scoring procedures. Why is this an advantage? In a sense, approval
voting unites all the outcomes of the mentioned voting procedures. So, it could
be argued, there is no use in applying Borda count for instance, because all Borda
count can achieve, can also be achieved by approval voting, at least as far voting
outcomes are concerned. Furthermore, approval voting allows for other candidates
that were otherwise neglected. As we will see in the proof of the next theorem, a
positional scoring procedure need not elect the Condorcet winner, whereas approval
voting always ensures that he or she can be elected. This is a big argument for
more inclusiveness and therefore a broader range of possible outcomes. What adds
to this argument is that approval voting can better prevent candidates who are not
acceptable from winning than any other of the before mentioned voting procedures.

Theorem 13. At all preference profiles v, a candidate chosen by any positional
scoring procedure is an AV outcome. There exist preference profiles v at which a
candidate is not chosen by any positional scoring procedure but is, nevertheless, an
AV outcome.

Proof. We begin to show the first statement. Assume candidate i is chosen by any
positional scoring procedure at the preference profile v. Let s = (s1, s2, . . . , sm)
be the positional scoring vector as on page 13. Without loss of generality we will
normalize s1 = 1 and sm = 0. Let d(x, k) be the number of voters who rank
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candidate x on kth position as on the same page. Then the following inequality
must hold

s1d(i, 1) + s2d(i, 2) + · · ·+ smd(i,m) ≥ s1d(j, 1) + s2d(j, 2) + · · ·+ smd(j,m) (4.8.1)

for all other candidates j.
We will show that i is also chosen by approval voting at i’s critical strategy profile

Ci(v). For this proof, we will interpret approval voting as a non-classical kind of
a positional scoring procedure with the difference that voters give points to the
candidates not using a predetermined vector. We abbreviate the left hand side of
inequality 4.8.1 by PSPi for positional scoring procedures and AVi for approval
voting, and the right hand side with PSPj and AVj , respectively. We assume that
voters vote as suggested by Ci(v) and distinguish two cases:

Case (a): We regard all those voters who rank candidate i last. A positional
scoring procedure gives 1 point to the top candidate, 0 points to candidate i, and
points between 0 and 1 to all the other candidates. Approval voting gives 1 point
to the top candidate, and 0 points to i and to all the other candidates. Now,
AVi = PSPi = 0 and PSPj ≥ AVj because all candidates ranked between places 2
and m− 1 will receive points between 0 and 1 under positional scoring procedures,
but 0 points under approval voting at Ci(v).

Case (b): We regard all those voters who do not rank candidate i last. A positional
scoring procedure gives sk points to candidate i if he or she is ranked kth best.
Approval voting gives candidate i (and all candidates ranked above) 1 point. Hence,
it is easy to see that AVi ≥ PSPi because every sk = 1 in AVi. If all voters have
j � i we have AVi = AVj , if not AVi > AVj , hence AVi ≥ AVj holds.

Thus, uniting all the voters of the two cases, we see that if PSPi ≥ PSPj holds,
AVi ≥ AVj is true.

We still need to show the second statement. Let’s consider the following example:

3 voters: a � b � c
2 voters: b � c � a
1 voter: b � a � c
1 voter: c � a � b

We show that candidate b would be elected by every positional scoring procedure.
So the two inequalities

d(b, 1) + s2d(b, 2) ≥ d(a, 1) + s2d(a, 2)
d(b, 1) + s2d(b, 2) ≥ d(c, 1) + s2d(c, 2)

have to hold and form into

3 + s2 · 3 ≥ 3 + s2 · 2
3 + s2 · 3 ≥ 1 + s2 · 2,
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with 0 ≤ s2 ≤ 1. Thus, every positional scoring procedure would elect b, whereas
the Condorcet winner a would certainly be elected by approval voting because of
theorem 11.

We will introduce the two other voting procedures which were already mentioned
above, Instant Runoff Voting (IRV) and Majoritarian Compromise (MC),
which are two preferential voting systems, which means that they are based on
preference rankings. In IRV, after voters haven given their preference rankings, can-
didates with the fewest first-place votes are eliminated from the preference rankings.
So if one voter had the ranking b � a � c and candidate b was eliminated, the rank-
ing would change into a � c. This procedure is repeated again until one candidate
receives more than half of the votes (or ties with other candidates). If there are only
three candidates, this procedure is the same as plurality voting with runoff (PVR).
To illustrate IRV, consider the following example.

Example 5.

4 voters: a � b � c � d
3 voters: c � b � a � d
3 voters: d � c � b � a
2 voters: c � d � b � a

In the first round, candidate b has got the fewest first-place votes and is therefore
eliminated. This results into:

4 voters: a � c � d
3 voters: c � a � d
3 voters: d � c � a
2 voters: c � d � a

Now in round 2, candidate d has only received 3 first-place votes and is therefore
eliminated, which leads to:

4 voters: a � c
3 voters: c � a
3 voters: c � a
2 voters: c � a

In the last round, candidate c receives more than half of the votes and wins.
Under MC, first-votes, then first- and second-votes, then first-, second- and third-

votes, and so on, are summed up for each candidate until one receives more than half
of the number of voters. If there is more than one, the candidate with most votes
will be declared winner. So referring to example 5, only counting first-votes none
of the candidates gets more than 6 votes. So first- and second-votes are summed
up for each candidate, which results into candidate a receiving 4 votes, b 7 votes, c
8 votes and d 5 votes. So both candidates b and c receive the required number of
votes and therefore c is elected having received most votes.
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Theorem 14. At all preference profiles v, a candidate chosen by IRV or MC is
an AV outcome. There exist preference profiles v at which a candidate chosen by
approval voting is neither an IRV nor an MC outcome.

Proof. First we will show that every candidate i chosen by IRV is also an AV out-
come. Suppose on the contrary that i is not an AV outcome. By theorem 6 there
exists another candidate j such that the number of voters who consider j as their
best choice and i as their worst exceeds the numbers of voters who prefer i to j. So
candidate i will certainly lose against j in some IRV round.

Second we show that if candidate i is not an AV outcome, it is not chosen by MC
either. This holds because j will receive more first place votes than i. If these first-
place votes are not more than half of the number of voters, going down to second
place votes and lower ranks j will sooner get the required number of votes than i,
because at every step there are more voters who have given candidate j first-place
votes than there are voters who prefer i to j and so would have given i their vote.

Third we show by considering example 5 that there are AV outcomes which are not
IRV or MC outcomes. Whereas both IRV and MC elect candidate c, AV outcomes
can also be {a}, {b} and {c, d} chosen at the critical strategy profiles Ca(v), Cb(v)
and Cd(v) respectively.

As already mentioned above, approval voting not only allows for a broader range
of outcomes, it also makes it easier for voters to prevent the election of certain
outcomes they do not approve of.

Theorem 15. At every preference profile v at which the cardinality of the set of
AV outcomes is greater than 1, approval voting can prevent the election of every
candidate4, whereas positional scoring procedures, IRV, and MC cannot prevent the
election of all of them.

Proof. If there is more than one possible winner for a given preference profile v,
none of these candidates can be assured of winning, which implies that everybody
can be prevented from winning. To show that this is not true for positional scoring
procedures, STV and MC consider the following example.

1 voter: a � b � c
1 voter: b � a � c
1 voter: c � b � a

Every positional scoring procedure must elect the Condorcet winner b, because –
analogous to the proof of theorem 13 –

1 + s2 · 2 ≥ 1 + s2 · 1
1 + s2 · 2 ≥ 1

holds. Also MC elects b with first-rank and second-rank votes summed up, which
give b 3 votes, a 2 votes and c 1 vote. Under IRV candidates a and b can be elected

4If there is just one possible outcome there is not much to prevent.
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depending on what candidate is eliminated in the first round. If candidates a or c
are removed, b wins, and if candidate b is removed, a wins.

Concluding, only candidate c is prevented from winning under these voting pro-
cedures, whereas approval voting with Ca(v) = {a, ba, c}, Cb(v) = {ab, b, cb} and
Cc(v) = {a, b, c} yielding outcomes {a}, {b} and {a, b, c} respectively, can prevent
the election of all of them.

We will end this section quoting [7] with a big statement in favor of approval
voting:

We have seen that approval voting allows for outcomes that BC, MC,
and [IRV] do not. At the same time, it may preclude outcomes that other
systems cannot prohibit. In effect, voters can fine-tune their preferences
under approval voting, making outcomes responsive to information that
transcends these preferences. (...)

