
Technische Universität Wien

Masterthesis

Context-Aware Notification
in Global Software Development

Institut für Softwaretechnik und interaktive Systeme
Technischen Universität Wien

unter der Anleitung von a.o. Univ. Prof. Dr. Stefan Biffl und Dr. Alexander Schatten

durch

Benedikt Eckhard
Mat.Nr.: 0204573

Oktober 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die den

benutzen Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich

gemacht habe.

Benedikt Eckhard

Wien, 15.10.2007

i

ii

Abstract

Global software development (GSD) projects should allow efficient development

of complex software systems as teams coming from diverse cultural backgrounds,

technical capabilities, and time zones work together. However, GSD projects are

also complex socio-technical systems with the challenge to collaborate in a hetero-

geneous and changing technical environment. Agility to react quickly and efficiently

to changes is important, but hard to achieve with traditional process-driven methods

and tools.

Project managers, group leaders, and architects of communication and coordination

infrastructure in a GSD project need to provide a sufficient and minimal set of tools

that support the timely exchange of relevant information for each role in the project.

This thesis presents:

1. A model to describe GSD projects as socio-technical systems and analyze their

risks and weak spots in order to support the project manager in weighing

the trade-offs of changes in the project plan between resources, quality and

schedule.

2. A method for notification modeling : In a traditional software development

project informal communication is important to identify challenges (typically

linked to one or more events in the project) and discuss solution approaches.

However, in GSD projects this communication is only available in local groups,

but not necessarily between groups.

An example is the need of several roles, which are not aware of each other,

to coordinate their work. A common workaround is to notify many people of

iii

important events via e-mail or shared lists. Unfortunately, this approach may

lead to a role receiving too many irrelevant incoming messages or miss vital

messages.

A good solution needs to build on an understanding of the project context

(roles, technologies, processes, components, dependencies, etc.) and allows

users to define precisely which changes in the project context should trigger

notifications and who should receive them.

We present the Notification Specification Language (NSL) that allows a precise

and user friendly modeling of the notification requirements.

3. The tool prototype noticon that can interpret the NSL and inform users ac-

cording to the specifications timely and with minimal interruption of their

primary work. The approach integrates via open source technologies (Mule,

ActiveMQ, Drools) the work tools that are used in the GSD project in order

to provide rich notification capabilities. Notifications are presented to the re-

ceivers in the user interface of the tools they are currently using; this minimizes

interruption and additional tool overhead.

4. A feasibility study for the evaluation of the model and the tool prototype that

was conducted in cooperation with experts from Siemens PSE in the context of

a typical GSD environment. Based on this setting a ”Total Cost of Ownership”

analysis was done to compare noticon to a conventional ”email per change”

notification approach.

Important results of this work are: a) GSD projects face high communication risks

and some of the risks can be mitigated with notification systems. b) Existing solu-

tions are inapplicable because they generate either too much or too less notifications

which causes high costs in GSD projects. c) the solution proposed in this thesis can

be used to systematically describe and discover the notification requirements and

can effectively and efficiently deliver 1) the right information, 2) at the right time,

3) to the right persons, without interrupting their current activities. This allows

savings of more than 50% of the communication costs in big projects.

iv

Danksagungen

Eine Diplomarbeit zu schreiben ähnelt einem klassischem Prozess in der Software-

Entwicklung: Zuerst werden die Anforderungen erhoben, auf denen das Design der

Arbeit erstellt wird. Dann erfolgt die Entwicklungs- bzw. Schreibarbeit und schließ-

lich wird getestet und pünktlich aus- bzw. abgeliefert. Die Analogie zur Software-

Entwicklung geht aber leider noch weiter. Tatsächlich ändern sich die Anforderungen

regelmäßig und bei der Entwicklung stellt sich heraus, dass manche Dinge doch nicht

so funktionieren können wie vorher überlegt und man wieder zurück zum Design

muss. Damit dennoch eine gute Arbeit geschrieben werden kann, braucht es Perso-

nen, die einem in diesem Prozess ein bisschen zur Seite stehen. Ich hatte das Glück

von vielen Personen unterstützt zu werden, bei denen ich mich herzlichst bedanken

möchte:

Mein Betreuer Stefan Biffl hat mich manchmal zur Verzweiflung gebracht, aber viel

öfter aufgebaut und motiviert und ist maßgeblich für die Qualität und Wisschen-

schaftlichkeit der Arbeit verantwortlich. Alexander Schatten hat mich als zweiter Be-

treuer besonders bei allen technischen Aspekten mit Ideen und Lösungsvorschlägen

unterstützt. Matthias Meindl (Siemens AG) hat mit wertvollem Feedback zur Pra-

xistauglichkeit der Lösung beigetragen. Dindin Wahyudin hat die Arbeit kritisch ge-

lesen und viele gute Verbesserungsvorschläge gebracht. Michael Schmidt (uvd Busi-

ness Consulting GmbH) hat die Arbeit großzügig gesponsert und spannenden Input

aus der Praxis von GSD Projekten gegeben. Besonders bedanken möchte ich mich

bei meinen Eltern, die mir das Studium überhaupt erst ermöglicht haben. Vielen

Dank auch all meinen Freunden, die mich die letzten Monate kaum zu Gesicht be-

kommen haben, mich aber mit aufmunternden Mails versorgt haben. Zu guter letzt

danke ich meiner Freundin Birgit Leidenfrost, die meinen ganzen Diplomarbeitsfrust

abbekommen hat, mich aber dennoch fortwährend unterstützt und motiviert hat.

v

vi

Contents

1 Introduction 1

2 Related Work 7
2.1 Global Software Development . 7

2.1.1 Complexity aspects of GSD projects 10
2.1.2 Socio-technical Systems . 14
2.1.3 Communication Risks in GSD Projects 16

2.2 Context-aware Systems . 18
2.2.1 Introduction into context-aware systems 19
2.2.2 Common architecture of context-aware systems 20
2.2.3 Characteristics of context data 23
2.2.4 Context Modeling . 26

2.3 Context-aware Notification Systems 27
2.3.1 Framework for Notification Systems 28
2.3.2 Overview on notification solutions 30

2.4 Event Stream Processing and Rule Engines 32
2.4.1 Event Stream Processing . 34
2.4.2 Rule Engine . 35

2.5 Enterprise Application Integration . 37
2.5.1 Service Oriented Architecture 39
2.5.2 Enterprise Service Bus . 41
2.5.3 Event Driven Architecture . 43

3 Research Issues 45
3.1 Research Questions . 45
3.2 Research Design . 46
3.3 Stakeholder Analysis . 47

3.3.1 Stakeholder Classification Framework 47
3.3.2 Stakeholders . 49

3.4 Requirements for the prototype . 56
3.5 Notification Discovery and Description Framework and Process 58

3.5.1 Step 1: Analyze the project communication risks 60
3.5.2 Step 2: Describe the project organization 65

vii

Contents

3.5.3 Step 3: Describe the key communications 71
3.5.4 Step 4: Define the Notifications 73

4 Prototype Development 77
4.1 Components . 77
4.2 Message Model . 81
4.3 Context Model . 83

4.3.1 Core Artifacts Layer . 84
4.3.2 Common Artifacts Layer . 88
4.3.3 User Artifact Layer . 89

4.4 Rule Engine Agenda . 89
4.5 Notification Specification Language 90

4.5.1 Notation and General Concepts 91
4.5.2 Title . 93
4.5.3 Receiver . 94
4.5.4 Context: . 96
4.5.5 Delivery options . 101
4.5.6 Channel specification . 102
4.5.7 Message content . 103

5 Case Study 105
5.1 Introduction . 106
5.2 Project Communication Risks . 106
5.3 Project Organization . 108
5.4 Key Communications . 111
5.5 Notification Definitions . 113

5.5.1 Failed test-case . 113
5.5.2 Daily summary of requirements that are ready to deploy . . . 114
5.5.3 Working on the same requirement 115

5.6 User Interaction . 116

6 Discussion 121
6.1 Total Cost of Ownership . 121

6.1.1 Setting . 121
6.1.2 Model . 122
6.1.3 Conclusion . 131

6.2 Discussion of the Process . 132
6.3 Discussion of the Prototype . 134
6.4 Discussion of the Notification Specification Language 136
6.5 Discussion of the Expected Benefits and Costs 137

7 Summary & Future Work 141

viii

Contents

7.1 Future Work . 146
7.2 Takeaway Messages . 147

ix

Contents

x

1 Introduction

Lili is a developer in a big software development company that has offices all over the

world. Currently she and about 70 other developers are working on an application

consisting of several thousand components. This morning, Lili gets an Email from

her chef who asks her to implement a new requirement concerning the calculation of

interest rates. She reads the attached details and starts with the implementation.

In the late afternoon on a coffee break, Lili meets her friend Kurt from the Quality

Assurance team by chance. He tells her that they had to reset the test environment

a few hours ago, because the customer changed its mind concerning some interest

calculations. Lili worries that her work package is impacted too and calls her chef.

She confirms that indeed the requirement Lili is working on had also changed. The

hours that she already spent working on it were wasted time, but Lili is glad that

she met Kurt - otherwise she might have worked for nothing for another day, as it

had happened already in the past.

Situations like this are typical in software development projects and often caused

by an inapplicable management of changes. In the past, software development pro-

cesses, like the waterfall model, aimed to reduce the number of changes that occur

during the project lifetime: First, the requirements are analyzed and written down

in a contract that gets signed by both the customer and the software producer.

Then follows a design phase where the whole system architecture gets defined which

is implemented in the implementation phase. After that, the system gets tested and

installed. Changes are only allowed within the phases and once a phase is completed

its outputs must not be changed [20].

In practice this rigid process is not feasible in many projects because the general

assumption that everything can be defined up front is often wrong [50]. Customers

1

1 Introduction

want to change the requirements because of changes in the business environment,

errors in the requirements elicitation phase, or just because of new ideas. Also

the system architecture often needs to be adapted to better meet non-functional

requirements like scalability and maintainability.

It was asked for more agility in software development processes - the ability to

quickly react on changes, frequent delivery of business value, and more collaboration

between developers and business experts [1]. Software development processes like

Extreme Programming, Scrum, and the Rational Unified Process provide guidelines

on how to efficiently develop software that builds on these premises. A key criteria

for the success of agile projects is a frequent, effective, and efficient communication

between the project members.

Global software development (GSD) projects should allow efficient development of

complex software systems with teams coming from different regions of the world

working together. However socio-technical aspects like different cultural back-

grounds, different technical infrastructures, different languages, and different time-

zones, make communication between the project members much more difficult [39].

Typical problems are:

• A lack of awareness, so that project members do not know what is going on

in the project and what the other teams are working on.

• Inefficient communication because of geographical distance, different time

zones, and different languages.

• Incompatibilities between people, processes, and technology.

Thus, applying agile processes to GSD projects poses significant challenges for all

project members. A sufficient coordination and communication infrastructure is

required that supports the timely exchange of relevant information for each role in

the project [85]. But infrastructure is not enough: the potential communication risks

for a project need to be analyzed and understood before efficient countermeasures

can be taken.

This thesis focuses on the efficient communication of project events (eg. changes)

2

to all concerned project members. An event can either be the modification of an

artifact (eg. the change of a requirement), or the occurrence of a specific situation

in the project (eg. two developers are concurrently modifying the same component).

Currently two strategies are widely used for communicating project events: 1) The

person who triggers the event informally notifies all project members that he or

she thinks are interested or impacted by it (eg. via phone). 2) Project members

individually subscribe to notifications that can be sent by tools like SVN whenever

an event (eg. a check-in) occurs.

Both approaches have serious flaws in the context of GSD projects: The informal

communication works very well in small teams, where every project member knows

what the others are working on. In GSD projects this is only the case within teams

but rarely between them; thus, the risk that important events are not, or very

delayed, communicated to concerned people from other teams is very high.

Also the second approach is unfeasible in GSD projects. One issue is that people

from different teams (maybe even different organization) might not have the rights

to access the tools where the events occur. They might not even know which tools

the other teams are using, nor if they provide subscription mechanisms. Another

issue is that many of the occurring events are irrelevant for most project members

in their current working context and just interrupt the primary activity. Traditional

notification mechanisms (like sending emails to a mailing list in case of an event)

can lead to an overload of information for users and can seriously slow down their

work. With a bad ratio of unimportant to important information, also the risk that

important information is overlooked increases [17].

We developed the tool prototype noticon 1 that allows project members to

specify their notification requirements on a very fine granularity, taking their current

working context into account. Eg. a developer can specify that she only wants to

get notified of a requirement change, if she recently worked on that requirement.

This maximizes the number of relevant notifications that are delivered to users

and minimizes the number of irrelevant ones. noticon tightly integrates into the

working environment and presents notifications in the tools that a user is currently

1noticon stands for ”Notification In Context”

3

1 Introduction

using; thus, the interruptions that are caused by the notifications are significantly

reduced.

For maximum usability, we developed the Notification Specification Language

(NSL) that allows a precise specification of notification requirements and can be

easily written and understood by business users. It abstracts the information that

concern a user (eg. requirements) from the tools where this information is main-

tained. This facilitates the reuse of the specifications across projects. noticon

integrates into various applications (eg. Subversion) to sense project events and

deliver the notifications according to the specifications.

As already mentioned, it is required to analyze the project communication risks

before efficient risk mitigation measures can be taken. We introduce a model to

describe GSD projects as socio-technical systems and analyze their weak

spots in order to discover key communications that can be automated with notifica-

tions. Key communications are communications that have a high impact on the win

conditions of the stakeholders if they do not occur. Our model provides concrete

guidelines for project managers on how communication risks can be discovered and

described.

For evaluation of the model and the prototype, we conducted a feasibility study in

the context of a typical GSD environment in cooperation with experts from Siemens

PSE2. The results were that the number of false positives (notifications that users

get, but are not relevant for them) and false negatives (notifications that users do

not get although they are relevant for them) could be drastically reduced compared

to typical ”email per event” communication. We also showed with a total cost of

ownership analysis that the notification costs can be reduced by more then 50%.

In chapter 2 we will give a detailed introduction into the characteristics of GSD

projects. We also give an overview of context-aware systems and the technologies

that form the base for our implementation. The first part of the chapter is intended

for readers who want to better understand the differences of GSD projects compared

to small scale projects. The second part targets readers that are interested in the

technical challenges and solution approaches to develop systems like noticon.

2PSE stands for ”Programm- und Systementwicklung”

4

In chapter 3 our research questions are described. It also contains a detailed stake-

holder analysis that elaborates on the requirements for a good notification solution.

The second part of the chapter describes the notification discovery and descrip-

tion framework and process that can be used by project managers to discover and

describe the notification needs.

Chapter 4 gives a detailed overview of the system architecture and describes the

notification specification language in great detail. It targets developers who want

to extend noticon and administrators who want to better understand how it inte-

grates into their IT infrastructure.

In chapter 5 we show on a realistic case study how the process and the tool is used.

We also show some screenshots that give an expression on how noticon integrates

into the users working tools. The chapter will be especially interesting for project

managers who want to evaluate noticon for use in their own projects and estimate

the effort that it takes to get started.

Chapter 6 will finally discuss the benefits of noticon based on a total cost of

ownership calculation. Also the good and weak points of the process, the prototype,

and the notification specification language will be described. The cost analysis will

be most interesting for project managers, while the technical discussion is more

focused on researchers and developers who plan to extend the system.

Finally in chapter 7 we will summarize our findings and give a short roadmap on

what is planned for the future.

5

1 Introduction

6

2 Related Work

This chapter will give a detailed introduction into the characteristics of GSD projects

and the concepts and technologies this work is related to. Section 2.1 frames the con-

text of this thesis; we elaborate on GSD projects as complex socio-technical systems

and the communication risks that arise. In section 2.2 it is described what context-

aware systems are and the commonly used terminology. Section 2.3 distinguishes

publish-subscribe notification systems from context-aware notification systems and

compares existing solutions to our approach. Section 2.4 introduces rule engines as

core technology for our solution and explains the rational why we preferred it over

event stream processing. noticon has to integrate with various systems; therefore,

an overview of enterprise application integration will be given in section 2.5.

2.1 Global Software Development

Global Software Development (GSD) projects are complex projects where multiple

distributed teams and companies work together to deliver software systems to its

clients. The tasks the teams have to perform, and the artifacts they produce, are

highly dependent from each other; thus, a steady communication between the team

members is required.

But the communication mechanisms in GSD projects are commonly disrupted by:

[39]

1. A less and less effective communication because of differences in time, location,

language, organization, culture, and technology.

7

2 Related Work

2. A lack of awareness, meaning that project members do not know what their

colleagues are working on and how to get in contact with them.

3. Incompatibilities between people, processes, and technology, which can lead to

misunderstandings, confusion, and duplicated work.

- Eclipse
- Track
- Open Office

- Visual Studio
- CVS
- MS Office

- ClearQuest
- SVN
- Open Office

- RequisitePro
- TestDirector
- MS Office

Figure 2.1: Overview of a GSD project

Figure 2.1 illustrates some of these issues with two companies (indicated by the

different colors of the spheres) and four teams that are spread across the globe. The

connections between the spheres indicate that communication is required between

all teams, and the green boxes show that different tools fulfilling the same purpose

are used in the project.

Tackling communication problems is difficult due to the complexity of the GSD

projects that is caused by three main factors:

• The massive amount of heterogeneous elements like persons, source code, hard-

ware, software, etc. that makes tool integration difficult.

• Many dependencies among the elements.

• A constantly changing environment.

8

2.1 Global Software Development

A wide range of technologies (phone conferences, notification systems, wikis, email,

instant messaging etc.) and processes (eg. stand up meetings) exist which try to

enhance the communication between the project members. Notification systems are

particularly suitable for automating key communication and increasing awareness.

Key communication is communication that has a high impact when it does not

occur, eg. if the change of an important component interface is not communicated,

developers may have to rework a lot when the components are integrated later on.

We argue that the currently available notification systems are unsuitable for GSD

projects, as they do not take enough the complexity aspects of these projects into

account:

• They are often restricted to one platform or technology (eg. Windows, Java).

• They often cannot deal with heterogeneous elements to provide a uniform view

of the project.

• They often do not provide means to reason over dependencies among elements.

• The means to define the notification requirements are too inflexible; thus,

either too much or too less information is delivered to the users.

Our solution noticon has been designed particularly for GSD projects and aims

to deliver the right information, at the right time, and at the right place. It can

ensure communication where none would happen otherwise (because users might

not be aware of dependencies) and automate key communication that is critical for

the project, but easily overlooked or delayed eg. because of different timezones.

noticon does not intend to replace other systems, but integrates with them to

provide better usability and more relevant notifications.

Section 2.1.1 elaborates more on the characteristics that cause GSD projects to be-

come complex systems. Understanding the different aspects of complexity is critical

for a system design that is practical in real projects. Section 2.1.2 contains a de-

scription of socio-technical systems and communication as its central element. We

set the focus on the social aspects and the theories about communication because

these aspects are often overlooked in the design of technical systems. The findings

9

2 Related Work

Collocated inter-
organisational
project

Locally distributed
inter-
organisational
project

Global inter-
organisational
project

Traditional intra-
organisational
project

Locally distributed
intra-
organisational
project

Global
intraorganisational
project

same
location

same
country

different
countries

two or more
companies

one
company

Geographical distance

Organisational
distance

Figure 2.2: Project type classification [60]

serve as the theoretical background of the process we describe in section 3.5 on page

58. In section 2.1.3 the communication risks of GSD projects are described in detail.

2.1.1 Complexity aspects of GSD projects

The pressure to create software in less time, with higher quality, but cheaper, de-

mands new methods to develop software [39]. Many organizations began to ex-

periment with remotely located software development facilities and outsourcing, to

better access skilled people and decrease the costs. Software became vital for almost

every business, but its complexity increased.

The traditional intra-organisational project (figure 2.2) where all project work is

done within one company at one location became unusual for bigger projects. Big

projects are often developed by many companies spread over different countries.

The solution we propose targets projects in the upper right corner of figure 2.2.

Tackling communication issues requires a detailed understanding of the complex-

ity of GSD projects that is caused by three main factors: (1) many heterogeneous

elements, (2) dependencies among the elements, and (3) a constantly changing en-

vironment.

10

2.1 Global Software Development

Many heterogeneous elements

In GSD projects often hundreds of persons are involved in developing the system.

They come from different countries, speak different languages, have different skills,

attitudes, believes, and behaviors. The persons interact through tools (like OpenOf-

fice or Eclipse) with elements like source code, requirements, or documentation.

noticon integrates data from various systems to provide a uniform view of all

project elements. Eg. for a user concerned about persons and their relations, it is

transparent that the data may come from different sources (eg. an Active Directory

and a LDAP repository). Differing from other notification solutions, noticon dis-

plays its information in the tools that are already used in the project; thus, very

flexible adaption and transformation mechanisms of information are required.

In co-located projects the infrastructure (hardware, software) is usually the same

for all project members which makes application integration relatively easy. In

GSD projects on the other hand the infrastructure can be different from location to

location; thus, integration gets more difficult and flexible routing and transformation

mechanisms are required.

Example: the development team in India uses Edgewall Track 1 to track the require-

ments, Eclipse 2 for development and Subversion 3 as code repository. The require-

ments management team in Brazil uses IBM Rational ClearQuest 4 for requirements

management and the Quality Assurance in Russia uses Mecury Test Director 5 to

run the tests and Subversion to store the component versions. Users may want to

specify notification that reference ”Source Code”, ”Requirement”, ”Testcase”, and

”Test Result” artifacts, regardless of the different tools that manage the data.

1http://track.edgewall.org
2http://www.eclipse.org
3http://www.subversion.org
4http://www-306.ibm.com/software/awdtools/clearquest/
5http://www.mercury.com/us/products/quality-center/testdirector/

11

2 Related Work

Dependencies among the elements

Decomposing complex systems into smaller parts is a central principle of software

architecture [3] and the task of project management. Different teams can then work

relatively independently on their parts which are integrated with the other parts at

some point. This would not pose a significant challenge if the parts where not highly

dependent from each other and changes (eg. of requirements) were not the norm.

Research shows (eg. [65, 16]) that dependencies create the need for communication

between persons.

”A dependency between software modules is said to exist when a module relies on

another to perform its operation or when changes to the latter must be reflected on

the former.” [25] The definition of Fonseca et al. is also valid for other elements in a

software development project like activities, tasks, requirements, or tests. Manage-

ment has to ensure that changes are communicated in time to all affected persons

and its impact is held small.

Decoupling elements from each other, by using various software development tech-

niques like Mock Objects, can reduce the immediate impact of changes; failures in

one module do not hinder the development of dependent modules. But these tech-

niques can lead to situations were different teams are not aware of the dependencies

from each other, and failures are only discovered when the parts are integrated. Rigid

specifications reduce the integration risks, but also the projects agility. Continuous

integration and automatic test suites are another approach but often infeasible in

GSD projects.

In GSD projects the number of dependencies is very high, and different roles and

individuals have a different knowledge about them. Individuals are often neither

aware of all dependencies of their work packages, nor the persons they could ask;

thus, estimating the impact of changes is difficult and inefficient.

With noticon the knowledge of dependencies between elements can be made ex-

plicit and leveraged by all project members. Notification rules can use the de-

pendency information to eg. make users aware of other developers that work on

related artifacts, or inform them if the requirement that a component implements

12

2.1 Global Software Development

CompA.jar CompB.jar CompC.jar

CompE.jar

CompD.jar

CompF.jar

directly
depends on directly

depends on

indirectly depend on

Figure 2.3: Unawareness of indirect dependencies can lead to wrong assumptions on
the impact of a change.

has changed.

It is also possible to reason over all project elements to discover dependencies that

where not known before as illustrated in figure 2.3: The components C . . . F are

dependent from component B which is dependent from component A thus the com-

ponents C . . . F are indirectly dependent on component A. A developer that just

knows about the dependencies between B and A is likely to underestimate the im-

pact of a change of A. Making these dependencies explicit allows users to make

better decisions.

Constantly changing environment

Due to the size and length of GSD projects the project ecosystem [59] changes

continuously. Persons come and go, software components are produced and modified,

and requirements change during the whole project lifetime. Due to the dependencies

between elements the changes need to be communicated effectively, but people are

often not aware of each other; thus, communication is impaired or does not happen

at all.

The goal of any notification system is to communicate these changes effectively

to interested parties. In GSD projects changes occur much more frequently; thus,

traditional approaches, where any change triggers a notification for all people that

might be concerned, would lead to far too much information for an individual.

noticon provides the ability to specify rules, that take a users current work context

13

2 Related Work

into account which reduces the amount of notifications that will be transmitted, but

increase their importance.

Example: in a small project developers might subscribe to a SVN repository to be

notified whenever a commit occurs. This works well for small teams and results in

a couple of mails per day. In projects with hundreds of developers, thousands of

emails would be delivered each day, making the system useless. With noticon the

information of a commit could be delayed until the user works with an artifact that

is affected by it.

The constant changes also motivate the need to integrate applications. Adding

another tool, where information about users, roles, requirements, etc. needed to

be maintained, would introduce new possibilities for inconsistencies and the costs

would exceed its value.

noticon adapts very well to a constantly changing environment because it requires

only minimal manual maintenance. The configuration of noticon has to be done

only once, and data about users, roles, security settings, etc. can be integrated from

different systems. Changes (eg. a new user is added to a LDAP repository) can

automatically be reflected in noticon.

In the last sections we described the complexity aspects of GSD projects from a

technical viewpoint. The socio-technical aspects of GSD projects will be described

next.

2.1.2 Socio-technical Systems

GSD projects are complex socio-technical systems where there is a steady interac-

tion (1) between people, (2) people and technology, and (3) technology [77]. The

characteristics of the systems have to be known to be able to analyze communication

weaknesses and introduce tools that efficiently tackle them.

A system is defined in system theory as a web of relationships between entities that

are differentiated from other entities within an environment. In a process called

14

2.1 Global Software Development

autopoiesis a system continuously reproduces itself to sustain the differentiation [54].

Eg. an organization is a system within a legal environment that differentiates itself

from other organizations by eg. offering different products and services. A social

system, like a small group of developers, differentiates itself from other groups eg.

by using a certain vocabulary or by sharing information that only the members of

the group know. Social systems can only operate and reproduce themselves through

communication, which is a three step process between Alter (the person who acts

through communication) and Ego (the receiver) [10, 54]:

1. Selection of the information: Different persons have a different perception

of their environment and consider different aspects of it as information that

is worth communicating. Eg. a system administrator who starts an anti

virus program might not consider this as important information. The first

step for Ego is to select one out of the set of information he or she wants to

communicate.

2. Selection of the form: In the second step, Ego translates the information into

a message and selects the medium to communicate it (eg. by email). The

content of the message is influenced by psychological, social, and cultural

aspects as well as the expected reaction and knowledge of Ego [44]. Eg. if

Alter selects ”The requirement has changed” as message, it is assumed that

Ego knows which requirement is meant. The selection also alters the search

space for selective connectivity - the set of possible responses.

3. Selection of an understanding : In the last step, the receiving party has to

interpret the message and transform it back to information. One message can

be understood in different ways, and Ego selects one of the possibilities. Eg.

”The requirement has changed” could be interpreted as ”Requirement 2432

has changed” if previous communication was about requirement 2432.

The conceptualization of system and communication is very important for this work.

GSD projects incorporate a wide variety of systems that share a common goal, but

are nevertheless distinct systems which have to reconstitute themselves all the time.

The characteristics of the systems influence all steps in the communication process.

In particular the ”selection of an understanding” step is prone to errors if no shared

15

2 Related Work

vocabulary has been defined, or processes differ from system to system. Eg. the

”Requirement X has changed” message could trigger an immediate reaction of the

persons in system A but be perceived as ”nice to know” by the persons in system

B.

Socio-technical systems add another layer of complexity. They do not only include

communication between people, but also interaction between people and technology.

Sena and Shani [77] decompose a socio-technical system into three sub systems:

• The social subsystem with people, their knowledge, attitudes, skills and com-

petencies.

