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ABSTRACT

In the thesis, an analytical model for the prediction ofthe shear capacity of reinforced

concrete members with circular cross-section transversely reinforced with circular hoops has

been developed. The proposed model is based on the truss analogy by adding an empirical

concrete contribution term to the capacity of the shear reinforcement.

With the appearance of the tirst diagonal cracks the shear reinforcement is mobilized

In resisting shear by tension in it. However, in the proposed model an additional shear

carrying mechanism of hoops - present solely in members with curved transverse

reinforcement - was identified and expressed analytically. This deviatoric shear resisting

mechanism is explained by the fact that a curved reinforcing bar under tension induces

compression in radial direction as well. The component of this compressive force in the

direction of the external shear could thus be considered as an additional shear enhancing

mechanism of the hoops. Its magnitude is expressed through the friction force that is present

between the concrete and steel after the section is cracked and the bond partially destroyed.

The concrete shear capacity, taken as the capacity of the member without shear

reinforcement, has been derived by a parameter study of the variables affecting shear

concrete strength and by applying a curve fit on the database of circular members without

shear reinforcement.



The validity and accuracy of the proposed model has been verified on a database of

experimental results of 106 uniformly loaded members of circular sections with and without

shear reinforcement and a good agreement has been obtained. The proposed shear model has

been compared to other existing models as well, predicting the shear strength of circular

sections in a more accurate and uniform way than the existing models.

Moreover, the applicability of the proposed model has been verified on a database of

29 elements tested under uniaxial cyclic shear. With the application of a strength degradation

coefficient, proposed so far in literature, the members shear capacity under cyclic load with

increasing ductility has been expressed. The proposed model has been compared to a

recently proposed model and it has been found that it predicts reasonably well the shear

capacity of circular sections under cyclic load as well. By applying the strength reduction

factors a sufficiently conservative design equation could be obtained, suitable for design

purposes and incorporation in design codes.
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NOTATIONS

Latin upper case symbols

B

C

D

Dh

D(q»

N

P

T

T(q»

V

= area of the gross section;

= longitudinal reinforcement cross sectional area;

= effective shear area;

= shear reinforcement cross sectional area (area ofhoops one leg);

= bond force;

= concrete compressive force;

= sections diameter;

= resultant deviation force;

= deviation function;

= normal force;

= axial load (compression is positive);

= tension force

= tension function;

= external shear force;

= shear force resisted by aggregate interlock;

= vertical component of the shear force resisted by aggregate interlock;

= concrete shear capacity;



Vc: = shear force resisted by uncracked concrete compression zone;

Vd = shear force resisted by dowel action;

Vs = shear reinforcement capacity;

Vsd = hoops deviatoric shear resisting component;

V,xp = experimental shear force;

Vlil,or = theoretical shear force;

VSI = hoops tension shear resisting component;

Latin lower case symbols

a

ald;alD

b

c

cov

d

lek

Iyl

Iy\v

h

k

n

s

v

z

= shear-span;

= members aspect ratio (shear span-to-depth ratio);

= sections width;

= minimum width ofthe section (web);

= neutral axis depth;

= concrete cover;

= sections effective depth;

= deviation stress;

= cylinder compressive strength of concrete;

= characteristic compressive strength of concrete;

= longitudinal reinforcement yield strength;

= transverse reinforcement yield strength;

= cross sections overall depth;

= aspect ratio enhancement constant;

= number of hoops crossing the diagonal crack;

= spacing of shear reinforcement along the member's longitudinal axis;

= average shear stress;

= internallever arm;



Greek upper case symbols

'th = bond stress;

Greek lower case symbols

y c = partial safety factor for concrete;

Ys = partial safety factor for steel;

8 = inclination angle ofthe concrete cracks with the longitudinal axis;

À = influence coefficient;

I! = coefficient offriction between concrete and steel;

Pl = longitudinal reinforcement ratio, Pl = Al/Ag;

Pw = transverse reinforcement ratio, Pw = 2Asw / (D. s) .
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1 INTRODUCTION

1.1 Background and Motivation of the Research

Reinforced concrete structural elements of circular cross-section are widely used in

different types of structures. They are preferred as columns in high rise buildings, placed

either on the façade or in the buildings' interior, as structural elements favoured because of

their decorative architectonical form. Moreover, they are preferred as bridge columns, secant

pilings forming diaphragm walls or in the foundations of buildings. Generally, circular cross

section columns are favoured because of their identical strength characteristics in all

directions.

Columns are basically axial load carrying elements. However, as a result of lateral

loads due to wind pressure, earthquake or vehicle impact, they are subjected to considerable

shear load and should thus inevitably be designed to suppress a possible shear failure.

Despite of rather frequent occurrence of shear in circular sections and its possible hazardous

consequences, the majority of research in shear is conducted on members with rectangular

cross-section. As a result, extensive shear capacity models for rectangular sections have been

proposed in literature so far. On circular section members, however, a very limited number

of experiments have been carried out. Consequently, neither has their basic structural
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behaviour under shear been sufficiently understood, nor does the advantage (deficiency) of

circular sections compared to rectangular ones happen to be apparent enough.

Generally, the majority of design codes do not distinguish between the design of a

rectangular section and the one of a circular section under shear. It is simply assumed that

the shear capacity of a circular section equals the capacity of an equivalent rectangular

section, assuming that the shear transfer and the shear resisting mechanism of both sections

are equivalent without any influence ofthe sections geometry.

The majority of earlier experiments on circular reinforced concrete members loaded

monotonically in shear aimed for verification of the use of design equations developed for.

rectangular sections on circular sections (Capon and de Cossio, 1965; Khalifa and Collins,

1981; Clarke and Birjandi, 1993). No thorough design equation for circular sections has been

proposed; solely a slight modification of existent equations was given when applying them to

circular sections. Later, failures of circular columns in some recent earthquakes (Venezuela,

1967; San Fernando, 1971) triggered an extensive research in circular sections under seismic

load in research centres such as the University of Canterbury, Christchurch, New Zealand

(Paulay, Park, Priestley), the University of Toronto (Collins) and the University of

California, San Diego (Priestley). Major concern was devoted to shear capacity under

seismic load and as a result of these efforts a model for shear capacity of circular sections

under seismic load was proposed by Ang et al. (1989), extended by Wong et al. (\993) for

multi-directional seismic load, later generalized by Priestley et al. (\ 994) and finally by

Kowalsky and Priestley (2000). This model is still the only one proposed so far in literature

for circular sections under shear. Recently, however, its significant deficiency was reported

by Dancygier (2001) and by Kim and Mander (2005). It was demonstrated that the applied

integral averaging in the formula restricts its use only to members with diameter at least four

times the spacing of the shear reinforcement. For all other ratios the formula could be even

more than 50% nonconservative.
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1.2 Obiectives

Motivated by a lack of research in basic shear mechanism of circular sections as well

as by the deficiencies of the single shear model so far proposed in literature, the main

objective of this work was to develop a simple formula for shear capacity of reinforced

concrete circular sections suitable for design purposes as well as for incorporation in the

design codes. The particular intension was primarily to develop a shear capacity model for

circular sections under monotonic load and then to express the capacity under seismic load.

In order to take into account the strength degradation due to cyclic reversal, present in

seismic load, the members shear capacity under monotonic load has been simply reduced by

a degradation coefficient. This approach is consistent with the current state of the art.

Last but not least, it is of great interest to generally examine the basic shear transfer

mechanism in circular sections since it sheds light on our knowledge of the influence of the

cross-sections shape on the shear capacity, thus contributing to the development of a unified

design method of reinforced concrete sections under shear regardless of the shape of the

cross section. This work attempted to give a contribution to these efforts.

1.3 Oulline of Ihe Thesis

Chapter 2 presents a brief historical background of the shear design provisions and a

summary of the current shear design models for circular sections. In chapter 3 a database of

circular members without and with shear reinforcement tested under monotonic shear is

collected, on the basis of what has been published so far in literature. In chapter 4 the

proposed shear design model is presented. First the concrete shear capacity and then the

shear reinforcement capacity is evaluated. In chapter 5 the results are discussed and

compared to other existing models. Finally, in chapter 6 a summary of the work and

suggestions for future work are presented.
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2 STATE OF THE ART AND
THE EXISTING SHEAR MODELS

Estimating the shear capacity of reinforced concrete members has received

considerable attention in research since the turn of the century. During the time different

approaches of the shear design have been proposed. In the early 1900s truss models were

introduced as conceptual tools for the design of web reinforcement in concrete beams (Ritter

1899; Mörsch, 1902; Mörsch, 1912), implying an analogy between a diagonally cracked

reinforced concrete beam with web reinforcement and a 45-degree-parallel-chord truss. Later

it was observed that truss models give conservative results since they do not account for the

effects of concrete shear capacity resulting from the shear carried by uncracked concrete,

dowel action of the longitudinal reinforcements and shear transmitted by aggregate interlock

along the cracks. In order to correct the conservative predictions of the 45-degree truss,

several improvements have been proposed recently. A possible approach is to add a concrete

shear capacity contribution term to the shear reinforcement capacity or to employa truss

with variable inclination angle. Additionally, several other approaches to the truss analogy

have been proposed as well. One of them is the limit analysis, mainly introduced by

Thürlimann and Nielsen (1999), as well as the compression field theory, first developed by

Mitchell and Collins (1974) for torsion, and later adopted for shear (Collins, 1978). The

theory was further modified to account for the influence of tensile stresses in cracked
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concrete and published later as the modified compression field theory (Vecchio and Collins,

1986). A historical background of the shear provisions and a comprehensive overview of the

existing shear approaches were published in the report ofthe ACI-ASCE Committee 445 on

Shear and Torsion (1998, 2000), based on the landmark state of the art report by the ACI-

ASCE Committee 426 (1973), as well as in Marti (1992), Regan (1993), Marti (1999) and

Rebeiz (1999).

In most current building codes the shear capacity of a reinforced concrete member

with transverse reinforcement is calculated on the basis of the truss analogy and thus added

together from the concrete shear capacity and from the capacity of shear reinforcement (ACI

318M-02, 2002; Eurocode 2, 1992).

The concrete shear capacity is defined as the shear strength of the member without

shear reinforcement at the onset of the diagonal cracks. The influence of the different

variables on shear strength is still not so distinctive, resulting in literature offering us a wide

range ofdifferent shear capacity models (Zsutty, 1968; BaZant and Sun, 1987; Watanabe and

Ichinose, I992; Kim and Park, 1996; Nielsen, 1999; Rebeiz, 1999; Sezen and Moehle, 2004;

Russo et aI., 2005). However, all these models are developed for rectangular sections. So far,

there is no model originally derived to estimate the capacity of circular sections without

shear reinforcement. Usually the design equations developed for rectangular sections are

used also for circular sections with a slight adaptation, namely that instead of the actual

circular cross section with diameter D an equivalent rectangle of width D and effective depth

of d=0.8D is employed.

The capacity of the shear reinforcement - in case of circular sections usually hoops or

spirals - is calculated on the basis of the truss analogy. Usually the equations derived for

rectangular sections have been used. There is in literature only one model originally derived

for circular sections (Ang et aI., 1989 later modified by Kowalsky et aI., 2000). What follows

is a brief review of the very limited number of the existing shear models and of

recommendations for circular section members.
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2.1 Eurocode 2 (2004)

Although Eurocode 2 for Design of Concrete Structures gives no instructions for shear

design of circular sections, because of its practical relevance it will be briefly reviewed. The

shear resistance of a section with shear reinforcement, VRd , is given as the sum of the shear

resistance of the member without shear reinforcement (the so called concrete contribution),

VRd,c' and the shear resistance ofthe shear reinforcement, VRd,s

(2.1 )

The concrete contribution is calculated as

(2.2)

where eRd c is a calibration factor and it is 0.18/ Yc for normal concrete and 0.15/ Yc for

light concrete (y c is the partial safety factor for concrete), k is the size effect factor defined

as k = 1+ .J200 / d ::; 2.0, the longitudinal reinforcement ratio is PI = Asl /(bwd)::; 0.02, lek

is the characteristic concrete compression strength, k1 = O. 15, crcp = NEd / Ac where NEd

is the axial load (compression positive), Ac is the concrete cross-section and bw and dare

the section's width and effective depth respectively. The contribution of vertical shear

reinforcement is calculated by truss analogy and is given by

Asw I .~VRd,s =--z. ywd .ct{5v
s

(2.3)

where Asw is the cross-sectional area (two times the area of the bar), s the spacing and

Iywd the yield strength of the shear reinforcement. The internal lever arm could be taken as

z = 0.9d and the inclination angle ofthe concrete struts 450
::; 8::; 21.80

•

2.2 Capon and de Cossio (1966)

One of the first researches in shear capacity of circular section members was carried

out by Capon and de Cossio in 1966. Drawing on observations of test results of 21 members

they proposed to use for circular sections the same equations as for rectangular sections, with
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following adaptations: for the section's effective depth the external diameter should be used

and for the section's effective shear area the gross area.

2.3 Ael 318M-02 (2002)

The shear strength of member is calculated as the sum of the concrete contribution,

Vc, and the shear reinforcement contribution, Vs' The concrete contribution is given by

V =(I+~)JJ: bd
c 14Ag 6

(2.4)

where P is the axial load (positive for compression), Ag is the gross-sectional area, Id is

the concrete cylinder compressive strength and band d are the section's width and the

effective depth respectively. For circular sections, the shear area bd shall be taken as the

product of the diameter and effective depth of the concrete section. The effective depth is

permitted to amount to 0.8 times the diameter ofthe concrete section.

The transverse reinforcement contribution is calculated as for rectangular sections

(2.5)

where ASlv is the area of shear reinforcement (two times the area of the bar) within a

distance sand fyw is the yield strength of shear reinforcement. When circular ties, hoops or

spirals are used for transverse reinforcement, the effective depth shall be taken as 0.8 times

the diameter of the concrete section.

