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Abstra
t
Due the more and more sophisti
ated medi
al 
are in western 
ountries themain 
auses of death is moving against diseases of the 
ardiovas
ular systemlike heart atta
ks, arterios
lerosis or apople
ti
 strokes. Hen
e it is not sur-prising that a lot of resear
hers are going to the time and e�ort of resear
hingon that �eld. Espe
ially the arterial part of the 
ardiovas
ular system is offundamental interest be
ause of its transport features.Modelling and simulation of the 
ardiovas
ular system have a long tradition,but mainly during the last 
entury a big amount of models for the simula-tion of blood �ow and pulse wave propagation in arteries were developed.Sin
e the �rst 
ompartment model published in 1733 by Stephen Hales [13℄a huge amount of di�erent models emerged. From very simply lumped pa-rameter models without 
onsideration of 
ontrol me
hanism to very 
omplex3-dimensional models for the blood �ow in systemi
 arteries the reader 
an�nd a lot of s
ienti�
 works in literature. All this models have its advantagesas well as its disadvantages, depending on the aim of the simulation. Thesimple models may not map the physiologi
al properties properly and the
omplex models are too hard to handle or they 
onsider only a small part ofthe whole 
ardiovas
ular 
ir
le.This work tries to �nd the happy medium and a dynami
 
ontrolled andidenti�able multis
ale model for the whole 
ardiovas
ular 
y
le is developed.The validity of the model is veri�ed by measured data. Doing this, severaldi�erent types of models are dis
ussed and 
hosen to be 
onne
ted to the�nal overall model.In detail this work 
overs the implementation of an one-dimensional dynami
ii



iiimodel for the big systemi
 arteries based on the in
ompressible Navier-Stokesequations and its 
onne
tion with a lumped parameter model of six 
ompart-ments. Additionally, a model for the small arteries is used for determinationof boundary values for the termination segments of the modelled vas
ularbed. Within the 
ompartment model two physiologi
al 
ontrol me
hanismsare 
onsidered. To 
onne
t the models to ea
h other they have to be syn
edat �rst sin
e they operate on di�erent time s
ales. While the solution of the
ontrolled 
ompartment model is straight forward by quadrature, solving thedynami
 Navier-Stokes model is more sophisti
ated. Here we used a �nitevolume method implemented by Wibmer [55℄.A fundamental part of this work deals with the identi�
ation of the 
ou-pled dynami
 multis
ale model based on measured data. To do this, severalso-
alled alternative models are tested to be able to 
ompute as mu
h as pos-sible unknown parameters from an usually quite fragmentary set of measureddata. Basi
ally, two 
lasses of parameters have to be 
omputed. On the onehand the geometri
al and physi
al stru
ture of the vas
ular bed, mainly ofthe big systemi
 arteries has to be determined (i.e. vessel diameters, lengthsand elasti
ity), on the other hand by reason of the used 
omputational meth-ods terminal 
onditions have to be ful�lled. For instan
e, we use Windkesselmodels on termination segments of the arterial tree whose parameters haveto be known.From ultrasound measurement we are able to a
hieve physi
al data of thevas
ular bed of several positions. By help of other datasets from literaturethe missing data are extrapolated. Due the usage of an additional ele
tro-
ardiogram (ECG) the pulse wave velo
ity 
an be measured as well what isused for determining the vessel wall elasti
ity.The Windkessel data are 
omputed through a linearised model for the 
ardio-vas
ular tree ea
h time step in the s
ale of the 
ompartment model. Doingthis, a model for the small arteries based on the linearised Navier-Stokesequations is used.All this was implemented in JAVA and C++ and a simulation and identi�-
ation tool for the human arterial system emerged.



Kurzfassung
Heute verlagert si
h die Haupttodesursa
he aufgrund der immer besser wer-denden medizinis
hen Versorgung und dem dadur
h immer höher werdendenAlter der Mens
hen in der westli
hen Welt immer mehr auf Erkrankungen deskardiovaskulären System. Herzversagen und Arteriosklerose sind nur einigeder Ursa
hen. So wundert es ni
ht weiter das si
h viele Fors
hungen immedizinis
h-te
hnis
hen Berei
h auf das arterielle Kreislaufsystem konzentri-eren, wel
hes aufgrund der Transporteigens
haften von zentraler Bedeutungist. Au
h in dieser Arbeit wird vor allem auf die Modellierung des arteriellenTeils eingegangen.Simulation des arteriellen Blutkreislaufs hat eine lange Tradition. Währenddes letzten Jahrhunderts wurden eine Vielzahl von Modellen zur Simula-tion des Blut�usses und der Pulswellenausbreitung in den Gefäÿen entwi
k-elt. Seit dem ersten Kompartment Modell von Stephen Hales aus dem Jahr1733 [13℄ entstanden die vers
hiedensten Modelle, die Teile des arteriellenSystemkreislaufs abbildeten, bis hin zu globalen Modellen für den gesamtenBlutkreislauf und 3-dimensionalen Strömungsmodellen der Arterien. So ver-s
hieden die Modelle sind, so sind es au
h ihre Lösungsmethoden. All diesevers
hiedenen Ansätze haben ihre Vor- und Na
hteile, abhänging vom ver-folgten Ziel der Simulation. Die einfa
hsten Modelle haben zu wenig Aus-sagekraft da sie zu wenige physiologis
he Phänomene abbilden, zu komplexeModelle sind aufgrund der groÿen Anzahl an unbekannten Parametern ni
htidenti�zierbar.Diese Arbeit versu
ht einen optimalen Mittelweg zu �nden um ein globalesdynamis
hes geregeltes und identi�zierbares Modell für den mens
hli
heniv



vHerzkreislauf zu entwi
keln und die Gültigkeit des Modells anhand von Mess-daten zu veri�zieren. Um das zu bewerkstelligen wurden vers
hiedene Model-lansätze gewählt und miteinander gekoppelt.Im Speziellen wird in dieser Arbeit ein 1-dimensionales Strömungsmod-ell auf Basis der inkompressiblen Navier-Stokes Glei
hungen mit einem 6-Kompartmentmodell für den Regelkreislauf verknüpft. Die beiden Modellearbeiten auf vers
hiedenen Zeitskalen die syn
hronisiert werden müssen.Während das Kompartmentmodell mittels einfa
her Quadratur gelöst wer-den kann, sind zur Lösung der partiellen Navier-Stokes Di�erentialglei
hun-gen komplexere Methoden erforderli
h. Hierzu wurde auf die Lösung vonWibmer [55℄ mit einem �nite Volumen Verfahren zurü
kgegri�en. AndereMethode wie zum Beispiel �nite Elementen oder �nite Di�erenzen �ndensi
h z.B. in [8, 12, 38℄.Der Hauptteil der Arbeit bes
häftigt si
h mit der Identi�zierung des gekop-pelten multiskalen Modells auf Grund von Messdaten. Dazu wurden eineReihe von so genannten Ersatzmodellen untersu
ht um von der bes
hränk-ten Anzahl an verfügbaren Daten auf die fehlenden Daten rü
kzure
hnen.Prinzipiell sind aus den Messdaten zweierlei Parameter zu bestimmen; zumeinen muss die Struktur des Arteriennetzwerks (d.h. Arteriendur
hmesser,Längen, Elastizität) angepasst werden, zum anderen die Parameter derRandbedingungen die dur
h die verwendeten Methoden auftreten, bestimmtwerden. Viele dieser Parameter sind ni
ht direkt messbar und müssen indi-rekt dur
h andere Modelle bestimmt werden. Da die Randbedingungen vonden zu bere
hnenden Gröÿen abhängen, müssen diese in jedem Zeits
hrittneu bestimmt werden wofür einfa
h zu bere
hnende Ersatzmodelle notwendigsind. Im Speziellen werden so Elasitizität und Windkesseldaten an den End-segmenten des modellierten Arteriennetzwerkes bere
hnet.Im Rahmen der Dissertation konnte au
h eine Studie mit freiwilligen Proban-den dur
hgeführt werden in der kardiovaskuläre Parameter erhoben wurden.Diese Daten dienen dann am Ende dieser Arbeit zum einen als Grundlage derIdenti�zierung des dynamis
hen geregelten Kreislaufmodell und zum anderenzur Veri�zierung der erre
hneten Daten wie Pulsdru
kkurven oder Flusskur-ven.
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Chapter 1
Introdu
tion

"A theory is something nobody believes, ex
ept the person whomade it. An experiment is something everybody believes, ex
eptthe person who made it." Albert Einstein
Nowadays the largest amount of deaths in industrial 
ountries 
an be as
ribedto diseases of the 
ardiovas
ular system, like atheros
lerosis, hypertension or
ardia
 insu�
ien
y. Therefore it not surprising that resear
h on this �eldis of big interest and a lot of investigators are trying to explain the systems
omplex physiologi
al behaviour, whi
h is still not fully understood. A hugeamount of di�erent physiologi
al fun
tions are in�uen
ing ea
h other in avery 
omplex way.From today's te
hni
al point of view non-invasive measurement te
hniquesfor the determination of physiologi
al parameters are of high interest anda wide diversity of devi
es is available and under development. Espe
iallythe measurement of 
ardiovas
ular parameters like pulsatile blood pressure,
ardia
 output, blood volume �ow and peripheral resistan
e are of essential1



CHAPTER 1. INTRODUCTION 2importan
e in modern medi
al diagnosti
s. Mathemati
al models 
an pro-vide a powerful tool for interpretation and indire
t measurement of furtherproperties.Also in the �eld of modelling and simulation of the 
ardiovas
ular system(CVS) a lot of work was done during the last hundred years. The great ad-vantage of investigating mathemati
al models instead of living individuals oranimals is obvious, even it 
annot be a 
omplete repla
ement for resear
h onliving mammals. Mathemati
al models based on physi
al laws 
an explain alot of e�e
ts observed. Starting with models for mathemati
al des
ription ofpulse wave propagation and simple models for the aorti
 Windkessel e�e
tsat the beginning of the 20th 
entury, today very 
omplex models in threedimensions for modelling turbulent �ow in bifur
ations are available. Alsothe fast development of 
omputers during the last two de
ades was very help-ful for resear
h and the development of highly sophisti
ated mathemati
almodels whi
h are solved numeri
ally.Although resear
h on blood �ow in arteries started long time ago only afew resear
hers worked on this topi
 until the 1950s sin
e a huge amount ofinvestigators started to develop models by using di�erent kind of approa
hes.When simulating blood �ow and pressure waves in arteries the governingequations for an in
ompressible �uid in an elasti
 or vis
oelasti
 domainhave to be solved. Doing this at least four approa
hes are possible. The �rstapproa
h is the use of lumped parameter models. These models are easyto handle, 
heap in 
omputing time and have less parameters to identify.Usually these models are 
ompartmental based and 
over the whole human
ardiovas
ular system in
luding the pulmonary and venous part in 
ontraryto the other approa
hes. But transient behaviour of the pressure and �owwaveforms 
an not be studied.The se
ond approa
h, the one-dimensional wave propagation method, in-volves solving the governing equations of blood �ow in a one-dimensionaldomain and is based on the assumptions that the dominant 
omponent ofblood �ow velo
ity is oriented along the vessel axis and that the pressure 
anbe assumed to be 
onstant over the 
ross-se
tion of the vessel [50℄. Assuming



CHAPTER 1. INTRODUCTION 3further a Newtonian �uid in a deforming, impermeable, elasti
 domain, thesenonlinear partial di�erential equations 
onsist of the 
ontinuity equation, asingle axial momentum balan
e equation and a 
onstitutive equation. Addi-tionally boundary 
onditions have to be drawn up. A lot of solutions of thisapproa
h 
an be �nd in the literature solved by di�erent numeri
al meth-ods like �nite di�eren
e s
hemes, �nite elements or �nite volume methods[38, 41, 50, 53, 55℄.A third approa
h is based on the Womersley solution for pulsatile �ow inelasti
 vessel [56, 57, 58℄. Here, some more assumptions were made, namelyasymmetry, linear 
onstitutive behavior and small perturbations about a
onstant pressure and zero axial velo
ity referen
e state. Then, a system oflinear partial di�erential equations 
an be derived and solved analyti
ally.A solving strategy 
an be to pres
ribe �ow and impedan
e at the aorti
root and determine 
hara
teristi
 impedan
es for the arterial segments likeAvolio did in [3℄. While these impedan
e-based linear models 
an be usedto pres
ribe �ow and pressure at the aorti
 root, they do not in
orporatenonlinear adve
tive losses or losses due to bran
hing and stenoses [32, 46, 50,51℄. Espe
ially applied to blood �ow in the major arteries this is perhaps themost signi�
ant limitation of Womersley's theory.The forth approa
h to model blood �ow and pressure wave forms in humanarteries is to solve the three-dimensional Navier-Stokes equations numeri
allyin elasti
 domains. It requires also appropriate boundary 
onditions. Whilethe pres
ribed velo
ity, volume �ow or pressure, depending on the formula-tion, 
an be 
omputed, the quantities for the blood �ow exiting the vesselsin the terminal segment of the bran
h is unknown and part of the desiredsolution [5, 7, 20, 35℄.Due to the goal of this work is to gain an identi�able and 
ontrolled dynami
model for simulating blood �ow and pressure wave forms in the major arter-ies we make use of the �rst three of the approa
hes mentioned above. Forgetting pressure and �ow wave forms in systemi
 arteries it is not ne
essaryto 
ompute them also in the venous part, but be
ause of the systems' 
ontrolit 
an not be negle
ted and therefor parts of minor interest are governed by



CHAPTER 1. INTRODUCTION 4simpler lumped parameter models, so that only very less physi
al parametershave to be identi�ed. The parts of interest within the vas
ular system aremodelled in a more detailed way. All of them are 
ombined to a big modelwhi
h let us 
onsider the behaviour of the whole system.Within this work the fo
us is on models for termination segments of the vas-
ular bed and its 
oupling with models for 
ontrol and blood �ow in arteries.During investigation it be
ame obvious that this is a quite di�
ult task. Ad-ditionally its parameters 
annot be identi�ed dire
tly by measurement andso other indire
t methods be
ame ne
essary.For the 
ombination of models of di�erent s
ales a good understanding ofthe physiologi
al 
oheren
es is ne
essary what should be given with thiswork also. Starting with some haemodynami
al fundamentals given in thenext se
tion, an introdu
tion into mathemati
al modelling of �uid dynami
sis 
overed by the se
ond 
hapter.The most 
ommon-sense strategy in modelling 
omplex systems is thebottom-up approa
h. The three basi
 
on
epts of 
ardiovas
ular modelling,on whi
h all other models developed later are based on, are explained in thethird 
hapter. Using the bottom-up prin
iple, the 
ompartmental model with
ontrol me
hanisms 
overing the whole CVS is given in the following 
hapter.After that a more detailed linearised model for the systemi
 arteries, whi
his the part of interest in investigation of 
ardiovas
ular diseases, is developedin 
hapter �ve.The third and last approa
h 
onsidered within this thesis is a non-linearapproa
h solving the Navier-Stokes equations for elasti
 tubes. This numer-i
ally solved model handles a huge amount of e�e
ts observed in naturalenvironment, but identifying its parameters is a di�
ult task for whi
h theother more simple models are used.The aim of this work is to develop a 
ontrolled and identi�able model ofthe whole CVS and therefore the di�erent models mentioned above are 
on-ne
ted to ea
h other, what is the 
ontent of the seventh 
hapter. In the last
hapters an overview of the implementation of the whole model with all itsapproa
hes is given and the results of simulation runs are presented. For



CHAPTER 1. INTRODUCTION 5better readability some 
omplex formulas and tables of measured data aresour
ed out to the appendix and its se
tions are referred in the 
ontext.1.1 Modelling and SimulationFor a huge amount of problems in appli
ations quantitative as well as qual-itative propositions are 
laimed to be emerged from the solution. Only insome very simple 
ases both 
an be done dire
tly. Usually the use of math-emati
al methods is ne
essary, even a lot of obviously empiri
 solutions arebased on an abstra
t model behind. Nowadays we are able to use more andmore 
omplex systems of a better understanding of natural pro
esses (e.g.healing of diseases). The basi
 tools for it are mostly mathemati
al mod-els, i.e. formal des
riptions using mathemati
al formalism like equations orgraphs.Simulation is a method beyond a lot of others to solve problems in di�erentappli
ations. The 
on
ept of simulation might be des
ribed well by"Simulation is the repli
ation of a dynami
 pro
ess in a model toget insights whi
h are transmittable to the real world"Modelling and simulation is an iterative pro
ess where the model has to beadapted to the real world re
urrently. Hereby the in
essant intera
tion of thedi�erent steps is essential. Observations lead to a model and the results of thesimulation at their part lead to observations again, on whi
h the validationof the model is based.1.1.1 Types of ModelsA model is the des
ription of a 
on
rete system. Dependent on the based ap-proa
h di�erent kinds of models are distinguished. A 
lassi�
ation of modelsdis
ussed within this work is given in the following se
tion.
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Figure 1.1: S
heme of a simulation studyStru
tural ModelsThe geometri
al stru
ture of the arterial tree is mapped onto the modelwhere the physi
al parameters and physiologi
al properties are 
onsidered.This is the most detailed variant we are using, but it leads also to a higher
omplexity and 
omputational e�orts.Lumped Parameter ModelsBy using this kind of models the geometri
al stru
ture of the aterial treeis not mapped, but the behaviour of the 
ardiovas
ular properties and itsregulation pro
ess is 
onsidered in a global way. To do this the arterial treeis lumped to so 
alled 
ompartments whi
h are investigated with our model.It is 
lear that there are huge restri
tions on using su
h kind of models,but they are mu
h more simpler and the amount of unknown parameters issmaller. For instan
e with a lumped parameter model also the solution islumped, for example the blood pressure is gained only as a mean value, notas a transient wave form.



