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Ultrafast Dynamics in the Strong Laser Field Ionization

of Atoms and Molecules

Abstract

This thesis presents a theoretical investigation of ultrafast dynamics during strong

laser field ionization with atoms and molecules. For that a new method for solving the

time-dependent Schrödinger equation was developed and implemented, where a hybrid

discretization was used with cylindrical coordinates witha finite element method for

the radialρ coordinate and a pseudo-spectral technique for thezcoordinate. The main

results of the thesis are:

1. Orientation dependence, orbital symmetry dependence ofmolecular field ion-

ization was studied with a two-dimensional model molecule.To get the infor-

mation of rescattering electrons, an analytical probing ofrescattering electrons

was implemented. By studying the momentum distribution of rescattering elec-

trons during strong field ionization of molecules, we found that the rescattering

process is strongly dependent on the orientation and symmetry of the molecule.

2. Sub-cycle dynamics during laser field ionization of molecules was investigated.

With a two-dimensional diatomic molecule model, we found that the laser in-

duces sub-laser-cycle dynamics during field ionization andthe field-induced

sub-cycle dynamics modifies the time structure of rescattering electrons. Such

dynamics may modify the time-frequency structure of high-order harmonic re-

sponse, or lead to the appearance of even harmonics with certain laser intensities.

3. An extreme-ultraviolet (XUV) probing method with attosecond resolution has

been applied to study ionization dynamics of a hydrogen atomin a strong in-

frared laser field. Distortion of ground state and electron excitation during strong

field ionization influence the total XUV photon ionization yield. We found the

total XUV photon ionization yield follows electron densitynear the nucleus.
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Notation

H Hamiltonian

Ψ wavefunction

E electric field

A vector potential

ω laser frequency

τ pulse duration (full with at half maximum)

I laser intensity

Ip ionization potential

Eg ground state energy

Ee excited state energy

Up ponderomotive energy

Γ ionization rate

c speed of light

i imaginary unit
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Overview

With the advance of the Kerr-lens mode-locking [1, 2], the duration of laser pulse has

reached the scale of few laser optical cycles ( e.g. the 800nmlaser has the optical cycle

of 2.67 f s ). On the other hand, chirped pulse amplification (CPA) [3] led to ultrahigh

intensity of laser pulses (up to 1018W/cm2 with intensity fluctuation of 1% [4]). In

laboratories, table-top femtosecond laser systems with pulse durations of a few ten

femtosecond and intensities larger than 1014W/cm2 are widely available at wavelength

in the visible and infrared range (from 400nm to 2µm) [5]. Several research groups

have achieved sub-5-fs pulses in visible and near infrared range [6, 7, 8]. By using the

technique of gas-filled single hollow fiber with spatial light modulator, the Yamashita

group achieved 2.8 f s pulses, the shortest pulse duration at present in visible range

[9]. Furthermore, with a so-called “carrier-envelope phase stabilization” technique,

the electric field of the laser pulse can be highly reproducedwith shot to shot phase

fluctuations of less than 100 attosecond(1as= 10−18s), which is only a small fraction

of the laser optical period [10].

In recent years, in several experiments the barrier of femtosecond was broken and

sub-femtosecond or attosecond duration was reached with such few-cycle laser pulses.

It was demonstrated that the electron motion in atoms or molecules (typical time

scale is a few hundred attosecond) can be controlled by a few-cycle lase pulse [11]

and even can be employed to image a molecular orbital [12], orto produce extreme-

ultraviolet(XUV) pulses with durations of a few hundred attosecond [10], or to directly

characterize the electric field of a laser pulse [13]. With the generated XUV attosec-
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ond pulse, the door was opened to a new regime, which is named “attosecond physics”

[14].

In a strong laser field, electrons in atoms or molecules will be ionized through tun-

neling ionization or above-threshold ionization, and thenbe accelerated in the field,

and part of them will be guided back to the parent ions and rescatter with the ions

approximately in the next half cycle of the laser field. If therescattering is elastic, one

can obtain a snapshot of the ion’s nuclear position [12] fromelectron diffraction pat-

terns. If the rescattering is inelastic, further electronsmight be kicked out from the ion,

which provides information of electron dynamics at that time [15, 16]. Such process

is called nonsequential multiple ionization [17, 18]. In the inelastic scattering case,

electrons may also recombine with their parent ions and emithigh-order harmonic ra-

diation with energies generally equal to the sum of kinetic energy of the electron at

the time of recombination and the ionization potential of the atom or the molecule.

High-order harmonic radiation is normally in the XUV or softX-ray regime. As the

electron energy varies rapidly during rescattering, the high-order harmonic radiation is

broadband with an intrinsic chirp. By compensating the intrinsic chirp and applying a

spectral filter, attosecond XUV pulse trains or even an isolated single attosecond XUV

pulse can be produced [19]. Presently, single attosecond pulses can be produced with a

duration of 170asat∼ 100eV by filtering the cutoff of high-order harmonic radiation

generated by a 5f s laser pulse [20], or with a duration of 130asat∼ 36eV with the

so-called polarization gating method [21]. The durations of such isolated attosecond

XUV pulses are less than 1/15 of the optical period of the fundamental femtosecond

laser.

The new born attosecond XUV pulse normally propagates with its fundamental

infrared laser pulse, and the time-delay between the XUV pulse and the infrared pulse

can be controlled with an accuracy of a few ten attoseconds, which makes it an excel-

lent candidate for pump-probe measurements. The pump-probe technique is the most

direct method to trace fast dynamics in the time domain. Witha single isolated attosec-

ond XUV pulse and a precisely timing controlled infrared laser pulse, the so-called
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streak-camera scheme can be used for sampling the emission of Auger electrons. The

experiment was described in Ref. [22]. An isolated 650asXUV pulse excites a core

electron and produces a inner-shell vacancy with a very short lifetime. This vacancy

is rapidly filled by an electron from the outer shell, and the energy lost by the electron

is carried away by a photon or a secondary electron, the Augerelectron. The emis-

sion time of the Auger electron corresponds directly to the life time of the inner-shell

vacancy. Therfore, sampling the Auger electron emission inthe same way the pho-

toelectron emission is sampled, this gives us direct time-domain access to inner-shell

atomic process with attosecond resolution.

When an atom or a molecule is exposed to a strong laser pulse, one electron or

more electrons will leave the nucleus through tunneling ionization or above-threshold

ionization. The strong field ionization process is essential to understand strong field

effects, such as high-order harmonic generation and nonsequential multiple ionization.

A very recent experiment was performed by using a XUV-IR-pump-probe scheme to

measure tunneling ionization with attosecond resolution [23]. The attosecond time-

scale of the tunneling process was demonstrated by using multiple excitation and re-

laxation processes. In the experiment, the infrared pulse was chosen such that it cannot

ionize the atoms by itself. In the experiment, the atoms werefirst excited by the XUV

pulse, with which some of the electrons are sent to the excited states of the atom, and

then tunneling ionization can be induced by the infrared laser pulse. By controlling

the time delay between XUV pulse and infrared pulse, the tunneling process during

infrared laser cycles can be measured with attosecond resolution in the time domain.

The light-induced tunneling technique may now be used to provide further observa-

tions of electron dynamics.

Because high-order harmonic radiation is emitted due to therecombination of elec-

trons that are guided back to their mother ions by the laser field, the spectrum and the

phase of harmonic radiation contain information of the electronic orbital that is ion-

ized. The shape of highest occupied molecular orbital (HOMO) can be imaged in

three dimensions under certain conditions. By changing therelative angle between
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molecular orientation and the polarization of the probe laser, one can obtain a set of

projections of the molecular orbital. This can be transformed into an image of the

molecular orbital by using an algorithm based on computer tomography [24]. It has

been done [25] for di-nitrogen (N2) with a reference of argon. Experimental high-order

harmonic spectra were taken at 19 angles of the molecular orientation axis to the laser

polarization axis. With such spectra, the 3σg orbital was well reconstructed. Such a

rescattering image of molecular orbitals is based on the assumption that the rescat-

tering wavepacket of the molecule is well known and does not depend on the orbital

structure of the molecule.

Several other techniques are being used both in spatial dimension to improve spa-

tial resolution and temporal domain to gain insight into thebound electrons and even

nuclei with extremely short time scale. Laser-induced electron diffraction is one of

them. Efforts to image molecular dynamics with a sub-picosecond electron beam by

watching the time dependence of diffraction pattern by electron pulse [26, 27] have

been made. The typical electron energy is between 50keV to 300keV, which corre-

sponds to de Broglie wavelength from 0.05Å to 0.02Å. To compare with the typical

bond length in range of 1̊A, they are more than one magnitude smaller, which makes

spatial reconstruction from diffraction pattern easy and accurate. The main limitation

of the technique is that electrons naturally disperse due tomutual repulsion and veloc-

ity dispersion. The time resolution of the conventional diffraction technique is around

the time scale of a few hundred femtoseconds. An electron diffraction pattern of a

molecule can also be obtained from recollision of electronswith their parent molecules

in a strong laser pulse, with about 1Å spatial resolution and 1f s temporal resolution

[12, 28, 29, 30]. As we mentioned before, during a strong laser pulse, detached elec-

trons can be guided back to rescatter with their parent ions,and elastic scattering will

lead to generation of a diffraction pattern, with which one can image the molecule.

The temporal resolution will be approximately the time between electron releasing

and rescattering, which is about half an optical period of the laser field. The merit

of such technique is that the temporal resolution of electron diffraction is about 1f s
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for infrared laser pulse (half an optical cycle of laser pulse with wavelength 800nm

is 1.3 f s), even in sub-femtosecond regime for laser pulses with shorter wavelengths

(e.g. 400nm).

Another goal in attosecond science is to achieve XUV-pump XUV-probe studies

on ultra-fast dynamics. Due to extremely small two-photon cross sections, nonlinear

optics experiments in the XUV range are particularly hard. With current high-order

harmonic radiation, autocorrelation measurement was performed only with rather long

harmonic wavelength (around 13eV) for the two-photon ionization of helium [31]. The

method has a limitation as photon energies need to be less than the ionization potential

of the chosen atom. In another experiment, it was reported that such limitation can

be avoided because of small cross-section for above-threshold ionization [32]. Up

to now, purely XUV pump-probe experiments still can not be performed with present

XUV pulse intensities. This is one of the main reason why we need more intense XUV

pulses [33]. Once such pulses become available, the whole range of methods based on

pump-probe technique can be applied to a rather short time scale. In particular, specific

inner-shell excitation can be addressed and the distortionof the initial system by the

probing field can be significantly reduced. A door will be opened to gain insight into

the fastest process in chemistry and atomic physics or even nuclear physics.

The motivation of this thesis is based on recent experimentswith few-cycle laser

pulses and attosecond XUV pulses. Rescattering electron wavepacket is crucial for

its application in molecular tomography, which should not depend on the mother

molecule. Therefore, a question appears: is electron rescattering universal for all

species molecules? Does it depend on the initial state of themolecule? The momen-

tum distribution over time of rescattering electrons should be carefully studied before

one can use it.

Moreover, as attosecond XUV pulse has become a brand new and powerful tool to

probe ultrafast dynamics by exciting or ionizing electronsin atoms or molecules with

attosecond time scale, one essential question should be answered: what is really probed

by such an XUV attosecond probing method? In other words, which quantities of
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atoms or molecules will determine or affect the output from the XUV probing method.

Both questions will be investigated in this thesis. The momentum and time struc-

tures of rescattering electrons will be studied for initialstates with different symmetry

and orientation during strong field ionization. For the XUV probing method, we cal-

culated the XUV probing of strong laser field ionization to identify the quantity that

determines the total XUV ionization yield.

In the first chapter, a short review over strong field theory ispresented, especially

numerical methods for solving time-dependent Schrödinger equation. Time propa-

gators, spatial and temporal discretization and gauges used to solving the TDSE are

discussed. Moreover, numerical simulations of high-orderharmonic generation from

single particle response and its propagation effects are presented.

In the second chapter, orientation dependence and orbital symmetry dependence of

laser field ionization were studied with a two-dimensional diatomic molecule model.

To get the information of rescattering electrons, a method to determine the rescatter-

ing part of the electronic wavefunction was developed. By studying the momentum

distribution of rescattering electrons during laser field ionization, we found that rescat-

tering process during strong field ionization of molecules is strongly dependent on the

orientation and orbital symmetry of its initial state.

In the third chapter, sub-cycle dynamics during laser field ionization of molecules

was investigated. With a two-dimensional diatomic molecule model, we found that

the strong laser induces sub-cycle dynamics during field ionization due to Rabi-like

oscillations, and such dynamics modifies the time-structure of rescattering electrons.

The field-induced dynamics can be observed in the time-frequency structure of high-

order harmonic response, which has inherited the effect from electrons recombination

with their parent ions. Further, in additional to harmonicswith odd multiples of the

fundamental laser frequency, even harmonics can appear at certain laser conditions.

In the fourth chapter, an XUV probing method with attosecondresolution has been

applied to study ionization dynamics of hydrogen atoms in a strong infrared laser field.

A hybrid discretization was used to the solving time-dependent Schrödinger equation
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of the hydrogen atom with two-dimensional cylindrical coordinates. The finite ele-

ment method is applied in the radial coordinate while a pseudo-spectral technique is

employed in z-coordinate. Distortion of the ground state and electron excitation of

the atom in the strong laser field influence the total XUV photon ionization yield. It

was found that the total XUV photon ionization yield neitherfollows the population of

ground state nor total unionized population, but follows the electron density near the

nucleus.

7
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Chapter 1

Numerical simulations of atoms and

molecules in a strong laser field

1.1 Introduction

In a strong laser field, which is comparable to the electric field inside in the atom or

the molecule, electrons will be ionized and accelerated in the external field. Part of

these electrons can be guided back to their parent ions and scatter from them. Dur-

ing such process, there is a rather complex interplay between laser force and atomic

force. Fortunately, most of phenomena in strong field physics can be explained un-

der following approximation: the dynamics can be separatedinto two parts, one part

“inside” the atom where atomic force dominates and the otherpart “outside” the atom

where the laser force dominates. Based on such a picture, numerical calculations can

be performed with models in a classical, semi-classical or fully quantum mechani-

cal frame. In many cases, the classical picture can essentially explain the phenomena

and quantum mechanical calculations are only needed to achieve quantitatively correct

results.
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1.1.1 Strong field approximation (SFA)

Strong field approximation is the most used analytical method to investigate strong

field phenomena, such as above-threshold ionization, high-order harmonic generation

and non-sequential double ionization. It assumes that the initial bound states of atoms

or molecules are unaffected by the external laser field whilethe final state, which is in

the continuum, cannot feel the Coulomb potential. With the strong field approxima-

tion, the unbound part of the electron wavepacket has the general form [34]

Ψ(r , t) =

∫

d3k
∫ t

−∞
dt′exp

(

−iΦ(k, t ′)
)

exp(ik · r)χ(k, t), (1.1)

where

Φ(k, t ′) = −1
2

∫ t ′

−∞
dτ
[

k− 1
c

A(τ)

]2

, (1.2)

is the so-called Volkov phase andA(τ) is the vector potential of the external field

in Coulomb gauge (∇ ·A = 0) andc is the speed of light in vacuum. Atomic units

h̄ = e = me = 1 are used all through the thesis, whereh̄ is reduced Plank constant,

−e andme the electron charge and mass, respectively. The Volkov solution of a free

electron in a laser field is just a plane wave times the Volkov phase. The “release

amplitude”χ(k, t) depends on the ionization process. It can simply be given by

χ(k, t) = ~E (t) ·d(k)exp(iI pt) (1.3)

where~E (t) is the field strength of the laser field,d(k) is the field-free bound-continuum

dipole moment andIp is the ionization potential of the system.