2.4 Ang el al. (1989)

Ang et a\. (1989) proposed a model for calculating the shear strength of circular

sections under cyclic load added together from concrete and transverse reinforcement

capacity. The concrete contribution for low flexural ductilities (Il::; 2) was defined as the

"initial concrete strength" and calculated as a strength at maximum lateral load as follows
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For low aspect ratios (aiD< 2) a shear capacity enhancement factor was proposed as

2
a=--~1.0

aiD

(2.6)

(2.7)

where a is the shear span, D the section's diameter, P the axial load, Ag the gross-sectional

area, f: the concrete compressive strength. The effective shear area, Ae, is proposed as 0.8

times the gross section area, which approximately corresponds to the area of the confined

concrete core. The transverse reinforcement capacity was calculated from 45-degree truss

mechanism as follows

1C(2Ashfyh )D'v=----
s 4s

(2.8)

where Ash is the area of the shear reinforcement (one leg), s the hoop' s spacing, fyh their

yield strength and D' the distance between the centers of the peripheral hoop or the spiral. It

was assumed that all transverse reinforcement exposed by a presumed 45° diagonal crack is

at yield. An integral averaging has been imposed assuming that the spacing of the shear

reinforcement s is sufficiently small compared to the diameter D .. It was noted that for low

D Is ratios the equation can be up to 10% nonconservative.

At higher flexural ductilities (Il> 2) a degradation of the concrete term was assumed

and the "final concrete strength" proposed. Since very limited test data were available, the

influence ofaxialload was not clear and the concrete contribution term was defined without

taking into account the axial load. A tentative formula was proposed, where a lower value of

(2.9)

should be taken. The first formula represents a 50% of the initial concrete contribution

(Equation 2.6) at zero axial load and the second reflects the fact that the transverse

reinforcement provides an additional confining effect to the concrete core and, as a

consequence, reduces the degradation of the concrete term (p s is the transverse

reinforcement ratio). As a result of a decreased inclination of the diagonal cracks by cyclic



I. Merta: Analytical Shear Capacity Model of RCCircular Cross-Section Members under Monotonic load

reversals (8 = 25°), the contribution of the truss mechanism was assumed to increase and

thus was defined as

rr(2Ashfyh )D'
V=-----ctg25°
s 4s

2.5 Priestley et al. (1994)

(2.10)

Priestley et al. (1994) modified the model proposed by Ang et al. (1989) and separated

the shear capacity term of the axial loads arch mechanism, Vp' from the concrete term, Vc'

The member's shear capacity was thus added together from three components

(2.11)

where Vs is the contribution oftransverse reinforcement. The concrete contribution has been

given by

(2.12)

where k is a coefficient describing the degradation of concrete shear strength with an

increasing displacement ductility (Figure 2.1). Note that for biaxial displacement ductility a

stronger degradation was assumed. The effective shear area and the shear reinforcement

contribution remained the same as defined by Ang et al. (1989)

(2.13)

where D' is the distance between the centers ofthe peripheral hoop or the spiral. The cracks'

inclination angle was taken as 8 = 30°. The axial load enhancement is considered as the

horizontal component of the diagonal compression strut (Figure 2.1)

D-c
Vp =PtanCJ.=--P

2a
(2.14)

where D is the overall section diameter, c the depth of the compression zone and a the

shear span. According to this model, the axial load component does not degrade with an

increasing displacement ductility.
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3.5
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Figure 2.1 (Left) Degradation coefficient k of concrete shear strength with displacement ductility and
(Right) axial load contribution to the concrete shear capacity (Priestley et al. 1994)

2.6 Kowalsky and Priestley (2000)

The previous model of Priestley et al. (1994) was revised by Kowalsky and Priestley

(2000) and the effect of aspect ratio and longitudinal reinforcement ratio has been

incorporated. The concrete contribution was given by

(2.15)

where ex accounts for the aspect ratio and is given by I ~ ex= 3 - a / D ~ 1.5 (Figure 2.2). It

was noted that ex probably continues to increase for a / D < 1.5, but no data are available to

confirm this. The factor ß accounts for the effect of longitudinal reinforcement ratio and is

given by ß = 0.5 + 20PI ~ ]. "Y describes the degradation of concrete shear strength with

displacement ductility (Figure 2.2) and PI is the longitudinal reinforcement ratio.

0.30

0.25

,,020
'2
;:.
t£ 0.15
::.~

010

0.05

0.00 r
4 6 B

Displacement Ouctir.ry
10

2.0

1.5

ë 1.0-

""

0.0
~.O 1.5 2.0

MND
2.5 3.0

Figure 2.2 (Left) Degradation coefficient "Y of concrete shear strength with displacement ductility and
(Right) Aspect ratio enhancement coefficient ex (Kowalsky et aI., 2000)
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The truss mechanism component developed by Ang et al. (1989) has been slightly

modified considering the fact that in the members compression zone the cracks are by

definition closed. Therefore, shear cannot be transferred across it by tension in the transverse

reinforcement. Thus only the spirals outside the compression zone are mobilized by tension

along the crack plane

1t D-c-cov
Vs=-Ashfyh----cot82 s

(2.16)

Here c is the compression zones depth and covthe concrete cover. The axial component

remained the same as by Priestley et al. (1994) model.

2.7 Clarke and Biriandi (1993)

On the basis of the results of tests undertaken by the British Cement Association,

Clarke and Birjandi (1993) proposed to use for circular sections the same shear design

approach as given by the British Codes of Practice, BS 5400 and BS 8110 for rectangular

sections. However, a modification was suggested, i.e., that the section's effective depth

should be considered as the distance from the extreme compression fibre to the centroid of

the tension reinforcement. Following this, the effective shear area is then defined as the area

corresponding to the effective depth. The design approach for rectangular sections in British

Codes of Practice, BS 5400, is added together from the shear carried by concrete and

transverse reinforcement. The concrete term is defined as

( )

1/3 1/4
V = 0.27a. IOOAs (500) (r )1/3 b d
C bd d Jru w

w
(2.17)

where As is the area of longitudinal steel, b", the section' s width, d the effective depth and!cu

the concrete cube strength. For loads applied at a distance a" closer than 2d from the support,

the concrete shear capacity is increased by

2d
a.=-~I.O

l1v
(2.18)
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The shear force carried by transverse reinforcement is calculated as

(2.19)

In a member with axial compression load, N, the shear capacity should be multiplied by

(I + 0.05N / Ac)' where Ac is the area of concrete, As\' the cross-sectional area of the links'

both leg at the section's neutral axis and.fcuis the links' yield strength.

2.8 Dancygier's (2001) Remark 10 Ang's el al. (1989) Model

Dancygier (2001) demonstrated that the capacity of the truss mechanism in the model

proposed by Ang et al. (1989), where an integral averaging has been applied, could be used

only in case the number of hoops intersected by diagonal crack D' tan El/ s is higher than 4.

For lower values the proposed formula yields values that are 10% to more than 50%

nonconservative. Thus Dancygier recommended a discrete computation especially for

elements with relatively small diameters as micropiles.

2.9 Kim and Mander's (2005) Remark 10 Ang's el al. (1989) Model

Kim and Mander (2005) warned of calculation of the shear carried by transverse

reinforcement by assuming a smeared distribution of shear reinforcement (Ang et aI., 1989),

which is well established in the majority of present design proposals and codes (ACI 318-02,

2002; Eurocode 2, 1992). In reality, a discrete distribution of transverse reinforcement

should be considered for circular hoops and spirals as well as for rectangular hoops. For the

case the number of spaces between reinforcement hoops crossing the shear crack, n, is lower

than 5, they proposed reduction factors that should be applied to continuum truss solution to

obtain the discrete solution. For n ~ 5 no capacity reduction is necessary.
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3 CIRCULAR MEMBERS SHEAR DATABASE

3.1 Introduction

For the verification and calibration of shear capacity models it is inevitable to have

representative data of test results on members where all the major parameters affecting shear

are varied over a sufficiently wide range. An extensive amount of test results exists so far in

literature regarding rectangular sections and by support of the Joint ACI-ASCE Committee

445 on Shear and Torsion, an Evaluation Shear Databank of members with/without

transverse reinforcement was collected by Reineck et al. (2003) and Kuchma (2000).

Furthermore, a comprehensive database of 917 rectangular members without shear

reinforcement failed under shear was collected by Russo et al. (2005).

However, because of a very limited number of experiments carried out on circular

sections under monotonic shear load, literature does not offer any database. Most of circular

section specimens were tested under cyclic lateral load reversal and as a result an extensive

database was published by the Pacific Earthquake Engineering Research Center (PEER) at

the University of California, Berkeley. A total of 165 spiral- or hoop-reinforced concrete

columns was collected in the Structural Performance Database and published on the web site

of PEER (2006) and of the University of Washington (2006).
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The usual way to derive the shear strength of a member under cyclic load is to first

define the capacity of the member under monotonic load and then to apply the so caIled

"degradation coefficient" to take into account the shear capacity degradation of the member

under cyçlie reversal. In order to foIlow this procedure for circular sections it is necessary to

have sufficient experimental results of circular members tested under monotonie load.

Therefore, one of the objectives of this work was to coIlect test data of circular cross-section

members loaded under monotonic shear.

3.2 Database of Circular Members under Monotonic Shear Load

A literature survey was performed resulting in a total of 106 tests of reinforced

concrete circular cross section members under monotonic shear load. 44 specimens have no

shear reinforcement and 62 have spirals or hoops as shear reinforcement. Only specimens

reported to fail under shear were included in the database. The test data specimens have been

coIlected from the foIlowing researches: Capon and de Cossio (I965); Khalifa and CoIlins

(I981), Clarke and Birjandi (I993), Merta et al. (2003), as weIl as the tests carried out by

Kim in 2000, published by CoIlins et al. (2002). Four tests by Aregawi from 1974, published

by CoIlins et al. (2002), were not included in the database according to Kowalsky and

Priestley's (2000) suggestion, namely that "because of the non-standard boundary

conditions, the results should be omitted". The specimen of Clarke and Birjandi (1993) with

an aspect ratio of aiD = 1.1 was not included in the database, since it was the only specimen

with such a low aspect ratio and it would not have been possible to make any conclusion

about the shear strength trend in this range.

The details and test results of specimens without shear reinforcement and with shear

reinforcement are listed in Tables 3.1 and 3.2 respectively. The specimens' aspect ratio

ranges between 2.04 ~ a/ D ~ 4.39, the concrete strength 13~ f; ~50 MPa, longitudinal

reinforcement yield strength 400 ~ fyl ~ 700 MPa, longitudinal reinforcement ratio

0.89 ~ PI ~ 5.6%, transverse reinforcement yield strength 250 ~ f)'lv ~ 1728 MPa, transverse

reinforcement ratio 0.05 ~ PlV ~ 0.45% and the axial load ratio 0 ~ P /(f;Ag) ~ 0.38.
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Since no specimens with an aspect ratio lower than 2 have been tested so far, it is not

possible to make a firm conclusion about the shear capacity behaviour within this range.

Likewise, no specimens over a broad range of a variable depth have been tested by

maintaining all other variables influencing shear strength constant. Consequently the size

effect of circular section specimens could not be investigated. In order to overcome these

deficiencies a comprehensive experimental research is necessary in the future.
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Table 3.1 Details and test results of specimens with circular cross-section without shear reinforcement

D aiD te cov h" p, P PI(jcAg) Vtcst

Reference Specimen [mm] [-] [MPa] [mm] [MPa] [%] [kN] [-] [kN]

Clarke, 01-1 300 2.20 22.7 20 500 0.89 0 0 65.0
Birjandi 03-1 300 2.20 22.8 20 500 2.28 0 0 91.0
( 1993) 03-2 300 2.20 22.8 20 500 2.28 0 0 97.0

04-1 300 2.20 44 20 500 2.28 0 0 129.0
04-2 300 2.20 44 20 500 2.28 0 0 109.0
05-1 300 2.20 26.7 20 500 5.56 0 0 148.0
05-2 300 2.20 26.7 20 500 5.56 0 0 130.0
06-1 300 2.20 43.6 20 500 5.56 0 0 152.0
06-2 300 2.20 43.6 20 500 5.56 0 0 148.0
29-1 300 2.20 3 \.2 20 500 3.56 270.6 0.12 146.0
29-2 300 2.20 3 \.2 20 500 3.56 0 0 86.0
30-1 300 2.20 29.7 20 500 3.56 273.3 0.13 132.0
30-2 300 2.20 29.7 20 500 3.56 0 0 90.0
31-1 300 2.20 20.9 20 500 3.56 535.4 0.36 146.0
31-2 300 2.20 20.9 20 500 3.56 0 0 98.0
32-1 300 2.20 20.1 20 500 3.56 532.9 0.38 134.0
33-1 300 2.20 2\.6 20 500 5.56 27 \.2 0.18 15\.0
33-2 300 2.20 2\.6 20 500 5.56 0 0 116.0
34-1 300 2.20 34.8 20 500 5.56 270.8 0.11 174.0
34-2 300 2.20 34.8 20 500 5.56 0 0 125.0
35-1 300 2.20 37.7 20 500 5.56 536.8 0.20 159.0
35-2 300 2.20 37.7 20 500 5.56 0 0 125.0
36-1 300 2.20 34.9 20 500 5.56 539.1 0.22 164.0
36-2 300 2.20 34.9 20 500 5.56 0 0 136.0
41-1 500 2.40 34 20 500 2.56 0 0 236.0
42-1 500 2.40 33.5 20 500 2.56 0 0 234.0
42-2 500 2.40 33.5 20 500 2.56 0 0 222.0
45-1 500 2.40 29.4 20 500 3.84 0 0 234.0
46-2 500 2.40 30.6 20 500 3.84 0 0 281.0

Capon, 24.6-2-A 247 4.25 25.6 15 400 2.12 0 0 46.5

de Cossio 24.6-2-B 246 4.27 29.2 15 400 2.14 0 0 49.0
( 1965) 25-3-A 252 4.17 46.1 15 400 3.06 0 0 7\.6

25-3-B 251 4.18 44.4 15 400 3.08 0 0 67.7

F-25-3-A 251 2.39 29.6 15 400 3.08 0 0 70.0

F-25-3-B 252 2.38 30.6 15 400 3.06 0 0 77.0
F-OO 251 2.39 13.4 15 400 3.08 0 0 47.5
P-25-3-A 252 4.17 23.7 15 400 3.06 0 0 45.8
P-25-3-B 251 4.18 24.8 15 400 3.08 0 0 47.0
P-25-3-C 252 4.17 24.9 15 400 3.06 0 0 56.8

P-25-3-D 251 4.18 28.7 15 400 3.08 0 0 53.0
FU-OO 251 2.39 13.7 15 400 3.08 0 0 59.0
F-A 252 2.38 20.7 15 400 1.18 0 0 50.5

Kim YJC CaNT 445 3.75 30.8 25 460 3.86 0 0 212.0
(2000)

