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Chapter 1

Preface

1.1 Mission Statement

Although fuzzy logic and supervaluationism are both designed to deal with the concept

of vagueness, they are generally not considered to be compatible. They represent two

quite different approaches to analyzing the logical structures of reasoning with vague

notions and propositions. While fuzzy logic was developed as an engineering tool,

supervaluationism was formulated as a theory of vagueness in the field of philosophy

and logic. Whereas one approach seeks to meet the pragmatic needs of technical

applications, the other aspires to find a mathematically and philosophically satisfying

analysis of reasoning under vagueness. This is illustrated by the facts that although

fuzzy logic is an extremely successful engineering tool, it lacks a firm basis and general

acceptance as a theory of vagueness, and although supervaluationism is a successful

theory of vagueness, it has yet to find many practical applications.

The author of this thesis personally experienced the rift between these two ap-

proaches, though not necessarily in direct relation to supervaluationism. At the

NAFIPS 2006 conference in Montreal, Canada, those who attended the plenary talks

witnessed a heated debate between Bernard de Baets and Burhan Türkşen regarding

the objectives of science. While Türkşen, an engineer, asserted that practical ap-

plicability is sufficient proof for the validity of a concept and that he had little use

for concepts that he cannot apply in practice, de Baets argued from a mathematical

standpoint, emphasizing the futility of dealing with facts the meaning of which we do

not truly understand.

This rift was again evident during the course of surveying work recently under-

taken by the author, which will be discussed in a later chapter. Inspired by these

experiences, the mission statement of this thesis is to examine both of these theories

from a “neutral” viewpoint, seeking to find potential relationships in the field of ap-
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plications, examining the question of whether these theories are really as disjoint – in

application and objectives – as they seem to be at first glance and looking for possible

bridges with respect to application. Basically, it is an attempt to put both of these

theories into the framework they have each been avoiding – that is, evaluating fuzzy

logic in the context of a theory of vagueness and supervaluationism as a practical tool

in the field of engineering.

1.2 A Brief Overview

After having stated the aims of the thesis in Chapter 1, Chapter 2 begins with an ex-

ploration of one of the two basic concepts addressed by this thesis. It will be apparent

that the term “fuzzy logic” is, in itself, fuzzy. It encompasses various approaches that

share only one basic idea, yet all are referred to as “fuzzy logic.” In the attempt to

avoid being accused of having misused the term, the author has sought to cover all

possible usages of the term in this chapter and has discussed the naming controversies

– see Section 2.4.1 in particular.

After having explored the framework of fuzzy logic in all its manifestations, the

framework of supervaluationism is investigated in Chapter 3. The objective there is

to present the framework used in later sections in advance, so that the reader will not

have to spend time checking definitions of terms deemed to be basic in this theory.

Chapter 4 explores the Sorites paradox, an ancient puzzle about borderline de-

liberations in logical reasoning. Both fuzzy logic and supervaluationism consider

themselves to be able to solve the Sorites paradox in their respective framework.

By illustrating how they each do this, it has been possible to illustrate the vastly

different “attitudes” these two theories have towards solving problems.

As discussed in the mission statement, fuzzy logic has had more success as a

technical tool than as a theory of vagueness. Chapter 5 explores this phenomenon

by looking at conceptual problems logicians and philosophers see in the framework

of fuzzy logic and seeks to explain the reasons for these. The chapter also tries to

offer insights into the relationship between empirical science and theoretical science:

is a theory valid because it works or does it work because it is valid? Or can it work

without being valid?

Just as fuzzy logic has not gained acceptance as a full-fledged theory of vagueness,

supervaluationism lacks practical applications. It is deemed to be too theoretical and

too “rigid” to be particularly useful in engineering. Chapter 6 attempts to see whether

this is really the case or whether it would not be possible to apply supervaluationism

in practice. This effort rejects the notion that supervaluationism should in any way

compete with fuzzy logic and, instead, tries to find applications better suited to its
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framework.

Chapter 7 explores the questions of whether the differences in the frameworks of

the two theories do, in fact, make them opposites or whether it does not actually leave

open possibilities of applying them in a complementary manner. Both logics (Section

7.1) and practical applications (Section 7.2) are considered here.

The closing remarks, found in Chapter 8, briefly recapitulate this summary in

terms of results rather than aims.

As the author has experienced difficulties arising from the fact that various indi-

viduals and communities often use different symbols for one and the same concept

– or, even worse, use one and the same symbol for different concepts – a concerted

attempt has been made to be consistent in the use of symbols in this thesis. A table

of which symbols are used for which concepts is provided in Appendix A.1.

1.3 Acknowledgements

Chapter 5 of this thesis will discuss survey work that I conducted in early 2007.

As the nature of this work might suggest, I am indebted to many individuals who

made contributions to the project, including Mirko Navara of the Czech Technical

University; Carles Noguera and Llúıs Godo Lacasa of the Spanish National Research

Council; Robert Kosik and Reinhard Viertl of the Vienna University of Technology;

Enric Trillas, Thomas Vetterlein and Christian Borgelt of the European Center for

Soft Computing; Siegfried Gottwald of the University of Leipzig; Jerry M. Mendel of

the University of Southern California; Vesa A. Niskanen of the University of Helsinki;

Hans-Jürgen Zimmermann of INFORM; Vilém Novák of the University of Ostrava;

and Petr Hájek, Petr Cintula and Libor Behounek of the Academy of Sciences of the

Czech Republic. If I should have the opportunity to publish the results of this survey

in some other form in the future, my thanks also go to anyone else who might still

want to contribute to this discussion.

Special thanks go to Christian G. Fermüller of the Vienna University of Technol-

ogy for the initial formulation of the questions dealt with in Chapter 5, and to Rudolf

Seising of the Medical University of Vienna for extensive assistance with “social net-

working” related to the survey, as well as for other indispensable help and advice in

the preparation of this thesis.

Thanks also go to Laura Bradley for contributing some of the artwork that went

beyond my artistic skills.
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Chapter 2

Fuzzy Logic

2.1 Fuzzy Sets

Fuzzy logic was derived from fuzzy set theory, a concept introduced by Lotfi A. Zadeh

in 1965 [48]. The fuzzy approach attempts to deal with vagueness by assigning lin-

guistic variables varying degrees of applicability. It has proven to be useful in a wide

range of applications, primarily in the field of control theory. The term “fuzzy logic”

was coined by Zadeh’s Berkeley colleague, George Lakoff, a professor of linguistics,

in his 1972 paper Hedges: A Study in Meaning Criteria and the Logic of Fuzzy Con-

cepts [24].

Fuzzy set theory is an expansion of set theory, with the difference that unlike

classical set theory, the boundaries of a set are not precise, but unsharp or fuzzy. In

a classical set – such as the set of “odd numbers between 0 and 100” – it will always

be perfectly clear if a value belongs to the set or not.

As the name suggests, a fuzzy set does not have a sharp boundary. A value can

Figure 2.1: A classical set and its complement.
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Figure 2.2: A fuzzy set and its complement.

clearly be in a set or it can clearly be outside the set, but it can also be “somewhere in

between.” Membership in a fuzzy set is signified by the so-called membership function

µ(x), which moves between the values 0 and 1. If an object definitely belongs to a

set, the membership function will return the value 1 for it. If it clearly does not

belong to a set, the membership function will return the value 0. For anything else,

an incomplete degree of membership will be returned.

An example from reality can be used to illustrate the concept. One could consider

a set A called “European countries,” as well as a set B called “Asian countries.” One

could then try to determine the degrees of membership that Switzerland, Japan and

Russia would have in these sets.

The boundaries of Switzerland clearly do not extend beyond the European conti-

nent. It fully belongs to the one set and fully does not belong to the other set.

µA(Switzerland) = 1

µB(Switzerland) = 0

Japan, on the other hand, does not have any territory anywhere near anything

that could be called Europe. It clearly is not a member of this set and fully belongs

to the set of Asian countries.

µA(Japan) = 0

µB(Japan) = 1
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Figure 2.3: Membership function of a classical set.

Russia is considerably more difficult to categorize. It lies both within Europe and

within Asia, and thus is not clearly either a European country or a non-European

country.

If one was to regard land mass as the relevant factor – whether land mass or pop-

ulation would be the best factor to choose is a question of modeling – one could say

that Russia belongs to Europe to 23.191%, and to Asia to 76.809%. Thus, its degree

of memberships in the two sets would be:

µA(Russia) = 0.23191

µB(Russia) = 0.76809

It should be noted, however, that these sets only happen to be disjoint. There are

no rules in fuzzy set theory dictating that the sum of all membership functions must

add up to a certain value, as there are in statistics. We could also consider a third set,

C, called “Alpine countries,” to which Switzerland would belong to the same degree

that it belongs to the set of European countries.

If one was to illustrate the membership function in a simple one-dimensional en-

vironment, sets in classical theory would look like “steps” – with one set consisting of

one or several, “steps.”

In a fuzzy environment, the same graph can have any possible shape, as long as

the [0, 1] interval is not broken.
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Figure 2.4: Membership function of a fuzzy set.

2.2 Fuzzy Connectives

As an expansion of set theory, fuzzy logic must be able to handle the same operations

as classical set theory – namely, union ∪, intersection ∩ and complement AC . More

complicated connections between sets can be constructed once these building blocks

have been established.

Practically, these operations and their “counterparts” in logic (disjunction ∨, con-

junction ∧ and negation ¬) are evaluated using a wide array of methods, through

so-called t-norms, which will be addressed in Section 2.4.2.

When starting to work with fuzzy sets, Zadeh proposed relatively simple means

for the evaluation of the two basic connectives and the complement. The union of

two sets A and B, written as A ∪ B, includes elements that are members of either

set A or set B (or of both) in classical set theory. For example, the group consisting

of “numbers that are odd or greater than 10” would be a union in classical logic of

the set of odd numbers and the set of numbers larger than 10. In fuzzy set theory,

the union is classically evaluated as the maximum of the two degrees of membership

– the highest degree to which it belongs to one of the connected groups is the degree

to which it belongs to the union of the two groups.

µA∪B(x) = Max(µA(x), µB(x))∀x ∈ X

In standard set theory the intersection between two sets A and B, A∩B includes

any elements that are members of both set A and set B. For example, the set “even

numbers greater than 10” would be an intersection between two sets – even numbers

and numbers greater than 10. In a fuzzy environment the classical evaluation of an

intersection employs the minimum of the two degrees of membership.

µA∩B(x) = Min(µA(x), µB(x))∀x ∈ X

10



Figure 2.5: Union and intersection of two fuzzy sets.
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Figure 2.6: The complement of a fuzzy set.

The complement of a set AC in classical set theory consists of all elements that

are not members of this set. For example, odd numbers are the complement of even

numbers, and vice versa.

In a fuzzy context the complement of the membership in a set is formed by sub-

tracting its degree of applicability from 1.

µAC (x) = 1− µA(x)∀x ∈ X

In classical set theory, set A is a subset of set B (A ⊆ B) if every element of B

is also an element of A. For example, the set “real numbers between 10 and 20” is

a subset of the set “real numbers between 5 and 25,” as there is no element which is

a member of the first set but not a member of the second set. Thus, A ⊆ B can be

defined as follows:

A ⊆ B ↔ A ∩B = B ∀x ∈ X

This same relation can be applied in a fuzzy environment. If the degree of mem-

bership in set A is smaller than or equal to the degree of membership in set B over the

entire interval considered, the maximum of the membership functions will resemble

the membership function of B.
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Figure 2.7: A subset of a fuzzy set.

µA(x) ≤ µB(x) ∀x ∈ X

If illustrated, this would mean that A’s membership curve always remains less

than or equal to B’s membership curve.

2.3 Fuzzy Control Systems

Even though the term “fuzzy logic” was first introduced in the context of linguistics,

its successes to date have been more numerous and more significant as an engineering

tool in the field of technology. As such, it seems sensible to examine an example

of how fuzzy logic is actually used in practice, in order to illustrate its real-world

application.

In a control circuit fuzzy logic employs two mechanisms – fuzzification and de-

fuzzification – to convert sharp inputs into sharp outputs in a fuzzy computation

process. It is important to note that any conscientious handling of uncertainty in

practical applications happens solely in the computation process, as the input to such

a system will generally consist of measurements that have specific values and output

parameters generally need to have a certain value of some sort in order to be used in

practice.

The first process noted, fuzzification, is the process in which the respective values

of the membership function over the range of possible values is determined. For

example, one could try to define the meaning of the word “cold,” for the purposes

of a room heating system. When speaking of room temperatures, most people will

consider any temperature below 10 ◦C to be cold. When the temperature rises above

this, the term “cold” becomes less applicable – though it does, for a time, still remain

applicable to some degree – which is where varying degrees of applicability come in.
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Figure 2.8: A fuzzy set for the term “cold,” in relation to the room temperature in a

room in ◦C.

Figure 2.9: An additional fuzzy set added to the example.

As is evident from Figure 2.8, the form of a fuzzy set does not resemble that of

statistical distributions – a fuzzy set can have any shape imaginable within the [0, 1]

interval. Fuzzy sets do not exclude each other, and no statements whatsoever can be

made about the integral over the entire spectrum.

An example of the aforementioned varying degrees of applicability that are essen-

tial to fuzzy logic can be seen here between the point under which the temperature

is definitely cold (found to be 10 ◦C, where the linguistic value “cold” would have the

value 1) and the point over which the temperature is definitely not cold (found to

be 15 ◦C, where the same linguistic value would be applicable to a degree of 0). For

instance, in this example, at the temperature of 12 ◦C, the linguistic variable would

be applicable to the degree of 0.6.

To elaborate the example of a room heating system, one could define a second

fuzzy set “chilly” for a situation in which it is not really cold per se, but in which

heating would still be desirable – to a lesser extent, since the room temperature still

lies beneath the ideal room temperature, which one could place at 23 ◦C.
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Figure 2.10: Output functions for this example.

It must be noted that the definition of these fuzzy sets is totally ambiguous. The

nature of statements like “cold to a degree of 0.734” is as obscure to human thinking

as the binary reasoning used in classical logic is. The definition of fuzzy sets is, at

best, the ideal approximation of a term as it is used in matters of human thinking.

One should not expect a higher exactness from a fuzzy system than the empirical data

used in its definition can offer.

With these fuzzy sets defined, it is possible to determine how applicable a certain

term might be in a certain situation. This information is, however, not directly usable

by a heating system – it now only knows how cold it is in a given situation. But what

does the system do when it is cold? Sharp data has been fuzzified, but a technical

mechanism does not know how to operate with fuzzy data – it needs an exact input

value to work with, such as a voltage to be induced into a circuit, or the liquid flow

allowed in a coolant system.

For this purpose, it is necessary to define so-called output functions for each fuzzy

set. These functions define the magnitude of a certain effect that the validity of

certain terms, such as “cold” and “chilly,” have on an output variable – for example,

the voltage fed into a heating circuit – which is roughly indirectly proportional to the

temperature in a room. The colder it is, the more one heats. If it is indisputably cold,

the circuit will heat at its full capacity. For example, we could consider 220 volts as

the full capacity of a system, an input into the heating system that will be desired

in a truly cold situation. One could define the voltage fed into the system in a chilly

situation as 180 volts.

Having defined these functions, it is possible to “defuzzify” them. By applying

the so-called max-min rule, it is possible to combine several inputs for more complex

rules. In this simple case, we consider only one input value, the room temperature.

Depending on this, certain input sets may be more or less applicable. The value to

which they are applicable functions as a “cutoff” point for the output variables –

15



Figure 2.11: Fuzzification and defuzzification.

the output sets are “cut off” at the value to which the corresponding input set is

applicable. Summed up for all rules – here, one for “cold” and one for “chilly” – we

will get a landscape of trapezoids, of which the “center of gravity” is the output value.

This is a sharp value which a technical system can deal with.

This simplified example can be imagined as follows: in cases in which neither

“cold” nor “chilly” are fully applicable, the respective membership functions at the

measured temperature tell us how relevant the desired output of each situation is.

The weighed result will lie somewhere in between. The borderline temperature of

13 ◦C can function as a good example, which is illustrated in Figure 2.11

The crisp input of 13 ◦C results in the crisp output of ∼ 197 volts, a number which

can be fed into the control circuit. This alters the temperature in the room, which

alters the results the sensors record, which in turn alters the membership functions

and thus the output variable. The circuit is complete.

Clearly, the fuzzy approach works in a technical environment. However, this does

not indicate how adequate it is in other contexts, such as linguistics or as a theory of

vagueness. Fuzzy logic models describe circumstances of reality in relatively simple

terms – here, for example, the term “cold” was reduced to one simple trapezoid. It
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seems näıve to assume that anything one could say about the term “cold,” in any

context could be expressed with one single simple geometrical shape.