(...) [I]t is worth noting that basing social choice on acceptability rather
than on traditional social-choice criteria is a radical departure from the
research program initiated by Borda and Condorcet in late 18th-century
France. While we do not eschew these criteria, they should not be the
be-all and end-all for judging whether outcomes are acceptable or not.
Rather, we believe, the pragmatic judgments of voters about who is
acceptable and who is not should be decisive. This is information that
enriches the standard social-choice framework and should, therefore, be
incorporated in it.

4.9 Computational manipulation

In this section we will not focus on strategic behavior of voters who alter their vot-
ing strategies in order to obtain a preferred outcome, but move our attention to
manipulation exercised by computer programs in the sense that a chair uses compu-
tational power to calculate how a possible method could make a certain candidate
win (constructive control) or prevent a certain candidate from winning (destructive
control). A chair is any kind of person, committee, computer program etc. that has
complete information about all voter preferences by knowing the voter preference
profile v, and is in charge of conducting the election. We allege that the chair has
dishonest motives and wants to manipulate the election by exerting seven different
means of control:

1. adding candidates

2. suppressing candidates

3. partition of candidates

4. run-off partition of candidates

5. adding voters
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6. suppressing voters

7. partition of voters

Again we want to remind the readers of the fact that an election need not only be
any kind of decision-making process among human beings. It can also be a decision-
making process among a thousand or millions of computer programs connected via a
network, where every program has some information about a certain field and votes
in respect of its own parameters. Examples include (web-page) rank aggregation
problems or spam filters [13]. So it is easier to imagine that the chair really has
complete information about voter preferences. Of course, in certain elections the
assumption may not be true. However, even if there are a lot of voters, there are
still good ways to estimate voter preferences via more or less precise opinion polls.
Furthermore, lower bounds obtained under perfect information presented in these
fields are also true if regarded under any natural incomplete information model,
because the question whether there is any number of candidates that can be added
under incomplete information is generally harder than the same question under
perfect information. This is explained in more detail in [13].

So what can be the differences among voting procedures concerning their possi-
bility of being manipulated under these means of control? A voting procedure can
be immune or susceptible to a certain type of control, and if it is susceptible it can
be vulnerable or resistant.

Definition 8. A voting procedure is immune to a type of constructive control if it
is never possible for the chair to change a given candidate from being not the unique
winner to being the unique winner by means of this type of constructive control. A
voting procedure is immune to a type of destructive control if it is never possible for
the chair to change a given candidate from being the unique winner to not being the
unique winner by means of this type of destructive control.

A voting procedure which is not immune to a type of control is called susceptible
to this type of control.

A voting procedure is vulnerable to a type of control5 if it is susceptible to this type
of control and the corresponding language problem is solvable in polynomial time.

A voting procedure is resistant to a type of control if it is susceptible to this type
of control and the corresponding language problem is NP-complete.

As in [13], we will now start to define the corresponding language problems of the
points 1-7 above and analyze them with regard to approval, plurality and Condorcet
voting.

Problem 1 (Control by adding candidates). Given: A set X of qualified candidates
and a distinguished candidate c ∈ X, a set X̂ of possible spoiler candidates, and a set
Y of voters with voter preference profile v (in the approval case, the ballot response
profile d is additionally required; in the other cases it can be derived from v - this

5Contrary to the authors of [13] we will not distinguish between vulnerable and certifiably-
vulnerable, since these terms coincide for all the results presented here.
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remark is valid for all the following problems and will be henceforth omitted) over
X ∪ X̂.

Question (constructive): Is there a choice of candidates from X̂ whose entry into
the election would assure that c is the unique winner?

Question (destructive): Is there a choice of candidates from X̂ whose entry into
the election would assure that c is not the unique winner?

Problem 2 (Control by suppressing candidates). Given: A set X of candidates,
a distinguished candidate c, a set Y of voters with voter preference profile v and a
positive integer k < |X|.

Question (constructive): Is there a set of k or fewer candidates in X whose dis-
qualification would assure that c is the unique winner?

Question (destructive): Is there a set of k or fewer candidates in X \ {c} whose
disqualification would assure that c is not the unique winner?

Problem 3 (Control by partition of candidates). Given: A set X of candidates, a
distinguished candidate c, a set Y of voters with voter preference profile v.

Question (constructive): Is there a partition of X into X1 and X2 such that c is
the unique winner in the sequential two-stage election in which the winners in the
subelection X1 who survive the tie-handling rule move forward to face the candidates
in X2 (with voter set Y )?

Question (destructive): Is there a partition of X into X1 and X2 such that c is not
the unique winner in the sequential two-stage election in which the winners in the
subelection X1 who survive the tie-handling rule move forward to face the candidates
in X2 (with voter set Y )?

Problem 4 (Control by run-off partition of candidates). Given: A set X of can-
didates, a distinguished candidate c, a set Y of voters with voter preference profile
v.

Question (constructive): Is there a partition of X into X1 and X2 such that c is
the unique winner of the election in which those candidates surviving (with repect to
the tie-handling rule) subelections with candidate set X1 and X2, respectivley, have
a run-off with voter set Y ?

Question (destructive): Is there a partition of X into X1 and X2 such that c is not
the unique winner of the election in which those candidates surviving (with repect to
the tie-handling rule) subelections with candidate set X1 and X2, respectivley, have
a run-off with voter set Y ?

Problem 5 (Control by adding voters). Given: A set of candidates X and a dis-
tinguished candidate c ∈ X, a set Y of registered voters with voter preference profile
v, an additional set Ŷ of yet unregistered voters with voter preference profile v̂, and
a positive integer k ≤ |Ŷ |.

Question (constructive): Is there a set of k or fewer voters from Ŷ whose regis-
tration would assure that c is the unique winner?

Question (destructive): Is there a set of k or fewer voters from Ŷ whose registra-
tion would assure that c is not the unique winner?
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Problem 6 (Control by suppressing voters). Given: A set of candidates X and a
distinguished candidate c ∈ X, a set Y of voters with voter preference profile v, and
a positive integer k ≤ |Y |.

Question (constructive): Is there a set of k or fewer voters from Y whose disen-
franchisement would assure that c is the unique winner?

Question (destructive): Is there a set of k or fewer voters from Y whose disen-
franchisement would assure that c is not the unique winner?

Problem 7 (Control by partition of voters). Given: A set of candidates X, a
distinguished candidate c ∈ X, and a set Y of voters with voter preference profile v.

Question (constructive): Is there a partition of Y into Y1 and Y2 such that c is
the unique winner in the hierarchical two-stage election in which the survivors of the
elections with voter set Y1 and Y2, respectively, (voting both over the candidate set
X) run against each other with voter set Y .

Question (destructive): Is there a partition of Y into Y1 and Y2 such that c is not
the unique winner in the hierarchical two-stage election in which the survivors of the
elections with voter set Y1 and Y2, respectively, (voting both over the candidate set
X) run against each other with voter set Y .

For the problems with two-stage elections, which are problems 3, 4 and 7, we
have to define the mechanism that resolves ties in the first-stage elections. As in
[13] we will define the Ties-Eliminate mechanism (TE), which does not promote any
candidate to the next stage election if there is a tie. Contrary to this, we define the
Ties-Promote mechanism (TP), which promotes all the candidates tying. All this
does not apply to Condorcet voting, since if there is a winner with voters having a
strict ranking, he or she will always be unique. We have summarized all the findings
of [13] and [14] in table 4.1.

Table 4.1: Computational manipulation of plurality, Condorcet and approval voting
Voting proc. Plurality Condorcet Approval
Control by Constr. Destr. Constr. Destr. Constr. Destr.
Adding candidates R R I V I V
Suppressing candidates R R V I V I
Partition of TE: R TE: R V I TE: V TE: I
candidates TP: R TP: R TP: I TP: I
Run-off partition of TE: R TE: R V I TE: V TE: I
candidates TP: R TP: R TP: I TP: I
Adding voters V V R V R V
Suppressing voters V V R V R V
Partition of TE: V TE: V R V TE: R TE: V
voters TP: R TP: R TP: R TP: V
I = immune, R = resistant, V = vulnerable;
TE=Ties-Eliminate, TP=Ties-Promote.
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4.9.1 Approval voting vs. plurality voting

One main advantage of approval voting vs. plurality voting is that for all the prob-
lems above, whether in their constructive or destructive form, plurality voting is
never immune against any kind of manipulation. Furthermore, there are many cases
where approval voting does better than plurality voting. We will now state all these
cases. As proving all the propositions would go far beyond the scope of this work,
we will only exemplarily show the second of the following nine propositions. All the
proofs can be found in [14] and [13].

Proposition 6. Approval voting is immune to constructive control by adding can-
didates, whereas plurality voting is only resistant.

Proposition 7. Approval voting is immune to destructive control by deleting can-
didates, whereas plurality voting is only resistant.