The equation (1.1) has a simple interpretation. The “release amplitude”χ(k, t)

describes how the electron wavepacket is driven to the continuum and gives the initial

quantum mechanical phase of the wavepacket. The Volkov phase describes the free

evolution of the wavepacket from that time on and determineshow contributions add

up from all times. The laser is assumed to only influence the free electron motion

through the vector potential in the Volkov phase, but it has no effect on the release

amplitude.
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The strong field approximation is very suitable to describe propagation after elec-

tron release. This allows one to reconstruct electron spectra and high-order harmonic

spectra in great detail. However, tunneling ionization is not correct in the strong field

approximation, because of neglecting the atomic potential, which is a crucial factor

on laser ionization. There are several techniques to correct the influence of the atomic

potential [35, 36], with which one can get quantatively correct high-order harmonic

spectra [37]. For a correct description of the ionization process, solving full time-

dependent Schrödinger equation is required.

1.1.2 Strong field ionization

Ionization is the essential process to understand strong field phenomena, such as high-

order harmonic generation, above-threshold ionization and nonsequential double ion-

ization. The Keldysh parameter [38] determines whether multiphoton or tunneling

ionization or barrier-suppression ionization dominates the ionization processes, which

is defined as

γ =

√

Ip

2Up
(1.4)

whereIp is the ionization potential of the system.Up is the ponderomotive energy,

given by

Up =
E

2
0

4ω2
0

(1.5)

whereω0 andE0 are the central frequency and the peak field strength of the field,

respectively. Forγ & 1, multiphoton ionization dominates, which is a process that

extends over several electric field cycles with interference between electron wavefunc-

tions which are produced during each field cycle. On the otherhand, forγ . 1, ioniza-

tion is dominated by tunneling ionization or barrier-suppression ionization, in which

regime interference between electron wavefunctions from different time plays a minor

role for the ionization yield. Tunneling ionization or barrier-suppression ionization can

be well described by static-field ionization models. The quasi-static ionization yield
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Yq is given by

Yq = 1−exp

{

−
∫

Γ [E (t)]dt

}

(1.6)

whereΓ [E (t)] is the ionization rate for static fieldE (t). The tunneling ionization

strongly depends on the electric field strength and the ionization potential of the sys-

tem. For the hydrogen atom, the tunneling ionization rate for static fieldE is given by

[39]

Γ(E ) =
4
E

exp

[

− 2
3E

]

. (1.7)

For general atoms, the Ammosov, Delone, and Krainov (ADK) formula is widely used

to get the tunneling ionization rate, which is given by

ΓADK = C2
n∗l f (l ,m)

(

3E

π(2Ip)3/2

)1/2
(

2(2Ip)
3/2

E

)2n∗−|m|−1

exp

(

−2(2Ip)
3/2

3E

)

(1.8)

with

Cn∗l =

(

2e
n∗

)n∗

(2πn∗)−1/2, (1.9)

f (l ,m) =
(2l +1)(l + |m|)!
2|m||m|!(l −|m|)! (1.10)

wheren∗ is an effective quantum number, andl andmare angular and magnetic quan-

tum numbers, respectively, ande is the Euler number. Recently, the ADK formula

was successfully extended to molecules [40]. In the tunneling regime, the ionization

rates formulae show the exponential dependence of ionization rate on the inverse of

the field strength. Consequentially, electron emission dominantly happens at a very

narrow time when the field reaches its peak.

For barrier-suppression ionization, there are no reliableanalytic formulae to esti-

mate the ionization rate. Generally, the ionization rate inthis regime is obtained by

numerical calculations [41, 42]. The dependence of field strength is much weaker in

this regime, which leads a broader time-distribution of electron emission.
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1.1.3 Electron recollision

Generally speaking, the idea of electron rescattering plays a central role in the theo-

retical description of the interaction of intense laser pulses with atoms and molecules:

an electron is released from a bound system usually by tunnelionization, then it trav-

els as a free, basically classical particle in the laser field, and then it scatters with its

parent system, if it is guided back there by the field [43, 44].This is so-called three-

step model, which was first used to explain the generation of high-order harmonics.

There is overwhelming and rather detailed experimental andtheoretical evidence that

rescattering dominates the atomic dipole response at high frequencies and similarly

compelling evidence is being accumulated that it is also responsible for enhanced dou-

ble ionization of atoms and molecules [17, 18].

Recently it was proposed that the rescattering electrons can be used like a (coher-

ent!) microscopic electron beam to provide images of the parent system, e.g. of the

nuclear positions of a molecule by double-ionizing a molecule at a well defined time

after initial tunnel ionization [12], by providing a diffraction image of the parent sys-

tem [28], and even by mapping the bound part of the electronicwave function into

the high harmonic spectra, from where it could be recovered by tomographic methods

[25].

As electron detachment and recollision occupy only a fraction of the whole cycle,

time-structures are on the scale of a few hundred attosecond. These extremely rapid

processes can be manipulated by controlling the laser field which is being exploited in

an increasing number of experiments. From high harmonic radiation attosecond pulses

can be extracted and efforts are directed to obtaining higher harmonic intensities and

detailed control of the time structure. Harmonic radiationalso serves to diagnose rec-

ollision itself and to extract information about structure[25] and dynamics of the target

[45, 46]. The early focus of recollision experiments was on ionization and harmonic

generation with noble gases, where the recollision picturehas become firmly estab-

lished. The chirp of the harmonics can be linked to recollision times [47], and control

13



of the recollision through laser polarization [48, 49] and two-color fields [50] was

demonstrated. Now attention is increasingly shifting towards molecules, because of

their more complex structure and richer dynamics.

1.1.4 High-order harmonic generation

High-order harmonics are generated from recombination of rescattering electrons with

their parent ions. The recombination energy is given by the sum of the ionization

potential and the electron kinetic energy when it recombines, which is normally in

extreme-ultraviolet (XUV) or soft X-ray range. The maximumharmonic energy is

produced by electrons which are released at about 0.05 optical cycles after peak elec-

tric field strength and recombine about a half cycles later. The maximum energy of

harmonic radiation, so-called cutoff energy, is evaluatedby the three-step model as

ωcuto f f ≈ Ip+3.17Up (1.11)

whereIp is the ionization potential of the system andUp is the ponderomotive energy

(Eq. (1.5)).

In case of a symmetric system in a multi-cycle laser pulse, the electron release and

recombination process is repeated each half laser cycle andharmonic radiation emits

as well. The corresponding harmonic spectrum consists of a series of narrow peaks at

odd multiples of the frequency of the driving field. In case ofa few-cycle laser pulse,

the release and recombination time as well as the cutoff energy become dependent

on the carrier-envelope phase of the laser pulse. A single high frequency attosecond

radiation can be filtered out when the pulse has some certain carrier-envelope phase

[51].

The simple semi-classical picture of high-order harmonic generation as given by

the three-step model accurately predicts the range of photon energies of high-order

harmonic generation, and also fully explains the time-structure of the radiation. How-

ever, a quantum mechanical treatment is needed for a more complete picture of the
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high-order harmonic process. A fully quantum mechanical and analytical theory of

high-order harmonic radiation, derived by Lewenstein et al.[52], has been extremely

successful in describing the general characteristics of high-order harmonic radiation,

which will be discussed later on.

1.2 Solving the time-dependent Schr̈odinger equation

1.2.1 Time-dependent Schr̈odinger equation (TDSE)

In this section, we concentrated on the method for numerically solving the TDSE,

which will be used in the following chapters of the thesis. The three-dimensional

TDSE has a form as

i
∂
∂ t

Ψ(t) = H(t)Ψ(t) (1.12)

whereH is the Hamiltonian of the system andi =
√
−1 is the imaginary unit. Nor-

mally, the Hamiltonian is given by

H(r ; t) = −1
2

∇2+V(r ; t) (1.13)

where the first part is the kinetic energy operator and the second part is the potential

operator.

If the initial state is know asΨ(t0), the formal solution of Eq. (1.12) can be ex-

pressed as

Ψ(t) = U(t, t0)Ψ(t0) (1.14)

where the time propagatorU(t, t0) is given by

U(t, t0) = T̂ exp

[

−i
∫ t

t0
H(t ′)dt′

]

(1.15)

In Eq. (1.15),T̂ is time ordering operator andH(t ′) is time-dependent Hamiltonian. If

the Hamiltonian is time independent, the formal solution ofEq. (1.15) is

U(t, t0) = exp[−i(t− t0)H]. (1.16)
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If Hamiltonian is time dependent, this solution (1.16) is approximate. When the time

step(∆t = t− t0) is chose sufficiently small, the time propagator can be replaced by an

approximate propagator with a certain accuracy.

1.2.2 Time propagators

Various schemes have been proposed to approximate the time propagator [53, 54]. The

simplest Euler scheme expands the propagator with first order of H∆t, which reads as

exp(−iH∆t) = 1− iH∆t +O(∆t2). (1.17)

This is a explicit scheme, which means matrix inversion is not needed, but it is unsta-

ble. Moreover, it is no unitary, that is, the norm of the wavefunction is not preserved

during time propagation, which will lead to unphysical results. To numerically study

a time-dependent process with TDSE, it is important to get a unitary time propagator.

There are several frequently used propagators, which have higher accuracy, such as

Crank-Nicholson (CN) method, Peaceman-Rachford (PR) method, Runge-Kutta (RK)

method, and split-step (SS) method.

The CN propagator is presented as the so-called Cayley form [55]

exp(−iH∆t) =
1− iH∆t/2
1+ iH∆t/2

+O(∆t3) (1.18)

which is an implicit scheme. Appealing features of the CN method are that it is unitary

and the energy is constant, and most importantly, it is unconditionally stable and con-

sistent [56, 57]. The accuracy of CN method is order of∆t3. A serious drawback of

the CN method is that each time step requires the inversion ofa matrix, which makes

the efficiency of computation rather poor, especially for two-dimensional or higher

dimensional systems.

To avoid solving a linear system in two-dimension, one can split the time propaga-

tor as exp(−i(A+B)∆t), whereA andB are arbitrary operators. This is the main idea

of PR method [58, 59], by which the time propagator is approximated by

exp[−i(A+B)∆t] =
1

1+ iA∆t/2
1− iB∆t/2
1+ iB∆t/2

(1− iA∆t/2)+O(∆t3). (1.19)
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By introducing an intermediate stateΨn+ 1
2
,the propagator can be separated into two

implicit schemes,

(1+ iB∆t/2)Ψn+ 1
2

= (1− iA∆t/2)Ψn,

(1+ iA∆t/2)Ψn+1 = (1− iB∆t/2)Ψn+ 1
2
.

(1.20)

With a two-dimensional problem, one can choose the operators such thatA con-

tains differential operators of one coordinate andB contains those of the other co-

ordinate. Then PR method has reduced the computation problem from solving one

two-dimensional linear equation to solving two one-dimensional linear equations for

each time step. The accuracy of PR method is also order of∆t3.

The Runge-Kutta (RK) method is one of the most used integrator for ordinary dif-

ferential equations, by which high accuracy can be achievedand adaptive step control

can be easily implemented [60]. The basic idea of the RK method is using a trial step

at the midpoint of an interval to cancel out lower-order error terms. The second-order

formula is
k1 = ∆t f (tn,Ψn),

k2 = ∆t f (tn+ 1
2∆t,Ψn+ 1

2∆k1),

Ψn+1 = Ψn +k2+O(∆t3),

(1.21)

where f (tn,Ψn) = −iH (tn)Ψn. It has an accuracy with order of∆t3

The fourth-order RK method, which is the mostly used one, hasan accuracy with

order∆t5. The formulae are read as

k1 = ∆t f (tn,Ψn)

k2 = ∆t f (tn+ 1
2∆t,Ψn+ 1

2∆k1)

k3 = ∆t f (tn+ 1
2∆t,Ψn+ 1

2∆k2)

k4 = ∆t f (tn+∆t,Ψn+k3)

Ψn+1 = Ψn + 1
6k1 + 1

3k2 + 1
3k3 + 1

6k4 +O(∆t5).

(1.22)

The general idea of split-step (SS) method is to make use of the special structure

of an equation, in which the time evolution operator can be separated into two easily

solvable parts (H = A+B), which, however, do not commute with each other. It will
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produce a splitting error due to the non-commutativity of separated parts. The Baker-

Campbell-Hausdorf formula [61, 62] is very useful to reducenoticeably the split-

ting error. The second-order SS method can be presented based on Baker-Campbell-

Hausdorff formula,

exp[−i(A+B)∆t]≈ SS2(∆t) = exp(−iA∆t/2)exp(−iB∆t)exp(−iA∆t/2) (1.23)

which has an accuracy ofO(∆t3).

The fourth-order SS method is given in the form

SS4(∆t) = SS2(ω∆t)SS2 [(1−2ω)∆t]SS2(ω∆t) (1.24)

whereω = (2+ 21/3 + 2−1/3)/3. The accuracy of the fourth-order SS method is the

same as the fourth-order RK method.

Note that the number of products of exponential operators increases with the order

of decay of splitting error. In general, the operatorsA andB in Eqs. ( 1.23) and ( 1.24)

may be interchanged without affecting the accuracy order ofthe method.

1.2.3 Time discretization

The straight forward discretization of time is a uniform step grid. A good time propa-

gator should exert some adaptive control over its own progress, making changes in its

step-size as needed. Usually the purpose of this adaptive step-size control is to achieve

some predetermined accuracy in the solution with minimum computational efforts.

Implementation of adaptive step-size control requires that the stepping algorithm sig-

nals information about its performance, most importantly,an estimate of its truncation

error. Obviously, the calculation of this information willadd to the computational

overhead, but the investment will generally be repaid handsomely. With fourth-order

Runge-Kutta, the most straightforward technique by far is two-step method (e.g. [63]).

We take each step twice, once as a full step, then, independently, as two half steps.

Then we compare the results of both calculation and estimatethe accuracy to deter-
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mine the step-size (one can find a detailed description in “Numerical Recipes” [60].)

The two-step method can also used for other propagators.

1.2.4 Coordinates, spatial discretization and derivatives

The three-dimensional TDSE in velocity gauge of hydrogen atom in a strong laser field

with dipole approximation has the form

i
∂
∂ t

Ψ(r , t) =

[

1
2
(p− 1

c
A(t))2− 1

r

]

Ψ(r , t) (1.25)

whereA(t) is the vector potential of the external laser field in Coulombgauge and−1
r

is the Coulomb potential.

Spatial discretization directly depends on the coordinates in which to represent the

wavefunction. Usually used coordinates are spherical coordinates, cylindrical coordi-

nates and Cartesian coordinates. In the thesis, cylindrical coordinates and Cartesian

coordinates will be used to study the sub-cycle dynamics during laser field ionization

of hydrogen atoms and molecules, respectively.

Cylindrical coordinates

We assumed that laser field is linearly polarized and the polarization direction is paral-

lel to z axis. Because of the symmetry, cylindrical coordinatesρ, z, φ (x=ρ cosφ ,y =

ρ sinφ ,z= z) are introduced with an ansatz

Ψ(ρ,φ ,z; t) =
1√
2π

ψ(ρ,z; t)exp(imφ) (1.26)

and TDSE of hydrogen atom in length gauge with dipole approximation has the form

i
∂
∂ t

Ψ(ρ,z,φ ; t) =

[

1
2

p2
ρ +

m2

2ρ2 +
1
2
(pz−

1
c

A(t))2− 1
√

ρ2 +z2

]

Ψ(ρ,z,φ ; t) (1.27)

whereA(t) is the vector potential of the external laser field andm is the magnetic

quantum number. In our calculations, the ground state of hydrogen atom is used,
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which impliesm= 0. The TDSE turns into

i
∂
∂ t

ψ(ρ,z; t) =

[

1
2

p2
ρ +

1
2
(pz−

1
c

A(t))2− 1
√

ρ2+z2

]

ψ(ρ,z; t) (1.28)

and the normalization condition is

∫ ∞

0
ρdρ

∫ ∞

−∞
dz|ψ(ρ,z; t)|2 = 1. (1.29)

As presented in Ref. [64], a scaled coordinate method was applied to solving the

TDSE in cylindrical coordinates. The singularity in the origin can be avoided and the

differential operators can be conveniently applied with finite difference method. It was

implemented as follows. The scaled cylindrical coordinates are defined as

x = ξ λ cosφ , y = ξ λ sinφ , z= z, (1.30)

and the wavefunction was determined by

Φ(ξ ,z) =
√

λξ λ−1/2ψ(ρ,z). (1.31)

The wavefunction was propagated by using PR method. It turned out the best choice

is λ = 3/2, both for stability and accuracy.