2.4 T-norm Based Fuzzy Logics

2.4.1 Logics

Logic – a term derived from the ancient Greek word λóγoς, meaning word, thought,

argument or principle – is the study of validly inferring from knowledge. The way

the term “fuzzy logic” has been used thus far in this thesis is somewhat misleading,

since set theory and the application of set theory in technical applications are not

connected with the millennia-old quest for correct methods of reasoning. However,

the principles of fuzzy set theory can be applied with these goals in mind.

In order to reduce confusion, Zadeh himself coined two terms to distinguish fuzzy

logics that are truly logics from other applications to which the name “fuzzy logics”

is sometimes applied [49]. He differentiated between “fuzzy logic in a broad sense”

and “fuzzy logic in a narrow sense,” where fuzzy logic in a broad sense can be seen

as a synonym for fuzzy set theory and the scope of its technical applications. Fuzzy

logic in a narrow sense is a theory of approximate reasoning based on many-valued

logics.

This so-called deductive fuzzy logic is based on the study of completeness, de-

cidability, complexity, et cetera. This approach is illustrated in Petr Hájek’s 2000

contribution Why Fuzzy Logic? [18]. Hájek starts by setting a few design choices that

he deems reasonable for all fuzzy logics:

• The real unit interval [0, 1] is taken as the standard set of truth values, where

0 signifies absolute falsity and 1 absolute truth. Standard ordering of real num-

bers, through ≤, applies.

• Logic is taken to be truth functional – the truth value of a connective for exam-

ple, a conjunction, is uniquely determined by the respective truth values of the

element and by the chosen truth function of the connective.

• Continuous t-norms, as illustrated in Section 2.4.2, are applied as possible truth

functions for the conjunction.

• The truth function of the implication is defined by the residuum, as is discussed

in Section 2.4.3.

• The truth function of the negation is x ⇒ 0, where ⇒ is the truth function for

implication.
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Before further exploring deductive fuzzy logics, the basic principles of logics used

will be reviewed. We will only deal with so-called standard structures, where the set of

truth values is identified with the real closed unit interval [0, 1]. More general classes

of algebraic structures are taken into account in [20]. Moreover, we will restrict

attention to the propositional level of logics.

Syntax

In logics and linguistics, syntax – from ancient Greek συν-, meaning “with,” and

τ άξις, meaning “arrangement” – is the study of the rules governing the structure of

sentences. In order to grasp the construction of logical formulas, we must analyze

the manner in which they are built up from their most basic elements, much as it

is essential to know what the subject and the predicate of a sentence are in natural

languages in order to linguistically analyze it.

The most basic building blocks of propositional formulas are so-called propositional

variables. Their intended use (see ‘Semantics’, below) is as follows: In non-graduated

logics, a propositional variable is a variable that can be either true or false. In fuzzy

logics, they can hold any intermittent value between 0 (false) and 1 (true), as set in the

design choices. A propositional variable represents an atomic statement, such as “the

sun is shining” or “Mary is sleeping.” They are generally designated by lower case

letters a, b, c, et cetera. The set of all propositional variables is PV = {a, b, c, . . . }.
These propositional values are also known as atomic formulas, since they cannot be

split up into smaller elements.

In order to construct more complex propositional formulas from our atoms, op-

erator symbols or logical connectives are used. Every operator symbol has an arity

j. This arity j means that the operator symbol requires j propositional variables (or

formulas, as operators can be used recursively) to yield a result. Connectives with

the arity 2 are referred to as binary operators.

The set of all operators is Ω = Ω0 ∪ Ω1 ∪ . . . ∪ Ωj ∪ . . . ∪ Ωm. In more familiar

propositional calculi, the following operators are used:

• Ω0 = {⊥,>}

• Ω1 = {¬}

• Ω2 = {∧,∨,↔,→}

⊥ and > are logical constants. As such, they can be considered to be either

operators with the arity 0, or simply constant values. ⊥ is a logical contradiction,

which always has a “false” truth value, while > is a tautology, which always has a

“true” truth value.
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The negation ¬ of a proposition a translates as the statement “not a.”

The binary operator ∧, the logical conjunction, is a logical conjunction and a ∧ b

reads as “a and b.” The logical disjunction, ∨ is a logical ”or” and a ∨ b reads as “a

or b.”

The biconditional ↔, signifies logical equivalence. a ↔ b reads as “a, if and only

if b” or as “b, if and only if a.”

The logical material implication, →, signifies that the first term implies the second

term. a → b reads as “b, if a.” An example of an implication that would form

a tautology would be a → b, where a is the statement “it is raining” and b is the

statement “the ground is wet.” If it is raining, the ground must be wet. However,

a and b are not logically equivalent – the ground could be wet due to having been

sprinkled by a hose or due to fluids having been spilled.

Starting with propositional variables and repeatedly using the defined operators,

any valid formula can be constructed. Formulas in a general sense (formulas that do

not have to be atoms) will be described using Greek letters ϕ, ψ, χ, et cetera.

Semantics

Semantics, from the Greek σήµα meaning sign, deals with aspects of meaning in a

natural or logical language. Whereas syntax only deals with the correct construction of

sentences, semantics is concerned with the actual meaning of the elements of sentences.

In linguistics one can easily illustrate the difference between syntax and seman-

tics by creating nonsense sentences such as “A toothbrush swims a donkey.” While

syntactically correct – it has a subject, a predicate and an object, all in their correct

grammatical forms – the sentence does not actually mean anything. It is semantically

incoherent.

In propositional logics semantics deals with the assignment of truth values to

propositional variables and with setting functions for connectives, thus giving them

“meaning.”

In a fuzzy environment, an assignment v for a set of propositional variables PV is

a mapping of all its element to the real number interval between 0 and 1. v : PV −→
[0, 1]. These actual values will be designated by the lower case letters x, y, z, q et

cetera.

When semantically evaluating a formula, one must also choose how to evaluate

connectives – a matter which will be examined in detail below. Suffice it to say that

in our context a function ∗ is chosen for the conjunction and the usage of the other

connectives is chosen in accordance with the respective conjunction.
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Evaluation

Given a logical formula ϕ, its truth value under the assignment v, using truth functions

based on ∗, is denoted by ev
∗(φ). The function ev

∗, which assigns truth values to

formulas, is called evaluation. The evaluation of an atom a, ev
∗(a) is taken directly

from the assignment v.

In order to evaluate a more complex formula, one must “replace” the syntactic

connectives with the respectively chosen semantic functions. For example, a logic

could evaluate the implication → over a specific function ⇒∗. Given this, one could

split a formula as follows:

ev
∗(ϕ → ψ) = ev

∗(ϕ) ⇒∗ ev
∗(ψ)

Using this methodology, it is possible to process complex formulas into calculable

functions. As an example with only very few possible evaluations, let us consider the

formula ϕ = a ∧ b. We could consider two assignments, v1 = {a −→ 0.6, b −→ 0.4}
and v2 = {a −→ 0.3, b −→ 0.6}. We could use a minimum for the conjunction or the

product. Given these possibilities, we would get four respective evaluations.

• ev1
min(a ∧ b) = min{ev1

min(a), ev1
min(b)} = min{0.6, 0.4} = 0.4

• ev2
min(a ∧ b) = min{ev2

min(a), ev2
min(b)} = min{0.3, 0.6} = 0.3

• ev1
prod(a ∧ b) = ev1

prod(a) · ev1
prod(b) = 0.6 · 0.4 = 0.24

• ev2
prod(a ∧ b) = ev2

prod(a) · ev2
prod(b) = 0.3 · 0.6 = 0.18

Validity and Satisfiability

Given a logic L∗ and a specific assignment vx, a formula ϕ is true when evx∗ (ϕ) = 1,

that is, when it is true in this specific case.

Validity is a stronger concept. ϕ is valid in a logic L∗ when it is true under all

assignments - ev
∗(ϕ) = 1∀v.

When an assignment exists under which ϕ is true, ϕ is satisfiable – ∃v : ev
∗(ϕ) = 1.

It is important not to confuse these two concepts. Just because a formula is not

valid does not necessarily mean that it is not true. Validity implies truth, truth implies

satisfiability. But these implications are not reversible.

Let us choose a logic Lminin which operators are based on Zadeh’s set operators

discussed in Section 2.2. The minimum doubles as the conjunction, the maximum as

the disjunction.

Three examples would be:
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• ϕ = a ↔ a

• ψ = a

• χ = ¬(a ↔ a)

Formula ϕ will always be true. Thus it is valid and satisfiable. ψ is true when

a is mapped to the value 1, but false when it is mapped to the value 0. It is thus

satisfiable, as an assignment exists under which it is true, but not valid, as it is not

true under all assignments. Since there is no assignment under which χ is true, it is

neither satisfiable nor valid.

Modus Ponens

Modus ponens (Latin for “mode that affirms”) is a simple form of argumentation(inference

rule) commonly used in logics. It simply states the following:

ϕ, (ϕ → ψ) ` ψ

If ϕ implies ψ, and we know ϕ to be true, then we also know ψ to be true. A

classical example applied to propositional logics that illustrates modus ponens is:

• “If Socrates is human, Socrates is mortal”

• “Socrates is human”

• “Therefore, Socrates is mortal”

Here, ϕ is the statement “Socrates is human” and ψ is the statement “Socrates is

mortal.”

Soundness and Completeness

Formal logics should have an adequate proof system. Here this means: a finite set of

schematic axioms and some simple inference rules, like modus ponens.

A formula is called derivable in such a system if it is either an instance of an axiom

or the instance of the conclusion of an inference rule, where the premises are instances

of already derived formulas. Adequateness, here, means soundness and completeness.

A proof system is sound if all derivable formulas are tautologies. It is complete if all

tautologies are derivable.
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2.4.2 Conjunctions – T-norms

A t-norm – short for “triangular norm” – is a binary operation used in multi-valued

logics and in probabilistic metric spaces, generally to compute connectives between

two fuzzy sets.

The classical methods introduced by Zadeh, as discussed in 2.2, are not always

suitable in practice. For example, the evaluation of the disjunction between two sets

using the minimum of the two membership functions is unsuitable when dealing with

disjoint groups, an issue that will be addressed in Section 5.1.7. It is desirable to

expand the options given when choosing semantics for a fuzzy logic.

So what would a viable truth function for the conjunction be? In t-norm based

fuzzy logic, any function satisfying certain conditions for qualifying as a t-norm is

considered a possibility. It must treat both factors of the conjunction as equal and

the ordering must not matter. It must increase monotonically in its two dimensions –

“0.5 and 0.3” may not have a higher value than “0.6 and 0.3.” The conjunction with

the value 1 must preserve the second value in a conjunction. Associativity must be

preserved.

To define a t-norm mathematically: A t-norm is a function T : [0, 1] × [0, 1] −→
[0, 1] satisfying the following four properties:

• Commutativity – T (x, y) = T (y, x)

• Monotonicity – ((x ≤ y) and (z ≤ q)) implies T (x, y) ≤ T (z, q)

• Associativity – T (x, T (y, z)) = T (T (x, y), z)

• 1 is the identity element – T (x, 1) = x

A more detailed account of the principle of t-norms can, for example, be found in

[23].

We will limit ourselves to handling three important t-norms here: the minimum

t-norm Tmin, which is also known as the Gödel t-norm, the ÃLukasiewicz t-norm TÃL
and the product t-norm Tprod. These t-norms are listed in Figure 2.12 and are used

as the strong conjunction & in their respective logics. Logics employing the minimum

t-norm are called Gödel logics G; logics employing the ÃLukasiewicz t-norm are called

the ÃLukasiewicz logics ÃL; and logics employing the product t-norm are called product

logics Π.

Their layout can also be illustrated graphically, in three dimensions as well as with

the use of contour lines.

In addition to the strong conjunction, every t-norm based fuzzy logic also possesses

a so-called weak conjunction, or lattice conjunction ∧. The standard semantics for the
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T-norm

Tmin(x, y) = min{x, y}
TÃL(x, y) = max{0, x + y − 1}

Tprod(x, y) = x · y
Figure 2.12: Three popular t-norms

Figure 2.13: Graph of the minimum t-norm

Figure 2.14: Graph of the ÃLukasiewicz t-norm

Figure 2.15: Graph of the product t-norm
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T-norm Residuum

Tmin(x, y) = min{x, y} (x ⇒min y) =

{
1, x ≤ y

y, x > y

TÃL(x, y) = max{0, x + y − 1} (x ⇒ÃL y) = min{1, 1− x + y}

Tprod(x, y) = x · y (x ⇒prod y) =

{
1, x ≤ y
y
x
, x > y

Figure 2.16: Three popular t-norms and their residua

Figure 2.17: Graph of the minimum t-norm’s residuum, the standard Gödel implica-

tion

weak conjunction is the minimum t-norm, as the pointwise largest t-norm and as the

only t-norm in which the idempotence of the conjunction ϕ ↔ (ϕ ∧ ϕ) holds. Thus,

in Gödel logics the weak conjunction and the strong conjunction are identical.

2.4.3 Implications and Negations – Residua

For any left-continuous t-norm ∗, a unique binary operation⇒∗: [0, 1]×[0, 1] −→ [0, 1]

exists, for which the following is true:

T (z, x) ≤ y if and only if z ≤ (x ⇒∗ y) for all x, y, z ∈ [0, 1]

This operation ⇒∗ is the residuum of the t-norm ∗. It acts as the truth function

for the implication.

As noted in the design choices in 2.4.1, the truth function of the negation is x ⇒∗ 0

(x implies falsity, using the respective truth function for the implication.) I.e., the

truth function for the negation as n(x) = x ⇒∗ 0.

If the antecedent of an implication (x in the case of x ⇒∗ y) has a truth value lower

than or equal to the truth value of the consequent (y in this example), the residuum

24



Figure 2.18: Graph of the ÃLukasiewicz t-norm’s residuum, the standard ÃLukasiewicz

implication

Figure 2.19: Graph of the product t-norm’s residuum, the Goguen implication
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will evaluate as 1 under any t-norm, as is evident in the graphical representations of

the residua.

2.4.4 Disjunctions – T-conorms and Lattices

Every t-norm has a dual t-conorm, or s-norm. Given a t-norm, its complementary

co-norm is defined by:

S(x, y) = 1− T (1− x, 1− y)

As such, the resulting t-conorm satisfies the following conditions:

• Commutativity – S(x, y) = S(y, x)

• Monotonicity – ((x ≤ y) and (z ≤ q)) implies S(x, y) ≤ S(z, q)

• Associativity – S(x, S(y, z)) = S(S(x, y), z)

• 0 is the identity element – S(x, 0) = x

The t-conorms formed from the three respective major t-norms are given their

own names. The minimum t-norm’s dual t-conorm is the maximum t-conorm Smax;

the ÃLukasiewicz t-norm’s is the bounded sum t-conorm SÃL; and the product t-norm’s

dual is the probabilistic sum t-conorm Ssum.

A T-conorm is used to represent the strong disjunction Y, the dual of the strong

conjunction. Much as the minimum t-norm serves as the weak conjunction (or lattice

conjunction) for all t-norms, its dual, the maximum t-conorm, serves as the weak

disjunction (or lattice disjunction) for all t-conorms.

It should be noted that while the strong conjunction is often considered to be

the “standard” conjunction, the weak disjunction is generally regarded to be the

“standard” disjunction. In fact, it is a matter of debate whether the strong disjunction

should be used at all.

Take, for example, the bounded sum t-conorm, the ÃLukasiewicz t-norm’s dual. It

is defined as SÃL(x, y) = min{x + y, 1}. Given a situation, for instance, in which one

was to evaluate the statement “my glass is full or it is light in this room,” where my

glass is half full (full to a degree of 0.5) and the lights in this room are controlled by

a dimmer working up to half of its capacity (making it light in the room to a degree

of 0.5), the statement would evaluate to 1 – to complete truth, although neither fact

considered is true to this degree. To many, this disqualifies t-conorms other than the

maximum t-conorm as means for correct reasoning.
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T-norm residuum t-conorm

Tmin(x, y) = min{x, y} (x ⇒min y) =

{
1, x ≤ y

y, x > y
Smax(x, y) = max{x, y}

TÃL(x, y) = max{0, x + y − 1} (x ⇒ÃL y) = min{1, 1− x + y} SÃL(x, y) = min{x + y, 1}

Tprod(x, y) = x · y (x ⇒prod y) =

{
1, x ≤ y
y
x
, x > y

Ssum(x, y) = x + y − x · y

Figure 2.20: Three popular t-norms, their residua and their dual t-conorms

Figure 2.21: Graph of the maximum t-conorm

Figure 2.22: Graph of the bounded sum t-conorm
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Figure 2.23: Graph of the probabilistic sum t-conorm

2.4.5 Hájek’s Basic Logic (BL)

Hájek [20] introduced the logic of all continuous t-norms as BL – basic propositional

fuzzy logic. Syntactically, it is based on the same connectives as the specific t-norm

based logics presented above. For the semantics of these connectives, all continuous

t-norms are taken into consideration.

