
DISSERTATION

Proof Transformations by Resolution
Computational Methods of Cut-Elimination

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

Univ.Prof. Dr.phil. Alexander Leitsch
Institut für Computersprachen (E185)

Arbeitsgruppe Theoretische Informatik und Logik

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Clemens Richter
Mat.-Nr.: 9825117
Adlergasse 16/5/6

A-2512 Tribuswinkel

Tribuswinkel, am 22. Mai 2006 .

(Clemens Richter)

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

In der Beweistheorie werden Beweise als formale Objekte repräsentiert. Schnittelimination ist
eine auf Gentzen zurückzuführende Disziplin, welche eine bestimmte Regel — die Schnittregel —
aus diesen formalen Beweisen entfernt. Diese Technik der Beweistransformation hat sich zu einer
der bedeutendsten Disziplinen der Beweistheorie entwickelt. Der Effekt der Schnittelimination
ist die Entfernung aller Anwendungen von Hilfsaussagen (Lemmata) innerhalb eines Beweises,
was wiederum zu einem analytischen Beweis, im Sinne dass alle Aussagen innerhalb des Beweises
Teilformeln des sich ergebenden Satzes sind, führt.

Die Schnitteliminationsmethode CERES (Schnittelimination mittels Resolution) analysiert zu-
nächst die konkrete Beweisstruktur und bildet diese auf eine unerfüllbare Klauselmenge ab. Eine
Resolutionswiderlegung dieser Klauselmenge dient dann als Skelett für eine analytische Variante
des Beweises.

Die Gleichheit ist ein zentrales Paradigma in der Mathematik und spielt eine Schlüsselrolle in
der automatischen Deduktion. Diese Bedeutung weckt daher die Notwendigkeit die Gleichheit
in bestehende Schnitteliminationskonzepte zu integrieren. In dieser Arbeit wird eine Erweite-
rung von CERES zu CERESe, durch das Hinzufügen der Gleichheit in Form von Regeln zu den
zugrunde liegenden Sequentialkalkülen, präsentiert wobei alle Vorzüge von CERES erhalten blei-
ben. Insbesondere bleibt CERESe den Schnittreduktionsystemen ähnlich zu Gentzen’s Ansatz
überlegen, sie ist flexibel bezüglich Resolution in Verbindung mit Paramodulation und all deren
Verfeinerungen und erlaubt eine semantische Verwendung des Schnitts. Wir erweitern CERES
auch durch das Konzept der Gleichheitstheorien was neben den bereits bestehenden Vorteilen
der Methode zu einem System führt, das in erster Linie eine Vereinfachung der Beweisnotation
mit sich bringt.

Weiters wird eine Implementierung von CERES in Form eines Computersystems zur Schnit-
telimination vorgestellt, welches die Transformation von konkreten, mathematisch relevanten
Beweisen erlaubt. Das System unterstützt die beweistheoretische Analyse von Beweisen und ist
auch in der Lage schnittfreie Beweisvarianten zu erzeugen, die sich hinsichtlich ihrer Argumenta-
tion deutlich unterscheiden. Dies ist die erste Implementierung eines solchen Systems und könnte
der Anfang einer neuen Ära von computergestützter Beweistheorie sein. Einige Experimente mit
konkreten, aussagekräftigeren Beweisen, die bereits einen gewissen Komplexitätsgrad aufweisen
runden die Demonstration des Systems ab.

Proof Transformations by Resolution
Computational Methods of Cut-Elimination

by

Clemens Richter

DOCTORAL THESIS
AT THE

VIENNA UNIVERSITY OF TECHNOLOGY

Copyright c© Clemens Richter, 2006
All rights reserved.

Abstract

In proof theory mathematical proofs are represented as formal objects. Cut-elimination is a
discipline due to Gentzen removing a certain rule — the cut rule — from these formal proofs.
This proof transformation technique has advanced to one of the most important disciplines in
proof theory. The effect of cut-elimination is the removal of all applications of intermediate
statements (lemmas) within a proof resulting in a proof that is analytic in the sense, that all
statements of the proof are subformulas of the resulting theorem.

The cut-elimination method CERES (cut-elimination by resolution) first analyzes and maps a
proof structure to a clause term which evaluates to an unsatisfiable set of clauses. A resolution
refutation of this clause set then serves as a skeleton for an analytic variant of the proof.

Equality is a central paradigm in mathematics and plays a key role in automated deduction.
Therefore its importance awakes the necessity of integrating equality into existing cut-elimination
concepts. In this thesis an extension of CERES to CERESe by adding equality in form of rules
to the underlying sequent calculi is presented where all the benefits of CERES are preserved. In
particular CERESe is superior to Gentzen like cut-reduction systems, it is flexible with respect
to resolution in conjunction with paramodulation and all its refinements and admits a semantical
use of cut. We also enrich CERES by the concept of equational theories yielding a system which
adds mainly simplicity of proof notations to the existing advantages of the method.

Furthermore an implementation of CERES as a computational system for cut-elimination is
presented allowing the transformation of concrete mathematically relevant proofs. The system
supports the proof theoretical analysis of proofs and is also capable of generating variants of
cut-free proofs which are clearly distinguishable by their argumentation. This is the first im-
plementation of such a system and could be the beginning of a new era of computational proof
theory. Some experiments with concrete proofs of some relevance which already have a certain
complexity round off the demonstration of the system.

To Kathi

This kind of support must be love.

Contents

Preface iii

1 Introduction 1

2 Preliminaries 3

3 Standard Cut-Elimination Methods 11
3.1 Cut-Reduction . 11
3.2 Grade Reduction . 12
3.3 Rank Reduction . 14

4 Cut-Elimination by Resolution 21
4.1 The Method . 21
4.2 Examples . 30
4.3 Comparison of Cut-Elimination Methods . 40

5 Extension of CERES to Equality 43
5.1 The Extension . 43
5.2 Example . 45

6 Equational Theories 51
6.1 The Concept . 51
6.2 Example . 53

7 The Cut-Elimination System CERES 55
7.1 The System . 56
7.2 Input and Output . 58
7.3 The Theorem Prover: Otter . 60

8 Experiments with CERES 63
8.1 Effects of Resolution Refinements . 63

8.1.1 Positive Hyperresolution . 67
8.1.2 Negative Hyperresolution . 68

8.2 Orevkov’s Proof . 70

Bibliography 79

Index 83

Curriculum Vitae 87

Preface

This thesis is the result of a lot of work as well as in theoretical as in computational perspectives.
Work that couldn’t have been done without the constant support of Alexander Leitsch.

Since my first lecture in mathematical logic in the winter term of 1998 I was regularly following
his courses. He arouse my interest in mathematical logic, inspired me to a deeper insight into
recursion theory which culminated in my master’s thesis (Richter 2003) on the importance of
the diagonalization method in recursion theory and logic under his advice. The preoccupation
with the work of Kurt Gödel which was partly covered by my master’s thesis (especially his
incompleteness theorems (Gödel 1931)) and again his permanent motivation led me to the field
of proof theory. During the years this led to a very friendly contact for what I am deeply grateful.
It therefore gives me pleasure that he became again the advisor of a thesis of mine. After all
this time I think this is the right place to express my gratitude to him for everything I learned
from him personally and scientifically. Thank you, Alex.

Another person I am truly indebted to is my wife, Katharina. Not only for that she was willing
to marry me during the work for this thesis. Also her constant support in everyday life enabled
me to actually accomplish the work on this thesis. I feel also very much obligated to thank her
and am proud of her especially because of the throwbacks and misery that life held ready for
us during the last year even so she allowed me to concentrate on my work — as far as it was
possible at certain periods of time. Thank you, Kathi.

CHAPTER 1
Introduction

In proof theory mathematical proofs are represented as formal objects. The main subjects are
proof analysis and proof transformation. In order to be able to analyze proofs often proof
transformations have to be applied a priori or sometimes the analysis of concepts and methods
involve the transformation of proofs. Therefore proof transformations play a central role in
modern proof theory.

The first field of application of proof theory were consistency proofs, i.e. showing the consistency
of certain theories based on a formal specification by means of calculi. Most of these consistency
proofs included several proof transformation steps. In his famous paper Gentzen (1934) used a
specific technique to get rid of an auxiliary rule, namely the cut rule, to prove the consistency of
natural deduction. In particular he proved that natural deduction can be simulated by a sequent
calculus with cut; the cut-elimination theorem then yields the consistency result. Nowadays,
cut-elimination has become one of the most prominent forms of proof transformation within
proof theory.

A cut can be thought of as a meta-level version of the reasoning principle modus ponens. Hence
the effect of cut-elimination is the removal of all applications of intermediate statements (lem-
mas) within a proof resulting in a proof that is analytic in the sense, that all statements of the
proof are subformulas of the resulting theorem.

Robinson’s resolution principle (Robinson 1965) is a revolutionary mathematical tool of the
last century. Not only because of its impact to mathematics, also because of its importance in
computational aspects, this sound and complete method for deciding the validity of a theorem
by refutation still plays a central role in various fields. Especially automated deduction and
automated theorem proving are largely based on this method. On the one hand because of its
effectiveness and on the other hand because of its algorithmical simplicity. A lot of refinements
such as hyper-resolution and extensions, e.g. a rule based approach of equality integration called
paramodulation (e.g. in Nieuwenhuis and Rubio 2001), have been invented and investigated
despite portings to numerous different calculi and other formal systems.

Gentzen also founded in his Hauptsatz an algorithmical or computational approach. In fact,
this constructive proof allows also for extraction of a rule based cut-elimination method. Others
followed, e.g. the similar methods of Schütte (1960) and Tait (1968), but none of them with a
substantially different approach. Until Baaz and Leitsch (2000) came up with a cut-elimination
method based on resolution (CERES for short). The core of the method is the following: A
proof structure containing cuts is analyzed and mapped to a clause term which evaluates to
an unsatisfiable clause set of which a resolution refutation serves as a skeleton for an analytic
variant of the proof.

2 Chapter 1: INTRODUCTION

Motivated by investigations of proof theorists like Girard (1987) who were applying cut-elimi-
nation to relevant mathematical proofs, but of course only on an abstract and theoretical level,
it becomes clear that CERES is a promising algorithm to serve as a basis for an implementation
of a cut-elimination system. The main advantages over other computational methods lie in the
speed-up gained by CERES and the existing and very sophisticated automated theorem provers
which can be used.

Note that cut-elimination is non-unique, i.e. there is no single cut-free proof which represents the
analytic version of a proof with lemmas. The application of cut-elimination by computational
methods on concrete proofs allows the creation of interesting new proofs of the same statement
but using an entirely different argumentation. This introduces a mechanism of extracting new
proof theoretical methods and concepts out of existing proofs and could be the beginning of an
era of computational proof theory.

The exceptional role of equality in mathematics in general hence also its central importance for
the formalization of mathematical proofs causes the desire to integrate this concept into CERES.
Equational reasoning is already a key component in automated deduction and verification sys-
tems therefore also an extension of the implementation benefits from many mature concepts.
The advantages of proof formalization using equality are eclectic. While drastically simplifying
proofs, the improvement of understanding of formalized proofs is invaluable. Allowing a more
natural mathematical way of formalizing and interpreting proofs provides essential support to
human users working with such a system.

The structure of this thesis is as follows. After giving some basic notions and definitions we
present the traditional cut-elimination methods of Gentzen and Schütte-Tait in chapter 3. The
method of cut-elimination by resolution is described in detail in the subsequent chapter including
comparisons to the traditional approaches. Chapter 5 is dedicated to the extension of CERES by
equality and followed by a chapter introducing equational theories within the logical inferences
of the calculi presented in the previous chapters. The implementation of CERES is discussed in
chapter 7, and interesting experiments performed with the system are the subject of the last
chapter.

CHAPTER 2
Preliminaries

In the following x, y, z, x0, y0, z0, . . . denote bound individual variables whereas u, v, w, u0, v0,
w0, . . . denote free individual variables.

Definition 2.1 (term, semi-term). Terms and semi-terms are defined inductively in the
following way:

1. Individual constants are (semi-)terms.

2. Free individual variables are terms. Free and bound individual variables are semi-terms.

3. If f is a function symbol of arity n and t1, . . . ,tn are (semi-)terms then f(t1, . . . ,tn) is a
(semi-)term.

Thus semi-terms are terms with bound variables, an analogous property holds for formulas.

Definition 2.2 (formula, semi-formula). Formulas and semi-formulas are inductively defined
as follows:

1. If P is an n-ary predicate symbol and t1, . . . ,tn are (semi-)terms, then P (t1, . . . ,tn) is a
(semi-)formula. It is called an atomic formula or an atom.

2. If A and B are (semi-)formulas, then ¬A, A ∧B, A ∨B and A ⊃ B are (semi-)formulas.

3. If A is a (semi-)formula not containing the bound variable x, then (∀x)A(u/x) and
(∃x)A(u/x) are (semi-)formulas.

A (semi)-formula not containing any quantifiers (only constructed by 1 and 2) is called a propo-
sitional formula.

An denotes a formula sequence A, . . . ,A of n times A and A ≡ B expresses that a formula A is
structurally equal to B.

Obviously semi-formulas are formulas with free occurrences of bound variables. Note that our
definition of terms and formulas is due to Takeuti (1987).

We will later be in the need to determine precisely the position of a term or formula within
another term or formula; the following definition helps in this matter.

Definition 2.3 (position). Let t be a (semi-)term. We define positions within t inductively as
follows:

4 Chapter 2: PRELIMINARIES

1. Let t be an individual constant or a variable then 0 (the empty position) is the position
in t representing the entire term t, i.e. t.0 = t.

2. Let t be of the form t = f(t1, . . . ,tn) then again 0 is the position in t representing the entire
term t, i.e. t.0 = t. Let further ξi : (kl, . . . ,k1) be a position in a ti, for 1 ≤ i ≤ n with
ti.ξi = s, then we define the nested position ξ in t such that t.ξ = s as ξ : (i, kl, . . . ,k1).

Note that the empty position 0 is just an abbreviation for ().

Let t.ξ = s then t[r]ξ denotes the (semi-)term t after replacement of the (semi-)term s on position
ξ by r, in particular t[r]ξ = r. Moreover if Ξ is a set of positions in t then t[r]Ξ is defined by
replacing all sub-(semi-)terms t.ξ, for ξ ∈ Ξ, in t by r.

Positions in (semi-)formulas are defined analogously (simply consider all formulas as terms).

Definition 2.4 (substitution). A substitution σ is defined as a function from the set of vari-
ables to the set of terms, formally σ = {u1 7→ t1, . . . , un 7→ tn }. The identity substitution is
denoted by id.

The application tσ of a substitution σ to a term t is defined inductively in the following way.

1. Let t be an individual constant or a variable then simply apply the substitution by tσ.

2. Let t be a term of the form f(t1, . . . ,tn) then tσ = f(t1σ, . . . ,tnσ).

The composition of two substitutions σ and θ, denoted by σθ, is defined by t(σθ) = (tσ)θ.

We write A(u) to indicate (potential) free occurrences of the variable u in A. Let t be an
arbitrary term, then A(u/t) stands for the replacement of all free occurrences of u in A by t, i.e.
A[t]Ξ where Ξ = { ξ |A.ξ = u }.

The logical complexity of a formula expresses the number of logical symbols of which the formula
consists.

Definition 2.5 (logical complexity). The logical complexity of a formula A is defined induc-
tively as follows:

1. comp(A) = 0 for A being an atom,

2. comp(A) = comp(B) + 1 for A ≡ ¬B,

3. comp(A) = comp(B) + comp(C) + 1, for A ≡ B ∧ C, A ≡ B ∨ C or A ≡ B ⊃ C,

4. comp(A) = comp(B) + 1 for A ≡ (∀x)B or A ≡ (∃x)B.

In the following Γ,∆,Π,Λ,Γ0,∆0,Π0,Λ0, . . . denote finite (possibly empty) sequences of formu-
las. The empty sequence of formulas is denoted by ε.

Definition 2.6 (sequent). A finite sequence of formulas, separated by the auxiliary syntactic
symbol `, is called a sequent, symbolically S : Γ ` ∆, where Γ is called the antecedents respec-
tively ∆ the consequent of S. The empty sequent is denoted by `. A sequent S is called atomic
if Γ and ∆ are sequences of atomic formulas.

For two sequents S1 : Γ ` ∆ and S2 : Π ` Λ the expression S1 ◦ S2 denotes the composition of
the sequents, i.e. Γ,Π ` ∆,Λ. Because of the sequent representation as sequences of formulas,
note that the composition operator is not commutative, symbolically S1 ◦ S2 6= S2 ◦ S1.

PRELIMINARIES 5

Definition 2.7 (axiom set). A (possibly infinite) set A of atomic sequents is called an axiom
set if it is closed under substitution, i.e. for all S ∈ A and for all substitutions σ we have
Sσ ∈ A. S is called an axiom.

Definition 2.8 (LK). Let A be an axiom set. An axiom rule is of the form

S

where the sequent S is contained in A, i.e. S ∈ A; S is called an axiom.

An inference rule is of the form

S′

S
ρu or

S1 S2

S
ρb

where ρu denotes a unary LK inference rule and ρb denotes a binary LK inference rule. The
sequent S′ is called premise (of ρu) respectively the sequents S1 and S2 are called left and right
premise (of ρb). The sequent S is called the conclusion of the particular inference.

Unlike Gentzen’s version of LK (see Gentzen 1934) we use the multiplicative version of LK
similar to Girard (see Girard 1987). In the following definition the auxiliary formulas are put
in bold face and the principal formulas are underlined, but usually these markings are avoided
because the auxiliary and principal formulas are mostly uniquely identifiable by their outermost
positioning (respectively the permutations are given explicitly where needed).

1. The structural rules of

a) Weakening:
Γ ` ∆

A1, . . . ,An,Γ ` ∆ w : l Γ ` ∆
Γ ` ∆, A1, . . . ,An

w : r

where n > 0.

b) Contraction:

Am1
1 , . . . ,Amn

n ` ∆
A1, . . . ,An ` ∆

c(m1, . . . ,mn) : l
Γ ` Am1

1 , . . . ,Amn
n

Γ ` A1, . . . ,An
c(m1, . . . ,mn) : r

where the number of occurrences of the i-th formula mi > 0, i ∈ {1, . . . , n}. The
auxiliary formulas respectively the principal formulas are those Ai of the premises
respectively those Ai of the conclusion where mi > 1.

c) Permutation:

A1, . . . ,An ` ∆
Aτ(1), . . . ,Aτ(n) ` ∆

π(τ) : l
Γ ` A1, . . . ,An

Γ ` Aτ(1), . . . ,Aτ(n)
π(τ) : r

where τ is a permutation of {1, . . . , n}. The auxiliary formulas respectively the prin-
cipal formulas are those Ai of the premises respectively those Aτ(i) of the conclusions
where i 6= τ(i), i ∈ {1, . . . , n}, holds. The permutation τ is specified as a list of
cycles. −τ denotes the inverse permutation of τ .

d) Cut:
Γ ` ∆,A A,Π ` Λ

Γ,Π ` ∆,Λ cut

where A is called the cut-formula.

6 Chapter 2: PRELIMINARIES

2. The logical rules for

a) ¬-introduction:
Γ ` ∆,A
¬A,Γ ` ∆ ¬ : l

A,Γ ` ∆
Γ ` ∆,¬A ¬ : r

b) ∧-introduction:

A,B,Γ ` ∆
A ∧B,Γ ` ∆ ∧ : l

Γ ` ∆,A Π ` Λ,B
Γ,Π ` ∆,Λ, A ∧B ∧ : r

c) ∨-introduction:

A,Γ ` ∆ B,Π ` Λ
A ∨B,Γ,Π ` ∆,Λ ∨ : l

Γ ` ∆,A,B
Γ ` ∆, A ∨B ∨ : r

d) ⊃-introduction:

Γ ` ∆,A B,Π ` Λ
A ⊃ B,Γ,Π ` ∆,Λ ⊃ : l

A,Γ ` ∆,B
Γ ` ∆, A ⊃ B

⊃ : r

e) ∀-introduction:

A(x/t),Γ ` ∆
(∀x)A(x),Γ ` ∆ ∀ : l

Γ ` ∆,A(x/u)
Γ ` ∆, (∀x)A(x) ∀ : r

where t is an arbitrary term and u does not occur in the conclusion. u is called an
eigenvariable.

f) ∃-introduction:

A(x/u),Γ ` ∆
(∃x)A(x),Γ ` ∆ ∃ : l

Γ ` ∆,A(x/t)
Γ ` ∆, (∃x)A(x) ∃ : r

where x does not occur in the conclusion and t is an arbitrary term. u is called an
Eigenvariable.

Definition 2.9 (standard axiom set). The standard axiom set ALK of LK is an axiom set
defined by

ALK = {A ` A | A an atom }.

Definition 2.10 (proof, LK-proof). A proof ϕ of a sequent S from an axiom set A is a
directed labelled tree, where the nodes represent occurrences of sequents and the edges are
labelled according to the inference rule applications in the calculus K. The root is labelled by
the occurrence of the end-sequent S and the leaves are labelled by occurrences of axioms, i.e.
elements of A.

Let ν be a proof node in ϕ, then ϕ.ν denotes the subproof of ϕ beginning at ν (with root ν). A
proof node µ is called immediate successor of ν if µ is the occurrence of a premise of a rule ρ in
ϕ with conclusion ν.

An LK-proof is a proof where A consists of atomic sequents including the standard axioms
ALK of LK and the inference rules applied are those of LK.

PRELIMINARIES 7

In the following we assume that if the concrete axiom set A on which a specific LK-proof is
based on is not specified explicitly then A is the standard axiom set of LK.

Definition 2.11 (ancestor). Let ρ, which is either of the form

S1 : Π1,Γ1 ` ∆1,Λ1

S : Π,Γ1 ` ∆1,Λ
ρu or

S1 : Π1,Γ1 ` ∆1,Λ1 S2 : Π2,Γ2 ` ∆2,Λ2

S : Π,Γ1,Γ2 ` ∆1,∆2,Λ
ρb

be an inference rule in an LK-proof ϕ, where Πi and Λi respectively Π and Λ denote the (pos-
sibly empty) sequences of auxiliary formulas of the (one or two) premises respectively principal
formulas of the conclusion; let further ok be the occurrence of the k-th principal formula in S
and oij be the occurrence of the j-th auxiliary formula in Si, i ∈ 1, 2 and j, k ∈ N. Then all oij

are ancestors of all ok.
Let oij be the occurrence of the j-th non-principal formula in Γi respectively ∆i of S, then oj

being the occurrence of the j-th non-auxiliary formula in Γi respectively ∆i of Si is defined as
the ancestor of oij .

The ancestor relation in ϕ is defined as the reflexive and transitive closure of the above relation.

If Ω is a set of formula occurrences in ϕ and let S be the sequent at the node ν of the LK-proof
ϕ then by ν(Ω) respectively ν(Ω) we denote the subsequent of S consisting of all formulas which
are respectively are not ancestors of a formula occurrence in Ω.

Definition 2.12 (LKp). LKp is the calculus obtained from LK by adding the semantic cut
rule (p-cut), also called pseudo-cut, to the existing rules of LK.

Γ ` ∆,A B,Π ` Λ
Γ,Π ` ∆,Λ

p-cut

if A ⊃ B is valid.

By comparison of the semantic cut rule with an implication introduction rule

Γ ` ∆,A B,Π ` Λ
A ⊃ B,Γ,Π ` ∆,Λ ⊃ : l

it is easy to see that A ⊃ B can only be cut out if it is valid or in other words, that Γ,Π ` ∆,Λ
is equivalent to A ⊃ B,Γ,Π ` ∆,Λ if A ⊃ B is valid.

The introduction of the semantic cut rule is more ore less a replacement of the existing cut rule,
which is just the specific case of the semantic cut rule where A is syntactically equivalent to B,
i.e. A ≡ B.

Definition 2.13 (LKp-proof). An LKp-proof is a proof where A consists of atomic sequents
including the standard axioms ALK of LK and the inference rules applied are those of LKp.

Definition 2.14 (grade, rank). Let ϕ be an LK-proof ending with a cut rule inference, i.e.
ϕ is of the form

(ϕl)
Γ ` ∆,A

(ϕr)
A,Π ` Λ

Γ,Π ` ∆,Λ cut

8 Chapter 2: PRELIMINARIES

Then the grade of ϕ is defined as the logical complexity of the cut-formula A, i.e.

grade(ϕ) = comp(A).

The rank of ϕ is defined as the sum of the ranks of ϕl (the left-rank) and ϕr (the right-rank),
which are defined as the maximum ancestor-paths of the cut-formula A

rankl(ϕ) = max{ length(p) | p ∈ ancpath(A,ϕl) }
rankl(ϕ) = max{ length(p) | p ∈ ancpath(A,ϕr) }

hence
rank(ϕ) = rankl(ϕ) + rankl(ϕ).

Definition 2.15 (clause). A clause is an atomic sequent, i.e. a sequent of the form Γ ` ∆,
where Γ and ∆ are sequences of atomic formulas. The empty clause is denoted by ε.

The definition of the resolution calculus R that we are giving below is a very common way of
defining such a calculus nevertheless it is based on Robinson’s resolution method (see Robinson
1965) and influenced by the general resolution concept in Leitsch (1997). Furthermore R has
an explicit factoring rule similar to Loveland (1978).

Definition 2.16 (R). Let C be a clause set. An initial rule is of the form

C

where the clause C is contained in C, i.e. C ∈ C; C is called an initial clause.

An R inference rule is of the form

C ′

C
ρu or

Cl Cr

C
ρb

where ρu denotes a unary R inference rule and ρb denotes a binary R inference rule. The clause
C ′ is called premise (of ρu) respectively the clauses Cl and Cr are called left and right premise
(of ρb). The clause C is called the conclusion of the particular inference.

In the following definition the auxiliary formulas are put in bold face and the principal formu-
las are underlined, but usually these markings are avoided because the auxiliary and principal
formulas are mostly uniquely identifiable by their outermost positioning (respectively the per-
mutations are given explicitly where needed).