Khalifa, SCO 445 2.85 23.4 0 516 3.86 1022 0.28 326.0

Collins (1981)
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Table 3.2 Details and test results of specimens with circular cross-section with shear reinforcement

D aiD Je cov 1;'1 PI 1;... p.. s S/H P PI(f .,Ag) Vlest

Reference Specimen [mm] [-] [MPa] [mm] [MPa] [%] [MPa] [%] [mm] [kN] [-] [kN]

Clarke, M1/2 152 2.04 28 10 500 2.2 300 0.37 100 H 0 0 45.0

Birjandi M1/3 152 2.17 28 10 500 2.2 300 0.37 100 H 0 0 46.0
(1993 ) MI/4 152 2.24 28 10 500 2.2 300 0.37 100 H 0 0 38.0

11-1 300 2.20 24.1 20 500 5.6 300 0.22 150 H 0 0 186.0
11-2 300 2.20 24.1 20 500 5.6 300 0.22 150 H 0 0 188.0
12-1 300 2.20 23.8 20 500 5.6 300 0.45 75 H 0 0 211.0
12-2 300 2.20 23.8 20 500 5.6 300 0.45 75 H 0 0 239.0
13-1 300 2.20 48.4 20 500 5.6 300 0.22 150 H 0 0 227.0
13-2 300 2.20 48.4 20 500 5.6 300 0.22 150 H 0 0 228.0
14-1 300 2.20 50.5 20 500 5.6 300 0.45 75 H 0 0 279.0
14-2 300 2.20 50.5 20 500 5.6 300 0.45 75 H 0 0 288.0
15-1 300 2.20 24.3 20 500 3.6 300 0.22 150 H 0 0 145.0
15-2 300 2.20 24.3 20 500 3.6 300 0.22 150 H 0 0 148.0
16-1 300 2.20 46.7 20 500 3.6 300 0.22 150 H 0 0 185.0
16-2 300 2.20 46.7 20 500 3.6 300 0.22 150 H 0 0 186.0
17-1 300 2.20 23.7 20 500 2.3 300 0.13 150 H 0 0 117.0
17-2 300 2.20 23.7 20 500 2.3 300 0.13 150 H 0 0 115.0
19-1 300 2.20 26.6 20 500 3.6 300 0.13 150 H 0 0 113.0
19-2 300 2.20 26.6 20 500 3.6 300 0.13 150 H 0 0 129.0
20-1 300 2.20 49.3 20 500 3.6 300 0.13 150 H 0 0 149.0
20-2 300 2.20 49.3 20 500 3.6 300 0.13 150 H 0 0 137.0
21-1 300 2.20 22.2 20 500 5.6 300 0.13 150 H 0 0 131.0
21-2 300 2.20 22.2 20 500 5.6 300 0.13 150 H 0 0 151.0
22-1 300 2.20 45.5 20 500 5.6 300 0.13 150 H 0 0 163.0
22-2 300 2.20 45.5 20 500 5.6 300 0.13 150 H 0 0 164.0
23-1 300 2.20 25.1 20 500 2.3 300 0.13 150 S 0 0 101.0
23-2 300 2.20 25.1 20 500 2.3 300 0.13 150 S 0 0 113.0
24-1 300 2.20 48.9 20 500 2.3 300 0.13 150 S 0 0 114.0
24-2 300 2.20 48.9 20 500 2.3 300 0.13 150 S 0 0 128.0
25-1 300 2.20 24.3 20 500 3.6 300 0.13 150 S 0 0 98.0
25-2 300 2.20 24.3 20 500 3.6 300 0.13 150 S 0 0 122.0
26-1 300 2.20 47.1 20 500 3.6 300 0.13 150 S 0 0 114.0
26-2 300 2.20 47.1 20 500 3.6 300 0.13 150 S 0 0 150.0
27-1 300 2.20 22.8 20 500 5.6 300 0.13 150 S 0 0 125.0
27-2 300 2.20 22.8 20 500 5.6 300 0.13 150 S 0 0 134.0
28-1 300 2.20 45.3 20 500 5.6 300 0.13 150 S 0 0 158.0
28-2 300 2.20 45.3 20 500 5.6 300 0.13 150 S 0 0 175.0
37-1 300 2.20 43.9 20 500 5.6 300 0.22 150 H 270.9 0.09 232.0
37-2 300 2.20 43.9 20 500 5.6 300 0.22 150 H 0 0 218.0
38-1 300 2.20 36.1 20 500 5.6 300 0.22 150 H 270.9 0.11 209.0
38-2 300 2.20 36.1 20 500 5.6 300 0.22 150 H 0 0 206.0
39-1 300 2.20 36.3 20 500 5.6 300 0.22 150 H 270.6 0.11 217.2
39-2 300 2.20 36.3 20 500 5.6 300 0.22 150 H 0 0 197.0
40-1 300 2.20 34.1 20 500 5.6 300 0.22 150 H 274.1 0.11 225.0
40-2 300 2.20 34.1 20 500 5.6 300 0.22 150 H 0 0 183.0
43-1 500 2.40 37.8 20 500 2.6 300 0.14 140 H 0 0 313.0
43-2 500 2.40 37.8 20 500 2.6 300 0.14 140 H 0 0 366.0
44-1 500 2.40 32.9 20 500 2.6 300 0.14 140 H 0 0 301.0
44-2 500 2.40 32.9 20 500 2.6 300 0.14 140 H 0 0 329.0

271
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Table 3.2 (Continued)

D aiD le cov ;;,/ PI ;;.. PK' s S/H P P/(f ,;/g) Vlest

Reference Specimen [mm] [-] [MPa] [mm] [MPa] [%] [MPa] [%] [mm] [kN] [-] [kN]

Khalifa, SCI 445 2.85 19.3 23 516 3.79 410 0.10 150 H 1017 0.34 324.0
Collins SC2 445 2.85 23 23 516 3. 79 510 0.30 150 H 1083 0.30 478.0
(1981) SC3 445 2.85 24.5 23 516 3. 79 510 0.45 100 H 1085 0.28 578.0

SC4 445 2.85 26.5 23 516 3. 79 430 0.30 150 H 1050 0.25 456.0

Merta I 400 2.50 42.20 0 700 3.75 700 0.24 60 S 0 0 430.0
et al. 2 400 2.50 42.20 0 700 3.75 700 0.24 60 S 0 0 432.0
(2003)
Capon, F-25 251 2.39 13.2 15 400 3.08 250 0.10 250 H 0 0 59.5
de Cossio F-12.5 251 2.39 13.1 15 400 3.08 250 0.20 125 H 0 0 82.0
(1965)
Kim YJC200R 445 3.75 40.4 25 460 3.86 445 0.16 200 S 0 0 323.0
(2000) YJCI50R 445 3.75 36 25 460 3.86 445 0.21 150 S 0 0 411.0

YJCIOOR 445 3.75 36 25 460 3.86 445 0.32 100 S 0 0 479.0
YJC200W 445 3.75 33.2 25 460 3.86 1728 0.05 200 S 0 0 315.0
YJClOOW 445 3.75 36 25 460 3.86 1728 0.10 100 S 0 0 434.0

The meaning ofthe symbols used in the tables:

D = gross column diameter;

a / D = members aspect ratio (shear span-to-depth ratio);

f; = cylinder compressive strength of concrete;

Ag = gross section area;

cov = concrete cover;

fyl = longitudinal reinforcement yield strength;

PI = longitudinal reinforcement ratio;

f)l\V = transverse reinforcement yield strength;

Pw = transverse reinforcement ratio;

s = spacing of shear reinforcement along the member's longitudinal axis;

S/H = spiral/hoop transverse reinforcement;

P = axial load (compression is positive);

V;est = experimental (observed) shear force.
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4 PROPOSED SHEAR MODEL FOR CIRCULAR SECTIONS

4.1 Introduction

In this chapter a shear strength model for circular section members has been

developed resulting from the continuous improvements of the recently proposed model

(Merta, 2004; Merta, 2004a). The proposed shear capacity model is a semi-empirical

equation based on the truss analogy by adding an empirical concrete contribution term to the

capacity of the shear reinforcement.

The concrete shear capacity, taken as the capacity of the member without shear

reinforcement, has been derived by a parameter study of the variables affecting shear

strength and by applying a curve fit on the database of the members without shear

reinforcement (Table 3.1). The shear reinforcement capacity is derived analytically, based on

the truss analogy, by taking into account the identified additional deviatoric shear resisting

mechanism of hoops present only by members with curved transverse reinforcement. Based

on the shear database of transversely reinforced circular members (Table 3.2), the validity

and accuracy of the proposed model have been compared to other recently proposed models.
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4.2 Shear Transfer Mechanism in Concrete

The principal shear transfer mechanisms in reinforced concrete members identified by

ACI-ASCE Committee 426 (1973) are the following: shear transfer by uncracked

compression concrete above the top of the diagonal crack Vc:, interface shear transfer along

the diagonal crack or aggregate interlock Va, shear carried by the longitudinal reinforcement

(dowel action) Vd, tension in shear reinforcement V, and the arch action, see Figure 4.1. The

contributions of individual shear mechanism Vc:, Vd and Vay are interdependent and not easy

to separate and model. Therefore the most modern design procedures collect these three

components into one term, namely into the shear "carried by the concrete", denoted by VC•

The whole shear transfer mechanism is then added together from the shear carried by

concrete and from the shear carried by shear reinforcement V, (McGregor, 2005).

ILJtv
Figure 4.1 Components of shear strength in a beam without and with shear reinforcement

4.3 Evaluation of Concrete Shear Capacity

Shear failure in concrete members is a diagonal tension phenomenon. As the value of

the diagonal tension stress is difficult to determine, the shear strength prediction of

reinforced concrete members without shear reinforcement is based on the assumption that

shear failure at the critical section occurs on a vertical plane when the fictitious shear stress

at the section

Vv= __ c_
AsejJ

(4.1)

exceeds the concrete nominal shear strength. Here AsejJ is the so called "effective shear area"

and for rectangular sections it represents the area corresponding to the effective depth.
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However, for circular sections the term "effective shear area" is not defined as

unambiguously. Different empirical proposals have been suggested recently, based either on

experimental observations or intuitive estimations, but no analytical solution exists so far in

literature. As a part of this research in the following chapter the effective shear area for

circular sections has been derived on the base of a detailed analytieal calculation.

The shear capacity of a member without shear reinforcement is influenced by various

parameters such as: cross section shape, concrete strength, longitudinal reinforcement ratio,

members shear span-to-depth ratio or aspect ratio, axial load level, type of loading

(monotonie, cyclic ... ), axial load level, cross section size and shape, maximum aggregate

size and spacing of the flexural cracks. Nevertheless, it is widely accepted that the main

variables affecting the section's shear capacity without shear reinforcement are the concrete

compressive strength, f:, longitudinal reinforcement ratio, PI' aspect ratio, a/ D, and axial

load level, P. In the proposed model these four main variables wiIl be considered and the

concrete shear strength has been proposed by an equation of form

v
v=_c =[J(P/)+f(p)].f(a/D).fU:)

AsejJ
(4.2)

The functions f(P/), f(P), f(a / D) and fU:) describe the influence of the mam

variables. They will be determined empirieaIly, based on test data of members without shear

reinforcement (Table 3.1). By segregation of the data with respect to a particular variable,

and maintaining all other variables constant, a curve fit has been applied and the influence of

the individual parameter derived.

4.3.1 EHective Shear Area of Circular Sections

This chapter is based on the paper: Merta, I., Kolbitsch, A. (2006), "Analytical Evaluation of

the Effective Area of Reinforced Concrete Circular Sections under Shear", published in the

proceedings of the Tenth East Asia-Pacific Conference on Structural Engineering and

Construction, EASEC-lO, Bangkok, Thailand, 3-5 August 2006.
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SUMMARY

The shear strength of reinforced concrete members without shear reinforcement is related to the
shear stress carried by the concrete effective shear area. For rectangular sections the effective
shear area represents the area corresponding to the effective depth. However, for circular sections
this area is not as readily defined. Different empirical proposals have been suggested recently but
no analytical solution exists so far in literature. In this work the effective shear area of circular
sections has been derived purely analytically. The ratio ofthe effective shear area to gross section
area was expressed as a function of the neutral axis depth for different values of the concrete
cover. For a typical value of neutral axis depth, it was shown that the effective shear area ranges
between 0.6 and 0.8 times the sections gross area depending on the depth of the concrete cover.
Thus, an average value of 0.7 seems to be a reasonably accurate value for design purposes and,
moreover, it is in good agreement with other recent proposals.

1. INTRODUCTION

Reinforced concrete (RC) structural elements of circular cross-section are widely used in different types of
structures. Because of their identical strength characteristics in all directions they are preferred as building or
bridge columns, secant pilings forming diaphragm walls or as foundations of buildings. Columns are
predominantly axial load carrying elements. However, as a result of lateral loads due to wind pressure,
earthquake or vehicle impact, they are subjected to considerable shear loads. Thus, columns should be inevitable
designed to suppress a possible shear failure. The sections geometry (rectangular, T- or circular cross-section)
strongly influences the members shear capacity. It determines the area that effectively resists the external shear
load.

According to most design codes [I, 2] the shear capacity of RC sections is added together from the so called
concrete capacity term and from the capacity of the shear reinforcement. The concrete shear capacity, Ve, is
usually defined as the shear capacity ofthe section without transverse reinforcement and is calculated as

(1)

where v is the sections nominal shear strength and AJejf its effective shear area. Whereas for rectangular sections
the effective shear area is clearly defined as the area corresponding to the effective depth, i.e. the product of the
sections width and the effective depth, for circular sections this definition is not so distinctive.

