
MAS TERAR BE IT

Mashups
a new concept in web application

programming

ausgeführt am Institut für

Informationssysteme

der Technischen Universität Wien

unter der Anleitung von

Prof. Dr. Reinhard Pichler

durch

DI (FH) Christoph Klocker

Toldgasse 2 / 16

1150 Wien

Wien, am 08. Februar 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt und die aus anderen Quellen entnommenen Stellen als solche gekennzeichnet
habe.

Wien, am 5. Februar 2008

DI (FH) Christoph Klocker

ii

Acknowledgements

Finally I will finish my second studies “Informatikmanagment” with this master thesis.
I am glad to finish it after having had an intense time the last 2 years. During this
time, when I used most of my spare time for my studies, I still got the full support
from my girlfriend. Kathrin, thanks a lot for your support and considerateness.

Another person to mention is Dr. Robert Baumgartner. He gave me helpful advises
writing the thesis and inspired my to write about mashups.

Last but not least my supervisor Prof. Dr. Reinhard Pichler.

iii

Abstract

In recent years, a new trend in web application development has evolved, namely
Mashups. These applications are hybrids that integrate content from different sources
into something new, thereby adding value. This thesis gives a general overview of the
kinds of mashups that exist and what technologies are most commonly used within
mashups. It also introduces some tools and platforms for the creation of mashups.

The case study about creating a Music Mashup provides insight into the concepts
behind mashups, such as web scraping, data mashing and front-end development.

iv

Zusammenfassung

In den letzten Jahren entwickelte sich ein neuer Trend in der Webapplikationsentwick-
lung, die so genannten Mashups. Diese Applikationen sind Hybride, die Informationen
von unterschiedlichen Quellen zusammenführen und dadurch neue Applikationen mit
einem zusätzlichen Mehrwert kreieren. Die Masterarbeit zeigt einen allgemeinen Über-
blick der verschiedenen Mashuparten auf, führt in die wichtigsten zu Grunde liegenden
Technologien ein und stellt einige Programme und Platformen für das Erstellen von
Mashups vor.

Die Fallstudie fmMusic, ein Musik-Mashup, gibt einen Einblick in die verschiedenen
Konzepte, wie Web scraping, Data mashing und Frontendentwicklung, auf welchen
Mashups aufbauen.

v

Contents

Erklärung ii

Contents vi

List of Figures x

I Introduction 1

1 Introduction 2
1.1 Motivation . 2
1.2 Mashups . 3
1.3 Definition . 3
1.4 Categories . 4

1.4.1 Mapping mashups . 4
1.4.2 Video and photo mashups . 5
1.4.3 Data (News) mashups . 5
1.4.4 Shopping mashups . 6

1.5 Enterprise mashups . 6
1.5.1 Definition . 6
1.5.2 Service Compositions and Mashups 8

II Technology 9

2 Technologies 10
2.1 XML . 10

2.1.1 A sample XML Document . 11
2.1.2 Validation . 11

2.2 XPath . 12
2.2.1 How to use XPath . 12

2.3 XSL Transformations (XSLT) . 13
2.3.1 Usage of XSLT . 13

2.4 Web Services . 13
2.4.1 Where to find web services . 14
2.4.2 How does it work . 14
2.4.3 Implementations . 15

2.5 Representational State Transfer . 15
2.5.1 Definition . 15
2.5.2 Design principles of REST . 16
2.5.3 Methods of REST . 16
2.5.4 Using YouTube’s REST API . 16

vi

Contents

2.6 SOAP . 17
2.7 SOAP vs. REST . 18
2.8 AJAX . 19

2.8.1 Introduction . 19
2.8.2 Definition . 19
2.8.3 AJAX Model . 20

2.9 JSON . 21
2.10 XUL . 23

2.10.1 Features and Benefits . 23
2.10.2 Requirements . 24

2.11 RSS / ATOM . 24
2.11.1 RSS . 24
2.11.2 Atom . 25

3 Mashup Techniques 27
3.1 Server-side Mashups . 28

3.1.1 Benefits . 28
3.1.2 Drawbacks . 29

3.2 Client-side Mashups . 29
3.2.1 How It Works . 30
3.2.2 Benefits . 31
3.2.3 Drawbacks . 31

3.3 Mashup Targeting . 31
3.3.1 Presentation Mashups . 31
3.3.2 Data Mashups . 32
3.3.3 Logic Mashups . 32

4 Web Data Extraction 34
4.1 Definition . 34
4.2 Information Extraction . 34
4.3 Web Data Extraction . 35
4.4 Extraction Tools . 35

4.4.1 Taxonomy for Characterizing Web Data Extraction Tools 36
4.4.2 Deep Web Navigation . 37

III Tools and platforms 38

5 Mashup Enablers 39
5.1 Dapper . 39

5.1.1 Creating a Dapp . 40
5.1.2 Limitations . 40

5.2 Openkapow . 41
5.2.1 Limitations . 44

5.3 Conclusion . 44

6 Mashup Platforms 45
6.1 Introduction . 45
6.2 What you can expect . 45

vii

Contents

6.3 What you will get . 46
6.4 Example Mashup platforms . 46

6.4.1 Yahoo! Pipes . 46
6.4.2 Microsoft Popfly . 48
6.4.3 IBM’s Mashup Starter Kit . 50

IV FmMusic - a music mashup 53

7 Specification 54
7.1 Artist/Track . 54
7.2 Album, Album cover . 55
7.3 Lyrics . 55
7.4 Artist Information . 55
7.5 Music Videos . 56
7.6 Pictures . 56

8 Apache Cocoon 57
8.1 Introduction . 57
8.2 The Cocoon framework . 58
8.3 Separation of Concerns (SoC) . 58

8.3.1 Model View Controller . 59
8.3.2 Cocoon, MVC and Flowscripts 59

8.4 The pipeline model . 59
8.4.1 Generator . 60
8.4.2 Transformer . 61
8.4.3 Serializer . 61
8.4.4 Matchers . 61

9 fmMusic backend 63
9.1 Filestructure . 63
9.2 Scraping Fm4 . 64
9.3 Amazon web services . 67

9.3.1 Using the ItemSearch operation 68
9.3.2 Matching and extracting response information 69

9.4 Lyrics extraction . 70
9.4.1 Sub-page navigation . 70
9.4.2 Linking pipelines using flow logic 71

9.5 Pictures from Flickr . 73
9.6 Wikipedia . 74
9.7 Musicvideos from YouTube . 75

10 fmMusic frontend - a Firefox sidebar 78
10.1 Extending Firefox . 78
10.2 XUL Overlays . 79
10.3 Extended functionality with JavaScript 81
10.4 Creating a tabbed interface . 82

viii

Contents

V Future Issues 83

11 Legal issues 84
11.1 Copyright . 84
11.2 Copyright in the digital age . 84
11.3 Data ownership . 85
11.4 Conclusion . 85

12 Future Trends 86
12.1 Role of Mashups in the Enterprise . 87

12.1.1 Business Intelligence . 87
12.2 Mashup tools and platforms . 87
12.3 Conclusion . 88

VI Appendix 89

A YouTube API response 90

B Stylesheets and transformation results 92

C Extension source code 97

Bibliography 99

Bibliography 99

ix

List of Figures

1.1 Mapping Mashup - California wildfires 4
1.2 Google News - a data mashup . 5
1.3 Pricerunner - Showing pricecomparisons for a product 6

2.1 XML document represented as tree . 12
2.2 Request/Response web service . 15
2.3 One way web service . 15
2.4 Web application model comparison . 21
2.5 AJAX process flow . 22
2.6 XUL Example opened in Firefox . 24

3.1 Sample homepage provided by Pageflakes 32

5.1 First step creating a dapp . 40
5.2 Collecting sample pages . 41
5.3 Selecting the content to extract . 41
5.4 Grouping of the extracted content . 42
5.5 OpenKapow Robosuite IDE . 43
5.6 Extraction with the RoboSuite . 43

6.1 Yahoo! Pipes interface . 47
6.2 Pipes debugger . 48
6.3 Popfly interface . 49
6.4 Popfly result module . 49
6.5 Damia editor . 51
6.6 QEDWiki user interface . 51

7.1 Fm4 radio stream . 54

8.1 Three concerns of Web page development and management 58
8.2 Model View Controller . 59
8.3 Main components within Cocoon . 60

9.1 Sources that will be aggregated . 63
9.2 Frame with tracklisting . 64
9.3 Amazon’s Music portal page . 67
9.4 AZLyrics.com - Content source for lyrics 70
9.5 Search results when searching after an artist and title 71
9.6 Artist information on Wikipedia . 75
9.7 Extracted artist information from Wikipedia 75
9.8 Result showing embedded videos . 77

10.1 Music Extension sidebar inside the Firefox Browser 79

x

List of Figures

10.2 Artist and video tab . 79
10.3 Lyrics and pictures tab . 80
10.4 Statusbar displaying current song played 80

12.1 Mashup Timeline - New mashups on ProgrammableWeb, last 6 months 88

xi

Part I

Introduction

1

1 Introduction

1.1 Motivation

In the last few years web applications have significantly extended their use and value
from plain information sources into highly sophisticated desktop-like applications. The
so-called Web 2.0 introduced, with user-generated content, a new way of acquiring and
providing information and paved the way for a revival of Software as a Service (SaaS).
Within Web 2.0, new technologies and models evolved or were explicitly provided to mix
data from different sources in order to create something new. These hybrid applications
became known as Mashups.

Mashups initially focused on mixing different data sources together, meanwhile de-
velopers, especially in the enterprise sector worked to offer a quick and simple way to
create situational business applications.

In this chapter I will give a short introduction as to what a mashup is and what
you can expect of it. Categorization will help you get a general idea of what types of
mashups do exist, and how enterprise can take advantage of mashups.

Part two discusses the technology that are related to mashups. Chapter two is all
about common technology standards that most mashups build upon. The third chapter
takes a closer look at the different types of mashups within a technical and logical view.

Chapter four deals with data extraction, a fundamental part of mashups when content
is not accessible through a public application programming interface (API). The follow
up chapter presents tools that offer a fast-forward approach for web data extraction.

Mashup platforms are all about already existing software products or services that
offer mashup functionality. I will have a look at three publically available platforms
and discuss their functionality.

In the third part, a case study on creating a music mashup fmMusic is presented.
fmMusic is a service that extracts the artist and track name from a radio station’s
streaming service and gathers various additional information, like album name, lyrics,
video or artist information. The case study uses the XML framework Cocoon1, there-
fore chapter eight will introduce the basic concepts of this, before we examine the
functionality behind the mashup in chapter nine.

The frontend that is used for the mashup is an extension for the Firefox browser.
Chapter ten explains how to extend the browser and add the mashup functionality to
it. The mashup could have been implemented in HTML or something else too, but I
favored this way, because I think an extension offers better usability to the user.

The last part discusses future issues related to mashups. The rising popularity of
mashups will make them widely available in the enterprise sector. I will have a closer
look at enterprise’s current role and how these mashup tools will fit within enterprises.
The last chapter tries to point out the role of mashups in relation to current copyright
law and how mashups are dependent on the content owner, especially if some kind of
web scraping mechanism is involved.

1http://cocoon.apache.org/2.1/

2

1.2 Mashups

1.2 Mashups

Mashups are a new sort of interactive web application that use existing content or data
sources to create new services or applications. Mashups can be seen as a follow-up
involvement to the so-called Web 2.0, where building desktop-like web applications
and social interaction was the main focus. Tim O’Reilly defined the principles of
Web 2.0 as simple, low-barrier and fast and every user himself is the center of the
Internet [ORei05]. Mashups not only build up on these technologies they go further
and integrate different data sources that are either explicitly provided by content owners
through APIs, or use web scraping techniques to access content.

The term mashup was borrowed from the music scene, where in beginning of this
century a new type of remixing evolved. Vocals and instrumental tracks, mainly from
different genres, e.g. hiphop and rock, were mixed together to create something new.
This quickly became popular as bastard pop2 and is now well known as mashup. In an
analogy to the music scene, web mashups use existing content, most of the time just
parts of it, and mixes it with content from at least one other data source.

Google Maps3 was, at the time of its release, the most outstanding application, as it
showed off what a web application is capable of doing. It changed all the perceptions
of how a web application operates in comparison to a desktop client. The spotlight
shifted to developing new, AJAX [Garr05] based, applications. With the emergence of
AJAX use in these rich Internet applications (RIAs) the usability experience improved
and led to a more comfortable user interaction. As more and more web applications
started to use these new possibilities and started to motivate users to enhance the
information provided, the so-called social networking sites appeared on the scene. A
well known example is Flickr4, a popular photo sharing site. It offers tools to users to
tag, manipulate, comment or share photos in a quick and convenient way.

Right after the release of Google Maps, Google provided an application programming
interface (API) to access its features. Everyone could integrate data within Google
Maps. Los Angeles Times5 used Google Maps to create a wildfire tracking map6. Lots
of developers and hobbyists created their own maps. Mapping mashups became the
most popular type of available mashups.

1.3 Definition

In my introduction, I defined a mashup as a mix of different content sources to cre-
ate something with new value, maybe even disconnected from its intended uses and
meanings. If I look at this definition, I could easily say that an integration of Google
Adsense7 links makes a website a mashup. Placing an ad an a website is not a way
to extend the value of a website. Therefore I come to the conclusion that the defini-
tion must also include reference to creating something new out of the different content
sources.

Someone could ask, is the mapping of a data source onto a map a mashup? As this
is one of the initial applications used, of course it is; it’s even a special type of mashup,

2http://de.wikipedia.org/wiki/bastardpop
3http://maps.google.com
4http://www.flickr.com
5http://www.latimes.com/
6http://www.latimes.com/news/local/la-firemap,0,6179739.htmlpage
7https://www.google.com/adsense/login/de/

3

1.4 Categories

a mapping mashup. Thus what other kinds of mashups are there, and can we define
categories for mashups?

1.4 Categories

1.4.1 Mapping mashups

Visual representation and interaction is always a big issue when displaying data and
information. Spreadsheets have, for a long time now, provided different types of graphs
to visualize data. Mapping data to a map was previously a time-consuming task, as
mapping onto the map was done by hand. Interactive maps now offer a new, convenient
way to this automatically.

Let’s use the example from above, the wildfires in California (Figure 1.1). The
common approach would have been to show the places with wildfires in a table or
list. If there were a lot of wildfires, there may have been some kind of sorting or
filtering mechanism. Additionally there may have been a map where some of the most
interesting spots were marked. Depending on the resolution of the image, more or less
exact positions could be mapped.

Figure 1.1: Mapping Mashup - California wildfires

Let’s examine the advantages of a mapping mashup. If you use a static image,
instead of a dynamic map, you always have to update that image, most commonly by
hand, to add a new spot to the map, and then upload it. Dynamic maps used in a
mapping mashup connect to a web service that delivers the coordinates for each spot
that is rendered on the map. A new spot is simply added to the database to which
the web service connects and then rendered automatically. Furthermore, these maps
offer interactive tools that let the user zoom in/out, navigate in the map, and even find
additional information for each spot inside small popups.

The combination of interactivity and information display is what attracts a user.
The user is offered a direct connection between what the information is all about and

4

1.4 Categories

where it is located. The simplicity of using a mapping mashup, its interactivity and
the users attraction to visual representations is the power of these maps.

1.4.2 Video and photo mashups

Photo hosting and sharing sites like Flickr introduced the addition of of meta infor-
mation (creation date, place taken, name of photographer) and especially tagging to
pictures. If the image is set to be accessed by the public, it can be accessed and
viewed by anyone. Flickr offers a REST (2.5) service where you can search all the meta
information and get back a list with links to these pictures.

One can imagine a mashup that could parse the feed of traveller, analyze the meta
descriptions to extract the various places the traveller visited (e.g.. London), and mix
these with pictures from Flickr that are tagged with the location’s name.

1.4.3 Data (News) mashups

Really Simple Syndication (RSS) feeds evolved during the beginning of blogging. RSS
allowed people to stay up to date with new entries posted on a users blog. Today most
online newspapers and magazines implement news feeds for their recent articles, often
categorizing them into different topics like politics, economy, sports, and so on. A news
mashup acquires different feeds and joins them together into a custom feed. On this
new feed a filter could be applied that filters the links depending on keywords in its
description. An example for this could be a selection of news feeds from different sport
portals, where the filteris for articles about tennis.

Google News (Figure 1.2) is an example on how a data mashup can be represented.

Figure 1.2: Google News - a data mashup

5

1.5 Enterprise mashups

1.4.4 Shopping mashups

Shopping mashups, like price comparison sites, existed a long time before the term
mashup was commonly used. The main concept behind a shopping mashup is to com-
pare prices from different dealers to get the cheapest offer available. Famous examples
of such sites are Pricerunner8, Geizhals9 or Froogle10. Long before standards like SOAP
or REST evolved, these sites used various screen scraping techniques, proprietary for-
mats or input forms to acquire data for its comparisons.

Meanwhile, companies like Amazon11 or Ebay12 are offering APIs to allow access
to their product data. Of course they do not do this without reason. They look for
additional revenue generated by web sites that use their data and link back to them.
The linking sites then get a fraction of the revenue as commission. Figure 1.3 shows a
search result page of Pricerunner.

Figure 1.3: Pricerunner - Showing pricecomparisons for a product

1.5 Enterprise mashups

1.5.1 Definition

Enterprise application development is increasingly becoming involved in mashups. Mash-
ups for the enterprise aim to integrate data from internal and external sources. You

8http://www.pricerunner.at/
9http://www.geizhals.at

10http://froogle.google.com/
11http://www.amazon.com
12http://www.ebay.com

6

1.5 Enterprise mashups

may think this is nothing new, as this has been done or a long time within the Enter-
prise Information Integration (EII) context. EII is the integration of data from multiple
systems into a unified, consistent and accurate representation geared toward the viewing
and manipulation of the data [InCo04]. This traditional approach does acquire data
from an external content provider, transforms and stores the data inside the company’s
databases for internal processing. Most commonly this is done on a periodical request
base. This process can lead to heavy data and/or information processing and easily
lead to outdated information.

When using enterprise mashups, the external data will not be handled internally
anymore; web services connect to the external provider and leave the processing there.
The enterprise itself can focus on its core functions. You can think about services like
a geocoding or global maps, where it would never will be profitable for a company to
develop such services by itself.

The need for Situational Applications, (i.e applications that come together for solv-
ing some immediate business problems) are one set of tasks [Jhin06] that currently
are not well served by EII. Mashups for the enterprise try to address issues like cre-
ating applications that address a specific problem and are used for just a short time.
Traditionally such applications would not be developed by the IT department because
the cost for development would be much higher than its usefulness. Mashup platforms
allow a business user to create such situational applications as they come with modular
modules that can simply be connected when necessary.

Meanwhile you can find more and more mashup enablers/providers trying to enter
the enterprise section with their solutions. Services like Yahoo! Pipes13, Snap Logic14,
Open Kapow15 or Dapper16 offer functionality to convert (web) data into structured
XML, feeds, widgets or even offer special primitives for further processing.

The concept of a three layer mashup composition for the enterprise is proposed by
A. Jhingran [Jhin06] to cover aspects of data, aggregation and presentation.

1. Ingestion: The layer that accesses all structured and unstructured data and
provides services to access these data. Common screen scraping technologies or
products or predefined webservices would fall into this layer.

2. Augmentation: Here some basic operations like union, fusion or standardization
take place. You can think of filtering a sports feed to return only news stories
about tennis.

3. Presentation: The final presentation for the end user wether a HTML page,
Atom/RSS or web service.

The online compendium ProgrammableWeb.com17 is a good resource to find APIs
that can be used within a mashup. Looking at the continuous growth of available
services it is not a matter of if companies start using enterprise mashups, but when.

13http://pipes.yahoo.com
14https://www.snaplogic.org/
15http://www.openkapow.com
16http://www.dapper.net
17www.programmableweb.com

7

1.5 Enterprise mashups

1.5.2 Service Compositions and Mashups

Service oriented architecture (SOA) has become very popular in the last few years. The
paradigm is to use services as basic constructs of applications. It changed the devel-
opment approach from traditional product-centric manufacturing, to consumer-centric
service composition. This allowed users to build new business processes, applications
or solutions in a rapid and low-cost way across heterogeneous environments.

[LiuX07] lists common drawbacks of current SOA technologies and points out where
mashups for the enterprise needs to lead to overcome those. Current service composition
programming is mainly designed for professional SOA developers to solve complex
business problems in the enterprise’s IT environment. Though these technologies are
powerful, there are still some important issues:

� These technologies involve requirement overhead with respect to developer’s skill
and supporting infrastructure. Major effort is spent to master many different
SOA technologies (BPEL, WSDL, UDDI), as well as tools and runtime servers.

� Service compositions cannot be done on the fly. Mostly IDE tools are needed for
customization of those services and they need to be deployed to runtime servers.
After deployment, composition logic is hard to customize.

� These technologies cannot support the composition of legacy or existing web
applications which don’t or can’t provide web service interfaces.

These issues are the barriers to wider adoption of SOA in the enterprise. Mashups
in the sense of a Web 2.0 paradigm should allow the consumer to create, add and
adapt services. What is already possible on the world wide web should be incorporated
inside enterprises as well. Users with low programming skills should address end-users
needs for flexible composition and customization.

The new technologies should provide support for:

� The browser as design-time and runtime tool for service composition, reducing
the mentioned overhead of tools and server runtimes.

� Flexible customization and deployment to overcome strict IT deployment rules
and allow quicker response to business needs.

� Ease of reuse and composition of already existing services and external accessible
data like web services.