The rules of

1. Permutation:

A1, . . . ,An ` ∆
Aτ(1), . . . ,Aτ(n) ` ∆

π(τ) : l
Γ ` A1, . . . ,An

Γ ` Aτ(1), . . . ,Aτ(n)
π(τ) : r

where τ is a permutation of { 1, . . . ,n }. The auxiliary formulas respectively the principal
formulas are those Ai of the premises respectively those Aτ(i) of the conclusions where
i 6= τ(i), i ∈ { 1, . . . ,n }, holds.

PRELIMINARIES 9

2. Factoring:
A1, . . . ,An,Γ ` ∆

(A1,Γ ` ∆)σ
f(σ) : l

Γ ` ∆,A1, . . . ,An

(Γ ` ∆, A1)σ
f(σ) : r

where σ is an m.g.u. of the set {Ai }1≤i≤n. The conclusion of a factoring rule is called
factor and additionally nontrivial in case 1 < n.

3. Binary resolution:
Γ ` ∆,A A′,Π ` Λ

(Γ,Π ` ∆,Λ)σ
r(σ)

where σ is an m.g.u. of {A,A′ } and the premises are variable disjoint clauses. The
conclusion of a binary resolution inference is also called resolvent (a terminus going back
to David Hilbert by the way) and the two formulas A and A′ that are resolved upon are
called (positive resp. negative) resolution-formulas.

The paramodulation rule for the resolution calculus, which we will be using, is defined as fol-
lows.

Definition 2.17 (paramodulation). Let the premises be variable disjoint clauses and σ be
a most general unifier of { s, s′ } then the paramodulation rules for some position set Ξ for the
resolution calculus is defined as follows:

Γ ` ∆, s = t A[s′]Ξ,Π ` Λ
(A[t]Ξ,Γ,Π ` ∆,Λ)σ

p(σ,Ξ) : l
Γ ` ∆, s = t Π ` Λ,A[s′]Ξ

(Γ,Π ` ∆,Λ, A[t]Ξ)σ
p(σ,Ξ) : r

where s and t are arbitrary terms.

We also define versions of this paramodulation rules where the sides of the equation s = t get
flipped within the left premise.

Γ ` ∆, t = s A[s′]Ξ,Π ` Λ
(A[t]Ξ,Γ,Π ` ∆,Λ)σ

p′(σ,Ξ) : l
Γ ` ∆, t = s Π ` Λ,A[s′]Ξ

(Γ,Π ` ∆,Λ, A[t]Ξ)σ
p′(σ,Ξ) : r

where again s and t are arbitrary terms.

This just expresses an implicit application of the symmetry of equality. Therefore this rules are
just shortcuts for

Γ ` ∆, t = s ` t = t

Γ ` ∆, s = t
p(id, (1)) : r

A[s′]Ξ,Π ` Λ
(A[t]Ξ,Γ,Π ` ∆,Λ)σ

p(σ,Ξ) : l

respectively
Γ ` ∆, t = s ` t = t

Γ ` ∆, s = t
p(id, (1)) : r

Π ` Λ, A[s′]Ξ
(Γ,Π ` ∆,Λ, A[t]Ξ)σ

p(σ,Ξ) : r

Note that the particular definition of the paramodulation rule does not matter, again all re-
finements of paramodulation such as ordered paramodulation or superposition might be used
(see Chang and Lee (1973) or Degtyarev and Voronkov (2001) for more details on paramodula-
tion and its refinements).

10 Chapter 2: PRELIMINARIES

Definition 2.18 (R-deduction, PR-deduction). A deduction of a set of clauses using the
rules of the resolution calculus R is called an R-deduction and PR-deduction if the rules of R
are extended by paramodulation (the paramodulation rules specified in definition 2.17).

Definition 2.19 (R-proof, PR-proof). An R-deduction (PR-deduction) of a set of clauses C
is called an R-proof (PR-proof) if it is a deduction of the empty clause. An R-proof (PR-proof)
is also called an R-refutation (PR-refutation).

Definition 2.20 (regularity). Let ϕ be an LK-proof and ψ and ψ′ are different subproofs
of ϕ, i.e. the sets of proof nodes of ψ and ψ′ are distinct. Then ϕ is called regular if every
eigenvariable u that occurs in ψ does not occur in ψ′. ϕ is called strongly regular if every
eigenvariable u that occurs in ψ does not occur in any proof node of ϕ that is not a proof node
of ψ.

Let γ be an R-proof. Then γ is called regular if all initial sequents have distinct variables.

From now on, if we speak of regularity of an LK-proof we always mean strong regularity.

CHAPTER 3
Standard Cut-Elimination Methods

As far as standard or classical cut-elimination methods are concerned what definitely comes
to ones mind is the first cut-elimination method ever (see Gentzen 1934). In this famous ar-
ticle Gerhard Gentzen’s aim was to give a consistency proof of natural deduction and thus of
intuitionistic logic. As tools he invented the sequent calculi LK and LJ (the intuitionistic coun-
terpart of LK). To map natural deductions to sequent calculus derivations Gentzen had to add
a syntactic rule - the cut rule. But to prove the consistency he had to show that all applications
of this rule can be eliminated, since the empty sequent can only be the conclusion of a cut
rule. He proved this conjecture with the Hauptsatz (or cut-elimination theorem), stating that
every proof in LK can be transformed into a (not necessarily unique) normal form by means of
cut-elimination.

A corollary from the Hauptsatz for example is the subformula property, that under the absence
of cut rule inferences all formulas occurring in the proof are instances of subformulas of the end-
sequent. This opens up the perspective of the so called midsequent theorem, allowing a partition
of an LK-proof such that all the quantifier inferences appear below all the propositional inference
rule applications. Which gives a constructive method for obtaining the Herbrand disjunction in
the sense of Herbrand’s theorem (Herbrand 1930).

Most importantly, Gentzen’s proof of the Hauptsatz is a constructive proof which allows the
extraction of a method to actually perform cut-elimination on proofs in LK. Also there has never
been the intention by Gentzen to actually perform cut-elimination with this algorithm, which
probably explains its average performance inefficiencies. Another method for cut-elimination is
the Schütte-Tait method (for details see Schütte 1960, Tait 1968).

The cut-elimination method of Gentzen eliminates an uppermost cut by a double induction on
the complexity of the cut-formula and on its rank, where the rank of a formula is the sum of
the maximal length of ancestor paths of the proofs of the premises. Whereas the Schütte-Tait
procedure always eliminates a maximal cut with respect to the complexity of the cut-formula.
Obviously these methods are similar, since they only differ in the selection strategy, which cut
to be eliminated next. But what they have in common is the rule base they are working with.

3.1 Cut-Reduction

The basic idea behind the cut reduction rules is the following: move the cut rule upwards within
the LK-proof ϕ (in direction to the axioms) using rank reduction until either the cut-formula is
introduced in both premises immediately above the cut (i.e. rank(ϕ) = 2) and grade reduction

12 Chapter 3: STANDARD CUT-ELIMINATION METHODS

has to be carried out or the cut can be dissolved against a standard axiom or a weakening
introducing the cut-formula in one premise.

Without loss of generality we assume ϕ to be regular, since some of the reduction transformations
contain shiftings of rules respectively duplications of proof parts which could violate eigenvariable
conditions otherwise.

Remark 3.1. Our aim is not to eliminate all cuts. Merely we are interested in reducing ϕ to
an LK-proof ϕ′ which contains at most atomic cuts.

Definition 3.1 (cut-reduction). R = 〈R,⇒ 〉 is a cut-reduction system such that R is the set
of all LK-proofs and ⇒⊆ R × R is a binary relation. Let ϕ and ψ be LK-proofs then ϕ ⇒ ψ
iff ϕ transforms to ψ according to a cut-reduction rule specified in section 3.2 or 3.3.

Building up on this general definition of a cut-reduction system we formulate the specialized
reductions of Gentzen and Schütte-Tait.

Definition 3.2 (Gentzen reduction). Let ϕ and ψ be LK-proofs. The Gentzen reduction
relation ⇒G is then defined ϕ ⇒G ψ if ϕ ⇒ ψ and the only cut rule occurring in ϕ is the last
inference rule.

Definition 3.3 (Schütte-Tait reduction). Let ϕ and ψ be LK-proofs and let Ω be the set of
all occurrences of cut formulas in ϕ. The Schütte-Tait reduction relation ⇒ST is then defined
ϕ.ν ⇒ST ψ if ϕ.ν ⇒ ψ and the last inference rule of ϕ.ν is the only maximal cut rule inference
with cut-formula A, i.e. the logical complexity of A is greater or equal than the logical complexity
of any formula of Ω, formally

max{ comp(B) |B a cut-formula of Ω } ≤ comp(A),

and greater than the logical complexity of any other cut-formula occurrence in ϕ.ν.

Now let ϕ.ν be of the form
(ϕl)

Γ ` ∆,A
(ϕr)

A,Π ` Λ
Γ,Π ` ∆,Λ cut

The cut reduction rules divide into two partitions. Into rules reducing the logical complexity of
the cut-formula - called grade reduction rules - and into rules reducing the maximum rank of
the cut rule within the proof - called rank reduction rules.

3.2 Grade Reduction

If the cut-formula A is immediately introduced (on both sides) above the cut then we distinguish
the following cases depending on the form of the cut-formula A:

3.2 Grade Reduction 13

1. A ≡ ¬A then let ϕ.ν =

(ϕl′)
A,Γ ` ∆

Γ ` ∆,¬A
¬ : r

(ϕr′)
Π ` Λ,A

¬A,Π ` Λ ¬ : l

Γ,Π ` ∆,Λ cut

which transforms to
(ϕr′)

Π ` Λ,A
(ϕl′)

A,Γ ` ∆
Π,Γ ` Λ,∆ cut

Γ,Π ` Λ,∆
π(τl) : l

Γ,Π ` ∆,Λ
π(τr) : r

Either of the permutation rule inferences may be omitted if they have no effect. Which
is for the permutation on the left side the case if Γ = ε, Π = ε or Γ = Π and for the
permutation on the right side if ∆ = ε, Λ = ε or ∆ = Λ.

2. A ≡ A ∧B then let ϕ.ν =

(ϕll)
Γl ` ∆l,A

(ϕlr)
Γr ` ∆r,B

Γl,Γr ` ∆l,∆r,A ∧ B
∧ : r

(ϕr′)
A,B,Π ` Λ

A ∧ B,Π ` Λ ∧ : l

Γl,Γr,Π ` ∆l,∆r,Λ
cut

which transforms to

(ϕll)
Γl ` ∆l,A

(ϕlr)
Γr ` ∆r,B

(ϕr′)
A,B,Π ` Λ
B, A,Π ` Λ

π((1 2)) : l

Γr,A,Π ` ∆r,Λ
cut

A,Γr,Π ` ∆r,Λ
π(τ) : l

Γl,Γr,Π ` ∆l,∆r,Λ
cut

where the permutation rule applying τ can be omitted in case Γr = ε or {Γr } = {A }.

3. A ≡ A ∨B then let ϕ.ν =

(ϕl′)
Γ ` ∆,A,B

Γ ` ∆,A ∨ B
∨ : r

(ϕrl
)

A,Πl ` Λl

(ϕrr)
B,Πr ` Λr

A ∨ B,Πl,Πr ` Λl,Λr
∨ : l

Γ,Πl,Πr ` ∆,Λl,Λr
cut

which transforms to

(ϕl′)
Γ ` ∆,A,B
Γ ` ∆, B,A

π(τ1) : r (ϕrl
)

A,Πl ` Λl

Γ,Πl ` ∆,B,Λl
cut

Γ,Πl ` ∆,Λl,B
π(τ2) : r (ϕrr)

B,Πr ` Λr

Γ,Πl,Πr ` ∆,Λl,Λr
cut

where the permutation rule applying τ2 can be omitted in case Λl = ε or {Λl } = {B }.

14 Chapter 3: STANDARD CUT-ELIMINATION METHODS

4. A ≡ A ⊃ B then let ϕ.ν =

(ϕl′)
A,Γ ` ∆,B

Γ ` ∆,A ⊃ B
∨ : r

(ϕrl
)

Πl ` Λl,A
(ϕrr)

B,Πr ` Λr

A ⊃ B,Πl,Πr ` Λl,Λr
∨ : l

Γ,Πl,Πr ` ∆,Λl,Λr
cut

which transforms to

(ϕrl
)

Πl ` Λl,A
(ϕl′)

A,Γ ` ∆, B
Πl,Γ ` Λl,∆, B

cut

Γ,Πl ` Λl,∆, B
π(τ1) : l

Γ,Πl ` ∆,Λl,B
π(τ2) : r (ϕrr)

B,Πr ` Λr

Γ,Πl,Πr ` ∆,Λl,Λr
cut

Either of the permutation rule inferences may be omitted if they have no effect. Which
is for the permutation on the left side the case if Γ = ε, Πl = ε or Γ = Πl and for the
permutation on the right side if ∆ = ε, Λl = ε or ∆ = Λl.

5. A ≡ (∀x)A(x) then let ϕ.ν =

(ϕl′(x/u))
Γ ` ∆,A(x/u)

Γ ` ∆, (∀x)A(x) ∀ : r

(ϕr′)
A(x/t),Π ` Λ

(∀x)A(x),Π ` Λ ∀ : l

Γ,Π ` ∆,Λ cut

which transforms to
(ϕl′(x/t))

Γ ` ∆,A(x/t)
(ϕr′)

A(x/t),Π ` Λ
Γ,Π ` ∆,Λ cut

Remark: We assume regularity, hence u only occurs in ϕl′ .

6. A ≡ (∃x)A(x) then let ϕ.ν =

(ϕl′)
Γ ` ∆,A(x/t)

Γ ` ∆, (∃x)A(x) ∃ : r

(ϕr′(x/u))
A(x/u),Π ` Λ

(∃x)A(x),Π ` Λ ∃ : l

Γ,Π ` ∆,Λ cut

which transforms to
(ϕl′)

Γ ` ∆,A(x/t)
(ϕr′(x/t))

A(x/t),Π ` Λ
Γ,Π ` ∆,Λ cut

Remark: We assume regularity, hence u only occurs in ϕl′ .

3.3 Rank Reduction

1. the cut-formula A derives from a standard axiom rule introduction immediately above the
cut.

3.3 Rank Reduction 15

a) end-sequent of ϕl is a standard axiom

A ` A
(ϕr)

A,Π ` Λ
A,Π ` Λ cut

which transforms to

(ϕr)
A,Π ` Λ

b) end-sequent of ϕr is a standard axiom

(ϕl)
Π ` Λ,A A ` A

Π ` Λ, A cut

which transforms to

(ϕl)
Π ` Λ, A

2. the cut-formula A derives from a weakening immediately above the cut.

a) weakening on the right is the last
rule of ϕl:

(ϕl′)
Γ ` ∆1

Γ ` ∆1,∆2,A
w : r (ϕr)

A,Π ` Λ
Γ,Π ` ∆1,∆2,Λ

cut

which transforms to

(ϕl′)
Γ ` ∆1

Π,Γ ` ∆1
w : l

Γ,Π ` ∆1
π(τ) : l

Γ,Π ` ∆1,∆2,Λ
w : r

b) weakening on the left is the last
rule of ϕr:

(ϕl)
Γ ` ∆,A

(ϕr′)
Π2 ` Λ

A,Π1,Π2 ` Λ w : l

Γ,Π1,Π2 ` ∆,Λ cut

which transforms to

(ϕr′)
Π2 ` Λ

Γ,Π1,Π2 ` Λ w : l

Γ,Π1,Π2 ` Λ,∆
w : r

Γ,Π1,Π2 ` ∆,Λ
π(τ) : r

3. the cut-formula A occurs

a) in the antecedent of the end-sequent of ϕl:

(ϕl)
Γ1, A,Γ2 ` ∆,A

(ϕr)
A,Π ` Λ

Γ1, A,Γ2,Π ` ∆,Λ cut

which transforms to

(ϕr)
A,Π ` Λ

A1, . . . ,Ai−1, Ai,Ai+1, . . . ,An,Ai,Π ` Λ w : l

A1, . . . ,Ai−1,Ai,Ai, Ai+1, . . . ,An,Π ` Λ
π(τ1) : l

A1, . . . ,Ai−1,Ai,Ai+1, . . . ,An,Π ` Λ
c(m1, . . . ,mi−1, 2,mi+1, . . . ,mn) : l

A1, . . . ,Ai−1, Ai+1, . . . ,An, Ai,Π ` Λ
π(τ2) : l

Γ1, A,Γ2,Π ` Λ,∆
w : r

Γ1, A,Γ2,Π ` ∆,Λ
π(τ3) : r

wheremj = 1, j ∈ { 1, . . . ,i− 1,i+ 1, . . . ,n }. Furthermore A ≡ Ai, Γ1 ≡ A1, . . . ,Ai−1

and Γ2 ≡ Ai+1, . . . ,An.

16 Chapter 3: STANDARD CUT-ELIMINATION METHODS

Any of the permutation rule inferences may be omitted if they have no effect. Which
is for the permutations on the left side the case if Γ2 = ε or {Γ2 } = {A } and for the
permutation on the right side if ∆ = ε, Λ = ε or ∆ = Λ.

b) in the consequent of the end-sequent of ϕr: symmetric to 3a.

4. the cut-formula A derives from a contraction immediately above the cut.

a) contraction on the right is the last rule of ϕl: .

(ϕl′)
Γ ` Am1

1 , . . . ,Amn
n

Γ ` A1, . . . ,An−1,An
c(m1, . . . ,mn) : r (ϕr)

An,Π ` Λ
Γ,Π ` A1, . . . ,An−1,Λ

cut

which transforms to

(ϕlmn−1)
Γ,Πmn−1 ` Am1

1 , . . . ,A
mn−1

n−1 ,Λmn−1,An

(ϕr)
An,Π ` Λ

Γ,B1, . . . ,Bk, . . . ,B1, . . . ,Bk ` Am1
1 , . . . ,A

mn−1

n−1 ,Λmn
cut

Γ,Bmn
1 , . . . ,Bmn

k ` Am1
1 , . . . ,A

mn−1

n−1 ,Λmn
π(τl) : l

Γ, B1, . . . ,Bk ` Am1
1 , . . . ,A

mn−1

n−1 ,C1, . . . ,Cl, . . . ,C1, . . . ,Cl

c(1, . . . ,1,mn , . . . ,mn) : l

Γ,Π ` Am1
1 , . . . ,A

mn−1

n−1 ,Cmn
1 , . . . ,Cmn

l

π(τr) : r

Γ,Π ` A1, . . . ,An−1, C1, . . . ,Cl
c(m1, . . . ,mn−1,mn , . . . ,mn) : r

with the recursive proof part ϕli+1
:

(ϕli)
Γ,Πi ` Am1

1 , . . . ,A
mn−1

n−1 ,Λi, Ai
n,An

(ϕri+1)
An,Π ` Λ

Γ,Πi+1 ` Am1
1 , . . . ,A

mn−1

n−1 ,Λi,Ai
n,Λ

cut

Γ,Πi+1 ` Am1
1 , . . . ,A

mn−1

n−1 ,Λi,Λ, Ai
n

π(τi) : r

and Π ≡ B1, . . . ,Bk, Λ ≡ C1, . . . ,Cl.

The subproofs ϕri are syntactic copies of ϕr where the eigenvariables have been
renamed to globally fresh variables. This is essential to keep up regularity of the
transformed proof as a whole.

Any of the permutation rule inferences may be omitted if they have no effect. Which
is for the permutation τl on the left side the case if Π = ε, {Π } = {B1 } or mn = 1,
for the permutation τr on the right side if Λ = ε, {Λ } = {C1 } or mn = 1 and for
the permutations τi on the right side if Λ = ε or {Λ } = {An }. Furthermore the
contraction rule on the left side may be omitted if Π = ε or mn = 1.

b) contraction on the left is the last rule of ϕr: symmetric to 4a.

5. the cut-formula A derives from a permutation immediately above the cut.

3.3 Rank Reduction 17

a) permutation on the right is the last rule of ϕl: .

(ϕl′)
Γ ` A1, . . . ,An−1, An

Γ ` Aτ(1), . . . ,Aτ(n−1),Aτ(n)
π(τ) : r (ϕr)

Aτ(n),Π ` Λ
Γ,Π ` Aτ(1), . . . ,Aτ(n−1),Λ

cut

which transforms to

i. if τ(n) = n:
(ϕl′)

Γ ` A1, . . . ,An−1,An

(ϕr)
Aτ(n),Π ` Λ

Γ,Π ` A1, . . . ,An−1,Λ
cut

Γ,Π ` Aτ(1), . . . ,Aτ(n−1),Λ
π(τ1) : r

ii. otherwise let τ(n) = i for i 6= n, then we have to distinguish according to the
rule above the permutation rule (the last rule of ϕl′):

A. weakening right (Ai is one of the principal formulas)

(ϕl′′)
Γ ` ∆1

Γ ` ∆1,∆2, Ai,∆3
w : r

which transforms to

(ϕl′′)
Γ ` ∆1

Π,Γ ` ∆1
w : l

Γ,Π ` ∆1
π(τ2) : l

Γ,Π ` ∆1,∆2,∆3,Λ
w : r

Γ,Π ` Aτ(1), . . . ,Aτ(n−1),Λ
π(τ3) : r

where ∆1,∆2 ≡ A1, . . . ,Ai−1 and ∆3 ≡ Ai+1, . . . ,An.

The permutation τ3 need not be applied if Γ = ε, Π = ε or Γ = Π.

B. permutation right

(ϕl′′)
Γ ` Γ ` A−τ ′(1), . . . ,A−τ ′(n)

Γ ` A1, . . . ,An
π(τ ′) : r

where −τ ′ denotes the inverse permutation of τ ′; which (combining the per-
mutations) transforms to

(ϕl′′)
Γ ` A−τ ′(1), . . . ,A−τ ′(n−1), A−τ ′(n)

Γ ` Aτ(1), . . . ,Aτ(n−1),Aτ(n)
π(τ4) : r (ϕr)

Aτ(n),Π ` Λ
Γ,Π ` Aτ(1), . . . ,Aτ(n−1),Λ

cut

18 Chapter 3: STANDARD CUT-ELIMINATION METHODS

C. contraction right

(ϕl′′)
Γ ` Am1

1 , . . . ,Amn
n

Γ ` A1, . . . ,An
c(m1, . . . ,mn) : r

which (shifting the permutation putting Ai in place above the contraction)
transforms to

(ϕl′′)
Γ ` Am1

1 , . . . ,A
mi−1

i−1 ,Ami
i ,A

mi+1

i+1 , . . . ,Amn
n

Γ ` Am1
1 , . . . ,A

mi−1

i−1 , A
mi+1

i+1 , . . . ,Amn
n , Ami

i

π(τ5) : r

Γ ` A1, . . . ,Ai−1, Ai+1, . . . ,An,Ai
c(m) : r (ϕr)

Aτ(n),Π ` Λ
Γ,Π ` A1, . . . ,Ai−1, Ai+1, . . . ,An,Λ

cut

Γ,Π ` Aτ(1), . . . ,Aτ(n−1),Λ
π(τ6) : r

where m = m1, . . . ,mi−1,mi+1, . . . ,mn,mi.

D. the last rule of ϕl′ is an arbitrary unary rule (except the ones already covered
by the cases 5(a)iiA to 5(a)iiC), i.e. ϕl′ =

(ϕl′′)
Γ′ ` ∆1, Ai,∆′

2

Γ ` ∆1, Ai,∆2
ρu

which transforms to

(ϕl′′)
Γ′ ` ∆1, Ai,∆′

2

Γ′ ` ∆1,∆′
2,Ai

π(τ7) : r (ϕr)
Ai,Π ` Λ

Γ′,Π ` ∆1,∆′
2,Λ

cut

Γ′,Π ` ∆1,Λ,∆′
2

π(τ8) : r

Γ,Π ` A1, . . . ,Ai−1,Λ, Ai+1, . . . ,An
ρu

Γ,Π ` Aτ(1), . . . ,Aτ(n−1),Λ
π(τ9) : r

where ∆1 ≡ A1, . . . ,Ai−1 and ∆2 ≡ Ai+1, . . . ,An.

The permutation τ8 need not be applied if ∆′
2 = ε, Λ = ε or ∆′

2 = Λ.

Remark: Ai is not a principal formula of ρu.

E. the last rule of ϕl′ is an arbitrary binary rule, hence either the cut-formula
ancestor comes from the left premise of ρu, i.e. ϕl′ =

(ϕl′l)
Γ′l ` ∆l1 , Ai,∆′

l2

(ϕl′r)
Γ′r ` ∆′

r

Γl,Γr ` ∆l1 , Ai,∆l2 ,∆r
ρb

3.3 Rank Reduction 19

which transforms to

(ϕl′l)
Γ′l ` ∆l1 ,Ai,∆′

l2

Γ′l ` ∆l1 ,∆
′
l2
,Ai

π(τ10) : r (ϕr)
Ai,Π ` Λ

Γ′l,Π ` ∆l1 ,∆
′
l2
,Λ

cut

Γ′l,Π ` ∆l1 ,Λ,∆
′
l2

π(τ11) : r (ϕl′r)
Γ′r ` ∆′

r

Γl,Π,Γr ` ∆l1 ,Λ,∆l2 ,∆r
ρb

Γl,Γr,Π ` A1, . . . ,Ai−1,Λ, Ai+1, . . . ,An
π(τ12) : l

Γl,Γr,Π ` Aτ(1), . . . ,Aτ(n−1),Λ
π(τ13) : r

where Γ ≡ Γl,Γr and ∆l1 ≡ A1, . . . ,Ai−1 and ∆l2 ,∆r ≡ Ai+1, . . . ,An.

The permutation τ11 need not be applied if ∆′
l2

= ε, Λ = ε or ∆′
l2

= Λ.