The European code for design of RC structures [Eurocode 2, 1992], does not give any guidelines about the area
that should be considered in case of circular sections. The American code [ACI 318M-02, 2002] recommends to

I Vienna University ofTechnology, Institute for Building Construction and Technology, Karlsplatz 13/206/4, A-I040 Vienna, Austria
Email: imertafalhochbau.tuwien.ac.at
2 Vienna University ofTechnology, Institute for Building Construction and Technology, Karlsplatz 13/206/4, A-I 040 Vienna, Austria
Email: kolbitschfalhochbau.tuwien.ac.at
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calculate the effective shear area by circular sections as the product of the diameter and the effective depth,
where the effective depth is permitted to be taken as at least 0.8 times the diameter of the concrete section. Ang
et al. [Ang et al., 1989] as weIl as Priestley et al. [Priestley et al., 1994] noted that in such a way there is an
apparent discrepancy between rectangular and circular section design. Namely, the effective shear area of
circular sections is 0.8. D2 = 1.02. Ag , where Agis the sections gross area and D the sections diameter, and
consequently the effective shear area exceeds the sections gross area. Ang et al. [Ang et aI., 1989] and Priestley
et al. [Priestley et aI., 1994] suggested taking 0.8Ag for the effective shear area, which approximately
corresponds to the area of the confined concrete core. Clarke and Birjandi [Clarke and Birjandi, 1993] and
Feltham [Feltham, 2004] proposed to take the area of concrete from the extreme compression fibre down to the
depth, where the depth was estimated with 0.81D. Capon and de Cossio [Capon and de Cossio, 1965] employed
the sections gross area, which they based on test results of circular members under shear. AIl existent proposals
are empirical, based either on experimental observations or intuitive estimations, but no analytical solution ofthe
effective shear area of circular sections has been derived until yet. The objective of this paper was, thus, to
derive the effective shear area of circular sections analyticaIly.

2. EFFECTIVE SHEAR AREA OF CIRCULAR SECTIONS

Consider a RC member of circular cross-section with longitudinal reinforcement bars uniformly distributed
along the sections perimeter (see Figure 1(a)). Under a positive bending moment the part of the section below the
neutral axis is under tension and the part above under compression. Consistent with the design of rectangular
sections and with recent proposals [Clarke and Birjandi, 1993 and Feltham, 2004] the effective shear area, Aseff,

has been defined as the area corresponding to the effective depth, d. For the effective depth, the distance from
the sections extreme compression fiber to the centroid of the longitudinal bars under tension (Cr) was taken.
However, the position of the centroid of tension bars depends on the position of the neutral axis within the
section. Consequently, for the determination of the centroid, the moment of each single tension bar about a
selected reference axis (e.g. neutral axis) should be summed up. To overcome the deficiency ofthe current time-
consuming calculation a different approach is proposed.

The discretely distributed longitudinal bars in the section have been rearranged in continuous distribution in form
of a reinforcement ring (or tube in longitudinal direction) with the same cross-sectional area (or volume) as the
sum (volume) of all bars in the section (see Figure 1). In that way, the centroid of the tension bars could be
simply determined by calculating the center of gravity of the part of the reinforcement ring under tension. From
the condition that the cross-sectional area of discretely distributed longitudinal reinforcement

and the cross-sectional area of continuously distributed reinforcement

Ad = (D 12 -covi 1t-(DI2 -cov- ai 1t

(2)

(3)

(a)

d

Al (area of all bars)

(b)

neutral--.-.-.-.-.
axis

cov

c

D

Figure I: (a) Discretely distributed longitudinal reinforcement, and (b) continuously distributed
reinforcement
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within the section remains unchanged, A, =Ad, the thickness ofthe reinforcement ring is calculated

D I~( 2 2a=--+cov+- D-2.cov) +p/.D2 2 (4)

where D is the diameter of the section, cov the depth of the concrete cover, and PI the longitudinal reinforcement
ratio.

The next step is to calculate the center of gravity of the part of the reinforcement ring that is under tension. It
represents a ring segment. However, for easier calculation a ring sector will be considered (see Figure 2(a)),
inducing a negligible error in calculation, resulting from the difference between the locations of the centroids of
two geometric figures. The distance of the centre of gravity of the ring sector from the sections bottom fibre, Yr,
will be derived by means of the static moment of an infinitesimal ring sector area, dA, about the sections bottom
fiber. The area of the infinitesimal ring sector element, dA, is calculated by subtracting the area of the circular
sector element, dA), with radius rJ from the area of the circular sector element, dA2, with radius r2 (see Figure
2(b)). Thus the center of gravity is located at

Yr =

2n-a 2n-a

f Y2 dA2 - f YI dA]
a a
2n-a 2n-a

f dA2 - f dA)
a a

(5)

where the angle a is defined as

a = arc cos (_D_/_2_-_C_)
D/2-cov

(6)

For an infinitesimal angle dcp, it is allowed to replace the circular sector element with a rectangular triangle of
basis ri dcp and height ri' The area of the triangle is

1 2dA. =-r.. dcp
I 2 I

(i = 1,2) (7)

and its center of gravity is at 2/3 of its height. Thus, the distance of the center of gravity of the element dAi from
the sections bottom fibre is

D 2
Y. = - + - r.. coscp

I 2 3 1

(a)

C

d

a
cov

(i=1,2)

(b)

dcp

2
-r.COSrr\3 I 't'

(8)

Figure 2: (a) Reinforcement ring sector under tension, and (b) Infinitesimal circular sector element, dA;
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The index i corresponds to the circular sector of radius rI and r2, respectively. Substituting Equations (7) and (8)
into Equation (5) and solving it, the distance of the center of gravity of the ring sector from the sections bottom
fibre is obtained as

271-a
r cosq>'dq>
a
271-a

r dq>

(9)

a

D 2 sina (rl- r?)
Yr =---------

2 3 (7t-a)(ri -rn (10)

where

D
rI = --cov-a

2
(11 )

and

D
r2= --cov

2
(12)

The last term in Equation (10) is negative and, hence, subtracted from the sections radius D/2. It follows that the
center of gravity, Cr, lies always under the horizontal symmetry axis of the section. Finally, the sections
effective depth is equal to d = D - Yr or

D 2 sina(rl-r?)
d=-+-------

2 3 (7t-a)(,r -r?) (13)

Equation (13) in combination with Equations (4), (6), (11) and (12), enables the calculation ofthe effective depth
of circular sections with known geometries - diameter of the section, D, depth of the concrete cover, cov,
longitudinal reinforcement ratio, PI, and neutral axis depth, c.
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Figure 3: Sections effective depth to diameter ratio, dID, versus longitudinal reinforcement ratio, PI, for
various ratios of concrete cover to diameter, covlD (left: cov/D = 2% and right: covlD = 10%)
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Figure 4: Sections effective depth to diameter ratio dID versus neutral axis depth to diameter ratio ciD for
various covlD ratios (PI< 10%)

To reduce the number of variables, the ratio of concrete cover to diameter, covlD, has been introduced. Further,
the sections effective depth to diameter ratio, diD, is plotted versus longitudinal reinforcement ratio, PI, for
various neutral axis depths, ciD, and concrete cover to diameter ratios, covlD (see Figure 3). Note, that within a
definite covlD ratio and for normally Re sections (PI< 10%), the longitudinal reinforcement ratio does not have
a significant influence on the sections effective depth to diameter ratio, dID. Hence, its influence could be
neglected without greater influence on the accuracy of the final result. Omitting the reinforcement ratio variable,
the sections effective depth to diameter ratio, diD, is expressed as a function of two variables, i.e., neutral axis
depth to diameter ratio, cID, and concrete cover to diameter ratio, covlD (see Figure 4).

Further, if the sections effective depth is known, the area corresponding to it, i.e., the effective shear area, AseJf,

could be determined as

(14)

where ß is (see Figure 5) defined as

2dcosß=--1
D

(15)

d
D

Figure 5: Effective shear area of a circular section
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Figure 6: Sections effective shear area to gross section ratio A"flAg versus neutral axis depth to diameter
ratio ciD for various cov/D ratios (PI< 10%)

The effective shear area has been expressed as a ratio to the sections gross area, Ag, and plotted for various
neutral axis depths, ciD, and concrete covers, covlD (see Figure 6).

Generally, the sections neutral axis depth, c, is known from the flexural analysis. Kowalsky and Priestley
[Kowalsky and Priestley, 2000] observed that for circular sections the typical value of the ratio of the neutral
axis depth and the diameter, cID, is about 0.25 to 0.35. Within these limits of neutral axis depth, the ratio of the
effective shear area to gross sections area ranges between 0.6 and 0.8, depending on the depth of the concrete
cover, cov/D.

Concerning further the most frequent value of concrete cover to diameter ratio in practice of about cov/ D= I0%,
the ratio of Aseffto Ag is further limited between 0.67 and 0.73. Taking the mean value of 0.7, the effective shear
area of circular sections is proposed as

(16)

The proposed expression (Equation (16)) is valid for circular sections, where the longitudinal reinforcement is
uniformly distributed along the sections perimeter and consequently its influence could be replaced with a
reinforcement ring. The obtained effective shear area of 0.7Ag is somewhat lower than the recent proposals of
0.8Ag [Ang et aI., 1989 and Priestley et aI., 1994]. However, the advantage ofthe proposed approach is that it is
analytical and, thus, gives an exact solution of the effective shear area of circular sections. Moreover, it enables
to determine the shear area of circular sections for various geometries (sections diameter and concrete cover
depth) as well as for various neutral axis depths resulting from different loading situations ofthe member.

3. CONCLUSION

In the present work the effective shear area of RC circular sections has been proposed based on an analytical
derivation. The effective shear area was defmed as the area corresponding to the effective depth, which in turn is
taken as the distance from the sections extreme compression fiber to the centroid of the longitudinal
reinforcement bars under tension.

The ratio of the effective shear area to the sections gross area has been expressed as a function of the neutral
axis- and concrete cover depth. Only the variables most typical ranges, appearing in practice, have been
considered and it was found that the shear area ranges between 0.6 and 0.8 times the sections gross area. For
design purposes a value ofO.7 is proposed, which is in good agreement with other existing works.
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I. Merta: Analytical Shear Capacity Model of RCCircular Cross-Section Members under Monotonic load

4.3.2 EHecl of Concrete Strength

One of the main parameters that influence the members' shear strength is concrete

strength. In the early stage of knowledge (in the years 1900-1950) the shear capacity was

exclusively addressed to concrete compressive strength. The intensive research on shear in

the years 1950-1970 showed that, since shear failure is a diagonal shear failure, the concrete

shear strength is in better correlation with the concrete tensile strength than with its

compressive strength. Paw's (1960) observation that the concrete tensile strength is

approximately proportional to the square root of the compressive strength is today widely

accepted and introduced in most Codes (Park and Paulay, 1975; ACI-318M-02, 2002). Based

on a statisticaIly derived equation, Zsutty (I968) proposed to relate the shear strength to

(Jc'))/3. In Eurocode 2 (1992) it is defined as (Jc')2/3. Desai (2004) proposed that the

concrete nominal shear strength should be defined by splitting tensile strength. In high

strength concrete the cracks intersect the aggregate particles and the crack surface thus is

relatively smooth. Consequently the shear resistance due to aggregate interlock wiIl be

relatively lower in high strength concrete than in normal strength concrete (Vecchio et aI.,

1994; Elzanaty et al., 1986).

In the proposed model the effect of concrete strength has been accounted for with the

square root of concrete compressive strength, .JI:. Substituting further the influence of the

concrete compressive strength into the Equation 4.2 as well as the effective shear area

(Equation 16) derived in chapter 4.3.1, the shear force carried by concrete could be

expressed as

(4.17)
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4.3.3 Effect of Longitudinal Reinforcement

Previous studies on rectangular sections have reported that the percentage of

longitudinal reinforcement has considerable influence on the concrete shear strength (Kani,

1966; Krefeld et al., 1966; Elzanaty et al., 1986). For ail concrete strengths with an

increasing longitudinal reinforcement ratio the specimens' shear strength increased. The

same is valid for circular sections. Nevertheless, there have been opposite observations for

circular sections reported by Priestley and Benzoni (1996), according to which the shear

strength of circular columns does not appear to be influenced with the longitudinal

reinforcement ratio. This was corrected later by Kowalsky and Preistley (2000).

Segregating the test data of circular sections without shear reinforcement (Table 3.1)

by concrete compressive strength and aspect ratio, there is an obvious increasing trend in

shear capacity with an increasing longitudinal reinforcement ratio, see Figure 4.8. It is based

on the fact that by increasing longitudinal reinforcement ratio, PI' the dowel area and

consequently the dowel capacity ofthe member increase as well. Since the cracks' width and

height are also governed by PI' the aggregate interlock capacity is enhanced by increase of

PI . The higher PI' the shorter and narrower the cracks. In Figure 4.9 the data are further

separated by axial load and aspect ratio and the normalized shear strength versus longitudinal

reinforcement ratio is plotted. An enhancement of shear capacity is obvious as PI increases.
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Figure 4.8 Effect of longitudinal reinforcement ratio, PI ' on normalized shear strength
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Figure 4.9 Effect of longitudinal reinforcement ratio, PI ' on normalized shear strength for specimens
with different aspect ratio, aID, and axial load, P

The actual influence of the longitudinal reinforcement ratio on shear strength could be

expressed only when all other variables affecting shear strength are maintained constant. In

order to eliminate the beneficial effect of both the compressive axial load and the low shear

span-to-depth ratio on the shear strength, specimens without axial load and shear span-to-

-depth ratio higher than 2.5 have been selected. In such a way the influence function of the

axial load is I(P) = 0, and the one of the shear span-to-depth ratio is I(a / D) = I . Further,

the members' experimental shear capacity is normalized with respect to concrete

compression strength and the results are plotted in Figure 4.10.
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Figure 4.10 Normalized shear strength versus longitudinal reinforcement ratio
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Through the points the best fit function is expressed

(4.18)

Concerning the influence of the longitudinal reinforcement yield strength on shear

capacity of the member, researchers (Mathey and Watstein, 1963) reported that the shear

strength at the diagonal cracking load was not influenced by the yield strength of

longitudinal reinforcement. This conclusion is adopted also in the report of the ACl-ASCE

Committee 426, (1973). Kani (1966) also pointed out that the longitudinal reinforcement

yield strength should not have any influence on concrete shear capacity since the diagonal

failure occurs regularly before the reinforcement yield strength has been reached.