Cartesian coordinates

The Hamiltonian of the system in three-dimensional coordinates with velocity gauge

for the hydrogen atom in a linearly polarized field is

H(x,y,z; t) =
1
2

p2
x +

1
2

p2
y +

1
2
(pz−

1
c

A(t))2− 1
√

x2+y2 +z2
. (1.32)

Because coordinatesx andy are symmetric, one can take a cut inx− y plane which

turns Eq. (1.32) into an equation in two-dimensional Cartesian coordinates,

i
∂
∂ t

ψ(x,z; t) =

[

1
2

p2
x +

1
2
(pz−

1
c

A(t))2− 1√
x2 +z2

]

ψ(x,z; t). (1.33)
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To avoid the singularity of the potential, a screened potential is usually employed to

model the system, which is defined as

V(x,z) = − 1√
x2 +z2+a2

(1.34)

wherea is the screening parameter, which can be adjusted to get the correct ionization

potential of the system.

For two-dimensional Cartesian coordinates, the Hamiltonian is given by

H(x,z; t) =
1
2

p2
x +

1
2
(pz−

1
c

A(t))2+V(x,z). (1.35)

With the split-step method, one can separate Hamiltonian into kinetic energy part

1
2 p2

x + 1
2(pz− 1

cA(t))2 and potential partV(x,z). Before applying kinetic energy part,

the wavefunction is transformed into momentum space numerically by Fourier trans-

form

Ψ̃(px, pz; t) =
∫

dx
∫

dzΨ(x,z; t)exp(−ixpz)exp(−izpz). (1.36)

After that, wavefunction is brought back to configuration space by backwards fast

Fourier transform, and then the potential part is applied. This is one variant of the

pseudo-spectral method.

To present spatial discretization and evaluation of spatial derivatives, Cartesian

coordinates are used as an example. Spatial discretizationfor Cartesian coordinates

mostly is used as equally spaced mesh with finite box size






x j = j∆x, j = −Nx, ..., Nx−1,

zk = k∆z, k = −Nz, ..., Nz−1,
(1.37)

where∆x and∆zare step sizes inx andzcoordinates, respectively. The box ranges are

[−Nx∆x, (Nx−1)∆x] and[−Nz∆z, (Nz−1)∆z] in x andz coordinates, respectively.

If the time propagator is performed in configuration space, spatial derivatives need

to be calculated. Usually, Spatial derivatives are obtained by using finite difference

method. The finite difference method is one of the simplest ways of approximating

a differential operator, and is extensively used in solvingdifferential equations. First
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order differential of the wavefunction with three-point finite difference method is given

by
dΨ(xn)

dx
=

Ψ(xn+1)−Ψ(xn−1)

2∆x
, (1.38)

and second order differential of the wavefunction is read as

d2Ψ(xn)

dx2 =
Ψ(xn+1)−2Ψ(xn)+Ψ(xn−1)

∆x2 . (1.39)

1.2.5 Eigenstates and eigenenergies

To study a system, one first needs to know its initial state, usually the ground state.

For TDSE, we need the eigenstates of the Hamiltonian. There are many numerical

methods to obtain eigenstates of the system.

The straight forwards method to get eigenvalues and eigenstates is diagonalizing

the Hamiltonian. It is convenient to get all eigenvalues andeigenstates of Hamiltonian

when the matrix size is not too large.

The power iteration is a very simple algorithm to get eigenstates. It does not com-

pute a matrix decomposition, and hence it can be used when theHamiltonianH is a

very large matrix. However, it will find only one eigenvalue (the one with the greatest

absolute value) and it may converge very slowly. Therefore,it is not suitable to get

eigenstates of our Hamiltonian.

Based on power iteration, the inverse iteration method [65,66] improves on its

performance, which is a very fast and efficient way to get an eigenstate. Whereas

the power method always converges to the largest eigenvalue, inverse iteration also

enables the choice of which eigenvalue to converge to. For anapproximationµ to the

eigenvalue we are interested in, ifµ is closer toλ than any other eigenvalue ofH,

thenλ −µ is the smallest eigenvalue of the matrix(H −µI) (I is the unit matrix). By

iterational calculating

Ψn+1 = (H −µI)−1Ψn, (1.40)

where initial vectorΨ0 is a guess state, we can find the eigenstate corresponding to
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this eigenvalue. Once we have a suitable eigenstate approximation, we can use the

Rayleigh quotient to find the eigenvalue.

Imaginary time propagation is also a usually used method to get lowest few eigen-

states and eigenvalues [67]. The imaginary time propagation method is based on the

TDSE propagated in imaginary time (t →−it ). Then TDSE turns into

∂Ψ(t)
∂ t

= −HΨ(t). (1.41)

The formal solution then becomes

Ψ(τ) = exp(−Hτ)Ψ(0). (1.42)

If Ψ(τ) is represented using Hamiltonians eigen wavefunctions

Ψ(τ) = ∑
j

c j exp(−E jτ)φ j , (1.43)

whereφ j are eigen wavefunctions with eigenenergyEi , it is easy to see that the ground

state decays the slowest and after a sufficiently long periodof time there are no other

eigen wavefunctions present in the wavefunction than the ground state. To solve for the

excited states one just needs to project out all the lower states from the wave function.

The choice of the initial guess for the ground wavefunction is not critical but only

effects the time need for convergence.

In the thesis, we solved TDSE in two dimensions, where the Hamiltonian matrix is

quite large. Therefore, the imaginary time propagator method was selected to get the

ground state and the first excited state.

1.2.6 Boundary conditions

In a numerical simulation, it is impossible and unnecessaryto simulate in the whole

space. Generally we choose a region of interest in which we conduct a simulation.

The interesting region has a certain boundary with the surrounding environment. Nu-

merical simulations also have to consider the physical processes in the boundary re-

gion. In most cases, the boundary conditions are very important for the simulation
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regional physical processes. Different boundary conditions may cause quite different

simulation results. Improper sets of boundary conditions may introduce nonphysical

influences on the simulation system, while a proper set of boundary conditions can

avoid that. Therefore, arranging the boundary conditions for different problems be-

comes very important. The frequently used boundary conditions for solving TDSE are

periodic boundary and absorption boundary.

Periodic boundary is a simplest and convenient way to avoid boundary reflections.

It implements for the first order differentials of wavefunctions at boundary as

dΨ(xNx)

dx
=

Ψ(x−Nx)−Ψ(xNx−1)

2∆x
, (1.44)

dΨ(x−Nx)

dx
=

Ψ(x−Nx+1)−Ψ(xNx)

2∆x
, (1.45)

and the second order differentials of wavefunctions at boundary are read as

d2Ψ(xNx)

dx2 =
Ψ(x−Nx)−2Ψ(xNx)+Ψ(xNx−1)

∆x2 , (1.46)

d2Ψ(x−Nx)

dx2 =
Ψ(xNx)−2Ψ(x−Nx)+Ψ(x−Nx+1)

∆x2 . (1.47)

With periodic boundary, the wavefunction reenters from theother side of the space.

Therefore, one should also be cautious with the box size to avoid unphysical interfer-

ence by the reentering wavepacket. The fast Fourier transform methods also imply

periodic boundary conditions.

In the numerical simulation of strong field interaction, theelectron wavepacket

after ionization will accelerate and expand, reach box boundary and be reflected or

reenter, in case of periodic boundary conditions. The numerical reflections may cause

undesired and unphysical effects. As the remote parts of thewave function are not

needed to determine typical observables such as ionizationyield or dipole response, the

spatial domain where the wave function is calculated can be limited to some inner part.

Doing that one must ensure that no unphysical reflections occur at the boundary of that

domain. To avoid such unphysical reflections and reenteringfrom box boundary, as

described in [68, 69, 70], absorption boundary condition isneeded. It is implemented
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by adding an imaginary potential near boundary. The addition of a “complex absorbing

potential”−iW(r) to the potentialV(r) can provide nearly reflectionless absorption.

The functionW(r) is zero in some sufficiently large inner domain and smoothly grows

to a certain magnitudeWa at the boundary. The absorption strengthWa and the ab-

sorption extensionLa are adjusted empirically to ensure sufficient absorption and to

avoid reflections for a given physical situation. We defined the “complex absorbing

potential” as

−iW(r) =







Wa
2

[

1−cos(π r−Ra
La

)
]

, r > Ra,

0, r 6 Ra,
(1.48)

whereRa is the distance to start absorption. The artificial imaginary potential will

destroy unitary time propagation and thus lead to dissipation of the wavefunction. The

decreasing norm〈Ψ(t)|Ψ(t)〉 can be used to evaluate the total ionization probability.

An alternative approach to removing outgoing flux is to multiply the wavefunction

by a mask functionM(r), whereM(r) equals 1 in the inner domain and becomes small

at the boundary.

1.2.7 Gauges

Formally, quantum mechanics is gauge invariant and therefore evaluating physical

quantities must lead to the same result regardles of the selected gauge. However, such

evaluations involve operations on the variables which may be gauge dependent. There-

fore, in numerical simulations, the choice of gauge is important. Velocity and length

gauges are two of the mostly used ones in strong field theory.

In velocity gauge, the Hamiltonian is given by

Hv(r ; t) =

(

p− 1
cA(t)

)2

2
+V(r). (1.49)

whereA(t) is the vector potential of the external field. The Hamiltonian in length

gauge has a form as

Hl(r ; t) = −∇2

2
−E (t) · r +V(r), (1.50)
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whereE (t) is the field strength of the external electric field. The electric field is defined

by

E (t) = −1
c

∂A(t)
∂ t

. (1.51)

The transform between the wavefunction in length and velocity gauge is given by

Ψl (t) = e−iA(t)·r Ψv(t). (1.52)

The only difference between length gauge and velocity gaugeare the external field

term. For length gauge, the external field term is given by−E (t) · r , while for velocity

gauge, it is given by−1
cp·A(t)+ 1

2c2 A2(t). Depending on the problem, either length or

velocity gauge may be advantageous. For example, high-order above threshold ioniza-

tion is treated in velocity gauge at lower computational cost than that in length gauge

[71]. On the other hand, ionization of heavy ions is more conveniently evaluated in

length gauge [72]. In our calculations, we found that the velocity gauge is more effi-

cient than the length gauge, but the results from both gaugesare equivalent. Therefore,

the velocity gauge is chosen to solve TDSE in this thesis.

1.3 Numerical simulations of high-order harmonic gen-

eration

1.3.1 Single particle response

Numerically, the high harmonic spectrum of single particleis calculated from the

Fourier transform of the dipole acceleration:

P(ω) =

∣

∣

∣

∣

∫

d̈(t)e−iωtdt

∣

∣

∣

∣

2

. (1.53)

The dipole matrix acceleration in length gauge can be written in three different form

[73] length form (Eq. (1.54)), velocity form (Eq. (1.55)) and acceleration form (Eq.
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(1.56)):

d̈l (t) =
d2

dt2
〈ψ(t)|r |ψ(t)〉, (1.54)

d̈v(t) =
d
dt
〈ψ(t)|− i∇|ψ(t)〉, (1.55)

d̈a(t) = 〈ψ(t)|−∇V|ψ(t)〉+E (t), (1.56)

whereV is the potential. All forms will give the same result, but will be different if the

wavefunctions are not exact solutions of the TDSE of the system.

With Lewenstein model, the dipole high harmonic response isobtained as a product

of three probability amplitudes [52]:

d(t) = Re

[

∑
tb

1√
i
aion(tb)apr(tb, t)arec(t)

]

, (1.57)

wheretb stands for a particular birth time of the electron, which recollides with its

parent ion at the momentt. The “ionization”, “propagation”, and “recombination”

probability amplitudes in Eq. (1.57) are given by

aion(tb) =

√

dn(tb)
dt

, (1.58)

n(t) = n0

(

1−exp

[

−
∫ t

−∞
dt′Γ{El (t

′)}
])

, (1.59)

apr(tb, t) =

(

2π
t− tb

)3/2 (2Ip)
1/4

El (tb)
exp[−iS(tb, t)], (1.60)

S(tb, t) =
∫ t

tb
dt′
(

1
2
[p(tb, t)−Al(t

′)]2+ Ip

)

, (1.61)

arec(t) =
p(tb, t)−Al(t)

[2Ip+{p(tb, t)−Al(t)}2]
3 , (1.62)

Al (t) = −
∫ t

−∞
dt′El (t

′), (1.63)

p(tb, t) =
1

t − tb

∫ t

tb
dt′Al (t

′), (1.64)

wheren(t) is the free-electron density,Γ{El} is the ionization rate at the electric field

El , n0 is the initial concentration of neutral atoms,Ip is the ionization potential,p is

the classical momentum of the electron. The instant of birthtb as a function of timet
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is determined by solution of the equation

p(tb, t)−Al(tb) = 0. (1.65)

For a fixed timet this equation can have several solutions, which are included into the

sum in Eq. (1.57).

1.3.2 Propagation effects

Propagation effects are an important issue for high-order harmonic generation. The

most important propagation effects are absorption of the harmonics, dephasing be-

tween the harmonics and the fundamental, and defocusing of the fundamental, which

are the main limitations for high harmonics to achieve high efficiency. When high

frequency harmonic radiation propagates through gas, it will be absorbed by exciting

core electron states [74]. The difference between phase velocities of fundamental laser

and high harmonic radiation will lead to phase mismatching,which limits the accu-

mulation of high harmonic radiation. Moreover, during highharmonic generation, the

fundamental laser pulse will create free electrons in a channel with peak electron den-

sity at the center and a sharp decrease towards the pulse wings. Such a free-electron

density profile will defocus the laser pulse, which will reduce the laser intensity and

terminate the generation of high harmonics. Since the first observation of high har-

monics in experiments [75], numerous efforts were made to increase the intensity of

harmonics emission by optimizing propagation effects [76,77, 78, 79]. Efficiency is

critical to generate a detectable signal, and also the spectral properties are important.

A three-dimensional model with cylindrical symmetry was usually implemented

to simulate propagation of an ultrashort laser pulse together with high harmonic ra-

diation. Simulations are performed with slowly-evolving wave approximation [80].

