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Abstract

The registration of two or more three-dimensional shape representations plays
an important role in areas as di�erent as robotics, engineering and medicine,
among many others. Although there by now exist a variety of powerful
methods and algorithms, there still are unresolved problems such as the reg-
istration of shapes departing from general initial positions and of special
geometries such as kinematic surfaces. This dissertation aims to �nd and
evaluate methods to solve those open issues.

The �rst chapter introduces the topic, touches the standard algorithm ICP
(Iterative Closest Point), discusses the problems that are covered in this
work, and brie�y discusses existing literature on registration with acquired
surface texture and on global registration.

The second chapter describes registration using acquired surface texture. For
smoothly distributed textures a method based on the gradient of texture is
presented. This method and its applicability to kinematic shapes is evaluated
with examples in 2D and 3D.

In the third chapter integral invariant descriptors in 2D and 3D are presented,
their implementation is covered and various examples are shown. Whereas
the planar integral invariants described are already covered in the literature,
three new spatial integral invariant descriptors are presented, all based on
the intersection between the kernel sphere and the shape to be described.

These integral invariants are used in chapter four to support registration
departing from general initial positions (global registration). Demonstrated
is their advantage over di�erential invariants, i.e. the lower sensitivity to
distortions (noise) and their scalability. Apart from the implementation,
examples in 2D and 3D are shown.



Kurzfassung (German)

Die Registrierung von zwei oder mehreren Repräsentationen dreidimensio-
naler Formen spielt eine groÿe Rolle in so verschiedenen Anwendungen wie
Robotik, Maschinenbau und Medizin neben vielen anderen. Wenn auch in-
zwischen vielfältige leistungsfähige Methoden und Algorithmen existieren,
so gibt es doch noch o�ene Probleme wie die Registrierung von Formen in
allgemeinen Startlagen und von speziellen Geometrien wie kinematische Flä-
chen. Diese Dissertation hat zum Ziel Methoden zur Lösung dieser o�enen
Probleme zu �nden und zu evaluieren.

Das erste Kapitel führt in das Thema ein, geht auf den Standardalgorithmus
ICP (Iterative Closest Point) ein, weist auf die in dieser Arbeit behandelten
Probleme hin und behandelt in Kürze bisherige Arbeiten zu Registrierung
mithilfe von Ober�ächentextur und zu globaler Registrierung.

Das zweite Kapitel behandelt die Registrierung mithilfe von aufgenommener
Ober�ächentextur. Für gleichmäÿig, annähernd stetig verlaufende Texturen
wird eine Methode auf der Basis von Texturgradienten vorgestellt. Diese
Methode und ihre Anwendbarkeit für kinematische Formen wird anhand von
Beispielen in 2D und in 3D evaluiert.

Das dritte Kapitel stellt integrale invariante Deskriptoren in 2D und in 3D
vor, behandelt ihre Implementierung und zeigt vielfältige Beispiele. Wäh-
rend die behandelten zweidimensionalen Invarianten schon in der Literatur
beschrieben wurden, werden drei neue dreidimensionale integrale Invarian-
ten basierend auf der Schnittkurve zwischen Kernel und zu beschreibender
Fläche vorgestellt.

Im vierten Kapitel werden diese integralen Invarianten verwendet um Regi-
strierung ausgehend von allgemeinen Startlagen zu erreichen (Globale Regi-
strierung). Ersichtlich wird der Vorteil gegenüber di�erentiellen Invarianten,
d.h. die Immunität gegen Störungen (Rauschen) und die Skalierbarkeit. Ne-
ben der Implementierung werden Beispiele in 2D und 3D gezeigt.



Résumé (French)

La mise en correspondance de représentations de formes 3D joue un rôle
important dans des domaines aussi di�érents que la robotique, l'ingénierie
et la médecine. Même s'il existe de nos jours de nombreux algorithmes et
méthodes performants, il demeure des problèmes non résolus comme la mise
en correspondance de formes ayant une position initiale quelconque et des
géométries spéci�ques comme par exemple les surfaces cinématiques. Cette
thèse cherche à développer et à évaluer des méthodes permettant de résoudre
ces problèmes.

Le premier chapitre présente le sujet, introduit l'algorithme standard ICP
(Iterative Closest Point), discute des problèmes couverts par cette thèse et
énumère brièvement les précédents travaux portant sur les mises en corres-
pondance globale et à l'aide de textures de surface.

Le second chapitre décrit la mise en correspondance utilisant des textures de
surface optiques. Une méthode basée sur le gradient de texture et fonction-
nant pour des textures également réparties est présentée. Cette méthode et
son application à des formes cinématiques sont évaluées sur des exemples en
2D et 3D.

Dans le troisième chapitre, des descripteurs invariants intégraux en 2D et
3D sont introduits, leur implémentation est décrite et de nombreux exemples
sont présentés. Même si les invariants intégraux en 2D décrits ont déjà été
couverts par de précédents travaux, trois nouveaux invariants intégraux 3D
sont présentés. Ceux-ci sont basés sur l'intersection entre le noyau et la forme
à décrire.

Ces invariants intégraux sont utilisés dans le quatrième chapitre pour per-
mettre une mise en correspondance partant de positions initiales quelconques
(mise en correspondance globale). Leur immunité aux distorsions (bruit) et
leur adaptabilité aux changements de taille démontre clairement leur avan-
tage sur les invariants di�érentiels. Suivant leur implémentation, des exemples
en 2D et 3D sont montrés.



Àííîòàöèÿ (Russian)

Ðåãèñòðàöèÿ äâóõ è áîëåå èçîáðàæåíèé òð¼õìåðíûõ ôîðì íàõîäèò øè-
ðîêîå ïðèìåíåíèå â ðîáîòèêå, ìàøèíîñòðîåíèè è ìåäèöèíå. Åñëè ñóùå-
ñòâóþò ðàçíîîáðàçíûå ïðîäóêòèâíûå ìåòîäû è àëãîðèòìû, òî ñóùåñòâó-
þò òàêæå îòêðûòûå ïðîáëåìû, êàê, íàïðèìåð, ðåãèñòðàöèÿ ôîðìû â îá-
ùåì íà÷àëüíîì ïîëîæåíèè è ðåãèñòðàöèÿ ñïåöèàëüíîé ãåîìåòðèè, êàê,
íàïðèìåð, êèíåìàòè÷åñêèå ïîâåðõíîñòè. Ýòà äèññåðòàöèÿ ñòàâèò öåëüþ
íàéòè è îöåíèòü ìåòîäû ðåøåíèÿ ýòèõ ïðîáëåì.

Ïåðâàÿ ãëàâà � ââîäíàÿ, çíàêîìèò íàñ ñ òåìîé è ñòàíäàðòíûìè àëãîðèò-
ìàìè 'Iterative Closest Point' (ICP), èçëàãàåò ïðîáëåìû, ðåøåíèå êîòîðûõ
ÿâëÿåòñÿ öåëüþ ýòîé ðàáîòû, êðàòêî îïèñûâàåò óæå ïðîâåä¼ííûå ðàáîòû
ïî ðåãèñòðàöèè ñ ïîìîùüþ ïîâåðõíîñòíûõ òåêñòóð è ðàáîòû ïî ãëîáàëü-
íîé ðåãèñòðàöèè.

Âòîðàÿ ãëàâà îïèñûâàåò ðåãèñòðàöèþ ñ ïîìîùüþ îïòè÷åñêèõ ïîâåðõ-
íîñòíûõ òåêñòóð. Äëÿ ðàâíîìåðíûõ, ñèñòåìàòè÷åñêè äâèæóùèõñÿ è
ïëàâíî èçìåíÿþùèõñÿ òåêñòóð ïðåäëàãàåòñÿ ìåòîä íà îñíîâå ãðàäèåíòà
òåêñòóð (ïåðåïàäà òåêñòóð). Ýòîò ìåòîä è âîçìîæíîñòü åãî èñïîëüçîâà-
íèÿ äëÿ êèíåìàòè÷åñêèõ ôîðì ïîêàçûâàåòñÿ íà ïðèìåðàõ 2D è 3D.

Òðåòüÿ ãëàâà ïðåäñòàâëÿåò èíòåãðàëüíûå íåèçìåííûå äåñêðèïòîðû â 2D
è 3D - ïðîñòðàíñòâàõ, îïèñûâàåò èõ ðåàëèçàöèþ è ïîêàçûâàåò ðàçíîîá-
ðàçíûå ïðèìåðû. Òåì âðåìåíåì, êàê ðàññìîòðåííûå äâóõìåðíûå èíâàðè-
àíòû óæå áûëè îïèñàíû äðóãèìè àâòîðàìè, â ìîåé ðàáîòå ïðåäñòàâëåíû
òðè íîâûõ òð¼õìåðíûõ èíòåãðàëüíûõ èíâàðèàíòà. Îíè áàçèðóþòñÿ íà
êðèâîé ïåðåñå÷åíèÿ ìåæäó ÿäðîì îïåðàòîðà è îïèñàííîé ïîâåðõíîñòüþ.

Â ÷åðâ¼ðòîé ãëàâå ýòè èíòåãðàëüíûå èíâàðèàíòû óæå èñïîëüçóþòñÿ äëÿ
äîñòèæåíèÿ ðåãèñòðàöèè èñõîäÿ èç îáùèõ íà÷àëüíûõ ïîëîæåíèé (ãëî-
áàëüíîé ðåãèñòðàöèè). Ïðè ýòîì õîðîøî âèäíî ïðåèìóùåñòâî ïåðåä äèô-
ôåðåíöèàëüíûìè èíâàðèàíòàìè � ýòî óñòîé÷èâîñòü ê øóìàì è ìàñøòà-
áèðóåìîñòü. Íàðÿäó ñ ðåàëèçàöèåé òàêæå ïîêàçàíû ïðèìåðû â 2D è 3D
- ïðîñòðàíñòâàõ.
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Chapter 1

Introduction

1.1 Registration

The term registration describes the process of establishing the spatial trans-
formation needed to best-possibly align two or more representations of a
shape. The de�nition of the best alignment hereby relates to a de�ned error
metric, most often based on Euclidean distances between overlapping regions.
Based upon the established registering transformation a range of subsequent
processes and methods can be applied depending on the goal in mind. For
an early publication on the topic see Faugeras and Hebert [FH86].

Registration is of ever increasing importance for a range of quite di�erent
applications. One example is reverse engineering, where a closed digital
representation of a general physical object such as a mechanical machine
part is wanted [EFF98]. From this digital model, information about the
basic underlying structure would then be extracted in order to arrive, in the
ideal case, at a CAD model allowing the reproduction of the part in question,
see [PR98][PWL01] and [PLWP02].

Similar to this there exist archaeological applications which in contrast to
reverse engineering typically would stop with a closed digital model and a
suitable visualization of it. This �eld of application can be classi�ed in that
it is not limited to special geometry and that it su�ces to employ rigid
transformations.