• The technical subsystem as a system that converts input into some output.

• The environmental subsystem which includes competitors, customers, law, etc.

There is a complex interaction between the subsystems, but as Whithworth notes

not much attention has been paid yet to this fact. He argues that ”system designer

must recognize accepted social concepts, like freedom, privacy and democracy, that

is, specify social requirements as they do technical ones.” [88].

This motivates the need for a model that is used to systematically describe and

discover notification requirements, taking socio-technical aspects into account.

2.1.3 Communication Risks in GSD Projects

Herbsleb states that ”the key phenomenon of GSD is coordination over distance”

[39]. He defines coordination as ”managing dependencies among tasks” and points

out that without inter-location and inter-organization dependencies, GSD projects

would not pose significant challenges. In smaller project, which don’t span orga-

nizations or locations, project members have a shared view of how the work will

proceed. They share a vocabulary and know how expertise and responsibilities are

distributed. They are also aware of what their colleagues are doing and know how

their work will affect the others. In contrary GSD projects have the following main

problems [39]:

16

2.1 Global Software Development

• Less communication and less effective communication: In GSD projects, peo-

ple communicate with less people, less frequently, and the communication is

less effective. The lack of effectiveness is often caused by delays in asyn-

chronous communication. noticon can increase the amount of effective com-

munication by automating some key communication. It ensures an effective

delivery to all interested parties at the moment the information becomes rel-

evant for them.

• Lack of awareness : ”Awareness involves knowing who is ’around’, what ac-

tivities are occurring, who is talking with whom; it provides a view of one

another in the daily work environments.” [19]. According to Herbsleb [39] the

lack of awareness makes it difficult to get in contact with other developers

and leads to misunderstandings of communication contents and motivations.

Most important is the fact that ”it hinders a project’s ability to keep track of

the effects of change as they propagate across sites.”. noticon is particularly

suitable for notifications that increase the awareness because it can sense the

current users context: eg. a notification could be sent to two developers when

they are concurrently modifying the same file; or a notification could be de-

livered whenever a users does a checkout from the SVN repository, showing a

summary of all important project activities since the last checkout.

• Incompatibilities : In GSD projects people from different cultures, with differ-

ent experiences, different communication habits, and a different work environ-

ment work together. The incompatibilities across tools may hinder commu-

nication and demand error prune workarounds (eg. Meeting invitations that

are sent from the MS Outlook calendar can hardly be read in Lotus Notes).

They also restrict the ability to apply common processes across sites which

can lead to misunderstandings and confusion. noticon can tackle some in-

compatibilities by adapting a notifications content to the users context. Eg.

the notification can be localized based on the users preferred language.

17

2 Related Work

depends on

works at

modifieshas

uses

perform
s

depends on

Figure 2.4: Example user context for notifications in GSD projects

2.2 Context-aware Systems

Context determines the usefulness of information for the receiver. Providing users

with appropriate contextual information, allows them to better coordinate their

work and make better decisions [72].

”Context is any information that can be used to characterize the situa-

tion of an entity. An entity is a person, place, or object that is considered

relevant to the interaction between a user and an application, including

the user and application themself. [...] A system is context aware if it

uses context to provide relevant information and/or services to the users,

where relevancy depends on the users’s task.” [7]

Figure 2.4 illustrates a team members’ context in GSD projects. He or she works at

a specific location and performs some activities. Project members can have several

roles and use tools like Eclipse to modify artifacts like source code. Artifacts and

activities have dependencies as explained in section 2.1.1. The context changes

frequently and the changes can trigger notifications.

noticon is a context-aware system because it adapts its behavior in three ways to

the current user context:

1. noticon is able to automatically filter notifications that are currently relevant

18

2.2 Context-aware Systems

for the user by analyzing the dependencies of activities and artifacts. This

reduces the amount of notifications a user receives, but increases its relevance.

It also reduces the need to manually subscribe to events that might be of

interest.

2. The notifications are displayed in the tool that is currently focused. This

increases awareness without interrupting the users primary task.

3. The content of the notification and its attributes (eg. priority) are adapted

based on the projects context. Eg. the content of a warning notification could

contain the contact information of the persons that are currently working on

artifacts that might be influenced by the problem.

Section 2.2.1 gives a short introduction to context-aware systems and highlights

the domains where these context-aware systems are used successfully. The general

architecture of context aware systems and existing solutions are described in section

2.2.2. In section 2.2.3 we elaborate more on the different types of context data.

Understanding its characteristics is important for the systems design.

2.2.1 Introduction into context-aware systems

People are very good at performing several tasks in parallel by concentrating on a

single task at a given point in time. Different tasks require different information,

thus a person’s information needs are highly dependent on what he or she is cur-

rently doing. Too much or the wrong information would hinder the current activity.

Application developers need to know what the users do and might want to know at

the moment, and change the applications behavior accordingly.

A simple example is the context menu that appears when one right-clicks on an

item in many operating systems. The tasks a user can perform from the menu are

different depending on the clicked item and other context information (eg. if the

application is currently performing some other tasks).

An example of an unsuccessful implementation is the interactive help in former ver-

19

2 Related Work

sions of Microsoft Word: A little figure (bracket, puppy, etc.) popped up whenever

you wrote a few letters and asked to help with either more information or by per-

forming some little tasks. Unfortunately, the suggested tasks were most often useless

and doing them manually was much quicker and accurate. The pop-up interrupted

the users from their current activities and slowed them down. [24]

”The most profound technologies are those that disappear.” [86]

According to Mark Weiser, most current technology demands too much attention

from users and the better the technology gets, the less visible they become. He

brought a simple pen as an example: we use it without even noticing and don’t

care how it works as long as it does. Following the track of Weiser the discipline of

ubiquitous computing emerged: complex technology and computing devices should

be embedded into daily goods. A music player could be embedded into a jacket, a

credit card into a wallet, and so on. To really ”disappear”, devices should minimize

user interaction and blend into the users environment. The credit card should

automatically pay the bill in the restaurant and the music player should adjust its

volume depending on the surrounding noise. To provide these capabilities, devices

have to communicate with each other and become context aware.

The design of noticon was strongly influenced by the premise of Weiser. By

integrating our tool into applications that are used anyway within the project, the

notification system kind of disappears, and we hope that users just think of it as a

separate tool when it is missing.

2.2.2 Common architecture of context-aware systems

Baldauf et al. [9] surveyed eight context-aware frameworks and deduced the common

layered architecture [27] shown in figure 2.5. Their conceptual architecture also

reflects the architecture of noticon as described in chapter 4.

20

2.2 Context-aware Systems

GPS Sensor

42.707,18.128

Office in Vienna

User locations DB

Where is ...?

Figure 2.5: Architecture layers for context-aware systems [9]

Sensors

Sensors are responsible for monitoring the environment they are embedded in and

offering this data to upper layers. Three different types of sensors can be distin-

guished:

• A Physical Sensor is a device that is able to capture physical data, like location

(GPS), audio (microphone), or temperature (thermometer). Existing solutions

are very much focused on this type of sensors, but for noticon they play only

a minor role.

• Virtual Sensors obtain context data from software applications or services;

eg. an Eclipse or MS Word plug-in that senses the current open file. Virtual

sensors can be viewed as autonomous agents and can also perform complex

activities like database lookups.

• Logical Sensors use a couple of information sources and enhance physical and

virtual sensor data with additional information. A logical sensor could use the

virtual Eclipse sensor described above, interprets its readings and guesses the

activity that the user is currently performing.

21

2 Related Work

Raw data retrieval

This layer makes the low level details of hardware access transparent. Eg. the GPS

position must be accessed differently from device to device. The raw data retrieval

shields application developers from these details and provides them with abstract

methods like ”readGPSPosition()” that return the data in a standard format eg.

”42.707,18.128”.

In noticon the ability to flexibly transform message into different formats provides

a similar functionality. Eg. Rational ClearQuest and Edgewall Track are both able

to send email messages when a requirement changes. Transformation rules can be

specified that transform the different email messages to a common format that can

be processed by other components.

Preprocessing

The preprocessing acts on the raw data and combines it to high-level information;

this process is called ”aggregation” or ”composition”. Also filtering mechanisms are

installed at this layer to reduce the amount of data that is passed to the other layers.

The preprocessing layer in noticon is split into two sub-layers for performance and

scalability reasons. The context preparation and the context reasoning layers:

1. The context preparation layer reduces the data that should be stored in the

context model. Components like a correlated events processor [74] or an event

stream engines like Esper can reason over the raw data and aggregate them

to high level information that is then sent to the context reasoning layer.

2. The context reasoning layer is responsible for creating notification messages

based on the changes in the context model. We use a reactive forward chaining

rule engine that reasons over the data provided by the context preprocessing

layer (see section 2.4).

22

2.2 Context-aware Systems

Storage and Management

This layer provides access to context data and results of the reasoning (notifications)

to applications and other components. The data is published in either push or pull

mode:

• In push mode clients subscribe to data that they are interested in, and the

system actively publishes new data to interested clients.

• In pull mode clients query the available data and thus can also get access to

historical context data.

In noticon currently only the push mode is implemented; new notifications are

automatically pushed to client components which display them to the users.

Application Layer

The application layer subsumes all clients that react on context events or make the

data available to end users. Although noticon is designed to prepare information

to be consumed by humans, nothing prevents different use cases. Eg. an applica-

tion could automatically run integration tests if it receives a notification that two

dependent components have been changed.

2.2.3 Characteristics of context data

We characterize context data by (1) the way it gets produced which can be either

statically or dynamically, (2) its persistence requirements, (3) the level of imperfec-

tion.

23

2 Related Work

context
information

static

dynamic

sensed

derived

profiled

birthdate open files

current activity

preferences

Figure 2.6: Context classification for the validity of data

Static or Dynamic

Henricksen et al. [38] characterize context information as either static or dynamic

(see figure 2.6). Static information is something invariant, like a person’s date of

birth. Dynamic information is everything that changes more or less frequently, like

an activity a person is currently doing, a piece of source code, or a requirement. Dy-

namic information is further classified into sensed, derived and profiled information.

• Sensed information is produced at the sensor layer described in section 2.2.2.

The high frequency of which new data becomes available is characteristic for

this type of information.

• Derived information is any information that is produced by aggregating and

correlating sensed information. Eg. the activity of a person could be derived

from the files that a person currently works on, and the used applications.

• Profiled information is information that cannot be sensed or derived and has

to be provided directly by the user. Profiled information can be used to tailor

the system to the specific needs of a user. Eg. he or she could state whether

the notification was detailed enough, or more information should be included

next time.

In the context reasoning layer of noticon we currently do not distinguish between

the different types of context information. However the distinction is helpful for the

analysis of which information can be sensed, which can only be derived, and which

has to be provided by users. It also influences the persistence requirements and has

different characteristics regarding its imperfection.

24

2.2 Context-aware Systems

Persistence Requirements

The dynamic nature of context information and the different intervals at which

data is gathered from the sensors require different persistence strategies [38]. Some

sensor data might not need to be persisted at all, while a complete history has to

be maintained for others.

Zimmer argues that ”context history is most relevant in designing context-aware

applications for it can influence the meaning of a certain context” [90]. Eg. the

failure of a test case is something which might not be of much interest in GSD

projects. If the test case continues to fail for a month, it might indicate a bigger

problem.

System attributes like performance, maintenance, and reliability need to be bal-

anced. Persisting more data allows more complex rules for reasoning and increases

the systems reliability. But it has a negative impact on the performance of both the

running system and the time it takes to recover from a system failure.

In noticon flexible routing rules define which type of information should be stored

and which data should be recovered in case of a failure.

Level of Imperfection

Another property of context information is its imperfection [73]. Sensor readings

can be incorrect, ambiguous or delayed [38] and a context aware application should

be able to deal with these uncertainties. Information from logical sensors and de-

rived information are particularly prone to these kind of errors. Several researchers

suggested to assign quality metadata such as certainty and use this information in

rules [83, 37].

Mechanisms for dealing with uncertainty are not implemented in the current noti-

con prototype and might be addressed in future work. Most of the data that is

gathered from virtual sensors which monitor applications; thus, we expect a very

low rate rate of incorrect sensor readings.

25

2 Related Work

2.2.4 Context Modeling

A context model defines and describes the context data and the possible relations

between the elements. Various techniques, ranging from simple key-value repre-

sentation to ontology based approaches, exist and have been used successfully in

context-aware systems. Strang and Linnhoff-Popien [81] defines six demands on a

context modeling approach:

1. It should be easy to create context information from different devices.

2. It should be possible to validate the context information against the context

model.

3. It should be possible to add additional characteristics to context data like

quality and richness indications.

4. It should be possible to deal with ambiguity and incompleteness.

5. It should be applicable within the existing infrastructure.

In our prototype we use a Java class based context model. Context types (eg.

”Requirement”) are represented as classes and context data (eg. ”Requirement

132”) as instances of this class. Relations between objects are represented as separate

objects. The model is described in detail in chapter 4.

noticon does not require sensors to use a particular context format - an enterprise

service bus translates between the external and internal context representation (see

section 2.5.2). The validation of context information happens in two stages: (1)

the service bus has to transform the external context representation into instances

of the context types. (2) Rules in the rule engine can further validate the data.

Dealing with ambiguity and data of different quality has not been implemented in

the prototype and will be addressed in the future.

26

2.3 Context-aware Notification Systems

2. Subscribe

All Requirement
ChangesRequirement 14

changed

Requirement 14
changed

1. Publish

3. Notify

Figure 2.7: Publish-Subscribe Notification System

2.3 Context-aware Notification Systems

The goal of notification systems is to provide users with valuable information in an

efficient and effective manner without interrupting the user’s primary task [57].

Unnecessary interruptions occur frequently [56], consume a lot of time [80], and

degrade performances [79]; thus, they have to be minimized. In noticon we tried

to minimize the unnecessary interruption by (1) displaying the notification in the

tools the user is currently using, (2) allowing the definition of complex rules to

reduce the amount of notifications, but increase their importance, and (3) providing

a flexible way to specify the content of notifications.

In GSD projects notification systems can be used to:

• Raise the awareness of the availability of other team members.

• Inform about potential conflicts before they become problems.

• Reduce the amount of notifications that have to be sent manually.

• Individually and timely provide users with information they are currently in-

terested in.

The common communication pattern in a notification system is Publish-Subscribe

as illustrated in figure 2.7. The publisher publishes events to a notification server

regardless of who is interested in the information. Components express their interest

in particular events via subscriptions, and the notification server forwards all events

27

2 Related Work

triggersKurt is in Vienna
Bob is in Rome
Iris is in Tobago

current context notify me if ...
Bob is in X AND
Kurt is in X

Iris is not in Tobago

1.

2.

context changes to ...

Bob is in Vienna

Iris is in Rome

triggers

Rules EventsModel

Figure 2.8: Context-aware Notification System

that match the subscription pattern.

In a context-aware notification system, the notification server maintains a context

model. Rules define actions that should be executed when the model reaches a

specific state; eg. if Bob and Kurt are at the same location, notify Kurt about

this fact. Events that are published to the notification server are not forwarded to

subscribers, but change the context model - which in turn can trigger rules that

create notifications. Subscribes do not subscribe to patterns of events, but define

rules when they want to get notified and what the notification content should be.

Figure 2.8 illustrates a context-aware notification system. The current context con-

tains three facts about the current location of the users Bob, Kurt and Iris. Kurt

specified two situations in which he wants to get a notification: 1) if he and Bob are

at the same place, and 2) if Iris is not in Tobago. A notification is sent, whenever

the context changes to a state that matches Kurt’s rules.

Section 2.3.1 describes a framework on how notification systems can be described and

applies this framework to noticon. In section 2.3.2 we shortly introduce existing

solutions that influenced our work.

2.3.1 Framework for Notification Systems

Rosenblum and Wolf defined that a notification system ”would have the ability to

observe the occurrence of events in components, to recognize patterns among such

events, and to notify other, interested components about the (patterns of) event

occurrence.” [70]. They propose a framework that describes notification systems in

28

2.3 Context-aware Notification Systems

seven models. It is useful to understand how noticon works:

1. The object model characterizes the components that generate events and the

components that receive notifications about events. Eg. Eclipse could be both

an event generator and a notification receiver.

2. The event model describes the events that are sent by the event producers.

noticon does not enforce a specific format but can integrate any format that

a tool may use. Eg. if Rational ClearQuest is just able to send Emails in

case of events, we can transform the content of the email into our internal

representation at the server side.

3. The naming model defines how components refer to other components to ex-

press their interest in events. In noticon we completely decoupled compo-

nents from each other, so no direct references between them are necessary.

The notification server connects to various event producers simultaneously in

different ways (eg. by using message queues, regularly polling a mailbox, etc.)

4. The observation model defines how event occurrences are observed and related.

The observation could be either system- or user-triggered [78]. In a user-

triggered observation, the users is responsible for sending the event (eg. by

writing a message in a text box and clicking the ”send” button). In a system-

triggered observation, the system is responsible for sending the event as soon as

it occurs or within an interval (eg. every hour). noticon does not differentiate

whether an event was system- or user-triggered and treats them uniformly.

5. The time model defines the temporal and causal relationships between events

and notifications. In noticon we support three modes: 1) ”immediate” deliv-

ers the notifications as soon all conditions of the notification rules are met. 2)

”delayed” sends the notification until other conditions in the context are met

(eg. a person logs in). 3) ”batch” delivers notifications in a bundle according

to a predefined schedule.

6. The notification model defines the mechanisms that components use to express

their interest in receiving notifications. In noticon rules observe the context

29

2 Related Work

model and trigger notifications when they match. The notification contains

information about the intended receiver (eg. Dominik) and the channel that

should be used for delivery (eg. Email).

7. The resource model defines where the observation components are located. In

the current implementation noticon requires one central node that can be

reached by the event producers and notification consumers. The message based

architecture allows any number of intermediates that could eg. route events

between multiple notification servers; a distribution of the context model is

not supported yet.

2.3.2 Overview on notification solutions

A wide range of notification systems exist, ranging from domain independent systems

to application specific solutions. In this section we will describe the notification

systems where we got ideas from or that we utilized or plan to utilize in the future.

Systems like JMS [35], READY [34], CORBA-NS [2], and Hermes [66] are general

purpose event notification systems that provide an advanced and comprehensive set

of features. Their focus lies on an efficient distribution of events and subscriptions

between event consumers, producers, and servers. They try to minimize network

traffic by using sophisticated protocols and routing algorithms. On contrary they

are often bound to technologies (eg. Java in case of JMS) or complex programming

models (eg. CORBA in case of CORBA-NS). ActiveMQ 6 is a JMS compatible open

source message broker that supports topic based subscriptions and cross-language

clients and protocols. We used it in the prototype to connect with the Eclipse

plug-in.

Other notifications services like Siena [13] and Elvin [75] provide a smaller set of

features, but put great emphasizes on fast and scalable routing of events. A simple,

but expressive filtering languages is used by the receivers to specify their needs in

certain events or sequences of events. YANCEES [23] is a highly extensible event

6http://activemq.apache.org

30

2.3 Context-aware Notification Systems

service that builds on existing publish-subscribe infrastructure, but flexibly extends

it with plug-ins. It can also integrate different event systems like Siena and provides

clients with a uniform subscription language.

CASSIUS [43] is specialized in supporting awareness applications. It can collect

awareness information from diverse sources and route it into various awareness tools.

FeedMe [76] is a collaborative alert filtering system that is based on XML feed proto-

cols such as RSS and ATOM. Users can rate the alerts they receive and by applying

machine-learning techniques, FeedMe can infer preferences for future notifications.

Palantir [72] is built on top of Siena and plugs into configuration management sys-

tems like CVS to raise the awareness of workspace changes among developers. The

tool informs developers about which other developers change which other artifacts.

It integrates very nicely into Eclipse [68] and we plan to provide a similar represen-

tation in future versions. World View [71] provides a view of the teams and their

interdependencies in GSD projects and intends to help developers to identify global

and local team members.

To give an overview on how noticon differentiates itself from and relates to the

systems described above, we compared them along six attributes as shown in table

2.1. Each attribute was rated with a value from 1 to 5 where 5 is generally preferable

for a notification solution. The values were estimated based on the articles (see

above) that describe a particular solution and differentiate it from other solutions

in their related work sections. The six attributes are as follows:

• Extensibility: Defines if and how flexible the system can be extend with new

functionality. Higher extensibility is good if complex scenarios should be real-

ized. (1 . . . not extensible, 5 . . . very extensible)

• Portability: Refers to the ability to interact with the system from various

platforms and integrate it into different applications. This is important if it is

not known in advance, in which environment the system will be embedded and

with which systems it has to interact. (1 . . . not portable, 5 . . . very portable)

• Performance: Estimates performance characteristics of the system. This is im-

portant to estimate how usable the system may be in large, frequently changing

31

2 Related Work

environments. (1 . . . slow, 5 . . . fast)

• Learnability: Estimates how easy the system can be learned and used by

developers or users. This is important for a quick introduction into a project.

(1 . . . difficult to learn, 5 . . . easy to learn)

• Focus: Whether the system is very much focused on a specific task or domain.

Systems that are very focused may provide very good usability in their domain,

but may not cover less requirements. (1 . . . very much focused on a domain, 5

. . . usable in many domains)

• Functionality: How much functionality the system provides out of the box, eg.

how complex rules can be defined. (1 . . . limited functionality, 2 . . . very rich

functionality)

Table 2.1 shows that noticon has the worse rating of the performance attribute.

This is because all other solutions can distribute events immediately as they arise

and do not have to maintain much state. In noticon a context model is maintained

on the server that can be very large in big project; thus, we expect the performance

to be lower. We did not evaluate yet whether performance issues may become a

problem in large projects, but will investigate this issue in future work.

2.4 Event Stream Processing and Rule Engines

Implementing notification system can either be done on top of an event stream

processing engine or a rule engine. In noticon we decided to use a rule engine and

this section will give some background information about stream and rule engines

and why we decided for the latter to implement noticon.

32

2.4 Event Stream Processing and Rule Engines

sy
st

e
m

e
x
te

n
si

b
il
it

y
p

o
rt

a
b
il

it
y

p
e
rf

o
rm

a
n
ce

le
a
rn

a
b
il

it
y

fo
cu

s
fu

n
ct

io
n
a
li

ty

n
o
t
ic

o
n

5
5

1
3

3
5

J
M

S
1

4
4

4
5

2

C
O

R
B

A
-N

S
1

3
5

1
4

3

S
ie

n
a

3
4

4
4

4
3

E
lv

in
3

3
4

5
5

2

Y
an

ce
es

5
4

2
3

4
4

C
as

si
u
s

4
2

3
2

2
3

P
al

an
ti

r
2

1
3

5
1

1

T
ab

le
2.

1:
C

om
p
ar

is
on

n
o
t
ic

o
n

to
re

la
te

d
sy

st
em

s.

33

2 Related Work

select Test Cases that failed twice within 3 hours
from the failed test cases event stream
into the test cases that failed twice stream

Test Case
14 failed

Test Case
14 failed

Test Case
19 failed

Test Case
19 failed

time window = 3 hours
... ...

failed test cases event stream

Test Case
14 failed twice ...

test cases that failed twice event stream
Test Case
224 failed twice

Figure 2.9: Simple event stream processing.

2.4.1 Event Stream Processing

The concept of Complex Event Processing (CEP) was coined by David Luckham and

refers to the ability to discover complex patterns among multiple streams of events

and aggregate them into higher level events that can be consumed by applications

[53]. The job of an Event Stream Processing (ESP) engine is ”to consume multiple

streams of event-oriented data, analyze those events to discover patterns and act on

the inferred events it finds - in milliseconds” [62].

Figure 2.9 illustrates on a simple example how event stream processing works: In

the ”failed test cases event stream” applications publish events about failed test

cases as soon as they occur. Another application might only be interested in events

that failed twice within a specific period of time, thus the application developer

formulates an according stream query that gets interpreted by a stream engine (eg.

Esper 7). A window restricts the event stream by certain criteria; eg. to contain only

events that occur within three hours. The pattern defines sequences of events within

the window that should be discovered (eg. two Test Case events with the same ID).

When a pattern matches, consequences can be executed (eg. a message is sent to

a user). Alternatively the events that matched the pattern can be aggregated into

a higher level event (a complex event [53]) and inserted into other event streams as

shown in the figure.

7http://esper.codehaus.org

34

2.4 Event Stream Processing and Rule Engines

Our first architectural approach for the prototype was based on event stream pro-

cessing because it seemed rather obvious: A variety of systems publish events in-

dependently from each other. Users subscribe to event patterns and and receive a

notification when the pattern matches. This is the approach that most of the other

systems we evaluated use.

When we tried to bring context awareness into play, we quickly discovered the

limitations of this approach: Context information (eg. the file a user is currently

working on) are not events, but describe situations that are normally valid for a

period of time. Thus, formulating patterns on event streams that include context

information, turned out to be very complicated for developers and impossible for

business users.

As a consequence we dropped our initial design and switched to an approach that

builds on a rule engine as described in the next section.

2.4.2 Rule Engine

In noticon we use the Java based rule engine Drools 8 which is more specifically

defined as a forward-chaining production rule system.

The basic principle of a production rule system is relatively simple: a production

(or rule) consists of a condition and an action. The condition contains a set of

propositions that can be either true or false. If all propositions in a rule are true,

the rule is said to be activated and the action can get executed.

1 IF

2 1 == 1

3 THEN

4 print "Hello World"

Listing 2.1: Simple production rule

Listing 2.1 shows a very simple production rule: if 1 equals 1, the ”Hello World”

8http://labs.jboss.com/drools/

35

2 Related Work

User
name = Benedikt
sex = male

User
name = Iris
sex = female

User
name = Dominik
sex = male

User
name = Nikolaus
sex = male

(Facts)

IF
 User(name=$variable,
 sex=male)
THEN
 print $variable

Working memoryInference Engine

Pattern Matcher

 Agenda

Production Memory

(Rules)
Benedikt
Dominik
Nikolaus

Output:

Figure 2.10: Components of the Drools Rule Engine.

should be printed. Because all propositions are true, the rule is activated and the

action can be executed.

Propositions are not constant statements in most cases, but rather use facts that

are maintained in the working memory of the rule engine as shown in figure 2.10.

A fact is a statement about something that is true (eg. Benedikt is male). They

are represented as Java object in Drools. In the example shown in the figure, four

facts, represented as objects of type ”User”, were inserted into the working memory.

A rule that matches all male users was inserted into the production memory. The

name property of all male users is bound to the $variable variable. If there would

be a second proposition in the rule that also refers to the variable, its value would

not be overwritten, but treated like a constant. In our example, three objects match

the proposition; thus, the rule would get activated three times - each time with a

different value bound to the $variable variable.

The pattern matcher is responsible for matching the rules from the production mem-

ory to the facts from the working memory. Drools uses the RETE algorithm [26]

to optimize the performance of the pattern matcher. An agenda controls the order

in which the rules are matched and the activated rules are fired. This is important

in cases where rules do not just print statements like in our example, but modify,

retract, or add new objects to the working memory. These modifications can lead

to the activation of new rules or to a deactivation of already activated ones. The

agenda can either be controlled automatically by the rule engine or by the developer.

36

2.5 Enterprise Application Integration

Figure 2.11: Point to Point Integration vs. Integration Bus

In noticon , the project context is maintained in the working memory to be able

to define notifications that are sent depending on the context. Events that are

sent by external systems lead to an insertion, deletion, or modification of objects in

the working memory, which in turn can trigger the activation of rules. We defined

a domain specific language that allows users define notification rules more easily.

Under the hood, notification specified in this language are transformed into Drools

rules and added to the production memory.

The next section will describe how noticon interacts with other systems.

2.5 Enterprise Application Integration

Enterprise Application Integration (EAI) ”has to deal with multiple applications

running on multiple platforms in different locations, making the term simple in-

tegration pretty much an oxymoron.” [41]. noticon has to integrate data and

functionality of various enterprise applications to (1) gather context information

and to (2) display notifications to project members. This section elaborates on the

patterns and technologies that are used for EAI and that noticon is built upon

(see chapter 4).

