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Abstract

Due the more and more sophisticated medical care in western countries the
main causes of death is moving against diseases of the cardiovascular system
like heart attacks, arteriosclerosis or apoplectic strokes. Hence it is not sur-
prising that a lot of researchers are going to the time and effort of researching
on that field. Especially the arterial part of the cardiovascular system is of
fundamental interest because of its transport features.

Modelling and simulation of the cardiovascular system have a long tradition,
but mainly during the last century a big amount of models for the simula-
tion of blood flow and pulse wave propagation in arteries were developed.
Since the first compartment model published in 1733 by Stephen Hales [13]
a huge amount of different models emerged. From very simply lumped pa-
rameter models without consideration of control mechanism to very complex
3-dimensional models for the blood flow in systemic arteries the reader can
find a lot of scientific works in literature. All this models have its advantages
as well as its disadvantages, depending on the aim of the simulation. The
simple models may not map the physiological properties properly and the
complex models are too hard to handle or they consider only a small part of
the whole cardiovascular circle.

This work tries to find the happy medium and a dynamic controlled and
identifiable multiscale model for the whole cardiovascular cycle is developed.
The validity of the model is verified by measured data. Doing this, several
different types of models are discussed and chosen to be connected to the
final overall model.

In detail this work covers the implementation of an one-dimensional dynamic
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model for the big systemic arteries based on the incompressible Navier-Stokes
equations and its connection with a lumped parameter model of six compart-
ments. Additionally, a model for the small arteries is used for determination
of boundary values for the termination segments of the modelled vascular
bed. Within the compartment model two physiological control mechanisms
are considered. To connect the models to each other they have to be synced
at first since they operate on different time scales. While the solution of the
controlled compartment model is straight forward by quadrature, solving the
dynamic Navier-Stokes model is more sophisticated. Here we used a finite
volume method implemented by Wibmer [55].

A fundamental part of this work deals with the identification of the cou-
pled dynamic multiscale model based on measured data. To do this, several
so-called alternative models are tested to be able to compute as much as pos-
sible unknown parameters from an usually quite fragmentary set of measured
data. Basically, two classes of parameters have to be computed. On the one
hand the geometrical and physical structure of the vascular bed, mainly of
the big systemic arteries has to be determined (i.e. vessel diameters, lengths
and elasticity), on the other hand by reason of the used computational meth-
ods terminal conditions have to be fulfilled. For instance, we use Windkessel
models on termination segments of the arterial tree whose parameters have
to be known.

From ultrasound measurement we are able to achieve physical data of the
vascular bed of several positions. By help of other datasets from literature
the missing data are extrapolated. Due the usage of an additional electro-
cardiogram (ECG) the pulse wave velocity can be measured as well what is
used for determining the vessel wall elasticity.

The Windkessel data are computed through a linearised model for the cardio-
vascular tree each time step in the scale of the compartment model. Doing
this, a model for the small arteries based on the linearised Navier-Stokes
equations is used.

All this was implemented in JAVA and C++ and a simulation and identifi-

cation tool for the human arterial system emerged.



Kurzfassung

Heute verlagert sich die Haupttodesursache aufgrund der immer besser wer-
denden medizinischen Versorgung und dem dadurch immer hoher werdenden
Alter der Menschen in der westlichen Welt immer mehr auf Erkrankungen des
kardiovaskuldren System. Herzversagen und Arteriosklerose sind nur einige
der Ursachen. So wundert es nicht weiter das sich viele Forschungen im
medizinisch-technischen Bereich auf das arterielle Kreislaufsystem konzentri-
eren, welches aufgrund der Transporteigenschaften von zentraler Bedeutung
ist. Auch in dieser Arbeit wird vor allem auf die Modellierung des arteriellen
Teils eingegangen.

Simulation des arteriellen Blutkreislaufs hat eine lange Tradition. Wahrend
des letzten Jahrhunderts wurden eine Vielzahl von Modellen zur Simula-
tion des Blutflusses und der Pulswellenausbreitung in den Geféifen entwick-
elt. Seit dem ersten Kompartment Modell von Stephen Hales aus dem Jahr
1733 |13] entstanden die verschiedensten Modelle, die Teile des arteriellen
Systemkreislaufs abbildeten, bis hin zu globalen Modellen fiir den gesamten
Blutkreislauf und 3-dimensionalen Stromungsmodellen der Arterien. So ver-
schieden die Modelle sind, so sind es auch ihre Losungsmethoden. All diese
verschiedenen Ansédtze haben ihre Vor- und Nachteile, abhéinging vom ver-
folgten Ziel der Simulation. Die einfachsten Modelle haben zu wenig Aus-
sagekraft da sie zu wenige physiologische Phdnomene abbilden, zu komplexe
Modelle sind aufgrund der grofen Anzahl an unbekannten Parametern nicht
identifizierbar.

Diese Arbeit versucht einen optimalen Mittelweg zu finden um ein globales

dynamisches geregeltes und identifizierbares Modell fiir den menschlichen
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Herzkreislauf zu entwickeln und die Giiltigkeit des Modells anhand von Mess-
daten zu verifizieren. Um das zu bewerkstelligen wurden verschiedene Model-
lansitze gewahlt und miteinander gekoppelt.

Im Speziellen wird in dieser Arbeit ein 1-dimensionales Stromungsmod-
ell auf Basis der inkompressiblen Navier-Stokes Gleichungen mit einem 6-
Kompartmentmodell fiir den Regelkreislauf verkniipft. Die beiden Modelle
arbeiten auf verschiedenen Zeitskalen die synchronisiert werden miissen.
Wihrend das Kompartmentmodell mittels einfacher Quadratur gelost wer-
den kann, sind zur Losung der partiellen Navier-Stokes Differentialgleichun-
gen komplexere Methoden erforderlich. Hierzu wurde auf die Lésung von
Wibmer [55] mit einem finite Volumen Verfahren zuriickgegriffen. Andere
Methode wie zum Beispiel finite Elementen oder finite Differenzen finden
sich z.B. in |8, 12, 38].

Der Hauptteil der Arbeit beschiftigt sich mit der Identifizierung des gekop-
pelten multiskalen Modells auf Grund von Messdaten. Dazu wurden eine
Reihe von so genannten Ersatzmodellen untersucht um von der beschrank-
ten Anzahl an verfiigharen Daten auf die fehlenden Daten riickzurechnen.
Prinzipiell sind aus den Messdaten zweierlei Parameter zu bestimmen; zum
einen muss die Struktur des Arteriennetzwerks (d.h. Arteriendurchmesser,
Langen, Elastizitdt) angepasst werden, zum anderen die Parameter der
Randbedingungen die durch die verwendeten Methoden auftreten, bestimmt
werden. Viele dieser Parameter sind nicht direkt messbar und miissen indi-
rekt durch andere Modelle bestimmt werden. Da die Randbedingungen von
den zu berechnenden Grofen abhingen, miissen diese in jedem Zeitschritt
neu bestimmt werden wofiir einfach zu berechnende Ersatzmodelle notwendig
sind. Im Speziellen werden so Elasitizitdt und Windkesseldaten an den End-
segmenten des modellierten Arteriennetzwerkes berechnet.

Im Rahmen der Dissertation konnte auch eine Studie mit freiwilligen Proban-
den durchgefiihrt werden in der kardiovaskuldre Parameter erhoben wurden.
Diese Daten dienen dann am Ende dieser Arbeit zum einen als Grundlage der
Identifizierung des dynamischen geregelten Kreislaufmodell und zum anderen
zur Verifizierung der errechneten Daten wie Pulsdruckkurven oder Flusskur-

ven.
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Chapter 1
Introduction

"A theory is something nobody believes, except the person who
made it. An experiment is something everybody believes, except

the person who made it."

Albert Einstein

Nowadays the largest amount of deaths in industrial countries can be ascribed
to diseases of the cardiovascular system, like atherosclerosis, hypertension or
cardiac insufficiency. Therefore it not surprising that research on this field
is of big interest and a lot of investigators are trying to explain the systems
complex physiological behaviour, which is still not fully understood. A huge
amount of different physiological functions are influencing each other in a

very complex way.

From today’s technical point of view non-invasive measurement techniques
for the determination of physiological parameters are of high interest and
a wide diversity of devices is available and under development. Especially
the measurement of cardiovascular parameters like pulsatile blood pressure,

cardiac output, blood volume flow and peripheral resistance are of essential
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importance in modern medical diagnostics. Mathematical models can pro-
vide a powerful tool for interpretation and indirect measurement of further

properties.

Also in the field of modelling and simulation of the cardiovascular system
(CVS) a lot of work was done during the last hundred years. The great ad-
vantage of investigating mathematical models instead of living individuals or
animals is obvious, even it cannot be a complete replacement for research on
living mammals. Mathematical models based on physical laws can explain a
lot of effects observed. Starting with models for mathematical description of
pulse wave propagation and simple models for the aortic Windkessel effects
at the beginning of the 20th century, today very complex models in three
dimensions for modelling turbulent flow in bifurcations are available. Also
the fast development of computers during the last two decades was very help-
ful for research and the development of highly sophisticated mathematical

models which are solved numerically.

Although research on blood flow in arteries started long time ago only a
few researchers worked on this topic until the 1950s since a huge amount of
investigators started to develop models by using different kind of approaches.
When simulating blood flow and pressure waves in arteries the governing
equations for an incompressible fluid in an elastic or viscoelastic domain
have to be solved. Doing this at least four approaches are possible. The first
approach is the use of lumped parameter models. These models are easy
to handle, cheap in computing time and have less parameters to identify.
Usually these models are compartmental based and cover the whole human
cardiovascular system including the pulmonary and venous part in contrary
to the other approaches. But transient behaviour of the pressure and flow

waveforms can not be studied.

The second approach, the one-dimensional wave propagation method, in-
volves solving the governing equations of blood flow in a one-dimensional
domain and is based on the assumptions that the dominant component of
blood flow velocity is oriented along the vessel axis and that the pressure can

be assumed to be constant over the cross-section of the vessel [50]. Assuming
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further a Newtonian fluid in a deforming, impermeable, elastic domain, these
nonlinear partial differential equations consist of the continuity equation, a
single axial momentum balance equation and a constitutive equation. Addi-
tionally boundary conditions have to be drawn up. A lot of solutions of this
approach can be find in the literature solved by different numerical meth-
ods like finite difference schemes, finite elements or finite volume methods
[38, 41, 50, 53, 55].

A third approach is based on the Womersley solution for pulsatile flow in
elastic vessel [56, 57, 58]. Here, some more assumptions were made, namely
asymmetry, linear constitutive behavior and small perturbations about a
constant pressure and zero axial velocity reference state. Then, a system of
linear partial differential equations can be derived and solved analytically.
A solving strategy can be to prescribe flow and impedance at the aortic
root and determine characteristic impedances for the arterial segments like
Avolio did in [3]. While these impedance-based linear models can be used
to prescribe flow and pressure at the aortic root, they do not incorporate
nonlinear advective losses or losses due to branching and stenoses |32, 46, 50,
51]. Especially applied to blood flow in the major arteries this is perhaps the

most significant limitation of Womersley’s theory.

The forth approach to model blood flow and pressure wave forms in human
arteries is to solve the three-dimensional Navier-Stokes equations numerically
in elastic domains. It requires also appropriate boundary conditions. While
the prescribed velocity, volume flow or pressure, depending on the formula-
tion, can be computed, the quantities for the blood flow exiting the vessels
in the terminal segment of the branch is unknown and part of the desired
solution [5, 7, 20, 35].

Due to the goal of this work is to gain an identifiable and controlled dynamic
model for simulating blood flow and pressure wave forms in the major arter-
ies we make use of the first three of the approaches mentioned above. For
getting pressure and flow wave forms in systemic arteries it is not necessary
to compute them also in the venous part, but because of the systems’ control

it can not be neglected and therefor parts of minor interest are governed by
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simpler lumped parameter models, so that only very less physical parameters
have to be identified. The parts of interest within the vascular system are
modelled in a more detailed way. All of them are combined to a big model

which let us consider the behaviour of the whole system.

Within this work the focus is on models for termination segments of the vas-
cular bed and its coupling with models for control and blood flow in arteries.
During investigation it became obvious that this is a quite difficult task. Ad-
ditionally its parameters cannot be identified directly by measurement and

so other indirect methods became necessary.

For the combination of models of different scales a good understanding of
the physiological coherences is necessary what should be given with this
work also. Starting with some haemodynamical fundamentals given in the
next section, an introduction into mathematical modelling of fluid dynamics

is covered by the second chapter.

The most common-sense strategy in modelling complex systems is the
bottom-up approach. The three basic concepts of cardiovascular modelling,
on which all other models developed later are based on, are explained in the
third chapter. Using the bottom-up principle, the compartmental model with
control mechanisms covering the whole CVS is given in the following chapter.
After that a more detailed linearised model for the systemic arteries, which
is the part of interest in investigation of cardiovascular diseases, is developed

in chapter five.

The third and last approach considered within this thesis is a non-linear
approach solving the Navier-Stokes equations for elastic tubes. This numer-
ically solved model handles a huge amount of effects observed in natural
environment, but identifying its parameters is a difficult task for which the

other more simple models are used.

The aim of this work is to develop a controlled and identifiable model of
the whole CVS and therefore the different models mentioned above are con-
nected to each other, what is the content of the seventh chapter. In the last
chapters an overview of the implementation of the whole model with all its

approaches is given and the results of simulation runs are presented. For
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better readability some complex formulas and tables of measured data are

sourced out to the appendix and its sections are referred in the context.

1.1 Modelling and Simulation

For a huge amount of problems in applications quantitative as well as qual-
itative propositions are claimed to be emerged from the solution. Only in
some very simple cases both can be done directly. Usually the use of math-
ematical methods is necessary, even a lot of obviously empiric solutions are
based on an abstract model behind. Nowadays we are able to use more and
more complex systems of a better understanding of natural processes (e.g.
healing of diseases). The basic tools for it are mostly mathematical mod-
els, i.e. formal descriptions using mathematical formalism like equations or
graphs.

Simulation is a method beyond a lot of others to solve problems in different

applications. The concept of simulation might be described well by

"Simulation is the replication of a dynamic process in a model to

get insights which are transmittable to the real world"

Modelling and simulation is an iterative process where the model has to be
adapted to the real world recurrently. Hereby the incessant interaction of the
different steps is essential. Observations lead to a model and the results of the
simulation at their part lead to observations again, on which the validation
of the model is based.