A formula ϕ is only a genuine tautology in BL, that is, a BL-tautology, if it is

valid under all continuous t-norms and under all assignments – for all t-norms ∗ and

all assignments v, ev
∗(ϕ) = 1. It is a L∗-tautology if it is valid under the logic L∗,

based on a specific t-norm ∗. Therefore, if for one specific ∗ and all assignments v,

ev
∗(ϕ) = 1.

A sound and complete system is given by the following axioms, with modus ponens

as the only inference rule:

• (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

• (ϕ ∧ ψ) → ϕ

• (ϕ ∧ ψ) → (ψ ∧ ϕ)

• (ϕ ∧ (ϕ → ψ)) → (ψ ∧ (ψ → ϕ))

• (ϕ → (ψ → χ)) → ((ϕ ∧ ψ) → χ)

• ((ϕ ∧ ψ) → χ) → (ϕ → (ψ → χ))

• ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)

• ⊥ → ϕ
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2.4.6 Stronger Logics

As mentioned above, BL is the logic of all continuous t-norms, taking all possible

continuous t-norms into consideration. As such, logical principles preserved by one

t-norm, but not by others, are not valid in BL.

One can create stronger logics by binding the framework of BL to specific t-

norms. When this is done, the resulting logic uses one specific t-norm as the means

of evaluating the (strong) conjunction and its residuum for implications (and thus, by

extension, negations).

The resulting logic is axiomatized by the basic axioms of BL, as well as by addi-

tional axioms characterizing the specific t-norm used.

Gödel Logic G

Gödel logics G employ the minimum t-norm, which is also known as the Gödel t-norm.

As such, it evaluates the basic logical operators as follows:

• Conjunction: Tmin(x, y) = min{x, y}

• Implication: (x ⇒min y) =

{
1, x ≤ y

y, x > y

• Negation: (x ⇒min y) =

{
1, x = 0

0, x > 0

It is axiomatized by the axioms listed in 2.4.5, as well as by the idempotence of

the conjunction, ϕ ↔ (ϕ ∧ ϕ).

ÃLukasiewicz Logic ÃL

ÃLukasiewicz logics ÃL employ the ÃLukasiewicz t-norm and its residuum.

• Strong conjunction: TÃL(x, y) = max{0, x + y − 1}

• Implication: (x ⇒ÃL y) = min{1, 1− x + y}

• Negation: (x ⇒ÃL 0) = 1− x

The schema of double negation, ϕ ↔ ¬¬ϕ, is added to the axioms.
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Product Logic Π

Referring to the product t-norm one obtains the following truth functions for product

logic Π.”

• Strong conjunction: Tprod(x, y) = x · y

• Implication: (x ⇒prod y) =

{
1, x ≤ y
y
x
, x > y

• Negation: (x ⇒prod 0) =

{
1, x = 0

0, x > 0

Its proof system contains the additional axioms (ϕ → ¬ϕ) → ¬ϕ and ¬¬χ →
(((ϕ ∧ χ) → (ψ ∧ χ)) → (ϕ → χ)).
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Chapter 3

Supervaluationism

3.1 The Basic Concept

Unlike fuzzy logic, supervaluationism considers vagueness to be a concept related to

ambiguity. Vagueness does not mean that our terms can be applicable to a certain

degree, but that the usage of our terms is not precisely defined.

For example, consider a map of (mainland) France, as shown in Figure 3.1.

If one was to state, while looking at this map, that France was a hexagon, it would

not be possible to say whether this statement was obviously true or obviously false.

The borders and shores of France hardly form straight, accurate lines between six well-

defined points (see Figure 3.2). In a purely mathematical sense, it is not a hexagon.

Nevertheless, the resemblance to a hexagon is striking enough for the country to be

often referred to in French as “L’hexagone.”

Similarly, the statement “the Earth is spherical” is not correct in theory – the

shape of the Earth resembles that of a slightly oblate spheroid. In most everyday

contexts, however, the statement “the Earth is spherical” will be considered accurate

enough to be used.

Kit Fine’s 1975 paper Vagueness, Truth and Logic [12] provides a thorough char-

acterization of the principles of supervaluationism. Consequently, it will be used as

the basis for many of the definitions that follow in this chapter.

3.2 Precisifications

Supervaluationism is based on the concept of so-called precisifications, which eliminate

vagueness from a vague statement by limiting the space of admissible precisifications.

Fine defines a precisification as “admissible” if it respects certain semantic constraints

pertaining to competent use of language.
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Figure 3.1: France

Figure 3.2: Is France a hexagon?
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A precisification can be complete, but it does not have to be. For example, one

could precisify the statement “this mountain is high by stating that it is true if “this

mountain” has a height of more than 3000 meters. With this precisification, one

could easily determine whether a given mountain is high or not – one look at its

measurements would answer this question. This would be a complete precisification,

as it removes all vagueness from a term.

However, one could also precisify the statement that one is talking about a moun-

tain that would be considered high if it were located in the Swiss Alps. Given this, we

would know that anything higher than the Dufourspitze, Switzerland’s highest moun-

tain, would definitely be considered high. We would also know that anything that

might pass as a high mountain in the Netherlands would not have sufficient height.

But we would still not know where the exact borderline between a high mountain and

a non-high mountain lies.

We would know that a mountain with Mount Everest’s dimensions, if it were

in Switzerland, would be considered high. Likewise, we would know that Sugarloaf

Mountain in Rio De Janeiro would not be high enough to qualify, as it barely rises

above the lowest elevation found in all of Switzerland. We would not, however, know

whether the Zugspitze, Germany’s highest mountain (which is not nearly as high as

the Dufourspitze), would qualify as high under these conditions.

Clearly, any precisification employed will be arbitrary. By defining a precisifica-

tion, one states that it is possible to sharpen a given statement in a particular way.

One does not exclude any other precisifications of a term. For example, by saying

that one could set the limit between “high” and “not high at 3000 meters, one does

not say that it would be impossible to set the limit at 2999 meters or 3001 meters.

Practically, there will be an unlimited number of possible admissible precisifications.

The conditions under which a precisification is admissible or not admissible will be

explored below in Section 5.1.11, where penumbral connections will be discussed.

3.3 “Truth is Supertruth”

Given a precisification, one can say if a statement is true or not – as we have just

done. If we consider a height of 3000 meters over sea level to be the borderline between

“high” and “not high,” we can say that Mont Blanc, with a height of 4, 808 meters,

is high.

As mentioned above, however, this precisification is just one of an infinite number

of precisifications. We have evaluated the statement “Mont Blanc is high” as true

under one given precisification, but under other precisifications, the same statement

is not evaluated as true.
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This is where supervaluationism distinguishes between truth and supertruth [22].

Supervaluationism will only declare a statement to be definitely true if all admissible

precisifications show the statement to be true. For example, the statement “Mount

Everest is a high mountain” would be supertrue, if we restrict ourselves to mountains

on the Earth. As Mount Everest is the highest mountain on the planet, there is no

admissible precisification of “x is a high mountain” that does not include it.

This is also the case for false statements. A statement is only clearly false or

“superfalse,” if it is false under all admissible precisifications. For example, with

respect to the Earth, the statement “the North Pole is close to the South Pole” is

superfalse. Located at the two opposing ends of the globe, there is no geographical

definition of “close” that would place these two points close to each other.

In a formal sense, the set of all admissible precisifications is called the precisifi-

cation space Π. In order to be supertrue or superfalse, all individual precisifications

included in the precisification space must agree on the truth value of the statement

in question.

A classical example of a statement that clearly evaluates as true is found in H.

Mehlberg’s The Reach of Science [29], published in 1958. The example of a vague term

given there is “Toronto,” the location of Mehlberg’s university. Toronto is considered

to be a vague term, since there are several precisifications of what exactly belongs

to Toronto and what does not. Does “Toronto” end where the administrative region

ends or does it end where the metropolitan area ends? If one considers the latter, just

where does one draw the line – if one leaves the city on a road, when exactly has one

left Toronto?

Due to the vagueness of the term “Toronto,” it would thus be impossible to eval-

uate a statement such as “there is an odd number of trees in Toronto” as either true

or false in supervaluationism, even if one was omniscient, as the number of trees in

Toronto would differ from one precisification to the next – and it is most unlikely that

this number would be odd under all possible precisifications.

It is, however, valid to say that the statement “Toronto is in Canada” is supertrue,

as there is no valid precisification of “Toronto” (or “Canada”) by which Toronto would

not fall into Canada.

This approach, differing from the approach used by fuzzy logic, enables superval-

uationism to “save” some concepts of classical logic that do not hold in fuzzy logic,

such as the law of the excluded middle:

ϕ ∧ ¬ϕ

An example of this is the statement “the sky is blue and not blue.” In fuzzy logic,

depending on the t-norm employed, this statement could evaluate as true up to a

34



degree of 0.5 (using the three t-norms discussed in Section 2.4.2), whereas classical

logic dictates that it would have to be a contradiction.

In supervaluationism, this statement evaluates as superfalse – no matter where

one draws the line between “blue” and “not blue,” every precisification will make one

of the two premises of the conjunction false. If a specific precisification dictates that

the sky is blue, the same precisification thus automatically sees “the sky is not blue”

as false, leading the whole statement to evaluate as false. If a precisification sees the

sky as “not blue,” the same effect occurs.

Thus, the statement cannot evaluate as true and thus is superfalse. In this, it

abides by an important principle of classical logic that is violated by other theories.

Also, the result of a disjunction of two disjoint statements evaluates as true even when

we have no knowledge of “how true” the statements are, simply because both cannot

be false at the same time.

Another practical example of a question easily and clearly answerable in a su-

pervaluationist environment can be illustrated using the sketch of an archery target

in Figure 3.3. The target has four zones. One arrow has hit the center, while each

other zone has been hit by two arrows. An example of a vague statement in regard to

this sketch would be “a majority of the arrows are close to the center of the target.”

Since there are 7 arrows, 4 arrows would constitute a majority. It is, however, not

determinable what “close to the center of the target” means. Does it mean just the

bullseye? Or does it mean the inner two circles? Or the three inner circles? Or is our

perspective so broad that anything that hits the target at all is considered close to its

center?

There are four admissible precisification of “close to the center of the target,” and

the statement is only true in two of these four precisifications. It is, thus, neither

supertrue nor superfalse, and supervaluationism would not allow a definite statement

in this situation.

In order to put this example into the established framework, one could assign

labels to these four possibilities. One could call them Π1, Π2, Π3 and Π4 respectively.

Together they form the precisification space Π.

As can be seen, the values of Πi differ. There is thus no supertruth in this state-

ment.

However, there are statements that would evaluate as supertrue or superfalse. For

example, the statement “an odd number of arrows has hit the inner circles of the

target” would evaluate as supertrue, as all admissible precisifications of “the inner

circles of the target” contain an odd number of arrows.

As before, there are four possible definitions of what the “inner circles” could be

– it could be just the central circle, it could be the inner two circles, it could be the
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Figure 3.3: An archery target.

Πi ‖ϕ‖Πi

1 0

2 0

3 1

4 1

Figure 3.4: Evaluation over the complete precisification space.
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i nΠi
‖ϕ‖Πi

1 1 1

2 3 1

3 5 1

4 7 1

Figure 3.5: Supertruth.

inner three circles or, theoretically (though not very sensible semantically), it could

mean all four circles. Under each precisification of “the inner circles,” n arrows have

hit the area under consideration. If this value n is odd, the statement is correct under

this precisification.

The truth value is identical under all precisifications – the statement is always

true. Thus, this statement is supertrue. There most certainly is an odd number of

arrows in the inner circles of the archery target.

This example illustrates that the question regarding the number of trees in Toronto,

although not answerable, was not of a nature that is unanswerable in principle. In a

admittedly more simple context, a similar question was, in fact, answerable.

3.4 Penumbral Connections

Precisifications reduce the vagueness in a given situation. They do not, however,

“alter” definite knowledge already present before a precisification. In particular, this

affects so-called penumbral connections. Penumbral connections occur when the ap-

plicability of a term correlates to a numerical dimensionality. For example, the term

“high,” when applied to mountains, generally correlates to the height of the moun-

tain’s summit above sea level.

If we are considering the statement “Mont Blanc is a high mountain,” we cannot,

by default, answer this question. Different precisifications would offer us different

answers. If, however, we knew that the Matterhorn was considered to be a high

mountain, it would be clear that Mont Blanc would also have to be regarded as a

high mountain. Mont Blanc is 4, 808 meters high, whereas the Matterhorn is 4, 478

meters high. If a height of 4, 478 meters is enough to make a mountain high, 4, 808

must suffice as well.

The principle of penumbral connection dictates that given a correlation with a

specific measurement, if we know that a predicate applies to item X, it applies to all

items that have a greater value with respect to this measurement, however minuscule

the difference might be. If we know that a mountain measuring 3000 meters is a high
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mountain, we know that a mountain measuring 3000, 0001 meters is a high mountain

as well.

Through these penumbral connections, it becomes possible to eliminate precisifica-

tions that are not admissible. A precisification for the term “high,” which notes that

the Matterhorn is a high mountain, but that Mont Blanc is not, is not admissible, as

it violates the penumbral connection between these two items.

Stating that the Matterhorn is a high mountain does not remove the vagueness

from the term “high.” We still cannot say where the boundary between “high” and

“not high” lies, or if it even exists. But we do know that the boundary and any

possible area of indeterminacy must lie below the Matterhorn’s height.

3.5 The D-Operator

As an additional tool, Kit Fine defined a so-called “definitely” operator D. For a

statement to be definitely true, it must be true before any vague terms in the statement

have been sharpened and before any penumbral connections have been considered.

The significance of this operator is that in a supervaluationist environment, a

precisification cannot alter truth values which were already supertrue or superfalse

before the precisification. Stating that DF (ϕ) is true for a statement F (ϕ) implies

that it can be taken as true in any context, no matter what precisifications have been

applied.

Based on this operator, we can create a counterpart, the “indefinitely” operator,

I, for statements which are not initially definite.

IF (a) ↔ ¬DF (ϕ) ∧ ¬D¬F (ϕ)

Any statement that is neither definitely true nor definitely false is the base point

of our consideration.

The motivation behind the creation of these operators was the handling of higher

order vagueness. Higher order vagueness is present, for example, when the statement

IIF (ϕ) evaluates as true – this would make ϕ a second order borderline case of F .

To put this in simpler terms, we are not even sure if ϕ is a borderline case or not.
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Chapter 4

Sorites

4.1 Sorites Paradox

The Sorites paradox (from the Greek σωρóς (sorōs), meaning heap, of which σωρίτης

(sōritēs) is the adjective form) is a logical paradox that has puzzled man for more than

two millennia. Sometimes also translated into English as the “paradox of the heap,”

it can be summarized by the question of how many grains of sand make a heap. A

single grain of sand is not a heap. Two single grains of sand are not a heap. A pile of

grains of sand filling a soccer field, however, is most definitely a heap.

Logically, this is not automatically consistent. It seems intuitive that a single grain

of sand cannot be a heap. It also seems intuitive that the addition of a single grain of

sand will not suffice to create a heap. How does one express the fact that heaps are

created gradually in a logical system that has allowed a contradiction to arise even

though only statements that seem to be intuitive are involved?

There is a wide array of closely related logical paradoxes that have been contem-

plated over the millennia. A man with a solitary hair on his head would definitely

be called bald. One single hair will not make the difference between bald and not

bald. However, a full head of hair, consisting of single hairs, will prevent a person

from being bald.

At its birth an infant is not old. A single day will not make it old. A man in his

90s, however, is clearly old, even if his life could be quantified as the gradual addition

of single days to his age.

In all of these cases we would intuitively say that it “just gradually happens.”

Solving such paradoxes in logical systems has been a challenge for philosophers for a

very long time. Consequently, it seems prudent to explore various forms in which a

paradox can be represented schematically before attempting to “solve” it.

We formalize the statement “i grains of sand are a heap” as hi, and the statement
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“i grains of sand are not a heap” as ¬hi. As such, the statements ¬h1 and h1010100

will generally be considered to be true, as a single grain will never be regarded as a

heap and a googolplex of grains will always be regarded as a heap.