Or the cut-formula ancestor comes from the right premise of ρb, i.e. ϕl′ =

(ϕl′l)
Γ′l ` ∆′

l

(ϕl′r)
Γ′r ` ∆r1 , Ai,∆′

r2

Γl,Γr ` ∆l,∆r1 , Ai,∆r2

ρb

which is symmetric to the previous case.

Remark: Ai is not a principal formula of ρb.

b) permutation on the left is the last rule of ϕr: symmetric to 5a.

6. the last rule of

a) ϕl is an arbitrary unary rule
on the left:

(ϕl′)
Γ′ ` ∆′, A

Γ ` ∆,A
ρu : l (ϕr)

A,Π ` Λ
Γ,Π ` ∆,Λ cut

which transforms to

(ϕl′)
Γ′ ` ∆′,A

(ϕr)
A,Π ` Λ

Γ′,Π ` ∆′,Λ
cut

Γ,Π ` ∆,Λ
ρu : l

b) ϕr is an arbitrary unary rule
on the right:

(ϕl)
Γ ` ∆,A

(ϕr′)
A,Π′ ` Λ′

A,Π ` Λ
ρu : r

Γ,Π ` ∆,Λ cut

which transforms to

(ϕl)
Γ ` ∆,A

(ϕr′)
A,Π′ ` Λ′

Γ,Π′ ` ∆,Λ′ cut

Γ,Π ` ∆,Λ
ρu : r

The parameters of ρu need to be adjusted in case of a contraction where for every formula
of Π (for a contraction on the left) resp. ∆ (for a contraction on the right) a 1 must be
added to the appropriate side of the argument and in case of a permutation on the right
where the permutation has to be shifted by the number of formulas of ∆. Note that the
parameter of a permutation on the left need not be modified since in cyclic representation
identities at the end are not expressed.

Remark: ρu does not operate on the cut-formula.

20 Chapter 3: STANDARD CUT-ELIMINATION METHODS

c) ϕl is an arbitrary binary rule on the left:

(ϕll)
Γ′l ` ∆′

l

(ϕlr)
Γ′r ` ∆′

r, A

Γl,Γr ` ∆l,∆r,A
ρb : l (ϕr)

A,Π ` Λ
Γl,Γr,Π ` ∆l,∆r,Λ

cut

which transforms to

(ϕll)
Γ′l ` ∆′

l

(ϕlr)
Γ′r ` ∆′

r,A
(ϕr)

A,Π ` Λ
Γ′r,Π ` ∆′

r,Λ
cut

Γ′r,Π ` Λ,∆′
r

π(τ1) : r

Γl,Γr,Π ` ∆l,Λ,∆r
ρb : l

Γl,Γr,Π ` ∆l,∆r,Λ
π(τ2) : r

Both permutation rule inferences may be omitted if ∆′
r contains no auxiliary formula

of ρb : l (the consequent of the right premise of ρb : l has to be thought adjusted
then). Either of the permutation rule inferences may be omitted if they have no
effect. Which is for the permutation τ1 the case if Λ = ε, ∆′

r = ε or Λ = ∆′
r and for

the permutation τ2 if Λ = ε, ∆r = ε or Λ = ∆r.

d) ϕr is an arbitrary binary rule on the right:

(ϕl)
Γ ` ∆,A

(ϕrl
)

A,Π′
l ` Λ′

l

(ϕrr)
Π′

r ` Λ′
r

A,Πl,Πr ` Λl,Λr
ρb : r

Γ,Πl,Πr ` ∆,Λl,Λr
cut

which transforms to

(ϕl)
Γ ` ∆,A

(ϕrl
)

A,Π′
l ` Λ′

l

Γ,Π′
l ` ∆,Λ′

l

cut

Π′
l,Γ ` ∆,Λ′

l

π(τ1) : l (ϕrr)
Π′

r ` Λ′
r

Πl,Γ,Πr ` ∆,Λl,Λr
ρb : r

Γ,Πl,Πr ` ∆,Λl,Λr
π(τ2) : l

Both permutation rule inferences may be omitted if Π′
l contains no auxiliary formula

of ρb : r (the antecedent of the left premise of ρb : r has to be thought adjusted then).
Either of the permutation rule inferences may be omitted if they have no effect.
Which is for the permutation τ1 the case if Γ = ε, Π′

l = ε or Γ = Π′
l and for the

permutation τ2 if Γ = ε, Πl = ε or Γ = Πl.

Remark: ρb does not operate on the cut-formula.

CHAPTER 4
Cut-Elimination by Resolution

Cut-elimination by resolution (CERES) is a proof transformation method invented by Baaz and
Leitsch (for the foundations see Baaz and Leitsch 2000, Baaz and Leitsch 2006). Which serves
the purpose to transform arbitrary LK-proofs (possibly) containing cuts of arbitrary complexity
into a cut-free LK-proof of the same theorem by means of the resolution principle. Since the
method permits the use of atomic sequents as axioms it is in general only possible to obtain a
proof still containing atomic cuts. But because of the negligible mathematical importance of
these cuts this is a compromise worth taking.

CERES is more than just a transformation method; it also analyzes the proofs and detects
certain redundancies; information that flows in at certain steps of the transformation process
and has a big influence on the generated cut-free proof. In addition CERES should not be
understood as kind of proof normalization method like intended by e.g. Gentzen’s method.
Quite contrary, CERES is not looking for unique or certain proofs. On the contrary, only the
variety of possibilities offered during proof transformation allows some interesting experiments
such as those performed by the system CERES in chapter 8. The ability to use all kinds of
resolution refinements plays a central role here.

Because of the close connection between the calculi LK and R within CERES no one should
be amazed that the definitions of these calculi (recall definitions 2.8 and 2.16) show many
parallelisms. Especially the definition of the resolution calculus R has been designed to be very
compatible with LK. Inference rules in R not making use of unification are already isomorphic
to certain LK-rules. This design feature will become extra conspicuous in chapter 5.

Another big advantage of CERES is its robustness regarding the concrete definition of the LK-
rules. A fact that will be pointed out many times within this thesis.

Within this chapter we will first introduce the cut-elimination method itself additionally to some
concepts facilitating the proof transformation, which are of big use even outside this context.
Followed by a demonstration of the method applied to some introductory examples. Some special
cases will even point out some characteristics and properties of the method not obvious at first
glance. Finally a comparison with the cut-elimination methods of Gentzen and Schütte-Tait
will be performed.

4.1 The Method

In contrast to the traditional cut-elimination methods of chapter 3 which are based on local
operations CERES transforms the entire LK-proof to its cut-free variant at once. Therefore no

22 Chapter 4: CUT-ELIMINATION BY RESOLUTION

reduction rules exist in CERES which applied one by one perform the whole transformation.

The individual steps of CERES are subdivided as follows:

Starting point is an LK-proof ψ with a closed end-sequent S (i.e. S contains no free variables),
then

1. skolemization of ψ gives ϕ = ψSK in case the end-sequent contains strong quantifiers
otherwise ϕ = ψ,

2. extract the characteristic clause term Θ(ϕ) of ϕ,

3. compute the characteristic clause set CL(ϕ) = |Θ(ϕ) | of ϕ,

4. refute CL(ϕ) by a resolution refutation γ (which has to be regular),

5. combine the most general unifiers of γ to a global m.g.u., self-application yields δ (of which
all unifiers are id now),

6. build the proof projection schemes ϕ(C) for any clause C ∈ CL(ϕ) of which an instance
occurs as initial clause in δ,

7. generate the concrete instantiations of every proof projection scheme as required by δ,

8. transform δ concatenating the proof projection instances to a cut-free LK-proof ϕ(δ)
(containing only atomic cuts).

Skolemization of ϕ is needed in case the end-sequent contains strong quantifiers since:

• resolution does not distinguish between variables bound by strong and weak quantifiers in
ϕ (clauses can always be thought of as universal lemmas) and

• eigenvariable conditions could be violated by skipping rules of ϕ during generation of proof
projection schemes.

Some remarks on proof skolemization: skolemization of a proof means replacing all variables
bound by occurrences of strong quantifiers within the end-sequent by Skolem functions after
dropping these quantifiers and propagating the changes upwards in the proof (see e.g. Andrews
1971). Details regarding skolemization and de-skolemization can also be found here (Baaz and
Leitsch 1994).

Important for understanding is that cut-formulas cannot be skolemized, e.g. think of the cut

Γ ` ∆, (∀x)(∃y)A(x, y) (∀x)(∃y)A(x, y),Π ` Λ
Γ,Π ` ∆,Λ cut

which would yield two different skolemizations. The cut-formula occurrence in the left premise
becomes (∃y)A(c, y) and the cut-formula occurrence in the right premise becomes (∀x)A(x, f(x)).
Which does not coincide with the semantic of the cut rule since

` (∀x)A(x, f(x)) ⊃ (∃y)A(c, y)

but more importantly
0 (∃y)A(c, y) ⊃ (∀x)A(x, f(x))

4.1 The Method 23

First, we need to define our main tool. As mentioned earlier the following structure is not
only an auxiliary means to an end, moreover it is a symbolic and abstract representation of the
clauses and the underlying proof as an extensional algebraic object. As we will see these clause
terms remember the ontogenesis of a set of clauses.

Definition 4.1 (clause term). Clause terms are defined inductively in the following way:

1. (Finite) sets of clauses are clause terms.

2. If X and Y are clause terms, then X ⊕ Y and X ⊗ Y are clause terms.

We will use this structure to build up an abstract binary tree representation of the underlying
LK-proof. Taking those subsequents of the original initial sequents which contain all ancestors
of cut-formula occurrences as leaf nodes, which then get connected in the same way as the
binary rule inferences (unary rule inferences are neglected) connect them in the LK-proof.
More formally this is done by the following algorithm.

Definition 4.2 (characteristic clause term). Let ϕ be an LK-proof and let Ω be the set of
all occurrences of cut-formulas in ϕ. The characteristic clause term Θ(ϕ) is defined inductively
as follows.

For every proof node ν in ϕ either:

1. ν is the occurrence of an axiom in ϕ, then the characteristic clause term of ϕ at the proof
node ν corresponds to its subsequent consisting of all formulas which are ancestors of an
occurrence in Ω, i.e.

Θ(ϕ.ν) = { ν(Ω) }.

2. ν is the immediate successor of the proof node µ at a unary inference rule ρu application
within ϕ, i.e. a unary rule ρu applied to µ gives ν. Then we simply define

Θ(ϕ.ν) = Θ(ϕ.µ).

3. ν is the immediate successor of the proof nodes µl and µr at a binary inference rule
application ρb within ϕ, i.e. a binary rule ρb applied to µl and µr gives ν. Then we
distinguish between:

a) All of the auxiliary and principal formulas of ρb are ancestors of Ω, i.e. the auxiliary
formulas occur in µl(Ω) respectively µr(Ω) and the principal formulas occur in ν(Ω).
Then

Θ(ϕ.ν) = Θ(ϕ.µl)⊕Θ(ϕ.µr).

b) None of the auxiliary and principal formulas of ρb is an ancestor of Ω, i.e. the auxiliary
formulas occur in µl(Ω) respectively µr(Ω) and the principal formulas occur in ν(Ω).
Then

Θ(ϕ.ν) = Θ(ϕ.µl)⊗Θ(ϕ.µr).

Finally, the characteristic clause term Θ(ϕ) of ϕ is defined as Θ(ϕ.ν) where ν is the root node
of ϕ.

24 Chapter 4: CUT-ELIMINATION BY RESOLUTION

Note that in the LK-calculus used (see definition 2.8) either all auxiliary and principal formulas
of binary rule inferences are ancestors of cut-formulas or none of them. Easy to see since all
binary rules are single conclusion rules.

Definition 4.3. Let X,Y be clause terms. We define a mapping | | from clause terms to sets
of clauses as follows.

| C | = C for sets of clauses C,
|X ⊕ Y | = |X | ∪ |Y |,
|X ⊗ Y | = |X | × |Y |,

where

{Γ1 ` ∆1, . . . ,Γn ` ∆n } × {Π1 ` Λ1, . . . ,Πm ` Λm } =
{Γi,Πj ` ∆i,Λj | 1 ≤ i ≤ n, 1 ≤ j ≤ m }.

Two clause terms X and Y are equivalent iff the corresponding sets of clauses are equal, i.e.

X ∼ Y ⇔ |X | = |Y |.

This mapping allows the dissolution of the algebraic structure to a pure clause set which enables
further processing with well known tools and making it also easier to define a simple notion for
the equality of clause terms.

Definition 4.4 (characteristic clause set). Let ϕ be an LK-proof and Θ(ϕ) be the charac-
teristic clause term of ϕ. Then the characteristic clause set CL(ϕ) of ϕ is given by

CL(ϕ) = |Θ(ϕ) |.

Remark 4.1. If ϕ is a cut-free LK-proof then there are no occurrences of cut-formulas in ϕ
hence CL(ϕ) = { ` }.

The following important property of characteristic clause sets is motivated by the thought that
starting with exactly the material of an LK-proof which forms up the cut-formulas of the proof
and reassembling it structurally in the same way would yield a derivation of the empty sequent
in LK.

Theorem 4.1. Let ϕ be an LK-proof. Then CL(ϕ) is unsatisfiable, i.e. there exists a resolution
refutation of CL(ϕ).

Proof. In Baaz and Leitsch (2000) or Baaz and Leitsch (2006). 2

Since the characteristic clause sets of LK-proofs have this nice property it will be possible to
use the concept of resolution to break down this atomic structures.

By starting at the initial sequents relative to a clause C of the characteristic clause set CL(ϕ)
of an LK-proof ϕ and skipping all inference rule applications in an LK-proof ϕ operating on
ancestors of cut-formula occurrences of ϕ we get an LK-proof ϕ(C) of the form,

(ϕ(C))
Γ,ΓC ` ∆C ,∆

4.1 The Method 25

where Γ ` ∆ is a subsequent of the end-sequent of ϕ and C = ΓC ` ∆C .

Or equally speaking just applying those rules not operating on ancestors of cut-formulas yields
a proof projection scheme of ϕ with respect to C.

Definition 4.5 (proof projection scheme). Let ϕ be an LK-proof and let Ω be the set of
all occurrences of cut-formulas in ϕ. The proof projection scheme ϕ(C) of ϕ with respect to the
clause C ∈ CL(ϕ) is constructed inductively as follows.

For every proof node ν in ϕ and for some clause C ′ either:

1. ν is the occurrence of an axiom S in ϕ, more detailed

ϕ.ν : S : Γ ` ∆

then the proof projection scheme of ϕ at the proof node ν corresponds to the axiom itself
(and perhaps some rearrangements afterwards), i.e. ϕ.ν(C ′) =

Γ ` ∆
Γ′,ΓC′ ` ∆

π(τl) : l

Γ′,ΓC′ ` ∆C′ ,∆′ π(τr) : r

where ν(Ω) : ΓC′ ` ∆C′ and C ′ = ΓC′ ` ∆C′ holds. Furthermore Γ′ results from Γ respec-
tively ∆′ from ∆ by just resecting the formulas occurring within ν(Ω). The permutations
on the respective sides are only necessary if the sequences of formulas Γ and ∆ are not
already in the target sort sequence, which is the case if Γ 6= Γ′,ΓC′ or ∆ 6= ∆C′ ,∆′, and
can be omitted otherwise.

Moving the ancestors of cut-formulas right inside of S ensures that the permutation ex-
pense necessary during the construction of the remaining proof projection scheme can be
minimized.

2. ν is the immediate successor of the proof node µ at a unary inference rule application ρu

within ϕ, i.e.
(ψ)

µ : S′

ν : S
ρu

where ψ denotes the subproof ϕ.µ of ϕ.

Then we distinguish between:

a) All of the auxiliary and principal formulas of ρu are ancestors of Ω, i.e. the auxiliary
formulas occur in µ(Ω) and the principal formulas occur in ν(Ω). Then we leave it
out in the projection scheme by simply not applying it, hence

ϕ.ν(C ′) = ψ(C ′).

b) Some of the auxiliary or principal formulas of ρu are not ancestors of Ω. Then

ψ(C ′)
Π′,Γ,ΓC′ ` ∆C′ ,∆,Λ′

Π,Γ,ΓC′ ` ∆C′ ,∆,Λ
ρ′u

26 Chapter 4: CUT-ELIMINATION BY RESOLUTION

where C ′ = ΓC′ ` ∆C′ . Furthermore Π results from Π′ respectively Λ from Λ′ by
application of ρ′u.

For rules with a single principal formula all of the auxiliary formulas and the principal
formula are not ancestors of Ω. Therefore for a logical unary rule ρu (as defined in
definition 2.8) ρ′u does not differ from ρu.

For rules with multiple principal formulas (in the calculus used the unary structural
rules are concerned) the auxiliary and principal formulas are not solely non-ancestors
of Ω. Thus ρ′u has to be a reduction of ρu to those parts of the auxiliary and principal
formulas that are actually not ancestors of Ω. So all auxiliary formulas of ρ′u occur in
µ(Ω) and all principal formulas of ρ′u occur in ν(Ω). Furthermore the rule parameters
of ρ′u have to be adapted appropriately due to the changed number of auxiliary or
principal formulas and eventually also to the changed number of formulas in the
context.

An exception could arise in case of ρ′u being a permutation rule inference of which
the applied permutation corresponds to the identity after reducing the auxiliary and
principal formulas in the way just mentioned. If this is the case the rule application
of ρ′u can be omitted and ϕ.ν(C ′) = ψ(C ′).

3. ν is the immediate successor of the proof nodes µl and µr at a binary inference rule
application ρb within ϕ, i.e.

(ψl)
µl : Sl

(ψr)
µr : Sr

ν : S
ρb

where ψl and ψr denote the subproofs of ϕ.µl respectively ϕ.µr.

Then we distinguish between:

a) All of the auxiliary and principal formulas of ρb are ancestors of Ω, i.e. the auxiliary
formulas occur in µl(Ω) respectively µr(Ω) and the principal formulas occur in ν(Ω).
Then we distinguish the following cases:

i. C ′ ∈ CL(ψl) and C ′ /∈ CL(ψr): Then the proof projection scheme ϕ.ν(C ′) is
obtained by

ψl(C ′)
Γ,ΓC′ ` ∆C′ ,∆

Π,Γ,ΓC′ ` ∆C′ ,∆ w : l

Γ,Π,ΓC′ ` ∆C′ ,∆
π(τ) : l

Γ,Π,ΓC′ ` ∆C′ ,∆,Λ
w : r

where Sr(Ω) : Π ` Λ. ΓC′ and ∆C′ , such that C ′ = ΓC′ ` ∆C′ , are those parts of
the end-sequent of the proof projection ψl(C ′) which were ancestors of Ω within
the original proof ϕ.

The above weakening rules can be omitted if the corresponding added sequences
of formulas are empty. The permutation rule doesn’t need to be introduced if it
has no effect, which is the case if either Π = ε, Γ = ε or Π = Γ.

In this case the clause C ′ is entirely descended from the left subproof ϕl.

4.1 The Method 27

ii. C ′ /∈ CL(ψl) and C ′ ∈ CL(ψr): Then the proof projection scheme ϕ.ν(C ′) is
obtained by

ψr(C ′)
Π,ΠC′ ` ΛC′ ,Λ

Γ,Π,ΠC′ ` ΛC′ ,Λ w : l

Γ,Π,ΠC′ ` ΛC′ ,Λ,∆
w : r

Γ,Π,ΠC′ ` ΛC′ ,∆,Λ
π(τ) : r

where Sl(Ω) : Γ ` ∆. ΠC′ and ΛC′ , such that C ′ = ΠC′ ` ΛC′ , are those parts of
the end-sequent of the proof projection ψr(C ′) which were ancestors of Ω within
the original proof ϕ.

The above weakening rules can be omitted if the corresponding added sequences
of formulas are empty. The permutation rule doesn’t need to be introduced if it
has no effect, which is the case if either ∆ = ε, Λ = ε or ∆ = Λ.

In this case the clause C ′ is entirely descended from the right subproof ϕr.

iii. C ′ ∈ CL(ψl) and C ′ ∈ CL(ψr): In this case we have the possibility to make a
decision between proceeding in either the left or the right branch of the proof,
since the clause in question descends from both. Choosing the left branch needs
handling as in 3(a)i and choosing the right branch needs handling as in 3(a)ii.

b) None of the auxiliary and principal formulas of ρb is an ancestor of Ω, i.e. the auxiliary
formulas occur in ϕ.µl(Ω) respectively ϕ.µr(Ω) and the principal formulas occur in
ϕ.ν(Ω). Then potentially all possible clause pairs gained from the premises whose
composition yields C ′ would be candidates to proceed further. Hence let

Cp = { (C1, C2) | C1 ◦ C2 = C ′ ∧ C1 ∈ CL(ψl) ∧ C2 ∈ CL(ψr) }

be this set.

After choosing the clause tuple (Cl, Cr), by some strategy, the proof projection scheme
ϕ.ν(C ′) gets constructed as follows:

ψl(Cl)
Πl,Γl,ΓCl

` ∆Cl
,∆l,Λl

ψr(Cr)
Πr,Γr,ΓCr ` ∆Cr ,∆r,Λr

Π,Γl,ΓCl ,Γr,ΓCr ` ∆Cl
,∆l,∆Cr ,∆r,Λ

ρb

Π,Γl,Γr,ΓCl
,ΓCr ` ∆Cl

,∆l,∆Cr ,∆r,Λ
π(τl) : l

Π,Γl,Γr,ΓCl
,ΓCr ` ∆Cl

,∆Cr ,∆l,∆r,Λ
π(τr) : r

where C ′ = ΓCl
,ΓCr ` ∆Cl

,∆Cr . Furthermore Π results from Πl and Πr respectively
Λ from Λl and Λr by application of ρb.

Either of the permutation rule inferences may be omitted if they have no effect.
Which is for the permutation on the left side the case if ΓCl

= ε, Γr = ε or ΓCl
= Γr

and for the permutation on the right side if ∆Cr = ε, ∆l = ε or ∆Cr = ∆l.

Note that in the calculus used (see definition 2.8) either all auxiliary and principal formulas
of binary rule inferences are ancestors of cut-formulas or none of them.

28 Chapter 4: CUT-ELIMINATION BY RESOLUTION

Finally, the proof projections scheme ϕ(C) of ϕ with respect to the clause C is defined as ϕ.ν(C)
where ν is the uppermost node of ϕ of which the root node ν ′ of its associated proof projection
scheme ϕ.ν(C) fulfills the following two properties:

• ν ′(Ω) = C and

• ν ′(Ω) is a subsequent of the end-sequent of ϕ.

The necessary but additional weakening and permutation rule inferences are due to the mul-
tiplicative version of the underlying LK. An additive version of the calculus would have been
advantageous from this perspective but would at the same time entail other major drawbacks
which will among other things be discussed in chapter 7.

Remark 4.2. During formation of the proof projection schemes no eigenvariable conditions may
be violated because on the one hand either there occur no strong quantifiers in the end-sequent
at all or the proof has been skolemized and on the other hand the proof projection schemes are
cut-free hence the subformula property guarantees that no new strong quantifiers (with this new
eigenvariables) could have been introduced.

Definition 4.6 (proof projection instance). Let ϕ be an LK-proof and let ϕ(C) be a proof
projection scheme of ϕ with respect to the clause C ∈ CL(ϕ). Then a proof projection instance
ϕ(C)σ is a concrete instantiation of the proof projection scheme ϕ(C) by the substitution σ of
which the domain is the set of all free variables of ϕ(C) and the range is the set of terms.

The Idea behind this definition is that those formulas of the end-sequent of a proof projection
ϕ(C) of an LK-proof ϕ which are going into the end-sequent of ϕ do not contain any free
variables since it consists only of closed formulas. Therefore an arbitrary instantiation of the
variables of C, which can of course only occur freely in ϕ(C), will be absorbed by the weak
quantifier introductions within the projection scheme — which have to occur if ϕ(C) contains
free variables at all.

Now what remains to be done is to refute the characteristic clause set CL(ϕ) of the LK-proof ϕ
by a regular resolution refutation γ. Combine all most general unifiers to a global most general
unifier of the entire refutation γ and apply it to γ to obtain δ a refutation of CL(ϕ) where all
unifiers are id.

This refutation δ serves as a skeleton of the cut-free variant of ϕ (containing only atomic cuts)
by replacing every leaf node ν in δ which is labelled by a clause C ′ — an instance of a clause
C ∈ CL(ϕ) by the substitution σ — with the appropriate proof projection instance ϕ(C)σ and
all rule inferences of δ are mapped to equivalent rule inferences in LK.

Definition 4.7. Let ϕ be an LK-proof of S and PROJ(ϕ) be the set of all possible proof
projection schemes of ϕ, i.e.

PROJ(ϕ) = {ϕ(C) | C ∈ CL(ϕ) }.

Additionally let δ be a resolution refutation of the characteristic clause set CL(ϕ) of ϕ where
all unifiers are the identity; obtained from a resolution refutation γ by application of a global
most general unifier θ, i.e. δ = γθ. Then the concatenating transformation ϕ(δ) is constructed
inductively by induction on the structure of δ as follows.

For every proof node ν in δ either:

4.1 The Method 29

1. ν is the occurrence of an initial clause C ′ in δ, more detailed

δ.ν : C ′ : ΓC′ ` ∆C′

which transforms to
(ϕ(C)(σθ))

Γ,ΓC′ ` ∆C′ ,∆
ΓC′ ,Γ ` ∆C′ ,∆

π(τl) : l

ΓC′ ,Γ ` ∆,∆C′
π(τr) : r

where ϕ(C)σ is a proof projection instance of a ϕ(C) ∈ PROJ(ϕ) instantiated by the
(matching) substitution σ such that C ′ = Cσ and C ∈ CL(ϕ).Should be Γ = ε, ΓC′ = ε
or Γ = ΓC′ respectively ∆ = ε, ∆C′ = ε or ∆ = ∆C′ then the permutation rule applying
τl resp. τl can be skipped.

2. ν is the immediate successor of the proof node µ at a unary inference rule application ρu

within δ, then δ.ν transforms to

(ϕ(δ.µ))
Π′,Γ ` ∆,Λ′

Π,Γ ` ∆,Λ
ρ′u

where Π results from Π′ respectively Λ from Λ′ by application of ρ′u.