1.1.1 Types of Models

A model is the description of a concrete system. Dependent on the based ap-
proach different kinds of models are distinguished. A classification of models

discussed within this work is given in the following section.
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'
Analysis

Figure 1.1: Scheme of a simulation study

Phenomenon

Structural Models

The geometrical structure of the arterial tree is mapped onto the model
where the physical parameters and physiological properties are considered.
This is the most detailed variant we are using, but it leads also to a higher

complexity and computational efforts.

Lumped Parameter Models

By using this kind of models the geometrical structure of the aterial tree
is not mapped, but the behaviour of the cardiovascular properties and its
regulation process is considered in a global way. To do this the arterial tree
is lumped to so called compartments which are investigated with our model.
It is clear that there are huge restrictions on using such kind of models,
but they are much more simpler and the amount of unknown parameters is
smaller. For instance with a lumped parameter model also the solution is
lumped, for example the blood pressure is gained only as a mean value, not

as a transient wave form.
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Alternative Models

Sometimes the underlying physical procedures are not known or are too com-
plex for modelling it in a practical way. In this case it can be a good choice
to use alternative models. Instead of mapping the structure of the cardiovas-
cular bed, the behaviour of the considered process is the basis of the model.
The most prominent example for this type of models is the so called Wind-
kessel model on which we will refer often within this work. Parts of the
arterial tree behave like a Windkessel and so we can use it as a simplified

alternative model.

Models for Boundary Data

Due to the complexity of the human physiology only parts of the internal
procedures can be considered. Under such restrictions it follows that one has
to deal with unknown boundary parameters indispensably. For modelling
this artificial splitting the use of alternative models is necessary. This way
are modeled parts of the system which are not considered by the simulation,
but which are necessary to close the circle. In our special case the boundary
data at the entry respectively the exit of the system, namely the vessel tree
of the large arteries. We need a model for the heart, with it the blood flow
is driven, as well as a model for the small arteries which are not concerned
by our approach by default. The small arteries cannot be modeled like the
large ones cause of the lack of measured data and the very wide branched
structure which is not known. We just know how they behave and try to
simulate its phenomenons. Also the elasticity of the vessel walls is mapped
by such an alternative model, based on observations. All this models are
dynamic, that means time dependent, contrary to the model parameters,
which are constant, and model variables which are determined by the model
itself.
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1.2 Haemodynamical Basics

The overall arrangement of the human cardiovascular system can be sum-
marised briefly as follows (compare [34]).

The system is driven by the heart, which is composed of four chambers, ar-
ranged in two pairs. Two of the chambers, the atriums are thin-walled, and
connected through valves to the thick-walled ventricles, one on each side.
From there, blood is pumped into the aorta (left ventricle) and into the lungs
(right ventricle). The left ventricle is more muscular then the right one to
produce enough pressure to pump oxygenated blood through the body. Fur-
thermore, the left ventricle is connected to the aorta, the main and largest
artery in the human body with a diameter of approximately 2.5 cm. Large
arteries branch of the aorta and the arteries became smaller and smaller until
they reach a diameter of 30-100 pum in the arterioles. These small arteries end
in the capillaries with a diameter down to 4 or 5 um. These very fine vessels
converge again in the venous system which has other mechanical properties

as the arterial part. In this work only the arterial system will be considered.

The walls of bloodvessels have a similar structure in the whole body. They
are made up of similar materials, although their proportions vary in different
parts of the system. Traditionally the wall is divided into three layers, the
innermost intima, the media and the outermost adventitia. The inner intima
consists of two parts, the endothelium, which is a single layer of cells, and sur-
rounding it, a thin subendothelial layer containing collagen fibres. The most
important part of the vesselwall when considering mechanical properties is
the media. The inner boundary is formed mainly by a layer of interlinked
elastin fibres, called the internal elastic lamina. The rest of the media, which
is usually the thickest part of the vessel wall, differs in the structure from
large to small arteries. In larger arteries it consists of multiple concentric
layers of elastic tissue (elastin), separated by thin layers of connective tis-
sue, called collagen and smooth muscle cells. In smaller arteries the media
consists mainly of this smooth muscle cells with thin layers of elastin and
collagen in between. After another thin elastic layer the adventitia is con-

nected outside. Although it is as thick as the media it plays an unimportant
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rule for mechanical properties, it consists of very loose tissue.

The vessels consist of elastin, collagen and smooth muscle fibres of about
50%, the rest is water which has a negligible effect on the mechanical prop-
erties. The difference of elasticity of arteries from the proximal to the distal
end is caused by the ratio of elastin to collagen. In the intrathoracic aorta
the ratio is about 1.5, while in other arteries, which are more stiffer, the ratio
decreases to about 0.5.

It is clear that the mechanical properties of the vessel walls depend on both
on the properties of its individual components and on how they are connected
together. Elastin is a very elastic material and can be extend easily. Collagen
is much stiffer with a Young’s modulus of about 104 Nm~2. Smooth muscle
has a Young’s modulus similar to that of elastin, but its actual value depends
on the level of physiological activity, varying from 100kNm~2 in the relaxed
state to 1200kNm~2 in the active state. But only elastin is purely elastic,
the others, especially smooth muscles show viscoelastic properties what is

reflected in dynamic properties of artery walls.

1.2.1 Viscoelasticity of the Blood Vessels

In basic considerations of the pressure-flow relationships of oscillatory flow
the artery is treated as a cylindrical tube of constant diameter. In reality,
an artery is a viscoelastic tube whose diameter varies with a pulsatile
pressure and whose elasticity varies therefore with time and frequency. The
mechanical properties of the vessel wall are well investigated and its results
can be found in literature [4, 31, 34, 36].

To study haemodynamics of the arterial system knowledge of the elastic
properties of the arterial wall is of fundamental importance. Indeed,
knowledge of the viscoelastic properties of the blood vessels has long been
recognized as playing an essential role in cardiovascular behaviour.
Relations between forces applied to a body and its deformation is covered by
the theory of elasticity. The force per unit area producing the deformation
is called the stress whereby the ratio of the deformation to its original form

is called strain. Because its a ratio, strain is dimensionless. Although the
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ability to withstand a stress is a property that distinguishes a solid from a
liquid, a larger number of substances exhibit properties appropriate to an
elastic solid as well as a viscous liquid. Blood vessels belong to this huge
class of so called wviscoelastic materials. The deformation of such materials
depends on both the magnitude of the stress and the rate at which is
applied.

Of course no substance is perfectly elastic when very large forces are applied
to it, but for small deformations it is proportional to the force and linear.
This proportionality was first described by Robert Hooke (1635-1703) in 1676
and is well known as Hooke’s law. With larger forces this proportionality
ceases and this limit is known as elastic limit. The material cannot regain
to its original form beyond this point. With further increasing of the load
the yield point will be reached and usually leads to breakage.

The classical theory of elasticity is based on two fundamental assumptions,
namely the substance is continuous and uniform or homogeneous but neither
of the two applies well to the arterial wall. At first, the wall is highly
extensible and behaves more as rubber, and at second, the main elastic
components as mentioned in the latter section, are collagen and elastin
which a fibrous and supported in a liquid of water and mucoproteins.
Therefore the arterial wall is far from being homogeneous. Nevertheless the

main analyses of the arterial mechanics are based on classical theory.

Strain and Stress

Referring to its consequence strain is divided in longitudinal strain when a
body is extended from a length x4 to a length x1, to compressive strain when
there is a change of volume and to shear strain when there is an displacement
of two points in parallel planes in a direction parallel to those planes.

The longitudinal stress is expressed by



CHAPTER 1. INTRODUCTION 11

1 — X
o = T (11)

while in the y or z direction the strains are given by

yl —yo
Cyy = = —OyxCaqx (12)
Yo

and

21 — &
€2z = ! 0 = —O0zz€xz (13)
20

where o, the ratio of transverse to longitudinal strain, is called Poisson ratio.
o is a characteristic property of the material and for small strain its constant,
but it cannot necessarily be assumed that o,, = 0,,. That holds for so-
called isotropic materials where the elasticity is the same in all directions.
Practically, for the Poisson ratio the effective range is 0.0 — 0.5. For small
extensions with a ratio 0.5, the volume of a solid remains constant when it
is stretched.

In three dimensions we get one tensile and two shearing strains for every
plane. After taking into account that e,, and ¢,, are identical we gain six

independent components

€xxy €xys Cyys €yzy €2z Exp-

and six corresponding Poisson ratios
Ozx, nya Uyya Uyza Ozzy Ozz-

Strain is caused by a force F' acting across a given plane in a body. Thus the
unit of this force F' is %, called stress.

The stress on a point in a plane may be resolved into those normal (tensile
stress) and tangential (shear stress). The components along the three axis

are designated by subscripts where the capital letters indicate the direction of
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a stress component. Because X, and Y, must be equal to prevent rotational

resultant we therefore left with six independent components of stress:

Xoy Xy, Xo. V2, Y3, 2, 2,

The Relationship between strain and stress

The relationship between stress and strain is expressed as an elastic modulus.
As strain is dimensionless, all these moduli will have the dimension of stress
(i.e. force per unit area).

The modulus in longitudinal direction (stress and strain are considered in
the same direction) is called Young’s modulus in honor of the pioneer work
of Thomas Young (1808) and is designated by E.

E=2t (1.4)

In this work the Young’s modulus will refer to the Young’s modulus in cir-
cumferential direction further on. Other definitions of elastic modulus like
shear modulus or bulk modulus are not used here and therefore not discussed.
For further details the reader may refer to [31] and references therein.

As the dynamic behavior of the arterial wall is the periodic strain imposed
by the pulse wave the response of the wall to a stress is often analysed by a
stress of a harmonic function. In this case, the viscous elements will cause a
phase lag of angle ¢ between stress and its resultant strain.

McDonald [31] mentioned the first formulation by Hardung [14, 15, 16| who

introduced the elastic modulus £ in complex form:
E' = Egyn + ipw (1.5)
where the real part g, is given by

= Ao cos ¢ (1.6)
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and the imaginary part by

AP,

— = ging; 1.
o = Ry oS0 (1.7)

l, and ¢, are the average length and the cross-section of the specismen. In
the upper formulas p denotes the dynamic viscosity and w the concerned
frequency.

Although the dynamic elastic modulus is rising continuously with frequency,
in arterial wall it increases markedly up to a frequency below 2 Hz and

thereafter remains constant.

1.2.2 Wave form analysis

The arterial pulse has been recognized from antiquity as the most funda-
mental sign of life. A huge number of scientific publications dealing with
that topic can be found. Marey [42] was the first who obtained accurate
results recording arterial pressure pulses with non-invasive measuring meth-
ods where invasive methods were used before like Frank |9, 10| did with his
manometer for registering intra-arterial blood pressure.

When observing waveforms of flow and pressure in the ascending aorta one
can see differences between the shapes of them. As long as cardiovascular
physiologists have been able to measure pressure and flow in the ascending
aorta, they have puzzled over this phenomenon.

One explanation of this differences could be the existence of wave reflections
caused by the peripheral arteries. A reflected back travelling wave that rein-
forces the pressure will have a cancelling effect on the flow shape. However,
it could not be demonstrated yet that wave reflection are sufficient to explain
such large, qualitative differences in the aortic pressure and flow waveforms
[52|. Milnor |27] remarked that the aortic tree in a young normal animal is a
perfect diffuser, i.e, it generates far fewer reflections than any man-made dis-
tributed network. Wang et. al. [52] explained these phenomenons with help
of simple Windkessel models and verified their assumptions with measure-

ments on dogs. Even with artificial pressure waves generated in the abdomi-
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Figure 1.2: Pressure and velocity wave forms in different arteries (Mills et. al.
[26], adapted by McDonalds [31])

nal aorta, the effect of the back travelling wave could not be observed having
any essential influence on the pressure waveform in the ascending aorta. In
there model for the blood flow in the aorta they divided the pressure wave
into two parts, one describes the pressure as result of the Windkessel, and the
part of the heart generated pressure wave. It can be seen that shape of the
latter is very similar to the flow waveform when wave reflection is neglected.

A diagrammatic comparison of the behaviour of the arterial pressure and
flow pulses as they travel away from the heart is given with fig. 1.2. As shown
in the graphic above mean pressure falls slowly, but the pulsatile pressure
variation increases until it may be double that at the root of the aorta. The
flow oscillation, on the contrary, diminishes markedly. This behaviour can

only be accounted for by the presence of a closed type of reflection in the
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Figure 1.3: Pressure and flow wave forms along the arterial tree (taken from

McDonalds [31])

small peripheral vessels. In the absence of reflections, damping would cause a
parallel fall in pressure and flow oscillations. Subsequently, also the pressure
oscillations must damp out, which takes place in the smallest arteries and

proximal arterioles.

The increase in the ratio of the pulsatile pressure amplitude to that of the
flow amplitude is largely determined by the increase in impedance of the low-
frequency components. Additionally, the change in shape of pressure wave to
that of the flow wave depends on the changes in impedance of the various fre-
quency components in terms of their distance form the main reflection sites,
since the impedance is at a minimum at one-quarter wavelength distance

from these peripheral sites.

The prolonged pressure rise from wave reflection after systolic ejection has
ceased leads to an augmentation of diastolic pressure and increases coronary
blood flow to the myocardium without increasing left ventricular afterload.

Wave reflection during diastole, therefore, appears to be highly advantageous.

In contrary to this when vessel walls become stiffer, for example in later
years or through systemic hypertension, an increase in pulse wave velocity is

caused what results in an early return of the reflected wave to the ascend-
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Figure 1.4: Pressure and flow wave forms along the arterial tree (taken from
McDonalds [31])

ing aorta during ventricular ejection. Such timing is detrimental, since the
augmentation caused by the reflected wave increases systolic pressure and
ventricular afterload.

Thus, the so-called augmentation index, which is defined by

P, — P,

Alr =55,

(1.8)
with systolic (P;), diastolic (P;) and inflection pressure (FP;) is taken as a
cardiovascular risk factor. (fig. 1.4). The inflection point is defined as the
point when systolic ejection is over and only the reflected wave causes an

increase of blood pressure.

1.2.3 Fourier Analysis

Using Fourier analysis for blood flow simulation was motivated from the the-
ory of electrotechnical engineering, where it was is known as a quite powerful
tool. Although this theory was little used before for investigating wave forms
in arteries, it was finally introduced by Womersley. Using Fourier decompo-
sition of pulse and flow waves allows to investigate the complex behaviour of

non-linear distensibility and viscous effects.
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McDonald gave a huge and detailed overview of Fourier analysis concern-
ing pressure and flow waves in his fundamental book [31]. As experiments
show low frequency components dominate the Fourier decomposition of waves
in large arteries. Components with a frequency higher than 15 Hz can be
neglected what makes its computation quite fast what leads to a high per-
formance in computation of linear models which a huge number of segments.