To investigate the influence of the longitudinal reinforcement yield strength on

concrete shear capacity, the data are segregated first by axial load ratio and additionally by

shear span-to-depth ratio, see Figure 4.11. However, the range of data was insufficient to

determine whether the influence ofthe reinforcement yield strength is significant and thus no

firm conclusion could be made about the trend. Further experiments should be carried out

with systematically varying the reinforcement strength over a wide range, by keeping other

variables constant. In the proposed model the longitudinal reinforcement yield strength was

not introduced as a variable.
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Figure 4.11 Effect of longitudinal reinforcement yield strength on normalized shear strength
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4.3.4 EHeci of Shear Span-Io-Depth Ralio

It has been known for a long time that the shear span-to-depth ratio, aid, or aspect

ratio, has a considerable influence on the members' shear strength. In 1907 Talbot showed

the influence of span length on ultimate shear stress. But only in 1951 did Clark introduce

and incorporate the important parameter aid into an empirical formula. The conclusion of all

tests was that with an increasing aspect ratio the shear strength of the element decreases. A

very important observation was reported by Kani (I966), namely that members are sensitive

of shear failure if the aspect ratio ranges within aid = I and aid = 6.5. He called this region

"valley of diagonal shear failure". Outside this region, failure occurs after the members'

flexural capacity has been reached. He also observed that at aid = 2.5 a turning point occurs

and the laws governing the shear strength of members with aid< 2.5 and aid> 2.5 are

completely different. For aid< 2.5 or squat members, the shear strength of the member is

governed by arch action, which means that the applied load is directly transferred to the

support by a concrete strut. Short members can sustain a very significant additional load

beyond the formation of the first diagonal crack before total failure. These members fail in

shear-compression. Conversely, long members where aid> 2.5 fail suddenly almost

immediately after the formation ofthe first major diagonal crack.

In circular sections, the diameter, D, is usually employed instead of members'

effective depth, d. Selecting from the database only members without axial load, i.e.

f(P) = 0 , and with a similar longitudinal reinforcement ratio, it could be noted that with an

increasing aspect ratio the member shear capacity considerably decreases (Figure 4.12). In

order to determine solely the influence ofthe aspect ratio on shear strength, the experimental

shear capacity should be further normalized with respect to longitudinal reinforcement ratio

as follows

V
f(a/D)= c

(fl:.0.7Ag)(3.7PI +0.18)
(4.19)

The obtained normalized shear strength versus aspect ratio is plotted in Figure 4.13.

There is an obvious shear capacity enhancement as the aspect ratio reaches 2.5, but no data

are available for aspect ratios lower than 2.0.
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Figure 4.12 Effect of the members' aspect ratio on normalized shear strength

Kowalsky and Priestley (2000) presumed that as aID further decreases the shear

capacity probably continues to increase. Because of insufficient information in the proposed

model a 25% enhancement for specimens with al D::; 2.5 has been conservatively assumed,

although Kowalsky and Priestley (2000) proposed a 50% enhancement. Thus, a shear

enhancement coefficient, k, due to the aspect ratio is proposed as follows

k={1.00 for aID>2.5
1.25 for aiD::; 2.5
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Figure 4.13 Influence ofthe members' aspect ratio on normalized shear strength
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4.3.5 EffectofAxial Load

Axial compression tends to increase the member's shear capacity because of the fact

that the onset of flexural cracking is delayed and as a consequence cracks do not penetrate as

far into the beam. Axial tension, in turn, causes an increase in inclined crack width,

decreasing the shear stress that could be transmitted across the crack by aggregate interlock,

resulting in a reduced shear capacity of the member (Bhide and Col1ins, 1989). This trend is

obvious for members under compression load from Figure 4.14.
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Figure 4.14 Effect of compressive axial load ratio on normalized shear strength

Normalizing the members' shear capacity with respect to concrete compression strength,

shear span-to-depth ratio and longitudinal reinforcement ratio, the influence of the axial load

level on the shear strength could be express as

f(P)= Vc (3.7p,+0.]8)
k . ../7:.0.7Ag

(4.20)

The best exponential fit through the data (Figure 4.] 5) is as follows

f(P) = 0.08(!:...-)O.3
Ag

(4.2])

Because of the lack of data on members tested under axial tension the proposed formula is in

this form valid only for axial compression.
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Figure 4.15 Influence of the axial load on normalized shear strength

4.3.6 Size Effect

In the brittle type of failure, like diagonal shear failure, with an increasing size (depth)

of the member the shear stress at failure considerably decreases. The size effect represents

the effect of beam's depth versus maximum aggregate size at a constant aspect ratio,

longitudinal reinforcement ratio and concrete compressive strength. As a consequence, high

strength concrete members displayamore significant size effect in shear than normal

strength concrete members. First test evidences of the size effect in shear were presented by

Kani (1967). Recently an extensive research on size effect in shear was conducted and many

different theories have been proposed, some of them based on fracture mechanics, others

based on reduced shear resistance resulting from wider diagonal cracks or some purely

empirical models (BaZant and Kim; 1984, BaZant and Sun, 1987; BaZant and Kazemi, 1991;

Reineck, 1991; Zararis and Papadakis, 200 I; Walraven et aL, 1994; Bazant, 1997; Bentz,

2005; Bazant and Yu, 2005a, b). However, all of these researches were carried out on

rectangular sections and no size effect tests on diagonal shear failure of circular section

members has been published so far in literature.

Considering the tests from the database plotted in Figure 4.16, a slight decrease of

shear strength could be observed with increasing the depth. However, data over a broader

range of depth are necessary to make any firm conclusion.
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Figure 4.16 Effect ofmember's depth on normalized shear strength

Because of a lack of test data on circular sections in the proposed model the size effect law

introduced by Bazant and Sun (1987) for rectangular sections could be adopted

1+.J5.08Ida
~= .JI + d 1(25da)

(4.22)

where d is the section's effective depth and da the maximal aggregate size.

4.3.7 Comparison of the Proposed Model to Other Models

The shear capacity of reinforced concrete circular section members without shear

reinforcement is proposed as follows

(4.23)

where PI is the longitudinal reinforcement ratio, P the axial load, Ag the section's gross area,

f: the concrete compressive strength, k is the shear enhancement coefficient and it is

defined for different aspect ratios, a ID, as

k = {l.OO for aiD> 2.5
l.25 for a I D ~ 2.5

The size effect coefficient, ~, could be taken as
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1; = I +~5.08/ da

~l +d /(25da)

The proposed shear capacity model is compared to the existing models of Clarke and

Birjandi (1993), as well as of Kowalsky and Priestley (2000), on the basis of 44 test data of

specimens without shear reinforcement (Table 3.1).

The statistical comparison of models is provided in Table 4.1. The mean experimental-

-to-theoretical strength ratio and the standard deviation of the proposed model are 1.01 and

0.13 respectively, which is considerably lower than the mean and standard deviation of

models proposed by Clarke et al. and Kowalsky et al. respectively. The higher coefficient of

determination ofthe proposed model indicates that the actual shear strength ofthe specimens

is better captured than by other two models. Furthermore, the lower coefficient of variation

ofthe proposed model indicates its consistency.

The experimental ultimate shear strength versus theoretical ultimate shear strength of

specimens of different proposals is plotted in Figure 4.17. The ratio of theoretical to

experimental shear strengths across the range of all parameters, such as concrete

compressive strength, aspect ratio, axial load ratio and longitudinal reinforcement ratio are

plotted in Figures 4.19, 4.20, 4.21 and 4.22. The smaller scatter of data by proposed model

indicates that the effect of a particular variable, affecting shear strength, is better captured

than by other existing proposals. Thus the proposed model clearly improves the prediction of

the shear capacity of circular sections without transverse reinforcement. The experimental

shear capacities as well as the theoretical shear capacities calculated by different proposed

models are listed in Table 4.2.

Table 4.1 Statistical comparison of models in terms of experimental/theoretical shear strength ratio

Clarke and Birjandi Kowalsky and Proposed(1993) Priestley (2000)

Mean value 1.29 1.11 1.01

Standard deviation 0.20 0.23 0.13

Coefficient ofvariation, CoV [%] 15 21 13

Coefficient of determination, r2 0.74 0.58 0.82
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Figure 4.17 Ultimate shear strength of circular section members without shear reinforcement
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Table 4.2 Calculated and measured shear capacities of specimens without shear reinforcement

Vexpcrimemal Vtheoretkal [kN] VexperimentalVtheoretical

Specimen
.

Clarke, Kowalsky, Clarke, Kowalsky,
[kN] Birjandi Priestley

Proposed
Birjandi Priestley Proposed

Clarke, 01-1 65.0 46.33 52.95 62.71 1.40 1.23 1.04
Birjandi 03-1 91.0 63.47 74.82 78.03 1.43 1.22 1.17
(1993) 03-2 97.0 63.47 74.82 78.03 1.53 1.30 1.24

04-1 129.0 78.84 103.94 108.40 1.64 1.24 1.19
04-2 109.0 78.84 103.94 108.40 1.38 1.05 1.01
05-1 148.0 89.97 84.69 123.21 1.65 1.75 1.20
05-2 130.0 89.97 84.69 123.21 1.44 1.53 1.06
06-1 152.0 105.77 108.23 157.45 1.44 1.40 0.97
06-2 148.0 105.77 108.23 157.45 1.40 1.37 0.94
29-1 146.0 97.28 134.60 148.97 1.50 1.08 0.98
29-2 86.0 81.65 91.55 107.64 1.05 0.94 0.80
30-1 132.0 95.87 132.81 145.46 1.38 0.99 0.91
30-2 90.0 80.33 89.33 105.02 1.12 1.01 0.86
31-1 146.0 98.64 160.11 129.61 1.48 0.91 1.13
31-2 98.0 71.53 74.93 88.10 1.37 1.31 1.11
32-1 134.0 97.25 158.26 127.04 1.38 0.85 1.05
33-1 151.0 99.99 119.32 145.23 1.51 1.27 1.04
33-2 116.0 83.89 76.18 110.82 1.38 1.52 1.05
34-1 174.0 117.01 139.77 184.32 1.49 1.24 0.94
34-2 125.0 98.19 96.69 140.66 1.27 1.29 0.89
35-1 159.0 139.12 186.04 202.20 1.14 0.85 0.79
35-2 125.0 100.82 100.64 146.41 1.24 1.24 0.85
36-1 164.0 135.78 182.60 194.62 1.21 0.90 0.84
36-2 136.0 98.28 96.83 140.87 1.38 1.40 0.97
41-1 77.0 183.99 265.48 275.07 1.28 0.89 0.86
42-1 50.5 183.09 263.52 273.04 1.28 0.89 0.86
42-2 70.0 183.09 263.52 273.04 1.21 0.84 0.81
45-1 47.5 200.72 246.87 299.89 1.17 0.95 0.78
46-2 59.0 203.39 251.86 305.94 1.38 1.12 0.92

Capon, 24.6-2-A 236.0 45.80 51.94 43.84 1.02 0.90 1.06
de Cossio 24.6-2-B 234.0 47.64 55.27 46.57 1.03 0.89 1.05
(1965) 25-3-A 222.0 65.09 78.53 69.47 1.10 0.91 1.03

25-3-B 234.0 63.98 76.45 67.81 1.06 0.89 1.00
F-25-3-A 281.0 55.96 62.42 69.21 1.25 1.12 1.01
F-25-3-B 212.0 56.85 63.98 70.75 1.35 1.20 1.09
F-OO 71.6 43.08 42.00 46.57 1.10 1.13 1.02
P-25-3-A 45.8 52.25 56.30 49.81 0.88 0.81 0.92
P-25-3-B 56.8 52.79 57.14 50.68 0.89 0.82 0.93
P-25-3-C 67.7 53.11 57.71 51.06 1.07 0.98 1.11
P-25-3-D 47.0 55.40 61.47 54.52 0.96 0.86 0.97
FU-OO 53.0 43.40 42.47 47.08 1.36 1.39 1.25
F-A 46.5 36.39 38.73 44.39 1.39 1.30 1.14

Kim (2000) YJCCONT 49.0 202.07 299.79 244.01 1.61 1.09 1.34
Khalifa, SCO 326.0 166.51 200.15 194.95 1.27 1.06 1.09
Collins (1981)
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4.4 Evaluation of Shear Reinforcement Capacity

As long as the section is uncracked the shear reinforcement is ineffective in tension.

With the appearance of the first diagonal cracks the shear reinforcement is mobilized In

resisting shear by tension in it.

Comparing the part of the shear force carried by the shear reinforcement of

rectangular and circular sections, the following could be observed. In the case of rectangular

sections the stirrup's shear force acting in the direction of the external shear is 2Aswf}'lv,

where A,n" is the cross section of the stirrup and 1;0" its yield strength, see Figure 4.23. In

circular sections, in turn, only the vertical component of the hoop's tension force,

2Aswf}'lv . cas q>, is effective in resisting external shear. It would seem thus that circular

sections are weaker in resisting shear than rectangular sections, which, of course, is not a

plausible conclusion. There is obviously an additional shear resisting mechanism in curved

shear reinforcement of circular sections that has been not identified yet. In the following the

shear resisting mechanism of hoops will be discussed in detail.

As ../yw
~A.,./Y'" cos q>

~v ~v

Figure 4.23 Tension force in shear reinforcement in rectangular and in circular sections

4.4.1 Shear Resisting Mechanism of Hoops in Circular Sections

As the load on the member further increases, the cracks widen and distribute, see

Figure 4.24. At the ultimate state a major diagonal crack forms and the section fails by

rupture of the shear reinforcement along the diagonal crack, i.e. diagonal failure plain. At

this state the section is already considerably cracked in the vicinity of the major diagonal

crack.
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Figure 4.24 Reinforced concrete circular cross-section member under monotonic shear load

In the cracked region the bond between concrete and shear reinforcement is gradually

destroyed, hence the shear reinforcement and the concrete could be considered as two partly

separated materials. The shear reinforcement is under tension and as a result of the hoops'

curved shape the change of its direction induces lateral pressure on the concrete. This

pressure is designated as deviation stresses and appears only in sections with curved shear

reinforcement such as circular hoops or spirals. It is activated as soon as bond is destroyed

and the shear reinforcement partly separated from concrete core. Moreover, it is only active

in the parts ofthe hoops within the diagonally cracked zone (Figure 4.25).

As a result of action-reaction, the concrete acts on the hoops with normal pressure

equal in magnitude but with opposite direction. It actually represents the reaction of concrete

to the tendency of curved hoops to straighten. A similar mechanism develops in post-

-tensioned concrete elements, where tensioning of tendons in the ducts induces lateral

pressure on the concrete section.

external
shear ~

T
cracked
region

Figure 4.25 Deviation stresses of hoops acting at the section' s cracked region

1
cracked
region
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The component of the deviation stresses in the direction of the external shear actually

represents an additional shear resisting mechanism of hoops that increases the total shear

capacity of the member. The entire shear capacity of shear reinforcement is thus added

together from two shear resisting components: the tension component - resulting from the

tension in shear reinforcement and the deviation component - resulting from the shear

enhancement of deviation stresses. In the following chapters each of these components will

be separately discussed and analytically expressed.

