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Abstrat
Due the more and more sophistiated medial are in western ountries themain auses of death is moving against diseases of the ardiovasular systemlike heart attaks, arterioslerosis or apopleti strokes. Hene it is not sur-prising that a lot of researhers are going to the time and e�ort of researhingon that �eld. Espeially the arterial part of the ardiovasular system is offundamental interest beause of its transport features.Modelling and simulation of the ardiovasular system have a long tradition,but mainly during the last entury a big amount of models for the simula-tion of blood �ow and pulse wave propagation in arteries were developed.Sine the �rst ompartment model published in 1733 by Stephen Hales [13℄a huge amount of di�erent models emerged. From very simply lumped pa-rameter models without onsideration of ontrol mehanism to very omplex3-dimensional models for the blood �ow in systemi arteries the reader an�nd a lot of sienti� works in literature. All this models have its advantagesas well as its disadvantages, depending on the aim of the simulation. Thesimple models may not map the physiologial properties properly and theomplex models are too hard to handle or they onsider only a small part ofthe whole ardiovasular irle.This work tries to �nd the happy medium and a dynami ontrolled andidenti�able multisale model for the whole ardiovasular yle is developed.The validity of the model is veri�ed by measured data. Doing this, severaldi�erent types of models are disussed and hosen to be onneted to the�nal overall model.In detail this work overs the implementation of an one-dimensional dynamiii



iiimodel for the big systemi arteries based on the inompressible Navier-Stokesequations and its onnetion with a lumped parameter model of six ompart-ments. Additionally, a model for the small arteries is used for determinationof boundary values for the termination segments of the modelled vasularbed. Within the ompartment model two physiologial ontrol mehanismsare onsidered. To onnet the models to eah other they have to be synedat �rst sine they operate on di�erent time sales. While the solution of theontrolled ompartment model is straight forward by quadrature, solving thedynami Navier-Stokes model is more sophistiated. Here we used a �nitevolume method implemented by Wibmer [55℄.A fundamental part of this work deals with the identi�ation of the ou-pled dynami multisale model based on measured data. To do this, severalso-alled alternative models are tested to be able to ompute as muh as pos-sible unknown parameters from an usually quite fragmentary set of measureddata. Basially, two lasses of parameters have to be omputed. On the onehand the geometrial and physial struture of the vasular bed, mainly ofthe big systemi arteries has to be determined (i.e. vessel diameters, lengthsand elastiity), on the other hand by reason of the used omputational meth-ods terminal onditions have to be ful�lled. For instane, we use Windkesselmodels on termination segments of the arterial tree whose parameters haveto be known.From ultrasound measurement we are able to ahieve physial data of thevasular bed of several positions. By help of other datasets from literaturethe missing data are extrapolated. Due the usage of an additional eletro-ardiogram (ECG) the pulse wave veloity an be measured as well what isused for determining the vessel wall elastiity.The Windkessel data are omputed through a linearised model for the ardio-vasular tree eah time step in the sale of the ompartment model. Doingthis, a model for the small arteries based on the linearised Navier-Stokesequations is used.All this was implemented in JAVA and C++ and a simulation and identi�-ation tool for the human arterial system emerged.



Kurzfassung
Heute verlagert sih die Haupttodesursahe aufgrund der immer besser wer-denden medizinishen Versorgung und dem dadurh immer höher werdendenAlter der Menshen in der westlihen Welt immer mehr auf Erkrankungen deskardiovaskulären System. Herzversagen und Arteriosklerose sind nur einigeder Ursahen. So wundert es niht weiter das sih viele Forshungen immedizinish-tehnishen Bereih auf das arterielle Kreislaufsystem konzentri-eren, welhes aufgrund der Transporteigenshaften von zentraler Bedeutungist. Auh in dieser Arbeit wird vor allem auf die Modellierung des arteriellenTeils eingegangen.Simulation des arteriellen Blutkreislaufs hat eine lange Tradition. Währenddes letzten Jahrhunderts wurden eine Vielzahl von Modellen zur Simula-tion des Blut�usses und der Pulswellenausbreitung in den Gefäÿen entwik-elt. Seit dem ersten Kompartment Modell von Stephen Hales aus dem Jahr1733 [13℄ entstanden die vershiedensten Modelle, die Teile des arteriellenSystemkreislaufs abbildeten, bis hin zu globalen Modellen für den gesamtenBlutkreislauf und 3-dimensionalen Strömungsmodellen der Arterien. So ver-shieden die Modelle sind, so sind es auh ihre Lösungsmethoden. All diesevershiedenen Ansätze haben ihre Vor- und Nahteile, abhänging vom ver-folgten Ziel der Simulation. Die einfahsten Modelle haben zu wenig Aus-sagekraft da sie zu wenige physiologishe Phänomene abbilden, zu komplexeModelle sind aufgrund der groÿen Anzahl an unbekannten Parametern nihtidenti�zierbar.Diese Arbeit versuht einen optimalen Mittelweg zu �nden um ein globalesdynamishes geregeltes und identi�zierbares Modell für den menshliheniv



vHerzkreislauf zu entwikeln und die Gültigkeit des Modells anhand von Mess-daten zu veri�zieren. Um das zu bewerkstelligen wurden vershiedene Model-lansätze gewählt und miteinander gekoppelt.Im Speziellen wird in dieser Arbeit ein 1-dimensionales Strömungsmod-ell auf Basis der inkompressiblen Navier-Stokes Gleihungen mit einem 6-Kompartmentmodell für den Regelkreislauf verknüpft. Die beiden Modellearbeiten auf vershiedenen Zeitskalen die synhronisiert werden müssen.Während das Kompartmentmodell mittels einfaher Quadratur gelöst wer-den kann, sind zur Lösung der partiellen Navier-Stokes Di�erentialgleihun-gen komplexere Methoden erforderlih. Hierzu wurde auf die Lösung vonWibmer [55℄ mit einem �nite Volumen Verfahren zurükgegri�en. AndereMethode wie zum Beispiel �nite Elementen oder �nite Di�erenzen �ndensih z.B. in [8, 12, 38℄.Der Hauptteil der Arbeit beshäftigt sih mit der Identi�zierung des gekop-pelten multiskalen Modells auf Grund von Messdaten. Dazu wurden eineReihe von so genannten Ersatzmodellen untersuht um von der beshränk-ten Anzahl an verfügbaren Daten auf die fehlenden Daten rükzurehnen.Prinzipiell sind aus den Messdaten zweierlei Parameter zu bestimmen; zumeinen muss die Struktur des Arteriennetzwerks (d.h. Arteriendurhmesser,Längen, Elastizität) angepasst werden, zum anderen die Parameter derRandbedingungen die durh die verwendeten Methoden auftreten, bestimmtwerden. Viele dieser Parameter sind niht direkt messbar und müssen indi-rekt durh andere Modelle bestimmt werden. Da die Randbedingungen vonden zu berehnenden Gröÿen abhängen, müssen diese in jedem Zeitshrittneu bestimmt werden wofür einfah zu berehnende Ersatzmodelle notwendigsind. Im Speziellen werden so Elasitizität und Windkesseldaten an den End-segmenten des modellierten Arteriennetzwerkes berehnet.Im Rahmen der Dissertation konnte auh eine Studie mit freiwilligen Proban-den durhgeführt werden in der kardiovaskuläre Parameter erhoben wurden.Diese Daten dienen dann am Ende dieser Arbeit zum einen als Grundlage derIdenti�zierung des dynamishen geregelten Kreislaufmodell und zum anderenzur Veri�zierung der errehneten Daten wie Pulsdrukkurven oder Flusskur-ven.
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Chapter 1
Introdution

"A theory is something nobody believes, exept the person whomade it. An experiment is something everybody believes, exeptthe person who made it." Albert Einstein
Nowadays the largest amount of deaths in industrial ountries an be asribedto diseases of the ardiovasular system, like atheroslerosis, hypertension orardia insu�ieny. Therefore it not surprising that researh on this �eldis of big interest and a lot of investigators are trying to explain the systemsomplex physiologial behaviour, whih is still not fully understood. A hugeamount of di�erent physiologial funtions are in�uening eah other in avery omplex way.From today's tehnial point of view non-invasive measurement tehniquesfor the determination of physiologial parameters are of high interest anda wide diversity of devies is available and under development. Espeiallythe measurement of ardiovasular parameters like pulsatile blood pressure,ardia output, blood volume �ow and peripheral resistane are of essential1



CHAPTER 1. INTRODUCTION 2importane in modern medial diagnostis. Mathematial models an pro-vide a powerful tool for interpretation and indiret measurement of furtherproperties.Also in the �eld of modelling and simulation of the ardiovasular system(CVS) a lot of work was done during the last hundred years. The great ad-vantage of investigating mathematial models instead of living individuals oranimals is obvious, even it annot be a omplete replaement for researh onliving mammals. Mathematial models based on physial laws an explain alot of e�ets observed. Starting with models for mathematial desription ofpulse wave propagation and simple models for the aorti Windkessel e�etsat the beginning of the 20th entury, today very omplex models in threedimensions for modelling turbulent �ow in bifurations are available. Alsothe fast development of omputers during the last two deades was very help-ful for researh and the development of highly sophistiated mathematialmodels whih are solved numerially.Although researh on blood �ow in arteries started long time ago only afew researhers worked on this topi until the 1950s sine a huge amount ofinvestigators started to develop models by using di�erent kind of approahes.When simulating blood �ow and pressure waves in arteries the governingequations for an inompressible �uid in an elasti or visoelasti domainhave to be solved. Doing this at least four approahes are possible. The �rstapproah is the use of lumped parameter models. These models are easyto handle, heap in omputing time and have less parameters to identify.Usually these models are ompartmental based and over the whole humanardiovasular system inluding the pulmonary and venous part in ontraryto the other approahes. But transient behaviour of the pressure and �owwaveforms an not be studied.The seond approah, the one-dimensional wave propagation method, in-volves solving the governing equations of blood �ow in a one-dimensionaldomain and is based on the assumptions that the dominant omponent ofblood �ow veloity is oriented along the vessel axis and that the pressure anbe assumed to be onstant over the ross-setion of the vessel [50℄. Assuming



CHAPTER 1. INTRODUCTION 3further a Newtonian �uid in a deforming, impermeable, elasti domain, thesenonlinear partial di�erential equations onsist of the ontinuity equation, asingle axial momentum balane equation and a onstitutive equation. Addi-tionally boundary onditions have to be drawn up. A lot of solutions of thisapproah an be �nd in the literature solved by di�erent numerial meth-ods like �nite di�erene shemes, �nite elements or �nite volume methods[38, 41, 50, 53, 55℄.A third approah is based on the Womersley solution for pulsatile �ow inelasti vessel [56, 57, 58℄. Here, some more assumptions were made, namelyasymmetry, linear onstitutive behavior and small perturbations about aonstant pressure and zero axial veloity referene state. Then, a system oflinear partial di�erential equations an be derived and solved analytially.A solving strategy an be to presribe �ow and impedane at the aortiroot and determine harateristi impedanes for the arterial segments likeAvolio did in [3℄. While these impedane-based linear models an be usedto presribe �ow and pressure at the aorti root, they do not inorporatenonlinear advetive losses or losses due to branhing and stenoses [32, 46, 50,51℄. Espeially applied to blood �ow in the major arteries this is perhaps themost signi�ant limitation of Womersley's theory.The forth approah to model blood �ow and pressure wave forms in humanarteries is to solve the three-dimensional Navier-Stokes equations numeriallyin elasti domains. It requires also appropriate boundary onditions. Whilethe presribed veloity, volume �ow or pressure, depending on the formula-tion, an be omputed, the quantities for the blood �ow exiting the vesselsin the terminal segment of the branh is unknown and part of the desiredsolution [5, 7, 20, 35℄.Due to the goal of this work is to gain an identi�able and ontrolled dynamimodel for simulating blood �ow and pressure wave forms in the major arter-ies we make use of the �rst three of the approahes mentioned above. Forgetting pressure and �ow wave forms in systemi arteries it is not neessaryto ompute them also in the venous part, but beause of the systems' ontrolit an not be negleted and therefor parts of minor interest are governed by



CHAPTER 1. INTRODUCTION 4simpler lumped parameter models, so that only very less physial parametershave to be identi�ed. The parts of interest within the vasular system aremodelled in a more detailed way. All of them are ombined to a big modelwhih let us onsider the behaviour of the whole system.Within this work the fous is on models for termination segments of the vas-ular bed and its oupling with models for ontrol and blood �ow in arteries.During investigation it beame obvious that this is a quite di�ult task. Ad-ditionally its parameters annot be identi�ed diretly by measurement andso other indiret methods beame neessary.For the ombination of models of di�erent sales a good understanding ofthe physiologial oherenes is neessary what should be given with thiswork also. Starting with some haemodynamial fundamentals given in thenext setion, an introdution into mathematial modelling of �uid dynamisis overed by the seond hapter.The most ommon-sense strategy in modelling omplex systems is thebottom-up approah. The three basi onepts of ardiovasular modelling,on whih all other models developed later are based on, are explained in thethird hapter. Using the bottom-up priniple, the ompartmental model withontrol mehanisms overing the whole CVS is given in the following hapter.After that a more detailed linearised model for the systemi arteries, whihis the part of interest in investigation of ardiovasular diseases, is developedin hapter �ve.The third and last approah onsidered within this thesis is a non-linearapproah solving the Navier-Stokes equations for elasti tubes. This numer-ially solved model handles a huge amount of e�ets observed in naturalenvironment, but identifying its parameters is a di�ult task for whih theother more simple models are used.The aim of this work is to develop a ontrolled and identi�able model ofthe whole CVS and therefore the di�erent models mentioned above are on-neted to eah other, what is the ontent of the seventh hapter. In the lasthapters an overview of the implementation of the whole model with all itsapproahes is given and the results of simulation runs are presented. For



CHAPTER 1. INTRODUCTION 5better readability some omplex formulas and tables of measured data aresoured out to the appendix and its setions are referred in the ontext.1.1 Modelling and SimulationFor a huge amount of problems in appliations quantitative as well as qual-itative propositions are laimed to be emerged from the solution. Only insome very simple ases both an be done diretly. Usually the use of math-ematial methods is neessary, even a lot of obviously empiri solutions arebased on an abstrat model behind. Nowadays we are able to use more andmore omplex systems of a better understanding of natural proesses (e.g.healing of diseases). The basi tools for it are mostly mathematial mod-els, i.e. formal desriptions using mathematial formalism like equations orgraphs.Simulation is a method beyond a lot of others to solve problems in di�erentappliations. The onept of simulation might be desribed well by"Simulation is the repliation of a dynami proess in a model toget insights whih are transmittable to the real world"Modelling and simulation is an iterative proess where the model has to beadapted to the real world reurrently. Hereby the inessant interation of thedi�erent steps is essential. Observations lead to a model and the results of thesimulation at their part lead to observations again, on whih the validationof the model is based.1.1.1 Types of ModelsA model is the desription of a onrete system. Dependent on the based ap-proah di�erent kinds of models are distinguished. A lassi�ation of modelsdisussed within this work is given in the following setion.