To prove this proposition we will need four lemmas and one construction whose
exact use will be seen in the proof.

Lemma 17. A voting system is susceptible to constructive control by adding candi-
dates if and only if it is susceptible to destructive control by deleting candidates.

Proof. “⇒:” Suppose the constructive question in problem 1 can be positively an-
swered. Let candidate c not be the unique winner in X, and let X̃ ⊆ X̂ be the set
of candidates added to the candidate set X to make c the unique winner. Define
k = |X̃|. If you now remove X̃, we have shown that there is a set of k candidates
whose removal assures that c is not the unique winner.

“⇐:” Suppose the destructive question in problem 2 can be positively answered.
Let candidate c be the unique winner in X. Define X̂ ⊆ X \ {c} to be set of
candidates removed from X to prevent c from winning. If we add now X̂, we have
shown that there is a set of candidates whose entry assure that c it the unique
winner.

Unique-WARP is the abbreviation for the “unique” version of the Weak Axiom of
Revealed Preference and means that a unique winner among a collection of candi-
dates always remains a unique winner among every subcollection of candidates that
includes him or her. Approval voting, for instance, satisfies Unique-WARP, because
if a candidate is the unique winner in a collection of candidates, he or she has re-
ceived most of the votes. If now you subtract any number of candidates except him
or her, this candidate will still receive most of the votes, since every voter who voted
for him or her before will still do so now. This is not the case for plurality voting for
instance, because if some candidates are lacking, voters who had these candidates as
first choice will now vote for other candidates. So it can be that another candidate
will receive more votes. By the way, also every Condorcet voting method satisfies
Unique-Warp: If a candidate does better than every other candidate in pairwise
contests, he or she will still do so with fewer candidates. You can find the proof of
the next lemma in [14].
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Lemma 18. Any voting system that satisfies Unique-WARP is immune to construc-
tive control by adding candidates.

For the proof that the destructive part of problem 2 is NP-complete for plurality
voting, we will need the following construction. Given the problem of the hitting
set, which is NP-complete, this construction transforms it in polynomial time into
an election consisting of a set of candidates, a set of voters and a voter preference
profile. So the result of the construction will be NP-complete, too.

Problem 8 (Hitting set). Given: A set B = {b1, b2, . . . , bm}, a family S = {S1, S2, . . . , Sn}
of subsets Si of B, and a positive integer k.

Question: Does S have a hitting set of size at most k? That is, is there a set
B′ ⊆ B with |B| ≤ k such that for each i, Si ∩B′ 6= ∅?

Construction 1 (Construction of an election from a Hitting set instance [13]).
Given a triple (B,S, k) where B = {b1, b2, . . . , bm} is a set, S = {S1, S2, . . . , Sn}
is a family of subsets Si of B, and k ≤ m is a positive integer, we construct the
following election:

• The candidate set is X = B ∪ {c, w}.

• The voter set Y and the preference profile v is defined as follows:

– There are 2(m−k) + 2n(k+ 1) + 4 voters of the form c � w � · · · , where
“· · · ” means that the remaining candidates follow in some arbitrary order.

– There are 2n(k + 1) + 5 voters of the form w � c � · · · .
– For each i, 1 ≤ i ≤ n, there are 2(k+ 1) voters of the form Si � c � · · · ,

where “Si” denotes the elements of Si in some arbitrary order.

– Finally, for each j, 1 ≤ j ≤ m, there are two voters of the form bj � w �
· · · .

Lemma 19. If B′ is a hitting set of size k, then w is the unique plurality voting
winner of the election with X = B′ ∪{c, w}, voter set Y and voter preference profile
v as in construction 1.

Proof. Let B′ be a hitting set of size k. We get the ballot response profile d by
assuming that every voter uses a sincere strategy and therefore votes for his or her
top preference available in B′ ∪ {c, w}. Then we have

v(c, d) = 2(m− k) + 2n(k + 1) + 4
v(w, d) = 2n(k + 1) + 5 + 2(m− k)
v(bj , d) ≤ 2(k + 1) + 2 ∀j

The 2(m−k) votes for candidate w result from the fact that in B′, m−k candidates
miss from B. Since there are always two voters for each bj whose second choice is
w, there must be 2(m− k) additional votes for w. Hence, we see that candidate w
receives most of the votes and is the unique plurality winner.
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Lemma 20. Let D ⊆ B ∪ {w}. If c is not the unique plurality voting winner of the
election with candidate set D ∪ {c}, voter set Y and voter preference profile v as in
construction 1, then there exists a set B′ ⊆ B such that

1. D = B′ ∪ {w},

2. w is the unique plurality winner of the election with candidate set B′ ∪ {c, w},
voter set Y and voter preference profile v, and

3. B′ is a hitting set of S of size less than or equal to k.

Proof. Let D ⊆ B∪{w} and suppose that c is not the unique plurality voting winner
of the election stated above with X = D ∪ {c}. Let d be as in the proof of lemma
19. We begin to note that for all b ∈ D ∩B we have

v(b, d) ≤ 2n(k + 1) + 2 < 2(m− k) + 4n(k + 1) + 9 ≤ v(c, d).

Since c is not the unique plurality voting winner, there must be a candidate w ∈ D
with v(w, d) ≥ v(c, d). Let B′ ⊆ B be such that D = B′ ∪ {w}. Then D ∪ {c} =
B′ ∪ {c, w}. We have

v(w, d) = 2n(k + 1) + 5 + 2(m− |B′|)
v(c, d) = 2(m− k) + 2n(k + 1) + 4 + 2(k + 1)l,

where l is the number of sets in S not hit by B′, which means that they have an
empty intersection with B′. From this we see that v(c, d) is even and v(w, d) is odd,
so we have v(w, d) > v(c, d). Hence, w is the unique winner of the plurality election
with X = B′ ∪ {c, w} and we have shown points 1 and 2.

For any B′ ⊆ B we know that v(c, d) ≤ v(w, d) we have

2(m− k) + 2(k + 1)l ≤ 1 + 2(m− |B′|),

which implies

(k + 1)l − k + |B′| ≤ 1
2
.

Since the left-hand term of the inequality is a whole number, we can restate it as
(k + 1)l − k + |B′| ≤ 0 from what follows l = 0 and |B′| ≤ k. So B′ is a hitting set
of S of size at most k.

Proof of proposition 7. We will show the proposition in three parts: First we will
show that approval voting is immune, second that plurality voting is susceptible and
third that plurality voting is resistant to destructive control by deleting candidates.

Part 1: From lemma 18 we know that approval voting is immune to constructive
control by adding candidates. From lemma 17 we get that it is immune to destructive
control by deleting candidates.

Part 2: Let’s consider example 4, where a is the unique winner under plurality
voting. Now remove for example candidate d. The two voters who had voted for d
before will now vote for b. This results in 3 votes for a, but 4 votes for d.
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Part 3: We will prove the following claim: S has a hitting set of size at most k
if and only if the election with candidate set X, voter set Y and voter preference
profile v as in construction 1 and distinguished candidate c can be destructively
controlled by deleting at most m− k candidates.

“⇒:” Let B′ be a hitting set of S of size k. By lemma 19, candidate c is not the
unique plurality voting winner with B′ ∪ {c, w}. Since B′ ∪ {c, w} = X \ (B \ B′)
with |B \B′| = m− k, the removal of B \B′ changes the winner from c to w.

“⇐:” Let D ⊆ B ∪ {w} with |D| ≤ m− k be so that c is not the unique plurality
voting winner of X \ D. Since c ∈ X \ D it follows from lemma 20 that D there
equals (X \D) \ {c} here, so from (1) we have that B′ ∪ {w} = (X \D) \ {c} of size
at most (m+ 2)− (m− k) + 1 = k + 1, and so from (3) we get that B′ is a hitting
set of S of size at most k.

Proposition 8. Approval voting is immune to constructive control by partition of
candidates for tie-breaking mechanism TP, whereas plurality voting is only resistant
for TP.

Proposition 9. Approval voting is immune to destructive control by partition of
candidates for both tie-breaking mechanisms, whereas plurality voting is only resis-
tant.

Proposition 10. Approval voting is immune to constructive control by run-off par-
tition of candidates for tie-breaking mechanism TP, whereas plurality voting is only
resistant for TP.

Proposition 11. Approval voting is immune to destructive control by run-off parti-
tion of candidates for both tie-breaking mechanisms, whereas plurality voting is only
resistant.

Proposition 12. Approval voting is resistant to constructive control by adding vot-
ers, whereas plurality voting is vulnerable.

Proposition 13. Approval voting is resistant to constructive control by deleting
voters, whereas plurality voting is vulnerable.