CHAPTER 1. INTRODUCTION 7Alternative ModelsSometimes the underlying physi
al pro
edures are not known or are too 
om-plex for modelling it in a pra
ti
al way. In this 
ase it 
an be a good 
hoi
eto use alternative models. Instead of mapping the stru
ture of the 
ardiovas-
ular bed, the behaviour of the 
onsidered pro
ess is the basis of the model.The most prominent example for this type of models is the so 
alled Wind-kessel model on whi
h we will refer often within this work. Parts of thearterial tree behave like a Windkessel and so we 
an use it as a simpli�edalternative model.Models for Boundary DataDue to the 
omplexity of the human physiology only parts of the internalpro
edures 
an be 
onsidered. Under su
h restri
tions it follows that one hasto deal with unknown boundary parameters indispensably. For modellingthis arti�
ial splitting the use of alternative models is ne
essary. This wayare modeled parts of the system whi
h are not 
onsidered by the simulation,but whi
h are ne
essary to 
lose the 
ir
le. In our spe
ial 
ase the boundarydata at the entry respe
tively the exit of the system, namely the vessel treeof the large arteries. We need a model for the heart, with it the blood �owis driven, as well as a model for the small arteries whi
h are not 
on
ernedby our approa
h by default. The small arteries 
annot be modeled like thelarge ones 
ause of the la
k of measured data and the very wide bran
hedstru
ture whi
h is not known. We just know how they behave and try tosimulate its phenomenons. Also the elasti
ity of the vessel walls is mappedby su
h an alternative model, based on observations. All this models aredynami
, that means time dependent, 
ontrary to the model parameters,whi
h are 
onstant, and model variables whi
h are determined by the modelitself.



CHAPTER 1. INTRODUCTION 81.2 Haemodynami
al Basi
sThe overall arrangement of the human 
ardiovas
ular system 
an be sum-marised brie�y as follows (
ompare [34℄).The system is driven by the heart, whi
h is 
omposed of four 
hambers, ar-ranged in two pairs. Two of the 
hambers, the atriums are thin-walled, and
onne
ted through valves to the thi
k-walled ventri
les, one on ea
h side.From there, blood is pumped into the aorta (left ventri
le) and into the lungs(right ventri
le). The left ventri
le is more mus
ular then the right one toprodu
e enough pressure to pump oxygenated blood through the body. Fur-thermore, the left ventri
le is 
onne
ted to the aorta, the main and largestartery in the human body with a diameter of approximately 2.5 
m. Largearteries bran
h of the aorta and the arteries be
ame smaller and smaller untilthey rea
h a diameter of 30-100 µm in the arterioles. These small arteries endin the 
apillaries with a diameter down to 4 or 5 µm. These very �ne vessels
onverge again in the venous system whi
h has other me
hani
al propertiesas the arterial part. In this work only the arterial system will be 
onsidered.The walls of bloodvessels have a similar stru
ture in the whole body. Theyare made up of similar materials, although their proportions vary in di�erentparts of the system. Traditionally the wall is divided into three layers, theinnermost intima, the media and the outermost adventitia. The inner intima
onsists of two parts, the endothelium, whi
h is a single layer of 
ells, and sur-rounding it, a thin subendothelial layer 
ontaining 
ollagen �bres. The mostimportant part of the vesselwall when 
onsidering me
hani
al properties isthe media. The inner boundary is formed mainly by a layer of interlinkedelastin �bres, 
alled the internal elasti
 lamina. The rest of the media, whi
his usually the thi
kest part of the vessel wall, di�ers in the stru
ture fromlarge to small arteries. In larger arteries it 
onsists of multiple 
on
entri
layers of elasti
 tissue (elastin), separated by thin layers of 
onne
tive tis-sue, 
alled 
ollagen and smooth mus
le 
ells. In smaller arteries the media
onsists mainly of this smooth mus
le 
ells with thin layers of elastin and
ollagen in between. After another thin elasti
 layer the adventitia is 
on-ne
ted outside. Although it is as thi
k as the media it plays an unimportant
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hani
al properties, it 
onsists of very loose tissue.The vessels 
onsist of elastin, 
ollagen and smooth mus
le �bres of about50%, the rest is water whi
h has a negligible e�e
t on the me
hani
al prop-erties. The di�eren
e of elasti
ity of arteries from the proximal to the distalend is 
aused by the ratio of elastin to 
ollagen. In the intrathora
i
 aortathe ratio is about 1.5, while in other arteries, whi
h are more sti�er, the ratiode
reases to about 0.5.It is 
lear that the me
hani
al properties of the vessel walls depend on bothon the properties of its individual 
omponents and on how they are 
onne
tedtogether. Elastin is a very elasti
 material and 
an be extend easily. Collagenis mu
h sti�er with a Young's modulus of about 106kNm−2. Smooth mus
lehas a Young's modulus similar to that of elastin, but its a
tual value dependson the level of physiologi
al a
tivity, varying from 100kNm−2 in the relaxedstate to 1200kNm−2 in the a
tive state. But only elastin is purely elasti
,the others, espe
ially smooth mus
les show vis
oelasti
 properties what isre�e
ted in dynami
 properties of artery walls.1.2.1 Vis
oelasti
ity of the Blood VesselsIn basi
 
onsiderations of the pressure-�ow relationships of os
illatory �owthe artery is treated as a 
ylindri
al tube of 
onstant diameter. In reality,an artery is a vis
oelasti
 tube whose diameter varies with a pulsatilepressure and whose elasti
ity varies therefore with time and frequen
y. Theme
hani
al properties of the vessel wall are well investigated and its results
an be found in literature [4, 31, 34, 36℄.To study haemodynami
s of the arterial system knowledge of the elasti
properties of the arterial wall is of fundamental importan
e. Indeed,knowledge of the vis
oelasti
 properties of the blood vessels has long beenre
ognized as playing an essential role in 
ardiovas
ular behaviour.Relations between for
es applied to a body and its deformation is 
overed bythe theory of elasti
ity. The for
e per unit area produ
ing the deformationis 
alled the stress whereby the ratio of the deformation to its original formis 
alled strain. Be
ause its a ratio, strain is dimensionless. Although the



CHAPTER 1. INTRODUCTION 10ability to withstand a stress is a property that distinguishes a solid from aliquid, a larger number of substan
es exhibit properties appropriate to anelasti
 solid as well as a vis
ous liquid. Blood vessels belong to this huge
lass of so 
alled vis
oelasti
 materials. The deformation of su
h materialsdepends on both the magnitude of the stress and the rate at whi
h isapplied.Of 
ourse no substan
e is perfe
tly elasti
 when very large for
es are appliedto it, but for small deformations it is proportional to the for
e and linear.This proportionality was �rst des
ribed by Robert Hooke (1635-1703) in 1676and is well known as Hooke's law. With larger for
es this proportionality
eases and this limit is known as elasti
 limit. The material 
annot regainto its original form beyond this point. With further in
reasing of the loadthe yield point will be rea
hed and usually leads to breakage.The 
lassi
al theory of elasti
ity is based on two fundamental assumptions,namely the substan
e is 
ontinuous and uniform or homogeneous but neitherof the two applies well to the arterial wall. At �rst, the wall is highlyextensible and behaves more as rubber, and at se
ond, the main elasti

omponents as mentioned in the latter se
tion, are 
ollagen and elastinwhi
h a �brous and supported in a liquid of water and mu
oproteins.Therefore the arterial wall is far from being homogeneous. Nevertheless themain analyses of the arterial me
hani
s are based on 
lassi
al theory.Strain and StressReferring to its 
onsequen
e strain is divided in longitudinal strain when abody is extended from a length x0 to a length x1, to 
ompressive strain whenthere is a 
hange of volume and to shear strain when there is an displa
ementof two points in parallel planes in a dire
tion parallel to those planes.The longitudinal stress is expressed by
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ǫxx =

x1 − x0

x0
(1.1)while in the y or z dire
tion the strains are given by

ǫyy =
y1 − y0

y0
= −σyxǫxx (1.2)and

ǫzz =
z1 − z0

z0
= −σzxǫxx (1.3)where σ, the ratio of transverse to longitudinal strain, is 
alled Poisson ratio.

σ is a 
hara
teristi
 property of the material and for small strain its 
onstant,but it 
annot ne
essarily be assumed that σyz = σzx. That holds for so-
alled isotropi
 materials where the elasti
ity is the same in all dire
tions.Pra
ti
ally, for the Poisson ratio the e�e
tive range is 0.0 − 0.5. For smallextensions with a ratio 0.5, the volume of a solid remains 
onstant when itis stret
hed.In three dimensions we get one tensile and two shearing strains for everyplane. After taking into a

ount that ǫxy and ǫyx are identi
al we gain sixindependent 
omponents
ǫxx, ǫxy, ǫyy, ǫyz , ǫzz, ǫzx.and six 
orresponding Poisson ratios

σxx, σxy, σyy, σyz , σzz, σzx.Strain is 
aused by a for
e F a
ting a
ross a given plane in a body. Thus theunit of this for
e F is F
A
, 
alled stress.The stress on a point in a plane may be resolved into those normal (tensilestress) and tangential (shear stress). The 
omponents along the three axisare designated by subs
ripts where the 
apital letters indi
ate the dire
tion of
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omponent. Be
ause Xy and Yx must be equal to prevent rotationalresultant we therefore left with six independent 
omponents of stress:
Xx, Xy, Xz, Yx, Yz, Zz, ZxThe Relationship between strain and stressThe relationship between stress and strain is expressed as an elasti
 modulus.As strain is dimensionless, all these moduli will have the dimension of stress(i.e. for
e per unit area).The modulus in longitudinal dire
tion (stress and strain are 
onsidered inthe same dire
tion) is 
alled Young's modulus in honor of the pioneer workof Thomas Young (1808) and is designated by E.

E =
Xx

ǫxx

(1.4)In this work the Young's modulus will refer to the Young's modulus in 
ir-
umferential dire
tion further on. Other de�nitions of elasti
 modulus likeshear modulus or bulk modulus are not used here and therefore not dis
ussed.For further details the reader may refer to [31℄ and referen
es therein.As the dynami
 behavior of the arterial wall is the periodi
 strain imposedby the pulse wave the response of the wall to a stress is often analysed by astress of a harmoni
 fun
tion. In this 
ase, the vis
ous elements will 
ause aphase lag of angle φ between stress and its resultant strain.M
Donald [31℄ mentioned the �rst formulation by Hardung [14, 15, 16℄ whointrodu
ed the elasti
 modulus E ′ in 
omplex form:
E ′ = Edyn + iµω (1.5)where the real part Edyn is given by

Edyn =
∆P

∆l

lm
qm

cos φ (1.6)



CHAPTER 1. INTRODUCTION 13and the imaginary part by
µω =

∆P

∆l

lm
qm

sin φ; (1.7)
lm and qm are the average length and the 
ross-se
tion of the spe
ismen. Inthe upper formulas µ denotes the dynami
 vis
osity and ω the 
on
ernedfrequen
y.Although the dynami
 elasti
 modulus is rising 
ontinuously with frequen
y,in arterial wall it in
reases markedly up to a frequen
y below 2 Hz andthereafter remains 
onstant.1.2.2 Wave form analysisThe arterial pulse has been re
ognized from antiquity as the most funda-mental sign of life. A huge number of s
ienti�
 publi
ations dealing withthat topi
 
an be found. Marey [42℄ was the �rst who obtained a

urateresults re
ording arterial pressure pulses with non-invasive measuring meth-ods where invasive methods were used before like Frank [9, 10℄ did with hismanometer for registering intra-arterial blood pressure.When observing waveforms of �ow and pressure in the as
ending aorta one
an see di�eren
es between the shapes of them. As long as 
ardiovas
ularphysiologists have been able to measure pressure and �ow in the as
endingaorta, they have puzzled over this phenomenon.One explanation of this di�eren
es 
ould be the existen
e of wave re�e
tions
aused by the peripheral arteries. A re�e
ted ba
k travelling wave that rein-for
es the pressure will have a 
an
elling e�e
t on the �ow shape. However,it 
ould not be demonstrated yet that wave re�e
tion are su�
ient to explainsu
h large, qualitative di�eren
es in the aorti
 pressure and �ow waveforms[52℄. Milnor [27℄ remarked that the aorti
 tree in a young normal animal is aperfe
t di�user, i.e, it generates far fewer re�e
tions than any man-made dis-tributed network. Wang et. al. [52℄ explained these phenomenons with helpof simple Windkessel models and veri�ed their assumptions with measure-ments on dogs. Even with arti�
ial pressure waves generated in the abdomi-
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Figure 1.2: Pressure and velo
ity wave forms in di�erent arteries (Mills et. al.[26℄, adapted by M
Donalds [31℄)nal aorta, the e�e
t of the ba
k travelling wave 
ould not be observed havingany essential in�uen
e on the pressure waveform in the as
ending aorta. Inthere model for the blood �ow in the aorta they divided the pressure waveinto two parts, one des
ribes the pressure as result of the Windkessel, and thepart of the heart generated pressure wave. It 
an be seen that shape of thelatter is very similar to the �ow waveform when wave re�e
tion is negle
ted.A diagrammati
 
omparison of the behaviour of the arterial pressure and�ow pulses as they travel away from the heart is given with �g. 1.2. As shownin the graphi
 above mean pressure falls slowly, but the pulsatile pressurevariation in
reases until it may be double that at the root of the aorta. The�ow os
illation, on the 
ontrary, diminishes markedly. This behaviour 
anonly be a

ounted for by the presen
e of a 
losed type of re�e
tion in the
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Figure 1.3: Pressure and �ow wave forms along the arterial tree (taken fromM
Donalds [31℄)small peripheral vessels. In the absen
e of re�e
tions, damping would 
ause aparallel fall in pressure and �ow os
illations. Subsequently, also the pressureos
illations must damp out, whi
h takes pla
e in the smallest arteries andproximal arterioles.The in
rease in the ratio of the pulsatile pressure amplitude to that of the�ow amplitude is largely determined by the in
rease in impedan
e of the low-frequen
y 
omponents. Additionally, the 
hange in shape of pressure wave tothat of the �ow wave depends on the 
hanges in impedan
e of the various fre-quen
y 
omponents in terms of their distan
e form the main re�e
tion sites,sin
e the impedan
e is at a minimum at one-quarter wavelength distan
efrom these peripheral sites.The prolonged pressure rise from wave re�e
tion after systoli
 eje
tion has
eased leads to an augmentation of diastoli
 pressure and in
reases 
oronaryblood �ow to the myo
ardium without in
reasing left ventri
ular afterload.Wave re�e
tion during diastole, therefore, appears to be highly advantageous.In 
ontrary to this when vessel walls be
ome sti�er, for example in lateryears or through systemi
 hypertension, an in
rease in pulse wave velo
ity is
aused what results in an early return of the re�e
ted wave to the as
end-
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Figure 1.4: Pressure and �ow wave forms along the arterial tree (taken fromM
Donalds [31℄)ing aorta during ventri
ular eje
tion. Su
h timing is detrimental, sin
e theaugmentation 
aused by the re�e
ted wave in
reases systoli
 pressure andventri
ular afterload.Thus, the so-
alled augmentation index, whi
h is de�ned by
AIx =

Ps − Pi

Ps − Pd

(1.8)with systoli
 (Ps), diastoli
 (Pd) and in�e
tion pressure (Pi) is taken as a
ardiovas
ular risk fa
tor. (�g. 1.4). The in�e
tion point is de�ned as thepoint when systoli
 eje
tion is over and only the re�e
ted wave 
auses anin
rease of blood pressure.1.2.3 Fourier AnalysisUsing Fourier analysis for blood �ow simulation was motivated from the the-ory of ele
trote
hni
al engineering, where it was is known as a quite powerfultool. Although this theory was little used before for investigating wave formsin arteries, it was �nally introdu
ed by Womersley. Using Fourier de
ompo-sition of pulse and �ow waves allows to investigate the 
omplex behaviour ofnon-linear distensibility and vis
ous e�e
ts.
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Donald gave a huge and detailed overview of Fourier analysis 
on
ern-ing pressure and �ow waves in his fundamental book [31℄. As experimentsshow low frequen
y 
omponents dominate the Fourier de
omposition of wavesin large arteries. Components with a frequen
y higher than 15 Hz 
an benegle
ted what makes its 
omputation quite fast what leads to a high per-forman
e in 
omputation of linear models whi
h a huge number of segments.More details will be given later on.