In case ρu is a permutation rule (on the left/right side) in R then ρ′u becomes a permutation
rule (on the left/right side) in LK where the permutations applied have to be extended by
identity permutations for the additional innermost formulas. Otherwise ρu is a factoring
rule (on the left/right side) in R then ρ′u becomes a contraction rule (on the left/right
side) in LK where the argument is a vector of 1s except for the outermost atom formula
where the multiplicity of this atom has to be considered.

3. ν is the immediate successor of the proof nodes µl and µr at a binary inference rule
application ρb within δ, then δ.ν transforms to

(ϕ(δ.µl))
Πl,Γ ` ∆,Λl

(ϕ(δ.µr))
Πr,Γ ` ∆,Λr

Π,Γ ` ∆,Λ
ρ′b

where Π results from Πl and Πr respectively Λ from Λl and Λr by application of ρ′b.

ρ′u becomes a cut rule inference of LK for ρb being a resolution rule of R where the
cut-formula is the formula resolved upon (which is unique since the m.g.u. of ρb is id).

Note, certainly ρb can only be a resolution rule for R but to keep this transformation
algorithm as general as possible (intending future extensions) it is defined this way.

Finally, the transformation ϕ(δ) is defined as taking the transformation after ν, ν being the root
of δ, and applying the following last sequence of LK-inferences (if necessary):

• a permutation on each side to achieve the same order of the formulas as in S,

• a contraction on each side to achieve the same multiplicity of the formulas as in S and

• a weakening on each side to add missing formulas of S.

30 Chapter 4: CUT-ELIMINATION BY RESOLUTION

This last sequence of inferences ensures the syntactical equivalence of the end-sequents of ϕ and
ϕ(δ) — skip them if this is not desired.

“Mission accomplished.” Starting with an LK-proof ϕ of a skolemized and closed end-sequent
S by refuting CL(ϕ) by γ and applying the combined global most general unifier to γ we obtain
δ and finally ϕ(δ) yields an LK-proof ψ of S containing at most atomic cut rule inferences, i.e.
the cut-formulas have logical complexity 0.

Proposition 4.1. CERES also eliminates semantic cuts, i.e. is a cut-elimination method for
LKp.

Proof. In Baaz and Leitsch (2000). 2

Note that the standard methods of cut-elimination (e.g. Gentzen’s method) are not capable of
eliminating semantic cuts.

4.2 Examples

To illustrate the method we will demonstrate some features and specialties of CERES with the
following examples. The first example is kept simple on purpose to facilitate understanding of
the work flow of CERES. The algorithms and definitions are roughly repeated and explained
when used.

Example 4.1. Now, let ϕ be the proof

ϕl ϕr

(∀x)(∀y)(P (x, y) ⊃ Q(x, y)) ` (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y))
cut

where ϕl is

P (u, a)+ ` P (u, a)

` P (u, a),¬P (u, a)+
¬ : r

` ¬P (u, a)+,P (u, a)
π((1 2)) : r

Q(u, a) ` Q(u, a)+

P (u, a) ⊃ Q(u, a) ` ¬P (u, a)+,Q(u, a)+ ⊃ : l

P (u, a) ⊃ Q(u, a) ` ¬P (u, a) ∨Q(u, a)+
∨ : r

(∀y)(P (u, y) ⊃ Q(u, y)) ` ¬P (u, a) ∨Q(u, a)+
∀ : l

(∀x)(∀y)(P (x, y) ⊃ Q(x, y)) ` ¬P (u, a) ∨ Q(u, a)+ ∀ : l

(∀x)(∀y)(P (x, y) ⊃ Q(x, y)) ` (∃y)(¬P (u, y) ∨ Q(u, y))+ ∃ : r

(∀x)(∀y)(P (x, y) ⊃ Q(x, y)) ` (∀x)(∃y)(¬P (x, y) ∨ Q(x, y))+ ∀ : r

4.2 Examples 31

and ϕr is

P (b, v) ` P (b, v)+

¬P (b, v)+,P (b, v) `
¬ : l

P (b, v),¬P (b, v)+ `
π((1 2)) : l

¬P (b, v)+ ` ¬P (b, v)
¬ : r

Q(b, v)+ ` Q(b, v)

¬Q(b, v),Q(b, v)+ `
¬ : l

Q(b, v)+,¬Q(b, v) `
π((1 2)) : l

¬P (b, v) ∨ Q(b, v)+,¬Q(b, v) ` ¬P (b, v)
∨ : l

¬Q(b, v),¬P (b, v) ∨Q(b, v)+ ` ¬P (b, v)
π((1 2)) : l

¬P (b, v) ∨Q(b, v)+ ` ¬Q(b, v) ⊃ ¬P (b, v)
⊃ : r

¬P (b, v) ∨Q(b, v)+ ` (∃y)(¬Q(b, y) ⊃ ¬P (b, y))
∃ : r

¬P (b, v) ∨ Q(b, v)+ ` (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y))
∃ : r

(∃y)(¬P (b, y) ∨ Q(b, y))+ ` (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y))
∃ : l

(∀x)(∃y)(¬P (x, y) ∨ Q(x, y))+ ` (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y))
∀ : l

The extraction of the characteristic clause term happens top down starting with those parts
of the initial sequents that are marked as ancestors of cut-formulas (by crosses) which are now
interpreted as sets. At every occurrence of a binary rule the two clause terms resulting from the
premises are connected by a binary operator. Depending whether the auxiliary formulas of the
inference were ancestors of cut-formulas or not the operator will either be ⊕ or ⊗. All unary
inference rules have no influence on the clause term and hence it remains unchanged.

For the example this yields the following characteristic clause term

Θ(ϕ) = (({P (u, a) ` } ⊗ {` Q(u, a) })⊕ ({ ` P (b, v) } ⊕ {Q(b, v) ` }))

which characterizes those parts of the axiom sequents which have been used to derive the cut-
formula (on both sides).

The operator ⊕ of the clause term is interpreted as union and the operator ⊗ as merge, i.e. the
antecedents and consequent parts of different sequents are exchanged such that only one part is
exchanged at once.

Hence by evaluation of Θ(ϕ) for the characteristic clause set |Θ(ϕ) | of ϕ we obtain

CL(ϕ) = { ` P (b, v), (C1)
P (u, a) ` Q(u, a), (C2)
Q(b, v) `}. (C3)

The characteristic clause set of an LK-proof is always unsatisfiable. Therefore one can always
find a resolution refutation of the characteristic clause set.

In particular, we define a resolution refutation γ of CL(ϕ):

` P (b, v) P (u, a) ` Q(u, a)
` Q(b, a)

r(σ)
Q(b, v) `

` r(σ)

32 Chapter 4: CUT-ELIMINATION BY RESOLUTION

and a corresponding (ground) refutation δ of γ, i.e. δ = γσ:

` P (b, a) P (b, a) ` Q(b, a)
` Q(b, a)

r(id)
Q(b, a) `

` r(id)

with the (ground) substitution σ = {u 7→ b, v 7→ a }.

Now we have to reduce ϕ to proof projection schemes of the clauses used as initial clauses in
the resolution refutation of CL(ϕ). A proof projection scheme of ϕ w.r.t. a clause C ∈ CL(ϕ) is
defined by skipping all inferences going into cuts, which leads to a cut-free proof of (a subsequent
of) the end-sequent extended by C.

Again, we start at the initial sequents (without those parts marked as ancestors of cut-formulas
and not necessary for the creation of the clause in question) and apply all inference rules not
operating on ancestors of cut-formulas until all such binary rules have been applied and a
subsequent of the end-sequent has been composed.

The proof projection scheme ϕ(C1) of ϕ corresponding to the clause C1 is:

P (b, v) ` P (b, v)
` P (b, v),¬P (b, v)

¬ : r

¬Q(b, v) ` P (b, v),¬P (b, v) w : l

` P (b, v),¬Q(b, v) ⊃ ¬P (b, v)
⊃ : r

` P (b, v), (∃y)(¬Q(b, y) ⊃ ¬P (b, y)) ∃ : r

` P (b, v), (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y)) ∃ : r

and let χ1 = ϕ(C1)σ be a proof projection instance.

The proof projection scheme ϕ(C2) of ϕ corresponding to the clause C2 is:

P (u, a) ` P (u, a) Q(u, a) ` Q(u, a)
P (u, a) ⊃ Q(u, a), P (u, a) ` Q(u, a) ⊃ : l

(∀y)(P (u, y) ⊃ Q(u, y)), P (u, a) ` Q(u, a) ∀ : l

(∀x)(∀y)(P (x, y) ⊃ Q(x, y)), P (u, a) ` Q(u, a) ∀ : l

and let χ2 = ϕ(C2)σ be a proof projection instance.

The proof projection scheme ϕ(C3) of ϕ corresponding to the clause C3 is:

Q(b, v) ` Q(b, v)
¬Q(b, v), Q(b, v) ` ¬ : l

¬Q(b, v), Q(b, v) ` ¬P (b, v)
w : r

Q(b, v) ` ¬Q(b, v) ⊃ ¬P (b, v)
⊃ : r

Q(b, v) ` (∃y)(¬Q(b, y) ⊃ ¬P (b, y)) ∃ : r

Q(b, v) ` (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y)) ∃ : r

and let χ3 = ϕ(C3)σ be a proof projection instance.

4.2 Examples 33

Finally the proof projection instances can be composed to a cut-free proof of ϕ, i.e. a proof of
ϕ containing only atomic cuts, using its resolution refutation δ as a skeleton.

(χ1)
` P (b, a),Y
` Y ,P (b, a)

π((1 2)) : r

(χ2)
X,P (b, a) ` Q(b, a)
P (b, a), X ` Q(b, a)

π((1 2)) : l

X ` Y,Q(b, a)
cut (χ3)

Q(b, a) ` Y
X ` Y ,Y

cut

X ` Y c(2) : r

where X = (∀x)(∀y)(P (x, y) ⊃ Q(x, y)) and Y = (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y)).

The following example demonstrates the necessary changes caused by a slightly modified end-
sequent requiring skolemization.

Example 4.2. Let ψ be the proof

ψl ψr

(∀x)((∀y)P (x, y) ⊃ (∃y)Q(x, y)) ` (∀x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y))
cut

with the proof parts ψl:

P (u, v) ` P (u, v)
` P (u, v),¬P (u, v)

¬ : r

` P (u, v),¬P (u, v),Q(u, v)
w : r

` P (u, v),¬P (u, v) ∨ Q(u, v)
∨ : r

` P (u, v), (∃y)(¬P (u, y) ∨ Q(u, y))
∃ : r

` (∃y)(¬P (u, y) ∨Q(u, y)),P (u, v)
π((1 2)) : r

` (∃y)(¬P (u, y) ∨Q(u, y)), (∀y)P (u, y)
∀ : r

Q(u, v) ` Q(u, v)
Q(u, v) ` Q(u, v),¬P (u, v)

w : r

Q(u, v) ` ¬P (u, v),Q(u, v)
π((1 2)) : r

Q(u, v) ` ¬P (u, v) ∨ Q(u, v)
∨ : r

Q(u, v) ` (∃y)(¬P (u, y) ∨Q(u, y)) ∃ : r

(∃y)Q(u, y) ` (∃y)(¬P (u, y) ∨Q(u, y)) ∃ : l

(∀y)P (u, y) ⊃ (∃y)Q(u, y) ` (∃y)(¬P (u, y) ∨ Q(u, y)), (∃y)(¬P (u, y) ∨ Q(u, y))
⊃ : l

(∀y)P (u, y) ⊃ (∃y)Q(u, y) ` (∃y)(¬P (u, y) ∨Q(u, y))
c(2) : r

(∀x)((∀y)P (x, y) ⊃ (∃y)Q(x, y)) ` (∃y)(¬P (u, y) ∨ Q(u, y))
∀ : l

(∀x)((∀y)P (x, y) ⊃ (∃y)Q(x, y)) ` (∀x)(∃y)(¬P (x, y) ∨ Q(x, y))
∀ : r

34 Chapter 4: CUT-ELIMINATION BY RESOLUTION

and ψr:

P (u, v) ` P (u, v)
¬P (u, v),P (u, v) ` ¬ : l

P (u, v),¬P (u, v) ` π((1 2)) : l

¬P (u, v) ` ¬P (u, v)
¬ : r

Q(u, v) ` Q(u, v)
¬Q(u, v),Q(u, v) ` ¬ : l

Q(u, v),¬Q(u, v) ` π((1 2)) : l

¬P (u, v) ∨ Q(u, v),¬Q(u, v) ` ¬P (u, v) ∨ : l

¬Q(u, v),¬P (u, v) ∨Q(u, v) ` ¬P (u, v)
π((1 2)) : l

¬P (u, v) ∨Q(u, v) ` ¬Q(u, v) ⊃ ¬P (u, v)
⊃ : r

¬P (u, v) ∨ Q(u, v) ` (∃y)(¬Q(u, y) ⊃ ¬P (u, y)) ∃ : r

(∃y)(¬P (u, y) ∨ Q(u, y)) ` (∃y)(¬Q(u, y) ⊃ ¬P (u, y)) ∃ : l

(∀x)(∃y)(¬P (x, y) ∨Q(x, y)) ` (∃y)(¬Q(u, y) ⊃ ¬P (u, y)) ∀ : l

(∀x)(∃y)(¬P (x, y) ∨ Q(x, y)) ` (∀x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y)) ∀ : r

Three strong quantifiers occurring in the end-sequent, obviously force this particular proof to
be skolemized. The skolemized variant of ψ is called ψSK.

Now, ψSK results to be the proof

ψSKl ψSKr

(∀x)(P (x, f(x)) ⊃ Q(x, g(x))) ` (∃y)(¬Q(c, y) ⊃ ¬P (c, y))
cut

with the skolemized proof parts ψSKl :

P (u, f(u)) ` P (u, f(u))
` P (u, f(u)),¬P (u, f(u))

¬ : r

` P (u, f(u)),¬P (u, f(u)),Q(u, f(u))
w : r

` P (u, f(u)),¬P (u, f(u)) ∨ Q(u, f(u))
∨ : r

` P (u, f(u)), (∃y)(¬P (u, y) ∨ Q(u, y))
∃ : r

` (∃y)(¬P (u, y) ∨Q(u, y)),P (u, f(u))
π((1 2)) : r

Q(u, g(u)) ` Q(u, g(u))
Q(u, g(u)) ` Q(u, g(u)),¬P (u, g(u))

w : r

Q(u, g(u)) ` ¬P (u, g(u)),Q(u, g(u))
π((1 2)) : r

Q(u, g(u)) ` ¬P (u, g(u)) ∨ Q(u, g(u))
∨ : r

Q(u, g(u)) ` (∃y)(¬P (u, y) ∨Q(u, y)) ∃ : r

P (u, f(u)) ⊃ Q(u, g(u)) ` (∃y)(¬P (u, y) ∨ Q(u, y)), (∃y)(¬P (u, y) ∨ Q(u, y))
⊃ : l

P (u, f(u)) ⊃ Q(u, g(u)) ` (∃y)(¬P (u, y) ∨Q(u, y))
c(2) : r

(∀x)(P (x, f(x)) ⊃ Q(x, g(x))) ` (∃y)(¬P (u, y) ∨ Q(u, y))
∀ : l

(∀x)(P (x, f(x)) ⊃ Q(x, g(x))) ` (∀x)(∃y)(¬P (x, y) ∨ Q(x, y))
∀ : r

4.2 Examples 35

and ψSKr :

P (c, v) ` P (c, v)
¬P (c, v),P (c, v) ` ¬ : l

P (c, v),¬P (c, v) ` π((1 2)) : l

¬P (c, v) ` ¬P (c, v)
¬ : r

Q(c, v) ` Q(c, v)
¬Q(c, v),Q(c, v) ` ¬ : l

Q(c, v),¬Q(c, v) ` π((1 2)) : l

¬P (c, v) ∨ Q(c, v),¬Q(c, v) ` ¬P (c, v) ∨ : l

¬Q(c, v),¬P (c, v) ∨Q(c, v) ` ¬P (c, v)
π((1 2)) : l

¬P (c, v) ∨Q(c, v) ` ¬Q(c, v) ⊃ ¬P (c, v)
⊃ : r

¬P (c, v) ∨ Q(c, v) ` (∃y)(¬Q(c, y) ⊃ ¬P (c, y)) ∃ : r

(∃y)(¬P (c, y) ∨ Q(c, y)) ` (∃y)(¬Q(c, y) ⊃ ¬P (c, y)) ∃ : l

(∀x)(∃y)(¬P (x, y) ∨ Q(x, y)) ` (∃y)(¬Q(c, y) ⊃ ¬P (c, y)) ∀ : l

Construction of the characteristic clause term of ψSK,

Θ(ψSK) = (({P (u, f(u)) ` } ⊗ {` Q(u, g(u)) })⊕ ({ ` P (c, v) } ⊕ {Q(c, v) ` }))

and computation of the associated characteristic clause set

CL(ψSK) = { ` P (c, v), (C1)
P (u, f(u)) ` Q(u, g(u)), (C2)
Q(c, v) `}. (C3)

yields, afterwards, a resolution refutation γ of CL(ψSK):

` P (c, v) P (u, f(u)) ` Q(u, g(u))
` Q(c, g(c))

r(θ)
Q(c, v′) `

` r(θ)

and a corresponding (ground) refutation δ of γ, i.e. δ = γθ:

` P (c, f(c)) P (c, f(c)) ` Q(c, g(c))
` Q(c, g(c))

r(id)
Q(c, g(c)) `

` r(id)

with the (ground) substitution θ = {u 7→ c, v 7→ f(c), v′ 7→ g(c) }.

The proof projection scheme ψSK(C1) of ψSK corresponding to the clause C1 is:

P (c, v) ` P (c, v)
` P (c, v),¬P (c, v)

¬ : r

¬Q(c, v) ` P (c, v),¬P (c, v) w : l

` P (c, v),¬Q(c, v) ⊃ ¬P (c, v)
⊃ : r

` P (c, v), (∃y)(¬Q(c, y) ⊃ ¬P (c, y)) ∃ : r

36 Chapter 4: CUT-ELIMINATION BY RESOLUTION

and let χ1 = ψSK(C1)θ be a proof projection instance.

The proof projection scheme ψSK(C2) of ψSK corresponding to the clause C2 is:

P (u, f(u)) ` P (u, f(u)) Q(u, g(u)) ` Q(u, g(u))
P (u, f(u)) ⊃ Q(u, g(u)), P (u, f(u)) ` Q(u, g(u)) ⊃ : l

(∀x)(P (x, f(x)) ⊃ Q(x, g(x))), P (u, f(u)) ` Q(u, g(u)) ∀ : l

and let χ2 = ψSK(C2)θ be a proof projection instance.

The proof projection scheme ψSK(C3) of ψSK corresponding to the clause C3 is:

Q(c, v) ` Q(c, v)
¬Q(c, v), Q(c, v) ` ¬ : l

¬Q(c, v), Q(c, v) ` ¬P (c, v)
w : r

Q(c, v) ` ¬Q(c, v) ⊃ ¬P (c, v)
⊃ : r

Q(c, v) ` (∃y)(¬Q(c, y) ⊃ ¬P (c, y)) ∃ : r

and let χ3 = ψSK(C3)({ v 7→ v′ }θ) be a proof projection instance.

Finally the proof projection instances can be composed to a cut-free proof of ψSK, i.e. a proof
of ψSK containing only atomic cuts, using its resolution refutation δ as a skeleton.

(χ1)
` P (c, f(c)), Y
` Y, P (c, f(c))

π((1 2)) : r

(χ2)
X,P (c, f(c)) ` Q(c, g(c))
P (c, f(c)), X ` Q(c, g(c))

π((1 2)) : l

X ` Y,Q(c, g(c))
cut (χ3)

Q(c, g(c)) ` Y
X ` Y, Y cut

X ` Y c(2) : r

where X = (∀x)(P (x, f(x)) ⊃ Q(x, g(x))) and Y = (∃y)(¬Q(c, y) ⊃ ¬P (c, y)).

Last but not least, an interesting though simple example showing the behavior of the method
CERES in case of an extended axiom set. Let us assume that the next example uses the standard
axiom set ALK of LK allowing arbitrary context in each axiom. This extended axiom set in
conjunction with skolemization leads to an increased effort or overhead of some parts of the
cut-elimination transformation.

Example 4.3. Let ψ′ be the proof

ψ′l ψ′r
(∀x)((∀y)P (x, y) ⊃ (∃y)Q(x, y)) ` (∀x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y))

cut

4.2 Examples 37

with the proof parts ψ′l:

P (u, v) ` P (u, v), Q(u, v)
` P (u, v),Q(u, v),¬P (u, v)

¬ : r

` P (u, v),¬P (u, v),Q(u, v)
π((2 3)) : r

` P (u, v),¬P (u, v) ∨ Q(u, v)
∨ : r

` P (u, v), (∃y)(¬P (u, y) ∨ Q(u, y))
∃ : r

` (∃y)(¬P (u, y) ∨Q(u, y)),P (u, v)
π((1 2)) : r

` (∃y)(¬P (u, y) ∨Q(u, y)), (∀y)P (u, y)
∀ : r

P (u, v), Q(u, v) ` Q(u, v)
Q(u, v) ` Q(u, v),¬P (u, v)

¬ : r

Q(u, v) ` ¬P (u, v),Q(u, v)
π((1 2)) : r

Q(u, v) ` ¬P (u, v) ∨ Q(u, v)
∨ : r

Q(u, v) ` (∃y)(¬P (u, y) ∨Q(u, y)) ∃ : r

(∃y)Q(u, y) ` (∃y)(¬P (u, y) ∨Q(u, y)) ∃ : l

(∀y)P (u, y) ⊃ (∃y)Q(u, y) ` (∃y)(¬P (u, y) ∨ Q(u, y)), (∃y)(¬P (u, y) ∨ Q(u, y))
⊃ : l

(∀y)P (u, y) ⊃ (∃y)Q(u, y) ` (∃y)(¬P (u, y) ∨Q(u, y))
c(2) : r

(∀x)((∀y)P (x, y) ⊃ (∃y)Q(x, y)) ` (∃y)(¬P (u, y) ∨ Q(u, y))
∀ : l

(∀x)((∀y)P (x, y) ⊃ (∃y)Q(x, y)) ` (∀x)(∃y)(¬P (x, y) ∨ Q(x, y))
∀ : r

and ψ′r:

P (u, v) ` P (u, v)
¬P (u, v),P (u, v) ` ¬ : l

P (u, v),¬P (u, v) ` π((1 2)) : l

¬P (u, v) ` ¬P (u, v)
¬ : r

Q(u, v) ` Q(u, v)
¬Q(u, v),Q(u, v) ` ¬ : l

Q(u, v),¬Q(u, v) ` π((1 2)) : l

¬P (u, v) ∨ Q(u, v),¬Q(u, v) ` ¬P (u, v) ∨ : l

¬Q(u, v),¬P (u, v) ∨Q(u, v) ` ¬P (u, v)
π((1 2)) : l

¬P (u, v) ∨Q(u, v) ` ¬Q(u, v) ⊃ ¬P (u, v)
⊃ : r

¬P (u, v) ∨ Q(u, v) ` (∃y)(¬Q(u, y) ⊃ ¬P (u, y)) ∃ : r

(∃y)(¬P (u, y) ∨ Q(u, y)) ` (∃y)(¬Q(u, y) ⊃ ¬P (u, y)) ∃ : l

(∀x)(∃y)(¬P (x, y) ∨Q(x, y)) ` (∃y)(¬Q(u, y) ⊃ ¬P (u, y)) ∀ : l

(∀x)(∃y)(¬P (x, y) ∨ Q(x, y)) ` (∀x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y)) ∀ : r

Again, the proof ψ′ has to be skolemized, yielding the proof ψ′SK:

ψ′SKl ψ′SKr

(∀x)(P (x, f(x)) ⊃ Q(x, g(x))) ` (∃y)(¬Q(c, y) ⊃ ¬P (c, y))
cut

with the proof parts ψ′SKl :

38 Chapter 4: CUT-ELIMINATION BY RESOLUTION

P (u, f(u)) ` P (u, f(u)), Q(u, f(u))
` P (u, f(u)),Q(u, f(u)),¬P (u, f(u))

¬ : r

` P (u, f(u)),¬P (u, f(u)),Q(u, f(u))
π((2 3)) : r

` P (u, f(u)),¬P (u, f(u)) ∨ Q(u, f(u))
∨ : r

` P (u, f(u)), (∃y)(¬P (u, y) ∨ Q(u, y))
∃ : r

` (∃y)(¬P (u, y) ∨Q(u, y)),P (u, f(u))
π((1 2)) : r

P (u, g(u)), Q(u, g(u)) ` Q(u, g(u))
Q(u, g(u)) ` Q(u, g(u)),¬P (u, g(u))

¬ : r

Q(u, g(u)) ` ¬P (u, g(u)),Q(u, g(u))
π((1 2)) : r

Q(u, g(u)) ` ¬P (u, g(u)) ∨ Q(u, g(u))
∨ : r

Q(u, g(u)) ` (∃y)(¬P (u, y) ∨Q(u, y)) ∃ : r

P (u, f(u)) ⊃ Q(u, g(u)) ` (∃y)(¬P (u, y) ∨ Q(u, y)), (∃y)(¬P (u, y) ∨ Q(u, y))
⊃ : l

P (u, f(u)) ⊃ Q(u, g(u)) ` (∃y)(¬P (u, y) ∨Q(u, y))
c(2) : r

(∀x)(P (x, f(x)) ⊃ Q(x, g(x))) ` (∃y)(¬P (u, y) ∨ Q(u, y))
∀ : l

(∀x)(P (x, f(x)) ⊃ Q(x, g(x))) ` (∀x)(∃y)(¬P (x, y) ∨ Q(x, y))
∀ : r

and ψ′SKr :

P (c, v) ` P (c, v)
¬P (c, v),P (c, v) ` ¬ : l

P (c, v),¬P (c, v) ` π((1 2)) : l

¬P (c, v) ` ¬P (c, v)
¬ : r

Q(c, v) ` Q(c, v)
¬Q(c, v),Q(c, v) ` ¬ : l

Q(c, v),¬Q(c, v) ` π((1 2)) : l

¬P (c, v) ∨ Q(c, v),¬Q(c, v) ` ¬P (c, v) ∨ : l

¬Q(c, v),¬P (c, v) ∨Q(c, v) ` ¬P (c, v)
π((1 2)) : l

¬P (c, v) ∨Q(c, v) ` ¬Q(c, v) ⊃ ¬P (c, v)
⊃ : r

¬P (c, v) ∨ Q(c, v) ` (∃y)(¬Q(c, y) ⊃ ¬P (c, y)) ∃ : r

(∃y)(¬P (c, y) ∨ Q(c, y)) ` (∃y)(¬Q(c, y) ⊃ ¬P (c, y)) ∃ : l

(∀x)(∃y)(¬P (x, y) ∨ Q(x, y)) ` (∃y)(¬Q(c, y) ⊃ ¬P (c, y)) ∀ : l

Construction of the characteristic clause term of ψ′SK now yields

Θ(ψ′SK) = (({P (u, f(u)) ` Q(u, f(u)) } ⊗ {P (u, g(u)) ` Q(u, g(u)) })⊕
({ ` P (c, v) } ⊕ {Q(c, v) ` }))

and computation of the associated characteristic clause set results in clauses containing more
literals than in the previous example, which are additionally — thanks to skolemization — not
redundant.