CHAPTER 1. INTRODUCTION 6

Figure 1.1: Sheme of a simulation studyStrutural ModelsThe geometrial struture of the arterial tree is mapped onto the modelwhere the physial parameters and physiologial properties are onsidered.This is the most detailed variant we are using, but it leads also to a higheromplexity and omputational e�orts.Lumped Parameter ModelsBy using this kind of models the geometrial struture of the aterial treeis not mapped, but the behaviour of the ardiovasular properties and itsregulation proess is onsidered in a global way. To do this the arterial treeis lumped to so alled ompartments whih are investigated with our model.It is lear that there are huge restritions on using suh kind of models,but they are muh more simpler and the amount of unknown parameters issmaller. For instane with a lumped parameter model also the solution islumped, for example the blood pressure is gained only as a mean value, notas a transient wave form.



CHAPTER 1. INTRODUCTION 7Alternative ModelsSometimes the underlying physial proedures are not known or are too om-plex for modelling it in a pratial way. In this ase it an be a good hoieto use alternative models. Instead of mapping the struture of the ardiovas-ular bed, the behaviour of the onsidered proess is the basis of the model.The most prominent example for this type of models is the so alled Wind-kessel model on whih we will refer often within this work. Parts of thearterial tree behave like a Windkessel and so we an use it as a simpli�edalternative model.Models for Boundary DataDue to the omplexity of the human physiology only parts of the internalproedures an be onsidered. Under suh restritions it follows that one hasto deal with unknown boundary parameters indispensably. For modellingthis arti�ial splitting the use of alternative models is neessary. This wayare modeled parts of the system whih are not onsidered by the simulation,but whih are neessary to lose the irle. In our speial ase the boundarydata at the entry respetively the exit of the system, namely the vessel treeof the large arteries. We need a model for the heart, with it the blood �owis driven, as well as a model for the small arteries whih are not onernedby our approah by default. The small arteries annot be modeled like thelarge ones ause of the lak of measured data and the very wide branhedstruture whih is not known. We just know how they behave and try tosimulate its phenomenons. Also the elastiity of the vessel walls is mappedby suh an alternative model, based on observations. All this models aredynami, that means time dependent, ontrary to the model parameters,whih are onstant, and model variables whih are determined by the modelitself.



CHAPTER 1. INTRODUCTION 81.2 Haemodynamial BasisThe overall arrangement of the human ardiovasular system an be sum-marised brie�y as follows (ompare [34℄).The system is driven by the heart, whih is omposed of four hambers, ar-ranged in two pairs. Two of the hambers, the atriums are thin-walled, andonneted through valves to the thik-walled ventriles, one on eah side.From there, blood is pumped into the aorta (left ventrile) and into the lungs(right ventrile). The left ventrile is more musular then the right one toprodue enough pressure to pump oxygenated blood through the body. Fur-thermore, the left ventrile is onneted to the aorta, the main and largestartery in the human body with a diameter of approximately 2.5 m. Largearteries branh of the aorta and the arteries beame smaller and smaller untilthey reah a diameter of 30-100 µm in the arterioles. These small arteries endin the apillaries with a diameter down to 4 or 5 µm. These very �ne vesselsonverge again in the venous system whih has other mehanial propertiesas the arterial part. In this work only the arterial system will be onsidered.The walls of bloodvessels have a similar struture in the whole body. Theyare made up of similar materials, although their proportions vary in di�erentparts of the system. Traditionally the wall is divided into three layers, theinnermost intima, the media and the outermost adventitia. The inner intimaonsists of two parts, the endothelium, whih is a single layer of ells, and sur-rounding it, a thin subendothelial layer ontaining ollagen �bres. The mostimportant part of the vesselwall when onsidering mehanial properties isthe media. The inner boundary is formed mainly by a layer of interlinkedelastin �bres, alled the internal elasti lamina. The rest of the media, whihis usually the thikest part of the vessel wall, di�ers in the struture fromlarge to small arteries. In larger arteries it onsists of multiple onentrilayers of elasti tissue (elastin), separated by thin layers of onnetive tis-sue, alled ollagen and smooth musle ells. In smaller arteries the mediaonsists mainly of this smooth musle ells with thin layers of elastin andollagen in between. After another thin elasti layer the adventitia is on-neted outside. Although it is as thik as the media it plays an unimportant



CHAPTER 1. INTRODUCTION 9rule for mehanial properties, it onsists of very loose tissue.The vessels onsist of elastin, ollagen and smooth musle �bres of about50%, the rest is water whih has a negligible e�et on the mehanial prop-erties. The di�erene of elastiity of arteries from the proximal to the distalend is aused by the ratio of elastin to ollagen. In the intrathorai aortathe ratio is about 1.5, while in other arteries, whih are more sti�er, the ratiodereases to about 0.5.It is lear that the mehanial properties of the vessel walls depend on bothon the properties of its individual omponents and on how they are onnetedtogether. Elastin is a very elasti material and an be extend easily. Collagenis muh sti�er with a Young's modulus of about 106kNm−2. Smooth muslehas a Young's modulus similar to that of elastin, but its atual value dependson the level of physiologial ativity, varying from 100kNm−2 in the relaxedstate to 1200kNm−2 in the ative state. But only elastin is purely elasti,the others, espeially smooth musles show visoelasti properties what isre�eted in dynami properties of artery walls.1.2.1 Visoelastiity of the Blood VesselsIn basi onsiderations of the pressure-�ow relationships of osillatory �owthe artery is treated as a ylindrial tube of onstant diameter. In reality,an artery is a visoelasti tube whose diameter varies with a pulsatilepressure and whose elastiity varies therefore with time and frequeny. Themehanial properties of the vessel wall are well investigated and its resultsan be found in literature [4, 31, 34, 36℄.To study haemodynamis of the arterial system knowledge of the elastiproperties of the arterial wall is of fundamental importane. Indeed,knowledge of the visoelasti properties of the blood vessels has long beenreognized as playing an essential role in ardiovasular behaviour.Relations between fores applied to a body and its deformation is overed bythe theory of elastiity. The fore per unit area produing the deformationis alled the stress whereby the ratio of the deformation to its original formis alled strain. Beause its a ratio, strain is dimensionless. Although the



CHAPTER 1. INTRODUCTION 10ability to withstand a stress is a property that distinguishes a solid from aliquid, a larger number of substanes exhibit properties appropriate to anelasti solid as well as a visous liquid. Blood vessels belong to this hugelass of so alled visoelasti materials. The deformation of suh materialsdepends on both the magnitude of the stress and the rate at whih isapplied.Of ourse no substane is perfetly elasti when very large fores are appliedto it, but for small deformations it is proportional to the fore and linear.This proportionality was �rst desribed by Robert Hooke (1635-1703) in 1676and is well known as Hooke's law. With larger fores this proportionalityeases and this limit is known as elasti limit. The material annot regainto its original form beyond this point. With further inreasing of the loadthe yield point will be reahed and usually leads to breakage.The lassial theory of elastiity is based on two fundamental assumptions,namely the substane is ontinuous and uniform or homogeneous but neitherof the two applies well to the arterial wall. At �rst, the wall is highlyextensible and behaves more as rubber, and at seond, the main elastiomponents as mentioned in the latter setion, are ollagen and elastinwhih a �brous and supported in a liquid of water and muoproteins.Therefore the arterial wall is far from being homogeneous. Nevertheless themain analyses of the arterial mehanis are based on lassial theory.Strain and StressReferring to its onsequene strain is divided in longitudinal strain when abody is extended from a length x0 to a length x1, to ompressive strain whenthere is a hange of volume and to shear strain when there is an displaementof two points in parallel planes in a diretion parallel to those planes.The longitudinal stress is expressed by
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ǫxx =

x1 − x0

x0
(1.1)while in the y or z diretion the strains are given by

ǫyy =
y1 − y0

y0
= −σyxǫxx (1.2)and

ǫzz =
z1 − z0

z0
= −σzxǫxx (1.3)where σ, the ratio of transverse to longitudinal strain, is alled Poisson ratio.

σ is a harateristi property of the material and for small strain its onstant,but it annot neessarily be assumed that σyz = σzx. That holds for so-alled isotropi materials where the elastiity is the same in all diretions.Pratially, for the Poisson ratio the e�etive range is 0.0 − 0.5. For smallextensions with a ratio 0.5, the volume of a solid remains onstant when itis strethed.In three dimensions we get one tensile and two shearing strains for everyplane. After taking into aount that ǫxy and ǫyx are idential we gain sixindependent omponents
ǫxx, ǫxy, ǫyy, ǫyz , ǫzz, ǫzx.and six orresponding Poisson ratios

σxx, σxy, σyy, σyz , σzz, σzx.Strain is aused by a fore F ating aross a given plane in a body. Thus theunit of this fore F is F
A
, alled stress.The stress on a point in a plane may be resolved into those normal (tensilestress) and tangential (shear stress). The omponents along the three axisare designated by subsripts where the apital letters indiate the diretion of



CHAPTER 1. INTRODUCTION 12a stress omponent. Beause Xy and Yx must be equal to prevent rotationalresultant we therefore left with six independent omponents of stress:
Xx, Xy, Xz, Yx, Yz, Zz, ZxThe Relationship between strain and stressThe relationship between stress and strain is expressed as an elasti modulus.As strain is dimensionless, all these moduli will have the dimension of stress(i.e. fore per unit area).The modulus in longitudinal diretion (stress and strain are onsidered inthe same diretion) is alled Young's modulus in honor of the pioneer workof Thomas Young (1808) and is designated by E.

E =
Xx

ǫxx

(1.4)In this work the Young's modulus will refer to the Young's modulus in ir-umferential diretion further on. Other de�nitions of elasti modulus likeshear modulus or bulk modulus are not used here and therefore not disussed.For further details the reader may refer to [31℄ and referenes therein.As the dynami behavior of the arterial wall is the periodi strain imposedby the pulse wave the response of the wall to a stress is often analysed by astress of a harmoni funtion. In this ase, the visous elements will ause aphase lag of angle φ between stress and its resultant strain.MDonald [31℄ mentioned the �rst formulation by Hardung [14, 15, 16℄ whointrodued the elasti modulus E ′ in omplex form:
E ′ = Edyn + iµω (1.5)where the real part Edyn is given by

Edyn =
∆P

∆l

lm
qm

cos φ (1.6)



CHAPTER 1. INTRODUCTION 13and the imaginary part by
µω =

∆P

∆l

lm
qm

sin φ; (1.7)
lm and qm are the average length and the ross-setion of the speismen. Inthe upper formulas µ denotes the dynami visosity and ω the onernedfrequeny.Although the dynami elasti modulus is rising ontinuously with frequeny,in arterial wall it inreases markedly up to a frequeny below 2 Hz andthereafter remains onstant.1.2.2 Wave form analysisThe arterial pulse has been reognized from antiquity as the most funda-mental sign of life. A huge number of sienti� publiations dealing withthat topi an be found. Marey [42℄ was the �rst who obtained aurateresults reording arterial pressure pulses with non-invasive measuring meth-ods where invasive methods were used before like Frank [9, 10℄ did with hismanometer for registering intra-arterial blood pressure.When observing waveforms of �ow and pressure in the asending aorta onean see di�erenes between the shapes of them. As long as ardiovasularphysiologists have been able to measure pressure and �ow in the asendingaorta, they have puzzled over this phenomenon.One explanation of this di�erenes ould be the existene of wave re�etionsaused by the peripheral arteries. A re�eted bak travelling wave that rein-fores the pressure will have a anelling e�et on the �ow shape. However,it ould not be demonstrated yet that wave re�etion are su�ient to explainsuh large, qualitative di�erenes in the aorti pressure and �ow waveforms[52℄. Milnor [27℄ remarked that the aorti tree in a young normal animal is aperfet di�user, i.e, it generates far fewer re�etions than any man-made dis-tributed network. Wang et. al. [52℄ explained these phenomenons with helpof simple Windkessel models and veri�ed their assumptions with measure-ments on dogs. Even with arti�ial pressure waves generated in the abdomi-
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Figure 1.2: Pressure and veloity wave forms in di�erent arteries (Mills et. al.[26℄, adapted by MDonalds [31℄)nal aorta, the e�et of the bak travelling wave ould not be observed havingany essential in�uene on the pressure waveform in the asending aorta. Inthere model for the blood �ow in the aorta they divided the pressure waveinto two parts, one desribes the pressure as result of the Windkessel, and thepart of the heart generated pressure wave. It an be seen that shape of thelatter is very similar to the �ow waveform when wave re�etion is negleted.A diagrammati omparison of the behaviour of the arterial pressure and�ow pulses as they travel away from the heart is given with �g. 1.2. As shownin the graphi above mean pressure falls slowly, but the pulsatile pressurevariation inreases until it may be double that at the root of the aorta. The�ow osillation, on the ontrary, diminishes markedly. This behaviour anonly be aounted for by the presene of a losed type of re�etion in the
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Figure 1.3: Pressure and �ow wave forms along the arterial tree (taken fromMDonalds [31℄)small peripheral vessels. In the absene of re�etions, damping would ause aparallel fall in pressure and �ow osillations. Subsequently, also the pressureosillations must damp out, whih takes plae in the smallest arteries andproximal arterioles.The inrease in the ratio of the pulsatile pressure amplitude to that of the�ow amplitude is largely determined by the inrease in impedane of the low-frequeny omponents. Additionally, the hange in shape of pressure wave tothat of the �ow wave depends on the hanges in impedane of the various fre-queny omponents in terms of their distane form the main re�etion sites,sine the impedane is at a minimum at one-quarter wavelength distanefrom these peripheral sites.The prolonged pressure rise from wave re�etion after systoli ejetion haseased leads to an augmentation of diastoli pressure and inreases oronaryblood �ow to the myoardium without inreasing left ventriular afterload.Wave re�etion during diastole, therefore, appears to be highly advantageous.In ontrary to this when vessel walls beome sti�er, for example in lateryears or through systemi hypertension, an inrease in pulse wave veloity isaused what results in an early return of the re�eted wave to the asend-
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Figure 1.4: Pressure and �ow wave forms along the arterial tree (taken fromMDonalds [31℄)ing aorta during ventriular ejetion. Suh timing is detrimental, sine theaugmentation aused by the re�eted wave inreases systoli pressure andventriular afterload.Thus, the so-alled augmentation index, whih is de�ned by
AIx =

Ps − Pi

Ps − Pd

(1.8)with systoli (Ps), diastoli (Pd) and in�etion pressure (Pi) is taken as aardiovasular risk fator. (�g. 1.4). The in�etion point is de�ned as thepoint when systoli ejetion is over and only the re�eted wave auses aninrease of blood pressure.1.2.3 Fourier AnalysisUsing Fourier analysis for blood �ow simulation was motivated from the the-ory of eletrotehnial engineering, where it was is known as a quite powerfultool. Although this theory was little used before for investigating wave formsin arteries, it was �nally introdued by Womersley. Using Fourier deompo-sition of pulse and �ow waves allows to investigate the omplex behaviour ofnon-linear distensibility and visous e�ets.



CHAPTER 1. INTRODUCTION 17MDonald gave a huge and detailed overview of Fourier analysis onern-ing pressure and �ow waves in his fundamental book [31℄. As experimentsshow low frequeny omponents dominate the Fourier deomposition of wavesin large arteries. Components with a frequeny higher than 15 Hz an benegleted what makes its omputation quite fast what leads to a high per-formane in omputation of linear models whih a huge number of segments.More details will be given later on.