Chapter 2
Fluid Me
hani
al Properties

"During our 
rossing, Einstein explained his theory to me everyday, and by the time we arrived I was fully 
onvin
ed he under-stood it." Chaim Weizmann, 1921
The following small introdu
tion to �uid me
hani
s is based on the ex
ellentbook of A
heson [1℄. It should introdu
e into its basi
s and its notation to beable to understand this thesis without any foreknowledge in this topi
. Forfurther details the reader is referred to [1, 22, 37℄.The �ow of a �uid is des
ribed by a velo
ity ve
tor

u = u(x, t) (2.1)It de�nes the velo
ity at every position x for every time t. This tells uswhat all elements of the �uid are doing at any time, and usually �nding thesolution of 2.1 is the main task, what 
an be expe
ted to be quite di�
ult.Assuming Cartesian 
oordinates and denoting u having 
omponents u, v, w,equation 2.1 is a 
onvenient short
ut for18
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u = u(x, y, z, t), v = v(x, y, z, t) and w = z(x, y, z, t).A �ow is 
alled steady if

∂u

∂t
= 0so that u depends on x only.A streamline is a 
urve x(s) at a 
ertain time t whereby its gradient is givenby u(x(s), t). At any parti
ular point, a streamline has the same dire
tionas u(x, t) and so its following a �uid parti
le. Mathemati
ally, a streamlineis gained by solving

dx/ds

u
=

dy/ds

v
=

dz/ds

wat a parti
ular time with x = x(s), y = y(s) and z = z(s).It is 
lear that even if we have a steady �ow so that u is 
onstant at a point�xed in spa
e, u 
hanges as we follow any parti
ular �uid element. Thisleads us to introdu
e the 
on
ept of rate of 
hange following the �uid, withis of fundamental importan
e in �uid dynami
s.Rate of 
hange �following the �uid�Let f(x, y, z, t) denote some quantity of interest in the �uid motion, for ex-ample it 
ould be one 
omponent of the �uid velo
ity u or the density ρ.First, we note that ∂f

∂t
is the rate of 
hange of f at any �xed position inspa
e.In 
ontrast to this des
ribing the behaviour of any state variable along a pathof a parti
le we use the substantial derivative
Df

Dt
=

d

dt
f [x(t), y(t), z(t), t]



CHAPTER 2. FLUID MECHANICAL PROPERTIES 20where x(t), y(t) and z(t) are understood to 
hange with time at the lo
alvelo
ity u:
dx

dt
= u, dy

dt
= v, dy

dt
= wAppli
ation of the 
hain rule gives

Df

Dt
=

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
,i.e.

Df

Dt
=

∂f

∂t
+ (u · ∇)f (2.2)It des
ribes the gradient of the 
on
erned variable along a streamline. There-fore, the a

eleration in a �uid at any point in spa
e is given by

Du

Dt
=

∂u

∂t
+ (u · ∇)uRemark that for steady �ow equation 2.2 shows that the rate of 
hange of ffollowing a �uid element redu
es to (u · ∇)f .Additionally,

(u · ∇)f = 0 (2.3)de�nes some important stages in �uid theory, thus implies that f is 
onstantalong a streamline. But there is no information about if f is di�erent ondi�erent streamlines. For example 
onsider a �ow in x dire
tion and assume
f to be 
onstant in x, so that ∂f

∂x
= 0. It says that f is independent of x, butthere is no information about y, z, or t.Another important equation within the theory is
Df

Dt
= 0
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h means that f is 
onstant for a parti
ular �uid element and followsdire
tly from the de�nition above. It doesn't pre
lude that di�erent elementsmight have di�erent values of f .For the following theory we will introdu
e the term of an ideal �uid and wewill 
onsider �uid elements with a small, but �nite volume:A �uid is said to be ideal as of the following properties hold:1. It is in
ompressible, so that no �nite volume element 
an 
hange itsvolume as it moves.2. The density ρ is a 
onstant, the same for all �uid elements and for alltime t.3. The for
e exerted a
ross a geometri
al surfa
e element n∂S within the�uid is
pn ∂S (2.4)where the pressure p(x, y, z, t) is a s
alar fun
tion, independent of thenormal n.Of 
ourse, there is no ideal �uid somewhere in nature, espe
ially blood isvis
ous to its extent, but for our next 
onsiderations we will assume that our�uid behaves like one.From the assumptions of the de�nition of an ideal �uid several 
onsequen
esare impli
ated. First, 
onsider a �xed 
losed surfa
e S in the �uid with aunit outward normal n, where �uid is entering on one side and will leave iton another. Then, the velo
ity 
omponent along the outward normal is u ·nand the volume �owing out through a small surfa
e element δS in unit timeis u ·n δS, and therefore the rate �uid is leaving the volume element is givenby

∫

S

u · n dS
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h must be equal to zero for an in
ompressible �uid and by using thedivergen
e theorem A.2 we �nd
∫

S

∇ · n dV = 0This 
an be hold only for
∇ · u = 0what is named in
ompressibility 
ondition.To examine the 
onsequen
e of the third 
ondition lets 
onsider a surfa
e Sof a �nite volume. The for
e exerted by the surrounding �uid a
ross anysmall surfa
e element δS is given by 2.4 and the for
e exerted on the wholevolume element is

−

∫

S

pn dS = −

∫

V

∇p dV (2.5)if we apply the identity A.3. Assuming ∇p to be 
ontinuous it will be almost
onstant over a small volume δV and the for
e on the small volume of thesurrounding �uid 
an be taken as −∇p δV .The equations of EulerNow we are in the position to study linear momentum to a small volumeelement δV . With the presen
e of gravity, the total for
e on our volume is
(−∇p + ρg) δVand by Newton's se
ond law this must be equal to mass times a

eleration,i.e. to

ρ δV
Du

Dt
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Du

Dt
= −

1

ρ
∇p + ρg

∇ · u =0as the basi
 equations for an ideal �uid, known as Euler's equations, des
rib-ing non-vis
ous �ow of an ideal �uid.Vis
ous FlowConsidering blood �ow in arteries vis
ous e�e
ts 
annot be negle
ted insmaller vessels. Along the vessels boundary, invis
id theory is predi
tinga slip of the �uid. Yet 
lose inspe
tion reveals that there is in fa
t no su
hslip. Instead there is a very thin boundary layer, a
ross whi
h the �ow ve-lo
ity undergoes a smooth but rapid adjustment to pre
isely zero. In thisboundary layer invis
id theory fails and vis
ous e�e
ts be
ome important.It is obvious that the thi
kness of the boundary layer dominates more andmore against the main part of �ow the smaller the 
onsidered arteries are.To examine vis
osity 
onsider simple shear �ow, for example let the velo
ity
u be u = [u(y), 0, 0]. The �uid above some 
onstant level y exerts stress,i.e. a for
e per unit area of 
onta
t on the �uid immediately below and vi
everse. For invis
id �ow this stress would have no tangential 
omponent, butfor vis
ous �ow this tangential 
omponent τ is typi
ally non-zero.If τ is proportional to the velo
ity gradient, i.e.

τ = µ
du

dy
(2.6)the �uid is 
alled to be Newtonian vis
ous. A wide range of natural �uidsbehave like 2.6 under �normal� 
onditions, also blood 
an be assumed to doso.
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alled kinemati
 vis
osity
ν =

µ

ρ
(2.7)is more signi�
ant from the �uid dynami
al point of view. These values 
anvary quite substantially with temperature, but for our appli
ations on blood�ow they 
an be taken to be 
onstant, as well as we 
onsider only 
onstantbody temperature.For an in
ompressible Newtonian �uid of 
onstant density ρ and 
onstantvis
osity µ its motion is governed by the Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p + ν∇2u + g (2.8)

∇ · u =0 (2.9)These di�er from the Euler equations by virtue of the vis
ous term ν∇2u,where ∇2 denotes the Lapla
e operator.No-slip ConditionObservations of real �uid �ow reveals that at a rigid boundary the tangentialas well as the normal 
omponent of the �uid velo
ity must be the same asthose of the boundary itself. If we assume the boundary to be in rest, thismeans u = 0 there. This holds for �uids of any vis
osity ν 6= 0.The Reynolds NumberThe Reynolds number gives a rough indi
ation of the relative magnitudes oftwo terms in the equations of motions. Flows with high or low Reynolds num-ber have quite di�erent general 
hara
teristi
s. It is de�ned by the 
hara
-teristi
 properties U , whi
h denotes the typi
al �ow speed, the 
hara
teristi
length L and the vis
osity ν:
R =

UL

ν
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onsider the derivatives of the �ow velo
ity,e.g. ∂u
∂x

whi
h will be of the order U/L. Going on the derivative will 
hangethemselves of order U/L over distan
e of order L and the se
ond deriva-tive ∂2u/∂x2 will be of order U/L2 and for the derivative terms in the �rstequations of 2.9 there holdsinertia term: |(u · ∇)u| = O(U2/L)vis
ous term: |ν∇2u| = O(νU/L2)For the ratio of the inertia and the vis
ous term we get
O

(
U2/L

νU/L2

)
= O(R) (2.10)and the meaning of high and low Reynolds numbers be
omes 
lear.High Reynolds Number FlowFor high Reynoldsnumber R ≫ 1 equation 2.10 suggests that vis
ous e�e
ts
an be negle
ted and �ow 
an be seen being in-vis
ous. A high Reynoldsnumber is important over most of the �ow �eld, but its not su�
ient. Inthin boundary layers where large velo
ity gradients o

ur and the vis
ousterm in the latter equation in
reases. It 
an be shown [1℄ that the typi
althi
kness δ of su
h a boundary layer is given by

δ

L
= O

(
R− 1

2

)Therefore, the larger the Reynolds number, the thinner the boundary layer.Another 
ompli
ation of high Reynolds number is that steady �ows are oftenunstable to small disturban
es and as a result they be
ome turbulent. Thiswas the original 
ontext in whi
h the Reynolds number where de�ned.
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over very vis
ous �ow with spe
ial properties.In su
h �ows there is no sign of turbulen
e and the �ow is extremely wellordered. Furthermore, their is almost reversibility of �ow. For exampleimagine two 
ylinders with golden syrup in between, the inner in rotation,the outer in rest. Considering a small volume element it will move ba
kalmost to its inertial position after the rotational for
e ends [1℄.Vis
ous �ow where this phenomenons be
ame important will not 
onsideredwithin this thesis and so the reader is referred to literature.



Chapter 3
Haemodynami
al Properties

"Marriage is like pi - natural, irrational, and very important."Lisa Ho�man
This 
hapter gives an histori
al overview of the development of haemody-nami
al models and des
ribes the key properties whi
h are 
ommonly usedwhen simulating blood �ow in human arteries.During the history a lot of approa
hes lead to a huge amount of modelsby a lot of investigators. As �rst William Harvey (1578-1657) proved theexisten
e of blood 
ir
ulation in his work Exer
itatio anatomi
a de MotuCordis in 1628. Hundred years later Stephen Hales qualitatively des
ribedthe �rst lumped parameter model of the arterial system in 1733 [13℄. Heenvisioned that heart inje
ts blood into the arterial system during systolewhile distending the large arteries. Furthermore he �gured out that duringdiastole the arteries re
oil and make the blood �ow through the small arteries
ontinuous. Therefore he viewed the role of the large arteries a storage devi
ethat transforms intermittent �ow from the heart into a steady out�ow.

27
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Figure 3.1: Stephen Hales, 1677-17613.1 The Windkessel Approa
hIn the end of the nineteenth 
entury Otto Frank 
on
eived a pra
ti
al use forthis 
on
ept when he attempted the so-
alled Windkessel to 
al
ulate strokevolume from measured aorti
 pressure. Measurement of �ow remained a biggoal for de
ades until the ele
tromagneti
 �ow probe was developed.Frank related the Windkessel to represent the arterial part of the 
ardiovas-
ular tree, the out�ow noted to represent the arterioles and 
apillaries [9℄.He used the prin
iple of 
onservation of mass to quantify this des
ription,where at ea
h time t blood �ow stored in the large arteries Qstored is equalto the di�eren
e of in�ow and out�ow:
Qstored = Qin − Qout (3.1)Then the most basi
 assumption of the Windkessel approa
h was made,namely to assume the pressure to be the same everywhere in the arterialsystem, whi
h is equivalent to that the pressure and �ow pulses travel within�nite velo
ity.With this assumption the peripheral resistan
e was introdu
ed, des
ribingthe relationship of a pressure drop a
ross the small arteries to the �ow out
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Figure 3.2: Te
hni
al Windkesselof the system
Rw =

Pin − Pv

Qout

(3.2)where Pv denotes the venous pressure. Next, the Windkessel 
omplian
e Cwdes
ribes the ability of the system to store blood whi
h is given by the 
hangeof blood volume V 
aused by a 
hange of pressure.
Cw =

dV

dPin

(3.3)Substitution of 3.2 and 3.3 into 3.1 leads to a di�erential equation relating
Pin to Qin.

Qin(t) = Cw

dPin

dt
+

Pin

RwFor Frank three possible 
ases have to be 
onsidered for the 
omplian
e.Either Cw and Rw are both 
onstant, both are a fun
tion of pressure or only
Cw is a fun
tion of pressure. Setting Qin to zero and writing the last equationin the form

Cw · Rw = −
Pin

dPin/dthe 
on
ludes that Cw is a fun
tion of pressure, whi
h was also 
onsistent withthe observed pressure-dependent 
omplian
e of the isolated aorta.
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k of possibilities of solving nonlinear equations this nonlineardes
ription was negle
ted by investigators for a long time until 
omputersmade the task less di�
ult.Even with pressure dependent 
omplian
e Frank's modell didn't mat
h pres-sure measured from an animal and this let him to split the pressure pulseinto two 
omponents, into a basi
 �Grundform� and an os
illating part 
alled�Grunds
hwingung�. His model mat
hed the �Grundfrom�, whi
h is the pres-sure pulse without re�e
tion from peripheral sites.The real power of the Windkessel 
on
ept was not realized until FourierTransformation was applied and it was translated into its ele
tri
al analogy.Summing up, the Windkessel approa
h relates �ow to pressure by the arterial
omplian
e, �ow velo
ity was seen to be not important, whi
h was not sharedby everyone and let another s
hool establish, the long tube s
hool.
Figure 3.3: Windkessel 
omplian
e as frequen
y-independent transfer fun
tion(A) and as a frequen
y-dependent transfer fun
tion. Here, V lags P due inertialand re�e
tion e�e
ts.3.2 The Long Tube Approa
hWhereas Hales and Frank saw the arterial system as a 
ontainer of blood,Weber and Womersley saw it as a system transporting pressure and �owwaves. Based on the observation that �ow and pressure pulse waves don'trise and fall simultaneously throughout the system it was 
on
eptualised asa uniform, in�nitely long tube, so that a pulse wave produ
ed by the heartnever returns. In 
ontrary to the Windkessel model, the fo
us is on wavespeed velo
ity and this led to a long history of investigation.
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hronously throughout the arterial system and a measurable time delayo

urs between the pressure pulse measured at the aorta and at peripheralarteries.In general, three equations are used to des
ribe �ow in elasti
 tubes: Anequation of motion, an equation of 
ontinuity, and an equation des
ribing wallproperties. In the beginning of the investigation of pressure wave propagationseveral analyti
 equations were found, whereby the Moens-Kortweg formulais the most famous representative. For a thin-walled tube the pulse wavevelo
ity c0 is expressed as a 
onstent value related to blood density ρ, wallthi
kness h, radius r and Young's modulus of elasti
ity E:
c0 =

√
hE

2ρrThis formula negle
ts e�e
ts of blood vis
osity and was experimentally vali-dated by Moens [28℄ but may approximate reality very well.In a following epo
h investigators started with a more formal approa
h andassumed the Navier-Stokes equations whi
h were simpli�ed to solve this non-linear partial di�erential equations analyti
ally. This was the very produ
tivetime when Womersley provided a series of papers [56, 58, 57℄, resulting insolutions in
luding the 
omplex intera
tion of resistive and inertial for
es,introdu
ed by pulsatile �ow.3.3 The Bran
hing Network Approa
hSimilar to the latter approa
h this approa
h is based on the Navier-Stokesequations by adding more and more 
omplexity to the models. Similar to thelatter method this approa
h is based on solving the Navier-Stokes equationswith �ow velo
ity and pressure as variables of interest. The elegant ve
tor
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Figure 3.4: A bran
hing network modelform is given by
ρ
Dv

Dt
= −∇P + µ∇2

vThis relates the inertial for
e ρDv

Dt
to the pressure for
e ∇P and vis
ous for
es

µ∇2
v.For solving this equations analyti
ally usually troublesome terms are ne-gle
ted. Even a general solution was found by Meblin and Noordergraaf [25℄,the simpli�ed less powerful approa
h was used by investigators. A justi�
a-tion of the assumption that non-linear terms are negligible was was done e.g.by Li et al. [21℄.