4.1.1 Conditional Sorites

In essence, the Stanford Encyclopedia of Philosophy [45] formalizes a conditional

Sorites as follows:

¬h1

If ¬h1 then ¬h2

If ¬h2 then ¬h3

...

If ¬hi−1 then ¬hi

-- -- -- -- -- -- -- -- -- --

¬hi (where i can be arbitrarily large)

In natural language, this could be described as follows:

(1) A single grain of sand is not a heap.

(2) If one grain of sand is not a heap, two grains of sand are not a heap either.

(3) If two grain of sand are not a heap, three grains of sand are not a heap either.

. . .

(i) If i− 1 grains of sand do not make a heap, then i grains of sand do not make a

heap either, where i can be arbitrarily large.

When dealing with this approach, it is possible to assign different truth values to

different “steps” in the process. One could, for example, assign a different truth value

to “If ¬h1000 then to ¬h1001,” without questioning the truth of “If ¬h1 then ¬h2.”
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4.1.2 Mathematical Induction Sorites

Using the principle of mathematical induction, one could also formulate the statement

as follows:

∀n(¬hn → ¬hn+1)

-- -- -- -- -- -- -- -- -- --

∀n¬hn

Or, in words:

1. A single grain of sand is not a heap

2. For all i: if i grains of sand do not make a heap, then i + 1 grains of sand do

not make a heap either.

This formulation might look like a shorthand version of the conditional Sorites at

first glance. It is not, however, as the expansion of the heap is summarized in a single

statement here. The truth of the statement can only be questioned as a whole – the

step from one grain to two is logically equivalent to the step from 1000 grains to 1001.

4.1.3 Modus Ponens

Modus ponens (Latin for “mode that affirms”) was already covered in Section 2.4.1.

To recapitulate, it states:

ϕ, (ϕ → ψ) ` ψ

Using modus ponens, it is possible to go from a single grain of sand to an arbitrarily

large number of grains of sand, while the logic still dictates that what we have is not a

heap. Sooner or later, therefore, modus ponens will lead us to a logical contradiction

in classical logic, as some number of grains of sand, in some large dimension, will be

classified as a heap – in direct contradiction to modus ponens.

4.2 Sorites and Fuzzy Logic

Petr Hájek and Vilém Novák published an account of this issue in their 2003 article

The Sorites Paradox and Fuzzy Logic [19]. In it, they review approaches to dealing

with Sorites using fuzzy logic.
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The authors make use of a vague predicate “feasible” Fe, which becomes less

applicable the larger its object becomes. With the definition of this predicate, the

Sorites paradox can still be represented in the following form:

• Fe(0)

• (∀x)(Fe(x) ⇒ Fe(x + 1))

• (∃x)¬Fe(x)

If all of these statements were true, this would contradict the principle of induction.

To solve this problem, the basic predicate logic BL∀ is extended by a fuzzy unary

connective (hedge) “almost true” designated as At. At(ϕ) reads as “it is almost true

that ϕ.”

The operator might be used as follows: If x is small, it is almost true that x + 1 is

small – the truth degree of “x + 1 is small” is only a little bit smaller than the truth

degree of “x is small.”

We can also add the following two schemata:

1. ϕ → At(ϕ)

2. (ϕ → ψ) → (At(ϕ) → At(ψ))

If we know ϕ to be true, we know that it is also almost true, as almost true requires

a lower truth value. If ϕ implies ψ, and ϕ is almost true, ψ is definitely also (at least)

almost true.

If the operator is applied multiple times, the short notation Atn(ϕ) is used for

At(At(. . . (At(ϕ)) . . . )) (n copies of At).

The logic being created is based on the language of Peano arithmetic [20]. The

axioms of Peano arithmetic are fairly intuitive, and thus will not be discussed here.

They are based on the usage of a so-called successor function symbol S, which yields

the succeeding natural number of any natural number – Sx = x + 1, if x is a natural

number.

The language thus consists of:

• binary equality predicate =, unary predicate Fe

• constant ⊥ (zero), unary function symbol S (successor)

• binary function symbols +, . (addition, multiplication)

The following axioms are valid:
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1. x = y ∨ x 6= y (crispiness axiom for =)

2. all axioms of Peano arithmetic

3. x < y → (Fe(y) → Fe(x))

4. Fe(x) → (At(Fe(S(x))) ∧ At(Fe(x + x) ∧ At(Fe(x.x)))

This extension of Peano arithmetic PA using BL∀, is referred to as PAat.

In order to illustrate that classical logics are preserved, it must be shown that

tertium non datur is valid for each formula ϕ in PA not including Fe, as PA is not

part of classical logics. Since the only predicate remaining in this case is the binary

equality predicate =, tertium non datur follows from the crispness axiom for atomic

statements. Through induction, it can be proven that this is true for all quantified

statements, a process which can be found in [19]. It follows that a formula not

containing Fe is provable in PA using classical logics if and only if it is provable in

PAat over BL∀.
The authors proceed to prove the following theorem for PAat:

Fe(x) ∧ Fe(y) → (At(Fe(x + z)) ∧ At(Fe(x · y)))

This statement is proven by reducing the statement to the axioms set previously

in this section. This leads to the following corollary: For each term t(x1, . . . , xn) of

PA with the variables indicated, there is a natural number n such that

PAat ` Fe(0̄) ∧ Fe(x1) ∧ . . . ∧ Fe(xn) → Atn(Fe(t(x1, . . . , xn)))

In this case, the Sorites paradox is no longer a paradox, since (∀x)(Fe(x) ⇒
Fe(x + 1)) is not considered to be true – it is only considered to be almost true.

4.3 Sorites in Supervaluationism

To give a fairly straightforward example of Sorites in supervaluationism, let us con-

sider the concept of “old,” which was explored in Chapter 3. As noted, different

precisifications, all equally valid, will consider the borderline between “old” and “not

old” to be in different places. Exactly at this borderline, the statement that a minor

time unit – say, a day – will not make the difference; it will not hold. If one was to

put a borderline between “old” and “not old” at a person’s 65th birthday, the one

day difference between the 365th day of the 65th year of the person’s life and the 1st

day of the 66th year of that person’s life would, indeed, signify the difference between

“old” and “not old.”
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A summary of Sorites under supervaluationism can be found in [9] and [10].

The assumption is made that one grain of sand is under no circumstances a heap,

but that all competent observers would call a pile consisting of 10, 000 grains of sand

– or more – a heap. In the interest of simplicity, the statement “i grains of sand

are a heap” will be written as hi. Within the given conditions, it is clear that h1 is

superfalse, while h10,000 is supertrue.

It also seems reasonable to say that there will be more than one possible pre-

cisification in this example. Thus, there will be an hi, with 1 < i < 10, 000, which

is true under one precisification, but false under another precisification, and thus is

neither supertrue nor superfalse. Thus, the logical contradiction caused by modus

ponens is eliminated, since modus ponens is only allowed either when both premises

are supertrue or when both premises are superfalse.

Indeed, (∀x)(h(x) ⇒ h(x + 1)) is not only not supertrue, it is in fact superfalse.

Somewhere between grain number 1 and grain number 10, 000 there is a borderline

between “not a heap” and “heap.” Even though we do not know where it is, we know

that it exists somewhere – and wherever this borderline is, the statement is false.

(∃x)(h(x) = 0 ∧ h(x + 1) = 1)
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Chapter 5

Fuzzy Logic as a Theory of

Vagueness

As discussed above, fuzzy logic has by now successfully established itself as an engi-

neering tool. Though its purpose and validity in any context were highly controversial

in the early years, this initial criticism was defused by the practical success of fuzzy

set theory, to a large degree under the name of “fuzzy logic.” This began with As-

silian’s and Mamdani’s steam engine in the 1970s [28] and has extended over an

ever-expanding range of applications, from noodle cookers to washing machines, up

to the present day. The history of fuzzy set theory’s birth, development and progres-

sion has been documented by Rudolf Seising in his book The Fuzzification of Systems

[39].

The acceptance of fuzzy logic as a technical tool, however, has not necessarily led

to an acceptance of fuzzy set theory as a theory of vagueness or as an instrument

for handling natural language – a matter over which there is a certain rift within the

fuzzy community, which will be examined later.

In one of these groups – the “engineers” – many might argue that these objectives

are not, never were and never will be the intended domain of fuzzy logic. However,

probability theory, which deals with a type of uncertainty diametrically opposed to

fuzziness, has in its longer lifetime managed to become a principle that to a large

degree is accepted as an integral part of almost every aspect of life. It has become

much more than “just a tool,” while dealing with a concept (degrees of probability

– “with a degree of likeliness of 0.5, Austria will beat Liechtenstein in the upcoming

match”) no more natural than the concept on which fuzzy logic is based (degrees of

applicability – “Italy played rather well in yesterday’s match”).

Many philosophers have argued and still argue that fuzzy logic must deal with some

of these points in order to receive any recognition as a valuable theory of vagueness.

This chapter represents an attempt to analyze how relevant the said points actually
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are and whether it would be possible to overcome them, or whether trying to solve

these problems is basically an attempt to teach an elephant to fly.

This chapter will compile the insights, thoughts and answers collected during the

course of a recent project the author participated in. The core of this project was

formed by fifteen questions formulated by Christian G. Fermüller of the Vienna Uni-

versity of Technology after he was involved in the organization of and then participated

in the Prague International Colloquium: Uncertainty – Reasoning about probability

and vagueness in the Czech Republic in September 2006 [11] [25]. The context of

this conference was not discussions focused specifically on fuzzy logic as a technical

tool, but deliberations concerning the conceptual handling of vagueness. As such,

fuzzy logic was only considered in the narrow sense of its being used as a conceptual

method to handle vagueness. This distinction between “fuzzy logic in a narrow sense”

and “fuzzy logic in a broad sense” has been discussed in Section 2.4.1. It should also

be kept in mind that while the questions were later considered in many different

contexts, only this narrow sense of fuzzy logic as a theory of vagueness was under

discussion when these questions were originally compiled. The decision to approach

the fuzzy community with these questions led to some interesting and unexpected

results, which will be discussed in 5.2.1.

The 15 questions attempt to summarize the points of criticism and doubt en-

countered in and around the conference in Prague, among other places. Through

international survey work and extensive participation from all over the world, it was

possible to formulate some examinations of the points brought up – though not to

answer all points raised to a level at which further contributions would stop being

welcome.

It should be noted that this project was not meant to be an attempt to question

the feasibility of fuzzy logic in any of its present-day applications or to disqualify

fuzzy logic in general. Nonetheless this impression seems to have been made in some

quarters, despite all the precautions taken, which is a further indication of the rift

between different methods of thinking that exists in the so-called “fuzzy community.”

If anything, the project is an attempt to defend fuzzy logic against points brought up

against its being anything more than just a “useful tool.”
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5.1 Fifteen Points of Critique of Fuzzy Logic – The

Questions, Analyses and Attempts to Answer

Them

5.1.1 Improper Precision

What do truth values like 0.5476324 mean? How do we arrive at such values? Does

FL provide any means to distinguish reasonable from unreasonable attributions of val-

ues? (A complete theory of vagueness should provide answers to such questions.)

In a fuzzy environment one can, in fact, encounter truth values of which the

interpretation can be difficult. Especially if a system uses a high granularity for its

fuzzy values, one can come across a great array of decimal places that might appear

to be far too detailed to serve as an approximation of vague facts.

In some simple cases, a numerical value other than 0 and 1 can have a meaning

that could be considered to be straightforward. For example, when establishing a

degree of applicability of the term “luminous” to a pixel in a grayscale bitmap image

that allows 256 different gray values distributed at equal distances over the spectrum,

it seems intuitive to assign a pixel with the luminosity value of 128, the fuzzy value

of 0.5. With this same system, it is also possible to get fuzzy values with more

decimal places that are still intuitive. For example, a luminosity value of 129 would,

under linear mapping, lead to a fuzzy value of 0.5019608 (128
255

) – a fuzzy value no less

applicable than a probability value of the same sort, or the fuzzy value 0.5. in the

preceding pixel.

However, in this example, the fuzzy value approximates granularity rather than

vagueness. When venturing out of this very narrow realm of quite specific cases, the

problem remains. What does it mean to say that Ginger loves Fred to a degree of

0.5476324? That fuzzy logic is an adequate tool for handling granularity is beyond

doubt. Some might, however, consider granularity to be the opposite of vagueness.

In statistics, the answer would be quite simple – given that that one’s models are

robust. If an event will happen with a statistical probability of 0.5476324, this would,

for example, mean that given 10, 000, 000 attempts, one would expect the event to

happen 5, 476, 324 times. Statistical probability gives us a direct path to an expected

value.

So what does it mean to say that a book is long to the degree of 0.5476324?

Intuitively, colleagues agree, not much.

Some see it as an abstraction of an actual value, such as any exact number will

always be – a person listing his weight as 72 kilograms will rarely weigh exactly this
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much. However, in the realm of real numbers, one can still determine what one is

abstracting from.

This is generally considered to be a question of modeling. The luminosity example

illustrated that, in some cases, fuzzy values can be confirmed as adequate in reality.

In most cases, this is not the case – but is this a problem with fuzzy logic or a problem

with how we try to describe reality when creating a model?

5.1.2 Linear Ordering of Truth Values

This seems to force one to judge the relative truth of intuitively incomparable state-

ments, such as e.g., “John is tall” “Mary is rich,” “Ginger loves Fred,” etc. How

can this be justified? (Note: it is insufficient to point out that algebraic models may

also be non-linear. The deeper worry here is that this does not explicitly reflect the

“incomparability” of at least some vague propositions.)

One element of classical logics which is actually preserved in fuzzy logics is linearity.

This can be described with the following axiom:

(a → b) ∨ (b → a)

Given that the value of a is smaller or equal to the value of b, any t-norm based

fuzzy logic will compute (a → b) as 1. Thus, the content of this statement can be

summarized as:

(val(a) ≤ val(b)) or (val(b) ≤ val(a))

A consequence of the validity of this axiom in a fuzzy environment is that a linear

ordering of fuzzy values is always legitimate.

However, a linear ordering of values might not be desired. Thus, this axiom does

not seem to fit into a theory of vagueness in the eyes of many philosophers. If you

cannot clearly accept or reject statements, how can you compare them? The issue is,

therefore, that the mathematical frameworks allow a comparison that does not seem

natural or intuitive.

The consensus here seems to be that the fact that both values in a comparison

are within the same system and thus are theoretically comparable does not mean

that they are necessarily comparable in context even if the logical framework would

allow such a comparison. Statements such as “John is taller than Bill is fat” are not

answerable in terms of crisp numbers in natural language. It is not possible to say if

a body mass of 81 kilograms is larger than a body size of 181 centimeters.
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However, within the realm of crisp numbers, a comparison between body height

and body weight would be a comparison between two values of different dimension-

alities. There is only one unit of truth in fuzzy logic. When comparing fuzzy values,

both values will be truth values, noted as a value on an interval stretching from 0 to

1. While one cannot compare inches with pounds, one is able to compare two truth

values, no matter where they came from.

This is possible in probability theory, when dealing with degrees of probability.

Much like degrees of truth, degrees of probability are noted as a value within an

interval extending from 0 to 1. If I am aware of the respective probabilities, I can

evaluate statements such as “it is more likely that I will die in a plane crash than

that I will win the lottery,” even though the safety of my traveling has no connection

whatsoever with the results of a lottery.

5.1.3 Truth Functionality

This seems to clash with many intuitions (see, e.g., D. Edgington for very explicit

arguments against truth functional connectives applied to vague propositions [7]). In

particular, it is forcefully argued (by many experts) that the semantic status (truth

value) of ψ, given that both ϕ and ϕ → ψ are “true to some intermediary degree,”

also depends on the intentional relation between ϕ and ψ, and not just on their re-

spective truth values.

Implications in fuzzy logic are always material implications and not intentional

implications. Thus, implications are indeed truth functional. This “problem,” though

avoided in some modal logics, is not unique to fuzzy logic. It is quite possible to

create bogus implications that will, in spite of their abstract nature, still hold true

when evaluated, even in a logic that does not use incomplete truth values. Saying that

the moon being made of green cheese would imply that pigs can fly, though clearly

nonsense, would still evaluate as true – simply because the moon is not made of green

cheese and thus it is impossible to negate this statement. Lack of consideration of

conditionality is, however, a problem encountered in most logics. It is, of course,

a problem relevant to fuzzy logic as well. But truth functionality is not a problem

exclusive to fuzzy logics – it is not created by fuzzy logic.