Harmonics absorption and diffraction are taken into account, as well as the geometri-

cal phase shift, dispersion induced by free electrons, energy losses and the delay due

to the refractive index of neutral atoms. The equations weresolved for the electric
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field, because the concept of envelope is not important for few-cycle laser pulses. The

equation used for laser fieldEl is the one derived in Ref. [81], which has a form in

CGS units,

∂El (ρ,ξ ,τ)

∂ξ
=

c
2

∇2
⊥

∫ τ

−∞
El(ρ,ξ ,τ ′)dτ ′− 1

2c

∫ τ

−∞
ω2

p(ρ,ξ ,τ ′)El(ρ,ξ ,τ ′)dτ ′−

2π Ip

cEl (ρ,ξ ,τ)

∂ne(ρ,ξ ,τ)

∂τ
− 1

c
∂

∂τ

{

∆n(a)(ρ,ξ ,τ)El(ρ,ξ ,τ)
}

. (1.66)

The equation for the harmonic pulseEh in the slowly-evolving wave approximation is

∂Eh(ρ,ξ ,τ)

∂ξ
= −α(ωh)Eh(ρ,ξ ,τ)+

c
2

∇2
⊥

∫ τ

−∞
Eh(ρ,ξ ,τ ′)dτ ′−

2π
c

∂
∂τ

{na(ρ,ξ ,τ)dh[El(ρ,ξ ,τ)]+c.c.} . (1.67)

In equations (1.66-1.67)El andEh are the electric fields of laser and harmonic pulse,

respectively,ρ is the distance to the beam axis,ξ andτ are the co-moving coordinates:

ξ = z, (1.68a)

τ = t −z/c, (1.68b)

wherec is the speed of light in vacuum.ωp is the plasma frequency, which is given by

ωp(ρ,ξ ,τ) =

√

4πe2ne(ρ,ξ ,τ)

me
. (1.69)

Ip is the ionization potential.α is the XUV absorption coefficient, which depends

XUV photon energy.dh is the single-atom dipole response given by Eq. (1.57)ne is the

concentration of free electrons, and∆n(a)(ρ,ξ ,τ) is the contribution of neutral atoms

to the refractive index of the plasma. Static-field ionization ratesΓ[El ] were calculated

by ADK formula [82] in our calculations. Using these rates the concentration of neutral

atoms can be calculated as

na(ρ,ξ ,τ) = n0exp

(

−
∫ τ

−∞
Γ[El (ρ,ξ ,τ ′)]dτ ′

)

, (1.70)

wheren0 is the initial concentration of atoms (before the laser pulse appeared). The

concentration of free electrons is correspondingly equal to

ne(ρ,ξ ,τ) = n0−na(ρ,ξ ,τ) = n0 ·
(

1−exp

(

−
∫ τ

−∞
Γ[El(ρ,ξ ,τ ′)]dτ ′

))

. (1.71)
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The contribution of neutral atoms to the refractive index istaken to be proportional to

na:

∆n(a)(ρ,ξ ,τ) = sna(ρ,ξ ,τ) = sn0exp

(

−
∫ τ

−∞
Γ[El (ρ,ξ ,τ ′)]dτ ′

)

, (1.72)

wheres is a coefficient depending on gas species.

1.3.3 Time-frequency analysis of the high-order harmonic response

Time-frequency analysis is a powerful tool to gain insight into the characters of high

harmonic spectrum. It is implemented as following: multiply a time-window function

at timet ′ with window widthT to the dipole acceleration and then Fourier transform

it, which reads in formule as,

D(ω, t) =

∣

∣

∣

∣

∫

dt′d̈(t ′)e−(t−t ′)2/T2
e−iωt ′

∣

∣

∣

∣

2

(1.73)

As an example, Fig. 1.1 shows us a typical time-frequency analysis result of high-order

harmonic response from an atomic system in a gaussian shape pulse with pulse dura-

tion 5 f s (full width at half maximum, FWHM), peak intensity 3.5×1014W/cm2 at

wavelength 800nm. In the figure, harmonic intensities are presented as a distribution

over emission time and harmonic energy, which gives us the time when harmonics are

emitted and with which energies. The green curves on the figure are harmonic emis-

sion energy over emission time from a classical trajectory calculation. It intuitively

shows us harmonics radiate every half laser cycles. Moreover, harmonic radiation

from so-called “short trajectory” and “long trajectory” [Appendix A.2] can been well

distinguished. The quantum mechanical results of high-order harmonic energy over

emission time basically follows the classical one, except for with some extra width

and structures due to quantum expansion and interference ofelectron wavepackets. It

shows that the photon energies generated over time are well predicted by the classical

recollision model.
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Figure 1.1: Time-frequency analysis of harmonic response from an atomic model in-

teraction with a gaussian shape pulse with pulse duration 5f s (FWHM), peak inten-

sity 3.5×1014W/cm2 at wavelength 800nm, where the dashed green curve presents

the sum of electron recollision energies and the ionizationpotential of the atom as a

function of recollision time from classical trajectory calculations [Appendix A.2].

31



32



Chapter 2

Time and momentum distributions of

rescattering electrons

2.1 Introduction

Orientation of the molecule relative to the laser field is an important experimental

parameter with which, e.g., the ionization yield varies significantly. Basic features

of the orientation dependence of total ionization are predicted by the molecular ADK

theory of tunnel ionization [40], which only depends on the asymptotics of the field-

free electronic wave function in field direction.

To determine the momentum distribution of the emitted electrons during strong

field ionization, knowledge of the wave function in a fixed direction is insufficient:

in the simplest case of a diatomic molecule, electrons are released from around both

centers leading to three-dimensional interference patterns that depend on the relative

phases and positions of the two centers [83]. More generally, the emission depends on

the nodal structure of the outer electronic orbitals [84].

For imaging of molecules a much more detailed understandingof the rescattering

process is required as compared to high harmonic generationand double ionization

using atoms. We need to be able to clearly distinguish between the “beam” of rescat-
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tering electrons and its coherent target, usually considered as the orbital|0〉 from which

the electron was removed in the first place. For high harmonicgeneration, according to

the Lewenstein model [52], the measured spectra are determined by a time-dependent

matrix element of the form
∫

d(3)k〈0|z|~k〉a(~k, t), (2.1)

where|~k〉 is a suitable set of scattering states, e.g. the Volkov solutions for a free elec-

tron in the laser field, with respect to which the amplitudesa(~k, t) of the rescattering

electron are defined. For the reconstruction of|0〉 we need to know amplitude and

phase ofa as a function of momentum~k and timet. It was noted earlier [85, 86] that

harmonic spectra of molecules will in general show structures that depend on the ori-

entation of the molecular axis relative to the laser polarization due to the double-center

shape of the orbital|0〉 because of interferences comparable to a double slit experi-

ment. Clearly, analogous effects must be expected already in the electron detachment

process if there is some non-trivial structure in the initial wave function.

Considering its importance, little attention has been paidto the structure of an

electron wave function produced by tunnel ionization in thelaser field. The reason may

be a conceptual one, as in a strong field there is no rigorous distinction between bound

parts of the wave function and the wave function “after” tunneling. The Hamiltonian

with a (dc) field has a strictly continuous spectrum and all eigenfunctions including the

approximate bound states are infinitely extended and not normalizable. When the field

is strong, approximate bound states cease to by clearly identifiable. If one decomposes

an exact solution of the time-dependent Schrödinger equation (TDSE) with a field

into field-free bound and scattering states, one observes transitions between bound

and scattering states, a large part of which is reversible. Depending on the system

parameters, these virtual transitions may largely exceed the final ionization. They can

be partly associated with adiabatic distortions of the wavefunction in the field, but their

ultimately unphysical nature is betrayed by their gauge dependence. The discussion

about the “correct” gauge for the strong field approximation[87] derives from this
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ambiguity. In the strong field approximation, the bound partof the wave function is

chosen as the field free initial electron orbital, but the physical meaning of this orbital

in presence of the laser field depends on the gauge. As the reversible bound-continuum

transitions appear generally less pronounced in length as compared to velocity gauge,

length gauge is considered the better choice for an approximate decomposition.

In this chapter, we investigated the time and momentum structure of the rescatter-

ing electron wave function for simple molecular models. We first discussed the concept

of a “rescattering wave function” and give a pragmatic definition in the context of the

two-dimensional TDSE. Using numerical solutions of the TDSE we then studied the

effects of orientation of the molecular axis, and gerade andungerade symmetry of the

outer electronic orbital on the rescattering electron wavefunction.

2.2 Method

2.2.1 Description

The physical reason for the difficulties to spectrally distinguish bound from rescat-

tering electrons is the coherence of the two parts of the wavefunction: where they

overlap, amplitudes add up and merge into a single, indistinguishable entity. This dif-

ficulty does not arise, when one “observes” electrons at a distance from the bound

system, where all more strongly bound parts are exponentially damped. This amounts

to taking the rescattering picture seriously and counting only those electrons that had

been removed to a large distance before they reappear near the bound electrons.

We implemented this idea as follows: at timet0 the solutionΨ(~r, t) of the TDSE is

multiplied by a probe function

Mz0(~r) = exp

[

−
(

x2

w2
x0

+
(z−z0)

2

w2
z0

)]

, (2.2)

which has its carrier at a distancez0 from the bound system with widthwz0 measured

in polarization direction. This probe function approximates a plane where we measure
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intensity and momenta of the electrons as a function of time.The criteria for the choice

of Mz0 will be discussed below. An example is shown in Fig. 2.1. In the left panel, we

can clearly see the electron emission in the laser field, and on the right panel, masked

wavepacket contains part of emitted electrons.

x (a.u.)

z
 (

a
.u

.)

-30 -20 -10  0  10  20  30

-20

-10

 0

 10

 20

x (a.u.)

z
 (

a
.u

.)

-30 -20 -10  0  10  20  30

-20

-10

 0

 10

 20

Figure 2.1: Electron density distributions of the wavefunction (left panel) at a certain

time during laser field ionization and that of its masked wavefunction (right panel) at

probe distancez0 = 15a.u. with probe widthwz0 = 3a.u..

The probed wave function partMz0(~r)Ψ(~r, t0) can then be propagated further by

the TDSE

χ~r,t0(t0) = Mz0(~r)Ψ(~r, t0), (2.3)

i
∂
∂ t

χt0(~r, t) = H(~r, t)χt0(~r, t) (2.4)

or it can be converted to a Wigner distribution and propagated classically:

W0(~r,~p) =
1

2π

∫

d3ξ χ∗
t0(~r −

~ξ
2
)χt0(~r +

~ξ
2
)exp(i~p· ~ξ ), (2.5)

∂W0

∂ t
=

∂W0

∂~p
· ∂V

∂~r
−~p · ∂W0

∂~r
, (2.6)

whereV is the potential.
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By integrating over all probe timest0 one obtains the rescattering part of the wave

function for quantum mechanical forward propagation,

Φr(~r, t) =
∫

dt0χt0(~r, t), (2.7)

from which time, space, and momentum distributions “on target”, i.e. atz = 0 are

calculated.

For classical propagation, the electron density can be obtained as

Dr(~r, t) =

∫

dt0

∫

d~pWt0(~r,~p, t). (2.8)

2.2.2 Parameter dependence

The probe distancez0, the probe widthw0 and the shape of the mask function are

unphysical parameters on which our conclusions must not depend.

Probe distance

First, we investigate the dependence of the rescattering electron density on the probe

distancez0 The probes are taken during the first half cycle of a sin2 shape laser pulse,

with peak field strength of 0.3a.u. . With this pulse, the first electron recollision will

be studied. The vector potential of laser field is taken to be

A(t) =
cE0

ω0
sin2

(πt
2τ

)

sin(ω0t), (2.9)

whereτ = 207a.u.(5 f s) is the full width at half maximum (FWHM) of the sin2 pulse

and the center frequencyω0 = 0.057a.u.(800nm). c is the speed of light. The electric

field (Fig. 2.2) of the laser pulse is taken from the derivative of its vector potential

E (t) = −1
c

∂A(t)
∂ t

. (2.10)

For checking the probe parameters, a model atom system was used with the one-

dimensional screened Coulomb potential

V(x) = − 1√
x2 +a2

(2.11)
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Figure 2.2: Electric field with a sin2 shape laser pulse and peak field strength of 0.3a.u.

in the rising edge of the pulse.

with a = 1.59a.u. (Ip = 0.452a.u. similar to that of neon atom).

Fig. 2.3 presents the time-dependent electron densities obtained with three dif-

ferent probe distancesz0 = 10,15, and 20a.u.. The strong decreasing of the den-

sity with increasing probe distance arises because not all electrons reach each barrier.

Fig. 2.4 shows the rescattering electron momentum as a function of maximum excur-

sion amplitude for a classical electron in the same field (forcalculation details see

Appendix. A.2): only the fastest electrons will pass through all three barriers. When

we take electrons with momentumpz > 1.8a.u. (see panel a in Fig. 2.5), currents

on target are quite different for different probe distance.But when we include only

electrons with momentapz > 2.8a.u., the three barriers give very similar electron

densities on target (see panel c in Fig. 2.5). It coincides with classical trajectory cal-

culation(Fig. 2.4). In other words, the rescattering electron behaves classically. For a

certain probe distance, only electrons with high momentum will be included, which is

the most interesting part for applications of rescattering. The minimal requirement for

the probe distance is that the probe should at least be reached by the electrons needed
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for a given application.
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Figure 2.3: Rescattering electron density as obtained withprobes placed at three dif-

ferent distancesz0. The differences arise because slower electrons do never reach the

more distant probes. For model and laser parameters see the text.

Probe width

The probe width is another important parameter for the method. The weak depen-

dence of the current on probe width is demonstrated in Fig. 2.6 for the range of width

from w = 2a.u. through 5a.u.: the overall shape of the current is nearly independent

on probe width. The slight difference in densities for different probe widths can be

explained by the fact that more electrons are included for larger probe width.

For a two-dimensional system, in the direction perpendicular to the laser polariza-

tion the probe function can be chosen rather broad or even infinite without causing

overlap with the bound system, thus obviating the need for anunphysical restriction.

The unphysical nature of the probe function also introducesgauge-dependence into

the present procedure: the Fourier-transform ofMz0 refers to thecanonicalmomentum,

which coincides with the physical momentum in length gauge but contains a time-
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Figure 2.4: The rescattering momentum of a classical electron released with momen-
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Figure 2.5: Rescattering electron density as obtained withprobes placed at three

different distancesz0 with momentum restriction. All momentapz > 1.8a.u. (a),

pz > 2.4a.u. (b) andpz > 2.8a.u. (c) are included.
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Figure 2.6: Dependence of the rescattering electron density on probe widthw with

probe positionz0 = 15a.u.. Probe widthsw = 2a.u., 3a.u., 5a.u. are presented as

magenta dotted curve, hashed blue curve and solid red curve.

dependent boost in velocity gauge. The gauge-dependence ofour method, however, is

on the same scale as the dependence on the probe width.

2.2.3 Comparison between quantum mechanical and classicalprop-

agation

By choosing between quantum mechanical or classical propagation of the probed wave

packet, we can judge how classically the rescattering electrons behave. In Fig. 2.7 it

is shown that the electron densities on target obtained by quantum mechanical (Eq.

(2.4)) or classical (Eq. (2.6)) propagation nearly coincide, corroborating the basically

classical nature of the rescattering motion. This agrees with what we get from probe

distance study.
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Figure 2.7: Comparison of quantum mechanical (hashed blue curve) and classical

(solid red curve) definition of the rescattering density.

2.3 Molecular orientation and orbital symmetry depen-

dence

2.3.1 Model

To study the effect of orientation and orbital symmetry on the rescattering electrons

for a molecule, a two dimensional diatomic model is employedunder single active

electron approximation.

The Hamiltonian of the system has a form in velocity gauge

H(t) =
1
2

[

1
i

∂
∂z

− 1
c

A(t)

]2

− 1
2

[

∂
∂x

]2

−V(x,z) (2.12)

with the potential defined as

V(x,z) =− 0.5
√

a2 +(x+Rsinθ)2 +(z+Rcosθ)2
− 0.5
√

a2 +(x−Rsinθ)2 +(z−Rcosθ)2
,

(2.13)

where the parametera was adjusted for an ionization potential of 0.3a.u. and the inter-

nuclear separation was fixed at 2R= 3a.u.. θ is the molecular orientation angle, which
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is the angle between molecular axis and laser polarization.Laser field is applied inz

direction, with the same parameters as those used in previous section [Section 2.2].

Electrons are ionized by the first peak of the laser pulse, andthen driven back when

laser field changes its direction. In our calculation, probeis taken with the probe width

w0 = 3a.u. and the probe distancez0 = 15a.u..