Proposition 14. Approval voting is resistant to constructive control by partition of
voters for tie-breaking mechanism TE, whereas plurality voting is vulnerable for TE.

4.9.2 Approval voting vs. Condorcet voting

As far as approval voting and Condorcet voting are concerned, we can say that in
general they share the same results. Approval voting always does at least as well
as Condorcet voting, and in two cases it does even better. Doing statistics (and
counting twice the Condorcet voting entries for problems which use tie-breaking
rules to allow comparison), approval voting is immune 8 times, resistant 4 times and
vulnerable 8 times, whereas Condorcet voting is immune 6 times, resistant (also) 4
times and vulnerable 10 times. So those two cases, where the first voting procedure is
immune, but the second one is vulnerable, are exactly the two cases where approval
voting has an advantage over Condorcet voting.
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Proposition 15. Approval voting is immune to constructive control by partition of
candidates for tie-breaking mechanism TP, whereas Condorcet voting is vulnerable
for TP.

Proposition 16. Approval voting is immune to constructive control by run-off par-
tition of candidates for tie-breaking mechanism TP, whereas Condorcet voting is
vulnerable for TP.

4.10 Conclusion

The main conclusion we have to draw here is that approval voting is unbeatable
under dichotomous preferences. No other voting procedure has such a great perfor-
mance concerning strategy-proofness. However, under all other preferences, espe-
cially under multichotomous ones, approval voting does not do so overwhelmingly
fine. Still, it is generally speaking not worse than other nonranked voting procedures.
Approval voting offers a bunch of advantages concerning the election of a Condorcet
winner – in respect of stability it is even better than Condorcet voting methods. It
has a higher probability of electing the Condorcet winner than plurality voting, and
it offers also many advantages concerning computational manipulability, especially
against plurality voting. Approval voting outcomes are more inclusive than Borda
count, plurality voting, IRV or MC outcomes for instance, which makes those voting
procedures obsolete, one could argue.

Approval voting has also other advantages under other approaches not mentioned
here. Take the term “policy space” for instance. Candidates and voters are sup-
posed to have positions on a one, two or even higher dimensional policy space. Then,
voters try to elect those candidates that come most closely to their own position.
Referring to Dellis and Oak [8], who have adopted a one dimensional model, out-
comes, i.e. candidates, under approval voting are more moderate than those under
plurality voting under certain assumptions. Thus, approval voting leads to more
centrist outcomes compared to plurality voting. Moreover, all feasible alternatives
are clustered at no more than two positions, “contrary to the popular intuition that
approval voting may lead to a large number and variety of candidates.” Furthermore,
approval voting is neither subject to the wasting-the-vote nor to the vote-splitting
effect. If two candidates run on a similar platform, the former says that voters are
discouraged to give their vote to a candidate not having great chances to win, be-
cause they fear to “waste their vote”, and the latter states that votes will be split
among these two candidates. These two effects heavily occur under plurality voting.
Hence, plurality voting discourages candidates to run on similar policy platforms,
which approval voting does not. If we judge the idea that the best candidate should
win as a positive one, it is clearly negative that (possibly better6) candidates are
already discouraged beforehand to run for office, only because another (possibly
worse) candidate has already taken up a similar policy.

6The definition of better and worse are clearly no objective ones. However, one could consider
whether a candidate is only motivated because of the office he or she could reach, or if there is
a real commitment to the policy he or she stands for as a good criterion.
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5.1 On trichotomous and multichotomous preferences

Under trichotomous and multichotomous preferences we already know that ap-
proval voting is no longer strategy-proof; other nonranked voting procedures are
not strategy-proof either. In some situations, however, approval voting does even
worse as far as the number of admissible strategies is concerned. Consider the fol-
lowing examples in table 5.1 [4, p. 28] and 5.2. In the former example, approval
voting does worse than plurality voting in lines 3 and 4, and negative voting in line
3. In the latter example, approval voting does worse in 7 out of 11 cases compared
to plurality and in 4 out of 11 cases compared to negative voting. Yet, we can also
remark that approval voting does not generally do worse, and that in table 5.1 ap-
proval voting is better than negative voting in 3 out of 4 cases, for instance. Still,
on trichotomous and multichotomous preferences approval voting has lost its big
advantage over other nonranked voting procedures.

Table 5.1: Number of admissible strategies for four candidates and r ≥ 3
Preferences AV PV NV

trichotomous a ∼ b � c � d 2 3 4
a � b � c ∼ d 2 2 4
a � b ∼ c � d 4 3 2

multichotomous a � b � c � d 4 3 4

Table 5.2: Number of admissible strategies for five candidates and r ≥ 3
Preferences AV PV NV

trichotomous a ∼ b ∼ c � d � e 2 4 5
a ∼ b � c ∼ d � e 2 4 5
a ∼ b � c � d ∼ e 4 3 6
a � b ∼ c ∼ d � e 8 4 2
a � b ∼ c � d ∼ e 4 3 5
a � b � c ∼ d ∼ e 2 2 5

multichotomous a ∼ b � c � d � e 4 4 6
a � b ∼ c � d � e 8 4 5
a � b � c ∼ d � e 8 4 5
a � b � c � d ∼ e 4 3 6
a � b � c � d � e 8 4 6
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The fact that approval voting offers more admissible strategies in some situa-
tions than other nonranked voting procedures makes it more vulnerable to strategic
manipulation in these cases. All this has proven the following proposition.

Proposition 17. Suppose every voter has trichotomous or multichotomous prefer-
ences, then approval voting may have more admissible strategies than other voting
procedures.

5.2 Election of a Pareto candidate

We have seen that in the set of AV outcomes there is always a Pareto candidate
and that a non-Pareto candidate may be a component of an AV outcome but never
a unique outcome. The second fact could also be considered as a disadvantage,
because it is at least doubtful that a candidate who is judged inferior to at least one
other candidate by all voters is part of an outcome. The disadvantage we state now
is that there even can be Pareto candidates not “found” by approval voting.

Proposition 18. Not every Pareto candidate is necessarily an AV outcome.

Proof. Consider example 4 where candidate d is not elected at Cd(v) (so not elected
at all), but is top ranked by the third voter type. So d is a Pareto candidate, because
there is no other candidate that all voters rank higher.

5.3 Election of a Condorcet loser

Unfortunately for approval voting, a Condorcet loser may be, but need not be an
AV outcome. Actually we have already seen this in lemma 1. To show that this need
not always be the case, consider example 4 where candidate d is the Condorcet loser,
but not an AV outcome. To see that a Pareto candidate may also be a Condorcet
loser greatly weakens the disadvantage of approval voting as to proposition 18.

Asking again, what about stability and strong stability? Just to show that there
is a real difference between these two terms consider once again example 4. We
know that at Ca(v) = (a, a, a, bca, bca, d, d) candidate a wins. The first voter type
has no incentive to change their strategy since they cannot obtain any better result.
The second voter type could use two other sincere strategies, which are {b, c} and
{b}. None of those strategies, though, would change the winner. The third voter
type could also use two other sincere strategies, namely {d, b} and {d, b, c}. Again,
switching to either of them would not result in a different outcome. Hence, candidate
a is a stable AV outcome. However, if both second and third voter types join forces
and vote {b, c} and {d, b} respectively, candidate a would only get 3 votes, candidate
c retain his 2 votes, but candidate b would assemble 4 votes who both voter types
prefer to candidate a. Thus, candidate a is not a strongly stable AV outcome.
Furthermore, this was not the only strategy which could achieve this, also {b, c} and
{d, b, c}, {b} and {b, d}, and {b} and {d, b, c} could achieve this. Whereas we saw in
the last chapter that a Condorcet winner always is a strongly stable AV outcome,
we will see now that a Condorcet loser can be a stable AV outcome as well.
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Proposition 19. A unique Condorcet loser may be a stable AV outcome, even when
there is a different outcome that is a unique Condorcet winner (and therefore strongly
stable).

Proof. Consider the following example from [7]:

3 voters: a � b � c � d � e
1 voter: b � c � d � e � a
1 voter: c � d � e � b � a
1 voter: d � e � b � c � a
1 voter: e � b � c � d � a

There exists a Condorcet winner, candidate b, who is therefore a strongly stable
AV outcome, and there also exists a Condorcet loser, candidate a. We will show
that a is a stable AV outcome. Consider a’s critical preference profile Ca(v) =
(a, a, a, b, c, d, e). Clearly, first type voters have no incentive to switch their strategy.
For all the other voters, they each have three other sincere strategies to apply.
However, if only one voter performs a change, none of these strategies would yield
another outcome.