8

Part II

Technology

9

2 Technologies

2.1 XML

XML- eXtensible Markup Language is a W3C-endorsed [W3Co08] standard for doc-
ument markup. The standard defines a generic syntax to provide a human readable
presentation of data. It is a general purpose format on which other many other stan-
dards build up on. XML is used in a broad sense for:

� interchange format

� vector graphics

� document format

� syndication format

� remote procedure calls

� configuration files

� voice mail systems

� user interface description

� and lots more....

The following citation out of [Haro01] describes what someone can expect of XML.

Most importantly, XML is a meta-markup language. That means it doesn’t
have a fixed set of tags and elements that are always supposed to work for
everyone in all areas of interest. Instead, XML allows developers and
writers to define the elements they need as they need them.

An XML document consists of elements and attributes and is structured in a hier-
archical structure. The topmost element is called the root node that can exists of as
many child elements. Each element can have n-attributes and n-child elements. An
attribute is a name-value pair to an element.

A short introduction to XML, what its defined for, its technology and its possibilities
comes from the World Wide Web Consortium (W3C) in it’s article XML in 10 points
[W3CC99].

1. is for structuring data

2. XML looks a bit like HTML

3. XML is text but isn’t meant to be read

10

2.1 XML

4. XML is verbose by design

5. XML is a family of technologies

6. XML is new, but not that new

7. XML leads HTML to XHTML

8. XML is modular

9. XML is the basis for RDF and the Semantic Web

10. XML is license-free, platform-independent and well-supported

2.1.1 A sample XML Document

Let’s have a look at a example document. In listing 2.1 you find the description of an
album by a band. Looking at the XML you can easily identify whats the band name,
which title the album has and what year it was created.

Listing 2.1: XML example for an album description
<?xml version ="1.0" encoding ="ISO -8859 -1" standalone ="yes"?>
<album @year ="2004" >

<artist >Metallica </artist >
<title >St. Anger </artist >

</album >

One of the requirements to an XML document is that is has to be well-formed, what
means it has to fulfill following criteria [W3Co06]:

1. Taken as a whole, it matches the production labeled document.

2. It meets all the well-formedness constraints given in this specification.

3. Each of the parsed entities which is referenced directly or indirectly within the
document is well-formed.

Second it has to be well structured. Unlike HTML, each element has to consist of a
start and an end tag. Empty tags may be used for elements without any contents.

2.1.2 Validation

The structure of an XML file can be defined externally to allow a validation of its
structure and content. A document type definition (DTD) was the first way to provide
a description of an XML file and comes with a proprietary syntax. Figure 2.2 represent
the example from above. Meanwhile a second standard to describe an XML evolved,
XML Schema .

XML Schemas express shared vocabularies and allow machines to carry out rules
made by people. They provide a means for defining the structure, content and semantics
of XML documents. in more detail. [Cmsp00]

XML Schema does not use it’s own syntax, but uses XML. Schema extends the
possibilities of DTD’s and allows much stricter validation. E.g.. schema allows to
define datatypes or the use of regular expressions on element content.

11

2.2 XPath

Figure 2.1: XML document represented as tree

Listing 2.2: DTD for the album example
<!ELEMENT album (artist , title) >
<!ELEMENT artist (# PCDATA) >
<!ELEMENT title (# PCDATA) >
<!ATTLIST album year CDATA #REQUIRED >

2.2 XPath

When you are dealing with XML files you most probably want to do something with it,
most probably access some information that is stored in the document. That’s when
XPath comes in. The standard recommendation [W3Co99a] defines XPath as follows:

The primary purpose of XPath is to address parts of an XML document. In
support of this primary purpose, it also provides basic facilities for manipu-
lation of strings, numbers and booleans. XPath uses a compact, non-XML
syntax to facilitate use of XPath within URIs and XML attribute values.
XPath operates on the abstract, logical structure of an XML document,
rather than its surface syntax. XPath gets its name from its use of a path
notation as in URLs for navigating through the hierarchical structure of an
XML document.

XPath is capable to do a vary of tasks [Poor06]:

� Location of parts of an XML document.

� Navigating through an XML document and selecting parts of it.

� Performing complex node manipulation through built in functions.

The principle of XPath is its view of the XML document as a tree [Chau2002] with
branches called nodes. Figure 2.1 represents the album example from above.

2.2.1 How to use XPath

Looking at the example above, following XPath selects the artist name of the defined
album.

12

2.3 XSL Transformations (XSLT)

/album/artist

Next statement selects the title of the album where the artist is Metallica:

/album[artist='Metallica']/title

2.3 XSL Transformations (XSLT)

The eXtensible Stylesheet Language (XSL) consist of two parts: The XSL Transfor-
mation (XSLT) and XSL Formating Objects (XSL-FO). XSLT is an XML application
that specifies rules by which one XML document is transformed into another. XSL-FO
describes the precise page layout for rendering data to the portable document format
(PDF).

2.3.1 Usage of XSLT

A common task when handling XML documents is to transform it from one form into
another. The resulting format may again be XML but any other text based format (e.g
CSV, JSON) is possible as well. XSLT is used in various ways, some examples would
be

Common situations when you would use XSLT [Frit03]

� Transforming an XML document into an HTML or XHTML document
for display in a web browser.

� Converting from one markup vocabulary to another, such as from Doc-
book (http://www.docbook.org) to XHTML

� Extracting plain text out of an XML document for use in a non-XML
application or environment

� Building a new German language document by pulling and repurposing
all the German text from a multilingual XML document

In common business-to-business (B2B) situation data from a business partner needs
to be transformed to match the internal document structure or database schema.
Within modern web browsers XML documents with attached XSL Stylesheets are ren-
dered on the fly as HTML documents. Statistical data can be transformed into SVG
and then be rendered on SVG-supporting applications or e.g. rendered to images (with
the open-source library Batik1).

A lot of APIs provide a REST (Section 2.5) interface. In the case study we will
transform the data to another structure with XSLT.

2.4 Web Services

Over the last years web services draw amendous attention to it. What once was a hype
now is commonly used all over. Nearly all big players in the IT-business integrate web
services into their products. If you search for a definition of web services you will find a
lot of different definitions, however web services mainly provide a systematic and exten-
sible framework built on top of existing protocols and based on open XML standards
for system independent interaction [Curb02]. The W3C describes it as follows. [Lafo07]

1http://xmlgraphics.apache.org/batik/

13

2.4 Web Services

Web services provide a standard means of interoperating between different
software applications, running on a variety of platforms and/or frameworks.
Web services are characterized by their great interoperability and extensibil-
ity, as well as their machine-processable descriptions thanks to the use of
XML. They can be combined in a loosely coupled way in order to achieve
complex operations. Programs providing simple services can interact with
each other in order to deliver sophisticated added-value services.

More and more companies publicly offer access to some functionality through web
services. Companies like Google 2, YouTube 3 or Amazon 4 provide access to their
services. Amazon for example not just provides access to their product lines, it extended
its business area from a pure e-commerce company to a an IT service provider. Amazon
offers a service to store and retreive data (Amazon S3, a queue for storing message in
queues (Amazon Simple Queue Service) and a few others. With these services Amazon
allows developers to use their massive infrastructure to build scalable applications with
it. Amazon is a good example on how powerful web services can be used.

2.4.1 Where to find web services

Most companies who expose web services place a link most commonly called API or
Developer to the descriptions on what services they offer and how to use them. Another
good place to discover web service providers is programmableweb5. At the time of
writing this, there are 2555 mashups and 559 APIs in about 50 categories listed. Web
services play an important role, as they are the building blocks of mashups.

2.4.2 How does it work

Request/Response Messaging

Most commonly web services are used to acquire information from another system.
The client is sending a request to a web service provider and waits for the response of
it (Figure 2.2).

A common example is a e-commerce site that needs the credit card number to be
verified. The site is requesting the credit card company, if the given values (name,
number, valid to) are correct, and the customer can be charged on his card. The
e-commerce site, as requestor, is sending the values to the web service of the credit
card company. The credit card company verifies these values and then sends back a
response, either if the customer can be charged or not.

One way Messaging

Web services do not automatically expect a response from the web service provider.
There are situations when you are not interested in receiving a response. So the client
just emits a request (Figure fig:request) An example for such a situation would be if
a service A is dependent of the processsing of another service B before it can start
processing. When service B is at the stage where service A can start processing, it can

2http://www.google.com/apis
3http://www.youtube.com/dev
4http://aws.amazon.com
5http://www.programmableweb.com

14

2.5 Representational State Transfer

Figure 2.2: Request/Response web service

send a request to a listener, that is implemented as web service, to inform service A
that it can start.

Figure 2.3: One way web service

2.4.3 Implementations

Most common web services are directly associated with Simple Objact Access Protocol
(SOAP), a widely used standard for exchanging structured information, however Rep-
resentational State Transfer (REST) is getting more and more attention in developing
web applications. It is not a standard but an architectural style for building network-
based systems. Tim O’Reilly blogged that within Amazons Web Services, while it
offers SOAP and REST services, 85 percent use REST as the preferred web service
interface [ORei03].

2.5 Representational State Transfer

In the music mashup a few content sources,like Amazon, Flickr and Youtube provide
APIs to access their information. These APIs provide Representation State Transfer
(REST) interfaces to query their database and we are going to use these.

2.5.1 Definition

Representational State Transfer is an architectural style for building network-based
systems described by FIELDING [Fiel00]. REST does not focus on the implementa-
tion and syntax, but on the roles of components, the constraints of interaction and the
interpretation of the data. It is an abstraction of architectural elements: data, connec-
tors and components. This goes back to the beginning of the early web architecture,
prior to 1994, where client-server architecture was mainly a stateless exchange of static
data.

Unlike transactional systems, in which servers maintain session handling between
server and client, the web interaction mainly exists of a request, where the response is

15

2.5 Representational State Transfer

a pre-computed set of data in a representational state. The client can easily navigate
between resources by following links from one resource to the next.

In [Rich07] three kinds of resources are distinguished.

� predefined one-off resources such as a service’s homepage or a static list of links
to resources.

� a large (possibly infinite) number of individual items of data, this might be an
object in an object oriented system, or a database row in a database system.

� a large (probably infinite) number of resources corresponding to the possible
outputs of an algorithm, e.g. the outcome of a database query.

2.5.2 Design principles of REST

� separation from user interface concern from data storage concern, what improves
scalability

� resources are identified by URIs

� interactions are stateless, requests must contain all information’s that can be
processed.

� cachability of response to improve network efficiency

� data is selfdescriptive, containing descriptive information

� emphasis on a uniform interface, information is transferred in a standardized
manner

� hypermedia as the engine of application state, there are no services, just resources,
navigation through hyperlinks

2.5.3 Methods of REST

Http 1.0 comes with methods GET, PUT, POST and DELETE, while HTTP 1.1 allows
extensions. This is similar to SQL, where SELECT, UPDATE, INSERT and DELETE
are the main commands used to manipulate data in a table. The rest is a set of filters
and transformers to manipulate the data. In a web context this methods are usually
enough to interact with a server (data manipulation can e.g. made with JavaScript).
In REST a request to an URI results in a representation of an object. This document
provides the client with the opportunity to navigate to a different URI to change the
state of the object.

2.5.4 Using YouTube’s REST API

YouTube allows to query their content through a REST API, that we will use. Lets
have a look on how YouTube has implemented REST. What we need is to search for a
music video of the track that is currently played.

16

2.6 SOAP

Searching for videos

The API comes with a set of options to limit the results to match a specific criteria. It
allows to query a specific category, search for tags or query after keywords.

To search for a videos you use submit a request to:
http://gdata.youtube.com/feeds/api/videos

The following is a list of the most common query parameters used in searches
[YouT07]

� alt - The format of feed to return, such as atom (the default), rss, or json.

� orderby - The order in which to list entries, such as relevance (the default for the
videos feed) or viewCount.

� start-index - The 1-based index of the first result to be retrieved (for paging).

� max-results - The maximum number of entries to return at one time.

� /-/categories - The categories and/or tags to use in filteA.1ring the feed results.
For example, feedURL/-/fritz/laurie returns all entries that are tagged with both
of the user-defined tags fritz and laurie.

� vq - A search query term. Searches for the specified string in all video metadata,
such as titles, tags, and descriptions.

� format - A specific video format. For example, format=1 restricts search results
to videos for mobile devices.

So if we want to query after the track Karma Police from artist Radiohead in category
music and limit it to the first 5 result we would use following request. The response is
of the request is listed in listing A.1.

http://gdata.youtube.com/feeds/api/videos/-/Music?vq=Karma+Police+
Radiohead&max-results=5&orderby=viewCount&alt=rss

For more information about query parameters, see the YouTube Data API Reference
Guide and the Google Data APIs Reference Guide.

2.6 SOAP

The Simple Object Access Protocol (SOAP) is a lightweight protocol that for exchang-
ing information over a network. SOAP is a specification standardized by the W3C and
is available in Version 1.1 and 1.2 and is now the most widely supported protocol for
use with XML Web Services, hence the SOAP acronym is frequently referred to as the
Service-Oriented Architecture Protocol, instead of the Simple Object Access Protocol.

The SOAP specification is built on XML technologies and defines a messaging frame-
work to provide a messaging construct that can be used on a variety of frameworks,
however at the moment just HTTP is widely used. It establishes a standard message
format that consists of an XML document capable of hosting RPC and document-
centric data.

17

2.7 SOAP vs. REST

Web services are a fundamental concept in the service-oriented architecture (SOA).
In the enterprise sector most of the integration applications support SOAP and WSDL
for composing web services. Service-oriented architectures are centered around services.

According to [ErlT04] services are:

� loosely coupled - services are self-contained and self-managing.

� abstract - the functionality of the underlying service is irrelevant to the outside

� composable - services may compose other services, what promotes reusability and
granularity.

� autonomous - control and function of the services are within an explicit boundary,
and is not dependent on other services.

� stateless - services should not mangage state information to remain the ability to
be loosly coupled.

� discoverable - the descriptions of services should be found by external service
requestors

2.7 SOAP vs. REST

We now introduced REST and SOAP, which are two opposing standards of web services.
Even if these two standards are not related, SOAP is a general protocol for exchanging
messages and REST is an architectural style [Zhan04], both are often compared directly
and often end in a serious debate which approach is the better one.

[Mueh04] classify upcoming workflow standards like BPEL4WS into two categories:
REST-oriented and SOAP-oriented standards.

� REST-oriented integration is abstracting the principles the makes the World Wide
Web scaleable, and unlike transactional systems does not need to maintain com-
plex sessions, but rely on a simple response.

� SOAP-oriented integration however relies on WSDL to describe the endpoints of
the communication and SOAP to provide the messaging standard. Unlike REST
pure SOAP solutions do not distinguish between the process factory and process
instances.

In these debate many REST campaigners argue with FIELDING’s critique of SOAP

In order for [the next generation SOAP protocol] to succeed as a Web proto-
col, it needs to start behaving like it is part of the Web. That means, among
other things, that it should stop trying to encapsulate all sorts of actions un-
der an object-specific interface. It needs to limit its object- specific behavior
to those situations in which object-specific behavior is actually desirable.

18

2.8 AJAX

2.8 AJAX

2.8.1 Introduction

Ajax is one of the main technologies, or better said a composition of different technolo-
gies that mashups build upon on. Again, even before the mashup hype, Google Maps
or GMail6 were the initiator of the hype that started around AJAX [Cran05]. Everyone
was asking himself: ”How do they do it”. Someone could click on the map, drag it
around, and the missing parts of the maps were immediately downloaded, without the
need of refreshing the whole page. This was a whole new way of working with web
applications. The web started to behave like a desktop application. Even if Google
Maps was not the first one to integrate the technology, it was the first who pushed the
limits of web applications. It then became the underlying technology of the so-called
Web2.0, of what we will here more later on.

2.8.2 Definition

AJAX is an acronym that stands for Asynchronous JavaScript And XML and became
well know after appearing in an article by Jesse James Garret. In this article [Garr05]
Garret defined Ajax as follows:

� standards-based presentation using XHTML and CSS;
� dynamic display and interaction using the Document Object Model;
� data interchange and manipulation using XML and XSLT;
� asynchronous data retrieval using XMLHttpRequest;
� and JavaScript binding everything together.

AJAX, even if it is often referenced as technology, is not one. It is using well es-
tablished technologies previously known as Dynamic HTML (DHTML) and remote
scripting [Mesb06], and integrates these to a full messaging and presentation frame-
work for a better user experience [Wild07]. Lets have a look at the parts of AJAX.

(X)HTML HypeText Markup Language (HTML) defines the structure and elements
of a webpage and is the most common standard used to represent data and text
on the world wide web. Extensible HyperText Markup Language (XHTML) is
the successor of HTML. It was created as a reformulation of HTML 4 in XML
1.0 [W3C02]. Whereas HTML allowed inconsistent programming and led to repre-
sentation differences in user agents, XHTML comes with stricter rules to constrain
to more uniformity.

CSS Cascading Style Sheets (CSS) was created for adding style to web documents. It
was an approach to separate the style of a document from its structure. Through
this content and style can easily edited separately. In the context of AJAX CSS
is used for the representation of the data. Usually parts of the document are
adapted or exchanged. With the use of CSS, there is no need to submit the style
in the request, it therefore limits it to the actual content. This limits network
traffic and leads to better rendering performance.

6http://gmail.google.com

19

2.8 AJAX

XML We already introduced XML before. XML is used for the data exchange between
client and server and is well supported on most clients. Meanwhile JSON, a more
lightwight format is also becoming popular.

XSLT XSLT is an optional part of AJAX, but often used too. XSLT has its right to
again limit the network traffic and processing resources on the server. Lets have
a quick look on how this can be achieved. Example

DOM The Document Object Model (DOM) presents the structure of a HTML or XML
document as a tree of objects that can be manipulated through JavaScript.

XMLHttpRequest The XMLHttpRequest-Object [Kest07] is one of the fundamental
parts of AJAX. It allows the client to communicate with the server in an asyn-
chronous way (synchronous is possible too) to retrieve data as a background
activity. Through this object HTTP-requests can be sent and received without
having the client to refresh the whole page. This provides more interactiveness
in the client application.

JavaScript JavaScript is a client side scripting language that was introduced by Net-
scape in the year 1996. It was initially created for manipulating web sites within
the web browser dynamically. Meanwhile JavaScript is implemented in few other
applications, Mozilla Firefox, Adobe Acrobat or Yahoo! Widgets just to name a
few. We will see that it Rhino, another open source JavaScript engine comes with
Apache Cocoon Withing AJAX JavaScript is what holds all together. It is used
to control application logic and manipulates the content and representation. It is
used to control the XMLHttpRequest object, manipulate the DOM elements, do
XSL transformations and react on the user generated events.

2.8.3 AJAX Model

The introduction of AJAX in modern web applications changed the classic web ap-
plication model. Figure 2.8.3 [Garr05] tries to illustrate the difference between the
functionality of the two models.

In the traditional model every interaction is generating an HTTP-request that re-
quests a new HTML page from the server and renders a new page on the browser.
In an AJAX enabled application each interaction is routed to the AJAX engine, that
decides if new data has to be loaded from the server, if yes, starts an asynchronous
request using the XMLHttpRequest-Object. The data received from the server is then
rendered directly within the current page. This procedure allows to add or update
parts of a document without refreshing the whole document. As the request is done
asynchronously in the background, the user is not limited to wait for the response,
what results in a far better user experience.

In figure 2.5 [Garr05] the synchronous process flow of the traditional concept is
compared to the asynchronous. In the synchronous process the client requests a site
from the server. The server is processing the request and sends back the response.
Meanwhile the user interactivity is stopped until the response again is rendered on the
client. In the asynchronous process flow the requests are processed by the AJAX engine
which processes the request to the server. In comparison to the traditional model, not
the whole page is refreshed, but just the actual needed data is requested and placed
inside the current web site. The user is during this request not limited in his activities.

20

2.9 JSON

Figure 2.4: Web application model comparison

2.9 JSON

Javascript Object Notation (JSON) [Croc06] is a language independent data format for
specifying JavaScript objects so that they can easily be transported over the network.
JSON is a was created in 2002 as a cleaner and lighter alternative to XML [Mahe06].
It was derived from the ECMAScript Standard. JSON is commonly supported by
JavaScript it is more and more used within AJAX application as replacement of XML.

JSON is built o two structures 7

� A collection of name/value pairs. In various languages, this is real-
ized as an object, record, struct, dictionary, hash table, keyed list, or
associative array.

� An ordered list of values. In most languages, this is realized as an
array, vector, list, or sequence.

So how does a JSON Object looks like.
An object is an unordered set of name/value pairs. An object begins with (left brace)

and ends with (right brace). Each name is followed by : (colon) and the name/value
pairs are separated by , (comma). 8

Listing 2.3: JSON Example
{

"album ": {

7www.json.org
8www.json.org

21

2.9 JSON

Figure 2.5: AJAX process flow

"year": "2004" ,
"artist ": "Metallica",

"title ": "St. Anger"
}

}

again the same presented in XML.

Listing 2.4: JSON Example presented in XML
<album @year ="2004" >

<artist >Metallica </artist >
<title >St. Anger </artist >

</album >

JSON, even it is quite new, is getting more and more attention by developers. In
comparison to XML, JSON is maybe a bit harder to read (at least in my personal
opinion), but has its clear advantage in using much less bandwith on the network. Using
less bandwith directly leads in a better performance of the application, and of course
less costs for traffic on the server. The drawback of JavaScript is the inferior support
in development IDEs, no simple validation option or client side XSL-transformation.