The goal of EAI is to connect heterogeneous systems to realize functionality that

cannot be provided by one application alone. Most business processes span several

applications and very often users have to maintain the same data in several sys-

37

2 Related Work

tems. EAI allows both data and logic integration. With EAI organizations can gain

competitive advantage by automating business processes and reducing errors that

happen with manual integration.

The left side of the figure 2.11 illustrates point-to-point integration where direct

communication is established between two applications. The leads to very tight

coupling between the applications, and the number of connections that have to be

created is high. If n applications needed to be integrated with each other, n(n−1)
2

connections would be required. For the six applications shown in figure 2.11 fifteen

connections were needed. The tight coupling between the application results in a

hardly maintainable system and replacing applications becomes nearly impossible.

Also the reliability of the whole system decreases as applications depend on each

others functionality.

The right side of figure 2.11 shows the integration scenario via a message based

integration bus. Applications do not communicate directly with each other, but

only exchange messages with the message bus, which is responsible for mediating

the information flow between the connected systems.

Service Oriented Architectures (SOA) based on web services are the foundation for

successful integration projects. Components describe the functions they can perform

in the technological independent WSDL format, and data is transferred according

to the SOAP protocol encoded as XML. Due to the separation of service description

and service implementation, a service consumer and service provider are only loosely

coupled, and both of them could be replaced without requiring changes of the other.

An Enterprise Service Bus (ESB) further decouples service consumers from service

providers. It mediates the message flow between the services and provides a reliable

asynchronous connection between them. An ESB can also transform messages and

queue them in case the receiver is not available.

ESBs are the base for systems based on an Event Driven Architecture like noticon.

In such an architecture there are no methods that get invoked on services and that

return immediate results, but instead components publish events to an ”event cloud”

and subscribe to events in the cloud that they want to react upon.

38

2.5 Enterprise Application Integration

Section 2.5.1 will elaborate more on SOAs and briefly describe how web services

work. Section 2.5.2 will describe the functions of an ESB and the message patterns

that it is built upon. In section we will elaborate on the characteristics of an EDA.

2.5.1 Service Oriented Architecture

Service Oriented Architectures gained a lot of attention within the business and IT

community. The Oasis Group defines a service oriented architecture as ”a paradigm

for organizing and utilizing distributed capabilities that may be under the control of

different ownership domains.” [55]. Service providers typically offer whole business

processes like ”process incoming order”.

SOAs have the following characteristics [14]:

• All functions in a SOA (business, or technical) are defined as services.

• All services are independent, and callers do not have to know how a service

performs its function.

• The location of the component that provides the service is transparent to the

caller.

The key to provide these characteristics is the separation of the service interface

from the service implementation. The interface defines the required parameters and

the nature of the result in a technological independent way.

Web Services are currently the most used technology to realize a SOA as they provide

maximum interoperability.[64]

Web Services

SOAs based on Web Services are commonly used for EAI. The protocol for exchang-

ing data is SOAP. It ”provides the definition of the XML-based information which

can be used for exchanging structured and typed information between peers in a

39

2 Related Work

Figure 2.12: Structure of a WSDL Service Description [82]

decentralized, distributed environment.” [82] A SOAP message (SOAP envelope)

consists of a Header and a Body part.

• The Header contains metadata, like the operation that should be called on a

service, how the payload has been encrypted, and where the response should

be sent.

• The Body contains the actual data that should be transferred, encoded in

XML.

The functionality and application provides (the service) is described in the techno-

logical neutral XML based WSDL format. In WSDL2 a service is described in two

fundamental stages [15] as illustrated in figure 2.12:

• At the abstract level the messages that the Web service sends and receives

are described in a wire independent format (eg. XML Schema [22] or OWL

[58]). Message exchange patterns describe the message flow (eg. ”In-only”

or ”Request-Response”), and operations associate messages with message ex-

change patterns. Interfaces logically group operations.

• A the concrete level, bindings specify the wire format and transport protocol

for transmitting messages of an interfaces, eg. SOAP over HTTP. An endpoint

40

2.5 Enterprise Application Integration

Figure 2.13: Enterprise Service Bus [64]

associates bindings with network addresses, and services group endpoints that

implement a common interface.

2.5.2 Enterprise Service Bus

A service oriented architecture based on Web Services does not necessarily lead to

the desired loosely coupled message based integration (see figure 2.11). This can

be archived with an ESB which acts as a Mediator [29] between services (see figure

2.13). An ESB is ”an open, standards-based message bus designed to enable the

implementation, deployment, and management of SOA-based solutions with a focus

on assembling, deploying, and managing distributed SOA” [64]. It provides the

backbone of a SAO and is responsible for orchestrating the message flow between

services.

Figure 2.13 shows that an ESB can connect systems regardless of their technology

or the transport protocol that is used to exchange messages. The only requirement

of a connected system is that it provides a service interface. The ESB takes care

of the routing and transformation of the messages between the services. The JSR-

208 specifies how an Enterprise Service Bus on the Java platform should look like.

For noticon we decided to use the JSR-208 compatible open source message bus

41

2 Related Work

Data

Application

Endpoint
Message

Channel

Routing

Transformation

Figure 2.14: Message based integration

”Mule” 9.

An ESB encourages highly asynchronous communication patterns between services.

Components should not call service methods and block till the answer arrives because

the component that implements the service might not be reachable. Instead a service

operation should be specified that gets called when the results are available. The

service bus takes care that the messages are routed to the correct services and can

delay delivery if the service is not working.

Figure 2.14 illustrate flow of data in a message based ESB [41]:

1. Most application do not have the built-in capability to use messaging systems

like JMS or ActiveMQ. Thus they interact with an Endpoint that knows how

it can invoke functions on the application and how to exchange messages with

the service bus.

2. The endpoint wraps the data that the application wants to send in a message

and optionally adds additional metadata to it.

3. Messages are transmitted via channels that establish a reliable asynchronous

connection between sender and receiver. The sender puts the message into the

channel and the messaging system (eg. ActiveMQ or BizTalk) takes care that

it can be picked up by the receiver. It is important to note that the message

system does not guarantee immediate delivery, but guarantees delivery. This

is most often an advantage and makes message based integration very stable

even if integrated applications are temporarily not available.

9http://mule.codehaus.org

42

2.5 Enterprise Application Integration

4. The message bus is responsible for delivering the message to the receiver.

Based on a pipe and filter architecture, the message is routed through various

components that can process the message. Routers are components that route

the message based on criteria like the payload to other components or the final

receiver.

5. Transformers are responsible to transform the message payload to other for-

mats. This is required if the integrated applications have not agreed on a

common data format.

2.5.3 Event Driven Architecture

Service Oriented Architectures based on an Enterprise Service Bus are good for En-

terprise Application Integration, but often resemble a call-stack driven architecture

that exhibits the following characteristics [40]:

• On thing happens at a time: There is normally a single line of execution where

one thing happens after the other. Concurrent execution of tasks is possible,

but has to be treated carefully.

• The order of execution is known: Because one method calls another, the caller

has a good idea of what should happen next. With BPEL [42] services can be

combined regardless of their implementation, and the call-stack is described

declaratively in XML. Nevertheless describes BPEL a process and a such im-

plies a sequential execution.

• It is known who can provide a needed function: The caller has to know that

there is another component that can provide the function it wants to call. With

Web Services and an Enterprise Service Bus, the caller does not need to care

about the concrete component but still needs to know the service interface.

For a notification system, this architecture would require all connected systems to be

aware of each other and invoke each others operations appropriately. In case of a new

notification, the ESB would have to lookup the service endpoints of the applications

43

2 Related Work

Subversion

Track

Eclipse

Notification
Engine

Requirement

Changed

File
OpenedCheckin

Occoured

NotificationGenerated

Figure 2.15: Event Cloud

that should receive the notification and call methods like showNotification().

Fairly complex coordination logic would be required to realize this process.

In an Event Driven Architecture, communication between components is not by

established by calling methods, but by exchanging events. An event ”signifies, or

is a record of, an activity that has happened” [53]. Luckham [53] coined the term

”Event Cloud” to explain the principles of an Event Driven Architecture (see figure

2.15. Applications send events into the Event Cloud and register for events they

are interested in. Eg. Subversion sends a ”Commit Occurred” into the Event Cloud

as soon as a commit occurs. Another component (eg. Eclipse) could react on this

event, do some processing and publish the results again as events.

Integrating applications with an EDA is a fundamental shift of responsibilities. ”It

allows components to be decoupled to the extent that the ’caller’ is no longer aware

of what function is executed next nor which component is executing it.” [40].

An Enterprise Service Bus can be used as an Event Cloud. Services would just

register the events that they provide and want to consume with the service bus,

which is responsible for managing the subscriptions and routing the events between

the components.

The architecture of noticon is an EDA because we wanted it to be highly exten-

sible and provide a platform where additional services (eg. event monitoring, build

servers, etc.) could be plugged in easily.

44

3 Research Issues

In section 3.1 we describe our research questions; how we answered them is described

in section 3.2. To gather the requirements for a solution we performed a detailed

stakeholder analysis which is described in section 3.3. Section 3.4 elaborates on

the requirements that we deduced from the stakeholder analysis. In section 3.5 we

describe the notification discovery and description framework and process that can

be used by project managers to discover communication risks and analyze how they

can be mitigated with a notification solution.

3.1 Research Questions

Our research questions were:

• What are the key requirements of a notification system in the context of GSD?

We performed a stakeholder analysis to discover and describe the most im-

portant requirements of a notification solution in global software development

projects. To our knowledge there is no publication of requirements for a noti-

fication system based on a stakeholder analysis, and existing systems are more

driven by technical challenges or specific use cases. Some important require-

ments may have been missed, but are critical for a successful introduction of

a notification solution in a large scale project.

• How can the notification needs in a GSD project be discovered and described?

Arguing that notifications are required, is not enough: A method has to be pro-

vided to discover the concrete notification needs and formally describe them.

45

3 Research Issues

To our knowledge there is no applicable process that guides project manager

through introducing a notification system. We propose a process that has

been specifically designed to be applicable in a constrained environment (low

budget, few time) and that guides from a general communication risk analysis

to a formal definition of the notifications.

• What architecture fulfills the requirements for a notification solution in the

context of GSD? Existing solutions as described in section 2.3.2 are either

designed for very specific use cases (eg. make users aware of each other in

Eclipse when they are working on the same source file) or provide very generic

functionality that is not readily applicable to notification scenarios in GSD

projects. An extensible platform with rich functionality but well aligned to

the GSD domain is missing. We propose the prototype noticon that provides

advanced notification capabilities and that can be easily tailored to the specific

needs and infrastructures of a GSD project.

• How can we validate our process and the usefulness of noticon? In coopera-

tion with Siemens PSE we did an empirical evaluation of both the process and

the prototype. Based on a simple but realistic project setting we show how

we applied the process and configured the prototype for specific notification

scenarios.

3.2 Research Design

The first step was to get an overview on GSD projects and their characteristics with

a detailed literature research. Then a stakeholder analysis was performed to gather

the requirements for a notification solution. Based on these requirements, existing

solutions were evaluated. After that, the prototype noticon was developed. The

notification process and the setting for the case study were developed next and

refined with experts from Siemens PSE. The last step was to test the prototype and

the process on a small feasibility study.

46

3.3 Stakeholder Analysis

Domain of inquiry

Goal stakeholder for

suprasystem

Means stakeholder for

Suprasystem

Goal stakeholder for

"System under

Consideration" (SuC) Means stakeholder for SuC

Figure 3.1: Generic stakeholder classification layout

3.3 Stakeholder Analysis

Complex IT systems have a wide variety of stakeholders with different and sometimes

contradicting interests. ”A stakeholder is a person or organization who influences a

system’s requirements or who is impacted by that system” [31].

In section 3.3.1 we describe the stakeholder classification framework by Preiss and

Wegmann [67] that we used to discover the most important stakeholders. In table

3.1 we describe the major value of noticon for each stakeholder, their attitudes

toward the system, and their major interests. A detailed description will be given

in section 3.3.2.

3.3.1 Stakeholder Classification Framework

The stakeholder classification framework by Preiss and Wegmann [67] is centered

around the concept of systems. The System under Consideration is the system

that is going to be built and that gets embedded into an existing system - the

Suprasystem. Both the goals of a system and the means to archive these goals

must be analyzed. The domain is partitioned into the systems development domain

and the systems operation domain. The system development domain include all

development activities (plan, design, implementation, etc.). The system operation

domain is about the runtime of the system in a real environment as well as the

management of change.

Figure 3.1 illustrates the general layout of the stakeholder classification framework.

47

3 Research Issues
S
ta

ke
h
ol

d
er

M
a
jo

r
V

al
u
e

A
tt

it
u
d
es

M
a
jo

r
In

te
re

st
s

O
S

C
om

-
m

un
it

y
ne

w
co

m
m

er
ci

al
ly

us
ab

le
op

en
so

ur
ce

pr
oj

ec
t;

sh
ow

s
us

ef
ul

-
ne

ss
of

op
en

so
ur

ce
in

bu
si

ne
ss

co
nt

ex
ts

;

po
si

ti
ve

bu
t

no
in

vo
lv

e-
m

en
t

at
th

e
be

gi
nn

in
g

st
ab

ili
ty

of
th

e
pr

oj
ec

t;
cl

ea
n

im
pl

em
en

ta
-

ti
on

to
ge

t
id

ea
s

fo
r

ot
he

r
pr

oj
ec

ts
;

m
an

y
or

ga
ni

za
ti

on
s

us
in

g
it

,
to

ra
is

e
th

e
aw

ar
e-

ne
ss

of
op

en
so

ur
ce

so
ft

w
ar

e
fo

r
bu

si
ne

ss
es

in
ge

ne
ra

l

T
oo

l
P

ro
vi

de
rs

le
ve

ra
ge

ex
is

ti
ng

in
fr

as
-

tr
uc

tu
re

;
po

si
ti

ve
if

th
e

in
te

gr
a-

ti
on

co
st

ar
e

lo
w

an
d

th
e

co
m

pa
ny

do
es

no
t

ha
ve

a
pr

op
ri

et
ar

y
no

-
ti

fic
at

io
n

so
lu

ti
on

in
it

s
po

rt
fo

lio
;

si
m

pl
e

A
P

I;
ea

sy
in

te
gr

at
io

n;
no

re
pl

ac
e-

m
en

t
of

ow
n

to
ol

s
an

d
ap

pl
ic

at
io

ns
;

no
pe

rf
or

m
an

ce
im

pa
ct

on
th

e
co

m
pa

ni
es

pr
od

uc
ts

n
o
t
ic

o
n

D
ev

el
op

er
s

co
m

m
er

ci
al

m
od

el
s;

ch
al

le
ng

e;
re

pu
ta

ti
on

po
si

ti
ve

ea
sy

to
ex

te
nd

;
ea

sy
to

un
de

rs
ta

nd
;

w
el

l
kn

ow
n

in
th

e
O

S
co

m
m

un
it

y;
cl

ea
n

co
de

;

Sy
st

em
A

dm
in

is
-

tr
at

or
s

ca
n

be
us

ed
fo

r
m

on
it

or
-

in
g

sy
st

em
s

m
or

e
lik

el
y

to
be

ne
g-

at
iv

e
be

ca
us

e
of

ex
tr

a
w

or
k

no
t

m
uc

h
ad

di
ti

on
al

w
or

k;
up

gr
ad

es
of

ot
he

r
sy

st
em

s
m

us
t

no
t

ca
us

e
pr

ob
le

m
s;

no
ne

ga
ti

ve
pe

rf
or

m
an

ce
im

pa
ct

;n
o

se
cu

-
ri

ty
is

su
es

;

E
xe

cu
ti

ve
s

hi
gh

er
re

ve
nu

es
po

si
ti

ve
if

re
v
en

u
e

>
ef

f
or

t
lo

w
in

tr
od

uc
ti

on
ri

sk
;

fa
st

re
tu

rn
on

in
-

ve
st

m
en

t;
qu

ic
k

in
tr

od
uc

ti
on

;

P
ro

je
ct

M
an

ag
er

s
hi

gh
er

pr
od

uc
ti

vi
ty

;
le

ss
er

ro
rs

be
ca

us
e

of
co

m
m

un
ic

at
io

n
m

is
ta

ke
s;

re
du

ce
d

ri
sk

;

ve
ry

po
si

ti
ve

be
ca

us
e

of
th

e
ex

pe
ct

ed
pr

od
uc

ti
v-

it
y

ga
in

po
w

er
fu

l
no

ti
fic

at
io

n
ru

le
ca

pa
bi

lit
ie

s;
go

od
us

ab
ili

ty
;m

et
ri

cs
an

d
re

po
rt

s;
qu

ic
k

sy
st

em
in

tr
od

uc
ti

on
;

D
ev

el
op

er
s

re
du

ce
d

in
te

gr
at

io
n

ef
-

fo
rt

;
be

tt
er

ge
ne

ra
l

in
-

fo
rm

at
io

n
an

d
aw

ar
e-

ne
ss

;

po
si

ti
ve

if
no

ex
tr

a
ef

-
fo

rt
fo

r
th

em
no

n
in

tr
us

iv
e

no
ti

fic
at

io
n;

pe
rs

on
al

iz
at

io
n;

us
ab

ili
ty

;
pr

iv
ac

y
co

nc
er

ns

T
ab

le
3.

1:
S
ta

ke
h
ol

d
er

su
m

m
ar

y

48

3.3 Stakeholder Analysis

Domain of inquiry Name of the system Goal Stakeholder Means stakeholder

Development Suprasystem:
Open Source Community

Community Members; Tool Provider; OS Community members;

SuC:
Development project

other OS project members that built
upon the core compnents; Hosting
Provider (eg. Sourceforge)

Students; Developers of other
OS projects; Scientific
Community; Developers;

Operation Suprasystem:
Company running the
notification system

shareholders; customers; software
and hardware suppliers;

Management; Employees; IT
Department

SuC:
The notification system

project management; developers of
the GSD project; quality assurance;
testers; information gatekeepers;
software suppliers;

developers of the GSD project;
system administrators;
helpdesk; tool vendors

Figure 3.2: Stakeholder Classification

The goal stakeholder for the suprasystem are interested in the perceived behavior of

the suprasystem only. The mean stakeholder for the suprasystem are interested how

the suprasystem archives its behavior by looking a the structure and the interconnec-

tion of the inner systems. The goal stakeholders for the System under Consideration

(SuC) are interested in the perceived behavior of the system. The means stakeholder

for the SuC are interested in the way the SuC archives its behavior.

3.3.2 Stakeholders

Figure 3.2 shows the stakeholders classified by Preiss and Wegmanns [67] classi-

fication framework. The development domain contains all stakeholders that are

concerned with open source development in general (the Open Source Community

Suprasystem) and all stakeholders that are directly involved in planning and devel-

oping noticon. In the operation domain the suprasystem is the company running

noticon and the system under consideration is noticon itself.

The following sections describe the most important stakeholders in greater detail.

49

3 Research Issues

Open Source Community

Description The OS community includes all people that actively participate in open

source projects.

Major Values If noticon is successful, it would steady the claim about the use-

fulness of open source software in general. Also the ideas of noticon and

noticon itself can be leveraged in other open source projects.

Attitudes The attitudes toward the project are very positive although no involve-

ment is expected unless the application is successfully deployed in one or more

companies.

Involvement In the future the OS community should take over the project, main-

tain, and extend it. Adapters for legacy systems are expected to be developed

by the OS community.

Major Interests An important interest of the OS community is the stability of the

project. Projects that pop up and disappear after a month harm the reputation

of OS software as a reliable and trustworthy investment. The community is also

interested in well organized source code, a simple API, and good development

documentation so that interested persons can easily join the project and get

started quickly.

Success Criteria (1) The project is actively maintained for longer than the average

number of open source projects. (2) It does not take longer than a few hours

to understand how to system works and be able to write extensions.

Tool Providers

Description Tool providers are software producers like IBM or Mercury which sell

software that is likely to be integrated into noticon.

Major Values Integrating with noticon makes the tool more valuable for compa-

nies that use noticon. If a product does not provide notification mechanisms,

50

3.3 Stakeholder Analysis

it can leverage an existing infrastructure.

Attitudes The attitudes are positive as long as the integration efforts are not too

high and the value of the own product increases. They might be negative if

the tool provider already has another notification solution embedded in its

products and does not want to integrate with other applications.

Involvement As long as noticon is not used by several big companies, it is very

unlikely that tool providers will be actively involved in the development of

noticon; though, it is expected that they provide APIs and documentations

for their products, which can be used by the OS community for integration.

Major Interests The system must not interfere with the activity of their software as

this may harm the tools providers reputation. In case a tool provider wants to

integrate with noticon, its API must be as simple as possible and integration

must not require much effort.

Success Criteria An integration is successful if the functionality of the integrated

application is not touched at all, and the performance is not decreased so much

that it can be noticed by users.

NOTICON Developers

Description The developers that are responsible for creating and maintaining the

systems core and the legacy system adapters.

Major Values Developers may benefit from noticon by adopting a business model

and earn money with it. Participating in an open source project also increases

a developers reputation, and the challenging tasks improve individual skills

like programming, teamwork and communication.

Attitudes The developers attitudes are very positive toward the project.

Involvement Their involvement is necessarily a lot.

Major Interests The project should be known in the community - otherwise the

51

3 Research Issues

reputation benefits would not arise. It has be structured in a way that allows

many persons working on it at the same time. Developers might vote for a

restrictive license because they might not want other companies making money

with it.

Success Criteria The project should be well known in the OS community. This

criteria can be measured by the number of awards the project receives (eg.

Source Forge’s ”Project of the Month”).

System Administrators

Description System administrators subsume people in the IT departments which

maintain the IT landscape of the company.

Major Values They can benefit from noticon if they use it for their own processes

(eg. system monitoring).

Attitudes The attitudes of the system administrators toward noticon are expected

to be rather negative. It is likely that the installation will require modification

on many machines and programs. Also a completely new system has to be

maintained and supported which increases the workload of the department.

If the administrators can efficiently use noticon for system monitoring, the

attitudes are expected to be positive.

Involvement Although the attitudes are likely to be negative, the system adminis-

trators are key stakeholders. They have to roll out the system to the machines,

provide the necessary hardware, maintain and support the system, and react

in case of problems.

Major Interests The system will increase the workload for system administrators,

thus the additional work has to be kept to a minimum. The installation must

be as easy as possible (and probably supported by extern consultants) and

upgrades of other systems must not cause problems for noticon. Maintenance

should be barely required and runtime configuration can be done by the users.

System administrators demand that the notification system does not have a

52

3.3 Stakeholder Analysis

negative performance impact on other systems and that problems in noticon

do not cascade to other systems. It also must not weaken the existing security

infrastructure, and it must not require additional investments in it. The system

administrators also require a thorough documentation.

Success Criteria (1) The installation can be done within a day. (2) Updates do not

take longer than the average of the other systems. (3) The system does not

need any attention, as long as there are no fundamental changes in systems

that noticon integrates.

Executives

Description Executives manage and control the enterprise and are responsible for

the financial success.

Major Values Executives expect higher revenues because of reduced communication

costs and reduced costs caused by rework and errors.

Attitudes The attitudes are positive as long as the expected revenues justify the

additional efforts.

Involvement The support of the executives is very important for the success of

noticon. Without that, it is unlikely that the other stakeholders (especially

the system administrators) will take the extra effort that is required in the

introduction phase of noticon.

Major Interests The risk for introducing the system in the organization must be low

and a high revenue is expected. The return on investment has to be very short

(within a year) and the installation costs kept to a minimum. Furthermore,

it must be possible to quickly introduce noticon in a smaller projects and

scale it to larger ones if successful. Support and continuous improvement is

also of great interest and management must be able to calculate the costs for

adaption.

Success Criteria The return on investment must be less than the project duration.

53

3 Research Issues

Project Managers

Description Project managers are responsible for the successful realization of a

project within a company. They normally have a limited budged, but decide

more or less freely on its use.

Major Values Project managers expect a higher productivity (eg. measured in lines

of code or function points), less communication defects, and a communication

risk reduction.

Attitudes Their attitudes are very positive toward noticon .

Involvement The involvement of project managers needs to be high, because it is in

their responsibility to communicate the need for such a system and motivate

the other stakeholders to use the system. They know many of the communi-

cation needs of the project, thus will define many of the notification rules.

Major Interests Project managers will have very demanding requests towards the

functionality of noticon . They expect that highly complicated rules can

be specified efficiently and the notification specification can be communicated

easily. Project managers also expect metrics and reports to argue the need

for noticon with the executives. Especially in GSD projects, where several

project managers are working together, they have a strong interest that the

systems can be introduced independently from each other. If another subpro-

ject also decides to use noticon , the integration has to be seamless.

Success Criteria The number of communication defects must be reduced by the

amount that has been set in advance. This can be measured eg. by comparing

the average number of hours it takes to implement a change before and after

noticon is introduced.

54

3.3 Stakeholder Analysis

Developers

Description Developers develop the GSD systems components. Depending on the

organizational structure, they get their tasks assigned by some group leaders,

or they can decide the next requirement that they are going to implement

themselves.

Major Values Developers expect a reduced integration effort that arises due to

communication problems. Integration efforts are tasks like merging source

code that has been worked on concurrently, or rolling back to a previous version

because a requirement has changed. They also expect better information about

what is going on in the project and better awareness about what the other

project members are doing.

Attitudes Developers are expected to have positive attitudes toward noticon, as

long as no extra effort is required by them and privacy concerns are addressed.

Involvement Their involvement is very high because they are the primary receivers

of the notifications. It is also expected that developers create notification rules

themself or adapt them to meet their requirements.

Major Interests It is important that no extra work is required for the developers to

use the system. Furthermore, they have a strong interest that the notifications

do not interrupt their current activities, and that they receive less notification

emails from existing systems. Developers want to personalize the message

content and be able to specify notification rules on their own. Privacy issues

are also very important for them: the system must not allow managers to

control what they are currently doing (eg. by defining a notification that just

shows the current context of a user).

Success Criteria The number notification messages sent by email decreased signif-

icantly. The time that is spent fixing code because of communication errors is

reduced. Concrete measurements should be defined before introducing noti-

con and evaluated regularity.

55

3 Research Issues

3.4 Requirements for the prototype

This section presents the most important requirements for a notification system

based on the stakeholder analysis described before. In particular the socio-technical

requirements are listed because they are easily overlooked by technicians.

• The system must be built upon standard technology. Administrators

can maintain a system much easier if they are already familiar with the un-

derlaying technologies. As an additional advantage a wide variety of support

infrastructure (documentation, forums, chats) exists that can be accessed by

administrators in case they want to extend the system or have an infrastruc-

ture problem. By using standard technologies, the security requirements of the

organization can be met easier because the used technologies are verified and

updated continuously by the research community. It also lowers the entrance

barriers for new developers which is important for a vital open source project.

Furthermore, the open source community profits because OS technologies get

introduced in enterprises that might leverage them for other projects as well.

• The system must support the users work without interfering with

their primary tasks. This requirement is very important for the accep-

tance of the system. If developers have to have another tool running on their

workstation that consumes memory and slows down their work by steadily in-

terruptions, the costs exceeds the benefits. The notification tool must silently

integrate into the already existing tool-set and display its messages in an un-

obtrusive way. For example if a developer is currently working on a piece of

code in Eclipse, notification messages should be displayed in this tool and not

delivered by email.

• False positives and false negatives must be minimized. False positives

are information that is delivered to a user, but that is irrelevant for him or

her at the moment. Sensing and interpreting the users current context is

therefore required. Eg. a information concerning a piece of code X should

be displayed only when the user cares about it (eg. by editing X in Eclipse).

False negatives are notifications that should be delivered to a user but are not.

56

3.4 Requirements for the prototype

Eg. an information that two developers A and B are changing the same piece

of code at the same time is delivered to A but not to B. The impact of false

positives is often less than that of false negatives (eg. recognizing and deleting

an spam email message only takes a few seconds), but the right balance has to

be found. The rules controlling the system must be flexible enough to allow

different configurations based on the scenario requirements.