Another growing �eld is medical applications, for example in the context of
computer assisted surgery. For a comprehensive treatment of this topic with
respect to the mid-90s state of science see the doctoral thesis of D.A. Simon
[Sim96]. Due to the properties of the object to be modeled (i.e., the human

1



CHAPTER 1. INTRODUCTION 2

body) and its possibly changing shape during the scanning process (consider
breathing), non-rigid registration is often necessary here.

Still other applications might be restricted to special shapes with their own
advantages and inconveniences, such as the registration of multiple acoustic
range views for underwater scene reconstruction, described in [CFM02]. Also
covering special geometries is the example of an existing application: the
modeling of tunnels in the process of their building/drilling using hierar-
chical feature vector matching on the surface texture in order to establish
correspondences between overlapping surface scans.

Having stated that the registration problem concerns two or more shapes, one
special case in quality control shall be emphasized here. Namely the case,
when a shape represented by a 3D data point cloud is to be best possibly
registered on its ideal, that is the underlying CAD model. This case is
special in that it bene�ts from large overlap up to identity of the boundaries
of the two shapes and in that here a point cloud has to be registered onto an
analytical representation. Multiview registration on the other hand can be
challenging in terms of the amounts of data treated. Pulli proposed a method
that 'aligns scans pairwise with each other and use the pairwise alignments
as constraints that the multiview step enforces while evenly di�using the
pairwise registration errors.' [Pul99].

With our application in mind, there is a slight focus in this work on rigid
registration of general objects with an aim toward remote engineering and
quality control. Especially the interest in the problem �eld of kinematic
surfaces covered in chapter 2 was fanned by practical experience in quality
control of drop forged machine parts.

1.2 The ICP Algorithm

A classical standard algorithm to perform registration is the ICP algorithm
(short for Iterative Closest Point). It has been presented by Besl and McKay
[BM92]. About the same time Chen and Medioni proposed a similar algo-
rithm [CM92]. It di�ers from ICP in that it employs Gauss-Newton iteration,
and because of this performs distinctively better than ICP for �ne registra-
tion.

ICP is an iterative algorithm consisting of two steps. We consider two sets of
points representing overlapping regions of a shape. The moving point set is
to be rigidly transformed (moved) toward the �xed data set. In the �rst step
for each point in the moving set the closest (in terms of Euclidean distance)
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point in the �xed set is searched. This results in a point set Y = (y1,y2, ...)
of closest points in the �xed data set to the point sequence of the moving
point set X = (x1,x2, ...) where points with equal indices correspond to each
other.

This step of each iteration is the most time consuming, calling for e�cient im-
plementation, possibly even using appropriate data structures. In this work
such nearest-neighbor search is always done using the ANN (Approximate
Nearest Neighbor) implementation of D.M.Mount [AMN+98].

The second step consists of computing the rigid motion m that moves the
mobile point set such that distances between moved points m(xi) and corre-
sponding points yi in the �xed point set are minimized;

F =
N∑

i=1

‖m(xi)− yi‖2. (1.1)

Besl and McKay as well as Horn [Hor87] showed how to solve this least
squares problem explicitely. The translational part of the resulting transfor-
mation moves the barycenter of the moving point set onto the barycenter of
the �xed point set whereas the rotational part results from the eigenvector
belonging to the maximum eigenvalue of a symmetric 4 x 4 matrix involving
the covariance.

ICP did of course not remain unchanged. Numerous adaptions and enhance-
ments have been published, such as the fast algorithms by Jost and Hügli
[JH02] and the 'grid closest point' method by Farag et al. [YAHF98] to name
just two. For a good summary on 'e�cient variants of ICP' see Levoy and
Rusinkiewicz who besides propose 'Iterative Corresponding Point' to be a
more appropriate expansion of 'ICP' due to the real nature of its working
principle [RL01].

1.3 Shortcomings of ICP

Nevertheless the ICP algorithm itself has its weaknesses. One issue concerns
the rate of convergence. This however has already been addressed by various
publications, among them [PHYH04], [MGPG04], [PH03] (see also [LPZ03]),
[PLH04], and [PLH02].

One approach described is not only to use the simple point correspondences
found in step one of ICP as the basis of registration, but to consider the neigh-
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borhood of the point and replacing the surface there by the tangent plane
or even a second order approximation. Fig. 1.1 shows the relative advantage
of improved methods over ICP in terms of speed of convergence. The data
sets to be registered are visible in their initial position in the top left picture.
The three diagrams show mean squared ground truth distances vs. number
of iterations for the ICP method (top right), a method minimizing distances
to the tangent plane (bottom left), and a method minimizing distances to
a local second order approximation (SDM, bottom right) respectively. For
the latter two methods the curves are only drawn to the point where the
change of the subjective error metric of the algorithm underwent a certain
prede�ned level or again got worse.

Figure 1.1: Convergence of ICP compared to tangent based and curvature
based method

Another issue concerns kinematic shapes. Surface patches on kinematic



CHAPTER 1. INTRODUCTION 5

shapes such as rotationally symmetric or extruded objects have one ore more
degrees of freedom, in that they can be moved on the kinematic shape in a
way that does not increase or decrease the subjective error metric of purely
geometric registration methods. This weakness inherent to all purely geo-
metric methods but can hardly be ignored given the wide presence of such
geometries in applications.

One �nal issue mentioned here is the necessity to provide well pre-aligned
initial positions to assure that ICP �nds the global minimum contrary to
getting stuck in a local one. On the one hand so called global registration
starting from general initial positions only employing the ICP method will
work only for a narrowly limited range of shapes and applications. On the
other hand there is growing need for methods that achieving global regis-
tration for more general shapes in a fully automatic manner, i.e., without
needing human interaction.

1.4 Selected Prior Work and own Contribution

Registration of kinematic shapes and with acquired texture

Among the literature concerning the use of surface texture for registration
purposes we �nd the approach of Johnson and Kang [JK97]. They propose
a version of ICP they call 'color ICP', which projects the texture of data
before registered by means of ICP onto a '�nal consensus surface' where
the overlapping textures then are blended. The authors claim a decrease in
registration error by an order of magnitude.

Mainly for an archaeological application Sablatnig and Kampel describe a
method for the registration of the front- and the backviews of rotationally
symmetric objects using the axis of rotation of the 'fragments' [JK97].

We propose a simple method that works for the registration of smoothly
textured shapes. It works independently of geometric registration and uses
texture alone but can be combined with geometrical registration methods.
This method can be used for the registration of all kinds of kinematic shapes
and is not restricted to rotational symmetry.

Integral invariant descriptors and global registration

A�ne and Euclidean invariants are frequently used in image processing: for
an example in image retrieval see [TG99]. Manay et al. proposed a special
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group of Euclidean invariants in the plane, gained by integral methods, and
used these 'integral invariants' for shape recognition, demonstrating their ad-
vantages over di�erential invariants [MHYS04]. Further they demonstrated
how to match even heavily deformed shapes via smooth re-parametrization
of their integral invariant signatures [MCYS05].

Telea et al. use similar invariants, based on moment analysis, for the classi�-
cation of surfaces [TRC03] and one more step closer to our application Sharp
et al. use a weighted linear combination of positional and feature distances
for ICP registration [SLW02].

We propose to employ Euclidean invariant features to support spatial rigid
registration. Therefore we present some new integral invariant descriptors
which we use to gain an additional description of shapes. We then use these
descriptors for the establishment of point correspondences in the �rst step of
geometrical registration algorithms.

Using one or several integral invariant descriptors in this way certainly will
not be able to ensure global registration for general shapes. Nevertheless
it considerably widens the range of applications and shapes where global
registration is possible. In other terms, it enlarges the 'funnel of attraction'
into global minima when compared to the standard method.

Basing on integral invariants Huang and Pottmann describe a method for
automatic and robust multi-view registration [HP]. A series of integral in-
variants are used there to extract a few important clusters from each scan.
In a next step surfaces are matched pairwise based on cluster-cluster cor-
respondences. Finally recursive application of pairwise surface matching is
used to achieve global multiple view registration.



Chapter 2

Registration with Acquired
Texture

2.1 General Remarks

While the �rst chapter showed that for most cases registration starting from
close initial positions is a �eld covered by potent methods, there are special
cases that pose di�culties.

Imagine for instance two or more overlapping views of a rotational symmetric
object. Further imagine that no additional information is available, not even
in such a form as the presence of local deviations from the ideal shape. In this
context a shape deviation would assist registration and a systematic analy-
sis of the in�uence of shape deviations of various kinds on the registration
process would certainly be interesting for the case where an acquired shape
is registered onto and compared to its ideal, that is, the CAD model. But
this lies beyond the scope of this work and it su�ces to state that for general
registration a method should also work in the case of vanishing deviations
from the ideal shape, which nevertheless in most instances is the optimal and
wanted case.

Purely based on geometry, the above mentioned views possesses a degree of
freedom in their movement with respect to each other. This degree of free-
dom in mutual movement is such that a movement of rotation around the
common axis of symmetry will in general not increase (or decrease) the sub-
jective error metric of the algorithm. Pure classical ICP implementation is
known to tend to suppress tangential movement and therefore will not 'use'
this degree of freedom in movement. But indeed ongoing relative movement

7
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of point sets some times can be encoutered during registration in commer-
cially available software which (presumably) use more complex methods, at
least when multiple point sets are involved (see �g. 2.1 for an example of
registration of multiple views using an established software package).

Figure 2.1: Tangential movement on rotational symmetric surface
(Positions shown for iteration 1, 9, 17, 25, and 33 from left to right. The
yellow point set can be seen to slide on the others, note the barcode �eld.)

The �gure shows a sequence of intermediate positions in registering multiple
views of a beverage can. The initial position (leftmost picture) is the result of
the acquisition using a numerically controlled turntable and therefore already
close to the real global minimum. The other pictures show from left to right
the positions after the 9th, 17th, 25th, and �nally 33rd iteration. The point
set drawn in yellow can clearly be seen to be gliding on the other point sets
(look at the barcode �eld in the lower part of the can). Even more, the
speed of movement does not decrease and the movement goes on after the
33rd iteration shown.

Rotational symmetry is of course not the only registration speci�c problem
case within the group of kinematic surfaces (for an overview see for example
[Pot04]). The mechanical part depicted in Fig. 2.2 is a quite typical example
for the other �eld of calamities. The central section contains a shape that
can be described by the movement of its cross section as generatrix along a
straight line. Also due to its length this section posed di�culties when reg-
istering using commercially available software and indeed overlapping views
did tend to glide on each other parallel to the length axis.

The third 'dangerous' case of kinematic surfaces are helical surfaces. These
are shapes that are traced out by a generating curve undergoing the combi-
nation of a uniform rotation about an axis and a uniform translation along
the same axis. But since it rarely if ever occurs in practical applications (put
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Figure 2.2: Example for a shape with an extruded section in the center

aside spiral drills and the occasional application in architecture) it does not
need special attention here.