However, in classical logics, truth functional connectives do not cause the kind of

issues that they cause in fuzzy logics. In fuzzy logics, truth functional implications

lead to the possibly undesired linear ordering of truth values, which was discussed in

Section 5.1.2.

Apparently, however, there are non-functionally expressible theories of fuzzy sets,

though they have not been practically applied up to now. Time will tell if fuzzy modal
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logics will suceed or not.

5.1.4 Higher Order Vagueness

Even if the truth values themselves are replaced by “fuzzy values” or something similar,

the problem does not disappear: – at some level (order) “improper precisions” must

creep in for any formal fuzzy logic – at every level (order) it remains unclear how we

arrive at the corresponding “fuzzy truth value.” (How should we distinguish between

an artifact of the model and a “genuinely representing” property of truth values?)

This consideration might be judged to be related to Zadeh’s type-2 fuzzy sets,

recently presented and elaborated in Type-2 Fuzzy Sets Made Simple [30] by Jerry M.

Mendel and Robert I. John and Type-2 Fuzzy Sets: Some Questions and Answers [31]

by Jerry M. Mendel. This concept takes into consideration the fact that fuzzy sets

themselves are, in turn, uncertain.

Dealing with higher order vagueness seems highly relevant to the “objective” of

fuzzy set theory. However, the higher one goes with the vagueness considered, the

more complex a model gets. And practically speaking, a certain degree of impreci-

sion is generally accepted in order to keep the modeling simple, intuitive and com-

prehensible. Though type-2 fuzzy sets are superior in power, their complexity and

non-intuitive nature have probably contributed to their failure as yet to become an

accepted standard, even though they do not consider any vagueness above second

order.

In statistics one could also model a system with various levels of overlying un-

certainty. However, in practice an engineer will at some point choose to “cut off”

his measurements at a certain threshold at which viewing deeper into the problem

handled is no longer relevant or necessary.

5.1.5 Different Truth Functions for Connectives

Where are the criteria that allow us to pick the right or best one? There seems to be

a lack of arguments from “first principles.”

It is, indeed, possible to compute the same connectives in various ways in fuzzy

logic, as was discussed in Section 2.4.2 – something that in classical mathematics or

probability theory would seem alien. Finding various vastly different interpretations

for “+” or for the joint probability of two statements happening in unison would not

be acceptable.

In fuzzy logic, however, the “AND” connective can, for example, be described
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through an unlimited range of possibilities, which will generally offer vastly different

results. The tools employed here, the so-called t-norms, were addressed in Section

2.4.2.

To recapitulate, the three t-norms chosen as significant to this paper were:

Tmin(x, y) = min{x, y}
TÃL(x, y) = max{0, a + b− 1}

Tprod(x, y) = x ∗ y

In probability theory, the combined probability of two independent events can be

denoted quite easily. The “OR” connective can be denoted by:

P (x ∨ y) = P (x) + P (y)− P (x) ∗ P (y)

And the “AND” connective can be denoted by:

P (x ∧ y) = P (x) ∗ P (y)

It is also quite possible to validate these formulas through mathematical deduction

or, alternatively, through empirical validation.

This brings us back to the problem of empirical validation – a perpetual millstone

around fuzzy logic’s neck. While it is quite often possible to validate independence

of events in a statistical environment, it is quite hard to empirically validate much of

anything in a fuzzy environment.

If one removes the possibility of empirical validation from statistics. however, it

again loses its advantage – a topic that will be discussed in Section 5.2.2. It is quite

unclear in what manner any connection between statistical values should be evaluated

if their relation is not known – if it is not known whether one depends on the other

or even if they are disjoint or not.

5.1.6 Worries about “(Too) Many Logics”

Correct reasoning should – like rationality in general – point to just one overall logic of

which other logics can be (modal etc.) extensions or “limit cases.” However (modern)

FL is about an ever increasing range of logics.

This question, in particular seems to accent a split between two vastly different

approaches to fuzzy logic within the fuzzy community, a phenomenon further explored

in Section 5.2.1.While many people argue that fuzzy logic creates models and should

51



thus be treated correspondingly, others are interested in the practical validity of data

handled by a fuzzy system, since they do not regard “it is only a model” as a satisfying

answer.

If one was to accept this answer as valid, however, the endless realm of models

describing a given situation would become something not specific to fuzzy logic. It

is encountered in reality as well, as one can quite easily see when looking at various

vastly different maps of one and the same city (some designed for pedestrians, some

for motorists, some for users of public transport, et cetera). The question remaining

here is whether an ideal model of a given situation exists.

This problem is generally perceived as a problem of reality mapping, rather than

of the logic itself. Mapping of reality can be critical in any theory, as the complexity

of reality is impossible to capture completely with models. Some respondents even

argue that this is not a problem, but rather a blessing, since the multitude of logics

allows various applications from which one can pick and choose, depending on the

specific needs of a given situation.

Also, it was noted that statistics suffer from the same “disease.” Outside of ideal

textbook examples, it is very rare for a statistical situation to possess one, and only

one, stochastic model that ideally describes it. In most cases, the person doing the

modeling will have several models from which to choose. The choice made in such

cases can be just as ambiguous as it is in a fuzzy environment. However, here the

person picking the model can at least do a statistical test on the chosen model to see

how well it works.

5.1.7 Hedging via Disjunctions

[Cited here from Roy Sorenson’s entry for “Vagueness” in the Stanford Encyclopedia

of Philosophy [45]:] “Critics of the many-valued approach complain that it botches

phenomena such as hedging. If I regard you as a borderline case of ’tall man’, I cannot

sincerely assert that you are tall and I cannot sincerely assert that you are of average

height. But I can assert the hedged claim ’You are tall or of average height’. The

many-valued rule for disjunction is to assign the whole statement the truth-value of

its highest disjunct. Normally, the added disjunct in a hedged claim is not more than

the other disjuncts.

Thus it cannot increase the degree of truth. Disappointingly, the proponent of

many-valued logic cannot trace the increase of assertibility to an increase [in] the

degree of truth.”

Sorensen [obviously] intends to evaluate disjunctions through the maximum. But

can “disjunction for hedging” really be explained by, e.g., ÃLukasiewicz, “strong disjunc-

tion”? Why should any particular truth function for disjunction adequately represent
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Figure 5.1: A borderline case between fairly tall and tall

hedging in natural languages? Granted that disjunction by minimum is also a “real

disjunction,” how many “real disjunctions” are there in natural language? How do we

get to know them? Can fuzzy logic provide guidance for answers?

Fuzzy hedging can indeed often lead to insufficiencies, particularly in the field

of natural language processing, as it does not, by default, consider the intentional

relation between terms, but only their mathematical relation.

For example, if a person is a borderline case between tall and average height, he

might have the fuzzy value of 0.5 for both “tall” and “average height.” Intuitively, if

I was to ask if the said person is “tall or of average height,” the answer would have to

be yes if he is a borderline case. Surely covering both possibilities must fully include

him.

A disjunction can be evaluated in many ways. Classically, it is evaluated with

a minimum. In t-norm based fuzzy logics, any t-norm’s dual t-conorm can be the-

oretically used to evaluate the (controversial) “strong disjunction.” As discussed in

Section 2.20, the three relevant t-conorms in this context are:

• Gödel logic: Smax(x, y) = max{x, y}

• ÃLukasiewicz logic: SÃL(x, y) = min{x + y, 1}

• Product logic: Ssum(x, y) = x + y − x · y

However, of the three prominent t-norms, only the ÃLukasiewicz t-norm’s dual, the

bounded sum t-conorm, offers the desired result here.

• Gödel logic: Smax(0.5, 0.5) = max{0.5, 0.5} = 0.5

• ÃLukasiewicz logic: SÃL(0.5, 0.5) = min{0.5 + 0.5, 1} = 1

• Product logic: Ssum(x, y) = 0.5 + 0.5− 0.5 · 0.5 = 0.75
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The answer to this problem, from a practical point of view, is simple: in a prac-

tical application, when working with disjoint fuzzy sets, it would be bad modeling to

use anything but bounded sums to evaluate disjunctions. Evaluating a disjunction

through a maximum, regardless of the context, can be – and has been – compared

to evaluating the probability of two disjoint events occurring in unison in statistics

through the formula P (x ∧ y) = P (x) ∗ P (y), regardless of context.

For example, the probability of rolling an odd number with one die is 0.5. Likewise,

the probability of rolling an even number is also 0.5. Of course, the chances of rolling

an odd number and an even number at the same time in one single role are not

very promising. If one was to use the classical statistical formula for the probability

of two independent events happening in unison, one would get a statistical value of

P (odd ∧ even) = 0.5 ∗ 0.5 = 0.25.

Obviously, this is nonsense, since the connection between two events considered

must be taken into account in statistics. Likewise, it is indispensable to consider

the practical connection between various linguistic variables when deciding how to

compute connectives between them.

5.1.8 Sacrificed Principles of Classical Logics

(Most, if not all) fuzzy logics sacrifice principles of classical logics that seem intuitively

“correct” even from (e.g.) a constructive or “relevance” point of view (e.g., the law

of contradiction ¬(ϕ∧¬ϕ) and idempotence of conjunction ϕ → ϕ∧ϕ etc.) How can

such radical deviations from traditional “laws” be justified?

This issue seems to be related to issues brought up by Charles Elkan in his highly

controversial 1993 paper The Paradoxical Success of Fuzzy Logic [8], in which he

claimed that the mathematical foundations of fuzzy logic collapse under close consid-

eration. Several responses from the fuzzy community illustrated how Elkan had based

his analyses on false assumptions, using tools in certain situations that fuzzy logicians

would never deem adequate. The law of contradiction is one such principle, which

one can make collapse in fuzzy logic, but only by intentionally using means that are

less than ideal.

Using the fuzzy connectives as they were initially proposed, as has been discussed

in Section 2.2, the law of contradiction does indeed fail. If, for example, one was to

consider a situation in which val(ϕ) = 0.5 and was to compute conjunctions as the

minimum, (ϕ ∧ ¬ϕ) would evaluate as 0.5. If one was to evaluate negations through

the complement, 1− val(ϕ), the entire statement would evaluate as 0.5.

T-norm based fuzzy logics, however, use other means that preserve the law of

contradiction. The ÃLukasiewicz t-norm already evaluates (ϕ ∧ ¬ϕ) as 0 for any ϕ.
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The other two popular t-norms evaluate this statement to a value between 0 and 1.

For example, in the given example of val(ϕ) = 0.5:

• Tmin(0.5, 0.5) = 0.5

• TÃL(0.5, 0.5) = 0

• Tprod(0.5, 0.5) = 0.25

However, only ÃLukasiewicz logics evaluate the negation of a truth value ϕ as 1 −
val(ϕ). In Gödel logics and product logics, the negation of any value larger than 0 is

0. As such, the law of contradiction also holds here.

The idempotence of the conjunction, ϕ → ϕ∧ϕ, is another matter entirely. If ϕ is

true, ϕ and ϕ must both be true – in natural language, a trivial statement. However,

only in Gödel logics is the result of ϕ ∧ ϕ identical to ϕ. In the other two major

t-norm based logics, the result of ϕ ∧ ϕ will always be smaller than ϕ, unless ϕ = 1.

In ÃLukasiewicz logics, ϕ ∧ ϕ even evaluates as 0 for any ϕ smaller than or equal to

0.5.

Take, for example, the case of val(ϕ) = 0.6, in which the results would be:

• Tmin(0.6, 0.6) = 0.6

• TÃL(0.6, 0.6) = 0.2

• Tprod(0.6, 0.6) = 0.36

So only in Gödel logics can ϕ → ϕ ∧ ϕ be simplified to ϕ → ϕ, which is trivially

true. In other logics, we get an implication with a consequent smaller than ϕ, unless

ϕ is 1. In this example:

• (0.6 ⇒min 0.6) = 1

• (0.6 ⇒ÃL 0.2) = 0.6

• (0.6 ⇒prod 0.36) = 0.6

Among the three t-norm based logics considered, this principle of classical logics

is thus only preserved in Gödel logics. In addition to the example given, the following

derrivation illustrates how the idempotence of conjunction generally holds:
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• val(ϕ → ψ) = (val(ϕ) ⇒min val(ψ)) =

{
1, val(ϕ) ≤ val(ψ)

val(ψ), val(ϕ) > val(ψ)

• val(ϕ ∧ ϕ) = Tmin(val(ϕ), val(ϕ)) = min{val(ϕ), val(ϕ)} = val(ϕ)

• val(ϕ → ϕ ∧ ϕ) = val(ϕ → ϕ) = (ϕ ⇒min ϕ) = 1

Another principle to be considered is the law of the excluded middle, or tertium

non datur, ϕ ∨ ¬ϕ. While ÃLukasiewicz logics, possibly (see Section 2.4.4) computing

disjunctions through the bounded sum t-conorm and the negation of ϕ as 1− val(ϕ),

will always yield the value 1 for this statement, this is not the case in Gödel logics or

in product logics. For example, consider val(ϕ) = 0.5.

• (0.5 ⇒min 0) = 0

• (0.5 ⇒ÃL 0) = 0.5

• (0.5 ⇒prod 0) = 0

Since both Gödel logics and product logics assign 0 as the value to the negation of

any value greater than 0, ϕ∨¬ϕ will be equivalent to ϕ∨⊥ for any ϕ greater than 0.

The evaluation of the complete example in this case, through the respective t-

conorms (if one was to choose to employ them), yields the following results:

• Smax(0.5, 0) = 0.5

• SÃL(0.5, 0.5) = 1

• Ssum(0.5, 0) = 0.5

This law only holds in ÃLukasiewicz logics, and here also only if t-conorms are

used. To illustrate that it holds generally, and not just in this specific example, we

can combine the formulas of the negation and the disjunction in the following example.

• val(ϕ Y ψ) = SÃL(val(ϕ), val(ψ)) = min{val(ϕ) + val(ψ), 1}

• val(¬ϕ) = 1− val(ϕ)

• val(ϕ Y ¬ϕ) = SÃL(val(ϕ), val(¬ϕ)) = SÃL(val(ϕ), 1 − val(ϕ)) = min{val(ϕ) +

1− val(ϕ), 1} = min{1, 1} = 1
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The preservation of this principle is regarded to be an argument supporting su-

pervaluationism against fuzzy logic as a theory of vagueness, something that will be

discussed in Section 7.1.

However, arguments are also found against the preservation of principles such as

the law of the excluded middle. The statement “either you’re with us or you’re against

us” has caused confusion all over the world throughout the course of history. In logics,

this is equivalent to the aforementioned law, which classical logics preserves. If human

thinking does not necessarily preserve it, it is questionable if a theory of vagueness,

trying to approximate human thinking, should preserve it.

If one wanted to preserve all these principles, however, one would have a problem

in fuzzy logics. To preserve the idempotence of the conjunction, one has to confine

oneself to Gödel logics. To preserve the law of the excluded middle, one has to stick

to ÃLukasiewicz logics. One cannot have both at the same time.

5.1.9 Epistemic, Ontic or Pragmatic Character?

It is left unclear whether the “degree of truth” has an epistemic, an “ontic” or a

“purely pragmatic” character; different interpretations (Giles [13] [14] / Ruspini [38]

/ Mundici [6] / Behounek’s [1] resource interpretation/voting semantics, etc.) seem

to imply different answers. (See, e.g., Jeff Paris [2] [35] for problems with some of

these interpretations). A theory of vagueness should include clear answers to such

questions.

This question is aimed at the nature of facts handled in fuzzy logic – where do

these facts come from?

If they were to be of epistemic character, they would be based on our knowledge

and our perception. The word “epistemic” is based on the term “epistemology,” which

in turn is based on two Greek words – ὲπιστ ήµη(epistēme), meaning knowledge or

science, and λóγoς(lōgos), meaning account or explanation. An epistemic character

would mean that the facts we use are based on our perception of reality and our

knowledge of realty – where knowledge is defined as the area in which our truths and

our beliefs coincide.

”Ontic,” on the other hand, relates to the factual physical existence of a circum-

stance. The word “ontic” also stems from Greek, namely, from the Greek word óντoς

(ōntos), which is a participle of ειναι(einai), meaning “to be.” It refers to factual

circumstances in reality, not to how people perceive these on an individual basis.

”Pragmatic” would mean that the logic works on a result-driven basis. A person

employing pragmatism is interested in getting a useful result and does not care how

valid the model employed might be on a theoretical basis.
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Most respondents seem to credit fuzzy logic with having an ontic character that

may be used pragmatically – and is often used in this way in feedback control systems.