Chapter 2
Fluid Mehanial Properties

"During our rossing, Einstein explained his theory to me everyday, and by the time we arrived I was fully onvined he under-stood it." Chaim Weizmann, 1921
The following small introdution to �uid mehanis is based on the exellentbook of Aheson [1℄. It should introdue into its basis and its notation to beable to understand this thesis without any foreknowledge in this topi. Forfurther details the reader is referred to [1, 22, 37℄.The �ow of a �uid is desribed by a veloity vetor

u = u(x, t) (2.1)It de�nes the veloity at every position x for every time t. This tells uswhat all elements of the �uid are doing at any time, and usually �nding thesolution of 2.1 is the main task, what an be expeted to be quite di�ult.Assuming Cartesian oordinates and denoting u having omponents u, v, w,equation 2.1 is a onvenient shortut for18
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u = u(x, y, z, t), v = v(x, y, z, t) and w = z(x, y, z, t).A �ow is alled steady if

∂u

∂t
= 0so that u depends on x only.A streamline is a urve x(s) at a ertain time t whereby its gradient is givenby u(x(s), t). At any partiular point, a streamline has the same diretionas u(x, t) and so its following a �uid partile. Mathematially, a streamlineis gained by solving

dx/ds

u
=

dy/ds

v
=

dz/ds

wat a partiular time with x = x(s), y = y(s) and z = z(s).It is lear that even if we have a steady �ow so that u is onstant at a point�xed in spae, u hanges as we follow any partiular �uid element. Thisleads us to introdue the onept of rate of hange following the �uid, withis of fundamental importane in �uid dynamis.Rate of hange �following the �uid�Let f(x, y, z, t) denote some quantity of interest in the �uid motion, for ex-ample it ould be one omponent of the �uid veloity u or the density ρ.First, we note that ∂f

∂t
is the rate of hange of f at any �xed position inspae.In ontrast to this desribing the behaviour of any state variable along a pathof a partile we use the substantial derivative
Df

Dt
=

d

dt
f [x(t), y(t), z(t), t]



CHAPTER 2. FLUID MECHANICAL PROPERTIES 20where x(t), y(t) and z(t) are understood to hange with time at the loalveloity u:
dx

dt
= u, dy

dt
= v, dy

dt
= wAppliation of the hain rule gives

Df

Dt
=

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
,i.e.

Df

Dt
=

∂f

∂t
+ (u · ∇)f (2.2)It desribes the gradient of the onerned variable along a streamline. There-fore, the aeleration in a �uid at any point in spae is given by

Du

Dt
=

∂u

∂t
+ (u · ∇)uRemark that for steady �ow equation 2.2 shows that the rate of hange of ffollowing a �uid element redues to (u · ∇)f .Additionally,

(u · ∇)f = 0 (2.3)de�nes some important stages in �uid theory, thus implies that f is onstantalong a streamline. But there is no information about if f is di�erent ondi�erent streamlines. For example onsider a �ow in x diretion and assume
f to be onstant in x, so that ∂f

∂x
= 0. It says that f is independent of x, butthere is no information about y, z, or t.Another important equation within the theory is
Df

Dt
= 0



CHAPTER 2. FLUID MECHANICAL PROPERTIES 21whih means that f is onstant for a partiular �uid element and followsdiretly from the de�nition above. It doesn't prelude that di�erent elementsmight have di�erent values of f .For the following theory we will introdue the term of an ideal �uid and wewill onsider �uid elements with a small, but �nite volume:A �uid is said to be ideal as of the following properties hold:1. It is inompressible, so that no �nite volume element an hange itsvolume as it moves.2. The density ρ is a onstant, the same for all �uid elements and for alltime t.3. The fore exerted aross a geometrial surfae element n∂S within the�uid is
pn ∂S (2.4)where the pressure p(x, y, z, t) is a salar funtion, independent of thenormal n.Of ourse, there is no ideal �uid somewhere in nature, espeially blood isvisous to its extent, but for our next onsiderations we will assume that our�uid behaves like one.From the assumptions of the de�nition of an ideal �uid several onsequenesare impliated. First, onsider a �xed losed surfae S in the �uid with aunit outward normal n, where �uid is entering on one side and will leave iton another. Then, the veloity omponent along the outward normal is u ·nand the volume �owing out through a small surfae element δS in unit timeis u ·n δS, and therefore the rate �uid is leaving the volume element is givenby

∫

S

u · n dS



CHAPTER 2. FLUID MECHANICAL PROPERTIES 22whih must be equal to zero for an inompressible �uid and by using thedivergene theorem A.2 we �nd
∫

S

∇ · n dV = 0This an be hold only for
∇ · u = 0what is named inompressibility ondition.To examine the onsequene of the third ondition lets onsider a surfae Sof a �nite volume. The fore exerted by the surrounding �uid aross anysmall surfae element δS is given by 2.4 and the fore exerted on the wholevolume element is

−

∫

S

pn dS = −

∫

V

∇p dV (2.5)if we apply the identity A.3. Assuming ∇p to be ontinuous it will be almostonstant over a small volume δV and the fore on the small volume of thesurrounding �uid an be taken as −∇p δV .The equations of EulerNow we are in the position to study linear momentum to a small volumeelement δV . With the presene of gravity, the total fore on our volume is
(−∇p + ρg) δVand by Newton's seond law this must be equal to mass times aeleration,i.e. to

ρ δV
Du

Dt
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Du

Dt
= −

1

ρ
∇p + ρg

∇ · u =0as the basi equations for an ideal �uid, known as Euler's equations, desrib-ing non-visous �ow of an ideal �uid.Visous FlowConsidering blood �ow in arteries visous e�ets annot be negleted insmaller vessels. Along the vessels boundary, invisid theory is preditinga slip of the �uid. Yet lose inspetion reveals that there is in fat no suhslip. Instead there is a very thin boundary layer, aross whih the �ow ve-loity undergoes a smooth but rapid adjustment to preisely zero. In thisboundary layer invisid theory fails and visous e�ets beome important.It is obvious that the thikness of the boundary layer dominates more andmore against the main part of �ow the smaller the onsidered arteries are.To examine visosity onsider simple shear �ow, for example let the veloity
u be u = [u(y), 0, 0]. The �uid above some onstant level y exerts stress,i.e. a fore per unit area of ontat on the �uid immediately below and vieverse. For invisid �ow this stress would have no tangential omponent, butfor visous �ow this tangential omponent τ is typially non-zero.If τ is proportional to the veloity gradient, i.e.

τ = µ
du

dy
(2.6)the �uid is alled to be Newtonian visous. A wide range of natural �uidsbehave like 2.6 under �normal� onditions, also blood an be assumed to doso.



CHAPTER 2. FLUID MECHANICAL PROPERTIES 24Very often the so-alled kinemati visosity
ν =

µ

ρ
(2.7)is more signi�ant from the �uid dynamial point of view. These values anvary quite substantially with temperature, but for our appliations on blood�ow they an be taken to be onstant, as well as we onsider only onstantbody temperature.For an inompressible Newtonian �uid of onstant density ρ and onstantvisosity µ its motion is governed by the Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p + ν∇2u + g (2.8)

∇ · u =0 (2.9)These di�er from the Euler equations by virtue of the visous term ν∇2u,where ∇2 denotes the Laplae operator.No-slip ConditionObservations of real �uid �ow reveals that at a rigid boundary the tangentialas well as the normal omponent of the �uid veloity must be the same asthose of the boundary itself. If we assume the boundary to be in rest, thismeans u = 0 there. This holds for �uids of any visosity ν 6= 0.The Reynolds NumberThe Reynolds number gives a rough indiation of the relative magnitudes oftwo terms in the equations of motions. Flows with high or low Reynolds num-ber have quite di�erent general harateristis. It is de�ned by the hara-teristi properties U , whih denotes the typial �ow speed, the harateristilength L and the visosity ν:
R =

UL

ν



CHAPTER 2. FLUID MECHANICAL PROPERTIES 25To understand its importants onsider the derivatives of the �ow veloity,e.g. ∂u
∂x

whih will be of the order U/L. Going on the derivative will hangethemselves of order U/L over distane of order L and the seond deriva-tive ∂2u/∂x2 will be of order U/L2 and for the derivative terms in the �rstequations of 2.9 there holdsinertia term: |(u · ∇)u| = O(U2/L)visous term: |ν∇2u| = O(νU/L2)For the ratio of the inertia and the visous term we get
O

(
U2/L

νU/L2

)
= O(R) (2.10)and the meaning of high and low Reynolds numbers beomes lear.High Reynolds Number FlowFor high Reynoldsnumber R ≫ 1 equation 2.10 suggests that visous e�etsan be negleted and �ow an be seen being in-visous. A high Reynoldsnumber is important over most of the �ow �eld, but its not su�ient. Inthin boundary layers where large veloity gradients our and the visousterm in the latter equation inreases. It an be shown [1℄ that the typialthikness δ of suh a boundary layer is given by

δ

L
= O

(
R− 1

2

)Therefore, the larger the Reynolds number, the thinner the boundary layer.Another ompliation of high Reynolds number is that steady �ows are oftenunstable to small disturbanes and as a result they beome turbulent. Thiswas the original ontext in whih the Reynolds number where de�ned.



CHAPTER 2. FLUID MECHANICAL PROPERTIES 26Low Reynolds NumbersLow Reynolds numbers R ≪ 1 over very visous �ow with speial properties.In suh �ows there is no sign of turbulene and the �ow is extremely wellordered. Furthermore, their is almost reversibility of �ow. For exampleimagine two ylinders with golden syrup in between, the inner in rotation,the outer in rest. Considering a small volume element it will move bakalmost to its inertial position after the rotational fore ends [1℄.Visous �ow where this phenomenons beame important will not onsideredwithin this thesis and so the reader is referred to literature.



Chapter 3
Haemodynamial Properties

"Marriage is like pi - natural, irrational, and very important."Lisa Ho�man
This hapter gives an historial overview of the development of haemody-namial models and desribes the key properties whih are ommonly usedwhen simulating blood �ow in human arteries.During the history a lot of approahes lead to a huge amount of modelsby a lot of investigators. As �rst William Harvey (1578-1657) proved theexistene of blood irulation in his work Exeritatio anatomia de MotuCordis in 1628. Hundred years later Stephen Hales qualitatively desribedthe �rst lumped parameter model of the arterial system in 1733 [13℄. Heenvisioned that heart injets blood into the arterial system during systolewhile distending the large arteries. Furthermore he �gured out that duringdiastole the arteries reoil and make the blood �ow through the small arteriesontinuous. Therefore he viewed the role of the large arteries a storage deviethat transforms intermittent �ow from the heart into a steady out�ow.

27
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Figure 3.1: Stephen Hales, 1677-17613.1 The Windkessel ApproahIn the end of the nineteenth entury Otto Frank oneived a pratial use forthis onept when he attempted the so-alled Windkessel to alulate strokevolume from measured aorti pressure. Measurement of �ow remained a biggoal for deades until the eletromagneti �ow probe was developed.Frank related the Windkessel to represent the arterial part of the ardiovas-ular tree, the out�ow noted to represent the arterioles and apillaries [9℄.He used the priniple of onservation of mass to quantify this desription,where at eah time t blood �ow stored in the large arteries Qstored is equalto the di�erene of in�ow and out�ow:
Qstored = Qin − Qout (3.1)Then the most basi assumption of the Windkessel approah was made,namely to assume the pressure to be the same everywhere in the arterialsystem, whih is equivalent to that the pressure and �ow pulses travel within�nite veloity.With this assumption the peripheral resistane was introdued, desribingthe relationship of a pressure drop aross the small arteries to the �ow out
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Figure 3.2: Tehnial Windkesselof the system
Rw =

Pin − Pv

Qout

(3.2)where Pv denotes the venous pressure. Next, the Windkessel ompliane Cwdesribes the ability of the system to store blood whih is given by the hangeof blood volume V aused by a hange of pressure.
Cw =

dV

dPin

(3.3)Substitution of 3.2 and 3.3 into 3.1 leads to a di�erential equation relating
Pin to Qin.

Qin(t) = Cw

dPin

dt
+

Pin

RwFor Frank three possible ases have to be onsidered for the ompliane.Either Cw and Rw are both onstant, both are a funtion of pressure or only
Cw is a funtion of pressure. Setting Qin to zero and writing the last equationin the form

Cw · Rw = −
Pin

dPin/dthe onludes that Cw is a funtion of pressure, whih was also onsistent withthe observed pressure-dependent ompliane of the isolated aorta.



CHAPTER 3. HAEMODYNAMICAL PROPERTIES 30But due the lak of possibilities of solving nonlinear equations this nonlineardesription was negleted by investigators for a long time until omputersmade the task less di�ult.Even with pressure dependent ompliane Frank's modell didn't math pres-sure measured from an animal and this let him to split the pressure pulseinto two omponents, into a basi �Grundform� and an osillating part alled�Grundshwingung�. His model mathed the �Grundfrom�, whih is the pres-sure pulse without re�etion from peripheral sites.The real power of the Windkessel onept was not realized until FourierTransformation was applied and it was translated into its eletrial analogy.Summing up, the Windkessel approah relates �ow to pressure by the arterialompliane, �ow veloity was seen to be not important, whih was not sharedby everyone and let another shool establish, the long tube shool.
Figure 3.3: Windkessel ompliane as frequeny-independent transfer funtion(A) and as a frequeny-dependent transfer funtion. Here, V lags P due inertialand re�etion e�ets.3.2 The Long Tube ApproahWhereas Hales and Frank saw the arterial system as a ontainer of blood,Weber and Womersley saw it as a system transporting pressure and �owwaves. Based on the observation that �ow and pressure pulse waves don'trise and fall simultaneously throughout the system it was oneptualised asa uniform, in�nitely long tube, so that a pulse wave produed by the heartnever returns. In ontrary to the Windkessel model, the fous is on wavespeed veloity and this led to a long history of investigation.



CHAPTER 3. HAEMODYNAMICAL PROPERTIES 31This view was motivated by the observation that pressure doesn't rise and fallsynhronously throughout the arterial system and a measurable time delayours between the pressure pulse measured at the aorta and at peripheralarteries.In general, three equations are used to desribe �ow in elasti tubes: Anequation of motion, an equation of ontinuity, and an equation desribing wallproperties. In the beginning of the investigation of pressure wave propagationseveral analyti equations were found, whereby the Moens-Kortweg formulais the most famous representative. For a thin-walled tube the pulse waveveloity c0 is expressed as a onstent value related to blood density ρ, wallthikness h, radius r and Young's modulus of elastiity E:
c0 =

√
hE

2ρrThis formula neglets e�ets of blood visosity and was experimentally vali-dated by Moens [28℄ but may approximate reality very well.In a following epoh investigators started with a more formal approah andassumed the Navier-Stokes equations whih were simpli�ed to solve this non-linear partial di�erential equations analytially. This was the very produtivetime when Womersley provided a series of papers [56, 58, 57℄, resulting insolutions inluding the omplex interation of resistive and inertial fores,introdued by pulsatile �ow.3.3 The Branhing Network ApproahSimilar to the latter approah this approah is based on the Navier-Stokesequations by adding more and more omplexity to the models. Similar to thelatter method this approah is based on solving the Navier-Stokes equationswith �ow veloity and pressure as variables of interest. The elegant vetor
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Figure 3.4: A branhing network modelform is given by
ρ
Dv

Dt
= −∇P + µ∇2

vThis relates the inertial fore ρDv

Dt
to the pressure fore ∇P and visous fores

µ∇2
v.For solving this equations analytially usually troublesome terms are ne-gleted. Even a general solution was found by Meblin and Noordergraaf [25℄,the simpli�ed less powerful approah was used by investigators. A justi�a-tion of the assumption that non-linear terms are negligible was was done e.g.by Li et al. [21℄.