2.3.2 Momentum distribution of rescattering electrons

First, the ground state is chosen as the initial state. The electron density distributions

of the gerade initial states with different orientations are presented in Fig. 2.8. Electron

momentum distribution is defined from the Fourier transformof masked wavefunction

M(px, pz) =

∣

∣

∣

∣

∫

dxdzMz0(x,z)Ψ(x,z, t0)exp(−ipxx)exp(−ipzz)

∣

∣

∣

∣

2

. (2.14)

The the rescattering electron momentum distribution in parallel and perpendicular di-

rections are calculated as

Mz =

∫

dpxM(px, pz), Mx =

∫

dpzM(px, pz). (2.15)

Fig. 2.9 shows the rescattering electron momentum distribution as probed at a distance

z0 = 15a.u. for the orientationsθ = 0◦,45◦ and 90◦ at timet0 when electron density

reaches its peak. In qualitative agreement with the molecular ADK theory [40], the

ionization rates decrease with increasing angle. The overall shapes of the parallel and

perpendicular momentum distributions remain similar and smooth, although in the

perpendicular momentum distribution a slight asymmetry appears at 45◦.

This picture changes drastically, when we ionize from an excited rather than the

ground state. To facilitate comparison with the previous case, we adjusted the poten-

tial parametera in the Hamiltonian (Eq. (2.13)) such that the first excited state has

a binding energy of 0.3a.u.. Fig. 2.10 presents electron density distributions of the

ungerade initial states with different orientations. Fig.2.11 shows the probed spectra

for the excited state with ungerade symmetry.
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Figure 2.8: Electron density distributions of the initial state with gerade orbital for

different orientations.
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Figure 2.9: Dependence of the rescattering electron momentum distributions atz0 = 15

on the molecular orientation. The initial state is the gerade ground state of the system.

Both, parallel (a) and perpendicular (b) momenta show a smooth distribution that de-

creases from parallelθ = 0◦ to perpendicularθ = 90◦ alignment of the molecular axis.

The perpendicular distribution becomes slightly asymmetric for θ = 45◦.
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Figure 2.10: Electron density distributions of the initialstate with ungerade orbital for

different orientations.
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Figure 2.11: Dependence of the rescattering electron momentum distributions atz0 =

15a.u. on the molecular orientation with an ungerade initial state. The decrease of

the density for perpendicular alinement is more pronouncedand a node appears in the

perpendicular momentum distribution.
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In this symmetry, the ionization yield drops more strongly when going from par-

allel to perpendicular orientation. More importantly, thedistribution of perpendicular

momenta strongly changes its shape from a smooth bell-shaped distribution to a double

hump distribution with a node for perpendicular momentump⊥ = 0. The appearance

of this node can be explained in the strong field approximation using simple symmetry

arguments.
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Figure 2.12: Electron density distributions of rescattering electrons on target over per-

pendicular coordinate and over time for 0◦ (left) and 90◦ (right) alignment.

Density distributions of rescattering electrons over perpendicular direction and

over time “on target” are presented in Fig. 2.12 for 0◦ and 90◦ alignments. The distri-

bution for 0◦ has a well defined shape only due to wavepacket expansion, while that

for 90◦ has a node, which origins from its parent system. By integration over time,

Fig. 2.13 presents electron density over perpendicular coordinate. It is obvious that

most electrons will not recollide with our target — the molecule, which has a size of

2R= 3a.u..

The suppression of zero perpendicular momentum leads to strong suppression of

recollision and high harmonic generation in addition to thesuppression of total ion-

ization. The effect must also be taken into account for a correct interpretation of the
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Figure 2.13: Electron density of rescattering electrons ontarget over perpendicular

coordinate for 90◦ alignments.

experiments [88, 89], where double-ionization by recolliding electrons was used as

a measure of orientation dependent ionization rates. Some of the molecules investi-

gated there have exact anti-symmetries and all have nodal planes which will lead to

strong variations of momentum distributions of the recolliding electrons with molec-

ular orientation. The observed double ionization therefore depends not only on total

ionization, but also on the fraction of the returning electrons that contribute to double

ionization. E.g., while for our model∼ 50% of the returning electrons pass through a

region around the molecule of twice size of the internucleardistance, this fraction is

only∼ 10% for perpendicular orientation.

2.3.3 Time-structure of rescattering electrons

Finally, we calculated the time-distribution of the electron density at the probe. Here

we have chosen an internuclear separation of 2R= 6a.u. in order to enhance the effect.

Fig. 2.14 shows the very dramatic effect of molecular orientation on the timing of the

electron “beam”: the maximum of the current may move by as much as 0.3 f s. The
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mechanism of this effect will be discussed in details in the next chapter.
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Figure 2.14: Time-dependence of the rescattering electrondensity atz0 = 15a.u. for

different molecular orientations. An ungerade initial state for a system with internu-

clear separation 2R= 6a.u. is chosen.

2.4 Conclusions

We have demonstrated that one can, with some approximation,define the rescattering

part of the electron wave function by probing the wavefunction at sufficient distance

from the bound system. The procedure is not rigorous, but it depends only weakly on

unphysical parameters and gauge.

However, the dependence on orientation and symmetry of the active electron’s

orbital may be dramatic. In particular, with the molecular axis aligned perpendicular to

the laser polarization, an initial ungerade symmetry of thethe orbital causes a node at

the perpendicular rescattering momentump⊥ = 0 and, depending on laser parameters,

only a very small part of the wave function rescatters from the parent system. Not

only momentum distribution, but also the time-structure ofthe rescattering electrons
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strongly varies with orientation: for larger molecules, peak flux may change by as

much as 0.3 f s.

Our studies strongly indicate that the time and momentum structure of rescatter-

ing electrons is by no means universal. Attempts to establish the rescattering wave

function for an unknown system by simple comparisons with noble gas atoms appear

futile. As a minimum requirement, the specific symmetry properties of the orbitals

of the active electrons must be taken into account when determining the rescattering

wave function. If that orbital is what is to be determined as in the experiment [25],

one possible procedure would be an iterative fit to the measured data, rather than a

direct tomographic reconstruction. While this seems possible in principle, such a re-

construction must strongly rely on an adequate and efficienttheoretical description.

For experiments where nuclear rather than electronic motion is measured [12] at least

the time-structure of the rescattering wave function must be well understood. The ob-

served variations of 0.3 f s are for the integral over all momenta. As the rescattering

double ionization probability is expected to strongly depend on the rescattering mo-

mentum, the time-dependence must be analyzed in relation tothe (as yet unknown)

momentum dependence of rescattering double ionization.
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Chapter 3

Sub-cycle dynamics in the laser field

ionization of molecules

3.1 Introduction

To define a time of ionization and an electron spectrum at thattime one needs to dis-

tinguish between bound and unbound electrons while the fieldis present. This is dis-

cussed in detail in Ref. [90], where an approximate bound-unbound distinction was

introduced. This distinction is applicable in the case of strong fields, while at weaker

fields it becomes dependent on details of the approximation,in particular on the gauge

used to describe the interaction with the field. One finds “virtual continuum popula-

tion” that can significantly exceed ionization found after the pulse because large part

of it relapses into bound states. From such data it is impossible to tell “when” ion-

ization really happens. These difficulties arise, because the concept of ionization is

asymptotic in time and only for time-independent Hamiltonians states it can be associ-

ated with the bound or unbound property at any given time. Except possibly when the

system evolves adiabatically, a spectral classification into bound and unbound states

in presence of an electric field is impossible. For the present chapter we avoid this

problem by adopting the original idea of the classical re-collision model for the time-
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dependent Schrödinger equation. Electron detachment is determined from the wave

function amplitude that we find at distances where the laser force dominates over the

molecular potential. We can associate that amplitude with atime of electron emission

by propagating it back to near the ion. In this way we can discuss electron re-collision

without the need for deciding whether the electronic wave function ever became un-

bound or just strongly distorted.

For the time of electron release, electronic dynamics during the emission process

must be taken into consideration. In its usual form, the re-collision picture assumes

that ionization is a quasi-stationary process, where at anytime the rate is proportional

to the tunnel ionization rate for the instantaneous field strength. Because of a strongly

non-linear dependence of ionization on field strength this implies a sharp maximum of

emission at the peak of the laser field. However, ionization can only be quasi-stationary

when the time-scales of electronic motion in the system are well-separated from the

laser time scale. In atoms, this assumption can well describe electron emission, but in

molecules, this is not generally the case.

In this chapter we investigate the influence of sub-cycle field-induced internal

electronic dynamics of molecules on electron emission and re-collision. For two-

dimensional model molecules, we found pronounced effects of field-induced intra-

molecular dynamics during strong field ionization. The sub-cycle field-induced dy-

namics is caused by Rabi-like oscillation between the ground state and the first excited

state. Moreover, it leads to a modulation of emission wavepacket which sequentially

modulates the recollision wavepacket and further modulates high-order harmonic gen-

eration from the molecule. Such dynamics information can survive through three-

dimensional propagation of high-order harmonics, which makes the sub-cycle field-

induced dynamics observable in experiments. A striking effect due such field-induced

dynamics is the appearance of even harmonics under certain conditions.
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3.2 Method and model

The same single electron diatomic model is used as in the previous chapter [Sec-

tion 2.3.1] with the parametera in Eq. (2.13) was adjusted for an ionization potential

of 0.51a.u. and the internuclear separation was fixed at 2R = 4.38a.u. (parameters

similar as for theCO2 molecule). The orientation of the molecule is given by the angle

θ between the molecular axis and the polarization direction of the field. In this chapter,

we will concentrate on orientationθ = 0◦. Laser field is applied in parallel direction (z

coordinate) with vector potentialA(t) = cE0
ω0

cos(ω0t) with peak field strengthE0 and

center frequencyω0 = 0.057a.u.(λ = 800nm). The TDSE (Eq. (2.12)) was solved by

a fast Fourier transform method with box sizes 60a.u. in perpendicular direction and

120a.u. in parallel direction.

To get the emission current and the rescattering current, weused the same method

that was introduced in the previous chapter [Section 2.2]. We chose the probe func-

tion at probe distancez0 = 6a.u. with probe widthw0 = 3a.u. and we quantum me-

chanically forward propagated the probed wavefunction to get rescattering electron

wavepacket.

In our calculations, we neglected nuclear motion, as electron release and re-collision

happen during about a laser half-cycle of 1.3 f s, which should be compared to typ-

ical vibrational periods of 15− 25f s for molecules likeCO2. Although the two-

dimensional model precludes quantitative comparisons with experimental data, we will

argue below that the mechanism underlying the release dynamics is universal and not

specific for our model. The ground and the first excited statesof our model were ob-

tained by imaginary time propagation, where for the excitedstate orthogonality with

respect to the previously calculated ground state was imposed.
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3.3 Sub-cycle dynamics induced by internal oscillations

3.3.1 Rabi-like oscillations of a two-level system in a laser field

When a strong field is applied on a two-level system with a dipole transition allowed,

the electric field will excite the system. At some point when the system is completely

in its excited state, the field actually goes on to de-excite the atom again (”stimulated

emission”). This cycle of absorption-emission is called Rabi oscillations, and it pro-

ceeds at a frequency depending on the strength of the electric field. During the optical

cycle the system is usually in a superposition of ground and excited state. The popula-

tion transfer between the two states is as referred to a Rabi flopping.

Under the rotating wave approximation [91], Rabi flopping between the levels of

a two-level system in laser field of the resonant frequency will occur at the Rabi fre-

quencyΩR, which is proportional to external field strengthE and dipole momentµ

between the two states

ΩR = µE . (3.1)

The frequency of modulations for population in a detuned field, which is named

generalized Rabi frequency, depends on Rabi frequency and the detuning parameter.

The relation between generalized Rabi frequency and Rabi frequency can be written

as

Ω =
√

Ω2
R+∆2, (3.2)

where the detuning parameter is∆ = (Ee−Eg)−ω f ield. Eg andEe are energies of the

ground and the excited state, andω f ield is the frequency of the external field.

In case of a few-cycle intense laser pulse, rotating wave approximation is no longer

valid. The oscillation frequency can not be simply given by Eq. (3.2), which will be

time dependent. To get the Rabi-like oscillation between the two states, we use an

ansatz for the simple two-level system as

|ψ(t)〉= cg(t)|g〉e−iEgt +ce(t)|e〉e−iEet , (3.3)
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where|g〉 and |e〉 are the ground and the excited states, andcg(t) andce(t) are the

amplitudes, andEg andEe are energies of the ground and the excited state of the two

states, respectively.

With this ansatz, the TDSE of the model in a linear polarized external field have

the form

i
∂
∂ t

[

cg(t)|g〉e−iEgt +ce(t)|e〉e−iEet
]

= H(t)
[

cg(t)|g〉e−iEgt +ce(t)|e〉e−iEet
]

, (3.4)

where Hamiltonian is defined asH(t) = H0−E (t)zandE (t) is the external field. The

time-independent part Hamiltonian is given by

H0 =
p2

2
+V(r), (3.5)

whereV is the potential.

The system obeys the following relations:

〈g|e〉 = 0,

〈g|z|e〉= µ,

H0|g〉 = Eg|g〉,
H0|e〉 = Ee|e〉,

(3.6)

whereµ is the dipole momentum.

By closing Eq. (3.4) with|g〉 and|e〉, equations for the amplitudes read






iċg(t) = −µE (t)ce(t)exp(−i(Ee−Eg)t),

iċe(t) = −µE (t)cg(t)exp(−i(Eg−Ee)t).
(3.7)

The Rabi-like oscillation between the two involved states can be obtained by numeri-

cally solving Eq. (3.7).

As an example, populations of the two states are presented inFig. 3.1 withµ =

2a.u. and∆E = 0.1a.u. . A Gaussian shape cosine-pulse is used with FWHM 5f s at

wavelength 800nm and peak intensity 3.5×1014W/cm2 (shown as magenta dashed

curve in Fig. 3.1). It is shown that the oscillation frequency strongly depends on the

field strength of the external field. The modulation frequency of the population of the
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first excited state increases when field strength increases.Moreover, when the field is

gone, the system stays at some point with a superposition of the ground state and the

first excited state.
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Figure 3.1: Populations of the ground state (solid red curve) and the first excited state

(dotted green curve) of a two-level system. The dashed magenta curve indicates abso-

lute value of laser field strength (with different scale).

3.3.2 Field-induced internal oscillations in molecules

Due to the Rabi-like oscillation, the populations of the ground state and the first excited

state will be modulated when a strong field is applied. To compare with a two-level

system, populations of the ground state and the first excitedstate of our diatomic model

are calculated by solving the two-dimensional TDSE. For oursystem, dipole momen-

tum µ is 2.28a.u. which is calculated directly from result of TDSE and the energy gap

∆E between the ground state and the first excited state is 0.03a.u., and the ground state

is chosen as the initial state.

In Fig. 3.2, it is shown that modulations in state populations for different laser

intensities closely follow the evolution of a two-level system except depletion due to
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ionization. The modulations strongly depend on the laser intensity. For all intensities,

the time structure of the modulations for the two-level system is very similar to the

TDSE results. On the other hand, one may ask whether this kindof modulations will

have an effect on field ionization. The answer is yes. In the following sections, we

investigated the effect of the internal dynamics on ionization, rescattering and even

high harmonic generation.

3.3.3 Effect of internal sub-cycle dynamics on electron emission

To simplify numerical calculations, a 1.5 cycles pulse is applied to the molecule, with

which electrons will be released during the first half cycle and re-collide with its parent

system in the following cycle.

Fig. 3.3 shows the emission current on the probe with a probe distance 6a.u. for

different laser intensities. Because the probe is taken close to the nucleus, the emission

current should well follow the exact emission current from the system. Obviously,

there are some modulations in emission current when laser field is strong enough.