Chapter 4
Lumped Parameter Model

"Basi
 resear
h is what I'm doing when I don't know what I'mdoing." Wernher von Braun
This 
hapter should introdu
e in a lumped parameter model for human blood�ow whi
h was 
ontent of my diploma thesis [19℄. Based on the model from[29℄ a six 
ompartment model was developed and extended with a 
ontrolme
hanism and the dependen
y of outer in�uen
es as physi
al stress andhydrostati
al pressure. Furthermore a simulation environment for simulationof blood �ow in arteries was developed whi
h gives a 
ontrol engine for thesimulation of all models des
ribed in this work.With this simple approa
h we gain values for heart rate, systemi
 bloodpressure, beat volume and the peripheral resistan
e, averaged over one heart
y
le. This is done by a me
hani
al two-pump model. Besides the two heart
hambers also 4 other 
ompartments are used to map the pulmonary- andsystemi
 system, ea
h with arterial and venous part. Furthermore a 
ontrolme
hanism, patterned on the natural 
ontrol by the medulla and its pressurere
eptorsis is added to the system (refer to 4).33
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Figure 4.1: Compartmental model s
heme4.1 The 
ir
uit modelThe 
ompartments mathemati
al des
ription is motivated through the Frank-Starling relation for the heart 
hambers and Poiseille's law for the 
ompart-ments, des
ribing the arteries and veins.From the Frank-Starling relation we get that an in
rease of the ventri
lestrength k with 
onstant arterial pressure PA and 
onstant end-diastoli
 vol-ume VD will in
rease the beat volume:
vB =

k

PA

VD (4.1)On the other hand is the beat volume given by the di�eren
e of end-diastoli
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 volume
vB = VD − vS. (4.2)Finally the end-systoli
 blood volume vS 
an be written as

vS =

(
1 −

k

PA

)
VD (4.3)For the mathemati
al formulation of the system also the ventri
le volume vVis needed whi
h is modeled by haemodynami
 
onsiderations. The 
hangewith time of a 
ontrol volume 
an be written as di�eren
e of �ow at dis
retepoints x and x + ∆x:

∂vV

∂t
= q(x, t) − q(x + ∆x, t) (4.4)After determination of its Taylor series

q(x + ∆x, t) = q(x, t) +
∂q

∂x
∆x (4.5)and substitution in equation 4.4 we get the 
ontinuity equation for �ow inan elasti
 pipe with 
omplian
e C = ∂vV

∂p
1

∆x

−
∂q

∂x
= c

∂p

∂t
(4.6)After taking into a

ount the frequen
y dependent elasti
ity modulus andsome equivalent transformations we get

bV =
c pven

(
1 − e

−tD
CR

)

part

k

(
1 − e

−tD
CR

)
+ e

−tD
CR

(4.7)for the beat volume, whereby tD de�nes the duration of diastole. For moredetails the reader is referred to [48℄.
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al des
ription of the four remaining volume 
ompartmentsis done by use of Poiseuille's law:
Q =

πR4(P1 − P2)

8µL
(4.8)The 
hange of volume in one 
ompartment is given by the di�eren
e of in�owand out�ow

dvAS

dt
= qout − qinwhereby further on for better understanding subs
ripts will be used for dis-tinguish between the systemi
 arterial (AS), systemi
 venous (V S), pulmonalarterial (AP ) and pulmonal venous (V P ) parts of the CVS. Variables will bewritten in lower 
ase letters where we use p for pressures, v for volumes, qfor �ow, c for 
omplian
es and r for peripheral resistan
es as given by table4.1. Constants are denoted by 
apitals.After lumping the parameters in equation 4.8 to a single one, named as pe-ripheral resistan
e r for the 
hange of volume follows

dvAS

dt
= qout −

pAS − pV S

rAThe relation between pressure and volume is given by the 
omplian
e of thearterial walls. An in
reased blood volume vAS leads to the pressure pAS,determined by the di�erential equation
dpAS

dt
=

1

c

dvAS

dt
(4.9)Des
ribing all 4 
ompartments through this prin
iple we gain the following
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ontrolled system:



˙pAS

˙pV S

˙pAP

˙pV P




=




− 1
cAS ·rA

1
cAS ·rA

0 0
1

cV S ·rA
− 1

cV S ·rA
0 0

0 0 − 1
cAP ·rP

1
cAP ·rP

0 0 1
cV P ·rP

− 1
cV P ·rP







pAS

pV S

pAP

pV P




+




1
cAS

qL

− 1
cV S

qR

1
cAP

qR

− 1
cV P

qL




Value Des
ription
pAS,pV P ,pV S,pAP pressure of the venous resp. thearterial part of the systemi
 andthe pulmonal 
ir
ulation
cAS,cV S,cAP ,cV P 
omplian
es, taken to be 
onstant
rA,rP peripheral resistan
e of the sys-temi
 resp. pulmonal 
ir
ulation
qL,qR blood �ow out of the left and rightventri
leTable 4.1: Des
ription of the used variables for the 
ompartment modell4.1.1 Control of the Compartmental ModelWithin the human body a lot of di�erent me
hanisms for 
ontrolling theblood pressure are known. Our 
onsiderations are restri
ted to the shorttime 
ontrol by the pressure re
eptor as mentioned before. To add thisme
hanism on the model we use a negative feedba
k of the pressure pASwith appropriate fun
tions. These feedba
k fun
tions re�e
t the relationbetween the peripheral resistan
e respe
tively the heart rate and the bloodpressure, gotten through measured data. The feedba
k fun
tions are realizedby splines, whereby 
hara
tersti
 parameters like boundary points, in�e
tionpoint and its gradient. These parameters 
an be determined from measure-
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Figure 4.2: Elasti
ity of the aorti
 wallments easily with an optimisation method and are therefor identi�able bythis way.4.1.2 Complian
e in the Controlled ModelThe 
omplian
e of the arterial walls is dependent from 
omplex me
hanisms,hen
e the pressure as well. Therefor the assumption the 
omplian
e to be
onstant 
annot be held. (�g. 4.2)The 
omplian
e for the systemi
 and pulmonal 
ompartments 
an be writtenas ratio of total blood volume and blood pressure:
cV S =

KCV S

pV S

cAP =
KCAP

pAP

cV P =
KCV P

pV PThe aorti
 walls 
onsists of a thi
k elasti
 layer the aorti
 blood volumeis 
hanging in dependen
e of the blood pressure. Be
ause of this so 
alled
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t the systemi
 volume 
annot to be taken as 
onstant. Agood approximation for this nonlinear relation between 
omplian
e CASand pressure PAS is given by
cAS = CASN ·

(
1 −

p4
ASN

1 + p4
ASN

)where pASN = pAS

100
and CASN set as 
onstant.4.2 Extended Controlled Model ConsideringStressThe model des
ribed above is extended by several state variables for simu-lating physi
al stress. The human physiology has two main me
hanisms torea
t on it. The �rst is a qualitative rea
tion and is lo
ated in the peripheralvessels by opening or 
losing its 
ir
ular mus
les whi
h results in a 
hange ofperipheral resistan
e. It represents a very fast and energy e�
ient 
ontrollingmethod and is modeled by a term in
luding the stress' gradient.The se
ond me
hanism results in in
reasing the heart rate and a
ts mu
hmore slower, but depends on the stress quantitatively. This 
an be modelleddire
tly by the use of a transfer fun
tion of �rst order. But there is also an-other me
hanism with leads to de
rease heartrate slowly and smoothly withending stress, whi
h is represented through a transfer fun
tion of �rst orderas well.Like in the original model the variables for beat volume, heart rate and pe-ripheral resistan
e are represented by ordinary di�erential equations. Thepressure is given by �ow and 
omplian
e of the vessels.4.2.1 Peripheral Resistan
eThe peripheral resistan
e is rea
ting lo
ally and fast on given stress, but itsgoing ba
k to the initial value very slowly. To simulate this e�e
t an arti�
ialslowly de
reasing stress fun
tion was introdu
ed:
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rA stress dependent 
omponent of rA

r̂A freedba
k 
omponent of rA

hFB arti�
ial smoothly de
reasing stress
eW stressParameters
THFB time 
onstant for hFB

KAB drop rate of gradient of stress
SAB ampli�
ation fa
tor for the gradient
RAG given gradient of the feedba
k fun
tion at the in�e
tion pointTable 4.2: Model Magnitudes for the peripheral resistan
e

˙hFB = {
− hF B

THB
+ KHB·| ˙eW |

THB
if ˙eW < 0

− hF B

THB
elseThis additional di�erential equation des
ribes a exponential de
reasing stressfun
tion whi
h is added on the original one, whi
h gives as a simple way formodelling this phenomenon. The stress dependent part of the peripheralresistan
e 
an now be written as

ṙA = −
rA

THFB

+
KRA

THFB

· (eW + hFB)

4.2.2 In�uen
e of the Hydrostati
 Pressure on the Pe-ripheral Resistan
eA 
loser exploration of measured data gotten from a tilt table test leads touse a transfer fun
tion of �rst order for modelling this behaviour where theresistan
e is following the state of hydrostati
 pressure. The os
illation atthe beginning of pressure 
hange is modelled by the use of term dependentof the di�erential of hydrostati
 pressure what 
an be seen as a qualitative
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ontrol me
hanism. Hen
e, we get
ṙA = KRA · ˙pAHand

˙̂rA = −KPAH · pAHfor the 
ontrol of peripheral resistan
e in dependen
e of hydrostati
 pressure,respe
tively the humans a
tual position.4.2.3 Dependen
e of Beat Volume and Heart Rate onHydrostati
 PressureDue to the very fast pressure drop of the venous system 
aused by 
hangeof hydrostati
 pressure (e.g. putting tilt table in upright position) a veryabrupt de
rease of beat volume is 
aused. In our model this is done by alinear dependen
e of hydrostati
 pressure:
˙bV = bV + KSVLH · pAHThe same behaviour 
an be observed for the heart rate. Therefore its depen-den
e on hydrostati
 pressure is modeled the same way:
ḣF = hF + KHRH · pAH4.3 Automati
al Parameter Identi�
ationFor the parameter identi�
ation pro
ess a tool was developed whi
h uses agradient algorithm to determine the needed parameters for the 
ontrol of themodel based on measured data. (�g.4.4).The identi�
ation pro
ess is divided into three parts. After a suitable pre-pro
essing the values for the undisturbed system (without stress or in�uen
e
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(b) Periph. resistan
eFigure 4.3: Measure data for parameter identi�
ationof hydrostati
 pressure) are determined. Essentially, the parameters deter-mining the feedba
k fun
tions are optimised.Value Des
ription
HFG Gradient of the feedba
k fun
tion for the heart rate
RAG Gradient of the feedba
k fun
tion for the periph. resis-tan
e
CL Complian
e of the left ventri
le
CR Complian
e of the right ventri
le
KCVS Complian
e of the venous system
CASN Normed 
omplian
eTable 4.3: Optimised parameters of the undisturbed systemThe module approa
h and the use of feedba
k fun
tion makes it easy toidentify the parameters for the di�erent stress situations separately. Afterdetermining all ne
essary values for the undisturbed system, the parametersfor hydrostati
 pressure and the stress dependent parts 
an be 
omputed.For solving this optimisation task the 
lass MinConNLP of the JMSL Nu-meri
 Library was used. The algorithm based on the FORTRAN subrou-tine, DONLP2, by Peter Spellu

i. uses a sequential equality 
onstrainedquadrati
 programming method with an a
tive set te
hnique, and an alter-native usage of a fully regularized mixed 
onstrained subproblem in 
aseof nonregular 
onstraints (i.e. linear dependent gradients in the "workingsets"). It uses a slightly modi�ed version of the Pantoja-Mayne update
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Figure 4.4: Parameter identi�
ation s
hemefor the Hessian of the Lagrangian, variable dual s
aling and an improvedArmjijo-type stepsize algorithm. Bounds on the variables are treated in agradient-proje
tion like fashion. For more details the reader is refered to[43, 44℄.Prepro
essingBefore the identi�
ation pro
ess the measured data have to be averaged by
urve �tting. Too many os
illations o

ur by the used measurement te
h-nique. Following, the time points of the beginning and the end of the distur-
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es (stress or 
hange of hydrostati
 pressure) have to be de�ned. Eitherthis was logged by the measurement tool or it has to be determined on themeasured data manually. High a

ura
y is not very important for this pro-
edure, it will by higher than that of the measured data anyway.If this is done, the needed quantities for the variables beat volume, heart rate,peripheral resistan
e and mean systemi
 blood pressure 
an be 
omputed.Identi�
ation of the Undisturbed SystemBy using a gradient method whi
h was mentioned above the parameters
on
erning the mean values of the 
onsidered variables are determined. (tab4.3). Doing this after every simulation step the goodness fun
tional as tobe evaluated, whi
h as a 
lassi
al least square method. The algorithm isterminating if the desired a

ura
y is rea
hed or the maximum number ofiterations is ex
eeded.Identi�
ation of the Parameters for the Disturbed Sys-temUsing the same pro
edure as before the parameters for the dependen
e onouter in�uen
es are determined separately. E.g. the parameters optimised
onsidering hydrostati
 pressure are given in table 4.4.Name Des
ription
KPAH Proportional fa
tor for pressure
KRA Proportional fa
tor for peripheral resistan
e
KHFH Proportional fa
tor for hear rate
KSVLH Proportional fa
tor for beat volumeTable 4.4: Optimised parameters 
onsidering 
hange of hydrostati
 pressure
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Chapter 5
One Dimensional LinearisedModel

"In the 19th 
entury �uid dynami
ists were divided into hydrauli
engineers who observed what 
ould not be explained, and mathe-mati
ians who explained things that 
ould not observed."Sir Cyril HinshelwoodThe 
on
ept or 
ir
ulation of blood was established by William Harvey in1628. Sin
e then numerous attempts have been made at gaining insightinto the physi
al relations between the phenomenons being observed in the
ompli
ated anatomi
al stru
ture of the 
ir
ulatory system. Then, the fa
tthat the intermitted out�ow of the left ventri
le is more a steady one, wasre
ognised by Hales in 1733. He des
ribed the arterial system as a singleelasti
 
hamber whi
h be
ame known as Windkessel model, introdu
ed byFrank [9℄ in 1899.In the early �fties of the 20th 
entury M
Donald [23, 24℄ showed with helpof rabbits that there is a reversal blood �ow in larger arteries. Further moreHelps and M
Donald [17℄ showed a phase-lag between pressure gradient and�ow somewhat analogous with the phase-lag between voltage and 
urrent ina 
ondu
tor 
arrying alternating 
urrent. Based on these results, Womersley46



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 47[56℄ used the similarities with the theory of the distribution of alternating
urrent in a 
ondu
tor of �nite size.First, he 
onsidered the problem in 
ir
ular tube when the pressure gradientis known. For a tube with length, �lled with a �uid of vis
osity µ the equationof motion of the liquid assumes
d2w

dr2
+

1

r

dw

dr
+

p1 − p2

µl
= 0 (5.1)where w denotes the longitudinal velo
ity of the �uid and r the distan
e ofthe �uid element from the axis of the tube.The solution of this �rst simple approa
h with 
onstant pressure gradient

p1 − p2 is
w =

p1 − p2

4µl
(R2 − r2) (5.2)whereby R is the radius of the tube.5.1 ObservationsAt the beginning of the 
ardia
 eje
tion phase (systole), the pressure risesat the entran
e of the aorta and a blood volume of about 80ml is eje
ted.Be
ause of the vessel elasti
ity the pressure distends it lo
ally. Then it 
on-tra
ts again and the next segment is 
aused to extend and so on. In fa
t, awave is generated and propagates downstream, where the restoring for
e isprovided by the elasti
ity of the vessel wall.This propagation 
an easily be seen on measured data, more over there arethree phenomenons whi
h 
an be observed: First, the amplitude of the pres-sure wave in
reases when the wave propagates, se
ond, one 
an observe asteepening of the wave front and third, the wave form of the �ow velo
ityhas another shape than the pressure wave. These phenomenons, as will beshown later, 
annot be explained by a simple linear theory.
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hAs a �rst approa
h let us study a very simple and dire
t approa
h of mod-elling blood �ow in arteries. Therefore we begin 
onsidering an in�nitely long,straight, horizontal elasti
 tube with uniform undisturbed 
ross-se
tional area
A0 and uniform external pressure pe, 
ontaining an invis
id in
ompressible�uid of 
onstant density ρ whi
h is initially at rest. Further on we analysejust disturban
es with a wave length mu
h greater than the tube diameter, sothat the time-dependent internal pressure 
an be taken to be a fun
tion onlyof longitudinal 
oordinate x and time t. Be
ause we want a one-dimensionalmodel we denote the disturbed 
ross-se
tional area by A(x, t) and the �uidvelo
ity by u(x, t), whi
h is intermitted over the 
ross-se
tion.The governing 
lassi
al equations are those representing 
onservation of mass,
onservation of momentum and elasti
ity. By 
onsidering the rate of 
hangeof volume of a thin sli
e of the tube, we gain the equation for 
onservationof mass by