To show that this need not always be the case, consider once again example 1. We
already know that M is the Condorcet loser. We will show that M is not a stable AV
outcome. ConsiderM ’s critical preference profile CM (v) = (M,M,M,M, T, T, T, P, P ).
Clearly, first type voters have no incentive to switch their strategy. Second type vot-
ers have one other sincere strategy which is {T, P}. This strategy would make P
the winner which these voters prefer to M .

5.4 Condorcet efficiency

Even though approval voting does better than plurality voting as far as the proba-
bility of the election of the Condorcet winner and the Condorcet loser is concerned,
there still is another voting method with higher chances of electing the first and
lower chances of electing the second type of candidate. Quite astonishingly, this is
the fixed rule where you have to vote for exactly half of the candidates (if m is odd,
then for dm2 e of the candidates). We state the following results with proof in [12].

Proposition 20. PCEAV (m,∞, p) ≤ PCEFR(m,∞, dm2 e)

Proposition 21. PCLAV (m,∞, p) ≥ PCLFR(m,∞, dm2 e)

5.5 Computational manipulation

5.5.1 Approval voting vs. plurality voting

Although approval voting is often better than plurality voting, there also exist five
cases where the opposite is true. In all those cases, both systems are always suscep-
tible, but plurality voting is resistant and approval voting vulnerable. As we have
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already had, table 4.1 summarizes all these results, and the proofs can be found in
[13] and [14].

Proposition 22. Plurality voting is resistant to destructive control by adding can-
didates, whereas approval voting is vulnerable.

Proposition 23. Plurality voting is resistant to constructive control by deleting
candidates, whereas approval voting is vulnerable.

Proposition 24. Plurality voting is resistant to constructive control by run-off par-
tition of candidates for tie-breaking mechanism TE, whereas approval voting is vul-
nerable for TE.

Proposition 25. Plurality voting is resistant to constructive control by run-off par-
tition of candidates for tie-breaking mechanism TE, whereas approval voting is vul-
nerable for TE.

Proposition 26. Plurality voting is resistant to destructive control by partition of
voters for tie-breaking mechanism TP, whereas approval voting is vulnerable for TP.

5.6 Extreme vulnerability to majority decisiveness and to
erosion of the majority principle

In this section we will examine two disadvantages which approval voting is vulner-
able1 to. The two issues can be seen as a dual problem. The first one – majority
decisiveness – states that even a simple majority can guarantee the election of its
most preferred candidate regardless of the other voters’ preferences. The second one
– erosion of the majority principle – states that a candidate preferred by even the
largest possible majority is not necessarily elected. These two problems contradict
each other in a certain way: The former one is against “majority-dictatorship”, the
latter one against a “one-person-dictatorship”. The former one wants minorities to
be heard, the latter one wants majorities not to be overheard. One could say that
it is impossible to find a voting procedure that evades both problems. Nevertheless,
Baharad and Nitzan present restricted approval voting , where they impose a mini-
mum and maximum number of candidates that must be approved, and relax both
problems at once [3]. We will consider restricted approval voting in the last chapter
in section 6.3, and we will show now that (regular) approval voting is extremely
vulnerable to both kinds of problems.

Baharad and Nitzan have already shown before in the context of positional scoring
procedures [2] that under sincere voting a majority of size α can guarantee the
election of its most preferred candidate when

α ≥ s1 − sm
2s1 − s2 − sm

, (5.6.1)

where si designates the points attributed to a candidate dependent on his or her
position in the preference ranking as on page 13, and α is a fraction with denominator

1The term “vulnerability” is no longer seen in a computational context as in section 5.5.
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n. As in the proof of theorem 13 we will consider approval voting as a kind of
a positional scoring procedure with the difference that voters give points to the
candidates not using a predetermined vector.

Theorem 16. Under sincere voting, approval voting is vulnerable to simple majority
decisiveness.

Proof. Suppose that all voters only vote for their most preferred candidate, which
is an admissible and sincere strategy. So we get s1 = 1, s2 = sm = 0, and inequality
5.6.1 is satisfied with α ≥ 1

2 . Thus already a simple majority can guarantee its
favorite to be elected.

We could also have proven this by giving the following modification of example 1:
Disqualify the last two voters and only allow to vote the 4 voters with M � P � T
and the 3 voters with T � P � M . If now both voter types find their first two
choices acceptable, they will vote {M,P} and {T, P}, which will make P the winner.
However, the majority – the first type voters – would prefer candidate M to win. So
if they now switched to their other sincere and admissible strategy {M} they could
ensure that M is the winner, regardless of the votes of any minority, i.e. the second
voter type.

Theorem 17. Under sincere voting, approval voting is vulnerable to erosion of the
majority principle by the smallest possible minority, that is by a single voter.

Proof. If every voter approves of at least the first two candidates, we have s1 = s2 =
1, sm = 0. This implies α = 1 in inequality 5.6.1. Thus, there is no majority as large
as possible, except unanimity, that could ensure their most preferred candidate to
win. Hence, even a single voter could dictate the winner.

We will also illustrate this (and give an alternative proof) by giving the following
example [3]:

Example 6.

n− 1 voters: a � b � c � d
1 voter: b � c � d � a

Suppose that all of the n−1 voters apply their sincere voting strategy {a, b}. Now
if the last voter votes {b, c} for instance, the favorite of a minority - a single voter!
- will win, whereas the favorite of this vast majority (all but one) will lose. Here
the duality of the problem becomes evident: Of course, the majority could “dictate”
their favorite candidate and only vote for a; then the last voter could do anything
he or she wanted but his or her voice would not be heard at all.

What about the other voting procedures under sincere voting? Plurality voting,
of course, is also vulnerable to majority decisiveness, but not to the erosion of the
majority principle. For Borda count we get

α ≥ n− 1
n

,
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so we must have α = n−1
n or α = 1, which means that only a majority consisting of

all but one, or all voters can “dictate” their favorite. The second case is equivalent
to the desired feature of unanimity (criterion 1). So Borda count is not vulnerable
to majority decisiveness by a simple majority. As to the erosion of the majority
principle, a majority smaller than n−1

n can be overruled by a minority, so it is
vulnerable to it. Consider example 6 with n = 3. A majority of voters prefers a to b,
but b will win getting 7 points, whereas candidate a only receives 6 points. Referring
to the majority criterion (criterion 9), Condorcet voting is vulnerable to majority
decisiveness even by a simple majority. Consider again the above modification of
example 1: First type voters simply decide that M is the winner, regardless of what
second type voters say. By the majority criterion it is also clear that Condorcet
voting is not vulnerable to the erosion of the majority principle, since a favorite
of a majority will always win. Concluding we see that the erosion of the majority
principle is a drawback to approval voting and Borda count, whereas Condorcet
voting and plurality voting always fulfill majority decisiveness. Only Borda count
does best here: Only unanimity (but one) can guarantee the election of the group’s
favorite - a fact that seems quite desirable. Thus, approval voting is the only voting
procedure among the ones examined here that is vulnerable to both types of the
dual problem. A summary is presented in table 5.3.

Table 5.3: Vulnerability to simple majority decisiveness and to the erosion of the
majority principle

Majority Erosion
Approval voting YES YES
Plurality voting YES NO
Borda count NO YES
Condorcet voting YES NO
Majority = vulnerable to simple majority decisiveness
Erosion = vulnerable to the erosion of the majority
principle

5.7 Utilities, Stability and Condorcet winner

In the next two sections we will examine another concept of preferences, from which
the old concept can easily be derived. We suppose that there is a utility function
ui : X → R which assigns every voter i a utility, or payoff, ui(x) when a candidate
x is elected, and ui = (ui(x))x∈X . We have not used this concept so far, because I
think that it is quite unrealistic to believe that voters can calculate their utilities in
terms of money (or any other unity). To my mind, it is far more realistic to assume
that voters are able to state preferences over candidates on an ordinal scale than on a
cardinal one.2 Nevertheless, it is surely legitimate to carry out such considerations,
where we are able to consider terms like stability in a more game-theoretic way.

2An introduction into this argumentation can be found in [19, pp. 47ff.].
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Within this framework, we can also consider an election as a game, where each
player is a voter who tries to maximize his or her expected payoff. Propositions 27
and 28 present two drawbacks of approval voting within this framework.

Proposition 27. Given a strategy profile S, a Condorcet winner may receive no vote
under approval voting, even if S survives iterated elimination of (weakly) dominated
strategies.

Proof. Consider the following example with X = {a, b, c, d} from [18]:

u1 =(10, 0, 1, 3),

u2 =(0, 10, 1, 3),

u3 =(1, 0, 10, 3).