Chapter 4
Lumped Parameter Model

"Basi researh is what I'm doing when I don't know what I'mdoing." Wernher von Braun
This hapter should introdue in a lumped parameter model for human blood�ow whih was ontent of my diploma thesis [19℄. Based on the model from[29℄ a six ompartment model was developed and extended with a ontrolmehanism and the dependeny of outer in�uenes as physial stress andhydrostatial pressure. Furthermore a simulation environment for simulationof blood �ow in arteries was developed whih gives a ontrol engine for thesimulation of all models desribed in this work.With this simple approah we gain values for heart rate, systemi bloodpressure, beat volume and the peripheral resistane, averaged over one heartyle. This is done by a mehanial two-pump model. Besides the two hearthambers also 4 other ompartments are used to map the pulmonary- andsystemi system, eah with arterial and venous part. Furthermore a ontrolmehanism, patterned on the natural ontrol by the medulla and its pressurereeptorsis is added to the system (refer to 4).33



CHAPTER 4. LUMPED PARAMETER MODEL 34

Figure 4.1: Compartmental model sheme4.1 The iruit modelThe ompartments mathematial desription is motivated through the Frank-Starling relation for the heart hambers and Poiseille's law for the ompart-ments, desribing the arteries and veins.From the Frank-Starling relation we get that an inrease of the ventrilestrength k with onstant arterial pressure PA and onstant end-diastoli vol-ume VD will inrease the beat volume:
vB =

k

PA

VD (4.1)On the other hand is the beat volume given by the di�erene of end-diastoli
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vB = VD − vS. (4.2)Finally the end-systoli blood volume vS an be written as

vS =

(
1 −

k

PA

)
VD (4.3)For the mathematial formulation of the system also the ventrile volume vVis needed whih is modeled by haemodynami onsiderations. The hangewith time of a ontrol volume an be written as di�erene of �ow at disretepoints x and x + ∆x:

∂vV

∂t
= q(x, t) − q(x + ∆x, t) (4.4)After determination of its Taylor series

q(x + ∆x, t) = q(x, t) +
∂q

∂x
∆x (4.5)and substitution in equation 4.4 we get the ontinuity equation for �ow inan elasti pipe with ompliane C = ∂vV

∂p
1

∆x

−
∂q

∂x
= c

∂p

∂t
(4.6)After taking into aount the frequeny dependent elastiity modulus andsome equivalent transformations we get

bV =
c pven

(
1 − e

−tD
CR

)

part

k

(
1 − e

−tD
CR

)
+ e

−tD
CR

(4.7)for the beat volume, whereby tD de�nes the duration of diastole. For moredetails the reader is referred to [48℄.



CHAPTER 4. LUMPED PARAMETER MODEL 36The mathematial desription of the four remaining volume ompartmentsis done by use of Poiseuille's law:
Q =

πR4(P1 − P2)

8µL
(4.8)The hange of volume in one ompartment is given by the di�erene of in�owand out�ow

dvAS

dt
= qout − qinwhereby further on for better understanding subsripts will be used for dis-tinguish between the systemi arterial (AS), systemi venous (V S), pulmonalarterial (AP ) and pulmonal venous (V P ) parts of the CVS. Variables will bewritten in lower ase letters where we use p for pressures, v for volumes, qfor �ow, c for omplianes and r for peripheral resistanes as given by table4.1. Constants are denoted by apitals.After lumping the parameters in equation 4.8 to a single one, named as pe-ripheral resistane r for the hange of volume follows

dvAS

dt
= qout −

pAS − pV S

rAThe relation between pressure and volume is given by the ompliane of thearterial walls. An inreased blood volume vAS leads to the pressure pAS,determined by the di�erential equation
dpAS

dt
=

1

c

dvAS

dt
(4.9)Desribing all 4 ompartments through this priniple we gain the following



CHAPTER 4. LUMPED PARAMETER MODEL 37system of ordinary di�erential for the unontrolled system:



˙pAS

˙pV S

˙pAP

˙pV P




=




− 1
cAS ·rA

1
cAS ·rA

0 0
1

cV S ·rA
− 1

cV S ·rA
0 0

0 0 − 1
cAP ·rP

1
cAP ·rP

0 0 1
cV P ·rP

− 1
cV P ·rP







pAS

pV S

pAP

pV P




+




1
cAS

qL

− 1
cV S

qR

1
cAP

qR

− 1
cV P

qL




Value Desription
pAS,pV P ,pV S,pAP pressure of the venous resp. thearterial part of the systemi andthe pulmonal irulation
cAS,cV S,cAP ,cV P omplianes, taken to be onstant
rA,rP peripheral resistane of the sys-temi resp. pulmonal irulation
qL,qR blood �ow out of the left and rightventrileTable 4.1: Desription of the used variables for the ompartment modell4.1.1 Control of the Compartmental ModelWithin the human body a lot of di�erent mehanisms for ontrolling theblood pressure are known. Our onsiderations are restrited to the shorttime ontrol by the pressure reeptor as mentioned before. To add thismehanism on the model we use a negative feedbak of the pressure pASwith appropriate funtions. These feedbak funtions re�et the relationbetween the peripheral resistane respetively the heart rate and the bloodpressure, gotten through measured data. The feedbak funtions are realizedby splines, whereby haratersti parameters like boundary points, in�etionpoint and its gradient. These parameters an be determined from measure-
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Figure 4.2: Elastiity of the aorti wallments easily with an optimisation method and are therefor identi�able bythis way.4.1.2 Compliane in the Controlled ModelThe ompliane of the arterial walls is dependent from omplex mehanisms,hene the pressure as well. Therefor the assumption the ompliane to beonstant annot be held. (�g. 4.2)The ompliane for the systemi and pulmonal ompartments an be writtenas ratio of total blood volume and blood pressure:
cV S =

KCV S

pV S

cAP =
KCAP

pAP

cV P =
KCV P

pV PThe aorti walls onsists of a thik elasti layer the aorti blood volumeis hanging in dependene of the blood pressure. Beause of this so alled



CHAPTER 4. LUMPED PARAMETER MODEL 39Windkessel e�et the systemi volume annot to be taken as onstant. Agood approximation for this nonlinear relation between ompliane CASand pressure PAS is given by
cAS = CASN ·

(
1 −

p4
ASN

1 + p4
ASN

)where pASN = pAS

100
and CASN set as onstant.4.2 Extended Controlled Model ConsideringStressThe model desribed above is extended by several state variables for simu-lating physial stress. The human physiology has two main mehanisms toreat on it. The �rst is a qualitative reation and is loated in the peripheralvessels by opening or losing its irular musles whih results in a hange ofperipheral resistane. It represents a very fast and energy e�ient ontrollingmethod and is modeled by a term inluding the stress' gradient.The seond mehanism results in inreasing the heart rate and ats muhmore slower, but depends on the stress quantitatively. This an be modelleddiretly by the use of a transfer funtion of �rst order. But there is also an-other mehanism with leads to derease heartrate slowly and smoothly withending stress, whih is represented through a transfer funtion of �rst orderas well.Like in the original model the variables for beat volume, heart rate and pe-ripheral resistane are represented by ordinary di�erential equations. Thepressure is given by �ow and ompliane of the vessels.4.2.1 Peripheral ResistaneThe peripheral resistane is reating loally and fast on given stress, but itsgoing bak to the initial value very slowly. To simulate this e�et an arti�ialslowly dereasing stress funtion was introdued:
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rA stress dependent omponent of rA

r̂A freedbak omponent of rA

hFB arti�ial smoothly dereasing stress
eW stressParameters
THFB time onstant for hFB

KAB drop rate of gradient of stress
SAB ampli�ation fator for the gradient
RAG given gradient of the feedbak funtion at the in�etion pointTable 4.2: Model Magnitudes for the peripheral resistane

˙hFB = {
− hF B

THB
+ KHB·| ˙eW |

THB
if ˙eW < 0

− hF B

THB
elseThis additional di�erential equation desribes a exponential dereasing stressfuntion whih is added on the original one, whih gives as a simple way formodelling this phenomenon. The stress dependent part of the peripheralresistane an now be written as

ṙA = −
rA

THFB

+
KRA

THFB

· (eW + hFB)

4.2.2 In�uene of the Hydrostati Pressure on the Pe-ripheral ResistaneA loser exploration of measured data gotten from a tilt table test leads touse a transfer funtion of �rst order for modelling this behaviour where theresistane is following the state of hydrostati pressure. The osillation atthe beginning of pressure hange is modelled by the use of term dependentof the di�erential of hydrostati pressure what an be seen as a qualitative
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ṙA = KRA · ˙pAHand

˙̂rA = −KPAH · pAHfor the ontrol of peripheral resistane in dependene of hydrostati pressure,respetively the humans atual position.4.2.3 Dependene of Beat Volume and Heart Rate onHydrostati PressureDue to the very fast pressure drop of the venous system aused by hangeof hydrostati pressure (e.g. putting tilt table in upright position) a veryabrupt derease of beat volume is aused. In our model this is done by alinear dependene of hydrostati pressure:
˙bV = bV + KSVLH · pAHThe same behaviour an be observed for the heart rate. Therefore its depen-dene on hydrostati pressure is modeled the same way:
ḣF = hF + KHRH · pAH4.3 Automatial Parameter Identi�ationFor the parameter identi�ation proess a tool was developed whih uses agradient algorithm to determine the needed parameters for the ontrol of themodel based on measured data. (�g.4.4).The identi�ation proess is divided into three parts. After a suitable pre-proessing the values for the undisturbed system (without stress or in�uene
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(b) Periph. resistaneFigure 4.3: Measure data for parameter identi�ationof hydrostati pressure) are determined. Essentially, the parameters deter-mining the feedbak funtions are optimised.Value Desription
HFG Gradient of the feedbak funtion for the heart rate
RAG Gradient of the feedbak funtion for the periph. resis-tane
CL Compliane of the left ventrile
CR Compliane of the right ventrile
KCVS Compliane of the venous system
CASN Normed omplianeTable 4.3: Optimised parameters of the undisturbed systemThe module approah and the use of feedbak funtion makes it easy toidentify the parameters for the di�erent stress situations separately. Afterdetermining all neessary values for the undisturbed system, the parametersfor hydrostati pressure and the stress dependent parts an be omputed.For solving this optimisation task the lass MinConNLP of the JMSL Nu-meri Library was used. The algorithm based on the FORTRAN subrou-tine, DONLP2, by Peter Spellui. uses a sequential equality onstrainedquadrati programming method with an ative set tehnique, and an alter-native usage of a fully regularized mixed onstrained subproblem in aseof nonregular onstraints (i.e. linear dependent gradients in the "workingsets"). It uses a slightly modi�ed version of the Pantoja-Mayne update
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Figure 4.4: Parameter identi�ation shemefor the Hessian of the Lagrangian, variable dual saling and an improvedArmjijo-type stepsize algorithm. Bounds on the variables are treated in agradient-projetion like fashion. For more details the reader is refered to[43, 44℄.PreproessingBefore the identi�ation proess the measured data have to be averaged byurve �tting. Too many osillations our by the used measurement teh-nique. Following, the time points of the beginning and the end of the distur-



CHAPTER 4. LUMPED PARAMETER MODEL 44banes (stress or hange of hydrostati pressure) have to be de�ned. Eitherthis was logged by the measurement tool or it has to be determined on themeasured data manually. High auray is not very important for this pro-edure, it will by higher than that of the measured data anyway.If this is done, the needed quantities for the variables beat volume, heart rate,peripheral resistane and mean systemi blood pressure an be omputed.Identi�ation of the Undisturbed SystemBy using a gradient method whih was mentioned above the parametersonerning the mean values of the onsidered variables are determined. (tab4.3). Doing this after every simulation step the goodness funtional as tobe evaluated, whih as a lassial least square method. The algorithm isterminating if the desired auray is reahed or the maximum number ofiterations is exeeded.Identi�ation of the Parameters for the Disturbed Sys-temUsing the same proedure as before the parameters for the dependene onouter in�uenes are determined separately. E.g. the parameters optimisedonsidering hydrostati pressure are given in table 4.4.Name Desription
KPAH Proportional fator for pressure
KRA Proportional fator for peripheral resistane
KHFH Proportional fator for hear rate
KSVLH Proportional fator for beat volumeTable 4.4: Optimised parameters onsidering hange of hydrostati pressure
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Chapter 5
One Dimensional LinearisedModel

"In the 19th entury �uid dynamiists were divided into hydrauliengineers who observed what ould not be explained, and mathe-matiians who explained things that ould not observed."Sir Cyril HinshelwoodThe onept or irulation of blood was established by William Harvey in1628. Sine then numerous attempts have been made at gaining insightinto the physial relations between the phenomenons being observed in theompliated anatomial struture of the irulatory system. Then, the fatthat the intermitted out�ow of the left ventrile is more a steady one, wasreognised by Hales in 1733. He desribed the arterial system as a singleelasti hamber whih beame known as Windkessel model, introdued byFrank [9℄ in 1899.In the early �fties of the 20th entury MDonald [23, 24℄ showed with helpof rabbits that there is a reversal blood �ow in larger arteries. Further moreHelps and MDonald [17℄ showed a phase-lag between pressure gradient and�ow somewhat analogous with the phase-lag between voltage and urrent ina ondutor arrying alternating urrent. Based on these results, Womersley46



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 47[56℄ used the similarities with the theory of the distribution of alternatingurrent in a ondutor of �nite size.First, he onsidered the problem in irular tube when the pressure gradientis known. For a tube with length, �lled with a �uid of visosity µ the equationof motion of the liquid assumes
d2w

dr2
+

1

r

dw

dr
+

p1 − p2

µl
= 0 (5.1)where w denotes the longitudinal veloity of the �uid and r the distane ofthe �uid element from the axis of the tube.The solution of this �rst simple approah with onstant pressure gradient

p1 − p2 is
w =

p1 − p2

4µl
(R2 − r2) (5.2)whereby R is the radius of the tube.5.1 ObservationsAt the beginning of the ardia ejetion phase (systole), the pressure risesat the entrane of the aorta and a blood volume of about 80ml is ejeted.Beause of the vessel elastiity the pressure distends it loally. Then it on-trats again and the next segment is aused to extend and so on. In fat, awave is generated and propagates downstream, where the restoring fore isprovided by the elastiity of the vessel wall.This propagation an easily be seen on measured data, more over there arethree phenomenons whih an be observed: First, the amplitude of the pres-sure wave inreases when the wave propagates, seond, one an observe asteepening of the wave front and third, the wave form of the �ow veloityhas another shape than the pressure wave. These phenomenons, as will beshown later, annot be explained by a simple linear theory.