4.4.2 Shear Resisting Mechanism by Tension in Hoops - Tension Component

After the section is cracked the shear reinforcement is mobilized in resisting external

shear by tension forces in it. This shear-carrying mechanism has been denoted as the tension

component. In the limit state it is usually assumed that all transverse reinforcement crossed

by a diagonal crack yields and, therefore, each resists a tension force of AswJ)'Iv across the

crack, where Asw is the area ofthe hoop's one leg and.!;". is the hoop's yield strength (Figure

4.26). The tension force acts in the hoop's tangential direction and therefore only its

component in the direction ofthe external shear AswJ)'Iv' cos<Py,; is active in resisting shear,

where <Py,i denotes the angle between the direction of the external shear and of the hoop's

tension force AswJ)'Iv' The total tension force of hoops that resists external shear is then

equal to the sum of all hoops' forces crossed by the diagonal crack.

hoop's
yield point

diagonal
crack

o 1 ...

- -- -------- ------ ~
..... ai...... . ~

COV

s
(D-c-cov) ctg e

external,.J;hear
cov

c

D

Figure 4.26 Shear carried by tension in hoops crossed by a diagonal crack

581
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In the recently proposed design equation for hoop's capacity (Ang et aL, 1989;

Kowalsky et aL, 2000) and in design equations of stirrups of rectangular sections defined in

codes (ACI 318M-02, 2002; Eurocode 2, 1992), a smeared distribution of shear

reinforcement has been assumed. Actually, the shear reinforcement consists of a discrete

number of bars crossing the diagonal crack. Kim and Mander (2005) made us careful when

using these equations since they could be very unconservative in cases of a low number of

shear reinforcement crossed by a diagonal crack. To avoid the unconservativeness they

proposed applying correction factors to current design formulas for various type of shear

reinforcement. Dancygier (2001) showed that the design formula derived by Ang et al.

(I989) for circular hoops - which is based on the assumption that the hoop' s spacing is

sufficiently small compared to section's diameter and thus integral averaging is applied - is

valid only when less than four hoops are crossed by the diagonal crack. For all other values

the formula is 10% to more than 50% unconservative.

To overcome such deficiencies in this work, instead of integral averaging a strict

summation is applied, obtaining a formula valid for an arbitrary range of hoop's spacing/to

diameter ratio. The crack pattern is idealized as a series of parallel cracks all occurring at an

angle 8 to the member's longitudinal axis (Figure 4.26). In the simple truss analogy the

inclination angle of cracks is generally taken to be 45°. However, tests on members under

different loading situations showed that the inclination angle is usually lower than 45°. For

cyclic load Priestley et al. (1994) proposed taking 30°. The resultant tension force resisting

external shear is obtained by summing up all the tension force components traversing the

crack plane

n,
VS1 = 2Asw/ ywLcos q> y,i

;=1

(4.24)

where i is the index ofthe hoop that is crossed by a crack, q>y,i is the pertaining central angle

defined in Figure 4.26 and n, is the number of hoops active in tension across the crack.

Kowalsky and Priestley (2000) noted that shear cannot be transferred across the section's

compression zone by tension in hoops - since the cracks are by definition closed in the
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compression zone. According to this suggestion, only the hoops outside the compression

zone have been considered for resisting shear by tension. Their number is

[
(D - c - cov) ]

nI = INT s clgB (4.25)

where D is the section's diameter, c the compression zone's depth, cov the concrete cover

and s the spacing of the hoops. The crack tip is assumed to pass through the intersection

point of the hoop and the longitudinal bottom steel. Note that the number of the hoops is

always an integer value and it is zero when their spacing is larger from the reduced section

width, i.e. the diagonal crack falls between two hoops. Further, the central angle <Py,i is

defined as

D/2-cov-a.
sin<p . = /

y,/ D/2-cov

where ai is the ordinate of the particular yield point defined as

ai = i. s'lgB

(4.26)

(4.27)

Expressing s. 19B from Equation 4.25 and taking into account a typical value of c / D = 0.3

proposed by Kowalsky and Priestley (2000), Equation 4.27 becomes

. (0.7 D -cov)
ai=/.-----

nI

Substituting it into the Equation 4.26, the central angle is expressed as

. i (0.7D-cov)
sm<p .=1--.-----

y,/ n/ (DI2-cov)

(4.28)

(4.29)

For typical values of cov/ D of 1% to 20% the value ofthe ratio (0.7D-cov)/(D/2-cov)

ranges between 1.41 and 1.67. Taking a middle value of 1.5

i
sin<py,i = 1-1.5-

n/

and the cosines ofthe central angle is

(4.30)
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COS~y,i = 1-(1-1.5 ~,r (4.31 )

Further, the resultant shear resisting force ofhoops crossed by a crack is given by

(4.32)

The obtained expression is not suitable for design purpose; hence an inevitable simplification

is introduced. The summation term has been defined as the tension influence coefficient kt

(4.33)

Its graduate course is plotted in Figure 4.27 and it is a result of the realistic discrete

distribution of shear reinforcement. It correctly represents the fact that if the crack plane is

not traversed by any hoop (nt< 1) the tension influence coefficient is zero and thus the

contribution of the hoop's tension component to the members shear capacity is zero. The

discrete function could be replaced with sufficient accuracy by the continuous function

(4.34)

Thus a simple expression ofthe shear resisting force in hoops is obtained

(4.35)
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However, there is another aspect that should be considered. Current design procedure

ignores the influence of shear reinforcement on concrete shear capacity, providing for total

shear strength a simple superposition of concrete and shear reinforcement capacity. As

several studies show, the concrete shear mechanism can interact with hoops in different

ways, see Ang, Priestley and Paulay (1989), Wong, Paulay and Priestley (1993), Russo and

Puleri (1997); ASCE-ACI Committee 445 (1998, 2000). The shear reinforcement indeed

enhances the concrete shear capacity even if the shear reinforcement is not intersected by

cracks and thus not activated in tension. This is a result of the following mechanism: the

shear reinforcement improves the contribution of the dowel mechanism by supporting the

longitudinal bars and it enhances the contribution of the aggregate interlock by forcing the

cracks to redistribute in a closer spacing and over a wider area (Park and Paulay, 1975). This

additional shear-carrying mechanism will be introduced into the proposed model in a way

that the number of hoops nI will not be rounded down, obtaining in such a wayan additional

shear capacity portion.

4.4.3 Relation between the Hoop's Tension and the Deviation Function

There is a fundamental difference in the shear carrying mechanism of the transverse

reinforcement in the case if it is conducted straight-line or curved. Generally, shear

reinforcement is active in carrying shear by tension in it. But in the case of curved

reinforcement, such as hoops and spirals, the change of direction of the bar's tension force

induces additional lateral pressure on the concrete core, the so called deviation stresses, Id
(Figure 4.28). In straight shear reinforcement (stirrups) this mechanism is not present.

Because of action-reaction, the concrete section acts on hoops with normal pressure,

In' of the same intensity as the deviation stresses, Id' but in the opposite direction (see

Figure 4.28a and b). Consider the forces acting on an infinitesimal hoop element: the tension

force in hoop T; the bond force dB, defined as the shear stress th that develops along the

lateral surface of the bar of length ds, and the concrete normal force dN, defined as the

normal stresses f" along ds. The equilibrium in radial direction of an infinitesimal hoop

element of length ds defined by angle dcp is
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Tsin dcp + (T + dT)sin dcp = dN
2 2 (4.36)

For very small angles dcp it could be assumed that sin(dcp/2) = dcp/2. The third term on the

left side of the equation is small of the second order and could be neglected with respect to

the others. Thus the relation between the hoop's tension force and the concrete normal force

is obtained

From the equilibrium in tangential direction it follows that

(T + dT)cos dcp - T cos dcp = dB
2 2

(4.37)

(4.38)

For small angles it holds that cos(dcp/2) = I, therefore, Equation 4.38 may be written as

(4.39)

Thus the expression of the fundamental stress transfer mechanism between concrete and

steel is obtained, according to which the change ofbond forces is directly proportional to the

change oftension force in hoops.

Consider more closely the physical nature of the bond. The bond is made of three

components: chemical adhesion, friction and mechanical interaction between concrete and

steel, i.e., mechanical interlock (Gota, 1971; Lutz and Gergely, 1967; Lutz, 1970).

a) b)

Figure 4.28 Forces acting on a) an infinitesimal hoop element and on b) concrete
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Adhesion is lost almost immediately upon loading. As load further increases, a slip

between concrete and steel occurs and the contribution of the friction and interlock

mechanism to the bond strength is mobilized. Roughly simplifying, it could be assumed that

the bond is mainly governed by friction between steel and concrete. On the other hand, bond

stresses increase with normal confining pressure exerted by the surrounding concrete on the

bar surface (Untrauer and Henry, 1965;fib Bulletin, 2003 page 118). The higher the normal

pressure, the higher the bond stresses and thus higher tension force is required to separate the

concrete and steel surface. This fundamental characteristic of bond is correctly captured by

the "frictional concept", where the friction force that develops between two bodies is related

to the normal force through the frictional coefficient. Based on the similar physical meaning

of the bond and friction forces, the bond force, dB, will be related to the normal force, dN,

through the friction coefficient Il

(4.40)

The friction coefficient is proportional to the roughness of the surfaces in contact (concrete

and steel). Thus, applying the frictional concept, Equation 4.39 becomes

(4.41 )

In such a way the hoop's tension force is expressed through the normal force. From the two

equilibrium equations (Equation 4.37 and Equation 4.41) by eliminating dN , a differential

relation ofthe hoop's tension force as a function ofthe friction coefficient is obtained

(4.42)

By integrating both sides, assuming that the friction coefficient IS constant, the hoop's

tension force function is obtained

(4.43)

(4.44)
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The maximal tension force that the hoop can carry is Tmax = Aswfvw, that is when the

stresses in the hoop reach the steel yield stress,.!;" at a point defined by the angle q>y

T( q» = AS\vfVlv e-~ <P,. -<p) (4.45)

Equation 4.45 represents the hoop's tension function illustrated in Figure 4.29. It is an

exponentially increasing function which is zero at the boundary point of the cracked region,

i.e., at q> = q>o, where a perfect bond between the concrete and hoops exists (the friction

coefficient is infinite), and it increases with increasing of the angle q>, reaching its

maximum value at the hoop's yield point, where q> = q>y' We assume a symmetrical branch

of the tension function at the other side of the yield point. Here, with a further increase of the

angle q>, the tension function decreases in the same manner, reaching zero at the cracked

region's other boundary point.

Substituting, further, Equation 4.45 into the Equation 4.41 - considering that the

concrete normal force is equal to the deviation force, dN = dD, - the hoop's deviation

function is obtained

D( q» = Aswf yw e -J.l( <P, -<p)
j..l

+X
,,,,

I

I

I
I

I,
\

\

\
\
\ ,,

hoop's "
yield pOInt

Figure 4.29 Hoop's tension function, T(q»

external
shear

(4.46)
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It represents the hoop's deviation force at an arbitrary angular distance <p. The deviation

force has its maximum value, Dmax =Asw/yw/J.l., at the yield point,<p=<py' and decreases

with the distance from the yield point, reaching zero at the boundary point of the cracked

region, where <p= <po.From the plot of the normalized deviation function in Figure 4.30 two

essential characteristics ofthe function's nature could be observed, i.e.

• The further from the yield point a particular point, the lower the deviation force

there. This is a consequence of the fact that the tension force in hoops decreases with

increasing the distance from the yield point, and the deviation force is indeed

proportional to the tension force.

• A higher friction coefficient results in a lower deviation force. At the points where

the bond between concrete and steel is stronger (higher friction coefficient) the

concrete is less or not at all cracked, hence it follows that the shear reinforcement is

not mobilized in tension. Consequently, no deviation forces act.

I I I I
I I I I

i- l IrO.3 I I I, I I I, I J.
I I I
I I I
I I I I -
I I I I
I I I I-- - - - - ..,- 11"'8.-5- - r - - - - - - -,- - - - - - - ,.- - - - - - -

I I I
I I I
I I I
I I I I

-- - - - - ~ -1l""-'1 :0- - ~ - - - - - - -:- - - - - - - ~ - - - - - - -
I I I
I I I
I 1-1=5.0 I I I

I I I

10° 20° 30° 40°
Angular distance from the yield point l<py - <Pol

50°

Figure 4.30 Normalized deviation force at an arbitrary angular distance from the yield point

However, in all derivations it was assumed that the friction coefficient is a constant

value. In fact, the friction coefficient is not a constant value but varies along the hoop's

perimeter depending on the "goodness of the bond" between concrete and steel, which in

turn is different at a different angular distance from the yield point. Simplified, it could be

assumed that in the vicinity of the yield point the concrete is extensively cracked, the bond is
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noticeably destroyed, thus we have a weaker friction force, i.e., the coefficient of friction is

lower. If the observed point is farther from the yield point the concrete is less cracked, the

bond between concrete and steel is stronger, resulting in a higher friction coefficient. At the

points where the concrete section is not cracked a perfect bond between steel and concrete

could be assumed with an infinitely high friction coefficient.

For concrete and steel the friction coefficient is around 0.6 (Leonhardt et aI., 1973).

However, in the case of not entirely separated materials - but "constrained" by a partial bond

between them - a higher frictional coefficient should be taken into consideration. Usually it

is between 1.0 and 1.5 (jib Bulletin, 2003 page 118).

As a result of the change of the friction coefficient along the reinforcing bar, the

deviation force decreases actually slightly stronger with the angular distance from the yield

point as by assumed constant friction coefficient (Figure 4.31). However, the change of the

deviation function is unknown and additional research should be carried out to define its

nature. In order to simplify, in this work a constant friction coefficient of 1.5 has been

assumed along the whole length of one hoop.

--- Constant friction coefficient 1-1=1.5
- - - Variable friction coefficient

I
I I I I

- - - - -t - - --- --1- - - - - - -1" --- - - - -1- - - - - --
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"'" I I I
""" I I 1
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Figure 4.31 Change ofthe deviation force with respect to the distance from the yield point
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4.4.4 Shear Resisting Mechanism of Hoops Resulting from Deviation Forces
- Deviation Component

With increasing shear load the section is more and more diagonally cracked. At the

ultimate load the member fails by rupture of the shear reinforcement along the major

diagonal crack. At this stage a considerable region of the section along the failure plane is

cracked (Figure 4.32). In the cracked region the bond between the hoops and concrete is

heavily destroyed and the hoops act with deviation forces on the concrete section. At the

places where the section is uncracked the bond between steel and concrete is perfect and the

section acts like a homogenous material, thus no deviation forces act.