As a question of semantics, the question was not particularly interesting to most

respondents. It was noted, however, that a similar question has often been asked

about probability theory and has never been answered in a satisfactory manner.

5.1.10 Surface Phenomena

Fuzzy logic is only an ad-hoc model for some “surface phenomena” that may be useful

for engineering purposes, but does not help us (a lot) in answering “deep questions”

about correct reasoning, the metaphysical or ontological status of vague predicates,

epistemic and – probably most important – prescriptive (deontic) aspects of logic in

general.

It is true that modeling in fuzzy logic is generally based on surface phenomena.

However, most respondents seem to consider this to be an issue of modeling and not of

the logical system used. Determining the metaphysical origins of knowledge is difficult

in any circumstances.

Any kind of reasoning used in practical situations is hard to analyze to its deep-

est level. Even successful doctors are often credited for making good decisions in a

hypothetical and conjectural fashion, rather than in a deductive manner.

5.1.11 Penumbral Connections

Many philosophers follow Kit Fine [12] in asserting that “penumbral connections”

should be modeled directly in any logic seeking to deal with vagueness. (E.g., if it is

indeterminate whether X is blue or green, it is still definitely true that it is mono-

colored, etc.) Can FL compete with supervaluationism in accommodating penumbral

connections?

Kit Fine explains what he regards to be a penumbral connection in detail in his

1975 paper ’Vagueness, truth and logic [12].

The concept of penumbral connections was discussed in Section 5.1.11. An example

of a penumbral connection that cannot be modeled in fuzzy logics would be the

following:

Consider a color f and a monocolored object x. The object is definitely mono-

colored, but it is not definitely of the color f . No matter what color this object is,

f(x) ∨ ¬f(x) is true.
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Technicians argue that fuzzy logic should not compete here, since penumbral con-

nections of this sort do not lie within its modeling range.

5.1.12 It is Only a Model

FL often insists on a kind of application-oriented point of view. However, it is not

enough to reply “it is only a model” to worries about a particular logic or semantic

machinery. This would beg the question of whether the model is adequately represent-

ing how we should reason correctly in various situations. In general, it is doubtful

whether an “engineering approach” can help us create a full-fledged theory of vague-

ness. Mathematical models can only be a part of or a tool within a theory of vagueness.

Many responses agreed that fuzzy logic is, indeed, only a tool for modeling that

comes from the field of engineering, but that there is nothing “only” about this.

Some claim that fuzzy logic never pretended to offer a foundation for theoretical

understanding of vagueness, while others claim that fuzzy logic is on its way towards

eventual success at this task through a process of abstraction.

Also, any practical applications of any theory of vagueness use models – probability

theory as well can only hope to model occurrences in the real world. Thus, a better

question here would be whether the models used are adequate, judged in terms of

the respective background of a theory – a background that is present in probability

theory. This problem will be discussed in the conclusions, in section 5.2.2.

Natural language is also “only a model,” used by humans to share their thoughts

and impressions with others. Making and using models are elementary aspects of

human thinking – seeing it as a problem seems ridiculous to many respondents.

5.1.13 Relation to Natural Language

FL has an uneasy relation to natural language. On the one hand, it is often claimed

that FL is “close to natural language discourse.” On the other, it does not respect the

fact that in natural language we do not use (concrete, linearly ordered) intermediate

truth values and (different) truth functional connectives.

Fuzzy logic is a precise tool for dealing with imprecise data, while natural language

is imprecise in a manner that cannot be quantified – or is based on a model so complex

that it is impossible to determine the relation between possibly precise causes and

human thought – and thus natural language. (On a very basic level, the human brain

does function digitally – a neuron either transmits a signal or it does not). The author

of this thesis has previously been a co-author of papers on this topic [40] [41] [42].
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The relationship between formal logic and natural language is a problematic one in

any case. The question is what additional contributions fuzzy logic can make here,

having been called “the logic of natural language” by many.

There are limits to how well classical fuzzy logic can approximate natural language.

It is theoretically possible that if, at some point in the future, the functioning of

the human brain is better understood, it will be possible to model natural language

adequately through the use of a great number of stages of fuzziness, as opposed to

only one or two (as are considered in type-2 fuzzy sets – see Section 5.1.4). However,

a model describing such a situation would become complex beyond comprehension –

and, therefore, unusable.

Thus the fact remains that while humans would refer to a person as “rather tall”

or “really tall,” fuzzy logic states that a person is tall to a degree of 0.7 and 0.9.

Many respondents argue that natural language seems like a fairly abstract field

in which to try to implement fuzzy logic. Though this might be true with respect

to applications today, it should be noted that the term fuzzy logic was actually not

coined by Lotfi Zadeh, who spoke of fuzzy sets only initially, but by his Berkeley

colleague George P. Lakoff, a professor of linguistics, in his 1972 paper Hedges: A

Study in Meaning Criteria and the Logic of Fuzzy Concepts [24], in which he explored

the possibilities of applying fuzzy set theory to natural language.

It is not, however, true that humans do not use different truth functional connec-

tives for the same terms in natural language. The word “and” can have quite different

functional meanings in natural language, depending on the context. The meaning of

the word “and” in the sentence “My car is new and red” differs functionally from

that of same word in the sentence “I will buy a car and drive to Canada.” In the first

example, it is commutative – one could easily turn around the two elements connected

by the conjunction without altering the meaning of the sentence. The sentence “My

car is new and red” is equivalent to the sentence “My car is red and new.” In the

second sentence, however, the ”and” contains a temporal element. “I will buy a car

and drive to Canada.” implies that I will buy a car, wherever I might be, and then

drive it to Canada. If I was to turn it around, and say “I will drive to Canada and

buy a car,” the sentence means that I will drive to Canada first (in my old car?), and

only then buy a car. The “and” is not commutative.

Similarly, the connective “or” can also have vastly different meanings. Compare

“If you have a club card or are a pensioner, admission is free” with “follow the rules

or be expelled.” In the first example, admission is free if one of the conditions is met.

In the second example, the two events described are disjoint – if you follow the rules,

you will not be expelled. If you’ve been expelled, you haven’t followed the rules. The

two statements are connected in an exclusive manner – a manner that would employ
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the XOR operator in classical logics.

This, again, might give fuzzy logic an advantage over other approaches. As men-

tioned above – as an objection to fuzzy logic – fuzzy logic can employ a great number

of functions for one and the same connective. When considering natural language,

this seems like a good thing, actually, as natural language also does not have clear

rules for computing its own connectives – conjunctions.

It is, however, true that natural language, unlike fuzzy logic (see 5.1.3,) is not

always truth functional. Take the word “because,” for example. It only models

causal relationships.

One could not model the sentence “The street is wet, because it has rained”

using material implications only. Consequently, as all implications in fuzzy logics are

material implications, it does not seem to be appropriate to call fuzzy logic “the logic

of natural language,” as some have done, when such a basic functionality of natural

language such as causal relationships cannot be modeled with the methods (currently)

available to fuzzy logic.

5.1.14 Operational Deficiency

FL does not compare favorably with probability theory (PT) as a theory of (another

type!) of uncertainty. Granted that FL is about degrees of truth as opposed to degrees

of belief, one may be disappointed about the lack of convincing and robust models in

FL as compared to PT. There is nothing like the paradigmatic application of PT to

(e.g.) games of chance, where it is universally agreed that highly non-trivial, uniquely

determined computations give you demonstrably and empirically well-corroborated

(unique) values corresponding to rational expectation. Will similarly robust, non-

trivial guidelines for complex information processing ever come from FL?

No satisfactory answer to this question was received and further opinions and

would be greatly appreciated. Most respondents seem to see this as something that

only time will answer.

5.1.15 Record of Discourse

Many theoreticians agree that paying attention to the specific context (“record of

discourse”) of an assertion (by competent speakers) is of utmost importance in under-

standing what’s going on in a “(forced march) Sorites” situation (and probably in all

situations, where vagueness is involved). FL does not pay sufficient attention to this

and therefore cannot compete (in particular) with contextualist theories of vagueness

(Shapiro [43] [44], Graff [15] [16] [17], Raffman [36] [37], etc.) with respect to
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questions about the best/correct way of actual reasoning in concrete dialogue scenar-

ios (about Sorites, etc.).

This issue is based on Stuart Shapiro’s 2006 book Vagueness in Context [43].

Shapiro illustrates what he means by a “record of discourse” through a large, idealized

set of so-called competent speakers, which the following example will be loosely based

on.

For example, let us assume that we have 256 monocolored cards, arranged in a

row. The first card on the far left end of the row will be clearly red. In the RGB

color representation system, it would have the value of (255, 0, 0). The last card in

the row, on the far right, will be clearly yellow, with a RGB value of (255, 255, 0).

Every intermittent card will differ from its neighbor by exactly one point on the green

scale of RGB. The second card would have a RGB value of (255, 1, 0), the third one

(255, 2, 0) and so on.

Human vision cannot distinguish 256 different tones between red and yellow; no

human, no matter how good his or her vision is, can tell the difference between

(255, 0, 0) and (255, 1, 0).

A set of competent speakers can now be asked to look at the cards and decide

what color each one is. They would all believe the card on the far left to be red and

they would definitely believe the card on the far right to be yellow. Cards in the

middle of the row would be regarded to be orange.

So where are the borderlines between red, orange and yellow? One must assume

that somewhere along the line, starting from the red end, speakers will look at cards

and not think that they are clearly red.

If one now allowed the speakers to communicate with each other, they might

disagree about where the borderlines between the cards lie. They might find good

arguments to explain why they believe certain cards to be red or not to be red. “We

can agree that this card is red, can’t we? So how can this one not be red, if you

cannot see a difference between them?”

At some point, somewhere along the row of cards, this process would stop – on

the left, on the right and on the edges of the “orange zone.” However, discussions

would still take place in the borderline areas. This record of discourse might make

some people change their minds and alter the way that vague facts are interpreted in

this specific situation.

This is the kind of discourse which fuzzy logic does not take into consideration.

Due to the technical community’s lack of familiarity with Shapiro’s ideas, it was not

possible to collect any theoretical solutions to this problems at this time. Possibly,

uncertainty caused by this phenomenon could be included when modeling the statisti-
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cal uncertainty considered in type-2 fuzzy sets. This would, however, not be sufficient

and accurate modeling of the phenomenon at hand.

5.2 Lessons Learned

5.2.1 Attitudes Differ

The first conclusion is that many issues brought up regarding fuzzy logic are actually

considered to be difficulties of modeling reality rather than issues pertaining specif-

ically to the theory itself. In probability theory, it can often be easy to empirically

prove the validity – or invalidity – of a chosen model. In fuzzy logic, this can be much

more difficult.

The second major conclusion of the data collection project has interestingly enough

not been of a technical, mathematical or philosophical nature, but of a sociological

nature. There seems to be a fairly clear-cut difference in attitudes towards questions

and contemplations of this nature. The author experienced this rift at the NAFIPS

2006 conference in Montreal on a personal level, as was discussed in this chapter’s

introduction, but was not aware of the magnitude of the division between these two

“schools of thought.”

Within the “technical half” of the community [3] [4] [26] [27], only a few of the

issues addressed in this paper are relevant. The general maxim seems to be that fuzzy

logic is a valid tool because it works – its practical successes invalidate conceptual and

philosophical questions about it. If there were conceptual problems with fuzzy logic,

it just would not work in practice. Trying to solve some of the points addressed here

is not of interest to representatives of this community, since in their eyes fuzzy logic is

not supposed to deal with these issues and has never pretended to have solved them.

On the other hand, there are mathematicians and logicians [23] [46] [32] [33] [34]

who seem to regard contemplations of this sort as highly relevant and would themselves

be interested in learning about possible answers to the questions raised. This is not

surprising, since these questions stem from a philosophical context. Within this group,

the practical successes of fuzzy logic generally imply that it is an excellent abstraction

of reality, but do not necessarily imply that it is a valid representation of the many

layers of vagueness encountered in reality. Fuzzy logic’s successes do not imply that

it is anything more than just a model or that it is a valid theory of vagueness.

For the author, who has a limited background in the fields of mathematics and

philosophy, it is hard to see what there is “only” about a model, since from a technical

point of view, practically all methods applied and tools used are models, abstractions

and simplifications of reality. And it is not just difficult to model reality in its entirety,
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it is impossible to do so, as the Heisenberg uncertainty principle [21], among other

theories, states.

Some of the reactions to the questions raised were of a very emotional nature.

This can probably be explained by the fact that fuzzy set theory is a relatively young

discipline in science that faced a great deal of unjustified criticism in its early days.

These attacks were eventually discredited by the practical successes of fuzzy logic,

but it is possible that some of the individuals who experienced those relatively recent

times have continued to be very defensive of their theory until the present day.

Also, prior attempts to discredit fuzzy logic [8] might have led some people to

believe that this project was an attempt to revive such efforts. This, however, was

never the motivation behind the project, whose raison d’ztre was to explore objections

already existing outside of the so-called fuzzy community and to analyze them. Its

focus was to probe whether the questions raised are actually problems with fuzzy logic

or problems related to people’s understanding of fuzzy logic. Moreover, a further goal

was to seek possible solutions for problems deemed to be genuine.

5.2.2 A Question of Modeling?

A number of the points raised in various questions were perceived as issues of modeling

rather than as problems of the models of the logic employed. How well does my model

correspond to reality and can I evaluate this in experiments? Probability theory can

employ statistical tests to evaluate the adequacy of a statistical model in a given

situation. It can empirically confirm its data, which fuzzy logic cannot do.

To many, this advantage in the field of modeling represents an “unfair advantage,”

as it is not a matter of the mathematical or logical framework used, but a matter of

the empirical data collection. To best illustrate this, it seems sensible to create a

situation in which probability theory also cannot employ empirical means to verify its

models.

Such a situation was suggested in the form of a betting shop. For example, a

betting shop could take bets regarding the physical height of presidents of various

countries. The people taking bets and the people setting the odds would lack actual

knowledge about the corresponding presidents.

In one game, for example, bets could be made on the question of who is taller, the

president of Finland or the president of South Korea. Lacking any knowledge about

the individuals in question, odds could still be quoted. Since Finns are statistically

taller than South Koreans, the odds put people betting on the president of South

Korea in a better position to earn more money, since, statistically, this is considered

the less probable answer. The probability of the Finnish president being taller is

considered to be higher.
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If one was then to receive the additional information that Finland has a very

strong history of emancipation, one could consider the probability of Finland having

a female president to be relatively high. As women are statistically not as tall as men,

this would reduce the statistical probability of the Finnish president being the taller

of the two people, in view of the given knowledge.

This probability would be further altered if it was confirmed that the president of

Finland is in fact female, whereas the president of South Korea is not.

If one was to receive the even further information that the prime minister of Fin-

land, Matti Vanhanen, has the formidable body height of 1.98 meters, this would alter

the odds once again in favor of the Finnish president, as it illustrates the possibility

that Finnish people can be even taller than formerly believed – though the possibility

must also be considered that Matti Vanhanen is an outlier in any Finnish population

statistics.

A similar procedure could be continued for a very long time, giving the participants

and the odds-setters an ever-increasing amount of information on both presidents’

ethnic background, family background, hobbies, et cetera. And at every step of the

procedure, odds could be quoted and probabilities estimated.

At some point, one could remove the blinds and reveal that the president of Fin-

land, Tarja Halonen, is 1.72 meters tall, while the president of South Korea, Roh

Moo-hyun, is 1.68 meters tall. Thus, the president of Finland, regardless of any of

the prior considerations, is clearly the taller of the two individuals.

So why was the betting shop talking about the “probability of the President of

Finland being taller than the President of South Korea”? Obviously, since Tarja

Halonen is four centimeters taller than her Korean colleague, the probability of the

statement “the President of Finland is taller than the President of South Korea” is 1,

while the probability value of the statement “the President of South Korea is taller

than the President of Finland” has the value 0. Any other values are simply not

correct.

Nevertheless, we encountered them, even when using “clean” statistical methods,

since the information available to the individuals in the betting shop a priori did not

make a better modeling of the statistical situation possible.

The comprehensible, and thus comparable, nature of statistical values is generally

based on the fact that modeling in statistics is generally easier than it is in a fuzzy

environment, as one can often prove the validity of one’s models through experiments.

If one removes this “unfair advantage, ”however, it becomes clear that probability

theory does not necessarily fare any better than fuzzy logic does under less ideal

conditions.
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Type-2 Fuzzy Sets

In the technical community, there were also many individuals who considered some

of the issues raised in the fifteen questions to be essential problems even in technical

applications of fuzzy set, and view them as driving factors for the development of type-

2 fuzzy sets to enable better modeling of the uncertainties not covered by “classical”

fuzzy sets.