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 485.2 A First Simple ApproahAs a �rst approah let us study a very simple and diret approah of mod-elling blood �ow in arteries. Therefore we begin onsidering an in�nitely long,straight, horizontal elasti tube with uniform undisturbed ross-setional area
A0 and uniform external pressure pe, ontaining an invisid inompressible�uid of onstant density ρ whih is initially at rest. Further on we analysejust disturbanes with a wave length muh greater than the tube diameter, sothat the time-dependent internal pressure an be taken to be a funtion onlyof longitudinal oordinate x and time t. Beause we want a one-dimensionalmodel we denote the disturbed ross-setional area by A(x, t) and the �uidveloity by u(x, t), whih is intermitted over the ross-setion.The governing lassial equations are those representing onservation of mass,onservation of momentum and elastiity. By onsidering the rate of hangeof volume of a thin slie of the tube, we gain the equation for onservationof mass by

∂A

∂t
+

∂

∂x
(Au) = 0 (5.3)The momentum equation by Euler is given by

∂u

∂t
+ u

∂u

∂x
= −

1

ρ

∂p

∂x
(5.4)and the elastiity for our simple approah is modeled by the means of a soalled tube law, relating transmural pressure di�erene to loal ross-setionalarea

p − pe = P̃ (A) (5.5)whereby P̃ is a funtion like in �gure 5.1.Now let us onsider small amplitude disturbanes suh that u is small and
A = A0 + A′, p − pǫ = P̃ (A0) + p′ (5.6)



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 49where |A′| ≪ A0, |p′| ≪ P̃ (A0). After substituting into the equations andnegleting all terms nonlinear in small quantities, we an eliminate u and A′to obtain the following single equation for p′:
∂2p′

∂t2
= c2(A0)

∂2p′

∂x2
(5.7)where

c2(A) =
A

ρ

dP̃

dAEquation 5.7 denotes the well known wave equation whih desribes wavepropagation with small amplitude disturbanes along the tube in either di-retion, but without hange of shape, with speed c0 = c(A0). The generalsolution of equation 5.7 is given by
p′ = f1

(
t −

x

c0

)
+ f2

(
t +

x

c0

) (5.8)where f1 and f2 are arbitrary funtions, whereby f2 equals zero if we have awave propagation in +x diretion only.If we suppose the validity of the Moens-Korteweg wave speed, given through
c0 =

(
Eh

ρd

) 1

2 (5.9)whih Young's modulus E, wall thikness h and diameter d for the vesselsmade of a homogeneous and isotropi Hookean solid material.Comparing thisequation with measured data shows us a good approximation with a preditedvalue of 5ms−1 for the wave speed in the asending aorta, rising to about
8ms−1 in more peripheral arteries.This simple theory is very suessful at establishing the mehanism of wavepropagation, involving only wall elastiity and blood inertia as well as pre-diting the wave speed.But on the other hand this theory predits no hange of shape of wave-formas it propagates and the veloity wave-form is of the same shape, di�erent
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Figure 5.1: pressure waves in asending aorta and femoralisto that we �nd onsidering measured data.Hene, the theory must be modi�ed to aount for all these e�ets whihwill be disussed below. In �gure 5.1 one an observe the e�ets mentionedbefore.
5.3 The Conept of ImpedaneIn the simple models for simulation of the ardiovasular system a steady�ow is assumed and all the properties are mean values of a ardia yle. Fora more detailed study this assumption is no more valid ause the pulsatilebehavior of pressure and �ow is typial.For the simple models the Ohmian law, Q = P

R
, is taken to desribe basi�ow onerning the arterial resistane against the �ow, generated by wallfrition and by the small arteries. This law is also valid for pulsatile �ow andleads to the frequeny dependent variant of resistane, namely impedane.For easier understanding we will introdue Fourier series for dividing �ow,pressure and therefore impedane urves into terms of Fourier series.We divide impedane into four di�erent kinds, dependend on its measurepoint [31℄:
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Figure 5.2: Wave transmission in bifurations

(a) Longitudinal Impedane (b) Input Impedane
() harateristi Impedane (d) terminal ImpedaneFigure 5.3: De�nition of Impedane



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 52Longitudinal ImpedaneThe longitudinal impedane of a ertain segment of the tube is de�ned bythe ratio of the pressure gradient and its �ow. It is not in�uened by wavere�etion and de�nes the omplex analogon to the stati resistane resultingfrom the tubes physial parameters.Input ImpedaneThe input impedane measured at the systems entry gives its whole impe-dane and is in�uened by all geometrial and physial parameters. In ourappliations it means the impedane at the aorti root or at the root of anysubtree.Charateristi ImpedaneWhereby longitudinal and input impedanes an be measured, this is not truefor harateristi and terminal impedane. But they have great theoretialrelevane and will be used in further onsiderations.Charateristi impedane determines impedane without in�uene of wavere�etion and is equivalent to the input impedane of a tube of in�nite length.Although there is no (pulsatile) �ow without re�etion in nature, it is usefulto onsider only the non-re�etive parts of waves, e.g. through �ltering termsof high frequeny.Terminal ImpedaneThe resistane of arterioles and apillar vessels are desribed by the terminalimpedane on peripheral segments of the vasular tree. The properties ofarterioles and apillar vessels are almost frequeny independent and the im-pedane results in a pure resistane. and the terminal impedane is thereforede�ned as ratio of mean pressure and mean �ow.



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 53The terminal impedane is a bit smaller than the total peripheral resistanewhih an be measured at the aorta. This is aused by the pressure dropalong the arterial tree.5.4 Equation of Motion when the PressureGradient is Known

Figure 5.4: Steady �ow in a straight tubeFolowing Womersley [56℄ let as now assume to have a irular symmetri tubeof length l and radius R whih is �lled with a visous �uid of density ρ andvisosity µ. Furthermore, let p1 denote the pressure at the in�ow and p2 thepressure on the out�ow of the tube with onsant pressure drop p1 − p2.. Forthe longitudinal veloity w of the �uid with distane r from the longitudinalaxis the equation of motion leads to
d2w

dr2
+

1

r

dw

dr
+

p1 − p2

µl
= 0 (5.10)Assuming a onstant pressure drop p1 − p2 its solution is given through

w =
p1 − p2

4µl
(R2 − r2)whih leads to a paraboli veloity pro�le as shown in �gure 5.4.If we take the pressure gradient not onstant, a term of visosity 1

ν
∂w
∂t

ourson the right side of equation 5.10. Lets assume the pressure gradient to be



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 54periodi in time and the pressure term be
p1 − p2

µl
= Aeintwith frequeny

f =
n

2πSine periodi funtions an be written as sum of periodi terms we an writethe equation of motion as
d2w

dr2
+

1

r

dw

dr
−

1

ν

∂w

∂t
= Aeint (5.11)Expeting the �ow to be periodi as well, we substitute w in the latterequation by

w := ueintwhereby u is a funtion of r only, we get
d2u

dr2
+

1

r

du

dr
−

in

ν
u = −

A

µ
(5.12)or even

d2u

dr2
+

1

r

du

dr
+

i3n

ν
u = −

A

µ
(5.13)The solution of equation 5.13 an be found in literature and is given in losedform through

u = +
A

ρ

1

in




1 −
J0

(
r
√

n
ν
i

3

2

)

J0

(
R

√
n
ν
i

3

2

)




where J0(xi
3

2 ) denotes the Bessel funtion of 0-th order.
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α := R

√
n

νin the last equation is alled Womersley number, and was desribed in thelast hapters.For more onveniene the equation is usually written in terms of modulusand phase, whih oinides to the polar representation of omplex numbers.Assuming that the pressure gradient is known, whih will not be true ingeneral, we may write the equation of �ow as follows
w = +

A

ρ

1

in




1 −
J0

(
αyi

3

2

)

J0

(
αi

3

2

)




 eintwhere we substituted with y = r
R
.In general the pressure gradient will not be known and hene more omplexmodells have to be onsidered. The omplete mathematial desription for�ow with unknown pressure gradient is given by the Navier-Stokes equations.In the following hapter the set of Navier-Stokes equations will be linearisedfor appliation on small blood vessels. This approximation will also be usedin the larger arteries later.5.5 Bifurations5.6 Model for smaller arteriesBased on the works of Womersely[56, 58℄ and Pedley[34℄ Olufsen[32, 33℄ de-veloped a model for simulation of streams in small arteries. Starting fromthe equations given above their was added another relation for modelling thewall dilatation based on the ontinuity equation.Similar to the model of Womersley, �ow is desribed by ontinuity equation,
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Q =

∫ a

0

wr2πrdr (5.14)Here, wr is the veloity in longitudinal diretion. For a detailed derivationplease refer to [33, 32, 34℄.The solution is found by Bessel equation, whih results from linearisation ofthe axis-symmetri Navier-Stokes equations and ombination with equationsdesribing the motion of the vessel wall and given by
wr =

pck
′

c0ρ

(
1 −

J1(rw0/r0)

J0(w0)

) (5.15)where r0 is the undisturbed vessel radius, ρ the blood density, pc an in-tegration onstant, k′ = c0
c
the omplex wave propagation veloity where

c0 = Eh/2r0ρ the Moens-Korteweg wave-propagation veloity. J0 and J1denote the zeroth and �rst order Bessel funtions.Finally, integration over the ross-setional area yields
Q =

A0pck
′

c0ρ
(1 − FJ) (5.16)where A0 is the undisturbed ross-setional area with the shortut

FJ(w) =
2J1(w0)

w0J0(w0)
(5.17)If we denote the pressure gradient be

−iωpc

c
=

∂P

∂xwe get for the momentum equation
iwQ = −

A0

rho

∂P

x
(1 − FJ) (5.18)



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 575.6.1 Continuity and State EquationsThe ontinuity equation in one dimension is overed by
∂A

∂t
+

∂q

∂x
(5.19)whih an be written as

iwCP +
∂Q

∂x
= 0 (5.20)in the frequeny domain after applying Fourier transformation.For a further relation of the three unknowns pressure P , �ow Q and rosssetional area A we onsider an approximation for the ompliane, the neededstate equation when onsidering elasti walls:

C =
dA

dp
=

3A0a

2Eh

(
1 −

3pa

4Eh

)−3

≈
3A0a

2Eh
(5.21)After di�erentiation and integration of the equations we gain

Q(x, ω) = a cos(
ωx

c
) + b sin(

ωx

c
) (5.22)

P (x, ω) = i

√
ρ

CA0(1 − FJ)

(
−a sin

(ωx

c

)
+ b cos

(ωx

c

)) (5.23)Our goal is now to use this desription of blood �ow in arteries for omput-ing its impedanes, whih an be done in both diretions, respetively fromproximal to distal or vie verse. If we reformulate the equations 5.22 and5.23 we an write the impedane for the proximal end of an arterial segmentwith respet to ins distal impedane as follows:
Z(0, ω) =

ig−1(b cos ωL
c
− a sin ωL

c
)

a cos ωL
c

+ b sin ωL
c

(5.24)
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g =

√
CA0(1 − FJ)

ρ
, a = Q(0, ω) and b = −iP (0, ω)g5.7 Goal and InvestigationsThe �rst idea of using this linearised approah was to gain hints of howto hoose the parameters for Windkessels, used in the non-linear model astermination onditions, desribed in the following hapter.Doing this, we were trying di�erent linearised approahes based on the onedimensional Navier-Stokes equations. In literature several models were de-veloped by a lot of investigators, onsidering a di�erent level of details of thenatural proess of �owing blood. Eah of them guarantees fast omputabil-ity, what is a key feature for our appliation where we want to apply suhmodels for determining boundary data in every time step of omputation.During the simulation proess pressure and �ow wave forms are omputedwhere suitable initial and boundary data are given. Several di�erent simula-tion senarios are possible, whih are desribed below. It is also shown thatthe linearised model is also suitable for the omputation of �ow and pres-sure waveforms by itself also for larger arteries, not only for the small onesfor whih it was developed. At least the model an be used for parameteridenti�ation where the quasi-linearity is a great advantage espeially in thease of parameter spae of high dimension what is true for most of biologialmodels respetively for blood �ow in the arterial bed.Given Flow and Pressure FormsThe di�ulty of using �ow and pressure as initial data at the same time isto get suitable measured data. One the one hand all measured data ontainserrors, on the other hand it is not always possible to get requisite data from



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 59measurement. E.g. it is very di�ult to get synhronous measured data of�ow and pressure wave forms.In our experiment the following measurement tehniques were used:
• Flow wave form from ultrasound measurement
• Pressure wave form from SphygmoCor © devieThe latter measures the pressure wave form at the A. radialis and tries toompute the wave from at the aorti root. As �rst the quality of the entralwave from depends on a lot of di�erent fators, as seond, only wave formsand not the quantitative pressure is gained. Central systoli and diastolipressure must be guessed another way.Given Impedane and FlowThe use of given pressure wave form is seen to be not optimal and the nextapproah is to use impedane instead, although it might be more di�ult toget measured data. Two methods for presribing impedane for simulationof blood �ow in the arterial tree are �gured out:
• Presribing of the total peripheral resistane whih an be determinedindiretly with e.g. impedane ardiography and omputation of theomplex impedane using a replaement model (Windkessel)Indeed, it seems that this method underestimates the total peripheralresistane and so the quality of the impedane gained arti�ial to aertain extend has to be validated.
• Another approah is bakward omputation of impedanes by help ofthe model desribed before with presribing impedanes at the periph-eral arterial segments. To go around the problem of how to get datafor presribing impedanes at the peripheral segments Olufsen[33℄ sug-gested an alternative method whih omputes impedanes from smallarteries, starting at the arterioles where the resistane (there is onlypure resistane in this small vessels) an be assumed to be zero.
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Figure 5.5: Ultrasound measurement for the �ow veloity at the aorti rootBaktraing using Measured DataThe disadvantage of the method of Olufsen is that the model onsiders onlythe radius of the terminal segment and two parameters determine the overallbehaviour of the strutured tree whih is generated as a replaement modelfor the small arteries. It doesn't take into aount the humans physiologialparameters and it would need some e�orts to �t the model to measured data.Some optimisation method might solve this problem.Instead, we used �ow and pressure wave forms an be used to ompute im-pedane in peripheral segments. It would be a really good method if syn-hronous measured data from di�erent sites of the arterial tree would beavailable. Unfortunately this is not the ase and this leads to a lot of prob-lems.First, the pressure and �ow wave forms are in di�erent time sale and thephase shift of them is of big relevane. Therefore, it is neessary to onvertdata to math the phase shift whih is gained by omparison of the measuredwave form with the synhronous measured ECG signal. This is a time on-suming task whih is hard to automate beause the ultrasound measurement



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 61is available only in image format and the quality of measurement varies verymuh and has to heked by hand.Seond, another problem ours when mathing together two impedanesgained from measurement at any bifuration. Usually the data on di�erentsites represent di�erent heart yles and also the pulse wave veloity di�ers.Although we �tted the data before to its orresponding phase delay, thisdelay may di�er from heart yle to heart yle and the resulting pressureand �ow wave forms may be unrealisti. So datasets with mathing ECGsignals have to be hosen to keep the synhronisation error small.5.8 Extended Model for Smaller ArteriesIn the model desribed before investigated by Womersley[57℄ and used byMDonald[31℄ laks of the onsideration visoelastiity. Visoelastiity ofthe arterial walls results in a phase shift of treated fores and the resultingdisplaement of the vessel wall. This phenomenon an be onsidered by usingthe so-alled dynami Young modulus Ed[4℄,
Ed = E + iωηw (5.25)where ηw denotes the visosity of the wallConsidering pulse wave propagation, the visoelasti properties of the vesselwalls are haraterised by the tangent of the angel φ of phase shift of urrentpressure and loal displaement of the orresponding wall [3, 49, 54℄.