• The definition of complex notification rules must be supported. The

rule engine must support the definition of rules for complex notification sce-

narios that are derived from formalized key communications of collaboration

processes [85]. It must be possible to reason over data from heterogeneous

sources and allow to define to whom, how, when, in which context, due to

which event, with which content a notification should be sent and what to do

in case of an error [84].

– who: The receiver of a notification can be a single person or a group. It

must also be possible to specify the receiver dynamically (eg. ”all people

currently working on requirement X”, ”all project managers that are not

on holiday”).

– how : There are different possibilities on how the receivers could be noti-

fied, eg. ”in the tool they are currently using”, ”by email”, or ”by sms”.

We call this information channels. New notification channels should be

easily addable by administrators.

– when: Although most notifications are likely to be sent immediately it

must be possible to define different delivery times, like at a specific time

every hour/day or condition that has to become true (eg. the receiver

comes back from holiday).

– context : To minimize wrong positives, the current context of the receivers

must be included in the rule as well. This leads to the derived requirement

that the current user context gets sensed and refreshed constantly.

– event : The event (or sequence of events) that triggers the notifications

57

3 Research Issues

must be specified, eg. requirement X has changed.

– content : It must be possible to specify the content for the notification

and include data from different sources. Eg. the notification that another

developer is currently working on the same source file should include his

or her name and phone number.

– error : If a rule cannot be delivered to a person within a specific time-

frame or because of an error, escalation mechanisms must be configurable

[63]. Eg. the system could retry delivering the message five time and

forward it to a colleague after that.

• Users must be able to specify the notification requirements during

runtime. As discovered in the stakeholder analysis, different people have

different notification requirements and want to define and change them them-

selves. This leads to the technical requirements that notification rules can be

changed during runtime. The bigger impact is that this requirement forces the

notification system to provide a very usable interface that provides and easy

customization.

3.5 Notification Discovery and Description

Framework and Process

A notification system deeply integrates into a socio-technical environment and

should mitigate communication risks within that environment. To gain the full

benefit of a notification solution the project environment be analyzed, and com-

munication risks that can be mitigated with notifications must be discovered and

described.

In this section we prose an iterative process shown in figure 3.3 that can be followed

by project managers and team leads to discover project communication risks and

formalize notifications that mitigate these risks. The process was designed to be

easily applicable in practice with tools that are commonly available (eg. an UML

58

3.5 Notification Discovery and Description Framework and Process

Analyze the project
communication risks

Start

Describe the project
organization

high risks?

Describe the key
communications

Define the notifications

End

Communication
Risks

Win Conditions

Project
Organization

Key
Communications

Notification
Definitions

Project Manager

Team Lead

RiskIt

Risk Drivers

Ekrisson-Penker
Notation

ICA

Communication
Act Template

Notification
Specification

Language

Activity

Work Product

Guidline

Legend

[yes]

[no]

«iteration»

perform

perform

Figure 3.3: Introduction Process

59

3 Research Issues

editor). The process should be tailored to the needs of a particular project and

not applied blindly [49]; the methods and tools that the project manager is already

familiar with (eg. risk analysis processes) should be used wherever possible to lower

the entrance hurdles.

3.5.1 Step 1: Analyze the project communication risks

Goal: To find out if there are high communication risks in a particular project that

need to be mitigated.

Rational: Mitigating communication risks is not required for all development

projects. Eg. if all developers are sitting in the same room and working at the

same time, synchronous communication outperforms any technical notification so-

lutions in most cases. Project manager have to judge whether the impact of the

communication risks on the win conditions of the stakeholders [11] justifies invest-

ments in a notification solution.

Actors: Project managers with assistances from team leads (or their proxies).

Input: The win conditions of the project stakeholders.

Output: A document describing the projects communication risks and the decision

to either ignore them or try to mitigate them with tools like noticon.

Description: Based on our research of the characteristics of GSD projects (see

section 2.1) we discovered a set of drivers for communication risks. For each of

those the project manager should (see figure 3.4):

1. Brainstorm on concrete risks that are caused by the risk driver.

2. Rate the relevancy of the driver as A (very relevant), B (relevant), or C (ir-

relevant). The rating should be based on the impact of the risks on the win

conditions of the stakeholders.

3. Perform a more detailed risk analysis if the rating is A or ignore the risk driver

60

3.5 Notification Discovery and Description Framework and Process

Brainstorm on
communication risks.

Rate the relevancy of
the risk driver.

Rating?

Ignore the driver for
further steps.

Perform a detailed risk
analysis.

Rate the applicability of
notification tools

Rating?

Risk Driver

Win
Conditions

Rank the driver based
on its importance and

applicability.

[A or B] [C]

[B]
[A] [C]

Figure 3.4: Process to rank risk drivers for further process steps.

in further process steps if the rating is C.

4. Rate the driver on how applicable tools (in particular notification tools) are

for mitigating the risks with A (very applicable), B (applicable), or C (not

applicable).

5. Rank the driver based on its impact and the applicability of tools to mitigate

the risks if the rating is A or B, and ignore the driver if the rating is C.

61

3 Research Issues

Communication Risk Drivers

The following list will describe each of the risk drivers and give an example to

which concrete risks they can lead. We assigned a name to each driver to reference

them more easily in subsequent sections, and we roughly ordered them based on the

applicability of notification solutions:

• dependencies: Dependencies among elements that are managed by different

teams. Example: WSDL contracts are maintained by the COBOL team, but

are also referenced by components managed by the Java team. There is the

risk that changes of the WSDL are not communicated to the Java team and

just detected at integration time. The more loose coupled the elements are,

the later the changes are often discovered because referenced components can

be mocked during development. noticon could inform a developer if he or

she is working on an element that is used by other teams.

• changes: Frequent changes of elements that impact several teams at once. Ex-

ample: A change in a requirement influences components managed by the

COBOL team and components managed by the Java team. If the two teams

are not aware of each other, they may change their components independently

from each other making them incompatible. noticon can raise the awareness

of interdependencies between teams.

• geography: Geographical separation of teams. Example: The requirements

management and the Java development team are located in Vienna, and the

COBOL development team is located in Madrid. There is the risk that re-

quirement changes are communicated informally to Java development team

(eg. during lunch breaks) and not at all to the COBOL team. This can lead

to inefficiencies and frustration within the COBOL team. noticon could en-

sure that changes are communicated in time to both the COBOL and the Java

team.

• formality: Lack of formally defined processes on how changes need to be com-

municated. Example: If there is no formally defined process whom to notify

in case of a requirement change, there is the risk that the change might not

62

3.5 Notification Discovery and Description Framework and Process

be communicated at all. Any notification system reduces this risk by forcing

a formal definition on which events should trigger which notifications.

• organizations: Multiple organizations participating in the development. Exam-

ple: If more companies are participating in the project, there might not be just

one where all requirements are managed. Instead requirements are constantly

synchronized between different systems (often manually). There is a high risk

that the change of a requirement in one system is not communicated in time

to the people managing the requirement in the other system. noticon can

provide a shared view on all requirements, detect missing synchronizations,

and inform interested parties about it.

• agility: An agile development process. Example: Agile development processes

(like SCRUM or RUP) normally allow frequent changes of components. Reg-

ular meetings and continuous integration try to ensure that the changes are

communicated to all affected persons in time. For GSD projects the pro-

cesses have to be adapted and much care has to taken to guarantee efficient

communication between teams. Otherwise there is the high risk that changes

are communicated within, but not between teams, which lead to all kind of

problems. Notification systems can help to apply agile processes in the GSD

projects by ensuring the communication of changes between teams.

• culture: Different cultural background of teams. Example: People from differ-

ent cultures can have different communication habits. When communication

is necessary across cultures the probability of misunderstandings and offend-

ing the other is higher. Emails like ”We change requirement X. best regards.

Peter” are usual in German speaking countries, but might be perceived as

impolite in Japan. Notification system have a limited capability to support

communication across cultures, but the text of a notification could be at least

altered to match the communication preferences of the receiver. noticon

could also hook into email programs like MS Outlook and inform the sender

of the communication habits of the receiver before the email gets sent.

• language: Multiple languages spoken within the project. Example: If Fritz has

to inform Mali about a particular situation, but both speak different languages

63

3 Research Issues

and only very bad English, misunderstandings are likely to occur. With noti-

con some of those situation can be automated and notifications translated to

the mother tongue of the receivers.

If a risk driver seems to be very important for the project, we propose to investigate

and document the risks with a more formal method like Riskit. The next section

will give a brief overview of this method:

The Riskit Method

Addison and Vallabh show [8] that risk management techniques can reduce the

risks in software development projects. But ”some of the problems in implementing

risk management were the result of difficulties in identifying and quantifying risk

since these processes are difficult to translate into reality” [61]. The Riskit method

proposed by Kontio [46, 47] is a well known technique and has been validated several

times in practice [48, 28]. It is suitable for a coarse grained communication risk

analysis which is the goal of this process step.

The most important step in the Riskit method is the creation of analysis graphs

that visualize the project risks. They consist of risk factor, risk event, risk outcome,

risk reaction, risk effect, and utility loss elements [46]:

• The Risk factor is a fact that influences the probability of risk events. It

describes the system environment. Eg. ”unstable requirements”, or ”more

than 100 developers”.

• A Risk event is something negative happening in the project. Its probability

is influenced by risk factors, reactions, and other risk events. Eg. ”conflicts

when merging the source code”, ”work is done twice”.

• The Risk outcome describes what will happen if the risk event occurs and

before any reactions have taken place. Eg. ”non compiling code”.

• Risk reactions describe what is done after the risk event occurred. There can

be more then one reaction; each having different risk effects. Eg. ”merge

64

3.5 Notification Discovery and Description Framework and Process

source code”, ”revert to last revision”

• The Risk effect is the final outcome of the risk event after the reactions have

been applied. Eg. ”project is late”, ”overtime required”

• Finally the utility loss describes the impact of the risk event on the stakeholders

goals, eg. ”reduced motivation of the developers”.

After the risks have been identified and visualized in risk graphs the items are first

prioritized and the the ”Risk control planning” is performed. In the order of the

priority list all items are then reviewed, and countermeasures are searched to reduce

the probability of the risk events and the risk effects.

3.5.2 Step 2: Describe the project organization

Goal: To provide the base for systematically discovering and describing interactions

between project members.

Rational: The risk analysis performed in step one provides only a rough overview

of the particular communication risks and a more detailed analysis is required to

discover concrete interactions that can be automated with notifications. Having

a detailed view of the project organization helps to discover potential interaction

problems more efficiently. It also helps all project participants to get a shared

understanding which tasks are performed by which teams and how the competencies

are distributed.

Actors: The project manager has an overview of the project structure; therefore,

he or she will draw the ”big picture” of it. Team leads (or their proxies) can then

extend the view to add team specific details.

Input: The ordered list of risk drivers.

Output: A detailed picture of the project structure from several viewpoints.

Description: We propose an incremental top down approach that draws the socio-

65

3 Research Issues

technical system of the project organization from four viewpoints as defined by

Wiredu [89]:

1. The People Viewpoint describes the organization and distribution of the

project teams.

2. The Information Viewpoint describes the artifacts (eg. requirements) and

their relations.

3. The Technology Viewpoint focuses on the technologies that are used in the

project.

4. The Process Viewpoint relates the elements from the other viewpoints by show-

ing the processes that are performed.

First the viewpoints should visualize the project organization on a rather high level

and new details are added in each iteration. There is no standard notation that

is suitable for describing all viewpoints; thus, we suggest project managers to use

the tools they are already familiar with and to focus on the expressiveness of the

diagrams instead of the notation.

driver people information technology processes

dependencies A A C B

changes B A C B

geography A C B A

formality C B C A

organizations A B A C

agility A C C A

culture A C C A

language A B C B

Table 3.2: Priorities of the viewpoints depending on the risk driver.

Table 3.2 gives an overview on how important the viewpoints are for particular risk

drivers. Project managers should focus on the viewpoints with a priority of A and

66

3.5 Notification Discovery and Description Framework and Process

«team»
Customer Representatives

teamlead = Birgit L.
members = 5
language = German

notes
The customer requires a weekly
update of the project status.

«team»
Business Analysts

teamlead = Christa E.
members = 5
languages = German, English

«office»
Siemensstr. 20

timezone = UTC+1
country = Austria
City = Vienna

«team»
Requirements Management

teamlead = Alex S.
members = 8
languages = Spanish, English

notes
Regular conflicts with the
Business Analysts team.

«office»
Dresdnerstraße

timezone = UTC+1
country = Austria
City = Vienna

«office»
Bantaga 1

timezone = UTC-3
country = Brazil
City = Sao Paulo

notes
Frequent breakdowns of the
internet connection.

«team»
Java Frontend Developers

teamlead = Fritz E.
members = 20
languages = Spanish

«team»
Cobol Backend Developers

teamlead = Stefan B.
members = 30
language = German, English

«company»
Superdev

«company»
Seti

«company»
Mygoods

concept

process

team

technology

Legend

company

location

company

location

company

location

regular contact

company

location

companylocation

Figure 3.5: Example for the people viewpoint

B and describe them in more detail.

People Viewpoint

The people viewpoints puts all persons that need to communicate with each other

in the center of the analysis. Persons are normally grouped into teams that can

form a hierarchy and interact with other teams. The viewpoint should also include

the offices where the team members are located and the organizations they are

working for. Depending on the risk drivers, additional information like the team

size, attitudes, timezones, etc. can be included as shown in figure 3.5.

67

3 Research Issues

«concept»
Requirement

name: string
state: string
id: string

«concept»
Stage

server: string
name: string

«concept»
Assembly

version: int
name: string

«concept»
Source File

version: int
type: string
name: string

«concept»
Configuration

approved: bool

«concept»
Release Plan

shedule: date
name: string

development :Stage testing :Stage production :Stage

Concept

Concept Instance

Legend

«staging»«staging»

references

*

derived fromdeployed to

references

*

implements

*

compiled to

dependent on

resides in

Figure 3.6: Example for the information viewpoint.

Information Viewpoint

Wiredu refers to information ”as the lifeblood that circulates between people, pro-

cesses and technology” [89]. The information viewpoint describes the concepts (eg.

requirements, source code, etc.) that are used within the project and their re-

lations. Information about instances of these concepts is communicated between

project members (eg. requirement 123 has changed). A detailed view of the con-

cepts and their relations can build a shared vocabulary and provides a reference for

new project members. It is suggested to include all information that is commonly

used to refer to an instance of a concept (eg. the ID of a requirement). If there is

a limited set of instances they can be included as well (eg. stages in the example

shown in 3.6).

If project management decides to introduce noticon, the information viewpoint can

be taken as a reference for creating the context model that is used by the notification

rules and in the notification specification language.

68

3.5 Notification Discovery and Description Framework and Process

«tool»
RequisitePro

version = 2000.02.10
admin = Dominik E.
extensibility = difficult

«team»
Requirements
Management

«concept»
Requirement

«tool»
Edgewall Track

version = 7
admin = Lili H.
extensibility = easy

«office»
Bantaga 1

«team»
Cobol back-end

Developers

Requirements are
synchronized
manually with
RequisitePro.

«office»
Dresdnerstraße

concept

process

team

technology

Legend

use
server location

manages

use
server location

manages

Figure 3.7: Example for the technology viewpoint

Technology Viewpoint

The technology view draws a detailed picture of all technologies (bug tracking sys-

tems, email programs, source versioning systems, office suites, etc.) that are used

in the project. They should also be linked with the teams that work with them and

the information they manage. The view is important to know which applications

have to be integrated in a notification solution and which can be extended to sense

a user’s context.

In the example shown in figure 3.7 we focused on two applications that both manage

requirements. Especially in projects where several companies are involved in the

development, synchronization between different requirements management tools are

common and should be highlighted (eg. with comments).

Processes Viewpoint

The processes viewpoint describes the project based on the activities that are per-

formed. For the analysis of communication it very important because it relates all

elements from the three previously described viewpoints. ”Processes include all the

69

3 Research Issues

driver focus

dependencies Focus on processes where elements are
changed that have dependencies to other el-
ements.

changes Focus on processes where the outcome needs
to communicated to many teams.

geography Focus on processes where teams from differ-
ent locations are involved.

formality Focus on processes that require frequent
communication between teams.

organizations Focus on processes where teams from differ-
ent organizations are involved.

agility Focus on processes that require communica-
tion between teams.

culture Focus on processes that require much com-
munication between teams from different cul-
tures.

language Focus on processes where teams are involved
that have problems to communicate in the
project language.

Table 3.3: Relation between risk drivers and the process viewpoint

tasks undertaken by the people such as modeling, programming and testing; all

modes of interactions between them, including human-technology interactions; and

information generation, processing and transmission tasks.” [89]. The granularity

of an activity ranges from small tasks to complex business processes.

In a complex software project a whole set of activities need to be performed, but it

is not required to describe all of them in the same level of detail. Table 3.3 gives a

guideline which processes should be described for which risk driver in detail. Some

software development processes like the V Model XT [5] provide a detailed catalog

of the activities that are performed within the development process and can be used

as starting point.

70

3.5 Notification Discovery and Description Framework and Process

Requirement Change

«Requirement»
Requirement X

«Requirement»
Requirement X'

«team»
Customer

Representatives

«team»
Business
Analysts

«team»
Requirements
Management

«tool»
RequisitePro

«team»
Cobol back-end

Developers

«team»
Java front-end

Developers

«Document»
Release Plan

«Requirement»
Release Plan'

concept

process

team

technology

Legend

«control»«control»

«support»«initiate» «impacts»«impacts»

Figure 3.8: Processes Viewpoint

Figure 3.8 shows the ”Requirement Change” process. It is initiated by the customer

representatives and takes the requirement that should be changed and the release

plan as input. Output is a changed requirement and release plan. The process is

controlled by the requirements management team and supported by the business

analysts team. RequisitePro is the primary tool that is used within the process. We

also show the teams that are impacted by the requirement change.

3.5.3 Step 3: Describe the key communications

Goal: To document the key communications that may be automated with a notifi-

cation solution.

Rational: Loughman et al. [52] argue that a system analysis, as the one we pro-

posed in step 2 (descripe the project organization), is not enough to describe a

socio-technical system and find its weak spots: ”Despite calls for treating the orga-

nization as a total system, systems analysis still focuses more upon processes, data

and technology than upon sociotechnology, the fit of technology with its human

users.” [52]. He argues to extend the system analysis with communication audits

71

3 Research Issues

that focus on the interaction between people and technology. They are used to ana-

lyze both formal and informal information flows, stress the role of culture, and show

the clarity, appropriateness, and efficiency of communication.

Actors: The team leads (or their proxies) should describe the key communications

which should be reviewed by the project manager.

Input: The description of the project organization from step 2.

Output: An inventory of communication acts that could be automated to mitigate

communication risks.

Description: Several instruments, from questionnaires over interviews to content

analysis, exist to perform communication audits [36]. De facto standards like the

ICA communication audit [32] provide project managers with a well validated tool-

box. If the communication risks that were discovered in step 1 are very high and the

project is reasonably large, a full communication audit may be beneficial. Otherwise

we propose a lightweight approach that builds on the idea of Dietz [18] and Geurts

[30]:

Communication between two parties (human or machine) is compromised by a se-

ries of communication acts. For each communication act we can describe the the

performer, the receiver, the intention, the message, the time-for-completion, the

channel, and the trigger :

The performer is the person or machine who initiates the communication act. The

receiver is the person or machine who receives the message. The intention specifies

the goal of the communication act. The message conveys the information that gets

transmitted. The time-for-completion is the time by which the performer expects

a reaction of the receiver. The trigger describes what business events trigger the

communication act, and the channel states how the message is transmitted. An

example of a communication act is shown in listing 3.1.

1 performer: Business Analysts

2 receiver: Requirements Management

3 intention: directive to perform an impact analysis

4 message: Client requests a change of requirement X

5 time -for -completion: three days

72

3.5 Notification Discovery and Description Framework and Process

6 medium: phone

7 trigger: Client informed Business Analysts of a changed business functionality

Listing 3.1: Example for a communication act in the ”Change Requirement” process

shown in figure 3.8

For each business process defined in step 2 the key communications should be de-

scribed according to the format defined above. It is not necessary to describe all

communication acts in this level of detail; focus should be be put on [85] communi-

cation acts with 1) a frequent occurrence (eg. hourly), 2) high risks (depending on

the risk drivers), and 3) that are significantly important to support collaboration.

3.5.4 Step 4: Define the Notifications

Goal: To provide an inventory of all notifications that can be implemented with

notification solutions like noticon.

Rational: A formal definition and inventory of the notifications provides users with

a single point of truth regarding everything that concerns notifications. noticon

can interpret the notification definition and create notifications accordingly.

Actors: Project management and team leads will define the business part and

administrators the technical part of the notification definition.

Input: The communication acts described in step 3.

Output: An inventory of notification definitions.

Description: We divided a notification definition into a business part and a tech-

nical part: The business part describes the notification from a business point of

view and elaborates on the rationals why the notification should be introduced.

The technical part contains the formal definition of the notification (the notification

specification) and implementation issues. The structure is based on the one defined

by Fabian et al. [21], but has been extended slightly.

The business part consists of:

73

3 Research Issues

• Title: An expressive title to reference the notification more easily.

• Description: The description of the notification in an informal way.

• Scenario: A little scenario should highlight the benefits of the notification

and provide users with a quick way to judge if the notification is relevant for

them.

• Upsides: The upsides should describe all benefits that are expected of the

notification.

• Downsides: The downsides describe all negative effects that the notification

can cause. Especially the impact of false positives and false negatives should

be described.

The technical part consists of:

• Notification Specification: The notification specification is the most im-

portant part of the notification definition because it defines the notification in

a formal way. We propose a domain specific language that is easy to under-

stand by business users but expressive enough to specify complex notification

scenarios. It is described in detail in section 4.5.

• Implementation Issues: Describe which information from which systems

have to be gathered to be able to create the notifications.

Example for a Notification Definition

Title: Requirement Changes

Description: If a requirements manager changes a requirement that is currently

used by a developer, the developer will be informed in his/her development environ-

ment immediately.

Scenario: The requirements manager Alex gets informed by the customer that

the formula for calculating discounts has changed, thus changes the requirement

74

3.5 Notification Discovery and Description Framework and Process

accordingly in RequisitePro. Birgit who is currently implementing the discount

functionality with Eclipse gets immediately information about the change in the

Eclipse notification panel.

Upsides: No time is spent working on old requirements.

Downsides: A trace between requirements and source code needs to be maintained.

Notification Specification:

1 Title: Requirement Changes

2 Receiver: any User ?user

3 Context:

4 the ?user "uses" a Requirement ?req and

5 the ?user "uses" the Tool "Eclipse" and

6 the description of ?req changes

7 Deliver: immediate

8 Channel: "Eclipse"

9 Subject: "Requirement {?req.name} has changed"

Implementation Issues: – RequistePro has to send an event to the notification

server when a requirement changes. – Eclipse has to be extend with a sensor that

gathers the requirements a user currently works on. – Eclipse has to be extended

with a publisher that displays notifications to the user.

75

3 Research Issues

76

4 Prototype Development

This chapter provides a detailed overview of the architecture of noticon and the

notification specification language.

noticon is a context-aware notification system written in Java. The core compo-

nent is the Drools rule engine that manages the context model and the rules, which

trigger the notifications. For application integration and message routing we use the

enterprise service bus ”Mule” 1, and Apache ActiveMQ 2 for communication from

and to the service bus.

The components noticon is built of and their interactions are explained in section

4.1. A message model defines the messages that are routed within the service bus

and is pictured in section 4.2. Section 4.3 describes the context model that is used

by the rule engine. An agenda controls the order on which a set of rules get executed

by the rule engine and is described in section 4.4. Finally we explain the notification

specification language in section 4.5 that is used by project members to specify the

notifications.

4.1 Components

The architecture of noticon is event driven; thus, it is characterized by a very loose

coupling between its components. An enterprise service bus manages the routing of

events between the components. We decided to use the ESB Mule because of its

highly scalable SEDA processing model (see [87]), its wide use in industry, and its

1http://mule.codehaus.org
2http://activemq.apache.org

77

4 Prototype Development

Figure 4.1: Mule Server Components [6]

permissive Apache license.

Figure 4.1 illustrates the components of Mule: The Mule Manager manages the

bootstraping of the service bus and its internal components. The Model is a con-

tainer in which the user components reside. It provides services like transaction

management, event routing, or logging and is responsible for threading, pooling,

and life cycle handling of the hosted components. UMO stands for Universal Mes-

sage Object and is a POJO (plain old Java object) that execute logic on incoming

events and returns new events as output. Typically, UMOs contain the business

functionality that should be executed on the arrival of events. They communicate

with each other via endpoints that define a communication channel between two or

more UMOs. A channel can be configured with filters, transformers, and interceptors

to control exactly which events are routed through.

Figure 4.2 illustrates the core components of noticon . With the exception of

the Rule Engine and the Notification Management components there are typically

several instances of a component. We describe the components in the order that

78

4.1 Components

Sensor Presenter

Enterprise Service Message Bus
Endpoint Endpoint Endpoint

Transformer Rule Engine Channel
Adapter

Application

Legacy Application

Client Component

UMO

Legend

NSL
Interpretor

Notification
Management

Notification
Interceptor

notifications

uses

events

senses

Figure 4.2: Core components of noticon

events typically flow through the system:

• Sensors: Sensors reside on the client side and are responsible for monitoring

the project context (see 2.2.2 on page 20) and sending context information to

endpoints of the service bus. Mule has a wide range of built-in endpoint types

(eg. JMS, WebService, Email, etc.) which eases the development of sensors.

• Transformers: Transformers transform messages sent by the sensors into ele-

ments of the context model (see section 4.3). They wrap those elements into

command messages [41] that the Rule Engine component can interpret. Eg. an

Email with the subject ”Requirement X has changed” that is sent to an email

endpoint, would be translated into an AddOrModify message that contains an

object of the type Requirement.

• Rule Engine: The Rule Engine component is the central component of noti-

con. It wraps an instance of the the Drools rule engine 3 that is responsible

for reasoning over the context model and the creation of the notifications.

Depending on the incoming events, the Rule Engine component retracts facts

from the rule engines working memory or asserts new ones. It also checks if

3http://labs.jboss.com/drools/

79

4 Prototype Development

objects contained in an incoming message already exist in the working memory

and merges them accordingly.

• Channel Adapters: Users can define the channel that should be used to trans-

mit the notification to the receivers in the notification specification (ec. via

Eclipse). For each channel there exists one Channel Adapter component that

transforms the internal notification representation into a message that gets

either directly transmitted to the receiver (eg. by Email) or is dispatched to a

Presenter that then displays the notification to the user (eg. a Presenter could

display notifications in an Eclipse panel).

The routing of the notifications from the Rule Engine component to the Chan-

nel Adapter components is configured in the Mule Model. This enables sce-

narios where notifications should be sent to some channels regardless of the

notification specification (eg. a personalized RSS feed, or a channel that per-

sists all notifications).

• Notification Interceptors: Notification Interceptors allow additional processing

of notifications before they are delivered to presenters. They can perform

functionality like notification encryption, calculation of metrics, filtering based

on user preferences, or persisting all notifications to a database.

• Presenters: Presenters are components that are installed on the client ma-

chines and responsible for displaying notifications to users. They typically ex-

tend an application like Eclipse or MS Word and display notifications within

that application. Integrating notifications into existing tools can significantly

reduce the interruption of the user’s primary activities because no context

switching is required. Presenters are typically connected to the service bus via

ActiveMQ, although Channel Adapters may implement different strategies to

inform the presenters about new notifications.

The final destination of a notification does not necessarily have to be a user, but

could also be an application. Eg. a notification that is sent whenever the users

closes Eclipse could automatically trigger a SVN commit of the users working

copy. The publisher ultimately decides what to do with the notification and

80

4.2 Message Model

controls the operations that are performed on receipt.