We already know by corollary 1 that only strategies where voters vote for their most
preferred and do not vote for their least preferred candidate are not dominated. So
in this example every voter has four admissible strategies. Among these, there is
one that is insincere (voting for the first and the third most preferred candidates).
We will show that the “plurality voting strategy” S = (a, b, c), hence the one where
voters only vote for their most preferred candidate, survives iterated elimination of
(weakly) dominated strategies. These are all admissible strategies:

voter 1: a, ad, acd, ac
voter 2: b, bd, bcd, bc
voter 3: c, cd, acd, ac

If there is a tie in any outcome we suppose that all candidates tying are selected
with equal probability. First we verify in table 5.4 - the maximum utility values
of each row are in bold face - that the first voter’s strategy {a} weakly dominates
his strategies {a, c, d} and {a, c}. Therefore, we can eliminate these two strategies.
Now, in the reduced game the third voter’s strategy {c} weakly dominates all his
other strategies {c, d}, {a, c, d} and {a, c}. This is verified in table 5.5. Next, with
the strategies remaining we see from table 5.6 that the second voter’s strategy {b}
(even strongly) dominates all his other strategies {b, d}, {b, c, d} and {b, c}. Finally,
voter 1 has still two strategies left: {a} and {a, d}. His utility using strategy {a} is
11
3 ; his utility using strategy {a, d} is 7

2 . So strategy {a} dominates strategy {a, d}.
Hence, the above defined strategy profile S survives iterated elimination, where the
Condorcet winner d receives no vote.

Proposition 28. A strategy combination which forms a stable set of an approval
voting game may contain insincere strategies.

Proof. Consider the following example:

u1 =(1000, 867, 866, 0),

u2 =(115, 1000, 0, 35),

u3 =(0, 35, 115, 1000).
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Table 5.4: Elimination of dominated strategies of voter 1
Strategy of Scores of

candidates
Utilities of voter 1
under strategy

voter 2 voter 3 a b c d {a} {a, c, d} {a, c}
{b} {c} 0 1 1 0 11

3 1 1
{b} {c, d} 0 1 1 1 7

2 2 1
{b} {a, c, d} 1 1 1 1 10 14

3
14
2

{b} {a, c} 1 1 1 0 10 14
3

14
3

{b, d} {c} 0 1 1 1 7
2 2 1

{b, d} {c, d} 0 1 1 2 3 3 2
{b, d} {a, c, d} 1 1 1 2 13

2 3 14
3

{b, d} {a, c} 1 1 1 1 10 14
3

11
2

{b, c, d} {c} 0 1 2 1 1 1 1
{b, c, d} {c, d} 0 1 2 2 2 2 1
{b, c, d} {a, c, d} 1 1 2 2 14

3 2 1
{b, c, d} {a, c} 1 1 1 1 11

2 1 1
{b, c} {c} 0 1 2 0 1 1 1
{b, c} {c, d} 0 1 2 1 1 1 1
{b, c} {a, c, d} 1 1 2 1 11

2 1 1
{b, c} {a, c} 1 1 2 0 11

2 1 1

Table 5.5: Elimination of dominated strategies of voter 3
Strategy of Scores of

candidates
Utilities of voter 3 under
strategy

voter 1 voter 2 a b c d {c} {c, d} {a, c, d} {a, c}
{a} {b} 1 1 0 0 11

3
7
2 1 1

{a} {b, d} 1 1 0 1 7
2 3 2 1

{a} {b, c, d} 1 1 1 1 10 13
2

14
3

11
2

{a} {b, c} 1 1 1 0 10 10 11
2

11
2

{a, d} {b} 1 1 0 1 7
2 3 2 1

{a, d} {b, d} 1 1 0 2 3 3 3 2
{a, d} {b, c, d} 1 1 1 2 13

2 3 3 14
3

{a, d} {b, c} 1 1 1 1 10 13
2

14
3

11
2

Table 5.6: Elimination of dominated strategies of voter 2
Strategy of Scores of

candidates
Utilities of voter 2 under
strategy

voter 1 voter 3 a b c d {b} {b, d} {b, c, d} {b, c}
{a} {c} 1 0 1 0 11

3
7
2 1 1

{a, d} {c} 1 0 1 1 7
2 3 2 1
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It is shown in [18] that the strategy profile

S = (ac,
1
4
b+

3
4
ab,

1
4
d+

3
4
cd)

containing mixed strategies is a stable set, where strategy {a, c} is insincere.

5.8 Non-predictability of subset election outcomes

It is desirable for a voting procedure that the outcome of an election of a subset of
candidates is not completely independent from the outcome of the original candidate
set. Suppose X = {a, b, c} with the overall outcome a � b � c. If we now only make
pairwise comparisons, an overall outcome of c � a, b � a and c � b is not what
we would wish for, since this would mean that the Condorcet loser would have won
and the Condorcet winner would have lost in the original election. Furthermore,
we could assume that if we restrict the strategies voters can use in subset elections
dependent on their strategies in the original election, this would ensure the subset
election outcome to be dependent on the outcome of the original election. So, before
stating the main result of [22], we will define the following restrictions on voters’
strategies.

Following [22], let’s assume that a voter follows a utility maximizing strategy
and only votes for a candidate if the utility derived from the candidate’s victory is
greater than the average utility over all the candidates running in the election. Let
X̃ = {xj1 , xj2 , . . . , xjr} with 1 ≤ j1 < j2 < · · · < jr ≤ m be a subset of X. We define
the mean utility function ui for voter i by

ui({xj1 , xj2 , . . . , xjr}) =
∑r

k=1 ui(xjk)
r

,

and the approval function Aijk for voter i by

Aijk({xj1 , xj2 , . . . , xjr}) =
{

1 if ui(xjk) > ui({xj1 , xj2 , . . . , xjr})
0 if ui(xjk) ≤ ui({xj1 , xj2 , . . . , xjr}).

With strategy profile S = (S1, S2, . . . , Sn) dependent on a specified X̃ ⊆ X and
the definitions above we have xk ∈ Si for voter i⇔ Aijk(X̃) = 1. Facilitating analysis
we will only allow for ui(xl) 6= ui(xk) for all l 6= k and for all voters i ≤ n. The
following lemmata show the restrictions implied by this approach.

Lemma 21 (Restriction 1). For each subset X̃ = {xj1 , xj2 , . . . , xjr} of X (with
r ≥ 2) and any voter i, there exist integers s and t, with 1 ≤ s, t ≤ r, such that
Aijs(X̃) = 1 and Ajt(X̃) = 0.

Proof. We simply have to show that if there is a set of r pairwise distinct real num-
bers there will always be one that is below average and one that is above average. If
you do not take this for granted, consider the following proof by induction: Without
loss of generality, suppose the numbers are in the following order a1 < a2 < a3 < · · · .
For r = 2, we quickly verify that a1 <

a1+a2
2 < a2 holds, and the same is done for

the inductive step with a1 <
a1+a2+···+ar+ar+1

r+1 < ar+1.
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So this restriction states that there will always be at least one candidate being
approved of and one candidate being disapproved of.

Lemma 22 (Restriction 2). If Ais(X̂) = 1 and Ait(X̂) = 0 for any voter i and any
X̂ ⊆ X, then Ais(X̃) ≥ Ait(X̃) must hold for every X̃ ⊆ X with xs, xt ∈ X̃.

Proof. From the assumption it follows that ui(xs) > ui(X̂) ≥ ui(xt). Hence we
always have ui(xs) > ui(xt) and so Ais(X̃) < Ait(X̃) cannot be true.

This restriction says that if in one subset voter i selects candidate xs but not
xt, in every other subset containing both candidates, the same voter cannot do the
contrary, i.e. vote for xt but not for xs.

Lemma 23 (Restriction 3). If Ais(X̃) = 1 for any X̃ ⊆ X and any voter i, then
Ait(X̃ \ {xs}) ≥ Ait(X̃) for every candidate xt 6= xs. Similarly, if Ais(X̃) = 0 for any
X̃ ⊆ X and any voter i, then Ait(X̃ \ {xs}) ≤ Ait(X̃) for every candidate xt 6= xs

Proof. We will show the first part of the lemma, the second one is completely anal-
ogous. Since ui(xs) > ui(X̃), we have ui(X̃) > ui(X̃ \ {xs}). Hence, ui(xt) > ui(X̃)
implies ui(xt) > ui(X̃ \ {xs}).

The last restriction states that if one removes a candidate a voter votes for, then
every other candidate has at least as high chances of getting selected by this voter
as in the original set of candidates. Or, in other words, if a better-than-average
candidate is removed, the mean utility function of this subset will be lower than the
original one. Thus, every other candidate who is better than average in the original
set will also be better than average in this subset.

Despite all these restrictions - which we did not impose but which follow alone
from the assumption that voters approve of all candidates who have a higher utility
than their average utility - that severely infringe voters’ strategies in subset elections,
unfortunately for approval voting, we come to the following result.