To overcome this di�culty that cannot be overcome purely on a geometrical
basis, additional information is welcome. And indeed, one source of addi-
tional information, potentially helpful for the registration process, often is
easily accessed. Due to the working principle of many 3D scanning devices,
more precisely due to their incorporation of CCDs or similar sensors, a classi-
cal central projected digital photographic image of the view often is available
as byproduct of the scanning process. Consequently a greyscale or even color
value is easily available for each valid spatial vertex of a scan (see �g. 2.3).

Figure 2.3: Scanned view of a beverage can
(left: only vertices / center: digital photography taken while scanning / right:
vertices with associated color information)

Although this additional information per vertex therefore is often easily
available, it has to be handled with caution, or more precisely it needs to
be treated using the proper methods. And although it often is used as a
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straightforward enhancement with an additional geometric dimension in im-
age processing, even with some degree of empirical success, this additional
dimension is in its principle incommensurable with the geometric dimensions.
Therefore, classical Euclidean geometry in principle does not apply [KvD02].

Nevertheless the additional dimension of independent information can be
handled separately and set in relation between multiple views. This is shown
in principle using a simple approach for the planar and the more interesting
spatial case.

2.2 Registration with Acquired Texture in 2D

2.2.1 Theory of Registr. w. Acquired Texture in 2D

Although of less importance and interest than the spatial case, for demon-
strative purposes �rst the planar case is covered.

Every vertex p of a curve in addition to its Cartesian coordinates x = (x, y)
also possesses one or three scalar values f or fR, fG, fB (for the red-, green-
and blue-values), respectively. In the following only one scalar value (i.e.,
the greyscale) per point shall be considered, in the case of RGB images it
has to be handled di�erently. In a simplistic approach the texture part of
the optimization could just be tripled for the three independent components
and each weighted by one third.

Changes in lighting and viewpoint will inevitably have complex in�uence on
the greyscale value acquired for identical points on a surface. This has to be
taken into account when, in addition or alternatively to geometrical distances,
one tries to minimize the 'greyscale distance' of corresponding points. With
these complex relations at hand, we will restrain to a simple, linear model in
estimating changes of the greyscale values.

Let us now consider two sequences of points in a plane, representing pieces
of a planar curve. We will denote the two point sequences as the moving
system (points xi) and the �xed system (points yi), respectively. Each of
the points � in addition to its coordinate values in the xy plane � also has
a scalar value, say a greyscale value as an example for an 'acquired texture'.
'Acquired texture' here means a surface color texture (e.g., taken from the
surface with some scanning device), in contrast to 'geometry inherent texture'
as for example an integral invariant descriptor, see chapter 3.

For each pair of points xi,yi found to be corresponding (by geometric dis-
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tances) we expect also their greyscale values f(xi) and f(yi) to be similar.
But ss mentioned before, even if the two points represent the same location
on a physical object, due to di�erent viewpoints and probably also di�erent
lighting conditions, the greyscale values can, and generally will, di�er. Con-
sequently along with the geometrical transformation of the moving curve we
also will apply a certain re-coloration of its texture.

In the following we will describe a registration algorithm for the two point
sequences xi,yi where the only texture di�erences are minimized, not the
geometric distances. However, the method described below can be easily
combined with geometric methods as for instance squared distance mini-
mization (SDM) (see [PHYH04]).

Figure 2.4: Minimization of greyscale value di�erences

In �g. 2.4 the light curve (in white) represents the moving curve segment
which contains the points xi. The dark curve (in blue) represents the �xed
curve segment containing the points yi. Both curves lie in the xy-plane. The
z axis represents the greyscale values, therefore the spatial curve cT visualizes
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the �xed curve yi together with its greyscale values f(yi).

We now consider a single point xi of the moving curve. Let yi denote its
footpoint on the �xed curve, i.e., yi is the geometrically closest point to xi on
the �xed curve. After one iteration of our registration algorithm, the point
xi will be transformed to a new position xinew. Let the di�erence vector be
denoted by si = xinew−xi. Note that also the color value f(xi) changes with
the transformation to f(xinew), due to re-colorization. We will apply a linear
model for this re-colorization, which will be later given in equation (2.8).

Now we want to determine the new position xinew of the moving point xi

such that its grey value corresponds to the grey value of the �xed point yi in
the following way: Let ti denote the tangent line in the point (yi, f(yi)) of
the corresponding spatial curve cT . Note that here we assume that the �xed
curve and its texture are smooth and di�erentiable. Let εi denote a plane
that passes through the tangent ti and is parallel to the vector yi − xi, see
�g. 2.4. Now we consider the transformed grey value f(xinew) to be in good
correspondence to the respective grey value f(yi), if the distance dT,i (T for
texture) of f(xinew) to the plane εi is small. Note that we will measure dT,i

in vertical direction, i.e., in z-direction,

With our considerations for a single point xi, which is depicted in �g. 2.4,
we have motivated our objective function of our least squares optimization
step:

FT =
N∑

i=1

(dT,i)
2. (2.1)

Let us �rst look at the geometrical transformation that maps xi = (x1,i, x2,i)
to xinew. This is a rigid transformation

xinew =

(
a
b

)
+

(
cos φ − sin φ
sin φ cos φ

)
xi, (2.2)

with unknowns a, b, φ.

Since we have small rotation angles φ we linearize the above motion and
obtain an a�ne motion

xinew =

(
a
b

)
+

(
1 −φ
φ 1

)
xi. (2.3)

The di�erence vector si = xinew − xi therefore is given by

si =

(
a− x2,iφ
b + x1,iφ

)
. (2.4)
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Of course we will use the linearized motion (2.3) only for determining the
unknowns a, b, φ, afterward the points xi are displaced with equation (2.2).

Now we intersect the vertical line through xinew with the plane εi and we
obtain a z-value fε(xinew) which we have to compare with the re-colored grey
value f(xinew), i.e.,

dT,i = fε(xinew)− f(xinew) (2.5)

.

Let us look at the two grey values in detail. First we have

fε(xinew) = f(yi) + αif
′(yi) (2.6)

where f ′(yi) denotes the �rst derivative of f(y) with respect to an arc length
parameter and αi denotes the length of the di�erence vector si in direction
of the unit tangent vector ti in yi to the �xed curve y, i.e.,

αi = si · ti. (2.7)

For the recolored grey value of xinew we assume

f(xinew) = f(xi) + c + d · xi, (2.8)

i.e., an a�ne mapping where the unknowns are the scalar c and the two-
dimensional vector d = (d1, d2).

Substitution of equation (2.4), (2.5), (2.6), (2.7) and (2.8) in equation (2.1)
leads to

FT =
N∑

i=1

(f(yi)+f ′(yi)(t1i(a−x2iφ)+t2i(b+x1iφ))−f(xi)−c−d1x1i−d2x2i)
2.

(2.9)
This is a quadratic function in the unknowns a, b, φ, c, d1, d2 and its mini-
mization leads to the solution of a linear system of equations. The system of
equations consists of the following components:

The solution vector x:

x =


a
b
φ
c
d1

d2

 , (2.10)
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the vector b:

b =



∑
f ′(yi)t1i(f(yi)− f(xi))∑
f ′(yi)t2i(f(yi)− f(xi))∑
f ′(yi)(f(yi)− f(xi))(t2ix1i − t1ix2i)∑
f(xi)− f(yi)∑
x1i(f(xi)− f(yi))∑
x2i(f(xi)− f(yi))

 , (2.11)

and the six columns of the coe�cient matrix A:

a1 =



∑
f ′(yi)

2t21i∑
f ′(yi)

2t1it2i∑
f ′(yi)

2(t1it2ix1i − t21ix2i)∑
−f ′(yi)t1i∑
−f ′(yi)t1ix1i∑
−f ′(yi)t1ix2i

 (2.12)

a2 =



∑
f ′(yi)

2t1it2i∑
f ′(yi)

2t22i∑
f ′(yi)

2(t22ix1i − t1it2ix2i)∑
−f ′(yi)t2i∑
−f ′(yi)t2ix1i∑
−f ′(yi)t2ix2i

 (2.13)

a3 =



∑
f ′(yi)

2(t1it2ix1i − t21ix2i)∑
f ′(yi)

2(t22ix1i − t1it2ix2i)∑
f ′(yi)

2(t1ix2i − t2ix1i)
2∑

f ′(yi)(t1ix2i − t2ix1i)∑
f ′(yi)(t1ix1ix2i − t2ix

2
1i)∑

f ′(yi)(t1ix
2
2i − t2ix1ix2i)

 (2.14)

a4 =



∑
−f ′(yi)t1i∑
−f ′(yi)t2i∑
f ′(yi)(t1ix2i − t2ix1i)

N∑
x1i∑
x2i

 (2.15)

a5 =



∑
−f ′(yi)t1ix1i∑
−f ′(yi)t2ix1i∑
f ′(yi)(t1ix1ix2i − t2ix

2
1i)∑

x1i∑
x2

1i∑
x1ix2i

 (2.16)
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a6 =



∑
−f ′(yi)t1ix2i∑
−f ′(yi)t2ix2i∑
f ′(yi)(t1ix

2
2i − t2ix1ix2i)∑

x2i∑
x1ix2i∑
x2

2i

 (2.17)

Two remarks have to be made about this method. First, without additional
measures employing such a di�erentiating algorithm of course can only be
applied successfully to suitable, that is smooth textures. Second, when an-
alyzing the working principle of this approach, it becomes clear it only can
achieve tangential movement. The reason is that it only minimizes texture
di�erences. For illustration: in the hypothetical case of a straight line own-
ing a signi�cant, suitable texture with an identical copy translated by some
distance in a direction perpendicular to the line, the algorithm would not
decrease the distance between the lines, since it would �nd the correspond-
ing texture values (that is the texture values of a point and its footpoint) to
be perfectly matching without a transformation needed. It can however be
combined with a geometry based method in order to achieve the movement
normal to the tangent plane.

2.2.2 Results of Registr. w. Acquired Texture in 2D

Test Cases

As an example of a smooth texture the well known picture 'peppers512x512'
has been used (�g. 2.5). A synthetic planar curve has been laid on it giving
each point of the curve's point set the underlying greyscale value as its texture
(�g. 2.5 shows this for the noisy subset of the smooth example curve used).

General Case

This case employs a smooth planar curve constructed as interpolating cubic
spline curve with control points (0,0), (1.5,1), (2,-1), (4,1), (3,2), and (5,5).
The �xed data set comprises approximately 500 points, while the mobile
data set approximately 100 points with noise added. The mobile data set
therefore is not a subset of the bigger, �xed one. The transformation applied
to the mobile data set to attain the initial position was a rotation by π/10
about the origin (0,0) and a translation by x = 1.5 and y = −1.0.
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Figure 2.5: Acquisition of greyscale values from image 'peppers512x512'
(Drawn onto the picture are the points of the mobile spline data set used in
the 'general' case below)

For comparison the registration also was conducted using straightforward
ICP and curvature based method. Not surprisingly the curvature based
method converges fastest, but although being considerably slower, the purely
texture based method achieves convergence within ten iterations (�g.2.6).