22

2.10 XUL

2.10 XUL

The XML User Interface Language (XUL)9 is a language to describe the structure of an
application. In relation to XML, where XML is used to describe a document structure,
XUL can be described as using XML in the field of graphical user interfaces. [Prot07]

XUL derived of the development of the Netscape Navigator and is now most well
known as GUI for the Mozilla browser Firefox and mail client Thunderbird. The
advantages of XUL is the abstraction of the user interface from the application logic.
Microsoft introduced with the Extensible Application Markup Language (XAML) 10

a similar concept. Within the context of mashups, it is not a technology on which
a mashup relies on, it is one way to present the mashup on a client. Whereas most
mashups rely on HTML as their rendering language, the music mashup will be used as
an extension for the Mozilla Firefox web browser.

XUL itself does not implement any functionality, it is just a way to describe where
and how elements in an application are placed. In a way it is probably best to compare
it with HTML. In HTML you use HTML-Tags and set their content, place and style
it through CSS and manipulate it through JavaScript. The same principle lies behind
XUL. You define the structure of the application and use CSS and JavaScript for the
design and application logic. Extended functionality is provided through XPComm
technology.

2.10.1 Features and Benefits

XUL and its related technologies offer a wide functionality and that makes it possible
to build powerful cross-platform applications. Following we point out an overview of
the features and benefits of XUL [MozD07].

Widget based markup language XUL is a markup language that is designed towards
building cross-platform applications. It provides elements, such as windows, la-
bels, buttons, etc usually used in applications. It targets at developers that try
to developers that try these typical application functionality with DHTML, at
the costs of performance and complexity.

Based on existing standards XUL builds up on XML 1.0. Other standard technologies
are HTML 4.0, CSS, Document Object Model (DOM) and Javascript.

Platform independent XUL comes with the promise of write-once, run anywhere. Cur-
rently Mozilla applications run on nearly all common platforms available and
therefore XUL applications using standard XUL components can be run there
too.

Separation of presentation from application logic XUL implements a clear separa-
tion of programmatic logic (“content” consisting of XUL, XBL and JavaScript),
presentation (“skin” consisting of CSS and images) and language-specific text
labels (“locale” consisting of DTDs and string bundles in .properties files).

9https://www.mozilla.org/projects/xul/
10http://msdn2.microsoft.com/en-us/library/ms752059.aspx

23

2.11 RSS / ATOM

Figure 2.6: XUL Example opened in Firefox

2.10.2 Requirements

If you want to run a XUL applications you either need to install one of the Mozilla prod-
ucts like Firefox or Thunderbird and associate the XUL-file with one of the programs,
which work on nearly all platforms.

Lets have quick look on a Hello World XUL example. A more advanced example
reflst:sidebarXUL is shown in the case study, where a tabbed interface is created.

Listing 2.5: Hello World Example
<?xml version ="1.0"? >
<?xml -stylesheet href=" chrome :// global/skin/xul.css" type="text/

css"?>

<!DOCTYPE window >
<window id="main -window" xmlns:html="http :// www.w3.org /1999/ xhtml

"
xmlns="http ://www.mozilla.org/keymaster/gatekeeper/there.

is.only.xul">
<button value ="Hello World"/>
</window >

Saving the file and open it with Firefox will render a Button with the value ”Hello
World” shown in Figure 2.6..

2.11 RSS / ATOM

2.11.1 RSS

RSS (Really Simple Syndication) is a simple XML-based data used for content syn-
dication. Content syndication, or feed within the scope of Internet is to make parts
or all content of a site available in a standardized way [Hamm03]. Content such as
news headlines, podcasts or blog entries are common examples that are available as
such feeds. Different versions of RSS exists, however RSS 2.0 is now widely adopted,

24

2.11 RSS / ATOM

as it a simplyfication of its predecessors. Feeds are meanwhile more than just a spec-
ification for content syndication, people start to building services that only output to
a feed without refering to a existing site. Yahoo! Pipes (section 6.4.1), a mashup plat-
form that we discuss later on, uses the feed standard for internal processing and main
output. Modules allows to extend the basic XML schema without modifying the core
RSS specifications, this is accomplished through declaring an additional namespace.
OpenSearch11 is an example of such an extension, Podcasts are another format, that
extends RSS.

Listing 2.6 lists an example of an RSS feed.

Listing 2.6: Example of an Atom 1.0 Feed
<?xml version ="1.0" encoding ="ISO -8859 -1"? >

<rss version ="2.0" >
<channel >

<title >Some title </title >
<link >http :// linktoFeed </link >
<description >description of feed </ description >
<language >en -us </language >
<pubDate >Tue , 10 Jun 2003 04:00:00 GMT </pubDate >
<lastBuildDate >Tue , 10 Jun 2003 09:41:01 GMT </ lastBuildDate >
<docs >http :// blogs.law.harvard.edu/tech/rss </docs >
<generator >some generator </generator >
<managingEditor >editor@example.com </ managingEditor >
<webMaster >webmaster@example.com </webMaster >

<item >
<title >Title of first article </title >
<description >Short description </ description >
<link >Link to article </link >
<author >Author name </author >
<guid >unique identifier </guid >

</item >
</channel >

</rss >

2.11.2 Atom

The Atom Syndication Format and Publishing Protocol (Atom) initially was created
by Sam Ruby, a programmer at IBM as a result of the continous in-fighting within the
RSS fraction. He started a fresh approach on what a syndication feed should be and
started an open discussion on a wiki [Atom08]. Meanwhile the standard is released
under the Creative Commons Attribution/Share Alike license.

Atom applies to a pair of related standards. One for syndication and one for pub-
lishing and editing Web resources. Listing 2.7 lists an example document of Atom
1.0.

11http://www.opensearch.org/Specifications/OpenSearch/1.1

25

2.11 RSS / ATOM

Listing 2.7: Example of an Atom 1.0 Feed
<?xml version ="1.0" encoding ="utf -8"?>
<feed xmlns ="http :// www.w3.org /2005/ Atom">

<title >Example Feed </title >
<subtitle >A subtitle.</subtitle >
<link href="http :// example.org/feed/" rel="self"/>
<link href="http :// example.org/"/>
<updated >2008 -12 -13 T18 :30:02Z</updated >
<author >

<name >Max Mustermann </name >
<email >max@mustermann.com </email >

</author >
<id >urn:uuid :60 a76c80 -d399 -11d9 -b91C -0003939 e0af6 </id >

<entry >
<title >Atom -Example </title >
<link href="http :// example.org /2003/12/13/ atom03"/>
<id >urn:uuid :1225c695 -cfb8 -4ebb -aaaa -80 da344efa6a </id >
<updated >2003 -12 -13 T18 :30:02Z</updated >
<summary >Some text.</summary >

</entry >

</feed >

26

3 Mashup Techniques

First, we’ll take a closer look at the different kinds of mashups. After we do that, I
will investigate a few strategies to keep in mind when creating a mashup and what the
advantages and disadvantages of these are.

First let’s have a quick look at a simple mashup. We have already talked about
mashups like Google Maps in Chapter 1 - these mashups project geo-tagged information
onto a map. Creating such an application does not sound like a very sophisticated
application and definitely does not require a lot of programming, although success does
depend on having well-prepared data. To get this application to work, you need the
latitude and longitude coordinates for your data. If you don’t already have it, you
will do some additional processing first, using a geo-tagging service, like Geonames1,
to supply the data.

Later in the book, we will be developing the fmMusic mashup. Let’s see what we
have to do to prepare our data for that project. First I need to extract the artist and
track name from the radio station. Having acquired this, I’ll use the new information
to query Amazon’s2 database using its e-commerce web service, and get the album the
track appears on. Here I will need to loop through all albums of the artist, and compare
the tracks on each CD with the target track name, to get the CD which contains it.
Next I want to acquire the lyrics and will be faced with having to do some deep web
navigation and perhaps a web scraping mechanism. Maybe I will have to deal with
some kind of authentication, too.

We can see that a mashup’s complexity can vary quite a lot, from a simple projection
of data on a map up to an advanced aggregation of various different sources using
web data extraction tools and web services. Such applications might require a lot of
computing power when many people use the mashup, or they require advanced caching
technologies to solve performance issues.

Shanahan refers to three different types of mashing techniques in [Shan07].

� mashing on web server

� mashing using a rich user interface like AJAX

� mashing using JSON

I do not agree one hundred percent with this author. Shanahan points out that when
using XmlHttpRequest, you cannot retrieve data from servers other than the serving
one. This is commonly known as same-origin policy [Howe07], a security restriction
that operates when browsers use cookies to authenticate unique users. The browser
will only send these cookies to the same site that originally set them.

1http://www.geonames.org/
2http://www.amazon.com

27

3.1 Server-side Mashups

Mashups most commonly refer to browser-based applications, even if more and more
runtime environments, like Prism3, Adobe’s AIR4 or Apple’s Dashboard5 are being
used for mashups. The runtime environments are not limited to the same-origin policy.
Therefore I will distinguish between server and client side processing techniques for
building mashup applications.

A difference between these mashups does not imply that you only will use server OR
client side processing. More often you will use client side mashing when you want to
provide a better user experience by limiting start-up latency for the initial application,
or to limit traffic through the mashing server. On the other side, you might use the
processing power of the server to achieve more powerful or maybe simpler processing,
using higher level programming languages. I will take a closer look at the pros and
cons of each of these two possibilities.

3.1 Server-side Mashups

This is a common and well-established approach to achieve a mashup, where a server
does all of the mashing. This has been around a long time, since long before the term
mashup was used in this context. Common price comparison sites use this approach to
aggregate product data for comparison. How does this work? The following illustrates
two parts of the fmMusic mashup that use server side procedures to request data from
YouTube and Amazon.

1. The client, sends a request (usually HTTP GET) to the server

2. The server contacts YouTube, using its REST interface to search for a video.

3. YouTube delivers an XML file in response.

4. Another request is sent to Amazon using SOAP.

5. A Soap response is received by the server.

6. The server uses both responses and mashes them into a web site. At this stage,
all kinds of transformations, sorting, mapping or additional requests can be pro-
cessed.

7. The client receives the mashed up response.

We can see that all processing is done on the server before the client ever starts to
see something. The server is the single point where all information is gathered and the
data is prepared for the client.

3.1.1 Benefits

� Powerful Processing If you have access to a server, you do not have any limita-
tions on your choice of tools. You can use any higher level programming language
(JAVA, C++, Perl, Python....), libraries (scrubyt, AXIS....) or other technologies
for processing. By comparison, the client side application is usually limited in its
functionality.

3http://labs.mozilla.com/2007/10/prism/
4http://labs.adobe.com/technologies/air/
5http://www.apple.com/downloads/dashboard/

28

3.2 Client-side Mashups

� Different Client Implementations If you use client side programming, you
often are confronted with situations when one implementation works well on this
client (lets say Firefox) and not on the other (lets say Internet Explorer). Using
libraries like Prototype6 that provide you with wrapper functions help you to
avoid messing with different client implementations.

� Multi-channel Coding Having all the collected data in a single location allows
you to prepare the data in different output formats. Since it’s easy to identify
a client through its HTTP-Header information, you can send all data to web
browsers but strip out the video part when sending to mobile devices.

� Caching Possibilities If you acquire data from several external sites, it is better
to process it once and keep it cached, which helps you avoid being banned from
the provider for high traffic.

3.1.2 Drawbacks

� High Through-traffic on the mashing server. Often when you request data
from a source, you only need to do a minimal transformation of the data, so you
can more or less just route the data through the server, which results in high traffic
cost for you. (It’s always better to leave the traffic costs to the content provider,
if possible). Transformation often can be done on the client as well. Amazon,
e.g., allows programs to include a reference to an XSLT file in the request and
performs the transformation on its servers, so you just get the data you want and
limit the traffic.

� Performance Costs. If lots of clients send requests to the server at the same
time, it can result in high load and reduced performance. Swapping one transfor-
mation to the client would probably not be noticed by the user, but could lead a
significant reduction in processing on the server.

� Application Performance. Mashing all the data together on the server for
a single response to the client inevitably leads to latency until all the data is
collected. If one of your sources has a delay in its response, all other data is kept
waiting too, until it can be sent back to the requestor. This can be a serious
problem, since most users are not willing to wait a long time and may abort the
request.

3.2 Client-side Mashups

With the evolution of Web2.0, or more accurately, with the emergence of AJAX, asyn-
chronous client-side processing has found a place in web development. Interestingly
the asynchronous XML request functionality was implemented years before anyone
conceived of mashups, but it got very little notice until the launch of Google Maps and
Gmail. These applications brought web applications to another level by using the web
browser’s ability to make requests and exchange parts of the content without refreshing
the whole page. So called Rich Internet Applications (RIAs) evolved and allowed a far
richer user experience and started to compete with desktop applications.

6http://www.prototypejs.org/

29

3.2 Client-side Mashups

3.2.1 How It Works

A browser mashup

1. The client initiates a request to the web server.

2. The web server sends an HTML response to the client. At this stage no mashing
is done on the server, and the request is computed with casual web processing
techniques like PHP or ASP.

3. The client now renders the received HTML and starts processing the JavaScript
instructions. A function invokes an asynchronous call to server to request addi-
tional content, usually done through the XMLHttpRequest-object, but could also
be a SOAP or REST request.

4. The server receives the second request and initiates a request to YouTube.

5. Youtube responds with an XML file.

6. The server requests data from Amazon.

7. Amazon responds with data.

8. Now the server mashes the content.

9. The final content is sent as response back to the client.

10. The client’s request handling function can now process the response. Mainly
it will place, replace or add the received content in the page being displayed.
There could be some additional processing (e.g. an XSL-transformation) done
before placing the content. Additionally some new processing instruction from
an included JavaScript fragment could be evaluated and initiated.

A client mashup - disregarding same-origin policy

In the introduction, I talked about the security restrictions in web browsers that limit
XMLHttpRequests to the serving domain. However if you implement a client mashup,
such as a Firefox extension, the application sits in the Firefox browser, and therefore
is not bound to any web server and will not have any security restrictions. Keeping
this in mind I will adapt the process flow a bit, to limit through traffic and optimize
performance.

1. The client requests the main page from the web server.

2. The response is sent to the client

3. The client renders the response and processes the Javascript. The response in-
structs the client to invoke two different calls, one to YouTube and one to Ama-
zon. Both calls are done asynchronously - otherwise the client will block all user
interaction on the user’s machine until the calls are finished.

4. Amazon responds first.

5. The client does a transformation on the received XML.

30

3.3 Mashup Targeting

6. It then mashes the content into the main page.

7. Now the response from YouTube is received.

8. A transformation for correct rendering is done.

9. The content is mashed into the display of the site.

3.2.2 Benefits

� Better user experience The user can view and interact with the main page
and has no latency before the first item on the page is rendered. Of course this
restricted on how the application is dependent on the mashed content.

� Processing is mainly done on the client Even as more and more clients
access your application, if the processing is done on those clients, your server
only has to deal with simple requests, and you will extend the lifetime of your
current hardware.

� Less through-traffic costs. If you do not have to route everything through
your server, you will have lower costs for the traffic you do see.

3.2.3 Drawbacks

� Limited processing Client processing is usually limited to scripting languages
like JavaScript that are inferior to higher programming languages.

� Multiple coding If the client does the processing, you may need to have different
sets of code to interface with different browser. This increases your coding costs.

� No cross-domain requests because of security restrictions using browsers.

� Maintenance of the application. If a content provider changes its API you may
need to roll out a new version of your client, while if you are using a server
mashup, you just change the implementation once on the server for all users.

3.3 Mashup Targeting

Mashups cannot only categorized in the technical view, where the processing is hap-
pening, but also orthogonally what functionality mashups target at. Dornan [Dorn05]
defines three types of mashups: presentation, data and logic.

3.3.1 Presentation Mashups

These are the simplest types of mashups. The aim is to bring information from different
sources into a common user interface for better user experience and easier handling.
This type of mashup has been around for a long time. Web portals can be thought of
as presentation mashups, although they act in a very static way. The JAVA Portlet
Specification JSR 1687 is an example of a common way to integrate different information

7http://developers.sun.com/portalserver/reference/techart/jsr168

31

3.3 Mashup Targeting

into one portal. Websites like Pageflakes8 (Figure 3.1 or iGoogle9 are much more flexible
and easier to handle, and users can choose from different widgets and define their own
dashboards. In the enterprise so called monitoring dashboards are commonly used to
present incoming information in a way that is easy to read. The generation of such
widgets is much easier than creating a JSR-Portlet, which has enabled many people to
quickly create such widgets, so that now you can choose from thousands of available
widgets.

Figure 3.1: Sample homepage provided by Pageflakes

A lot of enterprise platforms offer presentation functionality, but they are not com-
patible or are hard to integrate with other services. Mashups will provide a solution as
single dashboard frontend in near future. IBM [Webe08] integrates widgets compatible
with Google Gadgets in its upcoming Lotus Notes version.

3.3.2 Data Mashups

The next step is to combine data from multiple sources into a data mashup. The aim
is to provide easier access. Instead of requesting information separately from different
databases and then combining it, the user can query different databases at once. This
saves time and allows easier comparison and/or interaction, and most often leads to
better decision making.

A common example of a data mashup would be a site that mixes geographical data
with other statistics, like common mapping mashups do. Data mashups are harder to
create than just mapping content into a common presentation layer. Most often you
need to do some additional programming, like adding geographical coordinates to data
when you try to display it on a map.

3.3.3 Logic Mashups

Logic mashups are the most complex applications, and always involve programming.
They connect to different applications, automate tasks involving them and are aware
of the workflow of these applications. Sometimes these applications are actually tasked

8http://www.pageflakes.com
9http://www.google.com/ig?hl=de

32

3.3 Mashup Targeting

with imitating human behavour instead of typical automated processing, because some
sites do not permit automated processing and consequently will block regular mashup
requests. Common examples are travel portals that check different flights, or product
price comparison sites.

In the enterprise, logic mashups compete with traditional workflow applications.
Whereas the traditional models tend to focus on a single task to be automated, mashups
enable rapid customization and adaptation, not just for the programmer, but for the
business user as well.

Mashups are an easy way to orchestrate different services into a common interface
and therefore could be seen as a new type of a presentation layer for SOA services.
With their ability not only to combine internal services, but also to integrate data from
outside, they offer the enterprise a new type of information integration.

33

4 Web Data Extraction

The World Wide Web can be thought of as the biggest information source available.
This makes it increasingly attractive to extract data from it for further processing by
end users and applications. Data from Web resources can be used for various tasks
including information retrieval, monitoring or comparison. Using this data can deliver
Instant Awareness of the competitors moves and therefore allows a quicker response in
business decisions, which can be crucial in the fast moving world we live in.

The Web however consists mostly of unstructured data mainly in form of HTML
documents built to be viewed by humans. These documents are written for presentation
and not for automated extraction and often are ill-formed, meaning they do not conform
to an existing standard. However browsers usually fix the errors when rendering the
page.

Various techniques, languages and tools have evolved, collectively known as Web
Data Extraction, to bypass these limitations and allow automated or semi-automated
extraction of web data.

4.1 Definition

When defining the term Web data extraction Baumgartner [Baum06] begins by distin-
guishing Information Retrieval (IR) from Information Extraction (IE).

IR puts the focus on finding the most relevant documents in a collection. This could
even be the Web. The entities are the documents itself, which are analysed, evaluated
and categorized. However no content is extracted out of these. You can think of a
search engine like Google that lists links to documents that might relate to the search
term as an example of IR.

4.2 Information Extraction

IE on the other hand, involves locating and extracting specific content from within a
document. IE is a mature field that has been around as long as databases of documents
have existed. IE extracts relevant content from collections and is situated at a lower
level than IR. The extracted information consists of facts like prices, offers, or abstracts
of a paper. IE enables companies to obtain structured information from unstructured
documents for further internal use in business applications.

IE can be generally classified into two approaches [Eikv99]:

� knowledge engineering Grammars expressing rules for the systems are con-
structed by hand using the knowledge of the application of the domain. The skill
of the knowledge engineer defines the outcome.

� automatic training approach Someone with sufficient knowledge annotates a
set of documents. Then a training algorithm is used to train the system to run on

34

4.3 Web Data Extraction

novel texts. This approach is faster than the knowledge engineering but requires
a sufficiently large set of training data.

IE addresses two main disciplines: Analysis of text content and structuring of semi-
structured text.

Analysis of text content builds upon the field of Natural Language Processing (NLP).
Short parts of texts are analysed to extract key pieces. An abstract of a newspaper
could be analysed for the main subject and the location the article is written about.

Structuring of semi-structured text is used with textual documents that exhibit lim-
ited structure such as tables or lists, but do not follow any grammatical rules. Such
documents are often based on tokens or delimiters like HTML-tags, for instance. While
NLP techniques will not work on such documents, knowledge of the domain enables easy
identification of semantic meaning. I.E from a newspaper article most often consists of
a headline, an abstract and the main content.

4.3 Web Data Extraction

The Web provides a vast of information that is generally semi-structured. The informa-
tion is partly dynamic, contains hyperlinks and/or can be split into different documents.
Hence extraction from the Web can be seen as a topic in its own right.

Generally a Web page is unstructured if linguistic knowledge is required to extract the
information. Manually written Web pages are usually structured or semi-structured,
whereas dynamically-generated Web pages (i.e. the content comes from a database)
are more structured.

As with Information Extraction, NLP techniques are not suited for acquiring semi-
structured content, as they tend to be slow. Web content is usually structured in a
repetitious or itemised way, similar to how search engines present their results.

The organisation of the data on the Web is important when you want to extract data
from it. The use of hyperlinks, which allows a special structuring and linking of the
data, also makes it more complicated to access all of the data. Considering deep web
navigation causes to a more complex rule definition. [Chid97] classifies three types of
semi-structured Web pages:

� one-level one page: One page contains all the information to be extracted.

� one-level multi-page: Several links have to be followed to reach all the infor-
mation.