More details will be given later on.



Chapter 2
Fluid Mechanical Properties

"During our crossing, Finstein explained his theory to me every
day, and by the time we arrived I was fully convinced he under-

stood it."

Chaim Weizmann, 1921

The following small introduction to fluid mechanics is based on the excellent
book of Acheson [1]. Tt should introduce into its basics and its notation to be
able to understand this thesis without any foreknowledge in this topic. For
further details the reader is referred to |1, 22, 37].

The flow of a fluid is described by a velocity vector

u = u(x,t) (2.1)

It defines the velocity at every position @ for every time ¢. This tells us
what all elements of the fluid are doing at any time, and usually finding the
solution of 2.1 is the main task, what can be expected to be quite difficult.

Assuming Cartesian coordinates and denoting v having components u, v, w,

equation 2.1 is a convenient shortcut for

18
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u=u(x,y,z1t), v=uv(z,y,2t) and w = z(z,y, 2, t).

A flow is called steady if

ou
5 0
so that w depends on @ only.
A streamline is a curve x(s) at a certain time ¢ whereby its gradient is given
by w(x(s),t). At any particular point, a streamline has the same direction
as u(x,t) and so its following a fluid particle. Mathematically, a streamline
is gained by solving

dr/ds dy/ds dz/ds

u (Y w

at a particular time with x = z(s), y = y(s) and z = z(s).

It is clear that even if we have a steady flow so that w is constant at a point
fixed in space, u changes as we follow any particular fluid element. This
leads us to introduce the concept of rate of change following the fluid, with

is of fundamental importance in fluid dynamics.

Rate of change ”following the fluid”

Let f(z,y,z,t) denote some quantity of interest in the fluid motion, for ex-

ample it could be one component of the fluid velocity w or the density p.

of

5; is the rate of change of f at any fixed position in

First, we note that
space.

In contrast to this describing the behaviour of any state variable along a path
of a particle we use the substantial derivative

%{ _ % (1), y(t), (), 1]
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where x(t), y(t) and z(t) are understood to change with time at the local

velocity w:

dr by

a - a awY

Application of the chain rule gives

bf _of  of of  of
ﬁ_8t+u8x+vﬁy+w8z’

i.e.

Dr_of

oLy (2.2)

It describes the gradient of the concerned variable along a streamline. There-

fore, the acceleration in a fluid at any point in space is given by

Du  0Ou
Remark that for steady flow equation 2.2 shows that the rate of change of f
following a fluid element reduces to (u - V)f.

Additionally,
(w-V)f=0 (2.3)

defines some important stages in fluid theory, thus implies that f is constant
along a streamline. But there is no information about if f is different on
different streamlines. For example consider a flow in x direction and assume
f to be constant in x, so that % = 0. It says that f is independent of x, but
there is no information about y, z, or t.

Another important equation within the theory is

DS _

Dt_o
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which means that f is constant for a particular fluid element and follows
directly from the definition above. It doesn’t preclude that different elements
might have different values of f.

For the following theory we will introduce the term of an ideal fluid and we
will consider fluid elements with a small, but finite volume:

A fluid is said to be ideal as of the following properties hold:

1. It is wncompressible, so that no finite volume element can change its

volume as it moves.

2. The density p is a constant, the same for all fluid elements and for all

time t.

3. The force exerted across a geometrical surface element ndS within the
fluid is

pmOS (2.4)

where the pressure p(x,y, z,t) is a scalar function, independent of the

normal n.

Of course, there is no ideal fluid somewhere in nature, especially blood is
viscous to its extent, but for our next considerations we will assume that our
fluid behaves like one.

From the assumptions of the definition of an ideal fluid several consequences
are implicated. First, consider a fixed closed surface S in the fluid with a
unit outward normal n, where fluid is entering on one side and will leave it
on another. Then, the velocity component along the outward normal is u-n
and the volume flowing out through a small surface element S in unit time

is w-m 9.5, and therefore the rate fluid is leaving the volume element is given

by
/u-ndS
s
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which must be equal to zero for an incompressible fluid and by using the

divergence theorem A.2 we find

/V-ndV:O
s

This can be hold only for
Veu=0

what is named incompressibility condition.

To examine the consequence of the third condition lets consider a surface S
of a finite volume. The force exerted by the surrounding fluid across any
small surface element 0.5 is given by 2.4 and the force exerted on the whole

volume element is

—/pndS:—/ VpdV (2.5)
s 1%

if we apply the identity A.3. Assuming Vp to be continuous it will be almost
constant over a small volume 6V and the force on the small volume of the

surrounding fluid can be taken as —VpdV.

The equations of Euler

Now we are in the position to study linear momentum to a small volume

element 0V. With the presence of gravity, the total force on our volume is
(=Vp+pg)dV

and by Newton’s second law this must be equal to mass times acceleration,

l.e. to

POV oy
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and we obtain

Du 1
vy
D ; p+rg

V-eu=0

as the basic equations for an ideal fluid, known as Fuler’s equations, describ-

ing non-viscous flow of an ideal fluid.

Viscous Flow

Considering blood flow in arteries viscous effects cannot be neglected in
smaller vessels. Along the vessels boundary, inviscid theory is predicting
a slip of the fluid. Yet close inspection reveals that there is in fact no such
slip. Instead there is a very thin boundary layer, across which the flow ve-
locity undergoes a smooth but rapid adjustment to precisely zero. In this

boundary layer inviscid theory fails and viscous effects become important.

It is obvious that the thickness of the boundary layer dominates more and

more against the main part of flow the smaller the considered arteries are.

To examine viscosity consider simple shear flow, for example let the velocity
u be u = [u(y),0,0]. The fluid above some constant level y exerts stress,
i.e. a force per unit area of contact on the fluid immediately below and vice
verse. For inviscid flow this stress would have no tangential component, but

for viscous flow this tangential component 7 is typically non-zero.

If 7 is proportional to the velocity gradient, i.e.

du

the fluid is called to be Newtonian viscous. A wide range of natural fluids
behave like 2.6 under "normal” conditions, also blood can be assumed to do

SO.
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Very often the so-called kinematic viscosity
1
v="= (2.7)
p

is more significant from the fluid dynamical point of view. These values can
vary quite substantially with temperature, but for our applications on blood
flow they can be taken to be constant, as well as we consider only constant
body temperature.

For an incompressible Newtonian fluid of constant density p and constant

viscosity p its motion is governed by the Nawvier-Stokes equations

1 2
—_— . = — — 2.
BT +(u-V)u pr+1/V u+g (2.8)

V.eu =0 (2.9)

These differ from the Euler equations by virtue of the viscous term vV?2u,

where V? denotes the Laplace operator.

No-slip Condition

Observations of real fluid flow reveals that at a rigid boundary the tangential
as well as the normal component of the fluid velocity must be the same as
those of the boundary itself. If we assume the boundary to be in rest, this

means u = 0 there. This holds for fluids of any viscosity v # 0.

The Reynolds Number

The Reynolds number gives a rough indication of the relative magnitudes of
two terms in the equations of motions. Flows with high or low Reynolds num-
ber have quite different general characteristics. It is defined by the charac-
teristic properties U, which denotes the typical flow speed, the characteristic

length L and the viscosity v:
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To understand its importants consider the derivatives of the flow velocity,
e.g. % which will be of the order U/L. Going on the derivative will change
themselves of order U/L over distance of order L and the second deriva-
tive 9?u/0x? will be of order U/L? and for the derivative terms in the first

equations of 2.9 there holds

inertia term: |(u- V)u| = O(U?/L)
viscous term: (vV2u| = O(vU/L?)

For the ratio of the inertia and the viscous term we get

0 (%) — O(R) (2.10)

and the meaning of high and low Reynolds numbers becomes clear.

High Reynolds Number Flow

For high Reynoldsnumber R > 1 equation 2.10 suggests that viscous effects
can be neglected and flow can be seen being in-viscous. A high Reynolds
number is important over most of the flow field, but its not sufficient. In
thin boundary layers where large velocity gradients occur and the viscous
term in the latter equation increases. It can be shown [1| that the typical
thickness ¢ of such a boundary layer is given by

‘o)

Therefore, the larger the Reynolds number, the thinner the boundary layer.

Another complication of high Reynolds number is that steady flows are often
unstable to small disturbances and as a result they become turbulent. This

was the original context in which the Reynolds number where defined.
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Low Reynolds Numbers

Low Reynolds numbers R < 1 cover very viscous flow with special properties.
In such flows there is no sign of turbulence and the flow is extremely well
ordered. Furthermore, their is almost reversibility of flow. For example
imagine two cylinders with golden syrup in between, the inner in rotation,
the outer in rest. Considering a small volume element it will move back

almost to its inertial position after the rotational force ends |1].

Viscous flow where this phenomenons became important will not considered

within this thesis and so the reader is referred to literature.



Chapter 3
Haemodynamical Properties

"Marriage s like pi - natural, irrational, and very important.”

Lisa Hoffman

This chapter gives an historical overview of the development of haemody-
namical models and describes the key properties which are commonly used

when simulating blood flow in human arteries.

During the history a lot of approaches lead to a huge amount of models
by a lot of investigators. As first William Harvey (1578-1657) proved the
existence of blood circulation in his work Ezercitatio anatomica de Motu
Cordis in 1628. Hundred years later Stephen Hales qualitatively described
the first lumped parameter model of the arterial system in 1733 [13]. He
envisioned that heart injects blood into the arterial system during systole
while distending the large arteries. Furthermore he figured out that during
diastole the arteries recoil and make the blood flow through the small arteries
continuous. Therefore he viewed the role of the large arteries a storage device

that transforms intermittent flow from the heart into a steady outflow.

27
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Figure 3.1: Stephen Hales, 1677-1761

3.1 The Windkessel Approach

In the end of the nineteenth century Otto Frank conceived a practical use for
this concept when he attempted the so-called Windkessel to calculate stroke
volume from measured aortic pressure. Measurement of flow remained a big

goal for decades until the electromagnetic flow probe was developed.

Frank related the Windkessel to represent the arterial part of the cardiovas-
cular tree, the outflow noted to represent the arterioles and capillaries [9].
He used the principle of conservation of mass to quantify this description,
where at each time t blood flow stored in the large arteries Qgioreq 1S equal

to the difference of inflow and outflow:

Qstored = an - Qout (31)

Then the most basic assumption of the Windkessel approach was made,
namely to assume the pressure to be the same everywhere in the arterial
system, which is equivalent to that the pressure and flow pulses travel with

infinite velocity.

With this assumption the peripheral resistance was introduced, describing

the relationship of a pressure drop across the small arteries to the flow out
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Figure 3.2: Technical Windkessel

of the system

f)in - Pv
Ry=——"— (3.2)
Qout
where P, denotes the venous pressure. Next, the Windkessel compliance C,
describes the ability of the system to store blood which is given by the change

of blood volume V' caused by a change of pressure.

dv

“ =5,

(3.3)
Substitution of 3.2 and 3.3 into 3.1 leads to a differential equation relating

APy, P
dt R,

For Frank three possible cases have to be considered for the compliance.
Either C',, and R, are both constant, both are a function of pressure or only
C, is a function of pressure. Setting ();, to zero and writing the last equation

in the form

B

Co - o = " dp,,/dt

he concludes that C, is a function of pressure, which was also consistent with

the observed pressure-dependent compliance of the isolated aorta.
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But due the lack of possibilities of solving nonlinear equations this nonlinear
description was neglected by investigators for a long time until computers
made the task less difficult.

Even with pressure dependent compliance Frank’s modell didn’t match pres-
sure measured from an animal and this let him to split the pressure pulse
into two components, into a basic “Grundform” and an oscillating part called
“Grundschwingung”. His model matched the “Grundfrom”, which is the pres-

sure pulse without reflection from peripheral sites.

The real power of the Windkessel concept was not realized until Fourier
Transformation was applied and it was translated into its electrical analogy.
Summing up, the Windkessel approach relates flow to pressure by the arterial
compliance, flow velocity was seen to be not important, which was not shared

by everyone and let another school establish, the long tube school.

B
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Figure 3.3: Windkessel compliance as frequency-independent transfer function
(A) and as a frequency-dependent transfer function. Here, V lags P due inertial
and reflection effects.

3.2 The Long Tube Approach

Whereas Hales and Frank saw the arterial system as a container of blood,
Weber and Womersley saw it as a system transporting pressure and flow
waves. Based on the observation that flow and pressure pulse waves don’t
rise and fall simultaneously throughout the system it was conceptualised as
a uniform, infinitely long tube, so that a pulse wave produced by the heart
never returns. In contrary to the Windkessel model, the focus is on wave

speed velocity and this led to a long history of investigation.
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This view was motivated by the observation that pressure doesn’t rise and fall
synchronously throughout the arterial system and a measurable time delay
occurs between the pressure pulse measured at the aorta and at peripheral

arteries.

In general, three equations are used to describe flow in elastic tubes: An
equation of motion, an equation of continuity, and an equation describing wall
properties. In the beginning of the investigation of pressure wave propagation
several analytic equations were found, whereby the Moens-Kortweg formula
is the most famous representative. For a thin-walled tube the pulse wave
velocity c¢g is expressed as a constent value related to blood density p, wall

thickness h, radius » and Young’s modulus of elasticity E:

hE
co =] —
0 2pr

This formula neglects effects of blood viscosity and was experimentally vali-

dated by Moens [28] but may approximate reality very well.

In a following epoch investigators started with a more formal approach and
assumed the Navier-Stokes equations which were simplified to solve this non-
linear partial differential equations analytically. This was the very productive
time when Womersley provided a series of papers [56, 58, 57|, resulting in
solutions including the complex interaction of resistive and inertial forces,

introduced by pulsatile flow.

3.3 The Branching Network Approach

Similar to the latter approach this approach is based on the Navier-Stokes
equations by adding more and more complexity to the models. Similar to the
latter method this approach is based on solving the Navier-Stokes equations

with flow velocity and pressure as variables of interest. The elegant vector
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Figure 3.4: A branching network model

form is given by

Dv

- _VP 2
P VP + uVev

This relates the inertial force p% to the pressure force V P and viscous forces
uV3v.

For solving this equations analytically usually troublesome terms are ne-
glected. Even a general solution was found by Meblin and Noordergraaf |25],
the simplified less powerful approach was used by investigators. A justifica-

tion of the assumption that non-linear terms are negligible was was done e.g.
by Li et al. |21].