Theorem 18. Under approval voting, given the overall election results, there are
no restrictions on the subset election results, even if every voter follows the recom-
mended utility-maximizing strategy. In other words, information about the results of
an election among one group of candidates gives no information about the results of
elections among any other groups.

Proof. We will show this theorem for m = n = 3. The general proof of more than
two pages can be found in [22]. We want to construct the example stated at the
beginning of this section. If the overall outcome is a � b � c and the subset results
are c � a, b � a and c � b, the theorem follows.

So, let us assume any arbitrary group of voters who yield the outcome a � b � c.
We will add three voters to this group with strategies S1 = {a}, S2 = {b} and
S3 = {c}. How are they going to vote in the subset elections? The first voter has to
vote {a} in subset elections {a, b} and {a, c} because of lemma 21 (he cannot vote
for both) and together with lemma 22 (he must vote for a). As to subset election
{b, c} we can choose freely whether he should vote {b} or {c}. Since we want the
outcome to be c � b, we let him vote {c}.
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5 Drawbacks of approval voting

We can follow the same procedure with the two other voters. The second voter
will vote {b} in {a, b} and {b, c} and we choose him to vote {c} in {a, c}, since we
want to achieve c � a. The third voter votes {c} in {a, c} and {b, c} , and we choose
him to vote {b} in {a, b}.

Now, combining the ballots of the three voters in the overall election we obtain
{a} ∪ {b} ∪ {c} = {a, b, c}, which does not change a thing. In {a, b}, however, the
votes of the first two voters cancel each other out and the third voter gives one
vote towards the desired outcome. The same is true for {a, c}, where we get one
additional vote for c, and for {b, c} we get an additional vote for c, too. Hence, if
we repeat adding the group of these three voters often enough, we will reach the
desired outcomes. Of course, we can also achieve any other result with this method,
like a � b, b� c and c � a only by adjusting the strategies we can choose freely from
this group of voters.

This theorem clearly contradicts Brams’ and Fishburn’s opinion [4, p. 5] that
“[approval voting] is relatively insensitive to the number of candidates running.” If
we subtract or add candidates we can receive completely different results. However,
this is not a drawback solely true for approval voting. Also plurality voting has the
same kind of problem as Saari stated in [16]. Since a valid use of approval voting is
to vote as in plurality voting, theorem 18 can also be interpreted as a corollary of
Saari’s finding.

Although the idea of comparing these results with the findings of computational
manipulation by adding and deleting candidates sounds alluring, we cannot draw
really strong conclusions, because approval voting is immune and vulnerable (two
extreme positions!), and plurality voting always resistant (the “middle” category)
in these cases.

5.9 Conclusion

Concluding, we repeat that approval voting loses a lot of its glory when considered
under trichotomous and multichotomous preferences. In some cases it is even worse
compared to plurality or negative voting as far as strategy-proofness is concerned.
Being more inclusive, which was seen as an advantage in the previous chapter, also
brings the effect that a Condorcet loser may be elected as a stable equilibrium.
Approval voting loses against the fixed vote-for-half rule regarding Condorcet effi-
ciency, and it also has some drawbacks with respect to plurality voting concerning
computational manipulation. Within the framework of utility functions, other dis-
advantages become apparent, as the non-predictability of subset election outcomes
or the stability of some strategies with unwished attributes.

As a response to the conclusion of chapter 4, we want to mention another finding
by Dellis and Oak [9] which says that the advantage of approval over plurality
voting concerning the election of more centrist candidates critically hinges upon an
assumption. If this assumption shows to be not true in reality, the advantage cannot
hold any more either.
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6 Modifications of approval voting

6.1 Approval-Condorcet-Elimination

In section 4.1 we have seen that approval voting does excellent on dichotomous
preferences. However, what if voters cannot find a partition of the candidates into
only two sets? What if they need three categories to classify them, like “favorite”,
“acceptable” and “disapproved”? In this case, approval voting loses a lot of its
glory. We have already seen in section 5.1 that approval voting is no longer strategy-
proof under trichotomous (and multichotomous) preferences, nor does it guarantee
to always elect the Condorcet winner. For the latter we can present a solution
called the Approval-Condorcet-Elimination procedure (ACE) [23]: Voters are
asked to make a trichotomous preference ranking; if they happen to have only a
dichotomous one, e.g. a ∼ b � c, ACE provides three different ways of stating
them: Either, candidates a and b are both in category “favorite”, but candidate c
is in category “disapproved”. To be aware of this information, we will write this as
a ∼ b � ∅ � c. Or, candidates a and b may be only in category “acceptable”, and
candidate c therefore in category “disapproved”, which we denote as ∅ � a ∼ b � c.
Finally, it could be that candidates a and b are definitely favorites, and candidate c
is still accepted, which would result in a ∼ b � c � ∅. So this information from ACE
is a more powerful one that we cannot obtain in such a way from approval voting.

In [23], ACE is defined as follows: Vote counts are kept for all pairs of candi-
dates so that, in any given pair, the number of votes for a candidate is increased by
1 whenever that alternative is ranked higher in the trichotomous ranking just de-
scribed. Then, if a candidate is Condorcet winner, this candidate is declared winner.
If none exists, any Condorcet loser is eliminated. When there are neither Condorcet
winner nor losers, candidate(s) with the largest disapproval vote are eliminated and
the Condorcet criteria are applied again. This process is repeated until a winner is
found or all remaining candidates are tied. This process reminds a bit of the Black
method described on page 12, and has also similarities to IRV as on page 43. Ac-
tually it combines two elements from them: it first tries to find a Condorcet winner
as in BM, and if there is none, it eliminates candidates round by round as in IRV
until a Condorcet winner is found, or the remaining candidates are tied.

The advantages of ACE are (partially) obvious:

Proposition 29. ACE satisfies the Condorcet winner, the Condorcet loser, the
Pareto (the first version on p. 12) and the participation criterion.

Proof. ACE satisfies the Condorcet winner and the Condorcet loser criteria by def-
inition.

Pareto: If all voters have a � b, b will not be the Condorcet winner. Suppose
that no other candidate c, c 6= a, c 6= b wins. (If this was the case, we would
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6 Modifications of approval voting

already be done.) If b is not eliminated before in some round, and a will certainly
not be eliminated before b, because a has no (!) disapproval votes and cannot be
the Condorcet loser either, candidate b will certainly lose against a in a pairwise
competition.

Participation: Suppose a is the winner and x any other alternative. Either a has a
majority over x, or x is eliminated in some round due to being the Condorcet loser,
or to having the largest disapproval votes. Now we add one or more voters who vote
a � x. (So a and x are different indifferent classes.) For the first case, a now has
an even larger majority over x. For the second case, it may be that x receives more
votes against another candidate y 6= a and ceases being the Condorcet loser, and for
the third case it may be that y receives more disapproval votes than x. So in both
cases, candidate y may be eliminated instead of x, but when only candidates a and
x are left, a will certainly win, because a has won before and now has one or more
additional voters voting a � x.

Yet, there are also disadvantages that approval voting does not have. For instance,
ACE fails the monotonicity criterion, but it satisfies a weaker form of this criterion.

Criterion 22 (Weak monotonicity). If a voting procedure chooses a as the winner,
and one or more voters move a to a higher indifference class (without changing
anything else), a should still be the winner.

The difference to the original definition of monotonicity in criterion 11 is that
the original definition talks about “changing preferences in a way favorable for a
(without changing anything else)”. So, for example b � c � a turns into b � a � c.
For ACE, these are two changes, because two indifference classes change, and not
only one, whereas weak monotonicity would change the same preference ranking into
b � c ∼ a � ∅. However, one could argue that these are as well two changes (the
“acceptable”-class changes from cardinality 1 to 2, and the “disapproved”-class from
1 to 0). As we have already mentioned before at the beginning of section 2.2, many
criteria can be formulated in a way that is favorable for one or the other system. To
my mind, the same phenomenon has occurred here. The following proposition will
also consider consistency.

Proposition 30. ACE fails consistency and monotonicity, but satisfies weak mono-
tonicity.

Proof. Consistency: See below.
Monotonicity: Consider the following example:

4 voters: a � c � b
4 voters: b � a � c
2 voters: b � c � a
2 voters: c � b � a
1 voter: c � a � b
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Since the overall outcome regarding Condorcet voting is b � a � c � b, there
is no Condorcet winner nor loser. So candidate b having most disapproval votes is
eliminated and a wins over c 8 to 5. Now, if the two voters of the third voter type
change their preferences in favor for a from b � c � a to b � a � c, there still
is no Condorcet winner nor loser, but candidate c will now be eliminated with 6
disapproval votes, and b will beat a 8 to 5.