� two-level pages: Several items exists on the first level, and for each, a link must
be followed to navigate to a page to access all the information

4.4 Extraction Tools

Several approaches exist to address the problem of Web data extraction and most
borrow techniques from areas such as NLP, languages and grammars, machine learning,
information retrieval, databases and ontologies. Therefore they present very distinct
features and capabilities.

35

4.4 Extraction Tools

4.4.1 Taxonomy for Characterizing Web Data Extraction Tools

[Laen02] presents a taxonomy for characterizing Web data extraction tools. It is based
on the primary technologies each tool uses for wrapper generation. A reference to the
tools mentioned can be found in this paper.

Languages for Wrapper Development

One of the first initiatives to address the problem for extracting Web data. A new
language is developed for this specific purpose in contrast to general purpose languages
like JAVA or Perl. Tools in this group would include Minerva and TSIMMIS.

NLP-based Tools

Natural language processing (NLP) tools examine a document to learn extraction rules
for relevant data in natural language documents. These tools apply techniques like
filtering and part-of-speech tagging to build relationships between phrases and sentences
and derive extraction rules. These rules are based on semantic and syntactic constraints
that help to identify the relevant information. Tools in this group include RAPIER,
SRV and WHISK.

Wrapper Induction Tools

These tools generate delimiter-based extraction rules derived from a set of training
examples. In comparison to NLP-based tools, they do not rely on linguistic constraints,
but rather on formatting features that delimit the structure of the data. Representative
tools in this group include WIEN, SoftMealy and STALKER.

HTML-aware Tools

This category groups tools together that rely on the structural features of HTML
documents. Before extracting the content, these tools parse the document into a tree-
based structure that reflects the HTML tag hierarchy. The extraction rules are then
created either semi-automatically or automatically and applied to the tree. These
tools offer the smoothest learning curve and fastest results but tend to have limited
flexibility. We will present two tools, Dapper and OpenKapow in section 39 that fall
into this category.

Modeling-based Tools

Depending on a given target structure for objects of interest (e.g. tuples, lists), these
tools try to locate portions of data that conform to this structure. Tools such as
NoDoSE and DEByE adopt this approach.

Ontology-based Tools

Lastly, we have the ontology-based tools. These tools do not rely on the structure
of the presentation to generate extraction rules, but rather rely directly on the data
when given a specific domain application. An ontology can be used to locate constants
present in the data to construct objects with it. [Laen02] mentions such a tool from the
Brigham Young University Data Extraction Group.

36

4.4 Extraction Tools

4.4.2 Deep Web Navigation

Data extraction has been a study field for some years now. The methodologies each have
their advantages and disadvantages; however, in real life situations the extraction of
the content is just one part of the game. Password-protected sites, cookies, non-HTML
data formats, dynamically added content on AJAX enabled web-sites and session ids
are all typical obstacles that makes it difficult to access the content [Baum05].

A few tools on the market, mainly HTML-aware tools like Lixto or Kapow, come
with the capability of action-based deep web recording. These tools allow the program
to record the user interaction and navigation in a macro-like way without the need for
any low-level programming.

37

Part III

Tools and platforms

38

5 Mashup Enablers

When creating a mashup, the content is often merged from different sources that can
be accessed through a request to a web service provider, a database or Web pages.

However, sometimes you will need to extract data from a Web resource that does
not offer an API, or does not want the content to be extracted. The previous chapter
introduced Web data extraction in general. Most of the methodologies and tools that
build up on these need some programming skill and it therefore will take a developer
some time to figure out how to handle these tools the right way.

In the last few years, when using information from the Web became crucial for
competition, companies started to specialize in these technologies and offer different
solutions for accessing this content. There are tools that are offered as software-as-a-
service, software that comes with client and server to deploy inside the enterprise, or
standalone server based solutions. These tools may vary a lot. Some software allows a
user to visually select elements on web pages [Baum01] and/or define rules; others use
regular expression with programming languages like PERL, or the extraction is based
on proprietary extraction languages [HsuC02], [WuIC05].

In this section, I introduce two tools, namely Dapper1 and OpenKapow2, I refer to
as mashup enablers. A mashup enabler is a tool that allows users to easily create and
adapt robots for content extraction with only novice skill.

Earlier, we introduced the three layers of a mashup fabric composition (page 7).
Mashup enablers are set on the ingestion layer, as they provide access to the unstruc-
tured content of web pages. The following tools introduce different concepts of how
to define extraction robots. I chose these tools because they are available to everyone
without a charge. primarily

5.1 Dapper

Dapper [Dapp07] is an online Web extraction service that has a browser based interface.
Dapper claims that you can create an API for any site. Using Dapper you can reuse
any content that is available on the web, with the limitation that Dapper does not
support any log-in mechanism right now. Dapper’s user interface works on a fast
forward concept and requires no programming skills. The composition of a so-called
Dapp is done through a wizard-like interface, guiding you through five steps. These are
mostly self-explanatory, however they still have some tricky parts.

Dapper is by far the most user-friendly approach on Web data extraction I have seen.
You do not have to download any software or have to go through a registration process
before starting. It’s just as easy as clicking on create a dapp and off you go.

Dapper does have some disadvantages however. One of the main disadvantages is
that are not be able to extract from the ‘Deep Web“, thus you cannot search Ebay3 and

1http://www.dapper.net
2http://www.OpenKapow.com
3http://www.ebay.com

39

5.1 Dapper

then extract the information from the linked, detailed description pages of the search
results.

However, let’s see how you can create a Dapp.

5.1.1 Creating a Dapp

When you want to create a Dapp you simply start on Dapper’s homepage4 where you
find the link ”Create a Dapp“. First you select an output format, in this case an XML
Feed, then you paste the URL of that page from which you want the content to be
extracted (Figure 5.1).

Figure 5.1: First step creating a dapp

The second step (Figure 5.2) is for collecting pages that are used for analyzing.
Dapper works best if there is a paging mechanism and a few pages are collected. In
this way it gathers information about the static and the dynamic, repeating content.

After analyzing the pages you can start to select the elements you want to extract
and assign a title to it. Dapper preselects all the elements it thinks you want to extract
(Figure 5.3); this works on well-structured pages, however I experienced problems and
failed on badly programmed pages.

In the fourth step (Figure 5.4), you get a preview of the extracted content. The last
step is to assign the elements into individual groups.

Finally you can create an account and save your Dapp and it will be ready for use.
Dapper already has a few output formats and widgets that you can choose and preview.
A few clicks and you get a Flash widget and its code that you can copy/paste to your
blog or wherever you want.

5.1.2 Limitations

Dapper works fine on most machine generated web pages where dynamic content is
loaded as tables. However I experienced problems when I tried to extract the content

4http://www.dapper.net

40

5.2 Openkapow

Figure 5.2: Collecting sample pages

Figure 5.3: Selecting the content to extract

for our study case. Dapper offers a few fine tuning mechanisms, e.g. you can deselect
preselected content or you can remove text before or after the selected content, but if
you need more advanced tuning, Dapper can’t help you.

5.2 Openkapow

Openkapow [Open07] is an open service platform built on Kapow Technologies’ Web
extraction framework. To use OpenKapow you first need to download the client soft-
ware. With the client you can define the extraction mechanism, the so-called robot. If
the extraction delivers the required output, one uploads the robot to the OpenKapow

41

5.2 Openkapow

Figure 5.4: Grouping of the extracted content

server, which is handled through a publish command in the application, and the service
is ready to use from within the site.

The IDE (Kapow RoboSuite) allows you to extract information in a visual manner.
It is, however, not that easy to handle, and the user interface is not cleaned up enough
not to scare away a novice user.

Unlike Dapper, OpenKapow comes with just three output formats, RSS, REST and
web clips. To create a robot you have to define one of these. A few tutorials that are
provided online give you an idea what is possible.

The user interface (Figure 5.5) is divided into three areas:

� On top is the step view. There you can see the state the robot is in. Below on the
left side is the embedded browser and the source view. The source view presents
the exact path in the document, which comes in handy when you need to select
rows that you want to loop through.

� The browser area is where the navigation and extraction is done. In here, you
simulate user behaviour like clicking on a link or filling out forms. You even can
log-in to password protected pages.

� On the right is the properties view. This is for fine adjusting the extraction of
each step and where you can find the input and output variables and their state.

Working with the RoboSuite is neat. If you start a new project you are offered the
choice of creating RSS/Atom, REST or a webclip. Then you enter the URL where you
want to start from. If you need to set any input variables or output variables for a
REST service, you can define these too.

In the case study for fmMusic I will need artist data from Wikipedia. Let’s have a
look as to how this could be done with openkapow. The start page will be Yahoo’s
search page, where I first enter the value of our input and add the strings for Wikipedia
and discography. Next I click the search button to get the result list. Next I add a test

42

5.2 Openkapow

Figure 5.5: OpenKapow Robosuite IDE

step, where I test if the URL of the first result contains the string en.wikipedia.org.
If this is false, I throw an error and the robot navigates to the second branch, there
I set the output variable to No results found, to have an appropriate error handling
mechanism.

If no error occurs, I click the first result, which leads us to the right article and
extracts the tag with the required content as HTML (Figure 5.6) and sets this to our
output variable.

Figure 5.6: Extraction with the RoboSuite

43

5.3 Conclusion

If the robot delivers the right results you are ready to publish it to OpenKapow’s
webserver and you can start using it.

5.2.1 Limitations

Using OpenKapow, you can build very powerful solutions for web content extraction.
If you want to use it in the enterprise and do not want to have security risks, you will
need to use a commercial variant. If you generate an RSS feed you are limited to the
frequency of its refreshes; if you need a higher refresh rate than a 30 minute refresh,
you will need to build an REST robot and query it as often you need . I didn’t have
tested intensively, but I expect OpenKapow could achieve all kinds of tasks.

5.3 Conclusion

Mashup enablers are highly sophisticated and there are tools available that allow for the
creation of extractions in a very short time. Now and in the future, mashup enablers
will play a crucial role in using the web as database. Mashups will depend on solutions
that are robust and easily adaptable. Web site layouts change very often, nearly every
2-3 years or more. Adapting the extracting solutions to allow a quick response plays a
very important role in building robust mashup solutions. When querying huge amounts
of data, like various offers from different airlines for a travel comparison site, you need
more sophisticated features. Lixto5 is a commercial vendor of a more advanced mashup
enabler. Lixto provides a powerful tool (Visual Developer) for data extraction and a
server (Transformation Server) that runs these extraction services.

5http://www.lixto.com

44

6 Mashup Platforms

6.1 Introduction

The next trend in application development will probably be the creation of mashups
for the end-user. Last years McKinsey’s global survey [Bugh07] suggested that a re-
spectable 21% of companies were investing in mashup technologies, therefore it is not
a suprise to see more and more companies developing mashup platforms for enterprise.

In this chapter, I will present a quick look at different mashup platforms available
right now. During the writing of this thesis the number of mashup platforms and tools
increasedrapidly, so this should not be seen as a complete list. Some tools provide easy
access to everyone, others have trial versions or do not offer a free evaluation at all.
Since mashup platforms are quite a new field in software development, changes occur
often and development is rapid. Therefore keep in mind when reading this that these
platforms may have already changed and their feature list expanded.

6.2 What you can expect

So what can you expect using such platforms? We have already pointed out that
mashups will enable the development of situational software. The business user will
be able to customize his own application in an integrated environment. Mashups will
make it possible to have an integrated view, known as a mangement dashboard, of
the whole business without having to switch between different applications, wikis or
end-user development tools like MS Excel.

We already do this using Web portals, where someone can define his own start pages.
Mashups, however, go further. Most mashups already build on widgets that offer
flexibility and act as container in which you can load all kind of content. These widgets
can also allow the user to connect inputs from other widgets to create new business
functionality. Some mashup platforms like QEDWiki from IBM already offer such
functionality: e.g. you have a widget that delivers your ten best salesman, and another
widget connects these names and displays their telephone number. A third widget then
allows you to send a SMS-message to each or all of them. This is where the situational
aspect comes in. If you want to send an email instead of text-messaging, you just
exchange the widget. It’s all about what the business user needs here and now, and
reduces his dependency on the IT-department to make this possible. Yahoo! Pipes is
an amazing example of the usability and simplicity a mashup can offer. If you try to
connect services to each other you immediately get visual feedback if the module takes
the corresponding input.

The IT department is of course the group in any business that has to provide these
services that all these widgets rely on. A lot of commercial software already allows
users to generate web services and nearly all commercial database systems allow users
to generate web services out of stored procedures, which then can be used as providers
to widgets. So it is all just a question of how to generate the web services and offer

45

6.3 What you will get

them as widgets. Until now, this is one of the points seperatong different platforms.
Do they offer widgets or do they just provide access to the different systems on a single
end or maybe both?

At the moment there is no official standard for creating mashup platforms, or better
still, the ingestion layer nor the presentation layer of mashups. We probably won’t get
one any time soon as there is still too much development going on.

6.3 What you will get

If you start thinking of deploying a mashup in your company you will have to spend
some time looking at all the different mashup providers that are available. There will
probably not be a single platform that fits all your needs, however one will fit your needs
better than the others. It could even possible to stick to different solutions together,
especially if you need a good integrator tool and a nice looking, user-friendly frontend.

6.4 Example Mashup platforms

6.4.1 Yahoo! Pipes

Yahoo! Pipes (Pipes) is Yahoo!’s first mashup platform. Yahoo! defines Pipes as:
Pipes is a powerful composition tool to aggregate, manipulate, and mashup content
from around the web [Yaho07]. The name ”pipes” comes from the Unix approach of
sticking simple commands together to build a powerful ensemble, and this is exactly
what you can do with Pipes. Pipes is a browser based Web application that comes with
an AJAX enabled GUI interface (Figure 6.1) where individual modules are dropped on
a surface and connected to each other.

Working with the editor is convenient. A module is simply dragged and dropped
onto the surface and is instantly available for use. You can drop as many modules as
you want on it. Two modules are connected by drawing a line from one connection
point to another one. The visual response of flashing connection points gives immediate
feedback as to whether the two modules are compatible.

You can solicit user input and build URL lines to invoke different web services. The
drag and drop editor lets you view and construct your pipeline, inspecting the data at
each step in the process and of course, you can view and copy any existing pipe.

Concept

Using the Pipes editor you start by using one or more of the sources modules. Pipes
come with a different set of source modules, where the main focus is on RSS for fetching
news feeds. Other modules can process CSV and XML as well. Special modules exist
for processing data from photo sharing site like Flickr or an online database like Google
Base; they come with an optional filter attribute location. Another two modules exist
for searching Yahoo! and Yahoo! Local search.

Most of the time you do not just want to aggregate different content; you will want
to search or filter and want this to happen dynamically. Therefore Pipes comes with a
user input module that handles multiple values. These inputs can then be connected to
the Yahoo! search module to search for it, or the URL builder module could be used,
to build an URL that is fed as input to the fetch data module.

46

6.4 Example Mashup platforms

Figure 6.1: Yahoo! Pipes interface

Having fetched the input data, different operators can be used to extract the data,
filter, sort, split, truncate, tail, do calculations or use a simple loop to apply different
string operations on each item. Two modules that deserve special attention are the the
location extractor and the web service module.

� Location extractor This module analyzes text in each feed item title and de-
scription and attempts to identify addresses, location names or popular map ser-
vice URLs. If the extractor finds location entities in the feed, it will annotate each
item with a y:location sub-element containing that item’s latitude and longitude.

This module allows a simple mashup of any data with a representation on a map.
The amazing thing is the analysis of the content to get all the important stuff
out. Here is where the power of having a company like Yahoo! at your back is a
real advantage.

� Web service module This module POSTs the items in a pipe in JSON format to
an external web service. This allows developers to extend the Pipes functionality
to do whatever they need. The original items are replaced by the web service’s
JSON or RSS response.

Even if the modules that come with Pipes allow quite a lot of processing, there
are always times when you reach the limits and at this point this module comes
in handy. This module allows you to send the pipe data as a POST message to
any URL to do additional processing on the server and take back the result. So
there are no limits in terms of the programming language or service you want
to use. You just have to be aware that the response has to be in JSON or RSS
format.

47

6.4 Example Mashup platforms

Pipes comes with a really intuitive interface, and it helps the user be productive too,
in the way it easily lets you create a pipe and copy it to quickly generate a new pipe
to adapt. Having all your pipes always ready to use inside other pipes is efficient too.
This helps you to build small services that can be easily modified and stuck together
to form a big service. Once again the piping approach is applied.

Pipes offers a nice debugging facility having the debugger at the bottom of the editor.
You can have a quick look into the current state of the pipeline by clicking on a module.
The debugger will show you the values at this step. (Figure 6.2).

Figure 6.2: Pipes debugger

Conclusion

Pipes is an impressive mashup platform that uses astonishing AJAX technology. It
primarily focuses on data mashing and therefore provides just a limited set of frontend
output. Pipes is far from a enterprise mashup tool and focuses primary on consumer
based mashups. The syndication features and its special modules may be a valuable
tool for collecting web data for solving some parts of enterprise integration problems.
The simplicity of use and ability to recombine other pipes built other users will help to
evolve it quickly.

6.4.2 Microsoft Popfly

Introduction

Microsoft1 has released its first foray into the mashup area with Popfly [Micr07]. Popfly
can be seen as one of the first Silverlight2 (formerly WPF/E) applications and demon-
strates its enormous potential. Popfly is still in beta so we have to wait to see what
the final version will bring.

1http://www.microsoft.com
2http://silverlight.net/

48

6.4 Example Mashup platforms

Concept

That said, Popfly has already received much attention after its first beta release. This
is in part because Microsoft is a big player that gets a lot of press whenever it does
anything, but also because of its impressive user interface. The principle is similar to
Yahoo! Pipes; you get modules that you drop on a surface and then connect them
to each other, as seen in Figure 6.3. The output modules of Popfly already offer nice
representations to look at (Figure 6.4.

Figure 6.3: Popfly interface

Figure 6.4: Popfly result module

Popfly, even if it is not as long available as Yahoo! Pipes does come with a lot of
predefined modules (blocks) for use. If you have a closer look you see that a lot of them

49

6.4 Example Mashup platforms

were created by hobbyists outside of Microsoft. Popfly allows you to build your own
blocks and has an SDK available for download.

Building blocks using a REST service is not too difficult. You can build a block
with a simple combination of JavaScript and XML. A good example is D. Waters’
Geolocation Block [Wate07]

Conclusion

Popfly demonstrates how easy it is to generate new blocks for integration within a
mashup platform and how a visually attractive an editor can look and behave. What
it makes it so powerful, Silverlight, is probably the main reason it will not make it to
the enterprise very soon. Silverlight is a proprietary browser plug-in that needs at least
Internet Explorer SP2.

6.4.3 IBM’s Mashup Starter Kit

Introduction

IBM recently entered the mashup market with the release of their Mashup Starter Kit.
Even if all their products are still only available on their emerging technologies site
alphaWorks3 IBM is pushing hard into the enterprise sector. With the Mashup Starter
Kit IBM follows the three layers model of a mashup composition1.5.1 and provides
a product for each layer. The package includes IBM DAMIA [IBMA07a] (Ingestion
layer),Mashup Hub [IBMA07] (Augmentation layer) and QEDWiki [IBMA07a] (Pre-
sentation layer).

DAMIA

Damia is a tool, once again with a Web-based interface, for data aggregation. It offers
similar features to Yahoo! Pipes, whereby you can apply functions like filter, concat,
split etc on the data. The development is similar too, as you stick together different
modules and enable the data for further consumption. In comparison to Pipes, Damia
is already aimed at enterprise usage and offers import from sources like Excel; database
support is on the way.

Mashup Hub

Mashup Hub is a kind of registry for all widgets than can be used in the presentation
layer. All services that are created with Damia can be registered here and made ac-
cessible to the application creator within QEDWiki. Mashup Hub also provides feed
generation for enterprise data sources like relational databases, collections of XML doc-
uments in DB2, Microsoft Excel files, comma-separated value files, Microsoft Access
exported queries, IBM Information Server federated data, and the contents of ordinary
XML documents. A user can register existing feeds in the Mashup Hub catalog too.
Mashup Hub is the foundation of QEDWiki, which serves as the repository for the
available services.

3http://www.alphaworks.ibm.com/

50

6.4 Example Mashup platforms

Figure 6.5: Damia editor

QEDWiki

QEDWiki is IBM’s interesting approach to build a Wiki type of mashup platform; it
is currently in alpha state. QEDWiki is a browser based development environment
consisting of an assembly canvas and a widget collection. Different from other mashup
platforms, QEDWiki provides users and developers with a single frontend for applica-
tion development (Figure 6.6) and final presentation.

Figure 6.6: QEDWiki user interface

Working with QEDWiki is quite tricky as it is not intuitive at all. There are a few
tutorials showing the concepts behind it, and you will need some time to get used to
it. The tricky part is the connection between the different widgets, one of its main
features. At this stage it is hard to identify how to connect widgets to each other.
Providing an interface that is more intuitive to business end users is a major issue,
and and the moment I cannot see this being adopted very quickly. Pipes, Popfly,

51

6.4 Example Mashup platforms

or even Damia shows how intuitive connecting modules can be; QEDWiki makes it
unnecessarily difficult.

Lotus Mashups

At the time of writing, IBM announced its new product Lotus Mashups4, which can be
seen as follow up to Mashup Starter Kit.

IBM Lotus Mashups is expected to include:

� A graphical, browser-based tool that will help enable easy, on-the-glass
assembly of new applications by Web-savvy business users.

� A Mashup catalog which will help facilitate the sharing and discovery
of mashup components, with planned, built-in community features like
ratings, tagging, commenting.

� A very lightweight Mashup Server, which will be hostable on a variety
of platforms for added governance and IT control.