Figure 2.6: Registration of planar spline curve with texture

'Kinematic' Case

Texture based registration is able to show its potential with the following data
set. The �xed one is a circle segment comprising approximately 200 points
and the mobile one approximately 100 points with noise added. Again the
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mobile set is not a subset of the �xed one. The transformation applied is the
same as for the general case above.

Here, as could be foreseen, the ICP based method clings to the closest geo-
metrical minimum and does not reverse the applied rotation. The curvature
method (presumably by chance or possibly due to the deviations of the shape
from a perfect circle) gets it better but also then stands still without achiev-
ing the full rotation needed. Di�erent so the texture based method which is
slowest but achieves the best convergence (�g.2.7).

Figure 2.7: Registration of circle segment with texture

2.3 Registration with Acquired Texture in 3D

2.3.1 Theory of Registr. w. Acquired Texture in 3D

The application of the 2D concept in section 2.2.1 to the 3D case will be
brie�y discussed here. The moving point cloud xi is surface like, as well
as the �xed point cloud yi. xi and yi with the same index i are again
corresponding points.

First of all the linearization of a 3D motion can be described by

xinew = c+ c× xi, (2.18)

where the new position of xi depends linearly on the unknown 3D vectors c
and c, see [PW01].

The di�erence vector si = xinew − xi also depends linearly on c and c.
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The re-coloration f(xinew) is analogous to the 2D case

f(xinew) = f(xi) + c + d · xi, (2.19)

with unknowns c,d = (d1, d2, d3).

For the equivalent of equation (2.6) we proceed as follows. Let t1 and t2

de�ne two orthogonal, normalized vectors in the tangent space of the �xed
surface shape in the point yi. With respect to these two vectors we can write
the greyscale gradient

∇f(yi) = f1 · t1 + f2 · t2. (2.20)

With this notation we have

fε(xinew) = f(yi) + α1t1 + α2t2, (2.21)

with
α1 = si · t1, α2 = si · t2. (2.22)

Since the objective function is completely analogous to the planar case

FT =
N∑

i=1

(dT,i)
2 =

N∑
i=1

(f(xi,ε)− f(xinew))2, (2.23)

we again have a quadratic function in the unknowns c, c, c,d to minimize.

2.3.2 Results of Registr. w. Acquired Texture in 3D

The veri�cation and demonstration in 3D is given for a kinematic shape.
The (0.5l) beverage can depicted in �g. 2.8 has been scanned using the
scanner and a turntable. Two overlapping views, di�ering from each other
by a rotation of 30�have been chosen.

The ground truth (GT) reference is not de�ned by the initial position deliv-
ered by scanner and turntable but is the result of manual n-by-n point reg-
istration using distinctive features on both views followed by an automatic
registration as �ne-tuning. Then the initial position of the experiment is
achieved by turning one point set away from the other by 10�approximately
around the common axis of rotation (simulating an exaggerated angle error
of the turntable) and then moving it 5mm radially away from this axis.

This object originally has been chosen due to its clear and distinguished
surface pattern. But when viewed in conjunction with the gradient based
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Figure 2.8: Beverage can as kinematic shape example
(left: original scan, center: greyscale view, right: contrast enhanced)

registration method it has to be noted that texture transitions on it in most
cases are not smooth. And when converted to greyscale the situation becomes
even worse since the main di�erently colored areas are reduced to similar
values of grey (see middle picture of �g. 2.8). Still the algorithm performs
distinctively better than the purely geometry based methods (�g. 2.9).

Due to the di�cult nature of the registration problem 30 instead of the
otherwise 20 iterations are shown. Pure minimization of footpoint distances
(i.e., ICP) for this shape shows very clearly the imminent problem (top row of
�g. 2.9). The free point set very fast clings to the surface and then slides on
it not stopping at the correct position since it is not a geometric minimum,
neither global nor local. Consequently the ground truth graph descends
to a minimum and afterward ascends again with roughly the same speed.
Presumably the movement will stop (in a setup with only two point sets)
when they fully overlap.

Minimization of distances to tangent planes and to second order surface
approximations roughly do the same alas with a smaller movement (second
and third row of �g. 2.9). The texture based method on the other hand
not only converges fastest it also stops at the minimum (bottom row of �g.
2.9). The left column shows the associated �nal positions after 30 iterations
in a projected view. For the texture based method it shows a distinctive
di�erence, a gap between the surfaces. Nevertheless this �ts well to the
inability to translation normal to a surface. A remedy could be a weighted
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Figure 2.9: Registration of kinematic shape with texture
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combination with a purely geometric method with a low weight for the latter.

That leaves the question about the (computational) costs of the various meth-
ods. The experiments have been carried out using a non-optimized implemen-
tation in Matlab. In relation to ICP the computation time of 30 iterations,
with the results as presented, where:

• ICP based 100%

• Tangent based 302%

• Curvature based 793%

• Texture based 639%



Chapter 3

Geometry - Inherent Texture

3.1 Geometry - Inherent Texture in 2D

3.1.1 Integral Invariant Descriptors in 2D

In [MHYS04] Manay et al. present for closed planar contours two represen-
tatives of a class of functionals which are invariant with respect to Euclidean
and similarity transformations. Those functionals are obtained using inte-
gral operations and the authors propose their use as a basis to de�ne various
notions of distances between shapes. They share some useful properties with
di�erential invariants, but what especially distinguishes them from the latter
is also an important motivation for their use: integral invariants are far less
sensitive to noise in the data compared to their di�erential counterparts.

Another of their useful features is the intrinsic scale space that is easily
established by varying the kernel measure used. This allows an analysis at
multiple levels of resolution and accompanied with it, under di�erent levels of
measurement noise. In the above mentioned paper the authors show for one
class of integral invariant functionals their uniqueness of representation in the
limit of vanishing kernel measure. This limit corresponds to curvature and
therefore relates this integral invariant to di�erential invariants, a fact that
enables the use of existing literature on di�erential invariants for theoretical
results.

The two representatives have been named 'integral distance invariant' and
'integral area invariant' by the authors. For the 'integral area invariant' they
give an approximation concerning the relation with curvature and there-
fore with local di�erential invariants. But really this approximation de-

22
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scribes a circle segment connected to the so called 'circular arc invariant',
see [PHYK05].

While in chapter 4 applicability of said descriptors for the support of rigid
registration is examined, this chapter covers the de�nition and certain char-
acteristics of a selected range of integral invariants for planar curves and (in
the following section) for spatial surfaces.

3.1.2 The Integral Distance Invariant

The following is based on closed planar contours, but is applicable to open
contours as well. In this case however some considerations have to be made,
considerations about uniquely de�ning the two sides of the contour (since
'inside' and 'outside' do not apply) and about the handling of the two open
ends. Whereas in the 2D section no special treatment of these boundary
points and adjacent curve segments has been applied, later in the more ap-
plication oriented 3D section, an edge region de�ned by the kernel measure
is left without descriptors.

Nevertheless here we consider a closed planar contour that shall be de�ned
by a function γ : S1 −→ R2 with arc length ds. Then the integral distance
invariant for a point p ∈ γ is de�ned as

Iγ(p)
.
=

∫
γ

d(p, x)ds(x). (3.1)

Here d(x, y)
.
= ||y − x|| is the Euclidean distance measure in R2. Therefore

Iγ(p) delivers for the point p as value the average distance to every other point
on the contour. This clearly is invariant under Euclidean transformations.
The invariant can be localized by using a de�ned neighborhood or 'kernel'
in the form of a circle with radius r which is centered in the point p. The
integrand would then be weighted by this kernel q(p, x) leading to

Iγ(p)
.
=

∫
γ

q(p, x)d(p, x)ds(x). (3.2)

In the following this kernel represents the indicator function with value 1
inside the kernel and 0 elsewhere, such that (3.2) equals the average distance
to every other point inside the kernel as integral invariant value. Nevertheless
the kernel can be de�ned tailored to ones needs, just one thinkable example
would be a Gaussian kernel.
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Fig. 3.2 shows the integral distance invariant values for the planar curve
depicted in �g. 3.1, left. The right picture shows the results for a noisy
data set with normally distributed noise with σ = 1 and an amplitude of
+/ − 0.005. It shows clearly that the overall shape of the curve of integral
invariant values stays constant in the presence of noise and does not amplify
the disturbances as di�erential invariants would.

Similarly and with similar results �g. 3.3 depicts the results for clean and
noise-added data set for the closed edgy contour on the right side of �g. 3.1.
Fig. 3.4 �nally shows for the two contours the results for a range of kernel
radii, normalized by kernel radius (Iγ(p)/r).

Figure 3.1: Smooth, open (left) and edgy, closed (right) planar curve

Figure 3.2: Integral distance invariant for a smooth planar curve without
(left) and with (right) noise

3.1.3 The Integral Area Invariant

The 'integral area invariant' simply is the intersection area of the circular
kernel and the planar domain enclosed by the closed curve γ (respectively
the intersection of the kernel with one uniquely de�ned side of the plane in
the case of an open curve). Therefore it is de�ned as
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Figure 3.3: Integral distance invariant for an edgy planar curve without (left)
and with (right) noise

Figure 3.4: Normalized integral distance invariant curves for a smooth (left)
and an edgy (right) planar curve for a range of kernel radii

Ir
γ(p)

.
=

∫
Br(p)∩γ̄

dx (3.3)

whith γ̄ as the interior of the curve, dx the corresponding measure of this
two-dimensional object and a kernel h(p, x) = χ(Br(p) ∩ γ̄)(x). As brie�y
mentioned before, the �rst order approximation given by Manay et al.

Ir
γ(p) ' r2 arccos

(
1

2
rκ(p)

)
(3.4)

(for small kernel radius r and with curvature κ in the point p) really is the
circular sector spanned by the circular arc on the boundary of the kernel
disc spanning between the two intersection points between kernel circle and
contour γ. The length of this circular arc is the 'integral circular arc invariant'
and it is the derivative of the area invariant with respect to the kernel radius.
Interestingly the underlying angle that spans said arc has been used before
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by Conolly for a quite di�erent purpose, which is the classi�cation of protein
surface shapes [Con86]. The correct version of the relation of integral area
invariant with curvature reads

Ir
γ(p) =

π

2
r2 − κ

3
r3 + O(r4). (3.5)

Keeping this in mind due to its advantages in terms of computational costs
we nevertheless use the circular sector as approximation for an integral area
invariant in the following �gures. Fig. 3.5 again illustrates for the smooth,
open contour the insensibility of this class of functionals with respect to noise.
Fig. 3.6 shows the normalized values for a range of kernel radii.