CL(ψ′SK) = { ` P (c, v), (C1)
P (u, f(u)), P (u, g(u)) ` Q(u, f(u)), Q(u, g(u)), (C2)
Q(c, v) `}. (C3)

4.2 Examples 39

Of course, we also obtain a more complex resolution refutation γ of CL(ψ′SK):

(γ′)
` Q(c, f(c)), Q(c, g(c)) Q(c, v′) `

` Q(c, f(c))
r(θ)

Q(c, v) `
` r(θ)

with γ′ =

` P (c, v′)
` P (c, v) P (u, f(u)), P (u, g(u)) ` Q(u, f(u)), Q(u, g(u))

P (u, g(u)) ` Q(c, f(c)), Q(c, g(c))
r(θ)

` Q(c, f(c)), Q(c, g(c))
r(θ)

and a corresponding (ground) refutation δ of γ, i.e. δ = γθ:

(δ′)
` Q(c, f(c)), Q(c, g(c)) Q(c, g(c)) `

` Q(c, f(c))
r(id)

Q(c, f(c)) `
` r(id)

with δ′ =

` P (c, g(c))
` P (c, f(c)) P (c, f(c)), P (c, g(c)) ` Q(c, f(c)), Q(c, g(c))

P (c, g(c)) ` Q(c, f(c)), Q(c, g(c))
r(id)

` Q(c, f(c)), Q(c, g(c))
r(id)

and with the (ground) substitution θ = {u 7→ c, v 7→ f(c), v′ 7→ g(c) }.

The proof projection scheme ψ′SK(C1) of ψ′SK corresponding to the clause C1 is:

P (c, v) ` P (c, v)
` P (c, v),¬P (c, v)

¬ : r

¬Q(c, v) ` P (c, v),¬P (c, v) w : l

` P (c, v),¬Q(c, v) ⊃ ¬P (c, v)
⊃ : r

` P (c, v), (∃y)(¬Q(c, y) ⊃ ¬P (c, y)) ∃ : r

and let χ1 = ψ′SK(C1)θ and χ′1 = ψ′SK(C1)({ v 7→ v′ }θ) be proof projection instances.

The proof projection scheme ψ′SK(C2) of ψ′SK corresponding to the clause C2 is:

P (u, f(u)) ` P (u, f(u)),Q(u, f(u))
P (u, f(u)) ` Q(u, f(u)),P (u, f(u))

π((1 2)) : r
P (u, g(u)),Q(u, g(u)) ` Q(u, g(u))
Q(u, g(u)), P (u, g(u)) ` Q(u, g(u))

π((1 2)) : l

P (u, f(u)) ⊃ Q(u, g(u)), P (u, f(u)), P (u, g(u)) ` Q(u, f(u)), Q(u, g(u))
⊃ : l

(∀x)(P (x, f(x)) ⊃ Q(x, g(x))), P (u, f(u)), P (u, g(u)) ` Q(u, f(u)), Q(u, g(u)) ∀ : l

and let χ2 = ψ′SK(C2)θ be a proof projection instance.

40 Chapter 4: CUT-ELIMINATION BY RESOLUTION

The proof projection scheme ψ′SK(C3) of ψ′SK corresponding to the clause C3 is:

Q(c, v) ` Q(c, v)
¬Q(c, v), Q(c, v) ` ¬ : l

¬Q(c, v), Q(c, v) ` ¬P (c, v)
w : r

Q(c, v) ` ¬Q(c, v) ⊃ ¬P (c, v)
⊃ : r

Q(c, v) ` (∃y)(¬Q(c, y) ⊃ ¬P (c, y)) ∃ : r

and let χ3 = ψ′SK(C3)θ and χ′3 = ψ′SK(C3)({ v 7→ v′ }θ) be proof projection instances.

Finally the proof projection instances can be composed to a cut-free proof of ψ′SK, i.e. a proof
of ψ′SK containing only atomic cuts, using the resolution refutation δ as a skeleton.

(χ′1)
` P (c, g(c)), Y
` Y, P (c, g(c))

π((1 2)) : r
χ

X ` Y, Y,Q(c, f(c)), Q(c, g(c))
cut (χ′3)

Q(c, g(c)) ` Y
X ` Y, Y,Q(c, f(c)), Y

cut

X ` Y, Y, Y,Q(c, f(c))
π((3 4)) : r (χ3)

Q(c, f(c)) ` Y
X ` Y, Y, Y, Y cut

X ` Y c(4) : r

with χ =

(χ1)
` P (c, f(c)), Y
` Y, P (c, f(c))

π((1 2)) : r

(χ2)
X,P (c, f(c)), P (c, g(c)) ` Q(c, f(c)), Q(c, g(c))
P (c, f(c)), P (c, g(c)), X ` Q(c, f(c)), Q(c, g(c))

π((1 3 2)) : l

P (c, g(c)), X ` Y,Q(c, f(c)), Q(c, g(c))
cut

where X = (∀x)(P (x, f(x)) ⊃ Q(x, g(x))) and Y = (∃y)(¬Q(c, y) ⊃ ¬P (c, y)).

Concluding, one could say: “Keep it simple!” Indeed, simpler axioms yield a simpler charac-
teristic clause set hence also a simpler resolution refutation and even simpler proof projection
schemes and instances. Therefore optimal as far as CERES is concerned would be a reduction
of the number of formulas occurring in every axiom S by means of additional weakenings such
that S is minimal w.r.t. the number of ancestors of cut-formulas occurring within S (and of
course still S ∈ A holds).

4.3 Comparison of Cut-Elimination Methods

Even though the cut-elimination methods presented in chapter 3 and CERES operate differently
some convincing comparisons can be made.

• Extensibility : Without doubt extending CERES to support additional rules or calculi turns
out to be very simple and is feasible in most cases without increasing the complexity and
corrupt the clarity of the method. An example of an extension of CERES by equality can

4.3 Comparison of Cut-Elimination Methods 41

be found in chapter 5 of this thesis, even an extension to many valued logics is possible (see
Baaz and Leitsch 2004). Especially unary rule applications are more or less insignificant
for the method, hence even powerful unary rules like negation normal form transformations
could be supported. On the contrary the rules of the cut-reduction systems are not very
flexible. Slight modifications of the calculus may demand substantial changes.

• Intermediate Results: After each single step of a reduction rule application in Gentzen’s
or Schütte-Tait’s method we obtain an intact and valid LK-proof of the same theorem.
Since CERES eliminates all cuts at once this is not possible, only at the very end, after
back-transformation of the refutation into LK and concatenation with instances of the
proof projection schemes a proof of the original theorem is constructed. A fact that
makes it more complicated to eliminate just a certain cut rule inference from an LK-proof
containing several non-atomic cuts with CERES. Whereas for the cut-reduction systems
presented each cut is algorithmically (more or less) equally hard to eliminate.

• Speed-up Results: CERES has been shown (e.g. in Baaz and Leitsch 2006) to yield non-
elementary speed-ups (the complexity of cut-elimination itself) with respect to other cut-
elimination methods based on reduction systems (as in definition 3.1) like Gentzen’s or
Schütte-Tait’s cut-elimination methods. On the other hand these cut-reduction systems
do not have non-elementary speed-ups with respect to CERES, more precisely the expense
of CERES is just exponentially bounded by them. An important point especially as far as
implementing a cut-elimination system is concerned — be referred to chapter 7 for more
information on this topic.

Remark 4.3. Regarding regularity. The rule based cut-reduction systems need the initial LK-
proof to be regular (more accurate a stronger form of regularity requiring all eigenvariables to be
unique within the proof — fresh variables). This is due to the shifting of rules above quantifier
introduction rules and multiplication of entire proof parts (e.g. at contraction rules).

One could expect that regularity of the proof is not necessary in case of CERES. But this turns
out to be a fallacy since skolemization supposes exactly the same kind of regularity as for the
cut-reduction systems. Hence in general whenever skolemization has to be performed also strong
regularity has to be assured.

Our last example shows a regular proof which cannot be skolemized e.g. with Andrews’ method
(see Andrews 1971).

Example 4.4.

P (u) ` P (u)
P (u) ` P (u), Q(v, u)

w : r

P (u) ` P (u), (∀z)Q(z, u) ∀ : r

` P (u), P (u) ⊃ (∀z)Q(z, u)
⊃ : r

P (u) ` P (u)
Q(v, u), P (u) ` P (u) w : l

Q(v, u) ∧ P (u) ` P (u) ∧ : l
Q(v, u) ` Q(v, u)

(∀z)Q(z, u) ` Q(v, u) ∀ : l

P (u) ⊃ (∀z)Q(z, u), Q(v, u) ∧ P (u) ` Q(v, u) ⊃ : l

Q(v, u) ∧ P (u) ` P (u), Q(v, u)
cut

Q(v, u) ∧ P (u) ` P (u) ∨Q(v, u)
∨ : r

(∀y)(Q(y, u) ∧ P (u)) ` P (u) ∨Q(v, u) ∀ : l

(∀x)(∀y)(Q(y, x) ∧ P (x)) ` P (u) ∨Q(v, u) ∀ : l

(∀x)(∀y)(Q(y, x) ∧ P (x)) ` (∀x)(P (x) ∨Q(v, x)) ∀ : r

(∀x)(∀y)(Q(y, x) ∧ P (x)) ` (∃y)(∀x)(P (x) ∨Q(y, x)) ∃ : r

42 Chapter 4: CUT-ELIMINATION BY RESOLUTION

During skolemization it would be necessary to apply the substitution {u 7→ f(v) } along the
component path of the eigenvariable A, for a Skolem function f . But this would prevent the
introduction of the universal quantifier on the right by violating the eigenvariable condition.

Note that this proof is regular, since all eigenvariables, i.e. u and v, are distinct — even different
variables for free and bound variable occurrences are used.

Hence regularity is not sufficient. Only the use of fresh (new) variables for each eigenvariable
solves the dilemma.

Further note that this LK-proof does not use any “special” properties of the multiplicative
calculus, thus the problem remains even in a pure additive calculus.

The root of the problem seems to be the cut rule inference where an “eigenvariable beholder”
(strong quantifier) disappears and allows the variable to occur below the cut.

CHAPTER 5
Extension of CERES to Equality

There exist various substantially different approaches how to integrate equality into LK. Some
of them are solely based on axiomatization, i.e. adding equality axioms to the existing axioms,
without any extension of the rules (e.g. see Takeuti (1987) for more details). This kind of
equality integration would of course be possible in CERES without any changes (note that we
allow arbitrary atomic sequents as axioms), but has at least two major drawbacks. On the
one hand it is mathematically a very unnatural way of using equality within a proof, concerning
formalization and interpretation of proofs. On the other hand the computational expense is much
higher, e.g. by propagating the used axioms throughout the entire proof to the antecedent of the
end-sequent. In addition it would not be possible to use the existing paradigm of paramodulation
in combination with CERES which is especially designed to handle equality reasoning within
resolution, which is a special design goal (also see Leitsch and Richter (2005)).

This disadvantages are overcome by introducing the theory of equality to LK by means of
rules. Some might argue that this is a trade-off against the loss of the subformula property
and depending on the specific rules the introduction of implicit cuts. Loosing the subformula
property is not avoidable if you intend to use equality in a mathematically natural and intuitive
way. The argument of implicit cuts is immediately dismantled in CERES as we only intend to
eliminate non-atomic cuts (since we are not using axioms of the form A ` A — which of course
also applies to the approach by axiomatization).

5.1 The Extension

Again there are many different variants how to extend LK by equality with help of rules (e.g.
see Schwichtenberg and Troelstra (2000)). We will now define the best suitable version for our
needs (similar to Degtyarev and Voronkov (2001)).

Definition 5.1 (LKe). LKe is the calculus obtained from LK by adding the following equality
introduction rules to the existing rules of LK (see definition 2.8):

Γ ` ∆, s = t A[s]Ξ,Π ` Λ
A[t]Ξ,Γ,Π ` ∆,Λ

= (Ξ) : l
Γ ` ∆, s = t Π ` Λ,A[s]Ξ

Γ,Π ` ∆,Λ, A[t]Ξ
= (Ξ) : r

where s and t are arbitrary terms and Ξ is a set of positions.

44 Chapter 5: EXTENSION OF CERES TO EQUALITY

For practical reasons we will additionally use the following rules in LKe:

Γ ` ∆, t = s A[s]Ξ,Π ` Λ
A[t]Ξ,Γ,Π ` ∆,Λ

=′ (Ξ) : l
Γ ` ∆, t = s Π ` Λ,A[s]Ξ

Γ,Π ` ∆,Λ, A[t]Ξ
=′ (Ξ) : r

Note that this rules could also be derived from the ones above using an additional equality rule
inference. Hence, they are just shortcuts for

Γ ` ∆, t = s ` t = t

Γ ` ∆, s = t
= ((1)) : r

A[s]Ξ,Π ` Λ
A[t]Ξ,Γ,Π ` ∆,Λ

= (Ξ) : l

respectively
Γ ` ∆, t = s ` t = t

Γ ` ∆, s = t
= ((1)) : r

Π ` Λ,A[s]Ξ
Γ,Π ` ∆,Λ, A[t]Ξ

= (Ξ) : r

As you will notice the definitions of the additional equality inference rules within LKe look
very familiar. They exactly correspond to the paramodulation rules defined for the resolution
calculus (recall definition 2.17) which enables CERESe to benefit from the extended abilities of
PR-resolution in one of its crucial steps - the generation of the resolution refutation skeleton.

Definition 5.2 (LKe-proof). An LKe-proof is a proof where A consists of atomic sequents
including the standard axioms ALK of LK and the axiom set of reflexivity, i.e.

{ ` t = t | t a term },

and the inference rules applied are those of LKe.

The extension by equality is also possible for LKp.

Definition 5.3 (LKep). LKep is the calculus obtained from LKe by again adding the semantic
cut (see definition 2.12) rule to the existing rules of LKe.

Definition 5.4 (LKep-proof). An LKep-proof is a proof where A consists of atomic sequents
including the standard axioms ALK of LK and the reflexivity axioms and the inference rules
applied are those of LKep.

For the extension of CERES to CERESe neither a redefinition of the characteristic clause term
nor of the characteristic clause set and its computation is necessary; the equality introduction
rules are treated as “ordinary” binary rules. The proof projection schemes are built in exactly the
same manner, hence also the necessity of skolemization a priori and (eventually) de-skolemization
a posteriori remains.

Definition 5.5 (E-unsatisfiable). A set of clauses C is E-unsatisfiable if C has no equational
model (i.e. a model where = is interpreted as equality).

Therefore the only thing that remains to be shown is the following theorem.

5.2 Example 45

Theorem 5.1. Let ϕ be an LKe-proof and Ω the set of all cut-formula occurrences in ϕ. Then
CL(ϕ) is E-unsatisfiable, i.e. there exists a PR-refutation with resolution and paramodulation
of CL(ϕ).

Proof. As in Baaz and Leitsch (2000) we show that, from the set CL(ϕ.ν) for any proof node ν
in ϕ we can derive ν(Ω) (the subsequent at ν consisting just of the ancestors of a cut). As there
is no ancestor of a cut in the end-sequent, we obtain an LKe derivation of ` from CL(ϕ). The
equality introduction rules on the left and on the right behave like any other binary rule in LK,
and the construction goes through like for LK. As LKe is sound on equational interpretations
and we have derived `, CL(ϕ) must be E-unsatisfiable. 2

Corollary 5.1. Let ϕ be an LKep-proof and Ω the set of all cut-formula occurrences in ϕ. Then
CL(ϕ) is E-unsatisfiable, i.e. there exists a PR-refutation with resolution and paramodulation
of CL(ϕ).

Proof. The proof of theorem 5.1 also holds for LKep. 2

Proposition 5.1. CERESe is a cut-elimination method for LKe.

Proof. By theorem 5.1 CL(ϕ) is E-unsatisfiable. As PR-deduction is complete there exists a
PR-refutation γ of CL(ϕ). Let γ′ be a version of γ after applying the combined most general
unifier of γ to itself (γ has to be regular). Then γ′ is an LKe derivation of ` from the axiom
set defined by CL(ϕ). γ′ contains only atomic cuts. By inserting the proof projection instances
on every leaf of γ′ we obtain a proof of the original sequent with only atomic cuts. 2

Corollary 5.2. CERESe is a cut-elimination method for LKep.

Proof. The proof of proposition 5.1 also holds for LKep. 2

5.2 Example

Now we will demonstrate the strength of this method on a well-known example from group
theory. The proof ϕ below verifies that a 2-nilpotent group is commutative using the cancellation
principle as a lemma. Therefore we need to extend the set of axioms by all instances of the
necessary group theoretic axioms:

` (u ◦ v) ◦ w = u ◦ (v ◦ w), (A)

` e ◦ u = u ` u ◦ e = u, (El), (Er)

` u−1 ◦ u = e ` u ◦ u−1 = e, (Il), (Ir)

` u ◦ u = e, (N2)

where u−1 denotes the inverse element of u.

Since the original proof of ` (∀x)(∀y)x ◦ y = y ◦ x contains strong quantifiers it has to be
skolemized in advance and the resulting cut-free proof de-skolemized afterwards.

46 Chapter 5: EXTENSION OF CERES TO EQUALITY

We only give the skolemized proof (of the sequent ` a ◦ b = b ◦ a for two individual constant
symbols a and b). The proof of ` (∀x)(∀y)x ◦ y = y ◦ x can be directly obtained by generalizing
a to u and b to v and by afterwards applying ∀ : r twice on ` u ◦ v = v ◦ u.

Within this section the following formula abbreviations are used:

P : (a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b),

C : a ◦ b = b ◦ a,

S : u ◦ w = v ◦ w.

Then, let the main proof ϕ be defined as follows.

ϕ =

` e = e

` b ◦ b = e

` e ◦ b = b

` a ◦ a = e
(ϕ′)

e = b ◦ ((a ◦ a) ◦ b) ` C
e = b ◦ (e ◦ b) ` C = ((2, 2, 1)) : l

e = b ◦ b ` C = ((2, 2)) : l

e = e ` C = ((2)) : l

` a ◦ b = b ◦ a cut

ϕ′ =

` (a ◦ a) ◦ b = a ◦ (a ◦ b)
` (b ◦ a) ◦ (a ◦ b) = b ◦ (a ◦ (a ◦ b)) ϕ′′

e = b ◦ (a ◦ (a ◦ b)) ` C = (0) : l

e = b ◦ ((a ◦ a) ◦ b) ` C =′ ((2, 2)) : l

ϕ′′ =

` (a ◦ b) ◦ (a ◦ b) = e

ϕc ϕp

(a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b) ` C
p-cut

e = (b ◦ a) ◦ (a ◦ b) ` C = ((1)) : l

This is the subproof of the cancellation lemma used in ϕ, ϕc =

` v ◦ e = v

` u ◦ e = u

` w ◦ w−1 = e

` (v ◦ w) ◦ w−1 = v ◦ (w ◦ w−1) ϕ′c

S ` u ◦ (w ◦ w−1) = v ◦ (w ◦ w−1)
= ((2)) : r

S ` u ◦ e = v ◦ e
= ((1, 2), (2, 2)) : r

S ` u = v ◦ e
= ((1)) : r

u ◦ w = v ◦ w ` u = v
= ((2)) : r

` u ◦ w = v ◦ w ⊃ u = v
⊃ : r

` (∀z)(u ◦ z = v ◦ z ⊃ u = v)
∀ : r

` (∀y)(∀z)(u ◦ z = y ◦ z ⊃ u = y)
∀ : r

` (∀x)(∀y)(∀z)(x ◦ z = y ◦ z ⊃ x = y) ∀ : r

5.2 Example 47

ϕ′c =

` (u ◦ w) ◦ w−1 = u ◦ (w ◦ w−1)

S ` u ◦ w = v ◦ w ` (u ◦ w) ◦ w−1 = (u ◦ w) ◦ w−1

S ` (u ◦ w) ◦ w−1 = (v ◦ w) ◦ w−1
= ((2, 1)) : r

S ` u ◦ (w ◦ w−1) = (v ◦ w) ◦ w−1
= ((1)) : r

ϕp =

P ` (a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b) a ◦ b = b ◦ a ` C
(a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b) ⊃ a ◦ b = b ◦ a, P ` C ⊃ : l

(∀z1)((a ◦ b) ◦ (a ◦ z1) = (b ◦ a) ◦ (a ◦ z1) ⊃ a ◦ b = b ◦ a), P ` C ∀ : l

(∀z0)(∀z1)((a ◦ b) ◦ (z0 ◦ z1) = (b ◦ a) ◦ (z0 ◦ z1) ⊃ a ◦ b = b ◦ a), P ` C ∀ : l

(∀y)(∀z0)(∀z1)((a ◦ b) ◦ (z0 ◦ z1) = y ◦ (z0 ◦ z1) ⊃ a ◦ b = y), P ` C ∀ : l

(∀x)(∀y)(∀z0)(∀z1)(x ◦ (z0 ◦ z1) = y ◦ (z0 ◦ z1) ⊃ x = y), P ` C ∀ : l

Hence for the characteristic clause set CL(ϕ) of ϕ we obtain

CL(ϕ) = { a ◦ b = b ◦ a `, (C1)
(a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b) ` (a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b), (C2)

` (u ◦ w) ◦ w−1 = (u ◦ w) ◦ w−1, (C3)
u ◦ w = v ◦ w ` u ◦ w = v ◦ w, (C4)

` (u ◦ w) ◦ w−1 = u ◦ (w ◦ w−1), (C5)

` (v ◦ w) ◦ w−1 = v ◦ (w ◦ w−1), (C6)

` w ◦ w−1 = e, (C7)
` u ◦ e = u, (C8)
` v ◦ e = v, (C9)
` (a ◦ b) ◦ (a ◦ b) = e, (C10)
` (b ◦ a) ◦ (a ◦ b) = b ◦ (a ◦ (a ◦ b)), (C11)
` (a ◦ a) ◦ b = a ◦ (a ◦ b), (C12)
` a ◦ a = e, (C13)
` e ◦ b = b, (C14)
` b ◦ b = e, (C15)
` e = e }. (C16)

Since resolution admits subsumption and deletion of tautologies we obtain a reduced character-

48 Chapter 5: EXTENSION OF CERES TO EQUALITY

istic clause set by omitting the clauses C2, C4, C6, C9 and C16:

CL(ϕ)′ = { a ◦ b = b ◦ a `, (C1)

` (u ◦ w) ◦ w−1 = (u ◦ w) ◦ w−1, (C3)

` (u ◦ w) ◦ w−1 = u ◦ (w ◦ w−1), (C5)

` w ◦ w−1 = e, (C7)
` u ◦ e = u, (C8)
` (a ◦ b) ◦ (a ◦ b) = e, (C10)
` (b ◦ a) ◦ (a ◦ b) = b ◦ (a ◦ (a ◦ b)), (C11)
` (a ◦ a) ◦ b = a ◦ (a ◦ b), (C12)
` a ◦ a = e, (C13)
` e ◦ b = b, (C14)
` b ◦ b = e }. (C15)

A PR-refutation of CL(ϕ)′ is given by the following derivations.

Derivation of C17:

(C7)
` w ◦ w−1 = e

(C8)
` u ◦ e = u

` u ◦ (w ◦ w−1) = u
p′(id, (1, 2)) : r (C5σ1)

` (u′ ◦ w′) ◦ w′−1 = u′ ◦ (w′ ◦ w′−1)
` (u ◦ w) ◦ w−1 = u

p(σ2, (2)) : r
(C17)

where σ1 = {u 7→ u′, w 7→ w′} and σ2 = {u′ 7→ u,w′ 7→ w}.

Derivation of C18:

(C13)
` a ◦ a = e

(C14)
` e ◦ b = b

` (a ◦ a) ◦ b = b
p′(id, (1, 1)) : r (C12)

` (a ◦ a) ◦ b = a ◦ (a ◦ b)
` b = a ◦ (a ◦ b)

p(id, (1)) : r
(C18)

Derivation of C19:

(C18)
` b = a ◦ (a ◦ b)

(C15)
` b ◦ b = e

` b ◦ (a ◦ (a ◦ b)) = e
p(id, (1, 2)) : r (C11)

` (b ◦ a) ◦ (a ◦ b) = b ◦ (a ◦ (a ◦ b))
` (b ◦ a) ◦ (a ◦ b) = e

p(id, (2)) : r
(C19)

Derivation of C20:

(C17)
` (u ◦ w) ◦ w−1 = u

(C17σ3)
` (u′ ◦ w′) ◦ w′−1 = u′

` u ◦ (w−1)−1 = u ◦ w
p(σ4, (1, 1)) : r

(C20)

5.2 Example 49

where σ3 = {u 7→ u′, w 7→ w′} and σ4 = {u′ 7→ u ◦ w,w′ 7→ w−1}.