� A rich set of out-of-the-box, business-ready widgets.

Other Mashup Platforms in brief

SnapLogic5 is a open source, community-based mashup server for data aggregation.
It comes as platform independent download and builds on Python. The graphical
interface built on Flash is impressive. The server is acting as backend to mashups
and provides services to the presentation layer.

Proto6 is a mashup platform directed to financial services and offers a large set of
predefined modules. The focus is on connection of different datasources and the
real time manipulation of data for financial simulations.

For further tracking of mashup solutions I recommend Dion Hinchcliffe’s blog7, where
he keeps an updated list of mashup platforms.

4http://www-306.ibm.com/software/lotus/mashups/
5https://www.snaplogic.org/
6http://www.protosw.com/
7http://blogs.zdnet.com/Hinchcliffe/?p=111

52

Part IV

FmMusic - a music mashup

53

7 Specification

FmMusic is a mashup that extracts the currently playing artist and track information
from a radio station’s homepage. The information is then used to acquire additional
information that could be relevant for the user of a mashup, such as artist information,
album on which the song appears, lyrics, et cetera. In this chapter we will define all
the information we want to display and what resources we will use.

7.1 Artist/Track

First of all, we need information about what artist and track is playing at the moment.
In our example case, the public Austrian radio station, Fm4, is used. The radio station
offers a Web stream to its listeners on its Web site. Within the page of the stream, the
current and last two songs played are displayed (figure 7.1). The radio station provides
neither an RSS Feed nor an API to get this information in a convenient way, so we will
have to use a Web data extraction mechanism. During an evaluation of Dapper and
openkapow, we tried this extraction with both products. Dapper failed to deliver the
right results, as it was not possible to limit the selection to one of the three different
tracks. Openkapow showed its strength and the extraction worked fine. However we
will not be using openkapow for our extraction, but will rely on the Cocoon framework.
Because we gather the information every minute, we don’t want to be dependent on a
product as prone to downtime as openkapow.

Figure 7.1: Fm4 radio stream

54

7.2 Album, Album cover

7.2 Album, Album cover

One of the main goals is to be able to tell the user on which album a song appears,
and display the cover of that album. To get this information the e-commerce API from
Amazon (AWS) will be used. Amazon offers SOAP and REST APIs to look up a track
in its database and get relevant information from its data pool. In the mashup, the
REST API is used, mainly because it is supported out of the box within Cocoon. An
interesting point is that Amazon states that 85% of its web services users favor REST
as their interface [ORei03].

Finding out on which album the track appears is probably the hardest part of the
process. How do I achieve that? Consider the Amazon e-commerce web service. It
allows us to query its database for all the products it has available. I will limit my
search to the product group “Music” and use the additional response group “Track”to
get all the track names that appear on the selected album. For most artists, I will get
more than one item back, because most of the artists have more albums brought out.
So I need to loop through all the items and compare the track name with the track
that is playing right now. If I find a match, I get the album name and image URL.
More on that in the next chapter.

7.3 Lyrics

Another feature for the mashup is to display the lyrics for each song. There are quite
a lot of lyric platforms available, so I had to decide on which one to choose. After
searching for some sample songs on different platforms, I decided to use AzLyrics.com.
On the one hand, it provides a large collection of lyrics and on the other hand, lyric
extraction appears relatively easy. We have to do another extraction, as there is no
API available. Providing lyrics is difficult, especially for the station I chose, because
they play a lot of lesser known artists or even play local bands for which you will not
find lyrics on any platform.

7.4 Artist Information

A lot of music fans adore their music idols and want to know everything about them. I
am not such an enthusiast but I often do want to know more about an artist, so it seems
likely that many other users will too. There are a few portals that offer good collections
of artist information, but here too, it is hard to find a complete source. There are always
plenty of new bands who are played by the radio stations, but there is nothing written
about them except on their personal webpage. In the last years Last.fm1 has started to
become the most valuable source for artist information. Unfortunately, their content is
not under a shared license, so I will not use it. Wikipedia, which contains information
about nearly everything, also provides information on artists, thus we will use it at
content source. Wikipedia unfortunately still has not released any API, so again a
screen scraping mechanism is in order.

1http://www.last.fm

55

7.5 Music Videos

7.5 Music Videos

Typically radio stations play songs that are released as singles and with each single, a
complementary video is released. The most popular video resource on the web right
now is YouTube, which even offers a convenient API for querying their content through
a REST interface and delivers complementary information. YouTube is also great for
finding videos that have not been released as single. A lot of times you can eve get a
few live recordings of the song.

7.6 Pictures

The last part of the specification will be pictures of the artist. For this, we will use
Flickr, which has had huge success right from the beginning of the Web2.0 era, and is
now one of the biggest photo sharing sites on the net. It does not only provide a lot of
meta-information, it also gives access to its collection through a REST API.

56

8 Apache Cocoon

8.1 Introduction

In the next chapter, we will build the fmMusic mashup on top of Cocoon. Therefore,
this necessitates a quick introduction to Cocoon. We have read in previous chapters
that the technologies behind mashups are common standards that can be implemented
in various programming languages or application frameworks. Cocoon is an XML
publishing framework that comes with many so-called blocks. The main components
behind Cocoon are generators that acquire or generate data, transformers that modify
the data and serializers that generate the output formats. Cocoon is very modular and
can easily be used as a very scalable SOA application framework. Within Cocoon it is
easy to define small services, so-called pipelines that can be connected in a simple way
to build complex applications. Aggregation functionality allows easy combining and
manipulating of data. Another benefit is the sophisticated built-in caching functional-
ity, where each pipeline can be assigned an expiration value that defines how often the
cache must be refreshed. This is useful when using Web scraping to avoid e.g. scraping
the information for an artist for each request.

We can see that Cocoon offers functionality in processing and delivering data. In
building one’s own mashup, there will always be a choice of technology with which to
implement it. Most often, one would use a familiar technology, or build the mashup
on a framework already implemented. Next, I will explain why I chose Cocoon as my
framework:

� Cocoon is an XML based framework: I will use Web service providers that offer
REST interfaces. All such interfaces deliver an XML response. This means that
the structure for processing within Cocoon already exists.

� Caching functionality: Nearly all the information the mashup provides will not
change very often. Good caching functionality will limit the computing power
needed and the traffic routed through the server.

� Scalability: It is very easy to extend Cocoon’s functionality. During implementa-
tion, most of the functionality will be carried out as small services, each of which
are REST interfaces.

� Different output formats: With its clear separation of data generation, transfor-
mation and presentation, Cocoon offers the ability to produce data in different
output formats such as HTML, XML or JSON. Even if fmMusic is just a Firefox
extension, it could easily be implemented as a browser mashup.

� Basic Web scraping possibilities with XSLT using a built-in tidy1 module (HTML-
Generator).

1tidy.sourceforge.net/

57

8.2 The Cocoon framework

Next, I will examine the concepts used by Cocoon and will then explain how to build
the backup for fmMusic.

8.2 The Cocoon framework

Developing Web applications began with coding static HTML documents delivered to
the user in a static way. This soon changed when developers realized the need to gen-
erate content dynamically. A common source for such dynamic content was a database
capable of querying, with results being added to the static document content. Display-
ing dynamic content often required some kind of programming logic, as well. It was at
this point that dynamic scripting languages such as Hypertext Processor (PHP), Active
Server Pages (ASP) and JavaServer Pages (JSP) evolved. These scripting languages
offered developers a great deal of functionality, but also had drawbacks. For example,
these scripting languages have no separation of content and application logic. Cocoon
was developed with this in mind. The Apache Cocoon Project homepage [Apac05]
introduces the concept of separating content and application logic as follows.

8.3 Separation of Concerns (SoC)

Apache Cocoon is a web development framework built around the concepts
of separation of concerns (making sure people can interact and collaborate
on a project, without stepping on each others’ toes) and component-based
web development. Cocoon implements these concepts around the notion
of ”component pipelines”, each component on the pipeline specializing on
a particular operation. This makes it possible to use a ”building block”
approach for web solutions, hooking together components into pipelines
without any required programming. Cocoon is ”web glue for your web
application development needs”. It is the glue that keeps concerns separate
and allows parallel evolution of the two sides, improving development pace
and reducing the chance of conflicts.

Page designers commonly do not focus on the application logic that lies behind a
Web application. Application developers do not want to be bothered with presenting
the data in a user-friendly manner. Therefore, the best way to manage a Web site is
to separate the logic and presentation into different components that can be acted on
individually. For the sake of coordination, there must of course be some management
capabilities available.

Figure 8.1: Three concerns of Web page development and management

Using such separation makes it easy to change a representation and just involves the
person responsible for rendering the output. Similarly, a change in the content source

58

8.4 The pipeline model

would only affect the application logic provider. If the content itself changes, only the
person responsible needs to make adaptations.

8.3.1 Model View Controller

The architectural pattern to strictly separate data (model) from presentation (view)
became known as the model-view-controller (MVC). The separation of these compo-
nents allows a simple replacement without one aspect affecting the other. Cocoon was
built with this concept in mind. Other well known frameworks using this concept in-
clude Struts and JSF in the world of Java and Ruby on Rails. This latter gained much
attention in recent years.

The MVC-model consists of three parts [Wess06]

� Model Data (Model), the domain-specific class where the attributes are stored,
mainly a database

� View Presentation of the data in the user interface

� Controller Control or the processing of the user interaction or modification.

The isolation advances the exchangeability of the presentation (view) and the reusabil-
ity of the business logic (model). Therefore the same business logic can be used by
different output channels, e.g. a Web interface and a mobile client. This figure 8.22 is
an illustration of how the three components interact with each other.

Figure 8.2: Model View Controller

8.3.2 Cocoon, MVC and Flowscripts

Within Cocoon, the model is represented by the contents of the pipeline. The controller
is a composition of the pipeline components and how they are arranged within the
application. Additionally, Cocoon has implemented its own controller concept called
Flowscript. Flowscript is a JavaScript application programming interface that allows
redirection of the application depending on various states. Transformers and serializers
are responsible for the presentation of the content, the view.

8.4 The pipeline model

The application model of the World Wide Web is based on a request/response architec-
ture. A Web client initiates a request using HTTP. The receiving server most commonly

2http://de.wikipedia.org/wiki/Model View Controller

59

8.4 The pipeline model

either reads a static local file from disk and/or requests data from a database or then
generates a dynamic response, usually in HTML. Other formats are also used. The
server then sends this as a response to the client. This process can be visualized as
individual components in a flowchart.

Cocoon uses a similar model, called the pipeline model. In this model, an XML file
traverses the various components in a pipeline. These components generate, transform
or serialize the traversing XML in different stages to produce the final presentation
for the requesting client (figure 8.3). These stages can be seen as several chains in
a pipeline. In Cocoon, one can define different pipelines and connect these to new
pipelines.

Figure 8.3: Main components within Cocoon

� Generator The pipeline’s starting point: It generates XML content as SAX
events and starts the processing through the pipeline. The default generator
reads in static files.

� Transformer The XSLT transformer is usually used for transforming the content
into the desired format for internal processing or final rendering. The transformer
is the central point of a pipeline where most of the processing takes place. Several
transformers can be linked together.

� Serializer The serializer is the end point of a pipeline. The serializer transforms
the SAX events into binary or character streams for the consuming client.

Each component of the pipeline is individual and can be replaced without affecting
the other components. This is extremely useful when developing an application. One
can first define an XML document that is the start of the pipeline and then work on
transforming the pipeline. The generator can easily be exchanged with another pipeline
that queries a database and delivers the same structure.

A Cocoon pipeline can have two or more components. The most basic processing is
to route a static XML file through the pipeline where a generator and serializer need
to be defined. Usually, the transformer is needed as well.

We now have an idea what the framework is all about. Next, I will more closely
examine each of these components and introduce a few others. This will provide the
fundamental knowledge to understand the technology involved in building the mashup.

8.4.1 Generator

Each pipeline starts with the generator component. This component generates the
XML content that is parsed and sent as SAX events down the pipeline. The default
generator is the File Generator to read local XML files. It not only allows parsing

60

8.4 The pipeline model

of local files, but the generator can be used to invoke REST services, as will be seen
later on. Several other generators exist to produce content from various other sources.
Please see the Cocoon documentation for an explanation of all the generators. A second
generator that I will use for Web data extraction is called the HTML Generator. Cocoon
needs well-formed XML data to be processed in a pipeline; most Web sites, however,
use HTML which is not well-formed. The HTML Generator is built up on Tidy3.
HTML Tidy is an open source program and library for checking and generating clean
XHTML/HTML.. Using this generator, one can read in any HTML source. It will be
parsed with Tidy and transformed into well-formed XHTML. I will use this for Web
scraping issues later on.

8.4.2 Transformer

A transformer takes the input from the generator and transforms it to a new document
representation. For example, the XSLT Transformer transforms the input using a de-
fined XSLT stylesheet and puts it into a new structure. Another useful operation of a
transformer is to query a database. The XInclude transformer is helpful in acquiring
different XML sources at once. We will use the XInclude Transformer in our applica-
tion to acquire content based on a search result delivered by the HTML Transformer.
Cocoon comes with several transformers for different purposes.

8.4.3 Serializer

A serializer is the end point in the pipeline. The document in its final presentation
structure is serialized for end user representation. A default serializer is the HTML
Serializer that returns an HTML document to the requesting client. Another commonly
used serializer is the PDF Serializer. It takes XSL-FO input that is transformed to PDF
using the underlying FOP4 library.

8.4.4 Matchers

After learning about the basic and most important concepts involved in building a
pipeline, the next step is how to access these pipelines. One of the main concepts of
the Cocoon framework is to provide different output formats. An example application
could provide two output formats, one a pipeline for HTML, and another one gen-
erating a PDF document. Each of these pipelines can be invoked using its own URL
pattern. For example all requests using a URL ending with .html will invoke the HTML
generating pipeline; every URL ending with *.pdf would activate the pipeline for gen-
erating the PDF. Matchers are the connection between the request and the pipeline
that will process the request. Each request sent to Cocoon is evaluated to determine
which pipeline to use for processing. The individual pipelines are defined in an XML
based configuration, the so-called site map. When a match is found, processing of the
request starts. The following list 8.1 defines two pipelines, one for HTML content and
one for PDF generation.

Listing 8.1: Sitemap defining two different pipelines
<map:match pattern ="*. html">

3http://tidy.sourceforge.net
4xmlgraphics.apache.org/fop

61

8.4 The pipeline model

<map:generate src ="{1}. xml"/>
<map:transform src=" stylesheets/document2html.xsl"/>
<map:serialize/>

</map:match >

<map:match pattern ="*. pdf">
<map:generate src ="{1}. xml"/>
<map:transform src=" stylesheets/document2pdf.xsl"/>
<map:serialize type="pdf"/>

</map:match >

Invoking the URL sitemapdirectory/doc.html would transform the file doc.xml into
an HTML representation, whereas the URL sitemapdirectory/doc.pdf would generate
the PDF doc.pdf. Using the matchers, one can easily achieve a clear separation of
content and representation.

62

9 fmMusic backend

Previously, I talked about various kinds of mashups and introduced the main tech-
nologies used. Tools, or so called mashup enablers were discussed, which help extract
information. I also introduced you to a few mashup platforms already available. Now
it is time to start building our own mashup. First I will start to build the backend
on top of Cocoon. It is used to extract data, invoke Web services and aggregate and
transform the data. The output is then provided as separate services. The sources have
already been defined in the specification chapter. In this chapter, I will discuss how to
use Cocoon to deal with each of the sources.

The following figure 9.1 illustrates what content is used and from where it is acquired.

Figure 9.1: Sources that will be aggregated

9.1 Filestructure

To get a basic Apache Cocoon up and running is not difficult, so I will not explain
it further, but instead will refer to the project homepage1. Cocoon can be run us-
ing the provided Jetty, or it might be necessary to run a servlet container. I use
Apache Tomcat2, and deploy the .war file to it that you will build during the in-
stallation. Having done this, you can easily check if is Cocoon running browsing to
http://localhost:8080/cocoon/. For our mashup I create the folder /servletContainer/-
cocoon/fmMusic that will be the root of the mashup, so all files and directories will be
created inside it.

1http://cocoon.apache.org/2.1/installing/index.html
2http://tomcat.apache.org/

63

9.2 Scraping Fm4

9.2 Scraping Fm4

The radio station Fm4 as our station of choice resulting as the provider what artist
and track is played at the moment. Figure 7.1 shows the window with an embedded
media player, the track list and a few links and images. A closer look at the source
code reveals that this is a frameset consisting of three frames, whereas the track list
is a frame on its own. The option (available in Firefox) - current frame - show only
this frame is really handy to display only the required frame. The result is that you
get only the required frame with the corresponding URL that you need for extraction
(figure 9.2).

Figure 9.2: Frame with tracklisting

Now only the last three played tracks are displayed on the page. Notice that the
page is hosted at URL http://hop.orf.at/img-trackservice/fm4.html. In Cocoon, Web
data extraction is accomplished using an XSLT Transformation, applied to an XHTML
document. Therefore, the exact URL where the content is hosted is required. The two
mashup enablers OpenKapow and Dapper have already been introduced. These tools
allow direct action on the Document Object Model. Using such tools, one needn’t
worry if there are one or more frames. One can simply act on the final representation.
This is the main advantage when acting on content that is loaded asynchronously and
Cocoon probably will fail. I recommend using Firebug3. This is a Firefox add-on that
lets one investigate where the asynchronous requests are sent to in order to identify the
dynamic content.

Another benefit to knowing the exact source of a URL is the ability to reduce the
data downloaded for each extraction. If there are many requests, this can save time
in terms of traffic. Reducing the data download can also possibly limit processing
resources for each extraction.

Before starting the extraction, I must think about what information I need and how
I want to handle it in our mashup platform. These days, most tracks played on the
radio are about 3-5 minutes in length. Between tracks, the radio host talks, so the time
difference between each song can vary quite a lot. If I extract the information every
three minutes, I could miss a song change a few seconds, so I will display the current
song another three minutes, what is bad for the user. I could even miss a song that
is less than 3 minutes. I will start with a one minute periodical check. If an update
is missed, then after one minute I will display the correct song. Reducing it to a 30
second update should cause no problems.

3http://www.getfirebug.com/

64

9.2 Scraping Fm4

The result of the radio station extraction will be the basis of our application. Each
service will use either artist, track or both; therefore, the structure should be well
defined within Cocoon. The XML in listing 9.1 is the one we transform the extracted
content into.

Listing 9.1: XML structure for artist and track played
<radio provider ="Fm4">

<radioStation name="Fm4">
<playing >

<time >time </time >
<artist >artist </artist >
<track >trackname </track >

</playing >
</radioStation >

</radio >

Following elements are defined

� Root element radio with the attribute provider. The attribute provider is op-
tional, but I defined it for future extensions when I may have other sources that
deliver the information. Instead of extraction from HTML, this could be a fin-
gerprint recording of the current song that would be submitted to Gracenote’s
MusicID4 service. This service matches the fingerprint against its database and
responds with the current track played. A few mobile phones already support
such functionality.

� radioStation: This element comes with the attribute name that defines from
which radio station the current content comes.

� playing : This is a wrapper around the main information.

� time: The time the current track started to play.

� artist : The name of the artist.

� track : The name of the track.

To start the actual extraction, look at the source code and note it is written in
HTML. Therefore, it must be transformed into XHTML using the HTML Generator.
This generator manipulates the DOM. The outcome must be inspected to ensure a
correct stylesheet was created. Hence I start by creating the directory radioStations
where I will place all the extractions. Inside I define a site map file, with the pipeline
shown in the listing 9.2.

Listing 9.2: Pipeline showing HTML Generator output
<!-- Pipline for acquiring data from fm4 -->
<map:match pattern ="fm4">
<map:generate type="html" src="http :// hop.orf.at/img -

trackservice/fm4.html" label=" source" />
<map:serialize type="xml" />

</map:match >

4http://www.gracenote.com/business solutions/music id/

65

9.2 Scraping Fm4

The pipeline matches the pattern fm4 and thus can be invoked by browsing to ra-
dioStation/fm4. The generator type is html, which means that the HTML Generator
is used for generation. The HTML Generator will download the HTML page, use Tidy
to transform it to well-formed XHTML, passes it to the XML Serializer which deliv-
ers XML output. Pointing a browser to http://localhost:8080/cocoon/fmMusic/radio-
Stations/fm4 will show the well-formed version (listing 9.3) of the initial page.

Listing 9.3: Well-formed output from HTML Generator
<?xml version ="1.0" encoding ="ISO -8859 -1"? >

<html xmlns ="http :// www.w3.org /1999/ xhtml">
<head >

<meta content ="HTML Tidy , see www.w3.org" name=" generator"/>
.....
<style type="text/css"> <!--

body {
background -color: #333333;
.....

}
.tracktitle {font -weight:bold;}
.artist {font -style:italic ;}

-->
</style >

</head >
<body >

<div >10:49: Herculean | The Good The Bad & The Q</div >

<div >10:56: You Talk | Baby Shambles </div >

<div >11:02: Foundations | <
span class =" artist">Kate Nash </div >

</body >
</html >

The body tag of the track listing, contains three div elements, one for each track
played. The timestamp reveals that the last updated entry is the third one. The
stylesheet shown in listing B.1 will perform the extraction. When writing the stylesheet,
keep in mind that the HTML Generator transforms all elements into the namespace
http://www.w3.org/1999/xhtml.

Some additional processing occurs during extraction of the track name. This is be-
cause this radio station often plays remixes and live tracks and I want to eliminate this
additional information. With all components together, I can complete the Web scrap-
ing, adding the stylesheet to the pipeline (listing 9.4). I add an additional transformer
to point to the newly created stylesheet and when I reload the page I get the resulting
XML shown in listing 9.5.