∂A

∂t
+

∂

∂x
(Au) = 0 (5.3)The momentum equation by Euler is given by

∂u

∂t
+ u

∂u

∂x
= −

1

ρ

∂p

∂x
(5.4)and the elasti
ity for our simple approa
h is modeled by the means of a so
alled tube law, relating transmural pressure di�eren
e to lo
al 
ross-se
tionalarea

p − pe = P̃ (A) (5.5)whereby P̃ is a fun
tion like in �gure 5.1.Now let us 
onsider small amplitude disturban
es su
h that u is small and
A = A0 + A′, p − pǫ = P̃ (A0) + p′ (5.6)



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 49where |A′| ≪ A0, |p′| ≪ P̃ (A0). After substituting into the equations andnegle
ting all terms nonlinear in small quantities, we 
an eliminate u and A′to obtain the following single equation for p′:
∂2p′

∂t2
= c2(A0)

∂2p′

∂x2
(5.7)where

c2(A) =
A

ρ

dP̃

dAEquation 5.7 denotes the well known wave equation whi
h des
ribes wavepropagation with small amplitude disturban
es along the tube in either di-re
tion, but without 
hange of shape, with speed c0 = c(A0). The generalsolution of equation 5.7 is given by
p′ = f1

(
t −

x

c0

)
+ f2

(
t +

x

c0

) (5.8)where f1 and f2 are arbitrary fun
tions, whereby f2 equals zero if we have awave propagation in +x dire
tion only.If we suppose the validity of the Moens-Korteweg wave speed, given through
c0 =

(
Eh

ρd

) 1

2 (5.9)whi
h Young's modulus E, wall thi
kness h and diameter d for the vesselsmade of a homogeneous and isotropi
 Hookean solid material.Comparing thisequation with measured data shows us a good approximation with a predi
tedvalue of 5ms−1 for the wave speed in the as
ending aorta, rising to about
8ms−1 in more peripheral arteries.This simple theory is very su

essful at establishing the me
hanism of wavepropagation, involving only wall elasti
ity and blood inertia as well as pre-di
ting the wave speed.But on the other hand this theory predi
ts no 
hange of shape of wave-formas it propagates and the velo
ity wave-form is of the same shape, di�erent
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Figure 5.1: pressure waves in as
ending aorta and femoralisto that we �nd 
onsidering measured data.Hen
e, the theory must be modi�ed to a

ount for all these e�e
ts whi
hwill be dis
ussed below. In �gure 5.1 one 
an observe the e�e
ts mentionedbefore.
5.3 The Con
ept of Impedan
eIn the simple models for simulation of the 
ardiovas
ular system a steady�ow is assumed and all the properties are mean values of a 
ardia
 
y
le. Fora more detailed study this assumption is no more valid 
ause the pulsatilebehavior of pressure and �ow is typi
al.For the simple models the Ohmian law, Q = P

R
, is taken to des
ribe basi
�ow 
on
erning the arterial resistan
e against the �ow, generated by wallfri
tion and by the small arteries. This law is also valid for pulsatile �ow andleads to the frequen
y dependent variant of resistan
e, namely impedan
e.For easier understanding we will introdu
e Fourier series for dividing �ow,pressure and therefore impedan
e 
urves into terms of Fourier series.We divide impedan
e into four di�erent kinds, dependend on its measurepoint [31℄:
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Figure 5.2: Wave transmission in bifur
ations

(a) Longitudinal Impedan
e (b) Input Impedan
e
(
) 
hara
teristi
 Impedan
e (d) terminal Impedan
eFigure 5.3: De�nition of Impedan
e



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 52Longitudinal Impedan
eThe longitudinal impedan
e of a 
ertain segment of the tube is de�ned bythe ratio of the pressure gradient and its �ow. It is not in�uen
ed by wavere�e
tion and de�nes the 
omplex analogon to the stati
 resistan
e resultingfrom the tubes physi
al parameters.Input Impedan
eThe input impedan
e measured at the systems entry gives its whole impe-dan
e and is in�uen
ed by all geometri
al and physi
al parameters. In ourappli
ations it means the impedan
e at the aorti
 root or at the root of anysubtree.Chara
teristi
 Impedan
eWhereby longitudinal and input impedan
es 
an be measured, this is not truefor 
hara
teristi
 and terminal impedan
e. But they have great theoreti
alrelevan
e and will be used in further 
onsiderations.Chara
teristi
 impedan
e determines impedan
e without in�uen
e of wavere�e
tion and is equivalent to the input impedan
e of a tube of in�nite length.Although there is no (pulsatile) �ow without re�e
tion in nature, it is usefulto 
onsider only the non-re�e
tive parts of waves, e.g. through �ltering termsof high frequen
y.Terminal Impedan
eThe resistan
e of arterioles and 
apillar vessels are des
ribed by the terminalimpedan
e on peripheral segments of the vas
ular tree. The properties ofarterioles and 
apillar vessels are almost frequen
y independent and the im-pedan
e results in a pure resistan
e. and the terminal impedan
e is thereforede�ned as ratio of mean pressure and mean �ow.
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e is a bit smaller than the total peripheral resistan
ewhi
h 
an be measured at the aorta. This is 
aused by the pressure dropalong the arterial tree.5.4 Equation of Motion when the PressureGradient is Known

Figure 5.4: Steady �ow in a straight tubeFolowing Womersley [56℄ let as now assume to have a 
ir
ular symmetri
 tubeof length l and radius R whi
h is �lled with a vis
ous �uid of density ρ andvis
osity µ. Furthermore, let p1 denote the pressure at the in�ow and p2 thepressure on the out�ow of the tube with 
onsant pressure drop p1 − p2.. Forthe longitudinal velo
ity w of the �uid with distan
e r from the longitudinalaxis the equation of motion leads to
d2w

dr2
+

1

r

dw

dr
+

p1 − p2

µl
= 0 (5.10)Assuming a 
onstant pressure drop p1 − p2 its solution is given through

w =
p1 − p2

4µl
(R2 − r2)whi
h leads to a paraboli
 velo
ity pro�le as shown in �gure 5.4.If we take the pressure gradient not 
onstant, a term of vis
osity 1

ν
∂w
∂t

o

urson the right side of equation 5.10. Lets assume the pressure gradient to be
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 in time and the pressure term be
p1 − p2

µl
= Aeintwith frequen
y

f =
n

2πSin
e periodi
 fun
tions 
an be written as sum of periodi
 terms we 
an writethe equation of motion as
d2w

dr2
+

1

r

dw

dr
−

1

ν

∂w

∂t
= Aeint (5.11)Expe
ting the �ow to be periodi
 as well, we substitute w in the latterequation by

w := ueintwhereby u is a fun
tion of r only, we get
d2u

dr2
+

1

r

du

dr
−

in

ν
u = −

A

µ
(5.12)or even

d2u

dr2
+

1

r

du

dr
+

i3n

ν
u = −

A

µ
(5.13)The solution of equation 5.13 
an be found in literature and is given in 
losedform through

u = +
A

ρ

1

in




1 −
J0

(
r
√

n
ν
i

3

2

)

J0

(
R

√
n
ν
i

3

2

)




where J0(xi
3

2 ) denotes the Bessel fun
tion of 0-th order.
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α := R

√
n

νin the last equation is 
alled Womersley number, and was des
ribed in thelast 
hapters.For more 
onvenien
e the equation is usually written in terms of modulusand phase, whi
h 
oin
ides to the polar representation of 
omplex numbers.Assuming that the pressure gradient is known, whi
h will not be true ingeneral, we may write the equation of �ow as follows
w = +

A

ρ

1

in




1 −
J0

(
αyi

3

2

)

J0

(
αi

3

2

)




 eintwhere we substituted with y = r
R
.In general the pressure gradient will not be known and hen
e more 
omplexmodells have to be 
onsidered. The 
omplete mathemati
al des
ription for�ow with unknown pressure gradient is given by the Navier-Stokes equations.In the following 
hapter the set of Navier-Stokes equations will be linearisedfor appli
ation on small blood vessels. This approximation will also be usedin the larger arteries later.5.5 Bifur
ations5.6 Model for smaller arteriesBased on the works of Womersely[56, 58℄ and Pedley[34℄ Olufsen[32, 33℄ de-veloped a model for simulation of streams in small arteries. Starting fromthe equations given above their was added another relation for modelling thewall dilatation based on the 
ontinuity equation.Similar to the model of Womersley, �ow is des
ribed by 
ontinuity equation,
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Q =

∫ a

0

wr2πrdr (5.14)Here, wr is the velo
ity in longitudinal dire
tion. For a detailed derivationplease refer to [33, 32, 34℄.The solution is found by Bessel equation, whi
h results from linearisation ofthe axis-symmetri
 Navier-Stokes equations and 
ombination with equationsdes
ribing the motion of the vessel wall and given by
wr =

pck
′

c0ρ

(
1 −

J1(rw0/r0)

J0(w0)

) (5.15)where r0 is the undisturbed vessel radius, ρ the blood density, pc an in-tegration 
onstant, k′ = c0
c
the 
omplex wave propagation velo
ity where

c0 = Eh/2r0ρ the Moens-Korteweg wave-propagation velo
ity. J0 and J1denote the zeroth and �rst order Bessel fun
tions.Finally, integration over the 
ross-se
tional area yields
Q =

A0pck
′

c0ρ
(1 − FJ) (5.16)where A0 is the undisturbed 
ross-se
tional area with the short
ut

FJ(w) =
2J1(w0)

w0J0(w0)
(5.17)If we denote the pressure gradient be

−iωpc

c
=

∂P

∂xwe get for the momentum equation
iwQ = −

A0

rho

∂P

x
(1 − FJ) (5.18)
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ontinuity equation in one dimension is 
overed by
∂A

∂t
+

∂q

∂x
(5.19)whi
h 
an be written as

iwCP +
∂Q

∂x
= 0 (5.20)in the frequen
y domain after applying Fourier transformation.For a further relation of the three unknowns pressure P , �ow Q and 
rossse
tional area A we 
onsider an approximation for the 
omplian
e, the neededstate equation when 
onsidering elasti
 walls:

C =
dA

dp
=

3A0a

2Eh

(
1 −

3pa

4Eh

)−3

≈
3A0a

2Eh
(5.21)After di�erentiation and integration of the equations we gain

Q(x, ω) = a cos(
ωx

c
) + b sin(

ωx

c
) (5.22)

P (x, ω) = i

√
ρ

CA0(1 − FJ)

(
−a sin

(ωx

c

)
+ b cos

(ωx

c

)) (5.23)Our goal is now to use this des
ription of blood �ow in arteries for 
omput-ing its impedan
es, whi
h 
an be done in both dire
tions, respe
tively fromproximal to distal or vi
e verse. If we reformulate the equations 5.22 and5.23 we 
an write the impedan
e for the proximal end of an arterial segmentwith respe
t to ins distal impedan
e as follows:
Z(0, ω) =

ig−1(b cos ωL
c
− a sin ωL

c
)

a cos ωL
c

+ b sin ωL
c

(5.24)
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g =

√
CA0(1 − FJ)

ρ
, a = Q(0, ω) and b = −iP (0, ω)g5.7 Goal and InvestigationsThe �rst idea of using this linearised approa
h was to gain hints of howto 
hoose the parameters for Windkessels, used in the non-linear model astermination 
onditions, des
ribed in the following 
hapter.Doing this, we were trying di�erent linearised approa
hes based on the onedimensional Navier-Stokes equations. In literature several models were de-veloped by a lot of investigators, 
onsidering a di�erent level of details of thenatural pro
ess of �owing blood. Ea
h of them guarantees fast 
omputabil-ity, what is a key feature for our appli
ation where we want to apply su
hmodels for determining boundary data in every time step of 
omputation.During the simulation pro
ess pressure and �ow wave forms are 
omputedwhere suitable initial and boundary data are given. Several di�erent simula-tion s
enarios are possible, whi
h are des
ribed below. It is also shown thatthe linearised model is also suitable for the 
omputation of �ow and pres-sure waveforms by itself also for larger arteries, not only for the small onesfor whi
h it was developed. At least the model 
an be used for parameteridenti�
ation where the quasi-linearity is a great advantage espe
ially in the
ase of parameter spa
e of high dimension what is true for most of biologi
almodels respe
tively for blood �ow in the arterial bed.Given Flow and Pressure FormsThe di�
ulty of using �ow and pressure as initial data at the same time isto get suitable measured data. One the one hand all measured data 
ontainserrors, on the other hand it is not always possible to get requisite data from
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ult to get syn
hronous measured data of�ow and pressure wave forms.In our experiment the following measurement te
hniques were used:
• Flow wave form from ultrasound measurement
• Pressure wave form from SphygmoCor 
© devi
eThe latter measures the pressure wave form at the A. radialis and tries to
ompute the wave from at the aorti
 root. As �rst the quality of the 
entralwave from depends on a lot of di�erent fa
tors, as se
ond, only wave formsand not the quantitative pressure is gained. Central systoli
 and diastoli
pressure must be guessed another way.Given Impedan
e and FlowThe use of given pressure wave form is seen to be not optimal and the nextapproa
h is to use impedan
e instead, although it might be more di�
ult toget measured data. Two methods for pres
ribing impedan
e for simulationof blood �ow in the arterial tree are �gured out:
• Pres
ribing of the total peripheral resistan
e whi
h 
an be determinedindire
tly with e.g. impedan
e 
ardiography and 
omputation of the
omplex impedan
e using a repla
ement model (Windkessel)Indeed, it seems that this method underestimates the total peripheralresistan
e and so the quality of the impedan
e gained arti�
ial to a
ertain extend has to be validated.
• Another approa
h is ba
kward 
omputation of impedan
es by help ofthe model des
ribed before with pres
ribing impedan
es at the periph-eral arterial segments. To go around the problem of how to get datafor pres
ribing impedan
es at the peripheral segments Olufsen[33℄ sug-gested an alternative method whi
h 
omputes impedan
es from smallarteries, starting at the arterioles where the resistan
e (there is onlypure resistan
e in this small vessels) 
an be assumed to be zero.
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Figure 5.5: Ultrasound measurement for the �ow velo
ity at the aorti
 rootBa
ktra
ing using Measured DataThe disadvantage of the method of Olufsen is that the model 
onsiders onlythe radius of the terminal segment and two parameters determine the overallbehaviour of the stru
tured tree whi
h is generated as a repla
ement modelfor the small arteries. It doesn't take into a

ount the humans physiologi
alparameters and it would need some e�orts to �t the model to measured data.Some optimisation method might solve this problem.Instead, we used �ow and pressure wave forms 
an be used to 
ompute im-pedan
e in peripheral segments. It would be a really good method if syn-
hronous measured data from di�erent sites of the arterial tree would beavailable. Unfortunately this is not the 
ase and this leads to a lot of prob-lems.First, the pressure and �ow wave forms are in di�erent time s
ale and thephase shift of them is of big relevan
e. Therefore, it is ne
essary to 
onvertdata to mat
h the phase shift whi
h is gained by 
omparison of the measuredwave form with the syn
hronous measured ECG signal. This is a time 
on-suming task whi
h is hard to automate be
ause the ultrasound measurement



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 61is available only in image format and the quality of measurement varies verymu
h and has to 
he
ked by hand.Se
ond, another problem o

urs when mat
hing together two impedan
esgained from measurement at any bifur
ation. Usually the data on di�erentsites represent di�erent heart 
y
les and also the pulse wave velo
ity di�ers.Although we �tted the data before to its 
orresponding phase delay, thisdelay may di�er from heart 
y
le to heart 
y
le and the resulting pressureand �ow wave forms may be unrealisti
. So datasets with mat
hing ECGsignals have to be 
hosen to keep the syn
hronisation error small.5.8 Extended Model for Smaller ArteriesIn the model des
ribed before investigated by Womersley[57℄ and used byM
Donald[31℄ la
ks of the 
onsideration vis
oelasti
ity. Vis
oelasti
ity ofthe arterial walls results in a phase shift of treated for
es and the resultingdispla
ement of the vessel wall. This phenomenon 
an be 
onsidered by usingthe so-
alled dynami
 Young modulus Ed[4℄,
Ed = E + iωηw (5.25)where ηw denotes the vis
osity of the wallConsidering pulse wave propagation, the vis
oelasti
 properties of the vesselwalls are 
hara
terised by the tangent of the angel φ of phase shift of 
urrentpressure and lo
al displa
ement of the 
orresponding wall [3, 49, 54℄.