• Notification Management: The Notification Management component imple-

ments the client interface for noticon. It provides functionality to 1) browse

all notification specifications, 2) create new notification specifications, and 3)

subscribe or unsubscribe from notifications. In noticon we implemented the

Notification Management component as a simple web application deployed on

a Tomcat server.

• NSL Interpretor: The NSL Interpretor component compiles notification spec-

ifications that are defined with the Notification Management component into

the Drools rules format. The rules are wrapped into AddRule messages and

routed to the Rule Engine component.

4.2 Message Model

The message model describes the messages that are routed between the components.

A message represents an event and a component can be both event consumer and

event producer. Routing rules are defined in the Mule configuration and describe

which events are routed to which components under which conditions. Advanced

routing rules can be specified, that eg. inspect the message content and route the

event accordingly.

1 <mule -descriptor name="NotificationToChannelBridge"

2 implementation="org.mule.components.simple.BridgeComponent">

3 <inbound -router >

4 <endpoint address="vm:// notifications" \>

5 <\inbound -router >

6

7 <outbound -router >

8 <router className="FilteringOutboundRouter">

9 <endpoint address="vm:// email.channel"/>

10 <filter expression="channel=’email ’"

11 className="OGNLFilter"/>

12 </filter >

13 </router >

14 <router className="FilteringOutboundRouter">

15 <endpoint address="vm:// eclipse.channel"/>

81

4 Prototype Development

16 <filter expression="channel=’eclipse ’"

17 className="OGNLFilter"/>

18 </filter >

19 </router >

20 </outbound -router >

21 </mule -descriptor >

Listing 4.1: Example for a routing configuration

Listing 4.1 shows the configuration of how notification messages are routed from the

”vm://notifications” endpoint to the endpoints of the Channel Adapters. Depend-

ing on the channel property of the Notification object, the notification is routed

either to the ”vm://email.channel” endpoint or to the ”vm://eclipse.channel” end-

point.

AddArtifact ModifyArtifact RemoveArtifact AddOrModifyArtifact

Tick

timestamp

ArtifactExpired

AddRule

rule

ArtifactEvent

artifact

Notification

notification

Transformer Channel
Adapter

NSL
Interpretor

Rule
Engine

Notification
Interceptor

Message

UMO

Legend

Figure 4.3: Message model of noticon that shows the messages and the components
that consume or produce them.

Figure 4.3 illustrates the most important message types of noticon and the com-

ponents that produce or consume instances of these types:

• AddRule: An AddRule message is generated by the NSL Interpretor whenever

the user creates a new notification definition. It contains a string representa-

tion of the rule in the Drools specific rule format.

• Tick: Tick messages are sent by a special endpoint that creates instances of

this type at a predefined interval. On arrival of a Tick event, the Rule Engine

components modifies the timestamp property of the PseudoClock artifact in

82

4.3 Context Model

the rule engines working memory, which provides the base for time sensitive

notifications.

• ArtifactEvent: An ArtifactEvent message contains an object of type

Artifact (see 4.3) and specifies the action that should either happen with

the artifact, or has happened with it. The Rule Engine component modi-

fies the working memory of the rule engine depending on the subtype of the

ArtifactEvent message:

– On AddArtifact messages, it adds the artifact into the working memory

and overwrites any existing artifacts that have the same ID.

– On ModifyArtifact messages, it retrieves the artifact with the same ID

from the working memory and merges the two objects. If no artifact with

the same ID exists in the working memory, the message is discarded.

– On AddOrModifyArtifact messages the artifact is added if it does not

exist in the working memory or updated if it does.

– On RemoveArtifact messages, the artifact is retracted from the working

memory.

ArtifactExpired messages are generated by the Rule Engine component

when an artifact has expired and got retracted from the working memory.

• Notification: Notification messages are generated by the Drools engine ac-

cording to notification specifications.

4.3 Context Model

The context model defines the types of the objects that can be inserted into the rule

engines working memory. A type is a Java class and an object is an instance of a

class. Transformer components translate objects of other types (eg. a legacy email

message object) into objects of types defined in the context model.

83

4 Prototype Development

We defined a type hierarchy consisting of three layers:

1. The core artifacts layer defines the root of a type hierarchy and general con-

cepts that are needed for processing the rules. Only objects of these types (or

deduced types) can be processed by the Rule Engine component.

2. The common artifacts layer predefines types that are commonly used concepts

in GSD projects like ”User” and ”Location”.

3. The user artifact layer contains types that inherit from the upper layer and

is usually created specifically for a project by an administrator. The types

defined in this layer usually reflect the concepts and relations that were defined

in the Information Viewpoint in step 2 of our process (see section 3.5.2 on page

3.5.2).

The next sections will describe the layers in detail.

4.3.1 Core Artifacts Layer

The core artifact layer contains predefined types that are required to fulfill the

functionality of noticon (see figure 4.4):

• Artifact: Any type of the context model has to inherit from the Artifact

class or one of its subclasses. We refer to all objects of this type as ”artifacts”.

An Artifact has the following properties:

– The ID is a string that is used to reference an artifact. It does NOT

have to be unique although it is suggested to be unique for all objects

in the GSD or user layer. It should have a meaningful value for users

(eg. ”Benedikt Eckhard”) because artifacts can be referenced by ID in

the notification specification language (see section 4.5).

– Artifacts are not kept endless in the working memory, but expire after a

timespan that can be defined by the administrator. The ExpirationDate

contains a timestamp when the artifact should expire and be retracted

84

4.3 Context Model

Artifact

ID
ExpirationDate
LastModified

merge()

Relation

fromID
fromClass
toID
toClass

Event

on

Notification

state
title
receiver
delivery
channel
batchSubject
subject
body
specification
bindings

NotificationSpecification

specification
state
type

PseudoClock

ID = clock
datetime

Subscription

Unsubscription

Model Type

Legend

ArtifactAdded

ArtifactDeleted

ArtifactChanged

PropertyChanged

from
to
propertyName

Figure 4.4: Core artifacts layer

from the working memory. Then, an ArtifactExpired event is generated

which Interceptor components can react upon.

– The lastModified property contains a timestamp when the artifact was

last modified.

Types that inherit from Artifact must implement the merge() function. An

artifact thats merge() method gets called must update its values with that

of the artifact that was passed as the parameter. The function returns a

PropertyChanged artifact for each property that has changed as illustrated

in figure 4.5. The merge functionality is very important, because it generates

the events that users can use in notification specifications.

• Relation: Artifacts of type Relation establish a directed relation between two

artifacts. The ID of the artifact is the relation name (eg. ”uses”) and the prop-

erties (fromID, fromClass, toID, toClass) specify exactly between which

artifacts it is established.

85

4 Prototype Development

Requirement 1
state = delivered
descripton = xyz

Requirement 1
state = rejected.merge()

Requirement 1
state = rejected
descripton = xyz

PropertyChanged
on = Requirement 1
propertyName = state
from = delivered
to = rejected

function
result

returns

Figure 4.5: Illustration of the merge function

Relations are critical for complex notification specifications and can be sensed

and created at any layer of the architecture. Eg. an Eclipse sensor could parse

the actual source file and check if a trace to a requirement is established via a

comment; it could then send this information to the service bus. Another sce-

nario is that there is a special sensor for relations that uses tools like JDepend

to analyze components and then publish the discovered relation information to

the rule engine. It is also possible to define rules that automatically establish

relations between artifacts when some conditions become true; eg. for making

transitive relations explicit. There is no general guidance on how relations

should be created, and it depends very much on the concrete scenario.

There are two subclasses of Relation that both relate an artifact of

type Artifact with an artifact of type NotificationSpecification. A

Subscription artifact defines that the from artifact can be a receiver of no-

tifications created by this specification; Unsubscription artifacts define the

opposite.

• NotificationSpecification: For each notification specification defined by users,

an artifact of type NotificationSpecification is inserted into the working

memory of the rule engine. This is needed to give users the ability subscribe

to or unsubscribe from notifications. The text of the notification specification

is stored in the specification property. The state defines, whether a no-

tification specification is still active - a deletion of rules from the rule base

would require a restart of the server; thus, they are only deactivated if they

are not needed any more. The type property specifies whether users have to

subscribe to receive notification from this specification or have to unsubscribe

86

4.3 Context Model

if they do not want to receive notifications.

• Notification: When the rules for creating a notification match, an artifact of

type Notification is added to the working memory with its state prop-

erty set to ”undelivered”. If all conditions for sending the notification are

met, the state property gets changed to ”ready for delivery”. The Rule En-

gine component picks all rules that are ”ready for delivery”, wraps them in a

Notification message, and dispatches it to the service bus where it is then

routed to the Channel Adapter components. After that it changes the state

to ”delivered” or ”error” if there were some errors.

The properties receiver, delivery, channel, batchSubject, subject, and

body are described in section 4.5 in detail.

The specification property contains the ID of the notification specification that

created the notification. The bindings property contains all variables that the

user used in the notification specification and the objects that they are bound

to. What bindings are, is also described in section 4.5.

• Event: Artifacts of type Event allow users to define rules that react on changes

in the context model, eg. when the state of a requirement changed to a de-

fined value. The Rule Engine component is responsible for creating the Event

artifacts when it changes something in the working memory. They are dis-

carded immediately after all rules had the chance to react on them. The on

property contains the artifact that the event is related to. PropertyChanged

artifacts do not relate to an artifact as a whole, but just to a property value

of an artifact. They contain the value that an artifact had previously (in

the from property) and that it has now (in the to property). The name of

the property the change relates to, is stored in the propertyName property.

PropertyChanged artifacts are generated by artifacts themselves when their

merge function is called.

• PseudeoClock: At startup of the server, one artifact of type PseudoClock with

the ID ”clock” is added to the working memory. It contains the current date

and time in the datetime property which get updated on every Tick message.

87

4 Prototype Development

User

firstName
lastName
email
phone
activeChannel

Role

Location

Activity

Tool

Model Type

Legend

uses

*

is engaged
in

*

is at
1

has
*

Figure 4.6: Common Artifacts Layer

The pseudo clock is needed to check if artifacts are expired and should be

retracted from the working memory.

4.3.2 Common Artifacts Layer

This layer contains a number of artifact types that are very commonly used in GSD

projects (see figure 4.6). They should serve as a starting point for administrators

which can subclass from these common artifacts or add predefined instances. The ar-

rows between the types define the IDs of relation artifacts that connect two artifacts

of these types.

Example: If there is an artifact of type Activity with the ID ”implementing re-

quirements” and a user is engaged in this activity, an artifact of type Relation with

the ID set to ”does” would be created that connects the user and the activity arti-

fact. A notification specification can use this information eg. to send notifications

only to users that are currently engaged in that activity as shown below:

1 Receiver: any User ?user

2 Context:

3 the ?user "is engaged in" the Activity "implementing requirements"

We predefined the following types:

• User : There is typically one instance of this type for each project member in

the GSD project. Although not enforced, user artifacts (representing the real

88

4.4 Rule Engine Agenda

persons) are usually the receiver of notifications. The activeChannel property

can be set to the notification channel that is currently the least interruptive

for the user. Eg. if the user Philip is currently working in Eclipse and Eclipse

can receive noticon notifications, then the active channel property would be

set to ”Eclipse”.

• Role: Instances of this type could be ”Project Manager”, ”Developer”, ”Team

Lead”, etc. Users can have more then one role.

• Location: Location artifacts represent locations like ”office in Vienna”. At

a point in time a user can only be at one location; we predefined a rule that

enforces this constraint.

• Activity : Users can be engaged in more then one activity concurrently.

• Tool : Instances of this type could be eg. ”Eclipse”, ”MS Word”, etc. De-

pending on the tool a user is currently using, an appropriate channel could be

selected in a notification rule.

4.3.3 User Artifact Layer

The user artifact layer contains all subclasses of Artifact that have been created by

the administrator specifically for a project. Typically the types reflect the concepts

in the information viewpoint and should be well understood by all users that specify

notifications. Currently it is not possible to add new artifact types at runtime; a

restart of the server would be required. The current state of the working memory

would be persisted and restored after startup. New relations can also be defined

during runtime.

4.4 Rule Engine Agenda

The rule engine agenda controls the order in which rules are processed after changes

in the working memory. It should be understood by administrators who want to

89

4 Prototype Development

add new legacy rules (written in the Drools rule format).

On arrival of an ArtifactEvent message, the Rule Engine component executes the

following process:

1. The artifacts contained in the message are merged with the artifacts that

already exist in the working memory. The Event artifacts that were generated

during the merge operation are added to the the working memory as well.

2. Then the rule-set that controls the aging of artifacts is evaluated. It checks

all artifacts if their expirationDate property is smaller then that of the

PseudoClock and removes them accordingly. On removal, ArtifactExpired

events are generated and sent to a predefined endpoint.

3. The next rule-set that is executed, contains rules that were defined by adminis-

trators and usually enforce constraints (eg. a user may only be at one location

at the same time) or create deductions (eg. if the component A depends on B

and B depends on C, then A indirectly depends on C).

4. In the next step the rule-set that creates the notifications according to the

notification specifications is evaluated. If the conditions for the delivery of a

notification are met, the Notification artifact is wrapped in a Notification

message and sent to a predefined endpoint.

5. In the last step, all artifacts of type Event are retracted from the working

memory.

4.5 Notification Specification Language

The notification specification language (NSL) is a domain specific language [51] that

allows users to formally specify their notification requirements. It shields users from

the underlying complexity of the rule engine and separates the business perspec-

tive from the technical implementation. This gains the benefit that the technical

implementation can be changed without affecting existing specifications and that

90

4.5 Notification Specification Language

multiple languages could be supported by the same implementation. The specifi-

cation language could also be implemented by other product vendors to provide a

uniform experience for users, regardless of the tools they are using.

Our design goal for the language were:

• It must be easy to understand and to write by business users who have no

prior knowledge in programming languages and/or rule engines.

• It must be expressive enough to support a wide variety of notification scenarios.

• It can be easily compiled into the Drools specific rule format.

4.5.1 Notation and General Concepts

A detail C

B

x

detail

number

main

terminal

non-terminal
predefined
non-terminal

Legend

Figure 4.7: Simple grammar described in a graphical notation.

We decided to describe the grammar of the NSL in a simple graphical notation

as shown in figure 4.7. A grammar consists of productions that define a sequence

of symbols that they can produce. Symbols are either terminals or non-terminals.

Terminals become part of the string that is generated by the production; thus, they

are not further replaced. Non-terminal point to another production that produces

the content that replaces the non-terminal. A string is valid according to a grammar

if it can be produced by the productions.

The example in figure 4.7 defines a very simple grammar with two productions: The

main production can produce a string that starts with the letter A and ends with

91

4 Prototype Development

symbol explanation example

ID a valid Java identifier (see [33]) benediktEckhard

qstring a string enclosed in quotation marks ”My String”

datetime a date and/or time specification enclosed in
signs

#30.04.1982#

number a float or an integer 13.2

boolean either ”true” or ”false” true

model type refers to any type that has been defined in
the context model

User

Table 4.1: Predefined productions

the letter C. In between can either be the letter B or any number of strings that

are produced by the ”detail” production. The detail production can either produce

the letter ”x” or a number (eg. 240 or 92.007). Strings that can be validated by the

grammar would be eg.: ”ABC”, ”AxC”, ”AxxC”, ”A240C”, ”A92.007x240C”, etc.

The arrows between the symbols point to the next symbol the production can pro-

duce. If an error points to more than one symbol, the production can produce all of

them. Green shapes contain string terminals. Light blue shapes point to other pro-

ductions and dark blue shapes point to commonly used productions that we defined

in advance and which are explained in table 4.1. An addition production has been

defined that is not visualized in the diagrams: Between two symbols (terminals, or

non-terminals) at least on blank is produced.

Figure 4.8 shows the main production rule for the notification specification language.

Any specifications a user creates is validated with this production. The specification

starts with a title and is followed by the specification of the receivers and the context

that define when the notification should be created. Optionally conditions can be

specified that delay the delivery of the notification. The channel over which the

notification should be sent is specified next (eg. Eclipse). If the user defined that

the notification should be sent as a batch mail the batch subject needs to be set.

Compulsory for each notification is a subject and optionally a message body can be

set.

92

4.5 Notification Specification Language

notification

title receiver context

delivery

channel

batch subject

subject

body

Figure 4.8: Main production rule

The next sections will describe the elements in detail:

4.5.2 Title

Each notification specification has to have a title that is unique within the system.

The title is set on each notification object that is created by the rule specification

and can be used eg. in the routing rules. Users also need to know the title if they

want to subscribe to or unsubscribe from notifications sent by the specification.

title
Title: qstring newline

Figure 4.9: Notification title

The title is specified according to the production shown in figure 4.9. It starts with

the string ”Title:” followed by a quoted string that contains the title and a newline

character. An example with the the title of the notification set to ”This is my

notification” is given below:

1 Title: "This is my notification"

93

4 Prototype Development

4.5.3 Receiver

For each notification a receiver has to be specified. Any object that exists in the

working memory of the rule engine can be receiver of notifications - regardless of its

object type. It is therefore perfectly legal to define a notification with an artifact of

the type ”Situation” as the receiver. It is up to the channel adapters to decide what

to do with the notifications. Typically a notification specification is not defined for

a single receiver but a group of them (eg. all users that have brown hair). The

receiver can decide if he or she wants to receive notification; whether a receiver has

to subscribe or unsubscribe can be defined by the creator of the specification.

receiver

Receiver: binding newline

fillword

subscribed

Figure 4.10: Notification receiver

Figure 4.10 shows how receivers are defined. The definition starts with the string

”Receivers:” and is followed by a binding that specifies the artifacts that should

receive the notification. Optionally the binding can be prefixed with the keyword

”subscribed” that specifies that receivers have to subscribe first to receive the no-

tifications. For better readability a fillword (eg. ”any”) can follow the ”Receiver:”

keyword.

1 Receiver: the User "Benedikt"

The above example specifies that the user ”Benedikt” should receive the notifica-

tions. Or more specifically: it adds a proposition to the notification rule that there

has to exist an artifact in the working memory that is of type User and its ID

property set to ”Benedikt”. If there is only one artifact that matches the condition

only one notification would be sent.

A binding binds artifacts to variables. Figure 4.11 shows that a binding always

94

4.5 Notification Specification Language

fillword
the

a

an

binding
model type variable

qstring

any

variable

? ID

Figure 4.11: bindings, fillwords and variables

consists of a model type (eg. User) and either a quoted string (eg. ”Benedikt”) or

a variable. The example below shows the use of variables in bindings:

1 Receiver: any subscribed User ?user

The example above reads that the notifications should be sent to all users that sub-

scribed to the notification. To be able to further constrain which user will receive

the notification, any artifact of type User is bound to the variable named ”?user”.

Subsequent statements that reference the ”?user” variable would be executed once

for each user and with the ”?user” variable bound to a concrete object (eg. User

”Benedikt”). The semantics of variables are similar to ”foreach” loops in program-

ming languages as illustrated in the following Java example:

1 foreach(User user : users) {

2 if(user.isSubscribedTo("specification")) {

3 sendNotificationTo(user);

4 }

5 }

Variables in the notification specification always have to start with a ”?” character

followed by a string that is a valid Java identifier. This basically restricts vari-

able names to start with a character and not to contain any whitespace or special

characters like ”.”.

We found out that users can better write and read notification specifications if they

can use words like ”the”,”any”, etc.; thus, we defined a list of words that can be

used but have no meaning for the implementation. ”Receiver: the User ?user” has

exactly the same meaning than ”Receiver: any User ?user”.

95

4 Prototype Development

4.5.4 Context:

In the context part conditions can specify on a very fine granularity when a notifica-

tion should be generated. Also the receivers can be further restricted. The context

definition starts with the string ”Context:”. Subsequent lines specify conditions

until no ”and” string prefixes the newline character.

context

Context: newline

relation constraint

property constraint

event constraint

„and“ newline

newline

Figure 4.12: Context definition

Three types of constraints are possible as shown in figure 4.12:

• relation constraints specify that there has to exist a relation between artifacts

in the working memory that matches the pattern.

• property constraints constrain the value of properties of artifacts.

• event constraints wait for events to happen on artifacts or their properties.

Relation constraints

As described in section 4.3 on page 83, artifacts can be related to each other with

artifacts of type Relation. Relation constraints search for Relation artifacts in

the working memory that have 1) the ID set to relation name, 2) an artifact that

matches the left pattern in the ”from” property, and 3) an artifact that matches

the right pattern in the ”to” property. The left and the right pattern refer to the

binding or variable on the left or right hand side of the relation name.

1 Context:

96

4.5 Notification Specification Language

2 the User "Benedikt" "has" the Role "Developer"

The example above checks if Benedikt is a developer by searching for a relation

artifact with the name ”has” that has the user ”Benedikt” in its from property and

the role ”Developer” in its to property.

relation constraint

variable

binding

fillword

relation name variable

binding

fillword

relation name
qstring

Figure 4.13: Relation constraint

As shown in figure 4.13 on the left and right hand side of the relation name can

be either a binding or a variable. Just the variable can only be used if it has been

bound previously to an artifact as shown in the following example:

1 Receiver: any User ?user

2 Context:

3 the ?user "has" the Role "Developer"

The variable ”?user” has been used before which ensures that is bound to a concrete

artifact when the relation constraint is checked. With bindings new variables can

be introduced as shown below:

1 Context:

2 the User "Benedikt" "uses" a Tool ?tool and

3 the User "Birgit" "uses" the ?tool

This searches for ”uses” relations between the user ”Benedikt” and artifacts of type

Tool which are bound to the variable ?tool. In line 3 relations between the user

”Birgit” and artifacts bound to the ?tool variable are searched. The context would

match for any tool that both ”Benedikt” and ”Birgit” use.

97

4 Prototype Development

Property constraints

Property constraints allow to constrain the property values of artifacts. The fol-

lowing example constrains the receivers of the notifications to all users that have

”Benedikt” as their first name:

1 Receiver: User ?user

2 Context:

3 the firstName of the ?user is "Benedikt"

property constraint

the property name

variable

binding

of

condition value

fillword

condition
is

is not

is greater than

is less than

value
qstring

datetime

number

variable

boolean

value

property name
ID

Figure 4.14: Property constraint

As shown in figure 4.14, a property constraint starts with the string ”the” and is

followed by either the property name or the string ”value”. Then follows the string

”of” and the artifact thats property value should be checked. After that comes the

condition that should be checked. Users can use variables on the right hand side

and on the the left hand side of the condition. Example:

1 Receiver: User ?user

2 Context:

3 the name of the Tool ?tool is not "Eclipse"

98

4.5 Notification Specification Language

This would bind the variable ?tool to all tools that do not have the name ”Eclipse”.

As in the relation constraint, unbound variables have to be prefixed with the type

of the artifact, unless they occur on the right hand side of the condition as shown

in the following example:

1 Receiver: User ?user

2 Context:

3 the firstName of the ?user is ?name and

4 the lastName of the User ?other is ?name

The statement in line 3 binds the firstName property of the artifact that is bound

to the ?user variable to the unbound ?name variable. In the following statement

the lastName properties of all users are compared to the value bound to the ?name

variable. If the lastName property of a user matches the value bound to the ?name

variable (the first name of a receiver), the user artifact is bound to the ?other

variable. The notification would be sent once for each user that has a first name

that equals the last name of another user.

It is sometimes required not to compare a property value of an object, but to compare

values directly. This can be done by using the keyword ”value” instead of a property

name as shown below:

1 Receiver: User ?user

2 Context:

3 the birthDate of the ?user is ?birthdate and

4 the value of ?birthdate is less than # 30.04.1982#

In line 3 the value of the birthDate property is bound to the ?birthdate variable.

In line 4 the value of the variable is checked whether it is before a specific date.

Currently we only support four types of conditions (is, is not, is greater than, is less

than), but we plan to extend the list in future versions.

Event constraints

When an artifact in the context model changes, the Rule Engine component adds

special event artifacts to the working memory that further describe the changes.

99

4 Prototype Development

Event constraints use these artifacts to provide users with a simple notations to

describe the events that should trigger a notification.

property event constraint

artifact event constraint

event constraint

Figure 4.15: Event constraint

Figure 4.15 shows that an event constraint can either be an artifact event constraint

or a property event constraint. Artifact event constraints watch for events that relate

to an artifact as a whole, while property event constraints can react on property

changes of artifacts.

1 Receiver: any User ?user

2 Context:

3 the ?user "uses" the Requirement ?req

4 ?req changes

The example shown above would create notifications whenever a requirement

changes, but only for users that are related to the changing requirement with a

”uses” relation.

variable

binding

changes

artifact event constraint

gets deleted

gets added

Figure 4.16: Artifact event constraint

Figure 4.16 shows that users can react on changes, deletions, and additions of arti-

facts. As with relation and property constraints, both bound variables and bindings

can be used to specify the artifact that the event must be related to.

With property event constraints users can react on property changes of artifacts.

First the property that the constraint relates to is defined, followed by the string

”changes” (see figure 4.17). Optionally users can further constrain the event by

100

4.5 Notification Specification Language

property event constraint
the property name

variable

binding

of

changes

from

fillword

value

to value

Figure 4.17: Property event constraint

specifying how the value of the property was before and after the change as shown

in the following example:

1 Context:

2 the state of the Requirement ?req changed from ?x to "rejected"

3 the value of ?x is not "deployed"

The conditions would match if a requirement changes to the state ”rejected”, but

only if the previous state was not ”deployed”. As shown in figure 4.17 both the from

and the to values are optional. Only the order of the two has to be maintained.

4.5.5 Delivery options

Users have the possibility to define when the notifications produced by a specification

should be delivered. If no option is specified, the notification is delivered as soon as

all conditions that were defined in the context match.

immediateDelivery:

daily at

delivery

datetime newline

as soon as

Figure 4.18: Delivery options

Figure 4.18 shows how the delivery option can be specified. In case of ”Delivery:

101

4 Prototype Development

immediate”, the notification will be sent as soon as the conditions in the context

are true. The second option is, that the notifications are delivered to a receiver

every day at a specific time, eg. ”Delivery: daily at #13:00#”. It is up to the

Channel Adapter component to aggregate the notifications and deliver them in one

batch. Future version will support more complex delivery patterns (eg. every second

Monday).

as soon as newline

relation constraint

property constraint

event constraint

„and“ newline

newline

as soon as

Figure 4.19: Conditioned delivery

The third option is to delay the delivery of a notification until some other conditions

are met. The possibilities to define the condition resemble exactly the possibilities

to describe the context as shown in figure 4.19. Variables that have been bound in

the context specification keep their value as demonstrated in the following example:

1 Receiver: any User ?user

2 Context:

3 a Requirement ?requirement changes

4 Deliver: as soon as

5 the ?user "uses" the ?requirement

This specifies that users should get informed about requirement changes as soon

as they start using the requirement, even if the event had happen in the past.

Administrators can specify a timeout on how long an undelivered notification will

be held in memory before it gets discarded.

4.5.6 Channel specification

The channel defines how a notification should be delivered to a receiver, eg. by

Email or by Eclipse. For the Rule Engine component the channel does not matter

102

4.5 Notification Specification Language

because it is not responsible for the actual delivery. The information is only relevant

for the routing rules defined by the administrator and maybe the channel adapters.

the property name of fillwordChannel:

variable

binding

qstring newline

variable

channel

Figure 4.20: Delivery channel

As shown in figure 4.20 the channel can be specified by either 1) a quoted string, 2)

the value of a variable, or 3) the property value of an artifact. Variables that were

bound in one of the previous sections keep their value as demonstrated below:

1 Receiver: any User ?user

2 ...

3 Channel: the activeChannel of the ?user

The specification shown above sets the channel property of the notification to the

activeChannel property of its receiver.

4.5.7 Message content

The batch subject, subject, and body specify the content of the notification. The batch

subject is only used when the delivery option has been set to ”daily at ...”, and it is

used by Channel Adapter components as the subject of the batch notification. The

subject is compulsory and usually defines the message that should be displayed to

the receivers upon delivery. The body is optional again and normally displayed only

if the receiver requests more information eg. by clicking on the notification.