Listing 9.4: Final pipeline for scraping radio station data
<map:match pattern ="fm4">

<map:generate type="html" src="http :// hop.orf.at/img -
trackservice/fm4.html" label=" source" />

<map:transform type="xslt -saxon" src="xslt/fm4.xslt" />
<map:serialize type="xml" />

</map:match >

66

9.3 Amazon web services

Listing 9.5: XML structure for artist and track played
<radio provider ="Fm4">

<radioStation name="Fm4">
<playing >

<time >11:02 </time >
<artist >Kate Nash </artist >
<track >Foundations </track >

</playing >
</radioStation >

</radio >

9.3 Amazon web services

Amazon.com5 is probably the biggest online reseller and offers a broad collection of
products. One of its product ranges is music and innumerable albums and singles
are available (figure 9.3). Amazon provides several Web services, and the Amazon
Associates Web Service (A2S)6, formerly E-Commerce Service, provides a simple way
to gain access to its product range. The Web service is free, as long as one brings traffic
back to Amazon. It is common to have ads that link to Amazon on different pages. In
the mashup, clicking on the cover will lead to the product page of the album.

Figure 9.3: Amazon’s Music portal page

The A2S offers two main ways to retrieve information from its catalog. One can either
search for products, using the ItemSearch operation, or the ItemLookup operation to
look up detailed information for a product. To do a ItemLookup, the Amazon ID for
the product is required. I will use both operations. First I will search for the Amazon
product ID (ASIN) and save it in a database (not discussed here) so I do not have to
look up a song each time it is played. Then I will use the ID for displaying information
on-the-fly using the ItemLookup operation.

5http://www.amazon.com
6http://www.amazon.com/E-Commerce-Service-AWS-home-page/b/ref=sc fe c 0 15763381 1?ie=-

UTF8&node=12738641&no=15763381&me=A36L942TSJ2AJA

67

9.3 Amazon web services

9.3.1 Using the ItemSearch operation

The ItemSearch function offers different sets of parameters for each category (Music,
Books, etc.) and the results can therefore be limited.

� Artist- All or part of artist’s name

� Author - All or part of author’s name

� Actor - All or part of actor’s name

� Director - All or part of director’s name

� Composer - All or part of composer’s name

� Conductor - All or part of conductor’s name

� Orchestra - All or part of orchestra name

� MusicLabel - All or part of record label name

� Publisher - All or part of publisher’s name

However, we are limited as to the information extracted from the radio station. Artist
is one of the parameters that can be searched, but title of the track cannot be used. To
find the album on which the track appears, I will search using the artist’s name. This
will result in a listing of all albums and tracks associated with this artist. Then I will
loop over the result set and compare the track names of each album with the current
track to find a match. Once a match is found, I will use the title, ASIN and the URL
to the cover image.

The following listing 9.6 shows the URL with all parameters for invoking the REST
service.

Listing 9.6: Request URL for querying Amazon
http :// webservices.amazon.de/onca/xml?Service=AWSECommerceService

&SubscriptionId=YourId&Operation=ItemSearch&SearchIndex=Music&
ResponseGroup=Medium ,Tracks&Artist=Massive+Attack

Parameters provided with the request

� SubscriptionId: To use the A2S, one must register for the service and receive an
ID that must be quoted when setting a query.

� Operation: Here I use the ItemSearch operation to search for data in the catalog.

� SearchIndex: The search should be limited to the category Music.

� ResponseGroup: Amazon offers three different response groups that differ in the
amount of data that is turned back. We use the medium group which includes
the URL to the images. Additionally, the tracks parameter is used, as these are
not included in the medium result set.

� Artist: Finally I provide the name of the artist for whom I am looking.

68

9.3 Amazon web services

A2S offers many different parameters and search options. A complete reference can
be found on its programming guide7.

The request results in ten different item sets, each representing one of the artist’s
albums. As can be seen in the response snippet 9.7, all the necessary information is
provided.

Listing 9.7: Item snippet of search response
<Item >

<ASIN >B000E5L8D4 </ASIN >
<MediumImage >

<URL >http :// ecx.images -amazon.com/images/I/21 KFYDF6GVL.jpg </
URL >

<Height Units=" pixels ">160</Height >
<Width Units=" pixels ">160</Width >

</MediumImage >
<Tracks >
<Disc Number ="1">

<Track Number ="1"> Safe from harm </Track >
<Track Number ="2"> Karmacoma </Track >

....
<Track Number ="14"> Live with me </Track >

</Disc >
</Tracks >

</Item >

9.3.2 Matching and extracting response information

Before programming the extraction stylesheet I must first summarize what I need to
do. As seen, I received about 14 albums that I have to loop through. Each album
item contains a set of tracks that I will have to match. Once accomplished, I will then
check if the item containing the matching track is of the binding type CD, as I do not
want to select vinyl recordings. It is possible to find more than one match, so I also
sort the sales ranking, and expect that the item with the best sales is the one I want.
The stylesheet in Listing B.2 uses XSLT 2.0 techniques to extract the content. The
transformation result is shown in listing B.3.

Using this information, the song being played can be displayed, and one can see
the title and cover for the track and link directly to Amazon’s product page. Most
important, however, is the Amazon product ID (ASIN), which can be used to retrieve
all other relevant information provided by Amazon at any time. This means I can
easily implement client side mashup functions, loading the ASIN on the client and
initiating asynchronous requests directly to Amazon, thereby avoiding traffic going
through the server. We heard about the security restrictions using the XHTTPRequest
inside a browser that forbids to access services outside your domain. Using JSON,
this restriction can be bypassed. This is when Amazon’s option to provide an external
stylesheet comes in useful. A stylesheet can be set up on a server and can transform
the request results into the JSON format. Amazon then uses the stylesheet on-the-fly
and delivers the JSON response instead of XML.

7http://docs.amazonwebservices.com/AWSEcommerceService/2005-03-23/PgSearchingCatalog.html

69

9.4 Lyrics extraction

9.4 Lyrics extraction

Searching for lyrics is one of the harder tasks. There are many different privately
or community based lyrics platforms on the Web. However, none of these provides a
complete set of lyrics for all songs. With no control of the content, there is no guarantee
that all data is available at all times. It might be possible to have a Service Level
Agreement (SLA) with the content provider, but many times information is extracted
without the content owner’s knowledge.

For the mashup, I will use AZLyris.com8 as the lyrics provider (figure 9.4). I decided
to use this one because it offers a large set of lyrics, an easy search option providing a
parameter to the URL and information is easy to extract.

Figure 9.4: AZLyrics.com - Content source for lyrics

9.4.1 Sub-page navigation

AZLyrics is a platform where users employ a search function to look for an artist or
track title. This search results in a listing, shown in figure 9.5, and hopefully the request
is matched. The link leads directly to the lyrics page.

There is no option to access the content directly thus I need to find a way to request
the search and simulate the navigation to the first result. Using a mashup enabler would
have been a convenient option. However for demonstration purposes, I will present a
way to use Cocoon for deep Web navigation.

So how can this be achieved using the Cocoon framework? I will start by setting
up two different pipelines. The first one (listing 9.8) will be used to initiate the search
for the lyrics and to extract the search results for further navigation. AZLyrics is
submitting the parameters appended to the URL (using GET method), therefore I will
URI-encoded artist and title and add them to the URL.

8http://AZLyris.com

70

9.4 Lyrics extraction

Figure 9.5: Search results when searching after an artist and title

Listing 9.8: Pipeline for searching lyrics and extracting results
<map:match pattern =" searchAz /*">

<map:generate type="html"
src="http :// search.azlyrics.com/cgi -bin/azseek.cgi?q={1}"

label =" source" />
<map:transform type="xslt -saxon" src="xslt/az_url.xslt" />
<map:serialize type="xml" />

</map:match >

The second pipeline (listing 9.9) will use the extracted URL. Once again, the first
result is expected to be the best.

Listing 9.9: Pipeline for lyrics extraction
<map:match pattern =" getAzLyrics">
<map:generate type="html" src ="{flow -attribute:lyricUrl }"/>
<map:transform type="xslt -saxon" src="xslt/azlyrics.xslt" />
<map:serialize type="xml" />

</map:match >

9.4.2 Linking pipelines using flow logic

We have now defined two pipelines needed to get the lyrics. In listing 9.9, the pipeline
used for the extraction, the generator src attribute does not link to a source. Instead,
the source URL is provided dynamically from the flow function.

In order to use flow logic in our site map, I need to tell the sitemap where the
JavaScript file is located. This is done using the map:flow element (listing 9.10). Now
any function can be called from within a pipeline. In listing 9.11 the pipeline lyric-
sLookup is called, with the artist and track included in the URL. The pipeline invokes
the function getLyricURL (listing 9.12) providing the artist and track parameters.

71

9.4 Lyrics extraction

Listing 9.10: Including flow logic to Cocoon
<map:flow language =" javascript">

<map:script src="js/lyrics.js"/>
</map:flow >

Listing 9.11: Pipeline calling a flow function
<map:match pattern =" lyricsLookup /*/*">

<map:call function =" getLyricUrl">
<map:parameter name=" artist" value ="{1}" />
<map:parameter name=" track" value ="{2}" />

</map:call >
</map:match >

Flow logic

Following is a closer examination of the getLyricURL function listed in listing 9.12.
First, another pipeline is invoked which defines global functions used to access XML
elements. Inside the function, the parameters from the pipeline are parsed and assigned
to variables. Using these variables, the URL for the search request is concatenated, the
pipeline is requested and the result (listing 9.13) is loaded into the variable xml.

In the extraction stylesheet, I limited the results to the first one. Otherwise, I could
implement additional logic to analyze the resulting URLs, or even parse all resulting
pages. However I keep the first result and expect it to be the correct one.

Next, I assign the URL of the search result to a new variable lyricUrl. This URL
should point to the lyrics of the track requested. The flow function sendPage can now
be used to redirect Cocoon to the extraction pipeline. The sendPage method gives the
option to include additional parameters, which then can be used within the pipeline.
Therefore I define an object parameters and assign the URL to it. Finally, I redirect
Cocoon to the pipeline (listing 9.9), providing the pipeline name and parameters object.
It can be seen that the corresponding pipeline uses another dynamic attribute for the
source attribute. Using flow:attribute:parameterName I can access the parameter I
provided.

Listing 9.12: Flow function for lyrics extraction
cocoon.load(" cocoon :// fmMusic/resources/global.js"); // [1]
function getLyricUrl () {
var artist = cocoon.parameters.artist; // [2]
var track = cocoon.parameters.track;
var url = "cocoon :/ searchAz /" + artist + "+" + track; //[3]
var xml = loadDocument(url); [4]
var lyricUrl = getElementContent (" lyricUrl", xml); // [5]
if (lyricUrl != false) {
// lyric found , return to chosen sitemap
var parameters = null;
parameters = { //[6]
"lyricUrl ": lyricUrl
};
cocoon.sendPage (" getAzLyrics", parameters); //[7]
}

}

72

9.5 Pictures from Flickr

Listing 9.13: Result of pipeline 9.8
<lyricUrl >resultURL </lyricUrl >

To finish, I look at the stylesheets used for extraction. The first one (listing B.4) is
used for extracting the results. Here I apply the template to the first node html:a that
contains the string www.azlyrics.com/lyrics inside its href attribute.

The second one B.5 is applied to the lyrics content page. Here I step down to the
element html:font with attribute size containing value 5. Inside this element I find
the content I want to extract. Simply copying the elements as they are and adding
an additional div element for the title results in a simpler styling of the title when
displayed.

9.5 Pictures from Flickr

Another feature of the mashup will be the ability to view pictures of the artist currently
being played. Flickr, a popular Web site that allow users to tag their photos, provides
the pictures I want to display to the user. In this mashup, I will use the API it
provides. As API is provided as REST service we will see how easily REST request
can be implemented in Cocoon.

To access the API, a key is required. Since Yahoo! has acquired Flickr, a Yahoo
account must first be created. This will be used to register the key. The API from
Flickr is very powerful. Flickr has provided for nearly all manipulation and querying
a service you can access. However in our mashup we just have to do a simple search
after tags applied to the pictures.

Following a short explanation of search API parameters

� method: As I want to search for tags, I have to use flickr.photos.search to gain
access to the search functionality.

� api key: Personal key received upon registration.

� tags: We will search for artist and include additional tag band to get better
results. Searching for artists’ names such as Doves will definitely result in the
wrong pictures, so including band should help.

� sort: A few sort orders are available, and I will use relevance as a criterion.

� per page: This option let us define in how many results the query should end.

� text: One can not only search within tags, but also within the description.

� tag mode: Defines if the search is for all tags provided (AND) or just one (OR).

In listing 9.14 how the REST service is used. A static URL with the required param-
eters simply points to the Web service, as with any other XML file. The corresponding
response is the result of photo elements (Listing 9.15) containing attributes that again
can be used to build a URL pointing to these.

Listing 9.14: Stylesheet for lyrics extraction
<map:pipeline type=" caching">

<map:parameter name=" expires" value=" access plus 10 hours"/>

73

9.6 Wikipedia

<map:match pattern =" artist /*/*">
<map:generate type="file" src="http :// api.flickr.com/services

/rest/? method=flickr.photos.search&api_key =867
a3a85d2a6a12bdac847622ba9912c&tags ={2}, band&sort=
relevance&tag_mode=all&per_page ={1}& amp;text ={2}"
label =" source" />

<map:transform type="xslt -saxon" src="xslt/flickr.xslt" />
<map:serialize type="html" />

</map:match >
</map:pipeline >

Listing 9.15: Element describing an image on Flickr
<photo id ="11111111" owner ="111111111" secret ="1111111" server

="2141" farm ="3" title=" Algunos disquitos" ispublic ="1"
isfriend ="0" isfamily ="0"/ >

...

The transformer then applies the stylesheet of Listing B.6 to generate the URL that
points to the image. In the stylesheet I first assign the attributes to variables which are
then used to concatenate the URL. The output of the stylesheet I see in Listing9.16 is
a list div containing the img elements pointing to the pictures.

Listing 9.16: HTML pointing to Flickr images
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional //EN" "

http :// www.w3.org/TR/html4/loose.dtd">
<div id=" flickrPix" provider =" flickr">
<div id="photo">

<img src="http :// farm1.static.flickr.com /203/468558279
_ed66572343_m.jpg"></div >

<div id="photo">
<img src="http :// farm1.static.flickr.com /185/468558267

_98cd1f3204_m.jpg"></div >
....

</div >

9.6 Wikipedia

Wikipedia is the source of the information about the artist (figure 9.6). Wikipedia
uses no frames, but mainly div -tags for their layout. So first I have to identify the tag
that contains the main content with all the information about the artist. Within the
description, Wikipedia has many cross references to other Wikipedia articles. However,
this will not be allowed inside the fmMusic, so I will remove these links. Apart from
that, everything will remain unchanged and the content will be displayed as casual
HTML. In that way I can style it the way I want.

Following is a short explanation of the listing B.7, the extraction stylesheet. I first
step down to the div -element with the ID bodyContent, which holds all information I
want to display. Inside, I apply the identity templates to all nodes except the span-
element, in order to remove the edit link. Then, an additional template that matches
all a-elements is used to remove all links. In figure 9.7 I see the final result within a
Web browser. Applying an additional stylesheet allows control over the layout of the
result.

74

9.7 Musicvideos from YouTube

Figure 9.6: Artist information on Wikipedia

Figure 9.7: Extracted artist information from Wikipedia

9.7 Musicvideos from YouTube

When listening to a song on a radio station I want to provide users the possibility of
watching the music video for the track, or if there is no music video for the track, there
may be a live version of that song available. YouTube provides nearly all popular music
videos and many live versions.

To display the video, an embedded object must be defined. I will implement a simple
REST query to search YouTube and transform the result into the video object.

75

9.7 Musicvideos from YouTube

Here are the parameters used for searching the videos:

� vq: Used for keywords to search with. I will use the artist and title.

� max-result: Results will be limited to 5 videos.

� order-by: Order is based on relevance

The principle of our extraction mechanism will be the same as when defining the
Flickr pipeline. The pipeline (listing 9.17 uses the file generator to start a request on
YouTube’s API. The result, shown in listing B.8 will then be transformed into HTML
content that contains embedded flash objects that load and display the videos from
YouTube (listing 9.8.

Listing 9.17: Pipeline using YouTube’s API
<map:pipeline type=" caching">
<map:match pattern =" searchAPI /*">
<map:generate type="file" src="http :// gdata.youtube.com/feeds/

api/videos?vq ={1}& amp;max -results =5&orderby=relevance"
label =" source" />

<map:transform type="xslt -saxon" src="xslt/searchApi.xslt" />
<map:serialize type="html" />

</map:match >
</map:pipeline >

Listing 9.18: HTML representation using embeded videos
<?xml version ="1.0" encoding ="UTF -8"?>
<div id=" videos" provider =" youTube">

<div id=" vEntry">
<div id=" vTitle">Kings Of Leon - Fans </div >
<div id=" vVideo">

<object width ="280" >
<param name=" movie" value="http :// www.youtube.com

/v/-0 sH3e_qr7c "/>
<param name=" wmode" value=" transparent "/>
<embed src="http :// www.youtube.com/v/-0 sH3e_qr7c"

type=" application/x-shockwave -flash" wmode="
transparent" width ="280"/ >

</object >
</div >
<div id=" vDesc"/>

</div >
..............

</div >

76

9.7 Musicvideos from YouTube

Figure 9.8: Result showing embedded videos

77

10 fmMusic frontend - a Firefox sidebar

In the previous chapter I described using Cocoon as our mashup server to collects all
the sources I want to present to the user. An important part of a mashup is to build a
comfortable user interface, so that the surplus of the application can be utilized. There
are always several solutions for presenting the content, such as a simple HTML page
with all data on one page, a tabbed interface, several widgets, et cetera.

However, I decided to build a Firefox extension, or more precisely, a sidebar, as
the frontend for fmMusic, because I think it is a quick and convenient way to access
the content. In figure 10.1 you see the open sidebar where the mashup sits. The
sidebar consists of five different tabs, each containing a different content. Figures 10.2
and 10.3 display the different tabs. At this point, the mashup content is not really
appealing, because it is part of an ongoing project and is still undergoing additional
changes. Because the sidebar uses XUL elements styled with CSS, the styling can be
implemented at a later stage.

Sidebar elements

� The first tab contains the title, cover, artist of the album the material appears
on.

� The second tab displays the artist information from Wikipedia

� The third tab displays embedded videos with their description inside.

� The fourth tab provides the lyrics of the current song.

� On the last tab, some pictures of the artist are displayed.

Having a tabbed interface makes it easy to extend: for example I could easily add a
new tab with information about events where the artist will be playing.

I will not provide a complete discussion of extension development in this chapter,
but will explain some concepts and have a look how to mash it all together. Mozilla1

provides a good online resources for extension development [Mozi08]; a separate tutorial
for a sidebar extension can be found here [MozD06]. You will see that you can use the
same concept to build a similar mashup using a widget-based front-end.

10.1 Extending Firefox

Firefox’s user interface is written in XUL and JavaScript. When I build an extension
for the Firefox browser, I simply modify a current part of the browser and add new
widgets and functionality. Adding such widgets is done by adding new XUL DOM
elements to the browser window and adding functionality with new scripts.

1http://developer.mozilla.org

78

10.2 XUL Overlays

Figure 10.1: Music Extension sidebar inside the Firefox Browser

Figure 10.2: Artist and video tab

10.2 XUL Overlays

XUL Overlays are used to attach UI widgets to an XUL document at run time. An
overlay file contains the attachment point where the new fragments are to be inserted,
modified or removed. On closer inspection of figure 10.1, in the status bar on the
bottom right you see a snippet of the current artist and track played, better seen in
figure 10.4. Listing 10.1 provides the overlay code used to achieve this.

79

10.2 XUL Overlays

Figure 10.3: Lyrics and pictures tab

Figure 10.4: Statusbar displaying current song played

Listing 10.1: Overlay to display information in the browser’s statusbar
<?xml version ="1.0" encoding ="UTF -8"?>
<!DOCTYPE overlay >
<overlay id=" fmMusicStatusbar" xmlns ="..." >
<script xmlns ="..." type=" application/x-javascript" src="

javascript/global.js" />
<script xmlns ="..." type=" application/x-javascript" src="

javascript/request.js" />
<statusbar id="status -bar">

<statusbarpanel id=" fm4tracks" label=" Loading ..." context ="
popup">

<label id=" nowPlaying" value=" Loading ..."/>
<toolbarbuttonid =" sidebOpen" image=" chrome :// fmmusic/skin/

icons/icon16x16.png" command =" viewfmMusic "/>
</statusbarpanel >

</statusbar >
</overlay >

80

10.3 Extended functionality with JavaScript

10.3 Extended functionality with JavaScript

Using overlays, you can extend and manipulate the user interface of Firefox. With
JavaScript, you can manipulate the XUL elements or DOM structure dynamically at
runtime. You may have done this with HTML already. Working with the XUL DOM
is similar to working with the HTML DOM.

In listing 10.2 I define three functions that give me the ability to display the track
and the artist current playing. I will only describe this important concept for one tabs,
since the basic principles for each tab’s connection to the server are the same. I already
introduced AJAX (2.8) and its XMLHttpRequest object (2.8.2), one of the foundations
of this example.

At the beginning of the listing I attached a new EventListener to the window that
invokes the function getFm4Tracks on loading of the window. getFm4Tracks calls
the function jsonRequest using the URL that points to the pipeline that extracts the
information of the radiostation. The function is then repeatedly called every minute.