φ = tan−1
(ωηw

E

) (5.26)Using this, a fator cos(φ/2) + i sin(φ/2) is added to the equations in thesetion before.The next step is to split impedane into a harateristi impedane, whih isdetermined by the mehanial properties of the onerning arterial segmentonly, and the terminal impedane, whih depends on the struture of the



CHAPTER 5. ONE DIMENSIONAL LINEARISED MODEL 62following vasular tree.Hene, the harateristi impedane is for any arterial segment is desribedwith its wave transmission oe�ient, whih is given by the mehanial prop-erties of blood and the vessel walls, the input impedane, a distribution fa-tor and the phase veloity. By help of transmission line theory, oming fromeletrotehnial engineering, the re�exion oe�ient is given by
Γ =

ZT − Z0

ZT + Z0where ZT denotes terminal and Z0 harateristi impedane of any segment.
Z = Z0

1 + Γe−2γl

1 − Γe−2γl
(5.27)

p(l)

p(0)
= Z0

1 + Γ

eγl + Γe−γl
(5.28)



Chapter 6
One Dimensional NonlinearModel

"Man is the only reature that seems to have the time and energyto pump all his sewage out to sea, and then go swimming in it."Miles Kington
Based on the one-dimensional Navier-Stokes equations for �ow in axis-symmetri elasti tubes of an inompressible �uid a model for simulation ofblood �ow in arteries was developed. The fous hereby is on the larger arter-ies, whih means that only vessels with an inner diameter from 50mm downto 1mm approximately are onsidered. For smaller arteries the model wouldnot be valid anymore ause of several assumptions, made on the physialproperties of blood. In detail, the blood annot be taken to be homogeneousin small arteries beause the red blood ells have a size of the same sale asthe vessel diameters. Wibmer [55℄ has implemented the model with help of�nite volume methods in C++. This model was oupled to the ontrolledparameter model desribed in hapter 4 to get a fully ontrolled model forblood �ow in human arteries. In this hapter only a basi overview is given,63



CHAPTER 6. ONE DIMENSIONAL NONLINEAR MODEL 64under speial onsideration of the relevant parts for this work. For furtherdetails please refer to [55℄ and referenes therein.6.1 Model EquationsThe basi equations solved within the models are given in the (A, Q) formu-lation where A = A(x, t) denotes the ross setional area and Q = Q(x, t)the volume �ow. Considering mass and momentum balane leads to
At + Qx = 0 (6.1)

Qt +
∂

∂x

(
α

Q2

A
+ p

)
= K

Q

A
(6.2)and a state equation giving a relation between the ross setional area andthe blood pressure. In literature, several relations for the state equation anbe found, one is given below.Most of equations for desribing wall-pressure relations assume linear elasti-ity and are based on Hook's law. This let the pressure be a onave funtionof the ross setional area. The elasti nature of arteries is mainly determinedby the distribution of elastin and ollagen in the vessel wall, whih di�ersfrom the proximal to the distal vessels. More preise, in the proximal aortaelastin spei�es its elasti behaviour while it is ollagen in the periphery.Conerning the higher elasti modulus of ollagen the sti�ness of the wallsinreases in the distal arteries. Also ollagen plays an important role in thevessel wall elastiity. Sine the transmural pressure inreases, ollagen �bresdetermine the sti�ness, whereby at low pressure it is mainly determined myelastin �bres. This results in a nonlinear pressure dependent elasti modulus.A simple state equation was presented by Raines [39℄:

p(A) = p0e
Ep( A

A0
−1) (6.3)Here, Ep is the pressure-strain elastiity modulus by Peterson et. al [36℄. Formore details the reader is reommended to refer to [31℄ and referenes therein.
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∂A
> 0 and ∂p2

∂2A
> 0 and 6.3 issoure for other simple onave equations by using Taylor polynomials ofarbitrary order.Additionally the wave veloity is given by

c =

√
Ap0

ρKA0
e
Ep( A

A0
−1)and its derivative with respet to A is positive.Linearising equation 6.3 we get

p(A) = p0

(
1 + Ep

(
A

A0
− 1

))and
c(A) =

√
Ap0Ep

A0ρ6.1.1 BifurationsDue to the redution to one dimension bifurations are not really handledby this approah. For a detailed desription a three-dimensional onsider-ation would be neessary. For our needs it is enough to assume branhesas one dimensional points. Mass and momentum onservation is assumedand branhes an be omputed easily. For one dimensional omputation thisassumptions are suitable and used by a lot of authors.6.1.2 Termination ConditionsOn every modeled terminal segment of the arterial bed a terminal onditionis neessary. Here, the well known Windkessel is used to model the networkof small arteries, arterioles and apillaries. This model, taken from the theoryof eletrial iruits, onsists of two resistanes R1 and R2 and a apaity C.
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Figure 6.1: Eletrial analogon to the WindkesselThe sum R1+R2 de�nes the total peripheral resistane of the arterial networkand C stands for the ompliane, the distensibility of the vessel walls. Withhelp of suh Windkessels the behaviour of the small vessels an be modeledin an appropriate manner. But, for eah Windkessel (25 in our ase) thereare 3 parameters whih have to be identi�ed by measured data, what an beexpeted to be a di�ult task.The frequeny dependend impedane, generated by a Windkessel, is givenby the equation
Z(ω) =

R1 + R2 + iωCR1R2

1 + iωCR2
(6.4)In the sense of �uid mehanis the (input) impedane is the ratio of bloodpressure p(t) to volume �ow Q(t), whih mathes very well with the impe-dane produed by a Windkessel. Hene, Windkessels are a good hoie forterminations within our model.For omputation we transform the equation above into the time domain andwe gain an ordinary di�erential equation of the �ow-pressure relation of aWindkessel:

dQ(l, t)

dt
−

1

R1

dp(l, t)

dt
=

p(l, t)

R1R2C
−

(
1 +

R1

R2

)
Q(l, t)

R1C
(6.5)



CHAPTER 6. ONE DIMENSIONAL NONLINEAR MODEL 676.1.3 Parameter Identi�ation for WindkesselsAs simple the Windkessel model seems to be handle as di�ult it is to de-termine its parameters. Due the impossibility of extrating the Windkesseldata from measurements diretly the use of replaement models is neessary.For eah terminal segment three parameters have to be determined. Frommeasured data only the total peripheral resistane, measured at the aortiroot, is available. Olufsen [32℄ suggested the use of the linearised Womersleysolution of the Navier-Stokes equations to solve it for a strutured tree ofsmall arteries with a zero terminal ondition to determine its root impeda-ne, whih an be used as terminal impedane for the tree of large arteries.Due the de�nition of the strutured tree the terminal impedane is mainlygiven through the radius of the terminal vessel, whih annot to be takenas valid for all segments. E.g. for the terminal vessels branhing from theabdominal aorta, providing organs like kidneys or liver and so on, additionalassumptions have to be stated.Another method is the up-down approah. Here, the linearised solution isapplied on the tree of large vessels to ompute its terminal impedanes, be-ginning at the aorti root. Using �ow and pressure measurement, the inputaorti impedane is determined by measured data and through the trees ge-ometry and its physial parameters the terminal impedanes are de�ned.But it is neessary to have synhronous measurements of �ow and pressurewaveforms in the aorta, what is not the ase usually. Alternatively one of thewaveforms may be generated with some measured harateristi parameters.



Chapter 7
Model onnetion

"Suess is the ability to go from one failure to another with noloss of enthusiasm." Winston Churhill

Figure 7.1: Model onnetion shemeIn the previous hapters di�erent approahes for modelling blood �ow in hu-man arteries are desribed, eah with its advantages and its disadvantages.Our goal is now to onnet the di�erent models to eah other to gain the�nal ontrolled and identi�able model for the whole ardiovasular system.68



CHAPTER 7. MODEL CONNECTION 69On the one hand we have the simpli�ed ompartmental model for omputingmean values of pressure and �ow, onsidering outer in�uenes as well as thevenous part. On the other hand there are the linear and the nonlinear mod-els for the systemi arterial tree, desribing blood �ow in these arteries, butouter in�uenes, ontrol mehanisms and the venous system are negleted.So the step to onnet the di�erent models to eah other and make use of itsstrengths and to ompensate its weaknesses is obvious.The basi strategy for simulating e.g. only the systemi arterial tree is topresribe pressure and �ow waveforms at the systems entry and the param-eters on its peripheral segments. Suh models are �rst of all not easy toidentify due too muh assumptions whih had to be and seond, there is nodynami inluded. Only a steady state of the system an be studied.Our �rst approah is now to onnet the nonlinear tree model to the om-partmental ontrolled model by omputing its system ompartment and thenonlinear tree in parallel. The boundary data for the tree models input aredetermined now by the ontrol, whih supplies values for
• mean pressure
• beat volume
• total peripheral resistaneIndeed, the supplied data annot be used diretly beause the ompartmentalmodel omputes mean values only and for the strutured tree model pulsatileinput data is required.Furthermore, the synhronisation leads to some serious di�ulties beausethe models are working on di�erent time sales. In the ontrol part one timestep is equivalent to one heart beat and after every beat a new value formean pressure and mean beat volume is omputed. But the variables forthe nonlinear tree model are disretized in time and the resolution in timeis determined by the disretization in spae through a stability ondition.Furthermore, heart yles in the nonlinear model are disonneted and itslengths vary in time aused by the hange of heart rate due the ontrol
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Figure 7.2: Generated �ow wave urve form given heart rate and beat volumewith n = 13 and φ = 0mehanism.Also when onneting the ontrol mehanism to the linearised tree modeldynamial input data have to be generated or extrated from measured data.Stevens et al. [47℄ published a method for �ow wave generation in dependenewhen a stated heartrate and beatvolume is given. It onsists of too parts,one for generating osillation with pulse frequeny, and the seond for itswrapping funtion. After normalising and alibration to measured data adi�erentiable periodi �ow urve is gained in losed form. A resulting �owveloity urve is shown in �gure 7.2. The two omponents of the �ow urveare given by
Q1(t, n) = sinn(ωt), with n = odd,whih de�nes the wrapping part, and the inner funtion is de�ned as
Q2(t, φ) = cos(ωt − φ)Here, ω is 1.5 times the heart rate and φ the phase. The resulting urve isdetermined by multipliation its two omponents:

Q3(t, n, φ) = Q1(t, n)Q2(t, φ)



CHAPTER 7. MODEL CONNECTION 71Using this method a suitable aorti �ow wave is generated by the ontrolledompartment model whih an be used as terminal ondition for theonneted nonlinear dynami model. Due to its generating method the dataare smooth enough for the used �nite volume algorithm.Another approah we are disussing is the use of an inverted Windkesselmodel. The basi idea is the assumption that the left ventriles output workis given through a goodness funtional, whih minimises energy. Startingfrom an open system and desribing its dynami behaviour by
q(t) = RP · CA · dx + x(t) (7.1)with q(t) aorti �ow, x(t) summarised �ow through all terminal segments, RPthe peripheral resistane and CA the arterial systems ompliane, we statea few additional onditions: x(t) is assumed to be periodi if the periodidurations of diastole (tp) and systole (ts) are known:

x(0) = x0

x(ts) = xs

xs = x0 · e
tp−ts

RA·CAFurthermore, �ow through the aorti root is set to zero at the end of systole,
q(ts) := 0and for a given beat volume (VS) there holds

∫ ts

0

q dt = Vs (7.2)
∫ ts

0

x dt +

∫ tp

ts

x dt = Vs (7.3)whih an be seen as onversation of mass. The approximately exponentialderease (validated by measured data) whih desribes the blood �owing out



CHAPTER 7. MODEL CONNECTION 72from the Windkessel is modeled by
xd(t) = xs · e

t−ts
RP ·CAAs disussed in the introdution pressure is mainly determined by the �owand peripheral resistane. Therefore, for the strutured models only the pre-sription of �ow in resistane is needed, whereas the de�nition of �ow is easy,one an use the generation method desribed above. In ontrast, the periph-eral resistane respetively the total resistane onsists of a lot of loal parts,distributed on the whole body.The physial and physiologial parameters of vessels hange from the proxi-mal to the distal end and an get estimated only at the aorti root, but it isneessary to know the peripheral resistane in every terminal segment of themapped vasular bed used for the simulation.Resolving that and distributing the total peripheral resistane, whih be-haviour is nonlinear, is a di�ult task and a good knowledge of the physialparameters of the vessel tree is neessary.Following, the omputation of the two variants of termination models, namelystating omplex impedane on termination segments and onneting a Wind-kessel to eah segment are disussed:ImpedaneKnowing the total peripheral resistane and having suitable measured data,using the linearised solution of the Navier-Stokes equations by Womersleyleads to some signi�ant advantages. With this analytial solution for de-sribing �ow and pressure waveforms in arteries, terminal impedanes an beomputed and the total peripheral resistane is distributed to the peripheralsegments. Doing this we have to ompute two di�erent kinds of segments,straight tubes and bifurations, modelled as one dimensional nodes.The equations for straight tubes are available in losed form (see hapter5) and omputation is possible from up to down as well as the other way



CHAPTER 7. MODEL CONNECTION 73around, whih is not true for bifurations.

Figure 7.3: Pressure and �ow in a bifurationFor omputing �ow in straight tubes with given input impedane we have toompute mainly the harateristi impedane of the tube and no informationof the following vasular bed is needed. This hanges if we want to deter-mine impedanes or pressure wave forms in bifurations beause the inputimpedane for every branh has to be omputed. If we assume onservationof mass and energy for �ow and pressure there holds1. q0 = q1 + q22. p0 = p1 = p2and taking into aount Ohms law we get for the impedanes at any bifur-ation3. 1

z0

=
1

z1

+
1

z2where z0 denotes the terminal impedane at the parent vessel and z1,z2 theimpedanes of the daughter vessels. Considering the law of Hagen-Poiseuille,
Q =

πR4(P1 − P2)

8µL
(7.4)



CHAPTER 7. MODEL CONNECTION 74where Q denotes �ow, R the vessels radius, P1 −P2 the pressure drop, µ thedynami visosity and L the length of the segment, we distribute the out�owto the in�ow of the daughter vessels by its radii. For the impedane this ispossible unless we assume onstant pressure wave forms. The stated energybalane whih states onstant pressure is valid for steady �ow and for meanpressure of pulsatile �ow, but assuming onstant pressure wave forms willavoid nonlinear e�ets whih an be observed on measurements of real blood�ow in arteries.To resolve this we ompute impedanes of the segments starting from theterminal segments in the beginning of the simulation run. The terminalimpedane on eah segment is gained by the small vessel replaement model,desribed in hapter 5. Hene, we are able to ompute frequeny dependendimpedane ratio for the daughter vessels in any bifuration to their parentvessel. Assuming that the impedane ratio is onstant with respet to timeand hange of total peripheral resistane, the bifurations are determinednow for forward omputation during simulation. The assumption of onstantimpendae ratio implies that the struture of the vessel tree will not hangeduring simulation, whih holds for the most appliations.After omputing terminal impedanes with given total peripheral resistaneat the aorti root the parameters for the Windkessels have to be extratedwhih is done be solving the Windkessel equation 6.4 with the impedane ofzero frequeny, what de�nes the total resistane for the onsidered segment[45℄. For the ratio R1
RT

Shaaf [40℄ suggested 0.2 where the total volumeompliane Cvol = 1ml · mmHg−1, published by Burton [6℄. After summingup the omplianes of eah vessels and omputing the residual ompliane
Cres = 1 − Ctotal suggested by [40℄ or [46℄ and assuming that the residualompliane is distributed among the terminal branhes in proportion to theirmean �ow we gain

CTi
= Cres

Rtotal

RTi

(7.5)where RTi
is the total peripheral resistane and the index Ti denotes the totalresistane and ompliane at any terminal segment of the vessel tree.