At intensity 6×1013W/cm2 peak emission approximately coincides with peak field

strength, but at intensity 1.3× 1014W/cm2 two emission peaks of different height

appear that are separated by approximately 1/4 of an opticalcycle, and at the largest

intensity of 2.2×1014W/cm2 two roughly equal peaks with slightly smaller separation

appear. Moreover, it is clear that the peak of the emission current increases when the

laser intensity increases due to the increase in ionizationrate.

Let’s go back to check the populations of the ground state andthe first excited state

during the first half-cycle of the laser pulse, which are shown in Fig. 3.4. For different

laser intensities, populations of the first excited states have different time-dependence

due to Rabi-like oscillations. The emission current alwaysfollows the population of

the first excited state except when the laser field is very weakand ionization stops.

This means the electrons are emitted from the first excited state, where the ionization

potential is less than that of the ground state.
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Figure 3.2: Populations of the ground state for our model system (solid red curves)

and a comparable two-level system (dotted blue curves) withdifferent laser intensities.

From top to bottom, laser intensities are 6×1013W/cm2, 1.3×1014W/cm2, and 2.2×
1014W/cm2, respectively.
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Figure 3.3: Emission current for different laser intensities in first half cycle. Solid

red curve, dashed green curve and hashed blue curve are with laser intensity 6×
1013W/cm2, 1.3×1014W/cm2, and 2.2×1014W/cm2, respectively. Dotted-dashed

cyan curve shows laser field.

In summary, analyzing the electronic wavefunction during emission one finds that

the variations are caused by intra-molecular electron dynamics induced by the ionizing

field. The laser field induces pronounced Rabi-like oscillations of the populations of

the ground and the first excited state. Electron emission predominantly happens when

the excited state becomes populated at times when the field isstrong. In that way

emission itself becomes modulated by the oscillations between the bound states.

3.3.4 Effect of internal sub-cycle dynamics on rescattering elec-

trons

The variations in the re-collision times match emission, ifone takes into account that

only emission times corresponding to classically re-colliding trajectories can signifi-

cantly contribute. The correspond rescattering currents on the target are presented in

Fig. 3.5. The rescattering current on the target is obtainedby forward propagating
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Figure 3.4: Populations of the ground state (dashed green curves) and the first ex-

cited state (hashed magenta curves) for different laser intensities ( from top to bottom

6×1013W/cm2, 1.3×1014W/cm2, and 2.2×1014W/cm2 ) in first half cycle, while

the solid curves are the emission currents on the probe. Dash-dotted cyan curves are

profiles of the laser pulse.
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Figure 3.5: Time-distributions of electron emission and re-collision for laser intensities

6×1013W/cm2, 1.3×1014W/cm2, and 2.2×1014W/cm2 (from top to bottom). The

dot-dashed cyan curves indicate|E (t)|. Emission (solid red curves) and re-collision

(dashed green curves) distributions scaled to maximal values of 1 with the probe lo-

cated atz0 = 6a.u..
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the probed rescattering wavepackets to the target. At the intensity 1.3×1014W/cm2

the variation of emission times leads to a strong emphasis of“long trajectories”, i.e.

re-collisions well after the node of the field. We also investigated the emission time

structure for laser polarization perpendicular to the molecular axis where the first ex-

cited state is not dipole-reachable from the ground state. As expected, the emission

time structure closely follows the field strength and very weakly varies with intensity,

which is shown in Fig. 3.6.
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Figure 3.6: Emission current of the molecule with perpendicular alignment for differ-

ent laser intensities: solid red curve for intensity 6×1013W/cm2, dashed green curve

for intensity 1.3×1014W/cm2, and dotted blue curve for intensity 2.2×1014W/cm2.

The dot-dashed cyan curves indicate|E (t)|.

The mechanism makes it clear that the modulation of electronemission by field-

induced internal dynamics is a universal phenomenon, whichis not bound to the spe-

cific model used here. In general, the dynamics modifies ionization times when (1)

it occurs on a time scale that is comparable to the laser optical period and (2) the in-

ternal rates are significant compared to the ionization rate. Condition (1) means that

there is an electronically excited state at most a few photonenergies above the ground

state. At a laser photon energy of 1.5eV corresponding to the∼ 800nmwave length
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this condition becomes fulfilled at larger internuclear distance as we used them in our

model. Condition (2) can always be met by reducing laser intensity. At fixed wave

length that means that one approaches Keldysh parameters ofγ ∼ 1, which is, in fact,

where many experiments are being performed.

Oscillations between the populations of bound states were reported also at very

strong field [92], where, however, the oscillation frequency far exceeds the laser fre-

quency and no observable modulation of the emission results.

3.4 Internal sub-cycle dynamics effect in high-order har-

monic generation

3.4.1 Time structure of high-order harmonic generation

The most sensitive experimental signature of re-collisionis in high harmonic emis-

sion, where re-collision momenta are closely linked to re-collision times [47, 46]. The

experimental signature of field-induced intra-molecular dynamics, which depends on

laser intensity and orientation of the molecular axis, should also be observed in the

high-order harmonic spectrum of the molecule.

A time-frequency analysis of high-order harmonic responsewas performed to study

the internal sub-cycle dynamics effect. Fig. 3.7 presents time-frequency distributions,

which are calculated by Eq. (1.73), for high-order harmonicresponse with different

laser intensities, as well as harmonic energy over recombination time from classical

trajectory calculations. For laser intensity 6×1013W/cm2, distribution is continuous,

which is similar to that of an atomic system. However, for higher laser intensities, dis-

tributions are not continuous and there appear additional dips due to the field-induced

dynamics. For laser intensity 1.3×1014W/cm2, there is one dip in the short trajectory

part, while for laser intensity 2.2×1014W/cm2, there are two dips, one near cutoff and

the other one in the long trajectory part. Fig. 3.8 presents the time-frequency analysis
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of high-order harmonic response of a 90◦ aligned molecule, with the same laser pulse

as that in the middle pattern of Fig. 3.7. The time-frequencystructure well follows

the classical trajectory results, which is similar to an atomic system. The modulated

structures in high harmonic response are directly related to the field-induced dynam-

ics of electron ionization. In other words, field-induced dynamics can be investigated

through spectrum analysis of high-order harmonic generation.

A more direct insight into the field-induced dynamics is the time-structure of high-

order harmonic generation near the cutoff. Time-structureof high harmonics near the

cutoff is calculated as,

S(t) =
∫ ∞

ωF

D(ω, t)dω (3.8)

whereD(ω, t) is calculated by Eq. (1.73). The Fig. 3.9 shows that the single-atom har-

monic response in the energy range above 80% of the harmonic cutoff energy (ωF =

0.8ωcuto f f) closely follows the corresponding re-collision density distribution. The fig-

ures also contain the harmonic intensities for perpendicular oriented molecule, which

remain independent of intensity. It is clear that for laser intensity 6× 1013W/cm2,

the time-structure of high-order harmonics for parallel aligned molecule is the same as

that for perpendicular aligned molecule. However, for higher laser intensity, the time

structures of high-order harmonics for parallel aligned molecules are shifted to the

left (“short trajectory”) or the right (“long trajectory”)due to sub-cycle field-induced

dynamics. The time shift between different intensities is as large as 0.3 optical cycle

(800as).

Recent experimental work has revealed a similar change of the harmonic emission

profile as a function of intensity and orientation of the molecular axis [93]. They found

that to compare with atoms, different alignedCO2 andN2 molecules, the time struc-

tures of selected harmonic radiation are quite different. The time delay of harmonic

radiation between 0◦ and 90◦ alignedCO2 is about 160as.
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Figure 3.7: Time-frequency analysis of high harmonic response of the 0◦ aligned

molecule for different laser intensity (6×1013W/cm2 (top), 1.3×1014W/cm2 (mid-

dle), and 2.2× 1014W/cm2 (bottom)), while the green curves inside give harmonic

energy over recombination time from classical trajectory calculations [Appendix A.2].
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Figure 3.8: Time-frequency analysis of high harmonic response of the 90◦ aligned

molecule for laser intensity 1.3× 1014W/cm2 while the green curves inside give

harmonic energy over recombination time from classical trajectory calculations [Ap-

pendix A.2].
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Figure 3.9: Time structures of high order harmonics with different laser intensities (6×
1013W/cm2 (top), 1.3×1014W/cm2 (middle), and 2.2×1014W/cm2 (bottom)). The

blue dashed curves indicate time-structure of high order harmonics from 90◦ alignment

molecules, which has no field-induced dynamics during ionization.
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3.4.2 Appearance of even harmonics

Another observable effect of the internal dynamics is the transient appearance of even

harmonics. Between subsequent re-collisions, the system evolves according to the

field-induced dynamics. In our case Rabi-like oscillationsbetween the gerade ground

and the ungerade excited state lead to variations of the electron density. At intensi-

ties where the ratio of the laser period to the field-induced internal oscillation period

approaches an even number, the system returns to the same state at each subsequent

re-collisions. Any asymmetry of this state will cause even harmonics. As the inter-

nal dynamics depends on laser intensity, the even harmonicsshow a resonance-like

dependence on pulse intensity.

Harmonic spectra from our model system with parallel alignment are shown in

Fig. 3.10 with different laser intensities, where even harmonics clearly show up around

order 15. A laser pulse with duration of 15f s(FWHM), and intensity of 6×1013W/cm2

is applied to the molecule. We find even harmonic peaks with upto 3-8% of the peak

height of the neighboring odd harmonic peaks, which is on a scale that can be de-

tected in the experiments. For perpendicular alignment there are no even harmonics,

which are presented in Fig. 3.11 with the same laser pulse as that applied to the par-

allel aligned molecule. Such an orientation dependent effect is another experimental

signature of field-induced dynamics.

3.5 Can internal sub-cycle dynamics survive propaga-

tion of high-order harmonic generation?

The field-induced internal sub-cycle dynamics can be a detectable effect in experi-

ments only when information of the effect survives after harmonics propagation. It is

important to understand whether the property of time-frequency structure is preserved

after harmonics propagation in the gas when comparing with single particle response.
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Figure 3.10: High-order harmonic spectra of parallel aligned molecule with different

laser intensities. Even harmonics show up between odd harmonics around order 15,

especially for laser intensity 6×1013W/cm2.
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Figure 3.11: High-order harmonic spectra of perpendicularaligned molecule with dif-

ferent laser intensities. No even harmonics show up.
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3.5.1 Method: generation and propagation

In the previous section, we have found that harmonics emission near cutoff will shift to

the short trajectory part or long trajectory part due to field-induced sub-cycle dynamics.

As described in Ref. [94], the phase matching conditions aredifferent for harmonic

radiation from long trajectories and short trajectories. Then we need to know whether

such a behavior persists after propagation of the harmonicsthrough medium.

To simulate harmonics propagation in the gas [Section 1.3],we used a code first

developed by N. Milosevic and optimized by V. S. Yakovlev [95]. In the code, an

extension Lewenstein model [52] is employed to calculate the single-particle dipole

response. Simulations with such model are much more efficient than that solving the

full TDSE.

As discussed in the previous section, the modulations of electron emission closely

follows the population of the first excited state. The field-induced modulation happens

during the strong field ionization, which is single-particle response. Therefore, we

numerically implemented such field-induced dynamics into the ionization process. In

practice, field-induced modulations can be introduced intoemission part (“ionization”

probability amplitudesaion(tb) (Eq. (1.59)) of the three-step model by modifying time-

dependent free-electron density:

n′(t) = c2
e(t)n0

(

1−exp

[

−
∫ t

−∞
dt′Γ{El (t

′)}
])

, (3.9)

wherece(t) is the solution of Eq. (3.7) for a two-level system andΓ{El (t ′)} is the

ionization rate for static fieldEl(t ′). In the following part of the section, the modified

Lewenstein model will be used to simulate the single particle response of the molecule

with sub-cycle field-induce dynamics during strong field ionization.

3.5.2 Internal sub-cycle dynamics after harmonics propagation

First, the validity of the modified Lewenstein model was checked. The same laser pulse

is used as that in previous section (1.5 cycles, 800nm), as well as the same parameters
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of the molecule as those used in Section 3.3 for the two-levelsystem (Eg = 0.51a.u.,

Ee = 0.54a.u. andµ = 2.28a.u.). The laser pulse has a gaussian spatial profile with

beam waist of 61µm. Laser pulse and harmonic radiation are propagated together

through a 2mmgas tube at 100mbarwith Ip = 0.54a.u. , and the focus position was

chosen at the center of gas volume. In our calculations, we chose XUV absorption

coefficient of Argon. With such parameters, for an unmodifiedatomic system, propa-

gation effect prefers short trajectory of harmonic generation.

The time-structures of high harmonics from this simplified single particle response

are shown in Fig. 3.12 with different peak intensities. Harmonics with energy larger

than 80% of the cutoff energy are selected. To compare with lowest laser intensity

6× 1013W/cm2 (solid red curve), the peak of time-structure shifts to the right for

laser intensity 1.3× 1014W/cm2 (dashed green), but to the left for laser intensity

2.2× 1014W/cm2 (hashed blue). This qualitatively agrees with the result ofTDSE

calculations of our model system (Fig. 3.9 in Section 3.4 ).
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Figure 3.12: Time-structures of harmonic radiation near cutoff before propagation

(Laser pulse peak intensities 6×1013W/cm2 (solid red), 1.3× 1014W/cm2 (dashed

green), and 2.2×1014W/cm2 (hashed blue)).

In Fig. 3.13, it shows the time-structures of on-axis high harmonics after propa-
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gation through 2mmgas with the same harmonics selection. To compare with those

before propagation, the positions of time-structure peak changed somewhat due to

propagation effects. For laser intensity 6×1013W/cm2 (solid red), time-structure of

high harmonics after propagation is quite similar to that before propagation. But with

laser intensity 1.3×1014W/cm2 (dashed green) and 2.2×1014W/cm2 (hashed blue),

the peaks shift to the left. That is because harmonic generation from long trajectories

has been suppressed after propagation. Nevertheless, the differences between different

laser intensities are still clear. The effect coming from field-induced internal sub-cycle

dynamics is still detectable after propagation.
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Figure 3.13: Time-structures of on-axis harmonic radiation near cutoff after prop-

agation through 2mm gas (Laser pulse peak intensities 6× 1013W/cm2 (solid red),

1.3×1014W/cm2 (dashed green), and 2.2×1014W/cm2 (hashed blue)).

With our simplified artificial pulse, the field-induced sub-cycle dynamics can sur-

vive through high harmonics propagation. But in experiments, more realistic pulse is

used. A laser pulse with duration 5f s (FWHM), gaussian-shape pulse at wavelength

800nm, which is avaliable in laboratory now, was employed to redo the calculations.
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The vector potential of the laser pulse is defined as

Az(t) =
cE0

ω0
exp

(

−2ln2
t2

τ2
0

)

, (3.10)

whereE0 is peak field strength andω0 is center frequency andτ0 is FWHM. The

electric field strength is obtained from derivative of vector potentialE (t) = −1
c

∂A(t)
∂ t .

Time-frequency distributions of high-order harmonics have been investigated for a

modulated system to compare with those of a system without modulations with differ-

ent laser intensities. Besides the time-profile of the laserpulse, the other parameters

are the same as those used for 1.5 cycles pulse. Laser intensity 9× 1014W/cm2 is

chosen which is much high to emphasize field-induced sub-cycle dynamics and with a

higher ionization potential (I p = 0.8a.u.) to decrease the total ionization yield.

The time-frequency distributions of high-order harmonicsbefore propagation are

shown in Fig. 3.14. Modulations in time-frequency distributions are obvious for sys-

tem with modified source. On the left hand of Fig. 3.14, the time-frequency structure

of non-modulated system is smooth. However, for the modulated system shown on

the right hand panel, the overall shape of time-frequency structure is similar to that of

non-modulated system, but modulations appear in the structures. Fig. 3.15 presents the

time-frequency distributions after propagation through 2mmgas. Except for that in-

tensity distributions change between “short trajectory” and “long trajectory” slightly,

the overall shapes of distributions are almost the same as those before propagation.