Figure 3.5: Approximated integral area invariant for a smooth planar curve
without (left) and with (right) noise

Figure 3.6: Normalized approximated integral area invariant curves for a
smooth planar curve for a range of kernel radii

Normalization is done by division through the area of the kernel disk 2πr2

(respectively half of it as did Manay et al.). Fig. 3.6 shows this for the open
contour illustrating that for small kernel radii this value tends toward 1/2,
which is the result for the intersection with the tangent in point p.
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3.2 Geometry - Inherent Texture in 3D

3.2.1 Integral Invariant Descriptors in 3D

The extension of the integral invariants from planar curves to surfaces in
R3 is quite natural. If we use a ball where we used a circular disk in R2

respectively a sphere instead of a circle we get the appropriate kernels for
the spatial domain. Consequently the integral area invariant becomes an
integral volume invariant.

In addition to the more general variants, three more integral invariant de-
scriptors shall be presented here, which all share one common feature: they
all are based on the intersection curve of the kernel sphere and the surface to
be described. They incorporate the length of said intersection, the distance of
the intersection's barycenter to the point p, and the two bigger eigenvalues of
a principal component analysis (PCA) of the intersection curve respectively.

3.2.2 The Intersection Descriptor

We start with the following situation: in a point of interest p on a three-
dimensional surface we place the center of a kernel ball Br (p). Di�ering from
the integral volume invariant here we are only interested in the intersection
curve between the kernel ball and the given surface or more precisely in its
length.

Theory of the Intersection Desriptor

For a theoretical analysis we replace the surface in question at the point p of
consideration by a second order Taylor approximation. The coordinate frame
shall be the principal frame at p. Therefore the paraboloid P, approximating
the given surface up to second order is expressed by

zp =
1

2

(
κ1x

2 + κ2y
2
)
, (3.6)

where κ1 and κ2 are the principal curvatures, while the kernel ball has the
equation

z2
s = r2 − x2 − y2. (3.7)
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We want to intersect paraboloid and sphere, but have to bear in mind, that
it is not yet su�cient to reduce the kernel to a half-ball as the principal
curvatures can assume opposite signatures. In order not to neglect this case
with a surface of saddle-shape, F (x, y) for the intersection curve's projection
onto the xy-plane has to be

(
κ1x

2

2
+

κ2y
2

2

)2

= r2 − x2 − y2. (3.8)

The intersection curve itself clearly lies on a sphere, namely the kernel
ball, consequently it is advisable to use spherical coordinates. An alter-
native approach using cylindrical coordinates produces the same results, see
[PHYK05]. With

x = r cos ϕ cos λ (3.9)

y = r cos ϕ sin λ (3.10)

z = r sin ϕ, (3.11)

equation (3.8) becomes(
1/2κ1r

2 cos2 (ϕ) cos2 (λ) + 1/2κ2r
2 cos2 (ϕ) sin2 (λ)

)2
=

r2 − r2 cos2 (ϕ) cos2 (λ)− r2 cos2 (ϕ) sin2 (λ) (3.12)

and with simpli�cation of the trigonometric expressions and dividing by r2

the equation reads

r2
(
1/2κ1 cos2 (ϕ) cos2 (λ) + 1/2κ2 cos2 (ϕ) sin2 (λ)

)2
= sin2 (ϕ) . (3.13)

This equation naturally has four solutions ϕ1,2,3,4 = f (λ), two of which
are real, complementing each other to the amount of π and therefore being
mirror images of each other and allowing us to randomly pick one of them.
Inserted into the equations (3.9) to (3.11) this delivers a parametrization of
the intersection curve only by one parameter; λ. To calculate the arc-length
of the intersection curve, its line integral has to be solved, in our case over
the range of λ:

Ir =

∫ √
ẋ2 (λ) + ẏ2 (λ) + ż2 (λ)dλ. (3.14)
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An precise closed solution of this expression which, after parametrization by
λ and building the �rst derivations, becomes rather complex, is not necessary.
It is enough to use approximates of su�ciently high order for the expressions
of x, y, z as functions in λ. We are mainly interested in the second and third
order terms of the approximation for the intersection curve's length, therefore
we use Taylor approximates for r = 0 up to �fth order to be sure. After �rst
derivation with respect to λ in a second step we do the same again with the
integrand

ir =
√

ẋ2 + ẏ2 + ż2 (3.15)

and replace it by a Taylor approximation for r = 0 up to O(5). This leaves
us with an expression of su�ciently low complexity for symbolic integration

Ir = 4 ·
π/2∫
0

(ir−approx) dλ (3.16)

( symmetry permits to perform integration for one quadrant from λ = 0 to
λ = π/2 only and multiply the resulting length by four ) resulting in

Ir = 2πr +
1

32
π

(
κ2

1 − 10κ1κ2 + κ2
2

)
r3 + O

(
r5

)
. (3.17)

As easily foreseeable, the �rst order term represents the circular intersection
between the kernel ball and a plane going through its center, i.e., the case
of vanishing curvature κ1 and κ2. The third oder term also shows symmetry
with respect to κ1 and κ2. It can not only assume negative but also positive
values, the latter in the case of principal curvatures with opposite signatures
since it incorporates Gaussian curvature κ1κ2. This invariant is less attrac-
tive in terms of stability in the presence of noise than the integral barycenter
invariant covered next. The reason is that small perturbations add up to the
length of the intersection curve while (when evenly distributed) the barycen-
ter largely stays unchanged. The extrema consequently are:

• Ir = 2πr for κ1 = κ2 = 0

• Ir = 0 for κ1 = κ2 = ∞ and κ1 = κ2 = −∞

• Ir = 4πr for κ1 = −κ2 = ∞ and κ1 = −κ2 = −∞.
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Omitting �fth order terms in (3.17) is feasible only for small values of the
kernel radii. Table 3.1 shows the dependency of the integral intersection
invariant on the kernel size for various cases. In this table, Ir

sym is the solution
obtained by symbolic integration, if possible for the given values of kernel
radius and curvatures, Ir

num is the result of a numerical solution implemented
in Matlab using an increment size of ∆λ = π/20.000 and Ir

app is the value
of the approximation using equation (3.17), omitting �fth order terms. Q
�nally stands for the ratio Ir

app/I
r
num (for small values of r, Q tends to 1).

Kernel - Radius: 1e1 1.00 1e-1 1e-2 1e-3 1e-4 1e-5

κ1 κ2

Case a): Close to intersection with a plane
8e-3 8e-3 Ir

sym 6.28e1 6.28e0 - 6.08e-2 - - -
Ir
num 6.28e1 6.28e0 6.28e-1 6.28e-2 6.28e-3 6.28e-4 6.28e-5
Ir
app 6.28e1 6.28e0 6.28e-1 6.28e-2 6.28e-3 6.28e-4 6.28e-5
Q 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Case b): Near-in�nite curvatures
1e10 1e10 Ir

sym 2.81e-4 8.89e-5 2.81e-5 8.89e-6 2.81e-6 8.89e-7 2.81e-7
Ir
num 2.81e-4 8.89e-5 2.81e-5 8.89e-6 2.81e-6 8.89e-7 2.81e-7
Ir
app -e23 -e20 -e17 -e14 -e11 -e8 -e5
Q -e27 -e24 -e22 -e19 -e17 -e14 -e12

Case c): Near-in�nite curvatures with opposite signatures
1e10 -1e10 Ir

sym - - - - - - -
Ir
num 1.13e2 1.13e1 1.13e0 1.13e-1 1.13e-2 1.14e-3 1.15e-4
Ir
app e23 e20 e17 e14 e11 e8 e5
Q e21 e19 e17 e15 e13 e11 e9

Case d): Rotational paraboloid
15 15 Ir

sym 7.23e0 2.22e0 5.31e-1 6.27e-2 6.28e-3 - 6.21e-5
Ir
num 7.23e0 2.22e0 5.31e-1 6.27e-2 6.28e-3 6.28e-4 6.28e-5
Ir
app -e5 -e2 4.52e-1 6.27e-2 6.28e-3 6.28e-4 6.28e-5
Q -e5 -e2 0.85 1.00 1.00 1.00 1.00

Case e): General case
5 0.8 Ir

sym 22.3e1 - 6.27e-1 6.28e-2 6.28e-3 6.34e-4 -
Ir
num 22.3e1 5.30e1 6.27e-1 6.28e-2 6.28e-3 6.28e-4 6.28e-5
Ir
app -e3 4.87e1 6.27e-1 6.28e-2 6.28e-3 6.28e-4 6.28e-5
Q -e2 0.92 1.00 1.00 1.00 1.00 1.00

Case f): General case with bigger di�erence in principal curvatures
10 0.1 Ir

sym 4.64e1 6.23e0 6.34e-1 6.28e-2 - - -
Ir
num 4.64e1 6.23e0 6.34e-1 6.28e-2 6.28e-3 6.28e-4 6.28e-5
Ir
app e3 1.51e1 6.37e-1 6.28e-2 6.28e-3 6.28e-4 6.28e-5
Q e2 2.43 1.01 1.00 1.00 1.00 1.00

Case g): Saddle / opposite signatures of principal curvatures
10 -0.5 Ir

sym - - - - - - -
Ir
num 1.02e2 7.28e0 6.39e-1 6.28e-2 6.28e-3 6.28e-4 6.28e-5
Ir
app e4 2.10e1 6.43e-1 6.28e-2 6.28e-3 6.28e-4 6.28e-5
Q e2 2.89 1.01 1.00 1.00 1.00 1.00

Table 3.1: Integral intersection invariant vs. kernel radii for various cases

Table 3.1 clearly shows that for big values of kernel the radius the approx-
imation fails for all cases except for the trivial one, the intersection with a
plane or for a situation close to it as demonstrated in case a). Since cur-
vature depends on the scale and all cases resemble this trivial one for small
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kernel radii, it is as expected that there the approximation improves in accu-
racy. The results of the numerical solution con�rm what has been mentioned
before about the limiting values. For the cases a) and d) to g) the values
tend toward 2πr, for case b) toward zero whereas for case c) the tendency is
toward 4πr.

Implementation for triangulated point cloud data

The practical implementation that shall be considered here is oriented at the
application of the method described on point cloud surfaces. Let us assume
that we have acquired a triangulated point cloud, say, by means of a 3D laser
scanner. To calculate the integral intersection descriptor value of a point of
interest, as a �rst step a distance �eld for this point is calculated. It contains
the squared distances to each other point in the data set. Based on this an
iso-line is established using the kernel radius ( or more precise the square of
it ) as criterion. This means �nding the points on triangulation edges, whose
distance value, interpolated between the two adjacent grid points, is equal
to the kernel radius speci�ed. The result is an ordered iso-poly-line, whose
segments are summed up to deliver the integral intersection descriptor for
the point in question, if, and only if, the poly-line is closed.

Figure 3.7 shows the intersection of the kernel ball for a point on a data set
representing a statue of a cat. The kernel radius here is 20. In the detail
on the right side the point of interest is drawn as red circle and the iso-line
points on the triangulation edges are drawn as blue stars.