5.2.3 A Theory of Vagueness?

Many of the issues raised in the questions can be solved by specific fuzzy logics. One

can preserve some principles of classical logics by confining oneself to t-norm x and

others by confining oneself to t-norm y (see Section 5.1.8). One can preserve the

idempotence of the conjunction by restricting oneself to Gödel logics and solve the

problem of hedging via disjunction by sticking to ÃLukasiewicz logics.

Outside the realm of fuzzy logics in a narrow sense, this is sufficient. While some of

these principles might be important in an application, they will rarely all be necessary.

A “pick and choose” approach has proven to be quite successful.

There is no question about the fact that fuzzy logic has established itself as a

valid representation of granularity. There are few issues regarding the representation

of graduated concepts, as long as the graduation can be justified, which is quite

commonly the case – see 5.1.1. This is not enough, however, to qualify fuzzy logic as

a theory of vagueness.

When handling vagueness, fuzzy logic has shown itself to be applicable and prof-

itable in many situations. It is not without its mathematical basis. However, to find

universal acceptance as a theory of vagueness, more will be needed. A full-fledged

theory of vagueness will have to be evaluated according to various criteria, includ-

ing adequate representation of language usage, internal coherence and the scope of

applications. These criteria are discussed in detail by Rosanna Keefe in [22].

It is still an open question whether or not fuzzy logic can be considered a full

theory of vagueness in these respects. It would definitely help fuzzy logic if certain

principles considered to be elemental in classical logics could be generally secured in

fuzzy logics, and if one did not have to choose between various alternative fuzzy logics,

some preserving certain principles of classical logics and others preserving different

ones. This lends support to attempts to combine fuzzy logics with other theories of

vagueness – such as supervaluationism – in attempts to utilize the advantages of both.

This idea will be explored in Section 7.1.
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Chapter 6

Supervaluationism Applied

6.1 Supervaluationist Geography

Supervaluationism was created as a conceptual tool to handle vagueness, and not as a

technical tool. As such, the idea of creating applications based on it seems extremely

problematic at first. By saying that a statement lying on the cusp of ambiguity is

neither true nor false, it refuses to give a sharp answer in just the cases in which

applications in the field of engineering would be interested and in which a relevant

tool would be employed in the first place.

This is not to say that a supervaluationist approach has never been considered in a

practical context. An example of contemplations regarding possible practical applica-

tions of supervaluationism can be found in Achille C. Varzi’s 2001 article Vagueness in

Geography [47], which explores predominantly supervaluationist approaches to han-

dling vagueness in a geographical context. In it, he deals with countless fundamentally

vague questions encountered in geography – including some of a Sorites nature.

In geographical terms, a precisification would not be something complex and ab-

stract – it would simply be a possible border for a term. This makes the concept seem

very appealing within this particular realm.

Varzi’s reflections include, for example, the nature of the object commonly referred

to as “Everest,” specifically, where does it begin or end? In considering this question,

he divides Mount Everest and its surroundings into hunks, designated as hi. The

hunk on the very top of Mount Everest would be h0. The next, adjacent hunk would

be h1. If one was to follow a line leading away from the summit of the mountain, the

next hunk would be h2. Hunk number i, away from the top, is referred to as hi.

In a Sorites manner, it would be possible to state that:
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1. Hunk h0 is part of Mount Everest

2. For all k: if hk is part of Mount Everest, then so is hunk hk+1.

Hunk h0 refers to the top of Everest. The logical conundrum represented by this

situation would, without further considerations, make the entire planet Everest.

In supervaluationism, one could define precisifications, for example, by means of

contour lines – the natural “borders” that mountains, as geographical terms, would

have. When leaving the summit of Everest, one would very soon reach a point at

which there would theoretically be a precisification that did not acknowledge the

ground under one’s feet as part of Everest. Thus, it would not be possible to walk

from the summit of Everest to central Katmandu, while still claiming to be on Everest,

due to modus ponens.

While the question of whether a mountaineer’s encampment near the base of the

mountain is on the mountain or not would not be answerable, it would be supertrue

that the summit of Everest is part of Everest and that Katmandu is not.

Everest is located on the border between Nepal and Tibet. Various precisifications

might put the main bulk of the mountain in either Nepal or in Tibet. Thus, it is not

possible to clearly evaluate statements such as “Everest is mostly in Tibet.” It is,

however, possible to clearly evaluate the statement “Either Everest is located mostly

in Tibet or it is not,” as any precisification would put the main bulk of Everest on

one side of the border.

6.2 A User-Aided Reduction of the Precisification

Space

The basic problem with applications of supervaluationism lies in the relatively small

proportion of supertrue or superfalse statements when vague statements are consid-

ered. However, it would be possible to let a user in a dialogue game reduce the size

of the precisification space through an interactive dialogue.

To stay in the realm of geography, the task would be to design a user interface for

user inquiries, which might often include vague concepts.

• “Is Detroit close to Chicago?”

• “Is Mount Fuji a high mountain?”

• “Is Bogotá at a high altitude?”

68



Figure 6.1: An illustration for user-aided precisification space reduction.

• “How many mountains are there in the Alps?”

• “What is the largest city in Western Europe?”

Such could be the nature of vague questions encountered by this system – and, nat-

urally, a system would, lacking further context, not be able to answer most questions

of this type. The system could answer questions such as:

• “Is Mount Everest a high mountain?”

• “Is the North Pole close to the South Pole?”

In the context of geography on Earth, these questions could be answered as (su-

per)true or (super)false, respectively, as there would be no admissible precisification

under which the answers dictated by common sense would be contradicted. Mount

Everest is the highest mountain on Earth, thus, no user with realistic expectations

could consider it to be anything but high. The North and South Poles lie at opposite

ends of the planet and thus have the greatest distance between them possible without

leaving the Earth.

But what about all the other statements? Since a computer would not know the

context of these questions, it is would be difficult for it to answer them – much as

this would also be hard for a human being. Whether Detroit is close to Chicago

depends on whether the user intends to fly, drive, cycle or walk. Mount Fuji, though

a formidable mountain, might seem petite to a professional alpinist who has been in

the Himalayas. The application has no way of knowing the context of a query by

default.
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Figure 6.2: “Is this hut close to the top of the mountain?”

Through a dialogue procedure, however, the application could expand its knowl-

edge of the context of a question. For example, let us consider the example shown

here of three huts built in the area surrounding a mountain top, which is illustrated

in Figure 6.1. The user has asked the application the following question:

“How many huts are there close to the top of the mountain?”

In order to evaluate this question, the application needs to know, for each individ-

ual hut, if it is “close to the top of the mountain.” However, this is a vague predicate

– though it seems clear that the cross is close to the top of the mountain and that

the hut on the far left of the graph is not close to the summit in this context. The

situation is not clear with respect to the two huts in the middle of the illustration.

Without further knowledge, the computer could only say that this statement is

not answerable, as its evaluation runs into statements that are neither supertrue nor

superfalse – namely, the truth values of “hut no. x is close to the top of the mountain.”

Alternatively, however, the application could highlight one of the huts and ask the

user if he considers this hut to be close to the top of the mountain, as seen in Figure .

If the user is able to give a definite answer to this question, the precisification

space will instantly be vastly reduced in size, thanks to the concept of penumbral

connections. For example, let us assume that the user gave a definite answer regarding

the proximity to the mountain’s summit of the second hut on the left in the sketch

If he stated that he does indeed consider this hut to be close to the top of the

mountain, this information would dictate that any object closer to the summit than

the hut in question must also be close to the summit, as this would constitute a

penumbral connection. In this case, we would thus have a supertrue statement at this
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Figure 6.3: “Would you consider this to be a mountain?”

point, given this context. No definite line was set between “close to the top” and “not

close to the top,” but the area in which the answers to this question are considered

admissible has been reduced to an area where it no longer influences the answer to

our question. Hut 1 was disqualified from the beginning. The user has stated that

hut 2 is close to the summit of the mountain, as he sees it. Thus, hut 3 must also

be close to the summit of the mountain, as the penumbral connection dictates. The

answer to the question is now 2.

If the example at hand had been more complex, further inquiries would have been

necessary. For example, if the user had asked how many mountains there are in

the Alps, the application might have given the user several dozen cases of borderline

cases of “hill” and “mountain,” before determining exactly how many objects the user

would consider to be mountains lie in the Alps (See 6.3).

After the end of a session with this application, the framework created through

user interaction could be saved or discarded, depending on the user’s wishes – if he

considers the data he gave the computer highly situation-dependent or if he tends

to see it as a representation of his personal thinking and thus also relevant to future

situations.
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Chapter 7

Connections between Fuzzy Logic

and Supervaluationism

7.1 A Shared Logical Framework

Generally, supervaluationism and fuzzy logic are not considered to be compatible

concepts. While supervaluationism considers vagueness to be a variance between the

way different people use certain terms, fuzzy logic lives on quantifying vagueness.

While fuzzy logic does not uphold concepts such as tertium non datur (ϕ ∨ ¬ϕ) in

general, supervaluationism regards the preservation of these concepts to be essential.

Only ÃLukasiewicz logics preserve them, when using strong disjunctions based on t-

conorms, but even there tertium non datur fails when one uses the weak, lattice

disjunction – as is considered the norm by many (see Section 2.4.4).

Fuzzy logic employs graduated degrees of applicability in regard to linguistic vari-

ables – the degree to which they are applicable can vary between 0 and 1. Supervalu-

ationism considers a separation between true facts and false facts to be possible, while

acknowledging that there are multiple possibilities for this discrimination. Which one

is valid and which one is not, depends on the context.

For example, let us consider the statement “Italy is a large country.” If a fuzzy

logician was asked to evaluate this statement, he might look at tables of world’s

nations and their respective land masses, and would then attempt to quantify Italy’s

size with respect to international standards.

A supervaluationist would claim that this statement is, per se, not answerable. If

it was necessary to give a define answer, he would ask what dimensions the person

making the statement has in mind. Large compared to a country like Switzerland or

large compared to a country like Canada? If he cannot gather any additional data,

he accepts that he cannot say whether this statement is true or not, since the lack of
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context does not disqualify either precisifcations making Italy large or precisifications

that do not do so.

The approaches represent two entirely different methods of reasoning. Neverthe-

less, there have been attempts to find common ground between these theories and to

combine them in one single logic [10], as an extension on Robin Giles’ “games” [13]

[14].

This approach starts by building a simple logical framework, based on principles

explored in Sections 2.4. It uses a t-norm ∗ to function as the strong conjunction &, its

residuum ⇒∗ as the implication → and the constant ⊥, as the falsum to define a fuzzy

logic L(∗). The missing connectives are defined by means of established formulas. The

negation is defined by ¬ϕ = ϕ → 0, the weak conjunction by (ϕ ∧B) = ϕ&(ϕ → ψ),

and the disjunction by the lattice, (ϕ ∨ ψ) = ((ϕ → ψ) → ψ) ∧ ((B → ϕ) → ϕ).

A function v∗ is a valuation for L(∗), assigning a truth value from the real unit

interval [0, 1] to each propositional value.

• v∗(ϕ&ψ) = v∗(ϕ) ∗ v∗(ψ)

• v∗(ϕ → ψ) = v∗(ϕ) ⇒∗ v∗(ψ)

• v∗(⊥) = 0

At this point, a choice of t-norm has to be made. Choosing the minimum t-norm,

or Gödel t-norm, leads to a logic called G, choosing the ÃLukasiewicz t-norm would

lead to a logic called ÃL and choosing the product t-norm would lead to a logic called

Π. All three of these differ in their attributes. The choice of a fitting one depends

on the requirements of the specific situation. Thus, the requirements of this situation

must be examined at this point.

In addition to the “obvious” design choices discussed in 2.4.5, a further design

choice is selected for this situation.

• Small changes in v∗(ϕ) or v∗(ψ) result in, at most, small changes in v∗(ϕ → ψ).

For this to be true, the implication and thus the function ⇒∗, must be continuous.

To recapitulate, the residua of the three “major” t-norms are:

• (x ⇒min y) =

{
1, x ≤ y

y, x > y

• (x ⇒ÃL y) = min{1, 1− x + y}

• (x ⇒prod y) =

{
1, x ≤ y
y
x
, x > y
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In Gödel logics, this is not the case – the implication is discontinuous at any point

where x = y < 1.

• limx→y+(x ⇒min y) = y

• limx→y−(x ⇒min y) = 1

In product logics, there is one point at which the residuum is discontinuous – the

point (0, 0).

• limx→0(x ⇒prod 0) = 0

• limy→0(0 ⇒prod y) = 1

In ÃLukasiewicz logics, however, the residuum is defined as the minimum of two

continuous functions. The minimum of an array of continuous functions is also con-

tinuous. As such, ÃL is “suited” to satisfy this condition. In fact, ÃL is the only fuzzy

logic to satisfy this condition, as is proven in [10].

Up till now, all symbols used represent those used in t-norm based fuzzy logics.

To expand upon this using supervaluationist means, a unary connective S is defined,

which can be read as “it is supertrue that . . . ”. The resulting logic is referred to as

SÃL.

As was the case in Section 3.3, a precisification space Π is defined; a specific

precisification will be referred to as π. Π is endowed with a probability measure

µ using the σ-algebra formed by all subsets of the precisifications in Π, where µ

represents the relative plausibility of different precisifications. For example, if one

was dealing with a cutoff point between the predicate “cold” and its negation “not

cold,” we could have a precisification πx, putting the cutoff point at 10 ◦C and a

precisification πy, putting the cutoff point at 20 ◦C. As it is more plausible that the

cutoff point will be regarded to be around πx, µ(πx) will be larger than µ(πy).

SÃL has the following elements at this point:

• A set of propositional variables p ∈ V = {p1, p2, . . . }.

• The constant ⊥.

• The connectives & and →, and by extension ¬, ∧ and ∨.

• The supertrue-connective S.

• A set of precisification points π ∈ W = {π1, π2, . . . }.

• The mapping e : W × V → {0, 1}.
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• The probability measure µ using the σ-algebra formed by all subsets of W .

• The precisification space, formalized as a triple Π = 〈W, e, µ〉

Given these, the local truth value ‖ϕ‖π is inductively defined for every precisifica-

tion point π ∈ W as follows:

• ‖p‖π = e(π, p), for p ∈ V

• ‖⊥‖π = 0

• ‖ϕ&ψ‖π =

{
1 if ‖ϕ‖π = 1 and ‖ψ‖π = 1

0 otherwise

• ‖ϕ → ψ‖π =

{
0 if ‖ϕ‖π = 1 and ‖ψ‖π = 0

1 otherwise

• ‖Sϕ‖π =

{
1 if ∀σ ∈ W : ‖ϕ‖σ = 1

0 otherwise

As one can see, local truth values do not use t-norms; they use classical means

only. Global truth values, on the other hand, are defined as follows:

• ‖p‖Π = µ({π ∈ W |e(π, p) = 1}), for p ∈ V

• ‖⊥‖Π = 0

• ‖ϕ&ψ‖Π = ‖ϕ‖Π ∗ÃL ‖ψ‖Π

• ‖ϕ → ψ‖Π = ‖ϕ‖Π ⇒ÃL ‖ψ‖Π

• ‖Sϕ‖Π = ‖Sϕ‖π for any π ∈ W

It should be noted that the ‖Sϕ‖π is per se global – there is no such thing as “local

supertruth.” To be supertrue, a statement must be true globally.

When ‖ϕ‖Π = 1 for all precisification spaces Π, the formula ϕ is called valid in

SÃL.

In the scope of the supertrue connective S, formulas behave as they would in

classical logics, and not as they would in fuzzy logics. For example, the formula

ϕ ∨ ¬ϕ, while a tautology in classical logics (and thus also in supervaluationism), is

not a tautology in fuzzy logics. As discussed in Section 5.1.8, its value can be as low

as 0.5 when the weak conjunction is used. S(ϕ ∨ ¬ϕ), on the other hand, is true, as

the scope of S is true under any precisification, as was discussed in Section 3.3.
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7.2 Creating Statistics of Precisification Spaces

7.2.1 Is a Compromise Needed?

Technical systems using fuzzy logic employ various methods to gather the data on

which they base their knowledge, which is represented by means of fuzzy sets. Classical

statistical methods are often used. In some cases the programmer will make a guess

when fitting fuzzy sets and will then refine them through trial and error.

Though not unproblematic, supervaluationism might also have some potential

here. The theoretical foundations of supervaluationism would, however, make such

an attempt “unclean.”