The content of the batch subject, the subject, and the body can be any qualified string

(see figure 4.21) although only the body content is allowed to be multi-line. Within

the string markers can be used fore referencing variables that have been bound in

103

4 Prototype Development

batch subject

Batch Subject: qstring newline

subject
Subject: qstring newline

body
Body: qstringnewline

Figure 4.21: Notification content

previous sections. On delivery, the markers are replaced by the actual values as

shown in the following example:

1 Receiver: any User ?user

2 ...

3 Subject: "Hi {?user.name}!"

The subject for a notification according to this specification could be: ”Hi Stefan!”.

marker

{ variable }

. property name

Figure 4.22: Notification content

Figure 4.22 shows the syntax for markers. If the variable is unbound or the artifact

that is bound to the variable does not have a property with the specified name, the

state property of the notification object will be set to ”error” and the markers left

unchanged.

104

5 Case Study

This chapter shows on a simple scenario how the notification discovery and descrip-

tion framework and process, and noticon can be used in practice. It is focused on

requirement changes which were identified as a key issue for many software devel-

opment projects [8]. The scenario has been prepared in cooperation with experts

from Siemens PSE.

The goals of the case study were:

1. To demonstrate how the notification discovery and description framework and

process is used in practice.

2. To highlight some of the capabilities of noticon.

3. To give an expression of the user experience.

4. To better estimate the expected benefit of noticon compared to conventional

notification technologies.

Our expectations were that we can easily apply our process in practice and discover

communication issues that we did not think of beforehand. We also expected that

we can show the usefulness of noticon even in a relatively simple project setting.

In section 5.1 we will give a short introduction of the project setting, followed by

four sections were we will apply our process to 1) describe the communication risks,

2) describe the project organization, 3) describe the key communications, and 4)

define the notifications (see section 3.5 on page 58). In section 5.6 we will show some

screenshots that should give an expression on the user experience of noticon.

105

5 Case Study

5.1 Introduction

Transporticon is a large software development company with its headquarter in

Vienna that develops software applications in the line of transport and logistics.

It has several hundred employees and depending on a project’s requirements, the

project manager can assemble a set of teams from the company’s team pool. Each

team is normally specialized on some tasks (eg. database design) and, following

SCRUM best practices, consists of no more then 10 people [69].

Birgit is software project manger of Transporticon and currently responsible for

developing a large software system for a container terminal in the Netherlands. The

demands on the software are very challenging and the business rules very complex.

Several hundreds of requirements have already be elicitated and Birgit expects the

number to grow over thousand.

Birgit knows about potential communication risks in such a project setting and

thinks that some of the risks could be mitigated with notification tools. Her expec-

tations on a notification solution are an increased productivity of the developers and

to be better able to communicate changes to impacted persons. Birgit decides to

apply the notification discovery and description framework and process to approach

the communication issues in a systematic way.

5.2 Project Communication Risks

The first step of the process is to analyze the project communication risks. Birgit

quickly walks through the list of risk drivers (see 3.5.1 on page 62) and brainstorms

on concrete risks that may be caused by the drivers and on their impact on the

win conditions of the stakeholders. She also applies a simple ABC rating on how

relevant each of the risk drivers is for the project and if a notification solution can

help in mitigating them:

• dependencies - Dependencies among elements that are managed by different

teams : Birgit knows that a requirement is usually implemented by several

106

5.2 Project Communication Risks

components and by different teams. This creates dependencies between com-

ponents that the developers might not be aware of. Birgit thinks that this

might cause problem when the components get integrated. She expects this

to endangers the schedule thus a risk mitigation is desired. The risk seems to

be high enough for Birgit to deserve an A ranking, but she is not sure yet how

a notification solution can help; therefore, she ranks its applicability with B.

• changes - Frequent changes of elements that impact several teams at once:

Birgit immediately thinks of requirements that are created by the require-

ments management team and used by the configuration management team,

the testing team, and the development teams. She already knows that the re-

quirements are very unstable and change frequently (about 30 times per day).

If these changes are not communicated in time to all involved parties, much

time may be spent by the teams to rework something because of inconsisten-

cies. The project has a very tight schedule which can be in danger if such

situations occur too often; therefore, Birgit rates this risk driver with A. She

is also sure that notification solutions can help in the risk mitigation and rates

its applicability with A.

• geography - Geographical separation of teams : Some of the teams have their

offices in Vienna and the others in Amsterdam. Birgit reckons that this may

cause some inefficiencies in the communication between the teams. She senses

the risk that important information is only communicated within one location

and not between them. This can cause frustrated developers that feel unin-

formed about what is going on in the project. Birgit rates the risk driver and

the applicability of a notification solution with B.

• For the other risk drivers Birgit could not think of any concrete risks so she

does not investigate them any further.

Table 5.1 summarizes the relevancy and applicability of the risk drivers.

107

5 Case Study

driver relevancy applicability

dependencies A B

changes A A

geography B B

other C C

Table 5.1: Rating of the risk drivers.

Customer

contact = Rene
phone = 1654

Requirements
Management 1

teamlead = Liz
phone = 1352

Project
Management 2

teamlead = Birgit
phone = 3287

Configuration
Management 5

teamlead = David
phone = 3265

Quality Assurance
23

teamlead = Carrie
phone = 1652

Amsterdam

area code = +31 20 2265

Vienna

area code = +43 1 8798

Devteam 12

teamlead = Matthias
phone = 1546

notes
Frontend
development.

Devteam 18

teamlead = Christina
phone = 1324

notes
Business processes;
application integration;

Devteam 22

teamlead = Johannes
phone = 3684

notes
data access; infrastructure
services

Devteam 5

teamlead = Eva
phone = 3365

notes
business service
components;

Team

Location

Legend

Figure 5.1: The people viewpoints shows the project organization.

5.3 Project Organization

After Birgit decided that some of the communication risks should and could be mit-

igated with a notification solution, she describes the project organization. Most of

the information she visualizes has already been described in detail in the configura-

tion management plan, so there is only little extra effort.

In the people viewpoint shown in figure 5.1 Birgit merely lists the teams she as-

sembled for the project and includes the team leader’s name and his or her phone

number. She also highlights where the teams are geographically located because

of the expected impact on the communication effectiveness. For the development

108

5.3 Project Organization

Requirement

id
state
category
description

TestCase

id
description

SourceCode

id
version

TestRun

date
state
message

Configuration
Management

Requirements
Management

Development
Teams

Quality
Assurance

Team

Concept

Legend

runs

manages

manage

use

manage

use

relates to

implements

tests

Figure 5.2: Information viewpoint focused on requirements.

Requirement status

entered ready to
deploy

ready to testready to
implement

deployed

rejected
Requirements
Management

Quality
Assurance

Development
Teams

Configuration
Management State

Team

Legend

Figure 5.3: State machine for requirements.

teams Birgit also comments shortly on their main tasks. She decides not to include

additional aspects like the language, culture, attitudes, etc. in the diagram because

there is no indication that these issues could cause problems, and the related risk

drivers are all C ranked.

In the information viewpoint, shown in figure 5.2, Birgit focused on concepts that

are closely related to requirements. The trace between source code and requirements

has to be maintained by the developers.The quality assurance creates at least one

test case for each requirement and each test case can be run several times. Bir-

git also included all properties that she later may want to use in the notification

specifications.

From previous projects Birgit knows that state changes of requirements are not

communicated very well between teams; it lead to delays in the past because people

109

5 Case Study

Eclipse Visual Studio

RQ Trace Plugin

Requisite Pro Requirements
Synchronizer

Test Director

Requirements Testcases Testruns

server

Devteam 12 Devteam 5

client
machines

server

Devteam 18 Devteam 22

Requirements
Management

Team

Tool

Concept

Process

Legend

Quality
Assurance

Configuration
Management

uses

uses

uses

usesusesusesuses

managesmanages

uses extends

manages

uses

extendsextends

Figure 5.4: Technology viewpoint.

were waiting for something that has already happened. Therefore, she visualizes the

state machine of the requirements and annotates the connections with the teams that

are responsible to approve the next change (see figure 5.3). The diagram is also very

useful to discover notifications that are related to requirement changes.

The technology viewpoint (figure 5.4) shows the tools that are used and the teams

that primarily interact with them. Birgit decided to differentiate between the tools

that are installed on the client machines and those that are installed on a server and

accessed via a web browser. The RQ Trace Plugin extends Eclipse and Visual Studio

and allows developers to efficiently link requirements to source code. The Require-

ments Synchronizer is an add-in for the Mercury TestDirector that synchronizes

between the two systems on a predefined schedule [4]. The ”manages” relation be-

tween tools and concepts denotes the master of the data; in case of synchronization

issues the information from the master has precedence.

Figure 5.5 shows the ”Implement Requirement in Eclipse” process that Birgit defined

within the process viewpoint. It has a requirement that is in the state ”ready to

implement” as input which is changed to the state ”ready to test” after the process

110

5.4 Key Communications

Implement Requirement in
Eclipse

Requirement X

state = ready to implement

Source Code
Developer

Req. Trace

Quality
Assurance

Requirement X

state = ready to test

Eclipse

Requirements
Management

RQ Trace
Plugin

Team

Tool

Concept

Process

Legend

«supports»«initializes»

«control»

to

from

«control»

«impacts»

Figure 5.5: Process viewpoint showing the requirements implementation process.

completes. The process also outputs a number of source code artifacts that are

annotated with tracing information. It is performed by developers within Eclipse

and supported by the RQ Trace Plugin that creates the traces between source code

and requirements. The requirements management team has to initiate the process.

The outcome of the process impacts the quality assurance team because it needs to

test the functionality.

5.4 Key Communications

In the next project step Birgit analyzes the viewpoints she developed in the last

step and derives a list of key communications that are necessary for the project and

might be optimized with a notification solution.

Birgit received some feedback from developers which complained about receiving

too many emails about failed test cases that are not related to them. A person

of the quality assurance team who runs a test case, manually creates an email

if the test run fails and sends it to all developers. Typically many test runs are

executed every day in parallel by several persons and many of them fail. This

results in a very high number of emails. Listing 5.1 shows how Birgit described this

communication act:

1 performer: members of the Quality Assurance team

111

5 Case Study

2 receiver: Development teams

3 intention: directive to correct the code

4 message: The test case X testing the requirement Y failed

5 time -for -completion: depending on the release plan

6 medium: email

7 trigger: a test run testing the test case X fails

8 frequency: about 50 times per day

Listing 5.1: Quality Assurance communicating failed test cases

Another communication act that Birgit described is shown in listing 5.2:

1 performer: Requirements Management

2 receiver: Customer Representatives

3 intention: information about requirements that could be delivered

4 message: the following requirements are ready to deliver: Req. X, Req. Y, ...

5 time -for -completion: undefined

6 medium: phone or email

7 trigger: the state of a requirement changes to "ready to deploy"

8 frequency: 1 time per day

Listing 5.2: Requirements Management communicating requirements that are ready

to deploy

Although the communication act does occur only once a day, Birgit decided to

describe it in detail because if it is overseen it can lead to conflicts with the client.

1 performer: Developer

2 receiver: Developer

3 intention: information that they are working on the same requirement

4 message: developer XXX is also working on requirement 15

5 time -for -completion: undefined

6 medium: development environment

7 trigger: two developers concurrently work on the same requirement

8 frequency: about 5 times per day per developer (but does not happen at the moment)

Listing 5.3: Developers making them self aware of each other

The communication act described in listing 5.3 is one that did not happen yet, but

is considered as relevant by Birgit. Two developers that are concurrently working on

the same requirement should be made aware of each other. Birgit expects that an

increased awareness reduces incompatibilities of the source code because developers

can quickly get in contact with each other in case of questions.

112

5.5 Notification Definitions

5.5 Notification Definitions

After Birgit defined the key communications, she formalizes the notifications that

should be sent. The example we gave in section 3.5.4 on page 74 already showed

how a notification for changing requirements can look like; thus, we describe some

slightly more complex notification scenarios that demonstrate the capabilities of

noticon:

5.5.1 Failed test-case

Description: If a test case fails, all developers that are subscribed to this notifi-

cation and recently worked on source files that implement the test case should be

informed in the tool they are currently working with.

Scenario: The test case with the id 23 tests the requirement with the id 12. It is

implemented by two source files; one created by Chloe and the other by Stephan. If

the test fails, it triggers an immediate notification for Chloe and Stephan.

Upsides: Developers can quickly react on failed test cases if they are currently

working with Eclipse. It is expected that this reduces the average time it takes that

errors get fixed.

Downsides: Too many false positives would slow down the primary activity.

Notification Specification:

1 Title: "Notify developers of failed test cases."

2 Receiver: any subscribed User ?user

3 Context:

4 the ?user "has" the Role "developer" and

5 the ?user "uses" a Requirement ?requirement and

6 a TestCase ?testcase "tests" the ?requirement and

7 a TestRun ?testrun "relates to" the ?testcase and

8 the status of the ?testrun changes from "undefined" to "failed"

9 Deliver: immediate

10 Channel: the activeChannel of the ?user

11 Subject: "Test case {? testcase.id} failed."

12 Body:

113

5 Case Study

13 "{? testrun.date}: The test of requirement {? requirement.id} failed

14 in the test run {? testrun.id}"

Remarks: In line 2 we specify that users have to subscribe to get notifications cre-

ated by this specifications. Line 4 states that a user that receives the notification has

to be a developer. In line 5 we bind the ?requirement variable to all requirements

the user is currently using. The information which requirements a user is using is

gathered by sensors in Eclipse and Visual Studio. In line 6 we check if there is a

testcase that tests the requirement and binds it to the variable ?testcase. Then

we specify that there has to exist a test run that relates to the test case. In line 8 we

finally specify that an event occurs that changes the status property of the test run

from ”undefined” to ”failed”. Only if all the conditions are fulfilled, the notification

will be generated. It should to be delivered immediately (line 9) via the channel

that is stored in the activeChannel property of the user (line 10).

Implementation Issues: 1) The relationships between source code and require-

ments must be traced. 2) The relationship between requirements and test cases must

be traced. 3) The relationship between test cases and test runs must be traced. 4)

It must be possible to sense the status of test runs. 5) It must be possible to sense

the relationship between a user and a requirement.

5.5.2 Daily summary of requirements that are ready to deploy

Description: The customer and the configuration management team should receive

a summary about the test-cases that have the status ”ready to deploy” every day.

Scenario: Lukas is the customer representative who decides which requirements

should be delivered in which release. Every day at 9:00 he receives an email of

all requirements that changed their state to ”ready to deploy”; thus, they can be

scheduled by Lukas for one of the next releases.

Upsides: 1) It is not required any more, that the customer gets access to the re-

quirements management tool. 2) The customer gets informed automatically making

the daily summary emails that would have been created otherwise manually by the

114

5.5 Notification Definitions

requirements management team obsolete.

Downsides: No additional information can be included in the email.

Notification Specification:

1 Title: "Notify customer of requirements that are ready to deploy."

2 Receiver: any User ?user

3 Context:

4 the ?user "has" the Role "customer" and

5 the status of a Requirement ?requirement changes to "ready to deploy"

6 Deliver: daily at 09:00

7 Channel: "Email"

8 Batch subject: "Daily status report."

9 Subject: "Requirement {? requirement.id} is ready to deploy"

10 Body:

11 "{? requirement.description}"

Remarks: In line 4 we specify that only users who have the role ”customer” should

receive the notification. In line 5 we wait for an event on any requirement that

changes its status to ”ready to deploy”. Line 6 shows that the notifications should

be aggregated and sent in one email (line 7) every day at 9:00. If there are no

requirements that have changed to ”ready to deploy”, no notification will be sent.

In line 8 we specify the subject that should be used for the batch of notifications.

It is up to the channel adapters (see 4.1 on page 77) to interpret this information

correctly.

Implementation issues: 1) Customer representatives have to be registered as

users. 2) It must be possible to sense the status of requirements.

5.5.3 Working on the same requirement

Description: If two persons are working on the same requirement, they should get

informed about each other.

Scenario: Agnes from the ”Devteam 18” implements a functionality for the re-

quirement 887. At the same time Peter from the ”Devteam 22” is also working on

requirement 887. Immediately they get a notification in their development environ-

115

5 Case Study

ment that they are concurrently working on the same requirement.

Upsides: It is expected, that the increased awareness between the developers en-

hances their productivity by reducing the possibility of versioning conflicts and re-

works.

Downsides: If many developers are concurrently working on the same requirement,

too many notifications may be sent which slows down their work.

Notification Specification:

1 Title: "People are working on the same requirement."

2 Receiver: any subscribed User ?user

3 Context:

4 the ?user "uses" a Requirement ?requirement and

5 a User ?other "uses" the ?requirement

6 Channel: the activeChannel of the ?user

7 Subject: "{?other.firstname} {?other.lastname} ({? other.phone}) is

8 also working on the requirement {? requirement.id}"

Remarks: In line 2 we specify that the users have to subscribe to receive these no-

tifications. In line 4 the variable ?requirement is bound to all requirements a user

is currently using and line 5 defines that all users which work on the same require-

ment should be bound to the variable ?other. Line 6 states that the information

should be sent to the channel that is specified in the activeChannel property of

the user artifact. This allows people to get notified about each other, even if they

are working in different development environments.

Implementation Issues: 1) The requirement a user is currently working on needs

to be sensed.

5.6 User Interaction

Once installed, noticon integrates seamlessly into the user’s working environment

and does not require manual interaction. Only when a user wants to change some

preferences (eg. subscribe or unsubscribe from or to notification specifications), or

add a new notification specifications, the administration component shown in figure

116

5.6 User Interaction

Figure 5.6: Aministration application for noticon.

5.6 needs to be used.

In comparison to other notification systems noticon displays notifications in the

tools the user is currently using and is sensitive to his or her current work context.

In figure 5.7 we demonstrate how the notifications defined further above are displayed

to developers. The upper part of the figure shows the integration into Eclipse and

the lower part into Visual Studio. We extended both programs with a notification

panel which lists all notifications that were generated for the user and with the

channel property set to ”Eclipse” or ”VisualStudio”. On double-click of a list entry,

the details of the notification message are displayed.

In the upper part of Visual Studio and Eclipse the source code is displayed as

usual, but the classes have been annotated with special comments that link them

to requirements. Eg. the Java class ”mytest” is linked to the requirement 14 and to

the requirement 144. XXX developed a plug-in for Eclipse and Visual Studio, that

117

5 Case Study

traces to
requirements

notification
panel

notification
panel

traces to
requirements

working on
the same
requirement

used by: Max Muster

used by: Benedikt Eckhard

Figure 5.7: noticon embedded in Eclipse and Visual Studio.

118

5.6 User Interaction

can interpret these comments and create bidirectional links between source code and

requirements that are managed in Requisite Pro. It can also display a filtered list of

the requirements within the development environments; to create traces, users just

need to click on an item in the list and the comment is created automatically for

them. noticon uses the information created by the plug-in and makes it available

in the context model.

In our example, both the Java class ”mytest” and the C# class ”Something” are

related to requirement 14. Max edits the Java file and Benedikt the C# file at

the same time, which triggers the ”Working on the same requirement” notification

as specified above. Immediately, Max gets the information that Benedikt is also

working on the requirement into his notification panel and vice versa.

The two other notifications that are displayed in the notification panel of Max and

Benedikt are related to failed test cases and triggered by the ”Notify developers

of failed test cases” specification. Both get the information about the failed test

case of requirement 14 but only Max receives the information about requirement 19

(which he has worked on recently) and only Benedikt gets the information about

the requirement 652.

Users have the possibility to right click on a notification to unsubscribe from this

notification type. In the future we plan to provide users with the functionality to

tailor the notification specification from within the tool that the notification was

sent to.

Figure 5.8 shows an example of the email that is sent every day at 9:00 to all

customer representatives according to the ”Daily summary of requirements that are

ready to deploy” notification specification defined on page 114.

119

5 Case Study

Figure 5.8: Daily status report for customer representatives

120

6 Discussion

This chapter discusses the results of this work from several perspectives. Section

6.1 describes a total cost of ownership analysis where the impact of our solution

is compared to conventional notification systems on the example of the case study

that was described above. In section 6.2 we will discuss the process and section 6.3

critically looks at the pros and cons of the prototype. The notification specification

language will be discussed in section 6.4 and finally the expected benefits and costs

of noticon are discussed in section 6.5

6.1 Total Cost of Ownership

The cost for introducing a notification system like noticon is certainly higher

then that of a conventional solution; thus, estimating the benefits is critical. We

developed a model based on the ”Total Cost of Ownership” (TCO) [45] method that

we think is suitable for comparing different notification approaches. We applied it to

a setting we deduced from the case study described above. The setting and assumed

numbers are discussed with experts from Siemens PSE.

6.1.1 Setting

Our setting is a software development project with 70 developers (n(emp)) and

an average of 30 requirements change per day (n(change)), for 50 days (n(dur)).

The probability that a change concerns a developer is 10% (p(change)) and the

propability that a change would require an immediate reaction is also 10% (p(react)).

121

6 Discussion

Installation
Maintenance
Licences
Education

Configuration
Installation

Education

Adaption
Maintenance

Receiving

Creating

Impact

Figure 6.1: Total Cost of Ownership Model

We estimated the cost for an employee with e50,– per hour (c(emp)) and that of

an external consultant with e1500,– per day (c(cons)).

Two notification alternatives are compared:

1. The use of the email notification mechanism that is built into the requirements

management system. On every change it creates an email that gets delivered

to all developers.

2. The use of noticon, where developers get notified within their development

environment about changes, but only if the change concerns them. A change

is assumed to concern a developer if he or she has recently been working on

code that relates to the requirement. We assumed that the relations between

requirements and code have to be maintained regardless of the notification

approach; therefore, we did not take that effort into account.

6.1.2 Model

As illustrated in figure 6.1 we calculate the TCO by estimating the costs along

four main categories: System Costs (c(sys)), Scenario Setup Costs(c(scen)), Ad-

ministration Costs(c(admin)), and Running Costs (c(run)). Formula 6.1 shows the

calculation of the TCO.

122

6.1 Total Cost of Ownership

TCO = c(sys) +
∑
∀s∈S

(c(scen, s) + c(admin, s) + c(run, s)) (6.1)

System Costs occur regardless of the concrete scenario and only once. Scenario

Setup Costs occur once for each scenario (s in S). Administration Costs are costs

for a scenario that can occur for each user and Running Costs estimate the costs for

the notifications.

The next sections will describe the different categories in detail and estimate concrete

values for the two alternatives.

System Costs

The System Costs are costs that occur once for the project regardless of a concrete

notification scenario and are divided into four categories:

• Installation Costs include the cost for the system itself, and the additional

costs that are necessary to install the system.

noticon is an open source product; thus, no installation costs occur. We

assume that the installation is done by a consultant who is supervised by a

system administrator of the company within one day. This leads to estimated

installation costs of e1.900,– (c(emp) ∗ 8 + c(cons) = 50 ∗ 8 + 1500).

In case of the email notification, a plug-in needs to be installed into the require-

ments management system. This can be done by the system administrators in

a four hours; therefore, we assume costs of of only e200,– (c(emp)∗4 = 50∗4).

• Maintenance Costs include costs for server restarts or the installation of soft-

ware when a new computer is added to the network.

In our setting we assume that noticon requires 8 hours maintenance time for

the whole project duration; thus, the maintenance costs are estimated with

123

6 Discussion

e400,– (c(emp) ∗ 8).

For the email notification we do not assume any maintenance costs as they

cannot be differentiated from the maintenance costs of the requirements man-

agement system itself.

• License Costs include the costs for software licenses that have to be obtained

to run the notification solution.

A simple email notification of most of requirements management tools just

contains the information that a requirement has changed, but does not include

any details (eg. which fields have been changed, the old and the new value,

etc.). To get the details users typically have to log into system. Depending on

the license terms of the application either all users have to have a license, or

floating licenses can be obtained that permit a defined number of concurrently

logged in users. Changes are communicated to several developers at the same

time, and we expect that many of them check for details immediately after

receipt. We therefore expect an increased number of the required licenses

because of notification systems.

Notifications created with noticon can include many detail of the require-

ments change, and also the amount of notification that a change triggers is

reduced; therefore, we assume that only 5 additional floating licenses need to be

purchased for the requirements management system. We estimated the price

of one license with e2.000,– which leads to license costs e10.000,– (5 ∗ 2000).

For the email alternative we assume that 20 additional floating licenses need

to be purchased because all 70 developers are notified of a change at the same

time; thus, the license costs are e40.000,– (20 ∗ 2000).

• Education Costs include the costs and time that it takes to learn how to work

with a system. For notification systems the learning costs typically occur only

for the administrators of the system and not for each user.

noticon has a very rich set of functionality and administrators will likely take

a three day course to understand the system and all configuration options.

124

6.1 Total Cost of Ownership

email noticon

Installation 200,– 1.900,–

Maintenance 400,–

License 40.000,– 10.000,–

Learning 200,– 4.200,–

Total 40.800,– 16.500,–

Table 6.1: System Costs in e

We estimated the costs for such a course with e3.000,–. Additional e1.200,–

(c(emp) ∗ 8 ∗ 3) are calculated for the working time of the administrator. This

results in education costs of e4.200,– (1200 + 3000).

The functionality of email notification plugins of requirements management

tools is often very restricted and easy to learn. We expect that it can usually

be learned by an administrator in half a day; thus, we assume costs of only

e200,– (c(emp) ∗ 4).

Table 6.1 summarizes the expected system costs. The email per change solution

has much higher system costs, but only if additional licenses have to be purchased.

Otherwise the initial investment of noticon is about seven times higher than that

of a traditional approach.

Scenario Setup Costs

Scenario Setup Costs describe the costs that are necessary to setup a concrete

notification scenario (eg. sending an email when a requirement changes). We dif-

ferentiated them from the System Costs because usually several scenarios can be

realized with one installation. The costs are estimated along three categories:

• Installation Costs are the costs for additional software that needs to be in-

stalled to support a concrete scenario.

noticon requires a sensor to be installed in all development environments

125

6 Discussion

that senses the relation between requirements and users. We estimated that

this takes 10 minutes for each developer which sums up to about e580,– in

our setting (n(emp) ∗ 10 ∗ c(emp)
60

).

For the email alternative no additional installation costs to setup the scenario

are assumed.

• Configuration Costs include the costs that are necessary to configure systems

to support the scenario.

For noticon a context model needs to be created and the routing rules con-

figured correctly. We assume that this is done by an external consultant in

one day and estimate e1.500,– (c(cons)).

For the email notification a mailing list needs to be created, and all developers

have to subscribe to this list. We assume that this takes about 5 minutes per

developer resulting in estimated costs of e290,– (n(emp) ∗ 5 ∗ c(emp)
60

).

• Education Costs are the costs that it takes to learn how the concrete notifi-

cation scenario works. This is only relevant for users that want to adapt the

notifications according to their preferences.

noticon we assume that about 10% of the developers want to change prefer-

ences. Understanding the notification specification language and the context

model for this scenario takes at an outside estimate 2 hours; thus, we estimate

total costs of e700,– (0.1 ∗ n(emp) ∗ 2 ∗ c(emp))

In case of the email scenario users cannot set preferences individually; there-

fore, no education costs are calculated.

Table 6.2 summarizes the scenario setup costs and shows that another approximately

e3.000 are required to implement the scenario with noticon. This is significantly

more than the scenario setup costs for the email alternative.

126

6.1 Total Cost of Ownership

email noticon

Installation 580,–

Configuration 290,– 1.500,–

Education 700,–

Total 290,– 2.780,–

Table 6.2: Scenario Setup Costs in e

Administration Costs

Administration Costs are costs that occur during the project lifetime because either

the project changes (eg. a new developer enters the project) or users change their

preferences. They are divided into two groups:

• Adaption Costs occur when users change their notification preferences, or ask

an administrator to do so.

10% of the developers are expected to change their preferences in noticon. A

change is assumed to take about one hour; therefor, the adaption are e350,–

(0.1 ∗ n(emp) ∗ c(emp)).

Email notifications usually do not support an individual adaption and no ad-

ditional costs are assumed.