Chapter 4
Lumped Parameter Model

"Basic research is what I'm doing when I don’t know what I'm

doing."”

Wernher von Braun

This chapter should introduce in a lumped parameter model for human blood
flow which was content of my diploma thesis [19|. Based on the model from
[29] a six compartment model was developed and extended with a control
mechanism and the dependency of outer influences as physical stress and
hydrostatical pressure. Furthermore a simulation environment for simulation
of blood flow in arteries was developed which gives a control engine for the
simulation of all models described in this work.

With this simple approach we gain values for heart rate, systemic blood
pressure, beat volume and the peripheral resistance, averaged over one heart
cycle. This is done by a mechanical two-pump model. Besides the two heart
chambers also 4 other compartments are used to map the pulmonary- and
systemic system, each with arterial and venous part. Furthermore a control
mechanism, patterned on the natural control by the medulla and its pressure

receptorsis is added to the system (refer to 4).

33
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Figure 4.1: Compartmental model scheme

4.1 The circuit model

The compartments mathematical description is motivated through the Frank-
Starling relation for the heart chambers and Poiseille’s law for the compart-

ments, describing the arteries and veins.

From the Frank-Starling relation we get that an increase of the ventricle
strength k& with constant arterial pressure P4 and constant end-diastolic vol-
ume Vp will increase the beat volume:

k

v = P_AVD (41)

On the other hand is the beat volume given by the difference of end-diastolic
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and end-systolic volume
vg = Vp — vg. (42)

Finally the end-systolic blood volume vg can be written as

e (1) »

For the mathematical formulation of the system also the ventricle volume vy,
is needed which is modeled by haemodynamic considerations. The change
with time of a control volume can be written as difference of flow at discrete

points x and = + Ax:

81]\/

5 = q(z,t) — q(z + Ax,t) (4.4)

After determination of its Taylor series

q(x + Az, t) = q(z,t) + g—zAz (4.5)

and substitution in equation 4.4 we get the continuity equation for flow in
dvy 1

op Ax

an elastic pipe with compliance C' =

dg  Op

After taking into account the frequency dependent elasticity modulus and

some equivalent transformations we get

(4.7)

for the beat volume, whereby ¢p defines the duration of diastole. For more
details the reader is referred to |48|.
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The mathematical description of the four remaining volume compartments
is done by use of Poiseuille’s law:

o= (-1 (4.8)

SulL
The change of volume in one compartment is given by the difference of inflow

and outflow
dvas

dt

whereby further on for better understanding subscripts will be used for dis-

= Gout — Gin

tinguish between the systemic arterial (45), systemic venous (yg), pulmonal
arterial (4p) and pulmonal venous (yp) parts of the CVS. Variables will be
written in lower case letters where we use p for pressures, v for volumes, ¢
for flow, ¢ for compliances and r for peripheral resistances as given by table
4.1. Constants are denoted by capitals.

After lumping the parameters in equation 4.8 to a single one, named as pe-

ripheral resistance r for the change of volume follows

dvag _ PAs —Dvs

d t = Gout A

The relation between pressure and volume is given by the compliance of the
arterial walls. An increased blood volume v, leads to the pressure pag,

determined by the differential equation

dpas _ 1dvas
dt c dt

(4.9)

Describing all 4 compartments through this principle we gain the following
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system of ordinary differential for the uncontrolled system:

PAs —on oo 0 0 pas
pvs | _ cvsl.m _cvsl.m 0 0 pvs |
Pap 0 0 _CAPl‘T’P CAPl~rp pap
p‘}P 0 0 CVPl'T’P _CVPl'TP pvp
iQL
- %%z
1
cap IR
- c\} 4L
Value Description

Pas.pve.pvs.pap | pressure of the venous resp. the
arterial part of the systemic and
the pulmonal circulation

Ccas.Cvs,cap,cyp | compliances, taken to be constant

AP peripheral resistance of the sys-
temic resp. pulmonal circulation

qr,9r blood flow out of the left and right
ventricle

Table 4.1: Description of the used variables for the compartment modell

4.1.1 Control of the Compartmental Model

Within the human body a lot of different mechanisms for controlling the
blood pressure are known. Our considerations are restricted to the short
time control by the pressure receptor as mentioned before. To add this
mechanism on the model we use a negative feedback of the pressure pug
with appropriate functions. These feedback functions reflect the relation
between the peripheral resistance respectively the heart rate and the blood
pressure, gotten through measured data. The feedback functions are realized
by splines, whereby characterstic parameters like boundary points, inflection

point and its gradient. These parameters can be determined from measure-



CHAPTER 4. LUMPED PARAMETER MODEL 38

ments easily with
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Figure 4.2: Elasticity of the aortic wall

an optimisation method and are therefor identifiable by

4.1.2 Compliance in the Controlled Model

The compliance of the arterial walls is dependent from complex mechanisms,

hence the pressure as well. Therefor the assumption the compliance to be
constant cannot be held. (fig. 4.2)

The compliance for the systemic and pulmonal compartments can be written

as ratio of total blood volume and blood pressure:

~ Kevs
Cys =
Pvs
_ Kcap
CaAp =
bap
_ Kevp
Cvp =
bvp

The aortic walls consists of a thick elastic layer the aortic blood volume

is changing in dependence of the blood pressure. Because of this so called
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Windkessel effect the systemic volume cannot to be taken as constant. A
good approximation for this nonlinear relation between compliance C'AS

and pressure PAS is given by

4
Pasn
=(CASN - |1 - —22*
cas ( 1+ pleSN)

where pasy = 555 and CASN set as constant.

4.2 Extended Controlled Model Considering

Stress

The model described above is extended by several state variables for simu-
lating physical stress. The human physiology has two main mechanisms to
react on it. The first is a qualitative reaction and is located in the peripheral
vessels by opening or closing its circular muscles which results in a change of
peripheral resistance. It represents a very fast and energy efficient controlling
method and is modeled by a term including the stress’ gradient.

The second mechanism results in increasing the heart rate and acts much
more slower, but depends on the stress quantitatively. This can be modelled
directly by the use of a transfer function of first order. But there is also an-
other mechanism with leads to decrease heartrate slowly and smoothly with
ending stress, which is represented through a transfer function of first order
as well.

Like in the original model the variables for beat volume, heart rate and pe-
ripheral resistance are represented by ordinary differential equations. The

pressure is given by flow and compliance of the vessels.

4.2.1 Peripheral Resistance

The peripheral resistance is reacting locally and fast on given stress, but its
going back to the initial value very slowly. To simulate this effect an artificial

slowly decreasing stress function was introduced:
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Variables

TA stress dependent component of r4
A freedback component of r4

hrp artificial smoothly decreasing stress
ew stress

Parameters

Tyrp | time constant for hppg

Kap | drop rate of gradient of stress

San amplification factor for the gradient

Raq | given gradient of the feedback function at the inflection point

Table 4.2: Model Magnitudes for the peripheral resistance

hFB + KHB‘6W| 3 :
. — BB SHBTEWL Gf ey < 0
_ T T
hFB _{ HB HB

__hrB 1
Tip else

This additional differential equation describes a exponential decreasing stress
function which is added on the original one, which gives as a simple way for
modelling this phenomenon. The stress dependent part of the peripheral
resistance can now be written as

- TA KRA

Th = — + “(ew + I
. Turp  Turp (ew + hrs)

4.2.2 Influence of the Hydrostatic Pressure on the Pe-

ripheral Resistance

A closer exploration of measured data gotten from a tilt table test leads to
use a transfer function of first order for modelling this behaviour where the
resistance is following the state of hydrostatic pressure. The oscillation at
the beginning of pressure change is modelled by the use of term dependent

of the differential of hydrostatic pressure what can be seen as a qualitative
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control mechanism. Hence, we get
Ta = Kra-pan
and

ra=—Kpag -pan

for the control of peripheral resistance in dependence of hydrostatic pressure,

respectively the humans actual position.

4.2.3 Dependence of Beat Volume and Heart Rate on

Hydrostatic Pressure

Due to the very fast pressure drop of the venous system caused by change
of hydrostatic pressure (e.g. putting tilt table in upright position) a very
abrupt decrease of beat volume is caused. In our model this is done by a

linear dependence of hydrostatic pressure:
by = by + Ksvin - pan

The same behaviour can be observed for the heart rate. Therefore its depen-

dence on hydrostatic pressure is modeled the same way:

hp = hp + Kypy - pan

4.3 Automatical Parameter Identification

For the parameter identification process a tool was developed which uses a
gradient algorithm to determine the needed parameters for the control of the
model based on measured data. (fig.4.4).

The identification process is divided into three parts. After a suitable pre-

processing the values for the undisturbed system (without stress or influence
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Figure 4.3: Measure data for parameter identification

of hydrostatic pressure) are determined. Essentially, the parameters deter-

mining the feedback functions are optimised.

Value | Description
Hpq Gradient of the feedback function for the heart rate
Rac Gradient of the feedback function for the periph. resis-

tance
L Compliance of the left ventricle
Cr Compliance of the right ventricle

Keoys | Compliance of the venous system
Cusy | Normed compliance

Table 4.3: Optimised parameters of the undisturbed system

The module approach and the use of feedback function makes it easy to
identify the parameters for the different stress situations separately. After
determining all necessary values for the undisturbed system, the parameters
for hydrostatic pressure and the stress dependent parts can be computed.

For solving this optimisation task the class MinConNLP of the JMSL Nu-
meric Library was used. The algorithm based on the FORTRAN subrou-
tine, DONLP2, by Peter Spellucci. uses a sequential equality constrained
quadratic programming method with an active set technique, and an alter-
native usage of a fully regularized mixed constrained subproblem in case
of nonregular constraints (i.e. linear dependent gradients in the "working

sets"). It uses a slightly modified version of the Pantoja-Mayne update
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Figure 4.4: Parameter identification scheme

for the Hessian of the Lagrangian, variable dual scaling and an improved
Armjijo-type stepsize algorithm. Bounds on the variables are treated in a
gradient-projection like fashion. For more details the reader is refered to
[43, 44].

Preprocessing

Before the identification process the measured data have to be averaged by
curve fitting. Too many oscillations occur by the used measurement tech-

nique. Following, the time points of the beginning and the end of the distur-
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bances (stress or change of hydrostatic pressure) have to be defined. Either
this was logged by the measurement tool or it has to be determined on the
measured data manually. High accuracy is not very important for this pro-
cedure, it will by higher than that of the measured data anyway.

If this is done, the needed quantities for the variables beat volume, heart rate,

peripheral resistance and mean systemic blood pressure can be computed.

Identification of the Undisturbed System

By using a gradient method which was mentioned above the parameters
concerning the mean values of the considered variables are determined. (tab
4.3). Doing this after every simulation step the goodness functional as to
be evaluated, which as a classical least square method. The algorithm is
terminating if the desired accuracy is reached or the maximum number of

iterations is exceeded.

Identification of the Parameters for the Disturbed Sys-

tem

Using the same procedure as before the parameters for the dependence on
outer influences are determined separately. E.g. the parameters optimised

considering hydrostatic pressure are given in table 4.4.

Name | Description

Kpag | Proportional factor for pressure

Kga Proportional factor for peripheral resistance
Kyry | Proportional factor for hear rate

Kgyrg | Proportional factor for beat volume

Table 4.4: Optimised parameters considering change of hydrostatic pressure
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Chapter 5

One Dimensional Linearised
Model

"In the 19th century fluid dynamicists were divided into hydraulic
engineers who observed what could not be explained, and mathe-

maticians who explained things that could not observed."

Sir Cyril Hinshelwood

The concept or circulation of blood was established by William Harvey in
1628. Since then numerous attempts have been made at gaining insight
into the physical relations between the phenomenons being observed in the
complicated anatomical structure of the circulatory system. Then, the fact
that the intermitted outflow of the left ventricle is more a steady one, was
recognised by Hales in 1733. He described the arterial system as a single
elastic chamber which became known as Windkessel model, introduced by
Frank [9] in 1899.

In the early fifties of the 20th century McDonald |23, 24| showed with help
of rabbits that there is a reversal blood flow in larger arteries. Further more
Helps and McDonald [17| showed a phase-lag between pressure gradient and
flow somewhat analogous with the phase-lag between voltage and current in

a conductor carrying alternating current. Based on these results, Womersley

46
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[56] used the similarities with the theory of the distribution of alternating
current in a conductor of finite size.

First, he considered the problem in circular tube when the pressure gradient
is known. For a tube with length, filled with a fluid of viscosity u the equation

of motion of the liquid assumes

d?>w N ldw pi —po
dr?  rdr wul

=0 (5.1)

where w denotes the longitudinal velocity of the fluid and r the distance of
the fluid element from the axis of the tube.

The solution of this first simple approach with constant pressure gradient

p1— D2 1S

_pl_p2 2 2
w = i (R*—1r7) (5.2)

whereby R is the radius of the tube.

5.1 Observations

At the beginning of the cardiac ejection phase (systole), the pressure rises
at the entrance of the aorta and a blood volume of about 80ml is ejected.
Because of the vessel elasticity the pressure distends it locally. Then it con-
tracts again and the next segment is caused to extend and so on. In fact, a
wave is generated and propagates downstream, where the restoring force is
provided by the elasticity of the vessel wall.

This propagation can easily be seen on measured data, more over there are
three phenomenons which can be observed: First, the amplitude of the pres-
sure wave increases when the wave propagates, second, one can observe a
steepening of the wave front and third, the wave form of the flow velocity
has another shape than the pressure wave. These phenomenons, as will be

shown later, cannot be explained by a simple linear theory.
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5.2 A First Simple Approach

As a first approach let us study a very simple and direct approach of mod-
elling blood flow in arteries. Therefore we begin considering an infinitely long,
straight, horizontal elastic tube with uniform undisturbed cross-sectional area
Ap and uniform external pressure p., containing an inviscid incompressible
fluid of constant density p which is initially at rest. Further on we analyse
just disturbances with a wave length much greater than the tube diameter, so
that the time-dependent internal pressure can be taken to be a function only
of longitudinal coordinate x and time ¢. Because we want a one-dimensional
model we denote the disturbed cross-sectional area by A(z,t) and the fluid
velocity by u(x,t), which is intermitted over the cross-section.

The governing classical equations are those representing conservation of mass,
conservation of momentum and elasticity. By considering the rate of change
of volume of a thin slice of the tube, we gain the equation for conservation

of mass by

0A 0

o oo (Au) =0 (5.3)

The momentum equation by Euler is given by

ou ou  10p

and the elasticity for our simple approach is modeled by the means of a so
called tube law, relating transmural pressure difference to local cross-sectional

p—pe = P(A) (5.5)

whereby P is a function like in figure 5.1.