Therefore, field-induced modulations of the single particle response is proven to sur-

vive high harmonics propagation for the modified system alsofor realistic pulse shape.

However in the laboratory, because the high harmonic signalcan be only detected

in the farfield, we need to further propagate harmonic radiation through a vacuum of

certain distance before it reaches detector. In our calculations, harmonic radiations

propagated through 1 meter vacuum after the gas volume. The time-frequency dis-

tributions of on-axis and off-axis (1cm from the center) in the farfield are shown in

Fig. 3.16 and Fig. 3.17, respectively. From on-axis distributions, one can clearly see
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Figure 3.14: Time-frequency distributions of harmonic response “before propagation”.

Panel (a) is for the system without modulations with laser intensity 9×1014W/cm2.

Panel (b) is for the system with modulations with laser intensity 9×1014W/cm2.
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Figure 3.15: Time-frequency distributions of “on-axis” harmonic response “after

propagation”.Panel (a) is for the system without modulations with laser intensity

9× 1014W/cm2. Panel (b) is for the system with modulations with laser intensity

9×1014W/cm2.
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harmonics from “long trajectory” have been strongly suppressed, while the modula-

tions in the “short trajectories” hold their position. In the off-axis distributions, we

noticed that harmonics have smaller cutoff energy which is due to weaker peak laser

intensities from off-axis, and field-induced modulations (right panel) also have slightly

different from those of on-axis. As described in Ref. [94], by changing the parameters

of laser pulse focus and gas pressure, the propagation effect will prefer short trajecto-

ries or long trajectories. Therefore, sub-cycle field-induced dynamics information can

be observed from measuring high-order harmonic radiation in experiments.
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Figure 3.16: Time-frequency distributions of “on-axis” harmonic response in the “far

field” (1m) after propagation. Panel (a) is for the system without modulations with

laser intensity 9×1014W/cm2. Panel (b) is for the system with modulations with laser

intensity 9×1014W/cm2.

3.5.3 Even harmonics after propagation

As described in previous section [Section 3.4.2], even harmonics may appear due to

the internal sub-cycle dynamics. Fig. 3.18 presents high-order harmonic spectra of

single particle response from our molecule system (left panel) and an atomic system

(right panel) interaction with a gaussian laser pulse with duration 15f s (FWHM) and

intensity 1.5×1014W/cm2 at wavelength 800nm. The atomic system has the same

ionization potential as our molecule. For our molecule, even harmonics clearly show

up near the cutoff, while no even harmonics appear for the atomic case. High-order
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Figure 3.17: Time-frequency distributions of “off-axis” harmonic response in the “far

field” (1m) after propagation. Panel (a) is for the system without modulations with

laser intensity 9×1014W/cm2. Panel (b) is for the system with modulations with laser

intensity 9×1014W/cm2.

harmonic spectra after propagation through a 2mmgas tube at 100mbarare shown in

Fig. 3.19. They are quite similar to those before propagation presented in Fig. 3.18,

except for intensities. Striking even harmonic appear in case of our molecule, and only

odd harmonics show up for the atomic system. It is obvious that the even harmonics

due to the internal sub-cycle dynamics can survive from harmonics propagation.

3.6 Conclusions

In this chapter, we numerically investigated the sub-cyclefield-induced dynamics dur-

ing strong field ionization of molecules. Such a sub-cycle dynamics coming from

field-induced Rabi-like oscillations modulates electron emission during field ioniza-

tion. It strongly depends on the laser intensities and dipole momentum between the

ground state and the excited state of the molecule. The information of the dynamics

will be carried by emitted electrons part of which will be guided by the laser field and

rescatter with its mother ion. The recombination of modulated rescattering electron

wavepacket with the ion will lead to radiation of high-orderharmonics, which inherit

modulations from rescattering electrons. As a result, the time-structure of high-order
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Figure 3.18: High-order harmonic spectra of single particle response from our

molecule (a) and an atomic system (b) with the same ionization potential.
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Figure 3.19: High-order harmonic spectra of our molecule (a) and an atomic system

(b) after propagation through a 2mmgas tube.
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harmonics strongly depends on laser intensities due to field-induced dynamics. An-

other observable phenomena is appearance of even harmonicsdue the sub-cycle field-

induced dynamics.

Moreover, the field-induced sub-cycle dynamics which modulates the time-frequency

distribution of high harmonics can survive after propagation in media. In other words,

propagation effects will not destroy the field-induced time-frequency information in

high-oder harmonics, which makes field-induced sub-cycle dynamics an observable

effect. With such an effect, one can estimate the time structure of rescattering elec-

tron, which is important for the application of rescattering process. Furthermore, it

should also possible to be used as a tool to reveal other sub-cycle electron dynamics in

molecules.
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Chapter 4

Attosecond probing of strong field

ionization dynamics: hydrogen atom

4.1 Introduction

Strong field ionization of atoms is an experimentally and theoretically accessible model

process for the probing of electronic dynamics by extreme ultraviolet (XUV) attosec-

ond pulses [96, 97]. In experiments so far the XUV pulses havebeen used to trigger

atomic process [22, 13, 98], which were probed by a preciselysynchronized strong

infrared (IR) laser pulse. An important drawback of this scheme is the strong pertur-

bation of the observed system by the probe pulse. A much extended range of ultrafast

spectroscopy applications may be expected, when instead the XUV pulse is used as a

weakly perturbative probe. Presently available XUV intensities preclude purely XUV

pump-probe schemes, which is why the probed processes must be triggered by a strong

laser pulse. Ionization may be the most general effect of a laser pulse on any system.

Possible observables include the depletion of the initial ground state, the appearance

of ionic states, as well as transient and permanent populations of excited states. These

processes are reflected in the XUV part of the photoelectron emission spectrum and in

total XUV photoelectron yields, as also photoemissionratesdepend on the system’s
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state.

One complication of this idea is that in very strong fields with very fast ionization

the notion of field free stationary states increasingly looses meaning, or, to put it dif-

ferently, very many field free states states are needed for anadequate representation of

the system. Even when it nearly adiabatically returns to theinitial state after passage

of the pulse, the electronic wave functionduring the pulse may resemble a wavepacket

formed from a continuum of strongly dressed states.

A second complication on a more technical level is that little is known about what

exactly is probed by a short XUV pulse. At typical XUV photon energies around 80 eV

the radiation does not interact with free or weakly bound electrons. For an interaction,

the close proximity of a third body — the nucleus — is needed, which is why one

expects to probe predominantly electronic processes that occur near the nucleus.

XUV photoelectron spectra from field-free states are correctly described by pertur-

bation theory and the interpretation of emission spectra poses no problem [99]. When

a strong laser field is present, spectra get distorted by the laser after the electrons are

set free, which leads to characteristic “streaking” of the momentum distribution [100].

Total yields, however, are assumed to remain unaffected by streaking and should ex-

clusively depend on the interaction of the laser with the bound system prior to (and

during) XUV photoelectron emission.

In the present chapter we investigated how the total XUV photoelectron yields

vary during ionization by a strong few-cycle laser field. We will show that as a rule

an interpretation of the XUV photoelectron yield in terms ofpopulations of field free

states is not possible, but that there is a close relation to the electron density near

the nucleus. Our findings are based on numerical solutions ofthe time-dependent

Schrödinger equation (TDSE) in three dimensions with a linearly polarized laser pulse.

For the three-dimensional calculations we introduced a newly developed method using

a representation in cylindrical coordinates and a combination of the finite elements

method (FEM) with the Fast Fourier Transform (FFT) technique.
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4.2 Method

An atom in a strong linearly polarized field gets distorted inpolarization directions and

the quiver amplitude of detached electrons may be by 10 to 100times larger than the

atomic size. For that reason it is advantageous to solve the TDSE of the hydrogen atom

in cylindrical coordinates (Eq. (1.27)). A linearly polarized laser field is assumed with

polarization direction parallel toz-axis. The interaction with the field is described in

velocity gauge with the vector potentialAz(t) =−∫ t
−∞ dτcEz(τ). As in linear polariza-

tion the magnetic quantum numberm is conserved, Eq. (1.28) is written for the case

m= 0, assuming the atom is initially in its ground state.

For the numerical solution of Eq. (1.28) some care must be taken to obtain a

hermitiandiscrete representation of the kinetic energy inρ-direction and to correctly

treat the Coulomb singularity. One solution to that problemis to scale coordinates as

to soften the singularities nearρ = 0 [Section 1.2.4]. In our approach, we employed

a hybrid discretization with a finite element basis inρ-direction and an equidistant

grid discretization inz-direction. By this procedure one easily constructs hermitian

discrete operators and removes the explicit appearance of the Coulomb singularity in

the discretized equations.

4.2.1 Finite element method

The finite element method [101] is a method for solving an equation by approximating

continuous quantities as a set of quantities at discrete points, often regularly spaced

into a so-called grid or mesh.

The ansatz for the wavefunction is chosen as

Ψ(ρ,z, t) = ∑
n,m

cn
m(z, t)hn

m(ρ) (4.1)

wherehn
m arem = 0, . . . ,M linearly independent polynomials of maximal degreeM

whose support is restricted to “finite elements”[ρn−1,ρn]

hn
m(ρ) ≡ 0, ρ /∈ [ρn−1,ρn], n = 1, · · · ,N. (4.2)
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In each interval, finite elements basis functions are constructed as

hn
1(ρn−1) = 1

hn
2(ρn) = 1

hn
m(ρn−1) = hn

m(ρn) = 0, m 6= 1,2.

(4.3)

Continuity ofΨ in ρ-direction is enforced by a linear constraint on the coefficientscn
m,

which is implemented as

cn+1
1 = cn

2 (4.4)

Further details of our implementation of the finite elementsmethod can be found in

Ref. [102].

Inserting the ansatz into Eq. (1.28), multiplying from the left by hn′
m′(ρ) and inte-

grating overρ we obtain a set of coupled equations for the linear coefficients~c(z, t)

i~̇c(z, t) =

{

1
2

[

1
i

∂
∂z

− 1
c

Az(t)

]2

+S−1Hρ(z)

}

~c(z, t). (4.5)

Here~c(z, t) denotes the vector of coefficientscn
m andHρ(z, t) is given by

Hρ
n′m′,nm(z) =

∫

ρdρhn′
m′(ρ)

[

− 1
2ρ

∂
∂ρ

ρ
∂

∂ρ
− 1
√

ρ2+z2

]

hn
m(ρ) (4.6)

andS is the overlap matrix for theρ-coordinate

Sn′m′,nm =
∫

ρdρhn′
m′(ρ)hn

m(ρ). (4.7)

As thehn
m(ρ) are restricted to intervals[ρn−1,ρn], SandHρ are banded matrices with

the band width 2M +1 (cf. Ref. [102]).

Eq. (4.5) was solved on an equidistant grid for thez-coordinate, where the deriva-

tives∂/∂z were calculated by Fast Fourier Transform (FFT) and time integration was

performed by a self-adaptive, high order Runge-Kutta scheme. To avoid electrons

reentering and reflections, absorption boundary conditions are used in both direction

(cf. Section. 1.2.6).
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4.2.2 Typical parameters

Note that the use of FFT method implies periodic boundary conditions in thez-direction.

Most calculations were performed withN = 24 finite elements with an increasing ele-

ment size and polynomial degreeM = 4 on the interval[0,20] in ρ-direction and 4096

equidistant points on the interval[−80,80) in z-direction. For convergence checks, the

box size was extended to[0,40]× [−160,160).

During the simulation a significant part of the wave functionreaches the boundaries

of the finite calculation volume. To avoid reflections inρ-direction and unphysical re-

entry of the wave function from the opposite end inz-direction, we used absorbing

potentials near the box boundaries as defined in Eq. (1.48), e.g. in ρ direction ab-

sorption starting from 16a.u. and inz direction starting from 72a.u. with absorption

strengthWa = 1 (Eq. (1.48)). The ground state and the lowest few excited states were

obtained by imaginary time propagation [Section 1.2.5].

4.2.3 Definition of the field

The vector potential of the external IR laser field was taken to be

AL(t) =
cEL0

ωL
sin2

(

πt
2τL

)

sin(ωLt), (4.8)

whereτL = 207a.u.(5 f s) is the full width at half maximum (FWHM) vector potential

of the sin2 pulse and the center frequencyωL = 0.057a.u.(800nm) and the peak field

strengthEL0. c is the speed of light.

The vector potential of the XUV pulse has a gaussian shape as

AX(t) = AX0(t− tX)sin(ωX(t − tX)) =
cEX0

ω0
exp

[

−2ln2(
t− tX

τX
)
2
]

sin(ωX(t − tX)),

(4.9)

whereAX0 is the envelope function, FWHMτX = 10.3a.u.(250as), center frequency

ωX = 3.0a.u. and peak field strengthEX0 = 0.01a.u.(intensityIX = 3.5×1012W/cm2).

tX is the time delay between the IR lase pulse and the XUV pulse.
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The field strength of the external field is the time derivativeof the vector potential,

EL,X(t) = −1
c

∂AL,X(t)

∂ t
. (4.10)
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Figure 4.1: Electric field of IR laser pulse (bold red curve) at wavelength 800nmand

that of IR laser field with XUV pulse (photon energy 3a.u.) with a certain time delay

(thin blue curve).

Fig. 4.1 presents a typical field of an IR laser pulse with a delayed XUV pulse.

The IR field is a two-cycle pulse with peak field strength 0.12a.u. (intensity 5.1×
1014W/cm2) at 800nmand the XUV pulse has duration 250aswith peak field strength

0.01a.u.(intensity 3.5×1012W/cm2) at 15.2nm. The XUV pulse can be obtained from

high-order harmonic generation of noble gas in experiments[10] and the IR pulse can

provide by a commercial femtosecond laser system. With suchan “IR + XUV” field,

we probed ionization dynamics of hydrogen atom by varying the time delay between

IR and XUV field in the next section.
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4.3 Results and Discussions

4.3.1 XUV ionization yield

To study the results of such an IR-pump XUV-probe method, XUVsingle-photon ion-

ization yield will be a valuable quantity, because it strongly depends on the state when

XUV light is shining on. Numerically, the XUV ionization yield as a function of time

delaytX between the IR pulse and XUV pulse was calculated as

YX(tX) = |〈ψX(tX)|ψX(tX)〉|2 (4.11)

whereψX is the additional wave function amplitude due to the XUV pulse

|ψX(tX)〉 = (1−|ψL〉〈ψL|) |ψLX(tX)〉 (4.12)

and tX is the time delay, andΨLX(tX) is the wavefunction calculated with an XUV

pulse, which is arrives at timetX during the laser pulse, whileΨL is the wavefunction

propagated with only the laser pulse. The normsquare of the additional wave function

amplitudeψX gives us the photoelectron density produced by the XUV pulse. All

time-dependent wavefunctions are obtained from results ofsolving the TDSE. The

matrix element is evaluated at some timet > tX after the XUV pulse is over, where no

further XUV single photon ionization happens.

We calculated XUV photoelectron yieldYX for a hydrogen atom that is ionized

by a strong laser pulse. The IR laser pulse was taken at wave length 800nm (ωL =

0.057a.u.), peak intensity 5.1×1014W/cm2(EL = 0.12a.u.), and with a sine-square

pulse envelope of 1 optical cycle FWHM. The IR pulse leads to about 50% ionization

of the hydrogen atom.

As XUV photon energy (ωX = 3a.u.) is larger than the bound energy of ground

state electron (E0 = −0.5a.u.), single photon ionization is induced by XUV pulse.

XUV photon ionization yield as a function of time delay is shown in Fig. 4.2. There

are some large “wiggles” during the IR field and some small “wiggles” after the IR

field. Therefore, some informations during IR laser field ionization has been encoded
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to the results, and the question is to find out which quantity determines XUV photon

ionization.