• Maintenance costs include the costs that emerge when users would be required

to constantly interact with the notification system (eg. if relations between

artifacts needed to be established manually).

In our setting neither the email notification nor the notification with noticon

requires special attention by the user; thus, no maintenance costs arise.

127

6 Discussion

Receiving

Positives
False Positives
Interruption

Creating

Preparation
Creation

Impact

Positives
False Negatives
False Positives

Figure 6.2: Running Costs

Running Costs

The Running Costs try to estimate the notification’s impact on the receivers. We

divided them into three groups, each with several cost factors as shown in figure 6.2:

• Receiving Costs occur for each user on each notification he or she receives.

– The Interruption estimates the effort for switching the the attention from

the primary task to the notification and back to the primary task.

When using noticon the interruption effort is estimated to be 30 sec-

onds per received notification. As described in section 6.1.1, we assume

30 changes per day and a probability of 10% that a change concerns a

developer. It is expected that every developer receives only one false

positive per day when using noticon; thus 280 interruptions occur per

day (n(emp) ∗ n(change) ∗ p(change) + n(emp)). This leads to daily

interruption costs of e117,– (280 ∗ n(emp) ∗ 0.5 ∗ c(emp)
60

).

In case of the email notification the interruption effort is estimated to

be 1 minute. It is higher than that of the noticon alternative because

noticon can display the notifications in the application the receiver is

currenly using. Changes of requirements are broadcasted to all develop-

ers; thus, the interruptions occur 2100 times per day (n(emp)∗n(change))

leading to daily interruption costs of e1.750,– (2100 ∗ n(emp) ∗ c(emp)
60

).

– Positives measure the effort to read and make sense of a notification that

128

6.1 Total Cost of Ownership

is relevant for a user.

noticon messages can contain detailed information about the change,

and usually no login to the requirements management system is required;

thus, we assume an effort of 30 seconds per notification. This leads to

daily costs for positives of e88,– (n(emp) ∗ n(change) ∗ p(change) ∗ 0.5 ∗
c(emp)

60
).

In case of the email notification the user has to login into the requirements

system to get all relevant information; thus, we assume 3 minutes reading

costs for positives resulting in daily costs of e525,– n(emp)∗n(change)∗
p(change) ∗ 3 ∗ c(emp)

60
.

– False Positives measure the reading effort for notifications that do not

concern a developer. Like with SPAM emails, it usually takes some time

to recognize if a information is of value.

With noticon we calculated an effort of 30 seconds for false positives.

Assuming 1 false positive per day per developer, the daily costs would be

e29,– (n(emp) ∗ 0.5 ∗ c(emp)
60

).

In case of the email scenario the costs for false positives are assumed

to be 1 minute. Occasionally a login into the requirements management

system might be required to check if it is a false positive or not. 1890 false

positives are sent every day (n(emp) ∗ n(change)− n(emp) ∗ n(change) ∗
p(change)) resulting in daily costs for false positives of e1.575,– (1890 ∗
c(emp)

60
).

• Creating Costs are costs that occur when creating notifications. For estimating

them, both the preparation and the creation costs must be considered. Eg. if

notifications are sent via SMS, the preparation costs would include the effort

to write the message, and the creation costs would include the costs of an

SMS. For the notification scenario at hand the creating costs are zero for both

alternatives.

• Impact Costs try to estimate the impact of notifications along three categories:

129

6 Discussion

– Positives describe the impact of a positive notification. This can be

either done by estimating the benefits of the notification (expressing it

as negative costs) or by estimating the costs that occur although the

notification was sent.

We calculated the scenario with the second approach: It was estimated

that about 10% of the requirement changes that concern a developer

would require an immediate reaction of him or her. Costs arise for any

minute that developers are not aware of the change (eg. because they

would have to rework their work package later on).

With noticon changes are immediately communicated to developers

within their development environment. This guarantees that no noti-

fication is overseen; thus, no costs for positives are assumed.

In case of the email alternative, we assume a timespan of 15 minutes

between the time a requirement gets changed and the email is read by

the developer that is affected by the change. Having 21 requirements each

day that require an immediate reaction (n(emp)∗n(change)∗p(change)∗
p(react)), the total daily costs for positives would be of e175,– (21 ∗ 15 ∗
c(emp)

60
).

– False Negatives describe the impact of notifications that should have been

delivered but were not.

We assume that these conditions occur because of system errors and can

be discovered by the system administrator (eg. because the email server

had a problem) who will communicate this immediately. The likelihood

of these situations is expected to be the same for both notification alter-

natives; therefore, we did not include these costs in the calculation.

– False Positives describe the impact of false positives. This is important if

notifications would immediately trigger actions - eg. the build in a build

server.

In our setting false positives do not have any negative effects besides the

130

6.1 Total Cost of Ownership

email noticon

Receiving: Positives 525,– 88,–

Receiving: False Positives 1.575,– 29,–

Receiving: Interruption 1.750,– 117,–

Impact: Positives 175,– 0,–

Total 4.025,– 233,–

Table 6.3: Running costs per day in e.

email noticon

System Costs 40.800,– 16.500,–

Scenario Setup Costs 290,– 2.750,–

Administration Costs 350,–

Running Costs 201.250,– 11.650,–

Total 242.690,– 31.250,–

Table 6.4: Total costs for a period of 50 days in e.

additional interruption and reading costs that have already been taken

into account.

Table 6.3 lists the running costs PER DAY that we estimated for our scenario.

Most of the difference is caused by the much smaller number of notifications that a

developer gets when noticon is used. The total of the running costs for a period

of 50 days are e201.250,– for the email alternative (50 ∗ 4025) and only e11.650,–

for noticon .

6.1.3 Conclusion

The total costs for are period of 50 days are about e240.000,– for the email al-

ternative and e31.000,– when using noticon. Expressing that in minutes means

that every developer spends about 80 minutes reading notification emails every day,

131

6 Discussion

compared to 10 minutes they would spend with noticon.

This clearly shows the benefit of using complex notification rules in projects where

many notifications need to be sent every day.

But the initial investment for noticon, although it is an open source project, should

not be underestimated: The costs for just installing the systems component and

having the administrators trained are estimated to be about e9.000,–. This suggests

that project manager should do a detailed calculation based on our TCO framework

to estimate in advance whether noticon is worth the investment. In our scenario

noticon breaks even with the email alternative after about about three days or 6300

delivered emails (if we do not consider the extra license costs that we expected).

6.2 Discussion of the Process

The notification discovery and description framework and process answered our

research question on how notification needs in GSD projects can be discovered and

described. It was designed to fulfill four goals:

1. It should support the discovery of communication problems and help in miti-

gating them by automating key communications in form of notifications.

2. It can be applied easily with the tools and methods that the project manager

is already familiar with.

3. It can be tailored to the specific needs of a project.

4. It should be applicable with low budget and little time.

To validate these design goals we applied the process to a scenario that has been

designed in cooperations with experts from Siemens PSE (see chapter 5).

One of the most important things we discovered was that the process must be applied

iteratively. By following the process several ideas for one of the next process steps

will pop up, and we suggest to follow those ideas first than to continue with the

132

6.2 Discussion of the Process

current process step. Our experience with the case study showed that this leads

to a quick output in all process steps which can be refactored and extended in

subsequent iterations.

From our literature research on the characteristics of GSD projects (see chapter 2)

we distilled a set of risk drivers that are described in detail in section 3.5 on page

58. Our experience with the case study highlighted their importance: they focused

the other analysis steps on the aspects that were relevant for the setting. We argue

that this is important, as otherwise too much unnecessary information would slow

down the analysis.

Drawing the development project from the different viewpoints, as suggested in

step 2, was actually more work than expected. To avoid getting lost in details it

is important to focus on information that is relevant in relation to the risk drivers

or should be generally known by all project members; our experience showed that

these diagrams serve perfectly well for communicating important concepts to all

project members. Especially in bigger projects those diagrams are often created for

the configuration management plan. In that case they should be examined if they

contain enough information concerning potential communication risks.

Another important observation regarding the viewpoints was that focus should be

put on expressiveness rather than following standard notations like BPMN. The

primary intention of these diagrams is to make discovering potential communication

problems easier and not serve the base for automating business processes. Never-

theless we suggest to stick to notation that are well established within a company.

One of the most important viewpoints if noticon should be used as notification

solution is the information viewpoint. If it describes all relations between concepts

and their attributes, the mapping to a concrete context model is easy. Even Model

Driven Architectures may be applied to generate the context model automatically.

The information viewpoint also serves as a valuable reference for writing notification

specifications.

In our opinion the usefulness of describing the communication acts in the structures

way we propose depends on the project phase in which the notification solution gets

133

6 Discussion

introduced. If the project has not been started yet, the communication acts can

just be assumed and might not reflect the actual communication acts. This implies

that the process outputs and notification specifications should be refined after the

project has started.

6.3 Discussion of the Prototype

In this section we discuss issues regarding the prototypical implementation of noti-

con.

A key requirement we identified is the use of standard technologies (see section

3.4). We argued that this is important for administrators that have to maintain and

configure the system. In practice it showed that standardization is not that relevant

for administrators because they do not make changes to the system at that low level.

Instead they voted for a more packaged approach, where the configuration can be

done with wizards and installation assistants.

The use of standard technologies provided us with a significant boost in prototyping

the system and, even more important, attracted other developers that wanted to

join our efforts. Technologies like Mule, Drools, and ActiveMQ, have a very active

community which we can leverage for continuous knowledge transfer.

Relying on an enterprise service bus as event and notification hub is in our opinion

a significant differentiation to other approaches. The benefit we gained is that we

are not limited to a single technology (eg. Java) and that connectivity from and to

various external systems is much easier.

The event driven architecture with flexible routing logic carried out by the service

bus promotes a very loose coupling of the systems components. In our opinion

this encourages the participation of other developers as they can work relatively

independent from each other and incorporate their extensions quickly. It also enables

integration with other tools (eg. stream engines) that can process events before or

after they are processed by the rule engine.

134

6.3 Discussion of the Prototype

One issue that has to be proved in practice is, whether the rule engine approach

can scale well enough for big projects. The number of artifacts and their relations

that have to be held in the working memory of the rule engine depends on the

complexity of the notification specifications, but can be huge. The current approach

to associate artifacts with an expiration date might lead to undesirable side effects

or do not provide enough flexibility. Further research and empirical evaluation is

required to better understand these issues and find strategies to tackle them.

As highlighted by Booker et al. [12], privacy is a very important aspect for the suc-

cess of a notification solution. In the current implementation we pushed this issue

on the side, but are aware that it needs to be addressed in the near future. Currently

there are no limits on what can be specified in a notification specification. It would

be possible that the management uses the tool to spy on the activities of their em-

ployees. Strategies against this potential misuse have to be defined and could range

from technical changes to organizational control of the notification specifications

(eg. they could have to be approved by the shop committee).

Using a Java class based context model was a pragmatic decision rather then adopt-

ing suggestions found in literature. Strang and Linnhoff-Popien [81] showed that

context models based on semantic technologies like RDF and OWL provide a more

expressive and standardized way to manage concepts and their relations; thus, they

should be preferred to class based models. But our evaluation of the existing seman-

tic tools showed that the additional effort to use and adapt them to our requirements

exceeds the benefits. This is mainly due to a fundamental difference in how the data

is accessed: we require a model where changes in the data actively trigger notifica-

tions, but the semantic toolkits like Jena 1 currently only support efficient querying

of data.

One of the key requirements we identified for a notification system was that it must

not interfere with the primary work of the user. Thus, we embedded noticon into

the tools that a user is currently using; notifications blend into the users environment

and do not distract them. What we found as an advantage is that the logic of which

notifications should be displayed resides on the server side and is not done by the

1http://jena.sourceforge.net/

135

6 Discussion

presenters; this eases the integration into applications.

In the current version, noticon does not support queries of the context data. This

functionality is very well supported by other context-aware systems, but was not the

primary focus of this work. we plan to add query functionality in future versions

because we think that the data that is maintained to provide the notifications can

be used for other applications as well.

6.4 Discussion of the Notification Specification

Language

The specification of notifications should be done by business users in the domain

specific language that we specifically designed for this task. Our design goals were:

• It must be easy to understand and write by business users who have no prior

knowledge in programming languages and/or rule engines.

• It must be expressive enough to support a wide variety of notification scenarios.

• It can be compiled relatively easily into the Drools specific rule format.

We evaluated the language with two potential users that had no prior knowledge

of notification systems, nor of programming languages. Our findings were that

reading and understanding notification specifications was possible without much

introduction. Only the concept of variables had to be explained. What showed to

be very beneficial were fillwords like ”a”, ”an”, ”any”, etc. that have no semantic

meaning in the language but lead to better readability of the specifications.

While reading the language did not cause troubles, our test users were not able

to specify notifications themselves, giving them only the context model and the

language specification as references, within a short time. The initial only textual

representation of the language grammar was way too abstract to be understood by

non-programmers and also the graphical notation changed this only slightly (at least

136

6.5 Discussion of the Expected Benefits and Costs

programmers were able to understand it then). We concluded two things: 1) Tools

are required that guide users in writing notification specifications. 2) Tutorials

and reference examples are needed that help users to get started quickly by just

customizing the examples.

Making the language simple for simple specifications, but expressive enough to sup-

port complex notification scenarios was challenging because of usability issues. The

more functionality we put in the specification, the more difficult it was to read. We

therefore provide only a limited set of functionality that is sufficient for the most

common notification scenarios. More complex scenarios can still be realized, but

require writing the rules in the native format of the rule engine. This decision also

simplified the compilation of the specification into the native rule format.

Currently no escalation rules can be defined in the notification specification lan-

guage: Eg. if a notification cannot be delivered within a specific time to the receiver,

it should escalate to another receiver. It is a functionality that has been asked for

and that we plan to provide in future versions.

6.5 Discussion of the Expected Benefits and Costs

Figure 6.3 illustrates the expected impact of noticon compared to informal com-

munication (eg. via phone) and conventional notification systems (eg. email per

change). The benefit of noticon is visualized along three axis:

• The interruption describes how much users are interrupted by the arrival of a

notification (regardless of whether they need it or do not need it). As shown

in the TCO analysis (see section 6.1), the interruption costs of noticon are

significantly lower than that of an email solution. The highest interruption

costs are assumed for informal communication.

• The number of false negatives refers to the notifications that should have been

communicated but were not. With just informal communication the probabil-

ity that important information is not communicated to all interested persons

137

6 Discussion

of false positives

of fa
lse

 negative
s

in
te

rr
up

tio
n

conventional

NOTICON

informal

low

high

high

high

phone

automatic emails

Figure 6.3: Expected Benefit of noticon

is very high. Conventional notification technologies can perform significantly

better, but face the problem that due to the possibly large number of irrelevant

information, users are more likely to miss relevant ones [17]. The powerful rule

system of noticon can ensure that the right information is delivered to the

right persons at the right time.

• The number of false positives refers to the notification that were delivered,

but are of no interest for the receivers. Conventional notification systems

perform worst because they typically broadcast events to a predefined set

of receivers, although it is only relevant for a small number of developers.

noticon drastically reduces the number of false positives because the receivers

can be selected based on complex rules that can take the users’- and project-

context into account. Informal communication also has a rather low number

of false positives; mainly because only a very limited number of people can be

reached by this means.

The benefits of noticon are much higher than that of other solutions, as are its

initial costs: These are mainly caused by 1) the time it takes to install and configure

the system and setup the sensors correctly, and 2) the learning costs.

138

6.5 Discussion of the Expected Benefits and Costs

project size

co
st

s

informal

conventional
NOTICON

Legend

Figure 6.4: Estimated Cost Curves of Notification Solutions

Figure 6.4 illustrates the estimated cost curves of informal communication, conven-

tional notification solutions, and noticon :

• It shows that informal communication is only feasibly for small projects and

that the costs grow exponentially with the project size. As soon as people

are not working together in different locations, the likelihood that important

project events are not communicated to all concerned persons is very high.

• Conventional notification techniques perform very well for small and medium

size projects where the amount of notification that needs to be delivered every

day is relatively small. But as we showed in section 6.1, the bad ratio between

positives and false positives leads to high running costs that can exceed the

benefits.

• noticon has high initial costs compared to the other approaches which makes

it infeasible for small projects. Medium to large size projects can benefit from

advanced notification specifications that improves the ratio between positives

and false positives. Because there are no constraints on the complexity of the

rules, the costs are expected to increase only linear with the project size.

The conclusion is that noticon is currently most feasibly in large project, but

we think that the installation costs can be decreased significantly if we develop an

advanced installation tool that guides administrators through the installation and

configuration of the system. This would allow noticon to compete with conven-

tional notification techniques in medium sized projects.

139

6 Discussion

140

7 Summary & Future Work

This chapter summarizes the work and gives and gives a brief outlook on our future

plans. It finishes with the ”Takeaway Messages” section that condenses our work

into three sentences.

Summary

Global Software Development (GSD) projects are complex projects where multiple

distributed teams and companies work together in a socio-technical environment to

deliver complex software to its clients. They exhibit the following characteristics

(see section 2.1):

• They consist of a massive amount of different heterogeneous elements like

persons, source code, hardware, software, etc.

• There are many dependencies between the elements; some of them are known,

some not.

• The environment (the elements and their dependencies) changes constantly.

These characteristics and the increased demand for agility require an efficient and

steady communication between the project members, but which gets hindered by

geographical distance, different timezones, different languages, different cultures,

different technical infrastructures, etc.

141

7 Summary & Future Work

Communicating project events (eg. the change of a requirement) is one aspect of

communication in software development projects which is often done informally in

small projects. This does not scale well to GSD projects because project members

might not know all persons who are impacted by an event, and the informal com-

munication channels (eg. meetings at the coffee machine) are only available at best

within one location. The risk that important events are communicated only with

big delays or not at all is therefore very high. This can lead to increased costs and

delays of the project, and decreases the project members’ satisfaction.

Notification functions in tools are a common way to mitigate the risks of information

loss and delay (see section 2.3). Users subscribe in tools like SVN or Track to events

they are interested in and get an email when such an event happens. In GSD projects

this approach is often unfeasible because 1) people might not have access rights for

some tools, 2) might not be aware of the tools that are used by other teams, and 3)

will receive too much information that is not relevant for them but interrupts their

primary tasks. A more efficient context-aware solution is required which provides

users with just the information that is currently relevant for them.

We implemented a open source tool prototype called noticon. It is a context-

aware notification system that uses context information (eg. the activity a user is

currently performing, dependencies between components, etc.) to efficiently deliver

the right information, at the right time, to the right receipts, without interrupting

their current activity (see section 2.3). noticon is able to:

• Monitor the current project context across tools to detect situations that are

relevant for some users and notify them accordingly. This reduces the amount

of notifications a user receives, but increases their importance.

• Display the notifications in the tool that is currently used by a user. This min-

imizes interruptions caused by notifications, but increases notification aware-

ness.

• Adapt the content of the notification based on the projects context and user

preferences. This ensures that all relevant information is included in the noti-

fication.

142

To be able to deliver this functionality noticon must integrate various external

tools like SVN, Track, RequisitePro, Eclipse, etc. to sense relevant events. We follow

best practices from the field of Enterprise Application Integration as described in

section 2.5.

noticon uses a rule engine to allow the specification of advanced notification rules.

The rule engine maintains a so called working memory that contains the project

context (see section 2.4). The project context consists of all relevant project elements

(eg. requirements, users, etc.) and their relations. Events that are sensed in external

systems lead to changes of the context. Notification rules specify states of the project

context that trigger notifications when they occur.

There is a vast amount of functionality that could be packed into a notification

system and also the possibility for the systems architecture are numerous. We

therefore performed a detailed stakeholder analysis aiming to better understand

the stakeholders interests (see section 3.3). The most important requirements we

discovered were (section 3.4):

• The system must be built upon standard technologies. This is especially im-

portant for future development of noticonbecause it attracts new developers

who like to use technologies they are already familiar with.

• The system must support the users’ work without interfering with their pri-

mary tasks. This is important for the acceptance of the system and also has

a high impact on its perceived and actual benefit.

• False positives and false negatives must be minimized. False positives are

notifications that are delivered to users but are not relevant for them. They

just interrupt their primary activity and bring no benefit. False negatives refer

to information that should have been delivered to users, but was not.

• The definition of complex notification rules must be supported. It must be

possible to define the rules being agnostic of the tools that provide the relevant

data. The definition must allow to specify whom, how, when, in which context,

due to which event, and with which content a notification should be sent and

143

7 Summary & Future Work

what to do in case of an error.

• Users must be able to specify the notification requirements during runtime.

This is important to minimize the work of administrators and because rules

are expected to change during the project lifetime.

Based on these requirements we developed a prototype in Java that uses various

well known open source technologies like ActiveMQ, Mule, and Drools (see chapter

4).

An important requirement is that users must be able to specify the notifications

themselves. We therefor developed a domain specific language called Notification

Specification Language (NSL) that allows to precisely define the rules when a no-

tification should be created. It has been designed to be easy to learn and use by

project members, but to be powerful enough to specify complex notification rules.

A notification specification consists of up to eight parts (see section 4.5):

• Title: Defines that title of the specification.

• Receiver: Specifies who should receive the notifications and whether receivers

have to subscribe to get the notifications or need to unsubscribe if they do not

want to get them.

• Context: The context defines precisely when the notification should be created.

• Delivery: Defines whether the notification should be delivered immediately

after creation, as batch at a specific time, or depending on context conditions.

• Channel: Defines how the notification should be delivered; eg. via email or

via the tool that the receiver is currently using.

• Batch Subject: In case the notifications are sent in a batch, a subject can be

defined for the whole batch.

• Subject: Defines the subject of a single notification.

144

• Content: Defines the content of a notification. Any information from the

project context can be included.

To gain full benefit of a notification solution the project environment needs to be

analyzed first. We proposed an iterative process that can be followed by project

managers to 1) discover communication risks, and 2) decide if these risks can be

efficiently mitigated with a notification solution like noticon . It consists of four

steps (see section 3.5):

1. The first step is to find out, if there are high communication risks in a par-

ticular project that should be mitigated. We defined a list of risk drivers that

help project managers to discover concrete communication risks that can be

mitigated with a notification solution.

2. In the second step the project is described as a socio-technical system from four

viewpoints: 1) The People Viewpoint describes the project organization and

the distribution of the project teams. 2) The Information Viewpoint describes

concepts (eg. requirements) and their relations and dependencies between each

other. 3) The Technology Viewpoint focuses on the technologies that are used

in the project. 3) The Process Viewpoint relates the elements from the other

viewpoints in the processes that are performed during the project.

3. Based on the diagrams in step 2, the key communications (communications

that have a high impact if they do not occur) that can be automated with a

notification solution are systematically searched and described.

4. The last step is to describe the notifications and the expected impacts both

formally (with the NSL) and informally.

The process and the prototype were evaluated based on a realistic case study that

was prepared in cooperation with experts from Siemens PSE (see chapter 5). It

showed that it can be performed quickly and provide a solid foundation for discov-

ering communication risks that can be mitigated with notification solutions.

The benefit of our solution was evaluated with a total cost of ownership analysis (see

section 6.1); the setting was deduced from the case study. We compared noticon

145

7 Summary & Future Work

with conventional email notifications with regards to communicating requirement

changes and calculated with 70 developers and 30 requirement changes per day for

a period of 50 days. Results were that, although the initial investment for noticon

is significantly higher than that of the email alternative, the notification costs can

be reduced by more than 50% with noticon .

7.1 Future Work

During the work many ideas were generated on how the system can be improved in

the future:

• The prototype should be set up as an open source project on Sourceforge 1

so that other developers can participate. We also plan to lower the entrance

hurdles for using noticon by developing ready to use installation packages

that just need to be executed and configured by administrators. Also the user

interface should be improved: users should be able to fine tune notifications

from within the tools they are currently using. A query functionality is planned

that should allow users to retrieve further information after the receipt of a

notification.

• The next step for the process is a critical evaluation in a real project. We

also plan to create a guidance package with the eclipse process framework 2

that should help project managers to apply the process in their projects.

• The notification specification language will be extended with the possi-

bility to define escalation rules (what should happen if a notification cannot

be delivered to a receiver). An editor is planned that helps users in writing

specifications.

1http://www.sourceforge.net
2http://www.eclipse.org/epf

146

7.2 Takeaway Messages

7.2 Takeaway Messages

The three key messages of this work are:

1. GSD projects face high communication risks and some of the risks can be

mitigated with notification systems.

2. Existing solutions are inapplicable because they generate either too much or

too less notifications which causes high costs in GSD projects.

3. Our solution can be used to systematically describe and discover the noti-

fication requirements and can effectively and efficiently deliver 1) the right

information, 2) at the right time, 3) to the right persons, without interrupting

their current activities.

147

7 Summary & Future Work

148

Bibliography

[1] Manifesto for Agile Software Development. http://www.agilemanifesto.

org/, Abruf: 29.09.2007

[2] OMG: Notification Service Specification. Version: 2004. http://www.omg.

org/technology/documents/formal/notification_service.htm. 2004 (v.

1.1). – Forschungsbericht

[3] Software Engineering Body of Knowledge. Endorsed by ACM and IEEE. http:

//www.swebok.org/. Version: 2004

[4] TestDirector Requirements Synchronizer for Rational RequisitePro Add-in

Guide, Version 8.0. Version: 2004. http://updates.merc-int.com/

testdirector/td80/sync/reqpro/TDSync4RP.pdf, Abruf: 22.09.2007. Mer-

cury Interactive Corporation

[5] Bundesrepublik Deutschland: V-Modell XT, Version 1.2.0.

Version: 2004. http://v-modell.iabg.dd. 2004. – Process Model

[6] Mule Architecture Overview. Version: 2007. http://mule.mulesource.org/

display/MULE/Architecture+Overview, Abruf: 09.10.2007

[7] Abowd, Gregory D. ; Dey, Anind K. ; Brown, Peter J. ; Davies, Nigel ;

Smith, Mark ; Steggles, Pete: Towards a Better Understanding of Context

and Context-Awareness. In: HUC ’99: Proceedings of the 1st international

symposium on Handheld and Ubiquitous Computing. London, UK : Springer-

Verlag, 1999. – ISBN 3–540–66550–1, S. 304–307

[8] Addison, Tom ; Vallabh, Seema: Controlling software project risks: an

149

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
http://www.omg.org/technology/documents/formal/notification_service.htm
http://www.omg.org/technology/documents/formal/notification_service.htm
http://www.swebok.org/
http://www.swebok.org/
http://updates.merc-int.com/testdirector/td80/sync/reqpro/TDSync4RP.pdf
http://updates.merc-int.com/testdirector/td80/sync/reqpro/TDSync4RP.pdf
http://v-modell.iabg.dd
http://mule.mulesource.org/display/MULE/Architecture+Overview
http://mule.mulesource.org/display/MULE/Architecture+Overview

Bibliography

empirical study of methods used by experienced project managers. In: SAICSIT

’02: Proceedings of the 2002 annual research conference of the South African

institute of computer scientists and information technologists on Enablement

through technology. Republic of South Africa : South African Institute for

Computer Scientists and Information Technologists, 2002. – ISBN 1–58113–

596–3, S. 128–140

[9] Baldauf, Matthias ; Dustdar, Schahram ; Rosenberg, Florian: A Survey

on Context-Aware systems. In: International Journal of Ad Hoc and Ubiquitous

Computing, forthcoming (2004). citeseer.ist.psu.edu/baldauf04survey.

html

[10] Blaschke, Steffen: Modeling the Improbability of Communication. In:

NAACSOS Conference. Notre Dame, Indiana, USA, June 2005

[11] Boehm, B. ; Ross, R.: Theory-W software project management: a case study.