Derivation of C21:

(C10)
` (a ◦ b) ◦ (a ◦ b) = e

(C17)
` (u ◦ w) ◦ w−1 = u

` e ◦ (a ◦ b)−1 = a ◦ b
p(σ5, (1, 1)) : r

(C21)

where σ5 = {u 7→ a ◦ b, w 7→ a ◦ b}.

Derivation of C22:
(C22)

` e ◦ w = w

(C21)
` e ◦ (a ◦ b)−1 = a ◦ b

` (a ◦ b)−1 = a ◦ b
p(σ6, (1)) : r

(C22)

where σ6 = {w 7→ (a ◦ b)−1}.

Derivation of C23:

` e ◦ w = w

(C22)
` (a ◦ b)−1 = a ◦ b

(C19)
` (b ◦ a) ◦ (a ◦ b) = e

(C17)
` (u ◦ w) ◦ w−1 = u

` e ◦ (a ◦ b)−1 = b ◦ a
p(σ7, (1, 1)) : r

` e ◦ (a ◦ b) = b ◦ a
p(id, (1, 2)) : r

` a ◦ b = b ◦ a p(σ8, (1)) : r
(C23)

where σ7 = {u 7→ b ◦ a,w 7→ a ◦ b} and σ8 = {w 7→ a ◦ b}.

And finally we have a refutation:

(C23)
` a ◦ b = b ◦ a

(C1)
a ◦ b = b ◦ a `

` r(id)

Let γ be the PR-refutation defined above (in form of a tree). By applying a global m.g.u. σ
we get δ of γ, i.e. δ = γσ, we obtain a derivation of ` in LKe (and hence also in LKep)
from instances of CL(ϕ). There is only one non-trivial proof projection required, namely this
to the clause C1. All other proof projections to the clauses used from CL(ϕ) are trivial, i.e.
the instantiated clauses itself are already the proof projection instances to themselves, simply
because there are no inferences in ϕ operating on non-ancestors of cut-formulas and most of the
axioms are of such a simple shape. The proof of ` a ◦ b = b ◦ a with only atomic cuts ϕ∗ is
therefore:

(δ′)
` a ◦ b = b ◦ a a ◦ b = b ◦ a ` a ◦ b = b ◦ a

` a ◦ b = b ◦ a cut

where δ′ represents the subproof of δ originally yielding the clause C23.

By de-skolemizing ϕ∗ we obtain a proof ϕ̂ of ` (∀x)(∀y)x ◦ y = y ◦ x with only atomic cuts (and
clearly without making use of the cancellation principle).

CHAPTER 6
Equational Theories

Making use of existing well-known or even arbitrary equational theories within each inference
step has the following advantages:

• gain of more expressiveness,

• proofs get shorter, what makes them more understandable and allows concentrating on
the gist, especially for substantial complex proofs and

• proofs can be performed and realized in a much more natural and mathematical way.

First we present variants of the calculi defined so far using equational theories (as initiated in
Leitsch and Richter 2005) whereas an example is given afterwards demonstrating how more
complex mathematical proofs may be processed with this concept in combination with CERES
(or rather with the corresponding extension CERESe).

6.1 The Concept

Definition 6.1 (equational axiom set). A (possibly infinite) set E of term equations, i.e.

E = { s1 = t1, s2 = t2, s3 = t3 . . . },

is called an equational axiom set if it is closed under substitution, i.e. for all E ∈ E and for all
substitutions σ we have Eσ ∈ E .

Definition 6.2 (equational theory). Let E be an equational axiom set. An equational theory
is defined as a congruence relation on E in the following way:

s =E t ⇔ E � s = t.

This definition is extended to formulas by the reflexive and transitive closure of the relation

A[s]Ξ =E A[t]Ξ if s =E t.

Based on equational theories the presented calculi can be redefined to use the equational theory
at every inference. Effected are the logical rules which can now be applied not only to syn-
tactic equivalent formulas but to all auxiliary formulas which are equal modulo the underlying
equational theory E .

52 Chapter 6: EQUATIONAL THEORIES

Definition 6.3 (LKE , LKpE). LKE respectively LKpE are the calculi obtained by extending
the definitions of LK (see definition 2.8) respectively LKp (see definition 2.12) in the sense
that we replace their logical rules by ones making use of an equational axiom set E at each
inference step, such that the following inference rules may be applied if the equalities A =E A

*

and B =E B
* hold.

The logical rules for

1. ¬-introduction:
Γ ` ∆,A*

¬A,Γ ` ∆ ¬ : l
A*,Γ ` ∆
Γ ` ∆,¬A ¬ : r

2. ∧-introduction:

A,B*,Γ ` ∆
A ∧B,Γ ` ∆ ∧ : l

Γ ` ∆,A* Π ` Λ,B*

Γ,Π ` ∆,Λ, A ∧B ∧ : r

3. ∨-introduction:

A*,Γ ` ∆ B*,Π ` Λ
A ∨B,Γ,Π ` ∆,Λ ∨ : l

Γ ` ∆,A*,B

Γ ` ∆, A ∨B ∨ : r

4. ⊃-introduction:

Γ ` ∆,A* B*,Π ` Λ
A ⊃ B,Γ,Π ` ∆,Λ ⊃ : l

A*,Γ ` ∆,B*

Γ ` ∆, A ⊃ B
⊃ : r

5. ∀-introduction:
A*(x/t),Γ ` ∆
(∀x)A(x),Γ ` ∆ ∀ : l

Γ ` ∆,A*(x/u)
Γ ` ∆, (∀x)A(x) ∀ : r

where t is an arbitrary term and u does not occur in the conclusion.

6. ∃-introduction:
A*(x/u),Γ ` ∆
(∃x)A(x),Γ ` ∆ ∃ : l

Γ ` ∆,A*(x/t)
Γ ` ∆, (∃x)A(x) ∃ : r

where u does not occur in the conclusion and t is an arbitrary term.

Definition 6.4 (LKE-proof, LKpE-proof). An LKE -proof respectively LKpE -proof is a proof
whereA consists of atomic sequents including the standard axiomsALK of LK and the inference
rules applied are those of LKE respectively LKpE .

Definition 6.5 (LKeE). LKeE is the calculus obtained from LKE by adding the following
equality introduction rules to the existing rules of LKE :

Γ ` ∆, s = t A*[s]Ξ* ,Π ` Λ
A[t]Ξ,Γ,Π ` ∆,Λ

= (Ξ) : l
Γ ` ∆, s = t Π ` Λ,A*[s]Ξ*

Γ,Π ` ∆,Λ, A[t]Ξ
= (Ξ) : r

respectively

Γ ` ∆, t = s A*[s]Ξ* ,Π ` Λ
A[t]Ξ,Γ,Π ` ∆,Λ

=′ (Ξ) : l
Γ ` ∆, t = s Π ` Λ,A*[s]Ξ*

Γ,Π ` ∆,Λ, A[t]Ξ
=′ (Ξ) : r

where s and t are arbitrary terms, Ξ and Ξ* are sets of positions and A =E A
*.

6.2 Example 53

Definition 6.6 (LKeE-proof). An LKeE -proof is a proof where A consists of atomic sequents
including the standard axioms ALK of LK and the axiom set of reflexivity, i.e.

{ ` t = t | t a term },

and the inference rules applied are those of LKeE .

Definition 6.7 (LKepE). LKepE is the calculus obtained from LKeE by again adding the
semantic cut rule (see definition 2.12) to the existing rules of LKeE .

Definition 6.8 (LKepE-proof). An LKepE -proof is a proof where A consists of atomic se-
quents including the standard axioms ALK of LK and the axiom set of reflexivity and the
inference rules applied are those of LKepE .

6.2 Example

The following example demonstrates the usage of the concept of equational theories within
LKepE . In this example we will use LKepE -inferences modulo groups, i.e. the underlying
equational theory is the theory of groups G (the binary connective of G is ◦, the neutral element
is e).

We define the following axioms:

A1 : (∀x)(x 6= s(x) ∧ x 6= s(s(x))),
A2 : (∀x)(∀y)(x = s(y) ∨ y = s(x) ∨ x = y),
A3 : (∀x)(∀y)(s(x) = s(y) ⊃ x = y)

and the conclusion:

C : (∀x)(∀y)x ◦ y = y ◦ x

Furthermore we are using the following abbreviation ΓA ≡ A1, A2, A3 for the sequence of all
three axioms.

We consider the following proof with G-pseudo-cuts:

(φ)
ΓA ` (∀y)(y = e ∨ y = s(e) ∨ y = s(s(e)))

(ψ)
(∃z)(∃z′)(∃z′′)(∀y)(y = z ◦ z′ ∨ y = z ◦ z′′ ∨ y = z) ` C

ΓA ` C
p-cut

Informal proof φ: From A2 by setting x to e we get

(∀y)(e = s(y) ∨ y = s(e) ∨ e = y). (*)

and setting y to s(s(e)) we get

e = s(s(s(e))) ∨ s(s(e)) = s(e) ∨ e = s(s(e)).

54 Chapter 6: EQUATIONAL THEORIES

From A1 we infer e = s(s(s(e))). By e = s(s(s(e))) and A3 we get

(∀y)(e = s(y) ↔ y = s(s(e))). (**)

Therefore, from (∗) and the equivalence (∗∗) we obtain the left cut-formula

(∀y)(y = e ∨ y = s(e) ∨ y = s(s(e))). (I)

Note that no group theoretic inferences are required in φ.

Informal proof ψ: From the left cut-formula

(∃z)(∃z′)(∃z′′)(∀y)(y = z ◦ z′ ∨ y = z ◦ z′′ ∨ y = z) (II)

it follows that the structure consists of three elements only. As the underlying structure is G
we have a group with 3 elements. But there is only one such group and this is commutative.

Therefore (II) and G imply C.

Moreover we have a pseudo-cut w.r.t. G. In fact (I) ⊃ (II) is valid under G: just choose z = e,
z′ = s(e), and z′′ = s(s(e)). This cut can be eliminated with CERESe under use of G.

Note that, within the example, the subproof ψ, i.e. the proof of the group containing only three
elements, demonstrates also the expressive power of the combined method since it would not be
possible (for practical reasons) to prove the theorem without having equality also as a rule.

The example above should be treated as an appetizer for what is possible by means of the
CERESe method using equational theories.

CHAPTER 7
The Cut-Elimination System CERES

Implementing a cut-elimination system is motivated by being actually willing to perform cut-
elimination on proofs of mathematical significance. These proofs easily grow that big (especially
formalized in a calculus like LK) that no human being (even with a lot of patience) is able to do
it by hand. Now why should one be interested in making implicit lemma applications explicit
gaining a much bigger proof (at least in general) of the same theorem and what is the reward.

No doubt cut-elimination is one of the most important techniques of proof analyzation and
transformation in modern proof theory. Besides usage as a tool showing the consistency of
certain calculi and logics mainly three arguments are essential:

• Cut-elimination can be used to construct elementary proofs from non-elementary ones, as
e.g. done in Girard’s analysis of Van der Waerden’s theorem (Girard 1987). Reducing
a topological argumentation to a useful and purely combinatorial proof by means of cut-
elimination. Clearly it does not make sense to make all proofs elementary but some.

• Cut-elimination is crucial for constructing structures or extracting information from proofs
of which the techniques used to obtain these can only operate on cut-free proofs, e.g. the
extraction of Herbrand disjunctions.

• Cut-elimination could serve the higher purpose of extracting constructive algorithms or
proof methods and schemes directly from proofs which are already contained in the argu-
mentation but still “hidden” in the proofs.

Agreed, cut-elimination of very simple toy-proofs can easily be done and the results are only
boring. Whereas concrete proofs of more mathematical significance are far to complex to apply
cut-elimination without a system and without an aim.

Based on the comparisons of the cut-elimination methods we have seen so far CERES brings the
best qualifications with it. An additional advantage speaking for an implementation of CERES
in contrast to others like Gentzen’s is — besides the speedup results — the use of the resolution
concept. Allowing to chose from a broad variety of tools, especially automated theorem provers,
of which both the methods and algorithms as the implementations have been fine tuned to
“almost” perfection.

56 Chapter 7: THE CUT-ELIMINATION SYSTEM CERES

7.1 The System

The system CERES1 implements exactly the cut-elimination method CERES including the equal-
ity extensions to CERESe (described in the chapters 4 and 5). So from now on all properties
associated with the system derive from CERESe.

Before going into detail we will give some technical key data.

The cut-elimination system CERES is written in ANSI-C++2 using intensively the framework
of the Standard Template Library (STL3). Since the structural data representation language
XML is used for input and output the system also builds on the Libxml24 library. Currently the
system is available only on Linux based operating systems (including Darwin — Mac OS X).

The main tasks are:

• Computation of an unsatisfiable set of clauses characterizing the cut-formulas. This is
done by automatically extracting the characteristic clause term from an input proof ϕ
formalized in LKe and computing the resulting characteristic clause set CL(ϕ).

• Generating a resolution refutation of CL(ϕ) (aided by an external automated theorem
prover5) and the proof projection schemes of ϕ with respect to CL(ϕ) including the nec-
essary proof projection instances (the ones actually used in the refutation). The properly
instantiated projection schemes are then concatenated, using the refutation obtained by
the theorem prover as a skeleton of a proof with at most atomic cuts.

• Internal tasks which in the mean time take up a non-negligible expense. Among others
are some proof transformations (translating different calculi), unification and matching
algorithms, regularization and skolemization algorithms, proof validation and a bunch of
elementary proof operations.

The program is called via the command line specifying the file names of the input and output
XML files (for the concrete format see section 7.2). On execution the system runs without any
interaction with the user (in case of successful execution, otherwise errors are reported).

The work flow of the program during run-time is the following:

1. Process the input file, validate the XML file against a specification in form of a DTD and
build up the internal representation of the input LKe-proof ϕ as a data structure.

2. Verify the correctness of ϕ according to the definition of LKe.

3. Skolemization of the proof on demand (after regularization).

4. Extract the characteristic clause term Θ(ϕ) of ϕ.

5. Compute the characteristic clause set CL(ϕ) of ϕ.

1The documentation of the method and the current version of the system CERES are available at http://www.

logic.at/ceres/.
2The C++ Programming Language following the International Standard 14882:1998 approved as an American

National Standard (see http://www.ansi.org).
3See http://www.sgi.com/tech/stl/ for more details about the STL.
4Available from http://www.xmlsoft.org.
5The current version of CERES uses the automated theorem prover Otter (see http://www-unix.mcs.anl.gov/

AR/otter/), but any refutational theorem prover based on resolution and paramodulation may be used.

7.1 The System 57

6. Build the proof projection schemes ϕ(C) for every C ∈ CL(ϕ).

7. Generate an input file for the automated theorem prover Otter containing CL(ϕ) and the
axiom set and execute Otter.

8. Process the output file of Otter (see section 7.3 for details) and transform the refutation
into a regular PR-proof γ.

9. Compute a combined global m.g.u. of γ and apply it to γ yielding δ.

10. Transform δ into an LKe-proof ψ.

11. Generate the required proof projection instances and concatenate them with ψ propagating
those parts of the proof projections which are parts of the end-sequent of ϕ to the root.

12. Write the XML output file containing the proofs ϕ, γ, ψ and the proof projection schemes
and Θ(ϕ), CL(ϕ) and the used axiom set.

Since the restriction to skolemized proofs is crucial to the CERES method, the system also
performs skolemization (according to Andrew’s method (Andrews 1971)) on the input proof if
required.

To increase the performance and avoid redundancy, the data structures of formulas and terms
are internally represented as directed acyclic graphs. This representation turns out to be very
handy, also for the internal unification algorithms (see Baader and Snyder (2001) for performance
investigations). The calculi on which CERES is operating are defined on sequents respectively
clauses (i.e. atomic sequents) which are represented as sequential lists of formulas, in the sense
of data structures. This is a very important point for the implementation of a system since e.g.
a definition as multisets of formulas would require special treatment by the system (arbitrary
permutations might occur at inferences) and of course the ancestor relation could not be uniquely
defined.

The formal analysis of mathematical proofs (especially by a mathematician as a pre- and post-
“processor”) relies on a suitable representation format for the input and output of proofs, and
on an appropriate aid in dealing with them. We developed an intermediary proof language6

connecting the language of mathematical proofs with LKe. Furthermore we implemented a
proof tool7 acting as viewer and editor with a graphical user interface, allowing a convenient
input and analysis of the output of CERES. Thereby the integration of the equality rules into the
underlying calculus plays an essential role in overlooking, understanding and analyzing complex
mathematical proofs by humans (see also Baaz, Hetzl, Leitsch, Richter and Spohr 2006).

CERES already proofed to be efficient and reliable in performing cut-elimination on input LKe-
proofs with hundreds of proof nodes. A first impression of the capabilities demonstrated on
some examples of CERES can be found in chapter 8 and also on the official website8.

6See http://www.logic.at/hlk/ for more information.
7Details can be found at http://www.logic.at/prooftool/.
8The website of CERES is http://www.logic.at/ceres/.

58 Chapter 7: THE CUT-ELIMINATION SYSTEM CERES

7.2 Input and Output

The system CERES expects a proof of a theorem formalized as an LKe-proof ϕ and the used axiom
set as input and outputs several proofs (input proof, proof projection schemes ϕ(C), resolution
refutation and cut-free output proof), the characteristic clause term Θ(ϕ), the characteristic
clause set CL(ϕ) and again the used axiom set.

Input and output are formatted using the well known data representation language XML. This
allows the use of arbitrary and well known utilities for editing, transformation and presentation
as well as standardized programming libraries.

To get a better impression how proofs are structured in the input and output XML format we
give a commented excerpt from the DTD specifying proofs:

<!ELEMENT proof ((rule|sequent),mark*)>
<!ATTLIST proof

symbol CDATA #IMPLIED
calculus CDATA #IMPLIED
>

<!ELEMENT rule (sequent,(rule|sequent|prooflink)+,mark*)>
<!ATTLIST rule

symbol CDATA #IMPLIED
type CDATA #IMPLIED
param CDATA #IMPLIED
>

<!ELEMENT prooflink EMPTY>
<!ATTLIST prooflink

symbol CDATA #IMPLIED
>

<!ELEMENT sequent (formulalist,formulalist,mark*)>

Note that we also support markings of important parts of the structure for special purposes,
e.g. forthcoming user interactions or cut-formula ancestor relations.

<!ELEMENT mark (#PCDATA)>
<!ATTLIST mark

type CDATA #IMPLIED
>

The type of the calculus can be LK in case of an LKe-proof or PR in case of a PR-proof.

The rule types of the calculus LK follow the mapping:

LKe-rule attribute type
axiom ax
w : l weakl
w : r weakr
c : l contrl

LKe-rule attribute type
c : r contrr
π : l perml
π : r permr
cut cut

LKe-rule attribute type
¬ : l negl
¬ : r negr
∧ : l andl
∧ : r andr

7.2 Input and Output 59

LKe-rule attribute type
∨ : l orl
∨ : r orr
⊃ : l impll
⊃ : r implr

LKe-rule attribute type
∀ : l foralll
∀ : r forallr
∃ : l existsl
∃ : r existsr

LKe-rule attribute type
= : l eql1
= : r eqr1
=′ : l eql2
=′ : r eqr2

and the rule types of the resolution calculus R are defined as follows:

PR-rule attribute type
initial clause init

π : l perml
π : r permr
f : l factl
f : r factr

PR-rule attribute type
r res

p : l paral1
p : r parar1
p′ : l paral2
p′ : r parar2

Formulas are represented by

<!ENTITY % formula
’(formulavariable|conjunctiveformula|quantifiedformula|atomformula)’>

<!ELEMENT formulavariable EMPTY>
<!ATTLIST formulavariable

symbol CDATA #IMPLIED
>

<!ENTITY % formulalistelement ’(%formula;|formulalistvariable)’>
<!ELEMENT formulalist (%formulalistelement;)*>

<!ELEMENT formulalistvariable EMPTY>
<!ATTLIST formulalistvariable

symbol CDATA #IMPLIED
>

<!ELEMENT conjunctiveformula ((%formula;)+,mark*)>
<!ATTLIST conjunctiveformula

type CDATA #IMPLIED
>

<!ELEMENT quantifiedformula (variable,%formula;,mark*)>
<!ATTLIST quantifiedformula

type CDATA #IMPLIED
>

and terms by

60 Chapter 7: THE CUT-ELIMINATION SYSTEM CERES

<!ENTITY % term
’(function|variable|constant)’>

<!ELEMENT atomformula ((%term;)*,mark*)>
<!ATTLIST atomformula

symbol CDATA #IMPLIED
>

<!ELEMENT function ((%term;)+,mark*)>
<!ATTLIST function

symbol CDATA #IMPLIED
>

<!ELEMENT variable (mark*)>
<!ATTLIST variable

symbol CDATA #IMPLIED
>

<!ELEMENT constant (mark*)>
<!ATTLIST constant

symbol CDATA #IMPLIED
>

7.3 The Theorem Prover: Otter

As already mentioned, CERES is not choosy when it comes to the used automated theorem prover.
Therefore a large variety of theorem provers can be considered.

Since performance is not the issue flexibility is a more interesting property of a theorem prover
making experiments (as in chapter 8) easier.

We decided to give the automated theorem prover Otter a try since at the time we started
developing the system it was the only theorem prover, we were aware of, generating a formalized
output proof intended for post processing, the so called proof objects.

CERES uses this proof objects of Otter, which are resolution derivations according to the calculus
definition given below, as an input and transforms them into a resolution refutation of PR.

Otter clauses are disjunctions of literals.

Definition 7.1 (Otter clause). We define Otter clauses inductively as follows:

1. The empty Otter clause 2 is an Otter clause.

2. Literals, i.e. A and ¬A for an atom A, are Otter clauses.

3. If C and D are Otter clauses, then C ∨D is an Otter clause.

7.3 The Theorem Prover: Otter 61

The empty Otter clause is denoted by 2. Furthermore we define the identities:

C ∨2 ∨D = C ∨D
2 ∨2 = 2.

Definition of the Otter resolution calculus ORES.

Definition 7.2 (ORES). The derivation rules are:

1. Input:
L1∨ . . .∨Ln

in

2. Instantiation:
L1∨ . . .∨Ln

(L1∨ . . .∨Ln)σ
i(σ)

for a substitution σ.

3. Propositional:
L1∨ . . .∨Li∨ . . .∨Ln

L1∨ . . .∨Li−1∨Li+1∨ . . .∨Ln
prop

where Li = Lj for some j 6= i, 1 ≤ i, j ≤ n.

4. (Binary) resolvent:
C ∨ ¬A ∨D C ′ ∨A ∨D′

C ∨D ∨ C ′ ∨D′ res

where C, C ′, D and D′ denote Otter clauses.

5. Paramodulation:
C ∨ s = t ∨D C ′ ∨A[s] ∨D′

C ∨D ∨ C ′ ∨A[t] ∨D′ para

6. Flipping:
C ∨ s = t ∨D
C ∨ t = s ∨D fpos

C ∨ ¬s = t ∨D
C ∨ ¬t = s ∨D fneg

Otter knows only a single flipping rule, which we splitted into a positive and a negative
variant.

CHAPTER 8
Experiments with CERES

This chapter is dedicated to some interesting experiments with CERES. On the one hand demon-
strating some of the abilities of the program and on the other hand to do some fire tests on more
or less known mathematical proofs. These considerable and more extensive examples will show
the ease of doing real work with CERES and which different schemes of things arise from it.

8.1 Effects of Resolution Refinements

The use of the resolution refutation of the characteristic clause set as a skeleton for the cut-free
proof makes it possible to change the mathematical character of the resulting proof via different
resolution refutations, e.g. using different resolution refinements. Within these refutations
universal lemmas, i.e. clauses containing variables representing universal formulas, appear which
do neither occur in the original proof nor in the cut-eliminated proofs, where they are already
instantiated. Now we are doing exactly such an experiment using an input proof already analyzed
and defined as an LK-derivation in Urban (2000) with the program CERES. This experiment has
already been demonstrated at the LPAR 20041 (see also Baaz, Hetzl, Leitsch, Richter and Spohr
2004).

The proof deals with the following situation: We are given an infinite tape where each cell is
either labelled ‘0’ or ‘1’. We prove that on this tape there are two cells labelled with the same
number. The contents of a cell of the tape is denoted by the unary function f taking the cell
index as an argument (e.g. f(u) = 0 means that the cell with index u is labelled ‘0’), s is the
successor function and mu,v is the maximum of u and v.

1The LPAR 2004 (11th International Conference on Logic for Programming, Artificial Intelligence and Reason-
ing) was held on March 14-18th, 2005 in Montevideo, Uruguay.

64 Chapter 8: EXPERIMENTS WITH CERES

Within this section the following formula abbreviations are used:

M1 = (∀y)(∀x)x ≤ mx,y

M2 = (∀y)(∀x)y ≤ mx,y

S = (∀x)(∀y)(s(x) ≤ y ⊃ x < y)
T = (∀i)(∀x)(∀y)((f(x) = i ∧ f(y) = i) ⊃ f(x) = f(y))
A = (∀x)(f(x) = 0 ∨ f(x) = 1)
P = (∃p)(∃q)(p < q ∧ f(p) = f(q))
∞0 = (∀n)(∃k)(n ≤ k ∧ f(k) = 0)
∞1 = (∀m)(∃l)(m ≤ l ∧ f(l) = 1)

moreover 1 is an abbreviation for s(0).

Then, let the proof ϕ be defined as follows.