CHAPTER 7. MODEL CONNECTION 75Alternative MethodAn alternative approah avoiding the problem or boundary data is to intro-due arti�ial pipes to sum up blood �ow in a olletion node, similarly tomodel the venous arteries, but without modelling the network of small ves-sels and arterioles. This was done by Almeder [2℄, onsidering steady �ow inhuman arteries.This method is seen as being not optimal. One the one hand there are twiemore segments to ompute, on the other hand the trees struture is not on-forming the human physiology anymore due the lak of small arteries. There-fore it an not represent its natural behaviour. Introduing a resistane layerfor example would lead to the problem of undetermined parameters againand no bene�t is gained.



Chapter 8
Implementation

"A omputer one beat me at hess, but it was no math for meat kik boxing." Emo Philips
The goal of the implementation was to get a framework for experimentalblood �ow simulation. Due to our modular design and thanks to objet ori-ented programming the di�erent parts an be onneted together and sub-stituted by another module quite easily.The simulation tool is separated into four main parts, implemented in Javaand C++. While the graphial user interfae (GUI) and the linear modelsare written in Java, the omputational time onsuming solver for the non-linear model part is implemented in C++ and onneted to the simulationenvironment via the Java native interfae as a shared library. An overviewof the modules is given in table 8.1.Objet oriented programming let us divide the simulation tool into easysupportable modules whih are strutured as follows.

76



CHAPTER 8. IMPLEMENTATION 77Graphial user interfae JavaCompartment model solver JavaIdenti�ation tool JavaLinearised model solver JavaNonlinear model solver C++Table 8.1: Module overview of CardioSim

Figure 8.1: Graphial user interfae of the ardiovasular simulation tool8.1 Controlled Compartment ModelThe solver for the ompartmental model onsisting of a system of ordinarydi�erential equations of �rst order is implemented straight forward by Eu-ler's method. Due the smoothness of all data and the equations far awayfrom being sti�, the use of more sophistiated methods is not neessary inour ase. Furthermore, the possible numerial error is small ompared to theerror of the measured data whih are taken to verify the gained solution.In respet to usability of the graphial user interfae the solver was imple-mented as thread and thus its running in the bakground.After the simulation run where the time and the initial data an be settedinteratively, all variables and parameters an be plotted by drag and dropfrom the model tree.
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Figure 8.2: Organisation of the simulation modules8.2 Automati Parameter Identi�ation ToolProviding also a simple GUI (�g. 8.3) the identi�ation proess was imple-mented following the priniple of objet oriented programming. The baselass optimizer ontains all neessary setters and getters, whereby the iden-ti�ation proess is done by its hild lasses through heritage. The mainmethod here is the method for alulation the residuum, whih is alled bythe optimizer, the lass of the JMSL numeri library providing the optimiza-tion algorithm.After seleting the type of external stress (orthostase or physial stress) themeasured values (peripheral resistane, beat volume, heart rate and meanblood pressure) are urve �tted. Then the user has to de�ne the times ofstate hanging, like turning the tilt table test. With this proedure all prepro-essing is done and the optimization algorithm tries to identify the neessaryparameters. This proess is desribed in a more detailed way in setion 4.3.publi lass OrthostaseOptimizer extends Optimizerimplements MinConNLP.Funtion {// onstrutor



CHAPTER 8. IMPLEMENTATION 79

Figure 8.3: The identi�ation wizard with omputed parameterspubli OrthostaseOptimizer(Parameters parms, XMLHandler handler) {}// start methodpubli void run() {this.startOptimization();}publi void startOptimization() {// define the parameter spae and onstraintsoptiParameters = new double[4℄;this.lowerBounds = new double[℄{0.0,0.0,0.0,0.0};// get the start valuesoptiParameters[0℄ = ((DParameter) ((DefaultMutableTreeNode)urrentConfig.getParameterByName("KPAH")).parameter_value;optiParameters[1℄ = ((DParameter) ((DefaultMutableTreeNode)urrentConfig.getParameterByName("KRA")).parameter_value;optiParameters[2℄ = ((DParameter) ((DefaultMutableTreeNode)



CHAPTER 8. IMPLEMENTATION 80urrentConfig.getParameterByName("KHFH")).parameter_value;optiParameters[3℄ = ((DParameter) ((DefaultMutableTreeNode)urrentConfig.getParameterByName("KSVLH")).parameter_value;// initialize the optimizeroptimization = new MinConNLP(0,0,4);// set onstraints and start valuesoptimization.setXlowerBound(lowerBounds);optimization.setGuess(optiParameters);optimization.setMaxIterations(10);// start the optimizationtry { optiParameters = optimization.solve(this);} ath(Exeption ex) {ex.printStakTrae();}}// imlementation of the error funtion, alled by the optimizerpubli double f(double[℄ arguments, int iat, boolean[℄ ierr) {// get the opjets of the parameters optimizedKPAH = (DParameter) this.urrentConfig.getParameterByName("KPAH").getUserObjet();KRA = (DParameter) this.urrentConfig.getParameterByName("KRA").getUserObjet();KHFH = (DParameter) this.urrentConfig.getParameterByName("KHFH").getUserObjet();KSVLH = (DParameter) this.urrentConfig.



CHAPTER 8. IMPLEMENTATION 81getParameterByName("KSVLH").getUserObjet();// set the paramteres using the optimized valuesKPAH.parameter_value = arguments[0℄;KRA.parameter_value = arguments[1℄;KHFH.parameter_value = arguments[2℄;KSVLH.parameter_value = arguments[3℄;// onfigure and start the simulatorardioSimulator = new CardioControl(this.urrentConfig,myBar);ardioSettings.simulationTime=this.endTime;ardioSimulator.setSimSettings(ardioSettings);ardioSimulator.solve();// get the onsidered variables for the minimum funtionnewRAl = this.getVariableValue("RA", 90);newSVLl = this.getVariableValue("SVL", 90);newHFl = this.getVariableVdisreditedalue("HF", 90);newPASl = this.getVariableValue("PAS", 90);newSVLs = this.getVariableValue("SVL", 40);newHFs = this.getVariableValue("HF", 40);newPASs = this.getVariableValue("PAS", 40);*/// ompute the residuumresult = Math.sqrt( Math.pow((newRAl -parameters.RAStress)/parameters.RAStress,2) +Math.pow((newSVLl -parameters.SVLStress)/parameters.SVLStress,2) +Math.pow((newHFl -parameters.HFStress)/parameters.HFStress,2) +Math.pow((newPASl -parameters.PASStress)/parameters.PASStress,2));



CHAPTER 8. IMPLEMENTATION 82// return the residuumreturn result;}}8.3 Nonlinear dynami modelThe nonlinear model was implemented by Wibmer [55℄ in C++ by using a�nite volume method for solving the inompressible Navier-Stokes equationsin one dimension [11, 12℄. It is onneted to our model by the java nativeinterfae (JNI) whih allows the use of shared libraries in java.Doing this, the needed parameters are given to the library by the native lassand the library returns a vetor ontaining the pressure of a spei�ed arterialsegment. Furthermore, the library stores all omputed data in �les whihan be read after omputation by the GUI.The java native interfae on the java side is implemented as follows wherebyunder windows to other libraries are loaded separately beause there dynamishared libraries are used. Under linux we are using a stati library with allneeded �les linked together:publi lass Native {publi native double[℄ getPressure( double hf, double ra,...double sv,double ampl, int per, int itIndex,...int pIndex,int inletType, String inletName,...double[℄ p0, String fname);stati {if ( System.getProperty("os.name").startsWith("Win") ) {



CHAPTER 8. IMPLEMENTATION 83System.loadLibrary("xeres-_2");System.loadLibrary("blitz_d");}System.loadLibrary("anlib");}}Java also provides the C++ header �le for native interfae. The C++ pro-gram must to provide only the funtion all where the java objet types andgeneri variables are mapped to that of C++.The C++ soure ode for our onnetor is given as follows:#inlude <jni.h>/* Header for lass hkl_Native */#ifndef _Inluded_hkl_Native#define _Inluded_hkl_Native#ifdef __plusplusextern "C" {#endif/** Class: hkl_Native* Method: getPressure* Signature: (DD)D*/JNIEXPORT jdoubleArray JNICALL Java_hkl_Native_getPressure(...JNIEnv *env, jobjet obj, jdouble hf, jdouble pr,....jdouble svin,jdouble ampl, jint periods,...jint iterationnumber,jint plotdata,jint inlettype,...jstring inletname, jdoubleArray jmeanpArray, jstring jxmlFile);



CHAPTER 8. IMPLEMENTATION 84#ifdef __plusplus}#endif#endif8.4 Termination value omputationBefore every all of the dynami strutured tree model the Windkessel pa-rameters for its terminal segment boundary onditions have to be adopted tothe omputed total peripheral resistane gained from the ontrol mehanism.First, a root impendae has to be omputed from the total peripheral resis-tane, using a ontrol variable dependent �ow urve and a Windkessel. Withthese data a pressure wave form and further more a omplex impendae anbe omputed.Using this impedane as initial ondition for the linearized model approahfrom hapter 5, the impedane and hene the Windkessel parameters aregained.More details are presented in the next hapter.



Chapter 9
Results

"Die Spitze des Berges ist nur ein Umkehrpunkt."Reinhold Messner
9.1 Linearised model approah
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(a) Pressure (b) FlowFigure 9.2: Pressure and �ow wave forms and frequeny dependent re�etionoe�ients in di�erent sites in the aorta, a. iliaa and a. femoralis(�g. 9.1). Here the volume �ow was generated by an ultrasound measuredardia output and the pressure waveform was taken form the omputedwaveform by the SphygmoCor software [18, 30℄. The model is stati and notonneted to the ontrol mehanism. Even the model doesn't onsider non-linear visoelasti e�ets, it shows that the model overs known phenomenonsonerning the pressure wave form very well (�g. 9.5).The omputation is splitted into the following steps:1. Determination of impedane in the peripheral segments2. Bakward omputation of the system and omputation of the impeda-ne at the aorti root3. Calulation of pressure waveforms from impedane and presribed �owontour4. Calulation of �ow and pressure waveforms along the arterial treead 1Impedanes at several sites are determined by measured �ow and pressureurves whereby the phase lag between pressure and �ow is not onsidered. For
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(a) Impedane (b) Re�etion oe�ientFigure 9.3: Impedane and re�etion oe�ients along the aortait, it would be neessary to measure �ow and pressure synhronously, whatwas not possible with our measuring devies. For bakward omputing ofimpedanes based on measured data another problem ours: on bifurationsnot time-synhronous impedane data would have to be merged (see �g. 9.5() and (d)).ad 2With bakward omputation using the linearised model, the aorti impedaneis determined and re�etion oe�ients are omputed for all bifurations.With help of the re�etion oe�ients we an ompute the re�eted andtransmitted part of every pressure wave for all arterial segments. Hene, wean onsider the in�uene of the following network of eah artery on bloodpressure wave forms.ad 3The system is ompletely determined by impedane and pressure or �owwave form. One of it must be given as inertial value, where here a �ow urvewas taken, based on ultrasound measurement. For a measured impedaneit would be neessary to determine �ow and pressure synhronously in theaorti root, what is only possible with invasive measuring methods.ad 4



CHAPTER 9. RESULTS 88

Figure 9.4: Re�etion oe�ients along aorta, a. ilia and a. femoralisFollowing to the latter omputations pressure and �ow wave forms in anyarterial segment, beginning with the aorti root, an be omputed with thelinearised model. The hange of pressure and �ow wave forms as well asthe re�etion oe�ients at the onerning bifurations from the aorti rootdown to the a. femoralis are shown in �g. 9.2.Remark: Summarising we an say that several important vasular parame-ters an be determined indiretly with our model and we get realisti resultsfor pressure and �ow urves. But it should be mentioned that there is someunertainty of the results along the aorta, espeially in the thorax beausethe measured data in this area is not of the quality we would need. This partof the arterial system will be onsidered apsuled.9.2 Simulation of Pathologial DiseasesThe following setion overs simulation results on in�uenes on the ontrolmehanism. Hene, mainly the ompartmental model is onsidered even duethe oupling the whole model might be omputed in every experiment like itwas done in �g. 9.7 for simulating the tilt table test.
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CHAPTER 9. RESULTS 919.2.2 Tilt Table TestUsing a tilt table a lot of ardiovasular parameters an be identi�ed whenmeasuring blood �ow, pressure and ECG. With our model this test an besimulated in an appropriate way. The ontrol mehanism an be adapted tomeasured data, whih de�nes the inertial data for the strutured tree models.Even the transient ativity an not be simulated with the linearised model,we an ompute pressure and �ow in two equilibrium states. That way, theauray of our model an be veri�ed by omparison with measured data.9.2.3 In�uenes of Drugs on the Cardiovasular SystemFor treatment of diseases and malfuntions of the ardiovasular system medi-ists use a wide range of di�erent pharmaologial substanes. To investigatein�uenes of these drugs on the arterial system qualitatively, we an adaptthe onerning model parameters. With our tool pharmaologial e�ets onheart rate, peripheral resistane as well as blood pressure an be simulated.We divide the onsidered pharmaeutials into the following groups and giveits onerning model parameters.Some of the most important drugs used in hypertension therapy an be las-si�ed as follows:
• Beta Bloker - by adapting the feedbak funtion for the heart rate
• Vasodilatator - by adapting the feedbak funtion for the peripheralresistane
• Diuretikum - by redution of the blood volume
• ACE Bloker - by adapting the peripheral resistane for the kidneys
• Nitro - reduing the pulmonal pressure



CHAPTER 9. RESULTS 92Experiment 1: NitroWithin this experiment we dereased the pulmonal venous pressure in theompartment model by 20%. Additionally, the peripheral resistane wasdereased by 10%, following the oberserved e�et of the drug. The results ofthe simulation run of the four key variables are shown in �gure 9.9. Startingfrom the undisturbed state (red) �rst the pulmonal venous pressure waslowerd (blue). Here, the peripheral resistane inreases beause of the ontrolmehanism. Therefor, also the peripheral restistane has to be lowered by apropriate substane (turquoise).