φ = tan−1
(ωηw

E

) (5.26)Using this, a fa
tor cos(φ/2) + i sin(φ/2) is added to the equations in these
tion before.The next step is to split impedan
e into a 
hara
teristi
 impedan
e, whi
h isdetermined by the me
hani
al properties of the 
on
erning arterial segmentonly, and the terminal impedan
e, whi
h depends on the stru
ture of the
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ular tree.Hen
e, the 
hara
teristi
 impedan
e is for any arterial segment is des
ribedwith its wave transmission 
oe�
ient, whi
h is given by the me
hani
al prop-erties of blood and the vessel walls, the input impedan
e, a distribution fa
-tor and the phase velo
ity. By help of transmission line theory, 
oming fromele
trote
hni
al engineering, the re�exion 
oe�
ient is given by
Γ =

ZT − Z0

ZT + Z0where ZT denotes terminal and Z0 
hara
teristi
 impedan
e of any segment.
Z = Z0

1 + Γe−2γl

1 − Γe−2γl
(5.27)

p(l)

p(0)
= Z0

1 + Γ

eγl + Γe−γl
(5.28)



Chapter 6
One Dimensional NonlinearModel

"Man is the only 
reature that seems to have the time and energyto pump all his sewage out to sea, and then go swimming in it."Miles Kington
Based on the one-dimensional Navier-Stokes equations for �ow in axis-symmetri
 elasti
 tubes of an in
ompressible �uid a model for simulation ofblood �ow in arteries was developed. The fo
us hereby is on the larger arter-ies, whi
h means that only vessels with an inner diameter from 50mm downto 1mm approximately are 
onsidered. For smaller arteries the model wouldnot be valid anymore 
ause of several assumptions, made on the physi
alproperties of blood. In detail, the blood 
annot be taken to be homogeneousin small arteries be
ause the red blood 
ells have a size of the same s
ale asthe vessel diameters. Wibmer [55℄ has implemented the model with help of�nite volume methods in C++. This model was 
oupled to the 
ontrolledparameter model des
ribed in 
hapter 4 to get a fully 
ontrolled model forblood �ow in human arteries. In this 
hapter only a basi
 overview is given,63
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ial 
onsideration of the relevant parts for this work. For furtherdetails please refer to [55℄ and referen
es therein.6.1 Model EquationsThe basi
 equations solved within the models are given in the (A, Q) formu-lation where A = A(x, t) denotes the 
ross se
tional area and Q = Q(x, t)the volume �ow. Considering mass and momentum balan
e leads to
At + Qx = 0 (6.1)

Qt +
∂

∂x

(
α

Q2

A
+ p

)
= K

Q

A
(6.2)and a state equation giving a relation between the 
ross se
tional area andthe blood pressure. In literature, several relations for the state equation 
anbe found, one is given below.Most of equations for des
ribing wall-pressure relations assume linear elasti
-ity and are based on Hook's law. This let the pressure be a 
on
ave fun
tionof the 
ross se
tional area. The elasti
 nature of arteries is mainly determinedby the distribution of elastin and 
ollagen in the vessel wall, whi
h di�ersfrom the proximal to the distal vessels. More pre
ise, in the proximal aortaelastin spe
i�es its elasti
 behaviour while it is 
ollagen in the periphery.Con
erning the higher elasti
 modulus of 
ollagen the sti�ness of the wallsin
reases in the distal arteries. Also 
ollagen plays an important role in thevessel wall elasti
ity. Sin
e the transmural pressure in
reases, 
ollagen �bresdetermine the sti�ness, whereby at low pressure it is mainly determined myelastin �bres. This results in a nonlinear pressure dependent elasti
 modulus.A simple state equation was presented by Raines [39℄:

p(A) = p0e
Ep( A

A0
−1) (6.3)Here, Ep is the pressure-strain elasti
ity modulus by Peterson et. al [36℄. Formore details the reader is re
ommended to refer to [31℄ and referen
es therein.
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an be easily shown that ∂p

∂A
> 0 and ∂p2

∂2A
> 0 and 6.3 issour
e for other simple 
on
ave equations by using Taylor polynomials ofarbitrary order.Additionally the wave velo
ity is given by

c =

√
Ap0

ρKA0
e
Ep( A

A0
−1)and its derivative with respe
t to A is positive.Linearising equation 6.3 we get

p(A) = p0

(
1 + Ep

(
A

A0
− 1

))and
c(A) =

√
Ap0Ep

A0ρ6.1.1 Bifur
ationsDue to the redu
tion to one dimension bifur
ations are not really handledby this approa
h. For a detailed des
ription a three-dimensional 
onsider-ation would be ne
essary. For our needs it is enough to assume bran
hesas one dimensional points. Mass and momentum 
onservation is assumedand bran
hes 
an be 
omputed easily. For one dimensional 
omputation thisassumptions are suitable and used by a lot of authors.6.1.2 Termination ConditionsOn every modeled terminal segment of the arterial bed a terminal 
onditionis ne
essary. Here, the well known Windkessel is used to model the networkof small arteries, arterioles and 
apillaries. This model, taken from the theoryof ele
tri
al 
ir
uits, 
onsists of two resistan
es R1 and R2 and a 
apa
ity C.
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R1

R2CU

I

Figure 6.1: Ele
tri
al analogon to the WindkesselThe sum R1+R2 de�nes the total peripheral resistan
e of the arterial networkand C stands for the 
omplian
e, the distensibility of the vessel walls. Withhelp of su
h Windkessels the behaviour of the small vessels 
an be modeledin an appropriate manner. But, for ea
h Windkessel (25 in our 
ase) thereare 3 parameters whi
h have to be identi�ed by measured data, what 
an beexpe
ted to be a di�
ult task.The frequen
y dependend impedan
e, generated by a Windkessel, is givenby the equation
Z(ω) =

R1 + R2 + iωCR1R2

1 + iωCR2
(6.4)In the sense of �uid me
hani
s the (input) impedan
e is the ratio of bloodpressure p(t) to volume �ow Q(t), whi
h mat
hes very well with the impe-dan
e produ
ed by a Windkessel. Hen
e, Windkessels are a good 
hoi
e forterminations within our model.For 
omputation we transform the equation above into the time domain andwe gain an ordinary di�erential equation of the �ow-pressure relation of aWindkessel:

dQ(l, t)

dt
−

1

R1

dp(l, t)

dt
=

p(l, t)

R1R2C
−

(
1 +

R1

R2

)
Q(l, t)

R1C
(6.5)
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ation for WindkesselsAs simple the Windkessel model seems to be handle as di�
ult it is to de-termine its parameters. Due the impossibility of extra
ting the Windkesseldata from measurements dire
tly the use of repla
ement models is ne
essary.For ea
h terminal segment three parameters have to be determined. Frommeasured data only the total peripheral resistan
e, measured at the aorti
root, is available. Olufsen [32℄ suggested the use of the linearised Womersleysolution of the Navier-Stokes equations to solve it for a stru
tured tree ofsmall arteries with a zero terminal 
ondition to determine its root impeda-n
e, whi
h 
an be used as terminal impedan
e for the tree of large arteries.Due the de�nition of the stru
tured tree the terminal impedan
e is mainlygiven through the radius of the terminal vessel, whi
h 
annot to be takenas valid for all segments. E.g. for the terminal vessels bran
hing from theabdominal aorta, providing organs like kidneys or liver and so on, additionalassumptions have to be stated.Another method is the up-down approa
h. Here, the linearised solution isapplied on the tree of large vessels to 
ompute its terminal impedan
es, be-ginning at the aorti
 root. Using �ow and pressure measurement, the inputaorti
 impedan
e is determined by measured data and through the trees ge-ometry and its physi
al parameters the terminal impedan
es are de�ned.But it is ne
essary to have syn
hronous measurements of �ow and pressurewaveforms in the aorta, what is not the 
ase usually. Alternatively one of thewaveforms may be generated with some measured 
hara
teristi
 parameters.



Chapter 7
Model 
onne
tion

"Su

ess is the ability to go from one failure to another with noloss of enthusiasm." Winston Chur
hill

Figure 7.1: Model 
onne
tion s
hemeIn the previous 
hapters di�erent approa
hes for modelling blood �ow in hu-man arteries are des
ribed, ea
h with its advantages and its disadvantages.Our goal is now to 
onne
t the di�erent models to ea
h other to gain the�nal 
ontrolled and identi�able model for the whole 
ardiovas
ular system.68



CHAPTER 7. MODEL CONNECTION 69On the one hand we have the simpli�ed 
ompartmental model for 
omputingmean values of pressure and �ow, 
onsidering outer in�uen
es as well as thevenous part. On the other hand there are the linear and the nonlinear mod-els for the systemi
 arterial tree, des
ribing blood �ow in these arteries, butouter in�uen
es, 
ontrol me
hanisms and the venous system are negle
ted.So the step to 
onne
t the di�erent models to ea
h other and make use of itsstrengths and to 
ompensate its weaknesses is obvious.The basi
 strategy for simulating e.g. only the systemi
 arterial tree is topres
ribe pressure and �ow waveforms at the systems entry and the param-eters on its peripheral segments. Su
h models are �rst of all not easy toidentify due too mu
h assumptions whi
h had to be and se
ond, there is nodynami
 in
luded. Only a steady state of the system 
an be studied.Our �rst approa
h is now to 
onne
t the nonlinear tree model to the 
om-partmental 
ontrolled model by 
omputing its system 
ompartment and thenonlinear tree in parallel. The boundary data for the tree models input aredetermined now by the 
ontrol, whi
h supplies values for
• mean pressure
• beat volume
• total peripheral resistan
eIndeed, the supplied data 
annot be used dire
tly be
ause the 
ompartmentalmodel 
omputes mean values only and for the stru
tured tree model pulsatileinput data is required.Furthermore, the syn
hronisation leads to some serious di�
ulties be
ausethe models are working on di�erent time s
ales. In the 
ontrol part one timestep is equivalent to one heart beat and after every beat a new value formean pressure and mean beat volume is 
omputed. But the variables forthe nonlinear tree model are dis
retized in time and the resolution in timeis determined by the dis
retization in spa
e through a stability 
ondition.Furthermore, heart 
y
les in the nonlinear model are dis
onne
ted and itslengths vary in time 
aused by the 
hange of heart rate due the 
ontrol
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Figure 7.2: Generated �ow wave 
urve form given heart rate and beat volumewith n = 13 and φ = 0me
hanism.Also when 
onne
ting the 
ontrol me
hanism to the linearised tree modeldynami
al input data have to be generated or extra
ted from measured data.Stevens et al. [47℄ published a method for �ow wave generation in dependen
ewhen a stated heartrate and beatvolume is given. It 
onsists of too parts,one for generating os
illation with pulse frequen
y, and the se
ond for itswrapping fun
tion. After normalising and 
alibration to measured data adi�erentiable periodi
 �ow 
urve is gained in 
losed form. A resulting �owvelo
ity 
urve is shown in �gure 7.2. The two 
omponents of the �ow 
urveare given by
Q1(t, n) = sinn(ωt), with n = odd,whi
h de�nes the wrapping part, and the inner fun
tion is de�ned as
Q2(t, φ) = cos(ωt − φ)Here, ω is 1.5 times the heart rate and φ the phase. The resulting 
urve isdetermined by multipli
ation its two 
omponents:

Q3(t, n, φ) = Q1(t, n)Q2(t, φ)
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 �ow wave is generated by the 
ontrolled
ompartment model whi
h 
an be used as terminal 
ondition for the
onne
ted nonlinear dynami
 model. Due to its generating method the dataare smooth enough for the used �nite volume algorithm.Another approa
h we are dis
ussing is the use of an inverted Windkesselmodel. The basi
 idea is the assumption that the left ventri
les output workis given through a goodness fun
tional, whi
h minimises energy. Startingfrom an open system and des
ribing its dynami
 behaviour by
q(t) = RP · CA · dx + x(t) (7.1)with q(t) aorti
 �ow, x(t) summarised �ow through all terminal segments, RPthe peripheral resistan
e and CA the arterial systems 
omplian
e, we statea few additional 
onditions: x(t) is assumed to be periodi
 if the periodi
durations of diastole (tp) and systole (ts) are known:

x(0) = x0

x(ts) = xs

xs = x0 · e
tp−ts

RA·CAFurthermore, �ow through the aorti
 root is set to zero at the end of systole,
q(ts) := 0and for a given beat volume (VS) there holds

∫ ts

0

q dt = Vs (7.2)
∫ ts

0

x dt +

∫ tp

ts

x dt = Vs (7.3)whi
h 
an be seen as 
onversation of mass. The approximately exponentialde
rease (validated by measured data) whi
h des
ribes the blood �owing out
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xd(t) = xs · e

t−ts
RP ·CAAs dis
ussed in the introdu
tion pressure is mainly determined by the �owand peripheral resistan
e. Therefore, for the stru
tured models only the pre-s
ription of �ow in resistan
e is needed, whereas the de�nition of �ow is easy,one 
an use the generation method des
ribed above. In 
ontrast, the periph-eral resistan
e respe
tively the total resistan
e 
onsists of a lot of lo
al parts,distributed on the whole body.The physi
al and physiologi
al parameters of vessels 
hange from the proxi-mal to the distal end and 
an get estimated only at the aorti
 root, but it isne
essary to know the peripheral resistan
e in every terminal segment of themapped vas
ular bed used for the simulation.Resolving that and distributing the total peripheral resistan
e, whi
h be-haviour is nonlinear, is a di�
ult task and a good knowledge of the physi
alparameters of the vessel tree is ne
essary.Following, the 
omputation of the two variants of termination models, namelystating 
omplex impedan
e on termination segments and 
onne
ting a Wind-kessel to ea
h segment are dis
ussed:Impedan
eKnowing the total peripheral resistan
e and having suitable measured data,using the linearised solution of the Navier-Stokes equations by Womersleyleads to some signi�
ant advantages. With this analyti
al solution for de-s
ribing �ow and pressure waveforms in arteries, terminal impedan
es 
an be
omputed and the total peripheral resistan
e is distributed to the peripheralsegments. Doing this we have to 
ompute two di�erent kinds of segments,straight tubes and bifur
ations, modelled as one dimensional nodes.The equations for straight tubes are available in 
losed form (see 
hapter5) and 
omputation is possible from up to down as well as the other way
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h is not true for bifur
ations.

Figure 7.3: Pressure and �ow in a bifur
ationFor 
omputing �ow in straight tubes with given input impedan
e we have to
ompute mainly the 
hara
teristi
 impedan
e of the tube and no informationof the following vas
ular bed is needed. This 
hanges if we want to deter-mine impedan
es or pressure wave forms in bifur
ations be
ause the inputimpedan
e for every bran
h has to be 
omputed. If we assume 
onservationof mass and energy for �ow and pressure there holds1. q0 = q1 + q22. p0 = p1 = p2and taking into a

ount Ohms law we get for the impedan
es at any bifur-
ation3. 1

z0

=
1

z1

+
1

z2where z0 denotes the terminal impedan
e at the parent vessel and z1,z2 theimpedan
es of the daughter vessels. Considering the law of Hagen-Poiseuille,
Q =

πR4(P1 − P2)

8µL
(7.4)



CHAPTER 7. MODEL CONNECTION 74where Q denotes �ow, R the vessels radius, P1 −P2 the pressure drop, µ thedynami
 vis
osity and L the length of the segment, we distribute the out�owto the in�ow of the daughter vessels by its radii. For the impedan
e this ispossible unless we assume 
onstant pressure wave forms. The stated energybalan
e whi
h states 
onstant pressure is valid for steady �ow and for meanpressure of pulsatile �ow, but assuming 
onstant pressure wave forms willavoid nonlinear e�e
ts whi
h 
an be observed on measurements of real blood�ow in arteries.To resolve this we 
ompute impedan
es of the segments starting from theterminal segments in the beginning of the simulation run. The terminalimpedan
e on ea
h segment is gained by the small vessel repla
ement model,des
ribed in 
hapter 5. Hen
e, we are able to 
ompute frequen
y dependendimpedan
e ratio for the daughter vessels in any bifur
ation to their parentvessel. Assuming that the impedan
e ratio is 
onstant with respe
t to timeand 
hange of total peripheral resistan
e, the bifur
ations are determinednow for forward 
omputation during simulation. The assumption of 
onstantimpenda
e ratio implies that the stru
ture of the vessel tree will not 
hangeduring simulation, whi
h holds for the most appli
ations.After 
omputing terminal impedan
es with given total peripheral resistan
eat the aorti
 root the parameters for the Windkessels have to be extra
tedwhi
h is done be solving the Windkessel equation 6.4 with the impedan
e ofzero frequen
y, what de�nes the total resistan
e for the 
onsidered segment[45℄. For the ratio R1
RT

S
haaf [40℄ suggested 0.2 where the total volume
omplian
e Cvol = 1ml · mmHg−1, published by Burton [6℄. After summingup the 
omplian
es of ea
h vessels and 
omputing the residual 
omplian
e
Cres = 1 − Ctotal suggested by [40℄ or [46℄ and assuming that the residual
omplian
e is distributed among the terminal bran
hes in proportion to theirmean �ow we gain

CTi
= Cres

Rtotal

RTi

(7.5)where RTi
is the total peripheral resistan
e and the index Ti denotes the totalresistan
e and 
omplian
e at any terminal segment of the vessel tree.