T
cracked
region

Figure 4.32 Cracked region of a circular cross-section member under shear load

external+Shear

1
cracked
region

Unlike the shear resisting mechanism by tension in the hoops, the deviatoric

component is not solely active at the hoop's yield point, but along the whole arc length of the

hoops within the cracked region (Figure 4.32 right). Each hoop in the cracked region acts

with a resultant deviation force on concrete of different magnitude, resulting from a different

arc length of a particular stirrup. To obtain the total shear capacity of the shear

reinforcement, resulting from the deviation forces, the following two steps are required in

calculation:

• to obtain the resultant deviation force of one hoop, the deviation function along the

hoop's arc length, within the cracked region, should be integrated and then
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• to obtain the total deviation force, the component of the resultant deviation force of

each hoop in the direction of the external shear should be expressed and summed up

along the number of all hoops in the cracked region.

Resultant Deviation Force o, One Hoop

As the diagonal crack propagates through the member on the section's lateral surface,

two symmetrical cracked regions form. Consequently, each particular hoop acts on the

concrete section with two symmetrically located resultant deviation forces, Dh,i' with regard

to the axis ofthe external shear force (Figure 4.33). Here i denotes the particular hoop within

the cracked region. The resultant deviation force, Dh,i, is obtained by integrating the

deviation function (Equation 4.46) along the hoop's arc length within the cracked region.

Since the deviation function is symmetrical with regard to the yield point, the resultant

deviation force could be simply calculated by integrating the deviation function D( 'P) from

angle 'Po,; - denoting the cracked region's boundary point - to the angle 'Py,i and then

multiplying it by two to take into account the function's descending and ascending branch

.1. external"¥ shear

Figure 4.33 Deviation function and the resultant deviation force of a particular hoop
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The resultant deviation force of a particular hoop, DII,;, acts at the centre of gravity of

the area under the function D( <p), which is located at the hoop' s yield point. The magnitude

of the resultant deviation force generally depends on the magnitude ofthe friction coefficient

and of the central angle that defines the cracked region, The influence of these two variables

could be summed up in one coefficient as follows

I- e-J.!( <P,.,-<Po,)
À.i =2-----2---

J..l
(4.49)

Its course is plotted in Figure 4.34 for different friction coefficients and central angles

<Py,; - <Po,;. Some important conclusions could be drawn about the physical nature of the

deviatoric shear resisting mechanism. For a constant friction coefficient, the longer the

hoop's arc length within the cracked concrete strut, i.e., the larger the angle <Py,; - <Po,;, the

larger the hoop's resultant deviation force. Further, the higher the friction coefficient (e.g., a

better bond between concrete and steel is assumed), the lower the hoop's resulting deviation

force. The resultant deviation function of one hoop is

(4.50)

Each particular hoop acts on concrete with a resultant deviation force DII.i oriented to the

centre of the circle represented by a hoop.
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Figure 4.34 Influence coefficient versus friction coefficient for different central angles of one hoop
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Total Deviation Force of Hoops

The hoop's total deviation force is obtained by summing up the components of the

resultant deviation force of each particular hoop, Dh,i, in the direction of the external shear

along the cracked region (Figure 4.35). Thus

nd

Vsd = 2ASlvfY'v 2:>,,; 'sinq>y.;
;=0

where

I-e -ll(CP,"-CPOJ)
1..;=2'---2--

I-L

(4.51)

(4.52)

The coefficient 2 in Equation 4.51 denotes that each hoop corresponds with two

resultant deviation forces symmetrically. It has been assumed that the diagonal crack starts

exactly at the intersection of the hoop with the bottom longitudinal reinforcement. In

Equation 4.51, nd denotes the number of hoops crossed by the diagonal crack. Note that only

hoops with a yield point under the axis of symmetry actually enhance the member's shear

capacity (shaded area in Figure 4.35), since only their component counteracts to the external

shear force. If the yield point is beyond the symmetry axis the component of the deviation

force acts in the same direction as the external shear and has no shear enhancing effect.

Therefore solely hoops under the symmetry axis have been considered.

J-

cracked
region

diagonal
crack

D

Figure 4.35 Hoop's deviatoric shear carrying capacity along the member's cracked region
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Figure 4.36 Transformation ofhoops

The magnitude of the influence coefficient, À;i, of a particular hoop depends on the

value of the central angle <Py,i - <PO,i . However, all hoops within the inclined cracked region

have a different arc length and consequently a different central angle. The following

transformation enables us to obtain a simple solution. The parallelogram, formed by hoops

below the member's axis of symmetry (Figure 4.36 left), has been vertically divided in two

similar triangles; the part marked with an ellipse is moved under the other triangle. In such a

way the hoops are coupled and a constant hoop's arc length along the whole cracked region

is obtained, each ofthem with an equal central angle, see Figure 4.36 right. Instead ofhaving

each particular hoop of a different central angle we obtain the same number of hoops but

with the same central angle, <Pmax.

The central angle will be derived from the geometry in Figure 4.37. Consider the hoop

with a yield point on the section's symmetry axis, intersecting both outer boundary lines of

the cracked region. The diagonally cracked region is assumed to extend to (D /2) ctg8 . The

corresponding chord of the circle is D/2. From the geometry the central angle follows as

D/4
sin('Pmax) == -----

D/2-cov

for a typical value of cov/ D of up to 10% the maximal central angle is obtained

_ 0 80 _ 1t
<Pmax - 34 - 3 = -

5

(4.53)

(4.54)

This simplification makes possible carrying out the summation in Equation 4.51 along the

same number ofhoops but with a constant influence coefficient for each hoop.
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DI2

DI2

J (D12l <tg e t
Figure 4.37 Hoop's maximal central angle

From Figure 4.34 the influence coefficient, for an assumed friction coefficient of 1.5 and for

<Pmax = ni 5, is obtained

(4.55)

This allows us to factor the constant influence coefficient, À, out of the sum In Equation

4.51 and the hoop's total deviatoric component is thus simplified as

nd

Vsd = 2ASlvfJ'lv À L,sin<py,i
i=O

The number of hoops, nd, under the symmetry axis crossed by the diagonal crack is

nd = INT[_(D_/2_
s

-_C_O_V_)Clgs]

and the central angle, <Py,i' is given by

. DI2-cov-ai
Sln<Pyi =. Dl2-cov

Following the same procedure as in chapter 4.4.2, it is obtained that

. (D12 -cov)
ai =/.

nd

and the central angle is

i
sin<p . =1--Y.I

nd

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)
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Thus the total deviatoric shear capacity ofthe hoops is

(4.61)

Because of the simplification, the summation term has been defined as the deviation

influence coefficient kd

(4.62)

872 3 456
Numberofhoops nd

I
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I I 1 I I___ ~ L I J '
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Figure 4.38 Deviation influence coefficient as a function ofhoop's number

This discrete function could be replaced by the continues function (Figure 4.38)

(4.63)

and a simple expression of the deviatoric shear capacity of hoops is obtained

(4.64)

where the number ofhoops crossed by the crack is calculated from

nd = INT[_(D_/_2
s

_-_CO_v_) ctg8] (4.65)

and the inf1uence coefficient IS taken as À. = 0.53 for an assumed friction coefficient of

j..I.= 1.5.



I. Merta: Analytical Shear Capacity Model of RCCircular Cross-Section Members under Monotonic Load

4.4.5 Total Shear Force Carried by Shear Reinforcement

The total shear force carried by the hoops of circular sections is added together from the

tension and deviation component

(4.66)

where the number ofhoops active in tension and in deviation is respectively

nI =(D-c-cov)ctg8/s (4.67)

nd = lNT[ (D 12 - cov)ctg8 1sJ (4.68)

and À = 0.53 for an assumed friction coefficient of j..l. = 1.5 .

In the thesis only circular hoops have been considered. In practice, for the

convenience of construction, mostly spiral hoops are used. The shear capacity of spirals is

however less than the shear capacity of circular hoops. When the diagonal shear plane cuts a

spiral, one of its legs runs broadly parallel to the crack and is thus less beneficial in carrying

shear than the other one, see Feltham (2004) for more details. Clarke and Birjandi (1993)

proposed reducing the shear capacity of spirals compared to hoops with an efficiency

coefficient. The larger the spiral' s pitch the flatter the inclination of one leg and the lower its

contribution to the shear capacity. The efficiency coefficient has been thus defined as a

function ofthe spiral's pitch which in turn is expressed as a proportion ofthe effective depth.

As a consequence, in the case of spiral reinforcement the proposed equation 4.66 should be

0.80.60.4

I
I
I--------~--------~--
I I
I I
I I
I I
I I
I I I---------f--------ï--------ï------
I I I
I I I
I I I
I I I
I I I

0.95

0.85
0.2

G'c:..,
.ô

~ 0.90

additionally multiplied by the reduction coefficient defined in Figure 4.39.

1.00

Spiral"s pitch as a portion of d

Figure 4.39 Spiral's efficiency as a function of its pitch
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5 DISCUSSION OF RESULTS AND COMPARISON TO
OTHER MODELS

5.1 Verification of the Proposed Model for Monotonic Load

The proposed model for the capacity of circular cross section members under shear load is

with

{
I.OO for aiD> 2.5

k=
1.25 for aID::;2.5

(D -c-cov)
nt =~---ctg8

s

nd = INT[~(D_I_2s_-_CO_V_) ctg8]

À =0.53

PI is the longitudinal reinforcement ratio, P the axial load, Ag the sections gross area, f; the



I. Merta: Analytical Shear Capacity Model of RCCircular Cross-Section Members under Monotonic Load

concrete compressive strength, As1\' the cross section of the stirrup,to,' its yield strength, a the

shear-span, D is the section's diameter, c the compression zone's depth, cov the concrete

cover, s the spacing ofthe hoops, e the crack's inclination angle, d is the section's effective

depth and da the maximal aggregate size.

The model has been verified on the database of 62 circular members with shear

reinforcement (Table 3.2) by comparing it to the two existing models - Clarke et al. (1993)

and Kowalsky et al. (2000). The validity of the models is compared by calculating the

statistic values of their mean strength, standard deviation, coefficient of determination r2

and coefficient of variation CoV [%]. The closer the mean strength to 1.0 and the lower the

standard deviation, the better the model. The coefficient of determination provides a measure

of the strength of the correlation of the data with the model. Its value is between 0 and 1.0

and the closer it is to 1.0, the higher is the correlation between the proposed model and the

experimental values. The coefficient of variation is a statistical measure of the dispersion of

data points around the mean. Thus for a good prediction it should be as low as possible.

The statistical comparison of experimental/theoretical shear strength calculated by the

existing models and by the proposed one is provided in Table 5.1. The coefficient of

determination by Clarke et aI., Kowalsky et al. and the proposed model are 0.85, 0.66 and

0.88 respectively, meaning that the shear capacities predicted by the proposed model are in

stronger correlation with the experimental values. The model proposed by Clarke et al. has a

mean strength ratio of 1.23, standard deviation of 0.13 and coefficient of variation 10%,

whereas the model of Kowalsky et al. is slightly more conservative, with a mean strength

ratio of 1.25, standard deviation of 0.21 and coefficient of variation 16%. The proposed

model provides the closest agreement with experimental data, with a mean strength ratio of

1.01, standard deviation of 0.11 and coefficient of variation 10%.

The experimental ultimate shear strength versus theoretical ultimate shear strength of

specimens of different proposals is plotted in Figure 5.1. The ratios between theoretical and

experimental shear strengths across the range of all parameters, such as concrete

compressive strength, aspect ratio, axial load ratio and longitudinal reinforcement ratio are
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plotted in Figures 5.2 to 5.6. The smaller scatter of data by the proposed model indicates that

the influence of a particular variable affecting shear strength appears to be well represented.

Thus the proposed model clearly improves the prediction of the shear capacity of circular

sections with transverse reinforcement.

The experimental shear capacities as well as the theoretical shear capacities calculated

by different proposed models are listed in Table 5.2.

Table 5.1 Statistical comparison of models in terms of experimental/theoretical shear strength ratio

Clarke and Birjandi Kowalsky and Proposed(1993) Priestley (2000)

Mean value 1.23 1.25 1.01

Standard deviation 0.13 0.21 0.11

Coefficient of variation, Co V [%] 10 16 10

Coefficient of determination, r2 0.85 0.66 0.88
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Figure 5.1 Ultimate shear strength of circular section members with shear reinforcement



I. Merta: Analytical Shear Capacity Model of RCCircular Cross-Seelion Members under Monotonic Load

Clarke and Birjandi 1993

..
•

2

<;
.~~
~
."

::,."
"'-s~~.~
~

~...;

0

2

~~
2

'"::,."
"'-
S~
.~

~
::,."

0

,,
I, "

- - -..--~.- - - - - - -~~- - - - - - ~- - - - -..-~.-- - - - - - ~- - - - - --
• I .... I , •••• f ••• ' •. ,.. .., ,... ' . ....

, . ,. , .. ..., .. ..
... ~,,,_______ ~ ~ ~ L ~ _

,
,
,
,
,

Kowalsky and Priestley 2000

,
I I 1 I I... '. : . : .: :------~.--------~-------~-----~-~-------~-------., '. ' .. ' . , ... , ....... '.. .' ... .'. .. ..
, '. '. .' , .• I •• ..:.. .. ' ' ......... ' ....