Results

Inherent to the method is that the boundary region is left without descriptor
values, see �gs 3.8 and 3.9. The reason for this is the necessity to restrict to
closed iso-poly-lines in order to enable global comparability. The intersection
curve of kernel and surface must not be cut by the edge of the shape since
this would distort the integral invariant. Its width is at least the kernel
radius. Holes in the data set become equally enlarged in this way. Visible
in �gures 3.8 and 3.9 are the descriptor values for the data set representing
a human face and one of a fruit press for two di�erent kernel radii for the
integral intersection invariant as well as the two other invariants covered in
the following.
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Figure 3.7: Detail of implementation of the integral intersection descriptor
The red ring is the point of interest and blue stars are the intersection points
between kernel sphere and triangle mesh.

3.2.3 The Intersection-Barycenter Descriptor

What shall be called intersection-barycenter descriptor here is based on the
intersection descriptor. Looking for a more robust variant of the intersec-
tion descriptor we take the signed distance between the barycenter of the
intersection curve and the point of interest p.

Theory of the Intersection-Barycenter Desriptor

We want to know the location of the barycenter of the intersection curve be-
tween the surface-approximating paraboloid and the kernel ball in the prin-
cipal coordinate system centered in the point of interest p. When replacing
the surface with a second order Taylor approximation it is obvious that the
barycenter lies on the z-axis of this principal coordinate system since the four
quadrants of the intersection curve are mirrored equivalents of each other.
Therefore when, as in the section before, we use spherical coordinates and
integrate over λ, it makes no di�erence whether we integrate, say, from −π
to π or from 0 to π/2. The result is the same. The equation to be solved
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Figure 3.8: Comparison of three integral invariants using the face data set
with kernel radii 0.01 and 0.03: top row - intersection invariant / middle row
- barycenter invariant / bottom row - eigenvalue invariant
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Figure 3.9: Comparison of three integral invariants using the press data set
with kernel radii 3 and 9: top row - intersection invariant / middle row -
barycenter invariant / bottom row - eigenvalue invariant
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consequently is

zs =

∫ (
z (λ) ·

√
ẋ2 + ẏ2 + ż2

)
dλ∫ (√

ẋ2 + ẏ2 + ż2
)

dλ
(3.18)

The complexity of the expression here is higher than for the pure intersection
descriptor and an approximation of Taylor type for r 7−→ 0 up to �fth order is
employed one additional time at the �nal stage, giving for the approximation
of the intersection-barycenter

zs =
r2

2
·
(

κ1 + κ2

2

)
− r4

64
·
(
3κ3

1 + κ2
1κ2 + κ1κ

2
2 + 3κ3

2

)
+ O

(
r5

)
, (3.19)

or with the mean curvature H the distance between barycenter and p is

dr
c = zs =

H

2
r2 + O(r3). (3.20)

This is an important point when comparing this invariant to the pure inter-
section invariant. The latter incorporates Gaussian curvature and therefore
can be assumed to show less stable behavior, i.e., a bigger sensitivity to noise.

A numerical and, where possible, symbolical veri�cation in the same way
as in the section before proves the validity of this approximation for small
values of kernel radii as can be seen in table 3.2.

Implementation for triangulated point cloud data

The implementation is based handily on the implementation of the intersec-
tion descriptor. But here just the barycenter for the set of points acquired is
calculated. This lowers the computational cost for this invariant. Figure 3.10
shows a detail on the cat data set. There the blue line is the the connection
of the point of interest p with the barycenter of the intersection curve (blue
stars), its length is the invariant wanted.

Results

This descriptor is in some way complementary to the intersection descrip-
tor described in section 3.2.2. For regions with high principal curvature of
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Kernel - Radius: 1e1 1.00 1e-1 1e-2 1e-3 1e-4 1e-5

κ1 κ2

Case a): Close to intersection with a plane
8e-3 8e-3 Ir

sym 3.99e-1 5.59e-3 - - - - -
Ir
num 3.99e-1 4.00e-3 4.00e-5 4.00e-7 4.00e-9 4.00e-11 4.00e-13
Ir
app 3.99e-1 4.00e-3 4.00e-5 4.00e-7 4.00e-9 4.00e-11 4.00e-13
Q 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Conv 0,94 0 0 0 0 0 0

Case b): Near-in�nite curvatures
1e10 1e10 Ir

sym 1e1 1e0 1e-1 1e-2 1e-3 1e-4 1e-5
Ir
num 1e1 1e0 1e-1 1e-2 1e-3 1e-4 1e-5
Ir
app -e35 -e31 -e27 -e23 -e19 -e15 -e11
Q -e34 -e31 -e28 -e25 -e22 -e19 -e16

Conv e-22 e-20 e-18 e-16 e-14 e-12 e-10

Case c): Near-in�nite curvatures with opposite signatures
1e10 -1e10 Ir

sym - - - - - - -
Ir
num e-9 e-10 e-12 e-15 e-16 e-20 e-21
Ir
app 0 0 0 0 0 0 0
Q - - - - - - -

Conv - - - - - - -

Case d): Rotational paraboloid
15 15 Ir

sym 9.93e0 9.36e-1 5.35e-2 7.46e-4 7.30e-6 - -
Ir
num 9.93e0 9.36e-1 5.35e-2 7.46e-4 7.50e-6 7.50e-8 7.50e-10
Ir
app -e6 -e2 3.28e-2 7.46e-4 7.50e-6 7.50e-8 7-50e-10
Q -e5 -e2 0.61 1.00 1.00 1.00 1.00

Conv e-4 e-2 0.51 0.99 0.95 0 0

Case e): General case
5 0.8 Ir

sym - 6.21e-1 1.39e-2 1.45e-4 - - -
Ir
num 9.52e0 6.53e-1 1.40e-2 1.45e-4 1.45e-6 1.45e-8 1.45e-10
Ir
app -e4 -4.80e0 1.39e-2 1.45e-4 1.45e-6 1.45e-8 1.45e-10
Q -e3 -e1 0.99 1.00 1.00 1.00 1.00

Conv e-3 0.13 0.8 0.8 0 0 0

Case f): General case with bigger di�erence in principal curvatures
10 0.1 Ir

sym - - - - - - -
Ir
num 9.22e0 6.82e-1 2.24e-2 2.52e-4 2.53e-6 2.53e-8 2.53e-10
Ir
app -e5 -4.45e1 2.05e-2 2.52e-4 2.52e-6 2.52e-8 2.52e-10
Q -e4 -e2 0.92 1.00 1.00 1.00 1.00

Conv e-4 e-2 0.61 0.83 0 0 0

Case g): Saddle / opposite signatures of principal curvatures
10 -0.5 Ir

sym - - - - - - -
Ir
num 7.16e0 6.09e-1 2.10e-2 2.37e-4 2.38e-6 2.38e-8 2.38e-10
Ir
app -e5 -4.38e1 1.91e-2 2.37e-4 2.37e-6 2.37e-8 2.37e-10
Q -e5 -e2 0.91 1.00 1.00 1.00 1.00

Conv e-4 e-2 0.60 0.82 0 0 0

Table 3.2: Integral intersection-barycenter invariant vs. kernel radii for var-
ious cases
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equal signature, for example an isolated peak, the values of the intersection-
barycenter descriptor will be high, whereas for the (pure) intersection de-
scriptor they are low (see the tip of the nose in �g. 3.8. On the other side:
for vanishing Gaussian curvature, i.e., the intersection with a plane, the value
of the intersection-barycenter descriptor is zero, but for the pure intersection
descriptor it is 2πr.

Fig. 3.11 �nally shows three consecutive views of the Stanford bunny with
integral barycenter invariant for a kernel radius r = 10. It is a representative
example of the situation encountered when employing integral invariant de-
scriptors for the registration of multiple views: the geometry is well described
with the kernel radius chosen, but the described surface area is signi�cantly
decreased, possibly requiring a bigger amount of overlap which has to be
considered in the scanning process.

Figure 3.10: Implementation of the integral barycenter descriptor
red circle - point of interest / green circle - barycenter / blue stars - inter-
section of kernel sphere with triangle mesh

Figure 3.11: Consecutive views of Stanford bunny with integral barycenter
invariant and kernel radius r = 10
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3.2.4 The Intersection-Eigenvalue Descriptor

Finally one more integral invariant descriptor is presented based on the inter-
section curve of kernel sphere and surface. It continues where the barycenter
invariant stopped in that it employs a principal component analysis on said
intersection curve.

Theory of the Intersection-Eigenvalue Desriptor

Theoretical considerations already being covered in detail in section 5.3 of
[PHYK05], here only a brief description and interpretation of the results will
be given. For the intersection curve cr we set up the inertia or covariance
matrix J(cr). Its �rst two eigenvalues λ1,2 as a two-component descriptor we
use as invariants to describe the surface. Considering instead of the surface
its local Taylor approximation of second order with main curvatures κ1,2, we
have to compute the moments λi = M r

i ,

M r
c1 =

∫
y2ds, M r

c2 =

∫
x2ds (3.21)

ending up with

M r
c1 = πr3 +

π

64
(κ2

1 − 14κ1κ2 − 11κ2
2)r

5 + O(r6) (3.22)

and

M r
c2 = πr3 +

π

64
(κ2

2 − 14κ1κ2 − 11κ2
1)r

5 + O(r6). (3.23)

The third eigenvalue is of order r5 in contrast to r3 for the two others and
therefore is the smallest (for small kernel radii), underlining its connection to
the normal vector of the tangent plane (in the limit). While the coe�cients
of r5 in equation (3.22) and (3.23) are not directly the curvature κ1 and κ2,
they are useful replacements [PHYK05].

Implementation for triangulated point cloud data

Implementation continues where the barycenter invariant stopped, from there
on being straightforward in that it is not speci�c to triangulated point cloud
data.
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Results

In the �gs. 3.8 and 3.9 the bottom row illustrates the eigenvalue descriptor
for the two kernel radii r = 3 and r = 9. Since it consists of two components
it has been coded into the diagram by assigning each valid vertex a color
value where the biggest eigenvalue rules the intensity of the red component
of the vertex's color in the RGB color space and the second biggest eigen-
value the intensity of the blue component leaving the green component at
zero. Consequently for example a bright distinctively red point in the dia-
gram signi�es a vertex with a dominating biggest eigenvalue while a bright
purple belongs to a vertex with little di�erence between biggest and second
biggest eigenvalue, both high in relation to the whole range in the diagram
concerned.



Chapter 4

Registration using
Geometry-Inherent Texture

4.1 Global Registration

As mentioned in the �rst chapter, ICP-based and similar methods for the
registration of shapes, i.e., methods that operate only in the planar respec-
tively the spatial domain, deliver satisfying results for close initial positions.
Close initial position in this context means such positions of the shapes that
in terms of distances of the actually overlapping regions are close to the de-
sired global minimum. Consequently the overlapping regions are close both
in translational distance and orientation.