Weak monotonicity: Suppose a is the winner and x any other alternative. Either
a has a majority over x, or x is eliminated in some round due to being the Condorcet
loser or to having the largest disapproval votes. Now suppose that some voters move
a to a higher indifference class, but x stays in his or her indifference class. For the
first case, a may get an even larger majority over x. For the second case, x will not
get larger support, so still be the Condorcet loser; or a now may receive fewer, but
not more disapproval votes, and x gets the same number. Thus, in all cases, a will
still win, and x will still lose.

It may not be surprising that ACE fails consistency, since we already know from
lemma 13 that every voting method that first elects a Condorcet winner if one exists,
fails consistency. At the same time, though, this is quite astonishing for a modi-
fication of approval voting, since approval voting was characterized by consistency
among two other criteria in theorem 3. Apparently, these modifications made to ap-
proval voting are already very strong and let it drift away from the original definition.
On the other hand, there are also some modifications or redefinitions of consistency
which ACE satisfies and which may all be considered reasonable [23]. Nevertheless,
we will not mention them here, but content ourselves with the proposition above.

6.2 Approval voting combined with disapproval voting

Another way to model trichotomous preferences is the idea to combine approval with
disapproval voting. Hence, a voter may not only approve or abstain from approving
a candidate, but he or she may also vote against a candidate. Then, the candidate
with the largest (net) number of votes (approval votes minus disapproval votes)
wins. This modification of approval voting is called combined approval voting
(CAV) [10].

For CAV we have to apply another definition of strategy, since we have defined a
strategy only for nonranked voting procedures, which CAV definitely is not. Thus,
a CAV strategy for a voter i is a pair S = (S1, S2) consisting of two sets S1, S2 ⊆
X,S1 ∩ S2 = ∅ with the interpretation that i votes for every candidate in S1 and
votes against every candidate in S2, and abstains from voting for candidates not in
S1 ∪ S2.

First of all, we can say that the election outcomes of approval voting and combined
approval voting will not differ very much.

Proposition 31. If all voters vote according to their dominant strategy, the out-
comes of approval voting and combined approval voting will be the same.

Proof. We will sketch a proof for a set X = {a, b, c} of three candidates as in [10].
By simple enumeration of all the 3|X| − 2 (voting for, voting against and abstaining
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for every candidate in X minus voting for all candidates and voting against all
candidates) feasible strategies for a focal voter, plus the situations where he or she
can influence the outcome (this is done exhaustively in [10]), table 6.1 presents the
result of this process showing all the admissible strategies in comparison to the
admissible strategies of approval voting for this case.

Table 6.1: Admissible strategies under CAV and AV for 3 candidates and concerned
voters

Preference Admissible strategies
rankings CAV AV
a � b � c ({a,b},{c}), ({a},{b,c}) {a}, {a,b}
a � c � b ({a,c},{b}), ({a,b},{c}) {a}, {a,c}
b � a � c ({a,b},{c}), ({b},{a,c}) {b}, {a,b}
b � c � a ({b,c},{a}), ({b},{a,c}) {b}, {b,c}
c � a � b ({a,c},{b}), ({c},{a,b}) {c}, {a,c}
c � b � a ({b,c},{a}), ({c},{a,b}) {c}, {b,c}
c � b ∼ c ({a},{b,c}) {c}
b � a ∼ c ({b},{a,c}) {b}
c � a ∼ b ({c},{a,b}) {c}
a ∼ b � c ({a,b},{c}) {a,b}
a ∼ c � b ({a,c},{b}) {a,c}
b ∼ c � a ({b,c},{a}) {b,c}

From the table we conclude that admissible strategies for CAV only include vot-
ing for or against a candidate, but never abstaining, and that there are as many
admissible strategies for approval voting as for CAV. We show that the outcomes
must be the same. Let d be a ballot response profile for approval voting. Candidate
a received v(a, d) votes in the approval voting election. In the CAV election, there
will also be v(a, d) voters who will vote for a, but since no abstentions are admis-
sible, there will be (n − v(a, d)) voters voting against a. So there is a net sum of
v(a, d)− (n− v(a, d)) = 2v(a, d)−n for candidate a. Candidates b and c will receive
2v(b, d) − n and 2v(c, d) − n votes, respectively. Hence, no matter what the result
for approval voting was, the same will be true for CAV.

Yet, there is also a difference between the two systems as far as focal voter efficacy
is concerned, which is measured by the probability that a focal voter can change the
election outcome.

Definition 9. Given the ballot of the other n− 1 voters, a focal voter n is called

• weakly decisive, if the voter is able to create ties between two or more leading
candidates.

• strongly decisive, if the voter can break a tie between two or more leading
candidates, as well as elect a candidate who obtained fewer votes than the
leading tied candidates.
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[10] shows that the following proposition holds:

Proposition 32. The probability that a focal voter is strongly decisive under CAV
is greater than under AV.

The probability that a focal voter is not decisive (so not even weakly decisive)
under CAV is greater than under AV.

[10] also shows that these differences are relatively large under a small electorate
(committees etc.). So especially under these circumstances voter will prefer one
system to the other depending on whether they dislike more being not decisive or
they put their attention more on being strongly decisive. Furthermore, trying to
be psychologist, an additional point for CAV is the potential psychological effect a
voter has by being able to express a distinct disapproval vote against a candidate.

6.3 Restricted approval voting

As announced in section 5.6, restricted approval voting (RAV) mitigates the
drawbacks of approval voting as far as extreme vulnerability to majority decisiveness
and to the erosion of the majority principle is concerned. Let l and u be integers
such that 1 ≤ l ≤ u ≤ |X| − 1, and voters must vote for at least l and at most k
candidates [3]. We have the following special cases:

• If 1 < l = u < |X| − 1, the applied rule equals fixed rules with |M | = 1, where
voters can only vote for a predetermined number of candidates, cf. p. 35. This
is the most inflexible version of RAV.

• If l = u = 1, the applied rule is plurality voting.

• If l = u = |X| − 1, the applied rule is negative voting.

• If l = 1 and u = |X| − 1, the applied rule is approval voting.

The following theorem demonstrates how RAV can mitigate the above stated
problems [3]:

Theorem 19. 1. Under sincere voting, if l > 1 RAV is not vulnerable to any
α-majority decisiveness.

2. Under sincere voting, the vulnerability of RAV characterized by l > 1 to erosion
of the majority principle cannot be eliminated. However, the proportion of
preference profiles under which the erosion problem exists can be decreased by
reducing u.

Proof. (1) l > 1 implies that s1 = s2 = 1 as in section 5.6. Consequently, inequality
5.6.1 transforms into

α ≥ 1− sm
2− 1− sm

= 1.

Hence, there is only unanimity that can guarantee its favorite to be elected.
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(2) The first claim of part (2) can be directly derived from (1). We prove the
second claim by stating that the number of feasible strategies under s1 = s2 (since
l > 1) increases when u is increased. In other words, the proportion of preference
profiles under which erosion of the majority principle arises can be decreased by
reducing u.

However, this restriction also raises problems. What if l > 1 and a voter i has the
preference ranking a �i b ∼i c? RAV forces i to vote for a candidate from L(%i), a
strategy not admissible for approval voting, and intuitively not making much sense,
either.

6.4 Conclusion

Although all of these restrictions and modifications can weaken or even eliminate
some drawbacks, none of them can be judged superior to approval voting, because
either not all disadvantages may be eliminated, or the elimination of some flaw
brings up another drawback to this modified voting procedure.

Massó and Vorsatz [15] present another modification of approval voting: To allow
society to treat unequal alternatives distinctly they propose relaxing the assumption
of neutrality. According to this modification, every candidate receives a strictly
positive and finite weight already before the election. These weights may differ
across candidates. After approval voting was carried out, weighted approval voting
elects the candidate for which the product of total number of votes times exogenous
weight is maximal.

Finally, I want to come back to our nine friends from the introductory example. So,
what should they do now? At first, we already know that there is no perfect voting
procedure, so all the advice we can give will not be perfect, either. I would suggest
that they should try approval voting, because it gives them much more freedom to
express their preferences, or perhaps CAV (if we want each voter to have higher
chances of being strongly decisive). Also, Borda Count would be an alternative, but
to my mind it is too restrictive: Every voter is forced to have a linear ranking (which
of course is the case in this example), unless a modification is used which splits the
points among equally ranked candidates, and every voter cannot vary his or her
strategy without voting insincerely. And this does not imply strategy-proofness as
already Borda had to admit [19, p. 29]. The same restriction argument applies for
plurality voting, plurality voting with runoff (this at least prevents our friends from
electing the Condorcet loser) and all Condorcet methods.
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