 5e-07

 1e-06

 1.5e-06

 2e-06

 0  1  2  3  4  5  6
 0

 0.1

 0.2

 0.3

 0.4

X
U

V
 i

o
n

iz
at

io
n

 y
ie

ld

F
ie

ld
 s

tr
en

g
th

 (
a.

u
.)

Time delay (fs)

Figure 4.2: XUV photon ionization yieldYX (solid red curve) from hydrogen atom

by a 250as XUV pulse during ionization of an IR laser with laser intensity 5.1×
1014W/cm2. Hashed blue curve indicate the IR field (|EL(t)|).

4.3.2 Quasi-static bound states population

In Fig. 4.3, it is shown thatYX(tX) roughly follows the evolution of the bound states

populationPqb(t) as given by the quasi-static depletion

Pqb(t) = 1−exp

{

−
∫ t

0
Γ [E (τ)]dτ

}

, (4.13)

whereΓ[E ] are the ionization rates for static fieldE , which is numerically calculated

by the complex scaling technique [41]. There are, however, important deviations. Most

prominently, the XUV photoelectron yield has local minima just before nodes of the

electric field and rises to local maxima near the nodes. Moreover, after the pulse has
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passed, the XUV yield is not proportional to the quasi-static bound state population

Pqb(t).
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Figure 4.3: The field-free ground state population (dashed green curve), the field-

free bound states population (dash-dotted cyan curve) and the quasi-static bound state

population (dotted magenta curve) compare with XUV photoelectron yieldYX from

hydrogen atom during ionization by a two-cycle laser pulse at wave length 800nm

(solid red curve). All curves are normalized to 1 at timet = 0. The hashed blue line

on the bottom indicates the electric field|E (t)|.

4.3.3 Populations of field-free bound states

We also show the probability of finding the atom in the field free ground state

P0(t) = |〈Ψ(0)|Ψ(t)〉|2. (4.14)

As shown in Fig. 4.3, this quantity has similar characteristics as the XUV probe signal,

but the modulations are less pronounced, which indicates that excited and continuum
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states influence the XUV probing process. Note, however, that the effect of the excited

state population after the pulse is rather small compared tothe modulations of the XUV

yield during the pulse. Therefore the participation of excited states in the ionization

dynamics can only be of a transient nature, as in adiabatic distortions by the strong

field.

The field-free bound states population is present as dash-dotted cyan curve in

Fig. 4.3. It is calculated as

Pb(t) = ∑
n
|〈φn|Ψ(t)〉|2, (4.15)

whereφn are the field-free bound states. In the Eq. (4.15), the groundstate (1s state)

and the first three excited states (2p, 3p, 4p states, to which the transition from 1s

state are dipole allowed and easily obtained with imaginarytime propagation) are in-

cluded. The field-free bound states population roughly follows the quasi-static popu-

lation, which tells that there are about 3% excitation afterthe IR laser. The present of

excited states after the IR field leads to a beat in the electron density. It was shown in

Ref. [103] how such a beat is reflected in modulations ofYX as in Figure 4.2 at large

times.

4.3.4 Electron density near the nucleus

As discussed in the introduction, one expects to probe by an XUV pulse the electrons

near the nucleus. We define an electron density near the origin by

N0(t) =

∫ ρ0

0
ρdρ

∫ z0

−z0

dz|ΨL(ρ,z; t)|2, (4.16)

whereΨL(ρ,z; t) are wavefunctions during IR field ionization, without XUV pulse.

The electron density near the nucleus during laser field ionization is shown in Fig. 4.4

as green curve, which has been normalized to 1 at timetX = 0. The electron density

is selected with parametersρ0, z0 = 0.1a.u.. The normalized XUV photon ionization

yield roughly follows electron density near nucleus, except that there has more striking
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oscillations for electron density near nucleus to compare with XUV photon ionization.

The reason is that XUV pulse has its own duration which will determined the resolution

of such XUV probing method.

Due to the influence of XUV pulse duration, time average should taken for the

electron density to compare with XUV photon ionization yield. For a single photon

ionization, the ionization yield is proportional the intensity of the field. Therefore, we

take an averaged electron density as

N′
0(t) = 〈N0(t)〉AX0(t−tX) =

∫

dtXA2
X0(t − tX)N0(t)

∫

dtXA2
X0(t− tX)

(4.17)

where the time average is taken over the intensity profile of the XUV pulseA2
X0(t− tX)

(Eq. (4.9)). Figure 4.4 includesN′
0(t) with the same parameters asN0(t) (ρ0, z0 =

0.1a.u.). YX exactly followsN′
0(t) when both curves are normalized to 1 att = 0. In

other words, the electron density near the nucleus is observed by this XUV probing

method.

The electron density near the nucleus was studied with different integration param-

eters (z0 andρ0), which is presented in Fig. 4.5. For integration range from0.1a.u. to

1.0a.u., structures electron density are quite the same, and slightdifference shows up

for z0, ρ0 = 2.0a.u..

4.3.5 Longer wavelengths and lower intensities

We find that the simple correspondence betweenN′
0 andYX is not only valid in a limited

parameter range. It is preserved at lower intensities and atlonger wave lengths, which

are shown in Fig. 4.6, 4.7, 4.8, 4.9. XUV ionization yield, electron density near nucleus

(taken withρ0, z0 = 0.1a.u. ) and ground state population are presented. In Fig. 4.6,

wavelength 800nmwith intensity 1.3×1014W/cm2 are used, where ionization yield

is much less than that of intensity 5.6× 1014W/cm2. Longer wavelength 1600a.u.

with intensities 1.3×1014W/cm2 and 4.2×1014W/cm2 are presented in Fig. 4.7, 4.8,

while Fig. 4.9 presents wavelength 3200a.u. with intensity 1.3× 1014W/cm2. The
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Figure 4.4: XUV photoelectron yieldYX from hydrogen atom during ionization by a

two-cycle laser pulse at wave length 800nm(solid red line) compares with the electron

density near the nucleus (dashed gree curve). Hashed blue curve presents the electron

density near the nucleus after averaging with the XUV intensity envelope. All curves

are normalized to 1 at timet = 0.

92



 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

E
le

ct
ro

n
 d

en
si

ty
 (

ar
b

. 
u

.)

Time (fs)

0.1 a.u.
0.5 a.u.
1.0 a.u.
2.0 a.u.

Figure 4.5: Electron densities near nucleus with differentintegration parameters (from

z0, ρ0 = 0.1a.u. to z0, ρ0 = 2.0a.u.). All curves have been normalized to 1 at time

t = 0.

XUV ionization yield never exactly follows the ground statepopulation, but always

follows the electron density near the nucleus. This observation neither depends on the

laser wavelength nor the laser intensity.

4.3.6 Influence of XUV pulse parameters

To perform such XUV probing, one should consider the parameters of the probe —

XUV pulse. XUV photon energy, pulse duration and intensity are three most important

parameters to influent the XUV photon ionization yield.

XUV photon energy

First, XUV photon energy is studied. Other XUV pulse parameters are chosen as

intensity 3.5×1012W/cm2, pulse duration (FWHM) 250as. The IR field is 800nm

with intensity 5.3×1014W/cm2. We selected three different time delays, one at the

very beginning of the IR pulse, one near the center of the IR field and the other at time
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Figure 4.6: XUV photon ionization yieldYX for wavelength 800nm and intensities

1.3×1014W/cm2 is presented as red points. Electron density near nucleus (ρ0, z0 =

0.1) and ground state population are shown as blue and green curves, respectively. All

curves are normalized to 1 att = 0.
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Figure 4.7: XUV photon ionization yieldYX for wavelength 1600nm and intensi-

ties 1.3×1014W/cm2 is presented as red points. The electron density near nucleus

(ρ0, z0 = 0.1) and the ground state population are shown as blue and greencurves,

respectively. All curves are normalized to 1 att = 0.
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Figure 4.8: XUV photon ionization yieldYX for wavelength 1600nm and intensities

4.2×1014W/cm2 is presented as red points. Electron density near nucleus (ρ0, z0 =

0.1) and ground state population are shown as blue and green curves, respectively. All

curves are normalized to 1 att = 0.
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Figure 4.9: XUV photon ionization yieldYX for wavelength 3200nm and intensities

1.3×1014W/cm2 is presented as red points. Electron density near nucleus (ρ0, z0 =

0.1) and ground state population are shown as blue and green curves, respectively. All

curves are normalized to 1 att = 0.
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when the IR has gone. Results are shown in Fig. 4.10 with data normalized to 1 for

photon energy 2a.u.. For three different time delay, we get the same relation between

XUV photon ionization yield and XUV photon energy. It is clear that XUV photon

ionization yield strongly depends on the XUV photon energy,but the XUV photon

ionization yield behavior during IR field ionization is preserved with different XUV

photon energy. It also can be explained by that XUV photon energy is not critical

to the method because XUV photon ionization for hydrogen atom is in single photon

ionization regime.
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Figure 4.10: XUV photon ionization yield with different XUVphoton energy for three

different time delay, red square for time delay at the beginning of the IR field, green

circle for time delay during the IR field and blue cross for time delay after the IR field.

All curves have been normalized to 1 at first points.
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XUV pulse intensity

Intensity of XUV pulse will also directly influence the XUV photon ionization yield.

In Fig. 4.11, it presents a linear dependence of XUV ionization yield on XUV pulse
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Figure 4.11: XUV photon ionization yield with different XUVpulse peak intensity for

three different time delay, red square for time delay at the beginning of the IR field,

green circle for time delay during the IR field and blue cross for time delay after the

IR field. All curves have been normalized to 1 at first points.

intensity for three different time delays. Time delays are chosen the same as those used

in Fig. 4.10). Therefore, numerically the XUV pulse intensity is not an import issue

for the method. It is due to that XUV photon ionization yield is proportional to XUV

pulse intensity in single photon ionization regime.

XUV pulse duration

As the pulse duration will determine the resolution of XUV probing method, XUV

pulse duration should be a critical parameters. To probe a sub-cycle dynamics, XUV
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pulse duration should less than the time structure of the dynamics, otherwise the dy-

namics will be averaged out due to resolution problem.
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Figure 4.12: XUV photon ionization yield (points) with different XUV pulse duration

for time delays after the IR pulse when we got small “wiggles”. Red filled squares

present for pulse duration 150as, green circle for pulse duration 250as, blue filled

circle for pulse duration 500asand magenta square for pulse duration 750as. Curves

are electron densities near nucleus with related pulse duration averaging to the same

color points.

After the IR field ionization, the excitation causes beatingbetween ground and

excited states which yields small but fast modulation for the electron density near

nucleus. Fig. 4.12 presents XUV photon ionization yields (points) as a function of time

deadly between the IR pulse and XUV pulse. XUV pulse durationvaries from 150as

to 750as. Also electron densities with related pulse duration averaging are presented

in the figure. For XUV pulse duration 150asand 250as, we can get clear structures of

electron density near nucleus due to states beating. When XUV pulse duration is too

long, the structures disappear due to resolution problem. In Fig. 4.13, electron densities
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near nucleus (ρ0, z0 = 0.1a.u.) are presented with different averaging durations. It is

clearly shown that also the dip structure in electron density during the field strongly

depends on the averaging durations. For the longest duration shown in Fig. 4.13, only

ionization steps are left.
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Figure 4.13: Electron density with different time duration(FWHM) averaging, solid

red curve for no time averaging, dashed green curve for duration 150as, hashed blue

curve for duration 250as, dotted magenta curve for duration 500as and dash-dotted

cyan curve for duration 750as,

In summary, XUV pulse duration determines the resolution ofthe XUV probing

method, while XUV photon energy and XUV pulse intensity onlyaffect the total XUV

ionization yield.

4.4 Conclusions

In conclusion, we presented a hybrid-discretization method to solving the TDSE of

hydrogen atom in cylindrical coordinates. With such method, we show that truly dy-
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namical effects occur during strong field ionization, even at parameters where the total

ionization after passage of the pulse is well described by quasi-static depletion of the

bound system. The XUV probing method can be used to measure the dynamics. We

found that the XUV photon ionization yield never follows thepopulation of field-free

ground state and the total population of quasi-static boundstate, but follows the elec-

tron density near the nucleus. The dips in the XUV photon ionization yield originate

from the adiabatic distortions of the ground state and irreversible excited state dynam-

ics. Both effects, in principle, are of an observable magnitude. In our examples, the

major part of the the dynamics is due to ground state distortion which causes the local

minima in the observed XUV ionization yield, while excitation introduces only some

minor modulations and ground-excited state beatings afterthe end of the laser pulse.

XUV parameters for the XUV probing method were carefully studied. It is shown

that XUV pulse duration determines the resolution of the XUVprobing method, while

XUV photon energy and XUV pulse intensity only affect the total XUV ionization

yield. In principle, for an XUV probing experiment, one needan XUV pulse with

short enough pulse duration to resolve the ultrafast dynamics and intense enough pulse

intensity to make the effect detectable.
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Appendix

A.1 Units relations for mostly used quantities

Quantity atomic unit SI others

time 1 a.u. 2.42e-17 s 24.2 as

energy 1 a.u. 4.36e-18 J 27.2 eV

Table A.1: Units relation for time and energy.

Wavelength Period (SI) Period (a.u.) Energy (eV) Energy (a.u.)

800 nm 2.67 fs 110 a.u. 1.55 eV 0.057 a.u.

15.2 nm 50 as 2.09 a.u. 81.6 eV 3 a.u.

Table A.2: Units relations for wave quantities of infrared pulse and extreme-ultraviolet

pulse.
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A.2 Classical trajectory calculation for electron recol-

lision

Here we briefly summarize the classical theory of electron recollision in a strong field

which was first proposed in Ref. [104].

The vector potential of a linear polarized laser field is usually defined as

A(t) = A0(t)cos(ω0t), (A.1)

whereω0 is the center frequency andA0(t) is the envelope function, which mostly

used as a gaussian function,

A0(t) =
cE0

ω0
exp

(

−2ln2
t2

τ2

)

(A.2)

or sine-square function

A0(t) =







cE0
ω0

sin2( πt
2τ ), 0 < t < 2τ

0, otherwise
(A.3)

whereE0 is the peak field strength andτ is the pulse duration (full width at halt maxi-

mum, FWHM), respectively.c is the speed of light.

In classical mechanics, the position of electron obeys Newton’s second law, which

reads with atomic units (me = −e= 1) as

ẍ(t) = F = −E (t) (A.4)

whereE (t) is the electric field of the laser pulse, which can derived from the vector

potential,

E (t) = −1
c

∂A(t)
∂ t

. (A.5)

wherec is the speed of light.

Eq. (A.4) can simple solved by integration with certain initial condition, which is

usually given by [105]

ẋ(ti) = 0, (A.6)

x(ti) = 0. (A.7)
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For the classical electron rescattering, electron is released at timeti with zero ve-

locity and comes back to its origin position to recollide with the nucleus at timet f . t f

should be solutions of the following equation.

x(t f ) = 0. (A.8)

As an example, for a 5f s (FWHM), 800nm, sine-square shape laser pulse, the re-

lation between recollision time and recollision energy is presented in Fig. A.14. It is

clear the recollision energy is a function of recollision time. For each half laser cy-

cle, earlier recolliding electrons has low energy, and somepoint the recolliding energy

reaches its peak and then decays with the increasing of recolliding time. The increasing

slope is so-called “short-trajectory”, which comes from recollision with a short elec-

tron trajectory, and the decreasing is called “longe-trajectory”, that is, electron travels

back from a longer trajectory but with the same recollision energy as that of “short-

trajectory”. The merging point of “short-trajectory” and “longe-trajectory” is named

“cut-off”. The cut-off energy is about 3.17Up, whereUp =
E

2
0

4ω2
0

is the ponderomotive

energy.
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