Now let us consider small amplitude disturbances such that u is small and

A=A+ A, p—p.=P(A)+p (5.6)
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where |A'| < Ay, |p'] < P(Ag). After substituting into the equations and
neglecting all terms nonlinear in small quantities, we can eliminate u and A’

to obtain the following single equation for p’:

82p/ a2p/
8t2 = C2(A0) 012 (57)
where
AdP
2 —_
c“(A) YT

Equation 5.7 denotes the well known wave equation which describes wave
propagation with small amplitude disturbances along the tube in either di-
rection, but without change of shape, with speed ¢y = ¢(Ag). The general

solution of equation 5.7 is given by

P =h (t - E) + o (t + 5) (5.8)
Co Co

where f; and fy are arbitrary functions, whereby f5 equals zero if we have a
wave propagation in +x direction only.

If we suppose the validity of the Moens-Korteweg wave speed, given through

- (g_;;)% 5:9)

which Young’s modulus E, wall thickness A and diameter d for the vessels
made of a homogeneous and isotropic Hookean solid material. Comparing this
equation with measured data shows us a good approximation with a predicted
value of 5ms~! for the wave speed in the ascending aorta, rising to about
8ms~1 in more peripheral arteries.

This simple theory is very successful at establishing the mechanism of wave
propagation, involving only wall elasticity and blood inertia as well as pre-
dicting the wave speed.

But on the other hand this theory predicts no change of shape of wave-form

as it propagates and the velocity wave-form is of the same shape, different
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Figure 5.1: pressure waves in ascending aorta and femoralis

to that we find considering measured data.
Hence, the theory must be modified to account for all these effects which
will be discussed below. In figure 5.1 one can observe the effects mentioned

before.

5.3 The Concept of Impedance

In the simple models for simulation of the cardiovascular system a steady
flow is assumed and all the properties are mean values of a cardiac cycle. For
a more detailed study this assumption is no more valid cause the pulsatile
behavior of pressure and flow is typical.

For the simple models the Ohmian law, ) = %, is taken to describe basic
flow concerning the arterial resistance against the flow, generated by wall
friction and by the small arteries. This law is also valid for pulsatile flow and
leads to the frequency dependent variant of resistance, namely impedance.
For easier understanding we will introduce Fourier series for dividing flow,
pressure and therefore impedance curves into terms of Fourier series.

We divide impedance into four different kinds, dependend on its measure
point [31]:
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Longitudinal Impedance

The longitudinal impedance of a certain segment of the tube is defined by
the ratio of the pressure gradient and its flow. It is not influenced by wave
reflection and defines the complex analogon to the static resistance resulting

from the tubes physical parameters.

Input Impedance

The input impedance measured at the systems entry gives its whole impe-
dance and is influenced by all geometrical and physical parameters. In our
applications it means the impedance at the aortic root or at the root of any

subtree.

Characteristic Impedance

Whereby longitudinal and input impedances can be measured, this is not true
for characteristic and terminal impedance. But they have great theoretical

relevance and will be used in further considerations.

Characteristic impedance determines impedance without influence of wave
reflection and is equivalent to the input impedance of a tube of infinite length.
Although there is no (pulsatile) flow without reflection in nature, it is useful
to consider only the non-reflective parts of waves, e.g. through filtering terms

of high frequency.

Terminal Impedance

The resistance of arterioles and capillar vessels are described by the terminal
impedance on peripheral segments of the vascular tree. The properties of
arterioles and capillar vessels are almost frequency independent and the im-
pedance results in a pure resistance. and the terminal impedance is therefore

defined as ratio of mean pressure and mean flow.
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The terminal impedance is a bit smaller than the total peripheral resistance
which can be measured at the aorta. This is caused by the pressure drop

along the arterial tree.

5.4 Equation of Motion when the Pressure

Gradient is Known

Figure 5.4: Steady flow in a straight tube

Folowing Womersley [56] let as now assume to have a circular symmetric tube
of length [ and radius R which is filled with a viscous fluid of density p and
viscosity p. Furthermore, let p; denote the pressure at the inflow and ps the
pressure on the outflow of the tube with consant pressure drop p; — ps.. For
the longitudinal velocity w of the fluid with distance r from the longitudinal

axis the equation of motion leads to

d*w 1d_w P1— D2

P i =0 (5.10)

Assuming a constant pressure drop p; — ps its solution is given through

P1—P2,52 2
= R? —
w i ( %)
which leads to a parabolic velocity profile as shown in figure 5.4.

If we take the pressure gradient not constant, a term of viscosity %%—1: occurs

on the right side of equation 5.10. Lets assume the pressure gradient to be
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periodic in time and the pressure term be

P1— P2 _ Aemt
ul

with frequency

Since periodic functions can be written as sum of periodic terms we can write

the equation of motion as

2
dw  ldw 10w Aot (5.11)

WjL;dr v ot

Expecting the flow to be periodic as well, we substitute w in the latter

equation by

int

whereby u is a function of r only, we get

i —u=-—= 5.12
a2 rdar v i (5.12)
or even

d?u  1du = #n A

Il == 5.13

dr? - rdr - v 1 (5:13)

The solution of equation 5.13 can be found in literature and is given in closed

form through

Jo <7‘\/gz%>

Al
ey R W

pin o <R\/§i%>

u =+

where Jo(zi?) denotes the Bessel function of 0-th order.
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The term

a::R\/E
v

in the last equation is called Womersley number, and was described in the

last chapters.

For more convenience the equation is usually written in terms of modulus
and phase, which coincides to the polar representation of complex numbers.
Assuming that the pressure gradient is known, which will not be true in

general, we may write the equation of flow as follows

A .1 . Jo (ayi%>
pin 1 (i)

eint

where we substituted with y = %.
In general the pressure gradient will not be known and hence more complex
modells have to be considered. The complete mathematical description for
flow with unknown pressure gradient is given by the Navier-Stokes equations.
In the following chapter the set of Navier-Stokes equations will be linearised
for application on small blood vessels. This approximation will also be used

in the larger arteries later.

5.5 Bifurcations

5.6 Model for smaller arteries

Based on the works of Womersely|56, 58| and Pedley|[34| Olufsen|32, 33| de-
veloped a model for simulation of streams in small arteries. Starting from
the equations given above their was added another relation for modelling the
wall dilatation based on the continuity equation.

Similar to the model of Womersley, flow is described by continuity equation,
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whereby volume flow denotes

Q= /Oa w,2mrdr (5.14)

Here, w, is the velocity in longitudinal direction. For a detailed derivation
please refer to [33, 32, 34].

The solution is found by Bessel equation, which results from linearisation of
the axis-symmetric Navier-Stokes equations and combination with equations

describing the motion of the vessel wall and given by

w, = Z;CO];/ (1 - %) (5.15)

where 7y is the undisturbed vessel radius, p the blood density, p. an in-
tegration constant, k' = 2 the complex wave propagation velocity where
co = Eh/2rop the Moens-Korteweg wave-propagation velocity. Jy and J;
denote the zeroth and first order Bessel functions.

Finally, integration over the cross-sectional area yields

- AOpck,

Cop

Q (1—Fy) (5.16)

where Ay is the undisturbed cross-sectional area with the shortcut

2Jp (w
Fy(w) = ﬁ (5.17)
If we denote the pressure gradient be
—iwp. _ OP
c Ox
we get for the momentum equation
w@ = _ﬁa—P(l_Fj) (5.18)
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5.6.1 Continuity and State Equations

The continuity equation in one dimension is covered by

0A  Oq
A 5.19
ot oz (5.19)
which can be written as
. oQ
P+ == 5.20
1wCP + o 0 (5.20)

in the frequency domain after applying Fourier transformation.

For a further relation of the three unknowns pressure P, flow () and cross
sectional area A we consider an approximation for the compliance, the needed

state equation when considering elastic walls:

dA  3Apa 3pa -3 3Apa
- 11— = ~ 0.21
¢ dp  2FEh ( 4Eh) 2FEh (5:21)
After differentiation and integration of the equations we gain
Q(r,w) = acos(w—z) + bsin(%) (5.22)
c c

P(x,w) =i, /m <—a sin (w_:) + bcos (w_;)) (5.23)

Our goal is now to use this description of blood flow in arteries for comput-
ing its impedances, which can be done in both directions, respectively from
proximal to distal or vice verse. If we reformulate the equations 5.22 and
5.23 we can write the impedance for the proximal end of an arterial segment

with respect to ins distal impedance as follows:

s =1 wlL i wl

ig~'(bcos £ — asin £2)

Z(0,w) = ‘ = 5.24
(0.) a cos “’—CL + bsin —“’CL ( )
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where

g= HM, a=Q0,w)and b= —iP(0,w)g

5.7 Goal and Investigations

The first idea of using this linearised approach was to gain hints of how
to choose the parameters for Windkessels, used in the non-linear model as

termination conditions, described in the following chapter.

Doing this, we were trying different linearised approaches based on the one
dimensional Navier-Stokes equations. In literature several models were de-
veloped by a lot of investigators, considering a different level of details of the
natural process of flowing blood. Each of them guarantees fast computabil-
ity, what is a key feature for our application where we want to apply such

models for determining boundary data in every time step of computation.

During the simulation process pressure and flow wave forms are computed
where suitable initial and boundary data are given. Several different simula-
tion scenarios are possible, which are described below. It is also shown that
the linearised model is also suitable for the computation of flow and pres-
sure waveforms by itself also for larger arteries, not only for the small ones
for which it was developed. At least the model can be used for parameter
identification where the quasi-linearity is a great advantage especially in the
case of parameter space of high dimension what is true for most of biological

models respectively for blood flow in the arterial bed.

Given Flow and Pressure Forms

The difficulty of using flow and pressure as initial data at the same time is
to get suitable measured data. One the one hand all measured data contains

errors, on the other hand it is not always possible to get requisite data from
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measurement. E.g. it is very difficult to get synchronous measured data of

flow and pressure wave forms.

In our experiment the following measurement techniques were used:

e Flow wave form from ultrasound measurement

e Pressure wave form from SphygmoCor© device

The latter measures the pressure wave form at the A. radialis and tries to
compute the wave from at the aortic root. As first the quality of the central
wave from depends on a lot of different factors, as second, only wave forms
and not the quantitative pressure is gained. Central systolic and diastolic

pressure must be guessed another way.

Given Impedance and Flow

The use of given pressure wave form is seen to be not optimal and the next
approach is to use impedance instead, although it might be more difficult to
get measured data. Two methods for prescribing impedance for simulation

of blood flow in the arterial tree are figured out:

e Prescribing of the total peripheral resistance which can be determined
indirectly with e.g. impedance cardiography and computation of the
complex impedance using a replacement model (Windkessel)

Indeed, it seems that this method underestimates the total peripheral
resistance and so the quality of the impedance gained artificial to a

certain extend has to be validated.

e Another approach is backward computation of impedances by help of
the model described before with prescribing impedances at the periph-
eral arterial segments. To go around the problem of how to get data
for prescribing impedances at the peripheral segments Olufsen|33| sug-
gested an alternative method which computes impedances from small
arteries, starting at the arterioles where the resistance (there is only

pure resistance in this small vessels) can be assumed to be zero.
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Figure 5.5: Ultrasound measurement for the flow velocity at the aortic root

Backtracing using Measured Data

The disadvantage of the method of Olufsen is that the model considers only
the radius of the terminal segment and two parameters determine the overall
behaviour of the structured tree which is generated as a replacement model
for the small arteries. It doesn’t take into account the humans physiological
parameters and it would need some efforts to fit the model to measured data.

Some optimisation method might solve this problem.

Instead, we used flow and pressure wave forms can be used to compute im-
pedance in peripheral segments. It would be a really good method if syn-
chronous measured data from different sites of the arterial tree would be
available. Unfortunately this is not the case and this leads to a lot of prob-

lems.

First, the pressure and flow wave forms are in different time scale and the
phase shift of them is of big relevance. Therefore, it is necessary to convert
data to match the phase shift which is gained by comparison of the measured
wave form with the synchronous measured ECG signal. This is a time con-

suming task which is hard to automate because the ultrasound measurement
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is available only in image format and the quality of measurement varies very
much and has to checked by hand.

Second, another problem occurs when matching together two impedances
gained from measurement at any bifurcation. Usually the data on different
sites represent different heart cycles and also the pulse wave velocity differs.
Although we fitted the data before to its corresponding phase delay, this
delay may differ from heart cycle to heart cycle and the resulting pressure
and flow wave forms may be unrealistic. So datasets with matching ECG

signals have to be chosen to keep the synchronisation error small.

5.8 Extended Model for Smaller Arteries

In the model described before investigated by Womersley[57| and used by
McDonald|[31] lacks of the consideration viscoelasticity. Viscoelasticity of
the arterial walls results in a phase shift of treated forces and the resulting
displacement of the vessel wall. This phenomenon can be considered by using

the so-called dynamic Young modulus E,[4],
E; = E +iwny, (5.25)

where 7,, denotes the viscosity of the wall

Considering pulse wave propagation, the viscoelastic properties of the vessel
walls are characterised by the tangent of the angel ¢ of phase shift of current

pressure and local displacement of the corresponding wall |3, 49, 54|.

¢ = tan”' (%) (5.26)

Using this, a factor cos(¢/2) + isin(¢/2) is added to the equations in the

section before.

The next step is to split impedance into a characteristic impedance, which is
determined by the mechanical properties of the concerning arterial segment

only, and the terminal impedance, which depends on the structure of the
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following vascular tree.

Hence, the characteristic impedance is for any arterial segment is described
with its wave transmission coefficient, which is given by the mechanical prop-
erties of blood and the vessel walls, the input impedance, a distribution fac-
tor and the phase velocity. By help of transmission line theory, coming from

electrotechnical engineering, the reflexion coefficient is given by

e~ 2

r=2 =0
Zr + Zy

where Zp denotes terminal and Z, characteristic impedance of any segment.

1+ Te
p(l) 1+T
p(0) ~ AT T 529



Chapter 6

One Dimensional Nonlinear
Model

"Man is the only creature that seems to have the time and energy

to pump all his sewage out to sea, and then go swimming in it."