ϕ =
(τ)

M1,M2, A ` ∞0,∞1

(ε1)
∞1, S, T ` P

M1,M2, A, S, T `,∞0, P
cut

M1,M2, A, S, T `, P,∞0
π((1 2)) : r (ε0)

∞0, S, T ` P
M1,M2, A, S, T, S, T ` P, P

cut

M1,M2, S, S, T, T,A ` P, P
π((3 6 7)) : l

M1,M2, S, T,A ` P, P
c((1, 1, 2, 2, 1)) : l

M1,M2, S, T,A ` P
c((2)) : r

The mathematical proof argument of ϕ says from the facts that there are infinitely many indices
labelled ‘0’ and infinitely many indices labelled ‘1’ we can conclude that there are two different
indices which have the same content.

The used subproofs τ , ε0 and ε1 are given below (for more details be referred to Urban 2000).

τ =

v ≤ mu,v ` v ≤ mu,v

(∀x)v ≤ mx,v ` v ≤ mu,v ∀ : l

(∀y)(∀x)y ≤ mx,y ` v ≤ mu,v ∀ : l

u ≤ mu,v ` u ≤ mu,v

(∀x)x ≤ mx,v ` u ≤ mu,v ∀ : l

(∀y)(∀x)x ≤ mx,y ` u ≤ mu,v ∀ : l (τ ′)

M1, A ` f(mu,v) = 1,u ≤ mu,v ∧ f(mu,v) = 0
∧ : r

M1, A ` u ≤ mu,v ∧ f(mu,v) = 0,f(mu,v) = 1
π((1 2)) : r

M1,M2, A ` u ≤ mu,v ∧ f(mu,v) = 0,v ≤ mu,v ∧ f(mu,v) = 1
∧ : r

M1,M2, A ` u ≤ mu,v ∧ f(mu,v) = 0, (∃l)(v ≤ l ∧ f(l) = 1)
∃ : r

M1,M2, A ` (∃l)(v ≤ l ∧ f(l) = 1),u ≤ mu,v ∧ f(mu,v) = 0
π((1 2)) : r

M1,M2, A ` (∃l)(v ≤ l ∧ f(l) = 1), (∃k)(u ≤ k ∧ f(k) = 0)
∃ : r

M1,M2, A ` (∃l)(v ≤ l ∧ f(l) = 1), (∀n)(∃k)(n ≤ k ∧ f(k) = 0)
∀ : r

M1,M2, A ` (∀n)(∃k)(n ≤ k ∧ f(k) = 0), (∃l)(v ≤ l ∧ f(l) = 1)
π((1 2)) : r

M1,M2, A ` ∞0, (∀m)(∃l)(m ≤ l ∧ f(l) = 1) ∀ : r

8.1 Effects of Resolution Refinements 65

τ ′ =
f(mu,v) = 0 ` f(mu,v) = 0 f(mu,v) = 1 ` f(mu,v) = 1
f(mu,v) = 0 ∨ f(mu,v) = 1 ` f(mu,v) = 0, f(mu,v) = 1 ∨ : l

(∀x)(f(x) = 0 ∨ f(x) = 1) ` f(mu,v) = 0,f(mu,v) = 1
∀ : l

(∀x)(f(x) = 0 ∨ f(x) = 1) ` f(mu,v) = 1,f(mu,v) = 0
π((1 2)) : r

ε0 =
(ε′0)

s(u) ≤ v ∧ f(v) = 0, 0 ≤ u ∧ f(u) = 0, S, T ` P
(∃k)(s(u) ≤ k ∧ f(k) = 0), 0 ≤ u ∧ f(u) = 0, S, T ` P ∃ : l

(∀n)(∃k)(n ≤ k ∧ f(k) = 0),0 ≤ u ∧ f(u) = 0, S, T ` P ∀ : l

0 ≤ u ∧ f(u) = 0, (∀n)(∃k)(n ≤ k ∧ f(k) = 0), S, T ` P
π((1 2)) : l

(∃k)(0 ≤ k ∧ f(k) = 0), (∀n)(∃k)(n ≤ k ∧ f(k) = 0), S, T ` P ∃ : l

(∀n)(∃k)(n ≤ k ∧ f(k) = 0), (∀n)(∃k)(n ≤ k ∧ f(k) = 0), S, T ` P ∀ : l

(∀n)(∃k)(n ≤ k ∧ f(k) = 0), S, T ` P
c(2, 1, 1) : l

ε1 =
(ε′1)

s(u) ≤ v ∧ f(v) = 1, 1 ≤ u ∧ f(u) = 1, S, T ` P
(∃l)(s(u) ≤ l ∧ f(l) = 1), 1 ≤ u ∧ f(u) = 1, S, T ` P ∃ : l

(∀m)(∃l)(m ≤ l ∧ f(l) = 1),1 ≤ u ∧ f(u) = 1, S, T ` P ∀ : l

1 ≤ u ∧ f(u) = 1, (∀m)(∃l)(m ≤ l ∧ f(l) = 1), S, T ` P
π((1 2)) : l

(∃l)(1 ≤ l ∧ f(l) = 1), (∀m)(∃l)(m ≤ l ∧ f(l) = 1), S, T ` P ∃ : l

(∀m)(∃l)(m ≤ l ∧ f(l) = 1), (∀m)(∃l)(m ≤ l ∧ f(l) = 1), S, T ` P ∀ : l

(∀m)(∃l)(m ≤ l ∧ f(l) = 1), S, T ` P
c(2, 1, 1) : l

ε′j =

s(u) ≤ v ` s(u) ≤ v u < v ` u < v

s(u) ≤ v ⊃ u < v, s(u) ≤ v ` u < v
⊃ : l

(∀y)(s(u) ≤ y ⊃ u < y), s(u) ≤ v ` u < v
∀ : l

(∀x)(∀y)(s(x) ≤ y ⊃ x < y), s(u) ≤ v ` u < v
∀ : l (ε′′j)

S, s(u) ≤ v,T ,f(u) = j,f(v) = j ` u < v ∧ f(u) = f(v)
∧ : r

s(u) ≤ v,f(v) = j, S, T , f(u) = j ` u < v ∧ f(u) = f(v)
π((1 2 5 4 3)) : l

s(u) ≤ v ∧ f(v) = j,f(u) = j, S, T ` u < v ∧ f(u) = f(v) ∧ : l

f(u) = j, s(u) ≤ v ∧ f(v) = j, S, T ` u < v ∧ f(u) = f(v)
π((1 2)) : l

j ≤ u,f(u) = j, s(u) ≤ v ∧ f(v) = j, S, T ` u < v ∧ f(u) = f(v) w : l

j ≤ u ∧ f(u) = j, s(u) ≤ v ∧ f(v) = j, S, T ` u < v ∧ f(u) = f(v)
∧ : l

j ≤ u ∧ f(u) = j, s(u) ≤ v ∧ f(v) = j, S, T ` (∃q)(u < q ∧ f(u) = f(q))
∃ : r

j ≤ u ∧ f(u) = j, s(u) ≤ v ∧ f(v) = j, S, T ` (∃p)(∃q)(p < q ∧ f(p) = f(q)) ∃ : r

s(u) ≤ v ∧ f(v) = j, j ≤ u ∧ f(u) = j, S, T ` P
π((1 2)) : l

66 Chapter 8: EXPERIMENTS WITH CERES

ε′′j =

f(u) = j ` f(u) = j f(v) = j ` f(v) = j

f(u) = j, f(v) = j ` f(u) = j ∧ f(v) = j
∧ : r

f(u) = f(v) ` f(u) = f(v)

((f(u) = j ∧ f(v) = j) ⊃ f(u) = f(v)), f(u) = j, f(v) = j ` f(u) = f(v)
⊃ : l

(∀y)((f(u) = j ∧ f(y) = j) ⊃ f(u) = f(y)), f(u) = j, f(v) = j ` f(u) = f(v) ∀ : l

(∀x)(∀y)((f(x) = j ∧ f(y) = j) ⊃ f(x) = f(y)), f(u) = j, f(v) = j ` f(u) = f(v) ∀ : l

(∀i)(∀x)(∀y)((f(x) = i ∧ f(y) = i) ⊃ f(x) = f(y)), f(u) = j, f(v) = j ` f(u) = f(v)
∀ : l

The characteristic clause term Θ(ϕ) extracted from ϕ is

Θ(ϕ) =((({` v ≤ mu,v} ⊕ ({` u ≤ mu,v} ⊕ ({` f(mu,v) = 0} ⊗ {` f(mu,v) = 1})))
⊕ (({s(u) ≤ v `} ⊗ {`})⊗ (({f(u) = 1 `} ⊗ {f(v) = 1 `})⊗ {`})))
⊕ (({s(u) ≤ v `} ⊗ {`})⊗ (({f(u) = 0 `} ⊗ {f(v) = 0 `})⊗ {`})))

and the corresponding characteristic clause set CL(ϕ) obtained from Θ(ϕ) results to

CL(ϕ) = { ` v ≤ mu,v, (C1)
` u ≤ mu,v, (C2)
` f(mu,v) = 0, f(mu,v) = 1, (C3)
s(u) ≤ v, f(u) = 1, f(v) = 1 `, (C4)
s(u) ≤ v, f(u) = 0, f(v) = 0 ` } (C5)

The projection schemes obtained from ϕ for the five clauses above are the following:

ϕ(C1) =

v ≤ mu,v ` v ≤ mu,v

(∀x)v ≤ mx,v ` v ≤ mu,v ∀ : l

(∀y)(∀x)y ≤ mx,y ` v ≤ mu,v ∀ : l

ϕ(C2) =

u ≤ mu,v ` u ≤ mu,v

(∀x)x ≤ mx,v ` u ≤ mu,v ∀ : l

(∀y)(∀x)x ≤ mx,y ` u ≤ mu,v ∀ : l

ϕ(C3) =

f(mu,v) = 0 ` f(mu,v) = 0 f(mu,v) = 1 ` f(mu,v) = 1
f(mu,v) = 0 ∨ f(mu,v) = 1 ` f(mu,v) = 0, f(mu,v) = 1 ∨ : l

(∀x)(f(x) = 0 ∨ f(x) = 1) ` f(mu,v) = 0, f(mu,v) = 1 ∀ : l

ϕ(C4) = ψ1

8.1 Effects of Resolution Refinements 67

ϕ(C5) = ψ0

where ψj is defined:

ψj =

s(u) ≤ v ` s(u) ≤ v u < v ` u < v

s(u) ≤ v ⊃ u < v, s(u) ≤ v ` u < v
⊃ : l

(∀y)(s(u) ≤ y ⊃ u < y), s(u) ≤ v ` u < v
∀ : l

(∀x)(∀y)(s(x) ≤ y ⊃ x < y), s(u) ≤ v ` u < v
∀ : l

ψ′j

S, s(u) ≤ v, T, f(u) = j, f(v) = j ` u < v ∧ f(u) = f(v)
∧ : r

S, s(u) ≤ v, T, f(u) = j, f(v) = j ` (∃q)(u < q ∧ f(u) = f(q)) ∃ : r

S, s(u) ≤ v, T, f(u) = j, f(v) = j ` (∃p)(∃q)(p < q ∧ f(p) = f(q)) ∃ : r

and ψ′j =

f(u) = j ` f(u) = j f(v) = j ` f(v) = j

f(u) = j, f(v) = j ` f(u) = j ∧ f(v) = j
∧ : r

f(u) = f(v) ` f(u) = f(v)
(f(u) = j ∧ f(v) = j) ⊃ f(u) = f(v), f(u) = j, f(v) = j ` f(u) = f(v)

⊃ : l

(∀y)((f(u) = j ∧ f(y) = j) ⊃ f(u) = f(y)), f(u) = j, f(v) = j ` f(u) = f(v) ∀ : l

(∀x)(∀y)((f(x) = j ∧ f(y) = j) ⊃ f(x) = f(y)), f(u) = j, f(v) = j ` f(u) = f(v) ∀ : l

(∀i)(∀x)(∀y)((f(x) = i ∧ f(y) = i) ⊃ f(x) = f(y)), f(u) = j, f(v) = j ` f(u) = f(v) ∀ : l

The resolution refutations yielding two mathematically different proofs of ϕ are demonstrated
in the following two subsections. The resulting cut-free proofs have been omitted because of
their sizes.

8.1.1 Positive Hyperresolution

Derivation of C6:

(C3)
` f(mu,v) = 0, f(mu,v) = 1

(C2σ2)
` u ≤ mu,w

(C4σ1)
s(u′) ≤ v′, f(u′) = 1, f(v′) = 1 `

f(u′) = 1, f(ms(u′),w) = 1 `
r(σ3)

f(ms(mu,v),w) = 1 ` f(mu,v) = 0︸ ︷︷ ︸
CX

r(σ4)

(C3σ5)
` f(mu′,v′

) = 0, f(mu′,v′
) = 1 CX

` f(mu,v) = 0, f(ms(mu,v),w) = 0
r(σ6)

(C6)

where σ1 = {u 7→ u′, v 7→ v′}, σ2 = {v 7→ w}, σ3 = {u 7→ s(u′), v′ 7→ ms(u′),w}, σ4 = {u′ 7→
mu,v}, σ5 = {u 7→ u′, v 7→ v′} and σ6 = {u′ 7→ s(mu,v), v′ 7→ w}.

For arbitrary u, v and w either the cell with index i = mu,v is labelled ‘0’ or the cell with index
mi+1,w.

68 Chapter 8: EXPERIMENTS WITH CERES

Derivation of C7:

(C6)
` f(mu,v) = 0, f(ms(mu,v),w) = 0

(C1σ8)
` v ≤ mu′′,v

(C5σ7)
s(u′) ≤ v′, f(u′) = 0, f(v′) = 0 `

f(u′) = 0, f(mu′′,s(u′)) = 0 `
r(σ9)

f(mu′′,s(ms(mu,v),w)) = 0 ` f(mu,v) = 0︸ ︷︷ ︸
CY

r(σ10)

(C6σ11)

` f(mu′,v′
) = 0, f(ms(mu′,v′

),w′
) = 0 CY

` f(mu′,v′
) = 0, f(mu,v) = 0

r(σ12)

` f(mu,v) = 0
f(σ13) : r

(C7)

where σ7 = {u 7→ u′, v 7→ v′}, σ8 = {u 7→ u′′}, σ9 = {v 7→ s(u′), v′ 7→ mu′′,s(u′)}, σ10 = {u′ 7→
ms(mu,v),w}, σ11 = {u 7→ u′, v 7→ v′, w 7→ w′}, σ12 = {u′′ 7→ s(mu′,v′), w′ 7→ s(ms(mu,v),w)} and
σ13 = {u′ 7→ u, v′ 7→ v}.

For arbitrary u and v the cell with index i = mu,v is labelled ‘0’.

(C7σ18)
` f(mu,v′′

) = 0

(C7σ16)
` f(mu′,v) = 0

(C2σ14)
` u′ ≤ mu′,v′

(C5)
s(u) ≤ v, f(u) = 0, f(v) = 0 `

f(u) = 0, f(ms(u),v′
) = 0 `

r(σ15)

f(ms(mu′,v),v′
) = 0 `

r(σ17)

` r(σ19)

where σ14 = {u 7→ u′, v 7→ v′}, σ15 = {u′ 7→ s(u), v 7→ ms(u),v′}, σ16 = {u 7→ u′}, σ17 = {u 7→
mu′,v}, σ18 = {v 7→ v′′} and σ19 = {u 7→ s(mu′,v), v′′ 7→ v′}.

For arbitrary u and v where u < v at least one of the cells with index u or v should be labelled
‘1’ but again for arbitrary u′ and v′ the cell with index i = mu′,v′ is labelled ‘0’. Hence choosing
one time u as u′ and one time v as v′ leads to a contradiction.

8.1.2 Negative Hyperresolution

Derivation of C ′
6:

(C1σ1)
` v′ ≤ mu,v′

(C4σ2)
s(v) ≤ u′, f(v) = 1, f(u′) = 1 `

f(v) = 1, f(mu,s(v)) = 1 `
r(σ3)

(C ′
6)

where σ1 = {v 7→ v′}, σ2 = {u 7→ v, v 7→ u′} and σ3 = {u′ 7→ mu,s(v), v′ 7→ s(v)}.

If a cell with index v is labelled ‘1’ then no cell with an index bigger than v is labelled ‘1’.

8.1 Effects of Resolution Refinements 69

Derivation of C ′
7:

(C2σ4)
` u′ ≤ mu′,v

(C5σ5)
s(u) ≤ v′, f(u) = 0, f(v′) = 0 `

f(u) = 0, f(ms(u),v) = 0 `
r(σ6)

(C ′
7)

where σ4 = {u 7→ u′}, σ5 = {v 7→ v′} and σ6 = {u′ 7→ s(u), v′ 7→ ms(u),v}.

If a cell with index u is labelled ‘0’ then no cell with an index bigger than u is labelled ‘0’.

Derivation of C ′
8:

(C3σ7)
` f(mu′,v′

) = 1, f(mu′,v′
) = 0

(C ′
7)

f(ms(u),v) = 0, f(u) = 0 `
f(u) = 0 ` f(ms(u),v′

) = 1
r(σ8)

(C ′
6σ9)

f(mu′,s(v)) = 1, f(v) = 1 `
f(u) = 0, f(v) = 1 `

r(σ10)

(C ′
8)

where σ7 = {u 7→ u′, v 7→ v′}, σ8 = {u′ 7→ s(u), v 7→ v′}, σ9 = {u 7→ u′} and σ10 = {u′ 7→
s(u), v′ 7→ s(v)}.

If a cell with index v is labelled ‘1’ then there is no cell with index u labelled ‘0’, i.e. all cells
are either only labelled ‘0’ or only labelled ‘1’.

Derivation of C ′
9:

(C3σ11)
` f(mu′,v′

) = 1, f(mu′,v′
) = 0

(C ′
7)

f(ms(u),v) = 0, f(u) = 0 `
f(u) = 0 ` f(ms(u),v) = 1

r(σ12) (C ′
8σ13)

f(v′) = 1, f(u′) = 0 `
f(u) = 0, f(u′) = 0 `

r(σ14)

f(u) = 0 `
f(σ15) : l

(C ′
9)

where σ11 = {u 7→ u′, v 7→ v′}, σ12 = {v′ 7→ v, u′ 7→ s(u)}, σ13 = {u 7→ u′, v 7→ v′}, σ14 = {v′ 7→
ms(u),v} and σ15 = {u′ 7→ u}.

No cell is labelled ‘0’.

Derivation of C ′
10:

(C3σ16)
` f(mu′,v′

) = 1, f(mu′,v′
) = 0

(C ′
8)

f(u) = 0, f(v) = 1 `
f(v) = 1 ` f(mu′,v′

) = 1
r(σ17)

(C ′
6σ18)

f(mu,s(v′′)) = 1, f(v′′) = 1 `
f(v) = 1, f(v′′) = 1 `

r(σ19)

f(v) = 1 `
f(σ20) : l

(C ′
10)

70 Chapter 8: EXPERIMENTS WITH CERES

where σ16 = {u 7→ u′, v 7→ v′}, σ17 = {u 7→ mu′,v′}, σ18 = {v 7→ v′′}, σ19 = {u′ 7→ u, v′ 7→ s(v′′)}
and σ20 = {v′′ 7→ v}.

No cell is labelled ‘1’.

(C3)
` f(mu,v) = 1, f(mu,v) = 0

(C ′
9σ21)

f(u′) = 0 `
` f(mu,v) = 1

r(σ22)
(C ′

10σ23)
f(v′) = 1 `

` r(σ24)

where σ21 = {u 7→ u′}, σ22 = {u′ 7→ mu,v}, σ23 = {v 7→ v′} and σ24 = {v′ 7→ mu,v}.

The contradiction follows from the axiom that for arbitrary u and v the cell with the index
mu,v is either labelled with ‘0’ or with ‘1’ in combination with the facts that no cell is labelled
‘0’ and no cell is labelled ‘1’.

8.2 Orevkov’s Proof

Independently, Orevkov (1982) and Statman (1979) showed a worst-case scenario of cut-elimina-
tion demonstrating that the complexity of cut-elimination in general is non-elementary (taking
the number of proof nodes as the measure of complexity). The difference between the two proofs
is more technical whereas Statman uses functions for formalization Orevkov uses only variables
as terms.

Theorem 8.1. There exists a sequence {Dk }k∈N of sequents such that

1. there exist LK-proofs (with cuts) of Dk for every k which have a linear proof complexity
in k,

2. while all cut-free LK-proofs of Dk>0 have hyper-exponential complexity.

Proof. In Orevkov (1982). 2

This proof implies that there is no elementary bound on the complexity of cut-elimination.

The hyper-exponential function hyp is inductively defined by

1. hyp(0) = 1 and

2. hyp(n+ 1) = 2hyp(n).

8.2 Orevkov’s Proof 71

The nomenclature we are using within this proof is due to Orevkov. To facilitate understanding
we can interpret them by

0 ∈ A0 ↔ A0 ≡ (∀x)(∃y)x+ 20 = y

k ∈ An ↔ (∀z)(z ∈ An−1 ⊃ z + 2k ∈ An−1)

Since Orevkov’s proof contains two strong quantifier occurrences in the end-sequent (indepen-
dently of k) we have to introduce a constant 0 interpreted as zero and a function symbol s
interpreted as the successor function. Note that we will only give the skolemized proof.

Within this section the following formula abbreviations are used (due to Orevkov’s original
proof):

A0(t) = (∀x0)Ā0(x0, t)
Ai+1(t) = (∀xi+1)(Ai(xi+1) ⊃ Āi+1(xi+1, t))

Ā0(t1, t2) = (∃y0)P (t1, t2, y0)
Āi+1(t1, t2) = (∃yi+1)(Ai(yi+1) ∧ P (t1, t2, yi+1))

As
0 = (∀x0)P (x0, 0, s(x0))

C = (∀z)(∀y)(∀x)(C2(z, y, x) ⊃ P (y, z, x))
C2(t1, t2, t3) = (∃z1)(P (z1, 0, t1) ∧ C1(t2, z1, t3))
C1(t1, t2, t3) = (∃z2)(P (t1, t2, z2) ∧ P (z2, t2, t3))

B0(t) = (∃y0)P (0, t, y0)
Bi+1(t) = (∃yi+1)(P (0, t, yi+1) ∧ Bi(yi+1))

The proof of Dk is given below (starting with a proof scheme of the same name).