The function jsonRequest encapsulates the XMLHTTPObject, and where the request
to the backend is made. On change of the XMLHttpRequest object, the last function,
setStatusBar, is called. If the request was successful, the response is transformed into
a JSON object and the values are concatenated and assigned to the statusbar element
identified by nowPlaying.

Listing 10.2: Javascript to dynamically assign values to the statusbar overlay
window.addEventListener ("load", getFm4Tracks , false);
function getFm4Tracks () {

jsonRequest('http :// localhost/cocoon/fmMusic/radioStations/
fm4.json1 ');

self.setTimeout('getFm4Tracks ()', 60000) ;}
function jsonRequest(url) {

http_request = false;
http_request = new XMLHttpRequest ();
if (! http_request) {

println('Cannot create XMLHTTP instance ');
return false; }

http_request.onreadystatechange = setStatusBar;
http_request.open('GET ', url , true);
http_request.setRequestHeader ("Content -Type","text/plain", "

charset=utf -8");
http_request.send(null); }

function setStatusBar () {
if (http_request.readyState == 4) {

if (http_request.status == 200) {
var myJSONObject = eval('(' + http_request.responseText + ') ')

;
var artist = myJSONObject.artist;
gConfig.artist = artist;
globalVar = artist;
var track = myJSONObject.track;
var station = myJSONObject.station;
var time = myJSONObject.time;
var artistTrack = time + ": " + artist + " - " + track + " ";
document.getElementById('nowPlaying ').value = artistTrack;

} else {

81

10.4 Creating a tabbed interface

document.getElementById('fm4tracks ').label = "Sorry , There was a
problem contacting the server .";

}
}

10.4 Creating a tabbed interface

The XML User Interface Language (XUL) is well designed for creating GUIs easily.
The language itself has been available for quite a long time. However, after receiving a
lot of attention in the beginning, XUL hasn’t been used for a lot of applications outside
of the Mozilla world. Maybe after the final release of Joost2, an internet, p2p video
player built on XUL or Mozilla’s Prism3 initiative, more developers will be attracted
to build applications on XUL.

In the previous figure 10.1 you can see inside the header image (fmMusic) in the
sidebar image, and below that, the tabcontainer, containing five tabs. XUL comes
with a box model4 for laying out the content. Vertical boxes align their elements
vertically and horizontal box horizontally.

The sidebar’s heading (listing C.1) is defined in the vertical box with Id vboxHeader
[1], where an image element [2] points to the local image file. Below you find the tab-
interface. Tabs are defined inside a tabbox [3] container. First you define all the tab
[4] elements for each tab inside the tabs element, similar to the defining table columns
in HTML. The tabpanels [5] contain one tabpanel [6] element for each tab. Following
is an excerpt of the Now Playing tab, which shows a groupbox [7] with labels and an
imagelink. These contain default values that are dynamically replaced when the content
is delivered from the backend. I have done the same in the statusbar example. The
request is initiated when the sidebar opens, and on receipt of content, the replacement
is done.

Using XUL allows great flexibility for creating a front-end. With a large set of
elements user interfaces, the GUI can be developed like any other desktop application.
Providing the possibility to embed HTML code, offers you a simple way to create
content that can be embedded in casual HTML pages as well.

2http://www.joost.com/
3http://labs.mozilla.com/2007/10/prism/
4http://www.xulplanet.com/tutorials/xultu/boxes.html

82

Part V

Future Issues

83

11 Legal issues

Creating mashups often involves using content from sources outside your own domain.
Sometimes you may use mashup enablers or Web data extraction techniques to ac-
quire this content. Dealing with external data, even with public APIs, has to be done
carefully, as you can come in conflict with the content owner.

11.1 Copyright

Copyright covers the exclusive rights of the creator of an original work limited period
of time, with respect to reproduction/copying, communication, adaption and perfor-
mance. Copyright law is enacted by national governments and may vary between
different countries.

Mashups walk a thin line when the whole or parts of the original content is being
reproduced. [Brie06] puts it this way:

Therefore, mashups and remix will inevitably encounter legal problems
when the whole or a substantial part of the original material has been
reproduced, copied, communicated, adapted or performed - unless a per-
mission has been given in advance through a voluntary open content licence
like a Creative Commons licence, there is fair dealing involved (the scope of
which is extraordinarily narrow), a statutory licence exists, or permission
has been sought and obtained from the copyright owner.

11.2 Copyright in the digital age

The problem of sharing is nothing new; people have always shared. Two decades
ago, people exchanged music cassettes, CD’s or videos and may have copied them for
personal use. The last decade saw the rise of peer-to-peer technologies that allowed
you to share not only with your immediate social group, but with the whole world, and
that has made it a big issue.

Mashups often use screen scraping mechanisms to access content; doing this can
definitely be seen as taking someone else’s content and using it without permission.
Mashups, however, often focus on giving existing content new value or are a creative
act and do not compete with the primary market of the copyright owner. [Suz06]
suggests that the copyright law should be reformed in a manner as to allow certain
reuses of copyright material if the derivative do not impact the primary market of the
copyright owner.

Lawrence Lessig, a Stanford Law Professor, believes [Farb06]

For the first time in history human expression by default is subject to reg-
ulation because of two architectural features.

First, the cultural objects or products created on a computer can be easily
copied, and secondly the default copyright law requires the permission of

84

11.3 Data ownership

the owner. The result is that by law you need permission to engage in acts
of remixing.

So is it the case that you become a criminal when being creative? Is it a bad thing
to create something useful? I think it is time to rethink the copyright law in favor of
mashups.

11.3 Data ownership

In a WIRED article [McHu07], the case of Ryan Sit, a software developer from San
Diego, is discussed. Sit founded a site Listpic that used extraction robots to extract
listings from craigslist for-sale listings and presented them in a easier-to-navigate, more
attractive format. The service was a huge success and quickly became popular within
craigslist users. The craigslist CEO was not happy with the service, as it took quite a
lot from its revenue and asked Sit to stop the service and banned its robots.

This definitely is a case study of how mashups are dependent on the content owners
willingness to share content with a the mashup creator. Listpic offered a better user ex-
perience than craigslist and therefore quickly became popular. The lockout by craigslist
was mainly a downside for the end user, who lost the better service. Meanwhile Listpic
pulls data from a different set of listing and continues to provide its service.

Some other companies are happy when mashups list their content to gain higher
visibility. The pricecomparison site Geizhals started with just a few small resellers;
now many big companies are on it. Such a listing is crucial to gain sellers’ attention;
not having a listing means you will be overlooked.

11.4 Conclusion

For the next few years, while copyright law stays the same, the views on mashups will
always be divided. On one side, creators will claim some kind of copyright infringement
when someones uses their work in a new way or context. On the other side, creating
a mashup may be perceived as a creative act or innovation, where the added or new
value is in the interest of us all.

The main question in the future will be how to handle these copyright infringements.
Should someone be sentenced and punished for a creative act, or should there be at
least some kind of indulgence? The last years have demonstrated that trying enforce
copyright law does not work. Think about Digital Rights Management (DRM), where
a user was allowed to play his music only on a limited number of devices. Music labels
have started to offer DRM free music again. I think it will be the same with content
within mashups; as long as the mashup creator does not resell the content, it will not
be an infringement of copyright.

85

12 Future Trends

Every now and then some technologies are outed as being on the rise, and claim to
provide new solutions that allow users to to build instant software. Whereas those
promises were never fulfilled, mashups and service-oriented-architecture have already
proven the concept in terms of rapid reuse and large-scale deployment.

Gartner [Gart08] identifies mashups on its Top 10 Strategic Technologies for 2008 in
place six and sees mashups as the dominant composite enterprise applications by the
year 2010.

The economics of software development is starting to change. Applications will be
developed in days or weeks instead of months or years required in traditional software
development. Until now, local problems that may only be an issue for a short time could
not be addressed because with the costs of development it was not feasible to fix them.
With a drastic reduction of these costs it is possible to address more problems, or deliver
a wider set of solutions that extend the value of existing business data. This awareness
results in a lower barrier to committing a bug fix or adjusting the requirements of an
adaptation of an existing solution. Within these trends the individual end-user will
become a more critical contributer to the application design, testing and development
process [Prot07].

Mashup applications will provide modularized applications and services that can be
connected. What common 5GL development tools already offer will be available in
the new mashup development environments. This simplification of application devel-
opment will enable domain experts and business users to create solutions without the
involvement of the IT department. More technically advanced users could extend pre-
built components to fit their needs. QEDWiki is heading in this direction but is still
far from being user friendly.

IT departments that use extensive service oriented architecture are already mashup-
ready and can provide functional components to these mashup platforms with little or
no development efforts. Creating these mashable pieces will remain the task of software
developers.

The main problem to overcome is the lack of standards within the evolving mashup
platforms to allow interoperability.

A lot of mashups are created by private people with no commercial interest, nev-
ertheless more and more companies have started creating mashups with commercial
interest. [Gott07] points out common problems mashup creators have to deal with:

Provider dependency APIs can change without notice and the mashup
probably breaks

Discontinued services Terms of services under which APIs are provided
typically gives the provider the right to discontinue the service without
notice

86

12.1 Role of Mashups in the Enterprise

Competition from API provider The provider may decide to provide
the service himself, when the mashup service is successful

Data dependency Mashups initially do not have any content and therefore
are vulnerable to changes on the provider side

12.1 Role of Mashups in the Enterprise

Enterprise IT has undergone constant change in recent years, with the shift to a service-
oriented architecture as one of the most important changes. The rise of SOA has already
laid important groundwork for the upcoming mashup technologies. However the focus
was mainly on service creation, governance and infrastructure issues, not on ease of
consumption. This is where mashup platforms come into play providing a way to
combine these existing services into small applications without any greater software
development processes. With the decoupling of services from interface issues a much
higher service reusability can be reached.

Until now spreadsheets were widely used to enable users to build quick customized
solutions to various business needs. Mashup platforms infiltrate this area by enabling
a comparable application lifecycle but with the advantage of sitting on top of already
defined services and to be more flexible in customization. Consequently mashups will
allow business users and individuals to design advanced customized solutions in a short
time which support their decision making. An important part will be assigned to the
IT department to create services and modules that are not only available on these
platforms but furthermore allow these modules to be connectable.

12.1.1 Business Intelligence

In enterprises one of the main tasks of a mashup platform lies in quick and simple
applications for business intelligence (BI) enabling more business units to apply quicker
decisions to situational problems. These mashup platforms will not compete with
current powerful BI tools, however they will find a place for quick adaption and make
BI available to companies where these specialized tools aren’t a fit or companies that
simply cannot afford these tools. These small and medium-sized businesses (SMB) have
already started to gather an enormous amount of data and need tools that allow them
to interpret this data. This is an enormous market segment for mashup tools.

12.2 Mashup tools and platforms

In this thesis we already talked about mashups, mashup enablers and mashup plat-
forms, someone else could talk about mashup builders. So what tools provide mashup
development and what are their aims?

When defining mashup tools it is hard to draw a clean separation and categorize
these tools. Generally we think that A. Jhingran [Jhin06] tree layers for a mashup
composition (section 1.5.1), Ingestion, Augmentation and Presentation is a good ap-
proach for a categorisation, even if a lot of tools traverse two or all three layers. Dapper
(section 5.1), is a tool which can be used for web data extraction or accessing RSS feeds
(Ingestion), furthermore you can combine different Dapps (Augmentation) and render
it in various output formats, e.g. a Flash widget (Presentation).

87

12.3 Conclusion

A lot of tools now and in future will not compete but supplement each other. Some
tools will mainly be used for visual presentation within a mashup development envi-
ronment, where modules are combined and arranged together; some other tools will
provide the services and modules for these. Even if most of the presentation mashups
will try to allow non-technical users to build situational applications, it is not a must.
More advanced connectivity will probably be hard to implement in a user-friendly way,
such that that non programmers can take advantage of it.

12.3 Conclusion

Mashups will, without question, provide a new way to analyze data or solve problems,
whether in the enterprise or for private use on the web. The World Wide Web made
it possible for nearly anyone to access all kind of information. Web 2.0, has helped to
enhance all kinds of information on the web, providing meta data, tags or other social
context, for a better use and higher information quality.

Mashups will provide a new way to organize, structure and present information,
allowing users to easily combine nearly any sources available. People now have to
browse to several resources to get to all the information they need, in the future they
will simply create their own mashup to get all information into one place.

To conclude, I will present a statistic from ProgrammableWeb shown in figure 12.1,
where you can see a timeline of available mashups in the last six months. A spectacular
rise from about 2100 to 2700 is shown, what is a nearly a 30% gain.

Figure 12.1: Mashup Timeline - New mashups on ProgrammableWeb, last 6 months

88

Part VI

Appendix

89

A YouTube API response

Listing A.1: YouTube response
<entry >

<id>http :// gdata.youtube.com/feeds/api/videos/ZTUVgYoeN_o </id >

<published >2007 -02 -16 T20 :22:57.000Z</published >
<updated >2007 -02 -16 T20 :22:57.000Z</updated >

<category scheme ="http :// schemas.google.com/g/2005# kind"
term="http :// gdata.youtube.com/schemas /2007# video"/>

<category scheme ="http :// gdata.youtube.com/schemas /2007/
keywords.cat"

term=" Steventon"/>
<category scheme ="http :// gdata.youtube.com/schemas /2007/

keywords.cat"
term="walk"/>

<category scheme ="http :// gdata.youtube.com/schemas /2007/
keywords.cat"

term=" Darcy"/>

<category scheme ="http :// gdata.youtube.com/schemas /2007/
categories.cat"

term=" Entertainment" label=" Entertainment "/>

<title type="text">My walk with Mr. Darcy </title >

<content type="html"><div ... html content trimmed ... ></
content >

<link rel="self" type=" application/atom+xml"
href="http :// gdata.youtube.com/feeds/api/videos/ZTUVgYoeN_o

"/>
<link rel=" alternate" type="text/html"

href="http :// www.youtube.com/watch?v=ZTUVgYoeN_o "/>

<link rel="http :// gdata.youtube.com/schemas /2007# video.
responses"

type=" application/atom+xml"
href="http :// gdata.youtube.com/feeds/api/videos/ZTUVgYoeN_o/

responses "/>
<link rel="http :// gdata.youtube.com/schemas /2007# video.ratings"

type=" application/atom+xml"
href="http :// gdata.youtube.com/feeds/api/videos/ZTUVgYoeN_o/

ratings"/>
<link rel="http :// gdata.youtube.com/schemas /2007# video.

complaints"

90

type=" application/atom+xml"
href="http :// gdata.youtube.com/feeds/api/videos/ZTUVgYoeN_o/

complaints "/>
<link rel="http :// gdata.youtube.com/schemas /2007# video.related"

type=" application/atom+xml"
href="http :// gdata.youtube.com/feeds/api/videos/ZTUVgYoeN_o/

related"/>

<author >
<name >Elizabeth Bennet </name >
<uri >http :// gdata.youtube.com/feeds/api/users/liz </uri >

</author >

<media:group >
<media:title type=" plain">My walk with Mr. Darcy </ media:title

>
<media:description

type="plain">Walk in the beautiful gardens of Steventon </
media:description >

<media:keywords >Steventon , walk , Darcy </ media:keywords >
<yt:duration seconds ="79"/ >
<media:category label=" Entertainment"

scheme ="http :// gdata.youtube.com/schemas /2007/ categories.
cat">Entertainment </ media:category >

<media:content
url="rtsp :// rtsp.youtube.com/youtube/videos/ZTUVgYoeN_o/

video .3gp"
type="video/3gpp" medium =" video" isDefault ="true"

expression ="full"
duration ="215" yt:format ="1"/ >

<media:player url="http :// www.youtube.com/watch?v=ZTUVgYoeN_o
"/>

<media:thumbnail url="http :// img.youtube.com/vi/ZTUVgYoeN_o
/2. jpg"

height ="97" width ="130" time ="00:00:03.500"/ >
<media:thumbnail url="http :// img.youtube.com/vi/ZTUVgYoeN_o

/1. jpg"
height ="97" width ="130" time ="00:00:01.750"/ >

<media:thumbnail url="http :// img.youtube.com/vi/ZTUVgYoeN_o
/3. jpg"

height ="97" width ="130" time ="00:00:05.250"/ >
<media:thumbnail url="http :// img.youtube.com/vi/ZTUVgYoeN_o

/0. jpg"
height ="240" width ="320" time ="00:00:03.500"/ >

</media:group >

<yt:statistics viewCount ="93"/ >

<gd:feedLink rel=" comments"
href="http :// gdata.youtube.com/feeds/api/videos/ZTUVgYoeN_o/

comments"/>
</entry >

91

B Stylesheets and transformation results

Listing B.1: XSL Transformation for extraction of artist and track played
<?xml version ="1.0" encoding ="UTF -8"?>
<xsl:stylesheet version ="2.0" xmlns:xsl="http :// www.w3.org /1999/

XSL/Transform"
xmlns:html="http ://www.w3.org /1999/ xhtml" exclude -result -

prefixes ="html">
<xsl:output indent ="no" />
<xsl:template match ="/">
<radio provider ="Fm4">
<radioStation name="Fm4">
<xsl:apply -templates select ="// html:body" />

</radioStation >
</radio >

</xsl:template >
<xsl:template match="html:body">
<xsl:for -each select ="html:div[last()][html:span [2]!='']">
<xsl:sort select =" replace(text()[1],':','')" order=" descending

"/>
<playing >
<time >
<xsl:value -of select =" replace(text()[1],':\s','')" />

</time >
<artist ><xsl:value -of select ="html:span [2]" /></artist >
<xsl:variable name=" track" select ="html:span [1]"/>
<track >
<!-- remove all (live) and (Rmx) Strings -->
<xsl:value -of select =" replace($track ,'\s+[\(]+ live [\)]+|\s

+[\(][a-zA -Z\s]+[Rr]mx[\)]','')" /></track >
</playing >

</xsl:for -each >
</xsl:template >

</xsl:stylesheet >

Listing B.2: Stylesheet for matching and extracting album information
<?xml version ="1.0" encoding ="UTF -8"?>
<xsl:stylesheet version ="2.0"
xmlns:xsl="http ://www.w3.org /1999/ XSL/Transform"
xmlns:album ="http :// webservices.amazon.com/AWSECommerceService

/2005 -10 -05"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema"
exclude -result -prefixes =" album xs">
<xsl:param name=" trackname"/>
<xsl:param name=" artist"/>
<xsl:output indent ="no" />

<xsl:template match ="/">

92

<album provider =" amazon">
<trackname ><xsl:value -of select =" $trackname "/></trackname >
<xsl:apply -templates select ="for $i in // album:Item/album:

Tracks/album:Disc/album:Track
return $i[.= $trackname]/ ancestor :: album:Item[album:

ItemAttributes/album:Binding[contains(.,'CD ')]]">
<xsl:sort select =" number(album:SalesRank)" order=" ascending"

/>
</xsl:apply -templates >
</album >

</xsl:template >

<xsl:template match=" album:Item">
<album >

<amazonId ><xsl:value -of select =" album:ASIN"/></amazonId >
<amazonDetailUrl ><xsl:value -of select ="normalize -space(album

:DetailPageURL)"/></ amazonDetailUrl >
<xsl:apply -templates select =" album:ItemAttributes "/>
<imgUrl ><xsl:value -of select ="normalize -space(album:

MediumImage/album:URL)"/></imgUrl >
</album >

</xsl:template >

<xsl:template match=" album:ItemAttributes">
<title ><xsl:value -of select ="normalize -space(album:Title)"/></

title >
<releaseDate ><xsl:value -of select ="normalize -space(album:

ReleaseDate)"/></releaseDate >
<artist ><xsl:value -of select ="normalize -space(album:Artist)

"/></artist >
<binding ><xsl:value -of select ="normalize -space(album:Binding)

"/></binding >
</xsl:template >

</xsl:stylesheet >

Listing B.3: Extracted album information for internal representation
<album >

<amazonId >B000006045 </amazonId >
<amazonDetailUrl >http :// www.amazon.de/gp/redirect.html%3 FASIN=

B000006045 %26tag=ws%26 lcode=xm2%26cID =2025%26 ccmID =165953%26
location =/o/ASIN/B000006045 %253 FSubscriptionId =0
DNP7XNME3TMSH5DSA02 </ amazonDetailUrl >

<title >Mezzanine </title >
<releaseDate >1998 -04 -17 </ releaseDate >
<binding >Audio CD </binding >
<imgUrl >http :// ecx.images -amazon.com/images/I/31 QY7BFWVHL.jpg </

imgUrl >
</album >

Listing B.4: Stylesheet extracting search results 9.8
<?xml version ="1.0" encoding ="UTF -8"?>
<xsl:stylesheet version ="2.0" xmlns:xsl="http :// www.w3.org /1999/

XSL/Transform" xmlns:html="http ://www.w3.org /1999/ xhtml"
exclude -result -prefixes ="html">

93

<xsl:output indent ="no" />
<xsl:template match ="/">
<lyrics provider ="az">

<xsl:apply -templates select ="// html:a[contains(@href ,'www.
azlyrics.com/lyrics ')][1]" />

</lyrics >
</xsl:template >

<xsl:template match="html:a">
<lyricUrl ><xsl:value -of select =" @href" /></lyricUrl >

</xsl:template >
</xsl:stylesheet >

Listing B.5: Stylesheet for lyrics extraction
<?xml version ="1.0" encoding ="UTF -8"?>
<xsl:stylesheet version ="2.0" xmlns:xsl="http :// www.w3.org /1999/

XSL/Transform" xmlns:html="http ://www.w3.org /1999/ xhtml"
exclude -result -prefixes ="html xhtml">

<xsl:output indent ="no" />
<xsl:template match ="/">
<div id=" lyricsMain">
<xsl:apply -templates select ="// html:font[@size='5']" />