CHAPTER 7. MODEL CONNECTION 75Alternative MethodAn alternative approa
h avoiding the problem or boundary data is to intro-du
e arti�
ial pipes to sum up blood �ow in a 
olle
tion node, similarly tomodel the venous arteries, but without modelling the network of small ves-sels and arterioles. This was done by Almeder [2℄, 
onsidering steady �ow inhuman arteries.This method is seen as being not optimal. One the one hand there are twi
emore segments to 
ompute, on the other hand the trees stru
ture is not 
on-forming the human physiology anymore due the la
k of small arteries. There-fore it 
an not represent its natural behaviour. Introdu
ing a resistan
e layerfor example would lead to the problem of undetermined parameters againand no bene�t is gained.



Chapter 8
Implementation

"A 
omputer on
e beat me at 
hess, but it was no mat
h for meat ki
k boxing." Emo Philips
The goal of the implementation was to get a framework for experimentalblood �ow simulation. Due to our modular design and thanks to obje
t ori-ented programming the di�erent parts 
an be 
onne
ted together and sub-stituted by another module quite easily.The simulation tool is separated into four main parts, implemented in Javaand C++. While the graphi
al user interfa
e (GUI) and the linear modelsare written in Java, the 
omputational time 
onsuming solver for the non-linear model part is implemented in C++ and 
onne
ted to the simulationenvironment via the Java native interfa
e as a shared library. An overviewof the modules is given in table 8.1.Obje
t oriented programming let us divide the simulation tool into easysupportable modules whi
h are stru
tured as follows.

76
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al user interfa
e JavaCompartment model solver JavaIdenti�
ation tool JavaLinearised model solver JavaNonlinear model solver C++Table 8.1: Module overview of CardioSim

Figure 8.1: Graphi
al user interfa
e of the 
ardiovas
ular simulation tool8.1 Controlled Compartment ModelThe solver for the 
ompartmental model 
onsisting of a system of ordinarydi�erential equations of �rst order is implemented straight forward by Eu-ler's method. Due the smoothness of all data and the equations far awayfrom being sti�, the use of more sophisti
ated methods is not ne
essary inour 
ase. Furthermore, the possible numeri
al error is small 
ompared to theerror of the measured data whi
h are taken to verify the gained solution.In respe
t to usability of the graphi
al user interfa
e the solver was imple-mented as thread and thus its running in the ba
kground.After the simulation run where the time and the initial data 
an be settedintera
tively, all variables and parameters 
an be plotted by drag and dropfrom the model tree.
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Figure 8.2: Organisation of the simulation modules8.2 Automati
 Parameter Identi�
ation ToolProviding also a simple GUI (�g. 8.3) the identi�
ation pro
ess was imple-mented following the prin
iple of obje
t oriented programming. The base
lass optimizer 
ontains all ne
essary setters and getters, whereby the iden-ti�
ation pro
ess is done by its 
hild 
lasses through heritage. The mainmethod here is the method for 
al
ulation the residuum, whi
h is 
alled bythe optimizer, the 
lass of the JMSL numeri
 library providing the optimiza-tion algorithm.After sele
ting the type of external stress (orthostase or physi
al stress) themeasured values (peripheral resistan
e, beat volume, heart rate and meanblood pressure) are 
urve �tted. Then the user has to de�ne the times ofstate 
hanging, like turning the tilt table test. With this pro
edure all prepro-
essing is done and the optimization algorithm tries to identify the ne
essaryparameters. This pro
ess is des
ribed in a more detailed way in se
tion 4.3.publi
 
lass OrthostaseOptimizer extends Optimizerimplements MinConNLP.Fun
tion {// 
onstru
tor
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Figure 8.3: The identi�
ation wizard with 
omputed parameterspubli
 OrthostaseOptimizer(Parameters parms, XMLHandler handler) {}// start methodpubli
 void run() {this.startOptimization();}publi
 void startOptimization() {// define the parameter spa
e and 
onstraintsoptiParameters = new double[4℄;this.lowerBounds = new double[℄{0.0,0.0,0.0,0.0};// get the start valuesoptiParameters[0℄ = ((DParameter) ((DefaultMutableTreeNode)
urrentConfig.getParameterByName("KPAH")).parameter_value;optiParameters[1℄ = ((DParameter) ((DefaultMutableTreeNode)
urrentConfig.getParameterByName("KRA")).parameter_value;optiParameters[2℄ = ((DParameter) ((DefaultMutableTreeNode)
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urrentConfig.getParameterByName("KHFH")).parameter_value;optiParameters[3℄ = ((DParameter) ((DefaultMutableTreeNode)
urrentConfig.getParameterByName("KSVLH")).parameter_value;// initialize the optimizeroptimization = new MinConNLP(0,0,4);// set 
onstraints and start valuesoptimization.setXlowerBound(lowerBounds);optimization.setGuess(optiParameters);optimization.setMaxIterations(10);// start the optimizationtry { optiParameters = optimization.solve(this);} 
at
h(Ex
eption ex) {ex.printSta
kTra
e();}}// imlementation of the error fun
tion, 
alled by the optimizerpubli
 double f(double[℄ arguments, int ia
t, boolean[℄ ierr) {// get the opje
ts of the parameters optimizedKPAH = (DParameter) this.
urrentConfig.getParameterByName("KPAH").getUserObje
t();KRA = (DParameter) this.
urrentConfig.getParameterByName("KRA").getUserObje
t();KHFH = (DParameter) this.
urrentConfig.getParameterByName("KHFH").getUserObje
t();KSVLH = (DParameter) this.
urrentConfig.



CHAPTER 8. IMPLEMENTATION 81getParameterByName("KSVLH").getUserObje
t();// set the paramteres using the optimized valuesKPAH.parameter_value = arguments[0℄;KRA.parameter_value = arguments[1℄;KHFH.parameter_value = arguments[2℄;KSVLH.parameter_value = arguments[3℄;// 
onfigure and start the simulator
ardioSimulator = new CardioControl(this.
urrentConfig,myBar);
ardioSettings.simulationTime=this.endTime;
ardioSimulator.setSimSettings(
ardioSettings);
ardioSimulator.solve();// get the 
onsidered variables for the minimum fun
tionnewRAl = this.getVariableValue("RA", 90);newSVLl = this.getVariableValue("SVL", 90);newHFl = this.getVariableVdis
reditedalue("HF", 90);newPASl = this.getVariableValue("PAS", 90);newSVLs = this.getVariableValue("SVL", 40);newHFs = this.getVariableValue("HF", 40);newPASs = this.getVariableValue("PAS", 40);*/// 
ompute the residuumresult = Math.sqrt( Math.pow((newRAl -parameters.RAStress)/parameters.RAStress,2) +Math.pow((newSVLl -parameters.SVLStress)/parameters.SVLStress,2) +Math.pow((newHFl -parameters.HFStress)/parameters.HFStress,2) +Math.pow((newPASl -parameters.PASStress)/parameters.PASStress,2));



CHAPTER 8. IMPLEMENTATION 82// return the residuumreturn result;}}8.3 Nonlinear dynami
 modelThe nonlinear model was implemented by Wibmer [55℄ in C++ by using a�nite volume method for solving the in
ompressible Navier-Stokes equationsin one dimension [11, 12℄. It is 
onne
ted to our model by the java nativeinterfa
e (JNI) whi
h allows the use of shared libraries in java.Doing this, the needed parameters are given to the library by the native 
lassand the library returns a ve
tor 
ontaining the pressure of a spe
i�ed arterialsegment. Furthermore, the library stores all 
omputed data in �les whi
h
an be read after 
omputation by the GUI.The java native interfa
e on the java side is implemented as follows wherebyunder windows to other libraries are loaded separately be
ause there dynami
shared libraries are used. Under linux we are using a stati
 library with allneeded �les linked together:publi
 
lass Native {publi
 native double[℄ getPressure( double hf, double ra,...double sv,double ampl, int per, int itIndex,...int pIndex,int inletType, String inletName,...double[℄ p0, String fname);stati
 {if ( System.getProperty("os.name").startsWith("Win") ) {
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es-
_2");System.loadLibrary("blitz_d");}System.loadLibrary("anlib");}}Java also provides the C++ header �le for native interfa
e. The C++ pro-gram must to provide only the fun
tion 
all where the java obje
t types andgeneri
 variables are mapped to that of C++.The C++ sour
e 
ode for our 
onne
tor is given as follows:#in
lude <jni.h>/* Header for 
lass hkl_Native */#ifndef _In
luded_hkl_Native#define _In
luded_hkl_Native#ifdef __
plusplusextern "C" {#endif/** Class: hkl_Native* Method: getPressure* Signature: (DD)D*/JNIEXPORT jdoubleArray JNICALL Java_hkl_Native_getPressure(...JNIEnv *env, jobje
t obj, jdouble hf, jdouble pr,....jdouble svin
,jdouble ampl, jint periods,...jint iterationnumber,jint plotdata,jint inlettype,...jstring inletname, jdoubleArray jmeanpArray, jstring jxmlFile);
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plusplus}#endif#endif8.4 Termination value 
omputationBefore every 
all of the dynami
 stru
tured tree model the Windkessel pa-rameters for its terminal segment boundary 
onditions have to be adopted tothe 
omputed total peripheral resistan
e gained from the 
ontrol me
hanism.First, a root impenda
e has to be 
omputed from the total peripheral resis-tan
e, using a 
ontrol variable dependent �ow 
urve and a Windkessel. Withthese data a pressure wave form and further more a 
omplex impenda
e 
anbe 
omputed.Using this impedan
e as initial 
ondition for the linearized model approa
hfrom 
hapter 5, the impedan
e and hen
e the Windkessel parameters aregained.More details are presented in the next 
hapter.



Chapter 9
Results

"Die Spitze des Berges ist nur ein Umkehrpunkt."Reinhold Messner
9.1 Linearised model approa
h
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omputed by pres
ribing pressure and blood�ow at the aorti
 root85
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(a) Pressure (b) FlowFigure 9.2: Pressure and �ow wave forms and frequen
y dependent re�e
tion
oe�
ients in di�erent sites in the aorta, a. ilia
a and a. femoralis(�g. 9.1). Here the volume �ow was generated by an ultrasound measured
ardia
 output and the pressure waveform was taken form the 
omputedwaveform by the SphygmoCor software [18, 30℄. The model is stati
 and not
onne
ted to the 
ontrol me
hanism. Even the model doesn't 
onsider non-linear vis
oelasti
 e�e
ts, it shows that the model 
overs known phenomenons
on
erning the pressure wave form very well (�g. 9.5).The 
omputation is splitted into the following steps:1. Determination of impedan
e in the peripheral segments2. Ba
kward 
omputation of the system and 
omputation of the impeda-n
e at the aorti
 root3. Cal
ulation of pressure waveforms from impedan
e and pres
ribed �ow
ontour4. Cal
ulation of �ow and pressure waveforms along the arterial treead 1Impedan
es at several sites are determined by measured �ow and pressure
urves whereby the phase lag between pressure and �ow is not 
onsidered. For
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(a) Impedan
e (b) Re�e
tion 
oe�
ientFigure 9.3: Impedan
e and re�e
tion 
oe�
ients along the aortait, it would be ne
essary to measure �ow and pressure syn
hronously, whatwas not possible with our measuring devi
es. For ba
kward 
omputing ofimpedan
es based on measured data another problem o

urs: on bifur
ationsnot time-syn
hronous impedan
e data would have to be merged (see �g. 9.5(
) and (d)).ad 2With ba
kward 
omputation using the linearised model, the aorti
 impedan
eis determined and re�e
tion 
oe�
ients are 
omputed for all bifur
ations.With help of the re�e
tion 
oe�
ients we 
an 
ompute the re�e
ted andtransmitted part of every pressure wave for all arterial segments. Hen
e, we
an 
onsider the in�uen
e of the following network of ea
h artery on bloodpressure wave forms.ad 3The system is 
ompletely determined by impedan
e and pressure or �owwave form. One of it must be given as inertial value, where here a �ow 
urvewas taken, based on ultrasound measurement. For a measured impedan
eit would be ne
essary to determine �ow and pressure syn
hronously in theaorti
 root, what is only possible with invasive measuring methods.ad 4
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Figure 9.4: Re�e
tion 
oe�
ients along aorta, a. ilia
 and a. femoralisFollowing to the latter 
omputations pressure and �ow wave forms in anyarterial segment, beginning with the aorti
 root, 
an be 
omputed with thelinearised model. The 
hange of pressure and �ow wave forms as well asthe re�e
tion 
oe�
ients at the 
on
erning bifur
ations from the aorti
 rootdown to the a. femoralis are shown in �g. 9.2.Remark: Summarising we 
an say that several important vas
ular parame-ters 
an be determined indire
tly with our model and we get realisti
 resultsfor pressure and �ow 
urves. But it should be mentioned that there is someun
ertainty of the results along the aorta, espe
ially in the thorax be
ausethe measured data in this area is not of the quality we would need. This partof the arterial system will be 
onsidered 
apsuled.9.2 Simulation of Pathologi
al DiseasesThe following se
tion 
overs simulation results on in�uen
es on the 
ontrolme
hanism. Hen
e, mainly the 
ompartmental model is 
onsidered even duethe 
oupling the whole model might be 
omputed in every experiment like itwas done in �g. 9.7 for simulating the tilt table test.
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5 (d) A. femoralisFigure 9.5: (a) u. (b): Simulated (solid) and measured (dotted) pressure waveforms, (
) and (d): Impedan
e, from measurement and 
omputed9.2.1 StenosisCon
retions in the arterial vessels 
ause 
onstri
tions, whi
h 
an be investi-gated by our model to a 
ertain extent. The in�uen
e of these pathologi
almutations 
an be 
onsidered in a global way. That means that the 
hangeof blood pressure downstream the arterial tree 
an be 
omputed. But, thelo
al �ow around the stenosis 
annot be 
onsidered. This is a task for lo
al3-dimensional models not 
overed by our system.For its simulation we redu
e the vessel radius at the 
onsidered site withinthe model of the arterial tree what is in
reasing the peripheral resistan
e athis point.
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CHAPTER 9. RESULTS 919.2.2 Tilt Table TestUsing a tilt table a lot of 
ardiovas
ular parameters 
an be identi�ed whenmeasuring blood �ow, pressure and ECG. With our model this test 
an besimulated in an appropriate way. The 
ontrol me
hanism 
an be adapted tomeasured data, whi
h de�nes the inertial data for the stru
tured tree models.Even the transient a
tivity 
an not be simulated with the linearised model,we 
an 
ompute pressure and �ow in two equilibrium states. That way, thea

ura
y of our model 
an be veri�ed by 
omparison with measured data.9.2.3 In�uen
es of Drugs on the Cardiovas
ular SystemFor treatment of diseases and malfun
tions of the 
ardiovas
ular system medi-
ists use a wide range of di�erent pharma
ologi
al substan
es. To investigatein�uen
es of these drugs on the arterial system qualitatively, we 
an adaptthe 
on
erning model parameters. With our tool pharma
ologi
al e�e
ts onheart rate, peripheral resistan
e as well as blood pressure 
an be simulated.We divide the 
onsidered pharma
euti
als into the following groups and giveits 
on
erning model parameters.Some of the most important drugs used in hypertension therapy 
an be 
las-si�ed as follows:
• Beta Blo
ker - by adapting the feedba
k fun
tion for the heart rate
• Vasodilatator - by adapting the feedba
k fun
tion for the peripheralresistan
e
• Diuretikum - by redu
tion of the blood volume
• ACE Blo
ker - by adapting the peripheral resistan
e for the kidneys
• Nitro - redu
ing the pulmonal pressure



CHAPTER 9. RESULTS 92Experiment 1: NitroWithin this experiment we de
reased the pulmonal venous pressure in the
ompartment model by 20%. Additionally, the peripheral resistan
e wasde
reased by 10%, following the oberserved e�e
t of the drug. The results ofthe simulation run of the four key variables are shown in �gure 9.9. Startingfrom the undisturbed state (red) �rst the pulmonal venous pressure waslowerd (blue). Here, the peripheral resistan
e in
reases be
ause of the 
ontrolme
hanism. Therefor, also the peripheral restistan
e has to be lowered by apropriate substan
e (turquoise).