When acquiring digital models of existing shapes this condition often can
be satis�ed by using a suitable acquisition setup. A representative example
is the scanning an object using a 3D scanning device and a numerically
controlled turntable whose axis is �xed with respect to the scanner. After
determining the position of said axis in relation to the scanner, su�ciently
close initial positions between multiple views of the object are easily obtained,
given the accuracy of existing rotary positioning- and scanning technology.
Nevertheless in this example top- and bottom views as well as areas with
occlusions might make acquisition of extra views and manual postprocessing
necessary. Besides, existing hardware well limits the measurable objects in
size and weight.

The concept above can in simple terms be described as 'knowing while scan-
ning' with satisfying accuracy the variable position and orientation of a scan-
ning device with respect to a world coordinate system containing the shape

40
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to be acquired. For the example with the turntable mentioned above and for
the spectator presumably resting in the world coordinate system it was of
course the shape on the turntable which moved in its one rotational degree
of freedom while the sensor rested.

The principle can also be transformed to systems with higher degrees of
freedom. An existing example is the use of an industrial robot arm with all
six degrees of freedom, holding a specially tailored 3D scanning device as
described in [KNB02], [NKB02], [SNKL04], and [NSKL04]. Similar to the
simpler application with the turntable, one of the main challenges here is
to e�ciently establish a su�ciently precise relation between the coordinate
systems of the shape or object wanted and the scanning tool. The position
and orientation of the robot's last link (referred to as the 'hand') is known
with well de�ned accuracy. Less so the position and orientation of the sensor's
coordinate system in relation to its mount, they often cannot be de�ned with
su�cient accuracy and need to be established experimentally. This is referred
to as the sensor-to-hand calibration.

Besides these problems, for many applications the implementation of this
'knowing while scanning' concept will not be possible at all. One example is
the use of hand held scanning devices, another one the necessary treatment
of special situations such as views with occlusions or top/bottom views men-
tioned above. Here other means have to be employed to allow or support
correct registration without or at least with as little as possible human in-
teraction. Apart from registration there also exist other �elds of application
which also pose similar challenges and therefore can pro�t from the solu-
tion of this problem. One example is the retrieval of geometric objects from
databases.

This situation calls for methods enabling globally stable registration. 'Global'
shall be understood here as opposed to starting from close initial positions
that allow the successful application of ICP-based methods working only
within the planar respectively the spatial domain. Therefore global stability
in this context is interpreted as the ability of a method to converge to a global
minimum even when starting from general positions, i.e., positions that are
widely separated concerning all degrees of freedom. This of course assumes
suitable geometry of the data to be registered: the di�culties with kinematic
surfaces remain for example.

It su�ces to employ such a globally stable method to the point, where a close
initial position as mentioned earlier is achieved. In terms of computational
e�ciency and accuracy it makes sense to switch to an e�cient descendant of
the classical ICP method from there on.



CHAPTER 4. REGISTR. USING GEOM.-INHERENT TEXTURE 42

There exists a great variety of geometric features that are invariant under
Euclidean transformation. Some of them have already been used to assist
rigid registration. Sharp et al. for example study the employment of cur-
vature, a di�erential invariant, as well as moment invariants and spherical
harmonics invariants for the registration of geometries [SLW02]. Here in this
work the focus is to employ integral invariants as described in chapter 3,
which promise advantages such as locality of computation and scalability
while not being as sensitive to noise as di�erential invariants.

The principle is to calculate these descriptors in order to gain additional in-
formation about the shapes to be registered. This information of course is to
be gained in a preprocessing step, before registration. The additional infor-
mation shall span additional dimensions of the domain in which registration
is to take place. In this work the augmented domain is used only to establish
nearest neighbor correspondences, which in turn serve as the basis for error
minimization just as in step two of ICP. How many additional dimensions
are used, which type of integral invariant descriptors, and with which kernel
radii is a matter of the application, i.e. the characteristics of the shapes to
be registered.

Furthermore it is advantageous to amplify the values of the integral invariant
descriptors with respect to the planar respectively spatial geometrical data
in order to increase their weight. This ampli�cation factor is called the 'gain'
in the following and again the right choice depends on the application and
the type of invariant. Nevertheless the following sections show in principle
the advantage of the employment of integral invariants.

4.2 Global Registration in 2D using Geometry

Inherent Texture

4.2.1 Implementation in 2D

The purely planar, not integral invariant � assisted method used for com-
parison is based simply on minimization of foot point distances in the plane
to get the parameters for the planar transformation (that is in detail one
two component vector of translation and one angle of rotation). The inte-
gral invariant�assisted methods do the same, the di�erence lies in how the
nearest neighbor correspondences are established. The conventional method
used for comparison looks for nearest points in the planar domain and then
minimizes the distances between them, whereas using the integral invariants
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the nearest points in the 2+1 or more generally 2+n dimensional, enhanced
domain are determined. Nevertheless, after these point pairs are found, only
the distances in the plane are minimized. Hereby a symmetric approach in
establishing nearest neighbor correspondences is used, i.e., between two point
clouds correspondences in both directions are acquired.

There is one consequence of the relative di�erence of ranges of the incom-
mensurable coordinates x and y (respectively x, y and z for the spatial case)
versus the invariant and the ampli�cation of the invariant domain that has to
be kept in mind for the implementation: maximum distance criteria for the
search for nearest neighbors have to be handled di�erently, due to their pos-
sibly bigger range in the ampli�ed additional coordinate(s). This also must
not be forgotten in the dynamic handling of such criteria over the course of
registration, when in later stages of the registration process corresponding
regions are closer to each other and the search radius for correspondences is
decreased.

Data used

Four di�erent point data sets are used shown in �g. 4.1. All of them are
of synthetic origin, created using spline methods. The curves were created
to represent di�erent characteristics, open and closed as well es smooth and
edgy. In the following �gures the curve itself is always drawn in black, one
set of sampled, noise added data points (set 'A') is drawn as red dots the
other (set 'B') as blue dots. The total number of sampled data points in
all four curves is 1000. In order to avoid unpredictable additional in�uences
on the results of the registration process a rather even distribution of points
has been chosen. Based on the underlying curve, two di�erent noisy sampled
data sets are generated, therefore in the noisy case, two nonidentical noisy
point sets have to be registered. Of those only the one remaining in its
original position is drawn in red in �g. 4.1. The noise added to the two data
sets 'A' and 'B' is normally distributed with σ = 1 and an amplitude of +/-
0.005. Spline control points are marked by small crosses.

Initial positions

In order to be su�ciently 'general', also meaning su�ciently representing a
worst case scenario, for an examination of globally stable planar registration
the initial position shall be de�ned as follows: �rst the closest points of the
two shapes to be registered shall be separated from each other by about the
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Figure 4.1: Data sets used for planar registration using integral invariants
(The curve is drawn in black while red dots mark one of the two sampled
noise added data sets and crosses mark the spline control points used for
construction.)

maximum distance between two points inside one of the two point clouds.
Second a signi�cant rotation shall be applied in two steps, up to roughly,
but not exactly 180 degrees. The purpose of this is to set up traps in the
form of local minima that have to be overcome by the registration method.
Especially symmetrical shapes as presented in curve 4 in �g. 4.1 combined
with said rotation will likely pose an obstacle for conventional algorithms as
ICP working only in the planar domain.

Fig. 4.2 shows for each of the four data sets two di�erent initial positions
with translation and with rotations of 89 and 166 degrees applied. Those
values have been chosen to get roughly but not exactly a rotation by 90 and
180 degrees respectively.
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Figure 4.2: Initial positions for planar data sets
(The �xed point set is drawn in red whereas the moving one is drawn in blue.
The left column contains the initial position with a rotation of about π/2
and the right column those with rotation of about π.)
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4.2.2 Results in 2D

Single integral invariant descriptor used

The obvious di�erence between the establishment of nearest neighbor cor-
respondences only in the planar domain and in the domain enhanced with
one integral invariant descriptor respectively is shown for non�noisy data in
�g. 4.3. For this example the integral distance invariant has been used. Al-
though for the experiments conducted a symmetric approach in establishing
nearest neighbor has been used, only one direction is illustrated in order to
avoid confusion.

For six randomly chosen points on the red curve (marked as black crosses)
the corresponding nearest neighbors on the blue curve are displayed. Nearest
neighbors in the planar domain are shown as green circles connected by green
dashed lines whereas those in the integral invariant enhanced domain are
drawn as black circles connected by black dotted lines. In this �gure it can
clearly be seen that for the chosen kernel size and ampli�cation of the integral
invariant values and for this shape the use of integral invariants yields better
correspondences. Looking at the distribution of integral invariant values for
this curve (�g. 3.2) shows why.

Figure 4.3: Comparison of nearest neighbors in 2D and in (2 + 1)D
(Only one direction shown. Black crosses mark random points on the �xed
data set. Black respectively green circles mark the corresponding nearest
neighbors in the (2+1)D respectively the 2D domain.)

Using data with added noise decreases the advantage of the integral invariant
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enhanced method to some degree as can be observed in �g. 4.4. Neverthe-
less also with noisy data there is a distinctive di�erence between the purely
planar determination of nearest neighbors and additionally using an integral
invariant. The purely planar method exhibits globally seen poor choice of
nearest neighbors.

Figure 4.4: Comparison of nearest neighbors in 2D and in (2 + 1)D for noisy
data
(Only one direction shown. Black crosses mark random points on the �xed
data set. Black respectively green circles mark the corresponding nearest
neighbors in the (2+1)D respectively the 2D domain.)

Investigating the results for a range of gain factors from G = 1.0e0, G = 1.0e1
to G = 1.0e6 and for kernel radii r = 1.0, r = 2.2, r = 4.7 and r = 10.0 have
lead to the following conclusion: the smaller the ampli�cation factor and the
kernel radius (in relation to curvature and overall size of the data set), the
closer nearest neighbors found in the (2 + 1)D domain are to those in the 2D
domain. Ampli�cation of the invariant domain with a gain factor G bigger
than 1.0e6 did not further improve results.

When looking at the registration process for the curve 4 with noise added
and a rotation of 166 degrees we see the following (�g. 4.5): due to reasons of
symmetry in this shape standard registration does not achieve the necessary
rotation. It locks in a local minimum failing to �nd the global one. All
intermediate states of the 20 iterations are drawn in green for the classical
method and in black for the integral invariant assisted method. Fig. 4.6 shows
the registration process in terms of mean squared ground truth distances
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versus iteration count.

The four di�erent curves, each with two di�erent starting positions (rotation
by 89 degrees and 166 degrees) and each with and without noise added give
16 di�erent cases. Those cases where used to compare performance of to the
classical method versus registration assisted by

integral distance invariant for kernel radii

r = {0.10, 0.22, 0.47, 1.0, 2.2, 4.7, 10.0}

and the integral area invariant for kernel radii

r = {0.47, 1.0, 2.2, 4.7}.