</div >
</xsl:template >

<xsl:template match="node()|@*">
<xsl:copy copy -namespaces ="no">
<xsl:apply -templates select ="@*"/>
<xsl:apply -templates/>
</xsl:copy >

</xsl:template >

<xsl:template match="html:font">
<xsl:apply -templates/>

</xsl:template >

<xsl:template match="html:font/html:a | html:i[contains(.,'
Thanks ')]

| text()[normalize -space (.)='[']
| text()[normalize -space (.)=']']"/>

<xsl:template match="html:font/html:b">
<div id=" lyricTitle">
<xsl:value -of select ="."/>

</div >
</xsl:template >

</xsl:stylesheet >

Listing B.6: Stylesheet to build pointers to the images on Flickr
<?xml version ="1.0" encoding ="UTF -8"?>
<xsl:stylesheet version ="2.0"
xmlns:xsl="http ://www.w3.org /1999/ XSL/Transform"
xmlns:html="http ://www.w3.org /1999/ xhtml"
exclude -result -prefixes ="html">
<xsl:output indent ="no" />

94

<xsl:template match ="/">
<div id=" flickrPix" provider =" flickr">
<xsl:apply -templates select ="// photos/photo"/>

</div >
</xsl:template >
<xsl:template match=" photo">
<div id="photo">

<xsl:variable name="f-id" select =" @farm"/>
<xsl:variable name="s-id" select =" @server"/>
<xsl:variable name="id" select ="@id"/>
<xsl:variable name=" secret" select =" @secret"/>
<xsl:variable name="url" select =" concat('http ://farm ',@farm

,'.static.flickr.com/',@server ,'/',@id ,'_',@secret ,'_m.jpg
')"/>

</div >

</xsl:template >
</xsl:stylesheet >

Listing B.7: Stylesheet to extract artist information from Wikipedia
<?xml version ="1.0" encoding ="UTF -8"?>
<xsl:stylesheet version ="2.0" xmlns:xsl="http :// www.w3.org /1999/

XSL/Transform" xmlns:html="http ://www.w3.org /1999/ xhtml"
exclude -result -prefixes ="html">

<xsl:output indent ="no" />
<xsl:template match ="/">
<artist provider =" wikipedia">
<xsl:apply -templates select ="// html:div[@id='bodyContent ']" />

</artist >
</xsl:template >

<xsl:template match="html:div[@id='bodyContent ']">
<description >
<xsl:apply -templates select ="node()[not(html:span[class='

editsection '])]" />
</description >

</xsl:template >

<!-- remove all Links -->
<xsl:template match ="html:a">
<xsl:apply -templates/>

</xsl:template >

<xsl:template match="node()|@*">
<xsl:copy >
<xsl:apply -templates select ="@*"/>
<xsl:apply -templates/>

</xsl:copy >
</xsl:template >

</xsl:stylesheet >

Listing B.8: YouTube query response (shortened)
<?xml version ='1.0' encoding='UTF -8'?>

95

<feed xmlns='http :// www.w3.org /2005/ Atom ' xmlns:openSearch='http
://a9.com/-/spec/opensearchrss /1.0/ ' xmlns:media='http ://
search.yahoo.com/mrss/' xmlns:yt='http :// gdata.youtube.com/
schemas /2007 ' xmlns:gd='http :// schemas.google.com/g/2005'>

<title type='text '>YouTube Videos matching query: kings of leon
fans </title >

<logo >http :// www.youtube.com/img/pic_youtubelogo_123x63.gif </
logo >

<entry >
<id >http :// gdata.youtube.com/feeds/api/videos/-0sH3e_qr7c </id >
<published >2007 -06 -17 T23 :28:26.000 -07:00 </ published >
<updated >2008 -01 -02 T00 :43:08.000 -08:00 </ updated >
<category scheme='http :// gdata.youtube.com/schemas /2007/

keywords.cat ' term='room ' />
<title type='text '>Kings Of Leon - Fans </title >
<content type='text ' >4/18/07 Hammersmith Apollo , LON </content >
<link rel='self ' type='application/atom+xml '
href='http :// gdata.youtube.com/feeds/api/videos/-0sH3e_qr7c '

/>
<author >
<name >coolconspirator </name >
<uri >
http :// gdata.youtube.com/feeds/api/users/coolconspirator

</uri >
</author >
<media:group >
<media:title type='plain '>Kings Of Leon - Fans </media:title >
<media:description type='plain ' >4/18/07 Hammersmith Apollo ,

LON </ media:description >
<media:keywords >control , of , fans , leon , kings , room </ media:

keywords >
<yt:duration seconds ='237' />
<media:category label='Music '
scheme='http :// gdata.youtube.com/schemas /2007/ categories.cat

'>Music </media:category >
<media:content url='http :// www.youtube.com/v/-0sH3e_qr7c '
type='application/x-shockwave -flash ' medium='video ' isDefault

='true '
expression='full ' duration ='237' yt:format='5' />

<media:player
url='http :// www.youtube.com/watch?v=-0sH3e_qr7c ' />

</media:group >
<yt:statistics viewCount ='309735' />
<gd:rating min='1' max='5' numRaters ='657' average ='4.91' />
<gd:comments >
<gd:feedLink
href='http :// gdata.youtube.com/feeds/api/videos/-0 sH3e_qr7c/

comments '
countHint ='367' />

</gd:comments >
</entry >
............

</feed >

96

C Extension source code

Listing C.1: XUL Code for creating a tabbed interface
<vbox id=" sidebarBackground" flex ="1">
<vbox width ="200 px" heigth ="42px" border ="1px" id=" vboxHeader"

class=" vboxHeader"> [1]
<hbox class=" sidebarHeading" id=" header">

<image id="logo" src=" chrome :// fmmusic/skin/images/fmmusic.
gif" width ="200px" height ="42px" /> [2]

</hbox >
</vbox >
<tabbox flex ="1"> [3]

<tabs >
<tab label="Now Playing" /> [4]
<tab label=" Artist" />
<tab label=" Video" />
<tab label=" Lyrics" />
<tab label=" Pictures" />

</tabs >
<tabpanels flex ="1"> [5]

<tabpanel class="tab"> [6]
<vbox flex ="1" id=" tabBox">

<groupbox id=" nPlayingGroup">
<grid id="grid"> [7]

<columns >
<column id=" nPlaying" />

</columns >
<rows >

<row >
<label value =" Acquiring Data" id=" npTrack" />

</row >
<row >

<hbox height ="160px">
<hbox class ="img -shadow">

<imagesrc =" chrome :// fmmusic/skin/images/
acqCover.png" width ="160 px" height ="160
px" id=" npAlbumCover" />

</hbox >
</hbox >

</row >
<row >

<hbox >
<description value =" Acquiring Data" id="

npAlbum" />
<description value ="by" />
<description value =" Acquiring Data" id="

npArtist" />
</hbox >

97

</row >
</rows >

</grid >
</groupbox >

</vbox >
</tabpanel >
<tabpanel class="tab">

.......

</tabpanels >
</tabbox >

</vbox >

98

Bibliography

[Apac05] The Apache Software Foundation, The Apache Cocoon Project, project home-
page, http://cocoon.apache.org/2.1/, 2005 - visited 2007-10-03

[Atom08] The Atom Syndication Format and Publishing Protocol
http://www.intertwingly.net/wiki/pie/FrontPage, visited 2008-01-27.

[Baum01] Robert Baumgartner, Sergio Flesca, Georg Gottlob Visual Web Information
Extraction with Lixto, Proceedings of the 27th VLDB Conference, Roma, Italy,
2001

[Baum05] Robert Baumgartner, Michal Ceresna1, Gerald Ledermüller, Deep Web Nav-
igation in Web Data Extraction International Conference on Intelligent Agents,
Web Technologies and Internet Commerce, 2005

[Baum06] Robert Baumgartner, Methoden und Werkzeuge zur Webdatenextraktion,
DBAI, Institute for Informationssystems, Technical University Vienna, 2006

[Brie06] O’Brien, Damien and Fitzgerald Brian. Mashups, remixes and copyright law.
Internet Law Bulletion Volume 9, Issue 2, 2006

[Bugh07] Jacques Bughin, James Manyika, How businesses are using Web 2.0: A McK-
insey Global Survey, http://www.mckinseyquarterly.com, 2007. visited 2008-01-07

[Chau2002] Akmal B. Chaudhri, Rainer Unland, Chabane Djerba, Wolfgang Lin-
der, XML-based Data Management and Multimedia Engineering – EDBT 2002,
Springer Berlin, 2003

[Chid97] B Chidlovskii, U Borghoff, PY Chevalier, Towards sophisticated wrapping of
web-based information repositories, Proc. 5th RIAO Conference, 1997

[Cmsp00] C. M. Sperberg-McQueen, Henry Thompson, XML Schema,
http://www.w3.org/XML/Schema, 2000, visited 2007-11-21

[Cran05] David Crane, Eric Pascarello, Darren James, Ajax in Action, Manning, 2005.

[Croc06] Douglas Crockford, Network Working Group of The Internet Society,
http://www.ietf.org/rfc/rfc4627.txt?number=4627, 2006, visited 2007-11-21

[Curb02] Francisco Curbera, Matthew Duftler, Rania Khalaf,William Nagy, Nirmal
Mukhi, and Sanjiva Weerawarana, Unraveling the Web Services Web, An Intro-
duction to SOAP, WSDL, and UDDI, IEEE Internet Computing, 2002

[Dapp07] Dapper, http://www.dapper.net, visited 2007-09-12

[Dorn05] Andy Dornan, Mashup Basics: Three for the Money,
http://www.networkcomputing.com/showitem.jhtml?articleID=201804223, 2005,
visited 2008-01-10

99

Bibliography

[Eikv99] Line Eikvil, Information Extraction from World Wide Web - A Survey, Nor-
wegian Computing Center, 1999

[ErlT04] Service-Oriented Architecture: A Field Guide to Integrating XML and Web
Services, Prentice Hall, 2004

[Farb06] Dan Farber, Mashups and the law, http://blogs.zdnet.com/BTL/?p=2614,
visited 2008-01-25

[Fiel00] R. T. Fielding, Architectural Styles and the Design of Network-based Software
Architectures,Doctoral Dissertation, University of California, Irvine, CA, 2000

[Frit03] , Michael Fitzgerald, Learning XSLT, O’Reilly, Inc. 1005 Gravenstein Highway
North, Sebastopol, CA 95472, November 2003

[Garr05] Jesse James Garrett, Ajax: A New Approach to Web Applications, Adaptive
Path, 2005

[Gart08] Garnter Inc., Gartner Identifies the Top 10 Strategic Technologies for 2008,
http://www.gartner.com/it/page.jsp?id=530109, visited 2008-01-25

[Gott07] Gottfried Vossen, Stephan Hagemann, Unleashing Web 2.0: From Concepts
to Creativity, Academic Press, 2007

[Hamm03] Ben Hammersley, Content Syndication with RSS, O’Reilly Media Inc, 1005
Gravenstein Highway North, Sebastopol, CA 95472, 2003

[Hamm05] Ben Hammersley, Developing Feeds with RSS and Atom, O’Reilly Media
Inc, 1005 Gravenstein Highway North, Sebastopol, CA 95472, 2005

[Haro01] Elliotte Rusty Harold, W. Scott Means, XML in a Nutshell - A Desktop Quick
Reference, First Edition, O’Reilly Associates, Inc, 101 Morris Street, Sebastopol,
CA 95472, 2001

[Howe07] Jon Howell, Collin Jackson, Helen J. Wang, Xiaofeng Fan, MashupOS: Op-
erating System Abstractions for Client Mashups, Proceedings of the 16th interna-
tional conference on Hot Topics in Operating Systems, 2007

[HsuC02] Chun-Nan Hsu, Hung-Hsuan Huang, Siek Harianto, Elan Hung, Jiann-Jyh
Lu Design and Implementation of WNDL - Web Navigation Description Language,
Institute of Information Science, Academia Sinica, Taiwan, 2002.

[IBMA07a] IBM Alphaworks, DAMIA, project homepage,
http://services.alphaworks.ibm.com/damia/, 2007, visited 2007-11-23

[IBMA07] IBM Alphaworks, Mashup Hub, project homepage,
http://services.alphaworks.ibm.com/mashuphub/, 2007, visited 2007-11-23

[IBMA07a] IBM Alphaworks, QEDWiki, project homepage,
http://services.alphaworks.ibm.com/qedwiki/, 2007, visited 2007-11-01

[IBM08] IBM, IBM Advances Web 2.0 Platform for Business
http://www-03.ibm.com/press/us/en/pressrelease/23378.wss, Press Release,
2008-01-23, visited 2008-01-25

100

Bibliography

[InCo04] Integration Consortium, Enterprise Information Integration: A New Defini-
tion, http://www.dmreview.com/news/10096691.html, 2004, visited 2007-12-21

[Jack07] Collin Jackson, Helen J. Wang, Subspace: Secure Cross-Domain Communica-
tion for Web Mashups, Proceedings of the 16th international conference on World
Wide Web, 2007

[Jhin06] Anant Jhingran,Enterprise Information Mashups: Integration Information,
Simply, Very Large Data Bases Conference Keynote, 2006

[Laen02] , Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran S. da Silva, Ju-
liana S. Teixeira, A Brief Survey of Web Data Extraction Tools, SIGMOD Record,
2002

[Lafo07] Yves Lafon, Web Services Activity Lead,
http://www.w3.org/2002/ws/Activity, W3C, 2007. visited 2007-11-10

[LiuX07] Xuanzhe Liu, Yi Hui, Wei Sun, Haiqi Liang, Towards Service Composition
Based on Mashup, IEEE Congress on Services, 2007

[Kest07] Anne van Kesteren, The XMLHttpRequest Object. World Wide Web Consor-
tium, Working Draft WD-XMLHttpRequest-20070618, June 2007.

[Mahe06] Michael Mahemoff, Ajax Design Patterns, O’Reilly, Inc. 1005 Gravenstein
Highway North, Sebastopol, CA 95472, June 2006.

[McHu07] Josh McHugh, Should Web Giants Let Startups Use the Information They
Have About You?, http://www.wired.com/print/techbiz/media/magazine/16-
01/ff scraping, visited 2008-01-25

[Mesb06] Ali Mesbah and Arie van Deursen, An Architectural Style for Ajax, Delft
University of Technology, Software Engineering Research Group, Technical Report
Series, Report TUD-SERG-2006-016 2nd revision

[Micr07] Microsoft, Popfly, project homepage, http://www.popfly.ms, 2007, visited
2007-12-14

[MozD06] Mozilla Developer Center, Creating a Firefox sidebar,
http://developer.mozilla.org/en/docs/Creating a Firefox sidebar, 2006

[MozD07] Mozilla Developer Center, The Joy of XUL,
http://developer.mozilla.org/en/docs/The Joy of XUL, 2007

[Mozi08] Mozilla Developer Center, Building an Extension,
http://developer.mozilla.org/en/docs/Building an Extension, 2008

[Mueh04] Michael zur Muehlen1a, Jeffrey V. Nickersona, Keith D. Swensonba Wesley
J. Howe, Developing Web Services Choreography Standards - The Case of REST
vs. SOAP, Decision Support Systems, Volume 40, Issue 1, 2005

[ORei03] Tim O’Reilly, REST vs. SOAP at Amazon,
http://www.oreillynet.com/pub/wlg/3005, 2003, visited 2007-10-25

101

Bibliography

[ORei05] Tim O’Reilly, What Is Web 2.0: Design Patterns and Business Models for
the Next Generation of Software,
http://www.oreillynet.com/pub/a/general/print code.html, 2005,
visited 2007-01-10

[Open07] openkapow, http://openkapow.com, visited 2007-09-30

[Poor06] Poornachandra Sarang, Ph.D., Pro Apache XML, Springer-Verlag New York,
Inc., 233 Spring Street, 6th Floor, New York, NY 10013, 2006

[Prot07] Jonathan Protzenko, XUL, Entwicklung von Rich Clients mit der Mozilla
XML User Interface Language, German edition, Open Soure Press, Munich, 2007

[Proo07] Proto MASHUPS Understanding Mashup Building Platforms for Business
Applications, http://www.protosw.com/, whitepaper by Proto Software, 2007, vis-
ited 2008-01-10

[Rich07] Leonard Richardson, Sam Ruby, RESTFul Web Services, O’Reilly Media Inc,
1005 Gravenstein Highway North, Sebastopol, CA 95472, 2007

[Shan07] Francis Shanahan, Amazon.com Mashups, Wiley Publishing, Inc., 10475
Crosspoint Boulevar, Indianapolis, IN 46256, 2007

[Suz06] Nicolas Zusor, Transformative Use of Copyright Material, LLM Thesis,
Queensland University of Technology School of Law, 2006

[Wate07] Dan Waters, Creating An IP Geolocation Popfly Block,
http://blogs.msdn.com/dawate/archive/2007/05/24/creatinganipgeolocation-
popflyblock.aspx, MSDN Blogs, 2007, visited 2008-01-11

[Webe08] Volker Weber, Lotusphere: Lotus detailliert Pläne für Notes und Domino
http://www.heise.de/newsticker/meldung/102336, Heise Newsticker, visited 2008-
01-25

[Wess06] Matthias Wessendorf, Struts, 2nd edition, W3l Herdecke, 2006

[Wild07] Erik Wilde, Declarative Web 2.0, School of Information, UC Berkeley, IEEE
Conference on Information Reuse and Integration, 2007

[WuIC05] I-Chen Wu; Jui-Yuan Su; Loon-Been Chen, A Web data extraction descrip-
tion language and its implementation, Computer Software and Applications Con-
ference, 2005

[W3CC99] W3C Communications Team, XML in 10 points,
http://www.w3.org/XML/1999/XML-in-10-points.html.en, revised version from
13 Nov. 2001, visited 2007-11-14

[W3Co06] W3C, Extensible Markup Language (XML) 1.0 (Fourth Edition),
http://www.w3.org/TR/REC-xml/, 2006, visited 2007-11-25

[W3Co08] W3C, Extensible Markup Language (XML) http://www.w3.org/XML/,
2008, visited 2008-01-07

[W3Co99a] W3C, XML Path Language (XPath) Version 1.0 -
http://www.w3.org/TR/xpath, 1999, visited 2007-12-12

102

Bibliography

[W3C02] W3C, XHTML 1.0 The Extensible HyperText Markup Language (Second
Edition) http://www.w3.org/TR/xhtml1/, 2002, visited 2007-11-25

[Yaho07] , Yahoo!, Pipes, project homepage, http://pipes.yahoo.com,
visited 03.12.2007

[YouT07] YouTube Data API documentation,
http://code.google.com/apis/youtube/developers guide protocol.html,
visited 2007-10-10

[Zhan04] Lili Zhang, RESTful Web Services, Department of Computer Science, Uni-
versity of Helsinki, 2004

103

	Erklärung
	Contents
	List of Figures
	Introduction
	Introduction
	Motivation
	Mashups
	Definition
	Categories
	Mapping mashups
	Video and photo mashups
	Data (News) mashups
	Shopping mashups

	Enterprise mashups
	Definition
	Service Compositions and Mashups

	Technology
	Technologies
	XML
	A sample XML Document
	Validation

	XPath
	How to use XPath

	XSL Transformations (XSLT)
	Usage of XSLT

	Web Services
	Where to find web services
	How does it work
	Implementations

	Representational State Transfer
	Definition
	Design principles of REST
	Methods of REST
	Using YouTube's REST API

	SOAP
	SOAP vs. REST
	AJAX
	Introduction
	Definition
	AJAX Model

	JSON
	XUL
	Features and Benefits
	Requirements

	RSS / ATOM
	RSS
	Atom

	Mashup Techniques
	Server-side Mashups
	Benefits
	Drawbacks

	Client-side Mashups
	How It Works
	Benefits
	Drawbacks

	Mashup Targeting
	Presentation Mashups
	Data Mashups
	Logic Mashups

	Web Data Extraction
	Definition
	Information Extraction
	Web Data Extraction
	Extraction Tools
	Taxonomy for Characterizing Web Data Extraction Tools
	Deep Web Navigation

	Tools and platforms
	Mashup Enablers
	Dapper
	Creating a Dapp
	Limitations

	Openkapow
	Limitations

	Conclusion

	Mashup Platforms
	Introduction
	What you can expect
	What you will get
	Example Mashup platforms
	Yahoo! Pipes
	Microsoft Popfly
	IBM's Mashup Starter Kit

	FmMusic - a music mashup
	Specification
	Artist/Track
	Album, Album cover
	Lyrics
	Artist Information
	Music Videos
	Pictures

	Apache Cocoon
	Introduction
	The Cocoon framework
	Separation of Concerns (SoC)
	Model View Controller
	Cocoon, MVC and Flowscripts

	The pipeline model
	Generator
	Transformer
	Serializer
	Matchers

	fmMusic backend
	Filestructure
	Scraping Fm4
	Amazon web services
	Using the ItemSearch operation
	Matching and extracting response information

	Lyrics extraction
	Sub-page navigation
	Linking pipelines using flow logic

	Pictures from Flickr
	Wikipedia
	Musicvideos from YouTube

	fmMusic frontend - a Firefox sidebar
	Extending Firefox
	XUL Overlays
	Extended functionality with JavaScript
	Creating a tabbed interface

	Future Issues
	Legal issues
	Copyright
	Copyright in the digital age
	Data ownership
	Conclusion

	Future Trends
	Role of Mashups in the Enterprise
	Business Intelligence

	Mashup tools and platforms
	Conclusion

	Appendix
	YouTube API response
	Stylesheets and transformation results
	Extension source code

	Bibliography
	Bibliography