Miles Kington

Based on the one-dimensional Navier-Stokes equations for flow in axis-
symmetric elastic tubes of an incompressible fluid a model for simulation of
blood flow in arteries was developed. The focus hereby is on the larger arter-
ies, which means that only vessels with an inner diameter from 50mm down
to Imm approximately are considered. For smaller arteries the model would
not be valid anymore cause of several assumptions, made on the physical
properties of blood. In detail, the blood cannot be taken to be homogeneous
in small arteries because the red blood cells have a size of the same scale as
the vessel diameters. Wibmer [55] has implemented the model with help of
finite volume methods in C+-+. This model was coupled to the controlled
parameter model described in chapter 4 to get a fully controlled model for

blood flow in human arteries. In this chapter only a basic overview is given,
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under special consideration of the relevant parts for this work. For further

details please refer to [55| and references therein.

6.1 Model Equations

The basic equations solved within the models are given in the (A, Q) formu-
lation where A = A(z,t) denotes the cross sectional area and @ = Q(z,t)

the volume flow. Considering mass and momentum balance leads to

2
Qﬁ% (a% +p) :K% (6.2)

and a state equation giving a relation between the cross sectional area and
the blood pressure. In literature, several relations for the state equation can

be found, one is given below.

Most of equations for describing wall-pressure relations assume linear elastic-
ity and are based on Hook’s law. This let the pressure be a concave function
of the cross sectional area. The elastic nature of arteries is mainly determined
by the distribution of elastin and collagen in the vessel wall, which differs
from the proximal to the distal vessels. More precise, in the proximal aorta
elastin specifies its elastic behaviour while it is collagen in the periphery.
Concerning the higher elastic modulus of collagen the stiffness of the walls
increases in the distal arteries. Also collagen plays an important role in the
vessel wall elasticity. Since the transmural pressure increases, collagen fibres
determine the stiffness, whereby at low pressure it is mainly determined my
elastin fibres. This results in a nonlinear pressure dependent elastic modulus.

A simple state equation was presented by Raines [39]:
Bp(4 1)
p(A) = poe " (6.3)

Here, E), is the pressure-strain elasticity modulus by Peterson et. al [36]. For

more details the reader is recommended to refer to |31] and references therein.
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For the given It can be easily shown that g—z > (0 and % > 0 and 6.3 is
source for other simple concave equations by using Taylor polynomials of
arbitrary order.

Additionally the wave velocity is given by

c:\/ Apo eE,,(A%—l)
pK Ay

and its derivative with respect to A is positive.

Linearising equation 6.3 we get

TENERE)

and

6.1.1 Bifurcations

Due to the reduction to one dimension bifurcations are not really handled
by this approach. For a detailed description a three-dimensional consider-
ation would be necessary. For our needs it is enough to assume branches
as one dimensional points. Mass and momentum conservation is assumed
and branches can be computed easily. For one dimensional computation this

assumptions are suitable and used by a lot of authors.

6.1.2 Termination Conditions

On every modeled terminal segment of the arterial bed a terminal condition
is necessary. Here, the well known Windkessel is used to model the network
of small arteries, arterioles and capillaries. This model, taken from the theory

of electrical circuits, consists of two resistances R and Ry and a capacity C.
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U c = [] R2

Figure 6.1: Electrical analogon to the Windkessel

The sum R;+ R, defines the total peripheral resistance of the arterial network
and C stands for the compliance, the distensibility of the vessel walls. With
help of such Windkessels the behaviour of the small vessels can be modeled
in an appropriate manner. But, for each Windkessel (25 in our case) there
are 3 parameters which have to be identified by measured data, what can be
expected to be a difficult task.

The frequency dependend impedance, generated by a Windkessel, is given
by the equation

. Rl + RQ + ’iWORlRQ

Z
() 1+ iwC Ry

(6.4)

In the sense of fluid mechanics the (input) impedance is the ratio of blood
pressure p(t) to volume flow Q(¢), which matches very well with the impe-
dance produced by a Windkessel. Hence, Windkessels are a good choice for
terminations within our model.

For computation we transform the equation above into the time domain and
we gain an ordinary differential equation of the flow-pressure relation of a
Windkessel:

dQ(l>t) . idp(l,t) _ p(l,t) . ( Rl) Q(l’t)

— 141
& R At RRC &) RiC

(6.5)
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6.1.3 Parameter Identification for Windkessels

As simple the Windkessel model seems to be handle as difficult it is to de-
termine its parameters. Due the impossibility of extracting the Windkessel
data from measurements directly the use of replacement models is necessary.
For each terminal segment three parameters have to be determined. From
measured data only the total peripheral resistance, measured at the aortic
root, is available. Olufsen |32| suggested the use of the linearised Womersley
solution of the Navier-Stokes equations to solve it for a structured tree of
small arteries with a zero terminal condition to determine its root impeda-
nce, which can be used as terminal impedance for the tree of large arteries.
Due the definition of the structured tree the terminal impedance is mainly
given through the radius of the terminal vessel, which cannot to be taken
as valid for all segments. E.g. for the terminal vessels branching from the
abdominal aorta, providing organs like kidneys or liver and so on, additional
assumptions have to be stated.

Another method is the up-down approach. Here, the linearised solution is
applied on the tree of large vessels to compute its terminal impedances, be-
ginning at the aortic root. Using flow and pressure measurement, the input
aortic impedance is determined by measured data and through the trees ge-
ometry and its physical parameters the terminal impedances are defined.
But it is necessary to have synchronous measurements of flow and pressure
waveforms in the aorta, what is not the case usually. Alternatively one of the

waveforms may be generated with some measured characteristic parameters.



Chapter 7
Model connection

"Success is the ability to go from one failure to another with no

loss of enthusiasm. "

Winston Churchill

Structured
Model

Compartmental
Model

Figure 7.1: Model connection scheme

In the previous chapters different approaches for modelling blood flow in hu-
man arteries are described, each with its advantages and its disadvantages.
Our goal is now to connect the different models to each other to gain the

final controlled and identifiable model for the whole cardiovascular system.
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On the one hand we have the simplified compartmental model for computing
mean values of pressure and flow, considering outer influences as well as the
venous part. On the other hand there are the linear and the nonlinear mod-
els for the systemic arterial tree, describing blood flow in these arteries, but
outer influences, control mechanisms and the venous system are neglected.
So the step to connect the different models to each other and make use of its
strengths and to compensate its weaknesses is obvious.

The basic strategy for simulating e.g. only the systemic arterial tree is to
prescribe pressure and flow waveforms at the systems entry and the param-
eters on its peripheral segments. Such models are first of all not easy to
identify due too much assumptions which had to be and second, there is no
dynamic included. Only a steady state of the system can be studied.

Our first approach is now to connect the nonlinear tree model to the com-
partmental controlled model by computing its system compartment and the
nonlinear tree in parallel. The boundary data for the tree models input are

determined now by the control, which supplies values for

e mean pressure
e beat volume

e total peripheral resistance

Indeed, the supplied data cannot be used directly because the compartmental
model computes mean values only and for the structured tree model pulsatile
input data is required.

Furthermore, the synchronisation leads to some serious difficulties because
the models are working on different time scales. In the control part one time
step is equivalent to one heart beat and after every beat a new value for
mean pressure and mean beat volume is computed. But the variables for
the nonlinear tree model are discretized in time and the resolution in time
is determined by the discretization in space through a stability condition.
Furthermore, heart cycles in the nonlinear model are disconnected and its

lengths vary in time caused by the change of heart rate due the control
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Figure 7.2: Generated flow wave curve form given heart rate and beat volume

withn =13 and ¢ =0

mechanism.

Also when connecting the control mechanism to the linearised tree model
dynamical input data have to be generated or extracted from measured data.
Stevens et al. |47| published a method for flow wave generation in dependence
when a stated heartrate and beatvolume is given. It consists of too parts,
one for generating oscillation with pulse frequency, and the second for its
wrapping function. After normalising and calibration to measured data a
differentiable periodic flow curve is gained in closed form. A resulting flow
velocity curve is shown in figure 7.2. The two components of the flow curve

are given by
Q1(t,n) = sin™(wt), with n — odd,

which defines the wrapping part, and the inner function is defined as

Q2(t, ¢) = cos(wt — @)

Here, w is 1.5 times the heart rate and ¢ the phase. The resulting curve is

determined by multiplication its two components:

Q3(t> n, ¢) - Ql(t> n)QQ(t> ¢)
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Using this method a suitable aortic flow wave is generated by the controlled
compartment model which can be used as terminal condition for the
connected nonlinear dynamic model. Due to its generating method the data

are smooth enough for the used finite volume algorithm.

Another approach we are discussing is the use of an inverted Windkessel
model. The basic idea is the assumption that the left ventricles output work
is given through a goodness functional, which minimises energy. Starting

from an open system and describing its dynamic behaviour by
q(t) = RP-CA-dzx+ x(t) (7.1)

with ¢(t) aortic flow, z(¢) summarised flow through all terminal segments, RP
the peripheral resistance and C'A the arterial systems compliance, we state
a few additional conditions: x(t) is assumed to be periodic if the periodic

durations of diastole (t,) and systole (¢) are known:

tp—ts
Ty = Xo - €RACA

Furthermore, flow through the aortic root is set to zero at the end of systole,
q(ts) :==0

and for a given beat volume (V) there holds

ts
/ qdt =1V; (7.2)
0

ts tp
/ xdt—l—/ x dt =V (7.3)
0 ts

which can be seen as conversation of mass. The approximately exponential

decrease (validated by measured data) which describes the blood flowing out
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from the Windkessel is modeled by

2a(t) =z, - eRPCA

As discussed in the introduction pressure is mainly determined by the flow
and peripheral resistance. Therefore, for the structured models only the pre-
scription of flow in resistance is needed, whereas the definition of flow is easy,
one can use the generation method described above. In contrast, the periph-
eral resistance respectively the total resistance consists of a lot of local parts,
distributed on the whole body.

The physical and physiological parameters of vessels change from the proxi-
mal to the distal end and can get estimated only at the aortic root, but it is
necessary to know the peripheral resistance in every terminal segment of the
mapped vascular bed used for the simulation.

Resolving that and distributing the total peripheral resistance, which be-
haviour is nonlinear, is a difficult task and a good knowledge of the physical
parameters of the vessel tree is necessary.

Following, the computation of the two variants of termination models, namely
stating complex impedance on termination segments and connecting a Wind-

kessel to each segment are discussed:

Impedance

Knowing the total peripheral resistance and having suitable measured data,
using the linearised solution of the Navier-Stokes equations by Womersley
leads to some significant advantages. With this analytical solution for de-
scribing flow and pressure waveforms in arteries, terminal impedances can be
computed and the total peripheral resistance is distributed to the peripheral
segments. Doing this we have to compute two different kinds of segments,
straight tubes and bifurcations, modelled as one dimensional nodes.

The equations for straight tubes are available in closed form (see chapter

5) and computation is possible from up to down as well as the other way
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around, which is not true for bifurcations.

Oy

AQ

Figure 7.3: Pressure and flow in a bifurcation

For computing flow in straight tubes with given input impedance we have to
compute mainly the characteristic impedance of the tube and no information
of the following vascular bed is needed. This changes if we want to deter-
mine impedances or pressure wave forms in bifurcations because the input
impedance for every branch has to be computed. If we assume conservation

of mass and energy for flow and pressure there holds

L.go=q + @
2. po=p1 =p2

and taking into account Ohms law we get for the impedances at any bifur-
cation
1 1 1
3. —=—+ —
20 21 Z9
where 2z denotes the terminal impedance at the parent vessel and z1,z2 the

impedances of the daughter vessels. Considering the law of Hagen-Poiseuille,

. 7TR4(P1 —Pg)

ST (7.4)

Q
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where () denotes flow, R the vessels radius, P, — P, the pressure drop, u the
dynamic viscosity and L the length of the segment, we distribute the outflow
to the inflow of the daughter vessels by its radii. For the impedance this is
possible unless we assume constant pressure wave forms. The stated energy
balance which states constant pressure is valid for steady flow and for mean
pressure of pulsatile flow, but assuming constant pressure wave forms will
avoid nonlinear effects which can be observed on measurements of real blood
flow in arteries.

To resolve this we compute impedances of the segments starting from the
terminal segments in the beginning of the simulation run. The terminal
impedance on each segment is gained by the small vessel replacement model,
described in chapter 5. Hence, we are able to compute frequency dependend
impedance ratio for the daughter vessels in any bifurcation to their parent
vessel. Assuming that the impedance ratio is constant with respect to time
and change of total peripheral resistance, the bifurcations are determined
now for forward computation during simulation. The assumption of constant
impendace ratio implies that the structure of the vessel tree will not change
during simulation, which holds for the most applications.

After computing terminal impedances with given total peripheral resistance
at the aortic root the parameters for the Windkessels have to be extracted
which is done be solving the Windkessel equation 6.4 with the impedance of
zero frequency, what defines the total resistance for the considered segment
[45].  For the ratio }% Schaaf [40]| suggested 0.2 where the total volume
compliance Cy,; = 1ml - mmHg ™', published by Burton [6]. After summing
up the compliances of each vessels and computing the residual compliance
Cres = 1 — Cyoqy suggested by [40| or [46] and assuming that the residual
compliance is distributed among the terminal branches in proportion to their

mean flow we gain

(7.5)

where Ry, is the total peripheral resistance and the index 7; denotes the total

resistance and compliance at any terminal segment of the vessel tree.
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Alternative Method

An alternative approach avoiding the problem or boundary data is to intro-
duce artificial pipes to sum up blood flow in a collection node, similarly to
model the venous arteries, but without modelling the network of small ves-
sels and arterioles. This was done by Almeder |2|, considering steady flow in
human arteries.

This method is seen as being not optimal. One the one hand there are twice
more segments to compute, on the other hand the trees structure is not con-
forming the human physiology anymore due the lack of small arteries. There-
fore it can not represent its natural behaviour. Introducing a resistance layer
for example would lead to the problem of undetermined parameters again

and no benefit is gained.



Chapter 8
Implementation

"A computer once beat me at chess, but it was no match for me

at kick boxing."

Emo Philips

The goal of the implementation was to get a framework for experimental
blood flow simulation. Due to our modular design and thanks to object ori-
ented programming the different parts can be connected together and sub-
stituted by another module quite easily.

The simulation tool is separated into four main parts, implemented in Java
and C++. While the graphical user interface (GUI) and the linear models
are written in Java, the computational time consuming solver for the non-
linear model part is implemented in C+-+ and connected to the simulation
environment via the Java native interface as a shared library. An overview

of the modules is given in table 8.1.