In: ICSE ’88: Proceedings of the 10th international conference on Software

engineering. Los Alamitos, CA, USA : IEEE Computer Society Press, 1988. –

ISBN 0–89791–258–6, S. 30–40

[12] Booker, John E. ; Chewar, C. M. ; McCrickard, D. S.: Usability testing

of notification interfaces: are we focused on the best metrics? In: ACM-SE 42:

Proceedings of the 42nd annual Southeast regional conference. New York, NY,

USA : ACM Press, 2004. – ISBN 1–58113–870–9, S. 128–133

[13] Carzaniga, Antonio ; Rosenblum, David S. ; Wolf, Alexan-

der L.: Design and evaluation of a wide-area event notification ser-

vice. In: ACM Trans. Comput. Syst. 19 (2001), Nr. 3, S. 332–383.

http://dx.doi.org/http://doi.acm.org/10.1145/380749.380767. – DOI

http://doi.acm.org/10.1145/380749.380767. – ISSN 0734–2071

[14] Channabasavaiah, Kishore ; Holley, Kerrie ; Edward Tuggle, Jr.:

Migrating to a service-oriented architecture, Part 1. In: IBM devel-

operWorks (2003), Dec. http://www.ibm.com/developerworks/library/

ws-migratesoa/

150

citeseer.ist.psu.edu/baldauf04survey.html
citeseer.ist.psu.edu/baldauf04survey.html
http://dx.doi.org/http://doi.acm.org/10.1145/380749.380767
http://www.ibm.com/developerworks/library/ws-migratesoa/
http://www.ibm.com/developerworks/library/ws-migratesoa/

Bibliography

[15] Chinnici, Roberto ; Moreau, Jean-Jacques ; Ryman, Arthur ; Weer-

awarana, Sanjiva: Web Services Description Language (WSDL) Version

2.0 Part 1: Core Language / W3C. Version: 2007. http://www.w3.org/TR/

wsdl20/. 2007. – W3C Recommendation

[16] Conway, M.E.: How Do Committees Invent? In: Datamation 14 (1968), Nr.

4, S. 28–31

[17] Damian, D. ; Izquierdo, L. ; Singer, J. ; Kwan, I.: Awareness in the Wild:

Why Communication Breakdowns Occur. In: Global Software Engineering,

2007. ICGSE 2007. Second IEEE International Conference on (2007), S. 81–90

[18] Dietz, Jan L. G.: The atoms, molecules and fibers of organiza-

tions. In: Data Knowl. Eng. 47 (2003), Nr. 3, S. 301–325. http://

dx.doi.org/http://dx.doi.org/10.1016/S0169-023X(03)00062-4. – DOI

http://dx.doi.org/10.1016/S0169–023X(03)00062–4. – ISSN 0169–023X

[19] Dourish, Paul ; Bly, Sara: Portholes: supporting awareness in a distributed

work group. In: CHI ’92: Proceedings of the SIGCHI conference on Human

factors in computing systems. New York, NY, USA : ACM Press, 1992. – ISBN

0–89791–513–5, S. 541–547

[20] Dustdar, Schahram ; Gall, Harald ; Hauswirth, Manfred: Software-

Architekturen für Verteilte Systeme. Springer-Verlag Berlin Heidelberg, 2003

[21] Fabian, Alain ; Felton, David ; Grant, Melissa ; Montabert, Cyril ;

Pious, Kevin ; Rashidi, Nima ; Anderson Ray Tarpley, III ; Taylor,

Nicholas ; Chewar, C. M. ; McCrickard, D. S.: Designing the claims reuse

library: validating classification methods for notification systems. In: ACM-SE

42: Proceedings of the 42nd annual Southeast regional conference. New York,

NY, USA : ACM Press, 2004. – ISBN 1–58113–870–9, S. 357–362

[22] Fallside, David C. ; Walmsley, Priscilla: XML Schema Part 0: Primer Sec-

ond Edition / W3C. Version: 2004. http://www.w3.org/TR/xmlschema-0/.

2004. – W3C Recommendation

151

http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://dx.doi.org/http://dx.doi.org/10.1016/S0169-023X(03)00062-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0169-023X(03)00062-4
http://www.w3.org/TR/xmlschema-0/

Bibliography

[23] Filho, Roberto S. S. ; Redmiles, David F.: Striving for versatility in pub-

lish/subscribe infrastructures. In: SEM ’05: Proceedings of the 5th interna-

tional workshop on Software engineering and middleware. New York, NY, USA

: ACM Press, 2005. – ISBN 1–59593–204–4, S. 17–24

[24] Fischer, Gerhard: User Modeling in Human - Computer Interaction. In: User

Modeling and User-Adapted Interaction 11 (2001), Nr. 1-2, S. 65–86. – ISSN

0924–1868

[25] Fonseca, Sebastiao B. ; Souza, Cleidson R. B. ; Redmiles, David F.:

Exploring the Relationship between Dependencies and Coordination to Sup-

port Global Software Development Projects. In: icgse 0 (2006), S. 243–

. http://dx.doi.org/http://doi.ieeecomputersociety.org/. – DOI

http://doi.ieeecomputersociety.org/. ISBN 0–7695–2663–2

[26] Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern

match problem. In: Ieee Computer Society Reprint Collection (1991), S. 324–

341

[27] Fowler, Martin: Patterns of Enterprise Application Architecture. Boston,

MA, USA : Addison-Wesley Longman Publishing Co., Inc., 2002. – ISBN

0321127420

[28] Freimut, Bernd ; Hartkopf, Susanne ; Kaiser, Peter ; Kontio, Jyrki

; Kobitzsch, Werner: An industrial case study of implementing software

risk management. In: ESEC/FSE-9: Proceedings of the 8th European software

engineering conference held jointly with 9th ACM SIGSOFT international sym-

posium on Foundations of software engineering. New York, NY, USA : ACM

Press, 2001. – ISBN 1–58113–390–1, S. 277–287

[29] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides, John: Design

Patterns - Elements of Reusable Object-Oriented Software. Addison-Wesley,

1995

[30] Geurts, Gerke ; Geelhoed, Adrie: Business Process Decomposition and

Service Identification Using Communication Patterns. In: The Architecture

152

http://dx.doi.org/http://doi.ieeecomputersociety.org/

Bibliography

Journal (2004), Jan, Nr. 1

[31] Glinz, Martin ; Wieringa, Roel J.: Guest Editors’ Introduction: Stakehold-

ers in Requirements Engineering. In: IEEE Software 24 (2007), Nr. 2, S. 18–

20. http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/

MS.2007.42. – DOI http://doi.ieeecomputersociety.org/10.1109/MS.2007.42. –

ISSN 0740–7459

[32] Goldhaber, Gerald M. ; Rogers, Donald P.: Auditing organizational com-

munication systems: the ICA communication audit. Dubuque, Iowa : Kendal-

l/Hunt Publ., 1979

[33] Gosling, James ; Joy, Bill ; Steele, Guy ; Bracha, Gilad: The Java
TMLanguage Specification, Third Edition. 3rd. Prentice Hall, 2005

[34] Gruber, R.E. ; Krishnamurthy, B. ; Panagos, E.: The architecture of the

READY event notification service. In: Electronic Commerce and Web-based

Applications/Middleware, 1999. Proceedings. 19th IEEE International Confer-

ence on Distributed Computing Systems Workshops on, 1999, S. 108–113

[35] Hapner, Mark ; Burridge, Rich ; Sharma, Rahul ; Fialli, Joseph ; Stout,

Kate: JavaTMMessage Service Specification / SunMicrosystems, Inc. 2002 (1.1).

– Specification

[36] Hargie, Owen ; Tourish, Dennis: Handbook of Communication Audits for

Organisations. Routledge, 2000

[37] Henricksen, K. ; Indulska, J.: Developing context-aware pervasive comput-

ing applications: Models and approach. In: Pervasive and Mobile Computing

2 (2006), Nr. 1, S. 37–64

[38] Henricksen, Karen ; Indulska, Jadwiga ; Rakotonirainy, Andry: Mod-

eling Context Information in Pervasive Computing Systems. In: Pervasive

’02: Proceedings of the First International Conference on Pervasive Comput-

ing. London, UK : Springer-Verlag, 2002. – ISBN 3–540–44060–7, S. 167–180

[39] Herbsleb, James D.: Global Software Engineering: The Future of Socio-

153

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2007.42
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2007.42

Bibliography

technical Coordination. In: FOSE ’07: 2007 Future of Software Engineering.

Washington, DC, USA : IEEE Computer Society, 2007. – ISBN 0–7695–2829–5,

S. 188–198

[40] Hohpe, Gregor: Programmieren ohne Stack: ereignis-getriebene Ar-

chitekturen. In: OBJEKTspektrum (2006), Februrary. http://www.

enterpriseintegrationpatterns.com/docs/EDA.pdf. – source is the

unedited english version

[41] Hohpe, Gregor ; Woolf, Bobby: Enterprise Integration Patterns - Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley, 2004

[42] Jordon, Diane ; Evdemon, John: Web Services Business Process Exe-

cuition Language Version 2.0 / OASIS. Version: April 2007. http://docs.

oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. 2007. – OASIS

Standard

[43] Kantor, M. ; Redmiles, D.: Creating an Infrastructure for Ubiquitous

Awareness. In: Eighth IFIP TC 13 (2001), S. 431–438

[44] Keller, Kurt: Socio-technical systems and self-organization. In: SIGOIS

Bull. 17 (1996), Nr. 1, S. 6–7. http://dx.doi.org/http://doi.acm.org/

10.1145/236410.236417. – DOI http://doi.acm.org/10.1145/236410.236417.

– ISSN 0894–0819

[45] Kirwin, Bill: Gartner Total Cost of Ownership. Version: 1987. http://amt.

gartner.com/TCO/MoreAboutTCO.htm, Abruf: 29.08.2007. Online

[46] Kontio, Jyrki: The Riskit Method for Software Risk Management, version

1.00 - CS-TR-3782 / UMIACS-TR-97- 38 / University of Maryland. College

Park, MD, 1997. – Computer Science Technical Reports

[47] Kontio, Jyrki: Risk management in software development: a technology

overview and the Riskit method. In: ICSE ’99: Proceedings of the 21st inter-

national conference on Software engineering. Los Alamitos, CA, USA : IEEE

Computer Society Press, 1999. – ISBN 1–58113–074–0, S. 679–680

154

http://www.enterpriseintegrationpatterns.com/docs/EDA.pdf
http://www.enterpriseintegrationpatterns.com/docs/EDA.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://dx.doi.org/http://doi.acm.org/10.1145/236410.236417
http://dx.doi.org/http://doi.acm.org/10.1145/236410.236417
http://amt.gartner.com/TCO/MoreAboutTCO.htm
http://amt.gartner.com/TCO/MoreAboutTCO.htm

Bibliography

[48] Kontio, Jyrki ; Getto, Gerhard ; Landes, Dieter: Experiences in improv-

ing risk management processes using the concepts of the Riskit method. In:

SIGSOFT ’98/FSE-6: Proceedings of the 6th ACM SIGSOFT international

symposium on Foundations of software engineering. New York, NY, USA :

ACM Press, 1998. – ISBN 1–58113–108–9, S. 163–174

[49] Kroll, Per ; Royce, Walker: Key principles for business-driven develop-

ment. In: IBM developerWorks (2005), Oct. http://www-128.ibm.com/

developerworks/rational/library/oct05/kroll/

[50] Laplante, Phillip A. ; Neill, Colin J.: Opinion: The Demise of the

Waterfall Model Is Imminent. In: Queue 1 (2004), Nr. 10, S. 10–15.

http://dx.doi.org/http://doi.acm.org/10.1145/971564.971573. – DOI

http://doi.acm.org/10.1145/971564.971573. – ISSN 1542–7730

[51] Lenz, Gunther ; Wienands, Christoph ; Sumser, Jim (Hrsg.): Practical

Software Factories in .NET. New York : Springer-Verlag, 2006

[52] Loughman, T.P. ; Fleck, R. ; Snipes, R.: A cross-disciplinary model for

improved information systems analysis. In: Industrial Management and Data

Systems 100 (2000), Nr. 8, S. 359–369

[53] Luckham, David: The Power of Events - An Introduction to Complex Event

Processing in Distributed Enterprise Systems. Addison-Wsley, 2005

[54] Luhmann, N.: Social Systems. Stanford, CA : Stanford University Press, 1995

[55] MacKenzie, C. M. ; Laskey, Ken ; McCabe, Francis ; Brown, Peter F.

; Metz, Rebekah: Reference Model for Service Oriented Architecture 1.0 /

OASIS. Version: August 2006. http://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=soa-rm. 2006. – Committee Specification

[56] Mark, Gloria ; Gonzalez, Victor M. ; Harris, Justin: No task left behind?:

examining the nature of fragmented work. In: CHI ’05: Proceedings of the

SIGCHI conference on Human factors in computing systems. New York, NY,

USA : ACM Press, 2005. – ISBN 1–58113–998–5, S. 321–330

155

http://www-128.ibm.com/developerworks/rational/library/oct05/kroll/
http://www-128.ibm.com/developerworks/rational/library/oct05/kroll/
http://dx.doi.org/http://doi.acm.org/10.1145/971564.971573
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

Bibliography

[57] McCrickard, D. S. ; Chewar, C. M.: Attuning notification design to user

goals and attention costs. In: Commun. ACM 46 (2003), Nr. 3, S. 67–72.

http://dx.doi.org/http://doi.acm.org/10.1145/636772.636800. – DOI

http://doi.acm.org/10.1145/636772.636800. – ISSN 0001–0782

[58] McGuinness, Dborah L. ; Harmelen, Frank van: OWL Web Ontology

Language Overview / W3C. Version: Feb 2004. http://www.w3.org/TR/

owl-features/. 2004. – W3C Recommondation. – last access: 20.08.2007

[59] Moore, James F.: Predators and prey: a new ecology of competition. (1999),

S. 121–141. ISBN 0–87584–911–3

[60] Paasivaara, M.: Communication Needs, Practices and Supporting Structures

in Global Inter-Organizational Software Development Projects. In: Workshop

on Global Software Development, part of the International Conference on Soft-

ware Engineering (ICSE) (2003). http://www.gsd2003.cs.uvic.ca/upload/

Paasivaara.pdf

[61] Padayachee, Keshnee: An interpretive study of software risk management

perspectives. In: SAICSIT ’02: Proceedings of the 2002 annual research con-

ference of the South African institute of computer scientists and information

technologists on Enablement through technology. Republic of South Africa :

South African Institute for Computer Scientists and Information Technologists,

2002. – ISBN 1–58113–596–3, S. 118–127

[62] Palmer, Mark: Event Stream Processing - A New Physics of Software. In:

DM Direct (2005). http://www.dmreview.com/editorial/dmreview/print_

action.cfm?articleId=1033537

[63] Panagos, E. ; Rabinovich, M.: Escalations in workflow management sys-

tems. In: CIKM ’96: Proceedings of the workshop on on Databases. New York,

NY, USA : ACM Press, 1997. – ISBN 0–89791–948–3, S. 25–28

[64] Papazoglou, Mike ; Heuvel, Willem-Jan van d.: Service oriented architec-

tures: approaches, technologies and research issues. In: The VLDB Journal

The International Journal on Very Large Data Bases 16 (2007), Juli, Nr. 3,

156

http://dx.doi.org/http://doi.acm.org/10.1145/636772.636800
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.gsd2003.cs.uvic.ca/upload/Paasivaara.pdf
http://www.gsd2003.cs.uvic.ca/upload/Paasivaara.pdf
http://www.dmreview.com/editorial/dmreview/print_action.cfm?articleId=1033537
http://www.dmreview.com/editorial/dmreview/print_action.cfm?articleId=1033537

Bibliography

389–415. http://dx.doi.org/10.1007/s00778-007-0044-3

[65] Parnas, D. L.: On the criteria to be used in decomposing systems

into modules. In: Commun. ACM 15 (1972), Nr. 12, S. 1053–1058.

http://dx.doi.org/http://doi.acm.org/10.1145/361598.361623. – DOI

http://doi.acm.org/10.1145/361598.361623. – ISSN 0001–0782

[66] Pietzuch, Peter R. ; Bacon, Jean: Hermes: A Distributed Event-Based Mid-

dleware Architecture. In: ICDCSW ’02: Proceedings of the 22nd International

Conference on Distributed Computing Systems. Washington, DC, USA : IEEE

Computer Society, 2002. – ISBN 0–7695–1588–6, S. 611–618

[67] Preiss, O. ; Wegmann, A.: Stakeholder discovery and classification based

on systems science principles. In: Quality Software, 2001. Proceedings.Second

Asia-Pacific Conference on, 2001, S. 194–198

[68] Ripley, Roger M. ; Yasui, Ryan Y. ; Sarma, Anita ; Hoek, André van d.:

Workspace awareness in application development. In: eclipse ’04: Proceedings

of the 2004 OOPSLA workshop on eclipse technology eXchange. New York, NY,

USA : ACM Press, 2004, S. 17–21

[69] Rising, L. ; Janoff, N.S.: The Scrum software development process for small

teams. In: Software, IEEE 17 (2000), Nr. 4, S. 26–32. – ISSN 0740–7459

[70] Rosenblum, David S. ; Wolf, Alexander L.: A design framework for Internet-

scale event observation and notification. In: ESEC ’97/FSE-5: Proceedings of

the 6th European conference held jointly with the 5th ACM SIGSOFT interna-

tional symposium on Foundations of software engineering. New York, NY, USA

: Springer-Verlag New York, Inc., 1997. – ISBN 3–540–63531–9, S. 344–360

[71] Sarma, A. ; Hoek, A. van d.: Towards Awareness in the Large. In: Pro-

ceedings of the IEEE International Conference on Global Software Engineering

(ICGSE’06)-Volume 00 (2006), S. 127–131

[72] Sarma, Anita ; Noroozi, Zahra ; Hoek, André van d.: Palantir: raising

awareness among configuration management workspaces. (2003), S. 444–454.

157

http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/http://doi.acm.org/10.1145/361598.361623

Bibliography

ISBN 0–7695–1877–X

[73] Satyanarayanan, M.: Coping with uncertainty. In: Pervasive Computing,

IEEE 2 (2003), Nr. 3, S. 2–2

[74] Schiefer, Josef ; Rozsnyai, Szabolcs ; Rauscher, Christian ; Saurer,

Gerd: Event-driven rules for sensing and responding to business situa-

tions. (2007), S. 198–205. http://dx.doi.org/http://doi.acm.org/10.

1145/1266894.1266934. – DOI http://doi.acm.org/10.1145/1266894.1266934.

ISBN 978–1–59593–665–3

[75] Segall, B. ; Arnold, D. ; Boot, J. ; Henderson, M. ; Phelps, T.: Content

Based Routing with Elvin4. In: Proceedings AUUG2K, Canberra, Australia,

June (2000)

[76] Sen, Shilad ; Geyer, Werner ; Muller, Michael ; Moore, Marty ;

Brownholtz, Beth ; Wilcox, Eric ; Millen, David R.: FeedMe:

a collaborative alert filtering system. (2006), S. 89–98. http:

//dx.doi.org/http://doi.acm.org/10.1145/1180875.1180890. – DOI

http://doi.acm.org/10.1145/1180875.1180890. ISBN 1–59593–249–6

[77] Sena, James A. ; Shani, A. B. (.: Intelligence systems: a sociotechnical

systems perspective. In: SIGCPR ’99: Proceedings of the 1999 ACM SIGCPR

conference on Computer personnel research. New York, NY, USA : ACM Press,

1999. – ISBN 1–58113–063–5, S. 86–93

[78] Shen, Haifeng ; Sun, Chengzheng: Flexible notification for collaborative sys-

tems. In: CSCW ’02: Proceedings of the 2002 ACM conference on Computer

supported cooperative work. New York, NY, USA : ACM Press, 2002. – ISBN

1–58113–560–2, S. 77–86

[79] Speier, C. ; Valacich, J.S. ; Vessey, I.: The effects of task interruption and

information presentation on individual decision making. In: Proceedings of the

eighteenth international conference on Information systems (1997), S. 21–36

[80] Spira, JB ; Feintuch, JB: The Cost of Not Paying Attention: How Interrup-

158

http://dx.doi.org/http://doi.acm.org/10.1145/1266894.1266934
http://dx.doi.org/http://doi.acm.org/10.1145/1266894.1266934
http://dx.doi.org/http://doi.acm.org/10.1145/1180875.1180890
http://dx.doi.org/http://doi.acm.org/10.1145/1180875.1180890

Bibliography

tions Impact Knowledge Worker Productivity. 2005

[81] Strang, Thomas ; Linnhoff-Popien, Claudia: A Context Modeling Survey.

In: First International Workshop on Advanced Context Modelling, Reasoning

And Management at UbiComp 2004, Nottingham, England, September 7, 2004,

2004

[82] Ten-Hove, Ron ; Walker, Peter: JavaTMBusiness Integration (JBI) 1.0 /

Sun Microsystems, Inc. 2005 (JSR 208). – Specification

[83] Truong, Binh A. ; Lee, Young-Koo ; Lee, Sung-Young: Modeling and rea-

soning about uncertainty in context-aware systems. In: e-Business Engineering,

2005. ICEBE 2005. IEEE International Conference on, 2005, S. 102–109

[84] Wahyudin, Dindin ; Heindl, Matthias ; Berger, Ronald ; Schatten,

Alexander ; Biffl, Stefan: In-Time Project Status Notification for All Team

Members in Global Software Development as Part of Their Work Environments.

In: International Conference on Global Software Engineering (ICGSE 2007),

2007

[85] Wahyudin, Dindin ; Heindl, Matthias ; Eckhard, Benedikt ; Schatten,

Alexander ; Biffl, Stefan: In-time role-specific notification as formal means to

balance agile practices in global software development settings. In: 2nd IFIP

Central and East European Conference on Software Engineering Techniques

CEE-SET 2007, 2007

[86] Weiser, Mark: The Computer for the 21st Century. In: Scientific American

(1991), 02/1991. http://www.ubiq.com/hypertext/weiser/SciAmDraft3.

html

[87] Welsh, Matt ; Culler, David ; Brewer, Eric: SEDA: an architec-

ture for well-conditioned, scalable internet services. (2001), S. 230–243.

http://dx.doi.org/http://doi.acm.org/10.1145/502034.502057. – DOI

http://doi.acm.org/10.1145/502034.502057. ISBN 1–58113–389–8

[88] Whitworth, B.: Social-technical Systems. In: Ghoui, Claude (Hrsg.): En-

159

http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html
http://dx.doi.org/http://doi.acm.org/10.1145/502034.502057

Bibliography

cyclopedia of Human Computer Interaction. Hershey : Idea Group Reference,

2006, S. 533–541

[89] Wiredu, Gamel O.: A framework for the analysis of coordination in global

software development. In: GSD ’06: Proceedings of the 2006 international

workshop on Global software development for the practitioner. New York, NY,

USA : ACM Press, 2006. – ISBN 1–59593–404–9, S. 38–44

[90] Zimmer, Tobias: Towards a Better Understanding of Context Attributes.

In: PERCOMW ’04: Proceedings of the Second IEEE Annual Conference on

Pervasive Computing and Communications Workshops. Washington, DC, USA

: IEEE Computer Society, 2004. – ISBN 0–7695–2106–1, S. 23

160

List of Figures

2.1 Overview of a GSD project . 8

2.2 Project type classification [60] . 10

2.3 Unawareness of indirect dependencies can lead to wrong assumptions

on the impact of a change. 13

2.4 Example user context for notifications in GSD projects 18

2.5 Architecture layers for context-aware systems [9] 21

2.6 Context classification for the validity of data 24

2.7 Publish-Subscribe Notification System 27

2.8 Context-aware Notification System 28

2.9 Simple event stream processing. 34

2.10 Components of the Drools Rule Engine. 36

2.11 Point to Point Integration vs. Integration Bus 37

2.12 Structure of a WSDL Service Description [82] 40

2.13 Enterprise Service Bus [64] . 41

2.14 Message based integration . 42

2.15 Event Cloud . 44

3.1 Generic stakeholder classification layout 47

3.2 Stakeholder Classification . 49

3.3 Introduction Process . 59

3.4 Process to rank risk drivers for further process steps. 61

3.5 Example for the people viewpoint . 67

3.6 Example for the information viewpoint. 68

3.7 Example for the technology viewpoint 69

3.8 Processes Viewpoint . 71

161

List of Figures

4.1 Mule Server Components [6] . 78

4.2 Core components of noticon . 79

4.3 Message model of noticon that shows the messages and the compo-

nents that consume or produce them. 82

4.4 Core artifacts layer . 85

4.5 Illustration of the merge function . 86

4.6 Common Artifacts Layer . 88

4.7 Simple grammar described in a graphical notation. 91

4.8 Main production rule . 93

4.9 Notification title . 93

4.10 Notification receiver . 94

4.11 bindings, fillwords and variables . 95

4.12 Context definition . 96

4.13 Relation constraint . 97

4.14 Property constraint . 98

4.15 Event constraint . 100

4.16 Artifact event constraint . 100

4.17 Property event constraint . 101

4.18 Delivery options . 101

4.19 Conditioned delivery . 102

4.20 Delivery channel . 103

4.21 Notification content . 104

4.22 Notification content . 104

5.1 The people viewpoints shows the project organization. 108

5.2 Information viewpoint focused on requirements. 109

5.3 State machine for requirements. 109

5.4 Technology viewpoint. 110

5.5 Process viewpoint showing the requirements implementation process. 111

5.6 Aministration application for noticon. 117

5.7 noticon embedded in Eclipse and Visual Studio. 118

5.8 Daily status report for customer representatives 120

6.1 Total Cost of Ownership Model . 122

162

List of Figures

6.2 Running Costs . 128

6.3 Expected Benefit of noticon . 138

6.4 Estimated Cost Curves of Notification Solutions 139

163

	1 Introduction
	2 Related Work
	2.1 Global Software Development
	2.1.1 Complexity aspects of GSD projects
	2.1.2 Socio-technical Systems
	2.1.3 Communication Risks in GSD Projects

	2.2 Context-aware Systems
	2.2.1 Introduction into context-aware systems
	2.2.2 Common architecture of context-aware systems
	2.2.3 Characteristics of context data
	2.2.4 Context Modeling

	2.3 Context-aware Notification Systems
	2.3.1 Framework for Notification Systems
	2.3.2 Overview on notification solutions

	2.4 Event Stream Processing and Rule Engines
	2.4.1 Event Stream Processing
	2.4.2 Rule Engine

	2.5 Enterprise Application Integration
	2.5.1 Service Oriented Architecture
	2.5.2 Enterprise Service Bus
	2.5.3 Event Driven Architecture

	3 Research Issues
	3.1 Research Questions
	3.2 Research Design
	3.3 Stakeholder Analysis
	3.3.1 Stakeholder Classification Framework
	3.3.2 Stakeholders

	3.4 Requirements for the prototype
	3.5 Notification Discovery and Description Framework and Process
	3.5.1 Step 1: Analyze the project communication risks
	3.5.2 Step 2: Describe the project organization
	3.5.3 Step 3: Describe the key communications
	3.5.4 Step 4: Define the Notifications

	4 Prototype Development
	4.1 Components
	4.2 Message Model
	4.3 Context Model
	4.3.1 Core Artifacts Layer
	4.3.2 Common Artifacts Layer
	4.3.3 User Artifact Layer

	4.4 Rule Engine Agenda
	4.5 Notification Specification Language
	4.5.1 Notation and General Concepts
	4.5.2 Title
	4.5.3 Receiver
	4.5.4 Context:
	4.5.5 Delivery options
	4.5.6 Channel specification
	4.5.7 Message content

	5 Case Study
	5.1 Introduction
	5.2 Project Communication Risks
	5.3 Project Organization
	5.4 Key Communications
	5.5 Notification Definitions
	5.5.1 Failed test-case
	5.5.2 Daily summary of requirements that are ready to deploy
	5.5.3 Working on the same requirement

	5.6 User Interaction

	6 Discussion
	6.1 Total Cost of Ownership
	6.1.1 Setting
	6.1.2 Model
	6.1.3 Conclusion

	6.2 Discussion of the Process
	6.3 Discussion of the Prototype
	6.4 Discussion of the Notification Specification Language
	6.5 Discussion of the Expected Benefits and Costs

	7 Summary & Future Work
	7.1 Future Work
	7.2 Takeaway Messages