• t ..: ,
I I I I I_______ ~ ~ ~ L J _

I 1 I I I
I 1 I \ I
I I I I I
I I I I I,

Proposed
2

"8~,
2

'" ...::,." •
"'- •••s~

.~

~
~t.i

0

Figure 5.2 Ratio of experimental to theoretical shear strengths of members with shear reinforcement

80 I



I. Merta: Analytical Shear Capacity Model of RCCircular Cross-Section Members under Monotonic load

Clarke and Birjandi 1993
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Clarke and Birjandi 1993
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Table 5.2 Calculated and measured shear capacities of specimens with shear reinforcement

Vexpcrimemal Vtheoretical [kN] VerperimentalVtheorelicaJ

Specimen Clarke, Kowalsky, Clarke, Kowalsky,
[kN] Birjandi Priestley Proposed Biriandi Priestley Proposed

Clarke, M]/2 45.0 39.75 35.09 41.17 1.13 1.28 1.09
Birjandi MI/3 46.0 39.75 35.09 41.17 1.16 1.31 1.12
( 1993) MI/4 38.0 39.75 35.09 41.17 0.96 1.08 0.92

11-1 186.0 132.40 113.59 159.89 1.40 1.64 1.16
11-2 188.0 132.40 113.59 159.89 1.42 1.66 1.18
12-1 211.0 177.26 146.21 201.53 1.19 1.44 1.05
12-2 239.0 177.26 146.21 201.53 1.35 1.63 1.19
13-1 227.0 154.96 147.15 208.90 1.46 1.54 1.09
13-2 228.0 154.96 147.15 208.90 1.47 1.55 1.09
14-1 279.0 201.72 182.72 254.86 1.38 1.53 1.09
14-2 288.0 201.72 182.72 254.86 1.43 1.58 1.13
15-1 145.0 120.68 113.92 137.82 1.20 1.27 1.05
15-2 148.0 120.68 113.92 137.82 1.23 1.30 1.07
16-1 185.0 138.83 145.13 174.69 1.33 1.27 1.06
16-2 186.0 138.83 145.13 174.69 1.34 1.28 1.06
17-1 117.0 89.90 95.23 103.62 1.30 1.23 1.13
17-2 115.0 89.90 95.23 103.62 1.28 1.21 1.11
19-1 113.0 103.18 103.17 123.70 1.10 1.10 0.91
19-2 129.0 103.18 103.17 123.70 1.25 1.25 1.04
20-1 149.0 120.74 133.72 159.78 1.23 1.11 0.93
20-2 137.0 120.74 133.72 159.78 1.13 1.02 0.86
21-1 131.0 110.29 95.86 136.62 1.19 1.37 0.96
21-2 151.0 110.29 95.86 136.62 1.37 1.58 1.11
22-1 163.0 132.96 129.19 185.30 1.23 1.26 0.88
22-2 164.0 132.96 129.19 185.30 1.23 1.27 0.89
23-1 101.0 91.14 97.46 105.94 1.11 1.04 0.95
23-2 113.0 91.14 97.46 105.94 1.24 1.16 1.07
24-1 114.0 107.31 128.66 138.44 1.06 0.89 0.82
24-2 128.0 107.31 128.66 138.44 1.19 0.99 0.92
25-1 98.0 100.90 99.43 119.28 0.97 0.99 0.82
25-2 122.0 100.90 99.43 119.28 1.21 1.23 1.02
26-1 114.0 119.31 131.12 156.72 0.96 0.87 0.73
26-2 150.0 119.31 131.12 156.72 1.26 1.14 0.96
27-1 125.0 111.04 96.90 138.13 1.13 1.29 0.90
27-2 ]34.0 111.04 96.90 138.13 1.21 1.38 0.97
28-1 ]58.0 132.80 128.95 184.94 1.19 1.23 0.85
28-2 175.0 ]32.80 128.95 184.94 1.32 1.36 0.95
37-1 232.0 171.85 184.82 250.01 1.35 1.26 0.93
37-2 218.0 151.48 141.72 200.97 1.44 1.54 1.08
38-1 209.0 163.94 174.70 230.67 1.27 1.20 0.91
38-2 206.0 144.84 131.60 186.20 1.42 1.57 1.11
39-1 217.2 164.13 174.93 231.17 1.32 1.24 0.94
39-2 197.0 145.02 131.88 186.59 1.36 1.49 1.06
40-1 225.0 161.95 172.44 225.53 1.39 1.30 1.00
40-2 183.0 142.98 128.84 182.16 1.28 1.42 1.00
43-1 313.0 272.27 339.08 371.58 1.15 0.92 0.84
43-2 366.0 272.27 339.08 371.58 1.34 1.08 0.98
44-1 301.0 263.69 320.30 352.02 1.14 0.94 0.86
44-2 329.0 263.69 320.30 352.02 1.25 1.03 0.93

851
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Table 5.2 (Continued)

Vexpcrimental V,heoretical [kN] Vexperimenra/V,heoretical

Specimen Clarke, Kowalsky, Clarke, Kowals\....y,
[kN] Birjandi Priestley Proposed Birjandi Priestley Proposed

KhaIifa, SCI 324.0 250.59 328.86 283.66 1.29 0.99 1.14
CoIlins SC2 478.0 430.09 472.42 473.11 1.11 LOI 1.0I
(1981 ) SC3 578.0 548.20 561.54 569.48 1.05 1.03 LOI

SC4 456.0 402.43 454.93 453.83 1.13 1.00 1.00
Merta I 430.0 349.66 334.23 435.80 \.23 \.29 0.99
et al. 2 432.0 349.66 334.23 435.80 1.24 \.29 0.99
(2003)
Capon, F-25 59.5 54.98 50.55 59.79 1.08 1.18 1.00
de Cossio F-12.5 82.0 66.98 59.26 68.92 1.22 1.38 1.19
(1965)
Kim YJC200R 323.0 287.33 306.31 321.34 1.12 1.05 LOI
(2000) YJCI50R 411.0 315.60 319.16 352.66 1.30 \.29 1.17

YJCIOOR 479.0 385.75 370.54 406.90 \.24 \.29 1.18
YJC200W 315.0 302.70 304.51 325.44 1.04 1.03 0.97
YJCIOOW 434.0 439.34 409.80 456.84 0.99 1.06 0.95

5.2 Verification of the Proposed Model for CyclicLoad

The usual way of estimation of the member's shear capacity under cyclic load is to

multiply its capacity under monotonic load by the so called "degradation coefficient". It

takes into account the degradation of the shear capacity under cyclic reversal and is usually

defined as a function of the displacement ductility demand, see Figures 2. I and 2.2. The

degradation coefficient has been suggested in a variety of ways, i.e., with its application only

to the concrete capacity term (Priestley et aI., 1994; Kowalsky and Priestley, 2000) or with

its application to both concrete and truss mechanism capacity (Sezen and Moehle, 2004).

The former procedure is explained by the degradation of concrete component with increasing

ductility due to the widening of cracks, which results in a reduced aggregate interlock

capacity. The latter procedure is however based on observations that the concrete

degradation leads to reduction in bond capacity of longitudinal and shear reinforcement and

as a consequence in degradation ofthe truss mechanism as well.

The proposed model has been verified on a database of 29 elements tested under

cyclic shear. These experiments were partly carried out in the frame of an extensive research

started in 1987 at the University of California at San Diego to study the various problems
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related ta seismic response of bridge piles (Ang et a1., 1989; Priestley et a1., 1994a,b; Wang

et a1., ]993; Priestley and Benzoni, ]996). Another extensive research was conducted at the

Kawashima Earthquake Engineering Laboratory at the Tokyo Institute of Technology

(published on the home page of the University of Washington

http://www .ce.washington.edu/-peera] I).

]n the proposed model the strength degradation coefficient proposed by Sezen et a1.,

2004, was applied. It was found that the mode] better predicts the member's actual shear

capacity if the degradation coefficient is applied so]ely on concrete capacity term (as

proposed by Priestley et a1., ]994) rather than on both concrete and truss mechanism

capacities (as proposed by Sezen et a1.,2004).

1.2
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Figure 5.7 Shear strength degradation with displacement ductility by Sezen and Moehle (2004)

The statistical comparison of experimental/theoretical shear strength calculated by the model

of Kowalsky et a1. (2000) and by the proposed mode] is provided in Table 5.3 in terms of

mean, standard deviation, coefficient ofvariation and coefficient of determination. The mean

value ofthe proposed model is closer to ].0 and the scatter of data is lower than in the model

proposed by Kowalsky et a1., meaning that the member's shear capacity calculated by the

proposed mode] is closer to their actual shear capacity. The experimental ultimate shear

strength versus theoretical ultimate shear strength of specimens is plotted in Figure 5.].
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Table 5.3 Details and test results of specimens with circular cross-section under cyclic load

D aiD le COy 1;., p, 1;.... PK' S S/H P P/(j cAg) Vresl J.1.

Ref. Specimen [mm] [-] [MPa] [mm] [MPa] [%] [MPa] [%] [mm] [kN] [-] [kN] [-]

Ang 1 400 2.0 37.5 21 436 3.2 328 0.24 60 S 0 0.00 320 2.5
et al. 2 400 2.0 37.2 21 296 3.2 328 0.24 60 S 0 0.00 228 4.0
(1989) 3 400 2.5 36.0 21 436 3.2 328 0.24 60 S 0 0.00 298 4.0

4 400 2.0 30.6 21 436 3.2 316 0.24 165 S 0 0.00 295 1.4

5 400 2.0 31.1 21 436 3.2 328 0.35 40 S 0 0.00 340 2.4

6 400 1.5 30.1 21 436 3.2 328 0.24 60 S 0 0.00 390 1.3
7 400 2.0 29.5 21 448 3.2 372 0.18 80 S 0 0.00 280 1.6

8 400 2.0 28.7 21 448 3.2 372 0.47 30 S 721 0.20 475 4.0

10 400 2.0 31.2 21 448 3.2 332 0.47 120 S 784 0.20 450 4.0
II 400 2.0 29.9 21 448 3.2 372 0.24 60 S 751 0.20 404 2.5
12 400 1.5 28.6 21 436 3.2 328 0.47 30 S 359 0.10 527 3.0
13 400 2.0 36.2 21 436 3.2 326 0.47 30 S 455 0.10 443 4.0
14 400 2.0 33.7 21 424 3.2 326 0.24 60 S 0 0.00 311 2.0

15 400 2.0 34.8 21 436 1.9 326 0.24 60 S 0 0.00 230 4.0

16 400 2.0 33.4 21 436 3.2 326 0.24 60 S 420 0.10 379 1.5
17 400 2.5 34.3 21 436 3.2 326 0.24 60 S 431 0.10 329 2.0

18 400 1.5 35.0 21 436 3.2 326 0.24 60 S 440 0.10 507 1.4

19 400 1.5 34.4 21 436 3.2 326 0.18 80 S 432 0.10 436 1.3
20 400 1.8 36.7 21 482 3.2 326 0.18 80 S 807 0.17 487 1.5
21 400 2.0 33.2 21 436 3.2 326 0.18 80 S 0 0.00 258 1.1
22 400 2.0 30.9 21 436 3.2 310 0.18 220 S 0 0.00 280 1.5
23 400 2.0 32.3 21 436 3.2 332 0.35 160 S 0 0.00 339 2.0

24 400 2.0 33.1 21 436 3.2 310 0.36 110 S 0 0.00 338 4.0

25 400 1.5 32.8 21 296 3.2 0 0.00 0 S 0 0.00 233 1.2

Priestley CIA 610 2.0 31.0 21 324 2.5 359 2.54 127 S 592 0.07 573 2.8
et al. C3A 610 2.0 34.5 21 324 2.5 324 2.54 127 S 1780 0.18 733 3.1(1994a,b)
Wong
et al. 2 400 2.0 37.0 21 475 3.2 340 0.22 65 S 1830 0.39 515 2.0
(1993)
Priestley 610 1.5 30.0 20 462 0.5 361 0.14 76.2 S 503 0.06 400 10.0
et al. 2 610 1.5 30.0 20 462 1.1 361 0.08 127 S 503 0.06 587 4.0
(1996)

881
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Table 5.4 Statistical comparison of models in terms of experimental/theoretical shear strength ratio

Kowalsky and ProposedPriestley (2000)

Mean value 1.24 1.19

Standard deviation 0.14 0.12

Coefficient ofvariation, CoV [%] 12 10

Coefficient of determination, r2 0.88 0.92

Kowalsky and Priestley 2000
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Figure 5.8 Ultimate shear strength of circular section members with shear reinforcement under cyclic
load
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5.3 Adequacy of the Proposed Model for Design

The proposed formula is a predictive and not a design equation, representing therefore

the characteristic shear resistance of the member. It follows that higher average values of the

strength ratios are inevitable. In the model measured concrete compression strength and

reinforcement yield strength was used. In the design situations, however, nominal material

strengths would be used. According to the Eurocode, to obtain the design value of the

material property partial safety factors for the material properties should be applied. These

are yc = 1.5 for concrete and Ys = I. 15 for steel. By applying the strength reduction factors

a reasonable lower bound of data is obtained, resulting in an adequately conservative design

equation suitable for incorporation into design codes, see Figures 5.8 and 5.9.
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6 CONCLUSION AND FUTURE WORK

In the thesis, an analytical model for the prediction of the shear capacity of reinforced

concrete members with circular cross-section transversely reinforced with circular hoops has

been developed. The proposed shear capacity model is a semi-empirical equation based on

the truss analogy by adding an empirical concrete shear capacity term to the capacity of the

shear reinforcement.

The concrete shear capacity, taken as the capacity of the member without shear

reinforcement, has been derived by a parameter study of the main variables affecting shear

strength such as the concrete compressive strength, the longitudinal reinforcement ratio, the

member's shear span-to-depth ratio and the axial load level. Applying a curve fit on the test

data of members without shear reinforcement the influence of the individual variable has

been derived.

The shear reinforcement capacity is derived analytically, based on the truss analogy,

by taking into account the identified additional deviatoric shear resisting mechanism of

hoops present only by members with curved transverse reinforcement. Based on the shear

database of transversely reinforced circular members, the validity and accuracy of the

proposed model have been compared to other recently proposed models.
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The statistical comparison of experimental/theoretical shear capacity calculated by the

existing models and by the proposed one indicates that the section's shear capacity predicted

by the proposed model are in stronger correlation with the experimental values as well as the

effect of a particular variable, affecting shear strength, is better captured than by other

existing proposals. Thus the proposed model clearly improves the prediction of the shear

capacity of reinforced concrete circular cross-section members. By applying the strength

reduction factors a sufficiently conservative design equation could be obtained, suitable for

design purposes and incorporation in design codes.

The applicability of the proposed model has been verified on a database of members

tested under uniaxial cyclic shear. With the application of a strength degradation coefficient,

proposed so far in literature, the members shear capacity under cyclic load with increasing

ductility has been expressed. The proposed model has been compared to a recently proposed

model and it has been found that it predicts reasonably well the shear capacity of circular

sections under cyclic load as well.

However, since no circular cross-section specimens with an aspect ratio lower than 2

have been tested so far, it is not possible to make a firm conclusion about the member's

shear capacity enhancement within this range. Likewise, no data of circular cross-section

specimens tested over a broad range of variable depth are available in literature.

Consequently the size effect of circular section specimens could not be investigated and

properly estimated. In order to overcome these deficiencies as well as to be able to propose a

general design equation a comprehensive experimental research is necessary in the future.
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