(a) peripheral resistane (b) stroke volume
() mean pulmonal venous blood pressure (d) mean systemi arterial blood pressureFigure 9.9: Cardiovasular variables during the tilt table test before (red) andafter (blue) dereasing the venous blood pressure and after additional derease ofthe peripheral resistane (turquoise)



CHAPTER 9. RESULTS 93Experiment 2: Inrease of the stroke volumeDi�erent drugs inrease the stroke volume as a side e�et. This e�et andits onsequene on the global haemodynami was studied by this experiment(�gure 9.10).

(a) peripheral resistane (b) stroke volume
() heart rate (d) mean systemi arterial pressureFigure 9.10: Cardiovasular variables during the tilt table test before (red) andafter (blue) lowering the stroke volumeExperiment 3: β-blokerIn this experiment the usage of so-alled β-blokers was simulated (�gure9.11). Doing this, the feedbak funtion of the ontrol mehanism as de-sribed in hapter 4 are adopted. The hear rate was lowered by 20% andthe peripheral resistane was raised slightly (5%). Due the Frank-Starlingmehanism the stroke volume inreased by 10% whereby the mean systemiarterial pressure is dereasing by 3%.
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(a) peripheral resistane (b) stroke volume
() hear rate (d) mean systemi arterial pressureFigure 9.11: Cardiovasular variables under tilt table test before (rot) and after(blue) β-bloker usage9.3 Final oupled modelIn the following setion results of the whole model onneting all approahesare presented. The simulation run using the ontrol, the linearised approahand the dynami non-linear model is splitted in steps as follows:1. Computation of the ardiovasular variables by the ontrolled ompart-mental model2. Generation of the in�ow based on the atual magnitudes of beat volumeand heartrate3. Determination of the termination parameters based on the atual pe-ripheral resistane, given by the ontrol mehanism



CHAPTER 9. RESULTS 954. Computation of �ow and pressure in arteries by the nonlinear stru-tured tree model5. Postproessing of the omputed data and ontinuing with the next yle

Figure 9.12: Generated sinus in�ow veloityFrom the lumped parameter model, providing the ontrol mehanism, a ve-loity urve overing the aorti in�ow is generated as an be seen in �g. 9.12.Together with the pressure urve whih was generated by help of a Wind-kessel model (�g. 9.13) the impedanes of the arterial tree are omputed forall vessel segments. Then, at the terminal segments the �nal total resistanesfor the terminating Windkessels used by the dynami model an be deter-mined (tab. 9.2).With the omputed data all boundary values for the dynami struturedtree model are determined. In the shown experiment the data set for the pe-ripheral resistanes and apaities are given by table 9.1 using the linearisedmodel.After omputation of steps 1-3 the initial data and boundary values for thedynamial �nite volume model are known and the simulation run is started.The omputed data are plotted for three di�erent values of x for eah sege-ment (x = 0, x = l/2, and x = l with l denoting the length of the vessel).In �gure 9.14 the pressure and �ow urves of the simulation run omparedwith measured data are shown. The pressure wave form was measured by



CHAPTER 9. RESULTS 96tonometry where the systoli and diastoli pressure was adapted beause itan not be measured by the used tehnique. It is taken using a separateommon measurement devie. The �ow measurement was done by dopplerultrasoni measurement. It shows that the omputed wave forms math themeasured ones very well (�g. 9.16 and �g. 9.17).Pressure and �ow forms on di�erent sites along the arterial tree are plottedin piture 9.14. The observed e�ets, namely inrease of systoli pressureand higher steepness of the pressure waveform an be observed. Also thehange of the �ow waveform mathes the measured �ows as well as urveswhih an be found in literature.

Figure 9.13: Windkessel generated pressure at the aorti root
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(a) pressure

(b) �owFigure 9.14: Pressure and �ow wave forms along the vasular tree (aorti root,abdominal aorta, brahial artery and femoral artery
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(a) pressure

(b) �owFigure 9.15: Pressure and �ow wave forms at the femoral artery (red) , omparedwith measurement (blue)
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Figure 9.16: Comparison of omputed �ow veloity with ultrasound measurementin the arotid artery

Figure 9.17: Comparison of omputed �ow veloity with ultrasound measurementin the femoral artery



CHAPTER 9. RESULTS 100Segment Name Length Proximal Distal WaveRadius Radius speed(m) (m) (m) (m/s)1 Asending A 0.02 0.0147 0.0147 4.32 Asending B 0.02 0.0144 0.0144 4.33 Ar A 0.02 0.0112 0.0112 4.34 Ar B 0.039 0.0107 0.0107 4.35 Thorai A 0.052 0.0099 0.0099 4.36 Thorai B 0.104 0.00675 0.00645 4.37 Common Ilia R 0.058 0.00368 0.0035 5.08 External Ilia R 0.144 0.0032 0.0027 6.09 Internal Ilia R 0.05 0.0020 0.0020 6.010 Deep Femoralis R 0.126 0.00255 0.00186 9.011 Femoralis R 0.443 0.00259 0.0019 7.312 Common Ilia L 0.058 0.00368 0.00365 5.013 Internal Ilia L 0.05 0.0020 0.0020 6.014 External Ilia L 0.144 0.0032 0.0027 6.015 Femoralis L 0.443 0.00259 0.0019 7.316 Deep Femoralis L 0.126 0.00255 0.00186 9.017 Sublavian 0.034 0.00423 0.00423 4.518 C Carotid L 0.208 0.0037 0.0037 13.05519 Brahioephali 0.034 0.0060 0.0060 4.520 C Carotid R 0.177 0.0037 0.0037 13.05521 Sublavian 0.034 0.00423 0.00423 4.522 Vertebral R 0.148 0.00188 0.00188 7.023 Brahialis R 0.422 0.00403 0.00236 3.324 Radialis R 0.235 0.00174 0.00142 8.025 Ulnar I R 0.067 0.00215 0.00215 6.026 Vertebral L 0.148 0.00188 0.00183 7.027 Brahialis L 0.422 0.00403 0.00236 7.028 Radialis L 0.235 0.00174 0.00142 8.029 Ulnar I L 0.067 0.00215 0.00215 6.0



CHAPTER 9. RESULTS 101Segment Name Length Proximal Distal WaveRadius Radius speed(m) (m) (m) (m/s)30 Tibial Ant R 0.343 0.0013 0.0013 10.031 Tibial Post R 0.321 0.00247 0.00141 10.032 Tibial Post L 0.321 0.00247 0.00141 10.033 Tibial Ant L 0.343 0.0013 0.0013 7.634 Interostals 0.08 0.0020 0.0015 3.635 Celia Axis 0.04 0.0039 0.0039 5.436 Hepati A 0.066 0.0022 0.0022 4.737 Hepati B 0.03 0.0018 0.0018 4.538 Spleni 0.063 0.00275 0.00275 4.539 Gastri 0.071 0.0018 0.0018 4.940 Abdominal A 0.053 0.0061 0.0061 4.341 Superminor Mesenteri 0.059 0.00434 0.00434 4.142 Abdominal B 0.02 0.0060 0.0060 4.343 Renal 0.032 0.0026 0.0026 4.544 Abdominal C 0.02 0.0059 0.0059 4.845 Renal 0.032 0.0026 0.0026 4.346 Abdominal D 0.106 0.0058 0.00548 4.347 Inferior Mesenteri 0.05 0.0016 0.0016 5.048 Abdominal E 0.02 0.0052 0.0052 4.349 Carotid External R 0.177 0.00177 8.3E-4 10.050 Carotid Internal R 0.177 0.00177 8.3E-4 10.051 Carotid Internal L 0.177 0.00177 8.3E-4 10.052 Carotid External L 0.177 0.00177 8.3E-4 10.053 Ulnar II L 0.171 0.00203 0.00183 8.054 Interosseous L 0.079 9.1E-4 9.1E-4 8.055 Ulnar II R 0.171 0.00203 0.00183 8.056 Interosseous R 0.079 9.1E-4 9.1E-4 8.0Table 9.1: Physiologial data for the arterial tree
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Segment Node Total resistane Total omplianeN s m−5 N5 m-19 9 7.936E9 2.3E-1110 11 4.77E9 3.9E-1113 14 7.936E9 2.3E-1116 17 4.77E9 3.9E-1122 27 6.01E9 3.0955E-1124 29 5.28E9 3.5235E-1126 23 6.01E9 3.0955E-1128 21 5.28E9 3.5235E-1130 31 5.59E9 3.3281E-1131 32 4.77E9 3.9003E-1132 33 4.77E9 3.9003E-1133 34 5.59E9 3.3281E-1134 36 1.39E9 1.3384E-1036 39 3.63E9 5.1251E-1138 41 2.32E9 8.0E-1139 42 5.41E9 3.4389E-1141 44 9.3E8 2.0005E-1043 45 1.13E9 1.6464E-1045 47 1.13E9 1.6464E-1047 49 6.88E9 2.7041E-1149 51 1.39E10 1.3384E-1150 52 1.39E10 1.3384E-1151 53 1.39E10 1.3384E-1152 54 1.39E10 1.3384E-1153 20 5.28E9 3.5235E-1154 56 8.43E10 2.2068E-1255 30 5.28E9 3.5235E-1256 58 8.43E10 2.2068E-12Table 9.2: Termination segment impedane data



Chapter 10
Conlusion and Future Prospets

"My advie to you is get married: if you �nd a good wife you'llbe happy; if not, you'll beome a philosopher." Sorates
This thesis overs three di�erent approahes for simulation of blood �ow inhuman arteries, whih are onneted to eah other to get an one-dimensionalontrolled identi�able dynami model of the ardiovasular system. It showsthe advantages and disadvantages of eah approah and also other, not on-sidered approahes are mentioned and the di�erenes are disussed.Although a lot of aurate models an be found in the literature, most of themare veri�ed against one dataset, very often against the same one. Further-more, usually the 1-dimensional dynami models based on the Navier-Stokesequations are stati in the sense of initial- and boundary values.Our model adapts the boundary and initial values for the aorti root (in�ow)as well as for the termination segments (out�ow) before eah heart yle.Together with the identi�ation proedure for the ontrolled ompartmentmodel it an be fully identi�ed onerning physiologial parameters. For theidenti�ation algorithm only measurements from non-invasive methods are103



CHAPTER 10. CONCLUSION AND FUTURE PROSPECTS 104used. Physial parameters like artery lengths and diameters are muh moredi�ult and expensive to measure. They ould be determined within ourpossibilities only partly through Doppler ultrasoni tehnique. Missing datawere taken either from the literature or interpolated by given data.Summarizing, the identi�ation of the model parameters an be seen as themost di�ult and time onsuming task. On the one hand it is di�ult toget measured data of good quality, on the other hand the main part of theevaluation of measured data must be done by hand, even some tools for itsautomation were developed during the work on this projet. For pratialuse of suh a simulation tool desribed in this thesis it is important thatthe identi�ation proess an be done by data from non-invasive measure-ment only. Its disadvantages, e.g. that �ow and pressure are usually notsynhronous was explained in the last setion.Even our model overs already many physiologial phenomenons, there isstill plae for further improvements. At �rst, the non-linear �nite volumeimplementation was �gured out to be unstable onerning realisti initialdata. As onsequene it should be revised and might be replaed by a �niteelement implementation.Furthermore, our model does not over a model of the heart what an be alsoa future task, whereby the question of the heart models parameter identi�-ation has to be solved also. For our simulation runs the measured output ofthe left ventrile was used instead. For it, no parameter has to be determined.



Appendix A
Formulas
If we write y := r
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 eint (A.1)This is still in omplex form. For the real part of the �ow in equation A.1 wetake the orresponding part of the pressure gradient Aeint. First, we writethe Besselfuntions in the Euler notation for omplex numbers:
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Appendix B
Measured Data
Here one dataset obtained from a set of ultrasound measurements is given.We determined aorti diameter, �ow veloity, pulse wave propagation veloityand the heart rate. In the following tables the �ow veloity urves are notgiven, they are generated from images within the simulation environmentafter the alibration was done manually.All our measured data are doumented and arhived on a DVD and the given�le names are referenes to it, but for opyright reasons the DVD ould notbe attahed to this work. If the reader has further questions or wants toverify the measured data he should not hesitate to ontat the author orsomebody else from his working group.All given parameters were obtained be analysing bitmap images with theopen soure software DICOMWORKS.

106



APPENDIX B. MEASURED DATA 107Person dataPatienten #Age 24Weight 56kgHeight 175mSex mSystole 93Diastole 64liegend# of series 1Date of measurement 38060Hypersoni devie: AesonTable B.1: Person data



APPENDIX B. MEASURED DATA 108Measurement: DIAMETERPiture #in series Piture #in print SYSTOLE(m) DIASTOLE(m)Aorti root 9 A1 1.9810 A2 2.1411 A3 2.1312 A4 2.14Carotis Commu-nis left 22 A5 0.66, 0.66,0.66 0.59, 0.58,0.58Carotis Commu-nis right 28 A6 0.57, 0.58,0.57 0.49, 0.48,0.4929 A7 0.58, 0.57 0.50, 0.49Radialis right 78 A8 0.222,0.232,0.236,0.237,0.236Radialis left 107 A9 0.225,0.242,0.218,0.218,0.218Abdominlalisaorta (bifura-tion) 130 A10 1.37, 1.38,1.38 1.29, 1.29,1.30141 A11 1.405,1.373,1.359,1.350,1.381Ilia Externaright 153 A12 0.817,0.824,0.831Arteria Popright 161 A13 0.56, 0.56,0.57 0.49, 0.5,0.5Arteria Tibialisright 186 A14 0.194,0.214,0.218,0.198Table B.2: Measurement of the aorti diameter from ultrasound images



APPENDIX B. MEASURED DATA 109

Measurement: LENGTH OF PERIODPiture #in series Piture #in print TIME [s℄ PULSE[beats/minute℄Carotis Commu-nis left 13 A15 1.11, 1.12 5615 A16 1.07 56Carotis Commu-nis right 36 A17 1.11 4938 A18 1.03 58Radialis right 76 A19 1.12, 1.04 54Radialis left 103 A20 0.98 50105 A21 1.12 53AbdominlalisAorta (bifura-tion) 132 A22 1.13 54143 A23 1.16 52Ilia Externaright 146 A24 1.1 56A pop right 165 A25 1.08 56173 A26 1.03 56A tibialis right 184 A27 1.1 55Table B.3: Measurement of period length
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Measurement: SIGNAL RUNNING TIMEPiture #in series Piture #in print TIME [s℄Aortenwurzel 5 A28 0.07Cartois Commu-nis left 14 A29 0.09, 0.08,0.09,0.1Carotis Commu-nis right 35 A30 0.08, 0.08Radialis right 73 A31 0.18, 0.18Radialis links 93 A32 0.18, 0.18Distal Aorta (bi-furation) 136 A33 0.16, 0.16Ilia right 147 A34 0.17, 0.18Arteria Popright 165 A35 0.23, 0.22Arteria Tibialisright 183 A36 0.26, 0.27184 A37 0.24, 0.26, 0.27Table B.4: Measurement of the pressure amplitude veloity
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