But if one was willing to accept compromises, some possibilities might be explored

that would retain some of the advantages of supervaluationism. In fact, it might

be possible to find bridges to older proposals for dealing with vagueness in practical

applications. The most straightforward compromise that comes to mind here is to

meter the precisification space statistically, and thus to create “fuzzy data” formed by

supervaluationist means. It should be noted that the evaluation of complex formulas

in such a case, would no longer take place through supervaluationist means. Only

atoms are evaluated in a supervaluationist manner.

7.2.2 A Discrete Number of Precisifications

As a simple illustration of a supervaluationist task that could be forced to give values

even when a statement is neither supertrue nor superfalse, the “complete” precisifi-

cation space created in Section 3.3 and the question of what the “inner circles” of an

archery target might be can be revisited. The statements to be evaluated remain the

same. We can start by going back to the statement that “a majority of arrows are

close to the center of the target.”

A majority is constituted by 4 arrows out of 7. The four innermost arrows are

within the central three circles of the target. Therefore, anyone who considers “close

to the center of the target” to be only the central circle or the two central circles

would take this statement to be false. Anyone who considers the third circle close to

the center would regard this statement to be true.

The precisification space still includes four possible precisifications, Π1, Π2, Π3

and Π4. As before, some precisifications see the statement as true and some see it as

false.

There is no supertruth here. Very lazily, one could say that under a share of 0.5 of

precisifications the statement is considered to be true. However, this would be just as

inaccurate as it is lazy, since it considers all precisifications to be equally valid. This
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Figure 7.1: An archery target, revisited.

Πi ‖a‖Πi

1 0

2 0

3 1

4 1

Figure 7.2: Evaluation over the complete precisification space.

77



Πi µ(Πi)

Π1 0.3

Π2 0.6

Π3 0.1

Π4 0

Figure 7.3: Weights assigned to precisifications.

Πi µ(Πi) ‖ϕ‖Πi
µ(Πi) ∗ ‖ϕ‖Πi

Π1 0.3 0 0

Π2 0.6 0 0

Π3 0.1 1 0.1

Π4 0 1 0

Π 1 1 0.1

Figure 7.4: Creation of a weighted mean.

will not be the case, however, since not all precisifications will be equally “popular.”

Just because it is possible to consider all four circles “the inner circles,” it is not very

likely that anyone would actually use this definition. Just referring to the central

circle or to the inner two seems much more likely. One could statistically determine

how many people would apply each respective precisification through surveys. This

methodology will, of course, introduce some of the ambiguity of fuzzy applications

into supervaluationism.

To continue with the example, statistical values adding up to 1 will be assigned

to the respective elements of the precisification space. These will be used as weights

when the mean value is created later on. We can refer to the statistical metric over

the precisification space as µ. It should be noted that the author did not actually

conduct any statistical surveys and thus the values are purely fictional.

With these weights, one could create a weighted mean over the individual evalua-

tions.

‖ϕ‖ =
∑

i µ(Πi) ∗ ‖ϕ‖Πi

Here, our truth value would be 0.1.

It should be noted, however, that while uncertainty has been introduced in such

cases, supertrue statements remain supertrue, and superfalse statements remain su-

perfalse. Let us reconsider the statement “an odd number of arrows has hit the

inner circles of the target,” which was considered supertrue. The evaluation of this

statement in the framework we are now using can be seen in Figure 7.5.
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Πi µ(Πi) ‖ϕ‖Πi
µ(Πi) ∗ ‖ϕ‖Πi

Π1 0.3 1 0.3

Π2 0.6 1 0.6

Π3 0.1 1 0.1

Π4 0 1 0

Π 1 1 1

Figure 7.5: Weighted mean over a supertrue statement.

As the weights were chosen to add up to one, and all the weights are multiplied by

1 and then summed up, it is clear that a supertrue statement cannot offer any truth

value other than 1, while superfalse statements cannot offer truth values other that 0.

7.2.3 Continuous Precisification Spaces

In the previous example, it was a big help that the concentric circles on the archery

target limited the number of possible answers to the statement considered.

If the question had been asked about a target without these, the task would have

been much more challenging, since there would be no discrete number of possible

precisifications. One would be working with a continuous precisification space.

One could consider an archery target that does not have any rings. The only

marked spot on this target would be the bullseye. The target could be hit by 7

arrows. The four arrows nearest the bullseye would constitute “the majority” that

would be of interest to us.

Even though the graphic is two-dimensional, only one parameter is actually im-

portant for the question at hand – the distance of each individual arrow to the center

of the target. Since creating statistical models with a single dimension is a lot easier

than creating one with two dimensions, one can simplify this example by measuring

each arrow’s distance from the center of the target and placing it on a single line

representing the distance of the arrow from the center. The arrows’ distances will

range from 0 (the bullseye) to R (the radius of the target).

Now it is necessary to determine what “close to the center of the target actually

means, much as it was necessary to determine what “the inner circles” of the archery

target were in the discrete example.

Obviously, there will not be one definite answer. Even though we are only working

with one dimension now, there will be an unlimited array of answers, ranging from 0 to

R. Using statistical means again, one could consider it to be possible to approximate

answers given by individuals to the question of what the center of the target is using
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Figure 7.6: A ringless archery target.
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Figure 7.7: Reducing the dimensionality of the problem at hand.
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Figure 7.8: A probability distribution of where the limit of “close to the center of the

target might lie.

Figure 7.9: The arrows’ distances to the center of the target mapped to the distribution

a continuous statistical model and assigning a probability density over the range of

possible solutions – the integral of which, as with any probability distribution, would

add up to one. The density function will be referred to as p(D).

Since, once again, no statistical research was actually conducted in this research,

the author chose a random χ2 probability distribution for the question at hand that

seems potentially plausible. Much as was true with the random weights assigned to

the precisifications in the discrete case, the actual statistical value of this model is nil.

It is only meant to be an illustration of the possibility.

If one was now to combine the data available at this point, it would already be

possible to make an evaluation. One could plot the arrow’s distances to the center of

the target onto the graph’s axis.

Anyone putting the border between “close to the center” and “not close to the

center” closer to the center of the target would consider the statement to be false.
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Figure 7.10: The part of curve in which the statement at hand is true.

Anyone placing it further out would consider it to be true.

What we now have is a probability density function. If in statistics one wants to

determine the probability of a statistical value lying within a certain area in a density

allocation, one forms an integral over the area under consideration. Over the entire

distribution, the integral would be one – which is evident, since the probability of the

value lying somewhere within the probability model is clearly one. Here, 0 will refer

to a distance of zero from the center of the target and A4 will refer to arrow number

4’s distance from the center of the target.

‖ϕ‖ =
∫ A4

0
p(D)

Of course, since this is not a mathematically clean example, stating an actual value

would be preposterous. However, one could approximate it to be somewhere around

0.5.

A more complex example would be the question of whether an odd number of

arrows are close to the center of the target. If one follows the axis of the graph from

0 to R, it can be seen that this statement is at times correct and at times incorrect.

Before one has “encountered” the first arrow from the center, the statement is false.

After having encountered the first arrow from the center, it becomes true and remains

true until the next arrow is encountered.

One can thus see that there are areas on the axis of the graph in which the

statement would evaluate as true, if they contained the border between “close to the

center of the board” and “not close to the center of the board.”

Instead of forming separate integrals, one could also simply form an integral over

the entire function, while including the respective truth values in the integral.

‖ϕ‖ =
∫ R

0
p(D) ∗ Π(D)
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Figure 7.11: The “areas” under the curve in which the statement at hand is true.

Here, the value would lie somewhere around 0.7, making the statement appear to

be fairly true – which, when looking at the target, seems intuitive.

This example remains simplistic, however, since it was possible to reduce the

dimensionality of the problem to one dimension, making the quantification of pre-

cisifications relatively easy, even though an unlimited number of precisifications were

possible. In the case of precisifying a term such as “Toronto,” this would not be

possible, as the boundary of a city does not have to be round and can have any shape

imaginable. In such a case, quantifying the precisification space with a continuous

model does not appear to be a solvable task.

7.3 Max Black – Hazy Sets

Max Black, a Cambridge philosopher and mathematician, penned one possible ap-

proach to handling vagueness in his 1937 article Vagueness. An exercise in logical

analysis [5].

Black proposed a new method to symbolize vagueness: “a quantitative differen-

tiation, admitting of degrees, and correlated with the indeterminacy in the divisions

made by a group of observers.” ( [5], p. 441) He assumed that the vagueness of a

word involves variations in its application by different users of a language and that

these variations fulfill systematic and statistical rules when one symbol has to be dis-

criminated from another. He defined the consistency to which a symbol x is applied

in a language L as C(L, x).

The consistency of an application is a statistical measurement over a sum of indi-

viduals forced to make a decision in a given situation. The consistency of the symbol

x, under a language L, signifies the share of decision makers that claim the symbol
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Figure 7.12: Consistency of application of a typical vague symbol, ( [5], p. 443).

to be applicable in a given situation. If all decision makers agree that the term is

applicable, its consistency is 1. If all decision makers agree that it is not applicable,

the consistency is 0. If 90% of decision makers claim the symbol to be applicable, the

consistency is 0.9.

Accordingly, the complement of the consistency is the consistency with ¬L, where

¬L signifies an inversion of L.

C(¬L, x) = 1− C(L, x)

For example, L could be “x is a large city.” In this case, ¬L would be “x is not a

large city.” x could hold a wide array of meanings, such as “Moscow,” “Reykjav́ık”

or “Vaduz.”“

If one was to chose “Reykjav́ık,” for example, the value of C(L, x) would be the per-

centage of people, in a questioned group, who consider “Reykjav́ık,” with its roughly

103, 000 inhabitants, to be a large city. It should be noted that anyone questioned is

forced to give a clear yes or no answer and cannot refuse to make a decision because he

is uncertain. If 13% decide that they consider “Reykjav́ık” to be a large city, C(L, x)

has the value of 0.13. The value of C(¬L, x) is 0.87.

In Black’s example, he arranged the various situations considered in a series of

declining consistency. He called the graph created by this the “consistency curve” of

the application of the language L. He depicted the consistency curve of ¬L as well,

which due to the nature of C(¬L, x) appears as a reflection of C(L, x) along the value

of 0.5.

It is possible to consider this approach as being related to supervaluationism in

that one could regard the forced decisions, on which the consistency curve is based,
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as precisifications. One could assume that if a person was forced to make decisions in

certain situations, the decision-maker would be precisifying the term in question, on

a conscious or subconscious level.

Statements would only be supertrue (or superfalse) when the consistency curve

reaches the maximum value (or zero), as these incidents, respectively, signify a com-

plete agreement among all persons questioned, who are all considered to be compe-

tent speakers. In between, supervaluationism would consider the statement indeter-

minable, as no consensus exists. The aforementioned compromise, however, would be

to accept a statistical metric of the precisifications that the consistency curve repre-

sents, as a degree of applicability. Mathematically and philosophically, this would be

quite unclean, but it could be considered to be a necessary modeling step, if one was

to try to apply these concepts in reality. It could thus be regarded as a simplification

of supervaluationism.

An example of an application can be found in [40], that illustrates the possibility of

employing Black’s fringe in a multidimensional symptom space in medical philosophy.
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Chapter 8

Closing Remarks

Selecting a topic that included “reviewing” fuzzy logic as a whole, as described in the

mission statement found in Chapter 1, turned out to be a much more challenging task

than it initially seemed. This was due not to the complex nature of the framework

of fuzzy logic, but to the passionately defended divergent views regarding what fuzzy

logic is or is supposed to be.

Lotfi Zadeh himself spoke of different fuzzy logics, as was discussed in Section 2.4.1.

The fact that the only thing some of the concepts operating under the name of “fuzzy

logic” have in common is the basic idea of graduated degrees of applicability has led

to many misunderstandings and also some anger – as was discussed in Section 5.2.1.

A broader consensus on the usage of terms could help prevent further unpleasantness

in the future.

In this specific case, however, it was not actually a problem that the term “fuzzy

logic” covers a wide array of vastly different concepts, as was discussed in Chapter

2, ranging from expansions of mathematical set theory to circuit control systems and

systems of logical reasoning. All were relevant here and they made the comparisons

and combinations with supervaluationism much more interesting.

It should be noted that the choice of supervaluationism as the second focal point of

this thesis was not an unambiguous choice. Supervaluationism was chosen relatively

randomly, as a theory of vagueness that differs vastly from fuzzy logic in both the

goals set for the theory and the contexts in which it has had its successes. While

fuzzy logic (in a broad sense) aims to quantify vagueness to ease problems caused by

vague data in a reasoning system, supervaluationism is based on the idea that it is

not possible to unambiguously quantify vagueness - which has resulted in its being

excluded from a broad range of practical applications, as was discussed in Chapter

3. The “difference in attitudes” between the approaches was visible in particular

when contemplating the way in which the theories respectively handle the Sorites

paradox, as was discussed in Chapter 4. The problems fuzzy logic encounters due to
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its somewhat more “pragmatic” approach towards handling vagueness were discussed

in Chapter 5.

As was asserted in Chapter 7, however, this rift in the objectives of the two theories

does not necessarily mean that they are incompatible. On the contrary, it seems, in

very narrow contexts, to be possible to preserve (some of) the advantages of both when

combining them, be it in logical systems or in applied systems. It is ill-advised to

consider these theories to be antipoles just because their orientations differ so greatly.

It would be interesting to know if the same could be said about the relationship

between fuzzy logic and contextualist or pragmatist theories of vagueness.

And, in general, it should be noted that supervaluationism might not be as fruitless

in the field of technical applications as it might seem at first. Some ideas of applying

supervaluationism as more than “just” a theory of vagueness were discussed in Chapter

7. It clearly cannot compete with fuzzy logic in fuzzy logic’s domain of application –

this would be futile. However, it does seem conceivable that supervaluationism might

have a niche in the field of dialogue systems.

Supervaluationism only considers statements to be definitely answerable when

they are either true or false, under all viable precisifications. And generally, there

will be too many viable precisifications for too many vague terms to leave many

questions clearly answerable. What, however, happens when one allows a system to

reduce the scope of the precisification space (either permanently or for the length of

one conversation) through user interaction? By probing what exactly the user might

mean in a given situation, precisification spaces can be reduced until they become

capable of giving some answers that the user might desire.
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Appendix A

Symbols Used

It is unheard of for a concept in the field of logics or mathematics to be widely

represented by one and only one symbol in all publications around the world. In

order to avoid confusion, it seems prudent to supply a reference table of the symbols

used in this thesis and their respective meanings.
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Symbol Meaning

+ arithmetic addition

· arithmetic multiplication

≤ arithmetic inequality

< strict arithmetic inequality

× Cartesian product

−→ function mapping

∀ universal quantification

∃ existential quantification

∧ weak conjunction

∨ weak disjunction

& strong conjunction

Y strong disjunction

↔ equivalence

¬ negation

→ material implication

¬ negation

` inference

> tautology

⊥ contradiction

∗ t-norm

⇒∗ residuum of t-norm ∗
∩ intersection

∪ union

AC complement of A

⊆ subset

∈ set membership

Figure A.1: Symbols Used.

90



List of Figures

2.1 A classical set and its complement. . . . . . . . . . . . . . . . . . . . . 5

2.2 A fuzzy set and its complement. . . . . . . . . . . . . . . . . . . . . . 6

2.3 Membership function of a classical set. . . . . . . . . . . . . . . . . . . 7

2.4 Membership function of a fuzzy set. . . . . . . . . . . . . . . . . . . . . 8

2.5 Union and intersection of two fuzzy sets. . . . . . . . . . . . . . . . . . 9

2.6 The complement of a fuzzy set. . . . . . . . . . . . . . . . . . . . . . . 10

2.7 A subset of a fuzzy set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 A fuzzy set for the term “cold,” in relation to the room temperature in

a room in ◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.9 An additional fuzzy set added to the example. . . . . . . . . . . . . . . . 12

2.10 Output functions for this example. . . . . . . . . . . . . . . . . . . . . . 13

2.11 Fuzzification and defuzzification. . . . . . . . . . . . . . . . . . . . . . . 14

2.12 Three popular t-norms . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.13 Graph of the minimum t-norm . . . . . . . . . . . . . . . . . . . . . . . 21

2.14 Graph of the ÃLukasiewicz t-norm . . . . . . . . . . . . . . . . . . . . . 21

2.15 Graph of the product t-norm . . . . . . . . . . . . . . . . . . . . . . . . 21

2.16 Three popular t-norms and their residua . . . . . . . . . . . . . . . . . 22

2.17 Graph of the minimum t-norm’s residuum, the standard Gödel impli-
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