The results are shown in table 4.1.

Without using integral invariants only one case, the smooth open curve 1
rotated by 89 degrees could be successfully registered (both without and
with noise), resulting in a 12.5% success rate. Using the integral distance
invariant on the other hand results in a success rate of 100%, meaning that in
all cases at least one of the kernel values listed was successful. Furthermore
in 62.5% of the cases all of the kernel values were successful. For the integral
area invariant the success rate of all cases was again 100% respectively 87.5%
(remember that for the second �gure a smaller range of kernel values was
used).

Multiple integral invariant descriptors used

It is of further interest, whether the convergence gets even better when mul-
tiple integral invariant descriptors are used simultaneously. This can mean
di�erent types of descriptors, di�erent kernel radii as well as a combination
of both. Fig. 4.8 shows the result in terms of mean squared ground truth dis-
tances vs. iteration count for establishing nearest neighbor correspondences
in 2D, in (2 + 1)D and in (2 + 4)D. For (2 + 4)D the distance invariants
with r = 4.7 and with r = 10.0 and area invariants with r = 1.0 and r = 2.2
are used, but for (2 + 1)D only the distance invariant with r = 4.7 (this is
the fastest converging integral invariant of all if only one integral invariant
is used). The diagram shows that in combination the convergence indeed is
faster than only with the single distance invariant. In �g. 4.7 the interme-
diate positions of the mobile point cloud for the �rst six iterations can be
seen for the use of only one integral invariant (black) and of four integral
invariants (magenta) showing the latter slightly ahead.
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Figure 4.5: The registration process for the planar curve 4 with noise added
(Intermediate positions of the point sets after each of the 20 iterations are
drawn in black respectively green for the integral invariant assisted respec-
tively the non assisted method.)

Figure 4.6: Ground truth error metric versus iterations for the registration
of curve 4 (see �g. 4.5) with noise added
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Figure 4.7: The registration process for the planar curve 4 with noise added
using multiple integral invariant descriptors
(Intermediate positions of the point sets after each of the �rst 6 iterations
are drawn in black respectively magenta for the method using one integral
invariant respectively four integral invariants.)

Figure 4.8: Ground truth error metric versus iterations for the registration
of curve 4 with noise added using multiple integral invariant descriptors
(The integral invariant descriptors used are the distance invariants with r =
4.7 and with r = 10.0 and area invariants with r = 1.0 and r = 2.2. The
black curve for comparison only employs the distance invariant with r = 4.7.)
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w/o int. invar. int. dist. invar. int. area invar.
DATA SETS WITHOUT NOISE:
Curve 1 / 89◦

√
7/7 4/4

- / 166◦ F 7/7 4/4
Curve 2 / 89◦ F 7/7 4/4

- / 166◦ F 7/7 4/4
Curve 3 / 89◦ F 7/7 4/4

- / 166◦ F 7/7 4/4
Curve 4 / 89◦ F 7/7 4/4

- / 166◦ F 7/7 4/4
DATA SETS WITH NOISE:
Curve 1 / 89◦

√
7/7 4/4

- / 166◦ F .4/7/ 4/4
Curve 2 / 89◦ F .4/7/ 4/4

- / 166◦ F .4/7/ 4/4
Curve 3 / 89◦ F 7/7 .3/4/

- / 166◦ F .4/7/ .3/4/
Curve 4 / 89◦ F .5/7/ 4/4

- / 166◦ F .2/7/ 4/4

Table 4.1: Success of planar registration without integral invariants, with
distance and with area invariant.
(
√

marks where registration without integral invariants worked and F where
it failed. 4/7 signi�es that of in total seven kernel values examined, four
enabled successful registration. Triangles mark the cases where not all of the
used kernel radii lead to success.)

4.3 Global Registration in 3D using Geometry

Inherent Texture

4.3.1 Implementation in 3D

The spatial case is a straightforward extension of the planar one, i.e., when
registering while employing one integral invariant descriptor, we operate in
a (3 + 1)D domain. Nevertheless due to the increased degrees of freedom
for Euclidean transformations here, a global minimum generally is harder to
achieve than in the planar case.

Di�ering from the planar analysis, we do not restrict ourselves to identical
or fully overlapping data sets now. When acquiring digital models of exist-
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ing objects, considerations of e�ciency call for a minimum of scans to be
acquired. Nevertheless overlapping regions are necessary for the registration
process, the actual amount depending on the application, i.e., the shape as
well as on the quality of initial positions.

While integral invariant descriptors do support registration, this does not
come completely for free. There is a clear trade-o� when choosing kernel
radii. Big kernel radii often result in more 'descriptive' integral invariant
descriptor values with bigger variation over a shape. This is clearly visible
for the biggest kernel radius r = 20 where the edges of the part show more
distinctively compared to the rather uniform distribution for the smallest
r = 5 in �g. 4.9. Small (in relation to the geometry of the shape) kernel radii
capture less variation of the shape's features and of course in the limit case
tend toward 2rπ.

On the other hand, due to their generation by intersecting with a kernel ball,
with increasing kernel radius increasing regions bordering edges and holes of
the data set remain without valid descriptor values (again see the increase of
area without descriptor values from top to bottom, i.e.; for increasing kernel
radii in �g. 4.9). This loss of usable surface of course takes place 'on both
sides', i.e., on both shapes to be registered onto each other amplifying the
di�culty further. When registering identical, fully overlapping data sets this
problem is of less importance since the integral invariant described area still
is identical on both data sets.



CHAPTER 4. REGISTR. USING GEOM.-INHERENT TEXTURE 53

Figure 4.9: Areas without descriptor values as function of kernel radius
(Points w/o descriptor values drawn blue)
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4.3.2 Results in 3D

Identical shapes: data set 'Face'

The �rst data set used for this experiment is the model of a human face
already presented in chapter 3 (�g. 4.10 left). It is rotated by a yaw angle
of y = 10�, a pitch of p = 20�and a roll of r = 150�and �nally translated
by the vector ( 0.05, 0.05, 0.25 ) for the initial position to be registered onto
itself (�g. 4.10 right).

All three integral invariant descriptors where calculated for kernel radii

r = {0.010, 0.015, 0.020, 0.025, 0.030}

with the �rst respectively the last value being the limits between insigni�-
cant and uniform descriptor values and too little an area with values, and
registration has been carried out for ampli�cation factors

G = 1.0e0, 1.0e1, ..., 1.0e7.

Not surprisingly without the help of integral invariants the registration got
locked in a local minimum. Five kernel radii multiplied by eight ampli�cation
factors result in 40 experiments for each type of integral invariant. The overall
success rates, i.e. the percentage of experiments where the global minimum
was reached within 20 iterations are:

Intersection descriptor: 26/40 = 65%
Barycenter descriptor: 28/40 = 70%
Eigenvalue descriptor: 28/40 = 70%

Fig. 4.11 shows a typical example. In most cases the integral barycenter
invariant converged faster than the integral intersection invariant. This was
expected in general since the barycenter descriptor is more stable than the
intersection descriptor.
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Figure 4.10: Data set Face (left) and initial position (right)

Figure 4.11: Ground truth error metric versus number of iterations for the
registration of the Face data set
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Identical shapes: data set 'Drop Forge A'

The second data set is the shape for a drop forged mechanical part (�g. 4.12
left) already presented in �g. 4.9. The applied transformation consists of
rotation by yaw / pitch / roll of 80�/ 0�/ 60�and translation vector ( 200,
700, 0 ) resulting in the initial position shown in �g. 4.12 right.

Only descriptor values for a

kernel radius of r = 10

were used. The result repeats those of the Face data set. Without the
help of integral invariants help a local minimum is reached where the wrong
ends of the lengthy part are matched together resulting in a stable local
minimum and high error (�g. 4.13, black curve). On the other hand the
integral invariants: the ampli�cation factors used here were

G = 1.0e0, 1.0e1, ..., 1.0e9.

With the integral eigenvalue invariant the global minimum was reached with
factors G = 1.0e2 and higher, while with their in relation smaller values
integral intersection and integral barycenter invariant clung to the global
minimum with factors G = 1.0e6 and higher.
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Figure 4.12: Data Drop Forge A (left) and initial position (right)

Figure 4.13: Ground truth error metric versus number of iterations for the
registration of the Drop Forge A data set
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Overlapping shapes: data sets 'Drop Forge A' and 'Drop Forge B'

This certainly is the application with the biggest practical signi�cance. The
lengthy part itself is proving rather di�cult with its symmetry and its rather
uniform appearance of equal features all over the shape, such as the constant
radius of the edges. A pre-alignment could be done by principal component
analysis, but this would likely produce equal chances for matching false ends
together as for matching together the right.

We take two di�erent but overlapping views of the drop forging part, see �g.
4.14. The transformation applied to data set 'B' to get the initial position
is the same as for the analysis above with the identical data set 'Drop Forge
A', that is a rotation by yaw / pitch / roll of 80�/ 0�/ 60�and translation
vector ( 200, 700, 0 ). Also

kernel radius r = 10

and ampli�cation factors

G = 1.0e0, 1.0e1, ..., 1.0e9

are chosen the same. Again, with overlapping data sets the performance
of the various methods is similar to the previous cases. Without integral
invariants registration takes the wrong turn and ends up matching wrong ends
of the shape together. Using the integral eigenvalue invariant registration is
able to match right ends from ampli�cation factors G ≥ 1.0e3, with the
intersection invariant from G ≥ 1.0e7, and the barycenter descriptor works
with G ≥ 1.0e8. The ground truth error metric of the latter situation is
shown in �g. 4.15.
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Figure 4.14: Data set Drop Forge A (left) and B (middle) and initial position
(right)

Figure 4.15: Ground truth error metric versus number of iterations for the
registration of the Drop Forge A and B data sets
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Institut für elektron. Systementwicklung der Joanneum Research Forschungs-
GmbH in Graz und arbeitete ab 1991 bei der Firma TBK Automation eben-
falls in Graz.

Im Herbst 1994 kündigte ich meine Anstellung und inskribierte an der TU
Graz das Diplomstudium Wirtschaftsingenieurwesen - Maschinenbau, Stu-
dienzweig Mechatronik im Maschinenbau. Während dieses Studiums absol-
vierte ich im Studienjahr 96/97 zwei Semester im Rahmen des Programms
ERASMUS an der Loughborough University of Technology / Leistershire /
UK.

Meine Diplomarbeit verfasste ich am Institut Français de la Mécanique Avan-
cée (IFMA) in Clermont-Ferrand / F. Das Diplomstudium schloss ich am 16.
Jänner 2001 ab und am 26. Jänner 2001 wurde mir der akademische Grad
eines Diplom-Ingenieurs verliehen.

Anschlieÿend arbeitete ich bis August 2003 am Institut für Digitale Bildver-
arbeitung von Joanneum Research in Graz.
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