Object oriented programming let us divide the simulation tool into easy

supportable modules which are structured as follows.
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Graphical user interface Java
Compartment model solver | Java
Identification tool Java
Linearised model solver Java
Nonlinear model solver C++

Table 8.1: Module overview of CardioSim
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Figure 8.1: Graphical user interface of the cardiovascular simulation tool
8.1 Controlled Compartment Model

The solver for the compartmental model consisting of a system of ordinary
differential equations of first order is implemented straight forward by Eu-
ler’s method. Due the smoothness of all data and the equations far away
from being stiff, the use of more sophisticated methods is not necessary in
our case. Furthermore, the possible numerical error is small compared to the
error of the measured data which are taken to verify the gained solution.

In respect to usability of the graphical user interface the solver was imple-
mented as thread and thus its running in the background.

After the simulation run where the time and the initial data can be setted
interactively, all variables and parameters can be plotted by drag and drop

from the model tree.
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Figure 8.2: Organisation of the simulation modules

8.2 Automatic Parameter Identification Tool

Providing also a simple GUI (fig. 8.3) the identification process was imple-
mented following the principle of object oriented programming. The base
class optimizer contains all necessary setters and getters, whereby the iden-
tification process is done by its child classes through heritage. The main
method here is the method for calculation the residuum, which is called by
the optimizer, the class of the JMSL numeric library providing the optimiza-
tion algorithm.

After selecting the type of external stress (orthostase or physical stress) the
measured values (peripheral resistance, beat volume, heart rate and mean
blood pressure) are curve fitted. Then the user has to define the times of
state changing, like turning the tilt table test. With this procedure all prepro-
cessing is done and the optimization algorithm tries to identify the necessary

parameters. This process is described in a more detailed way in section 4.3.

public class OrthostaseUptimizer extends Optimizer

implements MinConNLP.Function {

// constructor
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Figure 8.3: The identification wizard with computed parameters

public OrthostaseOptimizer(Parameters parms, XMLHandler handler) {

// start method
public void run() {
this.startOptimization();

}

public void startOptimization() {

// define the parameter space and constraints
optiParameters = new double[4];
this.lowerBounds = new double[]{0.0,0.0,0.0,0.03};

// get the start values

optiParameters[0] = ((DParameter) ((DefaultMutableTreeNode)
currentConfig.getParameterByName ("KPAH")) .parameter_value;

optiParameters[1] = ((DParameter) ((DefaultMutableTreeNode)
currentConfig.getParameterByName ("KRA")) .parameter_value;

optiParameters[2] = ((DParameter) ((DefaultMutableTreeNode)
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currentConfig.getParameterByName ("KHFH")) .parameter_value;
optiParameters[3] = ((DParameter) ((DefaultMutableTreeNode)

currentConfig.getParameterByName ("KSVLH")) .parameter_value;

// initialize the optimizer

optimization = new MinConNLP(0,0,4);

// set constraints and start values
optimization.setXlowerBound(lowerBounds) ;
optimization.setGuess (optiParameters) ;

optimization.setMaxIterations(10);

// start the optimization
try {
optiParameters = optimization.solve(this);
} catch(Exception ex) {

ex.printStackTrace();

// imlementation of the error function, called by the optimizer

public double f(double[] arguments, int iact, boolean[] ierr) {

// get the opjects of the parameters optimized

KPAH = (DParameter) this.currentConfig.
getParameterByName ("KPAH") .getUserObject () ;

KRA = (DParameter) this.currentConfig.
getParameterByName ("KRA") .getUserObject () ;

KHFH = (DParameter) this.currentConfig.
getParameterByName ("KHFH") .getUserObject () ;

KSVLH = (DParameter) this.currentConfig.
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getParameterByName ("KSVLH") . getUserObject () ;

// set the paramteres using the optimized values
KPAH.parameter_value = arguments[0];
KRA.parameter_value = arguments[1];
KHFH.parameter_value = arguments[2];

KSVLH.parameter_value = arguments[3];

// configure and start the simulator

cardioSimulator = new CardioControl(this.currentConfig,myBar) ;
cardioSettings.simulationTime=this.endTime;
cardioSimulator.setSimSettings (cardioSettings) ;

cardioSimulator.solve();

// get the considered variables for the minimum function
newRAl = this.getVariableValue("RA", 90);

newSVL1 = this.getVariableValue("SVL", 90);

newHF1 = this.getVariableVdiscreditedalue("HF", 90);
newPAS1 = this.getVariableValue("PAS", 90);

newSVLs = this.getVariableValue("SVL", 40);
newHFs = this.getVariableValue("HF", 40);
newPASs = this.getVariableValue("PAS", 40);*/

// compute the residuum

result = Math.sqrt( Math.pow((newRAl -
parameters.RAStress)/parameters.RAStress,2) +
Math.pow((newSVL1 -
parameters.SVLStress)/parameters.SVLStress,2) +
Math.pow((newHF1 -
parameters.HFStress)/parameters.HFStress,2) +
Math.pow((newPAS1 -
parameters.PASStress)/parameters.PASStress,2));
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// return the residuum

return result;

8.3 Nonlinear dynamic model

The nonlinear model was implemented by Wibmer [55] in C++ by using a
finite volume method for solving the incompressible Navier-Stokes equations
in one dimension [11, 12]. It is connected to our model by the java native
interface (JNI) which allows the use of shared libraries in java.

Doing this, the needed parameters are given to the library by the native class
and the library returns a vector containing the pressure of a specified arterial
segment. Furthermore, the library stores all computed data in files which
can be read after computation by the GUI.

The java native interface on the java side is implemented as follows whereby
under windows to other libraries are loaded separately because there dynamic
shared libraries are used. Under linux we are using a static library with all
needed files linked together:

public class Native {

public native double[] getPressure( double hf, double ra,...
double sv,double ampl, int per, int itIndex,...
int pIndex,int inletType, String inletName,. ..
double[] pO, String fname);

static {
if ( System.getProperty("os.name").startsWith("Win") ) {
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System.loadLibrary("xerces-c_2");
System.loadLibrary("blitz_d");

}
System.loadLibrary("anlib") ;

Java also provides the C++ header file for native interface. The C++ pro-
gram must to provide only the function call where the java object types and
generic variables are mapped to that of C++.

The C++ source code for our connector is given as follows:

#include <jni.h>

/* Header for class hkl_Native */

#ifndef _Included_hkl_Native
#define _Included_hkl_Native
#ifdef cplusplus

extern "C" {

#endif

/%
* Class: hkl_Native
* Method: getPressure

* Signature: (DD)D
*/

JNIEXPORT jdoubleArray JNICALL Java_hkl_Native_getPressure(...
JNIEnv *env, jobject obj, jdouble hf, jdouble pr,....
jdouble svinc, jdouble ampl, jint periods,...
jint iterationnumber, jint plotdata,jint inlettype,...

jstring inletname, jdoubleArray jmeanpArray, jstring jxmlFile);
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#ifdef __cplusplus
}

#endif

#endif

8.4 Termination value computation

Before every call of the dynamic structured tree model the Windkessel pa-
rameters for its terminal segment boundary conditions have to be adopted to
the computed total peripheral resistance gained from the control mechanism.
First, a root impendace has to be computed from the total peripheral resis-
tance, using a control variable dependent flow curve and a Windkessel. With
these data a pressure wave form and further more a complex impendace can
be computed.

Using this impedance as initial condition for the linearized model approach
from chapter 5, the impedance and hence the Windkessel parameters are
gained.

More details are presented in the next chapter.



Chapter 9

Results

"Die Spitze des Berges ist nur ein Umkehrpunkt.”

Reinhold Messner

9.1 Linearised model approach
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(a) Generated bloodflow (b) Measured pressure

Figure 9.1: Inertial data for the linearised model

Within this first experiment flow and pressure wave forms in the peripheral

vessels are computed by prescribing pressure and bloodflow at the aortic root
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(a) Pressure

Figure 9.2: Pressure and flow wave forms and frequency dependent reflection
coefficients in different sites in the aorta, a. iliaca and a. femoralis

(fig. 9.1). Here the volume flow was generated by an ultrasound measured
cardiac output and the pressure waveform was taken form the computed
waveform by the SphygmoCor software [18, 30]. The model is static and not
connected to the control mechanism. Even the model doesn’t consider non-

linear viscoelastic effects, it shows that the model covers known phenomenons

concerning the pressure wave form very well (fig. 9.5).

The computation is splitted into the following steps:

1. Determination of impedance in the peripheral segments

2. Backward computation of the system and computation of the impeda-
nce at the aortic root

3. Calculation of pressure waveforms from impedance and prescribed flow
contour

4. Calculation of flow and pressure waveforms along the arterial tree
ad 1

Impedances at several sites are determined by measured flow and pressure

curves whereby the phase lag between pressure and flow is not considered. For
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(a) Impedance (b) Reflection coefficient

Figure 9.3: Impedance and reflection coefficients along the aorta

it, it would be necessary to measure flow and pressure synchronously, what
was not possible with our measuring devices. For backward computing of
impedances based on measured data another problem occurs: on bifurcations

not time-synchronous impedance data would have to be merged (see fig. 9.5

(c) and (d)).
ad 2

With backward computation using the linearised model, the aortic impedance
is determined and reflection coefficients are computed for all bifurcations.
With help of the reflection coefficients we can compute the reflected and
transmitted part of every pressure wave for all arterial segments. Hence, we
can consider the influence of the following network of each artery on blood

pressure wave forms.

ad 3

The system is completely determined by impedance and pressure or flow
wave form. One of it must be given as inertial value, where here a flow curve
was taken, based on ultrasound measurement. For a measured impedance
it would be necessary to determine flow and pressure synchronously in the

aortic root, what is only possible with invasive measuring methods.

ad 4
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Figure 9.4: Reflection coefficients along aorta, a. iliac and a. femoralis

Following to the latter computations pressure and flow wave forms in any
arterial segment, beginning with the aortic root, can be computed with the
linearised model. The change of pressure and flow wave forms as well as
the reflection coefficients at the concerning bifurcations from the aortic root

down to the a. femoralis are shown in fig. 9.2.

Remark: Summarising we can say that several important vascular parame-
ters can be determined indirectly with our model and we get realistic results
for pressure and flow curves. But it should be mentioned that there is some
uncertainty of the results along the aorta, especially in the thorax because
the measured data in this area is not of the quality we would need. This part

of the arterial system will be considered capsuled.

9.2 Simulation of Pathological Diseases

The following section covers simulation results on influences on the control
mechanism. Hence, mainly the compartmental model is considered even due
the coupling the whole model might be computed in every experiment like it

was done in fig. 9.7 for simulating the tilt table test.
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Figure 9.5: (a) u. (b): Simulated (solid) and measured (dotted) pressure wave
forms, (c) and (d): Impedance, from measurement and computed

9.2.1 Stenosis

Concretions in the arterial vessels cause constrictions, which can be investi-
gated by our model to a certain extent. The influence of these pathological
mutations can be considered in a global way. That means that the change
of blood pressure downstream the arterial tree can be computed. But, the
local flow around the stenosis cannot be considered. This is a task for local
3-dimensional models not covered by our system.

For its simulation we reduce the vessel radius at the considered site within
the model of the arterial tree what is increasing the peripheral resistance at

his point.
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Figure 9.6: Measurment and simulated (solid line) peripheral resistance during a

tilt-table test
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Figure 9.7: Simulation with the dynamic non-linear structured model during three-
phase ergonometry

Figure 9.8: Schematics of a tilt table test
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9.2.2 Tilt Table Test

Using a tilt table a lot of cardiovascular parameters can be identified when
measuring blood flow, pressure and ECG. With our model this test can be
simulated in an appropriate way. The control mechanism can be adapted to
measured data, which defines the inertial data for the structured tree models.
Even the transient activity can not be simulated with the linearised model,
we can compute pressure and flow in two equilibrium states. That way, the

accuracy of our model can be verified by comparison with measured data.

9.2.3 Influences of Drugs on the Cardiovascular System

For treatment of diseases and malfunctions of the cardiovascular system medi-
cists use a wide range of different pharmacological substances. To investigate
influences of these drugs on the arterial system qualitatively, we can adapt
the concerning model parameters. With our tool pharmacological effects on
heart rate, peripheral resistance as well as blood pressure can be simulated.
We divide the considered pharmaceuticals into the following groups and give
its concerning model parameters.

Some of the most important drugs used in hypertension therapy can be clas-

sified as follows:

e Beta Blocker - by adapting the feedback function for the heart rate

e Vasodilatator - by adapting the feedback function for the peripheral
resistance

e Diuretikum - by reduction of the blood volume

e ACE Blocker - by adapting the peripheral resistance for the kidneys

e Nitro - reducing the pulmonal pressure
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Experiment 1: Nitro

Within this experiment we decreased the pulmonal venous pressure in the
compartment model by 20%. Additionally, the peripheral resistance was
decreased by 10%, following the oberserved effect of the drug. The results of
the simulation run of the four key variables are shown in figure 9.9. Starting
from the undisturbed state (red) first the pulmonal venous pressure was
lowerd (blue). Here, the peripheral resistance increases because of the control
mechanism. Therefor, also the peripheral restistance has to be lowered by a

propriate substance (turquoise).

Result %10 Result
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(a) peripheral resistance (b) stroke volume
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2

(c¢) mean pulmonal venous blood pressure (d) mean systemic arterial blood pressure

Figure 9.9: Cardiovascular variables during the tilt table test before (red) and
after (blue) decreasing the venous blood pressure and after additional decrease of
the peripheral resistance (turquoise)
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Experiment 2: Increase of the stroke volume

Different drugs increase the stroke volume as a side effect. This effect and
its consequence on the global haemodynamic was studied by this experiment
(figure 9.10).