Dk =

(D̄k)
As

0, C ` Ak

(D̃k)
As

0,C,Ak ` Bk

Ak,As
0, C ` Bk

π((132)) : l

As
0,C,As

0, C ` Bk
cut

As
0,As

0,C,C ` Bk
π((23)) : l

As
0,C ` Bk

c(2, 2) : l

As
0 ∧ C ` Bk

∧ : l

` (As
0 ∧ C) ⊃ Bk

⊃ : r

72 Chapter 8: EXPERIMENTS WITH CERES

D̃0(t) =

P (0, t, v0) ` P (0, t, v0)
P (0, t, v0) ` (∃y0)P (0, t, y0)

∃ : r

(∃y0)P (0, t, y0) ` B0(t)
∃ : l

(∀x0)Ā0(x0, t) ` B0(t)
∀ : l

As
0, C,A0(t) ` B0(t)

w : l

D̃i+1(t) =

(D̄i)
As

0, C ` Ai

P (0, t, vi+1) ` P (0, t, vi+1)
(D̃i(vi+1))

As
0, C,Ai(vi+1) ` Bi(vi+1)

P (0, t, vi+1),As
0,C,Ai(vi+1) ` P (0, t, vi+1) ∧ Bi(vi+1)

∧ : r

Ai(vi+1), P (0, t, vi+1),As
0, C ` P (0, t, vi+1) ∧ Bi(vi+1)

π((1234)) : l

Ai(vi+1),P (0, t, vi+1),As
0, C ` (∃yi+1)(P (0, t, yi+1) ∧ Bi(yi+1))

∃ : r

Ai(vi+1) ∧ P (0, t, vi+1),As
0, C ` Bi+1(t)

∧ : l

(∃yi+1)(Ai(yi+1) ∧ P (0, t, yi+1)),As
0, C ` Bi+1(t)

∃ : l

Ai ⊃ Āi+1(0, t),As
0, C,As

0, C ` Bi+1(t)
⊃ : l

(∀xi+1)(Ai(xi+1) ⊃ Āi+1(xi+1, t)),As
0, C,As

0,C ` Bi+1(t)
∀ : l

As
0,As

0,C,C,Ai+1(t) ` Bi+1(t)
π((1245)) : l

As
0, C,Ai+1(t) ` Bi+1(t)

c(2, 2, 1) : l

ϕ0(t) =

P (w0, t, v0) ` P (w0, t, v0)
P (w0, t, v0) ` (∃y0)P (w0, t, y0)

∃ : r

(∃y0)P (w0, t, y0) ` Ā0(w0, t)
∃ : l

(∀x0)Ā0(x0, t) ` Ā0(w0, t)
∀ : l

A0(t) ` (∀x0)Ā0(x0, t)
∀ : r

ϕi+1(t) =

(ϕi(wi+1))
Ai(wi+1) ` Ai(wi+1)

(ϕi(vi+1))
Ai(vi+1) ` Ai(vi+1) P (wi+1, t, vi+1) ` P (wi+1, t, vi+1)
Ai(vi+1),P (wi+1, t, vi+1) ` Ai(vi+1) ∧ P (wi+1, t, vi+1)

∧ : r

Ai(vi+1) ∧ P (wi+1, t, vi+1) ` Ai(vi+1) ∧ P (wi+1, t, vi+1)
∧ : l

Ai(vi+1) ∧ P (wi+1, t, vi+1) ` (∃yi+1)(Ai(yi+1) ∧ P (wi+1, t, yi+1))
∃ : r

(∃yi+1)(Ai(yi+1) ∧ P (wi+1, t, yi+1)) ` Āi+1(wi+1, t)
∃ : l

Ai(wi+1) ⊃ Āi+1(wi+1, t),Ai(wi+1) ` Āi+1(wi+1, t)
⊃ : l

Ai(wi+1),Ai(wi+1) ⊃ Āi+1(wi+1, t) ` Āi+1(wi+1, t)
π((12)) : l

Ai(wi+1) ⊃ Āi+1(wi+1, t) ` Ai(wi+1) ⊃ Āi+1(wi+1, t)
⊃ : r

(∀xi+1)(Ai(xi+1) ⊃ Āi+1(xi+1, t)) ` Ai(wi+1) ⊃ Āi+1(wi+1, t)
∀ : l

Ai+1(t) ` (∀xi+1)(Ai(xi+1) ⊃ Āi+1(xi+1, t))
∀ : r

8.2 Orevkov’s Proof 73

D̄0 =
P (w0, 0, s(w0)) ` P (w0, 0, s(w0))

P (w0, 0, s(w0)) ` (∃y0)P (w0, 0, y0)
∃ : r

(∀x0)P (x0, 0, s(x0)) ` Ā0(w0, 0)
∀ : l

C,As
0 ` Ā0(w0, 0)

w : l

As
0, C ` Ā0(w0, 0)

π((1, 2)) : l

As
0, C ` (∀x0)Ā0(x0, 0)

∀ : r

D̄i+1 =

(D̄′
i+1)

Ai(wi+1), C, P (wi+1, 0, s(wi+1)) ` Ai(s(wi+1)) P (wi+1, 0, s(wi+1)) ` P (wi+1, 0, s(wi+1))
Ai(wi+1), C,P (wi+1, 0, s(wi+1)),P (wi+1, 0, s(wi+1)) ` Ai(s(wi+1)) ∧ P (wi+1, 0, s(wi+1))

∧ : r

Ai(wi+1), C, P (wi+1, 0, s(wi+1)) ` Ai(s(wi+1)) ∧ P (wi+1, 0, s(wi+1))
c(1, 1, 2) : l

Ai(wi+1), C, P (wi+1, 0, s(wi+1)) ` (∃yi+1)(Ai(yi+1) ∧ P (wi+1, 0, yi+1))
∃ : r

C,P (wi+1, 0, s(wi+1)) ` Ai(wi+1) ⊃ Āi+1(wi+1, 0)
⊃ : r

P (wi+1, 0, s(wi+1)), C ` Ai(wi+1) ⊃ Āi+1(wi+1, 0)
π((12)) : l

(∀x0)P (x0, 0, s(x0)), C ` Ai(wi+1) ⊃ Āi+1(wi+1, 0)
∀ : l

As
0, C ` (∀xi+1)(Ai(xi+1) ⊃ Āi+1(xi+1, 0))

∀ : r

D̄′
1 =

X1 ` X1

X2 ` P (w0, w1, v1) X3 ` P (v1, w1, v0)
X2, X3 ` P (w0, w1, v1) ∧ P (v1, w1, v0)

∧ : r

X2, X3 ` (∃z2)(P (w0, w1, z2) ∧ P (z2, w1, v0))
∃ : r

X1, X2, X3 ` P (w1, 0, s(w1)) ∧ C1(w0, w1, v0)
∧ : r

X1, X2, X3 ` (∃z1)(P (z1, 0, s(w1)) ∧ C1(w0, z1, v0))
∃ : r

X4 ` P (w0, s(w1), v0)
X4 ` (∃y0)P (w0, s(w1), y0)

∃ : r

C2(s(w1), w0, v0) ⊃ P (w0, s(w1), v0), X1, X2, X3 ` Ā0(w0, s(w1))
⊃ : l

(∀x)(C2(s(w1), w0, x) ⊃ P (w0, s(w1), x)), X1, X2, X3 ` Ā0(w0, s(w1))
∀ : l

(∀y)(∀x)(C2(s(w1), y, x) ⊃ P (y, s(w1), x)), X1, X2, X3 ` Ā0(w0, s(w1))
∀ : l

(∀z)(∀y)(∀x)(C2(z, y, x) ⊃ P (y, z, x)),X1,X2,X3 ` Ā0(w0, s(w1))
∀ : l

P (v1, w1, v0), P (w0, w1, v1), C, P (w1, 0, s(w1)) ` Ā0(w0, s(w1))
π((1 4 2 3)) : l

(∃y0)P (v1, w1, y0), X2, C, X1 ` Ā0(w0, s(w1))
∃ : l

(∀x0)Ā0(x0, w1),P (w0, w1, v1), C, X1 ` Ā0(w0, s(w1))
∀ : l

P (w0, w1, v1),A0(w1), C, X1 ` Ā0(w0, s(w1))
π((1 2)) : l

(∃y0)P (w0, w1, y0),A0(w1), C, X1 ` Ā0(w0, s(w1))
∃ : l

(∀x0)Ā0(x0, w1),A0(w1), C, X1 ` Ā0(w0, s(w1))
∀ : l

A0(w1),A0(w1), C, X1 ` (∀x0)Ā0(x0, s(w1))
∀ : r

A0(w1), C, X1 ` A0(s(w1))
c(2, 1, 1) : l

74 Chapter 8: EXPERIMENTS WITH CERES

where X1 = P (w1, 0, s(w1)), X2 = P (w0, w1, v1), X3 = P (v1, w1, v0) and X4 = P (w0, s(w1), v0).

D̄′
i+2 =

θ3

θ2

Y1 ` Y1

Y2 ` P (wi+1, wi+2, vi+2) Y3 ` P (vi+2, wi+2, vi+1)
Y2, Y3 ` P (wi+1, wi+2, vi+2) ∧ P (vi+2, wi+2, vi+1)

∧ : r

Y2, Y3 ` (∃z2)(P (wi+1, wi+2, z2) ∧ P (z2, wi+2, vi+1))
∃ : r

Y1, Y2, Y3 ` P (wi+2, 0, s(wi+2)) ∧ C1(wi+1, wi+2, vi+1)
∧ : r

Y1, Y2, Y3 ` (∃z1)(P (z1, 0, s(wi+2)) ∧ C1(wi+1, z1, vi+1))
∃ : r

θ1

C2(s(wi+2), wi+1, vi+1) ⊃ P (wi+1, s(wi+2), vi+1), Y1, Y2, Y3,Ai(vi+1) ` Y4
⊃ : l

(∀x)(C2(s(wi+2), wi+1, x) ⊃ P (wi+1, s(wi+2), x)), Y1, Y2, Y3,Ai(vi+1) ` Y4
∀ : l

(∀y)(∀x)(C2(s(wi+2), y, x) ⊃ P (y, s(wi+2), x)), Y1, Y2, Y3,Ai(vi+1) ` Y4
∀ : l

(∀z)(∀y)(∀x)(C2(z, y, x) ⊃ P (y, z, x)),Y1,Y2,Y3,Ai(vi+1) ` Y4
∀ : l

Ai(vi+1),Y3, C, Y1, Y2 ` Y4
π((153)(24)) : l

Ai(vi+1) ∧ P (vi+2, wi+2, vi+1), C, Y1, Y2 ` Y4
∧ : l

(∃yi+1)(Ai(yi+1) ∧ P (vi+2, wi+2, yi+1)), C, Y1, Y2 ` Y4
∃ : l

Ai(vi+2) ⊃ Āi+1(vi+2, wi+2),Ai(vi+2), C, Y1, Y2 ` Y4
⊃ : l

(∀xi+1)(Ai(xi+1) ⊃ Āi+1(xi+1, wi+2)),Ai(vi+2),C,Y1,Y2 ` Y4
∀ : l

Ai(vi+2),Y2,Ai+1(wi+2), C, Y1 ` Y4
π((12543)) : l

Ai(vi+2) ∧ P (wi+1, wi+2, vi+2),Ai+1(wi+2), C, Y1 ` Y4
∧ : l

(∃yi+1)(Ai(yi+1) ∧ P (wi+1, wi+2, yi+1)),Ai+1(wi+2), C, Y1 ` Y4
∃ : l

Ai(wi+1) ⊃ Āi+1(wi+1, wi+2),Ai(wi+1),Ai+1(wi+2), C, Y1 ` Y4
⊃ : l

(∀xi+1)(Ai(xi+1) ⊃ Āi+1(xi+1, wi+2)),Ai(wi+1),Ai+1(wi+2), C, Y1 ` Y4
∀ : l

Ai(wi+1),Ai+1(wi+2),Ai+1(wi+2), C, Y1 ` Y4
π((12)) : l

Ai(wi+1),Ai+1(wi+2), C, Y1 ` Āi+1(wi+1, s(wi+2))
c(1, 2, 1, 1) : l

Ai+1(wi+2), C, Y1 ` Ai(wi+1) ⊃ Āi+1(wi+1, s(wi+2))
⊃ : r

Ai+1(wi+2), C, Y1 ` (∀xi+1)(Ai(xi+1) ⊃ Āi+1(xi+1, s(wi+2)))
∀ : r

where Y1 = P (wi+2, 0, s(wi+2)), Y2 = P (wi+1, wi+2, vi+2), Y3 = P (vi+2, wi+2, vi+1) and Y4 =
Āi+1(wi+1, s(wi+2)) and the proof parts θi are:

θ1 =

(ϕi(vi+1))
Ai(vi+1) ` Ai(vi+1) P (wi+1, s(wi+2), vi+1) ` P (wi+1, s(wi+2), vi+1)
Ai(vi+1),P (wi+1, s(wi+2), vi+1) ` Ai(vi+1) ∧ P (wi+1, s(wi+2), vi+1)

∧ : r

P (wi+1, s(wi+2), vi+1),Ai(vi+1) ` Ai(vi+1) ∧ P (wi+1, s(wi+2), vi+1)
π((12)) : l

P (wi+1, s(wi+2), vi+1),Ai(vi+1) ` (∃yi+1)(Ai(yi+1) ∧ P (wi+1, s(wi+2), yi+1))
∃ : r

θ2 =
(ϕi(vi+2))

Ai(vi+2) ` Ai(vi+2)

8.2 Orevkov’s Proof 75

and θ3 =
(ϕi(wi+1))

Ai(wi+1) ` Ai(wi+1)

The characteristic clause set CL(Dk) obtained from Θ(Dk), after post-processing by means of
tautology elimination and subsumption, is

|Θ(D0)| = { ` P (w0, 0, s(w0)), (C1)
P (0, 0, v0) ` } (C3)

|Θ(Dk>0)| = { ` P (wk, 0, s(wk)), (C1)
P (wk−1, wk, vk), P (vk, wk, vk−1) ` P (wk−1, s(wk), vk−1), (C2)
P (0, 0, vk), P (0, vk, vk−1), P (0, vk−1, vk−2), . . . , P (0, v1, v0) ` } (C3)

Interestingly we have two clauses (C1 and C2) of constant size and only one additional clause
with k + 1 negative literals.

By interpretation of P (u, v, w) by u+ 2v = w we can informally interpret the clauses by

` u+ 20 = s(u)

u+ 2v = w′, w′ + 2v = w ` u+ 2s(v) = w

0 + 20 = uk, 0 + 2uk = uk−1, 0 + 2uk−1 = uk−2, . . . , 0 + 2u1 = u0 `

which calculates exactly hyp.

Therefore C3 “computes” the value of hyp(k) (stored in v0). C1 defines the successor function
of addition, whereas the clause C2 defines the successor function on exponents, which perfectly
explains its absence in the case k = 0.

The proof projection schemes are:

Dk(C1) =
(Dk(C1)′)

As
0(0), C ` P (wk, 0, s(wk))

As
0(0),C ` P (wk, 0, s(wk)),Bk(0)

w : r

As
0(0) ∧ C ` P (wk, 0, s(wk)),Bk(0)

∧ : l

` P (wk, 0, s(wk)), (As
0(0) ∧ C) ⊃ Bk(0)

⊃ : r

` (As
0(0) ∧ C) ⊃ Bk(0), P (wk, 0, s(wk))

π((12)) : r

D0(C1)′ =

P (w0, 0, s(w0)) ` P (w0, 0, s(w0))
(∀x0)P (x0, 0, s(x0)) ` P (w0, 0, s(w0))

∀ : l

C,As
0(0) ` P (w0, 0, s(w0))

w : l

As
0(0), C ` P (w0, 0, s(w0))

π((12)) : l

76 Chapter 8: EXPERIMENTS WITH CERES

Dk>0(C1)′ =

P (wk, 0, s(wk)) ` P (wk, 0, s(wk))
C,P (wk, 0, s(wk)) ` P (wk, 0, s(wk)) w : l

P (wk, 0, s(wk)), C ` P (wk, 0, s(wk))
π((12)) : l

(∀x0)P (x0, 0, s(x0)), C ` P (wk, 0, s(wk)) ∀ : l

Dk(C2) =

Z1 ` Z1

C1
2 ` P (wk−1, wk, vk) C2

2 ` P (vk, wk, vk−1)

C1
2 , C

2
2 ` P (wk−1, wk, vk) ∧ P (vk, wk, vk−1)

∧ : r

C1
2 , C

2
2 ` (∃z′′)(P (wk−1, wk, z′′) ∧ P (z′′, wk, vk−1))

∃ : r

Z1, C
1
2 , C

2
2 ` P (wk, 0, s(wk)) ∧ C1(wk−1, wk, vk−1)

∧ : r

Z1, C
1
2 , C

2
2 ` (∃z′)(P (z′, 0, s(wk)) ∧ C1(wk−1, z′, vk−1))

∃ : r
C3

2 ` C3
2

C2(s(wk), wk−1, vk−1) ⊃ P (wk−1, s(wk), vk−1), Z1, C
1
2 , C

2
2 ` C3

2

⊃ : l

(∀x)(C2(s(wk), wk−1, x) ⊃ P (wk−1, s(wk), x)), Z1, C
1
2 , C

2
2 ` C3

2

∀ : l

(∀y)(∀x)(C2(s(wk), y, x) ⊃ P (y, s(wk), x)), Z1, C
1
2 , C

2
2 ` C3

2

∀ : l

(∀z)(∀y)(∀x)(C2(z, y, x) ⊃ P (y, z, x)),P (wk, 0, s(wk)), C1
2 , C

2
2 ` C3

2

∀ : l

P (wk, 0, s(wk)), C, C1
2 , C

2
2 ` C3

2

π((12)) : l

(∀x0)P (x0, 0, s(x0)), C, C1
2 , C

2
2 ` C3

2

∀ : l

As
0(0),C, C1

2 , C
2
2 ` C3

2 ,Bk(0)
w : r

As
0(0) ∧ C, C1

2 , C
2
2 ` C3

2 ,Bk(0)
∧ : l

C1
2 , C

2
2 ` C3

2 , (As
0(0) ∧ C) ⊃ Bk(0)

⊃ : r

C1
2 , C

2
2 ` (As

0(0) ∧ C) ⊃ Bk(0), C3
2

π((12)) : r

where C1
2 = P (wk−1, wk, vk), C2

2 = P (vk, wk, vk−1), C3
2 = P (wk−1, s(wk), vk−1) and Z1 =

P (wk, 0, s(wk)).

Dk(C3) =

(ψk(0))
As

0(0),C, P (0, 0, vk), P (0, vk, vk−1), P (0, vk−1, vk−2), . . . , P (0, v1, v0) ` Bk(0)
As

0(0) ∧ C, P (0, 0, vk), P (0, vk, vk−1), P (0, vk−1, vk−2), . . . , P (0, v1, v0) ` Bk(0)
∧ : l

P (0, 0, vk), P (0, vk, vk−1), P (0, vk−1, vk−2), . . . , P (0, v1, v0) ` (As
0(0) ∧ C) ⊃ Bk(0)

⊃ : r

ψ0(t) =

P (0, t, v0) ` P (0, t, v0)
P (0, t, v0) ` (∃y0)P (0, t, y0)

∃ : r

As
0(0), C, P (0, t, v0) ` B0(t)

w : l

8.2 Orevkov’s Proof 77

ψk(t) =

P (0, t, vk) ` P (0, t, vk)
(ψk−1(vk))

As
0(0), C, P (0, vk, vk−1), . . . , P (0, v1, v0) ` Bk−1(vk)

P (0, t, vk),As
0(0),C, P (0, vk, vk−1), . . . , P (0, v1, v0) ` P (0, t, vk) ∧ Bk−1(vk)

∧ : r

As
0(0), C, P (0, t, vk), P (0, vk, vk−1), . . . , P (0, v1, v0) ` P (0, t, vk) ∧ Bk−1(vk)

π((123)) : l

As
0(0), C, P (0, t, vk), P (0, vk, vk−1), . . . , P (0, v1, v0) ` (∃yk)(P (0, t, yk) ∧ Bk−1(yk)) ∃ : r

Bibliography

Andrews, P. B.

[1971] Resolution In Type Theory, Journal of Symbolic Logic 36(3), 1971, 414–432.

Baader, F. and Snyder, W.

[2001] Unification Theory, in Robinson and Voronkov (2001), 445–532.

Baader, F. and Voronkov, A. (eds)

[2005] Logic for Programming, Artificial Intelligence, and Reasoning, 11th International Con-
ference, LPAR 2004, Montevideo, Uruguay, March 14-18, 2005, Proceedings, vol. 3452
of Lecture Notes in Computer Science, Springer, 2005.

Baaz, M. and Leitsch, A.

[1994] On Skolemization and Proof Complexity, Fundamenta Informaticae 20, 1994, 353–379.
[2000] Cut-Elimination and Redundancy-Elimination by Resolution, Journal of Symbolic

Computation 29(4), 2000, 149–176.
[2004] CERES in Many-Valued Logics, in Baader and Voronkov (2005), 1–20.
[2006] Towards a Clausal Analysis of Cut-Elimination, Journal of Symbolic Computation 41(3-

4), 2006, 381–410.

Baaz, M., Hetzl, S., Leitsch, A., Richter, C. and Spohr, H.

[2004] Cut-Elimination: Experiments with CERES, in Baader and Voronkov (2005), 481–495.
[2006] Proof Transformation by CERES, in J. Borwein and W. Farmer (eds), MKM 2006,

Springer, 2006, to appear.

Chang, C.-L. and Lee, R. C.-T.

[1973] Symbolic Logic and Mechanical Theorem Proving, Computer Science and Applied
Mathematics Series, Academic Press, New York, 1973.

Degtyarev, A. and Voronkov, A.

[2001] Equality Reasoning in Sequent-Based Calculi, in Robinson and Voronkov (2001), 611–
706.

80 BIBLIOGRAPHY

Gentzen, G.

[1934] Untersuchungen über das logische Schließen, Mathematische Zeitschrift 39(1), 1934,
405–431.

Girard, J.-Y.

[1987] Proof Theory and Logical Complexity, Studies in Proof Theory, Bibliopolis, 1987.

Gödel, K.

[1931] Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Sys-
teme, Monatshefte für Mathematik und Physik 38, 1931, 173–198.

Herbrand, J.

[1930] Recherches sur la théorie de la démonstration, PhD thesis, University of Paris, 1930.

Leitsch, A.

[1997] The Resolution Calculus, EATCS Texts in Theoretical Computer Science, Springer
Verlag, 1997.

Leitsch, A. and Richter, C.

[2005] Equational Theories in CERES, 2005, unpublished — available at http://www.logic.
at/ceres/.

Loveland, D. W.

[1978] Automated Theorem Proving: A Logical Basis, EATCS Texts in Theoretical Computer
Science, North-Holland, Amsterdam, 1978.

Nieuwenhuis, R. and Rubio, A.

[2001] Paramodulation-Based Theorem Proving, in Robinson and Voronkov (2001), 371–443.

Orevkov, V. P.

[1982] Lower Bounds for Increasing Complexity of Derivations After Cut-Elimination, Journal
of Soviet Mathematics 20(4), 1982, 2337–2350.

Richter, C.

[2003] Diagonalization and Self-Application — Applications in Logic and Computer Science,
Master’s thesis, Vienna University of Technology, Austria, 2003.

Robinson, J. A.

[1965] A Machine-Oriented Logic Based on the Resolution Principle, Journal of the ACM
12(1), 1965, 23–41.

81

Robinson, J. A. and Voronkov, A. (eds)

[2001] Handbook of Automated Reasoning (in 2 volumes), Elsevier and MIT Press, 2001.

Schütte, K.

[1960] Beweistheorie, Springer-Verlag, Berlin, 1960.

Schwichtenberg, H. and Troelstra, A. S.

[2000] Basic Proof Theory, 2nd ed., Cambridge University Press, 2000.

Statman, R.

[1979] Lower Bounds on Herbrand’s Theorem, Proceedings of the American Mathematical
Society 75(1), 1979, 104–107.

Tait, W. W.

[1968] Normal Derivability in Classical Logic, in J. Barwise (ed.), The Syntax and Semantics of
Infinitary Languages, vol. 72 of Lecture Notes in Mathematics, Springer-Verlag, Berlin,
1968, 204–236.

Takeuti, G.

[1987] Proof Theory, no. 81 in Studies in Logic and the Foundations of Mathematics, 2nd ed.,
North-Holland, Amsterdam, 1987.

Urban, C.

[2000] Classical Logic and Computation, PhD thesis, University of Cambridge Computer Lab-
oratory, 2000.

Index

Symbols

A . 5
CERES

extension . 43, 51
CERESe . 43
LK .5

proof . 6
standard axiom set 6

ALK . 6
LKE . 52

proof .52
LKeE . 52

proof .53
LKepE

proof .53
LKpE . 52

proof .52
LKe . 43

proof .44
LKep . 44, 53

proof .44
LKp . 7
ORES . 61
PR

deduction . 10
proof .10
refutation . 10

R . 8
deduction . 10
proof .10
refutation . 10

A

ancestor relation . 7
axiom . 5

rule . 5

axiom set . 5, 51
LK . 6
equational . 51

C

calculus
LKE . 52
LKeE . 52
LKepE .53
LKpE . 52
LKe . 43
LKep . 44
ORES . 61

characteristic clause set 24
characteristic clause term23
clause . 8, 23, 24

initial . 8
Otter . 60
set . 24

characteristic . 24
term . 23, 24

characteristic . 23
clause set . 24

characteristic . 24
clause term . 23, 24

characteristic . 23
cut-elimination . 11, 21

CERES . 21
Gentzen .12
Schütte-Tait . 12

cut-reduction . 11, 12
Gentzen .12
rules

grade reduction 12
rank reduction 14

Schütte-Tait . 12
system . 12

84 INDEX

D

deduction . 10
PR . 10
R . 10

E

E-unsatisfiable . 44
equality . 43
equational theory . 51
experiment . 63

resolution refinement 63
extension . 43, 45, 52

equality . 45
equational theory 52

F

factor . 9
formula . 3

ancestor .7
logical complexity 4
position . 4
semi . 3

position . 4

G

grade .7
reduction . 12

I

inference
rule .5, 8

initial clause . 8
initial rule .8

L

logical complexity . 4

O

Orevkov’s theorem . 70

Otter
ORES . 61
clause . 60

P

position . 3
proof6, 7, 10, 28, 44, 53

LK . 6
LKE . 52
LKeE . 53
LKepE .53
LKpE . 52
LKe . 44
LKep . 44
PR . 10
R . 10
grade . 7
projection . 25, 28

instance .28
scheme .25

rank . 7
regular . 10
transformation . 28

R

rank .7
reduction . 14

refutation . 10
PR . 10
R . 10

regularity . 10
resolvent . 9

binary . 9
rule

axiom . 5
inference .5, 8
initial . 8

S

semi-formula . 3
position . 4

semi-term . 3
position . 3

85

sequent .4
skolemization . 22
substitution . 4

T

term . 3
position . 3
semi . 3

position . 3

Curriculum Vitae

Born in Mödling as son of Karl and Brigitte Richter on the 17th of November 1976.

Full name: Clemens Carl Richter

Citizenship: Austria

Marital status: Married

Education

since 2003 Ph.D. student of Computer Sciences at Vienna University of Technology
under Alexander Leitsch.

May 2003 Master degree (Diplom Ingenieur) in Computer Sciences with a concentration
in artificial intelligence and theory of computer science, thesis on methods
in recursion theory, advisor Alexander Leitsch; passed cum laude.

since 1998 Student of Computer Sciences at Vienna University of Technology.

June 1997 School-leaving exam (“Matura“) passed with excellence (Bundeshandels-
akademie Baden).

since 1987 Secondary school.

1983-1987 Elementary school.

Participation in Scientific Projects

Participation in the following projects of the Austrian Science Fund (FWF):

P17995-N12 Automated Analysis of Mathematical Proofs

P17503-N12 Skolem Functions

P16264-N05 Proof Transformation by Resolution

Related Activities

• Organization of Collegium Logicum 2005: Cut-Elimination.

88 CURRICULUM VITAE

• since 2004 Vice Publicity Chair of the Kurt Gödel Society

Publications

• Proof Transformation by CERES, in J. Borwein and W. Farmer (eds), MKM 2006, Springer,
2006, to appear (with M. Baaz, S. Hetzl, A. Leitsch and H. Spohr).

• Equational Theories in CERES, 2005, unpublished — available at http://www.logic.at/
ceres/ (with A. Leitsch).

• Cut-Elimination: Experiments with CERES, in F. Baader and A. Voronkov (eds), LPAR,
vol. 3452 of Lecture Notes in Computer Science, Springer, 2004, 481–495 (with M. Baaz, S.
Hetzl, A. Leitsch and H. Spohr).

• Diagonalization and Self-Application — Applications in Logic and Computer Science, Mas-
ter’s thesis, Vienna University of Technology, Austria, 2003.

Conference and Workshop Presentations

August 2005 System Demonstration of CERES. CERES system demonstration within the
advanced course Computational Analysis of Proofs at the 17th European
Summer School in Logic, Language and Information (ESSLLI 2005), Heriot-
Watt University, Edinburgh, Scotland.

July 2005 Cut-Elimination: Experiments with CERES. Talk at the Collegium Logicum
2005: Cut-Elimination, Vienna University of Technology, Vienna, Austria.

December 2004 The Cut-Elimination Program CERES. Talk at the Paris-Vienna Workshop
on Proofs, University Paris VII, Paris, France.

May 2004 The Cut-Elimination Program CERES. Talk at the third Moscow-Vienna
Workshop on Logic and Computation, Steklov Mathematical Institute, Rus-
sian Academy of Sciences, Moscow, Russia.