(a) peripheral resistan
e (b) stroke volume
(
) mean pulmonal venous blood pressure (d) mean systemi
 arterial blood pressureFigure 9.9: Cardiovas
ular variables during the tilt table test before (red) andafter (blue) de
reasing the venous blood pressure and after additional de
rease ofthe peripheral resistan
e (turquoise)



CHAPTER 9. RESULTS 93Experiment 2: In
rease of the stroke volumeDi�erent drugs in
rease the stroke volume as a side e�e
t. This e�e
t andits 
onsequen
e on the global haemodynami
 was studied by this experiment(�gure 9.10).

(a) peripheral resistan
e (b) stroke volume
(
) heart rate (d) mean systemi
 arterial pressureFigure 9.10: Cardiovas
ular variables during the tilt table test before (red) andafter (blue) lowering the stroke volumeExperiment 3: β-blo
kerIn this experiment the usage of so-
alled β-blo
kers was simulated (�gure9.11). Doing this, the feedba
k fun
tion of the 
ontrol me
hanism as de-s
ribed in 
hapter 4 are adopted. The hear rate was lowered by 20% andthe peripheral resistan
e was raised slightly (5%). Due the Frank-Starlingme
hanism the stroke volume in
reased by 10% whereby the mean systemi
arterial pressure is de
reasing by 3%.
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(a) peripheral resistan
e (b) stroke volume
(
) hear rate (d) mean systemi
 arterial pressureFigure 9.11: Cardiovas
ular variables under tilt table test before (rot) and after(blue) β-blo
ker usage9.3 Final 
oupled modelIn the following se
tion results of the whole model 
onne
ting all approa
hesare presented. The simulation run using the 
ontrol, the linearised approa
hand the dynami
 non-linear model is splitted in steps as follows:1. Computation of the 
ardiovas
ular variables by the 
ontrolled 
ompart-mental model2. Generation of the in�ow based on the a
tual magnitudes of beat volumeand heartrate3. Determination of the termination parameters based on the a
tual pe-ripheral resistan
e, given by the 
ontrol me
hanism



CHAPTER 9. RESULTS 954. Computation of �ow and pressure in arteries by the nonlinear stru
-tured tree model5. Postpro
essing of the 
omputed data and 
ontinuing with the next 
y
le

Figure 9.12: Generated sinus in�ow velo
ityFrom the lumped parameter model, providing the 
ontrol me
hanism, a ve-lo
ity 
urve 
overing the aorti
 in�ow is generated as 
an be seen in �g. 9.12.Together with the pressure 
urve whi
h was generated by help of a Wind-kessel model (�g. 9.13) the impedan
es of the arterial tree are 
omputed forall vessel segments. Then, at the terminal segments the �nal total resistan
esfor the terminating Windkessels used by the dynami
 model 
an be deter-mined (tab. 9.2).With the 
omputed data all boundary values for the dynami
 stru
turedtree model are determined. In the shown experiment the data set for the pe-ripheral resistan
es and 
apa
ities are given by table 9.1 using the linearisedmodel.After 
omputation of steps 1-3 the initial data and boundary values for thedynami
al �nite volume model are known and the simulation run is started.The 
omputed data are plotted for three di�erent values of x for ea
h sege-ment (x = 0, x = l/2, and x = l with l denoting the length of the vessel).In �gure 9.14 the pressure and �ow 
urves of the simulation run 
omparedwith measured data are shown. The pressure wave form was measured by



CHAPTER 9. RESULTS 96tonometry where the systoli
 and diastoli
 pressure was adapted be
ause it
an not be measured by the used te
hnique. It is taken using a separate
ommon measurement devi
e. The �ow measurement was done by dopplerultrasoni
 measurement. It shows that the 
omputed wave forms mat
h themeasured ones very well (�g. 9.16 and �g. 9.17).Pressure and �ow forms on di�erent sites along the arterial tree are plottedin pi
ture 9.14. The observed e�e
ts, namely in
rease of systoli
 pressureand higher steepness of the pressure waveform 
an be observed. Also the
hange of the �ow waveform mat
hes the measured �ows as well as 
urveswhi
h 
an be found in literature.

Figure 9.13: Windkessel generated pressure at the aorti
 root
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(a) pressure

(b) �owFigure 9.14: Pressure and �ow wave forms along the vas
ular tree (aorti
 root,abdominal aorta, bra
hial artery and femoral artery
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(a) pressure

(b) �owFigure 9.15: Pressure and �ow wave forms at the femoral artery (red) , 
omparedwith measurement (blue)
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Figure 9.16: Comparison of 
omputed �ow velo
ity with ultrasound measurementin the 
arotid artery

Figure 9.17: Comparison of 
omputed �ow velo
ity with ultrasound measurementin the femoral artery



CHAPTER 9. RESULTS 100Segment Name Length Proximal Distal WaveRadius Radius speed(m) (m) (m) (m/s)1 As
ending A 0.02 0.0147 0.0147 4.32 As
ending B 0.02 0.0144 0.0144 4.33 Ar
 A 0.02 0.0112 0.0112 4.34 Ar
 B 0.039 0.0107 0.0107 4.35 Thora
i
 A 0.052 0.0099 0.0099 4.36 Thora
i
 B 0.104 0.00675 0.00645 4.37 Common Ilia
 R 0.058 0.00368 0.0035 5.08 External Ilia
 R 0.144 0.0032 0.0027 6.09 Internal Ilia
 R 0.05 0.0020 0.0020 6.010 Deep Femoralis R 0.126 0.00255 0.00186 9.011 Femoralis R 0.443 0.00259 0.0019 7.312 Common Ilia
 L 0.058 0.00368 0.00365 5.013 Internal Ilia
 L 0.05 0.0020 0.0020 6.014 External Ilia
 L 0.144 0.0032 0.0027 6.015 Femoralis L 0.443 0.00259 0.0019 7.316 Deep Femoralis L 0.126 0.00255 0.00186 9.017 Sub
lavian 0.034 0.00423 0.00423 4.518 C Carotid L 0.208 0.0037 0.0037 13.05519 Bra
hio
ephali
 0.034 0.0060 0.0060 4.520 C Carotid R 0.177 0.0037 0.0037 13.05521 Sub
lavian 0.034 0.00423 0.00423 4.522 Vertebral R 0.148 0.00188 0.00188 7.023 Bra
hialis R 0.422 0.00403 0.00236 3.324 Radialis R 0.235 0.00174 0.00142 8.025 Ulnar I R 0.067 0.00215 0.00215 6.026 Vertebral L 0.148 0.00188 0.00183 7.027 Bra
hialis L 0.422 0.00403 0.00236 7.028 Radialis L 0.235 0.00174 0.00142 8.029 Ulnar I L 0.067 0.00215 0.00215 6.0



CHAPTER 9. RESULTS 101Segment Name Length Proximal Distal WaveRadius Radius speed(m) (m) (m) (m/s)30 Tibial Ant R 0.343 0.0013 0.0013 10.031 Tibial Post R 0.321 0.00247 0.00141 10.032 Tibial Post L 0.321 0.00247 0.00141 10.033 Tibial Ant L 0.343 0.0013 0.0013 7.634 Inter
ostals 0.08 0.0020 0.0015 3.635 Celia
 Axis 0.04 0.0039 0.0039 5.436 Hepati
 A 0.066 0.0022 0.0022 4.737 Hepati
 B 0.03 0.0018 0.0018 4.538 Spleni
 0.063 0.00275 0.00275 4.539 Gastri
 0.071 0.0018 0.0018 4.940 Abdominal A 0.053 0.0061 0.0061 4.341 Superminor Mesenteri
 0.059 0.00434 0.00434 4.142 Abdominal B 0.02 0.0060 0.0060 4.343 Renal 0.032 0.0026 0.0026 4.544 Abdominal C 0.02 0.0059 0.0059 4.845 Renal 0.032 0.0026 0.0026 4.346 Abdominal D 0.106 0.0058 0.00548 4.347 Inferior Mesenteri
 0.05 0.0016 0.0016 5.048 Abdominal E 0.02 0.0052 0.0052 4.349 Carotid External R 0.177 0.00177 8.3E-4 10.050 Carotid Internal R 0.177 0.00177 8.3E-4 10.051 Carotid Internal L 0.177 0.00177 8.3E-4 10.052 Carotid External L 0.177 0.00177 8.3E-4 10.053 Ulnar II L 0.171 0.00203 0.00183 8.054 Interosseous L 0.079 9.1E-4 9.1E-4 8.055 Ulnar II R 0.171 0.00203 0.00183 8.056 Interosseous R 0.079 9.1E-4 9.1E-4 8.0Table 9.1: Physiologi
al data for the arterial tree
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Segment Node Total resistan
e Total 
omplian
eN s m−5 N5 m-19 9 7.936E9 2.3E-1110 11 4.77E9 3.9E-1113 14 7.936E9 2.3E-1116 17 4.77E9 3.9E-1122 27 6.01E9 3.0955E-1124 29 5.28E9 3.5235E-1126 23 6.01E9 3.0955E-1128 21 5.28E9 3.5235E-1130 31 5.59E9 3.3281E-1131 32 4.77E9 3.9003E-1132 33 4.77E9 3.9003E-1133 34 5.59E9 3.3281E-1134 36 1.39E9 1.3384E-1036 39 3.63E9 5.1251E-1138 41 2.32E9 8.0E-1139 42 5.41E9 3.4389E-1141 44 9.3E8 2.0005E-1043 45 1.13E9 1.6464E-1045 47 1.13E9 1.6464E-1047 49 6.88E9 2.7041E-1149 51 1.39E10 1.3384E-1150 52 1.39E10 1.3384E-1151 53 1.39E10 1.3384E-1152 54 1.39E10 1.3384E-1153 20 5.28E9 3.5235E-1154 56 8.43E10 2.2068E-1255 30 5.28E9 3.5235E-1256 58 8.43E10 2.2068E-12Table 9.2: Termination segment impedan
e data



Chapter 10
Con
lusion and Future Prospe
ts

"My advi
e to you is get married: if you �nd a good wife you'llbe happy; if not, you'll be
ome a philosopher." So
rates
This thesis 
overs three di�erent approa
hes for simulation of blood �ow inhuman arteries, whi
h are 
onne
ted to ea
h other to get an one-dimensional
ontrolled identi�able dynami
 model of the 
ardiovas
ular system. It showsthe advantages and disadvantages of ea
h approa
h and also other, not 
on-sidered approa
hes are mentioned and the di�eren
es are dis
ussed.Although a lot of a

urate models 
an be found in the literature, most of themare veri�ed against one dataset, very often against the same one. Further-more, usually the 1-dimensional dynami
 models based on the Navier-Stokesequations are stati
 in the sense of initial- and boundary values.Our model adapts the boundary and initial values for the aorti
 root (in�ow)as well as for the termination segments (out�ow) before ea
h heart 
y
le.Together with the identi�
ation pro
edure for the 
ontrolled 
ompartmentmodel it 
an be fully identi�ed 
on
erning physiologi
al parameters. For theidenti�
ation algorithm only measurements from non-invasive methods are103



CHAPTER 10. CONCLUSION AND FUTURE PROSPECTS 104used. Physi
al parameters like artery lengths and diameters are mu
h moredi�
ult and expensive to measure. They 
ould be determined within ourpossibilities only partly through Doppler ultrasoni
 te
hnique. Missing datawere taken either from the literature or interpolated by given data.Summarizing, the identi�
ation of the model parameters 
an be seen as themost di�
ult and time 
onsuming task. On the one hand it is di�
ult toget measured data of good quality, on the other hand the main part of theevaluation of measured data must be done by hand, even some tools for itsautomation were developed during the work on this proje
t. For pra
ti
aluse of su
h a simulation tool des
ribed in this thesis it is important thatthe identi�
ation pro
ess 
an be done by data from non-invasive measure-ment only. Its disadvantages, e.g. that �ow and pressure are usually notsyn
hronous was explained in the last se
tion.Even our model 
overs already many physiologi
al phenomenons, there isstill pla
e for further improvements. At �rst, the non-linear �nite volumeimplementation was �gured out to be unstable 
on
erning realisti
 initialdata. As 
onsequen
e it should be revised and might be repla
ed by a �niteelement implementation.Furthermore, our model does not 
over a model of the heart what 
an be alsoa future task, whereby the question of the heart models parameter identi�-
ation has to be solved also. For our simulation runs the measured output ofthe left ventri
le was used instead. For it, no parameter has to be determined.



Appendix A
Formulas
If we write y := r

R
the velo
ity yields to

w = +
A

ρ

1

in




1 −
J0

(
αyi

3

2

)

J0

(
αi

3

2

)




 eint (A.1)This is still in 
omplex form. For the real part of the �ow in equation A.1 wetake the 
orresponding part of the pressure gradient Aeint. First, we writethe Besselfun
tions in the Euler notation for 
omplex numbers:
J0(αyi

3

2 ) = M0(y)eiθ0(y)

J0(αi
3

2 ) = M0e
iθ0Divergen
e theorem:

∫

S

F · n dS =

∫

V

∇ · F dV (A.2)and one of its identities is
∫

S

Φn =

∫

V

∇ΦdV (A.3)
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Appendix B
Measured Data
Here one dataset obtained from a set of ultrasound measurements is given.We determined aorti
 diameter, �ow velo
ity, pulse wave propagation velo
ityand the heart rate. In the following tables the �ow velo
ity 
urves are notgiven, they are generated from images within the simulation environmentafter the 
alibration was done manually.All our measured data are do
umented and ar
hived on a DVD and the given�le names are referen
es to it, but for 
opyright reasons the DVD 
ould notbe atta
hed to this work. If the reader has further questions or wants toverify the measured data he should not hesitate to 
onta
t the author orsomebody else from his working group.All given parameters were obtained be analysing bitmap images with theopen sour
e software DICOMWORKS.

106



APPENDIX B. MEASURED DATA 107Person dataPatienten #Age 24Weight 56kgHeight 175
mSex mSystole 93Diastole 64liegend# of series 1Date of measurement 38060Hypersoni
 devi
e: A
esonTable B.1: Person data



APPENDIX B. MEASURED DATA 108Measurement: DIAMETERPi
ture #in series Pi
ture #in print SYSTOLE(
m) DIASTOLE(
m)Aorti
 root 9 A1 1.9810 A2 2.1411 A3 2.1312 A4 2.14Carotis Commu-nis left 22 A5 0.66, 0.66,0.66 0.59, 0.58,0.58Carotis Commu-nis right 28 A6 0.57, 0.58,0.57 0.49, 0.48,0.4929 A7 0.58, 0.57 0.50, 0.49Radialis right 78 A8 0.222,0.232,0.236,0.237,0.236Radialis left 107 A9 0.225,0.242,0.218,0.218,0.218Abdominlalisaorta (bifur
a-tion) 130 A10 1.37, 1.38,1.38 1.29, 1.29,1.30141 A11 1.405,1.373,1.359,1.350,1.381Ilia
 Externaright 153 A12 0.817,0.824,0.831Arteria Popright 161 A13 0.56, 0.56,0.57 0.49, 0.5,0.5Arteria Tibialisright 186 A14 0.194,0.214,0.218,0.198Table B.2: Measurement of the aorti
 diameter from ultrasound images
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Measurement: LENGTH OF PERIODPi
ture #in series Pi
ture #in print TIME [s℄ PULSE[beats/minute℄Carotis Commu-nis left 13 A15 1.11, 1.12 5615 A16 1.07 56Carotis Commu-nis right 36 A17 1.11 4938 A18 1.03 58Radialis right 76 A19 1.12, 1.04 54Radialis left 103 A20 0.98 50105 A21 1.12 53AbdominlalisAorta (bifur
a-tion) 132 A22 1.13 54143 A23 1.16 52Ilia
 Externaright 146 A24 1.1 56A pop right 165 A25 1.08 56173 A26 1.03 56A tibialis right 184 A27 1.1 55Table B.3: Measurement of period length
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Measurement: SIGNAL RUNNING TIMEPi
ture #in series Pi
ture #in print TIME [s℄Aortenwurzel 5 A28 0.07Cartois Commu-nis left 14 A29 0.09, 0.08,0.09,0.1Carotis Commu-nis right 35 A30 0.08, 0.08Radialis right 73 A31 0.18, 0.18Radialis links 93 A32 0.18, 0.18Distal Aorta (bi-fur
ation) 136 A33 0.16, 0.16Ilia
 right 147 A34 0.17, 0.18Arteria Popright 165 A35 0.23, 0.22Arteria Tibialisright 183 A36 0.26, 0.27184 A37 0.24, 0.26, 0.27Table B.4: Measurement of the pressure amplitude velo
ity
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