Measurement RA x10? Result
T T T T T T T

x10% x10
(a) peripheral resistance (b) stroke volume

Measurement HR Measurement PAS

sof L

sr 84

70r a2 |

65 sof

GO
TE[

551 761

500

(c) heart rate (d) mean systemic arterial pressure

Figure 9.10: Cardiovascular variables during the tilt table test before (red) and
after (blue) lowering the stroke volume

Experiment 3: (-blocker

In this experiment the usage of so-called (-blockers was simulated (figure
9.11). Doing this, the feedback function of the control mechanism as de-
scribed in chapter 4 are adopted. The hear rate was lowered by 20% and
the peripheral resistance was raised slightly (5%). Due the Frank-Starling
mechanism the stroke volume increased by 10% whereby the mean systemic

arterial pressure is decreasing by 3%.
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Figure 9.11: Cardiovascular variables under tilt table test before (rot) and after
(blue) (-blocker usage

9.3 Final coupled model

In the following section results of the whole model connecting all approaches

are presented. The simulation run using the control, the linearised approach

and the dynamic non-linear model is splitted in steps as follows:

. Computation of the cardiovascular variables by the controlled compart-

mental model

. Generation of the inflow based on the actual magnitudes of beat volume

and heartrate

. Determination of the termination parameters based on the actual pe-

ripheral resistance, given by the control mechanism
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4. Computation of flow and pressure in arteries by the nonlinear struc-

tured tree model

5. Postprocessing of the computed data and continuing with the next cycle

sinusinflow
T T

0.0 .1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
5

Figure 9.12: Generated sinus inflow velocity

From the lumped parameter model, providing the control mechanism, a ve-
locity curve covering the aortic inflow is generated as can be seen in fig. 9.12.
Together with the pressure curve which was generated by help of a Wind-
kessel model (fig. 9.13) the impedances of the arterial tree are computed for
all vessel segments. Then, at the terminal segments the final total resistances
for the terminating Windkessels used by the dynamic model can be deter-
mined (tab. 9.2).

With the computed data all boundary values for the dynamic structured
tree model are determined. In the shown experiment the data set for the pe-
ripheral resistances and capacities are given by table 9.1 using the linearised
model.

After computation of steps 1-3 the initial data and boundary values for the
dynamical finite volume model are known and the simulation run is started.
The computed data are plotted for three different values of x for each sege-
ment (z =0, x =1/2, and = [ with [ denoting the length of the vessel).
In figure 9.14 the pressure and flow curves of the simulation run compared

with measured data are shown. The pressure wave form was measured by
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tonometry where the systolic and diastolic pressure was adapted because it
can not be measured by the used technique. It is taken using a separate
common measurement device. The flow measurement was done by doppler
ultrasonic measurement. It shows that the computed wave forms match the
measured ones very well (fig. 9.16 and fig. 9.17).

Pressure and flow forms on different sites along the arterial tree are plotted
in picture 9.14. The observed effects, namely increase of systolic pressure
and higher steepness of the pressure waveform can be observed. Also the
change of the flow waveform matches the measured flows as well as curves

which can be found in literature.

SimpleWkKPrassure

1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 9.13: Windkessel generated pressure at the aortic root
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(a) pressure
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(b) flow

Figure 9.14: Pressure and flow wave forms along the vascular tree (aortic root,
abdominal aorta, brachial artery and femoral artery
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Figure 9.15: Pressure and flow wave forms at the femoral artery (red) , compared
with measurement (blue)
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Figure 9.16: Comparison of computed flow velocity with ultrasound measurement

i the carotid artery

N
20 40dB 1-:/+1/1/5
PwW-Tiefe= 19mm

PW Grope= 6.0mm
PW Verst= -ddB

PW:4.0MH2| §=04° Invertiert

PY Artery
General /V

Puls= 56S/m
Geschw.=100mm/s

Figure 9.17: Comparison of computed flow velocity with ultrasound measurement

i the femoral artery



CHAPTER 9. RESULTS 100

Segment Name Length Proximal Distal  Wave

Radius Radius  speed

(m)  (m)  (m)  (m)s)
1 Ascending A 0.02 0.0147 0.0147 4.3
2 Ascending B 0.02 0.0144 0.0144 4.3
3 Arc A 0.02 0.0112 0.0112 4.3
4 Arc B 0.039 0.0107 0.0107 4.3
5 Thoracic A 0.052 0.0099 0.0099 4.3
6 Thoracic B 0.104 0.00675 0.00645 4.3
7 Common lliac R 0.058 0.00368 0.0035 5.0
8 External Iliac R 0.144 0.0032 0.0027 6.0
9 Internal Iliac R 0.05 0.0020 0.0020 6.0
10 Deep Femoralis R 0.126 0.00255 0.00186 9.0
11 Femoralis R 0.443 0.00259 0.0019 7.3
12 Common Iliac L 0.058 0.00368 0.00365 5.0
13 Internal Iliac L 0.05 0.0020 0.0020 6.0
14 External Iliac L 0.144 0.0032 0.0027 6.0
15  Femoralis L 0.443 0.00259 0.0019 7.3
16 Deep Femoralis L 0.126 0.00255 0.00186 9.0
17  Subclavian 0.034 0.00423 0.00423 4.5

18 C Carotid L 0.208 0.0037 0.0037  13.055
19 Brachiocephalic 0.034 0.0060 0.0060 4.5

20 C Carotid R 0.177 0.0037 0.0037  13.055
21 Subclavian 0.034 0.00423 0.00423 4.5
22 Vertebral R 0.148 0.00188 0.00188 7.0
23 Brachialis R 0.422 0.00403 0.00236 3.3
24 Radialis R 0.235 0.00174  0.00142 8.0
25 Ulnar IR 0.067 0.00215 0.00215 6.0
26  Vertebral L 0.148 0.00188 0.00183 7.0
27 Brachialis L 0.422 0.00403 0.00236 7.0
28 Radialis L 0.235 0.00174  0.00142 8.0
29 Ulnar I L 0.067 0.00215 0.00215 6.0
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Segment Name Length Proximal Distal  Wave

Radius Radius  speed

(m)  (m)  (m)  (m)s)
30 Tibial Ant R 0.343 0.0013 0.0013  10.0
31 Tibial Post R 0.321 0.00247  0.00141 10.0
32 Tibial Post L 0.321 0.00247  0.00141 10.0
33 Tibial Ant L 0.343 0.0013 0.0013 7.6
34 Intercostals 0.08 0.0020 0.0015 3.6
35 Celiac Axis 0.04 0.0039 0.0039 5.4
36 Hepatic A 0.066 0.0022 0.0022 4.7
37 Hepatic B 0.03 0.0018 0.0018 4.5
38 Splenic 0.063 0.00275 0.00275 4.5
39 Gastric 0.071 0.0018 0.0018 4.9
40  Abdominal A 0.053 0.0061 0.0061 4.3
41  Superminor Mesenteric  0.059 0.00434 0.00434 4.1
42 Abdominal B 0.02 0.0060 0.0060 4.3
43 Renal 0.032 0.0026 0.0026 4.5
44  Abdominal C 0.02 0.0059 0.0059 4.8
45 Renal 0.032 0.0026 0.0026 4.3
46  Abdominal D 0.106 0.0058 0.00548 4.3
47  Inferior Mesenteric 0.05 0.0016 0.0016 5.0
48 Abdominal E 0.02 0.0052 0.0052 4.3
49 Carotid External R 0.177 0.00177  8.3E-4  10.0
50 Carotid Internal R 0.177 0.00177 8.3E-4  10.0
51 Carotid Internal L 0.177 0.00177 8.3E-4  10.0
52 Carotid External L 0.177 0.00177  8.3E-4  10.0
53 Ulnar IT L 0.171 0.00203 0.00183 8.0
54 Interosseous L 0.079 9.1E-4 9.1E-4 8.0
55 Ulnar IT R 0.171 0.00203 0.00183 8.0
56 Interosseous R 0.079 9.1E-4 9.1E-4 8.0

Table 9.1: Physiological data for the arterial tree
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Segment Node Total resistance Total compliance
Nsm—5 N5 m-1
9 9 7.936E9 2.3E-11
10 11 4.77E9 3.9E-11
13 14 7.936E9 2.3E-11
16 17 4.77E9 3.9E-11
22 27 6.01E9 3.0955E-11
24 29  5.28E9 3.5235E-11
26 23 6.01E9 3.0955E-11
28 21 5.28E9 3.5235E-11
30 31 5.59E9 3.3281E-11
31 32 4.7T7TE9 3.9003E-11
32 33 4.77E9 3.9003E-11
33 34 5.59E9 3.3281E-11
34 36 1.39E9 1.3384E-10
36 39 3.63E9 5.1251E-11
38 41  2.32E9 8.0E-11
39 42 5.41E9 3.4389E-11
41 44  9.3E8 2.0005E-10
43 45 1.13E9 1.6464E-10
45 47 1.13E9 1.6464E-10
47 49  6.88E9 2.7041E-11
49 51 1.39E10 1.3384E-11
50 52 1.39E10 1.3384E-11
o1 53 1.39E10 1.3384E-11
52 54 1.39E10 1.3384E-11
53 20 5.28E9 3.5235E-11
54 56 8.43E10 2.2068E-12
55 30 5.28E9 3.5235E-12
56 58 8.43E10 2.2068E-12

Table 9.2: Termination segment impedance data
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Chapter 10
Conclusion and Future Prospects

"My aduvice to you is get married: if you find a good wife you’ll
be happy; if not, you’ll become a philosopher.”

Socrates

This thesis covers three different approaches for simulation of blood flow in
human arteries, which are connected to each other to get an one-dimensional
controlled identifiable dynamic model of the cardiovascular system. It shows
the advantages and disadvantages of each approach and also other, not con-

sidered approaches are mentioned and the differences are discussed.

Although a lot of accurate models can be found in the literature, most of them
are verified against one dataset, very often against the same one. Further-
more, usually the 1-dimensional dynamic models based on the Navier-Stokes

equations are static in the sense of initial- and boundary values.

Our model adapts the boundary and initial values for the aortic root (inflow)
as well as for the termination segments (outflow) before each heart cycle.
Together with the identification procedure for the controlled compartment
model it can be fully identified concerning physiological parameters. For the

identification algorithm only measurements from non-invasive methods are
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used. Physical parameters like artery lengths and diameters are much more
difficult and expensive to measure. They could be determined within our
possibilities only partly through Doppler ultrasonic technique. Missing data

were taken either from the literature or interpolated by given data.

Summarizing, the identification of the model parameters can be seen as the
most difficult and time consuming task. On the one hand it is difficult to
get measured data of good quality, on the other hand the main part of the
evaluation of measured data must be done by hand, even some tools for its
automation were developed during the work on this project. For practical
use of such a simulation tool described in this thesis it is important that
the identification process can be done by data from non-invasive measure-
ment only. Its disadvantages, e.g. that flow and pressure are usually not

synchronous was explained in the last section.

Even our model covers already many physiological phenomenons, there is
still place for further improvements. At first, the non-linear finite volume
implementation was figured out to be unstable concerning realistic initial
data. As consequence it should be revised and might be replaced by a finite
element implementation.

Furthermore, our model does not cover a model of the heart what can be also
a future task, whereby the question of the heart models parameter identifi-
cation has to be solved also. For our simulation runs the measured output of

the left ventricle was used instead. For it, no parameter has to be determined.
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Formulas

If we write y := % the velocity yields to

A1l - Jo (ayi%>

pin Ty (aﬁ) " Ay

This is still in complex form. For the real part of the flow in equation A.1 we

take the corresponding part of the pressure gradient Ae™. First, we write

the Besselfunctions in the Euler notation for complex numbers:

Jo(awi?) = My(y)e'®®
JQ(O(’Z%) = Moew‘)

Divergence theorem:

/F-ndS:/V-FdV (A.2)
S \4

and one of its identities is

/S Dn = /V vodV (A.3)
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Measured Data

Here one dataset obtained from a set of ultrasound measurements is given.

We determined aortic diameter, flow velocity, pulse wave propagation velocity
and the heart rate. In the following tables the flow velocity curves are not
given, they are generated from images within the simulation environment

after the calibration was done manually.

All our measured data are documented and archived on a DVD and the given
file names are references to it, but for copyright reasons the DVD could not
be attached to this work. If the reader has further questions or wants to
verify the measured data he should not hesitate to contact the author or

somebody else from his working group.

All given parameters were obtained be analysing bitmap images with the
open source software DICOMWORKS.
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Person data
Patienten #
Age 24
Weight o6kg
Height 175cm
Sex m
Systole 93
Diastole 64
liegend
# of series 1
Date of measurement | 38060
Hypersonic device: Aceson

Table B.1: Person data
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Measurement: DIAMETER
Picture # | Picture # | SYSTOLE | DIASTOLE
in series in print (cm) (cm)
Aortic root 9 Al 1.98
10 A2 2.14
11 A3 2.13
12 A4 2.14
Carotis Commu- | 22 A5 0.66, 0.66, | 0.59, 0.58,
nis left 0.66 0.58
Carotis Commu- | 28 A6 0.57, 0.58, | 0.49, 0.48,
nis right 0.57 0.49
29 A7 0.58, 0.57 | 0.50, 0.49
Radialis right 78 A8 0.222,
0.232,
0.236,
0.237,
0.236
Radialis left 107 A9 0.225,
0.242,
0.218,
0.218,
0.218
Abdominlalis 130 A10 1.37, 1.38, | 1.29, 1.29,
aorta  (bifurca- 1.38 1.30
tion)
141 All 1.405,
1.373,
1.359,
1.350,
1.381
Iliac Externa | 153 Al2 0.817,
right 0.824,
0.831
Arteria Pop | 161 A13 0.56, 0.56, | 0.49, 0.5,
right 0.57 0.5
Arteria Tibialis | 186 Al4 0.194,
right 0.214,
0.218,
0.198

Table B.2: Measurement of the

aortic diameter from ultrasound images
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109

Measurement: LENGTH OF PERIOD

Picture # | Picture # | TIME |[s] PULSE

in series in print |beats/

minute|

Carotis Commu- | 13 Al5 1.11, 1.12 56
nis left

15 A16 1.07 56
Carotis Commu- | 36 A17 1.11 49
nis right

38 A18 1.03 58
Radialis right 76 A19 1.12,1.04 | 54
Radialis left 103 A20 0.98 50

105 A21 1.12 53
Abdominlalis 132 A22 1.13 54
Aorta (bifurca-
tion)

143 A23 1.16 52
Iliac Externa | 146 A24 1.1 56
right
A pop right 165 A25 1.08 56

173 A26 1.03 56
A tibialis right 184 A27 1.1 55

Table B.3: Measurement of period length
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Measurement: SIGNAL RUNNING TIME

Picture # | Picture # | TIME [s]

in series in print
Aortenwurzel 5 A28 0.07
Cartois Commu- | 14 A29 0.09, 0.08,
nis left 0.09,0.1
Carotis Commu- | 35 A30 0.08, 0.08
nis right
Radialis right 73 A31 0.18, 0.18
Radialis links 93 A32 0.18, 0.18
Distal Aorta (bi- | 136 A33 0.16, 0.16
furcation)
[liac right 147 A34 0.17, 0.18
Arteria Pop | 165 A35 0.23, 0.22
right
Arteria Tibialis | 183 A36 0.26, 0.27
right

184 A37 0.24, 0.26, 0.27

Table B.4: Measurement of the pressure amplitude velocity
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